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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit dem Verfolgen (Tracking) eines
mobilen Objekts basierend auf verrauschten Sensormessungen. Klassische
Trackingalgorithmen nehmen in der Regel an, dass das mobile Objekt auf-
grund von starkem Sensorrauschen als ein Punkt ohne Ausdehnung mo-
delliert werden kann. Bei modernen, hochauflésenden Sensoren ist diese
Annahme jedoch nicht gerechtfertigt und es muss beriicksichtigt werden,
dass Messungen von verschiedenen, rdumlich verteilten Messquellen auf
dem Objekt stammen kénnen. Da die rdumliche Ausdehnung des mobi-
len Objekts nicht bekannt ist und sich im Laufe der Zeit &ndern kann,
muss simultan zum Tracking eine Formschétzung durchgefiihrt werden.
Hierbei ergeben sich zwei grundlegende Herausforderungen: i) Aufgrund
der unbekannten Form handelt es sich um ein hochdimensionales, nicht-
lineares Schéatzproblem, dessen Komplexitédt mit Standardmethoden nicht
beherrschbar ist. ii) Da neben der Form auch die Beschaffenheit des Ob-
jekts unbekannt ist, liegen keine verldsslichen Informationen dartiber vor,
wo auf dem Objekt Messquellen sein kénnten. Der Trackingalgorithmus
sollte sich daher fiir unterschiedlich beschaffene Objekttypen eignen und
robust gegeniiber moglichen Modellierungsfehlern sein.

Fitting von Kreisen und Ellipsen

Wird das ausgedehnte Objekt als eine geschlossene Kurve, z. B. ein Kreis,
modelliert, kann die Formschétzung als ein dynamisches Fitting-Problem
aufgefasst werden. Diesbeziiglich wird in dieser Arbeit ein neues Verfah-
ren zum Fitting von Kreisen und Ellipsen vorgestellt. Die Grundidee ist,
eine explizite Messabbildung mit multiplikativem Messrauschen aufzustel-
len und eine statistische Linearisierung durchzufithren, um ein effizientes,
rekursives Messupdate mit einem Gauflschen Filter zu ermoglichen. Insbe-
sondere bei starkem Messrauschen ist dieser neue Ansatz Standardmetho-
den iiberlegen.

Random Hypersurface Model
Desweiteren werden ausgedehnte Objekte behandelt, bei denen die Mes-
sungen von einer Flache, z.B. einer Kreisscheibe, stammen. Hierzu wird
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ein neues Konzept namens Random Hypersurface Model (RHM) zur Be-
schreibung von Messquellen auf einer Flache, d.h. im Inneren einer ge-
schlossenen Kurve, vorgestellt. Ein RHM nimmt an, dass jede Messquelle
auf einer skalierten Version des Fléchenrands liegt, wobei der Skalierungs-
faktor durch eine Wahrscheinlichkeitsdichte charakterisiert wird. Auf diese
Weise wird das Modellieren einer Fliache auf das Modellieren einer Kurve
reduziert. Basierend auf dem Konzept von RHMs und den neuentwickel-
ten Techniken zum Fitting von Kurven werden effiziente Gaufische Filter
fir Grundformen, z. B. Ellipsen, aber auch fiir beliebige sternkonvexe For-
men hergeleitet. Hiermit wird gezeigt, dass die Komplexitdt des Schétz-
problems beherrschbar ist und eine detailreiche Form aus verrauschten
Messungen effizient geschétzt werden kann. Diese detailreiche Formschét-
zung ist von groBem Nutzen fiir das gesamte Trackingsystem, da sie z. B.
zur Klassifikation des Objekts verwendet werden kann.

Mengenbasiertes Ausdehnungsmodell

Zur Vermeidung von Modellierungsfehlern bei den Messquellen wird in
einem weiteren Ansatz ein mengentheoretisches Ausdehnungsmodel vor-
geschlagen, d.h. es werden keine statistischen Annahmen tiber die Posi-
tionen der Messquellen auf dem Objekt gemacht. Dieser Ansatz fithrt auf
einen kombiniert mengenbasierten und stochastischen Schétzer, fiir den
spezielle Approximationstechniken entwickelt werden. Aufgrund des men-
gentheoretischen Modells ist der Schétzer robust gegeniiber systematischen
Fehlern in den Positionen der Messquellen. Jedoch ist es nicht moglich,
die Form des Objekts allein aus Punktmessungen zu schétzen. Der men-
genbasierte Ansatz bietet sich demnach an, sofern kein Wissen iiber die
Verteilung der Messquellen vorliegt und die Form des Objekts bekannt ist
oder aus anderen Informationsquellen geschétzt werden kann (z.B. iiber
die Anzahl der Messungen). Es wird gezeigt, dass dieser Ansatz robuste-
re Schétzergebnisse liefert als ein rein stochastisches Verfahren, wenn das
stochastische Modell des Objekts nicht mit dem wahren tbereinstimmt.

Ezxperimente

Als Beispielanwendung wird das Tracking eines mobilen Objekts auf ei-
nem Tisch betrachtet. Hierfiir wird ein Sensor, der Farb- und Tiefenbil-
der aus der Vogelperspektive liefert, verwendet, um sich bewegende Punk-
te auf dem Tisch zu detektieren. Die extrahierten Punkte stammen von
der Oberfliche des mobilen Objekts und kénnen somit zur Formschétzung
verwendet werden. Anhand dieses Experiments werden die Vorteile der
entwickelten Methoden im Vergleich mit Standardmethoden dargelegt.
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This thesis is devoted to the tracking of a mobile object based on noisy
sensor measurements. Traditional tracking algorithms assume that the
mobile object can be modeled as a point without any extent due to high
sensor noise. However, this assumption is not reasonable for modern high-
resolution sensor devices because an object may give rise to multiple mea-
surements from spatially distributed measurement sources on the object.
As the spatial extent of the object is unknown and may vary over time,
it becomes necessary to simultaneously track the object and estimate its
shape. For this purpose, the following two basic challenges arise: i) As
the shape is unknown and to be estimated, extended object tracking is a
high-dimensional, nonlinear estimation problem whose complexity cannot
be handled with standard methods. ii) The characteristics of the object’s
surface are unknown as well, so that no reliable information about possi-
ble measurement sources is available. Hence, it must be ensured that the
tracking algorithm is robust to modeling errors caused by different kinds
of objects.

Fitting of Circles and Ellipses

When the extended object is modeled as a closed curve, e.g., a circle, the
shape estimation can be interpreted as a dynamic curve fitting problem.
In this context, a novel method for fitting circles and ellipses to noisy point
measurements is proposed. The basic idea is to reformulate the estima-
tion problem as an explicit measurement equation that is corrupted with
multiplicative noise. Statistical linearization of this measurement equation
allows for an efficient, recursive measurement update with a Gaussian fil-
ter. In particular for large measurement noise, this novel approach is able
to significantly outperform standard methods.

Random Hypersurface Model

Next, extended objects that are modeled as regions such as circular discs
are treated. For this purpose, a novel concept called Random Hypersur-
face Model (RHM) for specifying measurement sources in a region, i.e.,
the interior of a closed curve, is proposed. An RHM assumes that each
measurement source lies on a scaled version of the region boundary, where
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the scaling factor is characterized by a probability density function. In
this vein, the modeling of a region is reduced to the modeling of a curve,
i.e., the boundary. Based on the concept of an RHM and the developed
curve fitting techniques, efficient Gaussian filters for basic shapes such as
ellipses and star-convex shapes are derived. By this means, it is shown
that extended object tracking is tractable and it is possible to extract
detailed shape information based on sequentially arriving noisy measure-
ments. Such a detailed shape estimate is a significant benefit for the entire
tracking system, e.g., it can be used for classification.

Set-Theoretic Extent Model

In order to cope with the lack of statistical knowledge about the mea-
surement sources, a further novel approach is proposed that uses a set-
theoretic extent model, i.e., no statistical assumptions are made about
possible measurement sources on the object. This approach leads to a
combined set-theoretic and statistical estimator for which special approx-
imation techniques are developed. Due to the set-theoretic model for the
measurement sources, the estimator is robust to systematic modeling errors
in the locations of the measurement sources. However, it is not possible to
estimate the shape of the object solely with point measurements. Hence,
the set-theoretic approach is suitable in case no statistical assumptions on
the measurement sources are justified and the shape parameters are known
or can be estimated from other information sources (e.g., the number of
received measurements). It turns out that the set-theoretic approach is
able to give more robust estimates than plain stochastic methods, espe-
cially when the stochastic object model significantly differs from the true
object.

Ezxperiments

As an example application, the tracking of a ground moving mobile object
on a table is considered. For this purpose, a sensor that supplies RGB
and depth images from a bird’s eye view is employed for detecting moving
points on the table. The extracted points originate from the surface of the
moving object and hence, can be used for estimating the object’s shape.
With the help of this experiment, the advantages of the developed methods
are highlighted with respect to standard methods.
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Notation
Glossary
EKF  FExtended Kalman Filter
UKF  Unscented Kalman Filter
LRKF  Linear Regression Kalman Filter
RMSE  Root-Mean-Square Error
RHM  Random Hypersurface Model
SSI filter  Statistical and Set-theoretic Information (SSI) Filter
UKF-EL-RHM  UKF implementation of an elliptic RHM
AMC-SC-RHM  Analytic implementation of a star-convex RHM
UKF-SC-RHM  UKF implementation of a star-convex RHM
PF-SC-RHM  Particle filter implementation of a star-convex RHM
Naive-PF  Naive particle filter implementation for

extended objects

General Conventions

T,y Scalar

z,y Vector

zT Transpose of =

T Random vector

A Matrix

I, Identity matrix of dimension n

N Natural numbers

R Real numbers

E{z} = u” Mean of z

Cov{zx} =%* Covariance matrix of &

N(z — p*,¥%)  Gaussian distribution with mean p* and
covariance matrix 37

f(z) Probability density function of

Cumulative probability distribution of
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Notation

Conventions for Extended Object Tracking

Ly, Ly
Dy Dy,
my., My
S(p,)
aS(p,)
%k,lv 2.l
Yo Aﬂk,z
Vi, Yk

Vi
Wy

State vector at time step k

Shape parameters at time step k

Center of the extended object at time step k
Shape specified by P,

Set of measurement sources specified by z,
Boundary of S(p, )

[-th measurement source at time step k

[-th measurement at time step k

All received measurements at time step k

Measurement noise for [-th measurement at time step k
System noise at time step k

Circle with parameter vector &

Cone with parameter vector n

Hyperboloid with parameter vector ¢

Solution set for time step k& having incorporated

the first [ measurements

Measurement solution set for time step k having incorporated
the first [ measurements
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Introduction

Contents

1.1 Considered Problem . . . . ... .. ... ... .. .........
1.2 Basic Approach . . . . . . . .. ...
1.3 Application Areas . . . . . . .. ..o
1.4 Challenges . . . . . . . . ...
1.5 Contributions and Outline of This Thesis . . . . .. ... ... .. 1
1.6 Related Work . . . . . . . . . . .. 1

Today, life is hard to imagine without technical devices that are equipped
with sensors. Sensors are the senses for technical devices and similar to
human senses, a main purpose of sensors is to answer the fundamental
questions “Where am I?7” and “Where are the others?”. From a technical
point of view, the answer to these questions leads to the term localization,
which denotes the process of determining the pose, i.e., the position and
orientation, of an object. The continuous localization of a mobile object
over time is in general referred to as object tracking.

Essentially, two different settings for object tracking can be distinguished:
When the mobile object is actively involved in the localization process,
e.g., when sensors are mounted on the mobile object, we talk about co-
operative tracking. For example, the tracking of a mobile phone with
the help of its GPS sensor is a cooperative tracking problem. In con-
trast, non-cooperative tracking denotes the process of localizing an object
from remote sensors in the environment. A classical example for non-
cooperative tracking is air traffic surveillance with radar devices [BSDHO09].
Non-cooperative tracking comes with further related problems: There may
be multiple objects so that the origins of measurements are unknown and
clutter measurements that do not come from any object may occur. Non-
cooperative tracking under such conditions is commonly known as multiple
target tracking [BSWT11].

In general, each tracking system has to face the following requirements
(see also [YSZT11]): First, it must be possible to track objects precisely
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X X
i X
(a) Point object. (b) Extended object.
O = Measurement source X = Measurement

Figure 1.1: In contrast to a point object (a), an extended object (b) results
in several measurements, where each measurement is a noisy observation of a
measurement source on the object.

even under poor conditions, i.e., noise corrupted sensor data. Second, the
tracking algorithm must be capable of following changes in the appear-
ance of objects, e.g., shape changes, but also changes of the environment,
e.g., landmarks may disappear. Third, the tracking algorithm should be
efficient, e.g., real-time capable.

1.1 Considered Problem

Classical (non-cooperative) tracking methods are based on the assumption
that the sensor noise is much larger than the spatial extent of the object
(see Fig. 1.1) and hence, model it as a single point. However, due to the
increasing resolution capability of modern sensor devices, the spatial extent
of an object often cannot be neglected anymore and has to be incorporated
into the tracking process.

Definition 1.1 (Extended Object). An extended object is characterized by
a geometrically structured set of measurement sources that have a common
dynamic behavior.

An extended object gives rise to several measurements per time instant.
Each measurement is a noisy observation of a measurement source on
the object, where the location of the measurement source is unknown (see
Fig. 1.1). The measurement sources may vary over time and their locations
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depend on the object’s shape but also on more complex properties such as
the surface or the sensor’s field of view.

Extended object tracking is a rather new problem that comes with a variety
of challenges for a tracking system. This thesis focuses on the

(non-cooperative) tracking of a single extended object

based on noisy Cartesian point measurements.

Remark 1.1. The tracking of multiple extended objects and the incorpo-
ration of clutter measurements are beyond the scope of this thesis.

Remark 1.2. We restrict ourselves to Cartesian point measurements be-
cause most relevant sensors can be captured with point measurements, e.g.,
angle-distance measurements can be converted to point measurements.

Remark 1.3. Ignoring the spatial extent of an extended object, i.e., treating
it as a point object, may cause overconfident and poor tracking results.

1.2 Basic Approach

In this thesis, the basic approach pursued is to approximate the extended
object with a geometric shape such as an ellipse [GS05,KS05], [18]. As the
parameters of the shape are unknown and may vary over time (e.g., the
object may rotate), the tracking problem consists of the

simultaneous estimation of the kinematic and shape parameters

of the object.!

As usual in tracking applications, a recursive Bayesian state estimator
[AMGC02,RAG04,BSWT11] is desired, which maintains a posterior prob-
ability density function for both the shape and the kinematic parameters.
A Bayesian state estimator can be seen as the complete solution to the
estimation problem as it encodes all available information in the posterior
density. In particular, this information is required for further information
processing problems such as gating, data association, or planning.

n this thesis, the shape of an object is understood to be invariant to translations but
not to rotations and scalings.
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Of course, a suitable geometric shape for approximating the object highly
depends on the particular scenario. In general, a more precise shape ap-
proximation is expected to increase the overall tracking performance due
to the inherent connection between the shape and kinematic parameters.
However, in case of high measurement noise, few available measurements,
and a heavily maneuvering object, it may not be possible to extract all
shape information. In this case, it is more suitable (or even necessary)
to use a basic shape with few degrees of freedom in order to avoid track
losses. In this manner, a coarsening of the object’s shape is performed that
neglects finer details that are difficult to estimate or even not required.

A suitable (rather informal) classification of relevant shapes can be per-
formed according to the

e dimension of the shape, which the measurement sources are located
on and

e the description complezity of the shape.
For instance, in two-dimensional space, the shape can be (see Fig. 1.2)

e zero-dimensional, i.e., a point object,
e one-dimensional, i.e., a curve such as an ellipse or a line, or
e two-dimensional, i.e., a closed curve with its interior (also called

region).

The description complexity of the shape is classified into four different
types (see Fig. 1.3):

e Type 1: Point
The extended object is in fact a single point object.

e Type 2: Basic shape
The shape of the extended object is a basic shape such as an ellipse
or a line segment.

e Type 3: Connected shape
The shape is connected, i.e., two points can be connected by a path.
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(3 &

(a) A closed curve, i.e., an (b) A region, i.e., an ellipse
ellipse (without interior). with interior.

Figure 1.2: One-dimensional (a) and two-dimensional (b) shape in two-
dimensional space.

OOQSﬂ

(a) Type 1: (b) Type 2: Ba- (c¢) Type 3: Con- (d) Type 4: Ar-
Point. sic shape. nected shape. bitrary shape.

Figure 1.3: Description complexity of shapes.

e Type 4: General shapes
There is no restriction on the shape, e.g., it may be composed of
several basic shapes.

In the following, an N-dimensional shape in N-dimensional space is called
a region shape. A one-dimensional shape (in N-dimensional space) is called
a curve. In two-dimensional space, a region shape is given by a closed curve
plus its interior. Please note that the distinction between region shapes
and curves is essential in this thesis.

Remark 1.4. In the remainder of this thesis, we mainly restrict our discus-
sions to the two-dimensional case. Nevertheless, generalizations to higher
dimensions are usually straight-forward (if not stated otherwise).

Delimitation Contour tracking [YSZ11,YJS06] refers to a class of track-
ing methods in computer vision, where objects are to be tracked in RGB
image sequences. For example, the popular active contours [KWT88,
JBUO04, BI98] minimize an energy functional in order to find the object
contour. Vision-based contour tracking algorithms have a large amount of
data available, e.g., an RGB image, that covers the entire object. Hence,
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y Point Object Tracking

X
- =

Extended Object Tracking
X S
X
Contour Tracking

‘5\
Number of Measurements

Figure 1.4: Taxonomy of shape tracking problems.

Measurement Noise

the challenge is rather how to obtain the measurements, i.e., the question
is which image pixels belong to the object.

In a typical (single) extended object tracking scenario, the measurements
are directly available and they are known to originate from the object
(apart from clutter measurements). However, the available measurements
at a specific time instant do not carry enough information for determining
the contour of the object, i.e., there are too few or too noisy measurements
given. The shape of the object can only be estimated if several time
instants are considered under incorporation of the temporal evolution of
the object. Contour tracking algorithms are in general not suitable for this
kind of measurements as they are tailored to a large amount of RGB data
with rather low noise that covers the entire object. Later in Chapter 6, it
is shown experimentally that contour tracking algorithms may give poor
results when applied to an extended object tracking problem.

According to the above discussion, extended object tracking can be roughly
distinguished from classical contour tracking by means of the number of
available measurements per frame and the magnitude of the measurement
noise as depicted in Fig. 1.4.
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1.3 Application Areas

Extended object tracking is a fundamental theoretical problem. Many
sensor data fusion problems in robotics, surveillance, and computer vision
can be cast as an extended object tracking problem. In general, each
estimation problem involving noisy data sets arising from a structured set
of unknown sources can be seen as an extended object tracking problem.
Typically, extended objects occur in tracking applications when sensors
such as radar devices, laser rangefinders, or optical devices are involved.
For example, in [OGL11], the tracking of people with a laser rangefinder is
treated, and in [GSDBO07], vehicles are modeled as extended objects for the
sake of collision detection. The works [JBC10,SCG09,JBCO08] consider the
tracking of contaminated clouds based on special sensors that measure the
material concentration in the atmosphere. Finally, the processing of point
cloud measurements obtained from depth sensors such as the Microsoft®
Kinect  can be interpreted as an extended object tracking problem [22].

Extended object tracking methods can

x be employed for tracking a collectively

X %ﬁ? moving group of point objects due to
%%ﬁo the strong relationship between indi-
%ﬁp vidual group members (see Fig. 1.5). In
X this sense, a group target [WDO04] is an

extended object that consists of a finite
Figure 1.5: A group of point objects set of measurement sources, i.e., the
Z%?egf, interpreted as a single extended group members. Group object track-

ing applications can be widely found in

robotics and surveillance. For instance,
persons and person groups are modeled as clusters in [LAB09,CSG12] and,
in [FK08,PD11], ground moving objects such as convoys are tracked with
the help of a Ground Moving Target Indication (GMTI) sensor.

When the extended object is modeled as a curve, there is a strong relation-
ship to curve fitting, which often occurs in computer vision, where curves
shall be fitted to features extracted from image data [Por90,Zha97, FB0S,
ARRY99]. For example, in [GMLT08, GBL*11], a humanoid robot localizes
spherical objects based on ellipse fitting methods. In addition to image
data, fitting methods are vital for the processing of data supplied by a
laser or radar device. For instance, mobile robots need circle fitting algo-
rithms for outdoor localization using circular-shaped landmarks measured
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by a laser rangefinder [NVMBS08,ZXA06]. In [AOMMBO07, COY10], el-
lipse fits serve for people tracking using also a laser rangefinder. The fitting
of polynomial curves in a tracking context is treated in [LOG11], where
road lanes are extracted from radar measurements.

1.4 Challenges

Single extended object tracking is a non-standard tracking problem that
is significantly more difficult than single point object tracking. The two
main challenges are the followings:

1. High-dimensional, nonlinear estimation problem

A stochastic estimator for the shape of an extended object is based
on a hierarchical nonlinear probabilistic model that first specifies the
measurement sources and then the measurements. Even for simple
shapes, the likelihood function for this model cannot be evaluated
analytically, because the unknown measurement sources have to be
marginalized out from the likelihood. Additionally, the state vec-
tor of an extended object is typically high-dimensional as it also
contains shape parameters. All told, extended object tracking is a
high-dimensional, nonlinear estimation problem for which standard
approaches are bound to fail and elaborate approximation techniques
are required.

2. Lack of statistical information about measurement sources

It is often difficult or even impossible to obtain precise statistical in-
formation about possible locations of the measurement sources on the
object as the true object shape and its properties are almost always
totally unknown. A reasonable approach would be to assume that
the measurement sources are uniformly distributed on the object’s
surface. However, then poor estimation results may be obtained
if the measurement sources are in fact not uniformly distributed.
For example, when tracking an airplane with a radar device, reflec-
tions from the turbines may be much more probable than elsewhere.
A consequence of wrongly imposed statistical assumptions is that
the estimation results can be significantly biased. Hence, a major
challenge is to create a tracking algorithm that is robust to such
systematic modeling errors.
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Challenges

Simultaneous Tracking and Shape Estimation of Extended Objects

Conic Fitting Random Hypersurface Model

X ,

X

¢ Formulation as measurement « Novel extent model for the
equation with multiplicative noise shape interior
¢ Gaussian filter based on ¢ Ellipses and star-convex shapes
gt e izak ¢ Gaussian filter for an efficient
e Suitable for large measurement noise closed-form measurement update
Set-Theoretic Extent Model Experiments

X

¢ No statistical assumptions on ¢ Ground moving object tracking

measurement sources . q . .
e Moving point detection using

¢ Combined set-theoretic and RGB and depth data

stochastic estimator «  Evaluation

* Robust to systematic errors

Figure 1.6: Overview of this thesis.
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1.5 Contributions and Outline of This Thesis

As extended object tracking is a nonlinear, high-dimensional estimation
problem, existing approaches are usually based on particle filters and only
basic shapes such as circles and line segments have been considered in lit-
erature (see the next section). For region shapes, closed-form formulas can
only be found for the special case of ellipses with the help of random matrix
theory [FFK11]. This thesis addresses this issue and demonstrates that
extended object tracking is tractable; even detailed shape information can
be estimated efficiently. For this purpose, Gaussian filters based on closed-
form expressions are developed for a wide range of relevant shapes reaching
from basic shapes to arbitrary free-form star-convex shapes. A new sys-
tematic approach for specifying region shapes called Random Hypersurface
Model leverages the derivation of these filters.

The lack of statistical information about measurement sources has not
been treated in literature at all. In this thesis, the negative effect of wrong
assumptions in a stochastic estimator is illustrated and a set-theoretic
extent model that does not make any statistical assumptions about the
measurement sources is proposed. In this way, systematic errors in the
measurement sources can be tackled with a mathematically sound formal-
ism for incorporating unknown-but-bounded errors in Bayesian estimation
theory.

The structure and main contributions of this thesis are outlined in Fig. 1.6.
Each main topic is treated in a seperate chapter (Chapter 3 to Chapter 6).
This and the last chapter form the introduction and conclusions of this
thesis. Chapter 2 presents the mathematical framework and notation for
simultaneously tracking and shape estimation of a single extended object
with the help of Bayesian state estimators, where a strong focus lies on
Gaussian filters. It serves as the basis for the remaining chapters, which
are described in more detailed in the following.

e Conic Fitting Using Statistical Linearization — Chapter 3
An important specific extended object tracking problem is obtained
when the received point measurements originate from a closed curve,
i.e., a circle or an ellipse (without the interior) as depicted in Fig. 1.2a.
In this case, the problem can be interpreted as a “dynamic” fitting
problem for which a recursive Bayesian state estimator is desired.
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Although fitting problems are well-studied in literature, new require-
ments are imposed in the context of extended object tracking, e.g.,
the measurement noise is rather high and the conic evolves over time.
In this thesis, we present novel recursive Gaussian filters for conic
fitting that are tailored to the needs of extended object tracking.
The basic approach is to reformulate the original implicit problem
as a measurement equation that is corrupted by multiplicative noise.
With the help of this explicit equation and statistical linearization,
Gaussian filters that employ closed-form expressions for the mea-
surement update are derived. In particular for large measurement
noise, the novel fitting methods are able to significantly outperform
state-of-the-art Gaussian-based approaches.

¢ Random Hypersurface Model — Chapter 4

A main contribution of this thesis is a novel systematic approach
for modeling a region shape, i.e., the interior of closed curve, which
we call Random Hypersurface Models (RHM). The basic idea is to
reduce the modeling of a region shape to the modeling of a curve
by means of scaling the shape boundary. In this vain, it is pos-
sible to derive explicit measurement equations for a wide class of
relevant region shapes. In particular, we introduce an RHM for
ellipses and free-form, i.e., arbitrary complex, star-convex shapes.
Bayesian inference is performed with a Gaussian filter that allows
for an efficient recursive measurement update based on closed-form
expressions. These are the first Gaussian filters for region shapes,
and most important, this is the first method at all that is able to
estimate a star-convex shape approximation. By this means, it is
possible to track an object whose shape is a priori totally unknown
and estimated from scratch. This is a significant leap in extended
object tracking as a detailed shape estimate is of high value for many
applications, e.g., classification.

e Set-Theoretic Extent Model — Chapter 5
In order to cope with the absence of statistical knowledge about
the measurement sources, a set-theoretic extent model, which mod-
els the extent as an unknown-but-bounded error, is proposed, i.e.,
the only imposed assumption on a measurement source is that it
lies on the object. For this set-theoretic extent model, we derive a
combined set-theoretic and stochastic estimator that represents the



12 Chapter 1. Introduction

uncertainty of the state as a random set and uses (random) set inter-
section for the measurement update. Specifically, we develop novel
outer-bounding techniques for circular-shaped extended objects. The
set-theoretic extent model implicates that the object’s extent cannot
be estimated only with point measurements. However, it can be in-
ferred from further information sources, e.g., the number of received
measurements. Simulations demonstrate that the set-theoretic ap-
proach may yield more robust and precise estimation results than a
pure stochastic approach in case the locations of the measurement
sources are dominated by a systematic error.

¢ Experiments: Moving Object Tracking using RGBD Data —
Chapter 6
We present an experimental setup for evaluating extended object
tracking methods. In this experiment, a moving object is to be
tracked with the help of an RGBD camera observing the scene from
a bird’s eye view. For this purpose, moving points are detected in
the RGB and depth image sequences. The extracted moving points
originate from the surface of the moving object and serve as input
for the extended object tracking algorithm. With the help of this
experiment, we provide an exhaustive evaluation of RHMs for star-
convex shapes. We illustrate the need of an extended object track-
ing method for this scenario and compare RHMs with active con-
tour models, which are a state-of-the-art approach for vision-based
contour tracking.

1.6 Related Work

In this section, a brief outline of related extended object tracking methods
is given. More detailed discussions of relevant state-of-the-art methods
with respect to this thesis are given in the corresponding chapters. In
general, related methods can be roughly subdivided into

e curve fitting methods,

e approaches that represent the object as a finite set of measurement
sources, and

e approaches for region shapes, i.e., closed curves with an interior.
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Curve Fitting In case the measurement sources lie on a curve, the prob-
lem can be seen as a curve fitting problem [Chel0]. Fitting curves such
as circles, ellipses and line segments to noisy data is a traditional problem
that is still an active research area in computer vision and robotics. A huge
amount of solution methodologies (statistical and non-statistical) for this
problem have been developed. Curve fitting usually denotes a static prob-
lem, i.e., the best fitting curve for several measurements is to be found. In
this thesis, we have to deal with a dynamic problem, i.e., a tracking prob-
lem, for which we aim at a recursive Bayesian state estimator. A Bayesian
approach to curve fitting can be found in [WKO01] and in [Por90], Kalman
filtering techniques are used for ellipse fitting. A more detailed discussion
of these curve fitting methods is given in Section 3.2.

Explicit Extent Models The classical approach to extended object and
group tracking is to represent the object explicitly with a finite set of
measurement sources that share a bulk component in common, e.g., the
velocity [BC91,1G03, VIG05, VIG04, GSDB07]. The goal is to estimate
both the locations of the measurement sources and the bulk component.
This explicit object model is suitable when reasonable models for the mea-
surement sources are available and each single measurement source can
be resolved by the sensor. However, there are several situations in which
explicit models are not suitable and an implicit model is advantageous:

e Explicit models for the point features, e.g., for the motion and de-
tection probability, may not be available and not be justified.

e In case of an extended object, where the measurement sources orig-
inate from a continuous set, finite sets of point features are a poor
model of the real object.

e Resolution conflicts may render it impossible to resolve single point
features.

e With an increasing number of point features, the problem may be-
come intractable as the number of association hypothesis grows ex-
ponentially with the number of measurement sources.

Region Shapes The plain Bayesian approach for estimating region shapes
is to model the shape as a so-called spatial probability distribution [GS05,
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GGMS05], i.e., each measurement source is a random draw from a spe-
cific probability distribution whose probability mass is concentrated on
the object.

In literature, particle filters based on spatial distributions have been used
for estimating region shapes such as circles [WK01, PMGA12, PGMA12]
and Gaussian mixtures with known parameters [GS05]. Of course, spa-
tial distributions can been also used for estimating curves, e.g., circles
[WKO01, PMGA11] and stick targets [GS05, GGMS05, BDT+06]. Spatial
distributions have been integrated into the Probability Hypothesis Density
(PHD) filter framework for tracking multiple extended objects [Mah09,
GLO10,5C10,GO12].

In [KS05, Koc08], a spatial distribution is used to model elliptic shapes.
For this purpose, the uncertainty about the ellipse is specified by means of
a random symmetric positive definite matrix. Each measurement source
is assumed to be a random draw from a Gaussian distribution whose
covariance matrix is specified by the random matrix. The original ap-
proach [KS05,Koc08] neglects the measurement noise but an extension that
incorporates the measurement noise was proposed in [FF08,FF09, FFK11],
which, however, comes with a further loss of optimality. Although the
random matrix approach assumes measurement sources to be drawn from
a Gaussian distribution, uniformly distributed measurement sources on
an ellipse can be captured through moment matching [FF09, FFK11].
Multiple extended objects have been considered within the Probabilistic
Multiple-Hypothesis Tracker (PMHT) framework [CGW™'09] in [WK10,
WK12] and PHD filters [GO12]. Very recent further developments can be
found in [Orgl2, LRL12a, LRL12b]. Besides of the methods proposed in
this thesis, the random matrix approach is currently the only approach
that gives closed-form expressions for the measurement and time update.
A comparison of RHMs for ellipses and the random matrix approach can
be found in [6] and Section 4.2.4.
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CHAPTER 2

A Bayesian Framework for Extended
Object Tracking
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This chapter is about a Bayesian framework for tracking a single extended
object based on sequentially arriving noisy point measurements.

First, the required probabilistic models for an extended object are intro-
duced. Essentially, we consider independently generated noisy point mea-
surements originating from unknown measurement sources on an extended
object. As the shape of the object is unknown and may vary over time,
the state vector is enhanced with parameters that determine the shape.

Second, a conceptual recursive Bayesian estimator for the state, i.e., the
kinematic and shape parameters, is derived based on the probabilistic
model. A Bayesian state estimator computes a posterior probability den-
sity function for the state vector based on all available information, i.e.,
the measurements [AMGCO02]. As the estimation problem is in general
nonlinear, high-dimensional, and already the likelihood function cannot
be evaluated analytically, standard (linear) estimation techniques cannot
be applied.

After discussing the difficulties with a naive particle filter implementation
for extended objects, we recall the well-known concept of statistical lin-
earization, which will be used in the remainder of this thesis for deriving
specific extended object trackers. The main benefits of statistical lineariza-
tion in this context are that the likelihood function does not have to be
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Lp_q

Extent Model

Sensor Model

Figure 2.1: Graphical model visualizing the dependencies of the involved quan-
tities for extended object tracking, i.e., the state vector z,, the measurements

Y Yo ,gk’nk, and the measurement sources Zp 10282 Zhny

evaluated explicitly and closed-form expressions can be derived for a wide
class of measurement equations such as polynomial equations.

All extended object tracking methods proposed in the subsequent chapters
are based on this chapter. However, it is important to note that the com-
bined set-theoretic and stochastic estimator from Chapter 5 is an extension
of the concept of a Bayesian state estimator.

Remark 2.1. The Bayesian formulation of the extended object tracking
problem is frequently used in literature, see for example [GS05, GGMS05,
BDT06, Koc08, PMGA11] and also [3], [9, 14, 18,19]. Here, we follow
the notation of [3], [9,14,18,19] that focuses on a single extended object
without false measurements.

2.1 Modeling Extended Objects

The extended object tracking problem is formulated as a discrete-time
stochastic dynamic system (see for example [GS05, GGMS05, Koc08] and
[9,14,18,19]). For this purpose, it is necessary to specify

e the object state,
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e a measurement model, which relates the state to the measurements,
and

e a system model for the temporal evolution of the state.

A graphical model of the involved quantities is depicted in Fig. 2.1. The
state vector is given by x,, where k denotes the time step. It contains
parameters that specify both the kinematics and the shape of the object.
At each time step k, ny independent measurements YV, = {y, ,}, are
available, where each measurement Yy, , originates from a partic{llar mea-
surement source z, ; on the object, see also Fig. 2.2. Hence, the measure-
ment model involves two components, i.e., the extent model, which speci-
fies a measurement source for given object state, and the sensor model,
which determines the measurement based on the measurement source.

As visualized in the graphical model

Fig. 2.1, single measurements are mu- >

tually independent for given object

state, i.e., a single measurement only

depends on the measurement source O

and the measurement source only de- X

Y
pends on the state vector. A measure- kil

ment model for a single measurement
is in particular required in case only a Figure 2.2: Measurement model for

single measurement per time instant extended objects: Independent genera-
. . tion of measurements.
is a available.

Further details about the involved
quantities and the relations between them are described in the following.

Remark 2.2. We denote a particular realization of y Kl with Qk . and define

the abbreviation J), = {9, h2-

2.1.1 State Vector

The object state at time k is represented with a random vector x; =

T
m], (@Z)T,Bf that encompasses
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e the N-dimensional center of the object m,
e variables xj, for the kinematic parameters such as the velocity, and

e the NP-dimensional parameter vector P, that specifies the shape.

The shape parameter P, 1s a parametric representation of a geometrically
structured set in RY that is denoted as S (pk) C RY. Note that the center
of the object is not part of the shape parameters, i.e., in this thesis the
shape is invariant to translation but not to rotation and scaling.

Example 2.1 (Circle). A circular disc can be represented with P, =
), where 7 is the radius. The shape is given by S(p,) = {z [ze€
R? and ||z|]2 < 7}

The entire set of measurement sources associated to an extended object is
denoted as

M(zy,) = M(p,,my,) == S(p,) + my, , (2.1)

where the center m, is added to each element of S(p, ).

2.1.2 Measurement Model

As we assume that the single measurements are mutually independent,
a measurement model for a single measurement is sufficient. Hence, the
measurement model relates the state vector x, to a measurement Y,
where it also incorporates that the measurement stems from an unknown
measurement source 2z, ,; on the extended object. It is composed of two
parts, the extent model and the sensor model (see Fig. 2.2).

Extent Model For a given extended object M (p ,my,), the extent model
specifies a measurement source z;,; € M(p, ,my;) (see Fig. 2.2). Often lit-
tle information about possible locations of a measurement source is avail-
able. At least it is known that a measurement source lies on the extended
object.

A reasonable extent model is a spatial distribution [GS05, GGMS05], i.e
each measurement source z; ; is a random draw of the probability distri-
bution

f(ék,z |z),) = [z ‘Bkvmk) .
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An obvious choice for a spatial distribution is the uniform distribution,
which says that each measurement source is equally probable, i.e.,

1

[z |Bk7mk) - m
=~k

)

where |S(p, )| denotes the area of the shape/length of the curve S(p, ).

In this thesis, two further extent models are introduced, i.e.,

e the Random Hypersurface Model, which assumes that each measure-
ment source lies on a scaled version of the shape boundary (see
Chapter 4), and the

o set-theoretic extent model, which does not make any assumptions on
a measurement source except that it lies on the object shape (see
Chapter 5).

It is essential to note that the locations of the measurement sources are
not desired. They are just a required (unknown) quantity on the route to
the measurement.

Sensor Model Suppose we are given a measurement source z;;, then
the sensor model says how to get the measurement Y, As we focus on

Cartesian point measurements corrupted with additive Gaussian noise, the
measurement equation is

ng = 2k +Qk,l ’ (2'2)

where vy, ; is zero-mean white Gaussian noise with covariance X} ;. Based
n (2.2), the likelihood function

f@ |§k,l) = N(Q — Zk,l» E}é,l)
k,l k,l

is obtained for a particular measurement gk -

Note that almost all relevant sensors can be captured within this model.
For example, angle-distance measurements can be converted to Cartesian
point measurements as described in [Fra07].
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Extensions of the Model The model introduced above can be seen as a
minimal model for tracking a single extended object. Of course, it can be
further extended. For example, it may be suitable to consider the number
of received measurements ny as a random variable, where the number may
depend on the size of the extended object.

2.1.3 System Model

The temporal evolution of the object state x, is modeled as a Markov
process. For an extended object, it also specifies how the shape parameters
evolve over time. In this thesis, no restrictions on the system model are
imposed. Typically, it is specified by a system equation such as

Ty = (T, U1, Wy 1) (2.3)

where a;,_(+,-,) denotes the system function, u,_; is the system input,
and w;,_; is the (mutually independent) system noise. Based on the system
equation (2.3), a conditional density function f(z,|z,_,) can be derived
[Sim06, RAGO4].

Although a general nonlinear system model such as (2.3) may be used,
we focus in this thesis on two simple linear motion models, which are the
random walk model and nearly constant velocity model.

Random Walk Model A very simple motion model is the so-called ran-
dom walk model, which just perturbs the state vector with an additive
zero-mean Gaussian noise term. This model is reasonable for the center
of the object but also for the shape parameters. By this means it is pos-
sible to capture small shape changes during two time instants. Here, we
consider the random walk model given by

Ly =&y 1 +Wy  F U, (2.4)
where w,,_; is zero-mean white Gaussian noise and @,,_; is a deterministic

input vector.

Constant Velocity Model for the Center A constant velocity model
[BSKL02] for the center assumes that the object moves approximately
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along a straight line with a constant velocity. However, the shape param-
eters are still modeled as a random walk.

T
In the following, let the state vector be x;, = [mg, (m};)T,Bﬂ , where
my is the velocity vector. In two-dimensional space, the nearly constant
velocity model [BSKLO02] for the center of the object is given by

BCU wC’U
Z), = Ap1Zy g + [ ’“wlp“] ; (2.5)
Wy
where
1 0T O
e A 1 = diag(A(]éU_17INp) with Aiv—l = 8 (1) (1) g and Iy» is
0 0 0 1
the identity matrix with dimension NP,
1
§T2 1212
e BjY, = 2’ 50 is a matrix,
0 T

o w{’, is zero-mean Gaussian noise for the constant velocity model,
whose covariance matrix is a design parameter, and

e w! , is zero-mean Gaussian noise modeling small changes in the
shape parameters.

Note that there is a lot of room left for future research concerning more
elaborate motion models for extended objects.

2.2 Formal Bayesian State Estimator for Extended
Objects

Based on the probabilistic measurement and system model, a (formal)
recursive Bayesian state estimator for the state x, can be derived (see
also [GS05, GGMS05, Koc08], [9,14,18,19]). As an extended object may
give rise to multiple measurements per time instant, the standard notation
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for a Bayesian state estimator will be slightly adapted, i.e., the posterior
probability density for the state vector x, having incorporated the mea-
surements gk NEREE Qk . (and all measurements from previous time steps)

with fi(z,), i.e.,

filzg) = f (lk Vs, Vet Qk,l,---,gk,l)

A recursive Bayesian state estimator consists of a time and measurement
update step. Although multiple measurements are received per time step,
they can be incorporated recursively as they are independent (see Sec-
tion 2.1.2). In this vein, a time update may be followed by a sequence of
measurement updates.

2.2.1 Time Update

Suppose we are given the probability density f,, ,(z;_,) for the time step
k — 1 after incorporating all ny_; measurements, then the time update
results in the probability density fo(z,) for the predicted state for time
instant k. The prediction fy(z,) results from the well-known Chapman-
Kolmogorov equation

folzy) = / P | Zoer) - Fue s (py) dzg_y - (2.6)

2.2.2 Measurement Update

In the measurement update step, the prediction fo(z,) is updated with
the measurements ), = {9, ,}1£, based on Bayes’ rule

fri(@g) = g - f (j}k|£k) “fol@p_1)

where f (jzk |z k) is the likelihood function derived from the measurement

model and «ay, is a normalization factor. As the measurements are mutually
independent (for a given state), they can be incorporated recursively

fie) = 0w F@y lz) - fia(zy)
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where f (Qk l@k) is the single measurement likelihood function and ay ; is
again a normalization factor. For a spatial distribution model, the single
measurement likelihood function is

£ ) = [ Fa o) Fanil) dze (2.7)

which results from marginalizing out the unknown measurement source.
Note that the measurement does only depend on the measurement source,

i'e', f(gk7l|§k,lﬂ£k) = f(gw‘ﬁk,l)'

2.2.3 Discussion

Typically, the measurement model for extended objects is a highly non-
linear, hierarchical probability model. As a consequence, the probability
density fi(z,) for the state cannot be calculated recursively in closed-form.
Maintaining an approximation of f;(z, ) is a challenging problem as

e the state vector is usually high-dimensional, and

e the likelihood function (2.7) cannot be evaluated analytically even
for simple basic shapes.

In the remaining two sections of this chapter, we discuss two approaches
for dealing with this nonlinear estimation problem.

2.3 A Naive Particle Filter for Extended Object
Tracking

Particle filters employ sequential Monte Carlo techniques for maintain-
ing a point mass representation of the posterior density in a nonlinear
Bayesian estimator. For a detailed overview of recent methods, we refer

to [AMGC02, RAG04].

As every nonlinear estimation technique, particle filter approaches come
with particular advantages and disadvantaged. For the considered prob-
lem, the naive application of a particle filter is rather challenging. In order
to show the difficulties, we define a naive particle filter called Naive-PF,
which will serve as a benchmark filter in the remainder of this thesis.
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Remark 2.3. The Naive-PF for extended objects is characterized as fol-
lows:

e The likelihood function (2.7) for the measurement update is approx-
imated by performing a random sampling of the curve/region.

(ykl‘xk) Zf(ykz‘zkl) (Zl(cz)l@k) ,

where gg)l with i = 1,..., N, are random samples from the extended
object M(p, ,my).

o After each measurement update, a simple resampling is performed
by sampling from a Gaussian whose mean and covariance are ob-
tained from matching the moments of the posterior samples. This
resampling step is in particular required for estimating stationary
extended objects.

The above described Naive-PF can be seen as a Gaussian particle filter
[KDO03] tailored to extended objects. The difficulties with the Naive-PF are
exemplified with an elliptic shape. For an ellipse, the state vector may be
seven dimensional (five parameters for the ellipse plus two for the velocity
vector). Using ten samples per dimension results in an overall number of
107 samples for the probability density of the state vector. In order to
approximate the likelihood function (2.7), it is reasonable to choose again
ten samples per dimension, i.e., overall 102 samples for one evaluation of
the likelihood. In summary, 10° particles have to be considered just for
multiplying the likelihood function with the weights of the prior samples.
Additionally, one has to deal with typical particle filter problems such as
particle degeneration.

2.4 Gaussian Filter Using Statistical Linearization

In this thesis, we advocate Gaussian filters based on statistical linearization
[Sim06,JU04,HHO8, BHH10,LABS06]. A Gaussian filter approximates the
exact probability distribution of the state with a Gaussian distribution
and statistical linearization yields a linear approximation of a nonlinear
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(measurement or system) function by incorporating statistical information.
Based on the linear approximation, the Kalman filter formulas can be used
for the measurement and time update.

The main benefits of statistical linearization are outlined in the following:

e It is not necessary to directly evaluate the likelihood (2.7).

e Even for high-dimensional states, fast and accurate approximate sta-
tistical linearization methods are available. For example, Linear Re-
gression Kalman Filters such as the UKF [JU04] and [HHO8] perform
statistical linearization with the help of deterministic sampling.

e For several relevant special cases such as polynomials, statistical lin-
earization can be performed analytically in closed-form by means of
moment matching.

e Due to the Gaussian distribution, there is no particle degeneration
as in particle filters.

e Gaussian filters can be directly embedded into other well-established
frameworks that are based on Gaussians such as multiple model
approaches or multiple target trackers (see [BSWT11]).

In the following, we recall the concept of statistical linearization and then
apply it to the measurement and time update step.

2.4.1 Statistical Linearization

The statistical linearization [LBDS04] of a nonlinear function G : RN —
RM with
Glz)=y

incorporates that £ ~ A (z—p*, ¥%*) is a random vector. For this purpose,
the joint density of y and z is approximated with a Gaussian density, i.e.,
the mean pY, cross-covariance %%, and covariance Y¥¥ are determined.
Based on the approximation of the joint density, the linear approximation
of G(+) turns out to be
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where

Ag = (E)Ts™ (2.8)
be = p’—Acp” .

In this thesis, the approximation of the joint density is performed by
means of moment matching, see also [Sim06,JU04, HH08, BHH10,LABS06].
In this manner, a so-called Linear Minimum Mean Squared Estimator
(LMMSE) is obtained. Usually, only an approximation of the moments
is calculated. For instance, [JU04, HHO8] propagate deterministically cho-
sen samples through the measurement function. Nevertheless, for some
special cases such as polynomial functions analytic expressions for the ex-
act moments are available, see [BHH10, LABS06]. In the following, the
efficient general moment calculation procedure for a polynomial function
discussed in [17] is described.

Moments of a Polynomial Transformed Gaussian Random Vector

Let

be an M-dimensional polynomial function with component functions G;(x)
written as sum of products

N
Gi(z) = Zaj,l H:cf”l for1<I< M,
j i=1

where x; is the i-th component of z, s; ;; is the exponent of «; in the j-th
sum of the I-th component function, and a;,; is the coefficient of the j-th
sum in the I-th component function.
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The mean p¥ of G(z) can be written as

H E{G1(z)}
w=1:|=EG@}= : =
1, E{Gn(z)}

N 54,4,
Zj aj,lE{Hi:1$z‘ 1}
: . (2.10)

5 B )

In the same manner, the covariance matrix X% = (Uzm)l,m:L,,,,M of G(z)
is composed of

i = E{Gi(z) - Gp(2)} — p¥p? .

Because the product G;(x) - G,,,(x) can be expanded to a polynomial in

N Si,j,(l,m .
the form 3. a; o.my [[;2, ;""" , we obtain

N
Ol = D (1) E{H mfi’j’”’m)} —puipt (2.11)
J =1

In this vein, the computation of
the overall mean (2.10) and co-
variance matrix (2.11) of G(z)
has been broken down to the
expectation of products of non-
central dependent Gaussian ran-
dom variables. A formula for
the expectation of products of
(zero-mean) random variables is
available in literature for a long
time due to Isserlis [Iss18]. How-
ever, as the Isserlis formula is al-
ready for small exponentials in- Figure 2.3: Statistical linearization:
tractable, we propose to employ Marginal densities and joint density (blue)
a computationally more attrac- of y and state z. Statistical linearization is

tive alternative formula derived pc?rformed by. approxi.mating the joint density
in [Kan08] with a Gaussian density (red).

|

z
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Theorem 2.1. For a Gaussian random vector x = [z, . . . :BN]T ~ N(z—
u®, %) and nonnegative integers s1 to sy, the following holds [Kan08]:

E{ﬂw} B Z ZN: ij(_l)zyl - (;) (Zv)

i=1 v1=0 vn=0 r=0
Ty T s—2r
(@ g@) (leum>
- — (2.12)

T
where h = [%71/1,...,57”71/]\;] and s =81+ ...+ sn.

All told, the first two moments of the polynomial transformation of a
Gaussian random vector can be calculated analytically as follows:

1. Formulate the first two moments of G(z) in terms of the expectation
of sums of products as in (2.10) and (2.11).

2. Determine the expectation of the sum of products using Theorem 2.1.

Step 2 is computationally expensive for higher order polynomials. How-
ever, the polynomial function (2.10) will only be quadratic in this thesis
so that all moments can be calculated efficiently.

Remark 2.4. The above procedure does not simplify the resulting formulas.
For quadratic equations, it is possible to obtain more compact expressions
when exploiting well-known identities such as in [PP08,Broll]. As these
derivations are straightforward but tedious, we mostly refer to the general
procedure described above.

2.4.2 Measurement Update
In order to employ statistical linearization for the measurement update,

we assume that a measurement function hy(z,,, v, ;), which maps the state
z;, and a noise term v, ; to the measurement y, , is available, i.e.,

Yy = (@i vpg) - (2.13)
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Remark 2.5. In this work, the measurement function (2.13) will be derived
with the help of the extent and sensor model (see Section 2.1). How suitable
measurement functions for extended objects can be obtained is not obvious
and will be discussed in the subsequent chapters.

The measurement update [Sim06, JU04, HHO8, BHH10, LABS06] is per-
formed in the following two substeps (see Fig. 2.3).

e Substep 1: Statistical linearization
In the first substep, the statistical linearization of the measurement
function is performed, i.e., for given f;_i(z;) = N@k_ﬁi,l—l’ Y1)

[;:J - [hk @ficﬂk,z )]

is approximated with a Gaussian distribution with mean lk’?j_ll

Hk',l
T yx
Ek,lfl Elc,l:|
Ty y |
Elc,l Ek:,l

the joint distribution

and covariance matrix {

o Substep 2: Update based on the Kalman filter formulas
The second substep consists of determining the updated estimate
and covariance matrix by conditioning the Gaussian approximation
of the joint density on the particular measurement 9, , using the
Kalman filter equations 7
Ko=) (b - a)

z z Y (YY\—1 gy
kil = k,l-l*zk,z (Ek,l) Ek,l'

At this point, it is essential to realize that statistical linearization has to be
applied with care as the approximation of the joint density with a Gaussian
may be a rough approximation, i.e., the linearization error may be high.
A naive application of statistical linearization to extended object tracking
problems is not promising due to strong nonlinearities in the measurement
model. For example, later in Section 3.4.1, it is shown that naive statistical
linearization is unsuitable for circle fitting due to the poor approximation
accuracy. Furthermore, it has been proven in [4] that it is impossible to
estimate the parameters of an elliptic region based on a naive statistical
linearization.
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2.4.3 Time Update

As we only consider linear motion models in this thesis, the time update
can directly be performed with the help of the standard Kalman filter
formulas [Sim06]. However, in general, a statistical linearizing of the sys-
tem function (2.3) is possible in the same manner as for the measurement
function.

2.5 Conclusions

This chapter introduced the basic models and estimation techniques re-
quired for the (single) extended object tracking methods developed in this
thesis.

Since the shape of the extended object is unknown and part of the es-
timation problem, the state vector of an extended object contains shape
parameters in addition to kinematic parameters. The measurement model
incorporates that each measurement stems from an unknown measurement
source on the object, where it is assumed that measurements are mutually
independent. This independence assumption allows for inferring the shape
when only a single measurement per time instant is available.

The temporal evolution of an extended object is specified by a system
model for both the kinematic and shape parameters. In this thesis, we
restrict ourselves to simple linear motion models, e.g., a nearly constant
velocity model for the center and a random walk model for the shape
parameters.

Already single extended object tracking based on the introduced prob-
abilistic model is in general highly nonlinear and computationally in-
tractable. We discussed two approximation techniques for a recursive
Bayesian estimator for the object state, i.e., particle filters and statisti-
cal linearization. Unfortunately, the naive application of both particle fil-
ters and statistical linearization is bound to fail. In the remainder of this
thesis, statistical linearization techniques are further pursued; It is shown
that the sophisticated application of statistical linearization allows for de-
riving closed-form expressions for many relevant extended object tracking
problems.
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CHAPTER 3

Conic Fitting using Statistical
Linearization
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This chapter is devoted to a particular extended object tracking problem
in which the measurements originate from a closed curve. In this case,
the problem can be interpreted as a “dynamic” curve fitting problem for
which a Bayesian state estimator is desired. We focus on conics such as
circles and ellipses, which are highly relevant for practical applications.
For example, when tracking people with a laser rangefinder, it is suitable
to model the people as ellipses, where reflections are obtained from the
ellipse boundary.

Conic fitting is typically formulated as an implicit problem, i.e., the conic is
represented as an implicit equation and each measurement originates from
an unknown measurement source that satisfies the implicit equation. In
order to render the implicit problem explicit, existing Gaussian-based ap-
proaches perform a linearization around both the measurement and state.
Thus, they suffer from a poor estimation quality in case the measurement
noise is large in compared to the conic. As a consequence, these approaches
are unsuitable for extended object tracking, where one often has to deal
with rather large measurement noise.

In this chapter, we propose a new approach tailored to the requirements
of extended object tracking. The basic idea is to approximate the original
implicit problem with an explicit measurement equation that is corrupted
with multiplicative noise.
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Based on the explicit measurement equa- 0,
tion, a Gaussian filter that performs a sta- -
tistical linearization is employed for a recur- O

sive closed-form measurement update. Espe-

cially for large measurement noise, the novel

Gaussian filter may significantly outperform

state-of-the-art Gaussian filters. Figure 3.1: Illustration of the

i . measurement source z, ; and
Remark 3.1. This chapter is based on [13,16], the measurement §  for an
i.e., the circle fitting method has been pub- gjjpge. el
lished in [16] and the general method for con-
ics has been published in [13]. This chapter
extends [13,16] by an exhaustive analysis and comparison of different

measurement equations and their corresponding likelihood functions.

3.1 Problem Formulation

In this chapter, we consider a special subclass of the general problem stated
in Section 2.1 in which the measurement sources come from a conic such
as an ellipse (without its interior).

In this case, the time-varying parameter vector of a conic specified by the
T
state vector &, = [mg, (@Z)T,BZ is to be estimated, where m,, is the

center, z; summarizes further kinematic parameters, and p, are the conic
parameters.

A conic is a two-dimensional quadric and a quadric is the solution of an
implicit quadratic equation, i.e.,

M(zy,) = {z € RY | g(zy,2) = 0} , (3.1)

where g(z,, z) is of the form
ZTAz+ bz + f) (3.2)
with N x N-dimensional symmetric matrix Ay, N-dimensional vector b,

and constant f,. The state vector x, is a suitable parameterization of
Ak, by, and f,.
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Example 3.1. A conic section can be parameterized by a six-dimensional

vector p° 1= [ak, bk, ¢k, di, e, fk,]T, which means that Ay := {Zk gk},
= bk
and by, := [dy,ex]”. Note that the center is implicitly encoded in the

parameters EZO'

Measurement Model At each time step, a set of n, measurements ), =
{9, 112, is available. Each measurement §, , is a noisy observation of an

unknown measurement source z;; according to
Ypy = Zoa TV (3:3)

where v ; is zero-mean white Gaussian noise with known covariance ma-
trix 37 ; (see Fig. 3.1). The measurement source z,,; lies on the conic,
ie., /

9(@y, 240) =0 . (3.4)

Hence, the extent model for conics just assumes that the measurement
source is an element of the conic. No further information about the mea-
surement source z;; on the conic section is available. In particular, no
statistical information, e.g., a probability distribution for Zp s 18 avail-
able. However, of course, specific inference algorithms may impose further
assumptions on the measurement sources (e.g. a uniform distribution).

Remark 3.2. Equation (3.3) and (3.4) specify an implicit measurement
equation, which can be interpreted as an implicit Errors-In-Variables (EIV)
Model [Chel0)].

Dynamic Model The temporal evolution of the state vector x;, may

be given by a stochastic dynamic model as discussed previously in Sec-
tion 2.1.3.

3.2 Related Work

Conic fitting, or more general curve fitting, is a traditional, well-studied
problem. However, in contrast to extended object tracking, curve fitting
is usually understood to be a static problem and the measurement noise
is isotropic, where its statistics are unknown.
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In this section, a brief overview of the most well-known conic fitting meth-
ods is given. Due to the tracking background, we mostly focus on recursive
Bayesian state estimators as they allow to incorporate a probabilistic mo-
tion model and a sound treatment of stochastic measurement noise whose
statistics may vary from measurement to measurement. In particular, the
Extended Kalman Filter (EKF) approach [Por90, EAB92, Ros93, Zha97]
to conic fitting is discussed in detail as it will be compared to the novel
approach later in this chapter.

Deterministic Methods Deterministic fitting methods do not make use
of a statistical description of the problem. As these methods do not di-
rectly allow for incorporating probabilistic information about the measure-
ment noise or the temporal evaluation of the object, they are in general
unsuitable for extended object tracking.

A popular deterministic method for curve fitting is orthogonal distance
regression [Chel0,CLO05] that aims at minimizing the orthogonal geometric
distance from the measurements to the curve. As this is a nonlinear least-
squares problem, no closed-form solutions can be derived in general. Even
for simple basic curves, iterative optimization methods such as the Gauss-
Newton method or the Levenberg-Marquardt algorithm [Chel0] have to
be used to find an approximate solution.

A computationally more attractive alternative to the geometric fit is the
so-called algebraic fit, which minimizes a simpler distance measure. For
instance, the Delogne-Kadsa method [Chel0] is a widely-used algebraic fit
that yields a linear least-squares problem. In general, algebraic fits are less
accurate than geometric fits. However, geometric fits are computationally
far more expensive and may stuck in a local minimum.

Statistical Methods Essentially, there are two kinds of statistical formu-
lations of the curve fitting problem [Chel0, ASC09, Cha65,Kan96]. In the
functional model, the measurement sources are assumed to be fixed but
unobservable, it is only known that they lie on the curve. In this case, the
measurement sources are treated as additional model parameters that are
to be estimated. In the structural model, the measurement sources are in-
dependent realizations of a random variable with a probability distribution
concentrated on the curve. Usually, the parameters of this distribution are
estimated as well.
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As pointed out in [Cha65], the Mazimum Likelihood Estimator (MLE)
based on the functional model coincides with the geometric fit for circles.
However, the MLE based on the structural model in general differs from the
geometric fit. The statistical models allow for a statistical error analysis

of deterministic fitting methods, e.g., the bias can be determined (see
[Chel0, ASC09] for an analysis of circle fits).

Bayesian methods for curve fitting can be found for example in [Por90,
EAB92, Ros93, NR97, WKO01]. In case the measurement sources are not
estimated explicitly, the basic approach is to assume the measurement
sources to be drawn uniformly distributed from the curve [WKO01]. As
the likelihood cannot be computed analytically, elaborate approximation
techniques such as particle filters are required for a recursive update.

There are some approaches that do not use an explicit likelihood for the
measurement sources. Instead these approaches are based on a lineariza-
tion of the implicit shape function (3.4) around both the measurement g, ,

and the (current) estimate of the state zj [Por90, EAB92, Ros93, Zha97],
ie.,

9( @y, 2y) g(zz,gw) +Hi, (p —2y) + Hi (25, — le) (3.5)

with
Jg
x> - *7A ) a d
k,l 8&]6 (ik ﬂkyl) n
dg
z _ YY ok a
U a;kz@k’yk,z) :

Based on the linearized implicit equation, the following explicit linear
measurement equation is obtained

Ak . xT *
Uy, = Higzy, + vy (3.6)
with
~ % L * A~ T *
Y = —g(zp, 9, ) +Hg, 21,
kol kol ;
* . z
vy = Hp v

As the above system is linear, the standard Kalman filter [Sim06] can be
used for the measurement update.
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It is important to note that in contrast to standard the Fxtended Kalman
Filter (EKF) for explicit equations, the linearization is also performed
around the measurement. The downside of the linearization around the
measurement is that poor estimation results may be obtained in case of
high measurement noise (see also the evaluation in Section 3.4.4). As a con-
sequence, this approach is rather unsuitable for extended object tracking
problems, where one typically has to deal with large noise. Additionally,
the EKF approaches to ellipse fitting [Por90, EAB92, Ros93] employ an
ellipse parameterization that does not explicitly contains the center of the
ellipse. Rewriting the linear motion models from Section 2.1.3 for this
parameterization results in a nonlinear system equation.

3.3 General Approach

In the following, an explicit measurement equation based on the implicit
problem (see Section 3.1) is derived for general conics. The two subsequent
sections are devoted to two special conics, i.e., circles and ellipses.

The basic idea is to substitute both hand-sides of (3.3) in (3.4)

9@, 9, ) = 9@z T o) (3.7)

and to separate the measurement source z;; from the measurement noise
vy, by performing the following algebraic reformulation

g(ﬁmgk l) = Q(Qkaék,l) +9U(§k7£k,lvék,l) ) (3.8)
7 =0
where g% (2, v, 1, 2,1) = 2§£ZAI@Q;€J + QEZAI@QM + bfyk,l-

Based on (3.8), we can construct the final measurement equation

0 = g@kagkl)—gv@kaﬂk,lvék,z) (3.9)
= h(gk’yk},l’gk’l) 5 (3.10)

where h(pk7gk 1Y, l) is a measurement function that maps the random
variables ) and v, ; to a pseudo-measurement with value 0.

The unknown measurement source 2z, ; in (3.9) can be substituted with a
proper point estimate based on the latest conic estimate. The introduced
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error through the point estimate is minor because E{g” () Uy 15 2 l)} is
independent of 2, ; due to the zero mean noise v, ;.

Measurement equation (3.9) is a quadratic equation corrupted with Gaus-
sian distributed multiplicative noise. We aim at a Gaussian filter via statis-
tical linearization of the measurement equation (3.9). Hence, the posterior
probability density for the state x, having incorporated the first [ —1 mea-
surements from time step k is given by fi_1(z,) = N (z, — SEi1)-
Statistical linearization according to the procedure described in Section 2.4
leads to the updated density fi(z,) = N (z Ky %) with the measure-

ment @k .

Hi’l Hzﬁl 1 EL}L (Zhh) (0 _ Mz,l) ,

x _ x xh hh
kil Zk’,l—l - Ek,l (Ek’,l) 2kl )

where p}!, is the predicted pseudo-measurement, ¥} is the covariance
between the pseudo-measurement and state, and E k. is the variance of the
predicted pseudo-measurement. The required moments can be calculated
analytically according to Section 2.4.1.

Discussion The above described approach can be interpreted as a sta-
tistical linearization around the measurement source z;;, and the state
x, with regards to the algebraic properties of the shape function (see
Section 2.4.1). As the measurement source z, ; is unknown, an explicit
linearization would be rather unsuitable, however, the statistical lineariza-
tion can be performed without (or with little) knowledge about the mea-
surement sources. Please note that if the function g(zy,z; ;) would be
linear in both x, and 2, ;, measurement equation (3.7) and the explicit
linearization (3.6) coincide. The proposed Gaussian filter minimizes the
(statistically linearized) algebraic distance between the measurements and
the conic, where the statistics of the noise is incorporated.

3.4 Special Case: Circle Fitting

In this section, we apply the general approach described in the previous
section to circles. The problem of fitting a circle to noisy data points occurs
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in many application areas such as computer vision [FB08], physics [Kar91],
and medicine [SSBT07]. An example in the context of extended object
tracking is the tracking of circle-shaped landmarks [NVMBS08,ZXA06] in
mobile robotics.

A circle can be specified by its center and radius, i.e., the parameter vector
for a circle p}} = 7, only consists of radius 7. The implicit shape function
(see (3.4)) for a circle is of the form

i/, ci 2 2
g (x5, )y 2l -my) = Hék,z —my||* -7y, (3.11)
ith 2 = [mT ()T pcil”
wit Ty = [mk;(£k> apk] .
In the following, the version of (3.9) for circles is compared with two fur-
ther reasonable measurement equations in order to obtain further insights,

e.g., the corresponding likelihood functions are computed. All in all, we
investigate the following three measurement equations.

e Polar Equation (Section 3.4.1)

When the measurement sources are assumed to be uniformly dis-
tributed on the circle, an obvious explicit measurement equation
can be obtained when rewriting the problem to polar coordinates.
However, it turns out that this equation is unsuitable for statistical
linearization because it is unclear how to compute the required mo-
ments analytically and the Gaussian approximation is poor. Hence,
the naive statistical linearization for circle fitting is not promising.

o Euzplicit Measurement Equation 1 (Section 3.4.2)
The measurement equation according to the basic approach described
Section 3.3, i.e., (3.9) for circles. In case of isotropic noise, this equa-
tion is equivalent to the polar equation (3.12), i.e., the corresponding
likelihoods are equal.

o FEuxplicit Measurement Equation 2 (Section 3.4.3)
An alternative measurement equation that is equivalent to the polar
equation, which however, requires the statistical linearization around
the measurement.

In fact, it emerges that the explicit measurement equation 1 according to
Section 3.3 is most suitable for the considered application as it outperforms
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all other equations in case of high measurement noise. At this point, it
is essential to note that even when two measurement equations specify
the same likelihood function, statistical linearization may cause that the
resulting estimation quality significantly differs.

3.4.1 Polar Equation

Equation (3.11) can be written in (explicit) polar form

U, = Troeldr)) +my fug (3.12)
’ —_—
2
= h{ (@R v Ora) (3.13)

where ¢y, ; € [0, 27] is an unknown angle and e(dx ;) := [cos(@k.1), sin(¢>k7l)]T
is a unit vector in direction ¢ ;. When the measurement source is uni-
formly distribution on the circle [NR97], the angle ¢y ; is uniformly dis-
tributed on the interval [0, 27]. In this case, the likelihood function speci-
fied by (3.13) becomes

£R) = [ Ty 20 o |2 2,

1 A
- 27y, /K(xzi)p(yk,l|zk,l)dzk-,l
1 ; i
- %/f(ﬂk,zwk,h&i)dqﬁm : (3.14)

where K (z¢) = K (my,,7x) = {2 | 2 € R? and ||z — my,||]2 < 7x} is the
circle with center m;, and radius 7.

In general, this likelihood function cannot be solved analytically. However,
for isotropic Gaussian measurement noise, it is possible to derive explicit
expressions in terms of the non-central y2-distribution.

Definition 3.1 (Non-central y2-distribution). The non-central x2-distri-
bution with x degrees of freedom and non-centrality parameter A is defined
as

FiNz) = %efmx)/z (%)”/4_1/2 Lj2a (\/ﬂ) ,
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where I, (z) denotes the modified Bessel function of first kind

oo 2 4 J
L(y) = (y/'z)";‘) g'r<(y+/;)+1> '

Theorem 3.1. For isotropic Gaussian noise vy, ; with covariance matriz
¥y, = diag(o?,0?), the likelihood function fL(xf) in (3.14) is given by

. 1
o A
FE) ~ 17 (02 ) ,

where f;ﬁ() denotes the density of the non-central x?-distribution with
k = 2 degrees of freedom and non-centrality parameter A\ = % . Hgkl —

mk||2-

Proof. According to [NR97], the integral in (3.14) can be evaluated ana-
lytically as

b (re—llg, ,—m, )2
fu @?) = 2702 |K( o " 6Xp {_ gal?

mkka)\
rillg,, | |19, |
- exp {—’“;,’2 - } - I (i;g u ) ., (3.15)
where |K (my, ) | = 277y, is the circumference of a circle with radius 7.

With the definition of a non-central y2-distribution, we obtain

: 1 e+l —m, |1 Ay —my|1?
FE(g) 2exp{—k 8, }-10 ( Dt "') (3.16)

£ (012 -Ti) (3.17)

with A = % . Hgkl —my |2 O

2

As already mentioned, the polar equation as given by (3.13) is rather
unsuitable for a Gaussian filter based on statistical linearization (see Sec-
tion 2.4). The reason is that a Gaussian filter approximates the mea-
surement h§'(z;, vy, ¢r,i) With a Gaussian distribution whose mean co-
incides with the center of the circle, which is a poor approximation of
the predicted measurement. Second, it remains open how to calculate the
moments required for a Gaussian state estimator in closed form.
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3.4.2 Explicit Measurement Equation 1

In the following, we investigate the measurement equation for circle fitting
following the novel approach presented in Section 3.3. Substituting the
measurement g, (3.3) into the implicit circle equation (3.11) results in

gd@?ﬂgk,l) = gCi(§g7§k,l +vi1) s (3.18)
which can be rewritten as

||Qk,z P = = ||z by - myP - (3.19)
= 2(zp V) + ||Ek,l||2 . (3.20)

With Zp 1 =Tk - e(¢r.;), we obtain the explicit measurement equation

0 = g, —mull® = ri + 27 (e(br), vr) + vyl (3.21)
=: hii(gkvyk,lagk’l) ) (3.22)

where h§'(-) maps the state vector &, the measurement noise v, ;, and the
measurement § U, toa pseudo-measurement 0. Note that this measurement

equation still depends on the unknown angle ¢ ;. However, it turns out
that for isotropic wy;, the resulting likelihood does not depend on ¢y,
and the likelihood is the same as assuming a uniform distribution for the
measurement source.

Theorem 3.2. For isotropic Gaussian noise vy, ; with covariance matriz
%}, = diag(c®,0?), the likelihood function fE(xE) specified by (3.21) is
given by

ct K, ]- ~
) ~ £ (el — ml?) (3:23)

where f”’)‘() denotes the density of the non-central x- distm’bution with

Kk = 2 degrees of freedom and mon-centrality parameter A = 0— 7',%

Proof. For given my,, the term ||z, ;+v;,; —my |/ in (3.19) is distributed
according to the non-central X2 distribution with k = 2 and A = r,% O

Remark 3.3. For non-isotropic noise, we obtain a generalized Xz—distribution
that depends on ¢y ;.
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Theorem 3.3. In two-dimensional space, the likelihood (3.23) is the same
as (3.14) for isotropic Gaussian noise vy, i.e., fi(zf’) = fE(zgh).

Proof. Follows from the definition of the non-central y2-distribution with
Kk = 2 degrees of freedom:

fi @) = Jesp (= +N)/2} - 1o (Vaa)

X

O

Measurement equation (3.21) has an intuitive interpretation. It considers
the squared distance from the measurement to the center ||g, , — m,||?
and determines how likely it is to obtain a measurement with this distance
to the circle. With this interpretation in mind, it becomes clear that the
likelihood is independent of ¢, ; in case of isotropic noise as the angle does
not influence the probability distribution of the distance.

For given center and radius, the predicted pseudo-measurement is a non-
central y2-square distribution, which is uni-modal and can be approxi-
mated well with a Gaussian distribution.

A further mentionable insight is that for given center 7y, the radius can
be estimated independently of the true measurement sources due to

19, — iylly = R 2 (e (Pn0) ) + lugllP - (3.24)
%,—/ -
=g hil’m(T‘k,QkJ)

Zio,l

is a usual explicit measurement equation, which maps the state r; and the
noise v, ; to a pseudo-measurement @Z "

Remark 3.4. In case of non-isotropic noise, we suggest to substitute the un-
known angle ¢y, ; with a point estimate, which then serves as the lineariza-
tion point. Then, the likelihood specified by (3.21) can also be interpreted
as an approximation of (3.14). Later in Section 3.4.4, we demonstrate with
simulations that the resulting approximation error is rather negligible.

3.4.3 Explicit Measurement Equation 2

Instead of directly inserting the measurement into (3.11), it is also reason-
able to insert the expression j, , — vy for the measurement source into
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(3.11), ie.,
9 (@i g, — o) = 0, (3.25)
which results in the measurement equation

0 = ||Qk7l G mk||2 - Ei (3.26)

=: hgi(gzi,gw,gk’l) . (3.27)

Actually, the likelihood specified by this measurement equation also coin-
cides with the likelihood that results from uniformly distributed measure-
ment sources.

Theorem 3.4. For isotropic Gaussian noise vy, | with covariance matriz
Y= diag(c?,0?), the likelihood function f¥(zf’) specified by (3.26) is
given by

f3 (&) ~ £ (;ﬂi) , (3.28)

where f:z)‘() denotes the density of the non-central x?-distribution with
k = 2 degrees of freedom and non-centrality parameter A = % . Hgkl —

mk||2~

Proof. For given m,, the term %-Hgk’l—gk’l—mkw in (3.19) is distributed
according to the non-central y2-distribution with x = 2 and A\ = # | @k 1
my[[?. 0

Remark 3.5. The likelihood function f£(z{') specified by (3.26) in general
coincides with the likelihood (3.14), i.e., ff(z{) ~ fE(z{).

Like (3.21), (3.26) is a polynomial equation for which the uniformly dis-
tributed noise term has been removed. The measurement equation (3.26)
can be directly statistically linearized as described in Section 2.4. How-
ever, as the statistical linearization is performed around the measurement,
a large linearization error is expected to occur for high measurement noise.
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3.4.4 Evaluation

In this section, we provide a detailed evaluation of the derived measure-
ment equations when employing statistical linearization. The measure-
ments for performing the circle fits arise from a stationary circle with
center [5,5]T and radius 3, i.e., the circle neither moves nor changes its
radius.

Remark 3.6. The evaluation is restricted to a stationary circle as all meth-
ods are equal for the time update step. They all employ the same param-
eterization of a circle so that the same motion models can be used.

Two scenarios are considered, which differ in the set of possible measure-
ment sources as depicted in Fig. 3.2. In the first scenario, the measurement
sources are equidistantly distributed on the circle. The second scenario
covers a situation in which the circle is observed from a specific point of
view, i.e., measurement sources are concentrated on the upper right seg-
ment of the circle. Measurements are received sequentially from the circle,
i.e., at each time step k exactly one measurement is obtained (nx = 1).
The measurement source for a measurement is drawn uniformly from the
set of possible measurement sources.

For each scenario, simulations are performed for different measurement
noise levels, i.e.,

a) low isotropic noise ¥ ; = diag(0.3,0.3),
b) high isotropic noise X} | = diag(2,2), and

¢) non-isotropic noise ¥} ; = diag(1,0.4).

Measurement Equation 1 and 2 vs. EKF First, we compare the Gaus-
sian filters based on statistical linearization of measurement equation 1 and
2 (using analytic moment calculation as described in Section 2.4.1) with
the Extended Kalman Filter approach as described in (3.5) [Zha97,Por90].
The prior for the circle parameters is Gaussian with mean [4,4,2.5]" and
covariance matrix diag(1.5,1.5,0.7). Figures 3.3, 3.4, and 3.5 depict the
estimation results for the first scenario and Figures 3.7, 3.8, and 3.9 for
the second scenario.
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(a) Scenario 1. (b) Scenario 2.

Figure 3.2: Considered scenarios with measurement sources.

The simulation results show that both measurement equation 1 and 2
significantly outperform the EKF solution (3.5). In particular, for large
measurement noise the FKF solution yields poor estimation results. This
result can be explained by the explicit linearization around the measure-
ment and the current estimate, which suffers from large approximation
errors when the noise is high. Even measurement equation 2 results in a
small bias for the radius in case the measurement noise is large due to the
statistical linearization around the measurement. All told, the simulations
show that measurement equation 1 is most suitable for extended object
tracking problems.

Measurement Equation 1 and 2 vs. Polar Equation Second, we com-
pare the Gaussian filters using statistical linearization of measurement
equation 1 and 2 with the polar equation (3.12) (where a uniform assump-
tion on the measurement sources is assumed). As there are no closed-
form expression for the required moments available when using the polar
equation, we employed Monte Carlo sampling in order to determine the
moments approximately. The estimation results are depicted in Fig. 3.11.
It can be seen that the Gaussian filter based on the polar equation gives
significantly worse estimation results than the measurement equations 1
and 2, which can be explained by the poor Gaussian approximation when
using the polar equation.
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Figure 3.3: Estimation results for Scenario la.
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Figure 3.4: Estimation results for Scenario 1b.
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Figure 3.5: Estimation results for Scenario 1lc.
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Figure 3.6: Legend for Scenario 1.



3.4. Special Case: Circle Fitting 47

1.5
3
10 25
8
2 1
ES = 1.5 =
4 o~ ~
2
0
0 2 4 6 8 10 20 40 60 80 100 20 40 60 80 100
T Number of Measurements Number of Measurements
(a) Example estimates. (b) RMSE for center. (c) RMSE for radius.
Figure 3.7: Estimation results for Scenario 2a.
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Figure 3.9: Estimation results for Scenario 2c.
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Figure 3.11: Scenario 2b: Polar equation.

Discussion The evaluation results show that both Gaussian filters based
on measurement equation 1 and 2 significantly outperform the state-of-
the-art Gaussian filters for circle fitting. As measurement equation 1 out-
performs measurement equation 2 in case of high measurement noise, we
prefer measurement equation 1 in the context of extended object tracking.

3.5 Special Case: Ellipse Fitting

Besides circles, the most relevant conics in the context of extended object
tracking are ellipses. While the parameterization of a circle is rather ob-
vious, the situation is different for an ellipse because the conic equation
(3.2) only describes a valid ellipse if the matrix Ay is positive definite.
Neglecting this constraint in an ellipse fitting procedure may decrease the
fitting accuracy.

In the following, we present two ellipse parameterizations that employ the
minimum number of five parameters in two-dimensional space. The first
parameterization is well-known in computer vision, however, the second
has not yet been used for ellipse fitting. For both parameterizations, we
derive an explicit measurement equation as described in Section 3.3.
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3.56.1 Explicit Measurement Equation: Coefficient
Representation

According to [Por90, EAB92,Zha97], (3.2) can be expanded to
apz® + 2byzy + cpy? + 2dpx + 2ey + fe=0,

where z = [z, y]T. As the constraint ay + ¢ # 0 holds for an ellipse, the
parameter ¢ can be removed by assuming ax + ¢ = 1, i.e.,

g (oo 2) = ap (2 —y?) +2bpry +y2 +2dpr+-2ery+ 1, =0 (3.29)

T
with & = | (z})7, (BZOCH)T} and parameter vector

coeff __

Bk == [akvbkvdkvekv.fk]T

Note that the center of the ellipse is implicitly encoded in BZOCH' In the fol-

coeff

L s called coefficient representation

lowing, the above parameterization p
of an ellipse.

Remark 3.7. An alternative normalization is to obey f, = 1, which,
however, excludes ellipses through the origin.

The coeflicient representation comes with two disadvantages in the con-

text of extended object tracking. First, not all parameters vectors pzoe‘cf

describe a valid ellipse. In computer vision, this is not always a serious
problem as enough data is available to dismiss infeasible parameters. How-
ever, in extended object tracking, infeasible parameter estimates may fre-
quently be obtained because only a few measurements per time instant are
available and the ellipse parameters evolve over time. A second drawback
of the coefficient representation is that the system model is usually formu-
lated with regards of the ellipse center. However, the center is not directly
contained in p¢°°f and rewriting a system model in terms of the coefficient

representation results in a nonlinear and unintuitive system equation.

The measurement equation (3.9) for the coefficient representation can be
written as
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Mz §,) — an(zh vy + (i) — 2 vl — (v])?)

x Yy Yy T Y x
2by. (2 v}, + 21,V + V) VR)
Yy Y \2 y
+zp 05, + (vg)7 + 2dkvy  + 2e,0

hcoeff(gzoeff,yk’l) , (330)

0 = g

T T
where 2, = [zi,z,zi,l} ) Vgt = {”i,z’vz,z} , and M (2§, vy, ) is the

measurement equation.

3.5.2 Explicit Measurement Equation: Center/Shape
Representation

An N-dimensional ellipsoid with center m, and positive definite shape
matrix By is given by the solution of the implicit equation

(z—my)" B, (z—my)—-1=0,

where z € RY. In two-dimensional space, i.e., N = 2, the positive semi-
definite matrix B;l can be decomposed as B;l = L;LT, where

iMoo
k k

is a lower triangular matrix (with positive diagonal entries). Hence, the
parameter vector st using the center/shape representation can be defined

o8 M @ @7 : ,
as py° = [lk .70 } , which contains the center and the entries of the

Cholesky decomposition. By this means, the quadratic function (3.1) can
be written as

g%z, 2) = (z —my)" - (L) - (z —my,) — 1
. T T T T
with zf® = |mj, (z;)", (p°) }

The state vector xj® explicitly contains the ellipse center and each BZS
describes a valid ellipse as LyL} is always positive definite. A further
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benefit is that this parameterization can directly be used for arbitrary
dimensional ellipsoids.

For the center/shape parameterization, the measurement equation (3.9)
becomes

0 = g, 9,) —2(zk; — mk)TBlzlyk,l +2£B;12k,1
= hcs@ﬁsaﬁk,z) )

where h®(z{®, vy ;) is the new measurement function. Note that we ob-
served that the performance of a Gaussian estimator can be significantly
improved, i.e., the linearization error becomes smaller, if the measurement

equation is multiplied with the factor m
k

3.5.3 Evaluation
The evaluation of the ellipse fitting methods is carried out by comparing

e a Gaussian filter based on statistically linearizing measurement equa-
tion (3.30) with

e the EKF approach [Por90,EAB92, Ros93] described in Section 3.2.

Note that both methods employ the coefficient representation of an ellipse
discussed in Section 3.5 (the center/shape representation will be used in
the next section).

We elaborate two scenarios with a stationary ellipse and different sets of
possible measurement sources as shown in Fig. 3.12. Measurements are re-
ceived sequentially from the ellipse and the measurement source for a mea-
surement is drawn uniformly from the set of possible measurement sources.
A priori of the ellipse parameters z(°°f are initialized with a Gaussian with

mean [0.5,0.5,0,0, —4.5]T and covariance matrix diag(10, 10, 10,10, 10),
which corresponds to an uncertain circle with radius 1.5 located at the

[0.5,0.5]".

For each scenario, simulations are performed for two different measurement
noise levels, i.e.,

a) low isotropic noise X} ; = diag(0.2,0.2), and
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Figure 3.12: Considered scenarios: Ellipses with measurement sources.

b) high isotropic noise X} ; = diag(0.5,0.5).

Figures 3.13, and 3.14 depict the estimation results for Scenario 1 and the
results for Scenario 2 are shown in Figures 3.16, and 3.17. The results
demonstrate that the EKF solution is significantly outperformed by the
new approach. In particular for large noise, the EKF suffers even more
from the linearization error than in the case of circles.

3.6 Conclusions

This chapter was about the tracking of an extended object that is mod-
eled as a conic such as a circle or an ellipse (without interior). As we
assume that noisy point measurements from the conic are available, the
estimation of the conic parameters can also be interpreted as a (statisti-
cal) curve fitting problem. Conic fitting is a traditional problem that has
been extensively investigated in different areas such as computer vision
or physics. However, in the context of extended object tracking, new re-
quirements are imposed on the fitting algorithm. First, the estimator, i.e.,
the fitting algorithm, must be able to incorporate the conic’s motion with
the help of a probabilistic motion model. Second, the estimator must deal
with few measurements whose noise is typically rather large compared to
the size of the conic. As existing conic fitting methods are not tailored to
these requirements, they are rather unsuitable for extended object tracking
scenarios.
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In this chapter, we have developed efficient Gaussian filters for conic fit-
ting that perform very well under typical conditions of an extended object
tracking scenario. The basic idea is to approximate the original implicit
problem with an explicit measurement equation that is corrupted with
multiplicative noise. Based on the derived measurement equation, statis-
tical linearization can be performed in order to get a recursive closed-form
measurement update. Variants of the proposed filters are used in the
following section, where the tracking of region shapes is reduced to the
tracking of curves.

Prospective work may concentrate on alternative representations for un-
certain ellipses. A probability density for the ellipse parameters has no
intuitive meaning (for both discussed parameterizations). Hence, it is dif-
ficult to define reasonable system models for the ellipse parameters. Prob-
ably a more intuitive representation is possible with the help of random
matrix theory [FFK11]. Besides, the proposed techniques may be extended
to arbitrary (closed) curves.

A further promising future direction is the investigation of particle filtering
techniques based on the derived explicit measurement equation. As conic
fitting is a highly nonlinear problem that results in multimodal probability
densities, advanced nonlinear estimation techniques such as particles filters
probably lead to an increased estimation accuracy for the price of a higher
computational complexity.
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This chapter is devoted to the tracking of an extended object that is mod-
eled as a region shape, i.e., a closed curve with interior (see Section 1.1).
The main contribution of this chapter is a novel extent model called Ran-
dom Hypersurface Model (RHM). An RHM models the interior of a shape
by means of scaling the shape boundary, where the scaling factor is spec-
ified by a random variable. In this manner, the problem is reduced to a
curve fitting problem and thus, the curve fitting techniques introduced in
the previous chapter can be used for estimating region shapes.

An RHM is a general concept that is suitable for a wide range of rele-
vant shapes. In this chapter, we introduce specific RHMs for estimating
the parameters of ellipses and (free-form) star-convex shapes. Based on
the RHMs, we derive explicit measurement equations and statistical lin-
earization yields efficient Gaussian filters for a closed-form measurement
update.

A major highlight of this chapter is the tracking method for star-convex
shapes, which is the first with the capability of estimating such detailed
shape information. So far only basic shapes such as circle and ellipse have
been considered in literature (see also Section 1.6). This is a significant
progress in extended object tracking as a detailed shape estimate is an
important piece of information, which is valuable for many higher-level
information processing tasks such as classification.

The estimation quality and performance of the proposed Gaussian filters
are assessed with the help of extensive numerical simulations. We also
provide a comparison with a naive particle filter and a particle filter that
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Figure 4.1: Basic concept of a Random Hypersurface Model.

employs an approximation of the likelihood function based on RHMs. An
experimental evaluation of the tracking methods will be given separately
in Chapter 6.

Remark 4.1. This chapter is based on the journal publications [1,3] and the
conference publications [6,9,14,18,19]. The basic idea was first published in
[9]. Elliptic shapes have been treated in [18] and star-convex shapes in [14].
Recent further developments and comparisons of RHMs were presented
in [6,19,22]. This chapter extends previous work on RHMs by deriving
analytic expressions for the measurement update and a particle filter based
on an RHM.

4.1 Basic Concept

In this section, the underlying idea of a Random Hypersurface Models
(RHMs) is introduced and a formal definition is given. We focus on RHMs
for star-convex region shapes in N-dimensional space. Nevertheless, RHMs
are a very general concept, which can be used for many other types of
shapes, e.g. surfaces in three-dimensional space.

Definition 4.1 (Star-Convex Shape). A region shape & C RY is called
star-convez (with respect to the origin) iff for all z € S, the line segment
from the origin 0, to z is fully contained in S.

A Random Hypersurface Model is an extent model that specifies the lo-
cation of a single measurement source on a star-convex shape (see Sec-
tion 2.1.2). An RHM says that the measurement source lies on a scaled
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version of the shape boundary (see Fig. 4.1), where the scaling factor is
modeled as a one-dimensional random variable. We assume that the prob-
ability density of the scaling factor is known and independent of the shape
parameters. The scaling factor can be interpreted as a noise term that cov-
ers the uncertainty of the measurement source on the object. Where on the
boundary the measurement source lies is intentionally left open as there
are several alternatives to close this degree of freedom (see Remark 4.4).

According to the above discussion, a Random Hypersurface Model is for-
mally defined as follows.

Definition 4.2 (Random Hypersurface Model (RHM)). Suppose we are
given

e an N-dimensional extended object with star-convex shape S(p,) C
RY located at m,, € RY, and

e a one-dimensional random variable s ; € [0, 1].

Then, the measurement source z;; € M(gk,mk) is generated according
to an RHM with scaling factor sy ; if

2k eEmy + Sp; - as(ﬂk) ,

where 9S(p,) C RY denotes the boundary of S (p,) and the algebraic
operations “-”,“4” are interpreted element-wise.

Remark 4.2. Tt is essential to note that an RHM is a probabilistic model,
i.e., it involves random quantities. However, an estimator based on an
RHM may be deterministic (for given measurements).

Remark 4.3. Definition 4.2 is confined to star-convex shapes as they are
contractible, i.e., they can be continuously shrunk to a point by scaling.
By this means, it is guaranteed that a measurement source lies on the
object, i.e., sg; - 9S(p,) C S(p,) for all si; € [0,1]. Mathematically, the
scaling of the object boundary corresponds to a straight-line homotopy of
the object boundary to the center.

Remark 4.4. Definition 4.2 leaves open where on the scaled boundary the
measurement source 2y ; lies. In general, it can be treated as an unknown
parameter (functional model) or it can be considered as a random drawn
from a potentially unknown probability distribution (structural model).
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Actually, both models are also used in curve fitting [Che10] and Errors-In-
Variables (EIV) models [CRSCO06]. For the structural model with a known
probability distribution, an RHM turns into a spatial distribution model
[GS05,GGMS05]. An RHM can then be seen as a systematic approach for
specifying spatial distributions.

4.1.1 Benefits

An RHM is a concept for specifying the location of a measurement source
on an extended object. The main benefit of an RHM is that the mod-
eling of a region shape is reduced to the modeling of a curve by means
of the random scaling factor. For a fixed scaling factor, e.g., sp; = 1,
the measurement source lies on the one-dimensional shape boundary, i.e.,
Zp1 € 8S(Bk), which is a curve. In this sense, an RHM comprises curve
fitting as a special case. The reduction to curve fitting paves the way
for utilizing basic curve fitting techniques. For example, it enables to
derive implicit measurement equations as many relevant curves such as
ellipses, can be specified by implicit functions. Based upon these measure-
ment equations, statistical linearization allows for an efficient recursive
measurement update.

An RHM for star-convex shapes as in this chapter can also be interpreted
as a reformulation of the likelihood in polar coordinates, i.e., the likeli-
hood function is decomposed into the distance and angle of a measure-
ment source (with respect to the center). This decomposition facilitates
the derivation of approximations for the likelihood.

4.1.2 Usage of an RHM

With the help of an RHM, it is possible to systematically derive Bayesian
estimators for extended objects according to the following steps.

e A shape S(p, ) with a suitable parameterization p, has to be chosen.
In general, the shape S(Bk) can be specified as the solution of an
implicit equation (see Section 4.2) or explicitly in parametric form
(see Section 4.3).
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e A probability distribution for the scaling factor s;; must be de-
termined. Section 4.1.3 discusses how this scaling factor could be
chosen.

e Based on the concept of an RHM, a measurement equation that
relates the parameter vector P, the scaling factor sy ;, the measure-
ment noise v, ;, and the measurement g, ,, has to be derived.

e The measurement equation serves as the basis for constructing a
Bayesian state estimator for the shape and the kinematic parame-
ters. In this thesis, we tackle the nonlinearity of the measurement
equation by means of statistical linearization as described in see Sec-
tion 2.4. Nevertheless, RHMs make it also possible to derive precise
approximations of the likelihood function when a particle filter is
desired (see Section 4.3.4).

In this thesis, specific estimators for elliptic shapes (see Section 4.2) and
general star-convex shapes (see Section 4.3) are presented following the
above steps.

4.1.3 Scaling Factor

The probability distribution of the scaling factor characterizes the locations
of the measurement sources on the object. It is object dependent, i.e.,
it may differ from object to object. For star-convex shapes, there is a
reasonable choice for the probability distribution of the scaling factor as
illustrated in the following.

If no information about possible measurement sources on an extended
object is available, it is reasonable to impose a uniform distribution on
the measurement sources. Hence, one could ask the following question:
If a measurement source is uniformly distributed on the object, what is
the distribution of the scaling factor? Actually, for two-dimensional star-
convex shapes, it can be proven that the squared scaling factor is uniformly
distributed on the interval [0, 1].

Theorem 4.1. In case the measurement source z is uniformly distributed

on the two-dimensional star-convex set S C R?, the squared scaling factor

8% is uniformly distributed on the interval [0,1] C R.
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Proof. The cumulative distribution function of s is given by

F(s) = P(s<s)
— P(z€s-S) = m

for s € [0,1]. Furthermore, F(s) = 0 for s < 0 and F(s) =1 for s > 1.
Hence, the probability density function of s turns out to be

fs(s) —{ gs se0.1 (4.1)

otherwise

In general, if s ~ f,(s), then the density of u := s? is given by [PP02, p.

125]
Jalw) = { SW VL) ztiefwise ' (42)

Substituting (4.1) in (4.2) gives

) = {

1 wel0,1]
0 otherwise

O

Theorem 4.1 justifies to impose a uniform distribution on the squared
scaling factor. The converse of Theorem 4.1 is not true, i.e., a uniformly
distributed squared scaling factor is not necessarily the result of a uni-
formly distributed measurement source on the object. There is more than
one spatial distribution that gives rise to a uniformly distributed squared
scaling factor.

Remark 4.5. Tt may be suitable to approximate the probability distribution
of the scaling factor with a Gaussian distribution, e.g., the mean % and
variance 1—12 resulting from moment matching with a uniform distribution
are reasonable.

4.2 Elliptic Shapes

In this section, we employ an RHM as introduced in the previous section
for tracking an elliptic region. Elliptic shapes are relevant for a variety
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of applications as the shape of many real-world objects is approximately
elliptic. The orientation and length of the semi-axes provide valuable in-
formation that can be extracted even under rather difficult conditions, e.g.,
high measurement noise and few available measurements.

4.2.1 Implicit Representation of an Ellipse

Based on the insights gained from conic fitting, we use the center/shape
representation for an ellipse (see Section 3.5), i.e., the state vector is given

by z§! = [mf7 ()", (p)"| , where my, is the center, xj encompasses

. . . 1 @ 2,317 .
variables for the kinematics, and BZ = [lk .01, } determines the
(two-dimensional) ellipse.

The ellipse specified by z§! is given by all points z € R? that satisfy the
implicit quadratic function

(z=my)" B, (z—my)—1=0,

where B! = L, L} with

L
k k

The corresponding shape is
Slp)={z eR*| 2" By'z-1<0} (4.4)
and the measurement sources are given by

M (P my) =S (p) + my, (4.5)

4.2.2 Measurement Equation

In the following, a measurement equation is derived based on the idea of
an RHM. Due to the chosen center/shape representation of an ellipse, the
scaled version of the ellipse boundary 88"’1(921) with scaling factor s is
given by

s-88e1(gzl) = s-{zeR*|ZTB ' z-1=0}

= {zeR?*|Z'B'z-s*=0} .
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Hence, a measurement source z;; can be related to the ellipse state z
and the scaling factor 3%71 by

gd@ila sk7l7§k,l) =0, (4.6)

where
ge‘(zil, Sk,l,ék,l) = (Ek,l - mk)T : Bgl : (ék,z —my,) — 5%,1 . (4.7)

The random variable si ; can be interpreted as a noise term modeling the
uncertainty arising from the unknown measurement source.

When there is no measurement noise, i.e., z;; = Qk’l, (4.6) can directly
be seen as the measurement equation. Moreover, usually only a noisy
measurement Qk,l of the measurement source z; ; is given according to
measurement equation (2.2)

Ypy = 2y T 0 - (4.8)

The estimation problem specified by (4.6) and (4.8) nearly coincides with
the curve fitting problem treated in Chapter 3. The only difference is the
additional scaling factor s ;, which can be interpreted as an additional
noise term. For this reason’ we can use the curve ﬁtting techniques from
Chapter 3 with a slight modification that incorporates s? k.- The first step
is to put the measurement yk , in (4.6), which yields after some algebraic

manipulations

9z se0, 9, ) 9N (x5, Sk, 2y + k)
g% (x5!, Skls Zp) T2(25, — mk)TBlzlyk,l
=0

T -1
+v By vy

where By is the shape matrix specified by le. Hence, the following
measurement equation h°! (gzl,gw, Sk,lvgw) is obtained

el . Tra-1 T p-1
0 =g (Qkask,l,yk’l)_Q(ék,l —my) B, — v By,
_. hcl

(25, 20 800, 8 ,) (4.9)
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where hel(gil,gk’l, sk}l,gk l) maps the state @217 the measurement noise
V> the scaling factor si;, and the measurement @k , to the pseudo-
measurement 0.

Note that the unknown measurement source 2z, ; in (4.9) can be substituted
by a point estimate. For example, a suitable point estimate for z, , is given
by the point with the smallest distance from the current ellipse estimate,
ie., HZFl? to the measurement gk,l'

Remark 4.6. Of course, it would be also possible to substitute §, , — vy,

for the measurement source in (4.9). However, in the same way as for
circle fitting in Section 3.4.3, we observed that a Gaussian filter based on
statistical linearization for this equation gives biased estimates for large
measurement noise.

4.2.3 Gaussian Filter Using Statistical Linearization

The measurement equation (4.9) is quadratic and corrupted with multi-
plicative Gaussian noise. In the same way as in Section 2.4 and Section 3.3,
the nonlinearity can be tackled with statistical linearization. The density
fiea(zy) = Nz, — py 1> E%,1) is updated with the measurement g, |
according to

o= )T 0 uk)

T _ x zh hh\ "L ke
kil = k-1 " Zk:,l (Zk,l) Ek,l ’

where pZ ; is the predicted pseudo-measurement, Eﬁ’} is the covariance

between the pseudo-measurement and state, and ZZ}; is the variance of
the predicted pseudo-measurement.

As discussed in Section 2.4, the predicted measurement /‘Z,lv the covari-
ance matrices X% and ZZ'; can be calculated approximately with the
unscented transform [JUO04] or even analytically with moment calculation
as described in Section 2.4.1. As both uf;, and X" are independent of
the unknown measurement source zy, ;, the error made due to the point
estimate is rather negligible. In the remainder, the Gaussian filter based
on the unscented transform is referred to as UKF-EL-RHM.
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4.2.4 Evaluation

In the following, the proposed tracking algorithm UKF-EL-RHM for ellip-
tic shapes is evaluated in two scenarios. In the first scenario, a stationary,
i.e, non-moving, extended object is considered. The purpose of the first
scenario is to show the robustness of the method against errors regarding
the true shape and to illustrate how the precision of the shape estimate
depends on the measurement noise level. The second scenario shows the
practicability of the UKF-EL-RHM for tracking an extended object whose
dynamics is modeled as a constant velocity model.

Stationary Extended Object

In the first scenario, 200 measurements are received sequentially, i.e., a
single measurement per time step is available (n; = 1), from a single
extended object with fized position and shape. Simulations are carried
out with

e low measurement noise level 3} | = diag(0.6,0.6),
e medium measurement noise level X} | = diag(1,1), and

e high measurement noise level ¥} | = diag(1.4,1.4).

The two different object types as illustrated in Fig. 4.2 are considered.
The first object is an elliptic region in which the measurement sources are
uniformly distributed and the second object is a group object from which
the measured point objects are selected uniformly.

The shape is estimated with an RHM for ellipses coupled with the UKF,
i.e., the UKF-EL-RHM, where the measurements are incorporated sequen-
tially. The squared scaling factor is Gaussian distributed with mean 0.5
and variance 0.06. Furthermore, the state vector gzl is initialized with
a Gaussian with mean Hg,o = [0.5,0.5, 1.6, 1.6,O]T and covariance matrix
Y5 o = diag(3,3,0.5,0.5,0.5), i.e., an uncertain circle with radius 1.2 and

center [0.5,0.5]".
The estimation results for the two objects are shown in Fig. 4.4 and Fig. 4.6

(after 50 measurements and after all 200 measurements). The correspond-
ing shape estimates, i.e., the shape parameters, are averaged over 20 Monte
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(a) Elliptic object. (b) Group object.

Figure 4.2: Extended objects used for evaluating UKF-EL-RHM.

Carlo runs. In order to convey an impression of the magnitude of the mea-
surement noise, the example measurements of a particular run are depicted
in Fig. 4.3 and Fig. 4.5.

The results show that the shapes are estimated precisely for both kinds
of extended objects. As the first object (see Fig. 4.2a) is an elliptic re-
gion from which the measurement sources are drawn uniformly, an RHM
for ellipses with a uniformly distributed squared scaling factor (see Theo-
rem 4.1) correctly models the shape, i.e., there is no modeling mismatch.
With an increasing magnitude, the measurement noise dominates the ex-
tent and the orientation of the ellipse estimate gets slightly lost. For the
group object in Fig. 4.2b, the corresponding (true) squared scaling factor is
in fact not uniformly distributed. Nevertheless, even for this group object,
the ellipse approximation according to an RHM is accurate.

In summary, the above examples demonstrate the UKF-EL-RHM im-
plementation of an RHM gives precise shape estimates even in case of
extremely high measurement noise. Furthermore, the UKF-EL-RHM is
robust against different object types as good shape estimates are also
obtained for group objects.

Tracking an Elliptic Shape

In the second scenario, an aircraft-shaped object (see Fig. 4.7a) is tracked
using the UKF-EL-RHM and a (nearly) constant velocity model for the ob-
ject’s motion (see Section 2.1.3). The object follows the trajectory depicted
in Fig. 4.7b.
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Figure 4.3: Object 1: 200 example measurements (second row) and the first 50
measurements (first row).
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Figure 4.4: Object 1: Shape estimates averaged over 20 runs after 50 and 200
measurements.
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Figure 4.6: Object 2: Shape estimates averaged over 20 runs after 50 and 200

measurements.
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Measurement sources are drawn uniformly from the object’s surface and
the number of measurements received per time instant is n, = nj + 1,
where nj is Poisson distributed with mean 4. Hence, it is even possible
that only a single measurement per time step is given. The magnitude of
the measurement noise differs from measurement to measurement in order
to emulate different sensors, i.e., the covariance matrix of the measurement
noise is ¥} ; = diag(0.2,0.2) with probability 0.6 and ¥ ; = diag(0.8, 0.8)
with probability 0.4.

The state vector to be tracked is z§' = |m}, (m})”, (p§'

T
)T, where my,
is the center, m} is the velocity vector, and p°! are the ellipse parameters.
We use the motion model (2.5), where the center is modeled as a constant
velocity model and a random walk model is used for the shape parameters.
The noise parameters for (2.5) are C}, = 0.0015 - Iy and C§’ = 0.005 - L.
The squared scaling factor is Gaussian distributed with mean 0.5 and
variance 0.06. The shape estimates are depicted in Fig. 4.7 for two details
of the trajectory (averaged over 20 time steps). The first detail in Fig. 4.7d
shows that the shape is precisely estimated, i.e., the orientation and size
fits well. As soon as the object enters the curve, the orientation changes
are followed with a slight delay due to the high measurement noise and
the very few available measurements (see Fig. 4.7f).

Comparison with the Random Matrix Approach A detailed comparison
of elliptic RHMs and the random matrix approach, which is also capable
of tracking ellipsoidal shapes, is given in [6]. The main difference is the
description of an uncertain ellipse, i.e., in contrast to random matrices,
RHMs work with Gaussian distributions. Both approaches have to perform
approximations in the measurement update step.

4.3 Star-Convex Shapes

Previous extended object tracking methods for region shapes only consider
basic shapes such as ellipses or circles (see Section 1.6). In this section,
the next step is performed by introducing an extended object tracking
method that is capable of estimating the parameters of a free-form star-
convex shape. This is a substantial progress in extend object tracking as
the shape is very important and relevant information.
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Figure 4.7: Tracking an extended object with an RHM for elliptic objects and

a constant velocity model.
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First, it is obvious that a more detailed shape model improves the estima-
tion quality for the kinematic state as it better captures the real object.
Furthermore, the shape of the object is inherently coupled with the object’s
motion. For example, the object may always be aligned with its motion
direction. Both the estimates for the shape and kinematic parameters can
benefit from this coupling.

Second, many other (higher level) information processing algorithms ex-
ploit the shape estimate as described in the following.

e Target classification
In many applications such as surveillance, the type of the object
is totally unknown when the track is initialized. A detailed shape
estimate is a valuable source of information that can facilitate the
classification of the object. For example, in air surveillance the shape
may allow for determining the type of an airplane.

e Track management

Obviously, a detailed shape estimate allows for an early detection of
group splitting and merging events. For example, consider a group
tracking scenario in which a group member leaves the group. When
modeling the shape of the group with an ellipse, the splitting results
in an increasing overall size of the group. However, when having a
star-convex shape approximation, the splitting appears as a buckle
that can be detected very early. Even the motion direction of the
leaving group member can be determined.

e Data association
Typically, one has to deal with multiple objects and false measure-
ments, i.e., measurements not stemming from any object. When
dealing with such data association problems, a crucial task is to de-
termine the probability that a particular measurements stems from
an object. Of course, the more precise the shape of an object is
known, the more precise this probability can be determined.

e Sensor management and planning
Most sensors involve parameters to adjust, e.g., the viewing direction.
Typically, a sensor management algorithm tweaks these parameters
so that future measurements provide as much as information as pos-
sible. When the object is extended, a sensor management algorithm
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may incorporate the extent in order to improve the information gain.
Furthermore, it is obvious that a detailed shape estimate is essential
when performing motion planning. For example, a mobile robot may
have to navigate through a group of people.

Of course, a detailed shape estimate can only be extracted under rather
good conditions, i.e.,

e the measurement noise is low in comparison to the object’s extent,
e a sufficient number of measurements is available, or

e the object evolves rather slowly, e.g., no fast maneuver is performed.

If this is not the case, a rather coarse shape such as an ellipse should be
preferred (see also the discussion in Section 1.1).

The remainder of this section is about estimating a star-convex shape ap-
proximation of an extended object with the help of an RHM. For this pur-
pose, a star-convex shape is modeled with a polar function, which specifies
the distance from the center to a boundary point for a given angle. The
shape parameters that are to be estimated are given by the first Fourier
coefficients of the Fourier expansion of the polar function. Based on this
shape representation and the concept of an RHM, we will derive three
Bayesian estimators, i.e.,

e a Gaussian filter using the UKF called UKF-SC-RHM,
e a Gaussian filter using analytic moment calculation AMC-SC-RHM,

e a simple particle filter PF-SC-RHM that uses the concept of an RHM
for approximating the likelihood function.

The performance of the presented filters is assessed in Section 4.3.5. It
turns out that the Gaussian filters significantly outperform the particle
filter PF-SC-RHM and also the naive particle filter (see Section 2.3) in
both computational complexity and accuracy.
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Figure 4.8: Representing a star-convex shape with a polar function.

4.3.1 Parametric Representation of Star-Convex Shapes

A star-convex shape is represented in parametric form with a polar func-
tion (see [ZL05,JKS95,DN99]), which specifies the distance r(¢) from the
center to a boundary point depending on the angle ¢ (see Fig. 4.8). The
region enclosed by the boundary specified by a polar function is always
star-convex.

In order to specify the polar function with a finite dimensional parameter
vector p}¢, the first N Fourier coefficients of the Fourier expansion [ZL05]
of r(¢) are employed, i.e.,

(0)
. a , _ N
(e, 0) = =+ Y @) cos(jo) + b sin(jg) (4.10)

j=1..Ng
where B?: denotes the parameter vector given by
p = [al” a" b0l oM
For fixed ¢, (4.10) is linear in P, e,
r(py,¢) =a(o) - Py
where

q(¢) := [1, cos(¢),sin(¢), ..., cos(Npg), sin(NF(b)] . (4.11)
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The Fourier coefficients have an intuitive meaning: Fourier coefficients
with lower indices capture coarse features of the shape and Fourier coef-
ficients with higher indices encode finer details. Note that other shape
representations, e.g., splines [BI98], may also be suitable for representing
star-convex shapes.

In summary, the overall state vector for a star-convex extended object is

T
given by z5° = [mg, ()T, (BZC)T , which contains the center my, of the

object, further optional variables z}, and the Fourier coefficients BZC'

4.3.2 Measurement Equation

Following the idea of an RHM, the region enclosed by the star-convex
contour specified by P can be written as

§*(py) = {s (P brt) - e(dr) | dra € 10,27 and s € [0, 1]} ,
(4.12)
where e(dr,) == [cos(¢k,l),sin(¢k7l)}T is a unit vector with angle ¢y ; to
the z-axis and s is a scaling factor that captures the interior of the shape.
The set of measurement sources forming the extended object is given by
(see (2.1))
M*(pif,my) == 8(p)) + my, (4.13)

which results from shifting the shape to the location of the extended
object m,.

Based on (2.2) and (4.13), the following explicit measurement equation is
obtained

Qw = Zpt Uy
= Ske-q(Pra) 'BZC e(Pr,1) +my + vy, (4.14)

= h:f(pl(@zcaﬂk,uSk,z,%,l),

where hZ5 ) (g?cc,gm, Sk, Or,1) maps the state x3°, the measurement noise

Vi1 the scaling factor sj;, and the angle ¢ ; to the measurement ghl'

A reasonable assumption is to choose a probability distribution for ¢y
such that the resulting measurement sources are uniformly distributed
over the shape boundary. However, this probability distribution depends



76 Chapter 4. Random Hypersurface Model

on the actual shape, i.e., BZC’ and no general expressions can be derived.
In section Section 4.3.4, we derive an approximation for the likelihood

function based on (4.14) for the use within particle filters.

Unfortunately, (4.14) is rather unsuitable for statistical linearization aim-
ing at a Gaussian filter; already the polar equation for circle fitting in
Section 3.4.1, which is a special case of (4.14), yields unsatisfactory results.

In order to perform statistical linearization the following reformulation of
(4.14) is performed:

Upy—my = sk e(Pr) - q(Pri) P+ 0y

and

18, —mul > = iy lla(ora) - PN+ 20 s a(bng) - pyf

()’ v v * . (4.15)

The above reformulation is inspired by the findings from circle fitting.
Essentially, it corresponds to a “circulization” of the shape, i.e., the shape
is assumed to be approximately circular around a particular ¢. Note the
similarity to the measurement equation (3.21) for circle fitting.

Taking the squared norm can be interpreted as a projection on the (squared)
distance. By this means, the direction vector e(¢y ;) in the first summand
of (4.15) is removed. The second summand can be interpreted as a noise
term, which depends on the state. The remaining unknown values of ¢,
in (4.15), can be substituted with a point estimate. A proper simple point
estimate ¢y, is the angle enclosed by the vector from the current shape
center estimate H?,zf , to the measurement gk,l and the x-axis

g =2 (gw — L O]T)

Based on (4.15) and the point estimate, the following measurement equa-
tion can be defined as

0 = si;llg(dra) PP+ 2 sk - q(dy) Py ce(Dr)” - v,
+|vy |1 - 19,.., —my|[?
=: hsc(zi-caghlvsk,lagk l) ) (416)

which maps the state zj’, the measurement noise v, ;, the scaling factor
Sk,1, and the measurement @k , toa pseudo-measurement 0.



4.3. Star-Convex Shapes 77

4.3.3 Gaussian Filter using Statistical Linearization

The quadratic measurement equation (4.16) can be statistically linearized
as described in Section 2.4 in order to perform the measurement up-
date with a Gaussian filter. In this manner, the update of the den-
sity fi—1(zy,) = N(z), — E"]’:7l_1,2",§7l_1) with measurement gk,l results in

filzy,) =Nz, — Hi,l’ Eiyl), where

we,o= ey TR0 -y (4.17)

x _ x xh hh\—1xhx
kil k,i—1 " Zk (Ek ) Ek )

with the predicted pseudo-measurement uk |, covariance E ; between the
pseudo-measurement and current state estimate, and the Varlance of the
pseudo-measurement Z ;. Below, we present two methods for calculating
the unknown moments in (4.17).

Analytic Expressions (AMC-SC-RHM)

The general procedure described in Section 2.4 allows for deriving analytic
expressions for the moments in (4.17). In fact, this procedure expands
all polynomials in order to reduce the problem to calculating the expec-
tations of monomials. It is completely automatic, however, the resulting
expressions are in general rather complicated as they are not simplified.
In the following, we present more compact analytic expressions with the
help of well known identities for the expectations of quadratic, cubic, and
quartic expressions of Gaussian random variables (see [PP08,Broll]). As
the calculation of these moments is essentially straight-forward, we only
state the final result.

We make the simplifying assumption that the center of the object and the
shape parameters are uncorrelated and consider a slight approximation
of the original measurement equation (4.16). The only reason for this
assumption is that it simplifies the resulting expressions; however, it does
not necessarily have to be made.

All told, given are (the time index k and measurement number index [ are
omitted)
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the current state estimate characterized by the mean and covariance
matrix of a Gaussian in the form

. Ium N nm Q
K= Lup} and % = {OT Ep} )

the mean and p® covariance matrix 3¢ of the squared scaling factor,
the covariance matrix of the (zero-mean) measurement noise 3", and
the following measurement equation

hi=s"|lq(¢)  pII* =117 — m|* +21°¢(¢) - 4" - ()" - v + |[v][?,

—_———— ———
=hy i=ho :=hg

which is a slight approximation of measurement equation (4.16). The
current estimates are substituted in order to obtain uncorrelated
noise.

Desired are the

e cross-covariance matrix X = {

e mean Hh and covariance X" of h, and the

hm

th] between h and the state x.

As the random variables hy, hy, and hg are stochastically independent,
we can write

— th _ Hh2 +Hh3 ,
Zh — Ehl + ZhQ + Zhg ,
Ehx _ Zhlx _ thx =+ Zhg;c )

=
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The moments involving h; are given by

i = (brace{QEF 4 ()T QuY)
o= (42 - (brace{2(QE")?} + 4(w)T QTP QU )
+ (trace{QZP + (HP)TQHP}) s
yhmo = 0,
s =t (250 QuP + trace{a(6)}S7q(0)) - 1 + i - ()T Qu

with Q := g(éT)Q(Qg)

The moments with hs turn out to be

7’12 = (" - Q)T(Hm —§) + trace{X™} ,
¥h = 2trace{(7)?} +4(u" - 9TE" W - 9) ,
+trace{X™} + (" = )" (" - §) — (1),
g = 2.9 (™ — ) + trace{E™} - " — p™ trace{S™} |
nhro= 0.

Finally, the moments for the noise term hg are

phs = trace{¥'} ,

¥ = trace{t(t)T XV} 4 2trace{(X")?} + trace{X"}? ,
yhmo = 0,

xmro = o0,

where ¢ := 2 - u® g((]g) P —e(d)7.

The Gaussian filter using analytic moment calculation according to the
above formulas is denoted as AMC-SC-RHM in the remainder of this work.

Unscented Kalman filter (UKF-SC-RHM)

The required quantities for performing the measurement update with (4.17),
i.e., the mean Hh, covariance matrix ", and the cross-covariance matrix
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¥"* can be computed approximately with the unscented transform [JUO04].
We denote the resulting filter as UKF-SC-RHM. Although the unscented
transform only gives an approximation of the moments, it has the advan-
tage that one can resort to a standard nonlinear estimator for which op-
timized implementations are available. Simulations in Section 4.3.5 show
that the performance of the UKF-SC-RHM is close to the filter based
on analytic expressions AMC-SC-RHM. Hence, the UKF-SC-RHM is a
serious alternative to the AMC-SC-RHM.

4.3.4 Particle Filter

As already discussed earlier in Section 2.3, particle filters for extended ob-
ject tracking are rather challenging as, among others, there are no general
analytic expressions for the likelihood function (2.7). In the following, we
show that the concept of an RHM can be used for deriving an accurate
approximation of the likelihood function that can be calculated efficiently.
Essentially, this approximation exploits that the likelihood function can be
evaluated explicitly when the angle from the center to the measurement
source is given. Hence, only a one-dimensional discretization has to be
performed (for two-dimensional shapes). This approximation is possible
for all star-convex shapes, regardless of the parameterization.

With 2z, = sk, - 7(p,, Pr) + my, we can rewrite (2.7) as

[ 1z Flenilen) da
= //f@k,ﬂfbk,u%l@k)'f((bk,z’Sk,h|£k)d¢k,ld8k,z
= [ [ 1y donssnnm) - o
-/ ( 160 Jna sz onila) dsk,z) F(dralzi)dor (4.18)

=150, r0zy)

xy,) - [k |2y,) Ao, dsey

Note that we exploited that the scaling factor and the angle are indepen-
dent. The term f*(§, ,[¢k,1,2)) can be evaluated analytically for several

relevant densities f(sk |z} ), e.g., Gaussian and uniform densities (it results
from (4.14) for fixed angle ¢y ;).
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For example, when s;, ; is Gaussian distributed with mean p® and variance
3%, we obtain

£5(8, 0 z) = N3, - "2 | (1.19)
where
woo= W er(pys drg) - e(dra) + oy, (4.20)
o= B4 on)” (o) Se(dr) - (4.21)

Because the remaining outer integral in (4.18) cannot be solved in closed
form, we suggest to approximate the probability density f¥ (¢ |z;) with
a Dirac mixture distribution

E(oralzy) sz (Prg — ff)l)

With this approximation, we obtain the following approximation of the
likelihood (2.7)

N
f(ng‘&k:) ~ Z w?,fs(ng‘d)](;))[)zk) ) (422)
=1

Finally, it remains open how to choose the weights w;. When the mea-
surement sources are uniformly distributed over the object surface, the
angle ¢ is in general not uniformly distributed as well. Instead, a more
suitable approximation for the weights w; is given by

o o P B = 72, 91 ”)Q + C||r<pk,¢>§§?> —r(p, o)l

for 1 < i < Ny, where we define gb(N‘b'H) = ¢§cll) and gb,(cjll : qS(N")).
The term C denotes an approxmlatlon of the curve length of star-convex
boundary is given by

Ng—1

e Y I o) = (e ok I -
=1

Essentially, this approximation results from approximating the shape with
a “fan” i.e., the shape boundary is approximated with line segments, and
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Figure 4.9: Extended objects in the evaluation and the prior shape estimate,
i.e., a circle.

the weight w; is chosen as the ratio between the two adjacent segments
of qbg)l to the overall area. The above proposed approximation can be
performed in linear runtime in Ny. Having approximated the likelihood
function, standard particle filters can be used for tracking the extended
object.

We introduce the acronym PF-SC-RHM for the particle filter that is equal
to the Naive-PF described in Section 2.3 but employs the above described
approximation of the likelihood.

4.3.5 Evaluation

The performance of the proposed methods for star-convex shapes is in-
vestigated within two scenarios. The first scenario considers a stationary
extended object with fixed shape. The purpose of this scenario is twofold.
First, it shows the practicability of star-convex RHMs and second, the
performance of the two Gaussian filter implementations UKF-SC-RHM
and AMC-SC-RHM are compared with both the naive particle filter and
PF-SC-RHM. The second scenario shows the applicability of the proposed
methods for extracting detailed shape information from a moving extended
object.
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Stationary Extended Object

Simulations for the first scenario are carried out with two extended objects,
i.e., an aircraft-like object and a group object as depicted in Fig. 4.9 (from
both objects, measurement sources are drawn uniformly). From each ob-
ject, 200 measurements are sequentially received, where simulations are
performed under different measurement noise levels, i.e.,

e low measurement noise level X} | = diag(0.12,0.12),
e medium measurement noise level 3} | = diag(0.27%,0.27%), and

e high measurement noise level X} | = diag(0.42,0.42).

Example measurements for all noise levels are depicted for both objects in
Fig. 4.10 and Fig. 4.12.

The shape of the object is represented with the polar representation using
11 Fourier coefficients as described in Section 4.3.1. The squared scaling
factor for the RHM is Gaussian distributed with mean 0.5 and variance
%. The parameters of the shape are initialized with a Gaussian with mean

[0.5,0.5,2,0,...,0]" and covariance diag(0.2,0.2,0.04,0.04, ...,0.04), i.e.,
an uncertain circle with radius 1 and center [0,0.5) .

AMC-SC-RHM First, the shape of the stationary extended object is re-
cursively estimated with the closed-form implementation AMC-SC-RHM
of star-convex RHMs. The resulting point estimates after 50 and 200
measurements are depicted in Fig. 4.11 and Fig. 4.13, where they are aver-
aged over 20 runs. In order to visualize the estimation accuracy, we have
computed an (empirical) “variance” for the shape estimate. This shape
variance results from the 20-bound of the radius function, i.e., for each ¢
the variance for T(B?:, ¢) is computed based on the 50 runs.

The results demonstrate that the shape is estimated precisely for both
shapes. Even the shape of the group object is captured quite well although
there is a significant modeling mismatch between the group object and the
assumptions of the RHM. Furthermore, with an increasing measurement
noise, the details of the shape become blurred. This is a reasonable effect
because with lower sensor resolution, details are more difficult to extract
and a higher number of measurements is necessary.
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Figure 4.10: Object 1: 200 example measurements (second row) and the first 50
measurements (first row).
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Figure 4.11: Object 1: Shape estimates averaged over 20 runs after 50 and 200
measurements.
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Figure 4.12: Object 1: 200 example measurements (second row) and the first 50
measurements (first row).
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Figure 4.13: Object 1: Shape estimates averaged over 20 runs after 50 and 200
measurements.
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Figure 4.14: Comparisons with the help object 1 and middle noise level: Mean
shape estimates and shape variance based on 50 runs.

AMC-SC-RHM vs. UKF-SC-RHM In general, we observed that the
UKF implementation UKF-SC-RHM and the closed-form solution AMC-
SC-RHM result in comparable shape estimates. In order to support this
statement, the estimation results of the UKF-SC-RHM for the extended
object Fig. 4.9a and middle measurement noise level are shown in Fig. 4.14a.

AMC/UKF-SC-RHM vs. Particle filters Within this thesis, we intro-
duced two particle filter implementations, i.e., the naive particle filter
Nuaive-PF (see Section 2.3) and a particle filter PF-SC-RHM, which equals
to the naive particle filter except that the concept of an RHM is used for
deriving an approximation of the likelihood function.

For both particle filters, 1000 samples were employed for representing the
probability density of the state. For the Naive-PF, the likelihood function
was approximated based on 500 samples (note that the naive particle filter
performs a two-dimensional sampling of the object surface). However, the
PF-SC-RHM employed only 250 samples (for the one-dimensional angle
in the likelihood function). The number of samples was chosen as high
as possible while resulting in a reasonable run-time (for each measure-
ment update 500.000 samples have to be iterated for the naive particle
filter). Of course, the run-time of the analytic approach AMC-SC-RHM
is unbeatable. However, the UKF implementation is only slightly slower.

Fig. 4.14b and Fig. 4.14c show the estimation results for the both particle
filter implementations. The Naive-PF and PF-SC-RHM have a much
larger error than both Gaussian filter implementations UKF-SC-RHM and
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AMC-SC-RHM. Although the PF-SC-RHM employs less samples than the
naive particle filter the estimation quality is comparable. This results from
the fact that PF-SC-RHM approximates the likelihood more precisely with
the same number of particles than the Naive-PF.

All told, the evaluation shows that the Gaussian filter implementations
are hard to beat with basic particle filter techniques concerning both run-
time and estimation accuracy. Of course, more advanced particle filtering
techniques probably give more competitive results.

Tracking a Moving Extended Object

In the second scenario, a star-convex shape approximation of a moving
extended object is to be tracked (see Fig. 4.15a). The extended object fol-
lows the trajectory depicted in Fig. 4.15b, where the measurement sources
are uniformly distributed on the object’s surface. This is exactly the same
object and trajectory as for ellipses in Section 4.2.4. The magnitude of
the measurement noise is nearly the same as in Section 4.2.4, i.e., the
covariance matrix of the measurement noise is X} | = diag(0.2,0.2) with
probability 0.6 and £} ; = diag(0.6,0.6) with probability 0.4. However, in
contrast to Section 4.2.4, the number of measurements received per time
instant is increased, i.e., ny, = nj, + 1, where nj} is Poisson distributed with
mean 7.

The shape of the object is tracked with UKF-SC-RHM implementation for
star-convex extended objects, where a Gaussian scaling factor with mean
0.7 and variance 0.05 is employed for the RHM. The state vector is xj° =

. (m)7, (b

and P, are the shape parameters consisting of 11 Fourier coefficients. We
use the motion model (2.5) described in Section 2.1.3, where the center
evolves according to constant velocity model and shape parameters are

modeled as a random walk. The noise parameters for (2.5) are C} =
0.001 - I;; and Cg’ = 0.005 - I.

T
)T| , where my, is the center, my is the velocity vector,

The estimated star-convex shape approximation is shown in Fig. 4.15 for
two details of the overall trajectory (averaged over 20 time steps). The re-
sults indicate that the shape is tracked precisely, i.e., the aircraft-like shape
can be recognized. However, similar to the elliptic shape in Section 4.2.4,
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the shape marginally blurs as soon as the extended object changes its
orientation.

Of course, the object in this scenario could also be tracked with an elliptic
model (see Section 4.2.4). However, an ellipse does not encode the aircraft-
like shape of the object. Vice versa, the object in the scenario for elliptic
shapes in Section 4.2.4 cannot be tracked with a star-convex RHM using 11
Fourier coefficients as the measurement quality in Section 4.2.4 is too low,
i.e., the measurement noise is too high, too few measurements are available,
and the object alters its moving direction too quickly. Nevertheless, the
object in Section 4.2.4 can be tracked with a star-convex RHM when the
number of Fourier coefficients is reduced, which, however, comes with a
loss of the detailed shape information.

4.4 Conclusions

In this chapter, we considered the tracking of an extended object that is
modeled as a region shape, i.e., the point measurements may originate
from the interior of the object contour. We faced the high-dimensionality
and nonlinearity of the estimation problem with a novel concept called
Random Hypersurface Model (RHM) that allows for reducing the mod-
eling of a region shape to the modeling of a curve. This reduction is
performed by means of scaling the shape boundary according to a scal-
ing factor that is characterized with a one-dimensional probability density
function. RHM:s offer a flexible concept for modeling free-form star-convex
shapes but also basic shapes, e.g., ellipses. We introduced particular RHM
instantiations for elliptic shapes that are represented with an implicit equa-
tion and star-convex shapes represented with an explicit polar function.
For both shapes, quadratic measurement equations were derived for which
statistical linearization yields an efficient closed-form measurement update.
The estimation accuracy and performance was highlighted with respect to
basic particle filters. For this purpose, the concept of an RHM was also
used for deriving accurate approximations of the extended object likelihood
function.

At this point, it is essential to note that the contributions of this chapter
are twofold: First, we presented the novel fundamental model called RHM
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that allows for deriving explicit measurement equations for extended ob-
jects. Second, particular state estimators for these measurement equations
have been derived.

This chapter demonstrated that it is possible to efficiently extract detailed
shape information from sequentially arriving noisy point measurements. It
is now possible to track an extended object whose shape is totally unknown
a priori and estimated from scratch. Of course, this is only possible under
certain good conditions, e.g., the measurement noise may not be too high.
If the conditions are too poor, a coarse shape model such as an ellipse is
recommended in order to prevent track loss.

The closed-form formulas for the measurement update render the presented
methods computationally appealing for many applications. An example
application will be given later in Chapter 6, where the real-time shape
tracking of ground moving objects with RHMs is considered.

Outlook Concerning the proposed Gaussian filter instantiations of RHMs,
there is room of improvements in the shape parameterization. The Fourier
series expansion of the polar function comes with the disadvantage that
there is an implicit non-negativity constraint, i.e., the polar function must
be always positive. Furthermore, the center is only uniquely defined in
connection with a particular distribution of the scaling factor. Both issues
can be addressed by either enforcing state constraints or choosing alter-
native representations for star-convex shapes. As already discussed in the
context of conic fitting, a Gaussian density for the center/shape represen-
tation of an ellipse does not have an intuitive physical meaning, e.g., it is
unclear what the average of two ellipses is.

Of course, advanced, problem-specific non-Gaussian filters (e.g., based on
an RHM) are expected to give even more precise shape estimates than
the proposed analytic Gaussian solution. However, non-Gaussian filters
usually have their price; they are in general computationally far more
expensive. The question is how much more estimation quality can be
achieved with how much effort. The comparison with the basic particle
filters indicates that our analytic approach is hard to beat in both quality
and run-time complexity.

In this chapter, we have focused on the basic version of RHMs for star-
convex shapes. However, the concept of an RHM is much more general.
For example, the following two generalizations are promising:
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e More complex shapes

Although a star-convex shape is a very precise description of an ob-
ject, there may be scenarios in which non-star-convex shapes are
required. There are actually two main approaches that allow for ex-
tending RHMSs to non-star-convex shapes. First, a complex shape
can be composed of several basic shapes. By this means, a data as-
sociation problem arises as it is not known from which shape a mea-
surement stems (see [19] for preliminary results on this approach).
Second, the idea of scaling the shape boundary can be generalized
to arbitrary shapes. While the scaling corresponds to a straight-line
homotopy from the shape to the center, it is possible to define a
homotopy for more general shapes in a similar manner.

o Three-dimensional space

Elliptic region shapes can be treated in higher dimensions in anal-
ogy to the two-dimensional case. However, star-convex region shapes
in three-dimensional space are somewhat more difficult as a two-
dimensional Fourier expansion has to be performed. Apart from
region shapes, i.e., three dimensional shapes, RHMs can be used
for modeling surfaces. For example, in [22], RHMs were used for
tracking and estimating the parameters of a cylinder. Tracking the
parameters of a surface in three-dimensional space is a very impor-
tant problem that recently gained a lot of attention in the context
of processing point clouds obtained from RGB and depth sensors.
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Set-Theoretic Extent Model
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Existing extended object tracking approaches impose statistical assump-
tions on the measurement sources, e.g., a spatial distribution may assume
that the measurement sources are uniformly distributed on the object.
However, statistical assumptions are often unreasonable as the locations
of the measurement sources are influenced by effects that are hard or even
impossible to identify. For example, the measurement sources may be
significantly affected by unknown characteristics of the object’s surface,
the sensor-to-object geometry, or the arrangement of the individual group
members in a group. Definitely, unreasonable assumptions on the measure-
ment sources may sooner or later result in a low estimation quality. The
plain Bayesian solution would be to estimate the parameters of the spatial
distribution. However, the Bayesian approach comes with two disadvan-
tages. First, it would be computationally challenging as further unknown
parameters are to be estimated. Second, one would also need models for
the temporal evolution of these parameters, which are hard to justify, e.g.,
it would be necessary to explicitly model occlusions. In this chapter, a
novel approach is pursued:

The location of a measurement source is modeled as an
unknown-but-bounded error.

Hence, it is only exploited that a measurement source lies on the extended
object, but no statistical assumptions are imposed. By this means, no
wrong assumptions on the measurement sources are made.
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At this point, it is essential to note that the measurement noise itself is
modeled as a stochastic noise term according to the sensor model described
in Section 2.1.2; only the uncertainty about the measurement source, i.e.,
the extent model, is modeled as a set.

In order to perform inference based on the set-theoretic extent model, we
adopt the Statistical and Set-theoretic Information (SSI) Filter [HH99d,
HH99a, HHS99, HH99b, HH99¢] framework, which employs random set in-
tersection for fusion. Specifically, we present novel outer-bounding tech-
niques for tracking circular discs. A direct consequence of the imposed
set-theoretic extent model is that the shape parameters, i.e., the radius,
cannot be estimated exclusively with point measurements. However, it can
be estimated from further information sources, e.g., we propose to infer the
radius of the circular disc based on the number of received measurements.

The SSI filter for the set-theoretic extent model is robust against different
distributions of the measurement sources and is thus able to give more
precise estimation results than plain stochastic approaches. It turns out
that a set-theoretic extent model may be superior to a spatial distribution
model in case the locations of the measurement sources are dominated by
systematic errors and the measurement noise is rather small compared to
the extent.

Remark 5.1. This chapter is based on [2] and [8,10]. In [8], the set-theoretic
approach has first been published. An extended and revised journal version
was published in [2]. The approach was applied to rectangular shapes
in [10]. This chapter extends the previous work [2] and [8,10] mainly by a
motivating example and further evaluations.

Structure of this Chapter In the following section, we illustrate the need
of a set-theoretic extent model by means of a simple example. Subse-
quently, the basic concept of the set-theoretic extent model is introduced
in Section 5.2. Section 5.3 shows how the so-called Statistical and Set-
theoretic Information (SSI) Filter can be used for performing inference
based on the set-theoretic extent model. In Section 5.4, we derive a par-
ticular SST filter for circular discs when the radius is known. For the
case of unknown radius, novel outer-bounding techniques based on hyper-
boloids are developed in Section 5.5. In order to estimate the radius, it is
assumed that the number of received measurements depends on the size
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of the object (see Section 5.5). The benefits of the set-theoretic approach
are illustrated by means of simulations in Section 5.6.

5.1 Motivating Example

In order to illustrate the effect of statistical assumptions on the measure-
ment sources, we consider the non-moving, cross-shaped extended object
depicted in Fig. 5.1a. The measurements are received sequentially from
a finite set of (equally probable) measurement sources on the object (see
Fig. 5.1a). The goal is to estimate the location of the extended object. For
this purpose, the extended object is modeled as a circular disc, where the
radius of the smallest enclosing circle is known. A reasonable stochastic
estimator for the center can be derived easily as follows.

Remark 5.2 (Stochastic estimator for discs with known radius). For given
radius, the assumption that the measurement sources are uniformly dis-
tributed on the circular disc results in the measurement equation

gkl =m+e,; +V,; ,

3

where ey, ; is a random variable that is uniformly distributed on a disc with

radius 7 at the origin denoted as K ([O, O]T ,Fk>. When approximating

the uniform distribution of e, ; with a Gaussian, the standard Kalman
filter formulas can be employed for performing a measurement update as
ey is just an additional noise term in a linear model. Reasonably, a
uniform distribution can be approximated with a Gaussian by moment
matching. However, as in this case a large amount of the probability mass
for a measurement source lies outside of the circular disc, we propose to
choose the variance of the Gaussian so that the 0.95% confidence region is
a circle with radius 7.

The discussed example is a typical scenario, where the assumed spatial
distribution, i.e., a uniform distribution, significantly differs from the true
one, i.e., a finite set of point sources. Fig. 5.1 shows an example run of the
stochastic estimator, which demonstrates the consequence of the modeling
mismatch. Fig. 5.1b depicts the estimated circle, i.e., its center, and the
0.95% confidence ellipse after the first measurement has been processed. It
can be seen that the true center is still contained in the confidence region.
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Figure 5.1: Example illustrating the problem of systematic errors in the measure-
ment sources when using a stochastic estimator (see Example 5.1). The confidence
ellipse of the stochastic estimator is plotted in magenta.
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However, as soon as the number of processed measurements increases (see
Fig. 5.1d and Fig. 5.1e), the estimated center drifts away and the confi-
dence region does not contain the true center anymore. Actually, this is
a direct consequence of the modeling mismatch and results in a system-
atic error. Essentially, the estimated center coincides with the mean of
the received measurements. However, the center of the object does not
coincide with the mean of the measurement sources. The misbehavior of
the stochastic estimator may cause serious problems in a tracking sys-
tem as the estimator pretends to be more confident than it is actually
the case. In the following, we call such an estimator inconsistent (see for
example [LBDS04]).

Definition 5.1 (Inconsistency). An estimator is called inconsistent if it
considers the true state as an outlier, i.e., the confidence region does not
contain the true state.

5.2 Basic ldea

The basic idea for coping with the problems described in the motivating
example is to model the uncertainty about the measurement source as
an unknown-but-bounded error, i.e., the only used information about the
measurement source is that it lies on the extended object. For this purpose,
we first restrict ourselves to the case that the shape parameters p, are
known. Hence, the state vector to be estimated x;, = m, consists only of
the center my, (for the sake of simplicity, we omit further variables for the
kinematics).

The set-theoretic extent model is specified by the measurement equation
U, =My + e+, (5.1)
’ ——
=Zra
where
e v, ; is zero-mean white Gaussian noise with covariance matrix Xy,

that models the measurement error stemming from the sensor (see
Section 2.1.2), and
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e e, ; is an unknown-but-bounded error term, i.e.,

[AS S@k) )

which models the uncertainty of the measurement source on the
object (see the extent model in Section 2.1.2).

Remark 5.3. Equation (5.1) indicates that p,, cannot be estimated based on
the measurements y}C  as by specifies the bound of a systematic error. It
is not possible to estimate it based on repeated observations { Uy In order
to deal with this problem, we will later slightly extend the basic model
proposed in Chapter 2: The number of measurements ny received at a
time instant depends on the size of the object. By this means, it is at least
possible to estimate the scaling of the object. Further details, including a
justification of this extended model, are provided later in Section 5.5.

5.3 Statistical and Set-theoretic Information (SSI)
filter for Extended Objects

In this thesis, we will employ a Statistical and Set-theoretic Information
(SSI) Filter [HH99a, HHS99, HH99b, HH99¢c, HH99d] for state estimation
based on the set-theoretic extent model (5.1). An SSI filter provides a
mathematically sound formalism for dealing with combined uncertainties,
i.e., stochastic and set-theoretic uncertainties.

An SSI filter based on the measurement equation (5.1) represents the
uncertainty about the state x;, having received the measurements up to

time step k& — 1 plus the first [ — 1 measurements gk RERE ,gk 1 from time

step k with a random set Ay ;_1, which is called solution set.

In order to incorporate the next measurement ¥ . into the current solution

set A1, the measurement equation (5.1) is written as

my €3, —S(5,) v (5.2)

=0y

which means that all feasible centers m, that are consistent with the
measurement gk , are an element of a random set O ;. Note that the set

Oy, is random, because v, ; is a random vector.
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The updated solution set Ay ; is the intersection of the current solution
set Ag—1 with the measurement solution set O ; (conditioned on non-
emptiness), i.e.,

Apy=Api—1NOk; .

Since the exact recursive computation of Ay ; is in general intractable, the
set Ay ; can be chosen to be an outer-bound of the true solution set, i.e.,

Ap1 2 Agi—1NBg; .

Typical sets are random intervals [HHS99] or random ellipsoids [HH99d].

Remark 5.4. On the one hand, the SST filter becomes a pure set-theoretic
filter if there is no stochastic noise. On the other hand, if the bounded
error is zero, a stochastic filter is obtained.

Remark 5.5. Note that there are several further approaches for dealing
with combined set-theoretic and stochastic uncertainties. For example, in
the context of random set theory, Mahler [Mah07] suggested to construct a
so-called generalized likelihood function, which incorporates both stochastic
and set-theoretic errors. The uncertainty of the state is still represented
with a probability density function for the state. In 1991, sets of densities
[MS91, MS03] for a Set-valued Kalman filter were proposed. These ideas
have been recently further developed in [NKHO09].

In order to use an SST filter for extended objects, outer-bounding tech-
niques tailored to the particular error bound S (@k) have to be developed.
In the following, we derive these techniques for circular discs, which are
one of the most relevant shapes. Although, the set-theoretic approach is
applicable for general shapes (see also Section 5.7), it makes mainly sense
for coarse shapes, because the shape parameter cannot be estimated from
point measurements. Still, a coarse shape outer-bounds a detailed shape
and therefore guarantees consistent estimation results.

5.4 Circular Discs with Known Radius

In this section, we focus on an extended object modeled as a circular disc
with known radius 7, i.e., p, = 7, and shape S(rk) = K (), where

K (7) = {2z | z € R? and ||z||]2 < 7}. In this case, the measurement
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Figure 5.2: Set-theoretic estimation of the center of a circle with known radius.

solution set (5.2) is a circular disc with random center z;; = §, , — wy,

and given radius 7, i.e.,!
T e fod
vt =K (2, 7k)

Example 5.1. Fig. 5.2a shows a rectangular shape with its smallest en-
closing circle. The first two measurements Ql and QQ are plotted, where
they are noise-free, i.e., w; = 0 and w, = 0 (the time index k is omitted in
the example). The corresponding measurement solution sets for the center
©7 and O} are (deterministic) circular discs (see Fig. 5.2b). Because §,
and g2 both lie on the true circular disc, the center my, is an element of

5 =07N6}

2 1 2

The intersection of two measurement solution sets is not a circular disc
again. However, the exact solution set can be outer-bounded with a
circular disc (see Fig. 5.2b). In this manner, the solution set is given

by
71;,1 =K (gk,l) ’

T
where ék’l = [5’,;1, Z,lvgl;,l] is a random vector consisting of the circle

parameters. The intersection of the measurement solution set K (z kel )

! The superscript r in 92,1 expresses that the radius is known.
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and the current solution set K (§ el 1) has to be outer-bounded with its

smallest enclosing circular disc according to

K (§k,l71) NK (2 7) C K (ﬁk»l)

The following theorem shows how the updated parameters §kl can be

computed from & and z;; (see also Fig. 5.2b).

keyl—1
Theorem 5.1. Suppose we are given two circles K (z,7) with z = 2%, 2¥]"
and K (€) with & = [¢*,¢v,¢™|". Let

4= /(7 =€)+ (20 — )

denote the distance between the vectors [2%,2Y]" and [¢%,¢¥]". In case
d< & +7 (5.3)

holds, the smallest enclosing circle K (§pound) of the intersection K (z,7)N
K (&) is given by

[g%ounﬂ = z4+ 2 . (|:§z:| — Z) , (54)
Egound = ,Fl% - 02 (55)
with ¢ := 2((72 — €7)2 + d?).

Proof. Can be proven with basic algebraic rules (see for example [Weil).
O

According to the above discussion, the following SST filter for the center
of a circular disc can be constructed.

Statistical and Set-Theoretic Information (SSI) filter 1
e State Vector

N T
§k,l ~ N(§—§k,p Ei,z) with §,€,l = &k %,Zaﬁk,l}

e Solution Set for the center m;

K (gk’l).
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e Measurement Solution Set for measurement @k .

K (ék,b fk) with z, ;= Qw —wy; and 25, ~ N(y — Qk,p EZJ)

Measurement Update
Calculate the parameters § "y of the outer-bound

K (§kl) 2K (§k,171) NK (zy,7%) (5.6)
by means of the mapping
§k,l = gl(ék,la§k’l71) (5.7)

under the condition that the intersection is not empty, i.e.,

T
s [Gndo] | snrgn . 69)

where the function G (-) is defined according to Theorem 5.1.

Time Update
In general, the time update results from propagating the solution set
through the motion model (2.3)

Ak+1,0 - ak(Ak,nkauk7wk) U 5k, )

where & is an additional bounded error for the prediction step.
In case of a random walk model (2.4), the prediction step can be
performed without any further approximations, i.e.,

0
_|Ax O Uy, + wy,
§k+1,0 - [ 0 1} §knk + [ 0 + 10 ) (5‘9)
by,
where by, is a scalar that accounts for & by increasing the radius of

the solution set.

Point Estimate
A suitable point estimate is given by the expected center of the

vz o~y 1T
solution set {g » i l} . An associated set-valued error is given by

the radius of the solution set g; . and the stochastic error is given by

T
the covariance matrix for [é‘z ; ZJ .
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Figure 5.3: Estimation results of the SSI filter for the problem in Example 5.1. A
state estimate is characterized by a confidence ellipse for the stochastic uncertainty
(magenta) plus a bound for the set-theoretic uncertainty (dashed green).

The arguments of the nonlinear function G;(-) in (5.7) are random vari-
ables. In case z; ; and §k’l7 , are Gaussian, § kil is not Gaussian anymore.
However, a Gaussian approximation for the distribution of § L can be
maintained with the help of statistical linearization as introduced in Sec-
tion 2.4, e.g., deterministic sampling approaches such as the Unscented
Kalman Filter [JU04] are suitable. The state constraint (5.8) can easily
be enforced when using deterministic sampling by dismissing or projecting

infeasible samples.
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Figure 5.4: RMSE for the position: Stochastic estimator (red) vs. SSI (blue)
filter, depending on the magnitude of the measurement noise (the noise levels are
as in Section 5.6).

Motivating Example: Revisited The motivating example introduced in
Section 5.1 can be revisited with SSI 1. In Fig. 5.3, SSI 1 has been used
to estimate the center of the circular disc based on exactly the same mea-
surements as the stochastic estimator in Fig. 5.1. As SSI 1 captures the
uncertainty of the center with a random set, a stochastic confidence set
and an expected bound for the set-valued error for the center can be de-
termined. It can be seen in Fig. 5.3 that the set-valued error does not
vanish totally with an increasing number of measurements, because the
measurement sources do not cover the entire surface of the object. As a
consequence, the true center is always contained in the overall confidence
region specified by the random set (stochastic confidence region plus set-
theoretic confidence region). All told, the SSI 1 is able to systematically
treat the lack of knowledge about the measurement sources, which is also
reflected in the Root-Mean-Square Error (RMSE) for the center shown in
Fig. 5.4.

5.5 Circular Discs with Unknown Radius

In this section, the assumption of a known radius is dropped and an SST

filter for both the center m,, and radius 7y, is constructed. For this purpose,
the state vector is x, = [m{, rk]T in the following.
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Based on (5.1), we can infer that the measurement ¥, , vields the mea-
surement solution set

[mg,rk]T € {[mT,r]TGQ | [|m _gk,l —vll < r2} =: O, (5.10)

of all vectors [mg, rk] " that are consistent with gk - In fact, O is a cone

T
oriented along the r-axis with apex [(gk . Ek,l)T7 0} and perpendicular
cone angle.

Remark 5.6. As already discussed earlier, the radius r; cannot be esti-
mated based on point measurements in general. This results from the fact
that it is in general not possible to estimate the magnitude of an unknown-
but-bounded error (without imposing further assumptions). This becomes
obvious when considering the case that each measurement originates from
the center of the object, i.e., 2, ; = m, for all k and [. Later, we will pro-
pose to estimate the radius based on the number of received measurements
and hence, model it as random variable. Note that the random solution
set for the center then depends on all possible radii.

Example 5.2. Fig. 5.5a shows a rectangular shaped extended object from
which two (noise-free) measurements §, and g, are received (the time in-
dex k is omitted). The corresponding measurement solution sets ©; and
O, are indicated in Fig. 5.5b. As 9, and g 9, both lie on the circular disc,
the parameter vector Z of the true dlSC is an element of Ay = ©1 N Os.
Fig. 5.5c and Fig. 5.5d illustrate the solution set A4 for four measure-

ments. The discs K (z) , K (L(ll)) and K ( (2 )> are examples for feasible

circular discs, where K (L(ll)) is the smallest enclosing circle for the given

measurements and K (£,) is the true disc. Fig. 5.5d shows the solution set
A, and the parameters of the example discs, i.e., L(ll) and gf).

Remark 5.7. For a stationary circle and noise-free measurements the fol-
lowing holds: The apex of Ay ; converges to the parameter vector of the
smallest enclosing circle of the object in case the measurements cover the
entire area of the object with an increasing number of measurements.

Because the exact recursive computation of the solution set is infeasible, we
introduce a novel outer-bounding technique that exploits that the intersec-
tion of a cone with a hyperboloid can be outer-bounded by a hyperboloid
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Figure 5.5: Set-theoretic estimation of the parameters of a circular disc.
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again. With the help of this approximation technique, it is possible recur-
sively outer-bound the exact solution set with hyperboloids such that the
convergence property in Remark 5.7 still holds.

Definition 5.2 (Hyperboloid of Revolution). The upper sheet of a two-
sheeted circular hyperboloid of revolution is given by

H(¢",¢Y,¢5,¢) = {[m™,m¥ r]" € R® | r > (7
and (m” — C”‘/’)2 +(m¥ =¥+ () < (r—¢*)*F (5.11)
with ¢*,¢Y,(* € R and ¢* € RT.

Remark 5.8. The hyperboloid (5.11) has the following properties (see
Figure 5.6a for an illustration):

The focus is F' = [CI,(y,CZ]T.

The apex is located at A = [¢*,¢Y,¢* 4 ¢2]7.

The cone angle is orthogonal.

e It is oriented along the r—axis.

Definition 5.3 (Cone). The set C(¢%,¢Y) := H(¢",¢¥,0,0) is a cone
oriented along the r—axis whose apex lies on the m*mY—plane.

An SSI filter can be constructed by representing the uncertainty about the
center and radius as a random hyperboloid H (g el 1). When a new mea-
surement becomes available, the random hyperboloid is intersected with

the corresponding random solution set C (gk - Ek,l)- This intersection

is outer-bounded by a hyperboloid H (gk l) again, i.e.,

H (gk,l> =2H (gk,l—1> NC(zk1) -

where 2z, 1= y]C RCIYE The parameter vector C can be calculated from
¢,y and z;; as shown in the following theorem and the subsequent
definition (see also Fig. 5.6 and Fig. 5.7).
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Theorem 5.2. Suppose we are given a cone C(z) with z = [zI,zy]T and
a hyperboloid H (¢) with { = [Cz,Cy,(Z,C“]T. The distance between the

vectors [2%, Y7 and [¢*,¢Y]T is denoted as

di= /(" =)+ (¥ — V)P .

If the condition
d>C+¢" (5.12)

holds, the hyperboloid H ({pound) with

] - ] b ({1 oo

Chound = M Zapex +mc (5.14)
CaBound = Zapex_CZBounda 5~15)
(€*)?—(¢*)?

wherem:%,c:d—i— and

L s ifmio1£0
aper — _c me2_1:0

2m

fulfills the following properties:

1. The apezx of C(z) NH () is [Cgound7<%ound7zapeI]T7 where Zgpey =
C%ound + Céound'

2. 9C (2) N OH ({) is a hyperbola that lies in a plane E with normal
vector .

T .
[C* = 2%, CY — 2Y, CEpunal - and position vector [Chunas Chounds Zapes) -

3. ENOH (CBound) =0C (é) noH (C)

4' C (g) NH (C) g H (CBound)'

Proof. Can be proven with basic algebraic rules. O

Remark 5.9. Condition 5.12 means that the projection of the apex of
C (2) NH (¢) onto the m*mY-plane lies on the segment from [2%, z¥, O]T to

(¢, ¢v, 0"
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Definition 5.4. The function Gs : R7 — R*? is defined as follows

G5(z,¢) if (5.12) holds
Go(z,0) =4 [27,0]7 if¢+¢a<0
¢ otherwise

where G5 : R” — R* denotes the function specified by (5.13) - (5.15) that
maps 2 and C to CBound-

Based on the above definition, an SSI filter for the center and radius of a
circular disc can be constructed.

Statistical and Set-Theoretic Information (SSI) filter 2
e Solution Set

. T
H (gm) with gk’l = [Ci,l) Clg:,l’ CZ,U CZ,l:I
and Qk,l N/\/'(g_é Ei,l)'

AR

e Measurement Solution Set
C (;k_’l) with z, ;1= Qk’l —wy; and 25, ~ N(z— Qk’l, CZJ).

¢ Measurement Update

gk,l = g2(£kﬁl,£k’lfl) (5.16)

e Time Update
A random walk model results in the following system equation for
the parameters of the solution set

L, . 4
Chi10 =Sk T {022} (i, + wy) + brel” (5.17)
where 9(14) = 10,0,0, 1]T and by is a scalar that accounts for an

unknown-but-bounded error in addition to the stochastic noise term
Wy
Remark 5.10. When there is neither measurement nor system noise, the
apex of H (gk l), namely ¢} ;+Cj ;, converges to the true parameters if for

each time step, the future measurements cover the entire extended object.
This convergence property is something special about SSI 2 as it says that
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Figure 5.6: Outer-bounding the intersection of a cone and a hyperboloid (with
Chio1 = 0) with a hyperboloid.

(a) Cone C ([2'5, 2]) and hy- (b) Outer bound of the inter-
section.
perboloid H ([4, 2,-0.5, 1]T).

Figure 5.7: Outer-bounding the intersection of a cone and a hyperboloid (when
¢i ;> 0) with a hyperboloid.
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the apex converges to the parameters of the smallest enclosing circle of the
object, regardless of the true shape. In this manner, SSI 2 encompasses an
algorithm for computing the smallest enclosing shape based on recursively
arriving point measurements.

Remark 5.11. If there is measurement noise, but the support of the mea-
surement noise v, ; is bounded, SSI 2 converges to the true circular disc
plus the bounded support. Otherwise, SSI 2 does not converge to a fixed
value in general. The reason is that both the stochastic and set-valued un-
certainties cannot vanish as the intersection of two measurement solution
sets is always unbounded.

Example 5.3. Fig. 5.5f depicts an example of the resulting hyperboloid

H (g 4) after four measurements. The circle specified by its apex gi does

not enclose all received measurements (see Fig. 5.5¢), because H ((4) is a
conservative approximation of the true solution set, but ¢ is an element of

H (C4)-

Remark 5.12. For given radius, SSI 2 equals to the SSI 1 for circular discs
with known radius. The random solution set A ; for the center given the

radius results from the random hyperboloid H <§ L l), ie.,

b = K (Ch G /()7 = (G + €60)?)

given that Cj; + Cj; < 7.

Estimating the Radius As already mentioned earlier, the radius of circu-
lar disc cannot be estimated if the extent is modeled as an unknown-but-
bounded error. This problem can be by-passed when a further measured
quantity allows for inferring the shape parameters.

A reasonable assumption is that the number of received measurements at
a particular time step depends on the object’s size. For example, [Koc08]
assumes that the number of received measurements is Poisson distributed
with mean that is proportional to the area of the shape. In the following,
we assume that the number of measurements depends on the actual radius
of the extended object.

In order to enhance SSI 2 for estimating the radius, an additional state
variable 7}, ; for the information inferred from the number of measurements
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T
nk is maintained, i.e., the state vector is now [CZNWJ} . The random

variable 7 ; can be updated with Bayes’ rule.

Statistical and Set-Theoretic Information (SSI) filter 3

State vectorT .
[(Qkyl)T,rk,l] with ¢, = [¢F., Z,vai,z,CZ,z] and the (implicit)
state constraint ¢f.; + ;> Ty

Solution Set
H(¢,,)

Measurement Solution Set
C (ék,l) with 2 ; == Qk,z —wy and z;; ~ N(z - Qk,p E}::,l)'

Measurement Update

— Update of the solution set for the center
Qk,l = g2(§k,l’§k,l,1) (5.18)
— Measurement equation for radius update
ng =1 + v} (5.19)
— State constraint enforcing
Cry Gt > Thy (5.20)

Time Update
A random walk model results in the following system equation for
the parameters of the solution set

peeto] = (] [0 o) 4 () -

Tk+1,0 Tkony 4
(5.21)
where (ggs) + §é5)) - (4}, + w},) captures the stochastic system noise
for the radius, by is a scalar accounting for an unknown-but-bounded
error on the center, and gé‘” =10,0,1,0, O]T and gés) =10,0,0,0, 1]T
are unit vectors.
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Herein, the mapping (5.18) is the same as in SSI 2. The radius estimate is
updated based on (5.19), which relates the radius with the number of mea-
surements. As we aim at a Gaussian filter, it is suitable to consider ny as
a continuous random variable (although it is in fact discrete). If the mea-
surement noise v}, is additionally Gaussian, (5.19) essentially says that the
number of measurements is Gaussian distributed with mean propoprtional
to the radius. The update (5.18) can be performed with the Kalman filter
formulas.

Equation (5.20) is a constraint on the state vector. If this constraint is not
fulfilled, the solution set for the center H (g A l) given the radius is empty.

This constraint has to be enforced in order to reduce the uncertainty of
the state estimate. The enforcement of a linear inequality constraint as
(5.20) can be performed by probability density truncation. The truncated
density can be re-approximated with a Gaussian distribution by calculating
the first two moments of the truncated density as described in [Sim06].

Remark 5.13. Note that SSI 3 turns into SSI 1 for given ry.

5.6 Evaluation

The benefits of the set-theoretic extent model are demonstrated by means
of tracking the aircaft-shaped extended object in Fig. 5.8. There are three
possible sets of measurement sources on the extended object that are alter-
nated randomly between two time steps. The measurement sources itself
are drawn uniformly from the particular set of measurement sources. Such
a scenario could be caused by specific surface characteristics so that only
particular parts of the objects give rise to reflections.

Scenario 1: Known Radius

In the first setting, we compare SSI 1 for known radius 7, = 2.3 with the
plain stochastic estimator that employs a spatial distribution model for
the extent as already described in Remark 5.2 for the motivating example.

The statistics of the measurement noise X7 ; are the same for all measure-
ments. However, we consider scenarios with three different noise levels

e Scenario la: X} ; = diag([0.05,0.05]") (small noise),
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Figure 5.8: Three sets of possible measurement sources for the considered object.
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(c) Scenario 1c: High measurement noise.

Figure 5.9: Simulation results: RMSE for position and percentage of inconsistent
estimation results (for 100 runs).
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Figure 5.10: Scenario 1d: Low system noise.

e Scenario 1b: X} | = diag([0.1,0.1]7) (medium noise),
e Scenario lc: ¥ ; = diag([0.2, 0.2]") (large noise), and
e Scenario 1d: X} ; = diag([O.l,O.l]T) (medium noise).

The number of measurements n; is drawn from a Gaussian distribution
with mean 8- 7 and covariance 3, where the result is rounded and negative
values are rejected.

SSI 1 specifies the temporal evolution of the position by a random walk
model (2.4) with input @&, = [7,0,0]" and b, = 0.005, and additive noise
as follows.

e Scenario la - ¢: CV = diag([0.02,0.06]") ,

e Scenario 1d: C¥ = diag([0.02,0.002]")

The same motion model is used for the stochastic estimator, where the
unknown-but-bounded error is converted to a Gaussian distribution in the
same way as in the measurement equation in Remark 5.1.

Discussion Fig. 5.9 shows the Root-Mean-Square Error (RMSE) for the
position estimates for both SSI 1 and the stochastic estimator. It can
be seen that SSI 1 yields significantly better estimation results than the
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(c) Estimation result of the SSI filter using a set-theoretic extent model. The 95%
confidence ellipse for the center is plotted in magenta and the set-theoretic error is
indicated by a dashed green circle.

Figure 5.11: Scenario 1: Tracking an extended object characterized by biased
measurement sources.
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Figure 5.12: Estimation results when the radius is unknown.

stochastic estimator as the locations of the measurement sources are bi-
ased. However, with an increasing measurement noise, the differences van-
ish. Furthermore, Fig. 5.9 depicts the percent of inconsistent estimates. A
point estimate is considered as consistent if the confidence region contains
the true value (see also Definition 5.1). The stochastic estimator frequently
gives inconsistent results. This is a consequence of the high number of
measurements per time instant. In this case, the estimates approach the
mean of the measurement sources and the stochastic uncertainties tend to
vanish. However, SSI 1 nearly always gives consistent results. Even the
large number of measurements does not result in a decrease of the set-
valued uncertainties as they do not cover the entire surface. In Scenario
1d, the system noise is slightly decreased. As a consequence, the stochastic
estimator even looses the track, which is very disadvantageous.

It is very important to note that increasing the system noise does not solve
the inconsistency problem with the stochastic estimator. With an increas-
ing number of measurements per time step ny, the stochastic estimator is
bound to become inconsistent in case of biased measurement sources.

Scenario 2: Unknown Radius

The second setting is essentially the same as Scenario 1b except that the
radius is also unknown and part of the estimation problem. The purpose
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of the setting is to show that SSI 2 is capable of estimating the radius in
addition to the center. As only the center of the circle is modeled as a
set-theoretic error and the radius is a probabilistic quantity, a comparison
with a purely stochastic estimator is not necessary (they would be equal).
A vpriori the radius is assumed to be 3.3 with a variance of 0.5. Fig. 5.12
depicts the RMSE for the radius. As the radius does not change over time,
the estimated radius approaches the true one after a couple of time steps.

5.7 Conclusions

Typically, extended object tracking methods assume that each measure-
ment source is an independent random draw of a particular probability
distribution whose mass is concentrated on the object’s extent. However,
this is in fact an ad-hoc assumption as in many applications, there is no
(statistical) information about the measurement sources available. For
example, the locations of the measurement sources may be significantly
influenced by the properties of the object’s surface.

In this chapter, we took an extreme position: No assumptions about the
location of the measurement sources on the extended object have been
imposed, i.e., the extent was modeled as an unknown-but-bounded error.
For this kind of model, we derived novel SSI Filters for tracking circular
discs. In particular, we employed random hyperboloids in order to express
the uncertainty about the center and radius of the circular disc, and we
derived outer-bounding techniques for a recursive processing of measure-
ments. A direct consequence of the set-theoretic extent model is that it
is in general not possible to estimate the parameters of the shape based
on point measurements. Hence, this approach is in general only suitable
if the shape is given or can be inferred from other information sources. In
particular, we suggested to estimate the radius of the circular disc based
on the number of received measurements.

With the help of simulations, it was demonstrated that systematic errors in
the measurement sources may lead to inconsistent estimation results when
using a pure stochastic state estimator, where a point estimate is called
inconsistent if the associated confidence region does not contain the true
value. The novel SST filter, however, is capable of providing consistent and
precise estimation results. Nevertheless, the simulations also demonstrated



120 Chapter 5. Set-Theoretic Extent Model

that the systematic error becomes negligible when the measurement noise
increases.

In summary, the proposed SSI Filters based on the set-theoretic extent
models are suitable when

e the locations of the measurement sources are dominated by system-
atic errors,

e the measurement noise is rather low compared to the extent, and

e the shape parameters are known or can be estimated based on addi-
tional information.

Nonetheless, it is important to note that even under the above condi-
tions, the SST filter does not always provide better estimation results than
the pure Bayesian approach regarding the Root-Mean-Square Error. This
results from the fact that if the modeling assumptions of a Bayesian esti-
mator are fulfilled, the Bayesian estimator (if calculated exactly) provides
the Minimum Mean Squared Error (MMSE) estimate. In general, the SST
filter is capable of providing consistent estimation results.

So far, we focused on circular discs. Of course, the presented approach
is also suitable for other shapes such ellipsoids, rectangles or polygons.
However, the set-bounding techniques have to be tailored to the particular
shape. Hence, the challenge is to find a proper conservative approximation
of solution sets. For this purpose, approximation techniques from set-
membership estimation such as bounding ellipsoids and polytopes can be
exploited. An SST filter for rectangular shapes has been developed in [10].
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CHAPTER 6

Moving Object Tracking based on
RGBD Data — Experiments
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This chapter is about an experimental setup for evaluating extended object
tracking algorithms. The task is to track an unknown, ground moving
object from a bird’s eye view with the help of a camera that provides both
RGB and depth images. We focus on a single moving object and assume
that everything else in the scene is stationary. The surveillance area is
a table on which a toy train travels on tracks. A Microsoft® Kinect'
sensor captures the RGB and depth images (see Fig. 6.1).

In order to discriminate the object from the background, moving points are
detected in the RGB and depth image sequences (see Fig. 6.2¢). By this
means, a set of noisy measurements stemming from the object’s surface is
received for each frame. Due to the sensor noise, the measurements are
noisy and do not completely cover the surface of the object. Hence, the
estimation of the shape and kinematic parameters based on the extracted
measurements is a typical extended object tracking problem as introduced
in Chapter 2. We employ star-convex RHMs as described in Chapter 4.3
for this purpose and highlight the advantages compared to a variant of
active contour models.

The experimental setting mainly serves as a test-environment for extended
object tracking methods because the characteristics of the measurements
resemble larger sensors such as Ground Moving Target Indicator (GMTI)
sensors [KKUO06]. Additionally, the overall tracking system has several
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advantages compared to standard tracking methods. For example, the
combination of RGB and depth data is especially advantageous for mov-
ing point detection, because moving objects almost always differ from the
background in depth and usually in color.

We pursue the philosophy of
performing as little preprocess-
ing of the raw data, i.e., the
RGB and depth images, as re-
quired. The signal process-
ing algorithm that detects mov-
ing points utilizes rather ba-
sic, model-free image processing
techniques, e.g., no background
model is learned. All modeling
knowledge is put into the track-
ing algorithm. Extended object
tracking algorithms based on
RHMs deal with the extracted
data in a systematic and mathe-
matically well-grounded manner
using a probabilistic model for
a single point measurement. It
is essential to note that no prior
Figure 6.1: Setup: Moving object, i.e., a toy information about the shape or
trhair’l, obseryed with an RGBD camera from a  .q]or are required. The ex-
bird’s eye view [1], [5]. . . .

tended object tracking algorithm

estimates the object shape from
scratch and shape changes are tracked based on a probabilistic system
model for the shape (see Section 2.1.3).

RGBD Camera

Moving Object

Remark 6.1. This chapter is a revised version of [5], where the experimental
setting, the signal processing algorithm, and some preliminary experiments
have been presented. In [30], the real-time implementation of the tracking
system has been developed. A brief overview of the system has been given
in [1].
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(a) RGB image.

(b) Depth image.

(c) Extracted measurements that serve as input for the tracking algorithm.
Measurements are only received from the train as everything else is stationary.

Figure 6.2: Signal processing: RGB and depth images supplied by the Kinect
and the extracted measurements.
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6.1 Related Work

Recent overviews of RGB-only object tracking algorithms can be found
in [YSZ*11,YJS06]. A standard technique for visual shape tracking is the
so-called active contour model. An active contour model determines the
object contour by minimizing an energy function [KWT88, CKS95] that
consists of an internal force for regularization and an external force for
pushing the contour to image features. A further popular class of visual
tracking methods are so-called kernel methods [CRMO03]. For example,
the object may be represented with a color histogram in an ellipsoidal re-
gion and the location of the region is tracked by maximizing a similarity
function using the mean-shift algorithm. Both active contours and kernel
methods are fundamentally different from extended object tracking meth-
ods that are based on the assumption of independently generated point
measurements.

Moving object detection (see [YJS06, YP05]) is a widely-used technique
for background subtraction in visual object tracking. The most simple
approach for detecting moving points is to calculate frame differences.
More elaborate techniques such as [GBCRO0] learn a background model
for the color.

In the context of remote sensing, Moving Target Indication (MTI) [KKUO06]
denotes special mode of a radar for discriminating an object from the
background by means of the Doppler effect, e.g., a Ground MTI (GMTI)
radar [KKUO06] detects ground moving objects. A related concept to radar-
based MTI is Visual MTI (VMTI) [JBRO6], which detects ground moving
objects from a bird’s eye view based on visual data.

6.2 Signal Processing - Moving Point Detection

In this section, the signal processing algorithm for detecting moving points
is explained. The RGBD sensor captures a sequence of

e RGB images Iy(x,y) € R3U L, and

e depth images Dy (z,y) € RU L,
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where k denotes the discrete time index, and [amy]T € {1,2,...,n,} X
{1,2,...,n,} is a pixel coordinate in an image with resolution n, X n,.
The symbol L is used in the following to tag a pixel as “ground”.

For each frame at time k, the task of the signal processing algorithm is to
compute a set of pixel coordinates that are classified as “moving”

yk = {Qk)la"'agk)nk} )

where §, , € {1,2,...,n} x {1,2,...,n,} for I € {1,...,nx}. The pixel

coordinates in JA)k are then taken as the measurements for the extended
object tracking algorithm (see the next section). The signal processing
algorithm involves three consecutive steps, where the actual moving point
detection is performed in the second step.

Step 1: Remove Ground A realistic assumption is that a moving object
differs in height from the ground, i.e., the table. As the distance from the
table to the sensor is known, pixels that belong to ground and therefore do
not move can be determined. For this purpose, each pixel that exceeds a
user-defined distance tqepth from the sensor is tagged as “ground”, where
taepth is the distance from the sensor to the table. The RGB and depth
images after detecting pixels from the ground are

Dy(z,y) if Di(z,y) < tdeptn
‘ L rlx, kL P
Dy (z,y) = { 1 otherwise

and

9

t — Ik(:l?,y) if Dk('ray) < tdepth
Ii(@,y) = { 1 otherwise

where | tags a pixel as “ground”. Ground pixels are ignored in the
detection process as they are always stationary.

Step 2: Detect Moving Points In the second step, moving points are
detected by utilizing a standard optical flow algorithm, i.e., the Horn-
Schunck method [HS81]. The optical flow algorithm is applied to the RGB
image sequence If(x,y) and depth image sequence D} (z,y) separately.
The velocity of pixels marked as “ground” is set to zero. As a result,
two velocity fields are obtained, i.e., IV(z,y) € R? for the RGB images
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and D} (z,y) € R? for the depth images. A particular pixel is classified
as “moving” if the magnitude of its velocity vector exceeds a user-defined
threshold either in the RGB or depth image sequence, i.e.,

\ymov T v v
k= { [z,9] ‘ 115 (z,y)|| > tvet or [|Dg(z,y)] > tvel} . (6.1)

Step 3: Reduce Clutter Owing to the structured light approach of the
sensor for measuring depth, contours of rather small objects heavily jitter
in the depth images. In the specific considered setting, this is a serious
problem as boundary points of non-moving objects are frequently classified
as “moving”. Our solution to this problem is to detect these clustered
detections in 37,2“‘” and dismiss them. A detected moving point is classified
as clutter, i.e., it is part of a spurious cluster detection, if a particular
number neqge of neighbors is moving. Herein, a neighbor is a point whose
distance to the considered point is at most reqge.

Py = {[x,y]T e Ppov

# {JA);ICHOV NK ([ﬂf,y]T 7Tedge>} < nedge} )
(6.2)

where K ([m, y]T ,redge) denotes all points whose distance to [z, y]T is less

than reqge. As a consequence, false detections on the edges are removed

and only moving points from the object are obtained.

The resulting set of pixels Vi serves as input for the extended object
tracking algorithm. Fig. 6.2c depicts the extracted measurements )y for
an example frame.

Parameters to Adjust

The signal processing algorithm involves a couple of parameters that have
to be adjusted. From a practicable point of view, it is simple to find
them and most importantly they are not object dependent, i.e., the same
parameters can be used for all objects.

In step 1: tgeptn The distance from the sensor to the table tqepsh can
either be measured directly manually or an automatic procedure can be
implemented easily.
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In step 2: t,q The threshold on the velocity tye should be chosen such
that a stationary object does not give rise to measurements, but a moving
object does. In general, a small value of the velocity threshold leads to an
increasing number of detected measurements on the object. However, a
small velocity threshold usually also increases the false measurement rate,
i.e., the number of pixels that are wrongly classified as “moving”. If the
velocity threshold is too large, only few measurements from the object are
detected, which may render the shape tracking challenging. Hence, when
determining t,e, it is essential to find a suitable trade-off between object
generated measurements and false measurements. Note that in the signal
processing of radar data, there is a parameter called detection threshold,
which has essentially the same meaning as te. If the signal strength
of a received radar echo exceeds the detection threshold, it is considered
as target generated. Due to this analogy, the behavior of the obtained
measurements is very similar to the measurements received from a radar
device.

In step 3: nedge and regge The threshold for detecting edges neqge and
Tedge can be found by visual inspection. They have to be chosen in a
manner that edges of stationary objects disappear. In general, these pa-
rameters could be calculated automatically based on the specification of
the Kinect sensor. They mainly depend on the distance from the object
to sensor.

6.3 Shape Tracking with Random Hypersurface
Models

For each time step k, the signal processing algorithm supplies a varying
number of noisy measurements Yy from the object surface (see Fig. 6.2¢).
Owing to the low sensor resolution and the small extent of the object,
only a limited number of measurements that do not completely cover the
object’s surface is detected. Hence, the characteristics of the measure-
ments suggest an extended object tracking algorithm. In particular, the
UKF' implementation for star-convex RHMs UKF-SC-RHM as described
in Section 4.3 is used for shape tracking. On top of the basic shape tracking
algorithm, some simple track management algorithms have been realized.
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Gating The signal processing algorithm described in Section 6.2 detects
only points on the moving object. However, of course, the algorithm is not
perfect and spurious measurements that do not stem from the moving ob-
ject may arise. Clutter measurements may be caused by the sensor noise,
light changes, or small movements of background objects. Nevertheless, if
the signal processing parameters are adjusted well, clutter measurements
are rather unlikely in the considered setting. Hence, the following very
simple gating criterion for dismissing clutter is sufficient: Each measure-
ment that lies in a scaled version of the last shape estimate is treated as
object-generated, otherwise it is clutter.

Track Initialization and Termination Track initialization can also be
performed in naive manner as we restrict ourselves to a single extended
object and the clutter rate is rather low. A new track can be initialized
if the overall number of extracted measurements exceeds a user-defined
value for some frames. The initial location of the track is chosen to be the
mean of the measurements. As the shape of the object is a priori totally
unknown, the first shape estimate (i.e., the parameter vector of the Fourier
coefficients) is chosen to be a circle with a high uncertainty. Due to the
simplifying assumptions in our scenario, a track can be terminated if the
number of validated measurements falls below a user-defined value for a
some frames.

6.4 Real-Time Implementation

This section briefly describes the details of a real-time implementation of
the above suggested tracking system (see [5] and [30]).

The Microsoft Kinect sensor supplies RGB images with a resolution of
640x480 in 24 Bit and depth images with a resolution of 640x480 in 11
Bit, where 30 images per second are reached. Both the signal processing
and shape tracking algorithm UKF-SC-RHM are executed on the same
standard desktop computer (Intel Core 2 Quad-Core Q660 processor with
2.4 GHz, 8192 MB RAM, and AMD Radeon HD 5750 graphic card). The
signal processing algorithm is written with the help of OpenCV [Bra00],
OpenCL [Khr08] (for the optical flow algorithm) and OpenGL [Shr08]. The
shape tracking algorithm is based on a C++ implementation of the UKF
[JUO4] that employs numerical functions of the Eigen library [GJ*10].
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With the above implementation, the maximum possible number of 30
frames per second is achieved for the evaluated scenarios (see the next
section). Reasonably, the obtained frame rate is influenced by several dif-
ferent factors, e.g., the number of Fourier coefficients and the number of
measurements per frame.

6.5 Evaluation

The evaluation of the proposed tracking system consists of two different
parts:

e Part 1: In the first part, two extended object tracking algorithms
that work on the extracted point measurements Vi are compared
(see Section 6.2). The first method is based on an RHM for star-
convex shapes (UKF-SC-RHM) as described in Section 6.3. The
second method is a variant of active contours [KWT88,BI98,JBU04]
tailored to point measurements. The objective of this comparison
is to highlight the benefits of RHMs for shape estimation based on
point measurements.

e Part 2: Asalready mentioned earlier, the main purpose of the exper-
iment is to evaluate extended object tracking algorithms. However,
the overall tracking system, i.e., moving point detection in combi-
nation with the shape tracking algorithm based on a RHM, has a
couple of benefits compared to standard object tracking algorithms.
These advantages are elucidated in the second part of the evaluation.

For both parts, we consider two different object shapes, i.e., a “T”—shaped
object and a “+”-shaped object. Of course, the object shape and the
trajectory are a priori unknown to the tracking algorithm. Please note
that experiments with further object types (different colors and shapes)
can be found in [1], [5] and [30].
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Part 1: RHM vs. Active Contours (based on
Point Measurements)

In this section, the extracted point measurements from Section 6.2 are
taken as measurements for the tracking algorithm. We perform a compar-
ison of

e the shape tracking algorithm for star-convex shapes UKF-SC-RHM
as described in Section 6.3 with

e a variant of active contours [KWT88,JBUO4] tailored to point mea-
surements.

Active contours are standard object tracking methods in computer vision.
However, active contours are defined for intensity images, i.e., they do
not directly work with point measurements. For this reason, the measure-
ments Y, are interpreted as an intensity image by putting a Gaussian
kernel at the locations of the measurements (see Fig. 6.3). In this vein,
the adopted active contours calculate an enclosing contour of point mea-
surements. The parameters of both algorithms have been tweaked to give
the best results. Of course, the parameter adjusting has been performed
only once per algorithm (for both shapes).

The shape estimates for both algorithms are depicted in Fig. 6.4 and
Fig. 6.5. It can be observed that the UKF-SC-RHM gives precise and
smooth shape estimates of the underlying train. The turn of the train
is followed with a slight delay due to the underlying probabilistic system
model and the few available measurements. The shape determined by the
active contours are very imprecise and jitter. Because only a couple of mea-
surements that do not completely cover the object’s surface are available,
active contours are not able to determine the contour precisely. Addition-
ally, active contour models do not incorporate measurement noise, i.e.,
when there is a point not lying on the surface, the active contour model
would probably enclose this outlier. RHMs, however, explicitly incorporate
the measurement noise of each single measurement.

This scenario illustrates the need of an extended object tracking method
that consists of an model for the generation of a single point measurement.
It is not sufficient to calculate an enclosing shape of the measurements. The
shape can only be estimated if the motion of the object is incorporated
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(a) Example measurements. (b) Active contour for “smoothed”

measurements.

Figure 6.3: A point set can be interpreted as a continuous intensity image, i.e.,
a Gaussian mixture, by placing a Gaussian density at each point.

for several frames. At this point, it is essential to note that RHMs are not
per se better than active contours because the primary application area of
active contours are RGB images and not (sparse and noisy) point sets as
in this experiment.

Part 2: Point Measurements + RHM vs. Active
Contours on RGBD Data

The purpose of the second evaluation part is to demonstrate the benefits
of the overall tracking system consisting of the moving point detection in
combination with the RHM approach for shape estimation. Of course,
there is huge variety of other tracking methods that are suitable for ob-
ject tracking in RGB and/or depth data. However, when focusing on
approaches, which are capable of estimating a detailed shape contour, the
range of algorithms is rather limited. Here, we focus again on the popu-
lar active contour models because they can be seen as a standard contour
tracking method.

Active Contours on RGB Image First, it would be reasonable to apply
active contours to the RGB images. However, this approach is unsuitable
for the considered scenario. As the tracks have nearly the same color as
the train, the contours get stuck in the tracks.
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Figure 6.4: Tracking results for the “T”—shaped object: RHM (green) vs. active
contour model modified for point measurements (blue).
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Figure 6.5: Tracking results for the “+”-shaped object: RHM (green) vs. active
contour model modified for point measurements (blue).
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Figure 6.6: Tracking results for the “+”-shaped object: RHM (green) vs. active
contour model applied to depth images (yellow).

Active Contours on Depth Image A promising approach is to use the
depth images instead of the RGB images. Actually, the active contour
model for depth images works very well in the considered scenario in case
the object significantly differs from the background in depth. However, if
this is not the case, active contour may get stuck at non-moving objects,
which belong to the background. Such a case is shown in Fig. 6.6, where
the toy train passes a stationary background object that is located close
to the tracks.

6.6 Conclusions

This chapter was about an example application in which a ground moving
object is tracked with an RGB-D sensor from a bird’s eye view. Although
the focus was on a particular miniature setting, the characteristics and
properties of the extracted point measurements are representative for many
other relevant sensors such as Ground Moving Target Indicator (GMTI)
radars. As the sensor is close to the target object, several measurements
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are resolved on its surface. However, due to the rather large sensor noise,
only a couple of measurements that do not cover the entire surface are
obtained per frame. As this is exactly an extended object problem as
described in Chapter 2, we believe that the experiment can serve as an
evaluation platform for extended object tracking algorithms.

With the help of the experiment, it was shown that an extended object
problem cannot be solved naively by means of simple adoptions of standard
methods. For this purpose, the popular active contour models have been
modified to estimate an enclosing contour of point measurements. A com-
parison of the modified active contours with a star-convex RHM empha-
sized the necessity of a measurement model for a single point measurement
(see Chapter 2).

The overall tracking system consisting of the moving point extraction al-
gorithm plus the shape tracking algorithm based on an RHM is a promis-
ing alternative to other state-of-the-art tracking methods (in the consid-
ered scenario). It is suitable for many further applications such as people
tracking, habitat monitoring, or traffic surveillance.
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CHAPTER 7

Conclusions

Typically, tracking algorithms employ a point model of the target object,
i.e., each received measurement is assumed to originate from a single point.
For a so-called extended object, this assumption is not fulfilled anymore
as several measurements from spatially distinct measurement sources on
the object are obtained. Extended object tracking is a problem of growing
interest as recent progress in sensor technology and new applications will
render the incorporation of the object’s extent in a tracking procedure
inevitable in the future.

This thesis was devoted to the problem of simultaneously tracking the
kinematic and shape parameters of a single extended object. As the shape
of the object is unknown and part of the estimation problem, standard
(linear) tracking algorithms cannot be applied anymore. Instead, a high-
dimensional, nonlinear estimation problem has to be solved. Additionally,
systematic errors may cause serious problems as the properties of the ob-
ject’s extent are usually unknown. Both two major challenges have been
addressed in this thesis:

e The developed methods show that extended object tracking is fea-
sible. Now, even complex shape information can be estimated from
noisy point measurements with the help of a recursive Bayesian state
estimator using closed-form formulas. This is a significant progress
that not only leverages the application and value of extended object
tracking but also opens new possibilities for higher-level information
tasks.

The fundamental approach that renders extended object tracking
tractable is a novel model for extended objects called Random Hy-
persurface Model (RHM). The underlying idea of an RHM is to
model the interior of a shape via scaling of the shape boundary. In
this manner, the curve fitting techniques that have been developed
in this thesis can be used for estimating region shapes.
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e In this thesis, it was pointed out how systematic errors in the mea-
surement sources can significantly bring down the estimation quality
of a stochastic estimator, i.e., the estimates become inconsistent. In
case the object’s extent is known (or can be estimated from further
information sources), it is possible to damp the negative effect of
systematic errors. For this purpose, a so-called set-theoretic extent
model was proposed that does not impose statistical assumptions
on the measurement sources. Inference based on this model was
performed with a so-called Statistical and Set-theoretic Information
(SSI) Filter for which novel outer-bounding techniques have been
developed.

Throughout the entire thesis, we employed Gaussian filters based on sta-
tistical linearization, which have significant advantages compared to other
nonlinear filtering approaches, e.g., the likelihood does not have to be eval-
uated explicitly and closed-form expressions are often available. From a
user’s perspective, all developed methods are easy to implement and to
integrate into other tracking frameworks. Essentially, only the developed
measurement functions have to be fed into a standard nonlinear Gaus-
sian filter and implementing the analytic approaches is trivial anyway.
As all methods are based on Gaussians, it is not required to deal with
sophisticated non-standard statistical methods.

The practical relevance and value of the theoretical results of this thesis
have been demonstrated with an an illustrative example application, where
the shape of a ground moving object is to be tracked with the help of RGB
and depth data.

Outlook This thesis focused on a single extended object. Of course, many
tracking systems must be able to deal with multiple objects from which
some are extended and some not. There is a data association problem,
i.e., it is not known which measurement originates from which object and
clutter measurements that do not arise from any object can occur. In this
context, elaborate mechanisms for track initialization and termination as
well as splitting and merging of extended objects are required.

Reasonably, the description complexity of an object’s shape should be
as high as possible because a more realistic object model is expected to
increase the tracking performance. However, it is essential to keep in mind
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that detailed shape information can only be obtained under particular
circumstances, e.g., the measurement quality must be high enough and
the object must not maneuver too fast. When these circumstances are
not met, the uncertainty of the shape estimate may grow to infinity and
the track is lost. As track loss is associated with a sequence of poor
estimates and a loss of the object identity, it should be avoided at any
prices. For this reason, there is a significant need for a mechanism that
chooses the complexity of the used shape description reaching from a point
model to general free-form shapes. How to choose the optimal description
complexity is still an open question. In this context, performance bounds
are required that say how precise the shape can be determined.

In this thesis, we restricted ourselves to noisy point measurements as they
allow for modeling the most relevant sensors, e.g., laser rangefinders and
radar devices. Nevertheless, it may be beneficial to work directly with
nonlinear measurements models, e.g., bearing or distance measurements.

So far, we have used very simple motion models that assume that the shape
parameters and kinematic parameters evolve independently. Of course,
more elaborate motion models that allow for a coupling between the shape
and kinematic parameters may be more suitable. Furthermore, it may be
possible to estimate the evolution of the shape parameters, i.e., some kind
of shape velocity vector, in addition to the shape parameters itself.

Future investigations may also focus on exploiting the shape informa-
tion for further higher-level problems such as object classification, sensor
management, and planning.
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