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Abstract

The objective of full waveform inversion (FWI) is to reconstruct a model of the subsurface

by minimizing the residuals between observed and modelled seismic data. Because of the

high-nonlinearity of the inverse problem, the success of the waveform inversion depends

mainly on the accuracy of the starting model and on the presence of low frequencies and

sufficient offsets in the recorded data. In recent years, many synthetic studies have shown

that FWI has a great potential to become an important method for determining high-

resolution, multi-parameter models of complex subsurface structures, however, application

to field data is not yet a common practice. When inverting marine field seismic data, we

have to deal with some additional challenges including seismic noise, limited offsets, lack

of low frequencies, or the unknown source signal. These factors lead to poor convergence

of the inversion algorithm and deteriorate the recovery of subsurface models. Therefore,

some extra processing steps and a careful choice of inversion strategies are required for the

successful inversion of field data.

The main objective of the thesis is the application of the 2D acoustic time-domain full

waveform inversion to conventional streamer data recorded in the North Sea. In addition

to the field data example, the synthetic studies and experiments presented in this work aim

to investigate the possibilities and limitations of the method and to provide the guidelines

on how to design an efficient inversion scheme. Furthermore, this work discusses several

practical aspects related to the application of 2D acoustic FWI to field data, such as the

3D to 2D transformation, source wavelet estimation, and acquisition effects.

The numerical tests are based on a modified acoustic Marmousi2 model and they aim to

reflect the real measurement conditions of marine reflection seismics. The first series of

inversion experiments investigates the performance of different gradient preconditioning

operators, the implementation of the multi-scale inversion approach, and the choice of the

objective function. Another aspects investigated in this work is the influence of different

model parameterizations on the multi-parameter acoustic waveform inversion. A set of

inversion tests is performed to assess the different parameterization sets in terms of the

quality of the reconstructed models and of the convergence rate of the inversion. Whereas

the resolution of velocity and impedance models is comparable, the reconstruction of den-

sity structures strongly depends on the model parameterization.

To investigate the role of density on the recovery of velocity models, I perform a series

of numerical experiments testing various initial density models and different strategies

for the density update. The inversion results show that the realistic density information

should be directly included in the inversion process to improve the accuracy of the velocity

reconstruction.



Finally, I present the successful application of 2D acoustic FWI to marine field data. I

introduce a workflow for the field data inversion and discuss the key aspects related to the

field data processing, starting model generation, initial modelling, resolution study, and

choice of the inversion parameters. To reduce the high complexity of the inverse problem,

the combination of the multi-scale inversion with the time and offset windowing of the

data is applied. The validation of inversion results is achieved by both a comparison of

synthetic and observed waveforms and by a comparison of the inverted model with the

migrated seismic section.
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Chapter 1

Introduction

The overall goal of marine exploration geophysics is to image geological structures. Among other

methods, the full waveform inversion (FWI) proved to be an efficient tool for determining high-

resolution multi-parameter models (P-wave velocity, S-wave velocity, density) of complex subsurface

structures. In contrast to the traveltime tomography, waveform inversion utilizes the full information

content of the observed seismograms, i.e. amplitudes and phases, thus it has a potential to image

structures that are smaller than the seismic wavelength. Advances in parallel computing technology,

numerical methods, and the improving quality of seismic data make the application of FWI feasible

today.

The objective of FWI is to find a model of the subsurface that explains the observed data. For

that purpose, the algorithm has to minimize the residuals between modeled and observed data in an

iterative process. To solve this problem we need to generate synthetic data from a starting model

(the forward problem) and apply an efficient method for minimizing the data misfit function. The

inversion strategy is based on the adjoint method. The forward problem and backpropagation of the

residual wavefield are solved using a parallel time domain finite difference code, [Bohlen, 2002]. The

forward modeling code applies perfectly matched layers to suppress artificial reflections from the model

boundaries. The waveform inversion scheme is based on the general approach of Tarantola [1984] and

Mora [1987] formulated in the space-time domain. The inversion problem can be addressed in an

elastic or acoustic manner by utilizing the elastic or acoustic wave equation, respectively. The elastic

FWI is more complicated than the acoustic approach, because it has to simultaneously optimize three

coupled elastic parameters and, as a result, it requires more computational power.

It is a common practice to apply the acoustic approach for seismic data from marine exploration,

i. e. to streamer or to OBC data, as it leads to a significant reduction in computational cost. However,

the elastic simulation would provide a better match to the acquired marine data, since they contain

many elastic signals such as surface waves and mode converted waves. Nevertheless, it has been shown

that the result of the acoustic inversion is reasonable when using marine seismic data.

Synthetic studies show the great resolution potential of the full waveform inversion, however,

application to field data is not a common standard yet. This thesis discusses some of the problems

related with the inversion of marine data in the acoustic approximation. The application of waveform

inversion to field data is an extremely nonlinear problem. The lack of low frequency information makes

the waveform inversion strongly depending on the initial model. Moreover, elastic effects, attenuation,
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noise present in the data, as well as an unknown source signature additionally reduce the performance

of the inversion algorithm. To mitigate some of these problems, it is necessary to preprocess the data,

estimate an accurate starting model and source wavelet. To enable the convergence and to eliminate

some of the artifacts, it is essential to apply various preconditioning methods, and to include any

available a priori information on the model parameters, including the density information.

1.1 FWI - state of the art

The acoustic full waveform inversion method was originally developed in the time domain in the early

80’s by Tarantola [1984] as a local optimization method that aims to minimize the least-squares misfit

between observed and modelled seismograms. The theory was extended to the elastic case by Mora

[1987]; Tarantola [1986]. The frequency-domain full waveform inversion was introduced in early 90’s

[Pratt, 1990; Pratt and Worthington, 1990]

Although FWI is computationally intensive, it is of particular interest, because it enables the

high-resolution multi-parameter inversion of subsurface structures. The method can be applied to a

wide range of geophysical problems:

• ultrasonic data [Dessa and Pascal, 2003; Pratt, 1999];

• crosshole seismic data [Pratt and Shipp, 1999; Wang and Rao, 2006];

• crosshole radar data [Ernst et al., 2007];

• onshore wide-aperture seismic data [Bleibinhaus et al., 2009; Malinowski and Operto, 2008;

Ravaut et al., 2004];

• wide-angle refraction data recorded with ocean-bottom stations or ocean bottom cables [Dessa

et al., 2004; Operto et al., 2006; Sirgue et al., 2009];

• marine streamer data [Boonyasiriwat et al., 2010; Delescluse et al., 2011; Hicks and Pratt, 2001;

Shin and Min, 2006; Shipp and Singh, 2002; Takam Takougang and Calvert, 2011; Vigh and

Starr, 2008; Wang and Rao, 2009];

• seismological imaging [Fichtner et al., 2009].

1.2 Objective of the thesis

The aim of this thesis is the application of the 2D acoustic full waveform inversion to marine streamer

data. The main goal is to develop a workflow for the field data inversion that includes field data

preprocessing, generation of the starting models, source wavelet estimation, and the choice of appro-

priate inversion strategies. The possibilities and limitations of the inversion method are investigated

in details in order to provide some guidance on the appropriate choice of the data processing routines

and on the design of an efficient inversion scheme. Furthermore, the thesis discusses several practi-

cal issues related to the field data inversion. The FWI is eventually applied to conventional marine

streamer data acquired in the North Sea.
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1.3 Overview of the thesis

The thesis is divided into six main chapters:

• Chapter 2 FWI - theory and implementation

In the first section, I provide a general introduction into the inversion of the non-linear problems.

This is followed by the introduction of the full waveform inversion approach in the time-domain.

Finally, I describe the key elements of the 2D acoustic time-domain full waveform inversion code,

which is used in this thesis.

• Chapter 3 Choice of inversion strategies

In this chapter, I illustrate the application of acoustic full waveform inversion to synthetic

streamer data. First, I investigate the performance of different preconditioning operators applied

to the gradient of the misfit function. Afterwards, I discuss the implementation of the multi-scale

inversion approach with a special focus on the efficient selection of frequency bands. Finally,

I assess the performance of FWI for different minimization criteria by inverting synthetic data

affected by noise.

• Chapter 4 Parameterization study

The aim of this chapter is to find the most suitable parameterization for the multi-parameter

time-domain acoustic inversion of marine reflection seismics. I investigate three different com-

binations of parameters: P-wave velocity and density, acoustic impedance and density, P-wave

velocity and acoustic impedance. First, I analyse the coupling between the different parameters,

when the simultaneous multi-parameter inversion is performed. Finally, I perform the multi-

parameter inversion of synthetic data to assess the different model parameterizations in terms

of the quality of the reconstructed models and of the convergence rate of the inversion.

• Chapter 5 The role of density in acoustic full waveform inversion

The objective of this chapter is to analyse the role of density on the recovery of P-wave velocity

models in the marine environment. To investigate the footprint of density on FWI, I perform

a series of numerical experiments, testing various initial density models and different strategies

for the density update.

• Chapter 6 Some practical aspects

In this chapter, I investigates several aspects related to the application of the 2D FWI to real

data, such as the 3D to 2D transformation, source wavelet estimation, and acquisition effects.

• Chapter 7 Field data example from the North Sea

In the final chapter, I apply the 2D acoustic FWI to seismic streamer data acquired in the North

Sea. I present the workflow for the field data inversion that includes field data preprocessing,

starting model generation, initial modelling, choice of the inversion parameters, resolution study

and the application of the waveform inversion. I present results obtained with different multi-

stage inversion strategies, different objective functions, starting models, and parameterization

sets. Finally, I apply a conventional reflection data processing to obtain the time-migrated

section and to validate the FWI results.
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Chapter 2

FWI - theory and implementation

2.1 Inversion of non-linear problems

The aim of the seismic inverse problem is to estimate the physical parameters of the Earth’s subsurface

from a seismic recording. The seismic inverse problem is complicated because seismic waves are

nonlinearly related to the unknown parameters of the medium.

The solution of an inverse problem generally comprises of three steps:

• Model parameterization. Choice of an optimal set of model parameters that characterize the

model and that can be reconstructed from available data. The selection of model parameters,

i.e. the unknowns that we try to estimate, is usually problem dependent. A particular set of

model parameters is called a parameterization of the system.

• Forward modelling. It is the process of predicting the data based on some physical or math-

ematical model with a given set of model parameters. This step requires the knowledge of the

physical laws that allow to predict the data. For example, the acoustic wave equation allows us

to predict seismic data from a given model of acoustic parameters consisting of the bulk modulus

and density.

In general, the relationship between seismic data dmod recorded at receivers and the Earth

represented by model parameters m is expressed by

dmod = f(m) , (2.1)

where f is the nonlinear forward operator.

• Inverse problem. It is the process of estimating the model parameters from the observed

data dobs. Most criteria for selecting the best model of the subsurface is based on fitting the

observed data dobs and the data predicted by the forward modelling dmod for a given model of

the subsurface m.

In general, the predicted values cannot be identical to the observed values due to data uncertain-

ties and theoretical uncertainties. The observed data are recorded by instruments and contain

noise (data uncertainties). Furthermore, the physical theory, that allow us to predict the data
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2. FWI - theory and implementation

for a given parameter of the model, may be inaccurate (theoretical uncertainties). The forward

problem is an approximation and the model is a simplified representation of the true system.

Inverse problems are usually ill-posed. The concept of an ill-posed problem was introduced to

distinguish between the forward or direct problem and the inverse problem. A problem is called

well-posed if [Hadamard, 1902]: 1) there exists a solution to the problem (existence), 2) there

is at most one solution to the problem (uniqueness), 3) the solution depends continuosly on the

data, i.e. a small perturbation of the data does not produce large perturbations of the inverse

problem solution (stability). A problem that lacks any of these properties is called ill-posed.

While the forward problem has a unique solution, the inverse problem is non-unique, e.g. there

is more than one model that can fit the observed data.

The methods used for solving the non-linear inverse problems can be divided in two main categories:

• Global methods. The aim of global optimization is to search the model space in order to

find the best solution. These methods allow strongly non-linear problems but small number of

parameters. (e.g. grid search: systematic search, Monte Carlo method : random exploration,

Simulated annealing, Genetic algorithm).

• Local methods. These methods as based on using a local information about the gradient of

the objective function to iteratively improve the initial model. The objective function is defined

as a quantitative measure of the agreement between the observed data and the predicted data.

Since an extensive exploration of the model space is avoided, the local methods can be applied

to large number of parameters. But on the other hand, the local methods are suitable only for

weakly non-linear problems, because the local optimization is based on successive linearization

of the problem. As a consequence, the solution strongly depends on the choice of the starting

model. (e.g. Full waveform inversion).

2.1.1 Local optimization methods

The goal of the seismic inversion is to find a set of model parameters m, which describes the Earth’s

subsurface and provides a good fit between the observed data, dobs, and the data predicted by the

forward problem for a given model of the subsurface, dmod(m).

The data misfit is defined as the difference between the modelled data and the observed data

δd = dmod − dobs = f(m) − dobs , (2.2)

where δd is the data misfit vector of dimension N, and m is the model vector of dimension M. A

very common criterion for fitting observed and predicted data is to minimize the objective function

described by the L2-norm of the error between the predicted and observed data

E(m) =
1

2
δdT δd =

1

2

N∑

i=1

δd2
i , (2.3)

where E(m) is the objective function (also called misfit function), and the superscript T denotes the

matrix transpose. The summation is performed over the number of source-receiver pairs and the

number of time samples.
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2. FWI - theory and implementation

If the non-linearity between the data and the model is weak, it is possible to linearize the inverse

problem. The most popular approach is the Born approximation, e.g. we search for the best fitting

model m in the vicinity of the starting model m0 such that

m = m0 + δm (2.4)

where δm is a perturbed model. It means that we consider our medium m as a perturbation of a

reference medium m0.

To linearize a system, the first-order Taylor series expansion of the misfit function around the

starting model is used

E(m0 + δm) = E(m) = E(m0) +
∂E(m0)

∂m
δm + O(m2) , (2.5)

the residuals of higher orders, O(m2), are neglected.

To find the minimum of the objective function E(m) the derivative of the misfit function (Eq. 2.5)

with respect to the model parameters must vanish, such that

∂E(m)

∂m
=

∂E(m0)

∂m
+

∂2E(m0)

∂m2
δm = 0 , (2.6)

this leads to the perturbation model

δm = −
[
∂2E(m0)

∂m2

]−1
∂E(m0)

∂m
, (2.7)

The first derivative of the objective function (Eq. 2.3) with respect to the model parameters is given

by

∂E(m0)

∂m
=

(
∂dmod(m0)

∂m

)T

(dmod(m0) − dobs) = JT
0 δd (2.8)

where JT is the transpose of the Jacobian matrix J also called the Fréchet derivate matrix. The

individual elements of the matrix are

Jij =
∂dmodi

∂mj
(i = 1, 2, . . . , N), (j = 1, 2, . . . , M) . (2.9)

The second derivative of the objective function with respect to the model parameters gives

∂2E(m0)

∂m2
= H0 = JT

0 J0 +

(
∂J0

∂m

)T

δd , (2.10)

where H is the Hessian matrix of dimension M xM, which defines the curvature of the misfit function.

Substituting Eq. 2.8 and Eq. 2.10 into Eq. 2.7 finally gives

δm = −H−1
0 JT

0 δd . (2.11)

If the misfit function is not exactly quadratic, the Newton method will not converge in one iteration.

Therefore, an iterative process is necessary and the model update at iteration n using the Newton
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2. FWI - theory and implementation

method is given by

mn+1 = mn − H−1
n

(
∂E

∂m

)

n

. (2.12)

Because the complete, inverse Hessian is very large and difficult to calculate, the Newton meth-

ods are rarely used to solve large inverse problems (Pratt 98). The more common method is the

Gauss-Newton method, which applies the approximate Hessian matrix Ha for updating the model

parameters

mn+1 = mn −
(
H−1

a

)
n

(
∂E

∂m

)

n

, (2.13)

Because the second term in Eq. 2.10 is small (Tarantola 1987) it is neglected and the approximate

Hessian matrix is defined as

Ha = JTJ . (2.14)

Another method for minimizing the objective function and updating the model is the gradient

method. The gradient is given by
∂E

∂m
= JT δd (2.15)

The negative gradient of the misfit function represents the steepest descent direction and the model

is updated using the following equation

mn+1 = mn − µn

(
∂E

∂m

)

n

, (2.16)

where µ is the step length, which replace the inverse of the Hessian in Eq. 2.12. The main disadvantage

of the classical steepest descent gradient is the slow convergence rate, which is related to the estimation

of a reliable step length [Virieux and Operto, 2009].

2.2 Time domain full waveform inversion

The acoustic full waveform inversion code, which is used in this thesis, is based on the general approach

of [Tarantola, 1984] and [Mora, 1987] formulated in the time domain. In order to find a model of the

subsurface, the residuals between the predicted and observed data are minimized in an iterative process

using the gradient method. The most critical part of the gradient method is the computation of the

Fréchet derivative matrix J. The explicit calculation of the partial derivative matrix would require

a perturbation of each model parameter separately and the modelling of the wavefield. For a single

shot this would require M forward modellings, where M is the number of unknowns in the model.

In the full waveform inversion, the gradient of the misfit function ∇Em is calculated using the

adjoint approach [Mora, 1987; Plessix, 2006; Tarantola, 1984]. The method does not require the explicit

calculation of the Fréchet matrix, i.e. the gradient direction is obtained by the cross-correlation of the

forward propagated wavefield and the backpropagated residual wavefield. Such an efficient calculation

of the gradient of the misfit function, which requires only 2×Nshots forward simulations, is an essential

feature of the FWI method.
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2. FWI - theory and implementation

2.2.1 The adjoint approach

To solve the inverse problem, the initial non-linear forward problem is linearised in the vicinity of the

background model. Because the new model m is described as a linear combination of the background

model m0 and the perturbed model δm (Eq. 2.5), the relationship between the modelled data and

the model (Eq. 2.1) can be written as

dmod = f(m) = f(m0 + δm) (2.17)

The nonlinear forward operator f can approximated using the first-order Taylor series expansion in a

similar way to Eq. 2.5. This gives

f(m0 + δm) = f(m) = f(m0) +
∂f(m0)

∂m
δm + O(m2) , (2.18)

A small perturbation in the data space δd which result from a small perturbation in the model

parameters δm can be defined as

δd = f(m0 + δm) − f(m0) , (2.19)

Substituting Eq. 2.18 into Eq. 2.19 gives

δd = f(m0) +
∂f(m0)

∂m
δm − f(m0) =

∂f(m0)

∂m
δm = J0δm , (2.20)

Since we assumed that the best fitting model m provides a good fit between the observed data dobs

and the data predicted by the forward problem dmod(m), δd represents the data residuals. Eq. 2.20

means that the data residuals δd have a linear relation with the model perturbation δm, and the

linear operator J is the Fréchet derivative matrix.

Eq. 2.20 can be written in a continuous form [Mora, 1987]

δd(D) =

∫

M

dM
∂d(D)

∂m
δm(M) , (2.21)

where M and D indicates the model and the data space. If the Fréchet derivative matrix is known,

then all small perturbations in the model parameters can be integrated to calculate the resulting

perturbations in the data space.

The gradient of the objective function (Eq. 2.15), which is used in the gradient method to update

the model parameters, can be written in a continuous form

∇Em(M) =

∫

D

dD

[
∂d(D)

∂m

]∗
δd(D) , (2.22)

where, the superscript (*) denotes the adjoint. It is important to notice that δm and ∇Em are not

the same.
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2. FWI - theory and implementation

2.2.1.1 The adjoint problem in the acoustic approximation

The 2D inhomogeneous second-order variable density acoustic wave equation is given by

1

K(x, z)

∂2p(x, z, t)

∂t2
−∇ ·

(
1

ρ(x, z)
∇p(x, z, t)

)
= s(x, z, t) , (2.23)

where K = ρV 2
P is the bulk modulus, ρ is the density, VP is the P-wave velocity, p is the pressure

field, and s is the source term. The measurements of the pressure field p for a given model m and a

source located at x = xs are performed at a receiver location x = xr, such that the ith component of

the pressure seismogram at time t is defined as di = f(m) = p(xr, t;xs). The source term is

s(x, t;xs) = δ(x − xs)S(t) , (2.24)

where S(t) is the source time function, and δ(x) is the Dirac delta function.

In the acoustic formulation, Eq. 2.21 takes the form

δdi(xr,xs, t) =

∫

V

dV (x)
∂di(xr,xs, t)

∂m(x)
δm(x) , (2.25)

whereas the adjoint problem (Eq. 2.22) is

∇Em(x) =
∑

s

∫
dt

∑

r

∂di(xr,xs, t)

∂m(x)
δdi(xr,xs, t) (2.26)

The gradient of the objective function is the integral over the data space of the Fréchet derivative

multiplied with the data residuals. In order to obtain the adjoint formulation in Eq. 2.26, it is enough

to obtain the integral expression in Eq. 2.25 for the forward problem, which defines the perturbation

in the pressure field δdi that corresponds to some perturbations in the model parameters δm. The

desired integral can be supplied by the linearised solution of the acoustic wave equation in terms of

Green’s functions.

The full derivation of the adjoint state method in the acoustic approximation is given by Tarantola

[1984]. The final gradients for bulk modulus K and density ρ are calculated using the following

equations

δK(x) =
1

K2(x)

∑

s

∫

t

dt
∂p(x, t;xs)

∂t

∂p
′

(x, t;xs)

∂t
,

δρ(x) =
1

ρ2(x)

∑

s

∫

t

dt ∇p(x, t;xs) · ∇p
′

(x, t;xs) (2.27)

where p(x, t;xs) represents the pressure wavefield excited by a source located at xs, which propagates

in the current model, and p
′

(x, t;xs) is the backpropagated residual wavefield.

The wavefield p(x, t;xs) is defined by

p(x, t;xs) =

∫

V

dV G(x, t;xs, 0) ∗ s(x, t;xs) (2.28)

where G(x, t;xs, 0) represents the acoustic Green’s function, which is associated with Eq. 2.23, and

9



2. FWI - theory and implementation

(∗) denotes time convolution.

The backpropagated residual wavefield p
′

(x, t;xs) is calculated by propagating the data residuals

backward in time

p
′

(x, t;xs) =
∑

r

G(x,−t;xr, 0) ∗ δdi(xr,xs, t) (2.29)

The residuals are backpropagated from all receiver locations that correspond to the source xs. The

residual wavefield is referred to as the missing diffracted field for the current model. The computation

of the residual wavefield requires a single forward modelling, where the source term is replaced by

the data residuals. For a single source, the gradient of bulk modulus (Eq. 2.27) is calculated by the

zero-lag cross-correlation of the time derivative of the forward modelled wavefield p and the time

derivative of the backpropagated residual wavefield p′. The computation of the density gradient is

similar, except that the temporal derivatives of the forward and residuals wavefields are replaced

with spatial derivatives. The final gradient is obtained by the summation of gradients calculated for

individual shots. The derivation of gradients with respect to other material parameters is shown in

Chapter 4.

2.3 Full waveform inversion algorithm

In this section, I describe the key elements of the 2D acoustic time-domain full waveform inversion

code, which is used in this thesis. The code originates from the PhD thesis of André Kurzmann

[Kurzmann, 2012].

2.3.1 Forward modelling

The first-order acoustic wave equation with a variable density is expressed as

∂p

∂t
= K ∇w (2.30)

∂w

∂t
=

1

ρ
∇p

where w is the particle velocity, p is the pressure field, K is the bulk modulus, and ρ is the density.

For the 2D acoustic wave equation, we get

∂p(x, z, t)

∂t
= K(x, z)

(
∂wx(x, z, t)

∂x
+

∂wz(x, z, t)

∂z

)

∂wx(x, z, t)

∂t
=

1

ρ(x, z)

∂p(x, z, t)

∂x

∂wz(x, z, t)

∂t
=

1

ρ(x, z)

∂p(x, z, t)

∂z
. (2.31)

The forward problem is solved using a second-order finite-difference (FD) approximation of the 2D

acoustic wave equation (Eq. 2.31), which is a widely used technique for numerical modelling of seis-

mic wave propagation [Alford et al., 1974]. The first step in the finite difference modelling is the

10



2. FWI - theory and implementation

discretization in the space and time domains, such that

x = i∆h i = (1, 2, . . . , Nx) ,

z = j∆h j = (1, 2, . . . , Nz) ,

t = n∆t k = (1, 2, . . . , Nt) , (2.32)

where Nx, Nz denote the number of grid points in x and in z direction, and Nt is the total number

of time steps. This discretization is referred to as the reference grid.

To calculate the spatial derivatives of the wavefield variables at the correct position, the staggered-

grid technique is used [Levander, 1988; Virieux, 1986]. It means that not all quantities are defined

at the points of the reference grid, but some quantities are defined as being half a grid point off the

reference grid. The pressure p is defined at the points of the reference grid (j, i), whereas the particle

velocity w is defined at the points half a grid off the reference grid. Furthermore, the temporal

derivatives of the pressure are calculated at time step n, and the particle velocity is computed at a

half time step.

The discretization of the wave equation means that the partial derivatives are replaced by the

finite-difference operators. The discretization of the 2D acoustic wave equation leads to the following

system of equations

∂wx(x, z, t)

∂t
≈

w
n+1/2
x|j,i+1/2 − w

n−1/2
x|j,i+1/2

∆t
=

1

ρj,i+1/2

pn
j,i+1 − pn

j,i

∆h

∂wz(x, z, t)

∂t
≈

w
n+1/2
z|j+1/2,i − w

n−1/2
z|j+1/2,i

∆t
=

1

ρj+1/2,i

pn
j+1,i − pn

j,i

∆h

∂p(x, z, t)

∂t
≈

pn+1
j,i − pn

j,i

∆t
= Kj,i

w
n+1/2
x|j,i+1/2 − w

n+1/2
x|j,i−1/2 + w

n+1/2
z|j+1/2,i − w

n+1/2
z|j−1/2,i

∆h
(2.33)

The first order spatial and time derivatives are evaluated by the second-order finite-difference opera-

tors. This means that the Taylor series expansion is truncated after the first term.

2.3.1.1 Initial and boundary conditions

To solve the wave equation, the appropriate initial and boundary conditions must be specified. The

initial conditions that describe the medium at rest before the excitation are

p(x, z, t = 0) = ∂tp(x, z, t = 0) = 0 . (2.34)

Furthermore, there are two types of boundary conditions, i.e. the free surface boundary conditions

and the absorbing boundary.

Free surface condition. In all experiments presented in this thesis, the free surface is modelled

using the so-called vacuum formalism [Bohlen and Saenger, 2006; Zahradnik et al., 1993]. It means

that the medium above the free surface is treated as vacuum, i.e. the zero values are assigned to

acoustic parameters and the density is close to zero to avoid division by zero. The vacuum formalism

is attractive for its simplicity, especially when applied to the planar free surface. In the marine case,
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which is considered in this work, the air-water interface is almost flat such that the planar surface

assumption is enough. On the other hand, if the vacuum formalism is applied at the nonplanar

free surface, the free surface gets an unfavorable staircase form. The theoretical proof that vacuum

formalism fulfills the free-surface conditions is shown in Oprsal and Zahradnik [1999].

Another popular method for implementing the explicit free surface is to apply the mirroring tech-

nique [Levander, 1988]. The main reason for not using the explicit free surface formulation is that

there are some differences in the implementation of the mirroring technique in various forward mod-

elling codes, which I use to generate synthetic data (2D acoustic, 3D acoustic, 2D elastic). These

differences are related to the location of the free surface on the standard staggered grid, which lead

to discrepancies in the modelling of the source and receiver ghost effects.

Absorbing boundary. To attenuate the unwanted reflections from the computation edges of the

model, the absorbing boundary conditions must be applied. The acoustic FD modelling code includes

perfectly matched layers (PML) as boundary condition. The approach is based on the application of

the complex coordinate stretching [Berenger, 1994; Chew and Weedon, 1994]. The complete update of

the pressure wavefield with PML implementation requires additional equations to compute auxiliary

PML variables [Kurzmann, 2012].

2.3.1.2 Accuracy and stability

To avoid numerical artefacts and instabilities, both the spatial and temporal sampling conditions must

be satisfied. The grid dispersion is the result of the truncation of the Taylor series, which is made

when we approximate spatial derivatives. The condition to avoid grid dispersion is related to the

number of grid points n per minimum wavelength λmin such that

∆h ≤ λmin

n
=

VPmin

nfmax
(2.35)

where fmax is the maximum frequency of the wavefield, and VPmin
is the minimum P-wave velocity.

The minimum number of grid points per wavelength depends on the choice of the length and type

of the FD operator [Köhn, 2011]. Because all numerical simulations are performed using the second-

order FD operators in space and in time using the Taylor coefficients, the number of grid points per

minimum wavelength is set to n = 12.

To ensure the stability of the finite-difference modelling, it is also necessary to satisfy the sampling

criterion. For the 2D modelling, the ratio between the temporal and spatial sampling intervals is

defined as

∆t ≤ ∆h√
2VPmax

(2.36)

where VPmax
is the maximum P-wave velocity in the model. The sampling criterion, the so-called

Courant condition [Courant et al., 1928], means that the time step ∆t must be less than the propa-

gation time between two neighboring grid points.

12



2. FWI - theory and implementation

2.3.2 Inversion

2.3.2.1 Conjugate gradient method

In order to improve the convergence rate of the gradient method, the conjugate gradient approach is

applied [Mora, 1987]. The conjugate direction is a linear combination of the previous and the current

steepest descent direction, such that

δcn = δmn + βnδcn−1 (2.37)

where cn is the conjugate gradient, δmn is the steepest descent gradient, and β is the scalar that

ensures that δcn and δcn−1 are conjugate.

The weighting factor β is computed using the Polak-Ribiere method [Nocedal and Wright, 1999]

βPR
n =

δmT
n (δmn − δmn−1)

δmT
n−1δmn−1

(2.38)

To prevent the situation that the second term in Eq. 2.37 may dominate the first term, the β parameter

is defined as

βn = max
{
βPR

n , 0
}

. (2.39)

This feature provides the restart of the conjugate gradient method, if the objective function is very

non-linear. If β = 0, a steepest descent direction is taken. The advantage of the conjugate gradient

approach is that it can be applied without additional computational efforts.

2.3.2.2 Step length estimation

An estimation of an optimal step length is very important for the convergence of the gradient method.

One method to estimate the step length is to use the line-search algorithm [Mora, 1987; Nocedal and

Wright, 1999]. An alternative is to use the adaptive step length algorithm based on the parabolic

curve fitting method [Kurzmann et al., 2009], which is implemented in the FWI code.

The estimation of an optimal step length µn comprises the following steps:

1. Define test step lengths. The three test step lengths at iteration n are defined as

µ1,n = sµinit,n (2.40)

µ2,n = µinit,n

µ3,n =
µinit,n

s

where s is the scaling factor. The initial test step length must be defined at the first iteration,

whereas for iterations n > 1, the optimal step length from the previous iteration becomes the

initial test step length at the next iteration, such that µinit,n = µn−1.

In this work, s = 0.5, and µinit,1 = 0.01, which gives the following set of test step lengths at

iteration n = 1 : µ1,n = 0.005, µ2,n = 0.01, µ3,n = 0.02. There are other possible choices for s

and µinit,1, which may also provide a stable and efficient reduction of the data misfit function.

13
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However, the choice of high test step lengths should be avoided, because it may lead to wrong

model update [Kurzmann, 2012].

2. Calculate the model update. The current model mn is updated using the conjugate gradient cn

and test step lengths, such that we obtain three different model updates

mµ1,n = mn − µ1,nδcn (2.41)

mµ2,n = mn − µ2,nδcn

mµ3,n = mn − µ3,nδcn

(2.42)

3. Compute the data misfit. The test forward simulations are performed to obtain the predicted

data for different model updates: dmod(µ1,n), dmod(µ2,n), dmod(µ3,n), and to calculate the corre-

sponding data misfit: E(mµ1,n), E(mµ2,n), E(mµ3,n).

4. Find the optimal step length. The true misfit function is approximated by fitting a parabola

through the three points (µi,n, E(mµi,n)), where i ∈ {1, 2, 3}, such that the following system of

equation is solved

E(mµ1,n) = aµ2
1,n + bµ1,n + c (2.43)

E(mµ2,n) = aµ2
2,n + bµ2,n + c (2.44)

E(mµ3,n) = aµ2
3,n + bµ3,n + c (2.45)

(2.46)

where a, b, c are the unknowns. The minimum of the parabola defines the optimal step length

µn at iteration n (Figure 2.1a) with

µn =
−b

2a
(2.47)

The step length estimation method assumes that the data misfit function has a parabolic shape

as shown in Figure 2.1a. Because of the high nonlinearity of the inverse problem, the shape of the

objective function is usually more complex and additional cases, illustrated in Figure 2.1, must be

considered.

• The parabola is concave down (Figure 2.1b). The optimal step length is the test step length,

which corresponds to the lowest data misfit: µn = min {E(mµ1,n), E(mµ2,n), E(mµ3,n)}

• The minimum of the parabola is negative (Figure 2.1c). The optimal step length is the lowest

test step length: µn = min {µ1,n, µ2,n, µ3,n} .

• The minimum of the parabola exceeds the upper limit µmax (Figure 2.1d). The optimal step

length is set to the upper limit: µn = µmax = 0.02. The upper limit is defined to prevent the

choice of very high step lengths and to stabilise the inversion process.
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Figure 2.1: Step length estimation.

On the one hand, the application of the adaptive step length algorithm requires additional forward

simulations, what results in an increase of the computational cost. But on the other hand, it improves

the convergence rate of the gradient method, such that the number of iterations and the total com-

putation time is reduced in comparison to the usage of a constant step length. Furthermore, it is not

necessary to use all shots for test modellings to find an optimal step length, but it is enough to select

a subset of shots [Kurzmann, 2012]. In the experiments presented in this work, approximately 20 %

of available shots were used for test modellings to estimate an optimal step length.

2.3.2.3 Model update

The actual update of the model parameters is based on Pica et al. [1990], with an additional factor

used to scale the gradient to the maximum of the model parameter. The model update is given by

µnδcn = µn
max(mn)

max(cn)
cn , (2.48)

which means that the gradient of each model parameter is normalised to its maximum value and the

optimal step length is related to the maximum of the actual model. This should assure the proper

units of the model update and a proper distance of the gradient. In addition, there are hard constraints

imposed on the model update to stabilise the inversion and to avoid unphysical negative parameter

values.
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2.3.2.4 Parallelization

To reduce the computational cost and the storage requirements of FWI algorithm, parallel computing

is widely used [Virieux and Operto, 2009]. The computational costs of FWI are primarily related to

the efficiency of the forward modelling, to the size of the computational domain, and to the size of

the data. The size of the computational domain is controlled by the maximum offset of the data, the

maximum imaging depth, and the frequency range. The size of the data, i.e. the number of shots,

affects the total number of forward simluations required at each iteration step.

There are two levels of parallelization implemented in the acoustic FWI code, which are based on

the principle of the domain decomposition (e.g. Bohlen [2002]) and shot parallelization [Kurzmann

et al., 2009]. In the domain decomposition strategy, the model is divided into several subdomains,

which are distributed to multiple processors. It requires a point-to-point communication to exchange

wavefield values between neighboring subdomains, which is achieved with the Message Passing In-

terface (MPI). With the second level of parallelization, i.e. the shot parallelization, the shots are

distributed to groups of processors, such that there is no communication required. The combination

of both parallelization types leads to a significant speed-up of the inversion algorithm.

2.3.3 FWI algorithm

FWI requires a definition of the external input:

• Observed pressure data dobs

• Starting model m0

• Initial source time function

The acoustic FWI algorithm at iteration n comprises the following steps:

For each source located at xs

• Solve the forward problem (Eq. 2.23) for the current model mn to generate and the pressure

wavefield p(x, t;xs) and the predicted data dmod,n

• Calculate the data residuals δdn = dmod,n − dobs and the misfit function E(mn) = 1
2δdT

nδdn

• Calculate the residual wavefield p
′

(x, t;xs), by backpropagating the data residuals δdn from the

receiver positions

• Calculate the gradient for each material parameter δmn,s according to Eq. 2.27

For all sources

• Sum the gradients over all shots

δmn =
∑Ns

s=1 δmn,s

• Apply the preconditioning operator P to the gradient

pn = Pδmn

• For all iterations n > 1 calculate the conjugate gradient direction cn
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• Estimate the step length µn by a parabolic fit

• Update the model parameters

mn+1 = mn − µnδcn

2.4 FWI requirements

Full waveform inversion is a highly non-linear inverse problem and the objective function contains

several local minima. Because FWI is a local optimization method, we look for a solution that is

only locally optimal, but gives no guarantee of finding a global minimum. Therefore, the choice of a

staring model is of crucial importance for the success of the method. A good initial model for FWI

should ensure convergence of the algorithm into the global minimum of the objective function. This

can be achieved, when the predicted data generated for the starting model match the observed data

within half a cycle of the minimum considered frequency [Sun and McMechan, 1992]. If the traveltime

mismatch is greater than half a period, the cycle-skipping occurs. In such a case, the inversion will

try to fit the calculated data to the wrong cycle of the observed data (Figure 2.2) and it will cause the

objective function to converge to a local rather than a global minimum [Sirgue, 2003]. The existence

of local minima are mainly due to a mismatch of traveltime between events, and the non-linearity

of the inverse problem depends on the minimum frequency in the data and on the starting velocity

model.

The convergence criterion can be also expressed in terms of traveltime errors and propagation

distances measured in wavelengths [Pratt, 2008]. The traveltime error δt for a given seismic event has

to be less than half a wavelength, therefore

δt

T
<

λ

2cT
or

δt

T
<

1

2Nλ
(2.49)

where T is the total arrival time of the event, Nλ is the propagation distance in wavelengths, and

c is the background velocity. This strict condition can be relaxed if the number of wavelengths Nλ

between the source and receiver is reduced. This, in turn, can be achieved by either using lower

frequencies or by reducing the offset.

To summarize, there are three ways to reduce the traveltime error δt and to improve the conver-

gence of FWI:

• improve the accuracy of the starting model,

• reduce the data offsets,

• reduce the starting frequencies.

Because the lack of very low frequencies is a general problem in real data applications, the reduction

of the traveltime error by using lower frequencies is limited. The elimination of far offset information

and the usage of near offset data only is also not a solution. As shown by Sirgue [2003], the long

offset data are useful, because they provide information on the low wavenumber. Long-offset refracted

arrivals are more sensitive to the macro variations in seismic velocity than the near offset data and

they allow a better quantitative estimation of the velocity. But at the same time, the far offsets are
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the most non-linear components of the data with the risk of cycle-skipping. This is related to the fact

that the far offsets correspond to longer propagation distance and the traveltime error δt resulting

from an incorrect velocity model is larger than for the shorter propagation distance. Therefore, large

offsets should be carefully included into the inversion process.

The requirements on the starting model for FWI depends on the minimum frequency available in

the data. This means that if the low frequencies are not present in the data, the starting model needs

to be more accurate and must contain the long-wavelength structures. There are different methods

that can be used to obtain an intial model for the full waveform tomography:

• First-arrival traveltime tomography (FATT) - FATT is often used to obtain a starting model

for FWI [e.g. Bleibinhaus et al., 2009; Brenders and Pratt, 2007b; Dessa and Pascal, 2003;

Malinowski and Operto, 2008; Pratt, 1999; Ravaut et al., 2004]. The traveltime tomography

methods provide robust but low-resolution image [Pratt, 1999]. The spatial resolution of FATT

is limited to the width of the first Fresnel zone, which is approximately given by
√

λL, where λ is

the dominant wavelength, and L is the propagation distance [Williamson, 1991]. Furthermore,

the first-arrival traveltime tomography has limited penetration in presence of low velocity zones

and it requires a wide range of offsets to generate sufficient ray coverage in the deeper parts of

the model.

• Reflection traveltime tomography (RTT) - In RTT the reflection traveltimes are used to build

velocity models. These models have higher resolution than from FATT, however the fit between

the predicted and observed direct arrivals may be insufficient for FWI [Prieux et al., 2010].

Application of RTT to real data is shown in Sirgue et al. [2009]; Wang and Rao [2009]. A

combination of FATT and RTT to build a starting model for FWI is shown in Prieux et al.

[2010]; Shipp and Singh [2002].

• Stereotomography - It is a slope tomographic method that is based on the inversion of trav-

eltimes and slopes of locally-coherent events in the pre-stack data cube. The advantage of

stereotomography in comparison to the reflection traveltime tomography is the semi-automatic

picking procedure, which is easier than the picking of continuous events. The joint use of refrac-

tion and reflection traveltimes in a multiscale stereotomography to build a starting model for

FWI is shown in Prieux et al. [2010].

• Laplace domain inversion - The waveform in the Laplace domain can be regarded as a zero fre-

quency component of a damped wavefield in the time domain. The Laplace domain inversion

introduced by Shin and Cha [2008] can recover a smooth, long-wavelength velocity model from

data without low frequency components. The main drawback of the method is that the penetra-

tion depth of the Laplace domain inversion depends on the maximum offset of the data and on

the choice of Laplace domain constants. The smooth model from the Laplace domain inversion

can be used as a starting model for Laplace-Fourier inversion or a conventional frequency-domain

FWI [Shin and Cha, 2009].

The strong non-linearity of the inverse problem can be also reduced by applying a hierarchical

multi-stage inversion based on time dependent, offset dependent, and frequency dependent data reg-

ularization [Virieux and Operto, 2009]. However, there is no general rule on how to design such a

multi-stage inversion approach and it must be adapted to the particular inverse problem.
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Figure 2.2: The cycle-skipping problem. The solid line represents a monochromatic seismograms. The
dashed lines represents the predicted monochromatic seismograms. The predicted seismogram at the
top has a time delay greater than T/2 and the FWI will try to fit the calculated data to the wrong
cycle of the observed seismogram. After Virieux and Operto [2009]
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Chapter 3

Choice of inversion strategies

In this Chapter, I illustrate the application of acoustic full waveform inversion to synthetic streamer

data. The synthetic data set is generated for a modified acoustic Marmousi2 model. The acquisition

geometry of the numerical experiment is based on the acquisition setup of the field data acquired in

the North Sea and presented in Chapter 7.

First, I investigate the performance of different preconditioning operators applied to the gradient of

the misfit function. The aim of the gradient preconditioning is to suppress the strong artefacts in the

vicinity of sources and receivers and to correct for the amplitude loss with depth due to geometrical

spreading.

Afterwards, I discuss the implementation of the multi-scale inversion approach with a special focus

on the efficient selection of frequency bands. To verify the method, I invert the synthetic data using

a poor starting velocity model.

Finally, I assess the performance of FWI for different minimization criteria by inverting two syn-

thetic data sets affected by noise. In the first experiment, I perform acoustic inversion of elastic data.

The second data set is generated by adding the swell noise to the acoustic noise-free data.

3.1 Numerical experiment settings - modified Marmousi2 model

The numerical tests are based on a part of the Marmousi2 model [Martin et al., 2006]. The P-wave

velocity and density models are shown in Figure 3.1. The model consists of a water layer above layered

sediments with two hydrocarbon reservoirs: a gas lens at a depth of 900 m and a thin oil sand layer

at 1600 m, with an average vertical thickness of 38 and 40 m, respectively. Sedimentary layers are

primarily composed of shale. The average P-wave velocity is 2050 m/s, with the minimum velocity of

1480 m/s in the water layer and the maximum velocity of 3150 m/s. The model is 6.5 km long and

2.35 km deep. The water layer has a thickness of 300 m. A free surface boundary condition is applied

at the top of the model, thus the simulated pressure waveform contains both free surface multiples, as

well as the source and receiver ghost. The motivation to select this particular subregion of the original

Marmousi2 model is that the real data set analysed in this thesis was recorded in an area with similar

geological properties.
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Figure 3.1: Modified acoustic Marmousi2 model. (a) True VP model, and (b) density model. The
stars denote the shot point locations. The arrows indicate the gas lens and the thin oil sand layer.
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(red line). (a) Time domain representation, (b) amplitude spectrum.

Acquisition geometry

Shot number

x 
[k

m
]

5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

Figure 3.3: Acquisition geometry of the Marmousi2 data set. Stars denote shot location and points
represent hydrophones.

21



3. Choice of inversion strategies

Modified Marmousi2 model

Model size 6.5 km x 2.5 km
Average VP 2050 m/s
Minimum VP 1480 m/s
Maximum VP 3150 m/s
Water layer thickness 300 m

Acquisition parameters

Number of shots 50
Shot spacing 100 m
Shot depth 7.5 m
Max number of hydrophones in a streamer 160
Hydrophone spacing 25 m
Hydrophone depth 7.5 m
Minimum offset 100 m
Maximum offset 4075 m

Modelling parameters

Grid size 1300 x 500
Grid spacing 5 m
Time sampling 8e-4 s
Number of time samples 3750
Recording length 3 s
Source wavelet Ricker 3-20 Hz

Table 3.1: Modelling and acquisition parameters of the Marmousi2 data set.

3.1.1 Modelling parameters and seismic data

The design of the numerical experiment aims to reflect the real measurement conditions of marine

reflection seismics. The pressure source is located 7.5 m below the air-water interface. The source

time function is a Ricker wavelet with a central frequency of 10 Hz. Since the lack of low frequencies is

a general problem in seismic recording, the original wavelet was filtered with a high-pass Butterworth

filter with a cut-off frequency of 3 Hz (Figure 3.2).

The acquisition setup mimics the conventional single-component streamer survey. The streamer

consists of up to 160 hydrophones with a spacing of 25 m located at 7.5 m depth. I have simulated

a moving streamer acquisition with the source points moving from the left to the right of the model

and towing a streamer behind. The near offset is 100 m, and the far offset is increasing from 1150 m,

for the first shot located in the left part of the seismic line at 1350 m, to the maximum of 4075 m.

As a consequence, the receiver fold is higher in the left and central part and lower in the right part of

the model (Figure 3.3).

The synthetic noise-free data is calculated using the 2D acoustic finite-difference forward modelling.

A total of 50 shot gathers are generated at a 100 m interval, with 3 seconds of data. The modelling

and acquisition parameters are listed in Table 3.1. The exemplary common shot gathers are shown in

Figure 3.4.

22



3. Choice of inversion strategies

Offset [km]

T
im

e 
[s

]

Shot 1

 

 

0.20.40.60.81

0

0.5

1

1.5

2

2.5

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(a)

Offset [km]

T
im

e 
[s

]

Shot 25

 

 

0.511.522.533.5

0

0.5

1

1.5

2

2.5

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(b)

Offset [km]

T
im

e 
[s

]

Shot 50

 

 

0.511.522.533.54

0

0.5

1

1.5

2

2.5

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(c)

Figure 3.4: Modified acoustic Marmousi2 model. Exemplary shot gathers.(a) Shot 1 located at x =
1.35 km, (b) Shot 25 located at x = 3.75 km, (c) Shot 50 located at x = 6.25 km.

3.1.2 Error analysis

In order to quantitatively assess the inversion results, I measure initial and final errors, both in the

data and in the model space. Since the waveform inversion is an ill-posed and non-unique problem,

this will help to determine whether the reduction of residuals is followed by a better estimation of

model parameters.

The error between the modelled dmod and observed data dobs is measured by the least-squares

error

L2error =
1

2

N∑

i=1

(dmod|i − dobs|i)
2 . (3.1)

where N is the size of the data vector.

To assess the quality of the final velocity models, the relative error between the real and the

reconstructed P-velocities within the area of the model update is calculated as

VP error =
1

M

M∑

i=1

| VP inv|i − VP true|i |
| VP true|i |

, (3.2)

where VP inv|i is the inverted P-wave velocity for the ith grid point, VP true|i is the true velocity value,

and M is the size of the model vector within the area of the model update.

3.2 Gradient preconditioning

In the conventional gradient method, the model update is estimated by a scalar step length, µn,

multiplied by the steepest-descent or conjugate gradient δmn

mn+1 = mn − µnδmn (3.3)
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However, the gradient approach can be significantly improved when the gradient is preconditioned

with the inverse Hessian, or an approximation of the inverse Hessian [Pratt et al., 1998]. Such a

gradient preconditioning improves the resolving power and convergence properties of the algorithm.

Furthermore, it removes from the gradient the effect of geometrical spreading of wave propagation

from the source. In this way, the preconditioned gradient provides a good balance between shallow

and deep perturbations [Virieux and Operto, 2009] .

Due to the extensive computational and memory requirements, the inverse Hessian is not often

used in geophysical inverse problems [Sheen et al., 2006]. Because the computation of the approximate

Hessian matrix is expensive as well, Shin et al. [2001] proposed a less computationally demanding

approximation to the Hessian, which is called the pseudo-Hessian matrix. Another approach is to use

a quasi-Newton method such as the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

method [Brossier et al., 2009; Nocedal and Wright, 1999]. In the L-BFGS methods an improved

estimate of the inverse Hessian matrix is computed at each iteration without forming or storing

the Hessian matrix explicitly. The method requires an initial inverse Hessian matrix, which can be

provided by the diagonal terms of the pseudo-Hessian matrix, and it maintains a history of the previous

updates, which means that a few gradients from the previous iterations need to be stored. As shown

by Brossier et al. [2009] the L-BFGS algorithm provides an improved convergence when compared to

the conjugate gradient method.

On the other hand, Köhn [2011]; Wang and Rao [2009] showed that the effect of geometrical

spreading of the waveform amplitudes can be also effectively compensated by multiplying the gradient

with a depth dependent scaling factor.

In this section, I compare the effectiveness of different linear scaling functions used as a precondi-

tioning operator. Furthermore, I test the wavefield-based preconditioning proposed by Fichtner et al.

[2009]. The performance of these different preconditioning methods is illustrated with an acoustic

inversion applied to the synthetic Marmousi2 data.

3.2.1 Linear scaling functions

Due to the geometrical spreading effect of the propagating wavefront, the amplitude of the signal is

very high in the vicinity of the source and it is decreasing with the distance. This results in high

values of the cross-correlation of the forward and backpropagated wavefields at the grid points around

the source, whereas the deep part of the model gives a weaker contribution to the gradient [Causse

et al., 1999].

3.2.1.1 P1 operator

To correct for the amplitude loss with depth and to enhance deeper parts of the model, a simple

depth-dependent linear preconditioning operator can be applied [Köhn, 2011] such that the updated

model is defined as

mn+1 = mn − µnPδcn (3.4)

where P is the preconditioning operator, and δcn is the conjugate gradient at iteration n.

A spatial preconditioning operator P1 can be defined as
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Figure 3.5: Gradient tapers. (a) A taper in the water layer, (b) the preconditioning operator P1, (c)
the preconditioning operator P2. Horizontal axis represents the scaling amplitude.

P =





0, if z ≤ zref

z

zref
, if z > zref

(3.5)

where zref is the reference depth, which can be related to the depth of the seafloor. This preconditioning

combines a taper in the water layer with a linear gradient scaling (Figure 3.5b). Applying a taper in

the water layer prevents velocity perturbation of this part of the model and eliminates high gradient

values around the acquisition geometry. The main disadvantage of this preconditiong operator is that

it depends on the choice of the reference depth zref.

3.2.1.2 P2 operator

I designed a modified preconditioning operator P2, which is related to decay of amplitudes with

increasing depth. In a homogeneous 2D medium, the amplitude decay of the wavefront is proportional

to 1/
√

r, where r is the distance from the source. Within the area of the model update, a linear scaling

function is calculated, such that it approximates the 1/
√

z amplitude decay (Figure 3.5c). It can be

seen, that the operator P2 has a much smaller scaling ratio than the operator P1.

3.2.2 Wavefield-based preconditioning

The wavefield-based preconditioning proposed by Fichtner et al. [2009] aims to reduce the high sen-

sitivity of the gradient to the amplitudes near sources and receivers. The preconditioning operator is

applied to the gradients of the individual shots such that

Pδmn =

Ns∑

s=1

Psδmn,s , (3.6)

where s is the shot index, Ns is the total number of shots, Ps is the preconditioning operator for shot

s, and δmn,s is the gradient of shot s at iteration n.
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The preconditioning operator Ps is given by

Ps(x) =
1

Qs(x) + Q′
s(x)

(3.7)

where

Qs(x) = q
maxt|p(x, t)| − minx(maxt|p(x, t)|)

maxx(maxt|p(x, t)|) − minx(maxt|p(x, t)|) + 1 , (3.8)

and

Q′
s(x) = q′

maxt|p′(x, t)| − minx(maxt|p′(x, t)|)
maxx(maxt|p′(x, t)|) − minx(maxt|p′(x, t)|) + 1 , (3.9)

where maxt|p(x, t)| and maxt|p′(x, t)| are the temporal maxima of the forward propagated wavefield

p(x, t) and the backpropagated wavefield p′(x, t), respectively, which are defined as functions of the

position x. Function Qs(x) is proportional to the amplitude of the forward propagated wavefield and

it ranges between 1 and q + 1, and Q′
s(x) is proportional to the amplitude of the backpropagated

wavefield, and it ranges between 1 and q′ + 1. In Fichtner et al. [2009], the scaling factors q and q′

are empirically defined to match their specific application, such that q = 10 and q′ = 1.

3.2.3 Inversion results

To demonstrate the effect of different preconditioning methods, I performed various synthetic inversion

tests using the acoustic data set generated for the Marmousi2 model. To focus only on the VP model

reconstruction, the density model and the source time function are assumed to be known. The starting

VP model is a 1D smooth representation of the true velocity model.

• TEST 1 - there is no preconditioning applied to the gradient;

• TEST 2 - a spatial taper is applied to the gradient, such that it sets the gradient in the water

layer to zero, i.e. it turns off the velocity update in this part of the model (Figure 3.5a);

• TEST 3 - the preconditioning operator P1 is applied (Figure 3.5b). The reference depth is

defined at 300 m, which correspons to the depth of seafloor in the true model;

• TEST 4 - the preconditioning operator P2 is applied (Figure 3.5c). The reference depth is

defined at 300 m;

• TEST 5 - the wavefield-based preconditiong is combined with a spatial taper in the water layer;

The inverted velocity models are shown in Figure 3.6. The velocity structures are very well

reconstructed and apart from the artefacts in the water column, when no preconditioning is applied,

the inverted models are quite similar. However, there are some discrepancies between results especially

in the deep part of the model and at the sides of the model, where the illumination is poor. A

comparison of the depth profiles at x = 5 km of the inverted velocity models and the true VP shown

in Figure 3.7 reveals more differences between various preconditioning methods. Without gradient

preconditioning (Figure 3.7a), there are artefacts in the water column, especially close to the source

position. The accuracy of the reconstructed VP is good in the shallow part of the model, up to a

depth of 1 km, but the resolution is decreasing with depth. Applying a taper in the water layer turns

off the velocity update in this part of the model and eliminates the artefacts related to the acquisition
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geometry (Figure 3.7b). Furthermore, the quality and the resolution of the final velocity image is

improved. With an additional gradient scaling with depth, P1 and P2 operators, we can observe

further improvements in the reconstruction of deeper structures (Figure 3.7c,d). The accuracy of the

inverted velocity model for the wavefield-based preconditioning (Figure 3.7e) is comparable with the

result obtained with the gradient tapering in the water layer. This relatively poor performance might

be related to the choice of the scaling factors Qs and Q′
s (Eq 3.8 and Eq 3.9).

The effect of various preconditioning methods is very well illustrated by the velocity gradient.

Figure 3.8 shows the VP gradients without preconditioning and after applying various preconditioning

operators at the first iteration step. In addition, the depth profiles of VP gradients at x = 5 km

are shown in Figure 3.9. The velocity gradient without preconditioning is dominated by high values

near sources and receivers (Figure 3.8a, Figure 3.9a). When the depth-dependent gradient scaling is

applied (operator P1), the contribution of deeper structures to the gradient is significantly enhanced

(compare Figure 3.8b with Figure 3.8c, and Figure 3.9b with Figure 3.9c). This effect is smaller for the

preconditioning operator P2, which provided a more uniform distribution of the gradient amplitude

with depth (Figure 3.9d). In the case of the wavefield-based preconditioning, the gradient is dominated

by shallow structures.

Finally the evolution of the VP model error for all inversion experiments is illustrated in Figure 3.10.

The relative error between the real and the reconstructed P-velocities are calculated with Eq 3.2. For

the inversion of the noise-free Marmousi2 data set with a good starting VP model, the highest final

model error is obtained when no preconditioning is applied. On the other hand, the best reduction of

the model error and the best performance of the inversion is related to the usage of the preconditioning

operator P1 (TEST 3).
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Figure 3.6: Marmousi2 example. FWI results. (a)-(e) Comparison of inverted VP models for different
gradient tapers. (f) Starting VP model. The black line indicates the location of the VP profiles shown
in Figure 3.7.
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Figure 3.7: FWI results. Comparison of VP profiles at x = 5 km for different gradient tapers; the
black solid line indicates the true model, the gray dashed line indicates the initial model, and the red
solid line indicates the inverted VP model.
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Figure 3.8: FWI results. Comparison of VP gradients at the first iteration step for different gradient
tapers.
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3.3 Multi-scale inversion

Due to the high non-linearity of the full waveform inversion, there are numerous local minima present

in the objective function. The Born approximation, which is used to estimate partial-derivative wave-

fields, requires that the predicted data for the starting model should match the observed traveltimes

within half a cycle of the dominant frequency [Beydoun and Tarantola, 1988]. If the half-wavelength

criterion is not fulfilled, cycle skipping occurs, and the waveform inversion will converge toward a local

minimum.

To reduce the non-linearity of the inverse problem and to mitigate the local minima problem, the

multi-scale inversion approach can be applied [Bunks et al., 1995]. This means that the inversion starts

at low frequencies and higher frequency content is gradually added. Because the objective function

at low frequencies is more linear with respect to the model perturbations than at high frequencies,

such a multi-scale strategy improves the chance of the inversion to reach the global minimum [Sirgue

and Pratt, 2004]. In other words, it is easier to satisfy the half-wavelength condition imposed on the

starting model, when the dominant frequency present in the data is low.

The multi-scale strategy in the time-domain waveform inversion is realized by low-pass filtering

[Bunks et al., 1995] or band-pass filtering [Boonyasiriwat et al., 2009] of the data. In the frequency-

domain, it is common to apply the sequential or the multiple frequency approach [Virieux and Operto,

2009]. In the sequential approach, only one frequency is inverted at a time and higher frequencies are

successively included [Brenders and Pratt, 2007b; Operto et al., 2006; Ravaut et al., 2004]. Whereas

in the multiple frequency approach, a group of frequencies is inverted simultaneously at each inversion

stage [Brossier et al., 2009; Sourbier et al., 2009]. In comparison to the sequential, single-frequency

method, inversion of multiple frequencies improves the signal-to-noise ratio and the robustness of

FWI, but it is also computationally more expensive [Brossier et al., 2009]. The advantage of the time

domain FWI is that the inversion of multiple, overlapping frequencies at each iteration step is carried

out without extra computational costs.

In this section, I verify the effectiveness of the multi-scale inversion by inverting the synthetic

Marmousi2 data with a poor starting velocity model. In addition, I investigate the problem of selecting

the first frequency band and show the impact of the number of iterations per inversion stage on the

FWI results.

3.3.1 Selection of frequency bands

The selection of frequency bands for the multi-scale inversion is an important aspect. If there are too

many frequency bands, the total computation time of the method will increase. On the other hand,

the selection of too few frequency bands may not be enough to avoid the cycle-skipping artefacts.

Therefore, the choice of optimal frequencies is of high importance to reduce the computational cost

of the waveform inversion and to take full advantage of the multi-scale approach.

To design the multi-scale inversion in the time-domain, I adopted the strategy proposed by Sirgue

and Pratt [2004], which was originally developed for the frequency-domain waveform inversion. The

approach for selecting frequencies is based on a continuous coverage of vertical wavenumbers.

For a given frequency fn, and a range of offsets, the verical wavenumber coverage kz for a 1D case

is limited to the range [kz min(fn), kz max(fn)], with the minimum and maximum wavenumbers, kz min
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Figure 3.11: Strategy for choosing optimal frequencies in the frequency-domain waveform inversion
(after Sirgue and Pratt [2004]).

and kz max given by

kz min(fn) = 4πfnαmin/c0 ,

kz max(fn) = 4πfn/c0 , (3.10)

where c0 is the homogeneous background velocity, and

αmin =
1√

1 + R2
max

(3.11)

where Rmax = hmax/z is the half-offset to depth ratio, hmax is the maximum half-offset, and z is the

depth to the target. Since each source-receiver pair contributes a different vertical wavenumber to

the gradient image, the minimum wavenumber is produced by the furtherst offset, and the maximum

wavenumber is the contribution from the nearest offsets.

Because each frequency has a limited contribution to the image, the frequency selection should

allow continuous sampling of the wavenumber spectrum such that

kz min(fn+1) = kz max(fn) (3.12)

where fn+1 is the next frequency to be selected. This strategy is illustrated in Figure 3.11. Using

Eq. 3.10 and Eq. 3.12, finally we get

fn+1 =
fn

αmin
(3.13)

Eq. 3.13 shows that the optimum frequency increment is not constant and it increases with frequency.
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3.3.1.1 Implementation

The low-pass filtering is performed using the recursive IIR (infinite impulse response) Butterworth

filter, which I implemented in the waveform inversion code. The Butterworth filter is applied to the

source wavelet and to the data in the time domain, so there is no need to transform the data to the

frequency domain.

The Butterworth filter is characterized by an amplitude response that is maximally flat in the

passband and monotonic overall. Another advantage is the causality of the filter, which is helpful for

the filtering of first arrivals. Furthermore, because of the gentle slopes of the Butterworth filter, the

undesirable ringing does not occur in the time domain (the so-called “Gibbs effect”), so there is no

additional taper function required.

The maximum frequency of every frequency band is chosen with the above described strategy,

where fn defines the cut-off frequency for the Butterworth low-pass filter for the nth frequency band.

This filtering method corresponds to the inversion of multiple overlapping frequencies in the frequency

domain FWI.

3.3.2 Poor starting velocity model - inversion of all frequencies

If the very low frequencies are not present in the data, like in the Marmousi2 test case, the success of

the waveform inversion strongly depends on the choice of the starting model. In such a case a good

starting model containing the long-wavelength structures of the subsurface is required. Otherwise, the

inverse problem tends to converge to a local minimum and produces unrealistic results. In the inversion

tests performed in the previous section, the starting VP model was a 1D smooth representation of the

true velocity model (Figure 3.6f). However, it is very unlikely to have such a good initial information

in the case of real data applications.

In this inversion test, I modified the good initial VP model by adding +100 m/s to the background

velocity. The full frequency content of the data and the preconditioning operator P2 are used at each

iteration step. The final FWI result is shown in Figure 3.12. Because the long wavelength structures

of the true model are not present in the starting model, the single-scale waveform inversion converged

to a local minimum and failed to reconstruct the true velocity structures.

The failure of this inversion test is related to the cycle-skipping problem. Figure 3.13 shows a

comparison between the observed and initial data for some exemplary traces. We can observe a signif-

icant mismatch between the observed and modelled data, which mainly concerns the diving/refracted

wave at middle and far offsets. Because the initial velocity is too high, the predicted traveltimes of

the starting model do not match the observed traveltimes within half a cycle of the observed data.

As a consequence, the waveform inversion ended up in a local minimum of the misfit function.

3.3.3 Poor starting velocity model - multi-scale inversion

In order to reduce the non-linearity of the inverse problem, I modified the previous inversion exper-

iment by applying the multi-scale approach. The maximum frequency for each frequency band was

calculated using Eq. 3.13. The depth to the target, z = 2.35 km, is the maximum depth of the model

and the maximum half-offset hmax = 2.0 km, which results in αmin = 0.75. The frequency bands are

applied sequentially with the following maximum frequencies fmax = (3, 4, 5.3, 7.1, 9.4, 12.5, 16.6, 22),
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which define the cutoff frequency for the Butterworth low-pass filter, with an order n = 6. There are

altogether eight frequency bands, and except for the last inversion stage that covers the full frequency

content of the data, 20 iterations are performed for each frequency band. The maximum iteration

number is 300.

The minimum and maximum vertical wavenumbers can be computed using Eq. 3.10, with c0 = 2050

m/s, which corresponds to the average velocity of the true model. For the first maximum frequency

f1 = 3 Hz, we obtain

kz min(f1) = 0.0138 rad · m−1 ,

kz max(f1) = 0.0184 rad · m−1 .

With k = 2π/λ, where λ is the wavelength, the minimum and maximum wavelengths related to the

vertical resolution are

λmin(f1) = 341 m ,

λmax(f1) = 455 m .

For the maximum frequency of the data f8 = 22 Hz, we get

kz min(f8) = 0.1011 rad · m−1 ,

kz max(f8) = 0.1348 rad · m−1 .

and

λmin(f8) = 46 m ,

λmax(f8) = 62 m .

Figure 3.14 shows both the indermediate inversion results at the end of selected inversion stages

and the final FWI result. The result from each lower frequency band is used as the starting model for

the next higher frequency inversion. We can observe a dramatic improvement in the reconstruction

of VP structures with comparison to the previous experiment. Although the absolute amplitude of

the starting frequency band is very low (Figure 3.14a), because the original wavelet was filtered with

the high-pass Butterworth filter with a cut-off frequency of 3 Hz, the very low frequencies contributed

to the reconstruction of the large-scale structures. Each higher frequency band yields a recovery of a

more detailed VP image. Most of the structures in the final VP model are reconstructed successfully,

however the accuracy is worse in the deeper part of the model. In general, the quality of the inverted

model obtained from the multi-scale inversion of a poor initial VP model is comparable to the result

obtained with a good starting velocity information (Figure 3.6).

Figure 3.15a shows a comparison between the observed and initial data for the first frequency

band. We can observe that the initial data fulfill the half-wavelength criterion and the cycle-skipping

problem, which caused a failure of the previous single-scale inversion experiment, is not present in

this case. The comparison between the observed data and predicted data generated for the final FWI

result is illustrated in Figure 3.15b.
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3.3.3.1 Impact of the number of iterations per frequency band

I repeated the previous multi-scale experiment, except that the number of iterations carried out for

each frequency band was reduced from 20 to 10 iterations. The final FWI VP model (Figure 3.16a)

is similar to the result with 20 iterations (Figure 3.14d). However, a comparison of the VP profiles

extracted from the inverted FWI models (Figure 3.16b and Figure 3.14d) shows that with 10 iterations

the reconstruction in the deep parts of the model is slightly worse.

Figure 3.16c illustrates the evolution of the data misfit functions as a function of iteration number

for 10 and 20 iterations per frequency band. FWI with 20 iterations per inversion stage yields a very

effective and stable reduction of the data misfit and it requires less iteration steps to reach the same

data error as the FWI with 10 iterations. The most significant reduction of the data misfit is achieved

after the first two, low frequency, bands, which correspond to the update of large-scale structures

in the model. The convergence rate of FWI with 10 iterations is lower, especially at intermediate

frequency bands, where the misfit function is much higher than that of FWI with 20 iterations. This

indicates that for this particular inverse problem 10 iterations per frequency band are not enough to

take a full advantage of the multi-scale inversion approach.

3.3.3.2 Choice of the first frequency band

To illustrate the effect of the starting frequency band, I performed two additional inversion test. In

the first experiment, the first maximum frequency fmax(1) = 4 Hz and there are seven frequency

bands: fmax = (4, 5.3, 7.1, 9.4, 12.5, 16.6, 22). In the second experiment, the first maximum frequency

is increased to fmax(1) = 5 Hz with six frequency bands: fmax = (5, 6.7, 8.9, 11.9, 15.9, 22). There are

20 iterations carried out for each inversion step, except for the last frequency band, which covers the

full frequency content of the data. The maximum iteration number is 300.

The final FWI VP models and VP profiles are shown in Figure 3.17a,b. The inversion starting

with fmax(1) = 4 Hz, provided a good reconstruction of the VP model. However, there are some

inaccuracies especially below the gas lens and the overall model quality is worse than for the inversion

starting with a very low frequency band fmax(1) = 3 Hz (Figure 3.14d). The further increase of

the frequency content of the first band to fmax(1) = 5 Hz results in an even worse reconstruction

of velocity structures. The final VP model is affected by many artefacts, which is evidence of the

cycle-skipping problem. These results suggest that the success of the multi-scale inversion depends on

the choice of the first frequency band, which should be very narrow and contain the lowest available

frequencies with a high signal-to-noise ratio.
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Figure 3.12: Marmousi2 example. FWI results for a poor starting velocity model without frequency
filtering. (a) Inverted VP model, (b) VP profiles at x = 3 km: the black solid line represents the true
model, the gray dashed line represents the initial model, and the red solid line represents the inverted
VP model. (c) Final data residuals for shot 50 located at x = 6.25 km
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Figure 3.13: Marmousi2 example. Trace comparison between the observed data (black) and the
initial data computed for the poor starting VP model (red). Full frequency content. Shot 50 located
at x = 6.25 km
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Figure 3.14: Marmousi2 example. FWI results for a poor starting velocity model with frequency
filtering. 20 iteration steps per frequency band. Intermediate inversion results: (a) fmax = 3 Hz, (b)
fmax = 7.1 Hz, (c) fmax = 12.5 Hz, and (d) the final inversion result fmax = 22 Hz. (left) Inverted VP

models, (center) VP profiles at x = 3 km, (right) low-passed filtered original data.
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Figure 3.15: Marmousi2 example. Trace comparison between the observed Marmousi2 data (black)
and the synthetic data (red) at the first and at the final iteration step. (a) Synthetic data are generated
for the poor starting VP model, fmax = 3 Hz, (b) synthetic data are generated for the final FWI result
(Figure 3.14d), full frequency content. Shot 50 located at x = 6.25 km
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Figure 3.16: Marmousi2 example. FWI results for a poor starting velocity model with frequency
filtering. 10 iteration steps per frequency band. (a) Inverted VP model, (b) VP profiles at x = 3 km:
the black solid line represents the true model, the gray dashed line represents the initial model, and
the red solid line represents the inverted VP model. (c) The evolution of the data misfit function: with
20 iteration steps per frequency band (black) and with 10 iteration steps per frequency band (green).
The data misfit functions are normalised with respect to their maximum value, which is identical at
the first iteration.
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Figure 3.17: Marmousi2 example. FWI results for a poor starting velocity model with different starting
frequency bands. The maximum frequency of the first band: (left) fmax(1) = 4, (right) fmax(1) = 5.
(a) Inverted VP models, (b) VP profiles at x = 3 km, (c) trace comparison between the observed
Marmousi2 data (black) and the initial data (red) computed for the poor starting VP model.
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3.4 Choice of the objective function

The aim of FWI is to find a model of subsurface that minimizes the errors between the observed data

and data predicted by the forward problem for a given model of the subsurface. One possible choice is

to select a model that minimizes the least-squares error between the observed data and predicted data

(L2 norm). Because the L2 norm assumes a Gaussian distribution of the misfit, this norm is not robust

in the presence of large, isolated amplitudes in the data (outliers) [Tarantola, 2005]. To overcome this

problem, we can consider other minimization criteria, which are more robust in the presence of noise,

including the L1 norm [Brossier et al., 2010; Crase et al., 1990; Djikpéssé and Tarantola, 1999], the

Cauchy criterion [Amundsen, 1991; Crase et al., 1990], the sech criterion [Crase et al., 1990; Monteiller

et al., 2005], the Huber criterion [Guitton and Symes, 2003; Ha et al., 2009], or the objective function

constructed by taking a logarithm of wavefields [Shin and Min, 2006].

To assess the performance of FWI for different minimization criteria, I invert two synthetic data

sets affected by noise. In the first test, I consider acoustic inversion of elastic data. The second data

set is generated by adding the realistic swell noise to the acoustic noise-free data.

3.4.1 Minimization criteria

I consider five different minimization criteria:

The least-squares criterion L2

EL2
=

N∑

i=1

1

2

[
f i(m) − di

obs

σi

]2

, (3.14)

the summation is performed over the number of source-reciver pairs and the number of time samples.

σi is the estimated error deviation, which is specific for every shot and is calculated as the average

absolute value of all samples of each shot [Pica et al., 1990]. The model minimizing EL2
(Eq. 3.14) is

called the best model with respect to the least-squares criterion.

The least-absolute-values criterion L1

EL1
=

N∑

i=1

∣∣∣∣
f i(m) − di

obs

σi

∣∣∣∣ . (3.15)

The Cauchy criterion

ECauchy =
N∑

i=1

1

2
ln

{
1 +

[
f i(m) − di

obs

σi

]2
}

. (3.16)

The hyperbolic secant (sech) criterion

Esech =

N∑

i=1

ln

{
cosh

[
f i(m) − di

obs

σi

]}
. (3.17)

The L2, L1, Cauchy and sech criteria are shown in Crase et al. [1990]. Finally, I consider the

approximated version of the L2 norm using the normalized wavefields proposed by Choi and Alkhalifah
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[2012]

EL2norm =

N∑

i=1

1

2

[
f i(m)

‖f j(m)‖ − di
obs

‖dj
obs‖

]2

(3.18)

where ‖dj
obs‖ is the root-mean-square (RMS) value calculated for every jth trace of the observed data,

and ‖f j(m)‖ is the RMS value of every jth trace of modelled data, which is defined by

‖f j(m)‖ =

√√√√ 1

NT

NT∑

k=1

fk(m)2, j = 1, . . . , ntr (3.19)

The gradient of the misfit function, i.e. the derivative of the objective function with respect to the

model parameters, can be computed using the chain rule

∂E(m)

∂m
=

∂Ecriterion {f(m)}
∂m

=
∂Ecriterion {f(m)}

∂f(m)

∂f(m)

∂m
= JT r , (3.20)

where Ecriterion represents the objective function for an arbitrary minimization criterion. The gradient

is composed of two terms: the Jacobian matrix J, which is independent of the choice of a minimization

criterion, and the second term is the residual vector r, which defines the source term in the calculation

of backpropagated residual wavefields. The residual vector r is defined by

r =
∂Ecriterion {f(m)}

∂f(m)
. (3.21)

Because the choice of the minimization criterion affects the residual vector, it also affects the compu-

tation of the residual wavefield backpropagated from the receivers positions. The ith component of

the residual vectors r for different minimization criteria are

ri
L2

=
1

σi

[
f i(m) − di

obs

σi

]
(3.22)

ri
L1

=
1

σi
sgn

[
f i(m) − di

obs

σi

]
(3.23)

where sgn is the signum function defined as follows

sgn(x) =






−1, if x < 0 ,

0, if x = 0 ,

1, if x > 0 .

(3.24)

ri
Cauchy =

1

σi






f i(m) − di
obs

σi

1 +

[
f i(m) − di

obs

σi

]2





(3.25)

ri
sech =

1

σi
tanh

[
f i(m) − di

obs

σi

]
(3.26)
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Figure 3.18: The residuals of L2 norm (black),
L1 norm (green), Cauchy norm (blue), and sech
norm (red) as a function of the data difference
f(m) − dobs.

ri
L2norm =

f i(m)

‖f j(m)‖ − di
obs

‖dj
obs‖

(3.27)

Figure 3.18 illustrates the residuals of different minimization criteria. The horizontal axis rep-

resents the theoretical data difference f(m) − dobs, and the vertical axis shows the corresponding

residuals computed for different minimization criteria with Eqs. 3.22- 3.26, where σi = 1. Whereas,

the L2 norm preserves the difference between the predicted and observed data, the L1 norm ignores

the true amplitudes of the data difference. For that reason, the L1 norm is more robust in the pres-

ence of large amplitude noise in the data than the L2 norm. The Cauchy and sech criteria can be

considered as hybrid criteria. The sech criterion behaves as the L2 norm for small data difference,

but for large data errors it acts as the L1 norm. The transition between the L2-norm-behaviour and

the L1-norm-behaviour is controlled by the choice of a threshold value σ. In case of the Cauchy crite-

rion, the errors which are small compared to the estimated error deviation σ are treated like the L2

norm, but the large data errors are weighted towards zero. These properties of the Cauchy and sech

norm indicate that both minimization criteria are less sensitive to data outliers than the L2 norm.

The approximated version of L2 norm using the normalized wavefields L2norm is not shown on this

theoretical plot, because it acts as the conventional L2 norm, when the RMS value of the modelled

and observed traces is identical. The advantage of the L2norm minimization criterion is that it can

account for the difference in the energy level between the predicted and observed wavefields [Choi and

Alkhalifah, 2012].

The impact of the minimization criteria on the residual trace is shown in Figure 3.19. The residual

trace represents the source term, which is used to calculate the backpropagated residual wavefields.

Note the different amplitudes of the residual traces. The maximum value occurs when the L2 norm

is used. The residual traces of the L1 norm and the sech norm have the same maximum amplitudes,

because the sech norm acts as the L1 norm for data errors higher than the estimated error deviation

σ. In case of the L2norm criterion, the modelled and observed data are normalized to their RMS values

before computing the residuals for every trace.

43



3. Choice of inversion strategies

0 0.5 1 1.5 2 2.5 3

−5
0
5

x 10
4

0 0.5 1 1.5 2 2.5 3
−2

0

2
x 10

4

0 0.5 1 1.5 2 2.5 3
−1

0

1
x 10

4

0 0.5 1 1.5 2 2.5 3
−2

0

2
x 10

4

0 0.5 1 1.5 2 2.5 3

−0.2
0

0.2

time [s]

Figure 3.19: Impact of the minimization criteria on the residual trace. From top to bottom: L2 norm,
L1 norm, Cauchy, sech, L2 norm using the normalized wavefields. The figure represents the same
residual trace at near offset, computed for different minimization criteria with Eqs. 3.22- 3.27

3.4.2 Acoustic inversion of elastic data

In the first numerical experiment, I perform acoustic FWI of elastic data using different minimization

criteria. The aim of this test is not only to compare the performance of various objective functions,

but also to assess the limits of the acoustic approximation when inverting elastic data.

Because marine streamer data are usually dominated by unconverted P-waves [Djikpéssé and

Tarantola, 1999], it is a common practice to apply the acousic FWI to seismic data from marine

exploration. Even though the elastic FWI would provide a better match to the recorded seismic data,

the main advantage of the acoustic approach is related to a significant reduction of the computational

costs. However, there are some issues associated with the acoustic approximation of the wave equation.

Acoustic modelling will not predict elastic effects such as non-acoustic reflection amplitudes or mode-

converted waves. As shown by Barner and Charara [2009]; Mulder and Plessix [2008] the successful

application of acoustic FWI is very difficult when the long offset data are included or when the strong

discontinuities are present in the S-wave velocity. Strong impedance contrasts for S-waves generate

mode-converted waves, which serve as a strong coherent noise for the acoustic FWI. But even if the

converted (e.g. PSP, PSSP) waves are weak or not present in the recorded data, the main problem of

the acoustic approximation is an incorrect modelling of the amplitude-versus-offset (AVO) effects.

3.4.2.1 Elastic data vs acoustic data

The elastic data set is generated for the modified elastic Marmousi2 model shown in Figure 3.20 using

a 2D elastic finite-difference modelling code developed by [Bohlen, 2002]. To generate elastic data,

I used the same acquisition geometry, the source wavelet and the modelling parameters as for the
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Figure 3.20: Modified elastic Marmousi2 model. True (a) VP , (b) density, and (c) VS models used to
generate the elastic data set.
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Figure 3.21: Modified elastic Marmousi2 model. (a) VP /VS ratio. (b) VP and VS profiles extracted
from the true VP and VS models at x = 3 km.
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Figure 3.22: (a) Elastic data, (b) acoustic data, (c) the difference between elastic and acoustic data.
Shot 50 located at x = 6.25 km.
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Figure 3.23: Elastic data vs acoustic data. Comparison of exemplary traces for shot 50 located at
x = 6.25 km.

acoustic data. The distribution of the VP to VS ratio in the model, as well as the VP and VS profiles

are shown in Figure 3.21. The S-wave velocity contrasts are weak in sedimentary layers up to a deph

of approximately 1.6 km, and the VP to VS ratio varies between 5 and 3. In contrast to the P-wave

velocity, there is no strong discontinuity in the VS at the gas lens (at a depth of 900 m). However,

there is a strong velocity contrast both in P-wave and in S-wave at a depth of 1.6 km. The VP /VS

ratio is decreasing to approximately 2.3 − 1.77, which is related to the transition from soft rock to

hard rock.

The modelled acoustic and elastic data are illustrated in Figure 3.22, both seismograms are nor-

malized to the maximum of the direct wave at the near offset trace. The difference between elastic

and acoustic data is very small at near offsets, but it is increasing for middle and far offsets. The

main discrepancy is related to the wave reflected from the layer with a strong impedance contrast in

P- and S-wave at a depth of 1.6 km. Amplitude discrepancies resulting from the incorrect modelling

of the AVO effects are well visible in Figure 3.23. There is a significant loss of amplitude in elastic

data for late arrivals at middle and far offsets.

To reduce the high complexity of the inverse problem, the multi-scale inversion approach is

applied. The frequency bands are applied sequentially with the following maximum frequencies

fmax = (3, 4, 5.3, 7.1, 9.4, 12.5, 16.6, 20) Hz; that define the cutoff frequency for the Butterworth low-

pass filter. Furthermore, to correct for the amplitude loss with depth due to geometrical spreading

and to enhance deeper parts of the model, the preconditioning operator P2 is applied. The starting

VP model is a 1D very smooth representation of the true velocity distribution. To focus only on the

VP model reconstruction, the density model and the source time function are assumed to be known.

3.4.2.2 Inversion results

I inverted the elastic data with the acoustic FWI using five different minimization criteria. The aim of

this experiment is to evaluate the effect of the AVO errors resulting from the acoustic approximation

on the inversion results and to compare the performance of various objective functions.
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Figure 3.24 compares the residuals for backpropagation at the first iteration step for different min-

imization criteria. We can observe that the residuals are dominated by strong, near offset reflections

when the L2 norm is used. The residuals for the Cauchy and sech criteria are very similar and they

do not possess the blocky nature of the L1 norm. The L2 norm using the normalized wavefields has a

horizontal trace balancing effect, i.e. the residuals are not dominated by near offset traces as for the

conventional L2 norm. But unlike the Cauchy, sech, or L1 criteria, the L2norm norm has no vertical

(i.e. time) balancing effect on the residuals.

The final inversion results are shown in Figure 3.25. The sedimentary structures in the upper part

of the model are well reconstructed for all minimization criteria. However, there is a lot of artefacts

in the deeper part of the model, especially above the interface with high contrast in the S-wave

velocity. The artefacts are weaker for the L2norm criterion, but in general the acoustic inversion failed

to reconstruct the deep structures of the true model due to significant elastic effects present in the

data. The comparison of VP profiles Figure 3.26 shows the poor quality of inverted VP in the deep

part of the model. Furthermore, there are strong artefacts at the seafloor, because the inversion tries

to compensate the wrong AVO effects in the acoustic modelling. These artefacts are relatively weak

for the L2norm criterion. In addition, the accuracy of the recovered VP is better for the L2norm norm

than for other minimization criteria, which is well visible at a depth from 1.4 km to 1.6 km. The final

data difference for different minimization criteria is shown in Figure 3.27. This is the actual difference

between the predicted data and observed data, not the data residuals for backpropagation. The final

residuals are relatively large especially for the L1 norm and the Cauchy norm.

Figure 3.28a illustrates the evolution of the model error as a function of iteration number for

different minimization criteria. The choice of the L2norm criterion results in the lowest model error.

The performance of the L2, Cauchy and sech criteria is comparable, but worse than the performance

of the L1 norm, which ignores the amplitude information of the data misfit. The evolution of the

data misfit is shown in Figure 3.28b. Because the data misfit is calculated for different minimization

criteria, the plots are not directly comparable.
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Figure 3.24: Acoustic inversion of elastic data. Residuals for backpropagation at the first iteration
step for different minimization criteria.

3.4.3 Swell noise data

In the second experiment, I introduced swell noise to synthetic acoustic noise-free data. The swell noise

was extracted from the real data presented in Chapter 7. Swell noise originates from the sea-surface

waves and vibrations in the streamer caused by turbulent water related to these surface waves. On

streamer operating during bad weather conditions, the swell noise is so strong that the useful signal

cannot be identified.

Figure 3.29 shows the acoustic noise-free data, the swell noise, and the noisy-data for three exem-

plary shot gathers. Swell noise has large amplitudes at relatively low frequencies (up to 5 Hz) and

it affects a number of neighboring traces. It can be observed as vertical stripes in seismic data. The

maximum amplitude of the swell noise is at 2 Hz and it is 2.3 times higher than the amplitude of the

useful signal at 2 Hz.

The intermediate FWI results after inverting the third frequency band with fmax = 5.3 Hz are

shown in Figure 3.30 for different minimization criteria. The high-amplitude swell noise produced

strong artefacts in the VP model when the L2 norm was used. This is the known behaviour of the L2

criterion, which is very sensitive to non-Gaussian errors [Brossier et al., 2010; Crase et al., 1990]. The

L1, Cauchy and sech criteria are more robust in the presence of swell noise in the data and provided

a good reconstruction of the VP models. The poor performance of the L2norm criterion was caused by

difficulties in estimating a reliable step length using the parabolic curve fitting method. The negative

minima estimated in the initial iteration steps resulted in the choice of the very small step lenghts

and yielded a weak update of the VP model.

The final FWI results for fmax = 20 Hz are illustrated in Figure 3.31. The effect of the swell noise is
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Figure 3.25: Acoustic inversion of elastic data. FWI results. (a)-(e) Comparison of inverted VP models
for different minimization criteria.
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Figure 3.26: Acoustic inversion of elastic data. Comparison of VP profiles at x = 3 km for different
minimization criteria; the black solid line indicates the true model, the gray dashed line indicates the
initial model, and the red solid line indicates the inverted VP model.
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Figure 3.27: Acoustic inversion of elastic data. Final data residuals computed as the difference between
the predicted data for the final FWI result and the observed data.
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Figure 3.28: Acoustic inversion of elastic data. Summary of FWI results. (a) VP model error of the
inverted models (Eq. 3.2) for different minimization criteria. (b) The evolution of the data misfit
functions, which are calculated with Eqs. 3.14- 3.18. The data misfit functions are normalized with
respect to their maximum value, which are not identical.
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no longer visible in the reconstructed P-wave velocity for the L2 norm, except for some weak artefacts

at the sides of the model. Because the swell noise was dominant only at very low frequencies and

the higher frequencies were not affected by noise, the application of the multi-scale inversion strategy

reduced the noise effect on inversion results. The accuracy of reconstructed VP models is very good

and comparable for all minimization criteria (Figure 3.32). The final data residuals are dominated by

the swell noise (Figure 3.33).

The evolution of the VP model error shows the best performance of the L1, Cauchy and sech

criteria when inverting the swell noise data (Figure 3.34). The L2 norm results in a much higher

error, especially for the inversion of low frequency data dominated by swell noise. The L2norm criterion,

which provided the best results for the acoustic inversion of elastic data, had significant problems to

provide a stable reduction of the model error.
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Figure 3.29: Swell noise data. Exemplary noise-free shot gathers: (a) Shot 1 located at x = 1.35 km,
(b) Shot 25 located at x = 3.75 km, (c) Shot 50 located at x = 6.25 km. (d)-(f) swell noise, (g)-(i)
noisy data. Amplitude spectra of the (j) noise-free data, (k) swell noise, (l) noisy data for shot 50.
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Figure 3.30: Inversion of swell noise data. Intermediate FWI results after the third frequency band
with fmax = 5.3 Hz for different minimization criteria.
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Figure 3.31: Inversion of swell noise data. Comparison of final inverted VP models for different
minimization criteria.
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Figure 3.32: Inversion of swell noise data. Comparison of VP profiles at x = 3 km for different
minimization criteria; the black solid line indicates the true model, the gray dashed line indicates the
initial model, and the red solid line indicates the final inverted VP model.
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Figure 3.33: Inversion of swell noise data. Final data residuals computed as the difference between
the predicted data for the final FWI result and the observed data.
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Figure 3.34: Inversion of swell noise data. Summary of FWI results. (a) VP model error of the inverted
models (Eq. 3.2) for different minimization criteria. (b) The evolution of the data misfit functions,
which are calculated with Eqs. 3.14- 3.18. The data misfit functions are normalized with respect to
their maximum value, which are not identical.
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3. Choice of inversion strategies

3.5 Summary

• Gradient preconditioning

The comparison of various preconditioning methods shows that the satisfactory performance of

the inversion algorithm can be achieved by applying a preconditioning operator that combines

a spatial taper with a linear scaling function. A spatial taper, which turns off the model update

in the water layer, allows to suppress the artefacts related to the acquisition geometry and

to improve the quality of inverted models. In addition, the effect of geometrical spreading of

the waveform amplitudes can be effectively compensated by applying a simple depth-dependent

linear preconditioning operator to the gradient of the objective function.

• Multi-scale inversion

The success of the FWI depends not only on the choice of the starting model, but also on

methods which may reduce the complexity of the inverse problem. The multi-scale inversion is

a very effective method to reduce the non-linearity of the inverse problem and to mitigate the

problem of local minima in the objective function. The selection of optimal frequency bands

is an important aspect of the multi-scale inversion, because it affects the computational cost of

FWI and it is related to the problem of cycle-skipping. The implemented multi-scale approach

is based on the continuous coverage of vertical wavenumbers. The success of the multi-scale

inversion depends on the choice of the first frequency band, which should be relatively narrow

and contain the lowest available frequencies with a high signal-to-noise ratio.

• Choice of the objective function

The elastic effects limits the applicability of the acoustic FWI especially in the presence of strong

contrasts in the S-wave velocity. The acoustic inversion failed to reconstruct the deep structures

of the true VP model due to significant elastic effects present in the data. In general, the quality

of reconstructed VP models from acoustic inversion of elastic data is comparable for different

minimization criteria, with the lowest model error obtained for the approximated version of the

L2 norm using the normalized wavefields.

The numerical example with the high-amplitude swell noise added to the data showed the

robust behaviour of the L1, Cauchy and sech criteria. On the other hand, the L2 norm and the

L2norm criterion, which are more sensitive to noise present in the data, produced worse inversion

results at low frequencies dominated by the swell noise. Because the higher frequencies were not

affected by noise, the final FWI results for the maximum frequency of 20 Hz are comparable

for all minimization criteria. Apparently, the multi-scale inversion strategy reduced the effect of

the low-frequency noise on the final inversion results.
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Chapter 4

Parameterization study

The aim of this study is to find the most suitable parameterization for the multi-parameter time-

domain acoustic inversion of marine reflection seismic data. I investigate three different combinations

of parameters: P-wave velocity and density, acoustic impedance and density, P-wave velocity and

acoustic impedance. Since coupling between parameter pairs is azimuth-dependent, I consider sepa-

rately the inversion of the near-offset (0.1 km - 1.15 km) and the full-offset data (0.1 km - 4 km). The

acoustic Marmousi2 model with a conventional streamer geometry, and a frequency range from 2.5 to

20 Hz is used. A set of inversion tests is performed to assess the different parameterizations in terms

of the quality of the reconstructed images and the convergence rate of the inversion.

4.1 Introduction

The aim of the full waveform inversion (FWI) is to estimate the physical properties of the Earth by

minimizing the misfit between observed and predicted seismic data. To reconstruct reliable models of

the subsurface structures from field measurements, the waveform inversion should correctly account

for the most significant wave propagation phenomena present in the data. However, numerous approx-

imations are usually made to limit the number of physical parameters and to reduce the computational

cost of the method. For instance, it is common practice to use the acoustic approximation when in-

verting marine seismic data. In most marine field data applications the authors only invert for the

P-wave velocity [Boonyasiriwat et al., 2010; Delescluse et al., 2011; Kelly et al., 2010; Operto et al.,

2004; Shipp and Singh, 2002]. This mono-parameter acoustic waveform inversion is not correctly de-

scribing the amplitudes of field data. In order to improve the accuracy of seismic amplitude modeling,

an extension from the mono-parameter inversion to the multi-parameter inversion is a straightforward

solution. However, the joint reconstruction of more parameters is more expensive and increases the

ill-posedness of the inverse problem [Virieux and Operto, 2009].

In the context of the multi-parameter inversion, an important factor is the choice of the parameters

describing the medium [Tarantola, 1986]. The acoustic medium can be described by P-wave velocity

VP and density ρ, or the acoustic impedance IP . Thus, the possible parameterization sets are: P-wave

velocity and density, acoustic impedance and density, P-wave velocity and acoustic impedance. The

choice of the acoustic parameters may influence the convergence rate and the ambiguity of the inverse
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problem, and affects the final results [Kolb and Canadas, 1986].

The choice of an adequate parameterization has been mainly investigated for an elastic medium

[Assous and Collino, 1990; Debski and Tarantola, 1995; Köhn et al., 2012; Tarantola, 1986]. Tarantola

[1986] has shown that the model parameters should be related to the parameters of the Earth that can

be resolved by a certain acquisition. The typical seismic reflection data contain two different kinds of

information: on the long-wavelength seismic wave velocities, and on the short-wavelength impedances

[Jannane et al., 1989]. For the long wavelengths (λ ≥ 300 m), the misfit function mainly depends

on traveltimes of the main reflections, and thus the velocity of the medium. Whereas, for the short

wavelengths (λ ≤ 60 m), the data misfit is mainly sensitive to impedance constrasts (the reflection

amplitudes). So, the arrival time of the waves provides the information on the velocity distribution

and the amplitude information allows to resolve the high-resolution impedance contrasts. Tarantola

[1986] suggests that for long wavelenths the P-wave and S-wave velocities are the most adequate

parameters and for short wavelengths the seismic impedances and density are more suitable.

Another important aspect is the coupling between different parameters. It would be favorable

to select parameters that are as uncorrelated as possible. The trade-off is often investigated by

considering the energy radiation patterns of a point diffractor [Assous and Collino, 1990; Tarantola,

1986; Virieux and Operto, 2009]. In this case a homogeneous Earth is assumed and each parameter is

individually perturbed. Acoustic radiation patterns for different parameter sets are studied in Virieux

and Operto [2009]. An important observation is that the coupling is a function of the offset. For

example, using P-waves only and small offsets it is difficult to distinguish between a density diffractor

and a P-wave velocity diffractor. On the other hand, the VP and IP point diffractors scatter energy

for different apertures, VP for wide apertures and IP for short apertures, which might suggest that

this is the most adequate parameter set. For instance, this parameterization has been chosen to define

the medium in the acoustic multi-parameter inversion of sesimic reflection data performed by Kolb

and Canadas [1986].

In this study, I test three different acoustic parameterizations, which I implemented in the waveform

inversion code. The first parameter set is the P-wave velocity and density m1 = [VP , ρ], the second is

the P-wave impedance and density m2 = [IP , ρ], and the third parameter set is the P-wave velocity and

P-wave impedance m3 = [VP , IP ]. First, I investigate the coupling between the different parameters,

when the simultaneous multi-parameter inversion is performed. If there is a strong trade-off between

two parameters, this may result in an incorrect solution and may lead to a wrong interpretation of the

inversion results. Furthermore, the coupling effects for the same parameter set may vary depending on

the maximum offset of the seismic data used in the inversion. For that reason, I investigate separately

the multi-parameter inversion of near-offset and full-offset data.

In the second set of experiments, I perform the acoustic waveform inversion of marine reflection

seismic data simulated for realistic P-wave velocity and density models. Here, I assess the different

model parameterizations in terms of the quality of the reconstructed models and of the convergence

rate of the inversion.
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4.2 Theoretical background

The gradient expression in terms of new model parameters mnew can be derived as follows [Mora,

1987]

δmnew =
∂m

∂mnew
δm (4.1)

It requires the computation of the Jacobian ∂m/∂mnew and the gradient of the original model pa-

rameters. The gradient for bulk modulus K and density ρ at iteration n can be written as [Tarantola,

1984]

δKn =
1

K2
n

∑

shots

∫

t

dt
∂pn

∂t

∂p
′

n

∂t
,

δρn =
1

ρ2
n

∑

shots

∫

t

dt ∇pn · ∇p
′

n , (4.2)

where pn(x, z, t) is the forward propagated field in the current model, and p
′

n(x, z, t) is generated by

propagating the residual data from all receiver positions backward in time.

To evaluate the gradient in terms of P-wave velocity and density, we need the relationship between

the P-wave velocity VP , the bulk modulus K and density ρ, which is K = ρV 2
P . The gradient for the

P-wave velocity can be expressed as

δVP =
∂K

∂VP
δK +

∂ρ

∂VP
δρ = 2ρVP δK . (4.3)

The gradient for the density δρvp
for the parameterization m1 = [VP , ρ] can be written as

δρvp
=

∂K

∂ρ
δK +

∂ρ

∂ρ
δρ = V 2

P δK + δρ . (4.4)

To derive the gradients with respect to the P-wave impedance IP and density, we use the relationship

K = IP
2/ρ. The gradients for the parameterization m2 = [IP , ρ] are thus

δIP =
2IP

ρ
δK ,

δρimp = − 1

IP
2 δK + δρ . (4.5)

Using the equation relating the P-wave impedance IP and P-wave velocity VP to the bulk modulus,

which is K = VP IP , the gradients in terms of IP and VP can be written as

δIP =
1

VP IP
2 δK ,

δVP imp =
1

VP
2IP

δK . (4.6)
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4.3 Numerical experiment settings

The numerical tests presented in this study are based on a subset of the acoustic Marmousi2 model.

The P-wave velocity and density models, as well as the resulting P-wave impedance model, are shown

in Figure 4.1. The source is a pressure source, located 7.5 m below the air-water interface, with the

Ricker wavelet time function. The frequency content of a signal is limited to a bandwidth from 3 to

20 Hz. The near offset is 100 m and the maximum offset is 4 km. The total of 50 shot gathers are

generated at a 50 m interval with 3 seconds of data.

To reduce the high complexity of the inverse problem, the multi-scale inversion approach is

applied. The frequency bands are applied sequentially with the following maximum frequencies

fmax = (3, 4, 5.3, 7.1, 9.4; 12.5, 16.6, 20) Hz; that define the cutoff frequency for the Butterworth low-

pass filter. Furthermore, to correct for the amplitude loss with depth due to geometrical spreading and

to enhance deeper parts of the model, the linear gradient scaling with depth is implemented [Mora,

1987]. The parameters of the water layer and the source time function are assumed to be known. The

starting model of any perturbed parameter is a 1D smooth representation of the true model.

4.4 The coupling effects

As mentioned above, the coupling is a function of the offset. To investigate this relationship, I

perform separately the multi-parameter inversion of the near-offset and of the full-offset data. I define

the long-offset data as those data acquired with source-receiver offset greater than the depth to the

imaging targets. The assumed imaging target is a gas lens located at the depth of 1 km. Therefore,

the maximum offset of the short-offset data is set to 1.15 km, whereas the full-offset data contains

all offsets. Because of the moving streamer acquisition, the far offset is ranging from 1.125 km to

the maximum of 4 km. The waves of the long-offset data propagate more horizontally than that of

the near-offset data, thus they illuminate the subsurface in a different way. The maximum angle of

incidence of a ray reflected at the gas lens is approximately 26◦ for the short-offset data and 63◦ in

case of the full-offset data.

In this section, I investigate the trade-off between different parameter sets. This is achieved by

performing the multi-parameter inversion for different combinations of parameters m1 = [VP , ρ],

m2 = [IP , ρ], and m3 = [VP , IP ]. For each configuration, the model parameters are perturbed

individually, which results in six combinations of acoustic models. Synthetic data are generated for

each set of acoustic models. The modelling and acquisition parameters are listed in Table 3.1.

4.4.1 Inversion results

The inversion results for the first parameter set m1 = [VP , ρ] are shown in Figure 4.3 for a variable

VP model and constant density. The true models and starting models are shown in Figure 4.2).

Figure 4.5 shows the FWI results for the same parameters set, but here VP is constant and variable

density model is used. We can observe a quite strong coupling between VP and ρ, especially when the

near-offset data is inverted. There are velocity structures present in the density models, and strong

cross-talk artefacts are visible in the inverted velocity model. These artefacts reflect the interfaces of

the true density structures (Figure 4.5). However, the coupling between VP and ρ, and thereby the

62



ambiguity of the inversion, is significantly decreasing once the information from far offsets is included.

It is clearly visible on the velocity and density profiles (Figure 4.3d and Figure 4.5d).

The parameterization with m2 = [IP , ρ] is illustrated in Figure 4.7 and in Figure 4.9. When

considering a perturbation in P-wave impedance with a homogeneous density model, it can be seen

that the acoustic impedance model is very well resolved from both near-offset and far-offset data.

The final density models contain only weak artefacts resulting from the impedance structures. This

indicates that both parameters are not strongly coupled. On the other hand, if we want to consider

a perturbation in density only and preserve a zero impedance variation, this will result in unrealistic,

negative velocity contrasts. To avoid this unplausible assumption, the true IP is defined as IP =

VP (constant) · ρ(perturbed). The true IP model is used as a starting model for the inversion. We can

observe that the original impedance structures are hardly influenced by the density, both for the

near-offset and for the full-offset data (Figure 4.9d). The density model is fairly well reconstructed,

but still the accuracy is not as good as for m1 = [VP , ρ]. This agrees with the amplitude diffraction

pattern analysis shown by Tarantola [1986]. A diffractor with a perturbation of density but constant

impedances would be hardly visible using surface seismic reflection data with moderate offsets, because

it only scatters energy downwards into the medium.

In the third parameterization, the medium is described by the P-wave velocity and the P-wave

impedance m3 = [VP , IP ]. Here, we also face the problem of negative density contrast, which would

be introduced if a constant impedance model and a perturbed velocity was assumed. For that reason,

I define the true IP as IP = VP (perturbed) · ρ(constant), which is also an initial model for the inver-

sion (Figure 4.11a). Relatively strong high-frequency artefacts are present in the inverted velocity

model, especially when the near-offset data is inverted. Inversion of the full-offset data improves the

quality of the reconstructed VP model, however at the same time it negatively affects the IP model

(Figure 4.11d). This means that the trade-off between VP and IP is generally increasing while the

information from far-offsets is included. Furthermore, the estimated optimum step-lengths are very

variable and have much higher values than the step-lengths estimated for other parameterizations.

This may indicate that the inverse problem is running into a local minimum of the misfit function.

Additionally, the velocity and impedance errors are only decreasing up to a certain iteration num-

ber, afterwards the model errors are increasing, which is apparently associated with the inversion of

the high-frequency data. However, at the same time, the data misfit function is gradually decreas-

ing. Figure 4.13 shows the FWI results for a perturbed acoustic impedance with a homogeneous

velocity model. The impedance structures are fairly well resolved, particularly from the short-offset

data. Nevertheless, the velocities contain structural IP information, which may lead to the incorrect

interpretation of the inversion results.
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Figure 4.1: (a) The true P-wave velocity and (b) density models. The stars denote shot point locations.
(c) The resulting P-wave impedance model IP = VP ρ. Initial (d) P-wave velocity, (e) density, and (f)
impedance models. Acoustic data for true VP and ρ model, shot 50 located at x = 6.25 km: (g) the
near-offset data (0.1 km - 1.15 km), (h) the full-offset data (0.1 km - 4 km).
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Figure 4.2: Parameter set m1 = [VP , ρ]. Perturbation in VP , homogeneous ρ. (a) True VP and ρ
model; (b) Starting VP and ρ model.
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Figure 4.3: Parameter set m1 = [VP , ρ]. Perturbation in VP , homogeneous ρ. (left) FWI results of
the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data (0.1 km - 4 km);
(right) VP and ρ profiles at x = 3 km of the true models (dash-dot line) and of the inversion results
for the near-offset data (red line) and for the full-offset data (black line).
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Figure 4.4: Parameter set m1 = [VP , ρ]. Perturbation in ρ, homogeneous VP . (a) True VP and ρ
model; (b) Starting VP and ρ model.
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Figure 4.5: Parameter set m1 = [VP , ρ]. Perturbation in ρ, homogeneous VP . (left) FWI results of
the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data (0.1 km - 4 km);
(right) VP and ρ profiles of the true models and of the inversion results.
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Figure 4.6: Parameter set m2 = [IP , ρ]. Perturbation in IP , homogeneous ρ. (a) True IP and ρ
model; (b) Starting IP and ρ model.
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Figure 4.7: Parameter set m2 = [IP , ρ]. Perturbation in IP , homogeneous ρ. (left) FWI results of
the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data (0.1 km - 4 km);
(right) IP and ρ profiles of the true models and of the inversion results.
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Figure 4.8: Parameter set m2 = [IP , ρ]. Perturbation in ρ, IP = VP (constant) · ρ(perturbed). (a) True IP

and ρ model; (b) Starting IP and ρ model.
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Figure 4.9: Parameter set m2 = [IP , ρ]. Perturbation in ρ, IP = VP (constant) · ρ(perturbed). (left) FWI
results of the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data (0.1 km
- 4 km); (right) IP and ρ profiles of the true models and of the inversion results.
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Figure 4.10: Parameter set m3 = [VP , IP ]. Perturbation in VP , IP = VP (perturbed) · ρ(constant). (a)
True VP and IP model; (b) Starting VP and IP model.
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Figure 4.11: Parameter set m3 = [VP , IP ]. Perturbation in VP , IP = VP (perturbed) · ρ(constant). (left)
FWI results of the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data
(0.1 km - 4 km); (right) VP and IP profiles of the true models and of the inversion results.
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Figure 4.12: Parameter set m3 = [VP , IP ]. Perturbation in IP , homogeneous VP . True and starting
models. (a) True VP and IP model; (b) Starting VP and IP model.
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Figure 4.13: Parameter set m3 = [VP , IP ]. Perturbation in IP , homogeneous VP . (left) FWI results
of the near-offset data (0.1 km - 1.15 km); (middle) FWI results of the full-offset data (0.1 km - 4
km); (right) VP and IP profiles of the true models and of the inversion results.
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4.5 Gradients comparison

In order to better understand the difference between different parameterizations, I compare the gradi-

ents of VP , IP and density computed with m1 = [VP , ρ], m2 = [IP , ρ], and m3 = [VP , IP ]. Gradients

are calculated with Eq.4.3 - Eq.4.6.

Gradients are calculated at the first iteration for the starting model (Figure 4.1d-f) using a source-

receiver pair. The source is located at x = 6.250 km and the receiver is located at x = 2.175 km. The

offset of 4.075 km corresponds to the maximum offset of the data set. Gradients are computed for two

frequency bands: from 3 to 5 Hz, and from 3 to 20 Hz. Such a band-limited, multi-frequency gradient

calculated in the time domain can be formed by integrating monochromatic gradients calculated in the

frequency-domain for the same frequency range. The total gradient, that defines the model update,

is the superposition of gradients for all source-receiver pairs.

Figure 4.14 illustrates gradients computed for different parameter sets for the frequency range from

3 to 5 Hz. There is no preconditioning applied to the gradient, except for a circular taper around

the source and the receiver. Because the amplitude of the wavefield is very high in the vicinity of

the source and the receiver, the gradient has large values in these parts of the model and it would

overshadow the rest of the model. The colorbar scales of the same model parameter are identical, such

that VP gradient from parameterization m1 = [VP , ρ] can be directly compared with the VP gradient

from parameterization m3 = [VP , IP ]. The general observation is that the gradients computed for

different parameter sets are relatively similar to each other.

Due to the presence of primary and multiple reflections in the data set and multiple frequencies, the

gradients for one source-receiver pair are more complex that the gradients computed in a homogeneous

or a smooth background model [Bleibinhaus and Rondenay, 2009; Operto et al., 2006; Pratt et al.,

1996; Sirgue, 2003], where the first Fresnel zone can be easily identified. A monochromatic gradient

computed for a given source-receiver pair, which is referred to as a wavepath [Woodward, 1992], is

often used to explain the imaging limitations of the waveform tomography for a given acquisition

geometry [Pratt et al., 1996]. The wavepath computed in a background medium contains distorted

elliptical lobes, where the central zone corresponds to the Fresnel zone. The arrivals within the first

Fresnel zone correspond mainly to transmitted events, whereas the reflected waves map the outer

Fresnel zones [Sirgue, 2003].

The complexity of gradient images increases significantly when the frequency content of the data

is higher. The gradients computed for the frequency range from 3 to 20 Hz are shown in Figure 4.15.

Here, we can observe more discrepancies between different parameterizations than in the case of the

low frequency band data. First of all, there is a difference between the VP gradient calculated in the

m1 = [VP , ρ] parameterization and in the m3 = [VP , IP ] parameterization (Figure 4.15a,e). Gradients

computed within the same parameterization are very similar to each other in the case of m1 = [VP , ρ]

and m3 = [VP , IP ], but the density gradient differs significantly from the impedance gradient in the

parameterization m2 = [IP , ρ] (Figure 4.15c,d). On the other hand both density gradients are very

similar (Figure 4.15b,d) and they resemble the VP gradient in the m1 = [VP , ρ] parameterization.
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Figure 4.14: Marmousi2 model. Gradient at the first iteration computed for a source-receiver pair for
a frequency band from 3 to 5 Hz. Star denotes shot location, triangle denotes receiver location.
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Figure 4.15: Marmousi2 model. Gradient at the first iteration computed for a source-receiver pair for
a frequency band from 3 to 20 Hz. Star denotes shot location, triangle denotes receiver location.
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4.6 Acoustic multi-parameter inversion - Marmousi2 model

The acoustic data set is generated for the Marmousi2 model (Figure 4.1). The near-offset and full-

offset data are shown in Figure 4.1g and 4.1h respectively. Figure 4.1d-f represents initial models

used in the full waveform inversion. The aim of this experiment is to assess the different model

parameterizations in terms of the quality of the reconstructed models and of the convergence rate of

the inversion.

The multi-parameter FWI results using the near-offset information are shown in Figure 4.16. The

same data set is inverted using different parameterizations. Additionally, the third parameter, that

is not represented by a particular parameter set, is recalculated from the final inverted models. This

allows for a comparison of all considered parameter classes. The upper structures of the velocity and

impedance models, down to the depth of about 1 km, are well reconstructed. However, the deeper

parts of the inverted models show strong high-frequency artefacts. The density is well resolved only

in the m1 = [VP , ρ] parameterization.

The inversion results of the full-offset data are presented in Figure 4.17. Here, we can observe

that the recovery of all parameters has improved significantly. This suggests, that the far-offset data

reduces the ambiguity of the inversion and provides an important information for the reconstruction

of the subsurface structures.

The depth profiles intersecting the gas lens are shown in Figure 4.18. They compare the true model

with the inversion results for the near-offset and full-offset data. The resolution of the P-wave velocity

and acoustic impedance is comparable for every parameterization. But the main difference concerns

the density reconstruction. The density structures are fairly well resolved only in the m1 = [VP , ρ]

parameterization. The worst density image is obtained, when the parameterization m2 = [IP , ρ]

is used. This poor result has been confirmed by the coupling effects analysis (see Figure 4.9). On

the other hand, the density values recalculated from the inverted velocity and impedance models

(m3 = [VP , IP ]) are significantly underestimated. Some density structures are not reconstructed at

all and only the location of density interfaces can be recognized.

Figure 4.19 illustrates the comparison of the inversion progress for different parameterizations

between the near-offset and full-offset data inversion. The evolution of the data misfit function (Fig-

ure 4.19a,b) shows the most stable progress and the most effective reduction of the data residuals for

parameter set m1 = [VP , ρ]. The jumps in the misfit function for iterations 1-140 are related to the

multi-scale inversion approach. At these iterations the next frequency band is included. The data

misfit reduction is much worse for m2 = [IP , ρ] and m3 = [VP , IP ].

In order to quantitatively assess the inversion results, the L1-based model error between the true

and reconstructed velocity models is measured. We can observe, that the significant reduction of

data residuals is followed by the best reconstruction of the model parameters for m1 = [VP , ρ]. The

convergence of the model errors is much slower, when we choose the parameter set m2 = [IP , ρ]. The

worst quality of the final models is provided by the parameterization m3 = [VP , IP ]. The model errors

of all parameters are significantly reduced, when the full-offset data is included.
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Figure 4.16: Marmousi2 model. FWI results for the near-offset data. Top row m1 = [VP , ρ], middle
row m2 = [IP , ρ], bottom row m3 = [VP , IP ]. Left: P-wave velocity, middle: density, right: acoustic
impedance.
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Figure 4.17: Marmousi2 model. FWI results for the full-offset data. Top row m1 = [VP , ρ], middle
row m2 = [IP , ρ], bottom row m3 = [VP , IP ]. Left: P-wave velocity, middle: density, right: acoustic
impedance.
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Figure 4.18: Marmousi2 model. Depth profiles at x = 3 km of the true models (dash-dot line) and
of the FWI results for the near-offset (red solid line) and full-offset data inversion (black solid line).
Top row m1 = [VP , ρ], middle row m2 = [IP , ρ], bottom row m3 = [VP , IP ]. Left: P-wave velocity,
middle: density, right: acoustic impedance.
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Figure 4.19: Marmousi2 model. Summary of FWI results for the near-offset (left) and the full-offset
data (right). m1 = [VP , ρ] (black dash-dotted line), m2 = [IP , ρ] (green solid line), m3 = [VP , IP ]
(blue dashed line). The data misfit functions are normalized with respect to their maximum value.
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4.7 Conclusions

In this study, I have investigated the influence of different model parameterizations on the multi-

parameter acoustic waveform inversion. The numerical experiments have been designed to reflect

the field measurement conditions of marine reflection seismics. Since the lack of low frequencies is a

general problem in seismic recording, the frequency content of the data is limited to a range from 3

to 20 Hz.

First I analyzed the coupling between different parameters and considered separately the informa-

tion from the near-offset and far-offset data. The far-offset information used in the inversion reduces

the coupling between different parameters, i.e. it reduces the ambiguity of the inversion. When am-

biguity is present, it results in the incorrect solution and may lead to a wrong interpretation of the

inversion results.

The choice of the model parameters affects the convergence and the accuracy of final models, when

inverting the marine reflection seismic data. Whereas the resolution of velocity and impedance models

is comparable, the reconstruction of density structures strongly depends on the model parameteriza-

tion. Out of the investigated parameter sets, the velocity and density provided the best convergence

rate and the best accuracy of the inverted results for both the near-offset and full-offset data inversion.

However, when the far-offset information is included, it reduces the ambiguity of the inverse problem

and improves the quantitative accuracy of the inverted structures, especially for deeper targets.
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Chapter 5

The role of density in acoustic full

waveform inversion

To reconstruct reliable models of the subsurface structures from the field measurements, the forward

modelling should correctly account for wave propagation phenomena present in the recorded data.

This mainly concerns the correct modelling of seismic amplitudes that are sensitive not only to the

velocity variations, but also to the density, attenuation, source directivity effects, and to the seismic

noise.

The objective of this study is to analyse the role of density on the recovery of P-wave velocity

models in the marine environment. To investigate the footprint of density on FWI, I performed a

series of numerical experiments, testing various initial density models and different strategies for the

density update. The results show that it is important to include realistic density information into the

inversion scheme. Furthermore, the more accurate a density model is, the better the velocity estimate

will be. Additionally, I have investigated the importance of density in the inversion of noisy data, by

considering acoustic inversion of elastic data.

5.1 Introduction

Full waveform inversion is a nonlinear inversion method to extract the information about the sub-

surface structure and physical parameters from seismic recordings. It is a least-squares data-fitting

procedure; in order to find a model that fits the real seismograms the misfit between the real data

and modelled data is minimized. Therefore, the accurate modelling of seismic waveforms is critical

for the success of the method.

The least-squares norm, which is the most commonly used misfit function (Virieux and Operto,

2009), exploits both the kinematic (travel times) and the dynamic (amplitudes) information contained

in the seismic data. The travel times are sensitive to seismic velocity distribution, whereas the

amplitudes contain information about the reflection coefficients. The amplitude of reflected seismic

waves is dominantly affected by contrasts in acoustic impedance, which is a product of velocity and

density. Therefore, if the P-wave velocity is the only variable parameter in the FWI, the seismic

amplitudes are not correctly modelled. For this reason, it would be useful to introduce density as an
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5. The role of density in acoustic FWI

additional parameter in the inversion of the field data, even at the expense of higher computational

costs. Moreover, the density is a useful parameter for hydrocarbon characterization and the multi-

parameter VP and ρ inversion could provide additional information on the reservoir properties.

The full waveform inversion of marine seismic data is mainly performed using the acoustic approx-

imation [Virieux and Operto, 2009]. Barner and Charara [2009] have shown that this approximation

can lead to reliable results, when the S-wave velocity contrast and density contrast are not strong,

or when only near offsets are used. Moreover, they have shown that the constant-density acoustic

inversion leads to wrong impedance contrasts and produces worse inversion results. Since the density

is a difficult parameter to reconstruct [Forgues and Lambaré, 1997], in most of the case studies of real

marine reflection data the authors only invert for the P-wave velocity. Density is usually estimated

using an empirical formula [Boonyasiriwat et al., 2010; Delescluse et al., 2011; Hicks and Pratt, 2001;

Kelly et al., 2010; Shipp and Singh, 2002] or is fixed at a constant value [Bae et al., 2010; Operto

et al., 2004].

In this study I investigate the effect of density on the reconstruction of P-wave velocity models

from marine seismic data. I consider 2D acoustic time-domain inversion of a synthetic streamer data

generated from heterogeneous P-wave velocity (VP ) and density (ρ) models. I run series of inversion

tests assuming different initial density information and diverse strategies for density updates within the

inversion scheme to analyse the density footprint on the waveform inversion. These strategies comprise:

disregarding the density information, keeping an initial, realistic density model fixed, density model

update at each iteration step using an empirical velocity-density relation and density inversion. To

provide a quantitative estimate of the inversion results I compare the data misfit and measure the

model error between the true model and the inverted velocity models.

In the second set of inversion tests, the waveform inversion is applied to elastic data. If the P-

wave velocity is the only unknown in acoustic FWI, then all amplitude discrepancies resulting from

seismic noise and nonacoustic factors (elastic effects, attenuation, anisotropy) will be projected into

the VP model. To mitigate this problem FWI could account for additional inversion parameters such

as density. To investigate the potential benefits of the multi-parameter inversion in the presence of

elastic effects in the data, I apply the VP only and combined VP and ρ inversion to synthetic elastic

data. The goal of this numerical experiment is to show, whether the density inversion can partly

compensate for the inversion artefacts due to the coherent noise present in the data.
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5. The role of density in acoustic FWI

5.2 Density inversion

The gradient for the P-wave velocity at iteration n can be expressed as

δVP n = 2ρnVPn

1

K2
n

∑

shots

∫

t

dt
∂pn

∂t

∂p′n
∂t

, (5.1)

where K = ρV 2
P is the bulk modulus, pn(x, z, t) is the forward propagated field in the current model,

and p
′

n(x, z, t) is generated by propagating the residual data from all receiver positions backward in

time.

The gradient for the density δρvp
in the parameterization m = [VP , ρ] can be written as

δρvp
= V 2

Pn

1

K2
n

∑

shots

∫

t

dt
∂pn

∂t

∂p
′

n

∂t
+

1

ρ2
n

∑

shots

∫

t

dt ∇pn · ∇p
′

n . (5.2)

For the details of the gradient derivation, see Chapter 4.

Estimating density values from seismic data is an ill-posed inverse problem [Debski and Tarantola,

1995]. The density is poorly resolved especially from the short-offset P-wave velocity, because the

amplitude diffraction pattern related to a perturbation of ρ is very similar to the diffraction pattern

caused by a perturbation of VP [Tarantola, 1986]. The influence of the density contrast on the P-wave

reflection amplitude becomes more visible at larger angles. Therefore, wide-angle recordings might

be required in order to reduce the uncertainty of the density inversion from seismic data. As shown

by Amundsen and Ursin [1991], velocity model converges faster than density, because most of the

velocity information comes from the arrival times of the seismic reflections, whereas the density is

derived from the amplitude information only. The general velocity trend should be therefore correct

before the density model can be recovered by fitting the amplitudes.

The full waveform inversion is a highly nonlinear problem. To avoid the convergence to local

minima an accurate starting model is required. Initial density models can be provided from well

log data, AVO analysis (amplitude variation with offset), or derived from the velocity model using

empirical relationships between seismic velocity and density. Although the density logs provide the

most accurate estimation of the bulk density, the information is available only along the borehole.

The density information can also be derived from the AVO analysis, which is based on the inversion

of the Zoeppritz equations [Zoeppritz, 1919]. These equations describe the amplitude variation with

offset as a function of P-wave velocity contrast, S-wave velocity contrast, and density contrast across

the interface. However, the reliable density extraction from AVO is difficult [Behura et al., 2010].

It requires either a wide range of incidence angles [Li, 2005], or strong density contrast along the

interface if only the near and middle offsets are available [Kabir et al., 2006].

The starting density model can be build using one of the empirical relationships between velocity

and density. The drawback of this method is that all empirical relations are only valid for certain rock

types.
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Figure 5.1: (a) The true P-wave velocity and (b) density models. The stars denote the shot point
locations. 1 water wet sand, 2 a gas charged sand channel, 3 a thin oil sand layer.

5.3 Numerical experiment settings

5.3.1 Marmousi2 model

The numerical tests are based on a part of the Marmousi2 model [Martin et al., 2006]. The P-wave

velocity and density models are shown in Figure 5.1. Sedimentary layers are primarily composed of

shale. There are two hydrocarbon reservoirs embedded in the model: a gas charged sand channel (2

in Figure 5.1b) and a thin oil sand layer (3). In addition, there are some water wet sand structures

(1).

Density values are assigned to each layer based on the lithology [Martin et al., 2006]. The empirical

relationship used to relate density to P-wave velocity was proposed by Castagna et al. [1993] for various

lithologies. Generally, sandstone is less dense than shales, therefore there are two different relations

linking the VP to the density for shale and for sand layers.

The Vp − ρ relationship for sandstone is

ρ (g/cm3) = 0.2736 · V 0.261
P , (5.3)

whereas the Vp − ρ relationship for shales is given by

ρ (g/cm3) = 0.2806 · V 0.265
P . (5.4)

5.3.2 Modelling and inversion parameters

The synthetic, noise-free data set is used in the first part of inversion tests and it was calculated

using the finite-difference solution of the 2D acoustic wave equation. The total of 50 shot gathers
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are generated at a 50 m interval with 3 seconds of data. The source is a pressure source, located 7.5

m below the air-water interface, with the Ricker wavelet time function. The frequency content of a

signal is limited to a bandwidth from 3 to 20 Hz. The near offset is 100 m and the maximum offset

is 4 km. The detailed modelling and acquisition parameters are listed in Table 3.1.

To reduce the high complexity of the inverse problem, the multi-scale inversion approach is

applied. The frequency bands are applied sequentially with the following maximum frequencies

fmax = (3, 4, 5.3, 7.1, 9.4; 12.5, 16.6, 20) Hz; that define the cutoff frequency for the Butterworth low-

pass filter. Furthermore, to correct for the amplitude loss with depth due to geometrical spreading

and to enhance deeper parts of the model, the linear gradient scaling with depth is implemented.

The starting VP model is a 1D very smooth representation of the true velocity distribution. The

depth of the seafloor in the starting model is correct, but the initial velocity value at the sea bottom

differs from the true velocity. The seafloor parameters (VP , density, depth) are updated during

inversion. To allow for a direct comparison of the results, the same inversion scheme and the initial

VP model are used in all experiments. For the inversion of acoustic data, I use the least-squares

minimization criterion.

5.3.3 Error analysis

In order to quantitatively assess the inversion results, I measure initial and final errors, both in the

data and in the model space. Since the waveform inversion is an ill-posed and non-unique problem,

this will help to determine whether the reduction of residuals is followed by a better estimation of

model parameters.

The error between the modelled dmod and observed data dobs is measured by the least-squares

error

L2error =
1

2

N∑

i=1

(dmod|i − dobs|i)
2 . (5.5)

where N is the size of the data vector.

To assess the quality of the final velocity models, the relative error between the real and the

reconstructed P-velocities within the area of the model update is calculated as

VP error =
1

M

M∑

i=1

| VP inv|i − VP true|i |
| VP true|i |

, (5.6)

where VP inv|i is the inverted P-wave velocity for the ith grid point, VP true|i is the true velocity value,

and M is the size of the model vector within the area of the model update.
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Test starting density model density model in FWI
A true rho fixed
B constant rho fixed
C from VP -ρ Brocher’s relation (Eq.5.8) fixed
D from VP -ρ Gardner’s relation (Eq.5.7) fixed
E from VP -ρ Brocher’s relation updated with Brocher’s relation
F from VP -ρ Gardner’s relation updated with Gardner’s relation
G from VP -ρ Brocher’s relation inverted
H from VP -ρ Gardner’s relation inverted

Table 5.1: List of inversion tests.

5.4 Inversion strategies

To investigate the effect of density on P-wave model reconstructions, I first applied acoustic waveform

inversion to noise-free data. I performed eight inversion tests using different starting density models

and strategies for incorporating density information into the inversion process. The inversion tests

are listed in Table 5.1.

For the acoustic inversion of noise-free data four different starting density models were considered:

• true density model (Test A);

• homogeneous density model (Test B);

• in sediments: density model linked with the starting VP model using Brocher’s relationship, in

water: 1000 kg/m3 (Test C, E, G);

• in sediments: density model linked with the starting VP model using Gardner’s relationship, in

water: 1000 kg/m3 (Test D, F, H).

To find the most efficient strategy for including density information into the inversion scheme, I

tested the following strategies:

• FIXED – starting density model is fixed during the inversion (Test A, B, C, D);

• UPDATED – density is updated after each iteration using one of the Vp−ρ relationships (Test

E, F);

• INVERTED – multi-parameter inversion for VP and ρ (Test G, H).

The choice of the relationship between VP and density controls the amplitude of reflections. It

should be noted that these relationships are not valid in the presence of hydrocarbons. Gardner’s

VP − ρ relationship [Gardner et al., 1974] is an approximate average of the relations for a number

of sedimentary rock types, weighted toward shales. This relationship gives relatively good density

estimates for sediment layers in our true model (Figure 5.2). The relation takes the following form:

ρ (kg/m3) = 0.31 · 1000 · V 0.25
P (5.7)

Additionally, I selected Brocher’s density-velocity relationship [Brocher, 2005]. It is an empirical

formula for the Nafe-Drake curve [Nafe and Drake, 1963], which is relating seismic velocity to density
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Figure 5.2: Comparison of the true density model
(red line) with different initial density models.
Blue line indicated a starting density model from
VP -ρ Brocher’s relation, black line represnts a
starting density model from VP -ρ Gardner’s re-
lation. The density profile is located at x = 3
km.

in the sedimentary rock samples. The Brocher equation can be used in the VP range from 1500 to

8500 m/s and it takes the following form:

ρ (g/cm3) = 1.6612VP − 0.4721V 2
P + 0.0671V 3

P − 0.0043V 4
P + 0.000106V 5

P (5.8)

This relation systematically underestimates density with respect to the true values and provides a

poor initial density model for the inversion tests (Figure 5.2).

5.5 Effect of density on the waveform

To analyse the effect of density on acoustic data, I compare the seismogram generated for the true

VP and true density models with the shot gather generated for the same true VP but with constant

density model. Figure 5.3c shows that a significant part of the waveform is due to the reflection

of seismic energy at density contrasts. The reflection coefficient at the seafloor is dominated by

the density contrast and thus most of the amplitudes of the primary and multiple water bottom

reflections are caused by the strong density contrast. On the other hand, the reflection coefficients of

the discontinuities inside the medium are influenced by both the P-wave and density contrasts.

In order to quantify the influence of the starting density model on the data misfit, I selected various

initial density models (Figure 5.4a). The reference initial density is a 1D smoothed true density model.

It was varied by adding a maximum ± 25 % density perturbations along the entire profile, disregarding

the water layer, to create a set of 51 initial density models. Then the data misfit between the observed

seismograms is calculated (for the true model shown in Figure 5.1) and the initial data computed for

different starting density models. The resulting L2-norms vary from 53 % to 64 % of the observed data

energy (Figure 5.4b). The lowest misfit value corresponds to the density model, which together with

the initial VP , gives the closest match to the real amplitude of the primary and secondary seafloor

reflections, which are the most energetic events in the initial synthetics.
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Figure 5.3: Shot gathers for (a) the true VP and true density models shown in Figure 5.1, (b) the true
VP model but constant density model, (c) the difference between (a) and (b). Seismograms correspond
to shot location at x = 6.25 km.
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Figure 5.4: Influence of the starting density model on the initial data misfit. (a) Set of starting density
models generated by adding a maximum ± 25 % density perturbations with a 1 percent shift to the
smoothed 1D true density model. The true density model at x = 3000 m is indicated by the red
line. (b) Initial L2-norm calculated for all seismograms that corresponds to selected starting density
models.
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5.6 Inversion results - noise-free acoustic data

Inversion results of the noise-free data are summarized in Table 5.2 (data misfit) and Table 5.3 (VP

model error) and can be found in Figures 5.5 - 5.7.

5.6.1 Fixed starting density model

Figure 5.5 shows the inversion results when using fixed density models, i.e. the density models remain

unchanged during the inversion. To examine the resolution and accuracy of the FWI, I performed an

inversion test with the true density model (Figure 5.5a, Test A). The final velocity model is very well

reconstructed, the VP error was reduced from 4.91 % to 1.92 % (Table 5.3). After 400 iterations, the

final data residuals are very small (Figure 5.9a).

The highest misfit values both in the data space and in the model space (VP error = 3.55 %) result

from the constant density assumption (Test B). The final velocity model (Figure 5.5b) shows strong

artefacts around the seafloor and deviations from the true velocity model in deeper regions. The

lack of density information produced significant amplitude errors in the modelling of the seafloor

reflections. In order to compensate for these errors, the inverted P-wave velocities at the sea bottom

are significantly overestimated. Due to the wrong velocity in the uppermost part of the model, the

velocity reconstruction in the subseafloor area is negatively affected as well.

If we include more accurate fixed density models using an empirical velocity-density formula, we

can observe an improvement in the recovery of the P-wave model (Figure 5.5c, d). The VP error

was reduced to 2.77 % for the poor density model, and to 2.59 % for the good density model. Even

if the density model is poor it contains information about an impedance contrast at the seafloor

(Figure 5.5c). Therefore the reconstructed velocity model is more accurate than with the constant

density assumption. Thus the most important information is the density at the seafloor, as the data

misfit is dominated by the seabed reflection and its multiples.

5.6.2 Density update using P-wave velocity and density relations

The inversion results with the density update at each iteration step are shown in Figure 5.6a-f for

Brocher’s VP − ρ relationship (Test E), and in Figure 5.6g-l for Gardner’s relationship (Test F).

The density update strategy generally provides a slightly better velocity reconstruction than the

fixed density approach (Figure 5.8a,b). In the fixed density strategy, the smooth density models

produce lower impedance contrast for the P-wave. To compensate for weaker amplitudes, the recovered

velocities are overestimated. On the other hand, the updated density models have stronger contrasts

and result in higher reflection coefficients. Therefore, the corresponding amplitude errors are smaller

and yield a slightly better reconstruction of the velocity model (compare velocity profiles in Figure 5.5d

and Figure 5.6f).

5.6.3 Multi-parameter inversion for P-wave velocity and density

The multi-parameter inversion results are shown in Figure 5.7a-f – for the poor initial density model

(Test G), and in Figure 5.7g-l – for the good initial density model (Test H). The VP models are

well reconstructed, but density values of individual layers differ from the true density model, even if
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the good initial density is used. If the very poor starting model is assumed, the waveform inversion

cannot recover correct background densities. However, the location of interfaces and the density

contrast across the interfaces are fairly well estimated. The final model errors (VP error = 2.32 % for

poor initial ρ, and VP error = 2.28 % for good initial ρ). A combination of the good initial density

model with the simultaneous inversion for velocity and density produced the best final result (apart

from using the true density model). The minimum model error is also reflected in very small data

residuals. All reflection events are well fitted, and the data misfit is significantly reduced (Table 5.2).

The hydrocarbon layers, which are characterized by a high impedance contrast, are well recon-

structed both in the VP and in the density model. There is one essential difference between the FWI

results from the multi-parameter inversion strategy and the density update strategy. The water wet

sand structures marked in the true density model with number 1, are very well visible in the inverted

density model (Figure 5.7j). But on the other hand, these structures are missing, when the density

update strategy is used (Figure 5.6j).

This result is due to the fact that there are two different Vp − ρ relations used for shale layers and

sand layers in the true model. But as there is only one empirical relation used in the update strategy,

it is obviously not valid for all lithologies assigned to the true density model.

5.6.4 Model and data error

Figure 5.8 illustrates the evolution of the VP model error for all inversion experiments. The plots

are subdivided into categories according to the strategy for including density information into the

inversion scheme. The highest error resulting from using a constant density model, is significantly

reduced when a realistic density information is included. The initial VP model error is reduced by 43

% for a poor density model and by 47 % for a good density model. There is also a small improvement

in the accuracy of inverted velocity models, when a density model is updated after each iteration step

instead of keeping a fixed initial ρ model (Figure 5.8a,b). The initial VP model error is reduced by

46 % (poor density model) and by 49 % (good density model), which gives an additional model error

reduction of approximately 3 % with respect to the fixed strategy. The multi-parameter inversion

(Figure 5.8c) results in the lowest model error. The initial VP error is reduced by 52 % for a poor

initial density model and by 53.5 % for a good initial density model. Furthermore, for the multi-

parameter inversion strategy the choice of the starting density model has a smaller effect on the final

velocity model error than in the case of using the fixed or updated strategy.

The final data residuals are shown in Figure 5.9. According to expectations, the highest data

residuals are generated when a constant density model is used (Figure 5.9b). Because the reflection

coefficient at the seafloor is primarily governed by a high density contrast and this information is not

available, the main data misfit is observed for the seafloor reflection. The best reduction of the data

residuals is achieved for the multi-parameter inversion strategy (Figure 5.9g,h). Especially, when a

good initial density model is combined with the multi-parameter inversion this results in the best VP

error reduction and in the lowest data misfit.
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Figure 5.5: FWI results of acoustic data; fixed density models. Inverted VP models (left); VP profiles
(center): the black solid line indicates the true model, the gray dashed line indicates the initial model,
and the red solid line indicates the inverted VP model. Density profiles of the fixed models (right).
(a) Test A – true density model, (b) Test B – constant density model, (c) Test C - poor 1D smooth
density model, (d) Test D - good 1D smooth density model.
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(b) VP profiles at x = 3 km
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(c) VP profiles at x = 5 km
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(e) Density profiles at x = 3 km
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(f) Density profiles at x = 5 km
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(h) VP profiles at x = 3 km
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x [km]

de
pt

h 
[k

m
]

Final density model

 

 

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

kg/m3
1000

1200

1400

1600

1800

2000

2200

2400

(j) Final density model

1600 1800 2000 2200 2400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rho [kg/m3]

de
pt

h 
[k

m
]

Density profile

 

 

starting
true
final

(k) Density profiles at x = 3 km
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Figure 5.6: FWI results of acoustic data; comparison of different empirical relations for density update
at each iteration. (a)-(f) Test E – poor initial density; Brocher’s VP − ρ relationship, (g)-(l) Test F –
good initial density, Gardner’s VP − ρ relationship.
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(b) VP profiles at x = 3 km
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(c) VP profiles at x = 5 km
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(e) Density profiles at x = 3 km
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(f) Density profiles at x = 5 km

x [km]

de
pt

h 
[k

m
]

Inverted Vp model

 

 

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m/s

1600

1800

2000

2200

2400

2600

2800

3000

3200

(g) Inverted VP model

1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

vp [m/s]

de
pt

h 
[k

m
]

Velocity profile

 

 

starting
true
inverted

(h) VP profiles at x = 3 km

1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

vp [m/s]

de
pt

h 
[k

m
]

Velocity profile

 

 

starting
true
inverted

(i) VP profiles at x = 5 km
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(k) Density profiles at x = 3 km
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Figure 5.7: FWI results of acoustic data; multi-parameter inversion with different starting density
models. (a)-(f) Test G – multi-parameter inversion with a poor initial density model; (g)-(l) Test H
– multi-parameter inversion with a good initial density model.
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density update strategy
starting rho fixed updated inverted
true rho model 3.03e+03 (A) - -
constant rho 3.56e+06 (B) - -
from Brocher 2.56e+05 (C) 2.41e+05 (E) 1.73e+04 (G)
from Gardner 8.33e+04 (D) 5.27e+04 (F) 6.39e+03 (H)

Table 5.2: FWI results of acoustic data. L2-norm (equation 5.5) of the final data residuals. Capital
letters refer to inversion tests listed in Table 5.1.

density update strategy
starting rho fixed updated inverted
true rho model 1.92 % (A) - -
constant rho 3.55 % (B) - -
from Brocher 2.77 % (C) 2.61 % (E) 2.32 % (G)
from Gardner 2.59 % (D) 2.48 % (F) 2.28 % (H)

Table 5.3: FWI results of acoustic data. VP error of the inverted models (equation 5.6). The VP error
of the initial model is 4.91 %. Capital letters refer to inversion tests listed in Table 5.1.
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Figure 5.8: FWI results of acoustic data – summary of final VP model errors for all inversion tests.
Red line – true ρ model; green line – constant density model; blue line – poor density model (Brocher);
black line – good density model (Gardner). Capital letters refer to inversion tests listed in Table 5.1.
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Figure 5.9: FWI results of acoustic data; final data residuals. (a) Test A – true density model, (b)
Test B – constant density model, (c) Test C - poor 1D smooth density model, (d) Test D - good 1D
smooth density model, (e) Test E – poor initial density, Brocher’s VP − ρ relationship, (f) Test F –
good initial density, Gardner’s VP − ρ relationship, (g) Test G – multi-parameter inversion with a
poor initial density model, (h) Test H – multi-parameter inversion with a good initial density model.

94



5. The role of density in acoustic FWI

5.7 Inversion of elastic data

In the second set of inversion tests, the acoustic inversion is applied to elastic data. The aim is to

investigate the performance of different inversion strategies described in this study in the presence of

noise associated with elastic wave propagation. I want to verify if the multi-parameter inversion of

elastic data offers the same benefits as for the pure acoustic data inversion.

The elastic data set is generated for the part of the elastic Marmousi2 model (for details see

Chapter 3). I use the same inversion scheme and the initial VP model as for the inversion of acoustic

data. The only difference is related to the choice of the minimization criterion. Here I apply the L2

norm using the normalized wavefields, L2norm, instead of the L2 norm, because the first one provided

the best results for the elastic data inversion (see Chapter 3).

Figure 5.10 shows results for the VP only inversion using different fixed density information (true,

constant, poor density model, good density model). Apart from some artefacts, the velocity models

are well reconstructed down to a depth of 1.6 km, but the resolution decreases below that depth.

This is related to the interface, located at 1.6 km, with a strong impedance contrast for both P and

S-waves, which results in converted S-waves. Even when the true density model is used, there are still

some data residuals related to the seafloor reflection (Figure 5.12a). This is due to the fact that the

acoustic inversion cannot reproduce the AVO effect (amplitude-verus-offset) of elastic data.

The density update at each iteration step using Gardner’s relationship is shown in Figure 5.11a-f.

The quality of the inverted model is comparable with the results obtained with the fixed strategy. In

contrast to the inversion of acoustic data, the worst result is provided by the multi-parameter inversion

strategy (Figure 5.11g-l). The velocity model, as well as the inverted density model, contains a lot of

small-scale artefacts. The density values are wrong and significantly overestimated, especially in the

deeper parts of the model. Apparently, density tries to compensate for the amplitude and phase errors

caused by elastic effects. But since there is a trade-off between velocity and density reconstruction (see

Chapter 4), the accuracy of the inverted velocity model is negatively affected by the wrong density

reconstruction. The poor recovery of density structures is not related to the selection of the L2 norm

using the normalized wavefields as a misfit function. An identical inversion test, performed with the

standard L2 norm misfit function, resulted in much worse quality of reconstructed models.

Figure 5.13 shows the evolution of the VP model error for the elastic data inversion. Using a

homogeneous density model in the inversion of elastic data produced the highest VP error. On the

other hand, the accuracy of the reconstructed velocity models is almost identical for the rest of

other density models, which are kept fixed during inversion (true, poor and good density models).

There is also no improvement, when the density is updated at each iteration step using Gardner’s

relationship (compare Figure 5.13a,b). In contrast to the results of the acoustic data inversion, the

multi-parameter inversion for VP and density results in a very high model error, which is caused by

the wrong reconstruction of density structures.
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Figure 5.10: FWI results of elastic data – fixed density models. Inverted VP models (left); VP profiles
(center): the black solid line indicates the true model, the gray dashed line indicates the initial model,
and the red solid line indicates the inverted VP model. Density profiles of the fixed models (right).
(a) Test A – true density model, (b) Test B – constant density model, (c) Test C - poor 1D smooth
density model, (d) Test D - good 1D smooth density model.
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(c) VP profiles at x = 5 km
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(e) Density profiles at x = 3 km
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(f) Density profiles at x = 5 km
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(h) VP profiles at x = 3 km
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(i) VP profiles at x = 5 km
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(k) Density profiles at x = 3 km
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Figure 5.11: FWI results of elastic data. (a)-(f) Test F – density update at each iteration, good initial
density, Gardner’s VP − ρ relation. (g)-(l) Test H – multi-parameter inversion with a good initial
density model.
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Figure 5.12: FWI results of elastic data – final data residuals. (a) Test A – true density model, (b)
Test B – constant density model, (c) Test C - poor 1D smooth density model, (d) Test D - good 1D
smooth density model, (e) Test F – good initial density, Gardner’s VP − ρ relationship, (f) Test H –
multi-parameter inversion with a good initial density model.
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Figure 5.13: FWI results of elastic data – summary of final VP model errors. Red line – true ρ model;
green line – constant density model; blue line – poor density model (Brocher); black line – good
density model (Gardner). Capital letters refer to inversion tests listed in Table 5.1.
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5.8 Conclusions

The main goal of this study was to investigate the role of density on the recovery of velocity models.

To do so, I generated both the acoustic and the elastic data set for the Marmousi2 model with

heterogeneous density distribution and applied a 2D acoustic time-domain FWI.

The inversion results show that the realistic density information should be directly included in

the inversion process to improve the accuracy of the velocity reconstruction. This is particularly

important, when we take into account both amplitude and phase information of the data. The most

significant is the information about density at the seafloor, because the reflection coefficient at this

interface is dominated by the strong density contrast. Using a constant density assumption produces

artefacts in the recovered velocity models, because then all reflections are interpreted in terms of

velocity contrasts only.

Since the more accurate density models improve the VP estimation, it would be preferable to allow

for density inversion, rather than to use a fixed relationship between velocity and density. This is

particularly true in light of the fact that all empirical relations are valid only for certain rock types. In

the case of the noise-free acoustic data inversion, the multi-parameter VP and ρ inversion provided an

additional information on the lithology of the model. However, a reliable inversion of density turned

out to be very difficult with the elastic data. The density inversion is very sensitive to amplitude errors

resulting from the acoustic approximation. As a consequence, the incorrect density values negatively

affect the velocity reconstruction, because the VP model compensates the wrong density structures.
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Chapter 6

Some practical aspects

Waveform inversion using synthetic data sets offers a number of benefits. In particular, it provides

full control over the simulation of seismic data. Usually, the same forward modelling code is used to

generate and to invert observed data. It means that the noise due to measurement errors, modelling

inaccuracy or approximations in the physics of wave propagation is not considered. On the other

hand, there is a number of practical considerations that should be taken into account when inverting

field data.

This chapter investigates several aspects related to the application of the 2D FWI to real data.

Here, I address the following issues:

• 3D to 2D transformation

• Source wavelet estimation.

• Acquisition effects

6.1 3D to 2D transformation

The seismic waves propagating through the Earth have a three-dimensional characteristic, whereas

the inversion algorithm is based on the 2D forward modelling. In three dimensions, seismic waves are

excited by a point source and the wavefronts are spherical in a uniform medium. On the other hand,

2D modelling assumes that sources and receivers are constrained to a single straight acquisition line

and the seismic wavefield is generated by a line source. A seismic line source is extending parallel to

the y-axis, i.e. in the out of plane direction, and it generates cylindrical waves [Chapman, 2004]. The

cylindrical solution can be considered in three-dimensions as the superposition of point sources along

the y-line. It is obvious that the spherical spreading of 3D data does not correspond with cylindrical

spreading implied by the 2D wave equation. The difference in the nature of the source results in a

different amplitude decay with offset and in a phase misfit. It means that the field data (point source)

cannot be directly compared with the modelled data (line source) and it is necessary to transform

field seismograms such that they reflect wave propagation in a 2D medium.

Several authors have investigated the problem of the line source assumption in the 2D modelling.

The approach of Song and Williamson [1995] is based on the application of a Fourier transform in the
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out-of plane direction, so that the 3D simulation is reduced to multiple 2D problems. The method

assumes a 2.5D configuration, i.e. a medium varies only in two dimensions but the source is a 3D

point source. It is computationally less intensive than 3D modelling, but more demanding than 2D

forward modelling. This approach was used to perform a 2.5D frequency-domain acoustic waveform

inversion of crosshole data [Song et al., 1995]. Another group of methods aims to derive filters for 3D

to 2D transformation, which are generally formulated as pairs of integral equations [Amundsen, 1993;

Amundsen and Reitan, 1994; Roberts, 2005; Wapenaar et al., 1992]. The underlying assumption is

that the model is horizontally layered. Williamson and Pratt [1995] gives an overview of filters derived

from asymptotic ray theory that can be applied to convert acoustic data from 2.5D configurations to

2D data [e.g. Bleistein, 1986; Deregowski and Brown, 1983]. The drawback of these methods is that

they provide a very approximate correction and they are not valid in the presence of large velocity

variations.

6.1.1 Filter for the 3D to 2D transformation

In this study, I consider a 3D to 2D transformation derived from Green’s functions that allows for the

conversion of point source data to line source data [e.g. Wang and Rao, 2009; Williamson and Pratt,

1995].

In a homogeneous unbounded medium, the frequency-domain Green’s function in 3D is given by

[Ikelle and Amundsen, 2005]

G3D(r, rs, ω) =
1

4πR
exp

[
iωR

c

]
, (6.1)

where R = |R| = |r − rs| is the distance from the source located at r = rs, and c is the acoustic

velocity.

The 2D Green’s function G2D can be obtained from the 3D Green’s function by regarding G2D as

the signal in three dimensions from an infinitely long line source along the y-axis, i.e. G2D is the sum

of the signals from all the 3D point sources constituting the line source

G2D(r, rs, ω) =
1

4
(H)

(1)
0 (kR) , (6.2)

where (H)
(1)
0 (kR) is the zero-order Hankel function of the first kind, and k = ω/c is the wavenumber.

In the far-field, this can be approximately evaluated as

G2D(r, rs, ω) ≈ 1

4

√
2

πkR
exp [i(kR − π/4)] =

√
−ic

8πωR
exp

[
iωR

c

]
. (6.3)

3 Now, we want to find a filter F from 3D to 2D such that

G2D(r, rs, ω) = FG3D(r, rs, ω) (6.4)

We obtain

F ≈
√

2πRc

iω
= D−1/2(t)

√
2πRc , (6.5)

where D−1/2(t) = F−1[(iω)−1/2] is the causal half-integrator [Deregowski and Brown, 1983], which
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can be achieved in the time domain by convolution with 1/
√

t. When we assume that R ∝ ct, we get

F ∝ D−1/2(t) c
√

2πt . (6.6)

This simple correction assumes a constant velocity background. The first term accounts for the

phase misfit and the second term is a time-dependent amplitude spreading correction. The amplitude

correction term is often reduced to
√

t and we obtain

C1 ∝ D−1/2(t)
√

t . (6.7)

This correction, or just
√

t, is widely used as a part of the field data preprocessing for the 2D full

waveform inversion [e.g. Crase et al., 1990; Hicks and Pratt, 2001; Operto et al., 2006; Shipp and

Singh, 2002; Zhou et al., 1995].

A constant acoustic velocity can be replaced with the time-dependent RMS velocity Vrms (the

root-mean-square velocity), so that the medium is assumed to be horizontally layered [Wang and Rao,

2009]

C2 ∝ D−1/2(t)Vrms

√
t . (6.8)

In the next section, I investigate the accuracy of these two spreading corrections, C1 and C2, and

their effect on the inversion results.

6.1.2 2D inversion of 3D data - numerical example

To test the performance of the described 3D to 2D transformations, I generated both the point source

data (3D) and the line source data (2D). The point source data are modelled with the 3D acoustic

forward modelling code [Bohlen, 2002]. The acquisition geometry is identical for both models, i.e.

the sources and receivers are restricted to the plane. The source function is a Ricker wavelet with a

dominant frequency of 10 Hz.

It is assumed that the subsurface is invariant in the off-line direction (y-axis). To create such

a 2.5D model, the 2D Marmousi2 model (Figure 6.1c) is duplicated along the y-axis (Figure 6.1a).

It means that the 3D wavefields are recorded in 2.5D configuration and they are not influenced by

out-of-plane 3D structures.

An exemplary 3D seismogram and 2D seismogram are shown in Figure 6.1b,d, respectively. We

can clearly observe a stronger amplitude decay with time and distance of the 3D data with comparison

to the 2D data, which is caused by the different geometric spreading of the wavefronts.

C2 transformation requires a computation of the RMS velocity function. The RMS velocity is the

square root of the average squared velocity. For horizontal, isotropic layers and small offsets, the RMS

velocity equals the stacking velocity. For a 1D medium with n layers, Vrms is given by [Ikelle and

Amundsen, 2005]

Vrms =

√∑n
i=1 V 2

i ∆ti∑n
i=1 ∆ti

, (6.9)

where

∆ti =
hi

Vi
, (6.10)
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where Vi is the interval velocity of the ith layer and hi represents the thickness of the ith layer.

In this example, the RMS velocity is calculated from the initial VP model (Figure 6.2a). Thickness

of every layer equals the grid spacing, such that hi = 5 m, and the total number of layers n = 470,

which corresponds to the number of grid points in depth. The RMS velocity function is displayed in

Figure 6.2b.

Figure 6.3a,b shows the result of the transformation from 3D to 2D for both corrections. The seis-

mograms are normalized to the maximum of the seafloor reflection at the near offset. The difference

between the 3D data after correction and the 2D data is presented in Figure 6.3c,d. Both transforma-

tion methods yield satisfactory results. However, we can observe that the simple C1 transformation,

that assumes a constant velocity, results in a higher amplitude misfit than the C2 transformation. In

both cases, there is a significant misfit of the direct wave. This is likely due to the far-field approx-

imation of the 2D Green’s function. A more detailed waveform comparison reveals that amplitudes

after C1 transformation are underestimated with respect to the 2D data (Figure 6.3e). On the other

hand, the C2 transformation results in the overestimation of amplitudes (Figure 6.3f).

In Figure 6.4 the results of the 2D waveform inversion of the transformed 3D data are compared

with the result obtained from the inversion of the 2D data. Inverted VP models are very well resolved

for both corrections and they are comparable to the reference 2D data inversion. However, it can

observed that the resolution decreases below a depth of 1.6 km, which is probably due to the strong

velocity contrast at this depth. The under- and overestimation of amplitudes, discussed in the previous

paragraph, have a direct impact on the inversion results. This effect is well visible in the velocity

profiles (Figure 6.4c). The correction C1 is underestimating amplitudes and as a consequence, the

reconstructed velocity values are slightly smaller than the true VP values. The opposite effect is

seen, when the C2 correction is applied. In this case, the amplitudes and, in effect, the velocities are

overestimated. Quite surprisingly, the overall model error is a little bit higher for the C2 correction,

although this transformation provides a better fit to the 2D data.

In the case of a relatively simple geology, the 3D to 2D transformation derived from Green’s

functions are very efficient. However, as shown by Köhn [2011], the simple C1 correction produces

artefacts in the inversion results when applied to more complex geological settings.

6.1.3 2D inversion of 3D data
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Figure 6.1: (a) True 2.5D velocity model used for the 3D acoustic modelling and (b) the corresponding
3D point source data. (c) True 2D velocity model used for the 2D acoustic modelling and (d) the
corresponding 2D line-source data.
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Figure 6.2: (a) Starting VP model and the corresponding RMS velocity function (b) used in the
transformation C2.
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Figure 6.3: Comparison of the 3D data after 3D to 2D transformations. (a) 3D data after correction
C1, (c) residuals between the 3D data after correction C1 and the 2D data, (e) trace comparison at
1km and at 3 km for the 2D data (red line) and the 3D corrected data (black line). (b) 3D data
after correction C2, (d) residuals between the 3D data after correction C2 and the 2D data, (f) trace
comparison.
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Figure 6.4: 2D inversion of: 2D data (left), 3D data after transformation C1 (middle), and C2 (right).
(a) Inverted VP models, (b) relative error between the inverted and the true VP model, (c) VP profiles
at x = 3 km, (d) final data residuals.
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6.2 Estimation of the source signature

It is common to assume known source properties in synthetic experiments. It means that the same

source wavelet is used to generate synthetic data and in the full waveform inversion. However, an

accurate estimation of wavelet is an important problem in field data applications. Wrong wavelet used

in forward modelling results in a poor fit of synthetic data to observed data.

There are different methods used to estimate the wavelet signature for the full waveform inversion:

• solving a linear least-squares inverse problem [Pratt, 1999]

• stacking along the water-bottom reflection [Boonyasiriwat et al., 2008]

• near offsets at the water bottom are used to derive the source wavelet and then a shaping filter

is designed to transform the estimated wavelet to the Ricker wavelet [Vigh and Starr, 2008]

• source wavelets recorded at the source during the seismic survey [Crase et al., 1990]

• frequency-domain averaging and phase deconvolution algorithm [Hicks and Pratt, 2001]

• airgun source modelling software [Delescluse et al., 2011]

• synthetic estimate of the source signature based upon a cumulative modelled response of the

individual elements of the airgun array [Shipp and Singh, 2002]

I have investigated two different methods for source wavelet estimation. The first one is based

on the estimation of source signature from direct arrivals to hydrophones [Kravis, 1985]. The second

method is a linear-least squares inversion proposed by [Pratt, 1999]. This approach is widely used

in frequency-domain full waveform inversion of field data, however it required some modifications to

apply it in the time-domain inversion. To compare the performance of these two methods, I present

the results from synthetic inversion experiments using the Marmousi2 test case.

6.2.1 Wavelet estimation from the direct wave

The first method, proposed by Kravis [1985], estimates the source wavelet from the direct wave. It

is a portion of the data that can be easily used to estimate the reflectivity. The principles of this

approach are illustrated on the Marmousi2 test case (for details see Chapter 5.2.3).

The signature estimation is based on the deconvolution of the impulse response of a hydrophone

from the observed direct arrivals. In the absence of noise, the direct wave d(t) recorded at the

hydrophone is the convolution of the pure seismic source signature w(t) with the impulse response of

a hydrophone p(t).

d(t) = w(t) ∗ p(t) . (6.11)

The response of a hydrophone to a pressure impulse transmitted from a source consists of two impulses:

1) ray traveling directly from the source to the hydrophone, 2) source ghost reflection. Source ghost is

arising from the water-air interface. The energy from the source is not only propagating horizontally

to the hydrophone, but it is also traveling upward to the sea surface, where it is reflected downward

(Figure 6.5a). This reflected signal is called the source ghost. It has reversed polarity and it is delayed

in time with respect to the primary pulse. Since the source is located near the sea surface, usually at
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depths of around 10 m, the source ghost closely follows the primary pulse and changes the effective

wave shape [Ikelle and Amundsen, 2005].

The response of a single hydrophone located at position x = xh, at a depth dh, to an impulse

excited at time t = 0 from a source located at x = 0, at a depth ds, is given by

p(xh, t) =
1

rd
δ

(
rd

vd
− t

)
+

R

rgh
δ

(
rgh

vd
− t

)
, (6.12)

where δ(t) is the Dirac delta function, vd is the average velocity of the direct ray, R is the reflection

coefficient at the sea surface, which is close to -1. rd and rgh represent the raypath lengths of the

directly traveling ray and the ghost reflection, respectively. The time delay between the two impulses

is given by

Td =
2dhdd

vdxn
. (6.13)

In this test example the source and receiver depth is dh = ds = 7.5 m, source-hydrophone distance is

xn = 100 m, and water velocity vd = 1480 m/s, which gives the time delay of 760 µs.

The deconvolution is performed in the frequency domain by inverse filtering, such that

d(t) = w(t) ∗ p(t) =⇒ D(f) = W (f) ∗ P (f) (6.14)

W (f) = D(f) ∗ 1

P (f)
. (6.15)

The aim is to find the stable inverse filter 1/P (f). First, the impulse response of a hydrophone is

digitized with a very small sampling rate (Figure 6.5b), it this example 0.1 ms, and then the Fourier

transform is applied to calculate the resulting spectrum P (f). The reciprocal of the impulse response

represents the inverse operator. Finally, the inverse of the impulse response (shown in Figure 6.5d) is

convolved with the observed direct arrival (Figure 6.5e) by frequency domain multiplication to provide

an estimate of the source signal

ŵ(t) = F
−1

{
D(f) · 1

P (f)

}
. (6.16)

The estimated source signature ŵ(t) is a very good match to the true wavelet (Figure 6.5f).

Although the method is efficient and simple, there are some drawbacks that may limit its accuracy

in field applications:

• It requires that there is no interference between the recorded direct arrivals and the seabed

reflections or refractions.

• It assumes a spherically symmetric source. It is possible to extend the method to handle non-

spherically symmetric sources, such as source arrays, but then it requires that all source elements

are identical. This is rarely the case in marine streamer surveys, which mainly use airgun arrays

composed of multiple airgun units with different volumes.

• It requires a determination of the amplitude scaling factor to compensate for the unknown source

strength and sensitivity of the recording system. It means that the field shot gathers must be

scaled with the corresponding amplitudes of the initial synthetics.
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Figure 6.5: Wavelet estimation from the direct wave. a) Raypaths for a direct wave. b) Impulse
response of a hydrophone to a horizontally traveling impulse, c) with the corresponding amplitude
spectrum. d) Amplitude spectrum of the inverse filter, e) amplitude spectrum of the observed direct
arrival waveform. f) red line: estimated source wavelet obtained by convolving the direct arrival
waveform with the inverse filter, black line: true source wavelet.
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This can be achieved by scaling the amplitudes of the seabed reflection at the nearest offset.

However, to use this approach, the starting velocity model must already contain an accurate

information on the true seafloor parameters, because the seafloor reflection in each field gather

would be equalized to the value of the synthetic data. Amplitude calibration can be also per-

formed by balancing the amplitudes around the direct arrival at the nearest offset channel. This

second approach requires a close fit of the modeled direct arrival to the one observed in the

field data. Therefore, a proper description of the acquisition parameters, a good estimate of the

source signature, and an accurate modelling of the directivity effects is necessary. But on the

other hand, this method allows the update in the seafloor region and it normalizes variations in

the source strength between the shots.

6.2.2 Source wavelet inversion

Source wavelet can be estimated from the seismic data by solving a linear inversion problem. In this

approach the wavelet is the unknown that we want to determine from the known reflectivity series

and recorded data. The method involves forward modelling to compute a synthetic seismogram that

is then compared to the observed data. The initial wavelet is modified such that synthetics give a

satisfactory match to the observed data. This approach can be directly incorporated into the waveform

inversion algorithm.

6.2.2.1 Method

According to the convolutional model [Berkhout, 1977], the seismic trace di(t) recorded at the i-th

receiver is the result of convolution of the earth’s reflectivity function ri(t) with the propagating

seismic wavelet w(t) plus a noise component n(t)

di(t) = w(t) ∗ ri(t) + n(t) . (6.17)

Once the reflectivity sequence is known, the synthetic trace ui(t) can be written as

ui(t) = s(t) ∗ ri(t) , (6.18)

where s(t) is a wavelet used to generate synthetic data. Given the initial wavelet estimate s(t), we

want to find a filter h(t) so that we can estimate w(t) as follows

h(t) ∗ s(t) = ŵ(t) , (6.19)

where ŵ(t) is an estimate of w(t). After applying the filter h(t) to the synthetic seismic trace, we

obtain

h(t) ∗ ui(t) = h(t) ∗ [s(t) ∗ ri(t)] = [h(t) ∗ s(t)] ∗ ri(t) = ŵ(t) ∗ ri(t) = d̂i(t) . (6.20)

The inverse problem is formulated in the frequency domain. We compute the filter by minimizing

the least-squares error function (Pratt, 1999)

ǫ = ||d(ωj) − h(ωj)u(ωj)||22 =
1

2
(d(ωj) − h(ωj)u(ωj))

T
(d(ωj) − h(ωj)u(ωj))

∗
, (6.21)
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where d(ω), u(ω) are the discrete Fourier transforms of recorded and modelled shot gathers, re-

spectively. ω is angular frequency, j the frequency index, the superscript T represents the matrix

transpose, and ∗ denotes the complex conjugate. h(ωj) is a complex-valued scalar representing an

optimal source weight at a given frequency. The least-squares error is minimized when the following

condition is satisfied
∂ǫ

∂h(ωj)
= 0 . (6.22)

Since it is a linear least squares problem, a closed-form solution is given by

h(ωj) =

∑M
i=1 ui(ωj)

tdi(ωj)
∗

∑M
i=1 ui(ωj)tui(ωj)∗

, (6.23)

where M is the number of traces in a shot gather. If the reflection coefficients are assumed known,

then the least squares inversion and Wiener filter approach are equivalent (Lines, Treitel).

Straight spectral division causes numerical problems in the calculation. Small or zero values in the

denominator results in numerical instability, therefore the deconvolution problem from (6.23) must

be regularized. To stabilise a spectral division, I have chosen the water-level deconvolution method

[Menke, 1984]. The values in the denominator that are below a specified threshold are replaced with

the so-called water-level parameter. Above the water-level, the denominator value is identical to the

original value, and only the small values are replaced. This prevents high amplifications of the data

spectrum at frequencies that have very small (close to zero) amplitudes. The water-level parameter is

chosen by trial and error and it is a fraction of the maximum value of the denominator computed for

all frequencies. I have chosen the lowest value that produces acceptable results and the water-level

parameter is set to 1e-5 of the maximum amplitude of the observed shot gather.

In order to obtain a time-domain representation of the updated source signature, we need to

calculate the optimum source weight for every discrete frequency n (n = 1, . . . , N), where N is the

number of frequencies represented by the Fourier transform of the seismic data. According to the

convolution theorem, convolution in the time domain is mapped as multiplication in the frequency

domain. Thus the wavelet estimate in time domain can be obtained by

ŵ(t) = F
−1 {h(ω) · s(ω)}N , (6.24)

where s(ω) is the Fourier transform of the initial source wavelet s(t).

6.2.2.2 Implementation

I implemented this source wavelet estimation algorithm in the full waveform inversion code. The

source signature is estimated separately for every shot gather. There is only one additional forward

modelling required prior to the actual inversion of model parameters. The aim is to obtain the first

source estimate for the starting velocity model. As an initial source signature, I use a delta function.

It provides better results than the Ricker wavelet, mainly because it has constant amplitude at all

frequencies (white spectrum). However, the propagation of a delta function on the finite-difference

grid is complicated due to its white spectrum. To avoid numerical dispersion effects, an infinitesimal

grid spacing would be required. To overcome this problem, a low-pass filtered delta function is used.

The high-cut frequency of the Butterworth filter corresponds to the maximum frequency component
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Figure 6.6: (a) True VP model and (b) the corresponding observed data. Source time function is the
Ricker wavelet with the peak frequency of 10 Hz.

of the input data to ensure no loss of accuracy.

Source wavelet inversion is performed only at iteration steps related with the change of the data

content, i.e. the change of frequency band, time window or offset window. Synthetic inversion tests

have shown that it is not necessary to update the source signature at every iteration step.

6.2.2.3 Performance

The main factor limiting the accuracy of the wavelet inversion method is the assumption that the

velocity model is known. To illustrate the impact of velocity model errors on the accuracy of the

wavelet reconstruction, two test cases are considered. In the first case the correct velocity model is

used to generate initial synthetic data so that the source wavelet is the only unknown (Figure 6.7a).

In the second, more realistic, example a smooth background model is used instead of the true velocity

(Figure 6.8a). The observed data are generated for the checkerboard velocity model using the Ricker

wavelet with the peak frequency of 10 Hz as the source time function (Figure 6.6). The initial source

wavelet is the low-pass filtered delta function.

When the true velocity model is used, the inverted source signature is almost identical to the true

source wavelet (Figure 6.9). On the other hand, for the smooth velocity model, we still obtain a very

good estimate of the source wavelet (Figure 6.9). There are some discrepancies mainly visible in the

amplitude spectrum, which are caused by the inaccuracies in the velocity model that are propagating

into the source wavelet. This result suggests that an initial velocity model is sufficient to provide a

correct representation of the source time function.

As pointed out by Brenders [2011] the inverted source wavelets can also serve as the quality check

on the velocity model during the full waveform inversion. At each iteration, the model parameters are

updated and the synthetic data is generated. When the residuals between the observed and predicted

data are decreasing and the estimated source wavelets improve as well, this indicates an accurate

reconstruction of the velocity model. On the contrary, if the reconstructed velocity model is incorrect

this would result in a lack of coherency in estimated wavelets.
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Figure 6.7: Test case 1. (a) True VP model is used to generate initial synthetics (b) with the low-pass
filtered delta function as a source wavelet.
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Figure 6.8: Test case 2. (a) Smooth, background VP model is used to generate initial synthetics (b)
with the low-pass filtered delta function as a source wavelet.
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Figure 6.9: Test case 1 - wavelet inversion with the true velocity model. Top: time domain represen-
tation of the source wavelet, center: amplitude spectrum, bottom: phase spectrum. Solid line denotes
the true Ricker wavelet used to generate observed data; dash-dotted line is an initial, low-pass filtered
delta function; dashed line represents the wavelet estimated with least-squares inversion.
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Figure 6.10: Test case 2 - wavelet inversion with the smooth velocity model. For details see caption
of Figure 6.9
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Figure 6.11: FWI case 1 with the correct source location. (a) Inverted VP models, (b) final VP model
error. Left: reference inversion result with the true wavelet, center: wavelet estimated from the direct
wave, right: source wavelet inversion.

6.2.3 Wavelet estimation - inversion tests

The presented wavelet estimation methods were applied to the benchmark Marmousi2 test. The

synthetic dataset was generated with the Ricker wavelet as the source time function, with the central

frequency of 10 Hz. The starting velocity model is the 1D-smoothed true model. In order to highlight

wavelet effects, the density model is assumed to be known. The reference inversion result, computed

with the correct source time function, is displayed in Figure 6.11a.

Case 1

The objective of this experiment is to assess the effectiveness of two investigated wavelet estimation

methods within the inversion scheme. Since the wavelet is unknown, we must determine both the

wavelet and the velocity model from the input data. The inversion result using the first method,

i.e. the wavelet estimated from the direct wave, is shown in Figure 6.11b, whereas the FWI result

using the least-squares inversion approach for the wavelet estimation is shown in Figure 6.11c. The

velocity structures are very well recovered and are nearly identical to those of the reference inversion

result. This indicates that both methods provides a very good estimation of the real source signal. In

addition, the final relative model error between the real and the reconstructed P-velocities is shown

in Figure 6.11b.

Case 2

In the second inversion experiment, I introduced a systematic error in the acquisition geometry.

115



6. Some practical aspects

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4
Near offset trace

Time [s]

 

 

loc 1
loc 2

Figure 6.12: The effect of a source location on the waveform recorded at the near offset receiver
located at r = (6150m, 7.5m). Black trace corresponds to the source located at s1 = (6250m, 7.5m),
red trace corresponds to the source located at s2 = (6255m, 12.5m).

The source location used to generate synthetic data is different from the source location within the

inversion scheme. The sources are shifted by 5 m in x- and in y-direction, which means that the

”real” streamer is towed at the depth of 12.5 m, whereas the streamer in FWI is towed at 7.5 m

below the air-water interface, and the near-offset is 105 m and 100 m, respectively. This relatively

small source location error has a significant effect on the observed wavefrom (Figure 6.12), which is

mainly caused by the different source ghost effect. The interference between the primary, downgoing

wavefield and the ghost wavefield, that is reflected at the air-water interface, varies with the depth of

the source. Since the source ghost is almost indistinguishable from the primaries, it is treated as part

of an effective-source signature [Ikelle and Amundsen, 2005].

In field applications, this type of acquisition setup errors is easily introduced due to the finite-

difference discretization method and due to the source geometry instability. In marine acquisition,

the stability of the geometry depends not only on the acquisition system design but mainly on the

weather conditions [Parkes and Hatton, 1986]. The source energy and the exact source and receiver

location are strongly affected by sea surface waves, which in consequence has a major effect on the

effective-source signature.

Within this experiment, I performed three FWI tests using the true source wavelet, the wavelet

estimated from the direct wave, and the source wavelet inversion method. The final velocity model

deviations from the true model are presented in Figure 6.13. The overall accuracy of the reconstructed

images is lower in comparison to the first experiment. This trend can be also observed in Figure 6.14,

which represents the evolution of the VP model error during the inversion process for different source

wavelets. However, in contrast to the first test with the correct source acquisition, the wavelet inversion

method provides the most accurate inversion result when the incorrect source location is introduced.

With the true source signature, the effects of geometry errors are projected directly into the velocity

model, whereas the wavelet inversion can partly compensate for source location errors. This results

in a better quality of the inverted models. When the wavelet is estimated from the direct wave, the

reconstructed model is acceptable, but it contains more noise relative to other two inversion results.
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(a) true wavelet
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(c) wavelet inversion

Figure 6.13: FWI case 2 with the incorrect source location. Final VP model error. Left: reference
inversion result with the true wavelet, center: wavelet estimated from the direct wave, right: source
wavelet inversion.
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Figure 6.14: Evolution of the VP model error. (a) FWI case 1 with the correct source location, (b)
FWI case 2 with the incorrect source location. Solid line indicates the reference inversion with the
true wavelet, dashed line represents the wavelet estimated from the direct wave, dashed-dotted line
represents the source wavelet inversion.
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6.3 Acquisition effects - Airgun array versus single airgun ap-

proximation

The typical source in marine streamer seismics is an array of airguns that operates as an exploding

source. A single airgun is a poor energy source because of the bubble effect. The firing of an airgun

generates an oscillating bubble in the water. The initial bubble expansion generates the desired

broadband seismic pulse, which is followed by the subsequent damped oscillating bubble pulse that

cause source-generated noise. To minimize the bubble effect, airguns of various sizes are combined to

form arrays [Gadallah and Fisher, 2005]. Spacing between individual airguns, their volume and the

actual fire time is such that the bubble pulses interfere destructively and the resulting array signature

is approaching the ideal characteristic of a single impulse. Another reason for using airgun arrays is

to increase a source strength. The peak amplitude of an airgun’s signature is proportional to the cube

root of the volume of air in the airgun

A ∼ V 1/3 . (6.25)

It means that an airgun volume would have to be increased by a factor of 8 in order to generate a

two times larger amplitude. The same effect can be achieved when two airguns of the same volume

are fired simultaneously.

Since an airgun array has a certain width and length, it shows directivity effects in contrast to a

single airgun. Each airgun array has its own specific radiation pattern, i.e. the energy of the airgun

array signature changes with the horizontal azimuth angle and with the emission angle (vertical angle)

[Li et al., 2011]. It means that the frequency content and the pressure strength of the array signature

are different at different locations in the water. An important feature is that the directivity effects

are stronger for high frequencies [Sheriff and Geldart, 1982].

To investigate whether the single point source approximation of an airgun array is accurate for

waveform inversion, I performed 3D numerical simulations using both a single airgun and an airgun

array. The acquisition geometry used in this experiment is based on the field data survey presented

in Chapter 7. The airgun array (Figure 6.15) consists of 20 airguns of different volume located at a

depth of 7.5 m below the air-water interface. The source array length is 20 m and the width is 30 m.

The test model is the 3D-Marmousi2 model presented in Chatper 3 and the maximum frequency of

the source signal is 20 Hz.

Waveforms generated with the airgun array and with the point source are shown in Figure 6.16.

To allow for a direct comparison, both seismograms are normalized to the maximum of the seabed

reflection at the near offset trace. Figure 6.17a shows a comparison of the RMS amplitude of a trace

versus offset for the point source data and the airgun array data. Because most of the energy emitted

from the airgun array is concentrating close to the vertical emission angle, the amplitudes at wide

angles are smaller than the corresponding amplitudes from the point source. The relative error of

the RMS amplitudes of point source is less than 11 per cent and it is generally increasing with offset

(Figure 6.17b). This relatively small misfit indicates that the point source approximation is sufficient

to reproduce the directivity effects of the analysed airgun array for the frequency range from 0 to 20

Hz. This result is consistent with the results of Shipp and Singh [2002], who investigated directivity

effects of a horizontal source array for different frequency ranges, but limited the comparison to the

seabed reflection only.
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Figure 6.15: Airgun array configuration. There are 20 individual airguns with a total volume of 4516
inch3. The numbers in brackets represent the peak amplitude of an airgun.
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Figure 6.16: Shot gathers generated with the airgun array (a) and with the single airgun (b). Both
seismograms are normalized to the maximum of the seabed reflection at the near offset trace. (c)
The difference plot shows that the waveform discrepancy is mainly associated with the strong seafloor
reflection and reflections at middle and far offsets.
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Figure 6.17: (a) RMS amplitude versus offset for the point source and the airgun array, RMS amplitude
is computed for every trace.(b) The relative error of the RMS amplitudes of the point source.

6.3.1 Summary

In this chapter, I have discussed several practical aspects related to the FWI of real data. To illustrate

numerically the efficiency of different 3D to 2D corrections and the source wavelet estimation methods,

I have carried out a series of inversion tests. In the following, I give a brief summary of the main

findings.

Due to the difference between 2D and 3D geometrical spreading, it is necessary to transform

the 3D point source data to 2D line source data. In this study, I have considered simple 3D to

2D transformations derived from the Green’s functions. In spite of strong assumptions on velocity

structures, both corrections are efficient for transformation of 3D data generated for a simple geological

model.

Accurate source wavelet estimation is a prerequisite for successful application of FWI to field

data. In this study, I have investigated two methods: source wavelet estimation from direct arrivals

to hydrophones and a linear-least squares inversion. Although the first method can be easily used as

part of the data processing, it has some drawbacks that may limit its accuracy in field applications.

On the other hand, the source wavelet inversion method provides a very good estimate of the source

time function and it offers a number of advantages. It can be easily introduced within the full

waveform inversion framework and the source signature is estimated separately for every shot gather.

Furthermore, the numerical results show that the wavelet inversion can partly compensate for location

errors in the acquisition geometry, which is of importance when inverting real data.

Finally, I have addressed the problem of the directivity of an airgun array. The synthetic tests

indicate that the point source approximation is sufficient to reproduce the directivity effects of an

airgun array for the frequency range from 0 to 20 Hz.
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Chapter 7

Field data example from the North

Sea

In this Chapter, I apply the 2D acoustic FWI to seismic streamer data acquired in the North Sea

in 1991. First, I discuss the key aspects related to the field data preprocessing, which is required

to enable a direct comparison between the observed and modelled data. The main challenge of the

field data inversion is the generation of an accurate starting velocity model. In this study, I assess

the accuracy of initial models generated with different methods, i.e. from the VSP data, from the

NMO velocities, and from the traveltime tomography. Afterwards, I discuss the choice of the inversion

parameters that aims to reduce the high complexity of the inverse problem. The resolving power of

the FWI is tested with the checkerboard model using the same acquisition setup, source signature

and the frequency content as in the field data example. In the next section, I compare the field data

inversion results obtained for different multi-stage inversion strategies, I present the multi-parameter

inversion results as well as the mono-parameter inversion for different minimization criteria and for

different starting models. Finally, I validate the reliability of reconstructed models by a comparison

with the migrated seismic section and by the analysis of the data fit.

This Chapter is organized according to the workflow for the field data inversion that comprises

the following steps:

1. Data preprocessing

2. Starting model generation

3. Source wavelet estimation

4. Initial modelling

5. Choice of the inversion parameters

6. Resolution study

7. Multi-scale, multi-stage FWI inversion

8. Validation of inversion results
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7. Field data example from the North Sea

Figure 7.1: The acquisition parameters of the field data.

7.1 Field data

The seismic data were acquired in the northern Norwegian North Sea in the Møre Basin, which is

a deep Cretaceous basin. The data set was collected by Geco-Prakla in 1991. The survey gathered

over 30 km of 2D seismic data. The acquisition geometry is composed of a 160-channel, 4000 m

single-sensor towed streamer (Figure 7.1).

The main acquisition parameters are:

Source Type Airgun array
Volume 4804 C.I.
Source tow depth 7.5 m
Shotpoint interval 25 m
Receiver type Streamer cable
Recording system HSSQ
Group interval 25 m
Number of groups 160
Streamer tow depth 10 m
Near offset 100 m
Far offset 4075 m
Sample interval 2 ms
Record length 7000 ms

From the available data, I selected a subregion that extends over 7.5 km, and I used 62 shots

spaced every 100 m (every fourth shot). Examplary raw shot gathers are shown in Figure 7.2 and the

amplitude spectrum is illustrated in Figure 7.3.
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Figure 7.2: Exemplary raw shot gathers. The vertical stripes in the data represent swell noise that
has large amplitudes at low frequencies.
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Figure 7.3: Normalized amplitude spectrum of the raw shot gather 1. Spectrum averaged over 160
traces, time window: 0 to 4000 ms.
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7.2 Data preprocessing

The data preprocessing is a crucial part of the workflow for full waveform inversion of the field data.

The main objectives of the data processing are to improve the signal-to-noise ratio and to transform

the field data such that they reflect the approximations made in the forward modelling.

The aim of acoustic FWI is to find a set of model parameters, i.e. P-wave velocity and density,

which describes the acoustic properties of the subsurface and provides a good fit to the observed data.

Since the criterion for selecting the best model of the subsurface is based on fitting the observed data

and the data predicted by the forward modelling, it is important to allow for a direct comparison

between the modelled data and observed data. The forward problem is solved using a finite-difference

approximation of the 2D acoustic wave equation. Therefore, it is necessary to preprocess the observed

data to remove these wave propagation phenomena that cannot be modelled correctly, such as seismic

noise, elastic effects, or 3D effects. Otherwise the seismic noise and the nonacoustic factors will be

projected into the reconstructed P-wave velocity models.

7.2.1 Quality control

The quality control is be used to monitor amplitudes of the data and to identify bad or noisy traces,

or misfired shots. Figure 7.4 shows the root-mean-square (RMS) trace amplitude as a function of shot

and channel. Each square cell represents one trace in the input raw data. There are four channels

(70, 91, 111, 138) that are quieter than the others. These bad traces can be also identified in the shot

gathers (Figure 7.2). The distribution of the RMS amplitude with offset is relatively similar for all

shots. However, the amplitudes at near offset traces are higher for shots 50 - 62.

7.2.2 Mute

Muting is applied to the data to remove the noise preceding the first arrivals. Moreover, the late

arrivals that correspond to deep reflections coming from outside of the model are muted as well. The

original recording length of 7 seconds is limited to 4 seconds two-way time.

7.2.3 Trace interpolation

Interpolation of bad traces is not a prerequisite, because the full waveform inversion can handle any

irregular geometry configuration. In this particular case, the four channels (70, 91, 111, 138) recorded

the signal but its amplitude was very weak in comparison to the neighboring traces. Therefore, it

was enough to balance the amplitudes of these bad traces by estimating the correct energy level from

adjacent channels.

7.2.4 Noise suppression

A noise component is always present in seismic data. An efficient removal or attenuation of different

noise types can be a challenging process, however it is important to obtain good inversion results.

Marine noise comprises mainly noise generated due to hydrostatic pressure fluctuations, swell noise,

noise from the vessel, and seismic interference [Elboth et al., 2009]. This high-amplitude noise normally

contains frequencies from 0-10(15) Hz, and without an appropriate de-noising of seismic data it would
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Figure 7.4: The root-mean-square (RMS) trace amplitude of the raw data. The x-axis is the channel
number, the y-axis is the shot number. Every fourth shot is plotted, resulting in the shot spacing of
100 m.

produce artefacts in the inverted models. Hydrostatic pressure variations are related to the change

of water column height over the seismic streamer and are caused by water swells and the vibration

of a streamer. The frequency content of the hydrostatic pressure variations is limited up to 1-2 Hz.

The swell noise is the non-coherent high-amplitude noise, that has large amplitude at relatively low

frequencies 2-10 (15) Hz. It usually affects a number of neighboring traces and can be observed as

vertical stripes in seismic data (Figure 7.2b). The swell noise originates from the sea-surface waves

and vibrations in the streamer, which are caused by turbulent water related to the sea-surface waves.

Low frequencies dominated by the hydrostatic pressure variations and swell noise could be removed

by applying a low-cut filter. However, since the presence of low frequencies in recorded data is crucial

for the convergence of FWI, the standard low-cut filters that remove unwanted noise together with

the large parts of the useful seismic signal are not suitable.

To analyse the quality of the recorded data and to define the lowest frequency for FWI, it is

useful to plot narrow frequency bands of the raw data (Figure 7.5). The data are filtered with the

Butterworth band-pass filter, with an order n = 6. Very low frequencies, below 3 Hz, are completely

dominated by strong noise and therefore not useful for the waveform inversion. The signal-to-noise

ratio is better for the frequency range from 3 Hz to 4 Hz, although there is still a significant amount of

noise present in the data. When we analyse the amplitude spectrum of the original data (Figure 7.7a),

we can observe that the frequency content of the swell noise is limited to frequencies below 8 Hz.

To suppress this low frequency noise, I applied a time-frequency de-noising algorithm (TFDN)

proposed by Elboth et al. [2008]. It is a localized method that identifies the parts of the frequency

spectrum that are affected by noise, and afterwards estimates the actual amplitude of the affected fre-

quency. Figure 7.6a shows the band-pass filtered (3-8 Hz) original shot gather before noise suppression

and after applying the TFDN algorithm (Figure 7.6c). Although the highest amplitudes of the swell

noise are attenuated (Figure 7.7b), there is still a significant amount of noise left in the data. Becuase

the TFDN algorithm requires a careful choice of parameters, this poor performance might be caused

by incorrect parameter settings. The difference plot illustrates the extracted noise (Figure 7.6d). The
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Figure 7.5: Bandpass filtered raw shot gather 1.

swell noise removed from the field data with the TFDN algorithm was used in Chapter 3 to analyse

the performance of different minimization criteria in the presence of noise.

Another possibility to remove the swell noise from seismic data is to apply f − k dip filtering.

The noise can be separated from the reflected and refracted waves on the basis of their dips in the

frequency-wavenumber f − k domain. To remove the swell noise, the field data were transformed

to the f − k domain using the 2D Fourier transformation and a dip filter was applied such that all

events with a dip higher than 25 ms/trace were rejected. With the receiver spacing of 25 m, the dip

of 25 ms/trace corresonds to rejecting the events with the apparent velocity lower than 1000 m/s.

Figure 7.6b shows the shot gather after f − k dip filtering and the corresponding amplitude spectrum

is illustrated in Figure 7.7c. We can observe that the f − k dip filter was very efficient in removing

the swell noise from the recorded data.

7.2.5 3D to 2D transformation

The field data represent the wave propagation in a 3D medium, whereas the inversion algorithm is

based on the 2D forward modelling. In the 2D modelling an explosive source acts not as a point

source but as a line source. This difference in the nature of the source results in a different amplitude

decay with offset and in a phase misfit. It means that the field data (point source) cannot be directly

compared with the modelled data (line source) and it is necessary to transform field seismograms such

that they reflect wave propagation in a 2D medium.

To transform the field seismograms, I used the following 3D to 2D correction (for details see
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Figure 7.6: Noise suppression. (a) Band-pass filtered shot gather 43 (3 Hz - 8 Hz) before noise
suppression, (b) after f − k dip filtering, (c) after applying the TFDN algorithm, (d) the difference
between (a) and (c).
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Figure 7.7: Amplitude spectrum of the shot gather 43 (a) before noise suppression, (b) after applying
the TFDN algorithm, (c) after f − k dip filtering.
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Figure 7.8: 3D to 2D transformation. Shot gather 1 (a) after noise suppression, (b) after 3D to 2D
transformation. (c) The RMS velocity function.

Chapter 6)

C2 ∝ D−1/2(t)Vrms

√
t . (7.1)

where D−1/2(t) is the half-integrator, which corresponds to the convolution with 1/
√

t in the time

domain, and Vrms is the time-dependent root-mean-square velocity. The RMS velocity was calculated

from the starting P-wave velocity model (from VSP data) (Figure 7.8c). The first term of the 3D to 2D

correction accounts for the phase misfit and the second term is a time-dependent amplitude spreading

correction. The field data before and after the 3D to 2D correction are shown in Figure 7.8a,b.

7.2.6 Frequency filtering

Because the attenuation effects are not taken into account in the forward modelling, the use of high

frequencies for acoustic FWI is limited. In general, seismic attenuation increases with frequency, i.e.

the high-frequency components of seismic waves are attenuated more rapidly during wave propagation

than the low-frequency components. The frequency-dependent attenuation produces the change in the

amplitude and phase spectra of recorded signal [Gadallah and Fisher, 2005]. As shown by Kurzmann

[2012], the pure acoustic inversion of viscoacoustic data produces strong artefacts in the reconstructed

VP models, when the higher frequency components (peak frequency of the signal higher than 5 Hz)

are included. Because the low-frequency components are less sensitive to attenuation, Shipp and

Singh [2002] limited the frequency content of the marine streamer data up to 15 Hz prior to FWI.

To improve the final velocity model, Takam Takougang and Calvert [2011] introduced attenuation for

the inversion of frequencies higher than 10.5 Hz.

In this study, the 3D-to-2D transformed data are filtered with a 6th-order bandpass Butterworth

filter with a passband from 3 to 14 Hz. The aim of the filter is to remove the very low frequencies

with a poor signal-to-noise ratio and to limit the maximum frequency content of the data, such that

the attenuation effects are weaker. The exemplary, filtered shot gather and the associated amplitude

spectrum are shown in Figure 7.9.
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Figure 7.9: (a) Exemplary shot gather after filtering with a 6th-order bandpass Butterworth filter with
a passband from 3 to 14 Hz, (b) the associated normalized amplitude spectrum. Spectrum averaged
over 160 traces, time window: 0 to 4000 ms.

7.2.7 Shot balancing

To compensate for the difference in source energy between shots, it is necessary to perform an am-

plitude balancing of the data. This was achieved by scaling each shot gather by a scalar, so that the

amplitude of the direct wave at the near offset trace is constant for all shot gathers. Unlike the offset-

dependent amplitude scaling, this approach preserves the true seafloor reflectivity and the variation

of amplitudes with offset. The offset-dependent amplitude scaling is often applied to 2D acoustic

inversion of real data to compensate for the differences between field and synthetic data [Bleibinhaus

and Rondenay, 2009; Brenders and Pratt, 2007b; Jaiswal et al., 2008]. However, the similar effect can

be obtained with the L2 norm using the normalized wavefields, because this minimization criterion

accounts for different energy levels between the observed and synthetic data.

7.2.8 Time windowing

To add stability to the inversion, a time window can be applied to the early arrivals [Pratt and

Worthington, 1988]. As shown by Sirgue [2003], early arrivals are more linear than the late arrivals.

Furthermore, time windowing of the data around the first arrivals is compatible with the reconstruction

of the large and intermediate wavelengths of the model and helps to reduce the risk of cycle skipping.

In contrast to the frequency domain approach, time windowing of the data is straightforward in the

time-domain FWI. To remove the late arrivals, which increase the non-linearity of the inverse problem,

a time window of 1.5 s was applied after the first arrival (central panel in Figure 7.24.

7.3 Starting models

As mentioned before, the success of the inversion depends on the accuracy of the initial velocity model.

In general, FWI requires the definition of a smooth background velocity model that will fill in the gap

of low frequencies missing in the data. Due to the lack of frequencies below 3 Hz in the field data, it

is necessary to generate an initial velocity model that already contains the long wavelength features

of the subsurface. In this study, I generated three different starting velocity models:
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• from the VSP data,

• from the NMO stacking velocities,

• from the refraction traveltime tomography.

As shown in Chapter 5, the density information is also required to provide realistic reflection

coefficients in marine environment. The starting density models are computed from initial velocity

models using Gardner’s velocity-density relationship (Eq. 5.7).

7.3.1 Seafloor topography

A good description of the seafloor topography is required for the correct modelling of the seafloor

reflections and the surface-related multiples. These waves have high amplitudes and thus they domi-

nate the data residuals. Because the seabed depth measurements using sound pulses (sonar) are not

available for this data, the seabed depth was estimated from the recorded data. The plot of the near-

est offset channels (quasi-zero-offset section) indicates a slight variation of the seafloor topography

(Figure 7.10a).

Seafloor topography was automatically determined from the arrival time of the seafloor reflection at

the near offset trace. Based on the picked travel time T0 and on the water velocity Vw, the travelpath

of the seafloor reflection s is calculated as s = VwT0. The corresponding depth of the seafloor Hsea,

assigned to the midpoint between the shot and the channel, is calculated as

Hsea =
√

(0.5R)2 − (0.5s)2 , (7.2)

where R is the offset between the shot and the channel. In this study, the water velocity estimated from

the direct wave Vw = 1480 m/s. Because of the picking errors the reconstructed seafloor topography is

very irregular (Figure 7.10b). Therefore, the original topography was smoothed and then interpolated

on the model grid.

7.3.2 Starting model from the VSP data

The first initial velocity model for the waveform inversion is based on the interval velocities calculated

form the vertical seismic profiling (VSP) data available from the wellbore located at x = 2.3 km

(Figure 7.11a). The original interval velocities were smoothed, such that the individual layers are

no longer visible and are replaced by a gradient (Figure 7.11b). The model was filtered with a 2D-

Gaussian filter with a size of 100 × 100 m and σ = 30. The 2D-Gaussian filter is defined as

G(x, z) ∼ e−
x2+z2

2σ2 , (7.3)

where x and z are the spatial coordinates, and σ is the standard deviation.

The dimensions of the model are 7.5 km in the x-direction and 2.3 km in the z-direction. P-wave

velocity ranges from 1536 m/s at the seafloor to 2600 m/s at a depth of 2.3 km.
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Figure 7.10: Estimation of the seafloor topography.(a) Nearest-offset traces extracted from shots along
the profile, (b) estimated seafloor topography; red line - original, black line - smoothed.
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Figure 7.11: (a) Starting VP model from the VSP data. The vertical line indicates the borehole
location. (b) P-wave velocity function; red line indicates the original interval velocities from the VSP
data, black line represents the smoothed velocity function used as a starting model for the inversion.
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Figure 7.12: (a) NMO velocity model, (b) interval velocities computed from the NMO velocity model.

7.3.3 NMO velocity model

The second initial model for FWI is based on the NMO (normal-moveout) velocity. Building a

velocity model was part of the conventional processing, which I applied to generate the post-stack

time migrated section. The NMO velocity is the velocity required to correct for NMO, i.e. to make

the primary reflection on CMP (common-mid-point) gather occur at the same time on all traces. For

horizontal layers and assuming that the offset is small compared with the depth, the NMO velocity is

equal to the RMS (root-mean-square) velocity.

The NMO/RMS velocities were picked from the semblance plots of 25 CMP (common-mid-point)

gathers (Figure 7.12a) and then converted to interval velocities (Figure 7.12b). The interval velocities

can be calculated from RMS velocities Vrms using Dix formula, such that

Vi =
V 2

rms;iT0,i − V 2
rms;i−1T0,i−1

2hi
, (7.4)

and

hi =
T0,i − T0,i−1

2
Vi , (7.5)

where T0,i is the two-way traveltime at zero offset for a reflection at ith interface and T0,i−1 is the

TWT at zero offset for a reflection at (i − 1) interface, Vi is the interval velocity of the ith layer, and

hi is the thickness of the ith layer.

To obtain the starting model for FWI (Figure 7.15c), the original interval velocity model was

interpolated and smoothed with a 2D Gaussian filter (size 150× 150 m, σ = 30).

7.3.4 Starting model from the refraction traveltime tomography

To generate the third starting model for FWI, I performed the refraction traveltime tomography

using the ReflexW software. Because all sources and receivers are located within one line at the

surface, a curved raytracing must be used for the calculation of the traveltimes. The curved rays

are calculated using a finite difference approximation of the Eikonal equation. The calculation of the

synthetic traveltimes is restricted to the first arrivals, and no reflections or secondary arrivals are

used. The tomographic algorithm is based on an iterative adaptation (SIRT -Simultaneous Iterative

133



7. Field data example from the North Sea

Reconstruction Technique). The model update is derived from the traveltime residuals between the

synthetic and picked traveltimes.

As an input for the refraction traveltime tomography, I used the hand-picked first-arrival travel-

times at offsets larger than 2.6 km. These first-arrivals correspond to the refracted/diving waves. The

first shot is located at x = 4.25 km and the last shot is at x = 11.65 km, with the shot spacing of

100 m. The total number of traveltime picks is 3675. Figure 7.13 shows exemplary shot gathers with

traveltime picks.

I applied a two stage traveltime tomography. The first starting velocity model is a simple 1D

model with a 300 m thick water layer above a linear velocity gradient (Figure 7.14a). The dimensions

of the model are 12 km in the x-direction and 2 km in the z-direction. The model for the traveltime

tomography was extended to the left by 4.5 km in comparison to the actual model used in FWI. The

main reason was to obtain a sufficient ray coverage at the left side of the model and to include far

offset traces for all shots. The space increment is set to 50 m both in x- and in y-direction. To allow

for a high ray coverage within the medium vertical velocity gradients must be present. The velocity at

the seafloor is increasing from 1600 m/s to 3000 m/s at a depth of 2 km. This results in the velocity

gradient of ∂VP /∂z = 0.8. The RMS travetime misfit for the initial model is 163 ms. The ray density

for this model is shown in Figure 7.14b. As we can see the ray coverage is limited to approximately

1000 m. Because of the moving streamer geometry (vessel is moving from the left to the right part

of the model) the ray coverage is poor from 0 to 3 km. After 15 iterations step, the RMS traveltime

misfit was reduced to 55 ms and the resulting velocity model is shown in Figure 7.14c. Due to the

lack of ray coverage, the velocity model was not updated at the edges of the model. On the other

hand, the update in the central part of the model is very similar and reveals a 1D velocity distribution

below the seafloor.

For the second stage of the traveltime tomography, I modified the first starting velocity model.

Because the velocities below the seafloor were too low in the original starting model, the new value

of 1680 m/s was extracted from the initial traveltime tomography result. Furthermore, the maximum

velocity at a depth of 2 km was reduced to 2700 m/s. This value was based on the starting FWI model

obtained from the conventional velocity analysis. The final traveltime tomography result shown in

Figure 7.14d was obtained after 15 iteration steps and the RMS traveltime misfit was reduced to 52

ms. The starting model for FWI was built by extracting the average 1D velocity profile from the final

traveltime tomography result and by applying the seafloor topography at the top.
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Figure 7.13: Exemplary shot gathers with traveltime picks. (a) Shot gather located at x = 4.35 km,
(b) shot located at x = 8.15 km in the traveltime tomography model.
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Figure 7.14: Refraction traveltime tomography. (a) First starting model for the traveltime tomography
and (b) the corresponding ray density. (c) The initial traveltime tomography result obtained after 15
iterations with (a) as a starting model. (d) The final traveltime tomography result.
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Figure 7.15: Starting velocity models for FWI. (a) Starting VP model from the VSP data and the
corresponding (b) density model. (c) Starting VP model based on the NMO velocity model and the
corresponding (d) density model. (e) Starting VP model from the refraction traveltime tomography
and the corresponding (f) density model. (g) VP profiles and (h) density profiles at x = 2.3 km and at
x = 4.9 km. The red line corresponds to the initial model from the VSP data, black line corresponds
to the model obtained from the NMO velocity, blue line corresponds to the model from the refraction
traveltime tomography.
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7.4 Initial modelling

Prior to the waveform inversion, the initial forward modelling is performed. It is an important step to

evaluate whether the waveform inversion is likely to succeed. If the observed waveform is not matched

to within a half-cycle by the synthetic data generated from the starting model, the algorithm will

attempt to fit the calculated events to the wrong cycle of the observed data and it will cause the

objective function to converge to a local rather than a global minimum.

7.4.1 Modelling parameters

To account for multiple reflections and the ghost effects present in the data, the free surface is modelled

using the so-called vacuum formalism. The velocity and density models are discretized on a mesh with

1200 × 400 grid points, using 6.25 m grid spacing. The detailed modelling and acquisition parameters

are listed in Table 7.1.

7.4.2 Starting model requirements

Based on the convergence criterion (Eq. 2.49), it is possible to estimate the maximum traveltime

error δt for a given frequency and the propagation distance. The maximum frequency in the first

frequency band for the multi-scale FWI is f1 = 5 Hz. For a wave propagating at the maximum offset

of 4000 m, an approximate maximum propagation distance expressed in terms of wavelength is given

by Nλ = 13.5. This means that the relative traveltime error δt/T in the starting model must be less

than 0.037. Taking the arrival time of the refracted/diving wave at the maximum offset, T = 2.5 s,

we obtain the following condition

δt (s) <
T

2Nλ
= 0.092 (7.6)

Because the RMS traveltime misfit of the starting model from the refraction traveltime tomography

is 52 ms, it means that this initial model satisfies the convergence requirements for the first frequency

band.

7.4.3 Source wavelet

Source wavelets for the initial modelling were estimated using a linear least-squares inversion described

in Chapter 6. Initial source wavelets were calculated individually for three different starting models

and for two frequency bands: 3 − 5 Hz, which represents the first frequency band for FWI, and for

the full frequency band 3 − 14 Hz.

We can observe small differences between source signatures estimated for different starting models,

especially for the low frequency band (Figure 7.16). The accuracy of the reconstructed source wavelet

depends on the inaccuracies in the velocity model, i.e. the velocity errors are propagating into the

source wavelet. Because the starting VP model from the refraction traveltime tomography is very

similar to the starting model obtained from the NMO velocity (Figure 7.15g), the corresponding

wavelets are similar as well.
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Starting model for the field data inversion

Model size 7.5 km x 2.5 km
Average VP 2210 m/s
Minimum VP 1480 m/s
Maximum VP 2917 m/s
Water layer thickness 260 - 320 m

Acquisition parameters

Number of shots 62
Shot spacing 100 m
Shot depth 9.375 m
Max number of hydrophones in a streamer 160
Hydrophone spacing 25 m
Hydrophone depth 9.375 m
Minimum offset 75 m
Maximum offset 4050 m

Modelling parameters

Grid size 1200 x 400
Grid spacing 6.5 m
Time sampling 8e-4 s
Number of time samples 5000
Recording length 4 s
Source wavelet estimated from the

field data

Table 7.1: Modelling and acquisition parameters for the field data inversion. The average, minimum,
and maximum VP values are defiend for the starting model from the refraction traveltime tomography.
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Figure 7.16: Initial wavelets estimated for different starting models. Top: frequency band of 3−5 Hz;
bottom: frequency band of 3−14 Hz. The red line corresponds to the model the VSP data, black line
corresponds to the model obtained from the NMO velocity, blue line corresponds to the model from
the refraction traveltime tomography.
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7.4.4 Data comparison

Figure 7.17 shows the comparison between the observed and initial data generated for three different

starting models for the frequency band of 3 − 5 Hz. We can observe a significant mismatch between

the field data and the modelled data at far offsets, when the starting model from VSP data is used

(Figure 7.17a). The predicted traveltimes at far offsets are too late, which indicates that the velocities

in the starting model are too low. This poor fit indicates that the initial model from the VSP data

is not accurate enough for the waveform inversion with the first frequency band of 3 − 5 Hz. The

waveform fit is much better in the case of the model obtained from the NMO velocity (Figure 7.17b).

However, the best match between the field data and initial synthetics is provided by the starting

model from the refraction traveltime tomography (Figure 7.17c). The main differences between the

initial synthetics concern the modelling of refracted/diving waves at far offsets (Figure 7.19), which

are also the most non-linear components of the data and are very likely to be cycle skipped [Sirgue,

2003].

The comparison between the field data and initial synthetics for the full frequency band is shown

in Figure 7.18 and in Figure 7.19 (right panel). At higher frequencies the waveform is more complex

and the requirements for the starting model are increasing. Even though the early arrivals at near

offset are well matched, there is a problem with cycle-skipping at middle and far offsets. It is obvious

that the high frequency components can not be included at the early stages of FWI.

Finally, it is useful to compare the variation of the RMS amplitude with offset of the observed data

and synthetic data. The RMS amplitude versus offset trend shows a reasonably good fit between the

field data after preprocessing and modelled data for the starting frequency band of 3−5 Hz and offsets

from 0.3 km to 4.0 km (Figure 7.20a). This small amplitude discrepancy indicates that no additional

offset-dependent amplitude scaling is required for this data set. The significant amplitude misfit at

near offset is most likely due to the far-field approximation of the 3D to 2D transformation applied to

the field data. To avoid these high residuals, the nearest offset traces (< 300 m) are precluded from

inversion.

In case of the full frequency band of 3−14 Hz, the relative RMS amplitude differences between the

recorded and modelled data are more significant (Figure 7.20b). We can observed sharp amplitude

variations of the field data, which has higher RMS amplitudes than the initial synthetics at near and

middle offset below 2 km. The differences between starting models are more evident as well.
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Figure 7.17: Initial modelling. Frequency band of 3 − 5 Hz. Trace comparison between the observed
data (black) and the initial data (red) computed for: (a) starting VP model from the VSP data,
(b) Starting VP model based on the NMO velocity model, (c) starting VP model from the refraction
traveltime tomography. Shot 62 located at x = 7.275 km.
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Figure 7.18: Initial modelling. Frequency band of 3− 14 Hz. Trace comparison between the observed
data (black) and the initial data (red) computed for: (a) starting VP model from the VSP data,
(b) starting VP model based on the NMO velocity model, (c) starting VP model from the refraction
traveltime tomography. Shot 62 located at x = 7.275 km.
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Figure 7.19: Initial modelling - comparison of shot gathers. Left: frequency band of 3 − 5 Hz, right:
frequency band of 3 − 14 Hz. (a) Field data, (b) starting VP model from the VSP data, (c) starting
VP model based on the NMO velocity model, (d) starting VP model from the refraction traveltime
tomography. Shot 62 located at x = 7.275 km.
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Figure 7.20: RMS amplitude variation with offset of the field data (green) and of the initial data
computed for three different starting models for shot 62 located at x = 7.275 km. (a) Frequency band
of 3 − 5 Hz, (b) frequency band of 3 − 14 Hz. Shot 62 located at x = 7.275 km.

7.5 Inversion parameters

To reduce the high complexity of the inverse problem, the multi-scale inversion approach described in

Chapter 3 is applied. The maximum frequency for each frequency band was calculated using Eq. 3.13.

With the depth to the target z = 2.0 km, and the maximum half-offset hmax = 2.025 km, we obtain

αmin = 0.7. Because the signal-to-noise ratio is relatively poor at low frequencies, the maximum

frequency of the first frequency band is set to 5 Hz. The four frequency bands are applied sequentially

with the following maximum frequencies fmax = (5.0, 7.1, 10.1, 14.5), which define the cutoff frequency

for the 6th order low-pass Butterworth filter.

The minimum and maximum vertical wavenumbers can be computed using Eq. 3.10, with c0 = 2210

m/s, which corresponds to the average velocity of the starting model from the refraction traveltime

tomography. For the first maximum frequency f1 = 5 Hz, we obtain

kz min(f1) = 0.02 rad · m−1 ,

kz max(f1) = 0.0284 rad · m−1 .

With k = 2π/λ, where λ is the wavelength, the minimum and maximum wavelengths related to the

vertical resolution are

λmin(f1) = 221 m ,

λmax(f1) = 314 m .

For the frequency of f3 = 10.1 Hz, we get

λmin(f3) = 109 m ,

λmax(f3) = 156 m .
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For the maximum frequency of f4 = 14.5 Hz, the minimum and maximum wavelengths related to the

vertical resolution are

λmin(f4) = 76 m ,

λmax(f4) = 109 m .

To correct for the amplitude loss with depth due to geometrical spreading and to enhance deeper

parts of the model, the linear gradient scaling with depth is implemented (P2 operator described in

Chapter 3). Furthermore, the taper in the water layer is limited to 25 m above the seafloor, such that

the seafloor parameters (VP , depth) can be updated during inversion.

7.5.1 Data decimation and aliasing

A total number of shots, along with a model size and a recording length, are the main parameters af-

fecting the computation time of FWI. If the measured data are densly sampled, they can be decimated

for the inversion.

Brenders and Pratt [2007a] investigated the effect of sparse source and receiver sampling on wave-

form inversion results. They showed that the image quality is reduced by aliasing of the data due to

insufficient source or receiver sampling. The condition for unaliased surface sampling is given by

∆samp ≤ 1

2kmax
, (7.7)

where ∆samp is the spatial sampling interval, and kmax is the maximum horizontal data wavenumber.

At a given frequency f and a minimum velocity of a medium cmin, the spatial wavenumber is

k =
fsinθ

cmin
, (7.8)

where θ is the emerging angle of a propagating wave. For an emerging angle θ = π/2, we get

k = kmax =
f

cmin
=

1

λ
. (7.9)

Finally, we obtain the condition

∆samp ≤ λ

2
, (7.10)

which means that no spatial aliasing occurs if the wavefield is sampled with a source spacing ∆s ≤
∆samp, and a receiver spacing ∆r ≤ ∆samp.

The sparseness of the data can be also expressed in terms of the aliasing number NA [Bleibinhaus

et al., 2009]

NA =
max {∆s, ∆r}

∆samp
, (7.11)

i.e. the spatial aliasing occurs when NA > 1.

In this study, an unaliased wavefield is obtained when ∆s and ∆r is less than 148 m for the

maximum frequency of the first frequency band f = 5 Hz; for the maximum frequency of 10 Hz:

∆samp = 74 m, and for f = 14 Hz: ∆samp = 52 m. Because the wavefield usually does not propagate
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with the horizontal incidence angle, as assumed in Eq. 7.9, the good quality image can be obtained

for a shot spacing ∆s ≤ 3∆samp and a receiver spacing ∆r ≤ ∆samp [Brenders and Pratt, 2007a].

It means that the receiver spacing of 25 m, and the selection of every fourth shot, which results in

the shot spacing of 100 m, are sufficient to obtain good quality inversion results. This acquisition

geometry gives the aliasing number NA = 0.67 for the maximum frequency of 5 Hz, NA = 1.35 for

f = 10 Hz, and NA = 1.9 for f = 14 Hz.

7.6 Resolution study

To test the resolving power and the reliability of the FWI results, I performed a set of synthetic

inversion tests using the same acquisition setup, source signature, and frequency content as in the

field example. The resolution tests are useful to determine which parts of the model are well-resolved,

to identify artefacts due to source-receiver geometry limitations (subsurface illumination), and to

examine the footprint of initial models. Moreover, such tests can be used to verify the choice of

inversion parameters.

A true VP model for the resolution study (Figure 7.23a) was generated by adding +/−5 % velocity

perturbation to the initial model from the traveltime tomography. The checkerboard anomaly size

of 100 m corresponds to the average wavelength that can be resolved with the maximum frequency

of 14 Hz. The starting model for the checkerboard test is the initial model from the traveltime

tomography. The input data are muted, such that a muting window of 1.5 s after the first arrival

is applied. The multi-scale inversion approach comprises four frequency bands and 30 iterations for

each frequency stage. To investigate the influence of the shot decimation on the waveform inversion

results, I performed three inversion tests: using 62 shots with 100 m spacing, using 31 shots with

200 m spacing, and finally using 123 shots with 50 m shot spacing (Figure 7.21). Due to a moving

streamer geometry, the maximum offset is increasing from 975 m, for the first shot located in the left

part of the seismic line at 1175 m, to the maximum of 4050 m. As a consequence, the receiver fold is

higher in the left and central part and lower in the right part of the model (Figure 7.21).

Figure 7.22 shows both the intermediate inversion results at the end of each inversion stage and

the final FWI result. Because of a band-limited source signal, the sharp edges of the checkerboard

pattern are not resolved. After the first frequency stage, the checkerboard pattern in well recovered

in the central part of the model, but with the increasing frequency and the iteration number the

VP reconstruction in the deep part and at the sides of the model is improved. The smearing effects

resulting from a poor subsurface illumination are strong at the edges of the model and significantly

limit the accuracy of VP reconstruction with the increasing depth.

The comparison of final VP models for different shot spacing is shown in Figure 7.23. The velocity

structures reproduced with the shot spacing of 100 m and 50 m are almost identical. With the shot

spacing of 200 m and 31 shots (Figure 7.23b), the smearing effect is slightly stronger when compared

with the results from 100 m and 50 m spacing. This is due to the aliasing effect descibed in the

previous section. For the maximum frequency of 14 Hz, the source spacing ∆s = 200 m is four times

higher than the spatial sampling interval ∆samp = 52 m required to obtain an unaliased wavefield.
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Figure 7.21: Acquisition geometries for the resolution study with: (a) 200 m shot spacing (31 shots),
(b) 100 m shot spacing (62 shots), (c) 50 m shot spacing (123 shots). Stars denote shot location and
points represent hydrophones.
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Figure 7.22: Resolution study with a shot spacing of 100 m. Intermediate inversion results: (a)
fmax = 5 Hz, (b) fmax = 7.1 Hz, (c) fmax = 10.1 Hz, and (d) the final inversion result fmax = 14.5
Hz.
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Figure 7.23: Resolution study - the acquisition geometry effect. (a) True model. Final FWI results
with a shot spacing of (b) 200 m, (c) 100 m, (d) 50 m.
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7.7 Inversion results

7.7.1 Multi-stage inversion

The first set of inversion experiments aims to analyse the effect of different inversion strategies based on

time windowing and/or offset windowing of the data on the FWI results. The aim of such hierarchical,

multi-stage inversion techniques is to mitigate the non-linearity of the inverse problem. In all inversion

tests, the minimization criterion is the approximated version of the L2 norm using the normalized

wavefields (Eq. 3.18). Furthermore, the only inversion parameter is the P-wave velocity and the initial

density model is fixed during inversion. The starting model for the inversion is the VP model obtained

from the refraction traveltime tomography.

I performed six inversion tests:

• Test 1 - there is no time windowing applied, thus the full available data up to 4 s are inverted

at every inversion stage. Table 7.2.

• Test 2 - a fixed time window of 1.5 s is applied to the data to damp the late arrivals (Figure 7.24).

This time damping reduces the amount of data at near and at middle offsets. Table 7.3.

• Test 3 - an extending time windowing. For each frequency band, the time window after the

first arrival is sequentially increasing. In this way, the shallow part of the model is reconstructed

prior to the recovery of the deeper parts of the model (Figure 7.25). Table 7.4.

• Test 4 - near offset data inversion combined with the extending time windowing. The maximum

offset is limited to 2 km. Table 7.5.

• Test 5 - offset windowing combined with the fixed time window. For each frequency band, the

near offset data are inverted before the far offset information is included (Figure 7.26). Because

the near offset data corresponds to the shorter propagation distance they are less likely to be

cycle skipped than the far offset data. Table 7.6.

• Test 6 - combination of the offset windowing with the extending time windowing. First the early

arrivals at near offsets are inverted, this part contributes to the update of the long wavelength

shallow structures. Afterwards the early arrivals at far offsets are included to update the low

wavenumbers in the deeper part of the model. In the next part, the time window is increased

and the inversion proceeds from the near offset to the far offset data (Figure 7.27). This strategy

is similar to the layer stripping inversion approach applied by Takam Takougang and Calvert

[2011]; Wang and Rao [2009]. Table 7.7.

Figure 7.24 shows an increasing resolution of the inverted VP models when higher frequencies are

included. Each higher frequency band yields a recovery of a more detailed VP image. Because the

attenuation is not introduced in the acoustic FWI, the inversion of the last frequency band with the

maximum frequency of 14 Hz introduced a lot of small scale artefacts into the reconstructed VP models

(Figure 7.24d). For that reason all inversion results are shown after the third inversion stage with the

maximum frequency of 10.1 Hz.

A comparison of final inversion results for Test 1 - Test 6 is illustrated in Figure 7.28. In general, all

major structures are similar in the reconstructed velocity models, except for the result from the near
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Iteration Frequency (Hz) Max time (s) Offset (km)
1-30 3-5 4.0 0.275 - 4.0
31-60 3-7.1 4.0 0.275 - 4.0
61-90 3-10.1 4.0 0.275 - 4.0
91-120 3-14.5 4.0 0.275 - 4.0

Table 7.2: Field data inversion. Test 1 - no time windowing.

Iteration Frequency (Hz) Max time (s) Offset (km)
1-30 3-5 FA + 1.5 0.275 - 4.0
31-60 3-7.1 FA + 1.5 0.275 - 4.0
61-90 3-10.1 FA + 1.5 0.275 - 4.0
91-120 3-14.5 FA + 1.5 0.275 - 4.0

Table 7.3: Field data inversion. Test 2 - a fixed time window. FA denotes the first-arrival time.

offset inversion - Test 4 (Figure 7.28d). This is related to the fact that the near offset reflections are

less sensitive to the long wavelengths of the velocity model than the wide-angle refractions. It means

that the reduction of the maximum offset provided the update of the high wavenumber information,

i.e. only the short wavelengths were recovered.

When the full data content is inverted at each frequency band, the VP model is affected by small

scale artefacts (Figure 7.28a). The quality of the reconstructed model is better, once a fixed time

window (Test 2) is applied to remove the late arrivals (Figure 7.28b). The application of an extending

time windowing (Test 3) results in a very similar result to Test 2, however the reconstructed VP is

smoother and contains less artefacts in the shallow part of the model (Figure 7.28c). This result shows

a benefit of a layer stripping approach, i.e. the successive inversion from shallow to deep structures.

The combination of the offset windowing with a fixed time window (Test 5) produced a lot of

artefacts in the inverted VP model (Figure 7.28e). Apparently, this multi-stage strategy is not appro-

priate to provide good quality inversion results. This may be related to the same problem as described

for Test 4, i.e. the late arrivals at the near offset provided an update of the small scale structures

prior to the inversion of early arrivals at far offsets, which are associated with the low wavenumbers

(Figure 7.26).

Test 6 represents the most complex combination of the frequency filtering, time windowing and

offset windowing. The inverted VP model (Figure 7.28f) is similar to the result from Test 2, however

the layer contrasts are sharper and there is a lot of fine layers recovered in the shallow part of the

model.

Figure 7.29 shows a comparison of the depth profiles extracted from the final inverted FWI models.

There is a good agreement between the velocity structures for all inversion tests except for Test 4. We

can identify a thick, high velocity layer at a depth of 600 m and a thin low velocity layer at a depth

of 800 m, which is clearly visible at the velocity profiles at x = 2.3 km. Furthermore, there is a strong

velocity contrast in the deeper part of the model, at a depth of approximately 1.6 km. The fine layers

in the shallow part of the model, which are present in the VP models from Test 1 and Tests 4-6, are

almost invisible for Test 2 and Test 3. Therefore it is not clear whether these sharp contrasts reflects

true velocity structures.
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Figure 7.24: Test 2 with a fixed time window (Table 7.3). Intermediate and final FWI results after
each frequency stage. (a) fmax = 5 Hz, (b) fmax = 7.1 Hz, (c) fmax = 10.1 Hz, and (d) the final
inversion result fmax = 14.5 Hz. Left: inverted VP models, center: the field data, right: the synthetic
data generated for the FWI model. Shot 62 located at x = 7.275 km. Note the increase of the
resolution when higher frequencies are included.
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Iteration Frequency (Hz) Max time (s) Offset (km)
1-10 3-5 FA + 0.5 0.275 - 4.0
11-20 FA + 1.0
21-30 FA + 1.5
31-40 3-7.1 FA + 0.5 0.275 - 4.0
41-50 FA + 1.0
51-60 FA + 1.5
61-70 3-10.1 FA + 0.5 0.275 - 4.0
71-80 FA + 1.0
81-90 FA + 1.5
91-100 3-14.1 FA + 0.5 0.275 - 4.0
101-110 FA + 1.0
111-120 FA + 1.5

Table 7.4: Field data inversion. Test 3 - extending time windowing. FA denotes the first-arrival time.
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Figure 7.25: Test 3 with an extending time windowing (Table 7.4). Intermediate FWI results for the
first frequency band from 3 Hz to 5 Hz, (a) time window of 0.5 s, (b) time window of 1.0 s, (c) time
window of 1.5 s. Left: inverted VP models, center: the field data, right: the synthetic data generated
for the FWI model. Shot 62 located at x = 7.275 km.
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7. Field data example from the North Sea

Iteration Frequency (Hz) Max time (s) Offset (km)
1-10 3-5 FA + 0.5 0.275 - 2.0
11-20 FA + 1.0
21-30 FA + 1.5
31-40 3-7.1 FA + 0.5 0.275 - 2.0
41-50 FA + 1.0
51-60 FA + 1.5
61-70 3-10.1 FA + 0.5 0.275 - 2.0
71-80 FA + 1.0
81-90 FA + 1.5
91-100 3-14.1 FA + 0.5 0.275 - 2.0
101-110 FA + 1.0
111-120 FA + 1.5

Table 7.5: Field data inversion. Test 4 - near offset data inversion with an extending time windowing.
FA denotes the first-arrival time.

Iteration Frequency (Hz) Max time (s) Offset (km)
1-20 3-5 FA + 1.5 0.275 - 2.0
21-40 0.275 - 4.0
41-60 3-7.1 FA + 1.5 0.275 - 2.0
61-80 0.275 - 4.0
81-100 3-10.1 FA + 1.5 0.275 - 2.0
101-120 0.275 - 4.0
121-140 3-14.5 FA + 1.5 0.275 - 2.0
141-160 0.275 - 4.0

Table 7.6: Field data inversion. Test 5 - offset windowing with a fixed time window. FA denotes the
first-arrival time.
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Figure 7.26: Test 5 - offset windowing with a fixed time window (Table 7.6). Intermediate FWI results
for the first frequency band from 3 Hz to 5 Hz, (a) near offset window up to 2 km, time window of 1.5
s, (b) full offset data, time window of 1.5 s. Left: inverted VP models, center: the field data, right:
the synthetic data generated for the FWI model. Shot 62 located at x = 7.275 km.
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Figure 7.27: Test 6 – offset windowing with extending time window (Table 7.7). Intermediate FWI
results for the first frequency band from 3 Hz to 5 Hz, (a) near offset window up to 2 km, time window
of 0.75 s, (b) full offset data, time window of 0.75 s, (c) near offset window up to 2 km, time window
of 1.5 s, (d) full offset data, time window of 1.5 s. Left: inverted VP models, center: the field data,
right: the synthetic data generated for the FWI model. Shot 62 located at x = 7.275 km.
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7. Field data example from the North Sea

Iteration Frequency (Hz) Max time (s) Offset (km)
1-10 3-5 FA + 0.75 0.275 - 2.0
11-20 FA + 0.75 0.275 - 4.0
21-30 FA + 1.5 0.275 - 2.0
31-40 FA + 1.5 0.275 - 4.0
41-50 3-7.1 FA + 0.75 0.275 - 2.0
51-60 FA + 0.75 0.275 - 4.0
61-70 FA + 1.5 0.275 - 2.0
71-80 FA + 1.5 0.275 - 4.0
81-90 3-10.1 FA + 0.75 0.275 - 2.0
91-100 FA + 0.75 0.275 - 4.0
101-110 FA + 1.5 0.275 - 2.0
111-120 FA + 1.5 0.275 - 4.0
121-130 3-14.5 FA + 0.75 0.275 - 2.0
131-140 FA + 0.75 0.275 - 4.0
141-150 FA + 1.5 0.275 - 2.0
151-160 FA + 1.5 0.275 - 4.0

Table 7.7: Field data inversion. Test 6 - offset windowing combined with an extending time windowing.
FA denotes the first-arrival time.
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Figure 7.28: Test 1 - Test 6. Comparison of FWI results, fmax = 10.1 Hz. Inverted VP models.
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7. Field data example from the North Sea
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Figure 7.29: Test 1 - Test 6. Comparison of FWI results, fmax = 10.1 Hz. VP profiles at x = 2.3 km
and at x = 4.9 km. The gray dashed line represents the initial model, and the red solid line represents
the inverted VP model.
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7. Field data example from the North Sea

7.7.2 Choice of the objective function

In the second set of inversion experiments, I inverted field data using different minimization criteria

discussed in Chapter 3. The inversion strategy was identical as in Test 3 (Table 7.4). The final

inversion results are shown in Figure 7.30. The quality of reconstructed VP models is comparable for

all minimization criteria. There are some minor differences which mainly concerns the low velocity

layer at a depth of 800 m. Furthermore, we can observe a difference between the L2 norm and the

other minimization criteria, which is related to the increased amplitude of reflectors (compare the VP

perturbations in Figure 7.30). Because the field data are not affected by high amplitude noise, there

is no clear benefit of using the minimization criteria, which are more robust to noise, such as the L1

norm, Cauchy or sech norm.

7.7.3 Multi-parameter inversion

The preceding tests were based on a mono-parameter inversion with the VP as the only unknown

parameter. The initial density model was fixed and all data residuals were projected to the P-wave

velocity model. In this section, I applied a multi-parameter acoustic inversion using three different

parameterization sets: P-wave velocity and density m1 = [VP , ρ], P-wave impedance and density

m2 = [IP , ρ], and the third parameter set is the P-wave velocity and P-wave impedance m3 = [VP , IP ].

The inversion strategy was identical as in Test 3 (Table 7.4), such that full offset data were included

at each iteration step and an extending time windowing was applied.

The inverted VP models for different parameter sets are shown in Figure 7.31. In case of the

parameterization with m2 = [IP , ρ], the final velocity model is computed as VP = IP inv/ρinv. The

resolution of the reconstructed P-wave velocity models is comparable for all parameterizations and

the differences are very small.

As I have shown in Chapter 4, density is a difficult parameter to reconstruct and its accuracy

depends on the model parameterization. A comparison of inverted density models for different pa-

rameter sets is shown in Figure 7.32. The poor recovery of density structures is related to the choice

of the m2 = [IP , ρ] parameterization. On the other hand, when the m1 = [VP , ρ] is used, we can

recognize some structures that are also present in the velocity models, for example the reflector at a

depth of 1.6 km or the low velocity/density layer at a depth of 800 m. The density contrasts are much

weaker for the m3 = [VP , IP ] parameterization. These results are consistent with those obtained using

synthetic data (see Chapter 4).

Finally, the inverted IP models are illustrated in Figure 7.33. The initial impedance model was

calculated as IP = VP ρ. The reconstructed impedance structures are very similar for all parameteri-

zation sets. We can clearly identify the high impedance and the low impedance layers in the shallow

part of the model. Furthermore, the fine layers present in the IP models are consistent with those in

the inverted VP models.

7.7.4 Starting models

In the final set of inversion experiments, I performed FWI using various starting models. The inversion

strategy was identical as in Test 3 (Table 7.4) and a mono-parameter inversion for VP was applied.

The final inversion results are shown in Figure 7.34. A comparison of VP profiles reveals a good
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Figure 7.30: Comparison of FWI results for different minimization criteria, fmax = 10.1 Hz. Left:
inverted VP models, right: VP perturbation computed as the difference between the inverted and the
starting VP model.
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Figure 7.31: Multi-parameter inversion of the field data, fmax = 10.1 Hz. Left: inverted VP models
for different parameterization sets. Right: VP profiles at x = 2.3 km and at x = 4.9 km. The gray
dashed line represents the initial model, and the red solid line represents the inverted VP model.
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Figure 7.32: Multi-parameter inversion of the field data, fmax = 10.1 Hz. Left: inverted density
models for different parameterization sets. Right: Density profiles at x = 2.3 km and at x = 4.9
km. The gray dashed line represents the initial model, and the red solid line represents the inverted
density model.
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Figure 7.33: Multi-parameter inversion of the field data, fmax = 10.1 Hz. Left: inverted IP models
for different parameterization sets. Right: IP profiles at x = 2.3 km and at x = 4.9 km. The gray
dashed line represents the initial model, and the red solid line represents the inverted IP model.
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Figure 7.34: Comparison of FWI results for different starting models, fmax = 10.1 Hz. Left: inverted
VP models, right: VP profiles at x = 2.3 km and at x = 4.9 km. The gray dashed line represents the
initial model, and the red solid line represents the inverted IP model. (a) starting VP model from
the refraction traveltime tomography, (b) starting VP model based on the NMO velocity model, (c)
starting VP model from the VSP data.
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agreement between the FWI results obtained from both the traveltime tomography and NMO starting

models. The fit is especially good in the upper part of the VP models, the reconstructed low velocity

and the high velocity layers are very similar. The velocity structures in the deep part of the inverted

VP models do not match exactly. This is caused by the different background velocities in these two

initial models below the depth of 1 km (Figure 7.15), i.e. the background velocity in the starting

model from the traveltime tomography is higher than in the NMO-based model. This inversion result

indicates that the long-wavelength structures of the P-wave velocity are not updated by FWI in a

deep part of the model.

Finally, the FWI inversion with the starting model from the VSP data failed to reconstruct the VP

model (Figure 7.34c). This result is not surprising, since the waveform match between the observed

and initial data generated for the model from the VSP data is very poor at far offsets (Figure 7.17a).

Because of the cycle-skipping problem, the waveform inversion ended up in a local minimum of the

misfit function.

7.8 Validation of inversion results

An important step of the workflow for the field data inversion is the validation of inversion results.

This can be achieved by a comparison of the observed data with the synthetic data generated for

the FWI results. Furthermore, it is useful to analyse the estimated source wavelets, because the may

indicate the accuracy of the reconstructed models. The validity of the inverted models can be also

confirmed by a comparison with the migrated seismic section.

7.8.1 Data comparison

Figure 7.35 shows a comparison between the observed data and synthetic data generated for the final

FWI results for Test 2, Test 3, and Test 6. I selected these inversion tests, because the final VP

models are of good quality and they are least contaminated by artefacts. We can observe a good

match between the observed data and the synthetic data generated for the final FWI results. Because

the reconstructed velocity structures are very similar in all three VP models, the data fit is nearly

equivalent. There is some data misfit related to the amplitude information at the far offset, which

may be due to the elastic effects or attenuation.

7.8.2 Final source wavelets

As mentioned in Chapter 6, the inverted source wavelets can serve as the quality check on the velocity

model during the full waveform inversion. When the residuals between the observed and predicted

data are decreasing and the estimated source wavelets improve as well, this indicates an accurate

reconstruction of the velocity model. The initial source wavelet for shot 62 is shown in Figure 7.16

(blue line in the top panel), whereas the final wavelets are illustrated in Figure 7.36. In general,

source wavelets produced for different final VP models are very similar, but the source signature that

corresponds to Test 2 exhibits more ringing artefacts than the other wavelets. Figure 7.37 shows

the final source wavelets for three inversion tests and for all individual shots. We can observe that

the estimated wavelets are coherent and the general shape of source signatures is comparable for all
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inversion tests. However, the first ten shots are mory noisy, which is due to the limited maximum

offset related to these shots (Figure 7.21b).

7.8.3 Comparison with the migrated seismic section

Finally, I applied a conventional seismic processing to the field data to obtain a migrated section.

The processing sequence is described in Appendix A. Figure 7.38a shows a seismic section after a

post-stack Kirchoff time migration. There are a lot of fine, quasi-horizontal sedimentary structures

present in the migration image.

To compare the final VP model from Test 3 with the migrated seismic section, the inverted model

was converted from depth to time (Figure 7.38b). In addition, the vertical velocity gradient of the

time-converted VP model was calculated to allow a better identification of layer interfaces. Because

of the limited frequency range, the layer interfaces in the inverted VP model are not as sharp as in

the migrated section. Nevertheless, most of the major structures present in the inverted VP model are

clearly visible in the migrated seismic section. This mainly concerns the strong reflector at 1.6 s, or

the low velocity structure at 1 s. Furthermore, the top and the bottom interface of the high velocity

layer in the upper part of the model can be identified in the migrated section, this structure is getting

thinner in the right part of the model. FWI resolved a lot of fine structures between 1.0 and 1.7 s,

but the layering structures are not present below 1.7 s. This result correlates well with the migrated

section, where the weak reflectors area is visible below 1.7 s.
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Figure 7.35: Trace comparison between the observed data (black) and the synthetic data (red) gener-
ated with the final FWI result from: (a) Test 2, (b) Test 3, (c) Test 6. Shot 62 located at x = 7.275
km.
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Figure 7.37: Comparison of source wavelets estimated for the final inversion results from: (a) Test 2,
(b) Test 3, (c) Test 6.
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selected for the FWI inversion. (b) Final VP model from Test 3 after conversion from depth to time,
and (c) after the calculation of the vertical velocity gradient.
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7.9 Summary

In this Chapter, I presented the application of the acoustic FWI to marine streamer data acquired in

the North Sea. I have shown that the success of the full waveform inversion depends on three main

factors: the careful data preprocessing, choice of the starting model, and an appropriate inversion

strategy.

The aim of the data preprocessing was to improve the signal-to-noise ratio and to remove these

wave propagation phenomena that cannot be modelled correctly, such as seismic noise, elastic effects,

or 3D effects. The frequency content of the inverted data was limited to 3 − 10 Hz. The very

low frequencies were removed because of the strong noise component. The maximum frequency was

limited to 10 Hz, because the inversion of higher frequencies introduced a lot of artefacts into the

reconstructed VP models. This was mainly caused by the attenuation effects, which are not taken into

account in the forward modelling.

Due to the lack of frequencies below 3 Hz in the field data, it was necessary to generate an initial

velocity model that already contains the long-wavelength structures of the subsurface. In order to

avoid the cycle-skipping artefacts, the predicted data generated for the starting model should match

the observed data within half a cycle. Initial modelling performed prior to the waveform inversion

helped to evaluate the accuracy of initial P-wave velocity models. The velocity models obtained from

both the refraction traveltime tomography and the NMO velocity provided a good match between the

field data and the initial synthetics for the first frequency band. Furthermore, the RMS amplitude

versus offset trend showed a reasonably good fit between the field data after preprocessing and the

modelled data, which indicates that no additional offset-dependent amplitude scaling was required for

this data set.

To reduce the high complexity of the inverse problem, the multi-scale inversion approach based on

the continuous coverage of vertical wavenumbers was applied. With the source spacing of 100 m and

the receiver spacing of 25 m, the aliasing number is NA = 0.67 for the maximum frequency of 5 Hz,

and NA = 1.35 for f = 10 Hz. It means that the source and the receiver sampling was sufficient to

obtain a good quality image not affected by spatial aliasing.

The resolving power of the FWI was tested with the checkerboard model using the same acquisition

setup, source signature and the frequency content as in the field data example. This was useful to

determine which parts of the model are well-resolved, to identify artefacts due to source-receiver

geometry limitations, and to verify the choice of inversion parameters. The checkerboard pattern

with the anomaly size of 100 m was well recovered. However due to a poor subsurface illumination

at the sides of the model, the strong smearing effects were present in these parts of the inverted VP

models.

The comparison of different inversion strategies based on time windowing and/or offset windowing

of the data showed their significant effect on the inversion results. First of all, it is useful to apply a

time windowing of the data around the first arrivals and to damp the late arrivals which increase the

non-linearity of the inverse problem. Furthermore, the application of the extending time windowing

resulted in a good quality of the reconstructed model. This successive inversion from shallow to deep

structures is similar to the layer stripping approach. The combination of the frequency filtering, time

windowing and offset windowing resulted in no significant improvement of the velocity model.

The FWI using the near-offset data and the full-offset data information produced different VP
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models. Because the near-offset relections are less sensitive to the long wavelengths of the velocity

model, the limitation of the maximum offset resulted in the update of the short wavelengths only.

This means that the long-offset data are essential to reconstruct the long-wavelength structures of the

model, especially when the low frequencies are not available in the data.

Because the preprocessed field data were not affected by high amplitude noise, the inversion results

obtained for different minimization criteria were very similar. Even the conventional L2 norm produced

a good quality image.

The multi-parameter inversion showed the difficulty in resolving a reliable density model. On the

other hand, the P-wave velocity and impedance models were well reconstructed for all parameterization

sets and show the existence of similar structures.

All final VP models obtained from the mono-parameter and the multi-parameter inversion of the

full-offset data contain similar structures. FWI resolved a lot of fine structures that were not present

in the starting velocity model. However, the long-wavelength structures in the deep parts of the model

were not reconstructed because of the lack of very low frequencies and the limited offset.

The comparison between the observed data and synthetic data generated for the final FWI results

showed a good match between waveforms. Furthermore, most of the major structures present in

the inverted VP models can be clearly identified in the migrated seismic section, which indicates the

reliability of reconstructed structures. The main advantage of the FWI is that it provided not only

the structural image of the subsurface but also the information on the velocity distribution.
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Chapter 8

Conclusions

In this thesis, I presented the application of the 2D time-domain acoustic full waveform inversion to

marine streamer data. I discussed the problems and pitfalls that concern the field data preprocessing,

generation of the starting model, and source wavelet estimation. The aim of the synthetic inversion

experiments was to provide the guidelines on how to design an efficient inversion scheme concerning the

gradient preconditioning, the multi-scale inversion approach, the choice of the minimization criterion,

and the choice of the modelling and inversion parameters. Finally, I introduced a workflow for the

field data inversion and presented the successful application of acoustic FWI to marine streamer data

acquired in the North Sea. The final P-wave velocity model derived from the acoustic full waveform

inversion contains a lot of fine structures that were not present in the starting velocity model. A

comparison between the observed data and synthetic data generated for the final FWI result shows a

good match between waveforms. Furthermore, the reliability of reconstructed structures was assessed

by a comparison with the migrated seismic section.

To reconstruct the distribution of material parameters in the subsurface, the inversion algorithm

aims to minimize the residuals between the observed data and synthetic data in an iterative process.

Because of the high non-linearity of the inverse problem, the success of waveform inversion depends

mainly on the accuracy of the starting model and on the presence of low frequencies and sufficient

offset range in the recorded data. In practice, when inverting real marine data, we have to deal

with some additional challenges like seismic noise, limited offsets, the lack of very low frequencies,

and the unknown source wavelet. Furthermore, because we use the 2D acoustic FWI, the elastic

effects, attenuation, or 3D effects, which are present in the data, are not taken into account during

the inversion process. These factors can lead to poor convergence of the inversion algorithm and may

deteriorate the recovery of velocity model. Thus, it is clear that the reconstruction of realistic velocity

models from the field data requires an additional effort to overcome the problem of the local minima

and to mitigate the effect of non-acoustic factors. Therefore, some extra processing steps and a careful

choice of adequate inversion strategies are required for the successful inversion of real data.

In the following, I will summarize the main results of this thesis.

Data preprocessing

Prior to the full waveform inversion, a specific preprocessing has to be applied to the raw seismic

data. The main objectives are to improve the signal-to-noise ratio and to transform the field data
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such that they reflect the approximations made in the 2D acoustic modelling, i.e. to remove these

wave propagation phenomena that cannot be modelled correctly (seismic noise, elastic effects, or 3D

effects).

• Seismic noise - An efficient attenuation of seismic noise is important to obtain accurate in-

version results. Marine data contain high-amplitude, low-frequency (0− 10 Hz) noise generated

due to hydrostatic pressure fluctuations and swell noise. Since the presence of low frequencies in

the recorded data is crucial for the convergence of FWI, the standard low-cut filters that remove

unwanted noise together with the large parts of the useful sesimic signal are not advisable. As

an alternative, a time-frequency de-noising algorithm (TFDN) or the f − k dip filtering can be

applied to remove the swell noise from the recorded data. However, the efficiency of these filters

is limited at very low frequencies due to a poor signal-to-noise ratio. In the field data example

presented in this theses, the minimum useful frequency is 3 Hz.

• Attenuation - The use of high frequencies for acoustic FWI is limited, because the attenuation

effects are not taken into account in the forward modelling. The pure acoustic inversion of the

field data produced artefacts in the reconstructed VP models, when the frequencies higher than

10 Hz were included.

• 3D effects - Due to the difference between 3D and 2D geometrical spreading, it is necessary to

transform the 3D point source data such that they reflect wave propagation in a 2D medium.

Otherwise, the field data (point source) cannot be directly compared with the modelled data

(line source). In this study, I considered simple 3D to 2D transformations derived from the

Green’s functions. In spite of strong assumptions on velocity structures, these corrections are

efficient for transformation of 3D data recorded in a simple geological environment.

• Elastic effects - The synthetic inversion tests show, that the elastic effects limits the applica-

bility of the acoustic FWI especially in the presence of strong contrasts in the S-wave velocity.

But even if the converted waves are weak or not present in the recorded data, the main problem

of the acoustic approximation is an incorrect modelling of the amplitude-versus-offset (AVO) ef-

fects. This problem can be partly mitigated by choosing an appropriate minimization criterion.

The lowest VP model error resulting from the acoustic inversion of elastic data was obtained for

the approximated version of the L2 norm using the normalized wavefields.

• Data decimation - Because the total number of shots is one of the main parameters affecting

the computation time of FWI, it is useful to decimate the densly sampled measured data.

However, the source and the receiver sampling must be sufficiently small to avoid the spatial

aliasing, which can significantly reduce the image quality.

Starting model generation

The choice of a staring model is of crucial importance for the success of the waveform inversion. A

good initial model for FWI should ensure convergence of the algorithm into the global minimum of

the objective function. This can be achieved when the synthetic data generated for the starting model

match the observed traveltimes within half a cycle of the dominant frequency. If the half-wavelength
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criterion is not fulfilled, cycle skipping occurs, and the waveform inversion will converge toward a local

minimum.

The requirements on the starting model for FWI depends on the minimum frequency available in

the data. This means that if the low frequencies are not present in the data, the starting model needs

to be more accurate and must already contain the long-wavelength structures of the subsurface. In

the field data example, the velocity models obtained from both the refraction traveltime tomography

and the NMO velocity provided a good match between the field data and the initial synthetics for

the first frequency band. Although, the first-arrival traveltime tomography is a widely used method

to generate a starting model for FWI, it provides a low-resolution image and requires a wide range of

offsets to generate sufficient ray coverage in the deeper parts of the model. With the maximum offset

of 4 km, the ray coverage of the refraction traveltime tomography was limited to approximately 1 km.

In addition, the density information is also required to provide realistic reflection coefficients in

marine environment. The most significant is the information about density at the seafloor, because

the reflection coefficient at this interface is dominated by the strong density contrast. The starting

density model can be derived from the initial velocity information using an empirical velocity-density

relationship.

Source wavelet estimation

Accurate source wavelet estimation is a prerequisite for successful application of FWI to field data.

Wrong wavelet used in forward modelling results in a poor fit of synthetic data to observed data. There

are different methods to estimate the wavelet signature and one of them is based on solving a linear

least-squares inverse problem. This method provides a very good estimate of the source time function

and it offers a number of advantages. It can be easily introduced within the full waveform inversion

framework and the source signature is estimated separately for every shot gather. Furthermore, the

numerical experiments show that the wavelet inversion can partly compensate for location errors in the

acquisition geometry, which is of importance when inverting real data. The inverted source wavelets

can also serve as the quality check on the velocity model during the full waveform inversion. When the

residuals between the observed and predicted data are decreasing and the estimated source wavelets

improve as well, this indicates an accurate reconstruction of the velocity model. The source wavelet

estimation is also necessary to perform an initial modelling, which is an important step to evaluate

whether the waveform inversion is likely to succeed. If the observed data are not matched to within

half a cycle by the synthetic data generated from the starting model, it is likely that the inversion

algorithm will attempt to fit the calculated events to the wrong cycle of the observed data and it will

fail to recover an accurate velocity model.

Furthermore, the numerical experiments indicate that the point source approximation is sufficient

to reproduce the directivity effects of an airgun array for the frequency range used in the field data

inversion.

Choice of the inversion strategies

The high non-linearity of the inverse problem can be mitigated by using different inversion strategies:
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• Gradient preconditioning - The satisfactory performance of the inversion algorithm can be

achieved by applying a preconditioning operator that combines a spatial taper with a linear

scaling function. A spatial taper, which turns off the model update in the water layer, allows to

suppress the artefacts related to the acquisition geometry and to improve the quality of inverted

models. In addition, the effect of geometrical spreading of the waveform amplitudes can be

effectively compensated by applying a simple depth-dependent linear preconditioning operator

to the gradient of the objective function.

• Multi-scale inversion - The multi-scale inversion is a very effective method to reduce the non-

linearity of the inverse problem and to mitigate the problem of local minima in the objective

function. Because the objective function at low frequencies is more linear with respect to the

model perturbations than at high frequencies, the inversion starts at low frequencies and higher

frequency content is gradually added. When the dominant frequency present in the data is low,

it is also easier to satisfy the half-wavelength condition imposed on the starting model and the

chance of the inversion to reach the global minimum is higher.

In this work, the multi-scale strategy is realized by low-pass filtering of the observed data. The

selection of optimal frequency bands is based on the continuous coverage of vertical wavenumbers.

The choice of optimal frequencies is of high importance to reduce the computational cost of the

waveform inversion and to take full advantage of the multi-scale approach, i.e. to avoid the

cycle-skipping problem. The first frequency band should be relatively narrow and contain the

lowest available frequencies with a high signal-to-noise ratio.

• Time windowing + offset windowing - The combination of time windowing and/or offset

windowing of the data has a significant effect on the inversion results. Because the early arrivals

are more linear than the late arrivals, a time windowing of the data around the first arrivals

helps to reduce the risk of cycle skipping and to add stability to the inversion. Furthermore,

the successive inversion from shallow to deep structures, which is similar to the layer stripping

approach, results in a good quality of the reconstructed model.

Although, the far offsets are the most non-linear components of the data with the high risk of

cycle-skipping, they are essential to reconstruct the long-wavelength structures of the model,

especially when the low frequencies are not available in the data. The far-offset data are more

sensitive to the macro variations in seismic velocity than the near offset data and allow a better

quantitative estimation of the velocity.

The combination of an offset windowing with a time windowing for each frequency band is much

more complex. If late arrivals are included at early stages of inversion, the reconstructed models

contain a lot of artefacts. On the other hand, a combination of the offset windowing with the

extending time windowing, such that the inversion proceeds from the near offset to the far offset

data and from early arrivals to late arrivals resulted in much better inversion results.

• Choice of the inversion parameters - The mono-parameter acoustic FWI with the P-wave

velocity as the only unknown can be easily extended to the multi-parameter inversion. An

important aspect of the multi-parameter inversion is the choice of the parameters describing the

medium, which can influence the convergence rate and the ambiguity of the inverse problem. I
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investigated three different combinations of parameters: P-wave velocity and density, acoustic

impedance and density, P-wave velocity and acoustic impedance. Whereas the resolution of

velocity and impedance models is comparable, the reconstruction of density structures strongly

depends on the model parameterization. Out of the investigated parameter sets, the velocity

and density provided the best convergence rate and the best accuracy of the inverted results

for the inversion of synthetic acoustic data. On the other hand, an accurate reconstruction of

the density model turned out to be very difficult with the synthetic elastic data, because the

density inversion is very sensitive to amplitude errors resulting from the acoustic approximation.

The similar difficulty with resolving a reliable density model was encountered in the case of the

multi-parameter inversion of the field data.

• Minimization criteria - If the data are dominated by isolated, high amplitude noise, such as

the swell noise, it is favorable to apply the minimization criteria which are less sensitive to noise

than the conventional L2 norm. The numerical example with the swell noise added to the data

showed the robust behaviour of the L1, Cauchy and sech criteria. Because the preprocessed

field data were not affected by high amplitude noise, the inversion results obtained for different

minimization criteria were very similar and even the L2 norm produced a good quality image.

Outlook

To improve the quality of inverted models and to include higher frequency components, it will be

necessary to apply a visco-acoustic FWI to this field data set. Because the time-domain inversion does

not allow for a separate inversion of phase and amplitude information, the application of the frequency-

domain inversion will be a possible direction for future investigations. Furthermore, to improve the

resolving power and convergence properties of the inversion algorithm, a more sophisticated gradient

preconditioning should be applied, such as the approximate Hessian matrix or the L-BFGS method.
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Appendix A

Marine processing sequence

I applied a conventional seismic data processing to the field data presented in Chapter 7. The 2D

marine data processing was performed with GLOBE Claritas. The processing sequence comprised the

following steps:

1. Reformat and edit out bad traces

2. Mute to remove refractions and direct arrivals

3. Geometrical spreading correction: spherical divergence and balance (the average amplitude of

the output trace is constant for all traces)

4. Bandpass Butterworth filter: low cut 3 Hz, high cut 60 Hz

5. FK-filtering to attenuate swell noise

6. Minimum-phase deconvolution

7. Set up of field geometry

8. CMP sorting

9. Creating semblance spectra and picking velocities

10. NMO correction and brute stack

11. Velocity analysis

12. NMO correction

13. Stacking

14. Post-stack Kirchoff time migration

15. Gain recovery: linear gain to recover the relative amplitudes of the section.
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