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Abstract 

The application of magnetic particles has been considered a promising alternative to 

conventional primary capture processes in downstream processing throughout the last 

years. By use of the particles, solid-liquid separation and the primary capture step can be 

integrated into one process. Up to now, however, the separation of magnetic particles in 

technical scales has only been possible through High Gradient Magnetic Fishing (HGMF) in 

a batch-wise fashion. 

In this work, a continuous process for the separation of functionalized magnetic particles 

has been developed based on the combination of magnetic nanoparticles and aqueous 

micellar two-phase systems (AMTPS). This combination is referred to as magnetic 

extraction. AMPTS consist of micellar solutions and exhibit thermoresponsive behavior, 

which means that they split into a micelle-rich and a micelle-poor phase upon 

temperature increase. Components added to an AMTPS partition between the two 

phases based on their unique physico-chemical properties. 

In the course of magnetic extraction, a target protein is first bound to the magnetic 

particle. Then, the temperature is raised to induce phase separation. The magnetic 

carriers partition completely into the micelle-rich phase of the AMTPS due to their 

physico-chemical properties. The time required for phase separation is thereby 

fundamentally increased by means of an external magnetic field. The micelle-poor phase 

is withdrawn, and thus all components which neither bound to the particles nor 

partitioned into the micelle-rich phase. In the subsequent step, the target protein is 

eluted from the magnetic particle. During the elution, the system remains under single- 

phase conditions. Afterwards, the system is split again. The target proteins then partition 

into the micelle-poor phase while the magnetic carriers partition into the micelle-rich 

phase. As a result of this process, a magnetic particle-free phase with a low micelle 

concentration containing the target protein and a magnetic particle-concentrated phase 

containing most of the micelles are obtained. While the target protein can be withdrawn, 

the magnetic particle and micelle-rich phase can be recycled within the next process step 

and used again. 
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In the first part of the thesis, the analytics of the AMTPS-forming nonionic surfactants - 

which are required for a proper process control and optimization - were established. 

Considering a continuous process, fast reliable process monitoring of the phase-forming 

surfactant in the presence of proteins and magnetic carriers is required. A titration 

method was established that rendered possible both a robust detection of the 

temperature-dependent phase diagram and the off-line monitoring of the surfactant 

concentration in a continuous process. 

In the next step of the process development, optimal combinations of magnetic carriers 

and AMTPS were investigated. As ideal AMTPS-forming surfactant, Eumulgin ES was 

identified in combination with 100 nm-sized magnetic cation exchange particles. AMTPS 

based on Eumulgin ES exhibit advantageous partitioning characteristics: Due to a high 

concentration of the surfactant in the micelle-rich phase (up to 70%), dissolved biological 

components were almost completely excluded from the micelle rich-phase. The model 

proteins ovalbumin and lysozyme exhibited partitioning coefficients of < 0.1 and 0.12, 

respectively. This partitioning behavior is favorable in two ways: During separation of the 

particles following the binding step, almost all undesired components are withdrawn in 

the micelle-poor phase as waste. During phase separation after the elution of the target 

protein, it is partitioned into the micelle poor-phase and excluded from the micelle-rich 

phase, leading to both, high yields and high purities in the eluate. The particles were 

characterized by means of adsorption isotherms in the presence and absence of the 

phase-forming surfactant, revealing an influence of the surfactant onto the maximum 

particle capacity. This influence was, however, attributed to unspecific binding, as the 

amount of eluted protein remained the same. 

At the beginning of this work, the mechanism which drives the particles exclusively into 

the micelle-rich phase of an AMPTS was mainly unclear. In order to gain insight into this 

mechanism, the surface interactions between the particles and the phase-forming 

surfactants were investigated by means of modern surface analytical methods. The aim of 

the investigation was to reveal the varying partitioning behavior of the magnetic particles 

with varying buffer conditions. Therefore, the “online” monitoring of surfactant 

adsorption onto model surfaces was performed by means of Quartz Cristal Microbalance 
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with Dissipation (QCM-D). Furthermore, the surface of the particles was investigated 

using non-invasive Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR). In order to correlate the results obtained from these physico-chemical 

experiments with particle experiments more practically relevant, classic adsorption and 

elution experiments were performed. The results from all methods led to the same 

conclusion: The partitioning behavior of the particles is dominated by the adsorption of 

the hydrophilic head of the surfactants to the particle surface. When the surfactants were 

adsorbed to the particle surface, these particles were completely enriched in the micelle- 

rich phase. If the surfactants were not adsorbed, the particles partitioned completely into 

the micelle poor phase. The adsorption of the surfactants to the hydrophilic surface was 

attributed to hydrogen bonds between the surface of magnetic particles and the hydroxyl 

or oxygen groups of the surfactants. 

Finally, an apparatus for the continuous processing of magnetic extraction was designed. 

The core of this apparatus is a settling tank with a volume of 2.28 liters surrounded by a 

permanent magnet. To maintain the required phase separation temperature, these 

components are placed in the inside of a temperature-controlled, isolated box. The 

binding step is accomplished in a large temperature-controlled mixer at single-phase 

conditions outside of the separator. Then, the broth is heated by passing a heat 

exchanger. This leads to the formation of a dispersed surfactant-rich and a continuous 

surfactant-depleted phase, and the stream is injected into the settling tank. The phases 

separate while passing through the magnetic field-surrounded separator. The removal of 

the top phase is realized by means of a weir, while the bottom phase is withdrawn by a 

pump directly connected to the settler, and both phases are collected separately. This 

continuous magnetic separator allows the continuous separation of magnetic particles 

having mean diameters ranging from 100 nanometers to 2 micrometers at flow rates up 

to 9 liters per hour with particle separation efficiencies of > 99 %. Finally, continuous 

magnetic extraction was applied for purification of the antibody fragment Fab α33 from a 

“real” biosuspension. The purification was performed with a total initial feed volume of 

14.8 liters with a fab purity of 16 %. Three consecutive process steps were performed: 

Binding of the target product, intermediate washing of the phases, and elution of the Fab 

α33. The elution yielded in a fraction of 5 liters with a Fab purity of > 98 % and a total 
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yield of 67 %. The cumulative loss of magnetic particles was approximately 1 % of the 

initial amount. 

In order to remove the remaining phase-forming surfactant from the magnetic extraction 

eluate phase, its removal by means of cross-flow ultrafiltration was investigated. Upon 

applying polyethersulfone membranes, the nonionic surfactant was almost entirely 

removed from the proteinaceous solution. Although the molecular weight cut-off 

(MWCO) of the membranes was smaller than the size of a theoretical micelle, the 

surfactants passed the membranes unhindered. This effect was attributed to the 

adsorption of single surfactant molecules to the membrane pores, which was confirmed 

by a rapid congruent decrease of the flow rate through the membrane. By means of a PES 

membrane with a MWCO of 10 kDa, a further purification of the Fab α33 from the 

continuous magnetic extraction was obtained. While > 96 % of the remaining surfactant 

could be removed in the filtrate, the antibody fragment Fab α33 was retained in the 

retentate. 
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Zusammenfassung 

Die Verwendung von funktionalisierten magnetischen Partikeln wird bereits seit einigen 

Jahren als vielversprechende Alternative zu konventionellen Prozessen im Downstream 

Processing gesehen. Durch die Partikel lassen sich die Fest-flüssig Trennung und ein 

primärer Aufreinigungsschritt zu einem einzigen Prozessschritt zusammenfassen. 

Allerdings war die Abtrennung der magnetischen Partikel im technischen Maßstab bisher 

lediglich absatzweise durch Hochgradienten-Magnetseparatoren möglich. 

Im Rahmen der vorliegenden Arbeit wurde ein kontinuierliches Verfahren zur Abtrennung 

funktioneller Magnetpartikel entwickelt, das auf der Kombination des Einsatzes der 

Partikel mit dem Einsatz von mizellaren wässriger Zweiphasensysteme (AMTPS) beruht. 

Diese Kombination wird als magnetische Extraktion bezeichnet. AMTPS bestehen aus 

einer Lösung eines nichtionischen Tensids und zeigen ein temperatursensitives Verhalten, 

d.h. sie zerfallen bei der Überschreitung einer kritischen Temperatur in zwei wässrige 

Phasen, wobei eine mizellreiche und eine mizellarme Phase entsteht. Substanzen, die in 

ein AMTPS eingebracht werden, verteilen sich anhand ihrer physikochemischen 

Eigenschaften zwischen den beiden entstehenden Phasen. 

Im ersten Schritt des Verfahrens der magnetischen Extraktion wird ein Zielmolekül über 

einen selektiven, reversiblen Mechanismus an den Magnetpartikel gebunden. 

Anschließend wird die Temperatur derart erhöht, dass das Gesamtsystem in eine 

mizellreiche und eine mizellarme Phase zerfällt. Aufgrund der Eigenschaften der 

magnetischen Partikel reichern sich diese in der mizellreichen Phase an. Durch das 

Anlegen eines externen Magnetfeldes wird zudem die Zeit, die für die Phasentrennung 

benötigt wird, stark verkürzt. Die mizellarme Phase wird nun entfernt und damit alle 

Komponenten, die nicht an den Magnetpartikeln gebunden sind oder sich in der 

mizellreichen Phase befinden. Im nächsten Schritt wird das Zielprotein im einphasigen 

Systemzustand wieder vom den magnetischen Partikeln eluiert und die Phasen 

anschließend abermals durch Temperaturerhöhung getrennt. Das Zielprotein kann nun in 

der mizellarmen Phase abgezogen werden, während sich die Magnetpartikel wiederum in 

der mizellreichen Phase sammeln. Die mizellreiche Phase inklusive Magnetpartikel 
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können daraufhin rezykliert und zu unbehandelter Biorohsuspension gegeben werden, 

wobei die Partikel zur Bindung der Zielproteine und die Mizellen für die Phasenseparation 

genutzt werden. 

Im ersten Teil dieser Dissertation wurde die für die Prozesskontrolle und -optimierung 

notwendige Analytik der phasenbildenden Tenside etabliert. Die Erfassung der 

Tensidkonzentrationen im Verlauf des Prozesses erfordert eine robuste Methode, die 

nicht durch die Präsenz von Proteinen oder magnetischen Sorbentien gestört wird. Eine 

Methode, die auf potentiometrischer Titration beruht, erfüllt diese Kriterien und ließ sich 

dabei sowohl zum Erstellen des temperaturabhängigen Phasendiagrams als auch zum 

offline Prozess-Monitoring verwenden. 

Während der Prozessentwicklung wurden geeignete Kombinationen aus magnetischen 

Partikeln und AMTPS untersucht. Als ideales phasenbildendes Tensid wurde dabei das 

nichtionische Tensid Eumulgin ES in Verbindung mit 100 Nanometer großen 

magnetischen Kationenaustauschpartikeln identifiziert. AMTPS, die mit diesem Tensid 

gebildet werden, zeichnen sich durch extreme Verteilungskoeffizienten aus. Aufgrund des 

extrem hohen Tensidanteils in der mizellreichen Phase (mehr als 70 %) werden gelöste 

Proteine beinahe vollständig aus dieser Phase ausgeschlossen. Der Verteilungskoeffizient 

der Modellproteine Ovalbumin und Lysozym in einem Eumulgin ES basierten AMTPS 

belief sich dabei auf < 0,1 beziehungswiese 0,12. Dieses extreme Verteilungsverhalten ist 

für den Prozess der magnetischen Extraktion in doppelter Hinsicht von Vorteil: Während 

der Phasentrennung im Anschluss an den Bindeschritte werden beinahe alle 

kontaminierenden Proteine aus der mizellreichen Phase ausgeschlossen und somit mit 

der mizellarmen Phase verworfen. Im Verlauf der Phasentrennung nach der Elution 

reichert sich das Zielprotein dann nahezu vollständig in der mizellarmen Phase an und 

wird somit in einer hohen Ausbeute und mit einer hohen Reinheit aus dem Prozess 

abgeführt. Die Adsorptionseigenschaften der magnetischen Kationenaustauschpartikel 

wurden für den Fall der Proteinbindung in An- und Abwesenheit der phasenbildenden 

Tenside verglichen. Es stellte sich heraus, dass die Tenside die Bindekapazität der Partikel 

zwar herabsetzen, dies jedoch auf unspezifische Wechselwirkungen an der 
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Partikeloberfläche zurückzuführen ist, denn die Proteinmenge, die sich von den Partikeln 

eluieren ließ, blieb unverändert. 

Der Mechanismus, der die Partikel dazu veranlasst, sich ausschließlich in der mizellreichen 

Phase des AMTPS anzureichen, war zu Beginn der Arbeit weitgehend ungeklärt. Um 

Aufschluss darüber zu erhalten, wurden die Interaktionen der phasenbildenden Tenside 

mit der Oberfläche der Magnetpartikel mit modernen oberflächenanalytischen Methoden 

untersucht. Ziel war die Aufklärung des stark pufferabhängigen Verteilungsverhaltens der 

Magnetpartikel in AMTPS. Dazu diente einerseits das „online“-Monitoring des 

Anlagerungsvorgangs der Tenside an Modelloberflächen mittels einer Quarzkristall-

Mikrowaage mit Dissipationsmodul. Andererseits wurde die Oberfläche von 

Magnetpartikeln nach Anlagerungsversuchen unter verschiedenen Bedingungen mittels 

der Fourier Transformierten Infrarotspektroskopie unter Abgeschwächter Totalreflektion 

untersucht. Zur Korrelation der Ergebnisse der physikochemischen 

Untersuchungsmethoden mit anwendungsnahen Versuchen erfolgten schließlich 

klassische Adsorptions- und Elutionsversuche. Alle verwendeten Methoden ließen dabei 

denselben Schluss zu: Das Verteilungsverhalten der Partikel basiert auf der Adsorption 

der Tenside auf der Oberfläche der Partikel. Unter Bedingungen, bei denen die Tenside an 

den Partikel- bzw. Referenzoberflächen adsorbierten, wanderten die Partikel vollständig 

in die mizellreiche Phase des AMTPS. Im Umkehrschluss wanderten die Partikel bei 

Bedingungen, bei denen die Tenside nicht an deren Oberfläche adsorbierten vollständig 

in die mizellarme Phase. Die Adsorption der nichtionischen Tenside an die hydrophilen 

Partikel wurde dabei auf die Entstehung von Wasserstoffbrückenbindungen zwischen den 

hydrophilen Oberflächengruppen der Partikel und den Hydroxyl- oder Sauerstoffgruppen 

des hydrophilen Anteils der Tenside zurückgeführt. 

Zur technischen Umsetzung der magnetischen Extraktion wurde eine Anlage für den 

kontinuierlichen Betrieb der Separation entwickelt. Das Herzstück der Anlage besteht aus 

einem 2,28 Liter fassenden Abscheider. Dieser ist in einen Permanentmagneten 

eingebracht. Abscheider und Magnet befinden sich in einer temperaturregulierten, 

isolierten Kammer, um die für die kontrollierte Phasentrennung benötigte, konstante 

Temperatur zu gewährleisten. Der Adsorptionsschritt erfolgt in einem gekühlten 
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Doppelmantelreaktor unter Rühren außerhalb dieser Apparatur. Innerhalb des Reaktors 

wird die Temperatur so eingestellt, dass es nicht zur Phasentrennung kommt. Vom 

Reaktor wird der Strom dann durch einen Wärmetauscher in den Abscheider gepumpt, 

wodurch es zu einer raschen Ausbildung einer fein dispergierten, tensidreichen Phase 

sowie einer tensidarmen kontinuierlichen Phase kommt. Beim Durchlaufen des 

Magnetfeld-unterstützten Abscheiders werden diese beiden Phasen kontinuierlich 

getrennt. Die Ausschleusung der Oberphase erfolgt durch ein Überlaufwehr, während die 

Unterphase abgepumpt wird. Der Separator ermöglichte eine kontinuierliche 

Prozessführung und die Abtrennung von magnetischen Partikeln mit einer 

Abscheideeffizienz von über 99,8 % - bei Flussraten bis zu 9 Litern pro Stunde. Diese 

Abscheideeffizienz wurde für verschiedene Partikelchargen mit mittleren Durchmessern 

von 100 Nanometern bzw. 2 Mikrometern erreicht. Abschließend wurde die Apparatur 

zur magnetischen Extraktion des Antikörperfragments Fab α33 aus einer 

Biorohsuspension verwendet. Das Volumen der Ausgangslösung zur Reinigung dieses 

Fragments betrug dabei 14,8 Liter mit einer Reinheit von 16 %. Drei aufeinanderfolgende 

Prozessschritte wurden durchgeführt: Das Binden des Zielproteins an magnetische 

Kationenaustauschpartikel, ein Waschschritt zur Entfernung der restlichen Unterphase 

aus dem Bindeschritt und letztlich die Elution des Antikörperfragments in die neu 

gebildete Unterphase. Das Volumen der Elutionsfraktion belief sich letztlich auf 5 Liter. 

Die erzielte Reinheit in der Elutionsfraktion betrug über 98 % und die Gesamtausbeute 

67 %. Der kumulative Partikelverlust aus allen 3 Prozessschritten betrug dabei 1 % der 

ursprünglich eingesetzten Partikelmenge. 

Die Entfernung der verbliebenen phasenbildenden Mizellen aus der erhaltenen 

Elutionsfraktion wurde mittels Cross-Flow Ultrafiltration untersucht. Beim Einsatz von 

Membranen aus Polyethersulfon konnten die Tenside die Membran vollständig 

permeieren, obwohl die theoretische Mizellgröße deutlich größer als die molekulare 

Ausschlussgröße der Membran war. Dieser Umstand deutet auf die Adsorption der 

einzelnen Tensidmoleküle an die Membranoberfläche und die Poren der Membran hin. 

Diese Annahme wird bekräftigt durch die Tatsache, dass der Transmembranfluss beim 

Kontakt mit tensidhaltigen Lösungen drastisch sinkt. Dieser Effekt ist jedoch reversibel. 

Durch den Einsatz einer PES Membran mit einem molekularen Größenausschluss von 
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10 kDa wurde das verbleibende Tensid von dem Antikörperfragment Fab α33 getrennt. 

Während das Antikörperfragment von der Membran zurückgehalten wurde, ließen sich 

mehr als 96 % der Tenside entfernen. 
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1 Introduction 

Today, a vast number of pharmaceutical active ingredients are biotechnologically 

fabricated proteins or polypeptides, like antibodies or enzymes. Due to their molecular 

structure, these molecules are as much complex as they are fragile. The maintenance of 

their three-dimensional structure, however, during the processing is crucial for their 

biological activity. Especially, when it comes to purification (downstream processing) of 

such bioactive substances after their production, this is a challenging task. Unit 

operations that would require high temperatures, pressure or the use of organic solvents 

cannot be applied due to the instability of the target product. In addition to this, the 

molecule of interest is often accompanied by a huge number of molecules having similar 

properties, as, e.g. during the fermentative production of a protein, also the 

housekeeping genes are expressed by the host cells. In addition to that, the final purities 

of biopharmaceuticals required are very high. For these reasons the cost of the 

downstream processing usually makes up the lion´s share (up to 80 %) of the total cost in 

biopharmaceutical productions. 

Up to now, multi-stage liquid column chromatography is the state of the art process for 

gentle purification of biomolecules. Chromatography has been applied for more than 100 

years now and allows high resolutions and, concomitant, high purities of the target 

product. Chromatographic separations, however, require the preceding clarification of 

the initial feed, as solids can block the chromatographic column, leading to extreme 

pressure drop, and in the end failure of the whole process. For that reason preceding 

decantation, centrifugation and filtration steps have to be integrated, with each 

additional unit operation reducing the total yield of the target protein. In addition to that, 

large amounts of buffers and water are consumed in the course of chromatographic 

processes. 

Given these challenges, alternative routes for the direct purification or capture of the 

target protein from the initial feed streams have been under investigation for many years. 

One of these alternative routes, discussed since the 1950´s, is the use of so called 

aqueous two-phase systems (ATPS) or aqueous micellar two-phase systems (AMTPS). 
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These systems are generated by mixing polymers and/or salts (ATPS) or by the addition of 

certain classes of surfactants and increasing the temperature (AMTPS). They are 

composed mainly of water providing a gentle environment for biomolecules. The biphasic 

systems can be applied to selectively extract target molecules into one of the two 

emerging phases, with the accumulation of the (solid and dissolved) contaminants in the 

other phase or at the interphase. Another route for the direct capture of a molecule of 

interest is the application of functionalized magnetic particles. These particles can exhibit 

the same functional groups used in column chromatography. Functionalized magnetic 

particles can be added directly to the initial feed and selectively separated by means of 

magnetic forces. The adsorbed components are subsequently eluted into a new, clarified 

stream. 

A combination of both of these promising routes has been demonstrated for ATPS by a 

workgroup in Japan in 1995. For AMTPS, it has been demonstrated by our workgroup in 

batch mode in 2009, and termed magnetic extraction. Magnetic extraction benefits from 

the synergy effects of both, the simple scalability of AMTPS and the versatility of 

functionalized magnetic particles. 

1.1  Outline of the Thesis 

The goal of this work was the design and the application of a process for continuous 

magnetic extraction (CME). The principle of CME is based on the addition of 

functionalized magnetic sorbents and AMTPS forming surfactants to a particular 

biological feed solution that contains a target protein (or macromolecule). AMTPS form a 

single phase at low temperatures but upon temperature increase they split into two 

phases – a surfactant rich and a surfactant depleted phase. 

In the first step, the target protein binds to the magnetic nanoparticle due to the 

functional ligand at the particle surface. In the subsequent step the magnetic sorbents are 

separated from the remaining feed solution by selective partitioning in the micelle rich 

phase of the AMTPS. The separation is hereby performed in a continuous fashion: The 

broth is heated to induce phase separation and subsequently injected into a separator. 

The separator is set up so as to maintain the temperature, therefore it is isolated by a 
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polystyrene case and additionally supplemented with a heater. Due to the elevated 

temperature the system undergoes phase separation while passing through the 

separator. The magnetic carriers are enriched in the dispersed phase due to the 

formation of magnetic particles-doped micellar droplets form by the splitting of the 

phase. An external magnetic field is applied in order to enhance both the migration 

velocity of the micellar droplets and the droplet coalescence. Finally, two streams leave 

this magnetic settler- the magnetic particle clarified and surfactant depleted phase and 

the surfactant enriched phase which contains the magnetic carriers. In order to perform 

an entire bio-purification procedure, the separation is repeated twice - to wash the 

particles and to elute the target protein from the particles into the micelle poor phase. 

Finally, the elution step yields in two streams: The micelle depleted stream which 

contains the target protein and the micelle rich phase containing the magnetic sorbents. 

The latter can subsequently be applied to the next binding step. The principle of one CME 

step is depicted by Figure 1.1. 

 

Figure 1.1: Principle of Continuous Magnetic Extraction. In the temperature controlled mixer 
adsorption of the target protein to the magnetic sorbent is performed at a temperature of 

single-phase conditions. The broth is processed through a heat exchanger in oder to induce 

phase separation and subsequently injected into the settler. The settler is surrounded by a 
permanent magnet. Within the settler the phases separate. Both, magnetic particle and micelle 

rich top phase and micelle and particle depleted bottom phase are collected.  

In order to achieve the goal of a robust CME process, the first step was the establishment 

of appropriate surfactant analytics from which the required process phase diagrams can 

be obtained in a rapid, reliable fashion. Additionally, a possibility for online or at least 

rapid off-line detection needed to be realized. The next step was the detection of suitable 

combinations of magnetic sorbents and phase forming surfactant. This combination 
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required: a) complete partitioning of the magnetic sorbents into the micelle enriched 

phase of the AMTPS independent from the binding and elution conditions and b) 

exclusion of other feed components from the micelle rich phase. For the establishment of 

such a reliable combination, a further task was the investigation of the mechanisms of the 

partitioning of the magnetic sorbents in the AMTPS. With this knowledge, an apparatus 

was to be developed that allowed continuous operation of the CME with flow rates in the 

liters-per-hour scale. The hydrodynamic properties in terms of maximum throughput, 

separation efficiency and stability of the separation process had to be investigated. Using 

the optimized process parameters, CME was applied to target a real bioseparation, in 

particular the purification of the antibody fragment Fab α33 produced from an E. coli 

fermentation. As CME results in a target product stream that contains remaining phase 

forming surfactants, the final task of this thesis was to establish a procedure for the 

separation of the phase forming surfactant from the target protein. 
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2 Theoretical	Basics	

2.1 Magnetic Separation in Downstream Processing 

2.1.1 Application	of	Functionalized	Magnetic	Beads	in	Protein	Separation	

The isolation and purification of proteins, peptides or other specific molecules by means 

of magnetic particles is a simple and versatile technique. Due to the magnetic character 

of the particles and the diamagnetic properties of the aqueous bio-feedstock, the 

particles can be selectively separated by the application of a magnetic field. By means of 

magnetic separation target molecules bound onto a magnetic bead can be separated 

directly, e.g. from cell lysates, whole blood, plasma, milk, whey, urine or cultivation 

media [1]. The striking advantage of magnetic separation cf. traditional packed bed 

chromatography is that no preceding clarification is required, thus magnetic separation is 

a splendid example for process integration. In addition to this, relatively little 

equilibration and washing buffer is required in contrast to column chromatography. The 

biochemical binding mechanisms, however, follow the same principles than those in 

conventional packed bed chromatography, therefore, all combinations of ligands and 

magnetic particles are possible for the surface modification of the magnetic carriers, e.g. 

ion exchange, affinity or hydrophobic interactions. Among the products purified are 

enzymes, antibodies, DNA, whole cells or peptides. Detailed reviews about the 

application of magnetic sorbents in bioseparation can be found e.g. from Safarik [1] or 

Franzreb [2]. 

Due to the non-porous character of the small magnetic particles, the adsorption of the 

target protein to the particle surface is not limited by pore diffusion and therefore the 

particles exhibit fast binding kinetics and high loading capacities. The binding properties 

of magnetic carriers are usually described by the binding model according to Langmuir 

[3]: 

The model accounts for a process where the rate of sorption and desorption of a specific 

component have reached equilibrium (described with *). Furthermore it is stated that the 

surface is covered with a monolayer of the compound. In this state, the correlation 
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between the coverage of the surface, or loading q* and the equilibrium concentration c* is 

described by: 

�∗ = ���� ∙ �∗	
 + �∗ [Eq. 2.1] 

In Equation 2.1 qmax describes the maximum capacity of the component and the constant 

KL describes the affinity of the component to the surface. In a sorption process the mass 

balance of the target component in solution and bound to the particle at any time is given 

by: 

� = �� + �� − ���  [Eq. 2.2] 

The initial loading of the particle is given by q0, actual loading of the particle is described 

by q, the initial concentration c0 and the actual concentration in the solution is c. 

When the sorption equilibrium is achieved both, Equation 2.1 and 2.2 are valid. The 

equilibrium concentration can then be calculated by combining 1 with 2 (based on [4] ) 

to: 

�∗ = −�2 + ��²4 − � [Eq. 2.3] 

with: 

� = �� ∙ (���� − ��) + 	
 − �� [Eq. 2.4] 

� = −	
 ∙ (�� ∙ �� + ��) [Eq. 2.5] 
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These equations deliver practical information for adsorption experiments, as from the 

assumption of e.g. the KL value and qmax, the required particle concentration can be 

estimated. 

For the further understanding of magnetic separation processes, the next chapter deals 

with the fundamental principles required in magnetic separation technology. The chapter 

is based on [5]. 

2.1.2 Magnetism and Magnetic Fields 

Magnetism is an inherent characteristic of all matter. It arises from the spin magnetic 

moments of the electrons and nuclei of the atoms. Magnetic fields are generated by 

moving electric charges. These can occur either macroscopically as currents in wires or in 

a microscopic fashion associated with the electrons movement in the orbits of atoms. The 

force which is generated in vacuum by a magnetic field is characterized by its vector field 

H. The impact of the magnetic field onto matter is described by the magnetic flux density 

B: 

� = μ� ∙ μ� ∙ � [Eq. 2.6] 

The magnetic flux density takes into account the influence of the magnetic properties of 

the particular material to the magnetic field, described as the magnetic permeability. In 

Equation 2.6 µ0 is the permeability constant of the vacuum and µr is the permeability of 

the particular material affected by the magnetic field. In vacuum µr equals 1. 

2.1.2.1 Polarization and Susceptibility 

If a particular substance is introduced into a magnetic field, the magnetic flux density 

inside the substance increases from the initial value Bvac to the value Bsub. This difference 

ΔB is called magnetic polarisation J: 

J = �� = ���� − � �! [Eq. 2.7] 



8  Theoretical Basics 

Except for ferro- and ferrimagnetic substances, the magnetic polarisation is proportional 

to the applied magnetic flux density with a proportionality constant κ: 

�� = " ∙ μ� ∙ � [Eq. 2.8] 

The proportionality constant κ is called magnetic susceptibility: 

" = μ� − 1 [Eq. 2.9] 

The magnetic character of a substance can be classified according to its susceptibility, if  

- µr > 1 and κ > 0, the substance is paramagnetic. This substance increases the 

impact of the magnetic field  

- µr < 1 and κ < 0, the substance is diamagnetic. This substance decreases the 

impact of the magnetic field 

In case of ferro- and ferrimagnetic substances, µr is a function of the magnetic field 

strength. The magnetic polarisation is not increased proportionally with the applied 

magnetic field, but reaches a saturation JS at very high magnetic field strengths. The 

saturation magnetization can be seen from the magnetisation curve. 

2.1.2.2 Magnetisation Curve 

In practice, the impact of a magnetic field on ferro- or ferrimagnetic substances is 

described by the increase of the magnetic field strength, the magnetization M in order to 

be consistent with Equation 2.7: 

$ = �� = ���� − � �! [Eq. 2.10] 

The saturation magnetisation MS is reached when all atomic dipoles are aligned by means 

of the influence of an external magnetic field. When the polarisation is plotted versus the 

applied magnetic field, a magnetisation curve is obtained. From this curve the magnetic 
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properties of ferro- or ferrimagnetic substances can be deduced. Exemplarily, a 

magnetisation curve for a ferromagnetic substance is shown in Figure 2.1. 

 

Figure 2.1: Magnetisation curve of a ferromagnetic substance. From the curve, the coercive field 

strength HC, the magnetic remanence JR, and the saturation magnetisation MS can be derived as 
characteristic magnetic properties of the substance. 

The saturation polarization JS can be seen as the Y-axis value at the right end of the 

magnetisation curve. When the magnetic field strength is decreased to zero or the 

external magnetic field is removed, starting from this point, for non-superparamagnetic 

substances a remanence JR remains. The material retains this polarization until a magnetic 

field pointing into the opposite direction reaches a certain strength - the so-called 

coercive field strength HC. In other words, the coercive field strength is the strength 

required to remove the remaining polarization of the ferro- or ferrimagnetic material. 

2.1.2.3 Influence of Particle Form and Size 

Magnetic susceptibility is not only a characteristic of the particular material, but also a 

characteristic of the form and size of the material. For a finite particle, an external 

magnetic field induces a counter-directed magnetic field within the particle, dependent of 

size and shape of the particle which attenuates the overall magnetic field. The 

dependency is described by the demagnetization factor Dm: 
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" = "%1 � &� ∙ "% [Eq. 2.11] 

with 0 ( &� ( 1. 

In Equation 2.11, κi is the intrinsic magnetic susceptibility of the particular substance, 

which is measured with a sample that does not exhibit any demagnetization, e.g. a very 

long cylinder or an annulus consisting of the particular material. 

The magnetic behavior of very small ferro- or ferrimagnetic particles that contain only of 

one or few magnetic domains is fundamentally different to the behavior of macroscopic 

material: Large particles have many magnetic domains and thus their value of remanence 

magnetisation is virtually constant. For particles smaller than approximately 100 µm the 

total number of magnetic domains is consequently reduced and as a result of this 

reduction, the coercive field strength increases and the susceptibility decreases, as can be 

seen in Figure 2.2. 

 

Figure 2.2: Dependency of the susceptibility of the particle size of magnetite from [6]. 

If the particle size is reduced so that only a single magnetic domain remains, the coercive 

magnetic field strength reaches a maximum and the susceptibility a minimum. In the case 

of magnetite particles, this transition is around 1 µm. When the particle size is further 
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reduced, the coercive field strength is reduced until it reaches zero [7]. Ferromagnetic 

particles with these sizes show on the one hand the magnetic behavior of paramagnetic 

substances, on the other hand, their magnetisation is profoundly higher. Therefore their 

magnetic character is called superparamagnetic. For magnetite particles of spherical 

shape the transition to superparamagnetism is reached at particles sizes of approximately 

10 nm [6]. 

2.1.3 Technical Separation of Magnetic Particles 

The fundamental principle of magnetic separation is based on a magnetic field exerting a 

force on magnetic and magnetizable material. The relationship between the magnetic 

force FM, the particle volume VP, the magnetic field H, and the particle magnetisation MP 

is given by Equation 2.12: 

)* = μ� ∙ +� ∙ $� ∙ ,� [Eq. 2.12] 

As can be seen, for constant magnetic particle characteristics, FM can only be increased by 

the increase of the magnetic field gradient ∇H. Thus, for bioseparation applications where 

small particles in the range of nano- to micrometers are applied, a steep gradient is 

crucial. Steep magnetic field gradients are realized up to now only by means of High 

Gradient Magnetic Separators (HGMSs).  

2.1.3.1 High Gradient Magnetic Separation 

The principle of HGMS originates from the minerals industry [8], yet, the adaptation of 

this principle to protein separation came up in the beginning for the 21st century at the 

Technical University of Denmark (DTU) and was termed High Gradient Magnetic Fishing 

(HGMF) [9-13]. Further development has been made at the Research Center Karlsruhe 

(Forschungszentrum Karlsruhe) and the potential of this technique has been proven for 

various biological feedstocks, e.g. cell homogenisate, whey, fermentation broth or horse 

serum [14-18]. The centerpiece of an HGMF apparatus is a magnetisable separation 

matrix, which is placed in an external magnetic field. In Figure 2.3 the principle of the 

separation is depicted by means of the cross section of a single ferromagnetic wire. The 
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wire is exemplarily for magnetisable material. In the simplest cases, this material is 

loosely packed steel wool. The recent generation of HGMS uses as stack of ordered wire 

meshes. Due to the wires, the external magnetic field is concentrated with a gradient 

towards sections on the wire. Para-, ferri- and ferromagnetic particles are highly attracted 

to the wire.  

 

Figure 2.3: Principle of the separation of magnetic particles in HGMF. The application of an 

external magnetic field to a magnetisable wire leads to high magnetic field gradients. Particles 
are drawn toward the wire and separated from the feed.  

If the capacity of the magnetic wires is saturated, the feed flow is stopped, the external 

magnetic field is switched off and the magnetic particles are back-flushed out of the 

separator.  

2.1.3.2 Magnetic Field Enhanced Centrifuge 

Recently, the application of a magnetic field enhanced centrifuge (MEC) has been 

reported [19]. The principle of the magnetic centrifuge is shown in Figure 2.4. The basic 

principle is similar to the one of HGMS: A separation chamber with magnetisable wires is 

placed inside an electromagnet. The difference between MEC and HGMS is that the 

particles are removed from the magnetisable wires by centrifugal forces that drive the 

particles from the wire to the wall of the centrifuge. The feed is injected into the 
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separation chamber under low rotational speed in order to prevent removal of large 

nonmagnetic contaminants [19]. 

 

Figure 2.4: Principle of magnetic field enhanced centrifugation. Left: The magnetic particles are 

attracted to the magnetized wires. The particles are then separated by centrifugal force FZ as 
agglomerates and accumulate at the wall of the centrifuge. Right: Set-up of magnetic enhanced 

centrifugation by adjusting a bowl centrifuge inside an electromagnet. (From: [19]) 

MEC and HGMS can both be applied for the continuous separation of magnetic particles 

from a particle-containing feed until the saturation of the wires - in case of HGMS - or 

centrifugal wall - in case of the MEC - is reached. Thus both unit operations have to be 

processed batch wise, because back-flushing of the particles is necessary. An interesting 

alternative for the continuous processing of magnetic sorbents is presented in the next 

chapter: the selective partitioning of the particles within aqueous (micellar) two-phase 

systems. 

2.2 Partitioning in Two-Phase Systems 

Ever since the integration of bioseparation processes was postulated, the particular 

partitioning of a target molecule between two phases has arisen more and more interest. 

With the affinity of insoluble components, e.g. cell debris, to the opposite phase, solid-

liquid separation and initial capture of the protein can be integrated into one extractive 

process step. Small biomolecules can be partitioned between organic and aqueous 

phases, between two organic phases or between two aqueous phases. As for large 

molecules like proteins and polypeptides, aqueous phases exhibit the gentlest 
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environment, therefore, aqueous two-phase systems and aqueous micellar two-phase 

systems have been examined for several years in the context of bioseparation. 

2.2.1 Aqueous Two-Phase Systems 

When two hydrophilic polymers are mixed in water, the system can undergo spontaneous 

phase separation. The phase separation results in two aqueous phases of whom one 

phase contains most of the one kind of polymer and the other phase contains most of the 

other polymer. The demixing and macroscopic emerging of two aqueous phases has 

originally been described by Beijerinck [20] in a system of starch, agar and gelatine. It 

was, however, Albertsson in 1956 who discovered the potential of these so called 

aqueous two-phase systems (ATPS) for the selective enrichment of biological components 

in one of the two phases [21, 22]. The ATPS described by Albertsson were aqueous 

solutions consisting of polyethylene glycol (PEG) and Dextran or PEG and phosphate salts. 

These ATPS split in two aqueous phases – one of them containing PEG to a large extent 

and the other most of the dextran or phosphate. The main component in both phases is 

still water - usually more than 80% [22]. 

Several other combinations of phase forming components have been described up to 

now, e.g. systems composing of phosphate-salts and ethanol, ionic liquids and phosphate-

salts [23], acrylamide-modified starch and phosphate-salts [24] or a chaotropic and a 

cosmotropic  salt [25]. In Table 2.1 additional compositions of APTS described in the 

literature are depicted. ATPS based on micellar interactions are described in chapter 2.2.2 

separately. 
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Table 2.1.Combinations of substances that lead to ATPS formation. From: Huddelston [26]. 

Polymer-polymer systems   

Poly(ethylene glycol) and Dextran 

  Poly (vinyl alcohol) 

  Poly (vinyl pyrolodine) 

  Ficoll 

  Hydroxyl propylstarch 

Poly(vinyl alcohol) and Methyl cellulose 

  Hydroxipropyl dextran 

  Dextran 

  Poly (acrylic/methacrylic acid) 

Polymer-salt systems   

Poly(ethylene glycol) and Sodium/potassium phosphate 

  Citrate, Tartrate, Succinate 

  Al/Na/Mg/Cu/Fe/Zn/Li-sulphates 

 

When certain components are added to the ATPS, they partition unevenly between both 

phases, based on their unique phyico-chemical properties. The partition behavior is 

described by the partitioning coefficient K: 

/ = 01230425526 [Eq. 2.13] 

Where cTop is the concentration of the particular component in the top phase and cBottom 

its concentration in the bottom phase. Ever since their first discovery, a vast number of 

applications of ATPS has been described for the selective separation of e.g. proteins [27], 

nanoparticles [28], dyes [29], DNA [30], inclusion bodies [31], antibodies [32] or ions [33] 

in one of the two phases. For this enumeration is far away from being comprehensive, the 

reader is referred to one of the - also numerous - reviews published in the last years [26, 

32, 34-38].  
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2.2.1.1 ATPS Phase Diagram 

The composition of the emerging two phases of an ATPS can be seen from its phase 

diagram. The phase diagram is valid only for a specific combination of phase forming 

components (and a fixed temperature) of the system. Exemplarily, a phase diagram can 

be seen in Figure 2.5. In the phase diagram the X- and the Y- axis describe the (weight-) 

concentrations of the two phase-forming components, the third component is water by 

convention [22]. The binodale separates the single phase region from the two-phase 

region. When a solution is prepared resulting in concentrations in the two-phase region 

above the binodale (e.g. point M in Figure 2.5) this solution system splits into two phases. 

The compositions of the emerging light phase L and heavy phase H are determined by the 

specific tie line which runs through M and ends at the binodale. 

 

Figure 2.5. Generic phase diagram of an ATPS. The binodale separates the stable single phase 

regime from the two-phase region. A mixture M splits spontaneously in two phases, where the 

composition of light phase is described by point L and the composition of the heavy phase is 
described by point H. L, M and H are localized on the same tie-line. 

The mass fractions wi of the components, defined by Equation 2.14, can be directly 

obtained from the phase diagram:	 
8% = 9%9:;:�<  [Eq. 2.14] 
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Because the densities of the initial and emerging phases are almost equal to that of pure 

water, their differences are neglected. Therefore, from the mass fractions, the phase 

volume ratio R of the resulting phases can be determined according to the lever rule [22, 

39]: 

= = +>;?+@;::;� = +
+A = 8A − 8*8* − 8
 = $�B$  [Eq. 2.15] 

Here, VTop and VBottom are the volumes of the resulting phases. For the calculation 

however, the knowledge of which polymer forms the top – and which forms the bottom 

phase of the ATPS is necessary. 

2.2.2 Aqueous Micellar Two-Phase Systems 

In contrast to “classical” ATPS, AMTPS consist only of one phase forming component - 

commonly a surfactant. When the temperature of the micellar solution is increased above 

a certain point, spontaneous phase separation occurs. The system splits in a micelle rich 

(or coacervate) phase and a micelle depleted (or aqueous) phase [40]. At the temperature 

where the phases start to separate (at a certain concentration), the system becomes 

turbid or “cloudy” and thus this point is often denoted as cloud point [41]. Various types 

of surfactants have been applied as phase forming surfactant for the generation of an 

AMTPS, among these zwitterionc surfactants e.g. dioctanoyl phosphatidylcholine (C-8-

lecithin) [42], triblock copolymers of PEG and polypropylene glycol (PPG) (called 

pluronics) [43, 44], as well as mixtures of ionic and non-ionc surfactants [45]. The most 

frequently applied class of surfactants for the generation of AMTPS however are nonionic 

surfactants, and especially PEG - alkyl ethers [40, 46]. These surfactants consist of a 

hydrophilic PEG chain and a hydrophobic alkyl head. They are typically abbreviated CxEy, 

where Y is the length of the alkyl chain and X is the number of PEG units. 

2.2.2.1 Physico-chemical background of phase separation of AMTPS 

The molecular thermodynamic background of the phase separation of AMTPS has been 

fundamentally investigated by the workgroup around Blankschtein [47, 48]. In their 
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theory increasing the temperature leads to the growth of the (spherical or cylindrical) 

micelles due to an increase of the intermicellar attractions. If the resulting loss in entropy 

is larger than the win in enthalpy, phase separation will follow. In Figure 2.6 the 

temperature induced phase separation based on the growth of the micelles is depicted. 

 

Figure 2.6: Temperature induced phase separation. Each of the resulting coexisting phases 

contains cylindrical micelles but possesses different micellar concentrations. The cylindrical 

micelles in the micelle-rich (top) phase are larger than those in the micelle depleted (bottom) 
phase. From: [42]. 

According to Blankschtein´s theory the coexistence curve of an AMTPS can be modeled 

using two physically relevant parameters: C as the measure for the magnitude of the 

attractive intermicellar free energy and ∆µ as free energy gain from micellar growth, 

which means ∆µ increases with increasing micellar size and micellar polydispersity [49, 

50]. 

With the usage of the Equation 2.16 for the mole fraction of the surfactant χi, the 

parameters C and ∆µ are given by Equations 2.17 and 2.18:  

C% = D%D:;:�<  [Eq. 2.16] 
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EFC�G , C!; , IJ = K ∙ IL ∙ M1 � 3 ∙ L  23 O
∙ P2 ∙ FQC�G � QC!;JR  3 ∙ QC�G ∙ C!;S 

[Eq. 2.17] 

�TFC�G , C!; , IJ � K ∙ I ∙ UD V W 63 ∙ L  2YR
C�G ∙ C!;FQC�G � QC!;JZ[ [Eq. 2.18] 

Here, kB is the Boltzmann constant, T is the absolute temperature, χaq and χco are the 

mole fractions of the aqueous and the coacervate phase, while γ is the ratio of the 

effective volume of a surfactant molecule to a water molecule, which according to Lam 

can be approximated by the ratio of the molecular weight of the surfactant to that of 

water. With knowledge of these parameters the phase separation curve which separates 

the single phase area from the two-phase region was successfully calculated [49]. 

2.2.2.2 Phase diagram 

 

Figure 2.7: Phase diagram of an AMTPS. 

The phase diagram of an AMTPS characterizes the phase separation region based on the 

temperature and the surfactant concentration. Therefore the axes differ from the phase 
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diagram of a classic ATPS. On the Y-axis the temperature is depicted, while the X-axis 

shows the weight fraction of the phase forming surfactant. At the lower consolute 

(critical) temperature TC the system system begins to split in two phases. For a constant 

temperature TS, e.g. a solution M with the initial composition w0 separates in an aqueous 

phase A with a composition of waq and a micelle rich or coacervate phase B with the 

surfactant concentration wco. Usually, AMTPS based on nonionic surfactants split on 

warming, as shown in Figure 2.7. Other AMTPS have been described which split when the 

temperature is decreased e.g. the zwitterionic surfactant C8-lecithin, thus these system 

exhibit an upper consolute critical temperature [41, 51]. The volume ratio R in AMTPS can 

be calculated by the lever rule similar to ATPS based on the mass balance around the 

initial and the resulting phases [52]: 

8; ∙ \� ∙ +� = 8�G ∙ \�G ∙ +�G + 8!; ∙ \!; ∙ +!; [Eq. 2.19] 

With 

+� = +�G + +!; [Eq. 2.20] 

If the e.g. top phase is the coacervate phase R is given by: 

= = +>+@ = +!;+�G = 8� ∙ \� − 8�G ∙ \�G8!; ∙ \!; − 8� ∙ \�  [Eq. 2.21] 

In AMTPS the density differences of the initial, aqueous and the coacervate phase are 

approximately equal [52]: 

\�G ≅ \!; ≅ \� 

Thus Equation 2.21 is simplified to: 
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= = 8� − 8�G8!; − 8� = ^$$� [Eq. 2.22] 

If the bottom phase is the coacervate phase, this changes to: 

= = 8!; − 8�8� − 8�G = $�^$ [Eq. 2.23] 

From R the hold-up of the dispersed phase ε can be calculated with 

_ = +!;+!; + +�G [Eq. 2.24] 

If the top phase is the coacervate phase: 

_ = == + 1 [Eq. 2.25] 

And if the coacervate phase is the bottom phase: 

_ = 1= + 1 [Eq. 2.26] 

2.2.2.3 AMTPS as tool for (bio)-separation 

When substances are added to the micellar solution and the solution is heated, the 

substances partition between the two emerging phases. The selective extraction of 

substances into one of the two phases was termed cloud point extraction (CPE) or 

micelle-mediated extraction (MME) [53]. CPE was initially applied for the concentration of 

metal ions [54] in 1978. In 1981, Bordier employed AMTPS for the recovery of 

hydrophobic membrane proteins in the micelle rich phase of an AMTPS based on the 

nonionic surfactant Triton X-114 [55]. This was the beginning for CPE being exhaustively 

exploited as the primary isolation step of proteins. Numerous studies were published 
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proposing specific extraction and back extraction schemes of organic and inorganic 

substances [56-58]. Especially in the field of protein downstream processing several 

articles have been published by e.g. the workgroups of Kula [59-64] and Watanabe and 

Tani [40, 43, 44, 53, 65]. 

2.2.2.4 Moleculardynamic background of the Partitioning Behavior in 

AMTPS 

The partitioning behavior of proteins in AMTPS was theoretically described by the 

workgroup of Blankschtein and termed “Excluded Volume Theory” in a molecular-

dynamic approach [66]. The theory is fundamentally based on steric, excluded volume 

interactions between globular hydrophilic proteins and the micelles. The steric 

interactions lead to the exclusion of certain substances from the micelle rich phase. With 

the definition for the volume fraction given in Equation 2.27, the expression for the 

partitioning coefficient from the excluded volume theory KEV was determined to: 

`% = +%+:;:�<  [Eq. 2.27] 

	ab � cde f�`>  `@� ∙ M1 + =��;:=*%! O
gh [Eq. 2.28] 

In Equation 2.28 φT and φB are the surfactant volume fractions in the top and bottom 

phases of the resulting AMTPS, RProt is the hydrodynamic radius of the protein and RMic 

the cross sectional radius of each micelle. For cylindrical micelles the exponent n is 2 and 

for spherical micelles n is 3. Figure 2.8 shows the prediction plot for the KEV as a function 

of the quotient of the hydrodynamic radii of the micelles and the target protein. 
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Figure 2.8: Predicted protein partition coefficient based on the excluded volume theory as a 

function of the ratio of the hydrodynamic radius between the target protein and a cylindrical or 

spherical micelle. The curves are based on a  micellar radius of 1.78 nm and a volume fraction 
difference of 5%. (From: [66]) 

As can be seen from Equation 2.28, for static radii of the micelles and the target protein, 

the excluded volume interactions are solely dependent on the volume fraction difference 

of the surfactant between both phases. As can be easily seen from the title of the theory, 

large proteins are excluded from the micelle rich phase, while the effect is more 

prominent in spherical micelles than in cylindrical micelles. In the course of their work, 

the authors were able to obtain reasonable correlations for the protein ovalbumin and 

the nonionic surfactant n-decyl tetra(ethylene exide) – C10E4 with the theory [66]. The 

first version of the excluded volume theory took into account only hydrophilic and steric 

interactions. Later, the authors extended the theory further and added terms for the 

electrostatic and affinity interactions between the surfactants [49, 52, 67], which resulted 

in reasonable correlations between the theory and their experimental results. Despite the 

clearly fundamental physical background, the theory was only adapted to the 

experimental results and the prediction of partitioning of unknown proteins in unknown 

systems has not been tried yet. 
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2.2.2.5 Continuous Application of ATPE or CPE 

One of the major advantages of the application of ATPS and AMTPS is that the 

partitioning behavior of proteins and particles is independent of the volume size [22]. 

Once the partitioning behavior of a certain substance has been determined in a small 

scale, an upscaling to large volumes can be performed theoretically to any volume of 

choice. This is one of the most striking arguments for the application of A(M)TPS in 

downstream processing cf. traditional packed bed chromatography. The large-scale 

application of ATPE has been described as early as 1978 in a disc stack centrifuge [68]. As 

many studies described potential targets for large-scale ATPE, only few technical-scale 

plants have been reported. In the last years, however, different equipment for ATPE and 

CPE has been described: 

Recently, Vazquez-Villegas et al. described a novel separator for the continuous 

processing of ATPS based on a mixer-settler set-up [69]: Their set up is composed of two 

peristaltic pumps, a static mixer, a tubular phase separator and a collector with a 

harvesting port. The authors were able to run the separator with flow rates of 50 - 60 ml 

per minute while continuously separating a PEG phase from a potassium phosphate 

phase. The partitioning coefficient of the applied whey protein mixture was 0.5 in the 

batch experiments and around 0.4 in continuous mode. The separator was run 

continuously for several hours at almost steady state, therefore, the potential of their set-

up is clearly pointed out. The protein recoveries in the continuous system were 90 %, with 

the remaining 10 % precipitated at the interface. In their previously performed batch 

experiments 66 % were lost due to precipitation at the interface. The authors explained 

these differences by “the dynamic nature of the interface of two moving liquids, 

minimizing protein precipitation”. Besides this mixer-settler equipment, extraction 

columns have been applied. The performance of a Kühni-type extraction column at 

different impeller speeds was investigated for the partitioning of plasmid DNA in a PEG-

potassium phosphate ATPS [70]. The continuous extraction of a human immunogolobulin 

G (IgG) using ATPS in a packed column was described by a group of Aires-Barros in 

cooperation with Bayer Technology Services GmbH [71]. In their study the authors 

performed a complete characterization of the hydrodynamic properties and the mass 
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transfer of IgG. A recovery of the target protein of 85 % was obtained with more than 85 

% of the contaminating proteins being removed and 50 % of the total contaminants [71]. 

This application is to the knowledge of the author the first industrial application of a 

continuous APTS process. 

Continuous CPE has been reported so far only by means of temperature regulated 

rotating disc contactors (RDCs). The first application of continuous CPE for the extraction 

of (aromatic) organic molecules which partitioned to the dispersed, micelle rich phase of 

a Triton X-114 AMTPS has been described by a group around Osuwan [72-74]. The 

authors used a RDC with a column of 1000 mm height. A similar RDC was also used for the 

continuous separation of vanillin. The authors reported an optimum of the stirrer speed: 

a low stirred speed resulted in a low mass transfer due to the large droplets, while a high 

stirrer speed resulted in extreme back mixing and therefore led to loss of the surfactant 

[75]. Thus it can be seen that CPE faces the same limitations than conventional extraction.  

2.2.3 Enhancing the Partitioning in ATPS – From Affinity ATPS to 

Magnetic Extraction Phases 

Despite the large-scale applicability of APTS and AMTPS, a major hurdle is the insufficient 

partitioning behavior of the molecule of interest in one of the two phases. For example, 

the enrichment of a protein in the bottom phase of a two-phase system even with an 

extreme partition coefficient of 0.2 and a phase ratio of 1 leads to a loss of 20 % of the 

target protein in the top phase. Especially for high-value proteins in, e.g. 

biopharmaceutical industry, this loss is economically unacceptable. Therefore the idea to 

modify an aqueous two-phase system to increase the partitioning coefficient has come up 

early and was termed affinity partitioning. Reviews about can be found e.g. from 

Koppenschlaeger [76], Xu [34] or Ruiz-Ruiz [36]. Basically, three routes have been 

followed to increase the partitioning: 

a) Modification of one of the phase forming components 

In 1974 Takerkart covalently attached p-aminobenzamidine (PAB) to PEG for the selective 

partitioning of trypsin into the PEG phase [77]. In 1975 the term affinity partitioning was 
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created by Flanagan [78], who synthetized dinitrophenyl to PEG for the separation of the 

S-23 myeloma protein to the PEG phase of an PEG/dextran system. Both authors reported 

an increase of the partitioning coefficient of the target proteins by the synthetisation of 

the affinity ligand to the polymer. Dye ligands, e.g. Cibacron bue, F3GA or Procion Yellow 

HE-3G, have often been used as affinity ligands coupled to polymers to enhance the 

partitioning [79-81]. In Table 2.2 an excerpt from Ruiz-Ruiz [36] of modified 

polymer/polymer or polymer/salt affinity ATPS is summarized. 

Table 2.2: Affinity ATPS applied for the selective enrichment of a target product. (Excerpt from 
[36]) 

Product Basic ATPS Modification Reference 

IgG Dextran T500/PEG 3350 PEG-benzyl [82] 

IgG Dextran T500/PEG 3350 PEG-diglutaric acid [83] 

S-23 myeloma protein Dextran T500/PEG 6000 PEG-dinitrophenyl [78] 

IgG Dextran T500/PEG8000 PEG-Protein A [84] 

Trypsin Dextran T500/PEG8000 PEG-trypsin-inhibitor [84] 

Lysozyme Dextran T500/PEG 8000 Dextran-benzoyl [85] 

Thaumatin PEG 8000/phosphate PEG-gluthatione [84] 

Penicillin acylase PEG 4000/phosphate PEG-benzoate [86] 

Penicillin acylase PEG 4000/phosphate PEG-phenylacetamide [86] 

 

In the case of AMTPS, mostly the embedding of ionic surfactants and thus the generation 

of charged mixed-micelles was accomplished instead of the modification of the nonionic 

surfactants themselves [45, 52, 63, 67]. In all cases the authors were able to successfully 

increase the partitioning coefficient as a consequence of the electrostatic attraction. An 

affinity co-surfactant was added to a C10E4 AMTPS by Lee to increase the partitioning of 

vancomycin by a factor of 16 at pH 4 [87]. 

b) Modification of the Target Protein 

Besides the modification of the phase forming polymer, the target protein can be 

modified in order to increase its affinity to one of the two emerging phases. The 

modification can be realized either chemically or genetically by co-expression of a fusion 

tag or a complete fusion protein. The introduction of hydrophobic and charged groups by 
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acylation of the amino residues of the proteins BSA and ß-lactoglobulin for instance lead 

to a higher affinity to the hydrophobic PEG phase [88, 89]. The enhancement of the 

partitioning efficiency of recombinant fusion proteins has been described by Berggren 

[90] or Fexby [91]. The modification of the target protein can also be combined with the 

modification of the polymer. For instance Ekblad et al. combined biotinylated liposomes 

and avidin coupled to dextran: In a system without dextran-avidin 90% of the liposomes 

partitioned to the PEG phase, whereas in its presence more than 95% partitioned into the 

dextran phase [92]. 

As examples for affinity AMTPS, Lam et al. used a fusion protein consisting of the green 

fluorescent protein (GFP) and a “family 9 carbohydrate-binding module” (CBM9-GFP) 

[49]. The AMTPS was formed with the nonionic surfactant n-decyl beta-D-

glucopyranoside, which acted simultaneously as the affinity ligand. In this case the 

partitioning coefficient was more than six-fold higher (3.1 cf. 0.47) as in the “control” 

case, where the affinity interactions were inhibited by the addition of glucose [49]. 

c) Addition of Free Ligands or Insoluble Particles 

Instead of modifying either the phase forming components or the target molecule, the 

third way of improving and steering the partition of substances is to add free ligands as 

affinity components to the system. If these free ligands accumulate in one phase, the 

affinity for the target product drives it to same phase, despite its initial orientation. The 

benefit obtained from the application of free ligands is that they are usually cheaper 

compared to the elaborative chemical modification of polymers or proteins. Among these 

cheap free ligands applied, are Cibacron blue[93], starch [94], chitosan [95], butyrate [96] 

or alginate [97] added to ATPS. In the case of AMTPS, no significant difference in the 

partitioning behavior of glucose-6-phosphate dehydrogenase was discovered by Lopes 

[98]  when affinity ligands were added in AMTPS based on Triton X-114 or C10E4. The 

author attributed this effect to the strong influence of the excluded volume effect 

described in chapter 2.2.2.4. Saitoh on the one hand confirmed these findings, but upon 

the usage of the zwitterionic surfactant 3-(nonyldimethylammonio) propylsulfate and the 

addition of affinity ligands he was able to extract the large, hydrophilic protein 



28  Theoretical Basics 

hexokinase into the micelle rich phase of this AMTPS [99] despite the excluded volume 

effect. The partitioning was strongly dependent on the pH-level. 

Besides free soluble ligands, the usage of insoluble particles with affinity functionalization 

has been demonstrated. The advantage of insoluble affinity components is their simple 

removal and regeneration from the two-phase system whereas the separation of soluble 

components in order to re-use them may become cost intensive. In 1984, pioneering 

work in this field was conducted by Hedman and Gustafsson who investigated the 

partitioning and protein binding characteristics of modified Sepharose and Sephadex 

materials in PEG-phosphate systems [100]: 

The authors demonstrated that cell fragments – in this case homogenized S.cerevisiae – 

partitioned to the bottom phase of a PEG-phosphate ATPS, while the affinity sorbents 

partitioned to the top phase, thus no precedent clarification step was necessary in order 

to remove the target proteins from the cell debris. In his work, Hedman bound the target 

proteins (BSA, IgG, Albumin and ADH) in the affinity system, collected the particles 

afterwards and eluted them in a column. By doing this, the author circumvented the issue 

of the redistribution of the target proteins between the two phases after eluting them 

from the particles. Additionally, the author emphasized on the influence of the ionic 

strength in PEG-Phosphate systems: Due to the high salt concentration, e.g. in PEG-

phosphate ATPS, the binding step is limited to salt-tolerant affinity mechanisms. 

Following this publication, several workgroups have described the integration of 

functionalized affinity sorbents to ATPS [101-104] with Ku being the first authors who 

eluted the target proteins back into the other phase (in their case dextran), while the 

particles remained in the PEG phase [105, 106]. In all the cases the application of affinity 

particles led to an improved separation performance of the target proteins cf. the 

application of the ATPS alone. 

Considering the current thesis, an important process concept was introduced in 1995 by 

Suzuki et al.: The use of magnetic particles as affinity sorbents in ATPS [107]. Suzuki 

hereby combined the affinity enhanced separation of proteins – in this case Protein A – 

and magnetically enhanced phase separation. Initially, basic magnetite particles with sizes 
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ranging between 7 and 15 nm were coated with aminosilane, and subsequently with 

Eudragit S-100. Then, the particles were further functionalized with human IgG to capture 

staphylococcal Protein A from an E. coli crude extract. The particles and the cell extract 

were added to a PEG-phosphate ATPS, in which the particles accumulated in the upper 

phase. After mixing, the phase separation of the two-phase system was accelerated due 

to the application of a hand magnet. Protein A, which was excluded from the top phase 

(K = 0.39) in the absence of the magnetic particles, was enriched in the top phase of the 

affinity system (K = 11.4). Approximately 90 % of the Protein A was bound to the particles. 

The target protein was eluted from the particles by 3.5 M KSCN and 39 % of the protein 

was recovered from the particles with a purity of 45 %. In summary the partition 

coefficient increased 35-fold and the purity 4-fold in the system compared to a traditional 

ATPS [107]. Despite the fact that the elution efficiency of the target protein was 

unsatisfactory, a novel bioseparation process scheme was proposed by the authors, 

shown in Figure 2.9. Recently, the same approach was used by for the separation of 

lysozyme and BSA by using carboxyl modified magnetic particles [108]. 
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Figure 2.9: Process scheme from Suzuki et al. [107]. Functional magnetic sorbents, crude 

extract and ATPS forming components are mixed for the selective binding of a target protein. 
The phase separation is afterwards accelerated by means of a magnetic field. The particle 

containing phase is withdrawn and the target protein is eluted from the magnetic particles. 

After a regeneration step, the particles can be reintroduced to the mixing chamber 

One seminal result that can be found from the publication of Suzuki is that the phase 

separation rate can be increased by the application of an external magnetic field when 

magnetic particles are added to an ATPS. Thus in this work the integration of affinity ATPS 

and the increase of the phase separation rate is described for the first time. 

The integration of magnetic particles to APTS in order to speed up the phase separation 

alone had already been discussed by a group from the University of Lund [109-111]: The 

authors could show that the addition of magnetic particles in PEG/Dextran and 

PEG/phosphate ATPS significantly increase the phase separation rate under the influence 

of magnetic fields. The particles were required to partition the dispersed phase of the 
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system. Based on the combination of selective magnetic separation and magnetically 

enhanced phase separation, the concept of Magnetic Extraction Phases (MEP) was 

introduced. 

2.2.4 Magnetic Extraction Phases 

2.2.4.1 Principle 

The term MEP was introduced by Becker et al. [112]. The principle of MEP is based on the 

combination of AMTPS and functionalized magnetic sorbents that partition into the 

disperse, coacervate phase, shown in Figure 2.10:  

The first step of MEP is the adsorption of the target protein to the particle. The target 

protein containing feed is mixed together with the functionalized particles and the phase 

forming surfactant at conditions below the phase separation temperature. After the 

adsorption is complete, the temperature is raised and the phases begin to split. The 

magnetic particles together with the target protein are enriched in the coacervate phase 

of the system. The speed of phase separation is hereby increased by the application of an 

external magnetic field. After the phase separation is complete, the aqueous phase is 

removed and subsequently elution buffer is added to the coacervate phase to elute the 

target protein from the particles. During this desorption step, the system remains in the 

single-phase state. After desorption, the temperature is raised to induce phase separation 

again and a magnetic field is switched on. The target protein partitions between both 

phases, unaffected by the magnetic sorbents, and is withdrawn from the aqueous phase. 

The coacervate phase comprises the regenerated magnetic sorbents. At this step, the 

MEP cycle is complete. The magnetic sorbents and the coacervate phase can be 

reinjected into the next adsorption step. Assuming a high separation efficiency, only little 

phase forming surfactants and magnetic sorbents have to be added to the next cycle. 
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Figure 2.10: Proposed MEP Process from [112]. The target protein is bound to the particle at a 

temperature which corresponds to the single phase regime. The temperature is raised and due 

to the application of a magnetic field the phase separation is accelerated. The aqueous phase 
from the phase separation comprises the contaminants and is withdrawn in the next step. 

Eluent is added to desorb the target protein from the particles and the temperature is increased 

to split the phases. After magnetically augmented phase separation, the aqueous product 
stream contains the target protein, while the coacervate phase contains the particles. The 

micelle and particle rich phase can be reused in the next cycle, minimizing the cost for particles 

and phase forming surfactant. 

In contrast to the ATPS, described in the work of Suzuki, the application of AMTPS bears 

striking advantages: 

- Only one phase forming component is required 

- The coacervate phase contains the particles, thus most of the phase forming 

component is recycled together with the particles 

- Only little phase forming component remains in the product stream. This not only 

minimizes the loss of the component, but also maximizes the product purity 

- By the help of the temperature, the system is tunable between the single-phase 

and the two-phase regime. Thus, the adsorption of a target molecule can be 

performed in single phase state omitting the negative influence of the two-phase 

system to the adsorption kinetics of the target protein 

- An AMTPS can be selected with extreme partitioning coefficients for the target 

protein, thus the elution step results in a high protein yield and concentration in 

the aqueous phase 
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- The remaining target protein which is eluted from the particles and partitions to 

the micelle rich phase is recycled together with particles and surfactant and 

therefore is not lost but stays in the process 

2.2.4.2 MEP - State of Knowledge 

In the following, important results from Becker are summarized [112]: 

Within this work, two different phase forming surfactants were investigated for their 

applicability in MEP. In general the applicability is dependent on the fact that the applied 

magnetic sorbents partition exclusively to the micelle rich phase of the AMTPS. 

The first candidate was the nonionic surfactant Aethoxal B (C12PEO4,5PPO5). AMTPS based 

on Aethoxal B were characterized by extreme partitioning coefficients K. The investigated 

protein solutions (Lysozyme, 6xHis-GFP, Soy Protein) partitioned almost completely to the 

aqueous bottom phase (K<<1). In addition to this, the surfactant was economically 

beneficial due to its low cost. On the other hand, unfavorable partitioning of a range of 

magnetic particles with different functionalities (e.g. cation-exchange, hydrophobic, 

metal-chelate) was investigated. Most of the particles partitioned to the interface of this 

AMTPS. In addition the partitioning was strongly (and unpredictably) dependent on the 

degree of particle functionalization. This led to the exclusion of this promising MEP 

candidate. 

The second AMTPS investigated was based on the nonionic surfactant Triton X-114. Using 

this system, the partitioning coefficients of two model proteins, lysozyme and ovalbumin, 

were rather moderate cf. the ones in the Aethoxal B system: For a temperature of 30°C 

and a protein concentration of 0.1 g/L the partitioning coefficients were determined to 

KLys = 1.53 and KOva=2.72. In this case, the top phase was the aqueous phase. A 

combination of this AMTPS and magnetic particles functionalized with polyacrylic acid 

lead to the successful demonstration of a MEP process. With a particle concentration >2.5 

g/L, the target protein lysozyme was transferred from the aqueous to the coacervate 

phase, while the contaminating protein ovalbumin remained in the aqueous phase. 
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A semi technical-scale MEP was conducted in a 200 ml batch reactor and three 

consecutive MEP cycles were performed. The magnetic field gradient was realized by 

means of an electromagnet. Figure 2.11 shows the phase separation of the MEP in the 

200 ml separation chamber. In this set of experiments, the phase separation was initiated 

by turning of the stirrer and simultaneously switching on the electromagnet for 20 

minutes. As can be seen, the aqueous top phase is still “cloudy” which means that the 

phase separation is not fully completed. On the other hand, the magnetic particles were 

separated completely within this timeframe. The total particle separation in the three 

cycles was quantified to > 99 %, the estimated loss in phase forming surfactant was 6 % 

per cycle. 

 

Figure 2.11: 200 ml batch MEP: 1.33 % Triton X-114 AMTPS with a magnetic particle 

concentration of 2 g/L. Left: Single-Phase System. Right: Two-Phase System after 20 min at T = 
30 °C, ΔB=30 T/m and Bmax=0.4 T. From [112]. 

The protein separation performance however left room for improvement.In the course of 

the three cycles 50 – 70 % of the target protein was obtained in the product stream. The 

separation performance can be increased by: i) Increasing the K-value of the target 

protein between the phases or ii) Optimization of the binding mechanism of the magnetic 

particles. The protein binding and protein elution performance of the particles highly 

influences the overall performance of the MEP process. On the one hand, the adsorptive 

properties of magnetic sorbents can be fully optimized independent from the AMTPS but 

on the other hand, the particles are required to partition exclusively to the coacervate 

phase. Therefore, the optimization of the particle functionalization is challenging. 
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In summary it was shown by Becker, that MEP is a promising concept for the technical-

scale separation of proteins. From an economical point of view, the utilisation of cheap 

permanent magnets instead of expensive electromagnets is favorable. In addition to this, 

an economic MEP process will require optimized AMTPS and – more importantly - 

magnetic particles with excellent binding and elution properties and proper partitioning 

behavior. Therefore the need in understanding mechanisms of the partitioning of the 

magnetic particles between the two phases is crucial for the further development of the 

MEP process.  

2.2.5 Partitioning of Colloids and Particulates 

2.2.5.1 Energetic Considerations 

When colloids and insoluble small particules are added to a two-phase system, these 

substances partition between the two phases or accumulate at the interphase. A 

theoretical consideration of such a small particle partitioning between two phases was 

early described by Albertsson and Walter [113]. The model is based on the following 

assumptions: 

- The adsorption of particles at the interface reduces the free interfacial area 

between the two phases by the area of the cross sectional radius of the particle. 

- This reduces the Gibbs free energy of the system compared to a system where the 

particles are suspended in one of the two phases. 

A particle which is located at the interface between two phases is depicted in Figure 2.12. 
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Figure 2.12: A particle accumulated at the interface between the top and the bottom phase of a 

biphasic system.  

The total free interfacial energy of such a particle is given by the product of the surface 

tension σi of the phase and the total interfacial area Ai within this phase. For energetic 

considerations the interfacial area of a particle at a certain interface has to be calculated. 

From Figure 2.12 the surface areas of the particle in the bottom phase APB, the top phase, 

APT and of the interface ATB are given by the following equations: 

^�@ = 2 ∙ i ∙ =R ∙ �1 � �jk l� [Eq. 2.29] 

^>@ � 2 ∙ i ∙ =R ∙ �1  �jkR l� [Eq. 2.30] 

^�> � 2 ∙ i ∙ =R ∙ �1  �jk l� [Eq. 2.31] 

The total change in free energy is then given by the equation 

) � m�@ ∙ ^�@ � m�> ∙ ^�>  m>@ ∙ ^>@ [Eq. 2.32] 

For given surface tensions, a particle will then be located at a position with the minimum 

free energy. As an illustration, Figure 2.13 shows the course of the free energy for values 

σPT = 0.02 J m-2, σPB = 0.01 J m-2 and σTB = 0.015 J m-2. The free energy is hereby 

normalized by the particle surface area 4 π R2. 
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Figure 2.13: Course of the total free surface energy as a function of the contact angle θ. At θ ≈ 

48° the total free surface energy reaches a minimum.  

Differentiating Equation 2.32 with respect to l results in the Young equation, from which 

θ can be calculated directly: 

m�> − m�@m>� = �jk l [Eq. 2.33] 

Based on Equation 2.33, Albertsson classified the partitioning behavior of particles in five 

categories [22]: 

|m�> − m�@|m>� o 1 with m�> p m�@ Particles partition to the bottom phase 

|m�>  m�@|m>� o 1 with m�> ( m�@ Particles partition to the top phase 

|m�>  m�@|m>� ( 1 with m�> p m�@ Particles at the interphase with 0° < l < 90° 
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|m�> − m�@|m>� < 1 with m�> = m�@ Particles at the interphase with  l = 90° 

|m�> − m�@|m>� < 1 with m�> < m�@ Particles at the interphase with 90° < l < 180° 

As can be seen from this classification, the partitioning behavior is considered as a 

function of the surface tensions only. The gravitational force (thus the particle size), as 

well as the Brownian motion, which tends to the randomly distribution of the particles in 

both phases [22], are not considered. These effects are considered in the work of Hoeben 

[114]: 

In case of spherical particles, a planar interface between the two phases and neglection of 

the gravitational force, the free interfacial energy is described by the equation: 

�qrs� = −14i ∙ t�R ∙ m>@ ∙ (1 + �jk l)R [Eq. 2.34] 

Here, dp is the particle diameter, σTB is the interfacial tension between the two phases 

and θ is the contact angle between the liquid-liquid interface and the solid-liquid 

interface measured through liquid B. 

For a high interfacial tension σTB ΔEAds becomes negative, thus the particle will remain 

attached to the liquid-liquid interface. 

If there is a significant density difference between the particles and the surrounding 

liquid, the gravitational force FG will significantly influence to the particle behavior. If FG is 

large enough, the particle will be pulled from the interface to the bottom phase of the 

system. In order to be removed from the interface, a particle has to be moved a distance 

of approximately half its diameter. The change in gravitational energy of the whole 

system can be then be calculated to: 



Theoretical Basics  39 

 

 

�qu = v 112 i ∙ t�w ∙ �\�  \xy �R ∙ z [Eq. 2.35] 

Where \� is the density of the particle, \xy  is the average density of the liquid phases and g 

is the gravitational constant. 

 

Figure 2.14: Energetic Considerations of a particle partitioning between two phases.  ΔEG is 

defined as the change in gravitational energy and ΔEAds is the change in total interfacial energy 
of the system. The density difference between the particle and the average density of the liquids 

is 200 kg m-3, the interfacial tensions between the two liquids σab is 30 mN m-1, the contact angle 

θ is 90° and the absolute temperature T is 298 K. From: [114]  

It can be seen from Figure 2.14 that for the given system parameters, ΔEG exceeds ΔEAds if 

the particle diameter is larger than 1 mm. Particles with sizes larger than 1 mm will 

therefore sediment from the interface due to a win of the gravitational energy. For 

particles with sizes of 1 nm up to 1 mm, ΔEAds is the dominating factor, thus it is 

energetically favorable to remain at the liquid-liquid interface. For very small particles 

with sizes below 1 nm, the impact of the Brownian motion due to the thermal energy, 

which is equal to 3/2 k T is predominant. Therefore spontaneous desorption from the 

interface due to Brownian motion is likely to occur [114]. 

2.2.5.2 Practical Investigations 

In practice, the direct determination of the free energy of particles and interfaces is 

difficult. Therefore, several authors investigated the partitioning of particles in ATPS and 

AMTPS from an experimental point of view:  
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Colloidal polymeric acrylic latex particles and TiO2 particles were partitioned in 

PEG/Dextran ATPS [115]. The authors investigated the partitioning of a variety of 

chemically modified beads with sizes from 100 to 450 nm. In their work they found a 

fundamental influence of the surface chemistry and the pH level of their system. For 

lower pH levels, they observed a preferable partitioning of the particles to the PEG phase 

and explained this effect by the creation of hydrogen bonds [115]. At higher pH levels the 

partitioning of carboxylated particles was reversed. In another study, Helfrich et al. 

applied PEG/Dextran ATPS for the selective separation of Au and Ag nanoparticles. At a 

particle size of approximately 14 nm, the Au particles partitioned to the upper, PEG rich 

phase, while the Ag particles were enriched in the lower dextan phase [28]. Increasing the 

Au particle size up to 250 nm did not change their partitioning behavior, the authors 

describe the settling of the larger particles to the interphase after 96 hours, thus, 

showing, that the interfacial tension in this ATPS is large enough to overcome the 

gravitational force [28]. The partitioning of inorganic silica and hematite particles in 

biphasic systems of Triton X-100/dextran was investigated [116, 117]. The authors 

described a pH-dependent reaction of the silica particles. At low pH these particles 

partitioned to the surfactant rich phase and with an increase of the pH the partitioning 

behavior was turned around. In contrast to this, the partitioning of the hematite was not 

pH dependent and the hematite particles partitioned to the bottom, dextran phase at pH 

3, 7, and 11. In both studies, the addition of ionic surfactants to the system, had 

significant influence on the partitioning of the particles: The addition of the cationic 

surfactant dodecyltrimethylammonium bromide (DTAB) fundamentally changed the 

partitioning behavior of the silica particles from the surfactant phase to the dextran phase 

of the system. The anionic surfactant sodium dodecyl sulfate (SDS) did not change the 

partitioning behavior of the silica particles [116]. In case of the haematite particles the 

addition of DTAB transferred them from the bottom to the top phase [117]. The 

difference in the partitioning behavior was explained by adsorptive and electrostatic 

interactions between the polymers of the biphasic system and the particles. 

In summary, all experimental studies investigating the behavior of insoluble particles in 

ATPS explain the particular partitioning of the components by attractive interactions 

between the polymers of the two-phase system and the particle. These may be either 
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attributed to (pH-dependent) hydrogen bonds as in the case of silica particles, or due to 

electrostatic interaction between oppositely charged polymers and particles. 

2.3 Surfactants 

AMTPS are formed on the basis of nonionic or mixed surfactant solutions. It is therefore 

crucial to keep in mind, that – besides thermodynamic considerations – the attractive 

interactions between the surfactants and the solubilized components and the interactions 

between the surfactants and insoluble colloids (in this case the magnetic particles) play a 

dominant role. Besides these interactions, this chapter deals with important process 

considerations, specifically the detection and analysis of surfactants as well as their 

removal from aqueous solutions. 

In general a surfactant (from: SURFace ACTive AgeNT) molecule consists of a hydrophilic 

head and a hydrophobic tail schematically shown in Figure 2.15. A convenient way for 

their classification is based on the electrostatic charge to cationic, anionic, zwitterionic 

and nonionic surfactants. In solutions, surfactants can form a variety of different 

structures depending on the particular conditions and their processing. In Figure 2.16 

different forms of surfactant aggregates are depicted. 

 

Figure 2.15: Scheme of a surfactant molecule with hydrophilic head and hydrophobic tail. 
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Figure 2.16: Forms of surfactant aggregates. A: Spherical micelle, B: Cylindrical micelle, C: 

Reversed micelle, D: Liposome, E: Bilayer 

2.3.1 Analysis of Nonionic Surfactants 

Magnetic Extraction is based on AMTPS created by nonionic surfactants. In order to 

monitor the surfactant concentrations during this process, a fast, robust and reliable 

method and, in addition, a wide detection range is required. One issue hereby is the 

variation of the chain length of the surfactant species themselves: For instance, the well-

known Triton X-114, depicted in Figure 2.17 varies in the number of the PEG-units in its 

hydrophilic head. Only the average number (n=7.5) is provided.  

 

Figure 2.17: Molecular Structure of Triton X-114 with the average number of PEG subunits: 

n=7.5. 
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The nonionic surfactant Eumulgin ES will play a dominant role in this thesis. The chemical 

formula of Eumulgin ES is C12-14PEO5PPO5. Besides the varying hydrophobic carbon chain, 

it is produced by copolymerization of PEG and PPG. The copolymerization results in a 

variety of possible chain configurations. These examples demonstrate, that surfactants 

cannot be classified as “a” defined molecule, but a range of very similar molecules. In 

addition, the influence of large organic macromolecules, such as proteins, must be 

considered. These macromolecules can exhibit similar properties than the surfactants and 

therefore interfere their analysis. For example surfactants of the Triton X series exhibit an 

absorbance maximum at 283 nm due to their aromatic character. Therefore, UV-Vis 

spectroscopy can be exploited as rapid method for their quantification in aqueous 

solutions. Protein quantification, however, is typically performed at 280 nm. Thus, both 

substances interfere the quantification of the other. The absorbance spectrum of 

Eumulgin ES is shown in Figure 2.18 for varying Eumulgin ES concentrations at 

wavelengths from 200 nm to 500 nm. As can be seen, Eumulgin ES exhibits an absorbance 

peak maximum at 213-216 nm. A similar maximum has been reported for the non-ionic 

detergent pluronics F68, a PEG-PPG copolymer surfactant. In the given context, the 

quantification of a surfactant protein solution by photometric detection has to be waived 

for the same reasons than in the Triton X case. 

 

Figure 2.18: UV-VIS absorbance spectrum of Eumulgin ES. The spectra show an absorbance 

maximum at 213-216 nm. 
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Besides direct spectrophotometric assays, precipitating reactions with the surfactant 

molecules have often been applied for their quantification. The precipitation by 

ammonium cobaltothiocyanate, following extraction of the precipitate into ethylene 

dichloride has been reported [118]. This precipitation is not interfered by proteins and 

the author was able to detect Triton X-100 in the range down to 40 µg. The chemicals 

used however are toxic thus complicating the assay. Other analytical procedures are 

based upon the precipitation of the surfactant with e.g. phosphotungstic acid [119], 

silicotungstic acid [120] or Triolein [121]. The amount of surfactant is then determined 

directly by turbidity of the solution or by subsequent gravimetric, volumetric or 

photometric determination [118]. Most of these described methods are rather exotic and 

a lot of experimental effort is required making them impracticable for fast process 

monitoring. A fast method for the detection of nonionic surfactants was developed based 

on potentiometric titration [122-125]: The principle of the method is the complexation of 

barium ions with the hydrophilic chain of the surfactants and the subsequent 

precipitation using sodium tetraphenylborate. Figure 2.19 shows the principle of this 

reaction.  

 

Figure 2.19: Precipitation of a nonionic surfactant upon the complexation with Ba2+ ions and 

precipitation with sodium tetraphenylborate. From [122]. 

The titration is then performed by: a) addition of barium chloride to a surfactant solution, 

b) titration of the solution with sodium tetraphenylborate, and c) detection of the 

quantitative precipitation of sodium tetraphenylborate by a particular electrode (NIO-

electrode from [122]. Table 2.3 summarizes candidates for the process monitoring of 

nonionic surfactants in a magnetic extraction process, the detection limits of each 

method and their limitations. For concentrations above 200 mg/L and in absence of 
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interfering substances, the determination of the Eumulgin ES concentration by UV-

spectroscopy is a fast, convenient method. For very low concentrations surface tension 

can be applied by back-titration of the solution with milliQ water until the cmc is 

deceeded and the surface tension begins to increase. Although this method has been 

successfully applied [126], sufficient amount of sample is required and the detection 

method is laborious. For samples that do not contain other carbon sources, the 

determination of the total organic carbon (TOC) is best suited, as the detection limit is 

very low. For determinations of nonionic surfactants in presence of interfering carbon 

sources (proteins, DNA, peptides etc.) potentiometric titration is a robust, reliable 

method.  

Table 2.3: Comparison of different surfactant detection methods, their detection limits and 

limitations 

Method Detction Limit Drawback 

UV-Spectroscopy 300 mg/L Adsorbance of other components 

Potentiometric Titrationa 20 mg - 

Surface Tensionb 9 mg/L 
Components influencing the surface 

tension 

Total Organic Carbonc 2 mg/L Influence of other carbon sources 

a
Potentiometric Titration is a method based on the total mass of surfactant. The volume used can vary thereby from 40 ml to 

approximately 1 liter with a detection limit of 20 mg total surfactant. 

b
Surface Tension measurement based on results presented in Chapter 8.4.1. 

c
TOC measurement based on experimental data from Chapter 6.3.3.1. 

2.3.2 Adsorption of (Non)Ionic Surfactants to Solid Surfaces 

2.3.2.1 Mechanism and Orientation 

As described in Chapter 2.2.5.2, the interactions of phase forming components in 

A(M)TPS and particles supposedly play a dominant role for their partitioning behavior. 

However, in most articles addressing partitioning phenomena in AMTPS the contribution 

of adsorption of the phase forming component is neglected. In this context, this chapter 

deals with the interactions of nonionic surfactants in solutions with solid interphases. 

Surfactants are surface active by definition. Thus, their interaction with all kinds of 
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surfaces is obligatory. In industrial processes the interactions of surfactants and colloidal 

particles are of importance as adsorption phenomena directly influence the colloidal 

stability of the dispersion [127]. An example for the interaction of surfactants and 

dispersed particles is the cationic surfactant CTAB which was shown to adsorb to anionic 

silica particles by measuring the reduction of the surface tension upon increasing particle 

concentration [128]. The mechanisms of the adsorption of (non)ionic surfactants to 

surfaces are as versatile as the properties of the surfactants. A review of experimental 

studies of surfactant adsorption at hydrophilic interfaces can be found from Paria and 

Khilar, who divide the adsorption mechanisms of ionic and nonionic surfactants as 

follows: [129]: 

- Ion Exchange: Replacement of counter ions adsorbed on the substrate equally 

charged surfactant ions 

- Ion Pairing: Adsorption of surfactant ions from solution onto oppositely charged 

sites unoccupied by counter ions 

- Hydrophobic bonding: Adsorption by an attractive hydrophobic force 

- Adsorption by polarization of π-electrons: Attraction between an electron rich 

aromatic nucleus in the surfactant and the solid adsorbent having strongly positive 

sites 

- Adsorption by dispersion forces: Van der Waals forces between adsorbate and 

adsorbent increases with increasing molecular weight of the adsorbate 

The adsorption kinetics of nonionic surfactants to hydrophilic surfaces, especially silica 

surfaces, has been investigated thoroughly. A basic model for the adsorption kinetics of 

surfactants to silica layers from ellipsometry measurements is provided from Brinck [130, 

131] in Figure 2.20. 
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Figure 2.20: Schematic solution profile in the bulk surfactant solution. The adsorption and 
desorption process are considered to proceed in two consecutive steps. In case of adsorption: 

1) Diffusion of the surfactant monomers or micelles from the bulk to the stagnant layer. 2) 

Passage from the stagnant layer to the sub-surface and adsorption. Both steps happen 
simultaneously. From [131]. 

The model is based on monomer diffusion, micellar diffusion and micellar dissociation, 

whereas it is assumed that only single surfactant molecules adsorb to the surface.  

Early studies were performed in order to investigate the adsorption of the surfactants by 

adsorption isotherms e.g. at hydrophobic surfaces [132, 133]. The orientation of 

surfactant adsorption to hydrophilic silica surfaces has recently aroused much attention. 

Using ellipsometry and atomic force microscopy (AFM) the group around Tiberg showed 

that hydrophobic surfaces were mainly covered with surfactant monolayers or sub-

monolayers while hydrophilic surfaces are covered with surfactant bilayer-type 

aggregates that were identified as globular structures similar to bulk micelles [134-136]. 

Figure 2.21 depicts the experimental results from the oriented adsorption of nonionic 

surfactants of the class of CXEY onto hydrophobic and hydrophilic surfaces. 
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Figure 2.21: Orientation of CNEM surfactants at a) bare silica and b) hydrophobic silica with 

increasing surfactant concentration cS and surface coverage q. When the concentration reaches 

the critical surface aggregation concentration (csac) aggregates are formed. A plateau in q is 
reached for cS > cmc. From [134]. 

Globular, ordered micelle structures rather than bilayers were also found by 2H-NMR 

investigations [137] and additionally by the group around Oberdisse, who investigated the 

adsorption of nonionic surfactants onto colloidal silica particles by small angle neutron 

scattering (SANS). This phenomenon was termed “micelle decorated silica” [138-141].  

Besides SANS, AFM and Ellipsometry, detection methods like Attenuated Total Reflection 

Fourier Transferred Infrared Spectroscopy (ATR-FTIR) and Quartz Crystal Microbalance 

with Dissipation (QCM-D) were used to provide rapid, noninvasive data to monitor 

surfactant adsorption to solid surfaces e.g. [142-144]. 

2.3.2.2 Role of pH on the Adsorptive Behavior of Nonionic Surfactants 

The binding of surfactants to hydrophobic surfaces arises from interactions between the 

carbon chain of the surfactant and the surface. The binding to hydrophilic surfaces 

however is assumed to be related to hydrogen bonding between the ether or terminal 

hydroxyl group of the surfactants and the surface [145]. This assumption is confirmed by 

the increase of surfactant adsorption with decreasing pH as the number of protonated 

OH groups (of the surface or the surfactant) capable for hydrogen bonding increases 

[146]. This was also shown for resins with carboxyl groups [147]. The same effect was 
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shown for PEG polymers alone (PEG is often the hydrophilic part of a surfactant): Dynamic 

light scattering was used to monitor the adsorptive behavior of the PEG onto colloidal 

silica particles of 22 nm size: The amount of adsorbed PEG was constant up to pH 10 and 

then sharply dropped to zero [148].  

In summary, nonionic surfactants are capable of adsorbing to hydrophilic as well as 

hydrophobic interfaces. The impact of pH on the adsorptive behavior of nonionic 

surfactants onto hydrophilic surfaces however is striking. As the adsorption of the 

surfactants is supposedly involved in the partitioning behavior of magnetic carriers during 

the magnetic extraction process, the pH is a crucial criterion of process feasibility.  

2.3.3 Removal of Nonionic Surfactants 

Bioseparation processes making use of surfactant systems, for instance magnetic 

extraction, require the subsequent removal of the surfactant from the target product. In 

the best case, magnetic extraction leads to a product stream with a surfactant 

concentration close to the cmc. This however requires complete phase separation (as 

described in chapter 2.2.2). Due to process limitations the surfactant concentration is 

therefore likely to exceed the cmc more or less. Solid-phase extraction techniques can be 

applied for the removal of surfactants, e.g. by nonpolar hydrophobic beads [149]. The 

separation performance, however, depends on the properties of the target molecule. 

Besides adsorptive methods, the separation of surfactants can be realized in terms of 

filtration techniques: Surfactants with a high cmc have been removed by dialysis and 

more efficiently by gel filtration [150]. Especially in technical scale, dialysis is unfavorable 

due to the large dialysis volumes (typically 1000 times the volume of the feed) and 

prolonged process times. On the other hand, the removal of surfactants can be realized 

by means of ultrafiltration. 

2.3.3.1 Ultrafiltration 

Ultrafiltration (UF) is based on the hydrostatic transmembrane pressure between two 

liquids separated by a permeable membrane. It is classified by a membrane pore size of 

1 – 100 nm. In Table 2.4 the classification of membrane based filtration techniques is 

summarized. 
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Table 2.4: Classification of transmembrane pressure based filtration processes 

Process Pore Size Transmembrane Pressure 

Microfiltration 0.05 – 10 µm < 2 bar 

Ultrafiltration 1 – 100 nm 1 – 10 bar 

Nanofiltration < 2 nm 10 – 25 bar 

Reverse Osmosis - 20 – 100 bar 

UF can be operated either in “dead-end” mode where the direction of the feed flow is 

orthogonal to the filter or in cross-flow mode, where the feed is pumped in a tangential 

manner to the membrane. If the volumetric flux JV through an UF membrane is limited by 

the membrane only, it is described by the Hagen-Poiseuille equation: 

{b = +^ ∙ | = }R ∙ _ ∙ �e8 ∙ � ∙ �C ∙ � [Eq. 2.36] 

Here V is the volume, A is the membrane surface area, t is the time, r the radius of the 

pore, ε the porosity of the membrane, Δp is the transmembrane pressure, η the viscosity 

of the fluid, Δχ is the length of the channel and τ the tortuosity. For cylindrical pores 

orthogonal to the membrane surface, τ equals 1. As can be seen from Equation 2.36, the 

flux is a linear function of the transmembrane pressure.  

In technical applications the flux is often not fully independent of the pressure. In these 

cases as the pressure is increased the flux is asymptotically approximating a maximum 

flux {� as shown in Figure 2.22.  
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Figure 2.22: Dependency of the flux on the transmembrane pressure. If the flux is only 

dependent on the membrane properties, the correlation to the pressure is linear. For the 
development of a gel layer, the flux is limited to ��. 

This effect is due to the accumulation of retained material and subsequent depletion of 

the (permeating) components in the boundary layer adjacent to the membrane surface. A 

second layer called gel or cake is formed at the membrane surface. The principle of this 

so-called concentration polarization model [151, 152] is depicted in Figure 2.23. 

 

Figure 2.23: Concentration Polarization model at a cross-flow ultrafiltration membrane. Due to 

accumulation of a component at the membrane surface, a gel layer is formed by which the flow 
through the membrane is decreased. 
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The convective transport of a particular substance S (with the bulk concentration cb) from 

the bulk towards the membrane is given by: 

{�,!;g = ���̂ = {b ∙ �� [Eq. 2.37] 

The flux of S through the membrane is given by: 

{�,��� = {b ∙ �? [Eq. 2.38] 

Due to the relative decrease of solvent in the vicinity of the membrane cb is increased to 

the maximum gel concentration cg. The concentration gradient dc/dδ leads to a diffusive 

transport of the substance from the membrane to the bulk solution. The diffusive flux 

JS,diff is described by Equation 2.39: 

{�,s%�� = �� �̂ = −& t�t� [Eq. 2.39] 

Here, D is the diffusion coefficient of the target component in the solvent. At steady-state 

conditions one finds: 

	{�,��� = {�,!;g − {�,s%�� [Eq. 2.40] 

Integration around the boundary conditions (c = cg and cb; x = 0 and δ) results in the 

equation for the flux through the membrane: 

{b = &� ∙ UD �� − ���� − �� [Eq. 2.41] 

For complete retention of the substance (c� → 0), the equation is simplified to: 
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{b = &� ∙ UD ���� [Eq. 2.42] 

From the linear graph J� = f	(ln	c�) the maximum gel concentration can then be 

obtained by its extrapolation to the intercept of the X-axis and the quotient D/δ as its 

slope. 

2.3.3.2 Ultrafiltration of Surfactants 

The removal of nonionic surfactants by means of UF has already been described to purify 

surfactants from solutions in 1964 by Schott [153]. Nonionic surfactants have been 

separated in UF using dead end filtration [154] or cross-flow filtration [155]. It is generally 

assumed that, by means of UF, the large micelles can be separated from the small single 

surfactant molecules [156]. This is heavily exploited in the concept of micellar enhanced 

ultrafiltration (MEUF): MEUF is used to remove traces of heavy metal ions by their 

entrainment in oppositely charged micelles. The metal ion containing micelles are 

subsequently separated from the solution by means of UF, resulting in a heavy metal ion 

depleted permeate stream [157]. In several UF studies, however, the concentration of the 

surfactants in the permeate exceeds the cmc e.g. [155, 158-160]. In addition to this, for 

filtration of surfactant solutions above their cmc a harsh flux decline is generally reported. 

For instance, for the filtration of nonionic surfactants of the Triton X series or C10Ex 

through a 10 kDa polyethersulfone (PES) membrane, a reversible flux decline up to 86 % 

during filtration was detected. This could however not directly be attributed to the 

standard concentration polarization model - as increasing the transmembrane pressure 

from 0.5 – 2 bar consequently increased the flux in a linear fashion [161]. The flux decline 

in surfactant filtration is explained not only by the formation of a gel, but also by 

adsorption of surfactant molecules to the membrane surface or “creeping” of single 

molecules to the membrane pores [158]. A concentration polarization model was 

proposed by Jönsson to describe the mechanisms of nonionic surfactants ultrafiltration 

[162], shown in Figure 2.24. 
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Figure 2.24: Model of concentration polarization of nonionic surfactants at the filtrate side of an 

UF membrane. The concentration of the nonionic surfactant monomers is increased above the 

cmc close to the membrane. In addition to this, the surfactant molecules adsorb to the 
membrane. A boundary layer is formed containing micelles and surfactant monomers. In this 

model dots symobolize surfactant molecules and the clusters symbolize micelles. 

As surfactants can adsorb to the membrane, it is obvious that the surfactant retention is 

dependent from the type of membrane. Further understanding of the mechanisms of 

surfactant removal via UF with different membranes, can be achieved from the following 

studies: 

I) It was reported that the retention of nonionic surfactants is much higher (93 % 

for a MWCO of 200) for hydrophilic surfaces whereas hydrophobic PES 

membranes led to a very low retention of the surfactants (46 % for MWCO of 

400 and 1000 respectively) in solutions below their cmc [163].  

II) It was also shown that the adsorption of nonionic surfactants to a more 

hydrophobic PES membrane is more pronounced, than the adsorption to a 

hydrophilic cellulose acetate membrane by static adsorption experiments 

[164]. 

III) Hydrophobic PES membranes showed a flux reduction for the filtration of 

nonionic surfactants at concentrations even below the cmc, whereas no flux 

reduction was observed for the same conditions with a hydrophilic cellulose 

membrane [159]. 
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From these evidences it can be hypothesized, that nonionic surfactants adsorb to 

hydrophobic membranes due to hydrophobic interactions. The adsorption at the 

membrane and especially inside the membrane pores as well as the micelle formation 

adjacent to the membrane lead to a drastic flux reduction. The surfactants localized inside 

the membrane pores can pass the membrane unhindered, thus their concentration in the 

permeate stream can exceed the cmc. 

2.4 Liquid-liquid Extraction 

In general, liquid-liquid extraction is a separation process based on the different 

distribution of the target component between the two phases. Two physical processes 

determine the overall process performance. 

- The mass transfer of the target component from the initial to the target phase. For 

a fast mass transfer, small droplets (thus large contact areas) are desired. 

- The phase separation rate. 

For magnetic extraction, the binding of the target component to the beads takes place 

under single phase conditions. After the adsorption of the target component is 

completed, the phase separation is initiated by an  increase of the temperature. 

Therefore it can be concluded that during magnetic extraction, the influence of the mass 

transfer is neglectable. Thus, after protein binding to the particle is complete, the phase 

separation rate is dominating the remaining process time. 

2.4.1 Phase Separation of two immiscible Fluids 

A typical phase separation profile of a batch experiment can be seen from Figure 2.25 for 

a disperse light phase and a continuous heavy phase. In the sedimentation zone where no 

coalescence occurs, the phase separation curve shows typically linear behavior. If the 

droplet separation rate is faster than the rate of coalescence, a zone of dense-packed 

droplets forms. Within this zone, the droplets grow by droplet-droplet coalescence and 

eventually coalesce into the top phase. At the time te the phase separation process is 

complete [165].  
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Figure 2.25: Typical phase separation curve in batch experiments. The disperse droplets float 

to the interphase and form a dense package. From this package, the disperse droplets coalesce 

to the top phase. From [166]. 

For a continuous system, typically a dispersion wedge or dispersion band is formed as 

illustrated in Figure 2.26. The length of the dispersion wedge equals the minimum 

required length of the separator. Besides the creation of a dispersion wedge or band, very 

small droplets are formed, that are difficult to separate [167]. 

 

Figure 2.26: Continuous liquid liquid extraction. A wedge of dispersion is formed depending on 
the flow of the feed. Modified from [167]. 

The phase separation can be divided into two processes steps: Sedimentation (or 

flotation) of the droplets to the interface and coalescence effects between the single 

droplets and the disperse phase. The basic principles of these interactions are explained 

in the next chapters. 
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2.4.1.1 Sedimentation of Single Droplets 

The velocity of the sedimentation of a single, spherical particle (or a spherical liquid 

droplet without deformation) surrounded by a continuous viscous liquid is described by 

the Stokes´ law: 

��: = z ∙ ∆\ ∙ tR18 ∙ ��  [Eq. 2.43] 

Where Δρ is the density difference of the particle and the surrounding liquid and d is the 

droplet diameter, g is the gravitational force and ηC the viscosity of the fluid. With the 

given equations for the Reynolds number and the Archimedes number: 

=c = t ∙ � ∙ \���  [Eq. 2.44] 

^} = \� ∙ Δ\ ∙ z ∙ tw��R  [Eq. 2.45] 

Equation 2.43 can be expressed as: 

Re�: = ^}18 [Eq. 2.46] 

Stokes´ law is only valid for a single solid particle and laminar flow. In this case, laminar 

flow is, however, only valid for a Reynolds number < 0.25 [168]. For turbulent flow during 

sedimentation the Reynolds number can be calculated according to Zimmels [168]: 

=c�% = �−4.8 + Q23.04 + 2.91 ∙ √^}1.26 �R [Eq. 2.47] 
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2.4.1.2 Internal Circulation 

Besides the effects of turbulent and laminar flow, for a liquid droplet sinking or floating in 

the surrounding fluid the “Marangoni convection” has to be considered. The Marangoni 

convection is caused by surface tension gradients between the droplets and the 

surrounding liquid. This gradient can lead to the circulation of the fluid in the inside of the 

droplets, which can result in an increase of the droplet velocity in comparison to a solid 

particle. The effect is diminished, however, by the presence of surfactants at the droplet 

surface, as the surfactants decrease the mobility of the droplet interphase [167]. A simple 

mathematical correlation was developed by Hadamard and Rybcynski (from [167]) based 

on viscosities of the continuous and disperse phase: for a single droplet, the Stokes 

velocity vst is multiplied with the correction factor KHR: 

	A� = 1 + ����23 + ����  [Eq. 2.48] 

For very large viscosities of the disperse phase cf. the continuous phase, KHR approximates 

1 thus no internal circulation occurs (e.g. an extreme case would be a solid particle). For 

very small viscosity differences KHR converges to 1.5.  

2.4.1.3 Effect of Hold-Up 

The considerations above are only valid for a single droplet. The influence of interaction 

of a large amount of hold up, resulting in many droplets and the interactions of these 

droplets with the continuous phase, is neglected. Sinking droplets lead to a counter-

directed flow of continuous phase that is displaced by the droplets, which in consequence 

leads to a reduced phase sedimentation velocity. Correction factors describing this effect 

as a function of the total hold-up can be found e.g. from Zimmels [168] or Jeelani [169]: 

	� ���,¡% = (1 − ¢)W1 + ¢£ w¤ Y cde W53 ∙ _1 − _Y [Eq. 2.49] 
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	� ���,¦� = (1  _�R1 � 4.56 ∙ _ [Eq. 2.50] 

2.4.1.4 Coalescence 

As shown in Figure 2.25 droplet sedimentation leads to the accumulation of the droplets 

in a dense-packed zone next to the interphase. The droplets either coalesce during 

sedimentation, which leads to larger drops with increased sedimentation speed, or the 

drops coalesce at the dense layer. The basic scheme of coalescence is depicted in Figure 

2.28 and divided into three stages:  

I: Approaching of the droplet to the interphase. 

II: Droplet deformation at the interface due to the interfacial tension between the 

disperse phase and the continuous phase. A thin film is formed. The gravity (or 

buoyancy) affecting the droplet leads to film drainage between the droplets. 

When the thickness of the thin film reaches its critical value, the van der Waals 

forces cause it to rupture [170]. 

III: The droplets coalesce with the interphase. The total time of coalescence is 

dominated by the film drainage. However, no generally accepted model for 

calculation of the film drainage has been developed yet [167].  

 

Figure 2.27: Principle of droplet coalescence. A droplet approaches the interface. A thin film is 

formed in between the droplet and the interphase. The film drains until the layers rupture and 
the droplet coalesces. From [167]. 

The mechanism of film drainage is even more complex in the presence of surfactants. As 

shown in Figure 2.28 the film drainage between a droplet and the interface leads to the 
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generation of a surfactant gradient (Figure 2.28 left). The surfactant gradient causes a 

surface tension gradient which provokes Marangoni convection (Figure 2.28 right). Thus 

the reflux of the continuous phase between the droplet and the interphase is induced and 

the coalescence of the droplet is impeded. 

 

Figure 2.28. Induction of Marangoni convection during coalescence of a droplet in surfactant 

systems. The film drainage leads to the establishment of a surface tension gradient that leads to 
marangoni convection and reflux of the continuous phase between the droplet and the 

interphase. From [171] 

2.4.2 Phase separation in MEP – State of Knowledge 

A model was developed by Becker for the phase separation velocity in Magnetic 

Extraction [112]. The model is based on the following assumptions: 

- The magnetic particles are completely integrated into the micellar droplets of the 

AMTPS 

- The magnetic particles are homogeneously dispersed throughout the micelle rich 

droplets 

- The increase in volume of the micellar droplets related to the uptake of magnetic 

particles is neglectable 

- The friction can be calculated according to Stokes 
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Figure 2.29. Force balance around a magnetic particle doped micellar droplet in an AMTPS at 

steady state. The magnetic field gradient is directed upwards. The particles are enriched in the 
droplet.  

At steady state conditions, the mass balance is then given by: 

)u + )§ = )@ + )* [Eq. 2.51] 

With the applied forces given by the equations: 

Gravity: )u = 16 ∙ i ∙ z ∙ W\� � ��_ Y ∙ tw [Eq. 2.52] 

Friction: )§ � i ∙ �! ∙ � ∙ t [Eq. 2.53] 

Buoyancy: )@ � 16 ∙ i ∙ z ∙ \� ∙ tw [Eq. 2.54] 

Magnetic Force: )*�d� � T� ∙ ��_ ∙ 16 i ∙ tw ∙ $�d� ∙ z}�t��d� [Eq. 2.55] 

Equation 2.51 can be solved for the velocity to: 

�*a�d� � 118 ∙ tR ∙ z ∙ �\�  \�� � L�d� ∙ ��_��  [Eq. 2.56] 
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With 

L(d) = z + T� ∙ $����d�� ∙ z}�t��d� [Eq. 2.57] 

From Equation 2.56 the velocity of a single droplet can be calculated. Besides the physical 

properties of the AMTPS and the magnetic particles, the knowledge of the geometry of 

the magnetic field is required, as both magnetic field gradient as well as magnetic 

strength at the X-coordinate influence the magnetic force. These can be obtained without 

elaborative sedimentation experiments. The droplet diameter remains as only process 

dependent parameter. This parameter, however, is independent from the process volume 

and needs to be either estimated or determined in small-scale experiments. 

2.4.3 Mixer Settler Devices 

All technical devices applied for liquid-liquid extraction are based on the same tasks. The 

first task is the dispersion of one of the liquids in the other in order to enlarge the contact 

area to maximize the mass transfer. In the mixer the energy input is ideally directly 

related to the resulting drop size. The second task is the demixing of the fluids. The 

technical apparatus can be classified into extraction columns, centrifugal extractors and 

mixer settlers. The choice of the separator is based on the process requirements whose 

basic criteria can be seen from Figure 2.30.  

 

Figure 2.30: Criteria for the choice of separation apparatus for liquid liquid separation. 

Modified from [172]. 
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In case of the concept of CME (described in chapter 2.2.4) the mass transfer plays a minor 

role. The separation is conducted under the influence of the magnetic field generated by 

a plain permanent magnet and the phases are injected in a concurrent fashion. The 

appropriate apparatus for this separation is therefore a mixer settler. For this reason a 

detailed illustration of centrifugal extractors and extraction columns is spared. Further 

information about these apparatus can be found e.g. in [172-174]. 

2.4.3.1 Mixer Settlers 

The advantage of mixer settlers in comparison to other extraction equipment is that 

efficiencies of nearly 100 % can be reached [173]. These high efficiencies can be retained 

even for large throughputs. The simple technical installation of a cascade of mixer settler 

batteries has led to their broad industrial use. A mixer settler unit consists of a mixer area 

(e.g. a stirred vessel) followed by a settling vessel where the phases are separated. At the 

end of such a unit the heavy and the light phase are withdrawn. Usually additional valves 

are installed to remove sludge at the interphase or from the bottom of the heavy phase. 

The basic concept can be seen in Figure 2.31. 

 

Figure 2.31: Principle of a mixer-settler unit. Modified after [175]. 

Due to the horizontal arrangement of the settlers large areas are required in order to 

achieve high throughputs in industrial applications. Thus for industrial applications, 

special mixer-settler arrangements have been created to spare space. In a box-type mixer 

settler, shown in Figure 2.32 the mixing and separating areas are integrated into one unit. 
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The phases are separated by an overflow weir for the light phase, while the heavy phase 

underflows a slit. The agitator disperses and conveys the liquid phases [173]. 

 

Figure 2.32. Box-type mixer settler. A: Side view; B: Plain view. From [173]  

Another space-saving design composes of a tower-like arrangement of the mixer settler 

battery. This arrangement is called Lurgi tower extractor and depicted in Figure 2.33. 

 

Figure 2.33. Principle of the Lurgi tower as mixer settler. From [173]. 
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2.4.3.2 Coalescence Aids 

The coalescence time of the disperse phase determines the residence time of the liquid in 

the settler, thus, governing the area required for the separator. Therefore, mixer settler 

units are often supplied with coalescing aids to decrease the coalescence time [176]. 

Coalescing aids provide contact area inside the mixer, where the small droplets can form 

lager droplets. Usually, but not necessarily, the droplets wet the surface of the coalescing 

aid. By the use of coalescence aids the length of the separator (or the residence time) can 

be reduced by a factor 2-5 [173, 177]. The most important coalescing aids are inclined 

packages of plain (or corrugated) plates shown in Figure 2.34-A and fiber bed filters 

shown in Figure 2.34-B. 

 

Figure 2.34. A: Inclined plates in a mixer settler to increase the coalescence of the droplets. B: 

Fiber bed as coalescing aid of a settler unit from [173], 

The influence of various coalescing aids onto the separation performance is summarized 

by [173] form several scientific reports: 

- Thin laminar films should flow on the plates, as the coalescence of drops is 

promoted by shear stress of film flow near the plate. The larger the flow rate of 

the concurrent continuous phase, the smaller the film thickness and the better is 

the coalescence 

- The plate should preferably be wettable by the disperse phase 

- The drop swarm has to be distributed equally over the width of the plates 

- Constructions that can thin the trickling film increase the overall settler 

performance 
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- Short lengths of plates of approximately 400 mm are sufficient for coalescence of 

drops atop the film 

- Surfactants hardly influence coalescence and settling performance up to medium 

flow rates of the disperse phase 

- Depending on the liquids involved, the drop coalescence leaves very small 

droplets, due to partial coalescence. This leads to droplet entrainment at the 

settler exit 

- The optimum of plate inclination is within the range between 10° and 15° 
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4.1 Abstract 

Coexistence curves of two different aqueous micellar two-phase systems (AMTPS) were 

determined by potentiometric titration. The nonionic surfactants Triton X-114 and 

Eumulgin ES were quantified by means of the Metrohm NIO Surfactant Electrode with 

excellent correlations coefficients. The influence of different media on the titration end- 

point was ascertained. Measurement in the presence of commonly used biotechnological 

buffers 2-(N-morpholino)ethanesulfonic acid (MES), sodium phosphate, and 2-(Bis(2-

hydroxyethyl)amino)acetic acid (bicine) as well as in the supernatant of an E. coli 

fermentation exhibited deviations below 5 %. Coexistence curves of Triton X-114 AMTPS 

and Eumulgin ES AMTPS were investigated in a temperature range of 25 °C to 40 °C by 

measuring the surfactant concentration of both, the detergent-rich (coacervate) and the 

detergent-depleted (aqueous) phase after phase separation. The resulting coexistence 

curves are in good agreement with those published by authors who have employed the 

cloud point method. Yet, potentiometric titration outranges the cloud point method as it 

provides direct information about the compositions of the coacervate and the aqueous 

phase, which form when an AMTPS is shifted up to a temperature at which it splits. 

Keywords: Aqueous micellar two phase system, Potentiometric titration, Cloud point, 

Phase separation, Triton X-114, PPG-5-Laureth-5  
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4.2 Introduction 

Polyoxyethylene-based detergents, typically abbreviated CiEj, belong to the class of 

nonionic surfactants (NIS). Aqueous solutions containing NIS concentrations above their 

critical micelle concentration (cmc) form a single clear phase. Upon temperature increase, 

at a certain point called the cloud point, the single phase separates into two phases, one 

surfactant-rich phase, the other surfactant-depleted yet still above the cmc [1].  

Bordier was the first who, using the NIS Triton X-114, demonstrated that proteins added 

to such a detergent-based Aqueous Micellar Two Phase Systems (AMTPS) partition 

selectively between the phases, based on their hydrophobicity [2]. Since then, the 

application of AMTPS as liquid-liquid extraction technique has created a large field of 

interest and several AMTPS have been identified for the purification of, e.g. biomolecules 

[3-5], aromatic hydrocarbons [6], metal ions [7], and azo-dyes [8]. 

With regard to large-scale purification by continuous or cyclic application of AMTPS, 

respectively, accurate knowledge of detergent concentrations in both phases is required. 

The detergent concentrations of the top and bottom phases at a certain temperature and 

in a certain buffer system are located on a tie line depicted by the coexistence curve. 

The most common procedure for mapping the coexisting curve is the cloud point method 

introduced by Huang et al. [9]. This method is based on the micellar solution becoming 

turbid at the transition from single-phase to two-phase regime and vice versa. The 

principle of the cloud point method is depicted in Figure 4.1. A solution containing a 

certain concentration of surfactant (S1 to S4 in Figure 1) is set up in a temperature-

controlled bath. The stirred clear solution is slowly heated until it becomes turbid. The 

temperature is noted and the solution is allowed to cool down until it becomes 

transparent. The average temperature at both points of transition is taken as the cloud 

point, marking one spot of the coexisting curve (marked with a cross in Figure 4.1). In 

order to set up a coexisting curve, this procedure has to be repeated for numerous 

surfactant concentrations.  
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Figure 4.1: Principle of the cloud point method for determination of the coexistence curve. 

Soultions with surfactant concentrations S1-S4 are heated until the solution becomes “cloudy” 
(marked with a cross). The coexistence curve is obtained by connecting the cloud points 

The cloud point method is the method of choice for the characterization of many recently 

discovered AMTPS, e.g. tri-block polymers [10] or alkyldimethylohosphodine oxide [11] 

although it comes with several drawbacks. The most severe one consists in the fact that 

this method cannot provide direct information about the length of a tie line and the NIS 

concentrations corresponding to a certain temperature, something which is essential 

when performing a partitioning experiment. The cloud point method only marks the point 

of transition from a single- to a two-phase system. In addition, the cloud point obtained 

from heating up the solution can differ from the cloud point derived from cooling the 

solution by up  to 2 °C [12]. 

In the following, an alternative method for determining coexistence curves will be 

reported, which directly measures the concentration of polyoxyethylated NIS. The 

principle of the method is illustrated by Figure 4.2. An AMTPS is adjusted to a certain 

temperature. At this temperature both, the detergent-rich and the detergent-depleted 

phase, are in equilibrium, which is described by their corresponding tie line. The direct 

determination of the surfactant concentrations provides information about the tie line 

marking two spots of the coexisting curve. This procedure can be repeated at several 

temperatures resulting in the complete coexisting curve including the knowledge of tie 

line lengths. Moreover, most of the, e.g. protein partitioning experiments are performed 

at defined temperatures because of the thermal stability of proteins [13]. In this case, 

knowledge of the coexistence curve is unnecessary; in fact, a single phase separation 
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experiment at the given temperature followed by the determination of the surfactant 

concentration is sufficient. 

 

Figure 4.2: Principle of the determination of the coexistence curve by direct determination of 
the surfactant concentration. Solutions with the surfactant concentrations S1 and S2 are heated 

to a certain temperature located in the two-phase region. After phase separartion is completed, 

the concentration of the surfactant- poor P1-P2 and surfactant-rich R1-R2 phases is determined 
by potentiometric titration 

The determination of the surfactants is based on a potentiometric end-point titration 

using the Metrohm NIO surfactant electrode. This electrode has been specially designed 

for the determination of polyoxyethylated NIS [14]. The basic principle of the 

determination is the formation of a pseudocationic complex of the NIS´s polyoxyethylene 

moiety with barium ions followed by precipitation via sodium tetraphenylborate. The 

potentiometric titration of polyethylene glycols has been introduced by Levins in 1965 

[15]. The mechanism of complexation of polyoxyethylene groups and metal ions is 

extensively reviewed by Okada [16]. 

Potentiometric titration by means of the Metrohm NIO electrode has already been 

applied for the determination of NIS in industrial biological wastewaters [17, 18]. 

Furthermore, it has been shown to be sensitive up to a micromolar surfactant level [19]. 

This makes it a promising instrument for AMTPS research. 

In this paper, we report coexistence curves for two different AMTPS varying in their 

polyoxyethylene moiety. The surfactants used were Trion X-114, which is well-known in 
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membrane protein purification [20], as well as the hitherto unknown Eumulgin ES, a 

laurymistrylether with a polyoxyethylen-polyoxypropylen moiety. 

For quantification, calibration curves are used, giving information about the relation of 

the titration end-point volume and NIS mass. Afterwards, we demonstrate the general 

applicability of the potentiometric titration by determining several coexistence curves for 

NIS in different buffer systems as well as in an E. coli fermentation broth supernatant. 

4.3 Material and Methods 

4.3.1 Material 

4.3.1.1 Titration Equipment 

The equipment for titration was purchased from Metrohm AG, Herisau, Switzerland. The 

NIO surfactant electrode was connected to a Titrino 902 SM for the potentiometric end-

point detection of several polyethoxylated NIS. As reference electrode, an Ag / AgCl 

electrode was used; the reference electrolyte was KCl (c=3 mol/L).  

4.3.1.2 Detergents 

We performed our experiments using the following polyoxethylated surfactants: the 

polyethylene glycol tert-octylphenyl ethers (t-Oct-C6H4-(OCH2CH2)xOH) Triton X-100, x = 9 

or 10;  Triton X-114, x = 7 or 8  (Sigma-Aldrich, Germany); Eumulgin ES (Cognis, Germany), 

C12/C14PEO5PPO5. 

4.3.1.3 Buffers 

All buffers and chemicals were from buffer or p. A. grade. Water was deionized and 

purified by a Millipore Milli-Q Ultrapure system. The buffers used for the potentiometric 

titrations were made according to Metrohm, Switzerland [14]. Sodium tetraphenylborate 

(Fluka, Germany) was used as titrant solution with a concentration of 0.01 mol/L. 10 mL 

of borate buffer, pH 10, and 10 g polyvinyl-alcohol  (Merck, Germany), average MW 

60.000, were added to 1 liter of titrant solution. Barium chloride solution (Fluka, 
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Germany) (c = 0.1 mol/L) was used to create a pseudocationic complex preceding titration 

as described. 

4.3.1.4 AMTPS Systems 

Detergents were dissolved in buffers buffering different pH levels, thus creating AMTPS 

spanning a wide range of possible applications. The following buffers were made: MES 

(Carl Roth, Germany), 50mM, pH 5; sodium phosphate (Fluka, Germany), 50mM, pH 7; 

bicine (Applichem, Germany), 50mM, pH 8.8. 

4.3.1.5 E. coli Fermentation Supernatant 

Supernatant of the bacterial E. coli strain BL21(DE3)RIL was provided by D. Wiese from 

the group of Dr. K. Schmitz, Institute of Functional Interfaces, after cultivation in LB 

medium at 37 °C. The cells were separated from the supernatant by centrifugation. 

4.3.2 Methods 

4.3.2.1 Titration 

The Titrino 902 SM titration device was controlled by TiNet software, v. 2.4, (Metrohm) 

installed on a Fujitsu Siemens Lifebook, C-Series, connected to it via RS 232 interface. The 

TiNet program was run in MET (monotone end-point titration) mode and the following 

parameters were adjusted: Dosing increments were set up depending on the end-point 

between 0.15 mL and 0.5 mL; drift control was set to 5 mV / min with a maximum time 

delay of 120 seconds; the end-point criterion was set to 15 mV. An initial pause of 360 

seconds was kept preceding each titration in order to equilibrate the electrodes within 

the given media. 

At the beginning of a titration, a given sample was weighed in to a glass beaker. 10 mL of 

barium chloride solution and 60 mL of water were added. The solution was steadily 

stirred by the Metrohm Magnetic Swing Out Stirrer 728 while the titrant was added. The 

response of the NIO electrode towards titration with sodium tetraphenylborate was 

recorded by the TiNet software, which simultaneously performed end-point analysis. As a 
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result, a characteristically s-shaped titration curve was obtained including the end-point 

volume derived from software analysis. 

Both electrodes were rinsed with water after each titration. After multiple titrations, the 

NIO electrode was rinsed with methanol or wiped with a methanol moistured wipe to 

remove precipitated surfactant sticking to it and to prolong its lifetime.  

4.3.2.2  Calibration Curves 

Varying quantities of pure (laboratory grade) surfactant were weighed into a glass beaker 

and titrated as described. The end-points of each titration were put in relation to the total 

surfactant mass weighed by using linear regression. In order to examine the selectivity of 

the potentiometric titration, different buffers were added to the surfactant solutions and 

the end-points were compared to those containing the same amount of surfactant 

without interfering substance. 

4.3.2.3 Phase Separation Experiments / Mapping the Coexistence Curve 

A temperature-controlled water bath (RC 20 S, Lauda) was set up with an external 

temperature control. In order to keep the temperature preferably constant, the water 

bath was sealed with a polystyrene lid. Using this setup, the temperature remained 

constant with a temperature variation of less than 0.1 °C. 

Mass fractions of surfactants and buffer systems were weighed into 15 mL centrifuge 

tubes. The centrifuge tubes were tempered using the water bath until the phase 

separation was completed for at least 12 hours. Subsequently, top and bottom phase of 

the resulting two-phase system were quickly removed, in order to avoid a sudden shift in 

phase equilibrium by the influence of the ambient temperature resulting in alteration of 

surfactant concentration in the phases. Surfactant concentrations of both phases were 

detected by potentiometric titration as described. This procedure was repeated for 

various temperatures and buffer / surfactant combinations. 
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4.3.2.4 Derivation of regression lines 

Based on a theory originally developed by Blankschtein [21, 22] a regression line fitting 

the complete coexistence curve was calculated for each of the experimental data sets. 

According to this theory the coexistence curve of an AMTPS can be modeled using two 

physically relevant parameters: C is the measure for the intermicellar attractions and ∆µ 

is the tendency for micellar growth. The parameters are given by Equations 4.1 and 4.2: 

EFC�G , C!; , IJ = K ∙ IL ∙ M1 + 3 ∙ L − 23 O
∙ P2 ∙ FQC�G + QC!;JR − 3 ∙ QC�G ∙ C!;S [Eq. 4.1] 

�TFC�G , C!; , IJ = K ∙ I ∙ UD V W 63 ∙ L − 2YRC�G ∙ C!;FQC�G + QC!;JZ[ [Eq. 4.2] 

Here, kB is the Boltzmann constant, T is the absolute temperature, C�G	and C!; are the 

surfactant mole fractions in the surfactant depleted and surfactant rich phases, 

respectively, and γ is the ratio of the effective volume of the surfactant molecule to a 

water molecule, which according to Lam [23] can be approximated by the ratio of the 

molecular weight of the surfactant to that of water. In this work Lam´s method is applied 

to solve Equations 4.1 and 4.2: First, a linear regression analysis of C(T)/kB and ∆µ(T)/kB 

using the temperature dependent surfactant fractions obtained by potentiometric 

titration is performed. Second, the surfactant poor and surfactant rich concentrations at 

any given temperature and therefore the complete coexistence curves are obtained by 

solving Equation 4.1 and 4.2 using the C and ∆µ values derived from the linear regression 

analysis. In this way, for all experimentally examined system a best-fit coexistence curve 

is generated. 
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4.4 Results and Discussion 

4.4.1 Calibration 

Different quantities of surfactant were weighed into a glass beaker and titrated as 

described. Figure 4.3 shows a titration curve obtained by plotting titration volume versus 

response of the NIO electrode. The curve shape exhibits a precise inflection point. The 

volume related to the inflection point of the titration curve is denoted as end-point 

volume. 

 

Figure 4.3: Titration curve of 53 mg Eumulgin ES dissolved in 60 mL H2O; coordinates of the 
inflection point are 15.19 mL / - 100.1 mV 

In order to obtain calibration curves, the end-point volume was put in relation to the 

amount of surfactant applied. Figure 4.4 shows the results for Triton X-114 and Eumulgin 

ES. 
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Figure 4.4: Titration end-point volume versus surfactant mass of Triton X-114 and Eumulgin ES 

dissolved in 60 mL H2O 

The calibration graphs obtained for both Eumulgin ES and Triton X-114 were strictly linear 

with correlation coefficients for Eumulgin ES of 0.9994 and of 0.9985 for Triton X-114, 

respectively. The increased end-point volume of Eumulgin ES in contrast to that of Triton 

X-114 may be attributed to the difference of the hydrophilic moiety of the surfactants. A 

larger amount of titration solution is necessary to form a complex with the 

polyoxyethylen - polyoxypropylen moiety of Eumulgin ES in contrast to the 

polyoxyethylene branch of the Triton X-114 molecule. The increasing ability of hydrophilic 

polyoxyethylene chains to “trap” bivalent ions with increasing chain length has already 

been described by Toei et al. for potassium ions [24]. A minimum amount of surfactant 

weighed in was 7 mg for Triton X-114 and 10 mg for Eumulgin ES in 60 mL titration 

solution following the standard protocol; this results in a lowest detectable concentration 

of 0.116 g/L of Triton X-114 and 0.166 g/L of Eumulgin ES. This detection limit has turned 

out to be sufficient for our experiments; however, the sensitivity can be increased by 

dilution of the titrant solution up to 20 times [19], if necessary. 

4.4.1.1 Influence of Buffers 

The influence of several commonly used biotechnological buffers spanning a range of pH 

levels from 5 to 8.8 onto the end- point volume was examined. For this, buffers 
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containing a distinct surfactant concentration were titrated as described above. 

Experimental deviations are shown in Table 1 for Triton X-114. 

Table 4.1. Influence of buffers on potentiometric titration of Triton X-114 

Buffer 
Surfactant 

concentration [%wt] 

Concentration 

determined by titration 

[% wt] 

 

 

 

Average 

deviation 

[%] 

50mM MES, pH 5 2.05 1.94 1.92 2.03  4.26 

50mM sodium-phosphate, pH 7 2.02 1.95 1.99 2.03  1.75 

50mM bicine, pH 8.8 2.01 1.96 1.94 1.91  3.93 

E. coli fermentation supernatant 2.64 2.54 2.6 2.53  3.27 

 

Deviations of the measurement of the surfactant concentration in the presence of the 

tested buffers were below 5%. Therefore, the deviation is practically within the error of 

the calibration curve of Triton X-114. From Table 1 it can also be seen that, as in the case 

of buffers, the measurement within E. coli fermentation supernatant which contains 

various salts and proteins does not interfere with the end- point titration.  

4.4.1.2 Mapping the Coexistence Curve for Triton X-114 

Determination of the coexistence curve was performed by quantification of the surfactant 

concentrations of the top and bottom phases of several Triton X-114 / buffer systems by 

potentiometric titration after phase separation. Subsequently, the curves were fitted 

using Lam´s method. Experiments were performed in a temperature range of 25 °C up to 

35 °C. Figure 4.5 shows the resulting phase diagram of Triton X-114 in water. In 

accordance with the cloud point method, each measured value also represents the point 

of transition from the single-phase (below) to the two-phase (above) regime, thus 

marking one cloud point. 
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Figure 4.5: Coexistence curve of Triton X-114 in H2O 

Additionally, coexistence curves were set up for several commonly used biotechnological 

buffers. Figure 4.6 shows coexisting curves of MES, sodium-phosphate and bicine, while in 

Figure 4.7 the coexistence curve of the supernatant of an Triton X-114/E. coli 

fermentation broth AMTPS is shown. 

 

Figure 4.6: Coexistence curve of Triton X-114 in MES at pH 5, in bicine at pH 8.8 and in sodium-
phosphate at pH 7. 
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Figure 4.7: Coexistence curve of a Triton X-114 in E. coli fermentation supernatant AMTPS. 

Although it was not our intention to investigate the influence of salts or pH level on the 

phase separation behavior of AMTPS, it becomes evident that upon addition of salts, the 

complete coexistence curve is moved towards lower temperatures. This effect has 

already been intensively studied, e.g. [9, 10, 25, 26], and is related to salting-out effects of 

chaotropic ions following the Hofmeister series. The shapes of the coexistence curves are 

in good accordance with those published by authors using the cloud point method, e.g. 

[27]. The quantification of surfactants of both phases results in the immediate knowledge 

of the ends of the tie line for a given phase equilibrium. In applications which are 

performed at certain fixed temperatures, e.g. protein partitioning experiments [27], this 

information is advantageous compared to the one which results from the cloud point 

method. Here, the identification of a tie line requires laborious mapping of cloud points 

followed by fitting the coexistence curve precedent to tie line identification. 

4.4.1.3 Coexistence Curves of Eumulgin ES 

Coexistence curves of Eumulgin ES were set up in water and 100mM sodium-phosphate 

buffer depicted by Figure 4.8. 
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Figure 4.8: Coexistence curve of Eumulgin ES in H2O and in sodium-phosphate at pH 7. 

As can be seen, phase separation in the Eumulgin ES/H2O AMTPS occurs at ambient 

temperatures. Phase separation is induced at a temperature above 25.8 °C at about 10% 

wt. Basically, the shape of the coexistence curves resemble that of the Triton X-114 but 

the surfactant concentrations in the micelle-rich and micelle-depleted phases are clearly 

elevated compared to the concentration in Triton X-114 AMTPS. According to the best-fit 

curve, at 30 °C, the concentration of the micelle-rich phase is 45% wt; upon increasing the 

temperature to 39 °C it is concentrated to 68% wt in the ES/H2O AMTPS. The coexistence 

curve of sodium-phosphate / Eumulgin ES AMTPS shows a concentration of the micelle-

enriched phase of 52% wt at 30 °C pointing out the effect of sodium-phosphate on the 

dislocation of the coexisting curve. Eumulgin ES was firstly introduced to AMTPS research 

as Aethoxal B by Becker [28], who determined coexistence curves based on the Lever rule 

measuring the phase volume ratio after complete phase separation. The coexistence 

curves obtained by potentiometric titration are in good accordance with the coexistence 

curves set up by Becker. 

4.5 Conclusion 

Coexistence curves of Eumulgin ES and Triton X-114 in several buffers have been 

determined. The AMTPS were kept at constant temperatures until separation of micelle- 

rich and micelle-depleted phase was completed. Potentiometric titration using a NIO 
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surfactant electrode has been applied to quantify the surfactant concentrations of both 

phases. The coexistence curve was obtained by plotting the resulting surfactant 

concentrations versus their equilibrium temperatures. This method outmatches the cloud 

point method which is commonly used for the characterization of AMTPS as one 

experiment renders not only one point of transition from the single-phase to the biphasic 

state, but at once information about the surfactant concentrations of both phases in 

equilibrium. For many applications in which equilibrium concentrations at fixed 

temperatures are needed, it will no longer be necessary to set up a complete coexistence 

curve, but a single-phase separation experiment followed by quantification via 

potentiometric titration will provide sufficient information. It has been shown that the 

method is suitable for the detection of polyoxyethylated NIS in buffers of different 

compositions and pH levels as well as biological feeds making potentiometric titration not 

only a tool for the detection of coexistence curves but also a promising instrument for 

polyoxyethylated detergents research in general. 
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5.1 Abstract 

Magnetic nanoparticles with cation exchange functionality (MNCX) are combined with an 

Aqueous Micellar Two-Phase System (AMTPS) based on the nonionic surfactant Eumulgin 

ES for the purpose of protein separation. As proof of principle the positively charged 

protein lysozyme is separated from the negatively charged protein ovalbumin with a 

purity of approximately 100%. In comparison with the application of the MNCX alone, the 

presence of Eumulgin ES reduced the amount of lysozyme bound, however, the amount 

of eluted lysozyme stays the same. The advantage of applying the AMTPS is that the 

MNCX are easily handled as they partition utterly into the dispersed phase of the system 

while the applied proteins partition almost entirely to the continuous phase. 

Keywords: Magnetic nanoparticles, protein purification, cation exchange, aqueous 

micellar two-phase system, magnetic extraction 
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5.2 Introduction 

In small scale, the separation of biomolecules by means of magnetic sorbents is a widely 

used and well-established procedure. In the course of the procedure a molecule of 

interest is directly sorbed from a crude feedstock onto selective ligands at the surface of 

the sorbent. After complete separation of the protein-loaded magnetic sorbents from the 

feed by application of a magnetic field gradient, following washing and elution steps will 

deliver the target in a purified form. The application of magnetic sorbents as tool in 

bioseparations therefore integrates several unit operations including clarification, 

preconcentration and initial purification. 

At larger scales, the magnetic separation of especially micro- or nanosized sorbents is 

more delicate. High-Gradient Magnetic Separation (HGMS), however, an operation 

originating from the industrial treatment of minerals, which was introduced to 

biotechnological research in 2001 [1], has been demonstrated to be an effective approach 

for the processing of magnetic sorbents. An exciting alternative to the handling of 

magnetic micro- and nanosized sorbents by means of HGMS is their processing in a liquid 

phase using Aqueous Two-Phase Systems (ATPS) or Aqueous Micellar Two-Phase Systems 

(AMTPS).  

AMTPS emerge from the addition of particular classes of surfactants to water. When 

reaching a certain characteristic temperature, denoted as cloud point, the single phased 

system splits into two phases, one containing a high surfactant concentration, whilst the 

other comprises a low surfactant concentration, yet still above the critical micelle 

concentration (cmc). Ever since it was reported by Bordier that proteins partition 

selectively between the phases based on their hydrophobicity AMTPS have drawn much 

attention in terms of bioseparation [2-6]. Another advantage in processing ATPS as well as 

AMTPS is its simple scalability, which has often been demonstrated by successful large-

scale protein purification [7-9].  

A limiting factor in processing ATPS and, in particular, AMTPS concerning industrial 

application is the phase separation rate, which essentially determines the overall process 

time. In AMTPS the density difference between the micelle rich and the micelle depleted 
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phase is often very small leading to phase separation rates of several hours [8]. Therefore, 

efforts have been made to increase the phase separation rate. Apart from the successful 

implementation of disc stack centrifuges [9], external magnetic fields were used to speed 

up the phase separation rate [10-12]. Magnetically enhanced phase separation is 

achieved by adding inert magnetic particles to the two-phase system. Assuming the 

complete partitioning of the particles into the dispersed phase of the system, the velocity 

of the migration of the particle-doped droplets is considerably augmented by a magnetic 

field gradient.  

It were Suzuki et al. who successfully combined both magnetically enhanced phase 

separation and selective protein separation making use of functionalized magnetic 

sorbents in ATPS [13]. Recently, at our lab Becker et al. introduced the concept of 

Magnetic Extraction Phases (MEP). MEP transfers the idea of functionalized magnetic 

particles and magnetically enhanced phase separation from ATPS to “temperature-

tunable” AMTPS Systems [14]. In MEP, the sorption of the target molecule takes place at 

a low temperature in the single phase regime. The temperature is subsequently 

increased, which leads to the protein-loaded particles being accumulated into in the 

micelle rich phase of the resulting AMTPS. After removal of the micelle depleted phase, 

an AMTPS is set up with elution buffer and the former micelle rich phase of the sorption 

step. The proteins are consequently eluted from the particles and while the magnetic 

sorbents partition completely to the micelle rich phase, the target protein partitions in 

the AMTPS based on its partitioning coefficient K. A proper MEP system therefore should 

exhibit a partition coefficient which drives the protein to the micelle poor phase, while 

the magnetic particles (in loaded as well as in unloaded state) are required to accumulate 

to the micelle rich phase. 

The first generation MEP was a combination of the well known nonionic surfactant Triton 

X-114 AMTPS and superparamagnetic ion exchange particles with a size range from 1 to 3 

µm. Basically, the system met the requirements of a proper MEP - complete partitioning 

of the magnetic sorbents into the micelle rich phase, yet lacked a proper partitioning 

coefficient of the proteins.  
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Here, we introduce a novel MEP system. It is based on an AMTPS consisting of the 

nonionic surfactant Eumulgin ES and nanosized magnetic particles, which are 

functionalized with cation exchange groups (denoted henceforth magnetic nano cation 

exchangers - MNCX). The novel AMTPS is characterized in terms of protein partitioning 

coefficients as well as the influence of the surfactant in particle-protein interaction. A 

mixture of lysozyme and ovalbumin was chosen as model system in order to achieve 

comparability with recent AMTPS experiments applying magnetic micro-particles and 

data of conventional ion exchange chromatography using the same proteins. It is 

illustrated that the MNCX can be easily processed in a protein purification process by 

means of MEP. 

5.3 Materials and Methods 

5.3.1 Materials 

Ferrimagnetic nanosized particles (MNCX) were obtained from Merck KGaA (Darmstadt, 

Germany). The particles with a mean diameter of 25nm had been coated with a silica 

layer and grafted with sulfonate groups. Because of this surface functionality the 

nanoparticles exhibit the characteristics of a strong acid cation exchanger. 

All chemicals were from buffer or p. A. grade. Water was deionized and purified in a 

Millipore Milli-Q Ultrapure system. The proteins ovalbumin from hen egg white 

(Molecular weight: 44.2 kDa, grade >98%) and lysozyme from chicken egg white 

(Molecular weight: 14.6 kDa ~70000 units/mg) were purchased from Sigma-Aldrich (St. 

Louis, USA-MO) as well as the chemicals sodium tetraphenylborate and barium chloride. 

Polyvinylalcohol (av. MW 60.000) and Comassie Brilliant Blue R250 were obtained from 

Merck KGaA ( Darmstadt, Germany). Disodium-hydrogen phosphate and sodium-chloride 

were supplied by Carl Roth (Karlsruhe, Germany). Bicine was revieved from Applichem 

(Darmstadt, Germany). The nonionic surfactant Eumulgin ES (PPG-5-Laureth-5, CAS-No.: 

68439-51-0) was purchased from Cognis (Düsseldorf, Germany). 12% precast mini-

PROTEAN® TGX™ and Precision Plus Protein All Blue Standards were supplied from Bio-

Rad (Hercules, USA-CA). 
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5.3.2 Experimental Section 

5.3.2.1 Characterisation of the AMTPS 

Preparation of the AMTPS 

Aqueous Micellar Two Phase Systems were prepared using the nonionic surfactant 

Eumulgin ES. A 10% Eumulgin ES solution containing 0.2 g/L lysozyme and ovalbumin, 

respectively, was set up in 20 mM sodium-phosphate with pH adjusted to 6.8. The phase 

separation was induced by heating up the accordant solution to 26° C and maintaining this 

temperature until the phases were completely separated. The phase separation resulted in a 

surfactant rich top phase while the bottom phase remained surfactant depleted. Samples 

from both phases were taken and analyzed for their surfactant concentration. 

Partitioning of Ovalbumin and Lysozyme in the AMTPS 

0.5 g/L ovalbumin and lysozyme were added to a 10% Eumulgin ES AMTPS and the phases 

were allowed to separate at 26°C for at least 12 hours. The protein concentrations in the 

top and bottom phases were investigated by SDS-PAGE afterwards. If the protein 

concentrations were high enough to identify a proper band in a Coomassie stained gel, 

the concentration was quantified by densiometric analysis. 

Additionally, the partitioning of a 0.2 g/L lysozyme and ovalbumine solution was 

investigated in AMTPS ranging from 5% up to 25% Eumulgin ES based AMTPS.  

5.3.2.2 Protein Sorption Studies 

Protein binding studies were performed in 1.5 ml microcentrifuge tubes in a total volume 

of 150 µl and a MNCX concentration of 1 g/L. Protein concentrations were prepared in a 

range from 2 g/L to 0.1 g/L in 20mM sodium-phosphate buffer at pH 6.8. The MNCX were 

equilibrated in the same buffer before the protein solution was added. Sorption was 

performed for 300 seconds in a thermomixer (Eppendorf, Hamburg, Germany) at 25° C 

and 1400 rpm. Sorption in presence of surfactant was performed with a concentration of 

10% of Eumulgin ES in the protein solution before the solution was brought into contact 
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with the magnetic sorbents. Sorption equilibrium was achieved in less than 60 seconds 

(data not shown). 

After the sorption step, the nanoparticles were removed by use of a permanent magnet 

and the particle-free supernatants were subsequently analyzed as described above. The 

nanoparticles were then washed three times with sodium-phosphate buffer. 

5.3.2.3 Protein Desorption Studies 

Protein desorption was achieved by incubation of the loaded MNCX in 100 µl elution 

buffer consisting of 50 mM bicine and 1 M sodium-chloride, adjusted to pH 8.8. 

Incubation was performed for 600 seconds at 25°C and 1400 rpm. Afterwards, the eluate 

was separated from the sorbents and analyzed for its protein content. A second elution 

step did not result in additional protein elution. To maintain comparability of the results 

from sorption and elution experiments, the eluates obtained from the sorption 

experiments which were carried out in presence of Eumulgin ES were analyzed by 

densiometry. 

5.3.2.4 Magnetic Extraction using MNCX 

MNCX were processed in Magnetic Extraction experiments by concentrating them in the 

micelle rich phase of an Eumulgin ES based AMTPS at the end of each process step. The 

concept of MEP is that positively charged proteins are dragged from the micelle depleted 

into the micelle rich phase by MNCX. Afterwards the micelle depleted phase together 

with the majority of the contaminants can be removed. The protein is released from the 

MNCX by mixing them with elution buffer and splitting the mixture again into a new 

micelle depleted phase that contains the target protein and a micelle rich phase 

containing the unloaded MNCX. In between sorption and elution a wash step is integrated 

following the pattern described. The principle of MEP is depicted in Figure 5.1. 
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Figure 5.1: Principle of Magnetic Extraction. The main components of Magnetic Extraction 

Phases are functionalized magnetic sorbents (MNCX) and the AMTPS forming nonionic 
surfactant Eumulgin ES. By raising the temperature, the single phase system splits into a micelle 

rich and a micelle depleted phase. The sorbents accumulate completely in the micelle rich top 

phase. When applying a protein solution to the MEP, the proteins accumulate – depending on 
their partitioning coefficient - in the micelle depleted phase. In the first step of a Magnetic 

Extraction the protein of interest binds to the magnetic sorbent. The temperature is raised so 

that the AMTPS splits. The sorbents accumulate to the micelle rich phase while the sorption 
supernatant forms to the micelle depleted phase. The sorption supernatant is removed and 

wash buffer is added to the micelle rich phase which contains the sorbents with the target 

protein bound to them. The wash step is again performed in the single phase regime. After 
another temperature induced phase separation the intermediate wash is separated together 

with the micelle depleted phase from the micelle rich phase. For the elution of the target 

protein, suitable buffer is applied to the micelle rich phase and elution takes place in the single 

phase regime before the system is split again by increasing the temperature. Finally, the eluted 
protein can be withdrawn in the micelle depleted phase, while the unladed sorbents 

accumulate in the micelle rich phase. 

The MEP was set up using a protein feed of 0.2 g/L lysozyme and ovalbumin, respectively. 

The particle concentrations varied from 2 g/L up to 8 g/L. The Eumulgin ES concentration 

was kept constant at 10%. The sorption was performed at 20° C in the single phase 

regime for 15 minutes. Afterwards the temperature was increased to 26°C to induce 

phase separation. Phases were separated by gravity for at least 4 hours.1 After phase 

separation the micelle and particle rich top phase was removed and sodium-phosphate 

containing 1.2 % Eumulgin ES was added to it to wash loosely bound proteins from the 

particles and to remove remaining sorption supernatant. This was done at 20° in the 

single phase regime, followed by another phase separation step and removal of the 

resulting wash-phase. Elution buffer was added to the particle containing micelle rich 

                                                        

1
 In order to keep the comparability to ATMPS experiments without the addition of magnetic nanosorbents, 

gravimetric phase separation was applied in all experiments, although the superimposition of a magnetic 

field would have increased the phase separation rate considerably.  
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phase followed by incubation at 20° C for 15 minutes. Afterwards the temperature was 

raised to 26° C and the phases were allowed to separate. In the resulting eluate-AMTPS, 

the target protein remained in the surfactant depleted phase, while the magnetic 

supports were completely accumulated in the micelle rich phase. 

Samples were taken before sorption was performed as well as from the micelle depleted, 

wash and elution phases. The samples were analyzed by SDS PAGE. 

5.3.3 Analytical Procedures 

5.3.3.1 Determination of the Surfactant Concentration 

The Eumulgin ES concentration was measured using potentiometric titration. A given 

sample was weighed into a glass beaker. 10 mL of barium chloride solution and 60 mL of 

water were added. This solution was subsequently titrated with sodium-

tetraphenylborate using the Metrohm NIO electrode. As result the end-point volume was 

recorded. The surfactant mass fraction was then obtained by comparing the end point 

volume with the end point volumes of known surfactant mass fractions using linear 

regression. The detection limit of this reference method was determined to be 0.01 % 

(w/w) surfactant. 

5.3.3.2 Determination of the Protein Concentration 

Quantitative protein determination was performed depending on the composition of the 

sample. Protein concentrations in samples free of surfactants were measured 

spectrophotometrically at 280 nm using a Nanodrop® ND-1000 (Thermo Fisher Scientific, 

Waltham, USA-MA) photometer. For chicken ovalbumin and lysozyme the mass extinction 

coefficients of a 10 mg/ml solution were determined to be 5.5 and 26.4, respectively. 

Samples containing a certain amount of surfactant were analyzed by SDS PAGE following 

software supported densiometric analysis. The protein loaded TGX gels were Coomassie 

blue stained and scanned as TIFF image files. The images were afterwards analyzed using 

the software LumiAnalyst® (Roche Diagnostics GmbH, Media Cybernetics, 1999). Protein 

band intensities were converted to biochemical light units (BLU) by the software. In order 

to quantify the protein concentration standards with known protein concentrations were 
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applied on the same gel. SDS-PAGE was not interfered with Eumulgin ES concentrations 

up to 5%. Hence, samples containing higher Eumulgin ES concentrations were diluted 

below this limit. 

5.3.4 Equations describing the results 

5.3.4.1 Partitioning in AMTPS 

The partitioning of molecules in ATPS or AMTPS is usually described by the following 

characteristics. The ratio of the concentrations of a target protein P in the top (cP,T) and 

bottom phase (cP,B) is expressed as the partitioning coefficient K: 
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The ratio of the volumes of the top (VT) and bottom phase (VB) can be described by the 

parameter R: 
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The volume ratio R can also be expressed using the lever rule [15, 16]: 
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With cS,0 being the overall surfactant concentration in g/L precedent phase separation 

and cS,B and cS,T the surfactant concentrations in the top and bottom phase after phase 

separation. In AMTPS the densities of the initial single phase and the both resulting 

phases after phase separation are practically equal, therefore the equation can be 

rewritten as: 
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Here, wS,0, wS,B and wS,T are the surfactants´ mass fractions of the phases before and after 

phase separation [3]. With the knowledge of the surfactants mass fractions in the top and 

bottom phase the phase ratio can be calculated and vice versa.  

5.3.4.2 Sorption of Proteins to Surfaces 

The amount of protein sorbed to the surface of the particles is be calculated by the mass 

balance: 

P

s

m

ccV
q

)( 00 −⋅=  [Eq. 5.5] 

where q (mg/g) is the amount of bound protein onto the particle, mP (g) the amount of 

particles, V0 is the volume of the experiment and c0 and cS are the concentrations of the 

protein in the supernatant before and after the sorption , assuming an initial particle 

loading of q0=0. 

The experimental data obtained from the sorption experiments can then be fitted to the 

Langmuir model:  
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with qmax (mg/g) representing the maximum binding capacity of the particles and KL (in 

g/L) the Langmuir constant and c* the equilibrium concentration of the protein in the 

sorption supernatant. The values for the Langmuir parameters were calculated using 

SigmaPlot (vers. 11.0, Systat Software, Inc., 2008). 

5.4 Results and Discussion 

5.4.1 Characterisation of Eumulgin ES based AMTPS 

5.4.1.1 System Composition of the Eumulgin ES based AMTPS 

An Eumuglin ES based AMTPS was set up with 10% in 20 mM sodium-phosphate and a 

protein mixture of 0.2 g/L lysozyme and ovalbumin. Phases were allowed to separate for 
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at least 12 hours until they were transparent. Samples of both phases were taken and 

analyzed for its surfactant concentration by potentiometric titration. The phase ratio was 

calculated according to Equation 5.4. Table 5.1 summarizes the given system parameters 

which result in a phase volume ratio of 0.43. 

Table 5.1: System conditions of the Eumulgin Based AMTPS 

Surfactant 

concentration  in 

the single phase 

state 

Phase 

Equilibrium 

Temperature 

Surfactant 

concentration of 

the top phase 

Surfactant 

concentration of 

the bottom phase 

Resulting 

phase 

ratio Ra
 

10% (w/w) 26°C 30.3% (w/w) 1.26% (w/w) 0.43 

a: Phase volume ratio calculation based on the lever rule 

5.4.1.2 Partitioning of Lysozyme and Ovalbumin in the Eumulgin ES based 

AMTPS 

In ATPS and AMTPS the proteins partition specifically between the top and bottom phase 

based on their unique physico-chemical properties. In this work, the partitioning 

coefficients of lysozyme and ovalbumine were determined by performing phase 

separation experiments at 26°C followed by determination of protein concentration in 

the top and bottom phase, respectively. Figure 2 shows the protein partitioning behavior 

of a 0.5 g/L lysozyme and ovalbumine protein solution analyzed by SDS-PAGE. Based on 

densiometric determination the partitioning coefficients for lysozyme was calculated 

according to Equation 5.1 to KLys=0.12. For ovalbumine no protein was recognized in the 

top phase, hence the partitioning coefficient was approximated to KOva=0. 
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Figure 5.2: Protein partitioning of lysozyme and ovalbumine in a 10% (w/w) Eumulgin ES based 

AMTPS. Lane 1-4 protein standards with concentrations of: 0.15 g/L; 0.1 g/L; 0.05 g/L; and 
0.025 g/L. Lane 5: protein solution in 10% Eumulgin ES in the one-phase regime. Lane 6: micelle 

rich top phase after phase separation; Lane 7: micelle depleted bottom phase after phase 

separation. 

The small K values indicate that proteins are almost completely excluded from the micelle 

rich top phase. This exclusion can be related to the high surfactant content in the micelle 

rich phase (>30%) and the consequently low water content. The higher K value of 

lysozyme compared to ovalbumin can be explained by the excluded volume theory 

developed by Nikas et al. which predicts an increasing protein exclusion from the micelle 

rich phase with increasing protein size [17].  

The partitioning of lysozyme and ovalbumine was additionally investigated in AMTPS 

containing Eumulgin ES concentrations in a range from 5% to 25% at a constant phase 

splitting temperature of 26° C. According to the lever rule, an increase of the surfactant 

concentration results in an increasing phase ratio. In Table 5.2 the R values based on the 

lever rule are listed for starting surfactant concentrations from 5 % to 25% at a phase 

separation temperature of 26° C. 

Table 5.2: Phase ratios of Eumulgin ES based AMTPS resulting from increasing initial surfactant 

concentrations. 

Initial surfactant concentration 5% 10% 15% 20% 25% 

Phase Ratio R
a
 0.15 0.43 0.9 1.83 4.57 

abased on the lever rule 
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Assuming constant K values of both lysozyme and ovalbumin, the enrichment of the 

proteins in the micelle depleted phase with increasing surfactant concentration is 

expected. This effect is approved in Figure 5.3. An initial 0.2 g/L protein solution of 

lysozyme and ovalbumine is concentrated in the micelle depleted phase with increasing 

surfactant concentration. It is clearly visible, that both proteins (by means of lane 

thickness and intensity) are enriched in the micelle depleted phase compared to the 

initial protein concentration. 

 

Figure 5.3: Enrichment of 0.2 g/L lysozyme and 0.2 g/L ovalbumin in the micelle depleted phase 

of an 26° C Eumulgin ES based AMTPS. Lanes 1, 3, 5, 7, 9: Initial protein concentration before 
phase separation of AMTPS systems containing 5, 10, 15, 20 and 25% Eumulgin ES. Lanes 2, 4, 6, 

8, 10: Proteins in the micelle depleted phase after complete phase separation of AMTPS systems 

containing 5, 10, 15, 20, 25% Eumulgin ES. Equal volumes were applied to each lane 

5.4.1.3 Review of an Eumulgin ES based AMTPS as Basis for Magnetic 

Extraction 

Considering the use of an Eumulgin ES based AMTPS as MEP system, the extreme K values 

are beneficial as in each step the bulk of undesired proteins is removed together with the 

micelle depleted phase and the micelle rich phase is not “contaminated”. Basically, in a 

MEP process at least two process steps precede the elution of a target molecule from the 

magnetic support into the micelle depleted phase (sorption - wash - elution). In Figure 5.4 

and Figure 5.5 the theoretical protein concentrations of the micelle depleted phases cf. 
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intital protein concentrations are illustrated for partitioning coefficients of 0.1, 1 and 5 for 

R values of 0.43 and 1, respectively. 

 

Figure 5.4: Theoretical progress of protein concentration in the micelle depleted phase for a 

constant phase ratio of 0.43 with varying K values. A three step process is assumed in which in 

each step the micelle depleted phase is removed and the same volume of protein-free buffer is 
added. K values of 5, 1 and 0.1 lead to 21.1, 9 and 0.2% of the intial protein concentration 

remaining in the eluate. 

 

Figure 5.5: Theoretical progress of protein concentration in the micelle depleted phase for a 

constant phase ratio of 1 with varying K values. A three step process is assumed in which in 
each step the micelle depleted phase is removed and the same volume of protein-free buffer is 

added. K values of 5, 1 and 0.1 lead to 23.1, 25 and 1.5 % of the initial protein concentration 

remaining in the eluate. 
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With given system parameters of a K value of 0.1 and a volume ratio of 0.43 only 0.23 % 

of the initial protein feed would be withdrawn to the final elution step. Assuming an even 

lower partitioning coefficient with increasing protein size, the purity of a target molecule 

in a MEP process based on an Eumulgin ES AMTPS is only little affected by dissolved 

proteins which are carried over into the eluate. 

5.4.2 Characterisation of the MNCX 

5.4.2.1 Sorption of Lysozyme to MNCX 

The capability of MNCX to bind and elute proteins was investigated in presence and 

absence of Eumulgin ES. At first, a sorption isotherm was set up in absence of Eumulgin 

ES at pH 6.8 in 20 mM sodium-phosphate. In Figure 5.6 the experimental data is fitted to 

the Langmuir model. For the given system parameters, the fit results in a KL value of 0.03 

mg/L and a maximum particle loading of qmax= 93 mg/g. Additionally, the sorption of 

ovalbumin onto the MNCX was investigated. In case of ovalbumin no sorption onto the 

particles could be observed. This effect is in accordance with the assumed mechanism of 

cation exchange: at pH 6.8 lysozyme is positively charged, while the charge of ovalbumine 

is negative [18]. Thus, lysozyme is electrostatically attracted to the MNCX, while 

ovalbumine is repelled from them. 

 

Figure 5.6: Sorption isotherm of lysozyme onto magnetic cation exchange nanoparticles in 

absence of Eumulgin ES. The solid curve is created by fitting the experimental data to the 

Langmuir model resulting in parameters of KL=0.03 g/L and qmax=93 mg/g 
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5.4.2.2 Sorption of Lysozyme to MNCX in Presence of Eumulgin ES 

The sorption in presence of 10% Eumulgin ES was investigated in order to determine the 

influence of this surfactant on the interaction between lysozyme and the MNCX. This 

influence is of particular interest when considering a MEP process in which the proteins 

are sorbed in the single phase regime of an AMTPS. In Figure 5.7 a Langmuir curve fitted 

to the experimental data is depicted. Here, a least square fit of the the Langmuir 

parameters results in a KLvalue of 0.002 g/L and maximal loading of qmax= 56 mg/g.  

 

Figure 5.7: Sorption equilibrium isotherm of lysozyme in the presence of 10% Eumulgin ES. The 

straigt line indicates a Langmuir fit wih KL=0.002 g/L and qmax=56 mg/g 

While the improved KL value needs further confirmation, it is evident, that the presence 

of Eumulgin ES reduces the qmax value for the sorption of lysozyme onto the magnetic 

supports.The reduction in comparison to the qmax value obtained from the sorption 

isotherm in absence of Eumulgin ES may be attributed to the suppresion of unspecific 

sorption of lysozyme to the silica surfaces of the nanoparticles. The stronlgy negative 

charged silica surface of the particles offers attractive binding sites to the positively 

charged lysozyme in the absence of Eumulgin ES. For it is well investigated that nonionic 

surfactants adsorb to silica interfaces [19, 20] it is likely that Eumulgin ES adsorbs to the 

silica surface of the particle, thus reducing the number of (unspecific) binding sites for 

lysozyme. Additionally, surfactants can form protein-surfactant complexes with proteins 

adsorbed to a liquid-solid interface and thus lead to an easier desorption of proteins from 

the surface [21].  
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5.4.2.3 Desorption of Lysozyme 

Desorption of lysozyme from the MNCX was performed by increasing the pH value to 8.8 

as well as increasing the ionic strength by addition of 1 M sodium chloride. The particles 

were washed in sorption buffer three times before the elution buffer was added. A 

further increase of the pH value or salt concentration as well as repeated elution did not 

cause additional protein desorption. Protein elution was investigated from samples 

saturated with lysozyme (q=qmax). In case of lysozyme sorbed without the presence of 

Eumulgin ES only 33% of the sorbed protein was eluted from the particles. In contrast to 

this, when lysozyme is sorbed in the presence of Eumulgin ES, 54% of the bound protein 

were eluted. In general, the regeneration of bound protein is low, pointing out that the 

proteins are partly bound to the particles due to unspecific sorption. Figure 5.8 

summarizes the amounts of lysozyme sorbed and eluted from the magnetic carriers in 

equilibrium. 

 

Figure 5.8: Comparison of lysozyme sorbed and eluted from the MNCX in presence and absence 
of Eumulgin ES 

The overall amount of lysozyme eluted from the MNCX in both experiments is virtually 

equal. Assuming a complete elution of lysozyme from the SO3
- groups in both cases, the 

residual difference of sorbed and eluted protein is due to interactions of the silica surface. 
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The observed difference in elution efficiency supports moreover the hypothesis that the 

unspecific binding sites are blocked by the surfactant used. 

5.4.3 Magnetic Extraction of Lysozyme from an Ovalbumine/Lysozyme 

Mixture 

The Magnetic Extraction Phases were prepared by combining the MNCX, the nonionic 

surfactant Eumulgin ES and a mixture of lysozyme and ovalbumine in 20mM sodium-

phosphate buffer at pH 6.8. By heating up this solution to 26° C phase separation is 

induced. Figure 9 depicts the proceeding of the phase separation in a 2 ml 

microcentrifuge vessel at an overall MNCX concentration of 1g/L in 10% Eumulgin ES. The 

figure clearly shows that the MNCX are concentrated in the micelle rich top phase. 

 

Figure 5.9: Progress of phase separation by gravity in a 10% Eumulgin ES based AMTPS at 26° C 

in 20mM sodium-phosphate containing 1 g/L MNCX. 

Magnetic Extraction Experiments were carried out with increasing particle concentrations 

(cP) simultaneously increasing the capacitiy ratio (CR). The capacitiy ratio is given by 

Equation 5.7: 

0

max

c

qc
CR P ⋅=  [Eq. 5.7] 

The protein concentrations (c0) of lysozyme and ovalbumin were kept constant at 0.2 g/L 

and the Eumulgin ES concentration were adjusted to 10%. The overall volume was 2 mL in 

a microcentrifuge cup. Capacity ratios were set from 0.28 to 2.24 with an assumed qmax 

value of 56 mg/g. In the course of the experiments samples were taken from sorption 

supernatant, intermediate wash and eluate, all of them forming the bottom phase of the 

AMTPS system (see principle of MEP in Figure 5.1). All samples were analyzed by SDS 
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PAGE depicted in figure 10. The initial protein solution was threefold diluted due to its 

high surfactant concentration of 10% which otherwise interferes with the protein 

gelelectrophoresis.  

 

Figure 5.10: Extraction of lysozyme using magnetic nanoparticles in combination with an 
Eumulgin ES based AMTPS. Lane 1: Initial feed in a threefold dilution. Lanes 2, 5, 8, 11: 

Supernatants from the sorption experiment with increasing capacitiy ratios: 0.28, 0.56, 1.4, 

2,24. Lanes 3, 6, 9, 12: Supernatants from the intermediate wash step. Lanes 4, 7, 10, 13: 

Resulting eluates with increasing capacity ratios. 

With increasing CR, the amount of lysozyme bound increases illustrated by the 

diminishing lysozyme bands in the supernatnant while the ovalbumin band remains 

unaffected. During the intermediate wash step not only loosely bound protein is 

removed, it is also essential to remove remaining supernatant due to incomplete phase 

splitting at the end of the phase separation step. The amount of sorbed lysozyme (also 

congruent with the CR) then is eluted from the magnetic particles and consequently 

separated from them by temperature induced phase separation. Ovalbumin was not 

detected in the eluate phase. This result can be expected from the results of both, protein 

partitioning of ovalbumin between the phases and binding experiments. Therefore, the 

purity of lysozyme can be assumed to be close to 100% in the eluate. 
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5.5 Conclusion 

The feasibility of nanosorbent driven protein purification by Magnetic Extraction Phases 

has been demonstrated. The positively charged lysozme was bound to a magnetic cation 

exchange nanoparticle and subsequently- in contrast to the partitioning behavior of the 

sole protein - co-transferred to the micelle rich phase of an AMTPS. Afterwards lysozyme 

was released into the micelle depleted phase of another AMTPS by elution from the 

magnetic sorbent which itself accumulates again in the micelle rich phase. It has been 

shown, that the presence of the phase forming surfactant Eumulgin ES influences protein 

sorption without affecting the overall protein elution. In addition to this the bulk protein 

solution is excluded from the micelle rich phase and thus is concentrated in the micelle 

depleted phase, which is discarded in the first step. 

In conclusion, Magnetic Extraction Phases unite the advantages of both functionalized 

particles and Aqueous Micellar Two-Phase Systems. The flexibility and selectivity of 

functionalized magnetic nano particles are combined with thermosensitive AMTPS which 

can be easily scaled-up for the large scale handling of the sorbents.  

Following this promising proof of principle, future work will have to focus on the 

application of MEP in natural biological system. Due to the complexity of these systems, 

the application of MEP using MNCX may contribute to the capture step in a protein 

purification process. To further increase selectivity as well as yield of a MEP based 

process, the application of magnetic particles grafted with bioaffinity ligands, as well as 

the modification of this process into a continuous operation may be an exciting 

alternative to conventional bioseparation processes. 
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6.1 Abstract 

Quartz Crystal Microbalance with Dissipation (QCM-D), Attenuated Total Reflectance 

Fourier Transformed Infrared Spectroscopy (ATR-FTIR) and total organic carbon detection 

(TOC) are employed to examine the cause of the differences in the partitioning of silica 

coated nanoparticles in an aqueous micellar two-phase system based on the non-ionic 

surfactant Eumulgin ES. The particles partition into the micelle rich phase at pH 3 and to 

the micelle poor phase at pH 7. Our results clearly show that the non-ionic surfactants are 

adsorbed to the silica surface at pH 3. Above the critical temperature, a stable surfactant 

bilayer forms on the silica surface. At pH 7 the surfactants do not adsorb to the particle 

surface; a surfactant-loaded particle is therefore drawn to the micelle rich phase while 

otherwise repelled from it. These results suggest that the partitioning in aqueous micellar 

two-phase systems is mainly driven by hydrogen-bonds formed between the surfactants 

and the component to be partitioned. 
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6.2 Introduction 

Aqueous Two-Phase Systems (ATPS) and Aqueous Micellar Two-Phase Systems (AMTPS) 

can be used to concentrate proteins and other (in)soluble substances based on their 

partitioning behavior between the two phases [1]. The mechanism of the partitioning 

depends on both, system conditions as well as target molecule characteristics and is still 

unclear. 

Much attention has been paid to the partitioning of soluble molecules in AMTPS, and it 

has been shown, that the partitioning coefficient of a protein can be reasonably predicted 

by the excluded-volume-theory which is mainly based on the hydrodynamic radius of the 

particular protein and the (growth of the) cross-sectional radius of the phase-forming 

micelles [2]. 

The mechanism of the partitioning of colloids and insoluble particles in aqueous two-

phase systems, however, has scarcely been investigated although several publications 

describe the macroscopic behavior of particles in two-phase systems: PEG/Dextran ATPS 

have been used to partition Au and Ag nanospheres with sizes less than 100 nm [3]. Here, 

Au nanospheres partitioned preferentially to the PEG-rich phase while Ag nanospheres 

were mainly partitioned to the dextran phase. The two-phase behavior of polymeric 

acrylic latex and colloidal TiO2 particles was found to be dependent on both surface 

chemistry and the size of the particles [4]. The authors emphasized the influence of the 

pH on the partitioning; at low pH, when the carboxylated particles were protonated, they 

partitioned to the PEG phase. Additionally, it was shown that the addition of silica and 

polystyrene latex particles to stable PEG/dextran systems induces phase separation by 

shifting the coexistence curve of the ATPS [5]. The authors explain their results by two 

different mechanisms, both originating from the adsorption from one polymer to the 

particles. The addition of magnetic particles as carrier for biomolecules as a tool in 

biopurification has been shown for ATPS [6, 7] as well as for AMTPS [8, 9]. Recently, the 

potential of AMTPS to concentrate silver, gold and palladium nanoparticles was shown 

[10-12]. The authors used the non-ionic surfactants Triton X-114 and Triton X-100 

respectively to concentrate the nanoparticles in the micelle rich phase of the two-phase 



Partitioning behavior of silica-coated nanoparticles in AMTPS 111 

 

 

systems. Despite the practical applicability of these studies, no mechanism of the 

partitioning of the nanoparticles is explained. 

The purpose of our study was to investigate the mechanism of the partitioning of 

nanoparticles in AMTPS. As described, several authors hypothesize that the partitioning 

of particles in ATPS is somehow related to adsorption of the phase forming polymer to 

the particle surface. Our intention was to investigate if the partitioning of particles in 

AMTPS is based on the same principle – and if so, to investigate the mechanism of 

adsorption. 

Silica coated Fe3O4 nanoparticles with a mean size of 100 nm were tested. The 

partitioning of the particles in an AMTPS based on the non-ionic surfactant Eumulgin ES 

was investigated at different pH levels as well as in presence and absence of the 

chaotropic organic molecule urea; the correlation of the partitioning behavior of the 

particles and adsorption of surfactant to the silica surface was monitored by Quartz 

Crystal Microbalance with Dissipation (QCM-D). Reference chips with silica surfaces were 

used at the same conditions than those in the partitioning experiments. In addition 

adsorptive behavior of the phase forming surfactant onto the particles was directly 

detected by Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy 

(ATR-FTIR) and by surfactant binding studies. 

6.3 Experimental 

6.3.1 Materials 

6.3.1.1 Chemicals 

All chemicals were analytical grade and used without further purification. All water used 

was prepared with MilliQ system (Millipore, USA). Ethanol and citric acid monohydrate 

were purchased form Merck Millipore (Darmstadt, Germany), disodium phosphate and 

sodium dodecyl sulfate, hydrochloric acid, and sodium hydroxide form Carl Roth 

(Karlsruhe, Germany); and sodium-lactate from AppliChem (Darmstadt, Germany). The 

non-ionic surfactant Eumulgin ES (PPG-5-Laureth-5, CAS-No.: 68439-51-0) was purchased 

from Cognis (Düsseldorf, Germany). The density of Eumulgin ES was determined by a 
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DCAT 11 system (Dataphysics, Filderstadt, Germany) and resulted in \ =	982 kg/m³. The 

average length of an Eumulgin ES molecule C12-(POE)5-(POP)5 was calculated to 5.57 nm 

using the software Yasara, version 12.4.1 [13]. The hydrodynamic diameter of 0.5 % 

Eumulgin ES solution in both, 20 mM sodium phosphate at pH 7 and 20 mM sodium 

citrate at pH 3 was determined by dynamic light scattering (DLS) by means of a Zetasizer 

5000 (Malvern Instruments GmbH, Herrenberg, Germany) to 15 nm. 

6.3.1.2 Particles 

“MagPrep Silica” particles were obtained from Merck Millipore (Darmstadt, Germany). 

The particles consist of magnetite (Fe3O4) monocrystals with a thin silica coating. Scanning 

electron microscope (SEM) pictures reveal a mean diameter of single particles of 100 nm 

with a narrow size distribution. 

6.3.2 Methodology 

6.3.2.1 Partitioning Experiments 

Initially, an Eumulgin ES based AMTPS phase diagram was prepared in 20 mM sodium 

citrate at pH 3 following a protocol described elsewhere [14]. The Eumulgin ES solution 

was heated to a temperature above the cloud point and the temperature was maintained 

until the phases were separated. The surfactant concentrations of both emerging phases 

were determined by potentiometric titration and subsequently plotted in a T, x diagram. 

The partitioning of the MagPrep Silica particles in Eumuling ES based AMTPS was 

investigated with regard to the pH of the AMTPS solution. Therefore, Eumulgin ES AMTPS 

were set up in 20 mM solutions of sodium citrate, sodium phosphate, and sodium lactate. 

The pH was titrated to the respective pH with hydrochloric acid or sodium hydroxide. To 

investigate the influence of urea, an additional AMTPS consisting of 20 mM sodium citrate 

and 6 M urea was created. In all experiments the Eumulgin ES concentration was 10 %wt. 

Initially, the particles were equilibrated in the corresponding buffer and then added to 

the AMTPS. The final particle concentration in the AMTPS was set to 0.5 g/l. After 

temperature induced phase separation, the particle partitioning behavior was observed 
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visually. The phase separation temperature was set to 30° C in all experiments except for 

the experiments that were carried out with urea; in these experiments the temperature 

had to be elevated to 35° C to induce phase separation.  

6.3.2.2 Quartz Crystal Microbalance 

The QCM-D experiments were performed using a Q-Sense E4 system with Qsoft 401 

software (Q-Sense, Gothenburg, Sweden). QCM-D exploits the piezoelectric effect in chips 

composed of an AT-cut, disk-shaped and polished quartz crystal, which has a fundamental 

frequency of 4.95 MHz. QCM-D monitors the adsorption of molecules onto the surface of 

the chip due to a negative shift in frequency (f) which is proportional to the mass on the 

crystal. In addition, there is a positive shift in dissipation (D) proportional to the 

viscoelastic properties of that mass. QCM-D measurements relate the mass to the 

frequency shift basis the work of Sauerbrey [15] according to Equation 6.1: 

∆9 = −E ∙ ∆¨D  [Eq. 6.1] 

Where m is the adsorbed mass, f the frequency shift, n = 1, 3, 5...13 the observed 

overtone, C= 17.7 ng Hz-1cm-2 the mass sensitivity constant of the crystal. The average 

thickness of the adsorbed surfactants layer was calculated using Equation 6.2: 

|a�� = ∆9\a�� [Eq. 6.2] 

Where \a�� is the densitiy of Eumulgin ES and |a�� the thickness of the adsorbed film. 

Silica coated chips (QSX 303, Q-Sense, Gothenburg, Sweden) were used for the QCM-D 

measurements. In order to clean the chips, they were sonicated in ethanol for 10 min, 

dried with nitrogen and irradiated with UV-ozone (ProCleaner, Bioforce Nanoscience, 

Ames, US-IA) for 10 min. After the experiments the chips were sonicated in ethanol for 10 

min and two times in MilliQ water, dried with nitrogen and stored at ambient conditions. 

All chips were used multiple times. 
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During all experiments the flow rate was set to 50 µl/min. All experimental conditions 

were designed to meet the same conditions than the partitioning experiments: 

temperatures were either set to 20° C to simulate single phase temperature or to 30° C 

(to 35° C in case of the urea experiments) to generate phase separation conditions. 

Buffers used were the same than described in the partitioning experiments. Initially, the 

chips were equilibrated in the corresponding buffer; after a stable baseline was achieved 

the buffered 10 %wt surfactant solution was injected. The rinsing with the surfactant 

solution was performed for at least 45 minutes, afterwards pure buffer was injected until 

a constant signal was reached. Finally, the system was rinsed with MilliQ water.  

6.3.3 Surfactant Binding and Elution Studies 

Merck MagPrep Silica solutions were prepared as follows: 10 ml samples containing a 

particle concentration of 10 g/L were prepared; these samples contained 10 %wt 

Eumulgin ES either at pH 3 or at pH 7. All solutions were buffered using sodium 

phosphate. Each sample was kept constant at 4° C or at 30° C. This set up resulted in a 

total of four different samples: pH 3 or pH 7 at 4° C or at 30° C. All experiments were 

performed in triplets. The samples were initially incubated in an overhead shaker for 20 

minutes in the 10 % Eumulgin ES at the respective pH and temperature. Afterwards the 

particles were separated from the Eumulgin ES solution using a handmagnet. Then 

particles were washed in 10 ml of pure buffer at the respective temperature and pH for 

20 minutes. The supernatant was again separated from the particles. The washing 

procedure was repeated for an additional 11 times, resulting in a total wash of 12 times. 

All samples were analyzed for their Eumulgin ES content by determination of the total 

organic carbon. 

6.3.3.1 Surfactant Determination by TOC 

The surfactant concentration in the samples was determined by detection of the total 

organic carbon using the Multi N/C 2000 (Analytik Jena, Jena, Germany). 15 µl 

hydrochloric acid was added to each sample before TOC measurement in order to remove 

dissolved inorganic carbon. The total surfactant concentration was calculated from the 
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TOC content; the carbon mass makes up for 63.8 % of the total mass of the non-ionic 

surfactant Eumulgin ES. 

6.3.3.2 Surfactant - Particle Investigation with ATR-FTIR 

For the ATR-FTIR measurements a Tensor 27 IR spectrometer with a Platinum ATR (single 

reflecting diamond) accessory (Bruker Optics, Ettlingen, Germany) was used. Each 

spectrum comprised 64 co-added scans with a spectral resolution of 4 cm-1 in the 3600-

400 cm-1 range. The data was acquired using OPUS 6.5 software (Bruker Optics, Ettlingen, 

Germany). 

The MagPrep Silica particles were equilibrated in a citrate buffer at pH 3 or phosphate 

buffer at pH 7; and then incubated in the same buffer containing 10 % Eumulgin ES. 

Afterwards the particles were washed for five times in the pure buffer.  

The particle suspensions were applied to the ATR crystal and allowed to dry for 10 min. 

The spectra of the plain particles were subtracted from spectra of the processed particles. 

The spectra were baseline corrected by concave rubber band method. 

6.4 Results and Discussion 

6.4.1 Phase diagram of Eumulgin ES based AMTPS 

The unique properties of an AMTPS in a certain buffer are characterized by its phase 

diagram. Figure 6.1 depicts the phase diagram of an AMTPS of Eumulgin ES in 20 mm 

sodium citrate. Phase diagrams of Eumulgin ES AMTPS have been determined in water 

and 100 mM sodium phosphate at pH 7 [14]. From the comparison of the phase 

diagrams, it can be seen, that the pH and salt concentrations within the investigated 

range have little influence on the phase diagram, and thus on the intermicellar 

interactions. It is generally assumed that the phase separation of AMTPS is based on the 

temperature induced growth of the nonionic micelles. With increasing temperature, the 

micelles grow until a thermodynamically favored phase separation occurs. This 

phenomenon has been fundamentally investigated by a workgroup around Blankschtein 

[16, 17]. 
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Figure 6.1: Phase diagram of a 20mM sodium citrate Eumulgin ES AMTPS. The points of 
transition from single phase to two phase state are shown. The phase separation depends on 

the surfactant concentration and the temperature. 

The dots represent the temperature where the system starts to split into two phases. 

6.4.2 Partitioning Experiments 

The partitioning of silica-coated 100 nm Fe3O4 particles in an Eumulgin ES based AMTPS 

was investigated. At pH 3 and pH 4 the particles partition to the micelle rich phase, 

independent of buffer used. At pH 7 the particles partition completely to the micelle poor 

phase. 

Figure 6.2 illustrates the difference between magnetic particles in the single phase regime 

at a low temperature and after phase separation accumulating in the micelle rich top 

respectively micelle poor bottom phase. 
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Figure 6.2: Possibilities of the partitioning behavior of 100 nm Silica particles in an Eumulgin ES 
based AMTPS: left: In single phase state, the particles are homogenously distributed in the 

solution; middle: the particle partition to the micellar rich top phase; right: the particles 

partition to the micelle poor bottom phase and sediment to the bottom. 

By changing buffer the buffer composition and/or a change of the pH, the ionic strength 

of the solution changes. The effect of the ionic strength in AMTPS systems, however, 

results in an increasing or decreasing shift of the phase diagram, depending on the kind 

and especially the concentration of the applied salt. For chaotrophic agents, the phase 

separation temperature (the cloud point) is decreased, while for cosmotrophic agents, 

the cloud point is increased [18]. To exclude the contribution of the particular salt to the 

partitioning behavior e.g. at pH 3, the partitioning experiments were carried out in 

presence of two different buffering salts viz. sodium phosphate and sodium citrate. In 

both cases the partitioning of the particles did not diverge. Phase diagrams of Eumulgin 

ES have been investigated e.g. in 100 mM sodium phosphate, and in pure water [14]. 

From these diagrams it can be seen, that the influence of pH and in the investigated range 

onto the phase diagram and thus onto the aggregation behavior of the surfactants at the 

investigated salt concentrations even at different pH levels is small. Therefore, the 

correlation between the non-ionic surfactant, particle surface and pH must be responsible 

for the partitioning behavior. The interactions of poly(oxyethylated) non-ionic surfactants 

or poly(oxyethylene) oxide and hydrophilic surfaces however, have been described 

extensively e.g. [19-21]. It is generally accepted that the interactions are mainly driven by 

hydrogen bonds that form between the ether oxygens or the hydroxyl end of the non-

ionic surfactant and the hydrophilic surface [22]. Therefore, a lower pH level increases the 
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protonation of the OH groups of either surface or surfactant, leading to the adsorption of 

the non-ionic surfactants to the surface [23, 24]. For this reason particles in the micellar 

rich top phase are stabilized by the adsorption of the surfactant onto their surface which 

prevents particle aggregation, while the particles agglomerate and sediment to the 

bottom phase when the surfactants do not adsorb. 

In order to investigate the role of hydrogen bonds in the mechanism of the partitioning 

behavior of the silica coated sorbents, an AMTPS containing high concentrations of urea 

has been set up. Urea is known to have an strong impact on the solvent-solute interaction 

and the micellar properties of AMTPS, e.g. increasing the critical micelle concentration 

[25] and the cloud point [18, 26]. In general, the role of urea is related to its direct 

interaction with the hydrogen bonds between water molecules, or by interaction of urea 

with the solute. Recent experimental findings support the latter theory, which now has 

become widely accepted [27, 28].  

The addition of urea reverses the partitioning behavior of the 100 nm Fe3O4 silica 

particles from the micelle rich to micelle poor phase in a 20 mM sodium citrate system at 

pH 3. This effect can be explained by the inference of urea with the hydrogen bonds of 

the non-ionic surfactant and the silica surface. When the non-ionic surfactants do not 

adsorb onto the particles, they are excluded from the micellar rich phase of the system. 

6.4.3 Surfactant Binding on Reference Surfaces 

Quartz Crystal Microbalance signals were recorded in order to monitor the surfactant – 

SiO2 interaction at different pH levels at different temperatures. Initially, each silica chip 

was equilibrated in the respective buffer and then rinsed with the Eumulgin ES solution. 

Figure 6.3 shows exemplarily the real-time signal curve for the overtones five, seven and 

nine at 20° C and pH 3. 
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Figure 6.3: QCM-D signal obtained during rinsing a silica chip with sodium citrate and Eumulgin 

ES at pH 3 and 20° C. The silica chip is rinsed with: 0: sodium citrate; 1: 10 % Eumulgin ES in 

sodium citrate; 2: sodium citrate; 3: MilliQ water. The signal shift to -35 Hz is generated by a 
Eumulgin ES monolayer which is adsorbed to the silica surface. When the chip is rinsed with 

MilliQ water, the Eumulgin ES layer is removed completely. 

The signals for ∆f decrease and ∆ D increase when the chip is being in contact to the 

surfactant solution, yet the frequency shifts do not run congruently. This is due to the fact 

that the solution rinsing the chip behaves like a viscoelastic film because of the high 

surfactant concentration. The increased shift of the energy dissipation also arises from 

this effect. When the SiO2 surface is rinsed with buffer containing no surfactant, a stable 

frequency shift of approximately -35 Hz occurs for all overtones. The dissipation is 

decreased close to zero. In this state, a stable rigid surfactant layer is adsorbed to the SiO2 

surface. Upon rinsing the surface with MilliQ water, the surfactant layer is desorbed and 

the signal drops back to zero.  

Figure 6.4 displays the QCM-D signal for the experiment at pH 7 at 20°C. 
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Figure 6.4: QCM-D signal obtained during rinsing a silica chip with sodium phosphate and 

Eumulgin ES at pH 7 and 20° C. The silica chip is rinsed with: 0: sodium phosphate; 1: 10 % 
Eumulgin ES in sodium phosphate; 2: sodium phosphate; 3: MilliQ water. Eumulgin ES is 

completely removed from the chip surface after rinsing with sodium phosphate. 

When the silica chip is rinsed with the surfactant solution, the signal change is similar to 

the signal change at pH 3, yet when the SiO2 surface is rinsed with pure buffer, the 

frequency signal drops to zero immediately. Rinsing the silica chip with MilliQ water does 

not change the signal. In conclusion, at pH 7 no surfactant layer is adsorbed to the SiO2 

surface. The signal change by rinsing with surfactant solution is due to interaction or 

loose attachment of the surfactant to the silica surface. 

When the temperature is increased to 30° C the cloud point of the Eumulgin ES solution is 

crossed and the system splits. QCM-D signals for a solution heated to 30° C at pH 3 are 

shown in Figure 6.5. 
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Figure 6.5: QCM-D signal obtained during rinsing a silica chip with sodium citrate and Eumulgin 

ES at pH 3 and 30° C. The silica chip is rinsed with: 0: sodium citrate; 1: 10 % Eumulgin ES in 

sodium citrate; 2: sodium citrate; 3: MilliQ water. A signal shift of -55 Hz emerges when the 
surface is flushed with sodium citrate. The signal comes from a stable surfactant double layer 

formed on the silica surface at pH 3 and 30°C. 

When rinsing with the surfactant solution, fluctuations in the signals can be detected. 

These occur due to the inhomogeneous solution that is rinsed to the SiO2 surface. Above 

the phase separation temperature large micelles are formed that interact with the quartz 

surface in an uncoordinated manner. When the surface is flushed with pure buffer, 

however, a constant frequency shift signal of about -55 Hz emerges. Rinsing with MilliQ 

water decreases the frequency shift to zero. This effect is explained by a two-step 

mechanism. In the first step, the surfactants adsorb to the SiO2 surface due to hydrogen 

bonding (shown in the 20° C experiment). When the temperature is increased, the 

hydrocarbon chains of the surfactants congregate; the surfactants form a stable double 

layer on the SiO2 surface. 

In contrast to that, Figure 6.6 shows the signal of the QCM-D when the heated surfactant 

solution is brought in contact with the silica surface at pH 7. When the chip is rinsed with 

buffer after contact with surfactant the signal drops to zero. Although the surfactants 
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congregate, they do not bind to the silica surface, as no hydrogen bonding between polar 

heads of the surfactant and SiO2 occurs. 

 

Figure 6.6: QCM-D signal obtained from rinsing a silica chip with sodium phosphate and 

Eumulgin ES at pH 7 and 30° C. The silica chip is rinsed with: 0: sodium phosphate; 1: 10 % 

Eumulgin ES in sodium phosphate; 2: sodium phosphate; 3: MilliQ water. Eumulgin ES is 
completely removed from the chip surface after rinsing with sodium phosphate at 30° C 

When urea is added to the buffered solution at pH 3 the QCM-D signal is straight, as can 

be seen in Figure 6.7. 
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Figure 6.7: QCM-D signal obtained during rinsing a silica chip with sodium citrate, 6 M urea and 
Eumulgin ES at pH 3 at 20° C. The silica chip is rinsed with: 0: sodium citrate, 6 M urea, pH 3; 1: 

10% Eumulgin ES in sodium citrate, 6 M urea, pH 3; 2: sodium citrate, 6 M urea, pH 3. Eumulgin 

ES is completely removed from the chip surface after rinsing with the buffered urea solution. 

Urea stabilizes the micelles; this results in a less staggered QCM-D signal. When rinsed 

with buffer and urea but without the surfactant at pH 3, the frequency shift drops to zero. 

When the temperature is increased to 35° C to induce phase separation conditions and 

the chip is rinsed with buffer and urea after contact with the surfactant solution, the 

signal of both frequency shift as well as dissipation slowly converges to zero. The signal 

curve can be seen in Figure 6.8. It can be concluded, that Eumulgin ES does not bind 

permanently to the silica surface at pH 3 in presence of 6 M urea. 
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Figure 6.8: QCM-D signal obtained during rinsing a silica chip with sodium citrate, 6 M urea and 

Eumulgin ES at pH 3 at 35° C. The silica chip is rinsed with: 0: sodium citrate, 6 M urea, pH 3; 1: 
10 % Eumulgin ES in sodium citrate, 6 M urea, pH 3; 2: sodium citrate, 6 M urea, pH 3. The 

obtained signals converge to zero - no surfactant is adsorbed permanently to the silica surface. 

The average thickness of the surfactant layers on the silica surfaces were calculated 

according to Equations 6.1 and 6.2. The results are summarized in Table 6.1 and 6.2. 

Table 6.1: Calculated thicknesses of the Eumulgin ES layers on silica chips for different buffer 

conditions at 20° C. Calculation was done by experimental QCM-D results and Equations 6.1 and 
6.2. 

Buffer pH / Salt 
Thickness of adsorbed surfactant 

layer [nm] 

Standard Deviation 

[nm] 

pH 3 5.50 0.34 

pH 3, 6 M Urea 0.23 0.02 

pH 7 0.01 0.17 
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Table 6.2: Calculated thicknesses of the Eumulgin ES layers on silica chips for different buffer 

conditions at 30° C. Calculation was done by experimental QCM-D results and Equations 6.1 and 

6.2. 

Buffer pH / Salt 
Thickness of  adsorbed surfactant 

layer [nm] 

Standard Deviation 

[nm] 

pH 3 11.14 1.04 

pH 3, 6 M Urea 0.95 0.04 

pH 7 0.01 1.00 

For 20° C the average thickness of the surfactant layer is 5.5 nm while at 30° C the 

thickness was calculated to 11.1 nm. The length of an Eumulgin ES molecule was 

estimated to 5.5 nm. Therefore, it can be concluded that the surfactant molecules do not 

adsorb in an outstretched horizontal fashion onto the silica surface but they are oriented 

vertically, with carbon chains extended towards the liquid and polar heads towards the 

SiO2 surface. The addition of urea at pH 3 prevents the permanent surfactant binding 

completely. As discussed, at pH 7 the surfactants do not bind to the SiO2 surface, neither 

at 20° C nor at 30° C. 

6.4.4 Surfactant Binding on Particle Surfaces 

MagPrep Silica particles were incubated with a buffered surfactant solution of pH 3 and 

pH 7 and washed with buffer of the respective pH for 12 wash cycles. The surfactant 

concentrations in the wash fractions were analyzed by TOC. Figure 6.9 shows the 

concentrations in the wash fractions for wash cycles 4 to 12 performed at 4° C and at 

30° C. 
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Figure 6.9 A: Eumulgin ES desorbed from MagPrep Silica particles in 12 wash cycles at 4° C. 

Desorption was performed at 4° C and at pH 3 or pH 7. Surfactant concentrations in the wash 

solutions are shown from cycle 4-12. At pH 3 the attraction of the surfactant to the SiO2 surface 
is stronger. B: Eumulgin ES desorbed from MagPrep Silica particles in 12 wash cycles at 30° C. 

Desorption was performed at 30° C and at pH 3 or pH 7. Surfactant concentrations in the wash 

solutions are shown from cycle 4-12. At pH 3 the attraction of the surfactant to the surface is 
much stronger. Eumulgin ES is eluted from the particles after 12 wash cycles, while at pH 7 the 

surfactant is completely removed from the particles after four wash cycles. 

While at 4° C and pH 7 the surfactant is completely eluted from the MagPrepSilica 

particles after five cycles, at pH 3 the attraction of the silica surface to the surfactant is 

stronger and up to nine wash cycles are required. This effect is even more prominent 

when the particles are incubated with surfactant at 30° C as shown in Figure 6.9 B. 

At 30° C and pH 7 the surfactant is removed completely after five wash cycles, at pH 3 the 

Eumulgin ES desorption from the particles is not completed after 12 wash cycles. In 

summary, at pH 3 the attraction of the non-ionic surfactant to the SiO2 coated particles is 

stronger at pH 3 compared to pH 7. These findings are in accordance with the results 

obtained from the QCM-D experiments and the reference surfaces. 

6.4.5 ATR-FTIR Spectroscopy 

The sorption of the Eumulgin ES onto MagPrepSilica particles at pH 3 and pH 7 was 

compared by ATR-FTIR. The particles were first incubated at AMTPS conditions; 

afterwards particles were washed five times in the same buffer. ATR-FTIR spectra were 

taken from the plain particles, particles incubated with AMTPS and particles that were 

washed five times with pure buffer after incubation. The spectra of the plain particles 
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were subtracted from the spectra of the incubated and rinsed particles and the results 

are depicted in Figures 6.10 and 6.11. 

 

Figure 6.10: ATR-FTIR spectra of MagPrepSilica particles incubated with Eumulgin ES at pH 3. 

The peaks at 2800-2950 cm-1 are generated from CH2 and CH3 stretching caused by surfactants 
hydrocarbon chain at the particle surface. Peaks can still be observed on the particle surface 

after five wash cycles at pH 3. 
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Figure 6.11: ATR-FTIR spectra of MagPrepSilica particles incubated with Eumulgin ES at pH 7. 

The peaks at 2800-2950 cm-1 are generated from CH2 and CH3 stretching caused by surfactants 
hydrocarbon chain at the particle surface. These peaks cannot be observed on the particle 

surface anymore after five wash cycles at pH 7. 

When the particles are incubated with AMTPS, the surfactants are attached to their 

surface; this can be observed by the peaks at wavenumber 2800 cm-1, which are caused 

by stretching vibrations of their CH2 and CH3 groups. Yet, when washed with at neutral pH 

7, the surfactants are removed completely, as no peak can be seen in Figure 6.11. At pH 3 

however, after five wash cycles, the peaks at 2800cm-1 can still be detected. The ATR-FTIR 

experiments confirm the findings from the QCM-D and direct surfactant elution 

experiments. The surfactant is completely removed from the SiO2 at pH 7, as the 

surfactants are not strongly adsorbed to the surface.  

6.5 Conclusions 

The correlations of pH level, surfactant adsorption and the partitioning of silica coated 

particles in an AMTPS have been examined. 

We have shown that at a low pH, the surfactants physically adsorb to the SiO2 layer of 

both, particle and reference surface. As the surfactant is of non-ionic nature, these 
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interactions seem to be hydrogen-bonds formed between SiO2 and the polar head of the 

surfactant. The sorption of the surfactant has been investigated using three independent 

methods: QCM-D, based on a reference silica chip, direct determination of surfactant 

concentration in solution and ATR-FTIR on the particle surface. QCM-D results suggest, 

that the non-ionic surfactant adsorbs to the silica surface with its polar head towards the 

SiO2 layer. When the temperature is increased, a stable double layer is formed on the 

silica surface. At the same conditions when the surfactants adsorb onto the silica surface, 

the particles partition to the micelle rich phase of the system. On the contrary, at 

conditions when the surfactants only attach loosely to the surface, the particles partition 

to the micelle poor phase of the micellar two-phase system. We therefore propose that 

the partitioning of particles in micellar two-phase systems is driven by the adsorption of 

the phase forming surfactant to the component to be partitioned. Figure 6.12 illustrates 

the proposed mechanism of the partitioning behavior of particulates in an AMTPS.  
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Figure 6.12: Mechanism of the partitioning of an insoluble particle in AMTPS. If the phase 

forming surfactant adsorbs to the particle, it is drawn to the micelle rich phase. If the surfactant 

does not adsorb to the particle surface, the particle is expelled from the micelle rich phase. 

Whenever the phase forming surfactant covers the particle surface, these particles enter 

the micelle rich phase; if the surfactant is not adsorbed to the particle surface, the 

particle is excluded from the micelle rich phase. Similar results have also been discovered 

for proteinaceous solutions [30]. The authors used negatively charged mixed micelles to 

increase the partitioning coefficient of positive charged proteins to the micelle rich phase. 
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Our experimental results suggest that the partitioning of soluble and insoluble nanosized 

particles are based on the very same principles; hydrogen bonds formed between the 

phase forming component and the component to be partitioned seem to dominate the 

partitioning behavior of the component in an aqueous micellar-two phase system. 
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7.1 Abstract 

A novel technique for technical-scale continuous purification of proteins is presented. It is 

based on the combination of functional magnetic nanoparticles and an Aqueous Micellar 

Two-Phase System (AMTPS). In the first step, the particles bind the protein of interest. In 

the next step, the particles are enriched in the micelle-rich phase of the AMTPS. The 

particle and micelle-rich phases are then continuously separated from the micelle-poor 

phase in a flowthrough magnetic extractor based on permanent magnets. It is shown that 

the magnetic extractor can be used to continuously separate magnetic nanoparticles 

sized 25 nm to 2000 nm with separation efficiencies of up to 99.9 % and surfactant 

separation rates of up to 98 %. The magnetic extractor is applied in combination with 

100 nm sized magnetic cation exchange particles to purify the antibody fragment Fab α33 

from a clarified E. coli supernatant in a 15 liter scale. Within this process, a yield of 67 %, 

purity of >98 %, and purification factor of 6.3 were obtained, while the total particle loss 

summed up to only 1 %. 
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7.2 Introduction 

In times of growing product titers, downstream processing is the bottleneck in 

biopharmaceutical production processes [1]. The amendment or replacement of 

traditional downstream operations e.g., column chromatography by integrated and/or 

continuous separation processes, is certainly a necessity to solve. Aqueous two-phase 

systems or Aqueous Micellar Two-Phase Systems (AMTPS) have been regarded as such a 

possible alternative ever since the selective partitioning of (bio)molecules between the 

two emerging phases of a mixture of polymers and/or salts has been described by 

Albertsson [2]. In contrast to classical ATPS, AMTPS, introduced by Bordier [3], consist of 

non-ionic surfactants. These systems undergo temperature-induced phase separation 

resulting in a micelle-rich (or coacervate phase) and a micelle-depleted phase [4]. 

Numerous applications and combinations of phase-forming polymers have been 

proposed since then for the selective enrichment of a protein in one of the aqueous 

phases (also described as aqueous two-phase extraction ATPE or cloud point extraction 

CPE) [4, 5]. A striking advantage of ATPE is its easy scalability. Several process schemes 

have been published recently, which demonstrate the feasibility of continuous 

bioprocessing in terms of both ATPS [6-8] and AMTPS [9, 10]. Despite these advantages, 

the cost and loss of phase-forming components in the target protein-depleted phase is 

still an economic hurdle. The major drawback, however, considering ATPE as an 

alternative in biotechnological downstream processing, is that the underlying physical 

principles of the partitioning behavior of a target protein between the phases are still 

unclear and much experimental effort is required to identify an economic system [11]. In 

order to circumvent these issues, affinity-enhanced ATPS has been introduced [12]. Here, 

either the phase-forming polymer is chemically modified or ligands are added to the two-

phase system to enhance the partitioning of the molecule of interest into a certain phase 

of the ATPS [13]. Among these ligands, functionalized magnetic particles constitute a 

particular class [14-16]. The combination of ATPS and magnetic particles is advantageous, 

cf. traditional affinity ATPS, as the phase separation rate can be increased drastically by 

application of an external magnetic field, if these particles partition completely to the 

dispersed phase of the system [17-19]. 
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Recently, the successful combination of AMTPS and magnetic microsorbents has been 

described using the well-known non-ionic surfactant Triton X-114 [20]. Here, the sorption 

of the target molecule was performed in the single-phase regime. The temperature was 

subsequently increased to induce phase separation. The protein-loaded particles were 

accumulated in the micelle-rich phase of the resulting AMTPS and the micelle-poor phase 

was removed. In the following step, an AMTPS was set up with elution buffer and the 

former micelle-rich phase of the sorption step. The proteins were consequently eluted 

from the particles and while the magnetic sorbents partitioned completely to the micelle-

rich phase, the target protein partitioned in the AMTPS based on its partitioning 

coefficient K. 

This concept – termed Magnetic Extraction Phases (MEP) - was extended to magnetic 

nano-scaled sorbents and an AMTPS based on the nonionic surfactant Eumulgin ES [21]. 

The Eumuglin ES-based AMTPS exhibits fundamental improvements, cf. the Triton X-114 

AMTPS, for instance extreme protein partitioning coefficients and low surfactant costs, 

while maintaining a moderate phase separation temperature. Due to the extreme K-

value, the target protein was completely eluted to the micelle-poor phase, while the 

magnetic sorbents were completely accumulated in the micelle-rich phase. The MEP 

experiments, however, have only been conducted on a lab scale so far. 

In this work, the transfer from lab-scale to technical-scale Continuous Magnetic Extraction 

(CME) is presented. It is based on a novel magnetic extractor set-up, whose principle is 

depicted in Figure 7.1. The AMTPS containing functional magnetic nanoparticles is 

injected into a temperature-regulated and magnetically enhanced settler. While passing 

the settler, the phases are separated. The magnetic field hereby not only speeds up the 

flotation velocity of the magnetic particle-doped disperse droplets but also increases their 

coalescence rate. We demonstrate that using this set-up allows the continuous 

separation of magnetic nanoparticles from the micelle-poor phase at flow rates of several 

liters per hour. The applied magnetic particles exhibit common surface functionalizations 

known from chromatographic media. Using cation exchange functionality, CME is applied 

for the continuous capture of an antibody fragment from a crude E. coli cell extract. 

Applying CME for binding, washing and elution, the final result is a particle-free eluate 
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phase containing the target antibody fragment, and a concentrated micellar-rich top 

phase which contains the particles and most of the phase- forming surfactants. As both, 

the surfactants and the functionalized particles, are concentrated in the top phase, it is 

possible to directly apply this process stream to a fresh feed.  

 

Figure 7.1: Principle of CME. The feed consists of magnetic particles and the AMTPS 
components. It is injected into a temperature-controlled settler. The settler is surrounded by a 

permanent magnet. The phases split and separate while passing the settler. The magnetic field 

increases the phase separation rate by increasing the flotation velocity of the disperse droplets 
and by enhancing coalescence effects. At the end of the separator, the particle and micelle-rich 

phases are discharged from the top outlet, while the particle-depleted bottom phases are 

withdrawn from the lower outlet. 

7.3 Material and Methods 

7.3.1 General Description of the CME Process 

In Figure 2, the process scheme of a continuous magnetic extraction is depicted. The core 

of the magnetic extraction is the described temperature-controlled, magnetic field-

enhanced mixer-settler. In the temperature-controlled mixer, the sorption of the target 

molecule to the magnetic sorbent occurs at a temperature TS at which the fluid forms a 

single phase. In the next step, the AMTPS is heated up to a temperature TT in which the 

fluid forms two phases. For phase separation, the fluid is  pumped into a separation 

chamber surrounded by a specially designed permanent magnet which itself is located in 

the inside of a sealed polystyrene case that is supplemented with a temperature- 

controlled heater in order to maintain the temperature at TT. While passing the reactor, 

micellar droplets doped with magnetic nano- or microparticles form. The external 

magnetic field of the permanent magnet enhances the migration velocity of these 

micellar droplets and additionally increases the initial droplet coalescence as well as the 

coalescence at the interphase of the two- phase system. Finally, a particle-clarified, 

micelle-depleted bottom phase is discharged from the lower effluent of the separation 
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chamber, while a micelle and particle-enriched phase is withdrawn from the upper 

effluent. The single components of the system are shortly explained hereafter. 

 

Figure 7.2: Scheme of the magnetic extraction process. AMTPS and magnetic sorbents are mixed 

in a temperature- controlled mixer at a temperature TS in the single-phase regime. The solution 

is pumped through a heat exchanger and enters the magnetic extractor preheated to the two-
phase temperature TT. The extractor consists of a sealed polystyrene case keeping the 

temperature constant, a permanent magnet, and the separation chamber. Within the extractor, 

the streams are separated. A micelle-rich phase containing the magnetic particles is discharged 

from the top phase, while a micelle-poor and particle-depleted phase is removed from the 
lower effluent of the separator. 

7.3.1.1 Separation Chamber 

The scheme of the separation chamber is depicted in Figure 7.3. The core of the 

separation chamber is fabricated in the form of a glass box (10 mm wall thickness) with 

open front and back. The inner dimensions (length x width x height) of the glass box are: 

500 x 120 x 50 mm³. The inlets, outlets and the weir are made from polyvinylchloride and 

are glued to the open ends of the glass box. The height of the weir was 38 mm, resulting 

in a liquid volume in the separator chamber of 500 x 120 x 38 mm = 2.28 liters. 

 

Figure 7.3: Scheme of the separation chamber of the magnetic extractor. After leaving the heat 

exchanger, the fluid is pumped into the separation chamber, where the phases begin to 

separate. The particle and surfactant-rich top phase is discharged by a weir in the top phase, 
while the particle-depleted bottom phase is withdrawn from the lower effluent. 
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7.3.1.2 Permanent Magnet 

A ferrite permanent magnet surrounding the separation chamber was fabricated by 

Steinert Elektromagnetbau GmbH (Cologne, Germany). The overall size of the magnet is 

627x235x306mm. The magnet consists of the magnetic ferrite material (block M in Figure 

4) and a surrounding pole shoe. A magnetic field simulation was performed using the FEM 

software Quickfield 5.7 (Tera Analysis, Svendborg, Denmark). The magnetic 

characteristics of the ferrite material were supplied by the magnets manufacturer. As can 

be seen from Figure 4, the pole shoe design results in a vertical magnetic field component 

which steadily increases towards the upper side of the separator chamber. 

 

Figure 7.4: FEM simulation of the magnet field generated by the permanent magnet (M). A 

settler can be installed in the space (S) as in this space, the vertical flux density BY(T) is steadily 
increasing towards the upper side. This results in a lifting force onto magnetic particles in all 

locations within S. 

7.3.1.3 Temperature-regulated Polystyrene Case 

As maintenance of a constant temperature during the separation operation is crucial, the 

magnet and the separation chamber are positioned in a polystyrene case. A radiator 

(Cirrus 80, DBK, Germany) is installed within the case and connected to a thermostat 

(LR316, Jumo, Germany). In all experiments, the temperature in the polystyrene case was 

adjusted to a temperature within the two- phase region of the AMTPS. The sealed 

polystyrene case containing the permanent magnet and the separation chamber was 

preheated for at least 2 hours in order to establish a constant temperature. 
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7.3.1.4 Equations Describing CME Performance 

The phase separation curve of the used AMTPS results from plotting the temperature 

against the corresponding Eumulgin ES concentrations in the phases after complete phase 

separation. 

From the surfactant concentrations, the volume fractions of the surfactant-rich and poor 

phases can be calculated according to the lever rule [22, 23]: 
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Here, wS,0, wS,B and wS,T are the surfactants´ mass fractions of the phases before and after 

phase separation and R is denoted as phase-volume ratio. During continuous operation of 

the magnetic extractor, the phase-volume ratio between the withdrawn top and bottom 

phase can be expressed as pump ratio P, according to Equation 7.2: 

© = +>�+@�  [Eq. 7.2] 

As can be seen from Figure 7.3, P is controlled by the feeding rate +x�  and the discharge 

rate of the bottom phase +�@. The amount of liquid removed by the top effluent results 

from the flow rate difference between the inlet and the bottom effluent. The ratio of the 

flow rate leaving the top effluent and the inlet flow rate therefore is defined as 

coacervate ratio CR: 

E� = +�>+�x = +�x − +�@+�x 	 = 	 ©© + 1 [Eq. 7.3] 

with  +>�  being the flow rate of the top phase discharge. 

In theory, the ideal operation point of a magnetic extractor would be that the pump ratio 

P exactly matches the volume ratio R between the surfactant-rich and poor phases 

determined in batch equilibrium experiments. However, in order to prevent the loss of 

target component, particles, and surfactant, the CME was operated in a way that 
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emphasizes the complete removal of the top phase rather than the prevention of 

contaminating the top phase with traces of bottom phase. In order to achieve the 

complete removal of the top phase during the CME operation, the theoretical minimal CR 

necessary can be calculated from R: 

E�,�%g ≥ == + 1 [Eq. 7.4] 

The used CR was derived from this value applying a safety factor of 5 - 10%. 

The rate of removal of magnetic particles and surfactant from the initial feed using CME is 

defined as separation efficiency according to Equation 7.5 for particles and Equation 7.6 

for the phase-forming surfactant. 

ª� = (1 − +�@ ∙ ��,@+�x ∙ ��,x ) ∙ 100 [Eq.7.5] 

ª� = (1 − +�@ ∙ ��,x+�x ∙ ��,x ) ∙ 100 [Eq.7.6] 

where cP,B, cP,I  respectively cS,I and cS,B are the concentrations of particles and surfactant 

in the initial streams and in the discharged bottom phases. 

7.3.2 Chemicals 

The water used was deionized and purified by a Millipore Milli-Q Ultrapure system. 

Disodium-hydrogen phosphate and sodium-chloride were supplied by Carl Roth 

(Karlsruhe, Germany). Citric acid monohydrate and Polyvinyl-alcohol (average MW 

60.000), borate and Comassie Brilliant Blue R250 were purchased from Merck Millipore 

(Darmstadt, Germany). Sodium tetraphenylborate and barium chloride were purchased 

from Sigma-Aldrich (St.-Louis, US-MO). The chemicals were of buffer or p. A. grade. The 

nonionic surfactant Eumulgin ES (PPG-5-Laureth-5, CAS-No.: 68439-51-0) was purchased 
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from Cognis (Düsseldorf, Germany). Precast 15% mini-PROTEAN® TGX™ gels and Precision 

Plus Protein All Blue Standards were supplied by Bio-Rad (Hercules, USA-CA). 

7.3.3 Particles 

“Poly-(NIPA-AAc)” particles were provided from the group of Dr. Rodica Turcu from the 

National Institute for Research and Development of Isotopic and Molecular Technologies 

(NIIMT). These magnetic particles consist of a magnetite core which is embedded in a 

poly(N-isopropylacrylamide)-acrylic acid copolymer. The mean diameter of the particles 

was determined to 200nm by Dynamic Light Scattering (DLS).  

“MagPrep Silica 25” and “MagPrep SO3 100” particles were kindly donated by Merck 

Millipore (Darmstadt, Germany). The particles consist of magnetite (Fe3O4) crystals with a 

thin silica coating. In the case of the SO3 particles, the silica coating is further 

functionalized with sulfonate groups as used in cation exchange chromatography. 

Scanning Electron Microscope (SEM) pictures revealed a mean diameter of single particles 

of 25nm for the silica particles and 100nm for the SO3 particles with a narrow size 

distribution. 

Chemagen DEAP particles were provided from Chemagen (PerkinElmer chemagen 

Technologie GmbH, Baesweiler, Germany). These magnetic particles with a mean size of 

approx. 2 µm consist of polyvinylacohol (PVA) with statistically embedded magnetite 

nanoparticles. PVA is further functionalized with diethylamniopropyl (DEAP) groups which 

are typically used in anion exchange chromatography. 

7.3.4 Determination of the AMTPS Phase Diagrams  

The location of the curves separating the two-phase regime and the single-phase regime 

within a T,x diagram (x being the mass fraction of the surfactant in the mixture) were 

determined as follows: Different fractions of surfactant and the corresponding buffers 

were weighed into 15 ml centrifuge tubes. The centrifuge tubes were tempered using a 

temperature-controlled water bath (RC 20 S, Lauda). The centrifuge tubes were incubated 

in the water bath until phase separation was completed but for at least 12 hours. 

Subsequently, top and bottom phase of the resulting two-phase system were quickly 
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removed and the surfactant concentrations of both phases were measured according to 

the procedure described in the ‘Analytics’ section. 

7.3.5 Phase Separation Experiments  

The phase separation velocity in the magnetic extractor was determined for an operation 

with and without magnetic particles. An AMTPS was set up which consisted of 10 % wt 

Eumulgin ES and 90 %wt 50 mM sodium citrate at pH 3. Poly-(NIPA-AAc) particles were 

chosen for the separation experiments at a temperature of TS equal to 30°C. The 

coacervate ratio CR was kept constant at 0.2, while +x�  was varied from 0.5 liter per hour to 

25 liters per hour. The system was run at the corresponding flow rate until the volume in 

the separation chamber was exchanged at least twice. Samples were taken from the top 

and bottom outlet of the magnetic separator and analyzed for their Eumulgin ES 

concentrations. All experiments were carried out in the absence of the magnetic particles 

first and afterwards, the same set-up was used with a magnetic particle concentration of 

2 g/L. 

Long-term continuous operation of the magnetic extractor was investigated by an 

operation in “loop mode”. In loop mode, the leaving top and bottom phases were 

reinjected into the tempered stirred tank. This set-up allowed the continuous operation 

of the magnetic extractor for several hours without the exhaustive use of material. The 

initial particle concentration in the stirred tank was 2 g/L in a total volume of a 9 liter 

sodium citrate/10% Eumulgin ES AMTPS. The flow rate was set to 9 liters per hour, TS was 

set to 30°C and CR to 0.33. Samples were taken from the initial feed, the top phase and 

the bottom phase during operation. The samples were analyzed for their magnetic 

particle and surfactant concentrations. 

7.3.6 Purification of Fab α33 by means of CME 

For conducting the proof of concept, the CME equipment was shipped to the group of 

Professor O.R.T. Thomas at the University of Birmingham and applied to capture the 

antibody fragment Fab α33. For the production of Fab α33, the E. coli strain W3110 was 

used with the α33 Fab’ plasmid supplied by UCB Celltech (Slough, UK.) The supernatant 

was produced by heating the harvested cells to 60° C in 100 mM Tris-HCl, 10 mM EDTA at 
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pH 7.4. The supernatant was clarified from the cells afterwards and the solution was 

diluted 10-fold with 20 mM sodium phosphate buffer at pH 5.6. In order to gather the 

necessary TS, TT and CR, the phase diagram of an AMTPS consisting of Eumulgin ES and the 

heat shock supernatant was created. 

For binding of the Fab α33 protein within the CME process, Merck MagPrep-SO3 particles 

were applied. An AMTPS was set up, which consisted of the diluted heat shock solution 

and 10% Eumulgin ES. The total volume of this AMTPS was 14.7 liters. The particle 

concentration in the binding step was set to 1.4 g/L. The protein binding was performed 

in a double-jacketed reactor at TS= 15°C under constant stirring at 140 rpm. TT was set to 

30° C. CR was set to 0.2 and the flow rate +x�  was set to 5 liters per hour. The solution was 

then separated by magnetic extraction and the leaving streams were collected separately. 

For the washing step, the collected top phase from the experiment was transferred back 

into the stirred tank. Wash buffer (20 mM sodium phosphate at pH 5.6) was added in a 

volume ratio of 2:1 and the solution was cooled to TS. Afterwards, the broth was 

processed through the magnetic extractor and the leaving streams were collected 

separately. Finally, the elution step was started by transferring back the collected top 

phase from the washing step into the stirred tank. Afterwards, elution buffer (750 mM 

sodium chloride, 20 mM sodium phosphate at pH 5.6) was added in a volume ratio of 2:1. 

This resulted in a final sodium chloride concentration of 500 mM. The broth was 

processed through the magnetic extractor and the top and bottom phases were collected 

separately. 

During and after each process step, samples were taken from the top and bottom phases 

and were analyzed for their particle, surfactant, DNA, total protein, and FAB α33 

contents. At the end of each separation, when the top phase withdrawal ran dry, the 

bottom phase was removed until a turbid solution was noticed. At this time, the bottom 

valve was closed and the remaining broth was added to the top phase collection tank. 

Before the next step of the CME was performed, the separation chamber was flushed 

with buffer, to flush out remaining particles from the separation chamber into the stirred 

reactor. 
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7.3.7 Analytics 

The concentration of the surfactant Eumulgin ES was determined by potentiometric 

titration using the NIO surfactant electrode (Metrohm, Birkenfeld, Germany) as described 

elsewhere [24]. In short, a sample was weighed into a glass beaker and 10 mL of barium 

chloride solution and 60 mL of MilliQ water were added subsequently. This solution was 

then titrated with a sodium-tetraphenylborate solution using the Metrohm NIO 

electrode. As a result, the end-point volume was recorded. The surfactant mass fraction 

was then obtained by comparing the end point volume with the end point volumes of 

known surfactant mass fractions using linear regression. 

The concentration of the magnetic particles was determined gravimetrically as follows: 

An adequate volume of particle-containing sample was taken. Particles were separated 

from the solution by centrifugation for 20 minutes or by using a hand magnet. The 

supernatant was removed and the particles were washed once with 15ml of methanol 

and twice with 15ml of MilliQ water. Particles were resuspended in 1ml MilliQ water in 

HPLC glass vials and dried in an oven at 60°C for at least 16 hours or until all liquid was 

evaporated. The particle concentration was then determined by the weight of the dry 

particles and the initial volume of the sample.  

The total protein concentration was determined using a micro bichinoninic acid (BCA) 

assay kit (Pierce, Rockford, US-IL). Reagents were prepared according to the 

manufacturer’s instructions. Samples were analyzed using the Cobas Mira (ROCHE) 

automatic robotic station. In order to eliminate the influence of surfactant on the BCA 

assay and to concentrate the proteins, a trichloroacetic acid (TCA) precipitation step was 

performed as follows: 100% TCA was added to the sample to generate a final TCA 

concentration of 15%. Samples were incubated on ice for 30 minutes. The protein pellet 

was then separated from the supernatant by centrifugation and decantation. The protein 

pellet was washed twice with ice-cold acetone and dried afterwards by vacuum 

centrifugation (Vacufuge, Eppendorf, Hamburg, Germany). The pellet was resuspended in 

1% SDS, 0.1M Tris-HCl, pH 8. Protein standards used in the BCA assay were precipitated in 

the same way as the unknown samples to minimize the influence of protein loss during 

precipitation to the analytics. 
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The Fab α33 concentration was determined by densitometric analysis following SDS 

PAGE. The protein-loaded SDS gels were Coomassie Blue-stained and scanned as TIFF 

image files. The images were afterwards analyzed using the software ImageJ® [25]. In 

order to quantify the Fab α33 concentration, standards with known concentrations were 

applied on the same gel. A linear correlation between the Fab α33 amount on the gel and 

the protein band intensity was found in a range from 0.1 to 1 µg of Fab α33. Hence, the 

total volume of the unknown samples applied on the gel was adjusted to match this 

range. 

The DNA concentration was determined using Quant-iT™ PicoGreen® dsDNA kit according 

to the manufacturer’s specifications. The samples were measured in 96-well plates and 

analyzed by an Ascent Fluoroskan Fluorometer (Thermo Labsystems; Waltham, MA) with 

excitation at 480nm and emission at 535 nm. 

7.4 Results 

7.4.1 Part I: Physico-chemical and Hydrodynamic Characterization  

The phase diagram of an Eumulgin ES-based AMTPS in sodium citrate, pH 3 buffer can be 

found in [26]. In comparison with a phase diagram of an Eumulgin ES-based AMTPS in 

water and sodium phosphate at pH 7, which has already been described in [24], the phase 

diagram is practically similar. Therefore, it can be concluded that in the observed range, 

the influence of pH and buffer composition onto the phase separation temperature in 

Eumulgin ES-based AMTPS is negligible. From the phase diagram in [26], the process 

parameters R and CR,min were deduced.  

Table 7.1: Volume ratio R and minimal coacervate ratio CR,min calculated from Equations 7.1 and 

7.4. 

T [°C] R [-] CR,min*100 [%] 

29 0.27 22 

30 0.23 19 

35 0.16 14 

40 0.14 12 
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Table 7.1 shows the calculated values for R and CR,min in an AMTPS consisting of 10% 

Eumulgin ES. As can be seen from Table 7.1, a minimum CR of 0.19 has to be adjusted in 

order to achieve complete phase removal for an Eumulgin ES-based AMTPS at 30°C. The 

phase separation efficiency of the Eumulgin ES-based AMTPS was monitored during the 

CME operation by analyzing the concentrations in the top and bottom-phase effluents for 

different feed flow rates. The Eumulgin ES concentration of the feed was 9.6% wt, the 

phase separation temperature was set to 30°C, and CR was set to 0.2. Figure 7.5 depicts 

the Eumulgin ES concentration profiles of the top and bottom phases. When operating 

the CME with flow rates of > 15 L/h, no phase separation can be observed. Both streams 

leave the separator at the same concentrations as those they had when injected. When 

the flow rate is decreased below 15 L/h, the phases start to separate and reach a plateau 

at approximately 2 L/h. In steady state, this mode of operation accomplishes a surfactant 

concentration of 32% in the top phase. Further decrease in the flow rate does not 

increase the surfactant concentration in top phase. 

 

Figure 7.5: Eumulgin ES phase separation achieved in the magnetic extractor during continuous 
operation at different flow rates. A plateau of 32% wt Eumulgin ES in the micelle-rich top phase 

and 0.7% in the clarified bottom phase is reached below 2 liters per hour. 

When magnetic particles are added to the extractor, the phase separation rate is 

drastically improved, as can be observed from Figure 7.6.  
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Figure 7.6: : Eumulgin ES phase separation achieved in the magnetic extractor during 

continuous operation at different flow rates. Poly-(NIPA-AAc) magnetic particles were added to 

the system with a concentration of 2 g/L. For flow rates less than 10 liters per hour, a plateau 
phase is reached, with an average Eumulgin ES concentration of 38% wt in the top phase and 

0.7% wt in the clarified bottom phase. 

The phases start to separate at a flow rate of 17 liters per hour and the maximum phase 

separation rate is reached already at approximately 9 liters per hour. The benefit from 

the addition of the magnetic particles to the AMTPS, cf. traditional AMTPS, is clearly 

visible. By addition of magnetic particles that partition exclusively to the dispersed 

micellar droplets of the emerging two-phase system, the magnetic force directly impacts 

the phase separation. On the one hand, the flotation velocity of a “magnetic droplet” is 

increased by the magnetic field gradient in the separator chamber, which results in a 

magnetic force pointing upwards. On the other hand, the coalescence rate of the droplets 

is increased. As a consequence, the maximum surfactant concentration in the micelle-rich 

top phase increases from 32% in the experiments without particles to 38% in the case of 

the addition of magnetic particles. However, in both cases the maximum Eumulgin ES 

concentration in the top phase is lower than the Eumulgin ES concentration of 50%, 

which results from a complete phase separation temperature of 30°C obtained from the 

phase diagram. The difference to the experimental data for a continuous operation is 

likely due to incomplete phase separation – AMTPS usually undergo complete phase 

separation in 16-20 hours in batch experiments. In the magnetic extractor, the maximum 
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residence time is 55 minutes in the case of a CME operation with magnetic particles and 5 

hours in the case of an operation without particles. A mass balance of the total surfactant 

in the ingoing and effluent streams of the extractor, however, cannot be solved 

completely especially for low flow rates. It can be assumed that the micelle-rich phase is 

accumulated in the reactor in front of the weir. When operating the CME without 

particles, the effect is more pronounced than when operating it with particles. The 

applied magnetic field supports the crossing of the magnetic particle-doped surfactant-

rich phase over the weir. Nevertheless, the surfactant mass balance of the CME still 

shows a discrepancy of around 8% which is why long-term CME behavior has to be 

studied further in order to guarantee stable continuous operation.  

In order to study the long-term stability of CME, the magnetic extractor was operated 

continuously for several hours and the Eumulgin ES and the particle concentrations were 

monitored. Figure 7 shows the course of the particle concentration profiles in the injected 

feed, the concentrated top phase and the particle-depleted bottom phase.  

The magnetic particles are continuously separated from the feed and the clarified bottom 

phase is discharged with a remaining particle concentration of 0.02 g/L. On the other 

hand, the particles are concentrated in the micelle-rich top phase of the system. The 

injected particle concentration is constant during the complete process (2.7 hours). Due 

to the fact that the effluents are recycled back into the stirred feed tank in the case of the 

long-term experiments, particle accumulation within the separation chamber would 

result in a reduced particle concentration in the effluent and therefore dilute the recycled 

feed. Hence, it can be concluded that the particles are not held back and accumulated in 

the reactor but are continuously discharged. 
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Figure 7.7: Continuous separation of magnetic particles in the magnetic extractor at a flow rate 

of 9 L/h. The feed contains an initial particle concentration of 2 g/L. The average particle 

concentration in the bottom phase is 0.02 g/L and the average particle concentration in the top 
phase is 6.6 g/L. 

In addition to the results on particle separation, Figure 8 depicts the progress of the 

phase-forming surfactant concentrations. As can be seen, the concentrations of the initial 

and leaving streams are constant. The initial concentration of 10 wt % of phase-forming 

surfactant is steadily separated and a remaining surfactant concentration of 0.9 wt % 

Eumulgin ES is discharged in the bottom phase, while the concentration of surfactant in 

the top phase is 29 wt %. Therefore, in the case of a CR = 0.33, the total mass balance of 

the applied surfactant sums up to practically 100 %.  
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Figure 7.8: Continuous separation of the phase-forming surfactant in the magnetic extractor at 

a flow rate of 9 L/h. The feed contains an initial surfactant concentration of 10 wt %. The 

average surfactant concentration in the bottom phase is 0.9% and the average concentration in 
the top phase is 29 wt %. 

Besides the 200 nm-sized magnetic sorbents that have been applied, several other 

magnetic particles were tested in the CME set-up for their separation efficiency at a 

particle concentration of 2 g/L. Table 7.2 summarizes the results of the experiments. 

Table 7.2: Overview of particle types tested in the CME set-up and achieved separation 

efficiencies. 

Particle 
Supplier 

Base Matrix 
Mean 
Size 

Functionalization 
Separation 
Efficiency 

Flowrate 

Merck 

Millipore 
MagPrep Silica 25 nm - > 95 % 5 L/h 

Merck 

Millipore 
MagPrep Silica 100 nm SO3 > 99 % 5 L/h 

NIIMT 

p(NIPA-AAc) with 

embedded 

magnetite 

nanoparticles  

200 nm Acrylic acid > 99 % 9 L/h 

Chemagen MPVA12 
2000 

nm 
DEAP > 99 % 9 L/h 
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From the data of Table 7.2 it can be seen that magnetic extraction is a versatile process, 

which can be applied to different magnetic particles which e.g., exhibit common 

functionalizations known from chromatography. 

7.4.2 Part II: Continuous Protein Purification Using Magnetic Extraction 

For proof of concept of continuous magnetic extraction of proteins in liter scale, 

purification of the antibody fragment Fab α33 from a crude heat extract of E. coli was 

investigated. The process parameters for the purification of Fab α33 by means of CME 

were obtained by the creation of a Fab α33 supernatant/Eumulgin ES phase diagram. The 

resulting diagram was similar to the one in [26]. The influence of the proteins is therefore 

negligible and the process parameters obtained from Table 2 were applied for the 

processing of the Fab α33 broth. In the sorption step, magnetic cation exchange particles 

were used in order to bind the target protein in the presence of the non-ionic surfactant 

Eumulgin ES. After 10 min of binding, the temperature was increased until TT and the 

particles loaded with protein were enriched in the micelle-rich top phase leaving the 

magnetic extractor, while the effluent containing the micelle-poor phase contained most 

of the host cell proteins (HCP). In the washing step, the micelle-rich top phase was mixed 

with two volumes of sodium phosphate buffer. The solution was then again separated by 

magnetic extraction to remove contaminating HCP which remained in the top phase of 

the initial sorption step as a result of incomplete phase removal of the bottom phase. In 

the elution step, the Fab α33 was eluted from the particles by the addition of two 

volumes of 750mM sodium chloride elution buffer. The phases were separated again by 

magnetic extraction. In this step, the bottom, micelle-poor phase contained the eluted 

target protein, while the magnetic particles and the majority of the surfactant were 

discharged in the top phase. Table 7.3 summarizes the composition of the discharged 

bottom phases after the feed of the respective step was completely processed by CME.  
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Table 7.3: Summary of the volumes and concentrations of the bottom phases resulting from 

conductig the sorption, wash and elution steps in the CME. 

Process step 
Volume 

[L] 

Particles 

[g/L] 

Eumulgin 

ES 
[% wt] 

DNA 

[mg/L] 

Total 

protein 
[g/L] 

Fab α33 

[g/L] 

Initial Solution 14.723 1.38 10 10.43 0.48 0.075 

Sorption 11.39 0.006 2.83 7.08 0.178 0.05 

Wash 7.773 0.017 1.67 3.82 0.072 0.03 

Eluate 5.082 0.001 0.34 0.34 0.147 0.145 

Recovery Ratea) - 115 % 67 % 73.4 52 % 175.7 % 

a)
For calculation of the recovery rate, the sum of the mass flow of all bottom phases and the eluate top phase was 

compared to the initial mass flow in the feed 

As can be seen from Table 7.3, the leaving bottom phases of the eluates in the CME 

contain only between 1 and 17 mg particles per liter. This indicates that the particles are 

concentrated in the top phases instead and processed to the next step. The remaining 

Eumulgin ES concentration in the eluate bottom phase is 0.34%. The DNA concentration is 

reduced from 10 mg/L to 0.3 mg/L. The HCP is additionally removed to a large extent. 

During the process, the total volume is consecutively decreased from 14.7 to 5.1 liters. To 

calculate the recovery rate, a mass balance which included all leaving bottom streams and 

the leaving eluate top phase was done. As can be seen from Table 3, the total Fab mass is 

overemphasized. This is probably due to the analytical inaccuracy of the densiometric 

procedure applied. Nevertheless, the results clearly show the purification and 

concentration capabilities of the CME process. Regarding the mass balance deviations in 

the case of total protein and DNA, it is probable that even after the elution step a fraction 

of the proteins and the DNA is still adsorbed to the magnetic carriers due to unspecific 

adsorption. 

In order to visually confirm the purification of the Fab, the bottom phases were analyzed 

by SDS- PAGE. Figure 7.9 shows the SDS-PAGE analysis of the clarified bottom phases 

obtained from the CME process. The protein patterns are compared based on equal total 

amounts of protein in each lane. 
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Figure 7.9: SDS-PAGE analysis of the purification process of Fab α33 by CME. Lane 1: Fab 

standard [1 µg]; 2: Protein standard; 3: E. coli Heat shock solution; 4: Sorption supernatant; 5: 
Wash; 6: Eluate. The total protein concentration in each lane was 3 µg. 

It can be seen that Fab α33 is not removed completely from the sorption supernatant 

(lane 4 in Figure 7.9). Therefore, the yield of the protein binding could be further 

increased by improvement of the binding capacity of the particles or by increasing the 

total particle concentration in the system. This target-protein loss is, however, not an 

effect of the magnetic extraction process itself though, but a particle-related issue. Yet, 

considering the purity of the Fab α33 in the bottom phase of the eluate – lane 6 in the 

gels – it is clearly confirmed that the use of SO3 particles in the CME process can be used 

to enrich the target protein.  

Table 7.4 summarizes the final purification data by comparing the concentrations in the 

feed and the concentration of the leaving elution phase of the system. 
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Table 7.4: Comparison of the initial CME feed and the bottom phase of the elution step. 

Particle 
removal 

Surfactant 
removal 

HCP 
removal 

DNA 
removal 

Fab 
Yield 

Fab 
Purity 

Purification 
factor 

>99.9 % >98 % >95 % >98 % >67 % >98 % 6.3 

 

The numbers can be seen in comparison to an ATPE study on the continuous purification 

of an IgG using a packed column in combination with a mixer-settler [8]. Here, a total 

yield of 85% and a purity of 84% of the IgG molecule were achieved. No DNA depletion 

was reported. The advantage of the CME, cf. this state-of-the-art ATPE process, is the 

significantly increased purity which arises from the addition of the selective magnetic 

sorbents. The total yield in our process, however, could be further improved by 

optimization of a) the magnetic sorbents’ capacity or concentration in the CME; or by b) 

the further optimization of the top to bottom phase discharge ratio (P). The incomplete 

separation of the top from bottom phase leads to Fab α33 being discharged in the top 

phase of the elution step and the decrease in the total Fab α33 yield. This problem, 

however, may be solved by simply introducing an additional CME process step, where the 

remaining Fab α33 is withdrawn in the bottom phase. 

7.4.3 Review of the Recyclability of the CME Components – Surfactants 

and Particles 

Reuse of the phase-forming component in an AMTPS is one striking advantage of AMTPS, 

cf. ATPS, because only the micelle-depleted phase is discharged in the course of the 

sorption, wash and elution steps. In the case of the CME, the micelle-rich phase of the 

eluate phase is removed together with the magnetic particles and can be reused in the 

course of a next sorption step. In order to calculate the theoretical amount of recyclable 

phase-forming component, samples were taken during the continuous operation of the 

CME during binding, wash, and elution. Table 7.5 compares the surfactant concentrations 

from the continuous mode with the surfactant concentrations after finishing the process 

step and discharging the separator content into the collection tank. 
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Table 7.5: Comparison of surfactant concentrations in the bottom phase during CME operation 

and after discharging the separator. 

Process 

Step 

Surfactant concentration 

during operation after discharging the separator 

Binding 0.9 % 2.8 % 

Wash 1.0 % 1.7 % 

Elution 0.2 % 0.34 % 

 

The surfactant concentrations at the end of each process step detected in the collection 

tanks of the bottom phases are slightly higher. This is explained by the large separation 

chamber bed volume to total volume ratio (e.g. 6.8 liters initial elution feed, cf. 2.8 liters 

separation chamber volume). After complete processing of the feed, the CME chamber 

has to be drained. In the course of this operation, comparatively much surfactant is lost in 

contrast to continuous operation mode due to incomplete phase separation. For large 

feed volumes or truly continuous operation, however, the impact of surfactant that is lost 

during this drainage would be insignificant; thus, the numbers given in Table 7.5 are more 

reasonable for real continuous processing. The amount of recyclable surfactant was 

calculated from the loss of surfactant in the bottom phases during the continuous 

operation of the magnetic extraction. Using this calculation, 87% of the total surfactant 

can be recycled in the top phase of the elution step. Additionally, the total particle loss 

after binding, washing, and elution amounted to approximately 1% of the initial particle 

amount. The remaining 99% can be applied to the next binding step of a consecutive 

CME. These results suggest that the reuse of both phase- forming surfactant and 

magnetic particles can be effectively achieved in the CME. 

7.5 Conclusion 

Continuous Magnetic Extraction has been introduced as a promising approach to a 

continuous low-cost bioseparation process. It is based on the processing of functional 

magnetic sorbents and their processing in AMTPS. Magnetic sorbents that partition 

exclusively to the micelle-rich phase of an AMTPS are separated in a novel extractor 
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based on a mixer and a magnetic field-enhanced flow-through phase separator. It was 

demonstrated that our pilot-scale CME can be operated at flow rates of several liters per 

hour at moderate temperatures with particle separation efficiencies of >99%. 

Additionally, the phase-forming non-ionic surfactant Eumulgin ES was continuously split 

into a micelle-rich and a micelle-depleted phase with separation rates >98%. 

CME was applied for the capture of the antibody fragment Fab α33 from an industrial 

biosuspension. Magnetic cation exchange particles have been applied as magnetic 

sorbents. Using CME, the Fab α33 could be enriched in the eluate with a purification 

factor of approximately 6.3, a purity >98%, and a total yield of 67%. 

Considering the particle separation performance, the complete purification process 

resulted in a recycling rate of >99% over three consecutively operated extractions, while 

13% of the phase- forming surfactant was lost. The remaining phase-forming surfactant 

was collected together with the magnetic particles after the final elution step and, 

therefore, could be applied to the next continuous magnetic extraction. 
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8.1 Abstract 

Aqueous Micellar Two-Phase Extraction (AMTPE) is a promising technique for large-scale 

protein purification, however, it is unavoidable that a certain surfactant load will remain 

in the product stream. Therefore, an industrial application of AMTPE requires efficient 

and economic ways for the removal of surfactants as a polishing step. In view of this 

demand, the removal of the nonionic surfactant Eumulgin ES has been investigated by 

means of fixed bed adsorption and cross-flow ultrafiltration. The critical micelle 

concentration of an aqueous Eumulgin ES solution is 3.8 mg/L with a hydrodynamic 

diameter of a micelle of approximately 15 nm at 22°C. The adsorption of Eumulgin ES to 

hydrophobic polystyrene beads leads to high loading capacities, but proteins also bind 

with high affinity to the beads, making the technique of limited use. A better way is to 

remove the surfactant by means of ultrafiltration through a hydrophobic 

polyethersulfone membrane. In the course of the filtration process a viscous micelle 

phase at the membrane forms, by which the flux through the membrane is decreased 

drastically. While elevated temperatures and salt concentrations decrease the flux and 

the overall separation performance, the opposite conditions lead to improved surfactant 

removal efficiencies. Cross-flow ultrafiltration is finally applied for the separation of 

Eumulgin ES from a proteinaceous soltution originating from a technical-scale AMTPE 

investigation. The filtration results in a total surfactant removal of >98.8% from the target 

protein solution within the rinsing with 8 bed volumes. 
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8.2 Introduction 

Nonionic surfactants are amphiphilic molecules that contain at least one polar group and 

one nonpolar hydrophobic group. Due to this amphiphilic character, aqueous nonionic 

surfactant solutions exhibit special properties, for instance, when a certain surfactant 

concentration, denoted critical micelle concentration (cmc) is exceeded, the surfactants 

undergo spontaneous self-association and form ordered structures called micelles. 

Further increase in the surfactant concentration and/or temperature can lead to the 

splitting of the aqueous micellar solution into a micelle rich and a micelle poor phase, 

called aqueous micellar two-phase system (AMTPS) [1].  

The range of applications and processes in which nonionic surfactants are utilized is 

tremendous. The spectrum spans the petrochemical, food, and cosmetics industry, 

agriculture as well as various microbiological and biotechnological processes [2]. An 

interesting application is the use of AMTPS for the selective separation of proteins by 

partitioning them between the micelle rich and micelle poor phase [3, 4].The target 

protein can then be withdrawn either from the micelle concentrated or the micelle 

depleted phase. 

Due to the wide range of applications there is an increasing need for surfactant removal 

in the product streams or wastewaters of surfactant based processes. The process of 

choice is based on the physicochemical properties of the surfactants, especially the cmc 

and the micellar size which is directly related to the number of surfactant molecules in a 

micelle [5]. Surfactants with a high cmc can be removed by dialysis, as only single 

surfactant molecules diffuse through the dialysis membrane, or, more efficiently, by gel 

filtration as surfactants with high a cmc form small uniform micelles [6]. 

Surfactants with a low cmc form large micelles and thus their separation from other 

components like e.g. proteins by dialysis or gel filtrations is difficult. In this case, the 

successful removal of nonionic surfactants has been reported by adsorption to nonpolar 

polystyrene beads [7]. 
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In larger scale, the separation of surfactants can also be performed by means of dead end 

or cross-flow ultrafiltration [8, 9]. In this case it is assumed, that single surfactant 

molecules are hereby separated from the micelles. For instance “Micellar Enhanced 

Ultrafiltration” (MEUF) utilizes the separation of ionic micelles from single ionic surfactant 

molecules for the removal of trace elements of heavy metal ions which are incorporated 

or sorbed to the micelles [10]. It has been reported, that the surfactant concentration in 

the permeates of ultrafiltration processes can slightly exceed the cmc when working with 

hydrophilic membranes [11, 12] and considerably in the case of hydrophobic membranes 

[13]. The knowledge of the properties of the applied surfactant, however, is crucial for 

the applied removal strategy. 

In this work, process relevant properties of the non-ionic surfactant Eumulgin ES are 

revealed. The cmc and hydrodynamic radius of Eumulgin ES are studied. The removal of 

Eumulgin ES from aqueous solutions is investigated by comparing an adsorptive 

surfactant removal using nonpolar polystyrene beads and cross-flow ultrafiltration. 

Additionally, the influence of the temperature and salt concentration to the ultrafiltration 

of the surfactant is examined. 

Eumulgin ES has earlier been used as phase forming surfactant in the course of magnetic 

extraction [14], an affinity based separation of proteins by the combination of 

functionalized magnetic particles and aqueous micellar two-phase systems (AMTPS). The 

final process step of magnetic extraction results in a purified protein solution with an 

undesired remaining Eumulgin ES concentration. It is demonstrated that the remaining 

surfactant can be removed by means of ultrafiltration from this proteinaceous solution 

with the target protein retained in the retentate. 

8.3 Material and Methods 

8.3.1 Chemicals 

All chemicals were from p. A. grade. Water was deionized and purified in a Millipore Milli-

Q Ultrapure system. Disodium-hydrogen phosphate and sodium-chloride were supplied 

by Carl Roth (Karlsruhe, Germany). Citric acid monohydrate was purchased from Merck 
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Millipore (Darmstadt, Germany). The proteins ovalbumin (Molecular weight: 44.2 kDa, 

grade >98%) and lysozyme from chicken egg white (Molecular weight: 14.6 kDa ~70000 

units/mg) were purchased from Sigma-Aldrich (St. Louis, USA-MO). The nonionic 

surfactant Eumulgin ES (C12/C14PEO5PPO5 or PPG-5-Laureth-5, CAS-No.: 68439-51-0) was 

purchased from Cognis (Düsseldorf, Germany). 

8.3.2 Methods 

The critical micelle concentration was measured with a DCAT 11 system (Dataphysics, 

Filderstadt, Germany). A glass beaker was filled with 60ml milliQ water, sodium 

phosphate at pH 7 or sodium citrate at pH 3. A stock solution was prepared with a 

concentration of 0.3 g/L Eumulgin ES. Small volumes of the stock solution were added to 

the pure solution and the surface tension at the air-water interface was detected 

subsequently by the De-Nouy ring method using a Pt/Ir ring. The surface tension was 

plotted versus the surfactant concentration and the cmc was derived from the point of 

transition from exponential decline of the surface tension to linear decline. 

The hydrodynamic diameter of an Eumulgin ES micelle was determined by dynamic light 

scattering (DLS) by means of a Zetasizer 5000 (Malvern Instruments GmbH, Herrenberg, 

Germany). A 0.5% Eumulgin ES solution was used in 20mM sodium-phosphate pH 7 and 

20mM sodium citrate, pH 3. For the calculation of the DLS, the viscosity and refractive 

index of water was used and the influence of Eumulgin ES on both parameters neglected. 

8.3.2.1 Adsorptive methods using hydrophobic beads  

Porous hydrophobic polystyrene beads “BioBeads SM2” were purchased from BioRad 

(Hercules, USA-CA). Eumulgin ES binding studies were performed in 1.5 ml 

microcentrifuge tubes in a total volume of 1.5 ml and a constant BioBead concentration. 

The beads were equilibrated in 20mM sodium-phosphate buffer at pH 6.8 and incubated 

in an ultrasonic bath for 10 minutes in order to remove air that was entrained in the 

pores of the beads. The Eumulgin ES concentrations were prepared in a range from 0.1 

g/L to 75 g/L in 20mM sodium-phosphate buffer at pH 6.8.  
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Adsorption was performed for 4 hours in a thermomixer (Eppendorf, Hamburg, Germany) 

at 25° C and 1400 rpm.  

After the adsorption step, the beads were removed by centrifugation and the particle-

free supernatants were subsequently analyzed for their Eumulgin ES concentration. The 

amount of protein adsorbed to the particles was calculated by the mass balance: 

� = +� ∙ (�� − ��)9@
 

[Eq. 8.1] 

where q (mg/g) is the amount of bound protein onto the particle, mB (g) the amount of 

BioBeads, V0 is the volume of the experiment and c0 and cS are the concentrations of the 

surfactant in the supernatant before and after the adsorption. 

Adsorption equilibrium was achieved in 4 hours (data not shown) and the experimental 

data obtained from the adsorption experiments were fitted to the Langmuir model:  

� = ���� ∙ �	
 + �
 

[Eq. 8.2] 

with qmax (mg/g) representing the maximum binding capacity of the beads and KL (in g/L) 

the Langmuir constant. The values for the Langmuir parameters were calculated using 

SigmaPlot (vers. 11.0, Systat Software, Inc., 2008). 

Additionally, the adsorption of the two model proteins lysozyme and ovalbumine onto 

the BioBeads was characterized in the same way, in order to compare the binding 

constants of the proteins to the beads. The Eumulgin ES concentration in the 

supernatants was determined by potentiometric titration. The protein concentration was 

determined by UV-Spectroscopy using a Nanodrop ND-1000 (Thermo Fisher Scientific, 

Waltham, USA-MA) photometer.  

8.3.2.2 Removal of the surfactant using cross-flow filtration 

Ultrafiltration experiments were performed using Vivaflow 50 tangential flow cassettes 

with a diafiltration reservoir (Sartorius Stedim, Göttingen, Germany). The matrix of the 
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membranes was of polyethersulfone (PES) with an active membrane area of 50 cm² and a 

molecular weight cut-off (MWCO) of 30 kDa. 

The feed was circulated across the membrane with a Masterflex L/S pump (Cole Palmer, 

IL-US). The cross-flow velocity was set to 450 ml/min. A pressure indicator was integrated 

to monitor the pressure at the retentate side of the membrane. During all filtrations the 

pressure remained constant at 0.2-0.25 mPa. The permeate outlet was connected to a 

fraction collector (Super Frac, GE-Healthcare, Uppsala, Sweden). Fractions of the 

permeate were collected on a time resolved basis. The permeate flow was calculated by 

the collected volumes in the fraction collector. The vacuum-sealed reservoir was 

connected to a buffer tank. Because of the withdrawal of permeate, the volume in the 

reservoir decreased and a vacuum was generated in the reservoir. Due to this vacuum, 

buffer was drawn from the large tank to the reservoir. In this mode, the total volume 

circulating the membrane remained constant. The reservoir and buffer tank was set up in 

a temperature controlled water bath (RC 20 S, Lauda, Germany). The initial Eumulgin ES 

concentration was 1 % and the total volume in the reservoir was 200 ml. The water bath 

was set to 6°C or to 35°C to determine the influence of the temperature to the filtration. 

Additionally, so as to investigate the influence of NaCl to the filtration performance, a 1% 

Eumuglin ES solution set up containing 1 M NaCl and a 0.1% Eumulgin ES solution 

containing 500 mM NaCl were studied.  

The permeate samples from the membrane filtration experiments were analyzed for their 

surfactant concentrations by total organic carbon (TOC) and for their salt concentration 

by conductometry. The total removal of surfactant was then calculated according to 

equation: 

= = «∑ �% ∙ +%g%£�� ∙ +; ® ∗ 100	 [Eq. 8.3] 

With c0 and V0 the initial volume and concentration of the surfactant solution and ci and 

Vi the collected volumes and concentrations in the collected permeates.  
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Assuming the flux through the ultrafiltration membrane is not limited by concentration 

polarization at low pressures, it can be described by the Hagen-Poiseuille pore model: 

{ = _t�R©>32�CT [Eq. 8.4] 

Where J is the flow rate through the membrane, ε is the surface porosity, dP the channel 

diameter, PT is the applied transmembrane pressure, Δχ is the length of the channel and µ 

is the viscosity of the permeating fluid [15].  

8.3.2.3 Surfactant removal from proteinaceous solution  

In order to demonstrate the surfactant removal from solutions representative for 

bioseparation processes a proteinaeous solution has been applied in the ultrafiltration 

set-up. A Vivaflow 50 tangential flow cassette with a MWCO of 10 kDa was used. The 

experimental set-up was similar to the one described above. The proteinaceous solution 

originated from a large-scale magnetic extraction experiment. The principle of magnetic 

extraction is described elsewhere [14, 16]. An initial solution of 104 ml volume was 

applied with an Eumulgin ES concentration of 3.4 g/L. The protein concentration was 

determined by SDS-PAGE and densiometric analysis. 

8.3.3 Analytics 

Total organic carbon in the samples was detected via the Multi N/C 2000 (Analytik Jena, 

Jena, Germany). The samples were prepared by adding 15 µl hydrochloric acid and 

purging the sample with N2 to remove inorganic carbon. The total surfactant 

concentration was calculated from the TOC content; the carbon mass makes up for 63.8 

% of the total mass of the nonionic surfactant Eumulgin ES.  

Potentiometric titration was performed using the NIO surfactant electrode (Metrohm, 

Birkenfeld, Germany) as described elsewhere [17]. A sample was weighed into a glass 

beaker and 10 mL of barium chloride solution (c= 0.1 M) and 60 mL of water were added. 

This solution was then titrated with a sodium-tetraphenylborate solution using the 

Metrohm NIO electrode. As result the end-point volume was recorded. The surfactant 
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mass fraction was then obtained by comparing the end point volume with the end point 

volumes of known Eumulgin ES mass fractions using linear regression. 

Protein concentrations were measured spectrophotometrically at 280 nm using a 

Nanodrop® ND-1000 (Thermo Fisher Scientific, Waltham, USA-MA) photometer. For 

chicken ovalbumin and lysozyme the mass extinction coefficients of a 10 mg/ml solution 

were determined to be 5.5 and 26.4, respectively. 

The sodium chloride detection was performed by conductivity detection using a Knick 702 

conductometer (Knick, Berlin, Germany). A calibration curve was made with known 

sodium chloride standards, and the sodium chloride concentration in the permeate 

fractions was calculated accordingly. 

In course of the experiments with proteinaceous solutions ,the depletion of the target 

protein was determined by densiometric analysis following SDS PAGE. The protein-loaded 

SDS gels were Coomassie Blue-stained and scanned as TIFF image files. The images were 

afterwards analyzed using the software ImageJ® [18]. From the quotient of the intensities 

of the samples the total protein loss was calculated. The protein concentrations were 

hereby kept within the range of linear correlation between protein amount and band 

intensity on the gel. 

8.4 Results and Discussion 

8.4.1 Critical Micelle Concentration 

The cmc was determined with the De-Nouy Ring method. Small amounts of Eumulgin ES 

were added gradually to an aqueous solution and the surface tension was measured. The 

cmc was determined in milliQ water, in sodium citrate at pH 3 and in sodium phosphate 

at pH 7. However, the influence of the pH was negligible, resulting in a practically 

identical the shape of the curves (data not shown). In figure 1 the decline of the surface 

tension is plotted versus the total Eumulgin ES concentration in Eumulgin ES sodium 

phosphate at pH 7. The surface tension decreases exponentially up to a concentration of 

3.8 mg/L Eumulgin ES. Further addition of surfactant leads to a linear decrease in the 
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surface tension. The concentration at the point of transition from exponential to linear 

decline is described as the cmc [19, 20].  

 

Figure 8.1: Surface tension diagram of Eumulgin ES. The transition from exponential decay to 

linear decay in the surface tension at 3.8 mg/L marks the cmc. 

8.4.2 Hydrodynamic Diameter 

The size of Eumulgin ES micelles in a 0.5% Eumulgin ES solution was investigated in 

presence of sodium phosphate and sodium citrate using DLS. DLS is a well applied tool 

method for the investigation of micelle radii, as it can be assumed that micelles in 

aqueous solutions act like hard-spheres in a Newtonian fluid [21-23]. It was assumed that 

there was little influence of the concentration of Eumulgin ES on the hydrodynamic radius 

as it was shown by neutron scattering that the size of a micelle of nonionic surfactants 

does not vary significantly at concentrations below the binodale at constant temperatures 

[24]. Table 8.1 shows the results obtained from the DLS measuring. The hydrodynamic 

diameter of the micelles is approximately 15 nm. It is not influenced by the pH level, 

which confirms the nonionic nature of Eumulgin ES because in the case of ionic 

surfactants, a change in the pH changes hydrodynamic radius occurs due to electrostatic 

repulsion of the surfactant molecules [25]. The micelle diameter of approximately 15 nm 

is in good agreement to a single surfactant molecule, which was calculated to 5.5 nm. 
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Table 8.1: Sizes of the hydrodynamic radius of Eumulgin ES micelles at pH3 and pH 7 at 22°C. 

Buffer Hydrodynamic radius [nm] Standard deviation [nm] 

Sodium phosphate, pH 3 14.8 0.8 

Sodium citrate, pH 7 15.2 1.6 

 

8.4.3 Eumulgin ES removal 

8.4.3.1 Adsorption 

The adsorptive behavior of Eumulgin ES onto porous hydrophobic polystyrene beads was 

investigated. The surfactant is adsorbed to the beads because of the hydrophobic tail. 

Due to the porous character of the beads, the adsorption equilibrium was reached after 4 

hours. When the experimental data are fitted to the langmuir model, BioBeads SM2 

exhibit a high loading capacity of 574 mg/g, but an unfavorable binding constant of KL = 

7.43 g/L for Eumulgin ES for the experimental conditions. The experimental data and the 

Langmuir regression plot are shown in Figure 8.2.  

 

Figure 8.2. Adsorption isotherm at 25°C of Eumugin ES onto BioBeads. ES. The solid curve is 

created by fitting the experimental data to the Langmuir model resulting in a KL value of 
7.43 g/L and qmax of 574 mg/g. 

The sorption of the two commonly known proteins lysozyme and ovalbumine onto the 

biobeads was investigated. Figure 8.3 depicts the sorption isotherms of these proteins.  
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Figure 8.3. Sorption Isotherms of lysozyme and ovalbumin onto polystyrene BioBeads. The 

straight lines represent a Langmuir regression fits for both proteins. The Langmuir regression 

results in KL=0.17 g/L and qmax=36.7 mg/g for lysozyme and for ovalbumin KL= 0.29 g/L and 
qmax=8.8 mg/g. 

A Langmuir regression analysis results for Lysozyme in in KL=0.17 g/L and qmax=36.7 mg/g 

and for ovalbumin KL= 0.29 g/L and qmax=8.8 mg/g. The low qmax value of proteins c.f. 

Eumulgin ES can be related to the average pore size of 9 nm of the beads. As single 

surfactant molecules can enter the pores, the proteins are too large and only adsorb onto 

the particle surface. Table 2 summarizes the obtained parameters for the Biobeads. 

Table 8.2: Sorption properties of BioBeads for Eumulgin ES and the commonly used proteins 
Lysozyme and Ovalbumin 

Substance KL [g/L] qmax [mg/g] 

Eumulgin ES 7.43 574 

Lysozyme 0.17 36.7 

Ovalbumine 0.29 8.8 

 

Considering an adsorptive surfactant removal process for the further purification of an 

AMTPE solution BioBeads SM exhibit unfavorable sorption properties. On the one hand, 

the qmax value of the beads favors their usage, c.f. the low qmax values of proteins. On the 

other hand, the KL values of the proteins are more than one order of magnitude smaller. 

This leads to an immense loss of target as proteins preferably sorb to the particles. 
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8.4.3.2 Ultrafiltration 

In order to investigate the ultrafiltration behavior of the nonionic surfactant Eumulgin ES, 

particular surfactant characteristics as the molecular weight of a micelle and the cmc are 

of importance. In Table 8.3 these critical process parameters of Eumulgin ES are 

summarized. Based on the simplification that an Eumulgin ES micelle is a spherical sphere 

with the density of Eumulgin ES, the molecular weight of such a micelle was calculated to 

412 kDa for a radius of a single outstrechted surfactant molecule. From the measurement 

of the hydrodynamic radius of 15 nm, the average molecular weight of a spherical micelle 

is calculated to 1042 kDa.  

Table 8.3: Properties of Eumulgin ES. 

Density 982 kg/m³ 

Molecular weight 696 g/mol 

Critical micelle concentration 3.8 mg/L 

Calculated length of an outstretched single 

molecule 

5.5 nm 

Calculated molecular weight of spherical micelle 

with a radius of 5.5 nma 

412 kDa 

Hydrodynamic diameter obtained by DLS 15 nm 

Calculated average molecular weight of a micelle 

with a radius of 7.5nma 

1042 kDa 

abased on the assumption of spherical micelles having the density of Eumulgin ES. 

A VivaFlow 50 membrane module with an MWCO of 30 kDa was applied for the filtration 

of the nonionic surfactant Eumulgin ES. The ultrafiltration has been performed in 

reservoir mode, with amount of fresh buffer being added to the retentate equal to the 

amount removed by filtration. In this mode, the total volume circulating the membrane 

remained constant at 200 ml. A 1 % Eumulgin ES starting concentration was used. The 

circulating fluid was placed in a water bath in order to keep the temperature constant. 

Two temperatures were applied: 6°C in order to prevent the system from phase 

separating and 35°C in order to perform the filtration at two phase conditions. Both 

experiments were compared on a total process time basis and were run for 960 minutes 

at 6 °C and respectively 1140 minutes at 35 °C. In Figure 8.4, the flux and surfactant 

concentration in the permeates are plotted versus the process time for the filtration at 

6°C. 
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Figure 8.4. Ultrafiltration of an 1% Eumulgin ES solution using 30 kDa membrane at 6 °C. The 

flux through the membrane is constant  and the Eumulgin ES concentration in the permeate 
declines exponentially. 

The flux of pure water through the membrane was 24 ml/min. The flux decreases 

drastically to 0.6 ml/min when the surfactant is brought in contact with the membrane. 

Yet, a constant flux of 0.5 ml/min through the membrane is achieved. The Eumulgin ES 

concentration in the permeates decreases exponentially. All Eumulgin ES concentrations 

in the permeates are largely higher than the cmc. This shows that the Eumulgin ES 

molecules pass the membrane unhamperedly. It is noticeable, that although the 

temperature of the reservoir was kept constant at 6°C the circulating liquid becomes 

turbid in the course the experiment. 

Flux and Eumulgin ES concentrations in the permeate for an ultrafiltration at 35°C are 

depicted in Figure 8.5. As can be seen, the flux declines to 0.2 ml/min, while the 

surfactant concentration in the permeates slightly increases from 1 g/L to 3 g/L. 
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Figure 8.5. Ultrafiltration of Eumulgin ES in a 30 kDa membrane at 35°C. The flux decreases 
exponentially and Eumulgin ES concentration in the permeates increase slightly. 

Based on the calculations in Table 8.3, spherical Eumulgin ES micelles are too large to pass 

the 30 kDa membrane. Yet, as shown in the Figure 8.4 and Figure 8.5 the concentrations 

of the permeates are higher than the cmc. A concentration profile above the cmc in the 

permeates has been reported for PES membranes [13] and was explained by adsorption 

of the surfactants to the hydrophobic membrane pores. 

The reduction of the flux especially at elevated temperatures can also be explained by an 

extension of the concentration polarization model described by Jonsson [27]. According 

to this model surfactants accumulate at the filtrate side of the membrane and form 

micelles. As the micelle concentration is further increased a phase boundary is created 

and the flux and surfactant through the membrane is dependent on this micelle 

concentration at the membrane [27]. In this model the surfactants form monodisperse 

micelles and the surfactant concentration in the filtrate can be below or above the cmc. It 

is well known however, that nonionic surfactants tend to form large micelles when 

exceeding a certain concentration or temperature [28]. An increase in temperature or 

significant increase of surfactant concentration at the membrane surface is therefore 

likely to lead to the formation of large micelles and thus to the creation of an AMTPS with 

two phases at the membrane. The principle is shown in Figure 8.6. 
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Figure 8.6: Concentration polarization of nonionic surfactants. At the filtrate side of the 

ultrafiltration membrane the concentration of the nonionic surfactant in the feed cF is above the 
cmc. Close to the membrane, a dense micelle rich phase is formed containing large micelles and 

surfactant monomers. The surfactants molecules can pass the membrane resulting in a 

concentration cP at the permeate side which is much higher than the cmc and in some cases 
even higher than the average surfactant concentration on the retentate side (see Figure 8.9).  

The creation of these large micelles at the surface of the membrane leads to an increase 

in the viscosity. According to Equation 8.4 the increase of the viscosity leads to the 

decrease of the flux. This effect is confirmed from comparing the flux in Figure 8.7 and 

Figure 8.8 for the different temperatures: At higher temperatures, the micellar growth is 

more pronounced, thus the viscosity is increased - and the flux through the membrane is 

decreased. The formation of an AMTPS can also be confirmed by the occurrence of a 

turbid (“cloudy”) phase during the filtration at 6°C. This occurrence was also described 

elsewhere [11].  

The total surfactant removal in the filtration experiments at 6°C and 35°C calculated 

according to Equation 8.3 was compared. Figure 8.7 and Figure 8.8 present the resulting 

diagram for 6°C and 35° respectively for a total process time of 960 minutes and 1140 

minutes. 68.4% of the surfactant is removed at 6°C and the total volume is exchanged 

twice. As can be seen from Figure 8.7 the fraction of removed surfactant reaches 

saturation.  
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Figure 8.7. Ultrafiltration of Eumulgin ES in a 30 kDa membrane at 6°C for 960 minutes. The 

removal of surfactant is calculated by the concentrations in the permeate. 68.4 % of the 
surfactant is removed by exchanging the total volume two times.  

During the filtration at 35°C the total volume that was exchanged 1.2 times. 24 % of the 

total Eumulgin ES was removed in the course of the filtration and the fraction of removed 

surfactant did not reach saturation.  

 

Figure 8.8. Ultrafiltration of Eumulgin ES in a 30 kDa membrane at 35°C for 1140 minutes. The 
removal of surfactant is calculated by the concentrations in the permeate. 24% of the surfactant 

is removed by exchanging the total volume two times. 

The remaining Eumulgin ES concentration in the circulating streams was additionally 

determined to investigate the amount of Eumulgin ES that was accumulated to the 
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membrane. Table 8.4 summarizes the results for the Eumulgin ES filtration at 6°C and 

35°C. 

Table 8.4: . Process parameters for the ultrafiltration of a 1% Eumulgin ES solution using a 30 

kDa PES membrane. 

Temperature [°C] 6°C 35°C 

Process Time[h] 960 min 1140 min 

Exchanged Volume [-] 2.2 1.2 

Eumulgin ES Removal [%] 68.4% 24% 

Circulating Eumulgin ES concentration in the retentate 0.32 g/L 3.4 g/L 

Removal calculated from the circulating concentration 96.5 % 67.4 %  

Calculated amount of Eumulgin ES at the membrane surface 28.1 % 43.4 % 

 

From the retentate concentration, the amount of separated surfactant at 6°C is calculated 

to 96.5%, while it is 67.4% for 35°C. The amount of surfactant accumulated at the 

membrane was calculated by analyzing the total Eumulgin ES amount in permeate c.f. the 

retentate. For 6°C 28.1% of the surfactant is still attached to the membrane, and 43.4% 

for 35°C respectively. This is in concordance to the theory of expanded micelle 

polarization, as in case of the filtration at 35°C the micelles formed are larger that at 6°C 

and more Eumulgin ES is adsorbed to the ultrafiltration membrane due to hydrophobic 

interaction [29].  

Summarizing the separation performance, filtration at 6°C is preferred to filtration at 

35°C. Applying the same experimental conditions, the flux is increased and the amount of 

surfactant removed is significantly higher than at 35°C. 

8.4.3.3 Effect of NaCl on the filtration performance 

In order to investigate the influence of salt to the filtration, Eumulgin ES solutions of 1% 

and 0.1 % respectively were prepared containing 1 M and 0.5 M NaCl. The solutions were 

filtered by a 30 kDa PES membrane while the temperature was kept constant at 6 °C. 

Figure 8.9 shows the resulting concentrations of NaCl, Eumulgin ES and flux through the 

membrane for the filtration of a 1 % Eumulgin ES, 1 M NaCl solution and Figure 8.10 the 

same data for a 0.1 % Eumulgin ES, 0.5 M NaCl filtration.  
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Figure 8.9: Ultrafiltration of a 1% Eumulgin ES solution in 1M NaCl using a 30 kDa membrane at 
6°C. The flow rate decreases to a minimum, while the Eumulgin ES concentration increases to a 

maximum. With ongoing removal of the salt, the flow rate increases and the Eumulgin ES 

concentration in the permeates declines 

 

Figure 8.10: Ultrafiltration of a 0.1% Eumulgin ES solution in 0.5M NaCl using a 30 kDa 

membrane at 6°C. The flow rate decreases to a minimum, while the Eumulgin ES concentration 
increases to a maximum. As the NaCl is filtered through the membrane, the flow rate increases 

and the Eumulgin ES concentration in the permeates declines 

Figure 8.9 and Figure 8.10 exhibit the very same trends: the flow rate decreases up to a 

minimum and is then increasing again with decreasing salt concentration. The Eumulgin 

ES concentration increases with decreasing flow rate and decreases with increasing flow 



Removal of the non-ionic surfactant Eumulgin ES by means of ultrafiltration 177 

 

 

rate, while the salt concentration is unaffected of both, flow rate and surfactant 

concentration. These results can be explained by the extended surfactant polarization: 

NaCl lowers the cmc of nonionic surfactants and shifts the phase diagram (or the cloud 

point) of AMTPS to lower temperatures [30]. The effect of salt onto the phase separation 

curve is schematically shown in Figure 11 for a constant filtration temperature TF. Due to 

the initial NaCl concentration at the membrane, large micelles form and the viscosity 

reaches a maximum at concentration c0 in Figure 8.11. Consequently, the flux through the 

membrane reaches a minimum due to the high viscosity of the micelle rich phase at the 

membrane. While the NaCl is filtered through the membrane the cmc is consequently 

increased and the phase separation curve is shifted upwards. This results in a lower 

surfactant concentration at the membrane (c1 in Figure 8.11) and consequently, the 

viscosity decreases and the Eumulgin ES flux through the membrane increases. 

 

Figure 8.11: Scheme of the influence of salt onto the phase diagram of an Eumulgin ES AMTPS. 

The binodale separates the single phase region from the two-phase region. With increasing salt 

concentration, the binodale is lowered. When the salt is removed (by filtration) the binodale is 

lifted and the boundary concentration c0 of the surfactant rich phase is reduced to c1 at a 
constant temperature TF. 

In summary, NaCl has a temporal effect on the filtration performance of the filtration of 

Eumulgin ES, but as the salt is removed due to the filtration process, the effect is 

neutralized. 
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8.4.4 Removal of Eumulgin ES from a  proteinaceous solution 

Finally, the applicability of cross-flow ultrafiltration for the removal of Eumulgin ES from a 

proteinaceous solution was investigated. In this case, the initial solution originated from 

the application of magnetic extraction for the separation and subsequent enrichment of a 

50 kDa target protein in the micelle poor phase of an Eumulgin ES based AMTPS. The 

remaining Eumulgin ES concentration in the product stream of this process was 0.34 g/L. 

A 10 kDa PES filter was used in order to retain the target protein in the retentate. In a 

total process time of 13 hours the volume was exchanged 8.4 times. Only in the permeate 

the surfactant concentration was determined by TOC measurements, as the retentate 

also contained the target protein, which would have interfered with the TOC 

measurement. Figure 8.12 shows the course of the surfactant removal as a function of 

the exchanged volume. The surfactant can be removed by means of the 10 kDa PES with a 

concentration of 0.04 g/L remaining and thus resulting in a total surfactant removal of 

>98.8%.  

 

Figure 8.12: Removal of Eumuglin ES as polishing step of a surfactant based separation process 

The protein concentration in the retentate was monitored by the comparison of the initial 

solution and the solution after the filtration by means of coomassie blue stained SDS 

PAGE and following densiometric analysis. Figure 8.13 shows the resulting SDS gel. From 

the difference of the band intensity, the loss of the target protein was roughly estimated 

to 49.8 %. This may be on the one hand attributed to the thermal instability of the 

protein, which probably has a pronounced effect at the long process time of 13.4 hours. 
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In addition to this, the shear stress from the cross-flow at the filter surface may also have 

led to the denaturation of the target protein. The band pattern on the SDS gel in Figure 

8.13 however reveals, that the proteins are retained from the 10 kDa filter, and therefore, 

are separated from Eumulgin ES.  

Although room for improvement of the total protein recovery is given, the filtration 

demonstrates that the separation of the phase forming surfactants from a protein as 

polishing step in a magnetic extraction process can be achieved by cross-flow 

ultrafiltration. 

 

Figure 8.13. SDS PAGE analysis of the target protein in the initial solution and the retentate 
after ultrafiltration applying a 10 kDa PES membrane at a process time of 13.4 hours. M: 

Protein standard; B: Protein solution before filtration; A: Protein solution after filtration. 

Approximately 50 % of the target protein is lost during filtration. 

8.5 Conclusion 

The properties of the nonionic surfactant Eumulgin ES, the cmc and the hydrodynamic 

diameter have been investigated. Furthermore, the removal of Eumulgin ES from aqueous 

solutions has been discussed. The results show, that at high Eumulgin ES concentrations 

filtration is the method of choice because the surfactant can be removed through the 

membrane and thus filtration is favorable c.f. adsorptive techniques. During filtration, a 

micelle rich phase forms at the ultrafiltration membrane, described as surfactant 
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concentration polarization. The extent of this polarization is directly influenced by the 

temperature as well as from the presence of sodium chloride. The creation of the micelle 

rich phase at the membrane leads to an increase of the viscosity and therefore to a 

decrease of the flux through the membrane. Although the flux is decreased, the nonionic 

surfactant Eumulgin ES can be removed by ultrafiltration with concentrations in the 

permeate much higher than the cmc. Low temperatures and NaCl concentrations are 

favorable as they counteract the formation of the surfactant concentration polarization at 

the membrane surface. Using cross-flow ultrafiltration, the separation of a protein from 

an Eumulgin ES containing solution was achieved by holding the target protein back in the 

retentate and removing the surfactant with the permeate with a total surfactant removal 

of >98.8 %. Although 50% of the target protein was lost in the first experiments, the 

surfactant removal by means of ultrafiltration as polishing step in a bioseparation process 

was demonstrated. 
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9 Conclusion	and	Outlook	

In the course of this thesis a process was designed that allows the continuous separation 

of magnetic particles in an AMTPS, while the particles themselves serve as carriers of a 

particular target protein – continuous magnetic extraction. Initially, proper process 

analytics were established. The proof of concept was subsequently demonstrated by the 

separation of lysozyme from ovalbumin using magnetic cation exchange particles. The 

process was finally applied to purify the antibody fragment Fab α33 produced by an E. coli 

fermentation. The minimal particle and surfactant loss during the continuous operation 

demonstrated its potential as unit operation in downstream processing. 

As only one exemplar of the equipment was built, it allowed the continuous processing of 

only one step, either binding, wash or elution. Therefore, the effluent streams had to be 

collected and the stream containing the product had to be reinjected into the set-up in 

the course of the next step. In order to establish a real continuous process these steps 

should be performed in parallel, minimizing the idle times of the collected streams. 

Therefore, a cascade of magnetic extraction units should be installed where the flow rates 

as well as the dosing of buffers will have to be adjusted in a complex regulative process. 

In order to guarantee the stability of a long term magnetic extraction process, an 

increased recyclability of both, the magnetic particles and the surfactants should be 

pursued. 

In the course of the demonstrated separation, the applied stream had been clarified by 

centrifugation before continuous magnetic extraction was performed. Therefore, a future 

task will be the separation of feedstocks containing high loads of solid contaminants. 

Especially hydrophobic contaminations, e.g. cell debris, are likely to partition into the 

micelle rich phase of the Eumulgin ES based AMTPS. It has to be investigated if the 

removal of such contaminations from the magnetic phase can be performed by adjusting 

the weir (or the flow rate) so that only the particles floating at the top of the surfactant 

rich phase are withdrawn, while the contaminated surfactant phase will have to be 

discharged together with the contaminations in the binding step. In this scenario a certain 
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amount surfactant will be lost, the sparing out of a solid-liquid separation process, 

however, is worth this loss. 

It was also shown that the partitioning behavior of the magnetic sorbents in the AMTPS is 

directly related to the adsorption of the surfactants to the particle surface. These findings 

can be exploited in order to create tailor-made magnetic beads. The phase forming 

surfactant should be covalently bound to the magnetic particle – or, if sufficient, only its 

hydrophobic residue that extends into the feed solution. Such a particle should partition 

into the micelle rich phase independent of the buffer conditions. An ideal magnetic 

particle would accordingly be of hybrid nature - exhibiting specific functional ligands to 

capture the target protein on the one hand and phase forming surfactants as an anchor 

for the micelle rich phase on the other hand. 

 

 

 

 



References  185 

 

 

10 References 

[1] I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and 

peptides, Biomagn Res Technol, 2 (2004) 7. 

[2] M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, O.R.T. Thomas, Protein purification using 

magnetic adsorbent particles, Applied Microbiology and Biotechnology, 70 (2006) 505-516. 

[3] I. Langmuir, The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. 
Chem. Soc., 40 (1918) 1361–1403. 

[4] A. Meyer, Einsatz magnettechnologischer Trennverfahren zur Aufbereitung von 

Molkereiprodukten, PhD Thesis, 2004, Institute of Functional Interfaces, University of Karlsruhe 

(TH) 

[5] M. Franzreb, Magnettechnologie in der Verfahrenstechnik wässriger Medien, 

Habilitationsschrift, 2003, Institute of Functional Interfaces, Universtiy of Karlsruhe (TH) 

[6] J. Svoboda, Magnetic Methods for the Treatment of MInerals, New York, 1987. 

[7] L. Michalowski, U. Heinecke, J. Schneider, H. Wich, Magnettechnik: Grundlagen und 

Anwendungen, Fachbuchverlag Leipzig, Leipzig, 1995. 

[8] J.A. Oberteufer, Magnetic Separation - Review of Principles, Devices, and Applications, Ieee 

Transactions on Magnetics, Ma10 (1974) 223-238. 

[9] J.J. Hubbuch, D.B. Matthiesen, T.J. Hobley, O.R.T. Thomas, High gradient magnetic separation 

versus expanded bed adsorption: a first principle comparison, Bioseparation, 10 (2001) 99-112. 

[10] J.J. Hubbuch, O.R.T. Thomas, High-gradient magnetic affinity separation of trypsin from 

porcine pancreatin, Biotechnology and Bioengineering, 79 (2002) 301-313. 

[11] A. Heeboll-Nielsen, W.S. Choe, A.P.J. Middelberg, O.R.T. Thomas, Efficient inclusion body 

processing using chemical extraction and high gradient magnetic fishing, Biotechnology Progress, 

19 (2003) 887-898. 

[12] A. Heeboll-Nielsen, M. Dalkiaer, J.J. Hubbuch, O.R.T. Thomas, Superparamagnetic adsorbents 
for high-gradient magnetic fishing of lectins out of legume extracts, Biotechnology and 

Bioengineering, 87 (2004) 311-323. 

[13] A. Heeboll-Nielsen, S.F.L. Justesen, T.J. Hobley, O.R.T. Thomas, Superparamagnetic cation-

exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient 

magnetic fishing, Separation Science and Technology, 39 (2004) 2891-2914. 

[14] C. Hoffmann, Einsatz magnetischer Separationsverfahren zur biotechnologischen 

Produktaufarbeitung, PhD Thesis, 2002, Institute of Functional Interfaces, University of Karlsruhe 

(TH) 

[15] N. Ebner, Einsatz von Magnettrenntechnologie bei der Bioproduktaufarbeitung, PhD Thesis, 

2006, Institute of Functional Interfaces, University of Karlsruhe (TH) 

[16] A. Meyer, D.B. Hansen, C.S.G. Gomes, T.J. Hobley, O.R.T. Thomas, M. Franzreb, 

Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery 

of superoxide dismutase from unconditioned whey, Biotechnology Progress, 21 (2005) 244-254. 

[17] A. Meyer, S. Berensmeier, M. Franzreb, Direct capture of lactoferrin from whey using 

magnetic micro-ion exchangers in combination with high-gradient magnetic separation, Reactive 

& Functional Polymers, 67 (2007) 1577-1588. 



186  References 

[18] C. Müller, Magnettechnologische Reinigung von Gonadotropin aus Pferdeserum, PhD Thesis, 

2011, Institute of Functional Interfaces, Karlsruhe Institute of Technology 

[19] J. Lindner, K. Wagner, C. Eichholz, H. Nirschl, Efficiency Optimization and Prediction in High-

Gradient Magnetic Centrifugation, Chemical Engineering & Technology, 33 (2010) 1315-1320. 

[20] M.W. Beijerinck, Über eine Eigentümlichkeit der löslichen Stärke, Zentralblatt für 

Bakteriologie, Parasitenkunde und Infektionskrankheiten, 2 (1896) 697-699. 

[21] P.A. Albertsson, Chromatography and Partition of Cells and Cell Fragments, Acta Chemica 

Scandinavica, 10 (1956) 148-148. 

[22] P.A. Albertsson, Partition of Cell Particles and Macromolecules, John Wiley and Sons, New 

York, 1986. 

[23] B. Montalvo-Hernandez, M. Rito-Palomares, J. Benavides, Recovery of crocins from saffron 

stigmas (Crocus sativus) in aqueous two-phase systems, Journal of Chromatography A, 1236 

(2012) 7-15. 

[24] N. Pietruszka, I.Y. Galaev, A. Kumar, Z.K. Brzozowski, B. Mattiasson, New polymers forming 

aqueous two-phase polymer systems, Biotechnology Progress, 16 (2000) 408-415. 

[25] N.J. Bridges, K.E. Gutowski, R.D. Rogers, Investigation of aqueous biphasic systems formed 

from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS), Green Chemistry, 9 (2007) 

177-183. 

[26] J. Huddleston, A. Veide, K. Kohler, J. Flanagan, S.O. Enfors, A. Lyddiatt, The Molecular-Basis of 
Partitioning in Aqueous 2-Phase Systems, Trends in Biotechnology, 9 (1991) 381-388. 

[27] M.J. Boland, Aqueous two-phase extraction and purification of animal proteins, Molecular 

Biotechnology, 20 (2002) 85-93. 

[28] M.R. Helfrich, M. El-Kouedi, M.R. Etherton, C.D. Keating, Partitioning and assembly of metal 

particles and their bioconjugates in aqueous two-phase systems, Langmuir, 21 (2005) 8478-8486. 

[29] A.B. Mageste, L.R. de Lemos, G.M.D. Ferreira, M.D.H. da Silva, L.H.M. da Silva, R.C.F. Bonomo, 

L.A. Minim, Aqueous two-phase systems: An efficient, environmentally safe and economically 

viable method for purification of natural dye carmine, Journal of Chromatography A, 1216 (2009) 

7623-7629. 

[30] F. Luechau, T.C. Ling, A. Lyddiatt, Primary capture of high molecular weight nucleic acids 
using aqueous two-phase systems, Separation and Purification Technology, 66 (2009) 202-207. 

[31] S.G. Walker, A. Lyddiatt, Processing of nanoparticulate bioproducts: application and 

optimisation of aqueous two-phase systems, Journal of Chemical Technology and Biotechnology, 

74 (1999) 250-255. 

[32] A.M. Azevedo, A.G. Gomes, P.A.J. Rosa, I.F. Ferreira, A.M.M.O. Pisco, M.R. Aires-Barros, 

Partitioning of human antibodies in polyethylene glycol-sodium citrate aqueous two-phase 

systems, Separation and Purification Technology, 65 (2009) 14-21. 

[33] V.G. Lacerda, A.B. Mageste, I.J.B. Santos, L.H.M. da Silva, M.D.H. da Silva, Separation of Cd 

and Ni from Ni-Cd batteries by an environmentally safe methodology employing aqueous two-

phase systems, Journal of Power Sources, 193 (2009) 908-913. 

[34] Y. Xu, M.A. Souza, M.Z.R. Pontes, M. Vitolo, A. Pessoa, Liquid-liquid extraction of enzymes by 

affinity aqueous two-phase systems, Brazilian Archives of Biology and Technology, 46 (2003) 741-

750. 



References  187 

 

 

[35] J.A. Asenjo, B.A. Andrews, Aqueous two-phase systems for protein separation: A perspective, 

Journal of Chromatography A, 1218 (2011) 8826-8835. 

[36] F. Ruiz-Ruiz, J. Benavides, O. Aguilar, M. Rito-Palomares, Aqueous two-phase affinity 

partitioning systems: Current applications and trends, Journal of Chromatography A, 1244 (2012) 

1-13. 

[37] P.G. Mazzola, A.M. Lopes, F.A. Hasmann, A.F. Jozala, T.C.V. Penna, P.O. Magalhaes, C.O. 

Rangel-Yagui, A. Pessoa, Liquid-liquid extraction of biomolecules: an overview and update of the 

main techniques, Journal of Chemical Technology and Biotechnology, 83 (2008) 143-157. 

[38] K. Naganagouda, V.H. Mulimani, Aqueous two-phase extraction (ATPE): An attractive and 

economically viable technology for downstream processing of Aspergillus oryzae alpha-
galactosidase, Process Biochemistry, 43 (2008) 1293-1299. 

[39] W. McCabe, Smith, J., Harriot, P., Unit Operations of Chemical Engineering, Seventh ed., 

McGraw-Hill, New York, 2005. 

[40] H. Tani, T. Kamidate, H. Watanabe, Aqueous micellar two-phase systems for protein 

separation, Analytical Sciences, 14 (1998) 875-888. 

[41] Y.X. Huang, G.M. Thurston, D. Blankschtein, G.B. Benedek, The Effect of Salt Identity and 

Concentration on Liquid Liquid-Phase Separation in Aqueous Micellar Solutions of C-8-Lecithin, 

Journal of Chemical Physics, 92 (1990) 1956-1962. 

[42] C.L. Liu, Y.J. Nikas, D. Blankschtein, Partitioning of Proteins Using 2-Phase Aqueous Surfactant 
Systems, Aiche Journal, 41 (1995) 991-995. 

[43] H. Tani, A. Matsuda, T. Kamidate, H. Watanabe, Extraction of proteins based on phase 

separation in aqueous triblock copolymer surfactant solutions, Analytical Sciences, 13 (1997) 925-

929. 

[44] H. Tani, Y. Suzuki, A. Matsuda, T. Kamidate, Enhancement of the excluded-volume effect in 

protein extraction using triblock copolymer-based aqueous micellar two-phase systems, Analytica 

Chimica Acta, 429 (2001) 301-309. 

[45] D.T. Kamei, J.A. King, D.I.C. Wang, D. Blankschtein, Separating lysozyme from bacteriophage 

P22 in two-phase aqueous micellar systems, Biotechnology and Bioengineering, 80 (2002) 233-

236. 

[46] F.H. Quina, W.L. Hinze, Surfactant-mediated cloud point extractions: An environmentally 

benign alternative separation approach, Industrial & Engineering Chemistry Research, 38 (1999) 

4150-4168. 

[47] D. Blankschtein, G.M. Thurston, G.B. Benedek, Phenomenological Theory of Equilibrium 

Thermodynamic Properties and Phase-Separation of Micellar Solutions, Journal of Chemical 

Physics, 85 (1986) 7268-7288. 

[48] S. Puvvada, D. Blankschtein, Molecular-Thermodynamic Approach to Predict Micellization, 

Phase-Behavior and Phase-Separation of Micellar Solutions .1. Application to Nonionic 

Surfactants, Journal of Chemical Physics, 92 (1990) 3710-3724. 

[49] H. Lam, M. Kavoosi, C.A. Haynes, D.I.C. Wang, D. Blankschtein, Affinity-enhanced protein 
partitioning in decyl beta-D-glucopyranoside two-phase aqueous micellar systems, Biotechnology 

and Bioengineering, 89 (2005) 381-392. 

[50] D. Blankschtein, Y.X. Huang, G.M. Thurston, G.B. Benedek, Salt Effects on Liquid Liquid-Phase 

Separation in Aqueous Micellar Solutions of the Zwitterionic Surfactant C8-Lecithin, Langmuir, 7 

(1991) 896-897. 



188  References 

[51] D. Blankschtein, G.M. Thurston, G.B. Benedek, Theory of Phase-Separation in Micellar 

Solutions, Physical Review Letters, 54 (1985) 955-958. 

[52] D.T. Kamei, D.I.C. Wang, D. Blankschtein, Fundamental investigation of protein partitioning in 

two-phase aqueous mixed (nonionic/ionic) micellar systems, Langmuir, 18 (2002) 3047-3057. 

[53] H. Tani, T. Kamidate, H. Watanabe, Micelle-mediated extraction, Journal of Chromatography 

A, 780 (1997) 229-241. 

[54] H. Watanabe, H. Tanaka, Nonionic Surfactant as a New Solvent for Liquid-Liquid - Extraction 

of Zinc(Ii) with 1-(2-Pyridylazo)-2-Naphthol, Talanta, 25 (1978) 585-589. 

[55] C. Bordier, Phase-Separation of Integral Membrane-Proteins in Triton X-114 Solution, Journal 

of Biological Chemistry, 256 (1981) 1604-1607. 

[56] A. Sanchezferrer, R. Bru, F. Garciacarmona, Phase-Separation of Biomolecules in 

Polyoxyethylene Glycol Nonionic Detergents, Critical Reviews in Biochemistry and Molecular 

Biology, 29 (1994) 275-313. 

[57] J.F. Liu, J.B. Chao, R. Liu, Z.Q. Tan, Y.G. Yin, Y. Wu, G.B. Jiang, Cloud Point Extraction as an 

Advantageous Preconcentration Approach for Analysis of Trace Silver Nanoparticles in 

Environmental Waters, Analytical Chemistry, 81 (2009) 6496-6502. 

[58] E.K. Paleologos, D.L. Giokas, M.I. Karayannis, Micelle-mediated separation and cloud-point 

extraction, Trac-Trends in Analytical Chemistry, 24 (2005) 426-436. 

[59] R.A. Ramelmeier, G.C. Terstappen, M.R. Kula, The partitioning of cholesterol oxidase in Triton 
X-114-based aqueous two-phase systems, Bioseparation, 2 (1991) 315-324. 

[60] G.C. Terstappen, A.J. Geerts, M.R. Kula, The Use of Detergent-Based Aqueous 2-Phase 

Systems for the Isolation of Extracellular Proteins - Purification of a Lipase from Pseudomonas-

Cepacia, Biotechnology and Applied Biochemistry, 16 (1992) 228-235. 

[61] G.C. Terstappen, R.A. Ramelmeier, M.R. Kula, Protein Partitioning in Detergent-Based 

Aqueous 2-Phase Systems, Journal of Biotechnology, 28 (1993) 263-275. 

[62] T. Minuth, H. Gieren, U. Pape, H.C. Raths, J. Thommes, M.R. Kula, Pilot scale processing of 

detergent-based aqueous two-phase systems, Biotechnology and Bioengineering, 55 (1997) 339-

347. 

[63] T. Minuth, J. Thommes, M.R. Kula, A closed concept for purification of the membrane-bound 
cholesterol oxidase from Nocardia rhodochrous by surfactant-based cloud-point extraction, 

organic-solvent extraction and anion-exchange chromatography, Biotechnology and Applied 

Biochemistry, 23 (1996) 107-116. 

[64] K. Selber, F. Tjerneld, A. Collen, T. Hyytia, T. Nakari-Setala, M. Bailey, R. Fagerstrom, J. Kan, J. 

van der Laan, M. Penttila, M.R. Kula, Large-scale separation and production of engineered 

proteins, designed for facilitated recovery in detergent-based aqueous two-phase extraction 

systems, Process Biochemistry, 39 (2004) 889-896. 

[65] T. Saitoh, H. Tani, T. Kamidate, T. Kamataki, H. Watanabe, Polymer-Induced Phase-Separation 

in Aqueous Micellar Solutions of Alkylglucosides for Protein Extraction, Analytical Sciences, 10 

(1994) 299-303. 

[66] Y.J. Nikas, C.L. Liu, T. Srivastava, N.L. Abbott, D. Blankschtein, Protein Partitioning in 2-Phase 

Aqueous Nonionic Micellar Solutions, Macromolecules, 25 (1992) 4797-4806. 

[67] C.O. Rangel-Yagui, H. Lam, D.T. Kamei, D.I.C. Wang, A. Pessoa, D. Blankstein, Glucose-6-

phosphate dehydrogenase partitioning in two-phase aqueous mixed (nonionic/cationic) micellar 

systems, Biotechnology and Bioengineering, 82 (2003) 445-456. 



References  189 

 

 

[68] K.H. Kroner, H. Hustedt, S. Granda, M.R. Kula, Technical Aspects of Separation Using Aqueous 

2-Phase Systems in Enzyme Isolation Processes, Biotechnology and Bioengineering, 20 (1978) 

1967-1988. 

[69] P. Vazquez-Villegas, O. Aguilar, M. Rito-Palomares, Study of biomolecules partition 

coefficients on a novel continuous separator using polymer-salt aqueous two-phase systems, 

Separation and Purification Technology, 78 (2011) 69-75. 

[70] F. Luechau, T.C. Ling, A. Lyddiatt, Physical characterisations of a single-stage Kuhni-type 

aqueous two-phase extraction column, Biochemical Engineering Journal, 50 (2010) 90-98. 

[71] P.A.J. Rosa, A.M. Azevedo, S. Sommerfeld, W. Backer, M.R. Aires-Barros, Continuous aqueous 

two-phase extraction of human antibodies using a packed column, Journal of Chromatography B-
Analytical Technologies in the Biomedical and Life Sciences, 880 (2012) 148-156. 

[72] P. Trakultamupatam, J.F. Scamehorn, S. Osuwan, Scaling up cloud point extraction of 

aromatic contaminants from wastewater in a continuous rotating disk contactor. I. Effect of disk 

rotation speed and wastewater to surfactant ratio, Separation Science and Technology, 39 (2004) 

479-499. 

[73] P. Trakultamupatam, J.F. Scamehorn, S. Osuwan, Scaling up cloud point extraction of. 

aromatic contaminants from wastewater in a continuous rotating disk contactor. II. Effect of 

operating temperature and added electrolyte, Separation Science and Technology, 39 (2004) 501-

516. 

[74] P. Taechangam, J.F. Scamehorn, S. Osuwan, T. Rirksomboon, Continuous Cloud Point 

Extraction of Volatile Organic Contaminants from Wastewater in a Multi-Stage Rotating Disc 

Contactor: Effect of Structure and Concentration of Solutes, Separation Science and Technology, 

43 (2008) 3601-3623. 

[75] T. Ingram, S. Storm, P. Glembin, S. Bendt, D. Huber, T. Mehling, I. Smirnova, Aqueous 

Surfactant Two-Phase Systems for the Continuous Countercurrent Cloud Point Extraction, Chemie 

Ingenieur Technik, 84 (2012) 840-848. 

[76] G. Kopperschlager, G. Birkenmeier, Affinity partitioning and extraction of proteins, 

Bioseparation, 1 (1990) 235-254. 

[77] G. Takerkart, E. Segard, M. Monsigny, Partition of Trypsin in 2-Phase Systems Containing a 
Diamidino-Alpha,Omego-Diphenylcarbamyl Poly (Ethylene-Glycol) as Competitive Inhibitor of 

Trypsin, Febs Letters, 42 (1974) 218-220. 

[78] S.D. Flanagan, S.H. Barondes, Affinity Partitioning - Method for Purification of Proteins Using 

Specific Polymer-Ligands in Aqueous Polymer 2-Phase Systems, Journal of Biological Chemistry, 

250 (1975) 1484-1489. 

[79] M.C. Tejedor, C. Delgado, M. Grupeli, J. Luque, Affinity Partitioning of Erythrocytic 

Phosphofructokinase in Aqueous 2-Phase Systems Containing Poly(Ethylene Glycol)-Bound 

Cibacron Blue - Influence of Ph, Ionic-Strength and Substrates Effectors, Journal of 

Chromatography, 589 (1992) 127-134. 

[80] L.L. Cheng, M. Joelsson, G. Johansson, Combination of Polymer-Bound Charged Groups and 
Affinity Ligands for Extraction of Enzymes by Partitioning in Aqueous 2-Phase Systems, Journal of 

Chromatography, 523 (1990) 119-130. 

[81] S. Fernandes, H.S. Kim, R. Hatti-Kaul, Affinity extraction of dye- and metal ion-binding 

proteins in polyvinyl pyrrolidone-based aqueous two-phase system, Protein Expression and 

Purification, 24 (2002) 460-469. 



190  References 

[82] A.M. Azevedo, P.A.J. Rosa, I.F. Ferreira, A.M.M.O. Pisco, J. de Vries, R. Korporaal, T.J. Visser, 

M.R. Aires-Barros, Affinity-enhanced purification of human antibodies by aqueous two-phase 

extraction, Separation and Purification Technology, 65 (2009) 31-39. 

[83] P.A.J. Rosa, A.M. Azevedo, I.F. Ferreira, J. de Vries, R. Korporaal, H.J. Verhoef, T.J. Visser, M.R. 

Aires-Barros, Affinity partitioning of human antibodies in aqueous two-phase systems, Journal of 

Chromatography A, 1162 (2007) 103-113. 

[84] B.A. Andrews, D.M. Head, P. Dunthorne, J.A. Asenjo, PEG Activation and Ligand Binding for 

the Affinity Partitioning of Proteins in Aqueous Two-Phase Systems, Biotechnology Techniques, 4 

(1990) 49-54. 

[85] M. Lu, F. Tjerneld, Interaction between tryptophan residues and hydrophobically modified 
dextran. Effect on partitioning of peptides and proteins in aqueous two-phase systems, Journal of 

Chromatography A, 766 (1997) 99-108. 

[86] M.R. Gavasane, V.G. Gaikar, Aqueous two-phase affinity partitioning of penicillin acylase from 

E-coli in presence of PEG-derivatives, Enzyme and Microbial Technology, 32 (2003) 665-675. 

[87] C.K. Lee, W.D. Su, Nonionic surfactant-mediated affinity cloud-point extraction of 

vancomycin, Separation Science and Technology, 34 (1999) 3267-3277. 

[88] T.T. Franco, A.T. Andrews, J.A. Asenjo, Conservative chemical modification of proteins to 

study the effects of a single protein property on partitioning in aqueous two-phase systems, 

Biotechnology and Bioengineering, 49 (1996) 290-299. 

[89] T.T. Franco, A.T. Andrews, J.A. Asenjo, Use of chemically modified proteins to study the effect 

of a single protein property on partitioning in aqueous two-phase systems: Effect of surface 

hydrophobicity, Biotechnology and Bioengineering, 49 (1996) 300-308. 

[90] K. Berggren, A. Veide, P.A. Nygren, F. Tjerneld, Genetic engineering of protein-peptide fusions 

for control of protein partitioning in thermoseparating aqueous two-phase systems, 

Biotechnology and Bioengineering, 62 (1999) 135-144. 

[91] S. Fexby, A. Nilsson, G. Hambraeus, F. Tjerneld, L. Bulow, Partitioning and characterization of 

tyrosine-tagged green fluorescent proteins in aqueous two-phase systems, Biotechnology 

Progress, 20 (2004) 793-798. 

[92] L. Ekblad, J. Kernbichler, B. Jergil, Aqueous two-phase affinity partitioning of biotinylated 
liposomes using neutral avidin as affinity ligand, Journal of Chromatography A, 815 (1998) 189-

195. 

[93] A.A. Bhide, R.M. Patel, J.B. Joshi, V.G. Pangarkar, Affinity Partitioning of Enzymes Using 

Unbound Triazine Dyes in Peg/Phosphate System, Separation Science and Technology, 30 (1995) 

2989-3000. 

[94] T. de Gouveia, B.V. Kilikian, Bioaffinity extraction of glucoamylase in aqueous two-phase 

systems using starch as free bioligand, Journal of Chromatography B, 743 (2000) 241-246. 

[95] S. Teotia, R. Lata, M.N. Gupta, Chitosan as a macroaffinity ligand - Purification of chitinases by 

affinity precipitation and aqueous two-phase extractions, Journal of Chromatography A, 1052 

(2004) 85-91. 

[96] S. Fernandes, G. Johansson, R. Hatti-Kaul, Purification of recombinant cutinase by extraction 

in an aqueous two-phase system facilitated by a fatty acid substrate, Biotechnology and 

Bioengineering, 73 (2001) 465-475. 

[97] S. Teotia, M.N. Gupta, Purification of phospholipase D by two-phase affinity extraction, 

Journal of Chromatography A, 1025 (2004) 297-301. 



References  191 

 

 

[98] A.M. Lopes, A. Pessoa, C.D. Rangel-Yagui, Can affinity interactions influence the partitioning 

of glucose-6-phosphate dehydrogenase in two-phase aqueous micellar systems?, Quimica Nova, 

31 (2008) 998-1003. 

[99] T. Saitoh, W.L. Hinze, Use of Surfactant-Mediated Phase-Separation (Cloud Point Extraction) 

with Affinity Ligands for the Extraction of Hydrophilic Proteins, Talanta, 42 (1995) 119-127. 

[100] P.O. Hedman, J.G. Gustafsson, Protein Adsorbents Intended for Use in Aqueous 2-Phase 

Systems, Analytical Biochemistry, 138 (1984) 411-415. 

[101] B. Mattiasson, T.G.I. Ling, Efforts to Integrate Affinity Interactions with Conventional 

Separation Technologies - Affinity Partition Using Biospecific Chromatographic Particles in 

Aqueous 2-Phase Systems, Journal of Chromatography, 376 (1986) 235-243. 

[102] A. Kondo, T. Kaneko, K. Higashitani, Purification of Fusion Proteins Using Affinity 

Microspheres in Aqueous 2-Phase Systems, Applied Microbiology and Biotechnology, 40 (1993) 

365-369. 

[103] Y.J. Kwon, R. Hatti-Kaul, Protein separation using metal ion-bound particles in aqueous two-

phase system, Biotechnology Techniques, 13 (1999) 145-148. 

[104] M. Roobol-Boza, V. Dolby, M. Doverskog, A. Barrefelt, F. Lindqvist, U.C. Oppermann, K.K. 

Van Alstine, F. Tjerneld, Membrane protein isolation by in situ solubilization, partitioning and 

affinity adsorption in aqueous two-phase systems - Purification of the human type 1 11 beta-

hydroxysteroid dehydrogenase, Journal of Chromatography A, 1043 (2004) 217-223. 

[105] C.A. Ku, J.D. Henry, J.B. Blair, Affinity-Specific Protein Separations Using Ligand-Coupled 

Particles in Aqueous 2-Phase Systems .2. Recovery and Purification of Pyruvate-Kinase and 

Alcohol-Dehydrogenase from Saccharomyces-Cerevisiae, Biotechnology and Bioengineering, 33 

(1989) 1089-1097. 

[106] C.A. Ku, J.D. Henry, J.B. Blair, Affinity-Specific Protein Separations Using Ligand-Coupled 

Particles in Aqueous 2-Phase Systems .1. Process Concept and Enzyme Binding-Studies for 

Pyruvate-Kinase and Alcohol-Dehydrogenase from Saccharomyces-Cerevisiae, Biotechnology and 

Bioengineering, 33 (1989) 1081-1088. 

[107] M. Suzuki, M. Kamihira, T. Shiraishi, H. Takeuchi, T. Kobayashi, Affinity Partitioning of 

Protein-a Using a Magnetic Aqueous 2-Phase System, Journal of Fermentation and 
Bioengineering, 80 (1995) 78-84. 

[108] Q. Gai, F. Qu, T. Zhang, Y. Zhang, Integration of carboxyl modified magnetic particles and 

aqueous two-phase extraction for selective separation of proteins, Talanta, 85 (2011) 304-309. 

[109] P. Wikstrom, S. Flygare, A. Grondalen, P.O. Larsson, Magnetic Aqueous 2-Phase Separation - 

a New Technique to Increase Rate of Phase-Separation, Using Dextran Ferrofluid or Larger Iron-

Oxide Particles, Analytical Biochemistry, 167 (1987) 331-339. 

[110] P.O. Larsson, Magnetically Enhanced Phase-Separation, Aqueous Two-Phase Systems, 228 

(1994) 112-117. 

[111] S. Flygare, P. Wikstrom, G. Johansson, P.O. Larsson, Magnetic Aqueous 2-Phase Separation 

in Preparative Applications, Enzyme and Microbial Technology, 12 (1990) 95-103. 

[112] J.S. Becker, Einsatz magnetischer Extraktionsphasen zur Bioproduktaufarbeitung, PhD 

Thesis, 2009, Institute of Functional Interfaces, University of Karlsruhe (TH) 

[113] H. Walter, D.E. Brooks, D. Fisher, Partitioning in aqueous two-phase systems: theory, 

methods, uses, and application to biotechnology, Academic Press, Orlando, Florida, 1985. 



192  References 

[114] M.A. Hoeben, R.G.J.M. van der Lans, L.A.M. van der Wielen, Kinetic model for separation of 

particle mixtures by interfacial partitioning, Aiche Journal, 50 (2004) 1156-1168. 

[115] S.M. Baxter, P.R. Sperry, Z.W. Fu, Partitioning of Polymer and Inorganic Colloids in Two-

Phase Aqueous Polymer Systems, Langmuir, 13 (1997) 3948-3952. 

[116] X. Zeng, K. Osseo-Asare, Partitioning behavior of silica in the Triton X-100/dextran/water 

aqueous biphasic system, Journal of Colloid and Interface Science, 272 (2004) 298-307. 

[117] X. Zeng, J. Quaye, K. Osseo-Asare, Partition of hematite in the Triton X-100/Dextran aqueous 

biphase system, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 246 (2004) 

135-145. 

[118] H.S. Garewal, Procedure for Estimation of Microgram Quantities of Triton X-100, Analytical 
Biochemistry, 54 (1973) 319-324. 

[119] A. Barber, C.C.T. Chinnick, P.A. Lincoln, The Analysis of Mixtures of Surface-Active 

Quaternary Ammonium Compounds and Polyethylene Oxide Type of Non-Ionic Surface-Active 

Agents, Analyst, 81 (1956) 18-25. 

[120] L.S. Lagutina, K.F. Sholts, Turbidimetric method for quantitative determination of Triton X-

100 with silicotungstic acid, Applied Biochemistry and Microbiology, 38 (2002) 294-297. 

[121] S. Rajakumari, M. Srinivasan, R. Rajasekharan, Spectrophotometric method for quantitative 

determination of nonionic, ionic and zwitterionic detergents, Journal of Biochemical and 

Biophysical Methods, 68 (2006) 133-137. 

[122] Metrohm, Titrimetric/potentiometric determination of non-ionic surfactants based on 

polyoxyethylene adducts using the NIO electrode, Application Bulletin 230/1 e. 

[123] M. Sak-Bosnar, Z. Grabaric, B.S. Grabaric, Surfactant sensors in biotechnology part 1 - 

Electrochemical sensors, Food Technology and Biotechnology, 42 (2004) 197-206. 

[124] M. Sak-Bosnar, D. Madunic-Cacic, R. Matesic-Puac, Z. Grabaric, Sensitive potentiometric 

method for determination of micromolar level of polyethoxylated nonionic surfactants in 

effluents, Tenside Surfactants Detergents, 44 (2007) 11-18. 

[125] M. Sak-Bosnar, D. Madunic-Cacic, N. Sakac, O. Galovic, M. Samardzic, Z. Grabaric, 

Potentiometric sensor for polyethoxylated nonionic surfactant determination, Electrochimica 

Acta, 55 (2009) 528-534. 

[126] J.X. Zhao, W. Brown, Adsorption of a Nonionic Surfactant (C(12)E(7)) on Carboxylated 

Styrene-Butadiene Copolymer Latex-Particles Using Dynamic Light-Scattering and Adsorption-

Isotherm Measurements, Journal of Colloid and Interface Science, 169 (1995) 39-47. 

[127] W. Brown, J.X. Zhao, Adsorption of Sodium Dodecyl-Sulfate on Polystyrene Latex-Particles 

Using Dynamic Light-Scattering and Zeta-Potential Measurements, Macromolecules, 26 (1993) 

2711-2715. 

[128] F. Ravera, E. Santini, G. Loglio, M. Ferrari, L. Liggieri, Effect of nanoparticles on the interfacial 

properties of liquid/liquid and liquid/air surface layers, Journal of Physical Chemistry B, 110 (2006) 

19543-19551. 

[129] S. Paria, K.C. Khilar, A review on experimental studies of surfactant adsorption at the 
hydrophilic solid-water interface, Advances in Colloid and Interface Science, 110 (2004) 75-95. 

[130] J. Brinck, F. Tiberg, Adsorption behavior of two binary nonionic surfactant systems at the 

silica-water interface, Langmuir, 12 (1996) 5042-5047. 



References  193 

 

 

[131] J. Brinck, B. Jonsson, F. Tiberg, Kinetics of nonionic surfactant adsorption and desorption at 

the silica-water interface: One component, Langmuir, 14 (1998) 1058-1071. 

[132] R. Abe, K. Kuno, Adsorption of Polyoxyethylated Nonylphenol on Carbon Black in Aqueous 

Solution, Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 181 (1962) 70-&. 

[133] J.M. Corkill, J.F. Goodman, J.R. Tate, Adsorption of Non-Ionic Surface-Active Agents at 

Graphon/Solution Interface, Transactions of the Faraday Society, 62 (1966) 979-&. 

[134] F. Tiberg, Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic 

and hydrophobic solid surfaces by time-resolved ellipsometry, Journal of the Chemical Society-

Faraday Transactions, 92 (1996) 531-538. 

[135] L.M. Grant, F. Tiberg, W.A. Ducker, Nanometer-scale organization of ethylene oxide 
surfactants on graphite, hydrophilic silica, and hydrophobic silica, Journal of Physical Chemistry B, 

102 (1998) 4288-4294. 

[136] L.M. Grant, T. Ederth, F. Tiberg, Influence of surface hydrophobicity on the layer properties 

of adsorbed nonionic surfactants, Langmuir, 16 (2000) 2285-2291. 

[137] M. Schonhoff, O. Soderman, Z.X. Li, R.K. Thomas, Internal dynamics and order parameters in 

surfactant aggregates: A 2H NMR study of adsorption layers and bulk phases, Langmuir, 16 (2000) 

3971-3976. 

[138] G. Despert, J. Oberdisse, Formation of micelle-decorated colloidal silica by adsorption of 

nonionic surfactant, Langmuir, 19 (2003) 7604-7610. 

[139] J. Oberdisse, Fragmented structure of adsorbed layer of non-ionic surfactant on colloidal 

silica, Physica B-Condensed Matter, 350 (2004) E913-E916. 

[140] J. Oberdisse, Small angle neutron scattering and model predictions for micelle-decorated 

colloidal silica beads, Physical Chemistry Chemical Physics, 6 (2004) 1557-1561. 

[141] D. Lugo, J. Oberdisse, M. Karg, R. Schweins, G.H. Findenegg, Surface aggregate structure of 

nonionic surfactants on silica nanoparticles, Soft Matter, 5 (2009) 2928-2936. 

[142] R.F. Tabor, J. Eastoe, P. Dowding, Adsorption and Desorption of Nonionic Surfactants on 

Silica from Toluene Studied by ATR-FTIR, Langmuir, 25 (2009) 9785-9791. 

[143] J.J.R. Stalgren, J. Eriksson, K. Boschkova, A comparative study of surfactant adsorption on 

model surfaces using the quartz crystal microbalance and the ellipsometer, Journal of Colloid and 
Interface Science, 253 (2002) 190-195. 

[144] X. Liu, D. Wu, S. Turgman-Cohen, J. Genzer, T.W. Theyson, O.J. Rojas, Adsorption of a 

Nonionic Symmetric Triblock Copolymer on Surfaces with Different Hydrophobicity, Langmuir, 26 

(2010) 9565-9574. 

[145] D.M. Nevskaia, A. GuerreroRuiz, J.D.D. LopezGonzalez, Adsorption of polyoxyethylenic 

surfactants on quartz, kaolin, and dolomite: A correlation between surfactant structure and solid 

surface nature, Journal of Colloid and Interface Science, 181 (1996) 571-580. 

[146] J. Drzymala, E. Mielczarski, J.A. Mielczarski, Adsorption and flotation of hydrophilic and 

hydrophobic materials in the presence of hydrocarbon polyethylene glycol ethers, Colloids and 

Surfaces a-Physicochemical and Engineering Aspects, 308 (2007) 111-117. 

[147] P.J. Anielak, K, Adsorpion of Nonionic Surfactants on Synthetic Adsorbents, Physical 

Chemistry, (1990). 



194  References 

[148] G.P. Vanderbeek, M.A.C. Stuart, The Hydrodynamic Thickness of Adsorbed Polymer Layers 

Measured by Dynamic Light-Scattering - Effects of Polymer Concentration and Segmental Binding 

Strength, Journal De Physique, 49 (1988) 1449-1454. 

[149] P.W. Holloway, Simple Procedure for Removal of Triton X-100 from Protein Samples, 

Analytical Biochemistry, 53 (1973) 304-308. 

[150] T.M. Allen, A.Y. Romans, H. Kercret, J.P. Segrest, Detergent Removal during Membrane 

Reconstitution, Biochimica Et Biophysica Acta, 601 (1980) 328-342. 

[151] A.S. Michaels, New Separation Techniques for the CPI, Chemical Engineering Progress, 64 

(1968). 

[152] M.C. Porter, Concentration Polarization with Membrane Ultrafiltration, Industrial & 
Engineering Chemistry Product Research and Development, 11 (1972) 234-&. 

[153] H. Schott, Ultrafiltration of Nonionic Detergent Solutions, Journal of Physical Chemistry, 68 

(1964) 3612-&. 

[154] M. Schwarze, D.K. Le, S. Wille, A. Drews, W. Arlt, R. Schomacker, Stirred cell ultrafiltration of 

aqueous micellar TX-100 solutions, Separation and Purification Technology, 74 (2010) 21-27. 

[155] J.S. Yang, K. Baek, J.W. Yang, Crossflow ultrafiltration of surfactant solutions, Desalination, 

184 (2005) 385-394. 

[156] J.H. Markels, S. Lynn, C.J. Radke, Cross-Flow Ultrafiltration of Micellar Surfactant Solutions, 

Aiche Journal, 41 (1995) 2058-2066. 

[157] A.A. Mungray, S.V. Kulkarni, A.K. Mungray, Removal of heavy metals from wastewater using 

micellar enhanced ultrafiltration technique: a review, Central European Journal of Chemistry, 10 

(2012) 27-46. 

[158] R. Urbanski, E. Goralska, H.J. Bart, J. Szymanowski, Ultrafiltration of surfactant solutions, 

Journal of Colloid and Interface Science, 253 (2002) 419-426. 

[159] H. Byhlin, A.S. Jonsson, Influence of adsorption and concentration polarisation on 

membrane performance during ultrafiltration of a non-ionic surfactant, Desalination, 151 (2003) 

21-31. 

[160] V.A.K. Anthati, K.V. Marathe, Selective Separation of Copper (Ii) and Cobalt (Ii) from 

Wastewater by Using Continuous Cross-Flow Micellar-Enhanced Ultrafiltration and Surfactant 
Recovery from Metal Micellar Solutions, Canadian Journal of Chemical Engineering, 89 (2011) 292-

298. 

[161] D. Doulia, I. Xiarchos, Ultrafiltration of micellar solutions of nonionic surfactants with or 

without alachlor pesticide, Journal of Membrane Science, 296 (2007) 58-64. 

[162] A.S. Jonsson, B. Jonsson, H. Byhlin, A concentration polarization model for the ultrafiltration 

of nonionic surfactants, Journal of Colloid and Interface Science, 304 (2006) 191-199. 

[163] Y. Kaya, C. Aydiner, H. Barlas, B. Keskinler, Nanofiltration of single and mixture solutions 

containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs), 

Journal of Membrane Science, 282 (2006) 401-412. 

[164] I. Xiarchos, D. Doulia, Interaction behavior in ultrafiltration of nonionic surfactant micelles 
by adsorption, Journal of Colloid and Interface Science, 299 (2006) 102-111. 

[165] M. Henschke, L.H. Schlieper, A. Pfennig, Determination of a coalescence parameter from 

batch-settling experiments, Chemical Engineering Journal, 85 (2002) 369-378. 



References  195 

 

 

[166] T. Voeste, K. Weber, B. Hiskey, G. Brunner, Liquid–Solid Extraction, in:  Ullmann's 

Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000. 

[167] M. Henschke, Dimensionierung liegender Flüssig-flüssig Abscheider anhand 

diskontinuierlicher Absetzversuche, Fortschritt-Berichte VDI, Reihe 3 (Verfahrenstechnik), Nr. 379, 

VDI Verlag, Düsseldorf, 1995. 

[168] Y. Zimmels, Sedimentation, in:  Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH 

Verlag GmbH & Co. KGaA, 2000. 

[169] S.A.K. Jeelani, R. Hosig, E.J. Windhab, Kinetics of low Reynolds number creaming and 

coalescence in droplet dispersions, Aiche Journal, 51 (2005) 149-161. 

[170] S. Samanta, P. Ghosh, Coalescence of bubbles and stability of foams in aqueous solutions of 
Tween surfactants, Chemical Engineering Research & Design, 89 (2011) 2344-2355. 

[171] D. Rautenberg, E. Blaß, Koaleszenz von Einzeltropfen an geneigten Platten in Flüssigkeiten, 

Chemie Ingenieur Technik, 55 (1983) 643-643. 

[172] H.W. Brandt, K.-H. Reissinger, J. Schröter, Moderne Flüssig/Flüssig-Extraktoren–Übersicht 

und Auswahlkriterien, Chemie Ingenieur Technik, 50 (1978) 345-354. 

[173] E. Müller, R. Berger, E. Blass, D. Sluyts, A. Pfennig, Liquid–Liquid Extraction, in:  Ullmann's 

Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000. 

[174] K.-H. Reissinger, J. Schröter, W. Bäcker, Möglichkeiten und Probleme bei der Auslegung von 

Extraktoren, Chemie Ingenieur Technik, 53 (1981) 607-614. 

[175] E.U. Schlünder, F. Thurner, Destillation, Absorption, Extraktion, Georg Thieme Verlag, 

Stuttgart, 1986. 

[176] M. Bohnet, Separation of Immiscible Liquids, Chemie Ingenieur Technik, 48 (1976) 177-189. 

[177] L. Schlieper, M. Chatterjee, M. Henschke, A. Pfennig, Liquid-liquid phase separation in 

gravity settler with inclined plates, Aiche Journal, 50 (2004) 802-811. 

 





Appendix  197 

 

 

11 Appendix 

11.1 Opitmization of the Continous Magnetic Extraction  

The optimum process parameters for the operation of the CME were determined by a 

Design of Experiments (DoE) approach in order to optimize the surfactant and particle 

separation efficiency. From these boundary conditions a matrix was created for the 

selected process parameters TS, V°�  and CR. Magnetic extraction experiments were 

performed with the process parameters from Table 11.1 and the separation efficiencies SS 

and SP have been determined. Table 11.1 summarizes the factors and results from the 

DoE experiments. 

Table 11.1: Defined factors and responses from the DoE experiments. SS and SP have been 

calculated according Equations 7.5 and 7.6. 

Factors Responses 

TS [°C] V°�  [L/h] CR*100 [%] SS [%] SP [%] 

30 9a 33 93,8 99,3 
30 5,4 33 97,7 99,7 
30 15 33 88,9 93,3 
30 9 20b 90,8 97,5 
40 9 20 93,7 97,7 
30 5,4 12,5 91,4 98,1 
30 15 12,5 86,1 89,3 
35 9 33 97,3 99,6 
35 5,4 20 96,6 99,9 
35 15 20 92,8 94,9 
35 9 12,5 92,9 99,1 
40 5,4 12,5 96,8 99,9 
40 15 12,5 90,7 95,4 
40 5,4 33 98,3 99,9 
40 15 33 95,5 96,5 
35 9 20 92,7 98,5 
35 9 20 92,3 98,3 
35 9 20 92,4 98,2 

a
the initially ±²�  prescribed by the DoE software has been adjusted from 10.5 L/h to 9 L/h; 

b
the initially CR prescribed 

by the DoE software has been adjusted from 22.75 to 20. This adjustment, however, was taken into account when 

the evaluation of the results was done. 
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A multilinear regression (MLR) on SR and SP was performed using the software MODDE 

Umetrics Inc., San Jose, US-CA). The main parameters were identified and the parameters 

with insignificant influence were eliminated. The goodness of the fit was R²S,P=0.8 and 

R²S,S=0.84 respectively. The according response plots for the particle separation efficiency 

and surfactant separation efficiency can be seen in Figure 11.1 and Figure 11.2. The 

goodness of prediction which estimates the predictive power of the model was calculated 

to Q²S,P=0.6 and Q²S,S=0,73. The numbers indicate that, although the DoE model is based 

on linear and quadratic correlations between the chosen factors, the model provides 

satisfying insight for a prediction of the separation efficiencies in the examined range.  

 

Figure 11.1: Response plot for the particle separation model. 

 

Figure 11.2: Response plot for the surfactant separation model. 

Figure 11.3 and Figure 11.4 show the resulting contour plots for SS and SP. Both plots 

exhibit the same trends.  
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Figure 11.3. Prediction plot of the surfactant separation efficieny in the magnetic extractor 

calculated by the DoE software MODDE. The correlation between TS, ±²�  and CR is linear and can 

be described the equation: SP=2.03 TS -2.75±²�  +2.04CR 
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Figure 11.4. Prediction plot of the particle separation efficieny in the magnetic extractor 

generated by the DoE software MODDE. The correlation between TS, ±²�  and CR is linear and can 

be described the equation SS=0.99TS -3.13±²�  +0.81CR 

The dependency of the separation efficiencies with respect to CR, TS and V°�  can be 

described by the following equations: 

SP=0.99TS + 0.81CR - 3.13 ³´�  [Eq. 11.1] 

SS=2.03TS + 2.04CR - 2.75 +x�  [Eq. 11.2] 

From the equations it can be seen that, while the impact of V°�  is practically equal for SS 

and SP the impact of TS and CR is stronger on SS than on SP. This may be attributed to the 

fact, that the particles are directly influenced by the magnetic field, thus reducing the 

importance of other parameters. Yet, in both cases, the separation efficiencies are mostly 
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influenced by the flow rate. Elevated temperatures are favourable for the process, 

however, it is likely that increasing TS is unfavourable in terms of thermal stability of a 

target protein. An increase in the CR also leads to an increase of SS and SR. But the 

increase of CR coincidently reduces Vµ� , which in the case of the elution step, will lead to 

increased product loss. Nevertheless, the results show that a SP of >99.9% can be 

achieved and the magnetic extractor can be operated continuously at several liters per 

hour. The choice of the process parameters has conclusively to be a compromise between 

loss of surfactant and particles and yield of the target protein.  

11.2 Quantification of Eumulgin ES by means of Spectophotometry 

In Figure 11.5 the absorbance at 213 nm is plotted versus the Eumulgin ES concentration. 

The relationship between concentration and absorbance is linear. Following Lambert-

Beer´s Law the molar absorbance coefficient can be calculated to: ελ=216=17.9 L mol-1 cm-

1, respectively ελ=216=0.03 L g-1 cm-1. 

 

Figure 11.5. Absorbance of Eumulgin ES vs concentration. The relation is linear following 
Lambert Beer´s Law. 

For concentrations of Eumulgin ES below 200 mg/L, the absorbance at 213 nm increases 

drastically, as can be seen in Figure 4.  
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Figure 11.6. Absorbance of Eumulgin ES at concentrations from 0.005% to 1.1%. At 0.02%wt, 
the absorbance of Eumulgin ES increases drastically. 

The phenomenon occurs at a concentration which is 50 times the cmc determined by 

measuring the decline of the surface tension (results shown in chapter 8.4.1). According 

to the theory of cmc determination by measuring the surface tension, at these 

concentrations the air-liquid surface is covered with surfactant molecules and micelles 

start to form. The observed effect may then either be explained by a structural change in 

the micelle structure or shape, or the minimum in absorbance may be related to the 

moment where micelles being to form, although it is 50 times the cmc determined by the 

surface tension method. 

11.3 Influence of Eumulgin ES onto Protein Quantification 

The total protein concentration was determined by a micro bichinoninic acid (BCA) assay 

kit (Pierce, Rockford, US-IL) with the usage of an automated robotic station Cobas Mira 

(Roche Diagnostics, Basel, CH). In order to establish reliable protein quantification, the 

influence of Eumulgin ES onto the absorbance has been investigated. In Figure 11.7, the 

change of the absorbance signal for increasing Eumulgin ES concentration in the assay 

buffer was investigated.   
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Figure 11.7. Change of Absorbance in the BCA Assay from the addition of Eumulgin ES to the 

Assay Reagent 

As can be seen, the addition of Eumulgin ES leads to a drastic increase in the absorbance. 

This change in absorbance makes the determination of the protein concentration of a 

sample containing an unknown Eumulgin ES concentration difficult. The course of the 

change, however, reaches saturation at Eumulgin ES concentrations above 1 %. For this 

reason, 1 % Eumulgin ES was added to the BCA assay buffer. The determination of the 

total protein was therefore always performed in the region above saturation. Although 

the total absorbance in this region is above 1.5, the automatic robotic station allowed 

reliable quantification of protein concentrations. 
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11.4 Abbreviations 

Abbreviation Meaning 

Abs Absorbance 

ADH Alcohol Dehydrogenase 

AFM Atomic Force Microscopy 

AMTPS Aqueous Micellar Two-phase System 

ATPE Aqueous Two-phase Extraction 

ATPS Aqueous Two-phase System 

ATR Attenuated Total Reflectance 

BSA Bovine Serum Albumin 

cf. compared for 

CME Continuous Magnetic Extraction 

CPE Cloud Point Extraction 

DNA Desoxyribonucleic acid 

DoE Design of Experiments 

DTAB Dodecyltrimethylammonium Bromide 

DTU Technical University of Denmark 

E. coli Escherichia coli 

FTIR Fourier Transfrom Infrared Spectroscopy 

GFP Green Fluorescent Protein 

HGMF High Gradient Magnetic Fishing 

HGMS High Gradient Magnetic Separation 

IgG Immunoglobulin G 

kDa kilo Dalton 

ME Magnetic Extraction 

MEC Magnetic Field Enhanced Centrifuge 

MEP Magnetic Extraction Phases 

MEUF Micellar Enhanced Ultrafiltration 

MLR Multilinear Regression 
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MME Micelle Mediated Extraction 

MWCO Molecular Weight Cut-off 

PEG Polyethylene Glycol or Polyethylene Oxide 

QCM-D Quartz Crystal Microbalance with Dissipation 

SDS Sodium Dodecyl Sulfate 

TOC Total Organic Carbon 

UF Ultrafiltration 

UV-VIS Ultraviolet-visible 

11.5 Symbols 

11.5.1 Phyisical Constants 

   

µ0 1.257*10-6 V s A-1 m-1 permeability constant of the vacuum 

g 9.807 m s-2 gravitational constant 

k 1.38065 * 10-23 J K-1 Boltzman constant 

11.5.2 Latin Symbols 

   

A m2 area 

B T magnetic flux density 

Bsub T magnetic flux density in a substance 

Bvac T magnetic flux density in vacuum 

C J attractive intermicellar free energy 

c kg/L concentration 

C kg s cm-2 mass sensitivity constant 

c* kg/L equilibrium concentration 

cB kg/L bulk concentration 

cP kg/L particle concentration 

d m diameter 
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D m2 s-1 diffusion coefficient 

D - dissipation 

DM - demagnetisation factor 

dP m pore diameter 

E J energy 

F J free (interfacial) energy 

f s-1 frequency 

FB N buoyant force 

FF N frictional force 

FG N gravitational force 

FM N magnetic force 

G J Gibbs energy 

H A m-1 magnetic field strength 

HC A m-1 coecitive field strength 

J T magnetic polarisation 

J m s-1 flux 

JS T saturation polarization 

K - partitioning coefficient 

KHR - correction factor according to Hadamard and Rybcynski 

KL g/L Langmuir constant 

M A m-1 magnetisation 

m kg mass 

MP A m-1 particle magnetisation 

n  overtone 

N mol amount of substance 

p N m-2 pressure 

q kg/kg loading 

q* kg/kg equilibrium loading 

q0 kg/kg initial loading 

qmax kg/kg maximum loading 
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R - volume ratio 

R m radius 

t m film thickness 

T K absolute temperature 

T °C temperature 

TC °C lower consolute critical temperature 

tEff m effective film thickness 

v m s-1 velocity 

VP m3 particle volume 

vst m/s velocity of a particle calculated by the Stokes´law 

w - mass fraction 

11.5.3 Greek Symbols 

   

∆µ J free energy advantage from for micellar growth 

µR - magnetic material dependent permeability 

δ m thickness of a gel layer adjactent to a membrane 

ε - hold-up 

ε L g-1 cm-1 molar absorption coefficient 

η kg m-1 s-1 dynamic viscosity 

κ - magnetic volume susceptibility λ nm wavelength 

σ J m-2 interfacial tension / interfacial energy 

τ - tortuosity 

φ - volume fraction 

χ m channel length trough a membrane 

χ - mole fraction \ kg m-3 density 
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11.6 Indices 

  

* thermodynamic equilibrium 

0 Initial 

Ads adsorption 

aq aqueous phase 

B buoyancy 

B bottom phase 

B bulk 

C coercitive 

c convection 

c continuous phase 

C critical 

co coacervate phase 

d diffusion 

d disperse phase 

Eff effective film 

EV excluded volume 

EV excluded volume 

G gravity 

g gel 

HR Hadamard, Rybcynski 

i intrinsic 

i initial 

M magnetic 

mat matter 

max maximum 

P pore 

PB particle-bottom 
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PT particle-top 

R remanence 

R friction 

S saturation 

sub substance 

T top phase 

TP top-bottom 

V volumetric 

vac vacuum 
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