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Abstract

Component-based Software Engineering of business information systems
on the architectural level is supported by performance prediction approach-
es. These approaches allow quantitative evaluations of architectural de-
cisions throughout the lifecycle from the early design to the maintenance
phase.

The evaluations rely on performance behavior specifications of the com-
posed components. These specifications are abstract descriptions of the
performance-relevant behavior and can contain probabilistic as well as de-
terministic parts. The accuracy of a prediction depends on the accuracies of
the composed specifications. Current specification languages support spec-
ification reuse through loose coupling and separation of influence factors
like the hardware environment or the propagated usage profile. However,
these degrees of freedom increase the required effort and chance to make
errors during the evaluation of the accuracy of specifications with respect
to the behavior of implementations.

Evaluating the accuracy requires high effort even with limited degrees of
freedom and parameter space. The evaluation requires deep knowledge in
the areas performance testing and evaluation. Additionally, the separation
of roles and concerns increases the chance for whitewashed specifications
due to different aims of the participants. Whitewashed specifications en-
danger their meaningful use in predictions, especially if only specifications
are offered on marketplaces. Inaccurate and whitewashed specifications en-
danger objective and trustworthy predictions for composed systems as well
as subsequent architectural decisions.
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Abstract

Existing approaches for performance prediction on the architectural level
assume that the accuracy of specifications for the composed components 1)
is adequate for the selected influence factors and usage profile, 2) does not
put decisions at risk by their influence on the overall prediction, and 3) is
not whitewashed.

This thesis aims to evaluate the appropriate use of performance speci-
fications in predictions. It mitigates the listed assumptions and provides
benefits for the roles in the development process as follows. The thesis
defines a language for the specification and processing of accuracy state-
ments. This eases the specification and access for performance engineers,
software architects, and analysis tools. The thesis defines coverage criteria
for validating the accuracy of specifications. This eases the goal-oriented
definition of tests and reduces the required testing knowledge for perfor-
mance engineers and software architects. The thesis allows the automated
validation of specifications. Performance engineers are relieved from a te-
dious task and the coverage of all selected aspects is ensured. The thesis
defines a certification process, which addresses trust in specifications and
their use in internal component repositories as well as marketplaces. Soft-
ware architects and performance engineers profit from trustworthy specifi-
cations and can evaluate the appropriateness of a (re-)used specification.

The contributions are the formalized specification of the accuracy of
specifications, the automated validation of specifications against the be-
havior of implementations as well as their integration into the engineering
process with considerations of their trustworthiness. The contributions span
several areas and are as follows.

Meta-model for Accuracy Statements. The presented formalization
allows to specify the accuracy of performance specifications. The
developed language for the statements takes into account the differ-
ent influence factors as well as concurrent and probabilistic specifi-
cations. This generic language was additionally tailored for Palladio
Component Model (Palladio) specifications.
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Heuristic for Estimating the Accuracy of Overall Predictions.
The required effort for taking into account all inaccuracies including
combinations of inaccuracies is prohibitive even for small specifica-
tions. The heuristic allows to cut the effort for estimating the effect
that the inaccuracies of specifications have on an overall prediction.
The heuristic was integrated into the Palladio prediction approach.

Accuracy Statement Validation. The presented coverage criteria
ease the evaluation of covered aspects of specifications. Mutually
coverage analysis as well as algorithms for test set size estimation,
coverage creation, and coverage evaluation support criterion selec-
tion. The developed framework allows an automated validation of
platform-independent Palladio specifications with implementations
taking into account concurrent as well as probabilistic specification
parts.

Specification Certification. Trustworthy specifications allow compo-
nent evaluation and selection on the architecture level. The risks for
the trustworthiness of specifications and the protection of intellectual
property in implementations were identified. The presented certifica-
tion approach addresses these risks and supports the appropriate use
of specifications in internal repositories as well as on open market-
places. The approach requires adaptations of the used development
process. This adaptation is demonstrated for a variant of the Rational
Unified Process (RUP).

The evaluation of the applicability, the benefits, and the contribution is
based on three systems for experimentation. The first uses a complex deter-
ministic specification from the Common Component Modelling Example
(CoCoME). CoCoME is a benchmark for the comparison and evaluation of
prediction approaches. The other two highlight the handling of probabilis-
tic and concurrent specifications. The effect of inaccuracies on an overall
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prediction and the certification as part of an development process is evalu-
ated based on CoCoME.

The results confirm the completeness of the accuracy statement language
with respect to the influence factors. They show the benefits of estimating
the accuracy of an overall prediction. The results show that the deviation
varies heavily and the 90% quantile of a prediction is about 17% off even if
a constant and low deviation of the resource demand of 10% in the specifi-
cations is assumed. The results for the accuracy statement validation show
that all failures in the specifications are identified correctly, no false posi-
tives were found, and the results are verifiable by independent parties. The
results for the certification show that component sharing, evaluation and se-
lection on the architecture level can be successfully applied using protected
repositories as well as open marketplaces.
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Kurzfassung

Der Entwurf von komponenten-basierten betrieblichen Informationssyste-
men kann auf Software-Architekturebene durch Performance-Vorhersage-
verfahren unterstützt werden. Diese Ansätze erlauben die quantitative Be-
wertung von Architekturentscheidungen während des gesamten Lebenszy-
klus ausgehend vom Grobentwurf bis in die Wartungsphase.

Die Bewertung basiert auf Performance-Spezifikationen der beteiligten
Komponenten. Diese stellen abstrakte Beschreibungen des Verhaltens dar
und können sowohl probabilistische als auch deterministische Anteile ent-
halten. Die absolute Genauigkeit einer Vorhersage hängt dabei von der
Genauigkeit der Beschreibung eingesetzter Implementierungen ab. Aktu-
elle Sprache zur Spezifikation unterstützten ferner die Wiederverwendung
von Spezifikationen durch lose Kopplung und getrennte Berücksichtigung
von Einflussfaktoren wie der Hardware-Umgebung, dem propagierten Nut-
zungsprofil und den Eingabe- und Komponentenparametern. Diese Frei-
heitsgrade erschweren jedoch im gleichen Zug die Bewertung der Über-
einstimmung und Genauigkeit von Perfomance-Spezifikationen und Imple-
mentierungen.

Die Bewertung der Übereinstimmung und Genauigkeit erfordert selbst
für eingeschränkte Parameterbereiche einen hohen Aufwand und tiefgrei-
fendes Fachwissen in den Bereichen Performance-Tests und -Bewertung.
Die Rollen- und Aufgabentrennung bei der Arbeit mit der gleichen Kom-
ponente erhöht die Wahrscheinlichkeit unterschiedlicher Ziele der Betei-
ligten und die Bereitstellung geschönter Spezifikationen. Insbesondere bei
Nutzung von Marktplätzen erfordert die Verwendung von Spezifikationen
das Vertrauen in deren Korrektheit. Nur in diesem Fall ist eine objektive
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Kurzfassung

und vertrauenswürdige Vorhersage unter Berücksichtigung der Kompositi-
on und der gewählten Einflussfaktoren möglich und eine solide Grundlage
für Entscheidungen.

Existierende Ansätze zur Performance-Vorhersage auf Architekturebene
verwenden die Annahmen, dass die Genauigkeit der Performance-Spezifi-
kationen der beteiligten Komponenten 1) für deren Wiederverwendung mit
den aktuell gewählten Einflussfaktoren geeignet ist, 2) die Gesamtvorhersa-
ge und darauf basierende Entscheidungen nicht gefährdet werden sowie 3)
nicht absichtlich ein besseres als das tatsächliche Verhalten vorgeben wird.

Die Dissertation verbessert die Bewertbarkeit der Eignung von Spezifi-
kationen für deren Wiederverwendung. Sie adressiert die Abschwächung
der genannten Annahmen und unterstützt Rollen im Entwicklungsprozess
wie folgt. Eine Sprache zur Angabe der Genauigkeit erlaubt die Beschrei-
bung und maschinelle Verarbeitung von Qualitätsaussagen zu Spezifikatio-
nen. Performance-Ingenieure, Software-Architekten und Analysewerkzeu-
ge können einfacher auf dieses Wissen zugreifen. Die Dissertation definiert
Abdeckungskriterien zur Bewertung der validierten Aspekte einer Spezifi-
kation. Performance-Ingenieure und Software-Architekten können Testfäl-
le gezielter entwerfen und mit geringerem Fachwissen als bisher anhand
der Kriterien bewerten. Die Dissertation erlaubt die automatisierte Prüfung
von Performance-Spezifikationen. Performance-Ingenieure werden entlas-
tet und zielgerichtete Tests sichergestellt. Der definierte Zertifizierungspro-
zess nutzt die ermittelten Informationen zur Vertrauensbildung in die Spezi-
fikationen, die darauf aufbauenden systemweiten Analysen und erleichtert
deren Verwendung in Marktplätzen.

Die Beiträge meiner Dissertation sind die formalisierte Beschreibung
der Qualität von Performance-Spezifikationen, deren automatische Prüfung
sowie die Integration in den Entwurfsprozess unter Berücksichtigung von
Vertrauensfragestellungen. Sie können wie folgt zusammengefasst werden:

Metamodell zur Angabe der Genauigkeit von Performance-
Spezifikationen. Die entwickelte Formalisierung erlaubt die An-
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gabe der Genauigkeit von Spezifikationen. Diese berücksichtigt den
unterschiedlichen Einfluss und die Trennung der Einflussfaktoren so-
wie Nebenläufigkeit und Plattform-unabhängige Spezifikationen.

Heuristik zur Abschätzung der Genauigkeit von Gesamtvorher-
sagen. Der Umfang der möglichen Parameter und Ungenauigkeiten
führt zu prohibitivem Aufwand bei deren vollständiger Berücksich-
tigung. Die entworfene Heuristik stellt einen Kompromiss zwischen
Analyseaufwand und Genauigkeit der Abschätzung dar. Sie wurde
mittels Modell-Transformationen für Palladio-Spezifikationen exem-
plarisch umgesetzt.

Validierung von Aussagen zur Genauigkeit. Für die Bewertung der
durch eine Bewertung abgedeckten Aspekte einer Spezifikation wur-
den Abdeckungskriterien entworfen. Die gegenseitige Überdeckung
wurde analysiert. Algorithmen zur Erzeugung und Prüfung der Kri-
terien sowie der Abschätzung des notwendigen Testaufwands wur-
den ermittelt und umgesetzt. Diese berücksichtigen probabilistische
sowie parametrische Spezifikationsanteile und Besonderheiten der
nebenläufigen Verarbeitung. Das darauf aufbauend entwickelte Rah-
menwerk erlaubt eine automatische Validierung für Plattform-unab-
hängige Palladio-Spezifikationen.

Zertifizierung von Spezifikationen. Vertrauenswürdige Spezifikatio-
nen erlauben die Bewertung und Auswahl von Komponenten auf der
Architekturebene. Gefahren für die vertrauenswürdigen von Spezifi-
kationen und den Schutz geistigen Eigentums in Implementierungen
wurden ermittelt. Der erforschte Ansatz zur Zertifizierung erlaubt die
Adressierung dieser Gefahren und deren Nutzung in Komponenten-
Lagern und auf Marktplätzen. Die notwendigen Anpassung des kom-
ponenten-basierte Entwicklungsprozesse wurden ermittelt und exem-
plarisch für eine Variante des Rational Unified Process (RUP) umge-
setzt.
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Die Evaluation der Anwendbarkeit und Vorteile erfolgt anhand dreier
Fallbeispiele. Das erste enthält eine komplexe rein deterministische Spezifi-
kation aus dem Common Component Modelling Example (CoCoME). Co-
CoME ist ein Benchmark zum Vergleich und zur Bewertung unterschiedli-
cher Modellierungsansätze. Die weiteren veranschaulichen gezielt einzelne
Aspekte: Das zweite Fallbeispiel enthält eine Spezifikation mit probabilisti-
schen Anteilen und das dritte Fallbeispiel eine Spezifikation mit Elementen
zur expliziten Modellierung von Nebenläufigkeit innerhalb einer Spezifi-
kation. Der Einfluss auf eine Gesamtvorhersage und die Verwendung der
Zertifizierung im Entwurfsprozess werden am komplexen ersten Beispiel
aufgezeigt.

Die Ergebnisse zeigen die Vollständigkeit des Metamodells zur Beschrei-
bung der Genauigkeit für alle Einflussfaktoren. Sie zeigen ferner die Vortei-
le der Abschätzung der Genauigkeit einer Gesamtvorhersage, welche selbst
bei gleichmäßiger und geringer Abweichung der Resourcenlast in den Spe-
zifikationen von 10% stark variiert und im 90% quantil bei über 17% liegen
kann. Die Ergebnisse zur automatischen Bewertung von Aussagen zur Ge-
nauigkeit zeigen, dass alle Fehler in den Spezifikationen korrekt gefunden
wurden, keine Falsch-Positiv-Meldungen erfolgt sind und durchgeführte
Bewertungen von unabhängiger Seite überprüft werden können. Die Ergeb-
nisse zur Zertifizierung von Spezifikationen zeigen, dass sowohl die Bereit-
stellung als auch die Auswahl von Komponenten auf der Architekturebene
anhand vertrauenswürdiger Spezifikationen unter Nutzung von geschütz-
ten Komponenten-Lagern und offener Marktplätze erfolgreich angewendet
werden kann.
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1. Introduction

1.1. Motivation

Component-based Software Engineering on the architectural level is sup-
ported by performance prediction approaches enabling the prediction of ef-
fects cause by the chosen architecture. This allows considering composition
alternatives already in early design stages and selecting the appropriate ar-
chitecture for a system. However, these approaches are not restricted to the
initial architecture design. They allow ensuring desired system properties
throughout the entire lifecycle of systems. For example, their use in the de-
velopment phase enables software engineers to predict the performance of
different architecture design alternatives and hence select the best alterna-
tive. In the deployment phase, these specifications guide the selection and
sizing of an appropriate execution environment and on the deployment of
components within this environment. During operation, the specifications
can be used to reason about effects caused by different usage profiles and
ensure meeting service levels in advance. In the maintenance or evolution
phase, performance predictions allow examining the effects of modifica-
tions on the performance, reduce the probability of discovering unwanted
behavior in live systems, or identify bottlenecks in running systems.

The paradigm of component-based development breaks down complex-
ity, emphasizes separation of concerns, and targets application scenarios
in which roles from different and independent parties cooperate in the de-
velopment of systems. Thus, it has a strong separation of roles for the
definition, development, and assembly of components. The separation of
roles can span multiple independent organizations. The definitions for de-
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veloped components are shared and offered in component repositories or
marketplaces. Sharing only the definition of components allows protecting
the implementation itself and contained intellectual property but still allows
selecting a component for evaluation and assembly. Augmenting the def-
initions by performance specifications can ease and improve the selection
process. The different organizations and roles may have different individ-
ual goals. These goals may lead to inaccurate specifications which do not
describe the implementation or are a very positive interpretation of the real
behavior. The potential conflicts must be addressed in order to use specifi-
cations in this scenario and rely on prediction results. The conflict cannot
be solved by appropriateness assessments of each role participating in the
process as not every role has the required expertise and artifacts. The ef-
fort for such an assessment depends on the complexity of the specification
and can be quite high as it includes the instrumentation and measurements
of implementations as well as deep knowledge in validating performance
specifications.

Current performance prediction approaches allow describing the influ-
encing factors of a system independently. This means that the usage profile,
configuration parameters, the behavior of external services, the runtime en-
vironment for components, and the performance-relevant behavior of each
component can be specified and validated independently. This separation
fosters reuse of each of these specifications in different contexts.

The accuracy of an overall prediction for a system is the result of the
accuracy of the behavior specifications of the components and the accuracy
of the prediction approach itself. The accuracy of a behavior specification
depends on 3 factors: 1) on the stage in the design process, e.g. if it is an
early estimation or consists of performance properties measured in the tar-
geted environment on a real implementation, 2) the abstraction level of the
specification, and 3) the effort spent to create and validate the specification.
This leads to the situation that several behavior specifications for the same
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1.1. Motivation

Implementation 1 
Version 1 

Implementation 1 
Version 2 

Implementation 2 
Version 1 
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System 

Figure 1.1.: Example of Relation between Implementations and System Architec-
ture for Performance Predictions in the Lifecycle

component, which commonly differ in accuracy, are available during the
lifecycle of a system.

Figure 1.1 provides an example for the relations of behavior specifica-
tions and implementations during the lifecycle of a system. The dashed
lines visualize the relations and possible substitution of artifacts within the
lifecycle of a system. These artifacts and their relations are described in the
following.

In the example, a system is composed of three components and used ac-
cording to the Usage Profile shown in the top left in the figure. The
behavior of one of the composed components (top, in the middle) has
been estimated to optimize the system’s architecture in an early design
stage. This estimated specification is shown in the middle on the right
side. After an initial version of the system was implemented and deployed
a specification based on measurements was created, which is shown in the
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middle on the left side. The measurements were made on Version 1

of Implementation 1 for the parameter range of the Usage Profile.
Version 1 contained errors in the functionality, which were identified and
fixed. This results in Version 2. After a while, Implementation 2 was
developed with new features and another data management framework.
There is no behavior specification (yet) describing this new implementa-
tion.

The accuracy and appropriateness of the early estimation depends heav-
ily on the estimating expert and is hard to quantify objectively. Never-
theless, its use in an early design stage is advantageous. In later design
stages, the deviation between the measurement-based specification and the
implementation can be quantified. It can be assured by tests and observa-
tions of the implementation that accuracy threshold are not violated. The
same specification can describe different implementations. For example
the measurement-based specification can be an appropriate description of
Version 1 and Version 2 if the acceptable deviation is big enough to
cover the differences between the versions. In the described scenario,the
measurement-based specification is validated for the parameter range of
the Usage Profile. There is the question if the specification can be ap-
propriately re-used for a modified usage profile or for Implementation 2

without endangering the quality of the overall prediction or decisions based
on prediction results. Furthermore, if a specification is not appropriate then
how can users of a prediction be notified of this fact.

The goal of the approach presented in this thesis is to evaluate the ap-
propriate use of performance specifications. This requires stating the accu-
racy, evaluating the trustworthiness of accuracy statements and analyzing
how the accuracy of individual specifications effects the overall prediction
results. This leads to the research questions listed in table 1.1. If these
questions remain unanswered then overall predictions will provide seem-
ingly accurate predictions but their relation to the real behavior remains
unknown. There is the danger of becoming a victim of the ’garbage in
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Table 1.1.: Questions Regarding the Trustworthiness of Single Specifications and
the Overall Prediction with Respect to Inaccuracies of Specifications

Identifier Question
Goal: Evaluate Appropriate Use of Performance Specifications
Q1 Are the targeted implementations appropriately de-

scribed by the specifications?
Q2 Which accuracy does each specification have?
Q3 Is the accuracy of each specification valid for the propa-

gated usage profile?
Q4 How trustworthy are the statements about targeted im-

plementation and accuracy?
Q5 What is the effect of the accuracies of the composed

components on the overall prediction?

implies garbage out’-principle without being aware because the prediction
approach still delivers seemingly good predictions. If they are only par-
tially answered there remain uncovered risks. These risks pose a danger to
the validity of the prediction and the prediction result as sound base for a
decision on the architectural level. Section 1.3 points out how this thesis
addresses the questions.

Unfortunately, current prediction approaches address these questions
only implicitly or not at all. They assume that accurate specifications
are created and used by performance engineers and ensure that the over-
all prediction is accurate if this assumption holds. They support the use of
prediction approaches at distinct points in the development process. They
do not focus on their continuous use and the reuse of specifications in the
long run, especially the reuse by different or independent parties. Even if
quality statements exist and are coupled with specifications then it often re-
mains unclear which aspects are tested and how thorough the accuracy has
been tested. This includes the reproducibility of results and which inaccu-
racies may remain uncovered. This issue is aggravated by the complexity of
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parameterized specifications which allow statements independent of usage
profiles, used external services, or hardware environments.

The continuous use of performance prediction approaches during the
whole lifecycle, the re-use of specifications, and broad use on the archi-
tectural level is impaired by this limitation. The potential and advantage of
protecting intellectual property by providing specifications instead of im-
plementations in marketplaces without endangering the evaluation of com-
ponents is currently not exploited.

1.2. Application Scenario

The application area targeted by the approach presented in this thesis is a
component-based software engineering process, which uses predictions on
the architectural level to reason about performance properties of the com-
posed system. It additionally targets distributed development. This distri-
bution can either be in space or in time. The approach can be applied at
every stage in the life-cycle and takes reuse of specifications in the long-
term into account. Reasoning about the trustworthiness of specifications
with respect to their relation to implementations (Q1 and Q4) requires im-
plementations by design and can only be applied after implementations are
available. It targets usage profile and platform independent, parameterized,
and complex specifications. Answers to the questions Q2, Q3, and Q5 are
possible in all stages. The specifications can contain probabilistic and non-
probabilistic elements as well as concurrent behavior.

It specifically addresses trust issues and supports the separation of work
and different parties for developing, offering and using components. The
reuse of specifications in the long run and therefore maintenance and fur-
ther development is addressed as well. This enables the broad use of speci-
fications in component repositories and component marketplace scenarios.
Its support is provided by a general description which activities and steps
are necessary to implement the presented approach in own development
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processes as well as a tailored version of Palladio’s component-based refer-
ence development process described in [RBB+11a]. It supports exploiting
the potential of intellectual property protection by sharing specifications in-
stead of implementations for evaluation purposes. Furthermore, a guideline
shows which trust issues occur in different scenarios and how trustworthi-
ness can be addressed.

This thesis supports performance engineers in storing and validating the
accuracy of specifications on the component level. A high degree of au-
tomation of the validation ensures easy applicability, covered issues, and
reproducibility of results. It provides feedback to performance engineers
and software architects if specifications are used outside the range in which
their accuracy is specified (e.g. because the usage profile leads to input
parameters of the specifications in which it is not valid) as well as shows
the effect of accuracies on the component level on overall predictions. This
knowledge aids in determining if a prediction is a sound base for a decision
or the inherent inaccuracy make it too risky without further evaluation.

1.3. Aim and Contributions

The aim of this thesis is the certification of the accuracy of specifications
and using these certified statements for evaluating and ensuring the appro-
priate (re-)use of specifications in prediction approaches. The certificate
must state which aspects of the specification have been tested and ensure
complete testing of each aspect. This sound and trustworthy assessment ad-
vances (cross-party) component-based engineering and increases the trust-
worthiness in predictions of composed systems, especially if specifications
are reused in the lifecycle of a system or in different systems. The objec-
tives followed to reach this goal and how this thesis answers the questions
shown in Table 1.1 are addressed in the following for each area of work.

The thesis itself spans four areas of work: Accuracy Statements, Ac-
curacy Effects on Overall Prediction, Accuracy Statement Validation, and
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Figure 1.2.: Areas of Work and Dependencies between Areas

Table 1.2.: Work Areas and Addressed Questions (X: directly, x: indirectly)

Q1 Q2 Q3 Q4 Q5
Accuracy Statements X
Accuracy Effects on Overall Prediction x X X
Accuracy Validation X x,X X
Specification Certification x x x,X

Specification Certification. The first is the core in which a language to
make accuracy statements and attach them to behavior specifications is ad-
dressed. The second uses these statements and infers the effects on the
overall prediction approach. The third addresses the automated validation
of accuracy statements for given specifications and implementations. The
final area uses the accuracy statements and the validation information to
ensure trust in the specifications. All areas of work and their mutual de-
pendencies are depicted in Figure 1.2. Their relation to the questions is
depicted in Table 1.2.
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1.3.1. Accuracy Statements

The accuracy of a specification can be stated for different abstraction lev-
els and with different level of details. Furthermore, the accuracy is often
restricted to certain parameter ranges for parameterized specifications as
validation in the whole potential parameter space requires unjustified high
effort. The source of a specification, e.g. required, estimated, or measured
performance, has implications on the accuracy but only measured perfor-
mance can be compared on a sound basis. The elements contained in a
specification providing details on the performance can all differ in accu-
racy. Both, absolute and relative thresholds may apply for the same element
depending on the degree of abstraction and capturing precision. The state-
ments depend on the specification language as the accuracy of elements of
that language is described.

This thesis provides an annotation meta-model for attaching accuracy in-
formation to performance specifications. It allows stating the accuracy of
specifications for current prediction approaches and is a common language
for automated processing of the contained information. The customization
of the meta-model for Palladio-based specifications is shown and this the-
sis demonstrates how the customization to a specification language can be
realized.

These contributions provide answers to question Q2 as they provide for-
malized means to state and access the accuracy of a specification for hu-
mans as well as programs.

Open and addressed scientific challenges in this area are:

1. Formalization of accuracy information for performance specifica-
tions. Devise a customizable meta-model to state accuracy for speci-
fications which separate the influencing factors into different models
and allow stating absolute and relative thresholds for the elements of
the specification.

2. Demonstration of the customization process.
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1.3.2. Accuracy Effects on Overall Prediction

The degree of the influence on an overall prediction caused by the accuracy
of a component’s specification depends on its composition within the over-
all system and the propagated usage profile. Inaccuracies in other compo-
nent specifications can alter the propagation of the usage profile and hence
indirectly influence the overall influence size. Furthermore, the propagated
usage profile may lead to the use of specifications in areas in which no ac-
curacy information is available and the specification has not been validated.

Worst-case scenarios of this influence point out the margins around pre-
dicted values and allow judging if a prediction will most likely provide a
sound basis for a specific evaluation goal. This makes these scenarios the
most valuable for users of an accuracy analysis. It is possible that inaccu-
racies in one model hide inaccuracies in another rather than accumulate but
only the accumulation demonstrates the worst-case effect where all models
are still used within their accuracy statements ranges.

In general, determining worst-cases or graduations of them requires a
full exploration of the parameter space, which implies parameter modifi-
cation and a subsequent analysis run. Full exploration means each model
in a composition must be modified individually and all combinations must
be tested to be sure any possible effect has been identified. For example,
increasing a parameter, which influences the priority of certain jobs could
increase the throughput for these jobs at the expense of the performance of
other jobs. Even smaller resource demands in parts of the model do not
necessarily imply faster processing as the changed situation could lead to
contention where there has been none before and hence increased response
times.

This thesis provides a discussion about trade-off decisions for influence
analyses and realizes an influence analysis for Palladio-based specifica-
tions. It shows how software architects and performance engineers benefit
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from accuracy information and how it supports their decisions. The accu-
racy effects analyses and reasoning can stay on the architecture level.

These contributions provide answers to question Q3 and Q5. The use of
the area accuracy statements allows to indirectly provide the answers for
that area as well. If a prediction uses specifications in parameter ranges
for which no accuracy information is available this situation and the prop-
agated usage profile leading to this situation are reported to the user by the
approach presented in this thesis. The realized influence analysis provides
answers to Q5. The thesis demonstrates how the feedback helps in judging
on the appropriateness of specifications for an evaluation goal.

Open and addressed scientific challenges in this area are:

1. Provide an influence analysis realizing a trade-off between analysis
effort and quality of the analysis showing the effects of the accuracies
of composed specifications on the overall prediction.

1.3.3. Accuracy Statement Validation

Even today, Parkes identified in the survey [Par12] with 200 participants
with executive jobs in large North American companies that quality assur-
ance is still a major issue in software development and improvements would
help companies:

75% of companies anticipate they would realize faster re-
lease times by removing connection complexities; ’Techni-
cal constraints during the development process, particularly
around managing data and a sufficiently robust infrastructure
for component, system and performance testing is a major is-
sue. [Par12]

Advanced development and testing solutions can resolve the
most common challenges in the software delivery lifecycle
(SDLC). North America respondents admitted that having this
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kind of technology would help them increase quality (81%),
shorten development cycles (75%) and reduce costs (71%).
[Par12]

Quality assurance is carried out by validation and verification activities.
Validation focusses on users needs and verification on the fulfillment of
specified requirements (see section 2.1 for detailed definitions). In model-
based testing, validation addresses if a model conforms to the user require-
ments. In the applied case, validation addresses if a performance specifica-
tion is appropriate for making the architectural decision at hand. Verifica-
tion addresses the comparison between a given model and implementation
based on testing.

The user requirements for performance specifications regard their use in
prediction approaches and the suitability of the overall prediction for their
questions. Validating their fulfillment requires verifying their correctness.
The verification can be made by formal proofs or testing. Verifying the ac-
curacy of performance specifications is usually carried out by testing. The
application of formal techniques and proving their correctness is limited
by the high degrees of freedom between the abstraction level of specifica-
tion and implementation, certain dependencies which are only observable
at runtime, and the parameter space taking into account all influencing fac-
tors.

Test-based assessments of the soundness of specifications require de-
ployed and appropriately instrumented instances of the corresponding im-
plementation and deep knowledge in validating specifications. Selecting
appropriate tests is especially challenging for models allowing both, prob-
abilistic as well as deterministic transitions. Exhaustive testing requires
prohibitively high effort for state-of-the-art specifications. Trade-off deci-
sions involve restricting the validation to certain parameter ranges and to
focus on certain elements or aspects of the specification. The resulting re-
strictions must be stored together with the model for proper (re-)use.
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Existing approaches often rely on the expertise of performance engineers
to infer test sets for models. Without hard evaluation criteria, it is challeng-
ing for performance engineers and third parties to assess the quality and
thoroughness of the validation or the aspects covered by the tests. This re-
quires high effort for the test set creation and renders the evaluation of exist-
ing test sets cumbersome and comparisons between different test sets hard.
Quantitative and objective evaluation criteria would allow reasoning about
covered aspects with less performance engineering background knowledge,
ease comparisons of test sets, and allow creating test sets tailored to cover
selected aspects. Formalized criteria tailored for specification languages
would allow taking into account their expressiveness, constraints, and as-
sumptions while enabling the automation of test set creation. Automated
test set creation would increase reproducibility and reduce the required ef-
fort of performance engineers. Automated test execution would further de-
crease the required effort of performance engineers. It can be enhance to
dynamic test set creation in order to cover and adapt to probabilistic mod-
eled decisions within specifications. Additional estimation algorithms for
test set sizes linked with a criterion and a selected specification would al-
low reasoning about the required validation effort beforehand and support
trade-off decisions.

This thesis provides coverage criteria definitions for Palladio-based spec-
ifications and test set size estimators for each criterion. The criteria take
into account execution platform independent specifications, the parameters
supported by Palladio as well as the influencing factors for specifications.
An implemented validation framework provides automated test set creation
and test execution. This framework eases testing and addresses the issues
identified by Parkes and shown at the beginning of this section.

These contributions provide answers to question Q1, Q2, and Q4. The
use of the area Accuracy Statements provides provides answers to the ques-
tions linked with that area as well. The criteria allow answering which
aspects are covered and the automated validation with dynamic test set cre-

13



Introduction

ation ensures that these aspects are appropriately verified for a given imple-
mentation and specification. It enriches the accuracy statements themselves
by a method to check if these statements are valid and hence provides more
information to Q2. The automation and formalized criteria definition as
well as knowledge about pairwise relation of criteria allow reasoning about
the trustworthiness of accuracy statements and which error might still re-
main.

Open and addressed scientific challenges in this area are:

1. Define performance-oriented component coverage criteria for speci-
fications taking into account the parameters and influencing factors

2. Analyze pairwise relation and mutual covered aspects for the defined
criteria

3. Create algorithm for dynamic test set creation and handling of prob-
abilistic elements of specifications

4. Analyze which information is necessary to automate the validation
of specifications

5. Support validation of execution platform-independent specifications

1.3.4. Specification Certification

There are several approaches to ensure that different parties trust the sound-
ness of the statements made by a specification.

The offering party of a component providing the specification can agree
to contractual penalties if the statements are not sound. However, its hard
to evaluate in advance for all available components if the offering party
is able to cover the penalties. Furthermore, this does not work well with
Free/Libre Open Source Software (FLOSS) components in which there is
no single responsible company behind a component.
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Product 

Personnel Process 

Figure 1.3.: Software Quality Triangle [Voa99]

Other approaches are based on the certification of specifications. In gen-
eral, there are three basic types of approaches to certification: personnel,
product and process certification as Voas showed in [Voa99]. All of these
aspects affect how well a piece of software or the description for that soft-
ware has been engineered. These types are described in the following and
their relation is visualized in Figure 1.3.

Process certificates focus on the management aspect of development, e.g.
that estimates match real effort and development processes are repeatable
and serve reaching defined goals. However, the best process cannot guar-
antee that a system has a good quality or a specific specification is sound
[MW08].

Personnel certificates focus on the knowledge and expertise of individ-
uals. Such a certificate can ensure that the training of a person matches
the requirements for assigned tasks. It cannot ensure that the knowledge is
properly applied. It does not provide evidence which aspects of a specifi-
cation have been validated to which extent.

Product certificates focus on the artifact, in this case the specification,
itself. They can provide evidence which aspects of a specification have
been validated to which extent.
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The analysis of immaturities of marketplaces by Overhage and Thomas
in [OT04] showed the following threats to the (re-)use of specifications and
components.

Being unable to predict and assess component behavior often
leads to extreme difficulties in software reuse. [OT04]

Component marketplaces today often support the distribution
of special component test versions that can be assessed by
the respective buyers prior to the acquisition of a fully func-
tional component version. However, test versions are usu-
ally restricted to a reduced functionality and often show dif-
ferent extra-functional characteristics compared to the fully
functional version, which makes it difficult to take over assess-
ment results. Moreover, forcing buyers to gain information
(e.g. to compare alternative components) solely on the basis
of exhaustive component testing burdens them with significant
additional efforts and thus severely violates the postulation of
minimal transaction costs. [OT04]

This shows that trustworthy specifications help mitigating the issue as they
support the assessment of components and prediction of their properties.
The conformance of the information offered in marketplace and the behav-
ior of the implementation of the component must hold in order to fulfill
minimal transaction costs.

This thesis follows a product certification approach as it is the only way
to ensure that each individual specification is providing sound statements
while maintaining the component-based development paradigm. A certifi-
cate covers the successful validation of criteria defined in the Accuracy
Statement Validation area. If followed, it ensures that only sound inputs
are used by software engineers to reason about performance on the archi-
tectural level. These trustworthy specifications can be provided on market-
places ensuring the conformance to the implementation as well as minimal
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transaction costs. This thesis also defines the workflows necessary to tai-
lor an own certification-aware component-based development process and
shows this tailoring for the Palladio development process. It follows the
separation of concerns of the component paradigm and extends the existing
Palladio development process by distinguishing the capabilities required
for the roles of performance engineers and developers.

These contributions provide answers to question Q4. The use of the
areas Accuracy Statements and Accuracy Statement Validation indirectly
provides answers to questions Q1, Q2, and Q4 as well. The sound state-
ments about the validity of accuracy statements for specifications validated
by a product certification approach comparing implementation and specifi-
cation ensures trustworthy statements. The process ensures that this infor-
mation can be supplied successfully and the certification of specifications
is conform with component-based development and architectural level per-
formance engineering.

Open and addressed scientific challenges in this area are:

1. The formulation of certification criteria used to define the aspect of
performance specifications, which have to be covered in the valida-
tion and the extent to which these aspects have to be covered.

2. The creation of a workflow for performance specification certifica-
tion usable in scenarios with repositories or marketplaces used by
several independent parties.

3. The specification of an adapted component-based development pro-
cess incorporating certified specifications.

1.4. Contribution

Existing performance prediction approaches rely on the capability of soft-
ware engineers to select suitable performance specifications of a compo-
nent and do not address trust issues in specifications and their use by in-
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dependent parties. Research focused on validating prediction approaches
under the assumption that the specifications were suitable for the situation
at hand. Validating performance specifications is seen as manual activity
during the generation of the specifications. Explicit statements about the
quality and the thoroughness of the specification’s validation are uncom-
mon. Especially if specifications should be reused in different context, for
example because of late composition, then missing validity statements in-
crease overall efforts as specifications have to be recreated and revalidated
before each use.

The combined contributions addressing the scientific challenges listed
for each area fulfill the aim to advance cross-party component-based engi-
neering in the following points:

C1 Performance engineering can be used in scenarios with cross-party
component repositories or marketplaces. The trustworthy specifica-
tions allow exploiting the benefits of architecture level performance
predictions without reducing the quality of the evaluation and selec-
tion of components.

C2 Reproducible and more reliable validation results. Automated valida-
tion and formalized coverage criteria reduce human validation errors
and ensure a sound validation.

C3 Faster validation by higher degree of automation.

C4 Reduced effort for specification creation by lowering bar for correct
reuse of existing specifications.

C5 Better architectural decisions, especially on the selection of compo-
nents, based on the knowledge of error margins of predictions due to
specification inaccuracies.

C6 Reduced effort of performance engineers required for validation and
evaluation of specifications.
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C7 Software architects need less performance engineering interpretation
knowledge when using architecture level predictions. Results are
easier to interpret, inappropriate specifications are easier identified
and the understanding of validated aspects is more precise with the
criteria.

These advantages are available during the whole lifecycle of a software
system and its different stages.

1.5. Structure

The thesis is structured as follows. Chapter 1 presented the motivation,
introduced the approach, presented how the aim of the thesis is refined into
questions, and how the questions relate to the four different areas of work.

Chapter 2 presents the foundations used in the presented approach. It
provides basic definitions for different types of mismatches between speci-
fication and implementations. It discusses the comparison between a spec-
ification and implementation in general and its meaning in particular for
specifications with probabilistic parts. It provides an introduction to the
use of performance analyses on the architecture level in software engineer-
ing. It explains performance modeling with the Palladio approach used for
the evaluation of the presented approach and introduces the relevant parts
of its meta-model. Finally, it introduces the pre-existing component-based
software engineering process of Palladio, which is based on the Rational
Unified Process (RUP).

Chapter 3 discusses related work. It provides an overview on supported
accuracy statements and influence analysis techniques in current perfor-
mance engineering approaches. It discusses the state of the art in test-based
validation and model-based testing as well as the application of coverage
criteria. It concludes with an overview on certification approaches appli-
cable to component-based software engineering for business information
systems.
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Chapters 4, 5, 6, and 7 are the core of this thesis and present the contri-
butions for each area of work.

Chapter 4 presents the developed meta-model for stating the accuracy
of performance specifications. It explains the skeleton for language-inde-
pendent statements for performance specifications on the architecture level.
Furthermore, it presents the tailoring to Palladio and shows the extension
for the Palladio language.

Chapter 5 presents the influence analysis of inaccuracies of specifica-
tions on overall predictions of composed systems. It discusses the trade-off
decision between analysis effort and quality of the analysis in general. It
presents the developed heuristic and discusses the made trade-off decision.

Chapter 6 presents the approach for an automated test-based validation
of performance specifications against the behavior of implementations. It
introduces a meta-model for stating the configuration options for a valida-
tion and presents a validation process, which defines the necessary process
steps and flow of artifacts. The chapter defines coverage criteria for Pal-
ladio performance specifications taking into account the semantics of the
elements in that language. The criteria allow focussing the validation on
selected aspects and ensure that these aspects are covered. Examinations
of the mutual coverage and algorithms for test set size estimation comple-
ment the definition and support the selection of validation criteria. The
validation requires the specification of a mapping between the specifica-
tion and the implementation. The chapter presents the corresponding link
meta model as well as the meta-model for reporting validation results. Fi-
nally, the chapter presents the tool part of the validation framework, which
is responsible for executing the validation automatically.

Chapter 7 discusses risks for the trustworthiness of performance specifi-
cations and analyzes how certification can mitigate these risks. It shows that
trust depends heavily on the participating roles and parties and that these
relations influence what kind of certification ensures trustworthiness. The
chapter introduces a guideline for the selection, which allows tailored solu-
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tion for different application scenarios. Furthermore, the chapter presents
the process steps required for the integration of certification into a develop-
ment process. The chapter shows how these steps can be integrated into the
development process used by Palladio and defines a certificate for Palladio
specifications.

Chapter 8 describes the evaluation of the contributions presented in the
chapters 4, 5, 6, and 7. It describes the refinement of research questions
to experiments for each area of work. Then, it introduces the overall three
systems for experimentation covering a realistic industrial use case as well
as technology demonstrators. The chapter discusses the results of each ex-
periment individually and provides a summarizing discussion of all results
including an examination of internal and external validity.

Chapter 9 concludes the thesis. It summarizes the contributions and va-
lidation results for each area of work and shows the benefits. A detailed
discussion of the assumptions and limitations follows. Finally, a perspec-
tive on short-term and long-term future work closes the thesis.
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This section introduces the foundations used throughout this thesis. Defi-
nitions for the certification, cause, manifestation and identification of mis-
matches between specification and implementation are provided. The com-
parison of specification and implementation is discussed in general and in
particular for specifications with probabilistic branches. An introduction to
performance analyses on the architecture level is provided and for Palla-
dio specifications in particular. At the end, the component-based software
engineering process of Palladio is presented, which is extended in chapter
7.2.1.

The International Organization for Standardization (ISO) defines certifi-
cation in [DIN05] as “third-party attestation related to products, processes,
systems, or persons" [DIN05, definition 5.5] and attestation as “issue of a
statement, based on a decision following review, that fulfillment of speci-
fied requirements has been demonstrated" [DIN05, definition 5.2]. In this
thesis, a more focussed definition is used:

Certification Attestation that a product fulfills specified requirements.

This definition does not require third-party attestation but allows it. The
third-party is only required to ensure trust in the attestation in certain sce-
narios but has no effect on the attestation and product review. This topic
and the assignment of the certificate issuing party is discussed in detail in
section 7.1.2. The used definition only addresses the attestation of prod-
ucts as this thesis follows a product certification approach (see section 3.3
and chapter 7 for a detailed discussion). Chapter 7 defines the reviewed
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artifacts and used processes based on the specified requirements for per-
formance specifications and the corresponding (automated) review process
introduced in chapter 6.

The comparison between specification and implementation requires
terms denoting the correctness of specifications with respect to a stipu-
lated accuracy or quality. This thesis uses the following definitions tailored
for the comparisons. They are based on the vocabulary used in the in-
dustry norm ISO 26262 for functional safety of electrical and/or electron-
ically systems [ISO11b] and Meulen’s definitions for software reliability
engineers[Meu95].

Error Detected deviation between specification and implementation.

Failure Manifestation of an error resulting in the inability to perform as
required by the specification. Case or condition in which the devia-
tion between specification and the implemented behavior is outside
of the stipulated quality bounds.

Fault Cause of an error. Incorrect specified behavior, which is an inherent
weakness of the specification. A fault can be present without being
identified.

If the conditions for experiencing a fault are met then the implementation
is erroneous and a failure occurs. The test-based validation presented in
this thesis reports validation failures if an error is detected and provides
additional information to identify the fault.

This chapter is structured as follows. Section 2.1 discusses the issues of
comparing specifications and implementations. Section 2.2 shows the foun-
dations for statistical hypothesis testing and branch probability validation.
Section 2.3 introduces the concept of performance analyses on the architec-
ture level. Section 2.4 introduces how performance is specified in Palladio.
Finally, section 2.5 introduces the component-based software engineering
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process respecting analyses on the architecture level, which is also used in
Palladio.

2.1. Comparing Implementation and Specifications

The comparison between implementations and specifications is part of the
validation and verification activities carried out during quality assurance.
Annex B of ISO 9126-1[ISO01] provides the definition of validation and
verification based on ISO 8402:1994[ISO94] with additional notes. These
definitions are still used as can be seen for example in the glossary[vV10]
of the International Software Quality Testing Board (ISTQB).

Validation is defined as

Confirmation by examination and provision of objective evi-
dence that the particular requirements for a specific intended
use are fulfilled. [ISO01, B.33]

Confirmation by examination and through provision of objec-
tive evidence that the requirements for a specific intended use
or application have been fulfilled. [vV10]

Verification is defined as

Confirmation by examination and provision of objective evi-
dence that specified requirements have been fulfilled. [ISO01,
B.34]

Confirmation by examination and through provision of objec-
tive evidence that specified requirements have been fulfilled.
[vV10].

Validation focusses on users needs and verification on the fulfillment of
specified requirements. Pretschner and Philipps map these terms to model-
based testing in [PP05]. They define model-based validation as checking
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whether a model conforms to the user requirements and using tests gener-
ated based on these model as verification. These definitions are used in this
thesis.

Specification are abstract descriptions of the behavior of an implemen-
tation. They focus on the relevant behavior and reduce the complexity of
the implementation. Otherwise, the implementation could be used itself.
However, the level of abstraction means that the behavior described by the
specification and observations on the implementation will differ to a cer-
tain degree. Furthermore, the mathematical function describing the speci-
fied behavior can be completely different from the implemented behavior,
as long as the deviation between specification and implementation does not
exceed given acceptance thresholds. For example exponential resource de-
mands can be approximated with linear functions in limited sections. This
has the advantage that simple abstractions can be used instead of complex
functions but has the disadvantage that the assumptions that the specifica-
tion and implementation show the same resource demand distribution does
not hold. This implies that the judgement on remaining errors after testing
a specification is limited to the ratio of covered input parameter space of the
implementation if no further assumptions on the behavior of the implemen-
tation are made. This is true because even a single remaining point in the
parameter space might be the one point for which acceptance thresholds are
violated. The approach presented in this thesis does not make any assump-
tions on implementations and uses the following definition for comparing
the deviation between specification and implementation:

Accuracy A specification is an accurate description of the behavior of
an implementation if the observable behavior of the implementation
does not deviate beyond given accuracy threshold. These can be ab-
solute as well as relative thresholds with reference to the specifica-
tion.
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The identification of failures between specification and implementation
(inaccuracies) can be regarded as an information retrieval task aiming at
retrieving all failures. In information retrieval, the standard terms precision
and recall are used for the classification of approaches:

Precision Ratio of correctly identified cases to the identified cases of an
approach. Precision is a measure for classifying the quality or cor-
rectness of the identified cases.

Recall Ratio of correctly identified cases of an approach to the overall
existing cases. Recall is a measure for classifying the completeness
of the identified cases.

The precision of comparing implementation and specification based on
tests and the observations of their behavior is influenced by noise disturb-
ing the measurements and if probabilistic decisions are specified. Bytecode
instruction-based measurements of resource demand are not influenced by
noise and there is no measurement error. This means the corresponding
measurements and the validation approach presented in this thesis have a
precision of 1. Otherwise, compensations for warm up or tear down may
improve the situation or an estimate of the measurement can be calculated
based on statistical reasoning with a given confidence. Compensations or
measurements are not required in the presented approach. However, there
is a single exception. Comparing probabilistic decisions based on observa-
tions is only possible with a given confidence by definition. Precision and
recall for that case are discussed in section 2.2.

2.2. Statistical Hypothesis Testing

Statistical hypothesis testing addresses testing probability distribution as-
sumptions based on observations. It is used in this thesis to check the prob-
abilities of branches in Palladio specifications. Two alternative hypotheses
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must be chosen before testing. They must be mutually exclusive and as
soon as one hypothesis can be accepted, the other one is rejected.

The null hypothesis is denoted with H0 and the alternative hypothesis is
denoted with H1. The hypothesis are tested using a sample size, denoted
with n. The sample size determines how many outcomes are observed and
integrated into a statistic. The statistic summarizes the outcomes, for exam-
ple how often a branch was taken. The value of the statistic is compared to
the expectations if H0 or H1 hold. The probabilistic nature means that the
value of the statistic varies between repetitions for the same setting. The
acceptance or rejection of a hypothesis is therefore only possible with a
degree of certainty. There are two types of error, which can appear.

Errors of Type I, also known as significance level or false positives, are
denoted with α and describe the probability of falsely rejecting a hypothe-
sis. They determine the confidence level, which is 1−α . Errors of Type II,
also known as false negatives, are denoted with β and describe the proba-
bility of falsely accepting a hypothesis. They determine the power of a test,
which is 1−β . The acceptable error probabilities determine the thresholds,
also known as critical values, delimiting the acceptance and rejection range
for values of the statistic. The resulting expected precision for a sufficiently
large number of tests for the same hypothesis is 1−α

1−α+β
and the resulting

expected recall is 1−α .
A Bernoulli experiment is an experiment with two different outcomes

for a sample X (e.g. success X = 1 and failure X = 0) and a probabil-
ity p for each outcome. The statistic S = ∑

n
k=1 Xk has a Binomial distri-

bution B(n, p) for the sample size n and if X is an independent, identi-
cally distributed random variable. The probability of exactly k successes
is P(S = k) = f (k,n, p) =

(n
k

)
pk(1− p)n−k. The cumulative distribution

function is P(S <= k) = F(k,n, p) = ∑
k
i=0
(n

i

)
pi(1− p)n−i and its inverse

F−1(q,n, p), where q is the quantile. Using the Moivre-Laplace theo-
rem, the resulting distribution can be approximated with the normal dis-
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tribution N(np,np(1− p) for a sufficiently big n. For hypothesis testing,
np(1− p)≥ 9 is often used as limit for a good approximation.

2.3. Architecture-Level Performance Analyses

This section introduces performance specifications and their use for analy-
ses on the architecture level in general. Specifications can be parameterized
and independent of influence factors like the usage profile or execution en-
vironment. This separation and decoupling allows late composition and
re-use of the specifications. The specifications can be on different levels of
abstractions and represent concurrent as well as probabilistic behavior. The
influencing factors are presented, which are taken into account in current
specification languages. See the surveys of Becker et al. [BGMO06] and
Koziolek [Koz10] for an overview on the languages.

In general, the influence factors at composed system level (see fig-
ure 2.1(a)) are the Usage Profile, the Configuration or State of
the system, the Hardware Environment, and the behavior of External
Services. The usage profile describes how the system is used from the
outside. This includes human users as well as machine to machine com-
munication. The configuration or state represent the transient or persistent
settings within the system, which influence the performance on system or
component level. The hardware environment determines the capability and
rate of handling resource demands issued by components in the architec-
ture. External services do not compete for resources with components in
the architecture but their Quality of Service (QoS)-properties influence the
experienced behavior of the composed system. All influencing factors and
the architecture or component behavior itself can be specified independent
of each other, for example in different models. As mentioned before, a
higher degree of separation goes along with a higher degree of re-use of the
specifications in different contexts.
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Architecture 
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Input Calls 
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(Component) 
Behavior 

Model 

Configuration / State Model 
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Return Parameters Return Parameters 
Direct Issued Demand 

(b) Component Level

Figure 2.1.: Influence Factors and Performance Model Partitioning

The four influence factors can be mapped to the component level (see fig-
ure 2.1(b)) as follows. The Usage Profile propagated through the com-
posed system is reflected by the number of input calls and the parameters
used in the calls as well as the performance-relevant returned parameters.
Configuration or State of a component is the same as for the whole
system only on a lower level. The influence of External Services maps
to component-external calls with given parameters and the performance-
relevant parameters returned by these calls. The Hardware Environment

determines the capability and handling of resource demand issued by the
component to its environment.
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Figure 2.2.: Architecture-level Performance Engineering Cycle

These specifications are all part of the QoS engineering cycle on the
architecture level, which is depicted for performance in figure 2.2 and de-
scribed in the following. At the beginning, there is an architecture and
a QoS-related question, which should be answered based on quantitative
analyses. An example for such a question is the selection decision between
two design alternatives based on the response time for the main usage sce-
nario. The architecture design models covering the influence factors listed
in the last paragraph are represented by the drawing board on the top left in
the figure and are the main artifacts. They can be combined into a system’s
QoS model. This integrated QoS model can be transformed into analysis
models, for example Petri Nets, Queuing Networks, or Stochastic Process
Algebras. The transformation is already part of the prediction approach,
for example Palladio for performance analyses. The prediction approach
is then used to solve the model and gain quantitative measurement for the
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metrics important to answer the initial question. This solving can be real-
ized analytically or via Monte-Carlo simulations. Analytical solutions are
typically faster but have more assumptions and limitations than simulations,
for example on the distribution of values or mutual interference of request
processing. The resulting metrics and measurements can then be used to
reason about the QoS-properties of the composed system and answer the
question.

2.4. (Palladio) Performance Specifications

The presentation of the Palladio meta-model in this section focusses on the
aspects, which are important for the concepts and realizations discussed in
this thesis. Detailed and further information on the Palladio meta-model
and on all meta-model elements and relations is available in the technical
report on Palladio [RBB+11b]. Palladio has built-in solvers using a Monte
Carlo simulation [BKR09, MH11] as well as analytical solver, for example
based on Petri Nets [MKK11] or Layered Queuing Networks [KR08a].

In Palladio, the usage profile, the behavior of external services and the
hardware environment are separated and specified in independent models.
Palladio supports behavior specifications, which specify their resource de-
mand in terms of invocations of intermediate language instructions, for ex-
ample bytecode instructions for Java. Performance predictions based on
bytecode instructions have been developed and successfully evaluated by
Kuperberg in his PhD thesis [Kup10]. Configuration or state is modeled
together with the behavior of components. Composition and deployment
of components within a system on the hardware environment is specified
separately and allows easy evaluation of design alternatives.

Components and interfaces are first class entities in Palladio and spec-
ified in repositories. Their specification is described in the following and
the respective Palladio meta-model elements are provided. A running ex-
ample is used to visualize the way Palladio specifications look like. The
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<<artifact>> process specification

TradingSystem.Inventory.

Application.ProductDispatcher
Product

Dispatcher

If

+ ProductAmountTO[] dispatchProductsFromOtherStores(INT 

callingStoreId, ProductAmountTO[] requiredProducts)

ProductDispatcherIf

JVM

+ NOP()

+ ACONST_NULL()

+ ICONST_M1()

[...]

JVM

Figure 2.3.: Example for Component and Interface Specification in UML

parameters

parameters

signatures

dataType

dataType

+ entityName : String = „ProductDispatcherIf“

ProductDispatcherIf : OperationInterface

+ entityName : String = „dispatchProductsFromOtherStores“

dispatchProductsFromOtherStores 

: OperationSignature

+ parameterName : String = „callingStoreId“

callingStoreId : Parameter

innerDeclaration

innerDeclaration

+ entityName : String = „product“

+ datatype : DataType = ProductTO

product : InnerDeclaration

+ entityName : String = „amount“

+ datatype : DataType = INT

amount : InnerDeclaration

+ parameterName : String = „requiredProducts“

requiredProducts : Parameter

innerType

+ entityName : String = 

„ProductAmountTO“

ProductAmountTO 

: CompositeDataType

returnType

+ entityName : String = „INT“

INT : PrimitiveDataType

+ entityName : String = 

„Collection<ProductAmountTO>“

Collection<ProductAmountTO>

: CollectionDataType

Figure 2.4.: Example for Interface Specification in Palladio
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component and interfaces of the example are depicted in UML in figure
2.3. The Palladio representation of the ProductDispatcherIf interface
and its operation is shown in figure 2.4.

In general, there are business interfaces (OperationInterface), infras-
tructure interfaces (InfrastructureInterface), and resource interfaces
(ResourceInterface). The business interfaces are responsible for the in-
terface of the system themselves. An example is the ProductDispatch-

erIf interface. The infrastructure interfaces are responsible for libraries
and non-business related infrastructure, for example Java bytecode instruc-
tions. An example is the JVM interface. Resource interfaces are responsible
for the access to resources in the environment, for example hard disk drives.

The different types of interfaces do not only differ in their semantics but
also in their support for parameters. Business interfaces can have any num-
ber of operations. Each operation is described with an OperationSigna-

ture. This specifies the parameters including their names and data types
and the return data type of the operation. Data types are discussed in the
next paragraph. Infrastructure interfaces can also have any number of oper-
ations. Each operation is described with an InfrastructureSignature.
In contrast to the business operations, the infrastructure operations do not
allow returning data to behavior specifications. Their parameters are not
limited. Resource interfaces can have any number of operations. Each op-
eration is described with a ResourceSignature. They have only a single
parameter and do not return data. They represent the access to a resource
and the type of access. For example a read-access to a hard disk drive
with a parameter describing the amount of data to read. The interfaces
are connected to components using provided (OperationProvideRole,
InfrastructureProvidedRole) and required roles (OperationRequi-
redRole, InfrastructureRequiredRole, ResourceRequiredRole).
Resource interfaces can only be required but not provided by components.

Palladio supports data specifications using three different types: Primi-
tiveDataType, CollectionDataType, and CompositeDataType. The
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first are primitives and specifications for BOOL, BYTE, CHAR, INT, DOUBLE,
and STRING are provided. Their semantics is comparable to such data types
used in programming languages like Java. An usage example is available
for parameter callingStoreId in figure 2.4. CollectionDataType rep-
resents a collection of a single data type (see Collection<ProductA-

mountTO> in figure 2.4 as an example). This data type must be set via the
innerType containment link. CompositeDataType are data types com-
posed from other ones. The innerDeclaration containment link allows
to define the names and data types for a composition (see ProductAmount-
TO in figure 2.4 for an example).

The value for a data type instance is not specified directly in Palladio but
its performance-relevant aspects are characterized. Palladio supports the
characterizations VALUE, BYTESIZE, NUMBER_OF_ELEMENTS, STRUCTURE,
and TYPE. They are explained in the following. The technical report of
Reussner et al. [RBB+11b, p.59ff] provides additional examples and de-
scriptions. The PhD thesis of Koziolek [Koz08] provides the theoretical
background.
VALUE allows specifying the value of a given variable. The specification

can be either made directly as a primitive numeric or string type, describe
how the value is calculated based on parameters, or a probabilistic distri-
bution function can be stated. The first option allows to set a fixed value
for a parameter, for example a parameter for a component call or a com-
ponent parameters. An example for such a call parameter is provided in
figure 2.5(c). The second option is commonly used in behavior specifica-
tions to state the resource demand depending on the processed input. The
third and last option is commonly used to specify the usage profile, for ex-
ample a distribution of how many products are sold to customers using a
shop solution in a single purchase. These specifications can be made for
each characterization. The next paragraphs explains the semantics of the
characterizations.
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Figure 2.5.: Data Type Instance Characterization Examples
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BYTESIZE allows specifying the size of the data type instance in bytes.
NUMBER_OF_ELEMENTS allows specifying how many other data type in-

stances are contained in a data type instance and is important for collec-
tions.
STRUCTURE allows specifying performance-relevant properties of the

data type instance. For example if a collection is sorted or the compres-
sion rate of a file.
TYPE allows specifying properties of the data type instance from a busi-

ness perspective. For example, if the shape of the packaging of a product is
cylindrical or a rectangular box.
PrimitiveDataTypes can be characterized by VALUE, BYTESIZE, and

TYPE. An example is given in figure 2.5(c). There, the VALUE of the param-
eter callingStoreId is set to 19, for example when a call to dispatch-

ProductsFromOtherStores is made.
CollectionDataType are usually characterized by the NUMBER_OF_E-

LEMENTS, but VALUE, BYTESIZE, and TYPE are possible as well. VALUE

characterizations are rare and must describe all contained elements appro-
priately, for example with a distribution function denoting the individual
values. An example is available in figure 2.5(a). There, the NUMBER_OF_E-
LEMENTS of the collection behind the parameter requiredProducts is set
to 3 and the TYPE of all contained data instances is set to rectangularBox.
Specifications, which are true for all elements in a collection use the key-
word INNER as referenceName. Palladio does not allow the specification
of single elements independently.

The data type instances used in the composition of CompositeDataType
are characterized in order to specify composite instances. figure 2.5(b) pro-
vides an example. There, the VALUE of the composed instance amount for
all elements in the collection of the parameter requiredProducts is set to
have the probability mass distribution with a value of 10 in 30% of all cases
and 5 in 70% of all cases. This represents that in 30% of all cases 10 prod-
ucts are required, 5 otherwise. Such a specification would usually be part of
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serviceEffectSpecifications

providedRoles

requiredRoles

providedInterface

requiredInterface

signatures

+ entityName : String = „ProductDispatcherIf“

ProductDispatcherIf : OperationInterface

+ entityName : String = „JVM“

JVM : InfrastructureInterface

+ entityName : String = „TradingSystem.Inventory.Application.ProductDispatcher“

+ componentType : ComponentType = BUSINESS_COMPONENT

TradingSystem.Inventory.Application.ProductDispatcher : BasicComponent

:OperationProvidedRole

:InfrastructureRequiredRole

+ entityName : String = „dispatchProductsFromOtherStores“

dispatchProductsFromOtherStores 

: OperationSignature

describedService

componentParameterUsage

namedReference

variableCharacterisation
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:ResourceDemandingSEFF

:VariableUsage

+ referenceName : String = „dataInstance“

:VariableReference

+ type : VariableCharacterisationType = TYPE

:VariableCharacteriation

+ specification: String = „HIBERNATE“

:PCMRandomVariable

Figure 2.6.: Example for Component Specification in Palladio

the usage profile if the operation dispatchProductsFromOtherStores

would be part of the interface of the composed system.
Components are specified in Palladio as depicted in figure 2.6. The figure

represents that the business component TradingSystem.Inventory.

Application.ProductDispatcher provides the business interface Pro-
ductDispatcherIf and requires the infrastructure interface JVM. Fur-
thermore, it has a behavior specification for the operation dispatchPro-
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Figure 2.7.: Behavior Specifications - UML Notation and the Palladio Meta-Model

ductsFromOtherStores and defines the component parameter dataIn-
stance. Component parameters do not have a static type in Palladio. This
component parameter is initialized with a TYPE set to HIBERNATE. This
represents that the persistence framework Hibernate is used as setting for
the component. Behavior specifications are shown in the following.

Behavior specifications in Palladio are comparable to UML Activity Di-
agrams and can be represented in a UML-based notation. The common-
alities and differences are pointed out in the following and the semantic
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of Palladio meta-model elements in behavior specifications is discussed in
the following. Figures 2.7, 2.8, and 2.9 provide an overview on the UML
notation as well as the Palladio meta-model.

The behavior of an operation is specified as ResourceDemandingSEFF
(see figures 2.6 and 2.7), which is a ResourceDemandingBehaviour. It is
an abstraction of the control-flow for that operation from a performance per-
spective and separates resource demands from calls to loosely coupled busi-
ness components. The control-flow is represented using AbstractAction

instances, which are comparable to activities in the UML. Each Abstract-
Action is a single step in the control-flow. A step can have at most one pre-
decessive control-flow step and at most one successive step. Object Con-
straint Language (OCL) constraints ensure that there is exactly one start
and one end for each ResourceDemandingBehaviour. The idea behind
the actions is that they cover as much behavior of the component as possi-
ble without violating their semantics. For example, subsequent component-
internal calculations should be contained in the same InternalAction if
there are no calls to business-components in between. This may include
component-internal loops and alternatives. The input parameters of the op-
eration linked with the behavior are available for calculating resource de-
mands or call parameters throughout the behavior. Certain actions represent
decisions in the control-flow. These are presented in the following.

Decisions are represented with BranchAction elements (see figure 2.7).
They are comparable to decision and merge nodes in the UML. They de-
fine the behavior of all possible branches via the branchBehaviour con-
tainment link. One of those branches is selected either probabilistically
or based on parameter conditions. Probabilistic branches are represented
with ProbabilisticBranchTransisiton elements, which specify the
probability of taking that branch as real number. Parameter-based de-
terministic decisions are represented with GuardedBranchTransistion.
The condition is specified in branchCondition. A branch with proba-
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bilistic decisions can only contain those and vice versa. Exactly one branch
must be selected for each visit to the BranchAction.

Concurrent behaviors are represented with ForkAction elements (see
figure 2.7). They are comparable to fork and join nodes in the UML. They
define asynchronously started behaviors via the asynchronousForkedBe-
haviours containment. Additionally, they define spawned behaviors,
which are synchronized at a barrier. This barrier is represented by a Syn-

chronisationPoint. The barrier is comparable to a join node in the
UML. The barrier contains the specifications of synchronized concurrent
behaviors via the synchronousForkedBehaviours containment.

Loops are represented with AbstractLoopAction elements (see figure
2.7). They define the behavior of the body of the loop via the bodyBe-

haviour containment. Palladio defines two semantics for loops. Ei-
ther, parameters accessed within the body are evaluated stochastic inde-
pendently (LoopAction) or dependently (CollectionIteratorAction).
The number of loop iterations is fixed when the control-flow enters the ac-
tion from the previous step. The fixed number is denoted as frequency of
the loop. The number of iterations is specified via the iterationCount

attribute of LoopAction or a reference to a collection parameter via the
parameter attribute of CollectionIteratorAction. In the latter case,
the NUMBER_OF_ELEMENTS characterization of that parameter is used to de-
termine the number of iterations and all characterizations for that parameter
are evaluated stochastically dependent during a single iteration.

In general, AbstractAction are represented by an UML activity (see
figure 2.8). The actions have an attribute entityName, which is a human
readable name describing the control-flow step. This name is also used for
the activity. All other actions are also AbstractActions, which is not
depicted in the figures. There are three special cases besides the presented
control-flow decision actions. They are described in the following.

The first control-flow of a behavior is a StartAction and it is repre-
sented by an UML initial node (see figure 2.8). The last control-flow ele-
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StartAction
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<entityName>

<Variable Assignments>

AbstractAction<entityName>

localVariableUsages

*

SetVariableAction

LocalVariable

Usages

Figure 2.8.: Special Actions in Specifications - UML Notation and the Palladio
Meta-Model

ment of a behavior is a StopAction. The control-flow of a behavior ends
after processing its StopAction. Consequently, it is semantically repre-
sented by an UML activity final or flow final node (see figure 2.8). The
mapping depends on the hierarchic nesting of activities and the existence
of concurrent behavior in an activity diagram. Examples for both alterna-
tives are provided in the figures 2.10(b) and 2.10(c).

Handling performance-relevant characteristics of parameters requires
defining the parameter values returned by an operation. SetVariableAc-
tion specifies the information on returned data in Palladio. The character-
izations of the returned data type are assigned via the localVariableU-

sages containment. The keyword RETURN is used in these specifications to
refer to the returned data type. The assignments are represented in a note
attached to the activity representing the SetVariableAction.

Specifying the performance impact of a behavior requires stating the
resource demand and calls within that behavior. Figure 2.9 provides an
overview on these parts of the Palladio meta-model. Palladio does not im-
pose any order on handling requests within the same action. All actions but
ExternalCallAction allow resource demand specifications, which goes
along with inheriting from AbstractInternalControlFlowAction.
StartAction, StopAction, BranchAction, ForkAction, SetVari-
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Figure 2.9.: Resource Demand and Call Specifications - UML Notation and the Pal-
ladio Meta-Model

43



Foundations

ableAction, LoopAction and CollectionIteratorAction have been
presented above. InternalAction has the semantic of any successional
component-internal calculation without calls to business components. Ac-
quireAction and ReleaseAction have the semantic of acquiring or re-
leasing a single software token. They support modeling exclusive access to
software partitions. A common way for ensuring exclusive access is the use
of monitors. An example is the synchronized statement in Java, which
is mapped to the MONITORENTER and MONITOREXIT bytecode instructions.
The tokens can be defined for BasicComponents in the repository and
access is allowed only in the defining component. AcquireAction and
ReleaseAction are separate from InternalActions to specify the syn-
chronization point in the control-flow precisely.

The resource demand can be specified for all AbstractInternalCon-
trolFlowAction elements. The different options are shown in figure 2.9.
Palladio provides different mechanisms for specifying resource demand:
requests of processing units via implicit interfaces, explicit parameterized
processing requests to resources in the hardware environment, and explicit
parameterized processing requests in the software environment. All re-
quests are represented with a note in the UML notation. For example,
the request of 50 units from the processor via implicit interfaces could be
noted as 50x CPU, a single request of reading 20 bytes from a hard disk
via an explicit interface could be noted as 1x HDD.read(BYTESIZE=20),
and the request for 219 Java bytecode instructions via an explicit hardware-
independent Java Virtual Machine (JVM) interface as 219x IADD. These
mechanisms are explained further in the next paragraphs.
ParametricResourceDemand represents the request of units via an im-

plicit interface (see figure 2.9). The required type, for example a proces-
sor, is referenced via the requiredResource attribute. The amount of
requested units is specified via the specification attribute.
ResourceCall represents explicit parameterized processing requests to

resources in the hardware environment (see figure 2.9). The required role of
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the resource’s interface is referenced via the resourceRequiredRole at-
tribute. The signature within the interface is referenced via the signature
attribute. The parameters of the call can be set via the inputVariableUs-
ages containment link inherited from CallAction. Multiple calls with the
same parameter values in the same action are specified via the numberOf-
Calls attribute.
InfrastructureCall represents explicit parameterized processing re-

quests in the software environment (see figure 2.9). This allows modeling
hardware-independent specifications issuing demand in bytecode instruc-
tions or modeling calls to infrastructure libraries. The required role of the
infrastructure component’s interface is referenced via the requiredRole

attribute. The signature within the interface is referenced via the signa-

ture attribute. The parameters of the call can be set via the inputVari-

ableUsages containment link inherited from CallAction. Multiple calls
with the same parameter values in the same action are specified via the
numberOfCalls attribute.

Calls to business components are represented by ExternalCallAction

(see figure 2.9). A call behavior represents this action in UML. The name
of the call behavior activity is set based on the role and signature used by
this call. An attached note describes the variable or parameter assignments.
The role references the role of the required business component’ interface.
The calledService references the signature within that interface that is
called. The returnVariableUsage specifies the assignment of the return
value of the call to behavior-local variables. The inputVariableUsages

specifies the assignment of input parameters.
The most simple valid Palladio performance behavior specification con-

sists of a single StartAction and a single StopAction. It is depicted in
figure 2.10(a) and its textual description as sequence is StartAction, and
StopAction. Figure 2.10(b) provides an example for an empty concur-
rent behavior started within a loop. Please note the use of flow final nodes
instead of activity final nodes to express that all concurrent behaviors termi-
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(a) Most Simple
Behavior

repeat 2

(b) Nested Loop
and Concurrent
Behavior

[true]

1x CPU

[false]

(c) Deterministic
Branch

Figure 2.10.: Example Palladio Model Instances

nate and none is aborted if one of them finishes before the others. The tex-
tual specification of the sequence is StartAction, Loop( frequency=2:

ForkAction( Asynchronous( StartAction, StopAction))), and
StopAction. Figure 2.10(c) provides an example for a decision within
a control-flow. The textual specification of the sequence is StartAction,
BranchAction( GuardedBranchTransition(true, StartAction,

StopAction), GuardedBranchTransition(false, StartAction,

InternalAction (Resource Demand (1, CPU)), StopAction),
and StopAction.

2.5. Component-Based Software Engineering Process

This section provides details on the process used for component-based soft-
ware engineering. The development process of Palladio is presented to
demonstrate the general workflows for component-based development. Its
capability of taking non-functional requirements and architecture level de-
cision making into account are shown. Non-functional requirements or
properties of a system are denoted as QoS properties in the process defi-
nition. Furthermore, this section presents details of the Palladio workflows

46



2.5. Component-Based Software Engineering Process

for architecture design and QoS assurance. The workflows do not take into
account certified specifications.

The Palladio reference development process was first introduced by
Koziolek and Happe in [KH06]. It is based upon the component-develop-
ment process introduced by Cheesman and Daniels in [CD03], which in
turn is based on the RUP defined by Jacobson et al in [JBR99] and in-
troduced by Kruchten in [Kru00]. The adaptation of Koziolek and Happe
addresses QoS-related process tasks and roles. Its current version is de-
scribed in [RBB+11a]. Its applicability in practice remains to be validated.
The process is generic and can be applied to QoS properties other than per-
formance, for example reliability or availability. The participating roles are
shaped with respect to knowledge and experience needed for the influence
factors on a system.

The technical report on Palladio defines five different roles [RBB+11a]:
Software Architect, Component Developer, System Deployer,
Domain Expert, and QoS Analyst. These roles and their main responsi-
bilities are summarized in the following.
Software Architects are responsible to design and implement a com-

ponent-based system. They decompose the envisioned system into com-
ponents and make or buy these components. They are responsible for
the development of components but the development itself is delegated to
Component Developers. Software Architects specify the assembly
of the components and supervise testing and deployment. They can set the
Configuration or State for the system and its components.
Component Developers are responsible for the implementation and

the QoS specifications of a component. They must provide Component

Behavior Models to specify the QoS. In Palladio, these are the specifica-
tions presented in section 2.4, which allow their use in different contexts.
Component Developers can develop components on their own for offer-
ing it on the market or on demand from Software Architects.

47



Foundations

System Deployers are responsible for specifying the properties and
capabilities of the Hardware Environment and the deployment of com-
ponents according to the architecture. They can also have maintenance re-
sponsibilities for the deployed system, for example configuration and start
or stop.
Domain Experts are familiar with the business domain and potential

use of systems. They are responsible to state requirements and the Usage

Profile.
QoS Analysts have detailed knowledge and experience in a QoS prop-

erties and its modeling. They support the translation of business require-
ments into QoS properties and model them accordingly. They support the
assessment of the behavior of External Services. They assist Compo-
nent Developers in modeling the behavior. They assist Software Ar-

chitects in the interpretation of prediction results.
The separation of concerns allows relating the roles with the presented

influencing factors. This eases understanding the responsibilities and pos-
sible interactions. The relations are shown in figure 2.11 for composed sys-
tem level and in figure 2.12 for the component level. The QoS Analyst is
not shown besides the Software Architect on the system level as the aid
is restricted to result interpretation and there is no active creation involved.
The role is shown besides the Component Developer on component level
as they create the behavior specification together.

The process model is structured as the RUP. The development phases are
Inception, Elaboration, Construction, and Transition. [JBR99] describes
the phases in detail. The process model consists of seven core workflows,
which are iterated for the four development phases. A development cycle
consists of the four development phases and leads to a (new) release of a
system. Workflows consist of activities, which create or modify artifacts.
Depending on the phase and iteration, the effort spent for the activities of
the workflow differs. For example, system testing has a bigger share to-
wards the end of a cycle.
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Figure 2.11.: Relation of Influence Factors and Roles: Composed System Level

Figure 2.13 shows the workflows for the Palladio process model. It
uses the notation of [CD03] and describes the flow of artifacts between
the different workflows. The iterative development aspect is visualized by
the Change of Activity transition, which allows transitions even in the
same iteration. The process model consists of the workflows for Require-
ments, Specification, QoS Analysis, Provisioning, Assembly,
Test, and Deployment. The workflows Requirements and Test are de-
scribed in detail in [JBR99], Deployment in [Kru00], the Specification
and QoS Analysis in [KH06], and the Provisioning, Assembly and
Deployment in [CD03]. The workflow steps are summarized in the fol-
lowing.
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The Requirements workflow creates the functional and QoS require-
ments for a system. The Specification workflow leads to the system
architecture, which fulfills the requirements and technical restrictions. The
architecture contains the composed components and their functional and
QoS requirements. The QoS Analysis workflow ensures that QoS-related
information required for predictions is available and consists of predic-
tions and their interpretation for possible architecture adjustments. The
Provisioning workflow ensures the availability of the implementation
for the components in the architecture. They can be bought or developed.
The Assembly workflow involves configuring and wiring the components.
They are deployed in the test environment. The Test workflow ensures
that all functional and QoS requirements are fulfilled and the system is
ready for deployment. The Deployment workflow ensures that the system
is installed in and configured for its target environment.

The Specification workflow is depicted in figure 2.14. In the work-
flow, existing and new components are identified, which can be composed
in order to build the envisioned system. The identified components are
selected in several stages, which usually involves going forth an back be-
tween the activities. The result of this stepwise process is the system’s
architecture. The Specification of a component contains information
on the functional and QoS behavior of the component. It is stored in
the Component Repository after the development of a component. The
Behavior Specifications of Palladio are presented in section 2.4. The
Software Architect is the main role. The Software Developer par-
ticipates only indirectly but is included to show the relation of artifacts.
That role has its major part in the Provisioning workflow.

The QoS Analysis workflow is depicted in figure 2.15. The workflow
targets the provisioning of information for QoS analyses and the analyses
themselves. It does not include the subsequent process steps of making
decisions or identifying alternatives based on the analyses. The System

Deployer must specify the QoS properties of the environment for the given
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Figure 2.14.: Specification Workflow [RBB+11a]

architecture. The QoS Analyst uses this information for analyses. The
Domain Expert specifies the expected usage of the system from an exter-
nal view point. The QoS Analyst requires this information for analyses.
The information on the QoS properties and behavior of the components
is included in the component specifications. It is originally provided by
the Component Developer and stored in the component repository (see
also Specification workflow). The QoS Analyst ensures that the QoS
requirements for the system are connected with suitable metrics and that
the analyses provide measurements for these metrics. The QoS Analyst

selects metrics and thresholds based on the requirements for the software.
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The QoS Analyst ensures the soundness of the available QoS informa-
tion and integrates it as preparation of the evaluation. The evaluation itself
provides the measurements of the QoS Metrics. These measurements in-
fluence the Component Identification and architecture of the system
as part of the Specification workflow.
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This section discusses the related work. Smith introduced the idea and
concepts of Software Performance Engineering (SPE) in [Smi90]. Menascé
et al. provide a more recent general introduction in [MAD04].

This chapter is structured as follows. Section 3.1 provides an overview
on accuracy statements and influence analysis in current performance en-
gineering approaches. Section 3.2 provides an overview on test-based vali-
dation approaches. Section 3.3 concludes with an overview on certification
approaches.

3.1. Specification Accuracy

Existing prediction approaches focussed on making good predictions for
accurate specifications and allow making sound design decisions in this
case. Performance engineers are responsible for providing such accurate
specifications and ensuring that they are appropriate for the parameter val-
ues induced by the propagated usage profile.

The existing support of accuracy in current prediction approaches and
specification languages is discussed first. Second, the question how to get
accuracy information is addressed. Parts of the discussion have also been
published in [Gro11a, Gro12a]. A general overview on current prediction
approaches is available in the surveys [BDIS04, BGMO06, Koz10].

Accuracy Statements Analytical solvers for performance specifica-
tions often require strong assumptions on the input and used specification
constructs but provide results fast. They provide parametric distribution
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functions and statistical point estimators like the mean, which are insensi-
tive to many types of accuracy. Using only parametric distribution func-
tions and point estimators provides valuable insights but does not allow to
identify performance peaks or clusters in predicted arbitrary distribution
functions. The accuracy does influence non-analytical predictions for arbi-
trary distribution functions. This makes it worthwhile to take it into account
and specify the accuracy of the specifications themselves.

Furthermore, the assumption that inaccuracies in one specification are
evened out by the inaccuracies in others is often made. This compensation
of inaccuracies might happen but each specification may be exactly at its
deviation limits for a composed system and usage of the system. The defi-
nition of accuracy allows any deviation up to the limits without being more
or less likely. This is due to the level of abstraction of the specification,
which implies a corresponding degree of deviation and that no further as-
sumptions on the proximity to the limits can be made. Hence, taking into
account accuracy for a prediction provides valuable insights on the actual
limits of the overall prediction. The following presents existing approaches
for specifying performance and points out their capability to specify re-
source demands and take into account accuracies.

The performance modeling language UML Profile for Modeling and
Analysis of Real-Time Embedded Systems (UML-MARTE) defined by the
Object Management Group (OMG) in [OMG13, Obj11b] is derived from
the UML Profile for Schedulability, Performance, and Time (UML-SPT)
[Obj05]. The profile supports expressing QoS requirements, characteris-
tics, and measurements for specifications. Statements can be made for
required, assumed, estimated, and measured values. It supports statisti-
cal measures like minimum, maximum, average, mean, and percentiles
[Obj11b, p. 49]. UML-MARTE augmented this by attributes for mea-
surement sources, precision, and time expressions [Obj11b, p. 37, p. 517].
The precision is represented by a single floating point number and defined
as follows:
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Degree of refinement in the performance of a measurement
operation, or the degree of perfection in the instruments and
methods used to obtain a result. Precision is characterized in
terms of a Real value, which is the standard deviation of the
measurement.

The standard deviation implies a probability of deviation, which does not
allow considering the following semantics. The approach presented in this
thesis considers a specification valid as long as the deviation of an imple-
mentation is below a given deviation threshold. The specification is likely
to deviate because of the specification’s level of abstraction. This difference
is most probably due to the difference in considered systems — embedded
versus business information — and questions, for example schedulability
analysis for real-time systems versus cumulative response time distribution
functions for an Service Level Agreement (SLA). An example for a UML-
MARTE based approach is provided by Tribastone et al. in [TMW10],
which uses Layered Queuing Networks and an analytical solver. Other
approaches are listed in the following.

Compared to the approach presented in this thesis, UML-MARTE does
not take into account accuracy in detail. UML-MARTE has a strong focus
on measurements and statistical point estimators, which is often found in
the analysis of embedded systems. The standard deviation describes the
deviation of the values of a statistic from its mean but its expressiveness
for arbitrary distribution functions is limited. UML-MARTE focusses on
the description of measurements and does not support stating relative devi-
ations above an absolute threshold for specified values natively. It defines
the Value Specification Language (VSL) in [Obj11b, Annex B], which al-
lows the definition of data types, variable, operators and expressions. This
general language provides the mean to realize such descriptions and is com-
parable to the specification language of Palladio. However, the VSL is not
used by the existing approaches for taking into account accuracy. Further-
more, the deviation is very likely to depend on specific parameter values,
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which could be specified using the VSL. Unfortunately, existing approach
do not take into account these complex dependencies.

Bertolino and Mirandola’s approach Component-Based Software Perfor-
mance Engineering (CB-SPE) [BM04] is based on an older version of the
language UML-SPT and uses the analytical Queuing Network-based solver
Rapid Analysis of Queuing Networks (RAQS) [RAQ04]. In this version of
UML-SPT, resource demands can be specified via one of the four sources
required, assumed, predicted, or measured and one of the six types mean,
variance, kth-moment, percentile, or probability distribution [Obj05, p. 7-
21]. The accuracy of specified values is not considered.

Distefano et al. introduce and provide an overview on the Performance
Context Model (UML-PCM) in [DPPS04, DPS11, DSP11]. It is based di-
rectly on UML-SPT and provides a mapping to Petri Nets for predictions.
Accordingly, resource demands can be specified via one of the four sources
required, assumed, predicted, or measured and one of the six types mean,
variance, kth-moment, percentile, or probability distribution [Obj05, p. 7-
21]. The resource demands in the reported case studies with predictions
were based on experts measuring generated implementations and creating
accurate performance specifications. The accuracy of specified values is
not considered.

Marzolla describes an approach oriented at UML-SPT in [Mar04]. Re-
source demands are specified similar to UML-SPT with the exception that
only probability distribution functions can be specified. The correspond-
ing simulation provides information on the utilization of resources and the
mean execution times. The accuracy of specified values is not considered.

Wu and Woodside [WW04] defined the approach Component-Based
Modeling Language (CBML) based on an own XML-based specification
language in [Woo05]. This approach uses a Layered Queuing Network
from the toolset presented by Franks et al. in [FHM+95]. Resource de-
mands can be specified with a mean value and the number of repetitions of
that demand. The accuracy of such a specified value is not considered.
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Wallnau and Ivers defined the Construction and Composition Language
(CCL) [WI03], which is used in the approach Prediction-Enabled Compo-
nent Technology (PECT) and Predictable Assembly from Certifiable Com-
ponents (PACC) developed at the Software Engineering Institute (SEI).
These approaches are described in more detail in section 3.3. The CCL
is focused on real-time embedded systems. Resource demand is specified
in fixed time units. An accuracy cannot be specified.

The approach of Göbel et al. [GPRZ04] is called COMponents with
QUantiative properties and ADaptivity (COMQUAD) and uses the lan-
guage Component Quality Modeling Language+ (CQML+) defined by
Röttger and Zschaler in [RZ03]. CQML+ allows the specification of re-
quired or provided QoS for intervals of self-defined quality characteristics.
For example a memory requirement for 200 kilobytes with the quality char-
acteristic “size" handled in kilobytes is writen as “size (resource).minimum
> 200". The language allows the specification of invariants, which should
hold for a successful execution of components at run-time. For example,
this allows expressing that the execution time should be less than a specified
processing threshold. However, the language does not allow to specify the
dependencies between required and provided QoS for a component. The
theoretical extension of the language by Zschaler and Meyerhöfer [ZM03]
allows to specify such dependencies between input and output values if
only one parameter is used in the calculation. This extension allows the
specification of lower and upper bounds for a resource demand instead of a
single value. An accuracy cannot be specified.

Compared to the approach presented in this thesis, CQML+ including its
extension does not allow explicitly accuracy specifications or taking into
account relative and absolute deviations. The level of abstraction of a spec-
ification cannot be taken into account explicitly. However, the lower and
upper bounds of the extended version could be used to store the accuracy
bounds. However, CQML+ does not provide a precise definition of the se-
mantics of such an interval and how it should be handled in analyses for
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average cases. The defined dependency language does not support taking
into account the order of component-external calls, probabilistic branches
or concurrent behavior. The approach presented in this thesis is more gen-
eral, supports control-flow oriented specification languages, allows taking
into account multiple parameter dependencies, and making the accuracy of
a specification explicit.

Grassi et al. defined the Kernel LAnguage for PErformance and Relia-
bility analysis (KLAPER) [GMS07]. Model transformations from design
models to KLAPER and from KLAPER to analysis models should make
it easier to combine predictions and design models. A single value can be
specified for resource demands, for example the execution time of a step
within a behavior. The source of values cannot be specified, for example if
the value is estimated, measured, or has a certain deviation. It is explicitly
assumed that parameters and values represent a suitable abstraction. The
accuracy cannot be specified.

Petriu and Woodside defined the Core Scenario Model (CSM) [PW04]
with a focus on scenario and resource descriptions. CSM is also a kernel
language and based on UML-SPT. The same focus on measurements and
statistical point estimators for resource demand specifications applies as for
UML-MARTE. CSM is used in the Performance by Unified Model Anal-
ysis (PUMA) approach. The foundations are presented by Woodside et al.
in [WPP+05] and the current version including two case studies by Petriu
et al. in [PAT12]. The accuracy of resource demands in specifications or
implications of it are not addressed in CSM, PUMA, or the case studies.

The ITEA project Robust Open Component Based Software Architecture
for Configurable Devices Project (ROBOCOP) defined an own specifica-
tion language. This language is sketched by Bondarev et al. in [BMdW+04]
and described in detail by Laverty in [Lav03]. Resource demands can
be specified as single value in integer resource units. The case studies
in [Lav03] contained manually measured resource demands from real im-
plementations or worst case estimate. Bondarev et al. present the corre-
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sponding Component Architectures Analysis Tool (CARAT) in [BCdW07].
They state as limitations that “it does not enable analysis of the components
whose execution times are specified by probability distribution curves. Fi-
nally, the simulation techniques do not guarantee finding boundary con-
ditions: worst- and best-case response times." The accuracy of resource
demands or specifications cannot be specified.

The approach of Liu et al. uses a combination of Queuing Networks and
UML diagrams as input language and is introduced in [LGF05]. They focus
on separating the performance of a Enterprise Java Bean (EJB) component
from its EJB container. Their approach describes resource demand as the
required time for certain activities using mathematical functions. The func-
tions have variables, which are set according to measured values on a real
implementation of the system. Each variable is represented with a constant
value and the variable is calibrated based on samples until the standard de-
viation is below 3 percent of the mean. This technique allows reducing
noise on measurements of constant values. Statements about the accuracy
of resource demands or specifications are not supported. The propagation
of inaccuracies is not considered.

Sitamaran et al. propose the use of asymptotic resource demand specifi-
cations in [SKK+01], which is comparable to a small and big O notation.
They support describing the order of growth and approximate upper and
lower bounds for infinite input spaces. Their definitions do not take into
account limitations on the parameter space. Their theoretical elaborations
are demonstrated in a case study specifying a stack. They do not con-
sider the validation or prediction based on their specifications. The lower
and upper asymptotic bounds could be considered absolute lower and up-
per accuracy thresholds. However, the definitions do not ensure that these
accuracy threshold hold in all cases — only for sufficiently big parameter
values. Although the asymptotic behavior is interesting on a theoretical
level their use for performance predictions and accuracy considerations is
seen as minimal.
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Hamlet provides an analysis approach for components in [Ham09]. He
assumes that component have only single floating-point value domains for
the input and output, the state of components is local and represented with a
single floating-point value domain, and there is no concurrency. The com-
ponent specification is a mathematical function defined in several intervals,
which states for each interval the exact calculation of the output value based
on the input values and the runtime for the computation. The composition
of such components allows to identify all intervals which should show the
same performance. These intervals can then be used in a validation frame-
work to test if the behavior is equal. The specified value for an interval
can also be determined based on random tests within the interval on an im-
plementation resulting in either step-wise or linear approximations. The
accuracy of specifications cannot be stated or used for analyzing the effect
on a composite.

The Analysis and Prediction of Performance for Evolving Architectures
(APPEAR) approach by Eskenazi et al. was presented in [EFH02] and an
extension for the composition in [EFH04]. It supports different types of
specifications for the behavior of a components. This supports covering dif-
ferent levels of detail from statistical and probabilistic to complete control-
flow graph specifications with data-flow information. The approach uses
observations on implementations as training data to create the statistical
specifications. The test set must be provided manually. The performance is
approximated using techniques like linear regression and multivariate adap-
tive regressive splines. The accuracy of specifications is only considered in
the training stage as quality criterion for the regression approach. The ac-
curacy is not stored in combination with the specification. The accuracy is
not taken into account for the prediction itself.

The Component Performance Assurance Solutions (COMPAS) approach
by Mos et al. is presented in [MM02, DMM04]. It is based on monitoring
execution times of EJB components and storing measurements in a given
performance specification. It is focussed on identifying performance hot
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spots. A later version with a stronger focus on run-time management of
components is named Automatic Quality Assurance (AQuA) and presented
by Diaconescu and Murphy in [DM05]. It focusses on the dynamic adap-
tation of systems according to load changes. Parsons and Murphy describe
the extension Performance Antipattern Detection (PAD) in [PM08]. It uses
predefined rules to determine misconfigurations of EJB components and
provide feedback how to change the parameters for the current system and
load. The resource demand is measured on a coarse level in execution time
or as aggregated utilization value on a resource. In all of these approaches,
accuracy is not considered.

Meyerhöfer and Neumann present another EJB component measurement
framework with the name TestEJB in [MN04]. It uses the COMQUAD
approach discussed above and has the same power with respect to resource
demand and accuracy specifications. It focusses on measuring and storing
resource demand in form of the response times for the calls to components.

Approaches based on process algebras are impaired by the state space
problem as described by Balsamo et al. in [BDIS04] and have problems in
taking into account acquiring and releasing resources. Analytical solvers
usually provide statistical point estimators and confidence intervals. The
accuracy of the specifications is not explicitly considered and it is usually
assumed that point estimators like the mean are not affected by these inac-
curacies. The approach presented in this thesis does not have these limita-
tions or need such strong assumptions.

The OMG defined the Systems Modeling Language (SysML) in [Obj12]
for modeling systems beyond software and provide a unified language. The
language supports the specification, analysis, design, verification, and va-
lidation of systems. Its widely used in the automotive industry and for
electric and electronic systems. The language is a UML profile and its
tight integration with UML supports considerations of software and non-
software parts likewise. SysML allows the use of UML timing diagrams
and the specification of performance constraints [Obj12, p.92]. The perfor-
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mance constraints should support analysis and are based on mathematical
expressions. However, SysML provides only a rough framework not a pre-
cise and analyzable definition:

SysML identifies and names constraint blocks, but does not
specify a computer interpretable language for them. The in-
terpretation of a given constraint block (e.g., a mathematical
relation between its parameter values) must be provided. An
expression may rely on other mathematical description langua-
ges both to capture the detailed specification of mathemati-
cal or logical relations, and to provide a computational engine
for these relations. In addition, the block constraints are non-
causal and do not specify the dependent or independent vari-
ables. The specific dependent and independent variables are
often defined by the initial conditions, and left to the computa-
tional engine. [Obj12, p.83f]

Resource demands cannot be specified directly but the use of UML-SPT
or UML-MARTE is possible as described by Jarraya et al. in [JSDH07].
Accuracy is not considered in SysML.

Meedeniya et al. present an approach in [MAG12] for the automated de-
sign space exploration with respect to reliability optimization taking into
account input parameter inaccuracies. The authors identified that inaccu-
rate input parameter estimates influence the ranking of design decisions and
with it the design decisions on the non-dominated Pareto frontier. The ap-
proach takes an architecture and accuracy statements for certain values in
the architecture as input. It runs a large number of Monte-Carlo simula-
tions for each design candidate until the difference in the percentile of the
distribution of predicted reliability values from each simulation is below a
given threshold. The last value of the percentile is then used as reliability
value of the design candidate. A genetic algorithm is used to create design
candidates and finally leads to the identification of design candidates on the

64



3.1. Specification Accuracy

Pareto frontier. The case study of the approach is a good visualization of
how inaccurate input parameters can lead to an inappropriate decision ba-
sis if inaccuracies are not taken into account. The approach presented in
this thesis does not optimize the architecture. It requires a significantly less
number of analyses to determine the influence of accuracy. It supports ar-
bitrary distribution functions as prediction results and it is does not require
to summarize the prediction as a single value. No information is lost but
the influence of accuracy is additionally pointed out.

Sensitivity analysis aims at quantifying the relation of changes in the
input domain to the output domain. Knowledge on these relations allows
inter- and extrapolation of expected values in the target domain. Satelli et
al. give a general introduction in [SRA+08]. In the area of performance
prediction, sensitivity analysis allows reasoning on the impact of param-
eters and considering the most relevant first but has to take into account
that performance predictions are usual non-linear. The value in the output
domain is usually approximated by a mathematical function with values in
the input domain as parameters. However, this approximation does not re-
place a prediction with these values as certain factors are usually ignored.
Sensitivity analysis requires multiple points for comparison as the correla-
tion of input to output values must be examined in order to identify a fit-
ting function. This resulting effort can be quite high, especially if multiple
dimensions or parameters are taken into account. There are several sam-
pling strategies for reducing the required effort, for example (multivariate)
stratified sampling, one-at-a-time sampling, fractional factorial sampling,
or latin hypercube sampling. However, they usually require at least 2 times
the number of parameters as comparisons [SRA+08, p.89]. Satelli notes on
the same page, that this restriction on the minimum numbers can severely
effect the capability to handle complex models. Applying sensitivity anal-
ysis on the component level leaves the handling of a composition in the
open. Applying sensitivity analysis on the system level allows to reason
only for the selected composition and influence factors. The latter one is
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also closely related to design space exploration and automated architecture
optimization.

In contrast to the approach presented in this thesis, sensitivity analysis
tries to determine effect sizes of input values on output values for inter- and
extrapolation instead of taking into account given accuracy limits. Sensi-
tivity analysis itself does not replace predictions but can provide additional
insight on the most influential parameters for a specific composition at the
cost of additional effort. The heuristic for influence analysis presented in
this thesis is based on a factorial sampling for each specification, which
allows to take into account the non-linearity of the prediction for the com-
position.

Specifications guaranteeing a lower or upper bound are required for
Worst-Case Execution Time (WCET) analyses. Accuracy or the usual be-
havior is not of interest, as it must be formally proven that the bounds are
adhered in all cases. The guarantee is usually an overestimated bound in
order to ensure properties of the component, which are safety-relevant in
most cases. However, using WCET approaches for specifications and pre-
diction is not feasible for real-world business information systems due to
their size. Harmon and Klefstad identified in their survey in [HK07] that
state-of-the-art approaches are still restricted to a per-method base and often
require additional information on loop bounds for their analysis. Return-
value dependencies within single methods are also not supported in general.
Kirner et al. surveyed WCET approaches in [KKP+11] and found that each
approach supports a specific set of constructs, no approach supports all
constructs, and no approach is superior to the others. They conclude that
each approach has its own individual strengths and limitations.

Compared to the approach presented in this thesis, WCET specifica-
tions state absolute performance bounds and not an abstraction of the
performance-relevant behavior itself. Making design decisions for busi-
ness information systems benefits stronger from average case considera-
tions than from overestimated worst-case guarantees. Hence, the targets of
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the approaches differ. Using WCET techniques would restrict the size of
treatable components severely and would still have to be adapted to capture
the average case and determine the accuracy.

Summarizing, existing approaches do not support explicit accuracy state-
ments for resource demand statements. These inaccuracies are currently
not taken into account for an influence analysis on predictions of composed
systems. If properties are not proven formally, the documentation of the
accuracy of a performance specification is therefore not possible or only
very limited.

Creating Accuracy Statements Accuracy statements can be gener-
ated as part of the process of creating a performance specification or they
can be determined explicitly for a given specification. If a specification
is modified after its initial creation then the accuracy statements have to
be re-created or at least re-validated. Determining accuracy statements ex-
plicitly requires the knowledge and experience of a performance engineer
in order to create appropriate statements, which are neither wrong nor too
pessimistic but appropriate for the specification’s level of abstraction.

Woodside et al. provide a general introduction to the creation of abstract
resource functions based on test sets in [WVCB01]. The authors target
a single mathematical function using input parameters to approximate an
output parameter. These functions are usually applied on a high abstraction
level and do not require additional information on control or data flow.

A discussion of different approximation techniques and a tool set for
determining such functions is provided by Westermann et al. in [WHKF12].
These resource functions are still a black box view and may approximate
the real behavior only in a limited way, which is a danger for the appropriate
reuse of such a specification. If cross validation with its separate calibration
and validation test sets is used then the accuracy can be estimated based on
the difference between the resource function and the validation test results.
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An example for an approach using cross validation is provided by Eskenazi
et al. in [EFH02] and described above.

Faber and Happe applied and compared Genetic Programming to other
abstract resource function creation techniques in [FH12]. The author iden-
tifies that the accuracy depends heavily on the analysis method and test set
and that “Most existing methods require prior knowledge about parame-
ter dependencies or their models are limited to only linear correlations".
Again, the accuracy is not stated explicitly and reuse of specifications is
potential dangerous. The accuracy is estimated based on the difference be-
tween the approximated resource function and the validation test results.
Cross-validation is used to reason on the accuracy of the different tech-
niques in the validation.

Neuronal Networks can be used instead of mathematical resource func-
tions. Reusing such specifications is dangerous if influence factors change
between old and new composition. If cross validation is used then the ac-
curacy can be estimated based on the difference between the approximated
resource function and the validation test results.

Monitoring the behavior of running implementations allows capturing
the current behavior and management of a deployed system. Examples
given above are the approaches of Meyerhöfer and Neumann [MN04] and
Diaconescu and Murphy [DM05]. Epifani et al. introduce the Keep Alive
Models with Implementations (KAMI) approach in [EGMT09], which uses
a Bayesian estimator to update predefined specifications. Zheng et al. in-
troduce an approach based on Kalman filters in [ZWL08]. It support mini-
mally invasive measurements based only on response times and utilization
of resources. It uses the observations of the behavior within a given period
to set parameters of a performance specification. The filters allow dynamic
adaptations of the system but the external validity of the specification, espe-
cially after influence factor changes, is minimal. Cardellini et al. introduce
the approach MOdel-based SElf-adaptation of SOA systems (MOSES) in
[CCG+09]. The approach support QoS-driven adaptation at run-time ac-
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cording to given policies. Brosig et al. introduce an approach in [BHK11],
which allows updating specification parameters for Palladio specifications.
All of these approaches focus on easy model creation for running systems
and dynamic reaction of the software or hardware environment. The accu-
racy of the specification varies over time if new observations are made and
is either unknown or not stated explicitly during run-time. The reuse of the
specifications in different contexts is limited.

Reverse engineering approaches can reconstruct the behavior of a com-
ponent statically and determine remaining unknowns by testing an imple-
mentation. An example for such an approach is provided by Krogmann et
al. in [KKR10]. Such specifications can be likely reused if influence factors
change as they are directly mapped to the implementation. The accuracy of
the unknowns determined by testing can be estimated using cross valida-
tion.

Summarizing, automated techniques for creating a specification can pro-
vide accuracy information if cross validation is applied. The techniques
differ with respect to the targeted abstract level and the sensitivity of the
created specifications with respect to influence factor changes.

3.2. Validation and Testing

This section provides an overview on related validation and testing ap-
proaches. It shortly introduces performance testing in general. It contin-
ues with a presentation of model-based testing approaches. It discusses the
use and relation of coverage criteria for testing performance specifications.
Finally, it discusses the selection of tools for the validation approach and
provides a summary. Parts of the discussion on tools and test case gener-
ation have been previously published in [Gro09, Gro10, Gro11a, Gro12a].
Parts of the discussion on coverage criteria in [Gro09, Gro12b].

In general, testing of software is as old as software itself. However, the
focus and complexity changed over time. Functional testing was there at
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the beginning and is well introduced in [Bei95]. A good introduction on test
management and test automation is provided by Dustin et al. in [DRP99].
The following focusses on performance testing and the validation of per-
formance specifications.

Performance testing has many different types: Load testing determines
the behavior of a system in a given scenario, which is expected during the
operation of the system. Stress testing determines the capability of a system
to handle excessive load and allows scrutinizing the behavior in excessive
load conditions. Endurance testing determines the behavior and potential
change of behavior if a system is in operation for a long period of time.
All of these types of performance testing evaluate the software or compo-
nent under test. Their purpose is to check the behavior of the system or
component and assess if requirements are met.

Testing performance specifications is an own type of testing, as the goal
is to validate the specification against the behavior of an implementation
beyond a single selected scenario. Load, stress, or endurance testing focus
on the behavior in selected scenarios and not on validating a more general
specification of the behavior. Testing performance specifications is a form
of model-based testing.

Model-Based Testing A general introduction to model-based testing
is provided by Broy et al. in [BJK+05] and by Pretschner and Philipps in
[PP05]. The terms used by Pretschner and Philipps are also used in the fol-
lowing. Please note that a performance specification is technically a model.
The use of the terms in the following depends on the context. They are in-
terchangeable and the terms should ease the identification if the discussed
issue is more on the model-based testing side or on the specification vali-
dation side.

According to the definition, the approach presented in this thesis uses a
Separate Models scenario in which distinct models are used for the develop-
ment of the implementation and for the generation of tests. The additional
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notion of performance specification reuse implies that the implementation
does not only adhere to the requirements of the developed component but
the performance specification itself is also valid if it is composed in other
systems. These additional requirements are expressed by the structure and
content of the performance specification. This duality is not covered in the
work of Pretschner and Philipps but the test cases created with the approach
presented in this thesis cover it.

Utting and Legeard defined a process for model-based testing in [UL07,
p.26ff]. This waterfall-like process has the five steps: 1) Model the System
Under Test (SUT) and/or its environment 2) Generate abstract tests from
the model, 3) Concretize the abstract tests to make them executable, 4)
Execute the tests on the SUT and assign verdicts, and 5) Analyze the test
results. The validation approach presented in this thesis focusses on the
steps 2 to 5. The implemented process deviates from the defined process
and is as follows.

The approach presented in this thesis assumes that a specification and
accuracy statements are provided, which would be part of step 1. How-
ever, the order is different due to dynamic test case generation. After step
1, step 3 is required in order to check if all input and output values can be
converted between the model and the implementation. Missing converters
must be provided in order to generate inputs and compare results. This
prepares the later execution. Step 2 and 4 are bundled in the automated
validation framework and the steps execute iteratively. Test cases are gen-
erated automatically based on model coverage, validation quality settings,
and the behavior of the implementation. Reacting on the behavior of the
implementation and dynamic creation of test cases is required in order to
handle probabilistic specifications and implementations. For example, if a
probabilistic branch is taken in the implementation the mapped branch in
the specification must be compared for the validation. Statically defined test
cases do not support reacting on such alternatives, which are only known at
run-time and influence the subsequent test and input and output parameter
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values. Test results are provided including information on failures. These
results and additional information help in the analysis in step 5. As can be
seen, the process defined by Utting et al. requires adaptations in order to fit
the use case, but the general steps and frame remain the same.

Using the taxonomy defined by Utting et al. in [UPL06], the approach
presented in this thesis is classified as follows. The Subject of the Model
is the implementation of the component. The Redundancy of the Model
is a Separate Test Model. For Palladio specifications, the Characteristics
of the Model are Deterministic, Non-Deterministic, Timed, Untimed and
Discrete. The Paradigm of the Model is Transition-Based and Operational.
The Test Selection Criteria of the Test Generation can be Structural Model
Coverage or Random & Stochastic. The Technology of the Test Genera-
tion is Random Generation. Finally, the Test Execution is Online, which is
equivalent to at run-time. This classification should ease understanding the
presented approach.

Coverage Criteria Coverage criteria have become a common technique
in quality assurance [Mye04] and are part of the best practices in software
engineering and development of code [Som07]. Liggesmeyer provides def-
initions for well-known control and data flow criteria on the code level in
[Lig09]. In general, coverage criteria define the rules how testing require-
ments are created or which aspects must be covered by existing test sets.
However, these rules must be adapted to the semantics of a specification
language. The coverage of a specification on one level of abstraction does
not imply the coverage of an equivalent specification on a different level as
Chilenski and Miller pointed out in [CM94]. Hence, coverage criteria on
performance specifications must be explicitly defined and cannot simply be
inferred from coverage information on other levels, such as source code, or
vice versa. The approach presented in this thesis defines coverage criteria
for Palladio specifications.
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A coverage criterion has the goal to cover a distinct aspect of a specifica-
tion. In quality assurance, criteria with a high fault detection probability are
preferred in order to identify faults. The fault detection effectiveness also
depends on the selection of input parameter samples. The main question is
if sampling should be concentrated on certain input space domains or ran-
dom testing should be applied. Different views on this topic are provided
by Hamlet and Taylor in [HT90], Frankl and Weyuker in [FW93], DeMillo
et al. in [DMW+95], and Gaston and Seifert in [GS05]. Hamlet and Taylor
show that random sampling is at least as effective as subdomain testing if
there is no known difference in the fault density of possible input domains.

Covering a criterion requires testing effort. Depending on the criterion, a
significant number of tests is required for coverage. This number can even
be infinite and testing infeasible if all paths in a program with an open loop
are to be covered. Relations between the criteria allow reasoning, which
criterion is subsumed by others. However, Frankl and Weyuker show that
the subsumption relation does not necessarily imply better effectiveness if
aspects not covered by the related criteria cause faults. As a consequence,
the covered aspects of a criterion must be known in order to decide if it’s
coverage would provide valuable additional information. Relations for con-
trol flow path criteria on the code level are for example discussion by Yates
and Malevris in [YM09]. A sound decision for or against a certain coverage
criterion is only possible if information on the required effort and covered
aspects is available. The approach presented in this thesis provides effort
estimations and information on the relation between criteria.

Gaston and Seifert provide an overview about coverage based testing
and the application of coverage criteria in model-based testing in [GS05].
The criteria defined in the approach presented in this thesis are Structural
Criteria because the test case specifications depend on structural aspects of
the performance specification. However, the verified aspects are Functional
and Stochastic as well. The first because output values are verified and the
latter because the probability of decisions can be verified. They discuss the
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fault detection ability of coverage criteria with respect to comparing ran-
dom with partition/subdomain-based testing. This results in the statement
that partition-based testing only provides advantages if a fault distribution
is formerly known. There is no fault distribution for the performance speci-
fications validated by the approach presented in this thesis. Hence, random
testing is the technique to use.

A criterion may define testing requirements, which are infeasible for a
distinct specification. For example, a dead branch in the code can never be
covered or implicitly coupled conditions of parameters can exclude some
conditions. However, determining that covering a certain testing require-
ment is not feasible cannot be decided in general. The approach presented
in this thesis does not take infeasible testing requirements into account.
This issue is part of future work.

Testing probabilistic decisions is rare on the code level but testing prob-
ability ratios is common in reliability engineering. Methods with fixed and
step-wise evaluated sample plans are available. The class of step-wise eval-
uated methods is designated as sequential tests. Sequential tests evaluate at
every stage of a n-stage trial if a null hypothesis or the alternative hypoth-
esis should be accepted or if the evaluation should continue. The average
sample size can be reduced if a hypothesis can be accepted without looking
at all n samples. Mature methods are available, for example the Sequential
Probability Ratio Test (SPRT), which was initially developed by Wald in
1945 [Wal45, Wal47]. It is used for reliability engineering as described in
the military handbook of the Department of Defense [Dep96] and by cur-
rent approaches on reliability engineering of software systems, for example
Younes approach [You05] and the runtime monitoring framework ProMo
described by Grunske and Zhang in [GZ09]. SPRT uses two hypothesis
to check whether the sequence of samples experienced so far is above an
acceptable threshold (H0), below (H1), or in the indifference region. The
expected probability is in the indifference region and new samples are re-
quired until the indifference region is left or a predetermined number of test

74



3.2. Validation and Testing

cases is reached. This allows sampling termination if the samples are better
or worse than expected. This technique works very well for reliability anal-
yses in which the evaluated system performs better or worse than specified.
It can be applied at run-time and for systems, which can not be brought
intentionally to a desired state for analyses.

The approach presented in this thesis works on the assumption that a
specified probability is correct. This implies that the benefits of sequen-
tial sampling is limited. Furthermore, SPRT requires an upper limit for the
samples n in case the probability is in the indifference region and neither hy-
pothesis is acceptable. This limit is the same as for a fixed sample plan. The
limit must be provided by the reliability analyst. The approach presented in
this thesis automatically determines this limit for given error probabilities
of Type I (α) and Type II (β ) and executes a fixed sample plan. This sample
plan uses the hypothesis H0 : pimpl = pspec and H1 : pimpl 6= pspec. It ensures
that the power does not fall below (1−β ) assuming a deviated probability.
The thresholds deviated to lower or upper probability values are plt and put

with plt < pspec < ut.

Tools The market for performance testing has been growing steadily
[Ham07] and hence there is a number of commercial and non-commercial
performance testing tools available. The tools differ in the type of sup-
ported performance testing, the measurable metrics, test case specifica-
tion languages, supported implementation frameworks, and measurement
overhead. Fine-granular measurements of hardware-independent resource
demands, for example on bytecode instruction level, are rarely supported.
They are supported by the approaches of Meyerhöfer [Mey07] and Kuper-
berg [Kup10]. The approaches usually have an overhead comparable to
profilers and can hence only be applied to systems or components which
are not in productive environments. However, this does not impair the vali-
dation of specifications.
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Belinfante et al. provide a survey and overview on test generation tools
in [BFS05]. Test derivation of most tools is based on Constraint Logic Pro-
gramming (CLP), Labeled Transition Systems (LTS), or Finite State Ma-
chines (FSM). The semantics of the Palladio specifications validated by
this approach differ from the more closely related FSM and LTS used in
the other approaches. Mapping a specification is theoretically possible but
the coverage criteria for the mapped specifications are different than for the
original specification due to the semantic gap. The required online exe-
cution and dynamic generation including a mapping of Palladio parameter
specifications reduces the set of possible tools. An evaluation of 10 can-
didate tools and mapping for the Conformiq tool [Con13] is provided by
Ernst in [Ern11]. Additionally, online generation also requires that the re-
source demand must be properly measured by the approach. The required
hardware-independent measurements on a fine-granular level within meth-
ods as well as across methods are not provided by the surveyed approaches
and would require large integration effort. Hence, the approach presented
in this thesis uses an own validation framework.

There is also a number of commercial and non-commercial test execu-
tion tools, for example for the Testing and Test Control Notation (TTCN-3)
language [Eur13]. A common load testing tool for business information
system with various frameworks is Apache JMeter, which is presented rep-
resentatively. Apache JMeter is a load testing tool for client/server systems
and available at [Apa]. It tests the functional behavior and can measure the
end-to-end performance as well as access management interfaces of servers
for analyzing user-defined load scenarios. Its strengths are managing con-
ditions with concurrent heavy load. The approach presented in this thesis
provides an own execution tool in order to support fine-granular, hardware-
independent measurements and online generation of test cases. It uses the
Bytecode Counter (ByCounter) approach developed by Kuperberg.
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Summary The approach presented in this thesis is a model-based test-
ing approach. Online generation of test cases requires an adaptation of the
usual model-based testing process. The application of coverage criteria on
the code level and in model-based testing has been shown. The need for
customized criteria for Palladio specifications was identified and the statis-
tical testing of probabilistic specification elements discussed. An overview
on test generation and execution tools was provided and the decision for
integrating both into the validation framework of the presented approach
was explained.

3.3. Certification

This section provides an overview on the different types of certification
targeting the quality of the product and shows related product certification
approaches. The definition of certification used in this thesis is available
in chapter 2. Parts of the discussion have been previously published in
[RGR08, Gro09, Gro12c].

For certification, there are the three different viewpoints process, person-
nel, and product as described by Voas in [Voa99] and introduced in sec-
tion 1.3.4. These areas overlap each other but are neither equivalent nor
is one completely contained in the others. In order to provide a complete
picture, the following gives an overview and presents approaches from all
three viewpoints. Product certification oriented approaches are described in
more detail and put into context with the approach presented in this thesis.

Process certificates focus on the management aspect of software devel-
opment within an organization. The general idea is that a defined and
controlled process, which may take into account self-improvement, allows
managing the quality of a developed or offered component or product. Stan-
dards define the requirements for the management processes of an organi-
zation. The processes themselves document quality assurance and require-
ments management. They are tailored to the application domain, company,
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and developed product. The compliance and adherence of this standard
can be certified for an organization. Widespread representatives for this
type of approaches are ISO 9001[ISO08a] defined by the International Or-
ganization for Standardization and the Capability Maturity Model Integra-
tion (CMMI) [SEI] defined by the SEI of the Carnegie Mellon University
(CMU). A common infrastructure for software-related processes from busi-
ness software to firmware is provided by ISO 12207 [ISO08b]. This is ex-
tended by the ISO 15504, also referred to as Software Process Improvement
and Capability Determination (SPICE), which consists of overall 5 manda-
tory and 5 optional parts [ISO04] to [ISO11a]. The purpose of ISO 15504
is on process assessment and capability improvement. This relates to the
CMMI, which has even detailed guidelines for teams participating in the
process with the Team Software Process [Hum99] and individuals with the
Personal Software Process [Hum05].

The drawback of process certification despite its use in industry is that
even mature processes cannot guarantee a good quality of a developed com-
ponent or product as identified by Maibaum and Wassyng in [MW08]. The
processes can state that experienced performance engineers should reason
on the appropriate use of component specifications, validate specifications
thoroughly and that software architects should take into account the accu-
racy of overall predictions. However, this does not guarantee that its done
properly nor error probabilities are reduced. The approach presented in this
thesis supports software architects and performance engineers in validat-
ing and using component specifications for their purposes. The developed
certification-aware component-based development process does not focus
on the specific process in a company but ensures in general that different
parties can use component specifications cooperatively. The adapted pro-
cess supports the protection of knowledge and Intellectual Property (IP)
contained in implementations and allows the use of internal component
repositories as well as public marketplaces. It ensures that component eval-
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uation and selection can be successfully applied on the architecture level in
such scenarios.

Personnel certificates focus on the knowledge and experience of indi-
viduals working with a component or product. A personnel certificate can
ensure the competence and proper training for performed tasks. There is
a wide range of certificates from academia to industrial product applica-
tion. Examples for academic certificates with a broad focus are a bachelor
or master’s degree from an university. Examples for specific application
areas are Certified Professionals for Requirements Engineering, Certified
Tester, or Certified Software Product Manager from the international Soft-
ware Quality Institute (iSQI) [iSQI13]. Examples for product application
oriented certificates are Enterprise Desktop Support Technician on Win-
dows 7 or Server Administrator on Windows Server 2008 from the Mi-
crosoft Certified IT Professional (MCITP) program [Mic13].

The drawback of personnel certification is that knowledge or experience
does not address unintentional errors or that a product adheres to a given
quality if given constraints on time or budget are ambitious. Validating the
accuracy of a specification and an implementation requires knowledge in
special areas but the existence of knowledge does not ensure that accuracy
statements are created and thoroughly validated. This type of certification
does not address the consequences of certifier party selection on trust and
attractiveness, and how the knowledge and IP of an implementation can be
protected without endangering component evaluation and selection on the
architecture level.

Product certificates focus on assessment of the component or product it-
self. Today, product certification is applied on a broader scale for safety and
security critical software, for example for systems in the aviation, automo-
tive, or medical industry. Experience in analyses is often related to safety,
as it justifies the additional analysis effort. The certificates can address the
compliance with given regulations, that certain analyses have been applied
successfully, or the interoperability between applications and the adherence
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to an Application Programming Interface (API). An example for the com-
pliance with regulations is the standard DO178-B for software in avionics
[RTC92]. An example for the type of analyses is a certification according
to the Common Criteria [Comer], which focusses on the security of soft-
ware. Examples for interoperability certifications are provided for Win-
dows device drivers by Ball et al. in [BCLR04] and Balakrishnan and Reps
in [BR08a], as well as for the data exchange between field devices between
different vendors in the automation industry by the non-profit organization
FDT Group [FDT13].

The drawback of product certificates is that only a specific component
or product is certified and a new certificate must be issued for compara-
ble products or maintained versions. This type of certification can ensure
that a given specification is an accurate description of an implementation,
regardless of the development process or documented knowledge of the
participating persons. It does address the accuracy and, as shown by the
approach, can be integrated into component-based development processes
in order to allow component evaluation and selection on the architecture
level without endangering the quality of the decision or the protecting of
knowledge and IP contained in the implementation.

In the following, product certification oriented approaches are presented
and their relation to the approach presented in this thesis is shown.

For the non-functional property safety, the approach of safety cases by
Bloomfield and Bishop [BB10] provides a framework to show that argu-
ments are supported by evidence for a system and its environment. The
framework is influenced by existing standards and shows preferences for
different types of evidence: deterministic is preferred to statistical, quanti-
tative to qualitative, and direct to indirect. Safety cases are a generic frame-
work with a lot of degrees of freedom in its application. Wassyng et al.
identified in [WMLB11] that such frameworks are valuable but need to be
tailored and more clearly defined for the application domain. Their preci-
sion and effectiveness is not high enough yet. Wassyng et al. also take a
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look at other engineering domains and identify that product focussed as-
sessments should address the four points: completeness and correctness
of testing with respect to the specification, the repeatability, and a precise
definition of the testing configuration.

The approach presented in this thesis fulfills all preferences, although
it is applied to performance rather than safety. It provides deterministic
evidence and only falls back to statistical evidence where the probabilistic
decision requires it. It provides quantitative and direct information. The
four points are addressed as well. The coverage criteria and observation
of achieved coverage by the tests address the completeness and correctness
of testing a performance specification. The validation framework support
the repeatability and independent verification by third parties. The testing
configuration is described with the meta-model for accuracy statements, the
test-based validation configuration and the link between implementation
and specification.

The idea of safety cases was also applied to dependability considerations
by Graydon et al. in [GKS07] based on ideas of Strunk and Knight on assur-
ance based development in [SK06]. The authors propose a co-development
of these assurance cases with the system in order to guide development de-
cisions. They use functional decomposition to map dependability goals to
parts of the system and 7 categories for pruning alternatives, for example
functionality, cost, and restrictions on later alternatives.

They do focus on the assurance cases themselves and how decisions may
benefit from co-development. They do not provide criteria for the quality
of the evidence or for checking certain aspects. Although they consider
integrating quality statements on developed parts for future decisions in the
development process, they do not address component-based development
or different participating parties. Their general ideas could be used to state
the performance alternative evaluation goal and the selection between the
alternatives.
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The use of certificates in component-based software engineering is sur-
veyed by Alvaro et al. in [AdAdLM05]. The authors provide a timeline
visualizing the history of the approaches. They show the trend from early
approaches focussing on mathematical and purely test-based models to-
wards quality prediction, a stronger degree of reuse, and further means to
ensure credibility in quality statements. None of the described approaches
addresses the protection of knowledge and IP of implementations or the
consequences of certifier party selection. The need for accurate specifica-
tions is identified but no means for ensuring the accuracy of specifications
was targeted for business information systems. A detailed discussion of
specific approaches and their differences follows.

The issue of trust in component specifications was already discussed by
Meyer et al. in [MMS98]. They identify that technical as well as sociologi-
cal aspects influence the perceived trust in a component. Technical aspects
include verification and validation techniques and include formal specifica-
tions, design by contract, test-driven development, or testing. Social aspects
include the use of generally accepted best practices, independent repetition
and verification of results, or gut feeling. The authors take into account
the correctness of specifications, the quality of analysis or reasoning ap-
proaches, and the trust between participants. They provide a thorough dis-
cussion of trust issues in general but do not focus on knowledge and IP
protection or an applicable process for reasoning on the architecture level
on component evaluation and selection.

Meyer coined the complementary terms high road and low road already
in 2003 in [Mey03] for the classification of verification approaches, which
are still used to distinguish approaches. He defined a Trusted Component
as follows:

A Trusted Component is a reusable software element possess-
ing specified and guaranteed property qualities.
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The word guarantee hints at verification techniques based on proving prop-
erties for high road approaches formally. In contrast, low road approaches
use test-based techniques for the assessment. Today, a combination of high
and low road approaches is used. Proofs can be applied for small areas
of safety-critical software systems whereas testing on unit and component
level is a generally accepted best practice. The quality assurance for safety-
critical software is often eased by additional restrictions, for example the
MISRA rule set [Mot08] for using C++ in safety-critical automotive soft-
ware. Formal techniques like contracts on the code level, static code analy-
sis, and symbolic execution can aid in identifying potential faults. Accord-
ing approaches are available in industry for Java, for example by FindBugs
[AHM+08], or C++ by QA C/C++ [PRQ09]. The complexity of todays sys-
tems lead to the fact that low road approaches are more widespread. The
approach presented in this thesis with its test-based validation and heuristic
for accuracy influence analysis is classified as low road approach.

Certifiable statements using a high road approach with a focus on real-
time or embedded systems were addressed at the SEI by Hissam et al. with
their idea on PECT [HMSW02, HMSW03] and by Wallnau with his idea
on PACC [Wal03]. They define PECT as “the integration of a component
technology with one or more analysis technologies" and strive for a simpli-
fication of the composition by bundling specifications with the implemen-
tations. The approaches are based on ideas by Crnkovic et al. [CSSW01]
towards “active component dossiers" providing a component including test
harnesses or benchmarking mechanisms to enable independent verification
of properties. They regard a component as certifiable if the properties de-
scribed in the specification can be quantified and separate assessments of
the property show the same outcome. They provide an analysis technol-
ogy with UML statechart semantics, which uses rate monotonic scheduling
for predictions. The performance values for their components are based on
point estimators: “What we consider to be the certified latency of a compo-
nent is the average of a large sample of measurements" [HMSW01]. They
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use random sampling and a given number of executions to determine the
statistical point estimators average and standard deviation for the latency of
a single component and compare these between predictions and measure-
ments. The empirical validation of their analysis technology is based on
random generation of systems from a given set of components and com-
paring the mean residual error between the predicted value and a measured
values. The authors separate the component evaluation and selection phase
from the system composition phase, which support evaluations on the ar-
chitecture level. They use the term Virtual Assembly for an architecture.
Despite their efforts, they state that the approach “fell short in guaranteeing
behavioral properties such as those for safety and performance" [SEI13].

The authors of PECT and PACC provide a basis for the approach pre-
sented in this thesis. The approaches differ with respect to the targeted
group of systems and analytical versus simulation-based predictions. The
approach presented in this thesis does neither require nor include a run-time
for component execution. The separation between the component eval-
uation and selection phase and the system composition phase is adopted
and extended to support the certification of components and their use in
repositories and marketplaces in scenarios across different parties. This
requires additional process adaptation for component-bases software engi-
neering processes in order to certify and validate the specifications as well
as validate issued certificate ensuring their trustworthiness. The approach
presented in this thesis further extends the basis by considering the cover-
age of specifications during validation, applying statistical reasoning only
where necessary and advantageous, supporting arbitrary distribution func-
tion in the prediction, and by taking into account the accuracy of specifica-
tions and their influence on the overall prediction.

Bøegh describes a formalized theoretical approach for the certification
of fine-granular properties of components in [Boe06]. The idea is that any
measure used in a quality model or quality characteristic like usability or
maintainability can be objectively evaluated and the claim verified. Prop-
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erties can be on any of these abstraction levels from values for a metric to
compliance to a full standard. Independent third parties can evaluate and
certify the properties. Multiple independent parties can certify different sets
of properties for the same component. The approach ensures trust in quality
claims of components, especially if multiple different certification parties
are involved. However, Bøegh does not separate the implementation from
the component description and does not support that even properties of a
specification, for example its accuracy, should be certified in combination
with the implementation. The approach presented in this thesis provides
the definition of several measures and metrics, describing the quality of a
specification. These can be certified according to Bøegh’s approach. The
guideline for certifier party selection presented in this thesis can be used to
decide for different sets of properties how they should be certified. Bøegh
does not provide a development process or information on how to integrate
his approach into software engineering.

Morris et al. propose a self-certification approach for developers and de-
scribe it in [MLP+01]. The authors propose that developers provide tests in
a standardized format together with the implementation, which allows the
verification of claims and further analysis for component integrators. An al-
ternative and wide-spread language for conformance testing of embedded
and communication systems is provided by the European Telecommunica-
tions Standards Institute (ETSI) with the TTCN-3 language in [Eur04]. The
approach presented in this thesis provides support for certifier party assign-
ment and evaluating if self-certification is appropriate. It does not require
to share the implementation or use tests to reason on the covered aspects.
Furthermore, test cases are generated automatically by a framework for the
validation and manual test case creation is not required.

Alvaro et al. proposed a component quality assurance process in in
[AdAM07, AdAdLM07], which focusses on the management aspects of
quality assurance and provides a guideline what aspects should be consid-
ered when planning the certification of the quality properties of compo-
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nents. Their process has the following four main activities: establish eval-
uation requirements, specify the evaluation, design the evaluation, and exe-
cute the evaluation. It is comparable to a subset of the activities described in
the IEEE standard on software verification and validation [IEE05], which is
applicable to any software from firmware to business information systems.
The process by Alvaro et al. gives additional hints, which quality-related
aspects should be considered and which activities are related to certifi-
cation. The approach presented in this thesis does provide an applicable
validation and certification framework and the integration of certification
into component-based engineering processes. This integration shows when
certification must be considered and which artifacts are transferred. In con-
trast to Alvaro et al.’s approach, it does not address how an evaluation team
is built or evaluation requirements are elicited.

The similarities of component selection and certification and their use
in the development process are discussed by Land, Alvaro and Crnkovic
in [LAC08, ALC07]. The authors analyze the similarities and differences
in a component-of-the-shelf and a product line scenario. Simple waterfall
development processes are used in both scenarios to discuss the position
of selection and certification activities in the process. The authors envision
a two-level selection process. The higher level consist of a pre-selection
of components based on publicly available information, the lower level of
a prototype of the envisioned system. The acquisition decision is located
after the evaluation on the system prototype. The authors provide examples
that certifier party selection can influence trust. The authors identify the
following challenge:
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Standards are needed so that test and analysis results as well
as issued certificates are universally recognized and have an
agreed-upon meaning. To this end, and also useful for com-
ponent selection, analysis and test methods need to be de-
signed enabling a meaningful division and packaging of tests
and analyses between component vendors, certifiers, certifica-
tion institutes, system developers and software organizations.
[ALC07]

The approach presented in this thesis considers a wider range of devel-
opment processes and how certification can be integrated and successfully
applied in a component-based development process. It supports a separa-
tion of the specifications of components and implementations allowing the
protection of knowledge and IP even in scenarios with multiple parties. It
takes into account that prototypes can only be built after the implementation
is acquired and the evaluation on this level requires more effort than on the
architecture level. The presented approach addresses the issue of certifier
party selection and implications on trust explicitly and provides a guide-
line for trade-off decisions. Additionally, it points out the flow of artifacts
in a development process, the possible separation of information between
protected and public repositories and ensure that certificates can be used
successfully. The performance-oriented coverage criteria defined in the ap-
proach presented in this thesis are a common evaluation base, which can
be used to reason about the quality of validations even between indepen-
dent parties. They allow reasoning on the level of covered aspects instead
of single test cases. The automated validation of specifications and imple-
mentations is a test-based method and can ensure the coverage of elements.
The development process ensures that division and packing is taken into
account appropriately. This shows, that the identified challenge is success-
fully addressed.
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This chapter presents the developed meta-model for stating the accuracy
of performance specifications. It is designed for architecture-level perfor-
mance specification languages. Its statements provide formalized means
to express and access the accuracy of a specification for humans as well as
programs. It consists of a generic and language-dependent part. A language
dependent part is developed and shown for Palladio.

The requirements for making accuracy statements and how this approach
addresses them is described in the following.

1. Support the influencing factors of architecture-level performance
specifications. This approach allows to specify the accuracy sepa-
rately for each influencing factor.

2. Support comparison between architecture-level performance
specification languages. Accuracy statements depend on the specifi-
cation language. However, architecture-level performance specifica-
tion languages have common domain-specific denominators. These
denominators ease the comparison between specifications of differ-
ent languages. This approach defines a common meta-model includ-
ing variation points for customization. It shows the language-specific
customization using Palladio as exemplary language. Palladio is cho-
sen as it is one of the most advances languages in terms of parame-
terization support.

3. No need to modify specification languages. This approach defines
a meta-model which annotates the specification languages.
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4. Automated processing of accuracy information. The developed
meta-model is accessible using the Eclipse Modeling Framework
(EMF). This ensures the conformance with standards and industry-
suitable tooling.

5. Editable by human users. Human-oriented graphical editors are
provided to display and modify model instances. It is ensured by
using the EMF.

6. Support parameter range restrictions. The confirmed validity of
performance specifications is often restricted by their level of ab-
straction. It is also restricted by the necessary validation and verifi-
cation effort, especially in conjunction with huge parameter spaces.
This approach allows to couple accuracy information with their pa-
rameter space restrictions.

7. Support different deviation threshold types. Instrumentation and
measurement techniques vary in their absolute and relative accuracy.
The resulting accuracy influences the verifiable accuracy of a speci-
fication. This approach supports taking into account these threshold
types.

This chapter is structured as follows. Section 4.1 describes the annota-
tion meta-model for attaching accuracy information to performance speci-
fications. Section 4.2 describes the customization for a specific modeling
language and shows its extension for Palladio-based specifications.

4.1. Accuracy Meta-Model

This section shows the language independent meta-model part for stating
the accuracy of performance specifications. Previous versions with limited
deviation and range support, limited parameter support and customization
of it, and without taking probabilistic decisions into account have been pub-
lished in [Gro10] and [Gro11a].
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Figure 4.1.: Storing Quality Statements

Figure 4.1 shows how quality statements are stored consistently. The
QualityRepository contains a set of QualityStatements. The annota-
tions are stored in repositories. This allows to store semantically connected
annotations combined in one place. There is no need to change the speci-
fication languages for statement storage. This solution fulfills requirement
3.

The abstract QualityStatement is a place-holder for any statement
about quality. It should be specialized through subclasses for the differ-
ent types of quality statements. The existing subclasses are shown in the
following.

Figure 4.2 shows the elements which allow to state the accuracy for ex-
actly one performance specification.

The QualityAnnotation is a QualityStatement and bundles the
necessary information. Its attribute isValid provides information if this
annotation is considered valid. It allows to take into account the process
of creating, modifying and verifying accuracy statements. The attribute
may only be true if the accuracy has been successfully verified. The
QualityAnnotation is linked to the performance specification via the
forServiceSpecification reference. The restrictions of the parame-
ter space are contained via the validForParameterPartitions. There
can be any number of restrictions. This solution fulfills requirement 6.
The precision of the performance specification with respect to probabilis-
tic decisions is contained via the probabilisticElements. The preci-
sion of the performance specification with respect to access via required
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Figure 4.2.: QualityAnnotation Overview

interfaces is contained via the stipulatedREPrecisions. The preci-
sion depends on the required elements stated as part of the specification,
for example certain required software components or hardware resources.
Therefore, there can be any number of precision statements. If tests are
used to verify the accuracy then the internal state of the tested component
may influence the results. The difference between results is stored via the
internalStateInfluenceAnalysisResults containment. There can
be any number of results. There should be no results if the influence is part
of a specification language parameter, for example a configuration parame-
ter of the component.

The ServiceSpecification stores the link to a performance specifi-
cation. A link instead of a direct reference is required to provide the loose
coupling and fulfill requirement 3. This abstract class must be customized
to the specification language. This fulfills requirement 2. Its checksum

attribute stores a calculated hash value of the performance relevant infor-
mation in the linked specification. This allows to check if the accuracy
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Figure 4.3.: ParameterPartition Overview

information is valid for the provided version of the specification. The
checksumAlg attribute stores the name of the algorithm used for the check-
sum calculation. This allows to have separate algorithms for different lan-
guages and take into account meta-model changes of specification langua-
ges and changes if weaknesses of one algorithm are recognized.

Figure 4.3 provides an overview about partitions for parameters. Para-
meterPartition stores the parameter space restrictions for exactly one
parameter. The link to that parameter is contained via the parameterRe-

ference reference. This abstract class must be customized to reflect how
a partition for a single parameter is specified in the language. This fulfills
requirement 2. It allows taking into account additional information on the
measured value. Partitions for nominal parameter values can be specified
as set of values whereas partitions for ordinal parameter values can be spec-
ified using value intervals. If there is more than one value describing the
actual performance relevant value a subclass can handle the partitions for
all descriptions properly. This fulfills requirement 6.

The ParameterReference stores the link to one parameter of the per-
formance specification. Examples are input parameters or component con-
figuration parameters. A link instead of a direct reference is required to
provide the loose coupling and fulfill requirement 3. This abstract class
must be customized to reflect the parameter types available in the specifi-
cation language. This fulfills requirement 2.

The description of the elements InternalStateInfluenceAnalysis
and RequiredElement will follow in the paragraphs about stating the in-
fluence of internal state and stating the accuracy with respect to accessed
resources.
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Figure 4.4.: Stating the Influence of Internal State

Figure 4.4 shows the elements for stating the influence of internal state.
The internal state of a component can influence the performance although
all specified parameters remain the same. Explicit parameters, for example
configuration parameters, are not considered as internal state. The infor-
mation about this unspecified influence allows judging on the stability of a
performance specification for long-running components. It allows to iden-
tify this type of risk and support decisionmaking based on specifications
and predictions.

The InternalStateInfluenceAnalysisAggregation stores the in-
formation about the deviations caused by internal state. This information
is typically gained by repeated measurements. The difference between
these repetitions can be stored at this element. The aggregated values of
a validation can be stored for the deviation of parameter values using the
parameterValueDeviations containment. There can be any number of
deviations. The number depends on the parameters influencing the spec-
ification. The aggregated deviation values for accessed resources can be
stored using the requiredElementDeviations. There can be any num-
ber of deviations depending on the resources accessed by the specification.
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Figure 4.5.: Stating Accuracy with Respect to Accessed Resources

The ParameterValueDeviation stores the maximum deviation for one
parameter. The value of the deviation is linked via the parameterValue

containment. The parameter is linked via the parameterReference con-
tainment.

The ParameterValue stores the value for a parameter. It is an abstract
class to support potentially different datatypes as well as characterizations
indirectly describing the parameter value. An example for such a character-
ization is to state the number of elements in a collection instead of a detailed
data structure. This kind of modeling supports fulfilling requirement 2. The
abstract class must be customized for the datatypes and characterization of
a specification language.

The RequiredElementDeviation stores the deviation caused by inter-
nal state for one required element. The aggregated deviation for the number
of calls to the required elements is stored via the maximumDeviationNum-
berOfCalls containment. The required element is stored via the re-

quiredElement containment. It must be provided. The aggregated devia-
tion for the call parameters is stored via the maximumDeviationCallPa-

rameterValues containment. There can be one aggregated value for each
specified parameter. The description of the element RequiredElement
will follow in the paragraph about stating the accuracy with respect to ac-
cessed resources.

95



Accuracy Statements

Figure 4.5 shows the elements for stating the accuracy with respect to
accessed resources. The resources of a specification are the points which
influence the behavior but are not described as part of the specification.
Examples are calls to other components, a calculation on a processor, or
data requested from a hard disk. The accuracy between such categories can
be quite different for the same specification.

The RequiredElement stores links to the required elements of a speci-
fication. The required elements can be ordered hierarchically. This order is
represented by the parentRE and childREs containment. A RequiredE-

lement can be either contained in a QualityAnnotation, in a Re-

quiredElementDeviation, or in the next higher hierarchical Required-
Element. The hierarchy allows a convenient way to specify the precision
for a certain resource without having to specify the accuracy for each re-
source individually. It fulfills requirement 5. An example is if the precision
for all hardware resources is set to 1% with the exemption of the proces-
sor which is set to 5%. The precision of the most specific match must
be used. The accuracy can be stated using the precision containment. It
must be stated if it is contained in the stipulatedREPrecisions contain-
ment of a QualityAnnotation. This abstract class must be customized
for the required elements of a specification language. This solution fulfills
requirements 1, 3, and is needed for 7.
REPrecision stores the accuracy for required elements accessed by the

performance specification. The accuracy with respect to the number of
specified calls to the element is stored via the defaultPrecisionNum-

berOfCalls attribute. The accuracy with respect to the parameter values
provided during these calls is stored via the defaultPrecisionCallPa-

rameter attribute. This fulfills requirement 7.
Precision is a template for a kind of precision. It is an abstract class.

Its subclasses must provide the semantics for the kind.
ExactlyAsSpecifiedPrecision denotes that the number of calls and

each parameter value used during such a call or a stated decision probability
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Figure 4.6.: Probabilistic Element Overview

is a perfect match. This means the corresponding implementation behaves
exactly as stated in the specification.
LimitedDeviationPrecision denotes that a corresponding imple-

mentation may deviate from the specification. This deviation is limited.
The absolute acceptable deviation must be provided using the absolute

attribute. The relative deviation with respect to the specified value must
be provided using the relative attribute. The relative deviation is only
considered if the absolute acceptable deviation is exceeded. This enables
taking measurement inaccuracies into account. For example, that a certain
instrumentation can measure the processor consumption with an accuracy
of ± 1 ms but it’s relative error is not above 13%. If the specification states
1 ms but the measured implementation takes 2 s then the specification is
still valid although the relative threshold is exceeded. Real-world deviation
values are provided by Kuperberg et al. in [KKR11] for different measure-
ment techniques and execution platforms. An example for probabilistic
decisions for which it was shown using hypothesis testing that the proba-
bilities are most likely accurate up to ± 3 % will have an absolute accuracy
of 0.03 and a relative accuracy of 0.
NoPrecision denotes that there is no ensured precision. Specification

and implementation may be completely different. This allows to state that
certain required or probabilistic elements have not been validated or veri-
fied.
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Figure 4.7.: Stating and Using Parameters

Figure 4.6 shows the elements for stating the accuracy with respect to
probabilistic decisions. Statements between different sets of decisions can
be specified using a hierarchical relationship.
ProbabilisticElement stores links to the sets of probabilistic deci-

sions. Comparable to RequiredElements, there is a hierarchy. The hi-
eratic order is represented by the parentPE and childPEs containment.
A ProbabilisticElement can be either contained in a QualityAnno-

tation or in another ProbabilisticElement of the next higher level.
The hierarchy provides a convenient way to specify the precision for single
decisions as well as all decision. It fulfills requirement 5. An example is
if a single decision has a higher allowed deviation than the other ones: the
probability for each decision alternative could be modeled with a deviation
lower than 3% in most cases and 10% for that single exception. This accu-
racy of the probabilities must be stated using the precision containment.
This abstract class must be customized for the decisions of a specification
language. This solution fulfills requirements 3, and is needed for 7.

Figure 4.7 shows the elements for stating and using parameters in a
specification language-independent way. This kind of modeling supports
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requirement 2. The designed meta-model is compatible with the Service
Architecture Meta-Model (SAMM)[Q-I08]. The SAMM is a common set
of the component meta-models KLAPER[GMS07], Palladio[RBB+11b],
ProCom[BCC+10], and SOFA[PV02]. The presented model goes beyond
SAMM as it supports the native types of the language and does not enforce
another XML-based language on top. The shown elements can be used to
report verification errors to users including information about invalid val-
ues.
ComponentInstance stores the description of a deployed component

instance and its component parameters. The component is linked via the
componentReference containment. The parameter values for the compo-
nent parameters are set via the parameterInstances containment. There
can be one instance per specified parameter.

The ComponentReference stores the link to one component. A link
instead of a direct reference is required to provide the loose coupling and
fulfill requirement 3. This abstract class must be customized to reflect the
parameter types available in the specification language. This solution ful-
fills requirements 2 and 3.
ParameterInstance stores the description of one parameter. The value

of the parameter is linked via the parameterValue containment. The pa-
rameter can be reference via the parameterReference containment. The
parameter needs only to be referenced if it would be ambiguous otherwise.
CallInstance stores the information about one or several calls to the

same operation or service. The number of calls described by this ele-
ment must be stated in the numberOfCalls attribute. The call parameters
and their values can be provided via the inputParameterInstances and
outputParameterInstances containments. The first describes the pa-
rameters provided to the operation, the second the parameters received in
return after the operation has completed. The operation or service is linked
via the operationReference containment.
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The OperationReference stores the link to one operation or service
provided by a component. A link instead of a direct reference is required
to provide the loose coupling and fulfill requirement 3. This abstract class
must be customized to reflect the parameter types available in the specifi-
cation language. This solution fulfills requirements 2 and 3.

The presented information allows to state, access, and report the accu-
racy of specifications in a language-independent way.

4.2. Palladio Customization

This section shows the language dependent meta-model parts for stating
the accuracy. The statements are customized for the Palladio specification
language.

Figure 4.8 shows the customized parameter references for Palladio. The
abstract class PCMParameterReference is used to group all parameter
types for this language. The types are presented in the following.
PCMOperationParameterReference stores the link to an input param-

eter of an operation. This operation can either be a business operation or
an infrastructure operation. The parameter is linked via the parameter

reference.
PCMComponentParameterReference stores the link to a parameter of

a component. Identifying the parameter unambiguously requires referenc-
ing the component type as well as context definition of the parameter. The
component type is linked via the implementationComponentType refer-
ence. The context definition is linked via the variableUsage reference.
PCMRequiredBusinessOperationReturnParameterReference

stores the link to an output parameter of an operation. This parameter
is coupled in Palladio with the signature of the operation. The signature
is linked via the signature reference. Interfaces and their signatures can
be re-used in different context even within the same system. Examples are
filters or databases with different content. The context is linked via the
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.8.: Accuracy Parameter References in Palladio

requiredRole reference. It identifies a deployed instance of a component
unambiguously. Both references combined identify the return parameter.

Figure 4.9 shows the customized service specification. There is just one
type so there is no explicit abstract grouping class necessary.
PCMServiceSpecification stores the link to a performance speci-

fication. The specification is linked via the resourceDemandingSEFF

reference. The calculation of the checksum must ensure that the speci-
fied order, frequency, parameter types, parameter names, and values of the
performance-relevant behavior remain the same. Name and identifier chan-
ges as well as formatting changes should not change the checksum if they
are not performance-relevant. The names and types of parameters belong-
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.9.: Service Specifications in Palladio

ing to provided or required interfaces and required roles must stay the same.
This is due to the fact that parameters are referenced in the meta-model by
their name and not their unique identifier. The implemented algorithm is
shown in section A and supports these requirements.

Figure 4.10 shows the customized required elements. The abstract class
PCMRE is used to group all parameter types for this language. The types are
presented in the following.

The enumeration PCMRERequestCategory lists the different accessible
resources or required element types of this language. Resource represents
resource accesses via a well-defined interface. An example is a hard disk
access using a read and write operation. Infrastructure represents ac-
cesses of infrastructure operations. Examples are issued Java bytecodes or
Java API calls. Component represents accesses of business operations. An
example is the request of a file from a database. ResourceDemand repre-
sents abstract resource accesses via an implicit interface. Technically, this
access is for an ProcessingResourceSpecification of the language.
An example is a direct processor access. It is specified in abstract pro-
cessing units. ComponentInternal represents accesses of a component-
internal performance specification which is not provided to the outside. It
can be considered as the performance specification of a reusable helper
function.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.10.: Stating Accuracy with Respect to Accessed Resources in Palladio
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PCMRECategory stores the link to one category. This category is ref-
erenced via the category attribute. There must be at least one of these
elements for a category if a specification accesses anything within that cat-
egory. There must not be more than one of these elements for the same
category. These elements are the highest elements in the hierarchy. Con-
straints in OCL ensure the hierarchy. The resulting constraints for this ele-
ment are presented in listing 4.1. These constraints ensure that there are no
ambiguities or conflicts. The hierarchy is different for each category. The
different classes for each category are marked with different indentation in
the figure. They are presented in the following.

The category Infrastructure has overall 4 hierarchy levels. The top-
most level is the category. PCMREInfrastructureInterface represents
the second level. It covers all accesses to a distinct interface regardless of
its context. The interface is linked via the interface reference. The con-
straints for this element are presented in listing 4.2. PCMREInfrastruc-

tureRole represents the third level. It covers all accesses to the role of an
interface regardless of the accessed operations. The role is linked via the
role reference. The constraints for this element are presented in listing
4.3. PCMREInfrastructureSignature represents the bottommost level.
It covers all accesses to a distinct operation. The operation is linked via
the signature reference. The constraints for this element are presented in
listing 4.4.

The category Component has overall 4 hierarchy levels. The topmost
level is the category and its hierarchy is analogous to the category Infra-

structure with adapted names for the required elements and links to the
semantic elements PCMREInterface, PCMRERole, and PCMRESignature.

The category Resource has overall 4 hierarchy levels. The topmost level
is the category and its hierarchy is analogous to the category Infrastruc-

ture with adapted names for the required elements and links to the seman-
tic elements PCMREResourceInterface, PCMREResourceInterface,
and PCMREResourceInterface.
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The category ResourceDemand has overall 2 hierarchy levels. The top-
most level is the category. The only lower level is PCMREResource. It
links the resource targeted by the abstract resource demand via implicit
interfaces. This kind of resource doesn’t have additional categories or in-
terfaces in Palladio. The constraints are analogous to listing 4.4.

The category ComponentInternal has overall 2 hierarchy levels. The
topmost level is the category. The only lower level is PCMRECIBehavior. It
links the targeted specification of the component internal behavior. These
specifications can only be reused within the same specification visible to
the outside. They can only be accessed directly. Grouping is not possible.

Listing 4.1: Hierarchy Constraints for PCMRECategory. Ensures that the next lower

level matches the selected category and that each category is not de-

scribed more than once.

1 c o n t e x t PCMRECategory
2 inv E a c h C a t e g o r y E x a c t l y O n c e I f S p e c i f i e d :
3 s e l f . q u a l i t y A n n o t a t i o n . s t i p u l a t e d R E P r e c i s i o n s
4 −> s e l e c t ( pcmre | pcmre . o c l I s T y p e O f ( PCMRECategory )
5 and pcmre . oclAsType ( PCMRECategory ) . c a t e g o r y
6 = s e l f . c a t e g o r y )−> s i z e ( ) = 1
7 inv N e x t L o w e r H i e r a r c h y L e v e l I s P C M R E I n f r a s t r u c t u r e I n t e r f a c e

F o r C a t e g o r y I n f r a s t r u c t u r e :
8 s e l f . c a t e g o r y = PCMRERequestCategory : : I n f r a s t r u c t u r e
9 i m p l i e s s e l f . ch i ldREs−> f o r A l l ( c h i l d

10 | c h i l d . o c l I s T y p e O f ( P C M R E I n f r a s t r u c t u r e I n t e r f a c e ) )
11 inv Nex tLowerHie r a r chyLeve l I sPCMREResou rce In t e r f ace

F o r C a t e g o r y R e s o u r c e :
12 s e l f . c a t e g o r y = PCMRERequestCategory : : Resource
13 i m p l i e s s e l f . ch i ldREs−> f o r A l l ( c h i l d
14 | c h i l d . o c l I s T y p e O f ( PCMREResourceIn ter face ) )
15 inv Nex tLowerHie ra r chyLeve l I sPCMREIn te r f ace

ForCategoryComponent :
16 s e l f . c a t e g o r y = PCMRERequestCategory : : Component
17 i m p l i e s s e l f . ch i ldREs−> f o r A l l ( c h i l d
18 | c h i l d . o c l I s T y p e O f ( PCMREInterface ) )
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19 inv NextLowerHierarchyLevel IsPCMREResource
ForCategoryResourceDemand :

20 s e l f . c a t e g o r y = PCMRERequestCategory : : ResourceDemand
21 i m p l i e s s e l f . ch i ldREs−> f o r A l l ( c h i l d
22 | c h i l d . o c l I s T y p e O f ( PCMREResource ) )
23 inv NextLowerHierarchyLevel IsPCMRECIBehavior
24 F o r C a t e g o r y C o m p o n e n t I n t e r n a l :
25 s e l f . c a t e g o r y = PCMRERequestCategory : :

C o m p o n e n t I n t e r n a l
26 i m p l i e s s e l f . ch i ldREs−> f o r A l l ( c h i l d
27 | c h i l d . o c l I s T y p e O f ( PCMRECIBehavior ) )

Listing 4.2: Hierarchy Constraints for PCMREInfrastructureInterface. En-

sures that the next lower level describes InfrastructureRoles and

that each interface is not described more than once.

1 c o n t e x t P C M R E I n f r a s t r u c t u r e I n t e r f a c e
2 inv EachRETargetMustBeReferencedOnlyFromOneRE :
3 s e l f . pa ren tRE . c h i l d R E s
4 −> s e l e c t ( pcmre
5 | pcmre . oclAsType ( P C M R E I n f r a s t r u c t u r e I n t e r f a c e ) .

i n t e r f a c e
6 = s e l f . i n t e r f a c e )−> s i z e ( ) = 1
7 inv NextLowerLeve lMus tCons i s tOfTypePCMREInf ra s t ruc tu reRo le

:
8 s e l f . ch i ldREs−> s e l e c t ( pcmre
9 | not pcmre . o c l I s T y p e O f ( P C M R E I n f r a s t r u c t u r e R o l e ) )

10 −> s i z e ( ) = 0

Listing 4.3: Hierarchy Constraints for PCMREInfrastructureRole. Ensures that

the next lower level describes InfrastructureSignatures and that

each role is not described more than once.

1 c o n t e x t P C M R E I n f r a s t r u c t u r e R o l e
2 inv EachRETargetMustBeReferencedOnlyFromOneRE :
3 s e l f . pa ren tRE . ch i ldREs−> s e l e c t ( pcmre
4 | pcmre . oclAsType ( P C M R E I n f r a s t r u c t u r e R o l e ) . r o l e
5 = s e l f . r o l e )−> s i z e ( ) = 1
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.11.: Stating Accuracy with Respect to Accessed Resources in Palladio

6 inv NextLowerLeve lMus tCons i s tOfTypePCMREInf ra s t ruc tu re
S i g n a t u r e :

7 s e l f . ch i ldREs−> s e l e c t ( pcmre
8 | not pcmre . o c l I s T y p e O f ( P C M R E I n f r a s t r u c t u r e S i g n a t u r e ) )
9 −> s i z e ( ) = 0

Listing 4.4: Hierarchy Constraints for PCMREInfrastructureSignature. En-

sures that this is the lowest level and that each signature is not described

more than once.

1 c o n t e x t P C M R E I n f r a s t r u c t u r e S i g n a t u r e
2 inv EachRETargetMustBeReferencedOnlyFromOneRE :
3 s e l f . pa ren tRE . ch i ldREs−> s e l e c t ( pcmre
4 | pcmre . oclAsType ( P C M R E I n f r a s t r u c t u r e S i g n a t u r e ) .

s i g n a t u r e
5 = s e l f . s i g n a t u r e )−> s i z e ( ) = 1
6 inv T h i s I s T h e L o w e s t I n f r a s t r u c t u r e H i e r a r c h y L e v e l :
7 s e l f . ch i ldREs−>isEmpty ( )

Figure 4.11 shows the customized probabilistic elements. The abstract
class PCMPE is used to group all types for this language. Palladio allows
probabilistic decision only at BranchAction elements. Palladio does not
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have grouping mechanisms for probabilistic decisions besides their position
in the specification. Hence, there are 2 hierarchy levels, which are presented
in the following.

The level PCMPEAllDecisions is the topmost level. It spans all prob-
abilistic decisions within a specification. This supports setting a default
value for all decisions within a specification. The constraints 4.5 and 4.6 en-
sure the position in the hierarchy. The only lower level is PCMPEDecision.
It links the single targeted probabilistic decision via the branchAction

reference. The constraint 4.7 ensures the position in the hierarchy.

Listing 4.5: Hierarchy Constraints for PCMPE. Ensures that the highest level consists

only of PCMPEAllDecisions.

1 c o n t e x t PCMPE
2 inv TopmostLevelMustBePCMPEAllDecisions :
3 s e l f . p a r e n t P E . o c l I s U n d e f i n e d ( ) i m p l i e s s e l f .

o c l I s K i n d O f ( PCMPEAllDecisions )

Listing 4.6: Hierarchy Constraints for PCMPEAllDecisions. Ensures that the next

lower hierarchy level consist only of PCMPEDecision.

1 c o n t e x t PCMPEAllDecisions
2 inv NextLowerHie ra rchyLeve lMus tBeDec i s ion :
3 s e l f . ch i l dPEs−> f o r A l l ( c h i l d | c h i l d . o c l I s K i n d O f (

PCMPEDecision ) )

Listing 4.7: Hierarchy Constraints for PCMPEDecision. Ensures that this is the

lowest level and that each probabilistic decision is not described more

than once.

1 c o n t e x t PCMPEDecision
2 inv T h i s I s T h e L o w e s t D e c i s i o n H i e r a r c h y L e v e l :
3 s e l f . ch i l dPEs−> s i z e ( ) = 0
4 inv EachPETargetMustBeReferencedOnlyFromOnePE :
5 s e l f . p a r e n t P E . ch i l dPEs−> s e l e c t ( pcmpe
6 | pcmpe . oclAsType ( PCMPEDecision ) . b r a n c h A c t i o n
7 = s e l f . b r a n c h A c t i o n )−> s i z e ( ) = 1
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.12.: Parameter Partitions in Palladio

Figure 4.12 shows the customized elements for stating parameter parti-
tions.
PCMParameterPartition stores the link to the language-dependent pa-

rameter. The constraint 4.8 ensures that only PCMParameterReference

instances are referenced via the inherited parameterReference contain-
ment. Palladio uses different characterizations describing a parameter. The
partition for each characteristic is stored via the characterisedParame-
terPartitions containment. There must be at least one partition for a
characterization of the parameter.

The CharacterisedPCMParameterPartition stores the partition for
one data type characterization. The characterization is referenced via the
forCharacterisation attribute. Composed or collection data types have
named elements within which can be characterized as well. The qualified
name for an element must be provided via the qualifiedElementName

attribute. It is a textual representation as there is always a distinct tex-
tual identifier but the same data type can be used more than once within a
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data type definition. The textual representation must be the empty string
for simple data types. The possible parameter characterization types of
Palladio are listed in the VariableCharacterisationType enumeration.
The technical report on Palladio [RBB+11b] provides further details on the
types. Subclasses of this abstract class must define the semantics for the
actual partition.
CharacterisedPCMParameterPartitionInterval denotes a parti-

tion, which consists of a closed interval. It requires an ordinal scale type
on the parameter. The lower bound is stored via the from containment, the
upper bound via the to containment.
CharacterisedPCMParameterPartitionRange denotes a partition,

which consists of a range or set of values. It can be applied to any scale
type including nominal or categorical. The values included in the partition
are stored via the values containment.

The description of the element PCMParameterReference is available
in the section above about accuracy parameter references in Palladio. All
values are stored in Palladio using PCMRandomVariable, which is re-used
in this context.

Listing 4.8: Constraints for PCMParameterPartition. Ensures that only Palladio

parameters are referenced.

1 c o n t e x t P C M P a r a m e t e r P a r t i t i o n
2 inv APCMParameterPar t i t ionMustReferenceAPCMParameter

R e f e r e n c e :
3 s e l f . p a r a m e t e r R e f e r e n c e . o c l I s T y p e O f (
4 Q u a l i t y : : P a r a m e t e r s : : PCM : : PCMParameterReference )

Figure 4.13 shows the customized component references. There is just
one component type in Palladio, which may contain performance specifi-
cations. PCMComponentReference stores the link to a component. The
component is linked via the basicComponent reference.

Figure 4.14 shows the customized operation references. Palladio distin-
guishes two different types of operations. These types have been described
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.13.: Component References in Palladio

Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.14.: Operation References in Palladio

above in the section about accuracy parameter references. The resulting
elements for operation references are presented in the following.
PCMBusinessOperationReference stores the link to a distinct busi-

ness operation. Interfaces are considered first class entities in Palladio.
This means that information on the operation as well as the role in which
it is used needs to be available for a distinct identification. The operation
is linked via the signature reference. The role is linked via the role

reference.
PCMInfrastructureOperationReference stores the link to a distinct

infrastructure operation. Infrastructure interfaces are considered first class
entities and must be handled analogous to business interfaces. The infras-
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 4.15.: Parameter Values in Palladio

Figure 4.16.: User Interface Example for a Customized QualityAnnotation

tructure operation is linked via the signature reference. The infrastruc-
ture role via the role reference.

Figure 4.15 shows the customized parameter values. There is just one
generic parameter type in Palladio. PCMParameterValue stores all char-
acterizations for one parameter. A Palladio parameter value is character-
ized directly for simple data types. Collection data types are character-
ized for the collection itself, for example the number of contained ele-
ments, and over all elements contained, for example the distribution of
their values. Composite data types are characterized via their composed
inner elements. The characterized values for a parameter are stored via the
variableCharacterisations containment. There must be exactly one
characterization for a simple data type. Collection and composite data types
can have more than one characterization. A VariableUsage stores all in-
formation about the characterized value for one data type. The possible
value characterizations for a single data type are depicted in figure 4.12.
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Figure 4.16 provides an example of the user interface for editing quality
annotations. It describes a distinct operation processBoolean of a Palladio
model which is not depicted in the figure. The precision is shown using
the shortcuts NoC and CP. NoC stands for the number of calls, CP for call
parameters. The number of infrastructure calls and business operation calls
and their parameters are exactly as specified. The other categories are not
verified and there is no quality information available. This demonstrates
fulfilling requirement 5.

The presented customization allows to state, access, and report the accu-
racy of Palladio specifications without neglecting a specific property of the
language.
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5. Accuracy Effects on Overall Prediction

This chapter presents the influence analysis of inaccuracies of specifications
on predictions of composed systems. This includes effects from inaccurate
specifications on the usage profile propagation. The accuracy of specifica-
tions is expressed with the statements presented in chapter 4.

Influence analysis points out margins around the performance predic-
tion of a system. Software architects and performance engineers must be
aware of these margins. Their awareness prevents becoming a victim of the
garbage-in-implies-garbage-out-principle and allows judging the appropri-
ateness of a prediction for an evaluation goal. In general, there is a high
chance of becoming a victim of the principle because automated predic-
tion approaches hide a lot of complexity and always provide precise pre-
diction figures. If the prediction does not include the margins from an
accuracy influence analysis then the performance of the real system may
deviate substantially. This deviation can even happen if all assumption of
the prediction approach hold and there is no error in the prediction of the
specifications without deviations. Relying only on seemingly precise fig-
ures and the quality of the prediction approach does not help if the input
of the prediction is not accurate enough for a decision. The confidence in
the capability of the prediction to identify actual characteristics rather than
specification errors is a critical point for performance engineering. Ad-
dressing it is considered a best practice [SW03, practices 2.10 and 5.3].
The approach presented in this thesis allows to distinguish between the ac-
tual margins of a prediction due to possible inaccuracies and the prediction
accuracy of the approach. It is assumed that the prediction approach makes
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valid predictions if the used specifications exactly describe the behavior of
the implementation.

Accuracy statements (see chapter 4) and specification validation (see
chapter 6) address the input part and ensure that individual specifications
have a trustworthy and known quality. The remaining threats for the overall
prediction and arising effects for composition are discussed in section 5.1.

The exhaustive analyses of these effects for composition can require pro-
hibitive effort for complex systems due to the complexity and parameters
for each individual specification and their number of possible combina-
tions. Optimization approaches using (meta-)heuristics like genetic algo-
rithms or simulated annealing usually require several hundreds or thou-
sands of individual predictions. Exemplary approaches for design decision
optimization in the areas performance and reliability using Palladio are pro-
vided by Koziolek [Koz11] and in the area of reliability taking into account
accuracies with the SCOUT approach by Meedeniya [Mee12]. The effort
can be reduced as part of a trade-off between effort and the quality of the
margins of the overall prediction. The trade-off is discussed for Palladio
in section 5.2. The section also points out how the identified trade-off is
realized by the presented approach and how the prediction approach is ex-
tended to support margin identification.

5.1. Accuracy Propagation Effects

This section presents the threats for overall predictions and effects of prop-
agating inaccuracies of specifications in prediction approaches.

In general, a prediction can contain specifications with and without accu-
racy information. The accuracy information can be limited to certain inter-
vals or parameter value ranges. There may be more than one specification
available for the same component. Examples include specifications which
differ in their accuracy or parameter ranges with accuracy information. The
separation of a system’s usage profile from the specifications supports reuse
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Table 5.1.: Threats Depending on Available Accuracy Information and Mitigation
Actions

Information Prediction Threat Action
Missing Unknown quality Feedback for which

parts the information
is missing.

Existing but not for used
parameters

Extrapolation errors Feedback which pa-
rameter values were
outside the bounds.

Existing for used param-
eters, unambiguous

Interpolation or ab-
straction errors

No action required.

Existing for used pa-
rameters, ambiguous,
overlapping parameter
ranges

Different influences
possible

Feedback for ambi-
guity conflicts and
use one arbitrarily.

Existing for used pa-
rameters, ambiguous,
non-overlapping param-
eter ranges

Interpolation or ab-
straction errors

No action required.

and late composition. However, the separation also means that threats can
only be identified to their full extent if all information is available in com-
bination. A prediction including influence analysis and margins provides
this kind of information.

The threats for a prediction depend on the availability of accuracy infor-
mation. This context also limits the actions to mitigate the threats. Threats
and mitigation actions are summarized in table 5.1 and explained in the
following. The threats are illustrated using simplistic specifications deter-
mining the CPU load depending on the parameter value x and assume that
freal(x) = 0.8+0.84∗ x describes the real relation. This allows the demon-
stration and the principle is valid for complex specifications as well.

If accuracy information is missing for at least one specification used in
the prediction then the quality of the resulting prediction is unknown and it
should not be used for decisions. For the example, it would be unclear if a
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specification f1(x) = x or f2(x) = 1+0.82∗x is an appropriate description.
The deviation additionally changes with the value of x: f1(5) = 5 would
provide accurate predictions for freal(5) while the deviation for f1(10) = 10
is freal(10)− f1(10)

freal(10) = 10−9.2
9.2 ≈ 8.7%. However, this knowledge is crucial in

reasoning about the appropriateness of a prediction for an evaluation goal or
identifying if the error is higher than a specified threshold such as the bound
of 30% acceptable error proposed by Menasce in [MA01] for predictions in
software performance engineering. The accuracy influence analysis allows
identifying specifications for which accuracy information is missing. The
analysis additionally shows the parameter values for which the information
is missing. This additional information eases goal-oriented validation of the
specification. In order to mitigate the threat, accuracy information should
be added for the respective specification and parameter values. For example
by validating the specification with the techniques presented in chapter 6.
A new analysis is required after the accuracy information is supplied.

If accuracy information exists but at least one specification is used with
parameter values for which no accuracy information is available then the
resulting prediction contains extrapolation errors. For the example, if f1(x)

is valid for x ∈ [0,10] with an accuracy of ±1 then the accuracy of f1(11)
or f1(100000) remains unclear and extrapolations errors can occur. The
analysis additionally shows the parameter values for which extrapolation
was used. This additional information eases a goal-oriented analysis of the
extrapolation error. This extrapolation analysis is the appropriate mitigation
action. If the extrapolation error is below the deviations allowed by the
stated accuracy then the original analysis and margins remain valid. If the
extrapolation error is above the stated accuracy limits then a new analysis
is required.

If accuracy information exists for the used parameter values and is un-
ambiguous then the resulting prediction is only influenced by interpolation
errors. These interpolation errors are due to the abstraction level of the
specification. For the example, f1(x) can be used for x ∈ [0,10] with accu-
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racy ±1 and the interpolation error should be below 1 ∀x ∈ [0,10]. Analo-
gously, the interpolation error could be smaller then ±3% for the specifica-
tion f2(x) = 1+0.82 ∗ x for x ∈ [10,10000]. There is no mitigation action
required. If the margins of the prediction are too big for a sound decision
then a modification of the accuracy statements of specifications and a sub-
sequent prediction can aid in determining if the decision could be made
with more accurate specifications.

If there is accuracy information for a specification with statements for
intersecting parameter value ranges then their influence on the prediction is
most probably different. For the example, if f1(x) is used as specification
for x ∈ [0,10] with an accuracy of ±1 and for x ∈ [10,100] with an accu-
racy of±3% then the accuracy for x = 10 is unclear, being limited by either
±1 or ±3% ∗ x = 0.3. The question arises which provides lower margins.
Unluckily, it is not decidable in general without making performance pre-
dictions which of the alternatives has a smaller influence of the prediction’s
result. A mitigation action is to provide the accuracy information, which
finally leads to lower margins. Another mitigation action is to use one of
the specifications arbitrarily. The margins may be good enough for sound
decision making.

If there is accuracy information for a specification with statements for
non-intersecting parameter value ranges then interpolation errors can occur.
These interpolations errors are due to the abstract level of the specification.
There is no mitigation action required. If the margins of the prediction are
too big for a sound decision then a modification of the accuracy statements
of specifications and a subsequent prediction can aid in determining if the
decision could be made with more accurate specifications.

The effect of inaccuracies of specifications on an overall prediction de-
pends on the types of allowed deviations and the composition. The result-
ing effect can be quite different from a specification without deviation even
for simple specifications. An example with relative deviation dr beyond an
absolute deviation threshold da is given in the following.
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Notation: Black = No Deviation, Dark Grey = ±25% ∗ dr(x), Lighter Grey = ±50% ∗ dr(x),
Red/Short Dashes = Worst-Case Maximum after Deviation +100% ∗ dr(x), Green/Long
Dashes = Worst-Case Minimum after Deviation (−100%∗dr(x))

Figure 5.1.: Illustration of Accuracy Influence on the Metric Response Time of a
System using Cumulative Distributions

The example in figure 5.1 illustrates this effect for the uniformly dis-
tributed function f (x) =U(a,b) and deviation d(x) = max(da,dr ∗|x|). The
figure additionally shows the areas corresponding to modified relative de-
viations of ± 25% (dark grey), ± 50% (lighter grey), and ± 100% (light
grey) of dr(x).

In general, determining the worst-case influence or graduations of them
requires a full exploration of the parameter and deviation space. For ex-
ample, increasing a parameter influencing the priority of certain jobs could
increase the throughput for these jobs at the expense of the performance
of other jobs. Even smaller resource demands in parts of the specifica-
tion do not necessarily imply faster processing as the changed situation
could lead to contention where there has been none before and hence in-
creased response times. The composition of specifications means that the
inaccuracies of one specification can influence the input of others. This
influence on the propagation of the usage profile takes effect in every spec-
ification, which the control passes in the system. The full exploration of
these interdependencies requires predictions for each possible combination
of parameter values and possible deviations. The distribution of the predic-
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tion values resulting from all of these analyses allow reasoning about the
margins. As shown in the examples, the margins can be different for each
predicted value.

Users of an accuracy influence analysis are mostly interested in the effect
of worst-case scenarios as they point out the margins around predicted val-
ues and allow judging if a prediction will most likely provide a sound basis
for a specific evaluation goal. Graduations of the worst case provide addi-
tional information on the resulting distribution of the predicted values. It is
possible that inaccuracies in some specifications are hidden by inaccuracies
in other specifications rather than that they are accumulated. Depending on
the proportion between these two options, the predicted values without de-
viation can deviate stronger and be closer to the margins.

There is a trade-off between the number of required predictions for pa-
rameter values and specifications deviations and the quality of the margins.
Heuristics allow to prune the parameter and deviation space. The time re-
quired for a single prediction should be taken into account when determin-
ing an appropriate heuristic for a specification language. Even the simple
example shown in figure 5.1 requires 7 predictions for a single specifica-
tion. This influence assessment requires a prediction for the offsets of ±
100%, ± 50%, ± 25%, and without deviation. Please note that the de-
picted probability distribution shows how deviation sizes influence the pre-
diction. It does not show the certainty with which a certain value is hit as
the allowed deviation of a validated specification could be the minimum or
maximum without endangering the validity itself. It should also be noted
that the influence on an overall prediction does not necessarily need do be
symmetrical as depicted in the provided figure. For example if a prediction
includes only very small effects because a composed entity is rarely used
for the predicted usage profile, its overall influence is most probably not
seen as a symmetrical deviation. A lower accuracy of such models might
be acceptable for many decisions, and it might be nearly negligible for ex-
treme cases. However, this depends on the composition and usage profile.
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5.2. Analyzing Effects on Overall Palladio Predictions

This section discusses the trade-off between the number of analyzed devi-
ation alternatives and the quality of the margins for Palladio specifications.
The section additionally points out the realization developed as part of the
presented approach.

The time required for performance predictions using Palladio depends
on the prediction technique, complexity of the composed system, and depth
of the analyzed influencing factors. Infuence factors with heavy run-time
impact include fine-grained network transfer analyses. The available ana-
lytical solvers provide predictions without heavy impact factors typically
in several seconds. Their predicted values are restricted to statistical point
estimators and the specifications must meet additional assumptions. For
example, synchronization is not supported. The simulation-based solvers
have no restrictions and provide arbitrary distribution functions for the pre-
dicted values. The run-time for a single prediction is typically from several
seconds to minutes. Either the total run-time of an influence analysis must
be reduced or the number of considered deviation alternatives must be very
low in order to apply the approach successfully on a broad scale.

The time and effort for analyzing the influence in each deviation alterna-
tive scales approximately linearly. Drawing conclusions from previous de-
viation alternatives is limited for Palladio. Modifications of a performance-
relevant value in one specification may indirectly influence the performance
of other parts. Examples for this influence are resources with contention or
the propagation of values as usage profile of assembled required compo-
nents. Potential optimizations are limited for Palladio. Only performance-
relevant information is processed and the prediction itself is the propagation
operator. The chance for reducing the total run-time of an influence analysis
by taking into account prediction values of previous deviation alternatives
is limited.
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Business information systems often have linear dependencies of input
parameters of a specification to required resource demands. Hence, ob-
serving a worst-case deviation for a single specification is most likely at
the boundaries of the parameter space for which the quality information
is available. Furthermore, case studies from academia [Koz11, RKE11,
Bec08, Bro12] as wells from the industry [And08, HBR+10, RBKR12,
BKBR12, Bro12] have shown that higher values usually correspond with
higher required resource demands. Palladio’s focus on business informa-
tion systems suggests to use these characteristics for deriving a heuristic.

In general, deviation alternatives must be considered separately for each
specification. This means the number of necessary deviation alternatives
is the product of graduation alternatives and the number of specifications.
The added value of having more information for the case that some specifi-
cations do not use their allowed deviation does not make up for the required
analysis effort for medium or large systems.

The heuristic for Palladio specifications therefore is to focus on the
worst-case deviations for all specifications at once. Only two alternatives
with the minimum (-100% d(x)) and maximum (+100% d(x)) deviation
have to be considered besides an undeviated prediction. The overall run-
time is only three times the run-time of a prediction without accuracy in-
fluence analysis. The quality of the margins should be high for business in-
formation systems. Errors due to a small number of specifications within a
medium or large system, which behave opposite to the assumptions, should
be either compensated by the fact that it is unlikely that every specification
is at its deviation bounds or by the fact that they have such a big impact
on the system’s performance that their behavior determines the overall pre-
dicted values.

The realization of the heuristic and its implementation in Palladio is de-
scribed in the following. The description starts with showing the require-
ments. Additionally, it shows how this approach addresses these require-
ments and its implementation.
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1. Compatibility with existing prediction approach. The specifica-
tions, which are modified according to the alternatives of the heuris-
tic must remain valid instances of the prediction approach. This
allows the application of the prediction directly on the modified
specifications. This requirement is fulfilled by creating Operational
Query/View/Transformation (QVTO) transformations, which mod-
ify the specifications and create valid Palladio specifications. The
transformations are presented later in this chapter.

2. Integration into the existing prediction process. The accuracy in-
fluence analysis must be integrated into the existing prediction pro-
cess. This eases the application and use by performance engineers
and software architects.

The adaptation and extension of the prediction process is depicted in
figure 5.2. The three deviation alternatives are designated as Minimum, As
Specified, and Maximum.

The for each loop encloses the previously existing activities for a sin-
gle prediction. A separate prediction is made for each of the alternatives.
This allows reusing the existing implementation of the prediction and pre-
vents risks due to prediction adaptation. It supports modifications of the
specifications which require adding or removing elements from the spec-
ifications. This solution ensures that all specifications in a composition
are modified according to the alternative handled in a loop iteration. This
separation allows comparing predicted values between the alternatives and
pointing out the margins using the existing Palladio tooling. The loop itself
is implemented in the workflow class de.fzi.se.accuracy.jobs.Ac-

curacyInfluenceAnalysisJob. It is executed instead of a single predic-
tion in the unextended prediction. A single prediction after the extension is
represented by the body of the loop and is split into three steps: Prepare,
Transform and Predict. These steps, their activities, and necessary ex-
tensions are presented in the next paragraphs.
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Accuracy Effects on Overall Prediction

The Prepare step ensures that all models containing the specifications
and necessary information on the system for a prediction are available for
the subsequent steps. The preparation is split into the activities of loading
the models in the Load Models activity and validating the loaded models
in the Validate Models activity. This step is implemented in the abstract
workflow class de.uka.ipd.sdq.codegen.simucontroller.work-

flow.jobs.AbstractSimulationJob and executed via the workflow
class de.uka.ipd.sdq.codegen.simucontroller.workflow.jobs.

SimuComJob. The activities and their order remain unmodified by the de-
veloped solution.

The Transform step modifies the specifications and weaves in additional
information, which is not part of the performance specifications themselves
but performance-relevant overhead of the system’s environment. This in-
cludes, for example, the representation in Palladio for different settings of
the middleware for the wiring of components. The additional information
should not be affected by the modifications of the user’s specifications due
to accuracy influence analysis. Therefore the additional activity Accuracy

Influence Analysis is introduced at the beginning of the step in order to
modify the specifications according to the influence alternative. It is imple-
mented in the workflow class de.fzi.se.accuracy.jobs.Transform-
PCMForAccuracyInfluenceAnalysisJob. The activity Sensitivity

Analysis can modify a distinct parameter value within the specifica-
tion. The sensitivity modifications allow to generate a group of predic-
tions in order to assess the effect of the value on the predicted values. The
Completions activity weaves in performance-relevant aspect for event-
based communications in the Events activity and of the middleware in the
Middleware activity. The Store All Models activity ensures that a copy
of all models, which are used for the prediction, is stored together with the
simulation code. This includes the quality annotations for the specifica-
tions. It supports testing and error identification of the modification chain
and analysis technique.
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The Predict step represents a single prediction. Determine Failure

Types support reliability predictions and creates a set of failure types
for the system. The behavior of the Generate Code activity was ex-
tended using a pre-defined extension point. This extension point allows
the definition of custom functions for Palladio’s parameter value spec-
ification language Stochastic Expression (StoEx). This solution allows
the calculation of minimum and maximum values if samples are drawn
during run-time from arbitrary distributions. Using this solution, the pa-
rameter value evaluation techniques and independence assumptions do not
have to be modified. Such a solution is required to fulfill requirement
1. The extension is described directly after the prediction process. The
existing model to code transformation for the simulation was extended
to include the quality annotations of the specifications. The extension
is implemented in the open Architecture Ware Xpand language template
at de.uka.ipd.sdq.pcm.codegen.m2m/templates/m2t_transforms
/sim/accuracy.xpt. The simulation environment was extended to re-
port accuracy prediction threats, which are identified during run-time of
the simulation using this added information. The Compile Code activity
compiles the generated simulation code and creates a simulation package.
This package is then transferred to a simulation environment and the pre-
diction is executed in the Run Simulation activity.

The Report Accuracy Prediction Threats activity reports any
prediction threats to the user, which were observed during a prediction.
These reported threats help deciding on possible counteractions. See also
section 5.1 for a description of threats and actions. This new activity is im-
plemented in the workflow class de.fzi.se.accuracy.jobs.ShowAc-

curacyInfluenceAnalysisErrorsJob.
As shown above, the creation of the three alternatives runs automated

and is integrated into the existing prediction process. This integration ful-
fills requirement 2. By doing so, the comparison between Minimum, As
Specified and Maximum shows the exact deviation for the composition,
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wiring, and usage profile under scrutiny without disregarding any capabil-
ity of Palladio.

The extension of the parameter value specification language StoEx com-
prises the two functions MinDeviation and MaxDeviation. These func-
tions calculate the minimum and maximum deviated values taking into ac-
count a relative deviation (r ∈ R+) above an absolute threshold (a ∈ R+).
Their realization as part of the language allows the use of arbitrary distribu-
tion functions in the specifications, which require run-time sampling within
the simulation environment. The independence assumptions and evalua-
tion characteristic of Palladio can remain unchanged by this approach. The
function definitions for sample(s ∈ R)-based evaluations are:

MinDeviation(s,a,r) =


(1+ r)s if s∗ r <−a,

s−a if |s∗ r| ≤ a,

(1− r)s if s∗ r > a

MaxDeviation(s,a,r) =


(1− r)s if s∗ r <−a,

s+a if |s∗ r| ≤ a,

(1+ r)s if s∗ r > a

The transformations of the specifications for the alternatives in Accura-

cy Influence Analysis are realized as model to model transformations
in Java using the EMF. The implementations are available in the Subver-
sion (SVN) repository at [Gro11b]. Each alternative requires a different
transformation of specification elements according to the specification’s
precision with respect to the five abstract request categories defined in
PCMRERequestCategory (see section 4.2). The common transformations
are implemented in the strategy de.fzi.se.accuracy.transforma-

tion.AbstractAccuracyInfluenceSEFFTransformationStrategy.
There is one subclass for the behavior of each alternative within the same
code package: AccuracyInfluenceSEFFTransformationStrategy-

Minimum, AccuracyInfluenceSEFFTransformationStrategyAsSpe-
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cified, and AccuracyInfluenceSEFFTransformationStrategyMa-

ximum.
The transformation for a given specification and alternative is demon-

strated for the alternative Minimum. The transformation is as follows. All
call parameter value specifications s are replaced by MinDeviation(s,a,r)

with the accuracy values a and r stated for the parameter. The num-
ber of calls c to Infrastructure components and explicit Resources
is likewise replaced with the respective MinDeviation(c,a,r). The orig-
inal specification’s elements representing calls to business Components,
ComponentInternal calls, and ResourceDemand are replaced by c =

bMinDeviation(1,a,r)c instances of themselves, again with the stated val-
ues for a and r. These call specifications are independent of parameters.
Their value is calculated and stored during transformation. The transforma-
tion for the alternative Maximum works analogously with using the function
MaxDeviation and c = dMaxDeviation(1,a,r)e instead of MinDeviation.
The alternative As Specified represents the identity function without
transformations and is therefore not described.

This section pointed out why the three alternatives Minimum, As Spe-

cified, and Maximum are a good heuristic for accuracy influence analysis
of Palladio specifications. The implementation and relation to the existing
prediction process was described. The different aspects of the extension and
transformation were further described and references to the implementation
provided.
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This chapter explains the test-based validation of accuracy statements for
performance specifications.

The selection of appropriate test sets for the validation of specifications is
supported by the definition of coverage criteria. The defined criteria support
trade-off decisions between the required validation effort, covered aspects
of the specification, and trustworthiness to discover invalid specifications.
Test set size estimation algorithms are provided for each criterion in order to
support this decision making. The criteria consider probabilistic as well as
deterministic elements of Palladio specifications. The criteria are formally
defined and the coverage of test sets on specifications can be automatically
assessed in a quantitative and objective way. The formalization additionally
supports the automated generation of test sets.

The validation process and the required information in each process step
is described in detail. The process is additionally implemented in a vali-
dation framework. The framework allows to validate platform-independent
Palladio specifications automatically without limiting the decoupling of in-
fluence factors. The framework is a basis for certifying the validity of ac-
curacy statements for performance specifications.

This section is structured according to the sequence in which information
is required for the validation process. Section 6.1 describes the meta-model
for stating the quality of a test-based validation. This meta-model is used as
input for the validation process and is a basis for reasoning about the qual-
ity of validation results. Section 6.2 describes the process for the test-based
validation itself. Section 6.3 shows means for a goal-oriented validation of
specifications and defines goals for test coverage of Palladio specifications.
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Section 6.4 describes the meta-models which are required by the process
and the developed tooling in order to map specification and implementa-
tion, instrument the implementation, and gather measurements at runtime.
Section 6.5 presents the meta-model for the validation results and possi-
ble validation failures. Section 6.6 provides an overview on the developed
tooling for the automated verification and validation of specifications.

6.1. Test-based Validation Meta-Model

This section presents the meta-model developed in this thesis for stating
the quality of a test-based validation. Previous versions without coverage-
driven stop strategies, without taking probabilistic decisions into account,
and without explicit set bytecode interface role have been published in
[Gro10] and [Gro11a]. The quality of the validation addresses how thor-
ough a specification was tested and allows reasoning about the confidence
in the result. For example, if only one test with random input parame-
ter values was chosen for a complex specification many risks may remain
untested. The quality of the test-based validation only affects the trust in
the quality statements but not the (potential) correctness of the statements
themselves. It is necessary to know the covered aspects of a test-based vali-
dation in order to assess the soundness of quality statements. This meta-
model is specification language independent and focusses on aspects of
test-based validation.

The following are the requirements for making validation quality state-
ments. The list additionally shows how this approach addresses each re-
quirement.

1. Easy adaptation to new validation algorithms. Different algo-
rithms need different configuration options to determine the thor-
oughness of tested aspects. These configuration options should be
bundled per algorithm. The developed meta-model will use the de-
sign pattern Strategy. This allows to bundle configuration options
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and eases distinguishing and replacing different algorithms used in
the validation. The general pattern’s disadvantage of having to know
the strategy for selection does not manifest as you have to know the
algorithm anyway in order to reason about its quality or run a vali-
dation with configuration settings. The general pattern’s disadvan-
tage of more communication overhead between strategy and context
is covered by the validation framework developed in this approach.
Users of the approach are not affected. The general pattern’s dis-
advantage of having more classes is outweighed by the more precise
bundling of configuration options. The overall number of classes still
remains low.

2. Reuse of configuration options as far as possible. Validations of-
ten differ in their assessment about the value of an aspect for the
overall quality of the validation. These different viewpoints can be
either considered as integral part of the validation or modeled explic-
itly. The latter eases comparisons between different validations as
common viewpoints are easily identified. It also comes at the cost
of more meta-model elements. For example, two validations might
have the same view on influence analysis but differ in their parameter
value generation strategy. The presented approach uses the presented
explicit modeling.

Figure 6.1 shows the elements which allow to state the test-based valida-
tion quality.

The TBValidationQuality is a QualityStatement and bundles the
information on the test-based validation quality. This allows to store all
quality information together in one repository. See documentation and fig-
ures 4.1 and 4.2 in section 4.1 for a description of QualityStatement and
QualityAnnotation. The quality annotations which have been validated
using a TBValidationQuality can be linked using the qualityAnno-

tations reference. This is optional and there can be any number of links.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.1.: Testbased Validation Quality

If the influence of internal state is analyzed then the aggregated results can
be linked via the internalStateInfluenceAnalysisAggregationRe-
sults reference. This is optional and there can be any number of links.
If the validation uses hardware-independent bytecode measurements then
a special infrastructure role must be defined. This role references the cor-
responding Java bytecode interface in the specification language. This ex-
plicit definition allows to take different versions of the interface into ac-
count. The role connecting the bytecode interface for a component and its
contained specifications must be linked via the bytecodeInterfaceRole
reference. The algorithm and its configuration options for selecting values
out of the input parameter space is linked via the generationStrategy

containment. The algorithm and its configuration options for the stop con-
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Figure 6.2.: Internal State Influence Analysis Strategies

dition of a validation run are linked via the stopStrategy containment.
The algorithm and its configuration for analyzing the influence of inter-
nal state is linked via the internalStateInfluenceAnalysisStrategy
containment. The algorithm and its configuration options for the decision
probability validation is linked via the probabilityValidationStra-

tegy containment. The differentiation between these four classes allows
reusing these strategies between different validation algorithms and fulfills
requirement 2.

Figure 6.2 shows the different strategies for analyzing the influence of
internal state on the validation. The abstract InternalStateInfluence-
AnalysisStrategy models the strategy and must be specialized through
subclasses to provide the algorithm and its configuration options. The cur-
rently available strategies are as follows.
NoISIA models that there is no analysis of the influence of internal state.

This strategy has no configuration options.
ReuseInstanceISIA models that one instance is reused for all tests

within the validation. Re-running the test suite more than once allows iden-
tifying the influence. The aggregated deviation for the different observa-
tions for identical test cases is stored via the internalStateInfluence-
AnalysisResult containment of a QualityAnnotation. This strategy
has no configuration options.

Figure 6.3 shows the different strategies for selecting values out of the in-
put parameter space. Input parameters can be component parameters, oper-
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Figure 6.3.: Parameter Value Generation Strategies

ation signature parameters, and returned parameters from calls to other op-
erations. The abstract ParameterValueGenerationStrategy is a tem-
plate for the parameter value generation strategy. It must be specialized
through subclasses to provide information on the selection algorithm and
its configuration options. The currently available strategies are as follows.
Random models that values are selected randomly from the input param-

eter space of each parameter. This strategy has no configuration options.
BoundsAndRandom models that values are selected at the parameter

space boundaries and after that randomly from the whole parameter’s space.
The boundaries are considered per parameter. A full testing of the combi-
nations of all boundary values of all parameters is not required. It ensures
that the boundary values are tested at least once. This strategy has no con-
figuration options.
EquidistantPartitionsRandom models that the parameter space is

split into partitions of equal size. The selected values are considered
per parameter. A full testing of the combinations of all partitions of all
parameters is not required. This strategy has the configuration option
numberPartitions which determines in how many distinct partitions the
parameter space is split. There must be at least one value per partition.
If the parameter space for a parameter is too small for splitting it into the
configured number of partitions then the number of partitions for that pa-
rameter is reduced until there is at least one value per partition.

Figure 6.4 shows the different strategies for stop conditions of the va-
lidation. The abstract TestcaseExecutionStopStrategy is a template
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Figure 6.4.: Testcase Execution Stop Strategies

for the test case execution stop strategy. It must be specialized through
subclasses to provide information on the stop condition algorithm and its
configuration options. The currently available strategies are as follows.
CoverageDriven models that certain aspects of the specification with

respect to given coverage criteria have been covered by the tests. The eval-
uation can be at runtime. At least one criterion must be provided using
the criteriaIds containment. The criteria are identified using globally
unique textual identifiers (EMF-Type: EString). This decision allows
loose coupling and applying the same criteria in programming languages in
which an EMF-based meta-model is not available. Furthermore, it allows
distributed extensions of criteria repositories without endangering reuse of
existing criteria. The criteria defined in this thesis and their identifiers are
presented in section 6.3. The attribute ignoreNumberOfCoverageRe-

quirements supports the validation of coverage criteria, which require
covering infeasible paths. The feasibility analysis is not supported by the
presented approach yet but if the infeasible paths are known it is sufficient
to provide their number in order to run an automated validation.
NumberTestcases models that the number of executed test cases deter-

mines when to stop. The configuration option minimum allows to set the
minimal number of test cases which must be executed in order to fulfill the
stop condition.
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Figure 6.5.: Probability Validation Strategies

AllParameterValueGenerationStrategyAtLeastOnce models
that all aspects of the strategies used for parameter value generation must
be fulfilled. For example if BoundsAndRandom is selected then all bounds
and at least one random value must be provided for each parameter. A min-
imal number of generated values for each parameter can be provided. This
additional constraint is linked via the minimalNumberOfValues contain-
ment.

Figure 6.5 shows the different strategies for the validation of decision
probabilities. The abstract ProbabilityValidationStrategy is a tem-
plate for the validation strategy. It must be specialized through subclasses
to provide information on the decision probability validation algorithm and
its configuration options. The currently available strategies are as follows.
HypothesisBasedFixedSamplePlan models that statistical hypothe-

sis testing is used to validate decision probabilities. The acceptable Type
I error of falsely rejecting a specified probability must be provided via the
alpha attribute. The acceptable Type II error of falsely accepting a speci-
fied probability must be provided via the beta attribute. These configura-
tion options determine the required sample size of the test plan taking into
account the accuracy statements for the probabilities. The actual algorithm
is described in section 6.3.2.5.

The presented meta-model allows stating the quality of a test-based vali-
dation. It takes into account hardware-independent bytecode measurements
and various algorithm for covered aspects, stop conditions and parameter

138



6.2. Test-based Validation Process

selection. The meta-model is extensible and new algorithms can be pro-
vided easily using the Strategy design pattern.

6.2. Test-based Validation Process

This section describes the automated validation process for performance
specifications. The validation is based on model-based testing using the
terms coined by Pretschner and Philipps in [PP05]. It is realized by compar-
ing the specification with measurements of the implementation. Coverage
information on the specification can be used to reason about the trustwor-
thiness of the validation.

Performance testing usually requires measuring execution time. These
measurements are usually error prone due to side effects and inaccuracies
of the used internal performance timers. These inaccuracies can be quite
large, especially for fine-granular measurements. An overview about dif-
ferent timers is provided by Kuperberg et al. in [KKR11]. In contrast to
the pass/fail results in functional testing, the measured results for the iden-
tical test case can be different as a consequence. Repetitions of the same
test case and statistical analyses are usually applied to determine the most
probable value. The presented approach uses the framework ByCounter
for measuring the performance. It supports measuring implementations in
a hardware-environment and platform-independent way by measuring the
resource demand in bytecode instructions. ByCounter avoids measuring
side effects or inaccuracies caused by the measurements themselves. Rep-
etitions of the same test case are not necessary to reduce these errors with
the developed approach. The decision of using exact measurements, like
the ones provided by ByCounter, reduces the required testing effort signif-
icantly.

Previous versions of the test-based validation process described in this
section were restricted to static validation of non-probabilistic specifica-
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tions and used prepared test suites as well as other test execution stop stra-
tegies. Theses versions have been published in [Gro10] and [Gro11a].

The process uses the accuracy statement descriptions presented in sec-
tion 4, the validation quality statements presented in section 6.1, the links
between implementation and specification presented in section 6.4, and the
validation result statements presented in section 6.5.

Figure 6.6 provides an overview of the process in form of an Activity
Diagram of the UML. The first and the last activities provide a default be-
havior but can be replaced without hampering the validation. All shown
activities and data object types are described in the following.

The activity create default RunProtocol prepares a run protocol
for validation. Prerequisites are providing the validation quality via TB-

ValidationQuality (see section 6.1), the accuracy statements via Qua-

lityAnnotation (see section 4), and links between implementation and
specification via (GAST)LinkRepository (see section 6.4.2). Defaults are
used for for following attributes of the run protocol. The random seed of
the run protocol is chosen randomly based on the current system time. The
current time is additionally used for the creationTime of the run protocol.
This results in a Prepared Run Protocol.

A Prepared Run Protocol consists of a run protocol, which provides
references to the validation quality, the accuracy statements to validate,
the links between implementation and specification, a creation time, and
a seed for the required random number generator. The validation must not
be marked as successful and the number of test case executions must be
initialized with 0. Validation begin and end date must not be set. These
requirements improve the usability and reduce reasoning failures due to
improper reuse and usage of incomplete run protocols.

The activity instrument is responsible for providing an instrumented
version of the implementation. This implementation provides measure-
ments at runtime. The links in the (GAST)LinkRepository are used to
generate the input for ByCounter and determine the measured code sections
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as well as component boundaries in the implementation. The instrumented
implementation is available but not yet deployed or instantiated at the end
of this activity.

The activity initialize strategies is responsible for initializing the
implementation of the selected strategies for parameter value generation
and the test case execution stop strategy. This supports parameter value
generation strategies for whole test suites crossing single test case bound-
aries. If a coverage-driven test case execution stop strategy is selected then
the required coverage for the specification is calculated in this step and the
coverage framework is prepared to measure the specification coverage dur-
ing the validation at runtime.

The decision check influence analysis type depends on the in-
ternal state influence analysis strategy selected in the used TBValidation-
Quality (see descriptions for figure 6.2 in section 6.1 for the available stra-
tegies). If one component instance should be reused for all test cases then
this instance is created in the instantiate activity in the control flow.
Otherwise this step is skipped.

The activity instantiate is responsible for providing a deployed new
instance of the component. The dependencies to required components are
resolved. Business components are replaced by proxies. These proxies no-
tify the validation framework of individual component external calls. They
allow to generate and return parameters at runtime tailored for the given
execution context, parameter value generation strategy, and test case exe-
cution stop strategy. Infrastructure components are directly used but their
performance impact is excluded from the measurements. This ensures that
implementations and specifications can be validated without hampering the
provided functionality or intended control flow. This activity does not ini-
tialize the component instance with component parameter values.

The activity record start time marks the point in the process at
which the validationBegin timestamp is set. It is included to distin-
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guish which aspects are included in and excluded from the validation time.
The definition is required for the metric validation run time.

The decision TestExecutionStopStrategy: check condition de-
pends on the runtime state of the implemented test case execution stop strat-
egy, which has been initialized in the initialize strategies activity.
The available strategies are described in conjunction with figure 6.4 in sec-
tion 6.1. If the strategy does not require additional test cases then the stop
branch is taken. Otherwise, the !stop branch is taken.

The activity execute test case marks that the control flow contin-
ues with the next iteration of the loop starting with the second check

influence analysis type decision.
The second decision check influence analysis type depends on

the internal state influence analysis strategy. If a new component instance
should be used for each test case execution then this instance is created in
the instantiate activity next in the control flow. Otherwise, this step is
skipped.

The activity terminate loop marks that the control flow leaves the
loop and continues with record stop time.

The activity initialize component is responsible to set the com-
ponent state before executing a test case. All component parameters are
set using the strategies selected in the link model for the parameters via
ComponentParameterDependencyInjection elements.

The activity execute and validate test case is responsible for
the automated validation of a single test case execution. This includes gen-
erating parameter values, executing the implementation and the behavior
comparison with the specification. The specification is simulated with the
same parameter values as the implementation, comparable to a bisimula-
tion. The parameters are dynamically generated on demand for efficient
stop coverage strategy fulfillment and according to the selected parameter
value generation strategy. Dynamic reaction on the behavior of the imple-
mentation is necessary due to probabilistic model elements. Probabilistic
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elements usually represent the behavior for a certain usage profile of the
specification. The implementation’s underlying behavior is in most cases
deterministic but there is simply no analyzed dependency to input param-
eters. The implementation’s branching choice must be taken into account
for the further validation of the specification. At the end of the test suite
the probability distribution for the branches is compared with the specified
probability. This ensures validating the control flow for each branch as
well as for the branch conditions. The hardware-environment independent
measurements of ByCounter provide reliable measurements without errors.
This renders repeated execution of identical test cases unnecessary. This is
a big advantage compared to the number of repetitions required to reason
about actual values based on error distribution assumptions and confidence
level analysis. It especially allows efficient measurements for specification
elements which are mapped to short and fast parts of the implementation.

The activity record stop time marks the point in the process at which
the validationEnd timestamp is set. This definition is required for the
metric validation run time.

The activity update protocol is responsible to calculate the pass/fail
verdict of the validation and the checksum of the validated specification.
The checksum allows to check if accuracy statements describe the linked
specification or if there have been performance-relevant modifications of
the specification. The checksum is only calculated if the validation suc-
ceeded.

The activity store protocol is responsible to persist the run protocol
and additional information for failure assessments. It is ensured that the
original models remain unchanged and all information for fault identifica-
tion is bundled in one place.

The process runs fully automated given the prerequisites. The resulting
run protocol denotes success or failure of the validation and provides addi-
tional information for subsequent fault identification. Users of the approach
only have to provide the stipulated accuracy statements, provide a mapping
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between specification and implementation, and specify the quality of the
validation.

When compared to a manual validation, the accuracy statements have to
be provided in both alternatives. The formalized way of stating the quality
of a validation and the covered aspects in the automated approach restricts
the validation to the defined set of qualities. However, it ensures that these
defined aspects are thoroughly and reliably validated. Manual validation on
demand requires the same amount of tests but instrumentation, measure-
ment or comparison errors and inaccurate verdicts are more likely. Fur-
thermore, the approach provides a formalized and consistent way of quality
assurance and reporting validation failures, which eases fault identification
and removal. The mapping of the specification and tailored instrumenta-
tion must be ensured in both alternatives. The automated approach requires
human interaction only for fault identification of failed validations.

6.3. Performance Specification Coverage

This section presents the developed and implemented testing strategies for
validating performance specifications. The coverage of a specification can
be regarded from outside or take into account the structure and statements
of the specification. The former is denoted as black-box strategy, the latter
as white-box strategy. Black-box strategies are advantageous for validation
if a uniform distribution of errors is assumed. White-box strategies are ad-
vantageous if some errors in the specification are more likely, for example
in the behavior sequence or for control-flow decisions.

Black- and white-box strategies can be combined. White-box strategies
can ensure that certain aspects of a specification are tested and partition the
tested parameter space. Black-box strategies can ensure that the parame-
ter space partitions are covered appropriately. The most complete black-
box validation strategy is to cover the whole input parameter space with
repeated tests. The most basic black-box validation strategy is a smoke

145



Accuracy Statement Validation

test which executes a single test case. The former requires prohibitively
high effort for real-world specifications and implementations. The latter is
implausible to identify a valid or invalid specification correctly for a non-
trivial parameter space.

The validation effort can be guided systematically by defining validation
goals. Such a validation goal can address black-box aspects, for exam-
ple the number of samples form the input parameter space, or white-box
aspects, for example that certain control-flow paths within the specifica-
tion are covered. The fulfillment of these goals is measurable and two test
suites or validations are comparable if they cover the same goals. A thor-
ough definition of the goals allows covering each aspect to its full extent
and prevent coverage errors. Knowledge about cross-coverage of different
goals can reduce the number of required tests. In general, the goals allow
making sound trade-off decisions. The validation and their formalization
ensures comparability of validations and reduces the chance for different
interpretations. Automated assessment of goal fulfillment addresses human
errors and ensures integrity of the validation.

The goals or covered aspects can be oriented at covering the overall pa-
rameter input space, structural aspects of the implementation or structural
aspects of the specification.

Aspects of the parameter input space are easy to use but there is a high
chance that alternatives in the control-flow remain uncovered, especially if
there are nested alternatives.

Structural aspects of an implementation are a consequence of providing
a functional, stable, and fault tolerant implementation. Covering all aspects
of the implementation’s structure is important for validating the function-
ality and fault tolerance. These quality attributes may be critical for the
system but a big share of their effects on the structure is later on hidden
by the abstraction of a performance specification. Testing the performance
with such a goal would give a big weight on rare case handling rather than
the usual expected performance behavior.
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Table 6.1.: Possible Category Values for Parameter Space Testing Strategies
Partitioning Sampling Iterations
One Random Overall number n∈N+ of test cases

(OTC-n)
Several Bounds &

Random
Each parameter partition sampled at
least n ∈ N+ times (PPS-n)

Structural aspects of a performance specification are shaped according to
the performance-relevant behavior. Using this information has the advan-
tage that all specified aspects are validated. Incorrectly specified aspects
which are contained in one structural block can be identified by test itera-
tions with new parameter values.

Test strategies are defined for parameter space coverage and oriented at
covering the structure of performance specifications. Implementation cov-
erage is disregarded because of its abstraction level. This allows focus-
ing the testing effort and using the coverage criteria for the optimization
of the number of required test cases. The criteria allow ensuring that all
performance-relevant aspects are tested at least once and are a base to apply
existing optimization algorithms. The parameter space coverage strategies
are shown in section 6.3.1. The structure and control-flow oriented testing
strategies are shown in section 6.3.2.

6.3.1. Parameter Space Testing Strategies

This section provides information on the implemented coverage strategies
oriented at the parameter space and which model elements are required to
use them. The strategies are grouped according to the categories partition-
ing, sampling, and iterations. The possible values for the categories are
shown in table 6.1.

The implemented strategies for partitioning and sampling are merged
into the parameter value generation strategies for the validation presented
in section 6.1 and shown in figure 6.3. The strategy Random has one parti-
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tion and samples are taken randomly. The strategy BoundsAndRandom has
one partition and samples are taken at the stated validation boundaries and
randomly within the boundaries. The strategy EquidistantPartitions-
Random has several partitions and samples are taken randomly within each
partition. These three strategies have been selected out of the 22 possible
ones. The remaining category value combination was not selected as sev-
eral partitions combined with sampling each internal border from both sides
increases the number of overall samples by the number of partitions, if all
partitions are samples equally well, but there is no general advantage above
randomly chosen values.

The implemented strategies for iterations are represented by the test case
execution stop strategies for the validation presented in section 6.1 and
shown in figure 6.3.

The strategy NumberTestcases maps to OTC-n (see table 6.1). It en-
sures that a minimal number of tests is used for the validation. The selection
of n for the validation is hard because there is no error density model, which
can be assumed in general for the parameter space or deviation between im-
plementation and specification. The value of adding another test case for
error discovery cannot be judged in general besides the fraction it adds to
testing the whole space. Especially if you assume that the specification is
correct and failures will occur only in few special cases where the abstract-
ness of the specification and special cases in the implementation do not
match as expected. For practical reasons, the overall coverage will remain
at a fraction of the whole parameter space for real implementations due to
the inherent complexity and huge parameter space. This strategy does not
ensure that samples are drawn from all partitions. Case studies using this
strategy have been published in [Gro10] and [Gro11a]. These case studies
have a very restricted parameter space of only one parameter with possible
values ranging from 1 to 1000. They show the validation of an implemen-
tation of the algorithm for calculating fibonacci numbers. Overall, 100 test
cases with one randomly chosen value in each test case haven been applied.
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Even in this very simple case, only about 10% of the parameter space are
covered. Testing the remaining percentage will increase the necessary ef-
fort tenfold from about 2 to 20 minutes which is not advisable even for such
a small example.

The strategy AllParameterValueGenerationStrategyAtLeast-

Once maps to the strategy PPS-n where n equals to the number provided via
the minimalNumberOfValues containment of that strategy or one if this
additional information is not available. This strategy ensures that samples
are drawn from each partition defined by the parameter value generation
strategies. Values of n greater than one ensure that parameter values are
chosen randomly from within the partitions and prevent repeated tests of
boundary conditions. PPS-n is equal to OTC-n if the parameter value gen-
eration strategy Random is used. It provides an efficient way to test the
validity of specifications at the boundaries of accuracy specifications.

Any combinations of the parameter value generation and test case exe-
cution stop strategies is possible in theory and supported by the presented
approach. Assessing the appropriateness of the number of iterations for pa-
rameter space testing strategies is difficult at best. The only aspect standing
out of random testing is testing the boundaries of the accuracy statements.
At least simple functions or abstraction are likely to have their extreme val-
ues at the boundaries.

6.3.2. Structure-Oriented Testing Strategies

Test strategies defines which aspects must be tested and allow goal-oriented
validation. The strategies must be adapted for each performance specifi-
cation language as they differ in their abstraction level, assumptions, and
supported features. There are several considerations for coverage criteria
regarding (1) their mutual coverage, (2) their error-exposing capability, (3)
the complexity to create test sets for a specification, or (4) the ease with
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which it can be determined if a criterion is satisfied for a given specifica-
tion and test set.

This section provides definitions for structure-oriented testing strategies
for Palladio specifications. These strategies are represented by criteria.
Each criterion defines, which aspects of a Palladio specification must be
covered. It is shown which criteria cover the same aspects and do not need
to be tested if a stronger criterion is covered. This allows the selection
of criteria for validation, which promise the best capability of spotting de-
fects. Additionally, information on the number of required test cases for
covering the criteria is provided. This supports trade-off decisions between
the trustworthiness of the validation and the required effort.

Structure-oriented test strategies are white-box testing techniques. Test
sets ensure that the behavior is a valid abstraction for the covered struc-
tural aspects and control-flow stated in the specification. The strategies nei-
ther aim at creating a new performance model with a black-box assumption
from a representative test set nor analyzing the sensitivity of performance
demands to input parameters. This information is already available in form
of the control-flow and accuracy of the specification. The criteria allow to
define test sets in order to validate these stated aspects with test sets.

The next subsection provides definitions for the terms and function used
for the definition of the criteria. The following subsections define criteria
with respect to covered nodes and edges, the structure of decisions, and
the coverage sequence. Section 6.3.2.17 summarizes the relations of the
criteria and the effort to create test sets.

6.3.2.1. Definitions

This section provides the developed and used definitions for reasoning on
the mutual coverage, error exposing capability, complexity to create test
suites, and ease of checking the fulfillment of a given test suite for the
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coverage criteria. The definitions 6.3.1 to 6.3.7 have been published in
[Gro12b].

If a specification contains an element with a probabilistic dependency,
e.g. that a branch is taken with a probability of 1%, the question arises
how many test cases are necessary to cover this element. The number can
only be stated with a confidence level, e.g. a level of 95% certainty due
to the probabilistic nature. The number of necessary test cases n ∈ N0 to
cover the element with a probabilistic parameter of p ∈ (0,1] at least once
for a confidence level α can be specified as follows: 1− (1− p)n ≥ α ⇔
n ∗ log(1− p) ≤ log(1−α)⇔ n ≥ log(1−α)

log(1−p) . Consequently, the element
can never be covered if its probabilistic parameter p = 0. α = 1⇒ n = ∞.
Examples are n ≥ 6 for p = 0.01 and α = 0.05 as well as n ≥ 299 for
p = 0.01 and α = 0.95, which also demonstrates the consequences of high
confidence levels.

Specifications without probabilistic dependencies require at least one test
for α ∈ (0,1] and no test at all if α = 0. Let L denote the language defining
valid specifications. Let S be a valid specification in the language L. Let t

denote a test and T denote a test set for a specification.

Definition 6.3.1 A test is applicable to S if it can be executed on S. A

test set T is applicable to S if all tests t ∈ T can be executed on S.

Definition 6.3.2 The ternary relation C(S,T,α) holds if the test set T for

a specification S fulfills all testing requirements for the coverage criterion

C with a confidence level of α and T is applicable to S. It is noted that T

α-satisfies C for S.

Definition 6.3.3 A criterion C is α-applicable if ∀S∃T : C(S,T,α).

Definition 6.3.4 Criterion C1 subsumes criterion C2 if ∀S∀T ∃α > 0 :
C1(S,T,α)→C2(S,T,α).

Definition 6.3.5 The size of a test set T is the number of contained tests

and denoted |T |.

151



Accuracy Statement Validation

Definition 6.3.6 The smallest test set α-satisfying C is T if

C(S,T,α)∧α > 0∧∀T1 : C(S,T1,α)→ |T1| ≥ |T |

Definition 6.3.7 The size complexity of a criterion C, a specification S,

and a confidence level α is the smallest test set |C(S,T,α)|= |T | such that

C(S,T,α) holds, undefined otherwise. The size complexity bounds of

a criterion C are as follows. The upper bound |C(T,α)|U =

sup{|C(S,T,α)| : S ∈ L ∧C(S,T,α)}. The lower bound |C(T,α)|L =

in f{|C(S,T,α)| : S∈ L∧C(S,T,α)}. |C|U and |C|L are used as short forms

to denote the bounds of a criterion C instead of |C(T,α)|U and |C(T,α)|L.

It is assumed for upper bound calculations that the modeled control-flow
can be taken and the conditions leading to alternative flows are indepen-
dent of each other. These assumptions hold for the upper bound of arbi-
trary specifications as selectable alternatives and independent conditions
can only increase the number of necessary tests. Using the generic upper
bound calculation for a specific specification instance however can lead to
over approximation of the number of test cases. Infeasible paths within
that specification can mean that the specification cannot be covered at all
regardless of the number of tests. Hence, the upper bound is only valid if
criterion C is α-applicable to the specification.

Definition 6.3.8 The Test Effectiveness Ratio (TER) is a metric

describing the ratio of covered to existing coverage aspects for a crite-

rion C, a specification S, and a test set T . Let XC(S) denote the number

of distinct aspects in S, which should be covered given criterion C. Let

XC(S,T ) denote the number of distinct aspects covered by T on S at least

once. An empty test set does not cover any aspects: XC(S, /0) = 0.

T ERC(S,T ) =


XC(S,T )
XC(S)

XC(S)> 0

1 else
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If T is not applicable to S then T ERC(S,T ) = T ERC(S,T ′) for T ′ = {t|t ∈
T ∧ t applicable to S}. T ERC is used as short notation to denote the ratio

instead of T ERC(S,T ).

The TER ensures that coverage results are provided based on the same
aspects and that they are comparable. They define what must be measured
but does not restrict how it is measured. This enables using different mea-
surement algorithms or algorithm optimizations.

Definition 6.3.9 An executed test set T satisfies a criterion C for a

specification S if T ERC(S,T ) = 1 for that execution. If criterion C1 sub-

sumes criterion C2 then the executed test set T satisfying C1 also satisfies

C2, which implies T ERC1(S,T ) = 1→ T ERC2(S,T ) = 1.

The T ERC(S,T ) can change between test set executions for the same S

and T if the behavior is influenced by probabilistic elements. For example
a rare branch in the control flow might not be taken if each test in T is only
executed once. Observing T ERC(S,T ) during execution allows to decide if
more executions are required. A confidence level α allows to reason about
the average number of required tests to cover each aspect in S for C at least
once. If T α-satisfies C for S then there is a number of executions for which
T ERC(S,T ) = 1.

The following notations are used to define the TER for each criterion.
The metrics are defined using the elements of the specification language.
Let e denote distinct elements, E denote the distinct element types, and E
the set of element types of the language L.

Definition 6.3.10 The function # provides the number of elements for a

given element type and specification:

# : L×E→ N+

S,E 7→ number of elements of type E in S

#(E) is used as short notation of #(S,E)

(6.1)
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Definition 6.3.11 The function #visits provides the number of visits to an

element during execution for a given element type and specification:

#visits : L×E→ N+

S,E 7→ number of visits to element of type E in S

after execution

#visits(E) is used as short notation of #visits(S,E)

(6.2)

Definition 6.3.12 The function sum provides the number of elements of a

given element type and specification during execution for which a condition

holds. Let C denote the language of conditions and c a condition.

sum : L×E×C→ N+

S,E,c 7→ number elements of type E in S

for which c holds after execution

sum(E,c) is used as short notation of sum(S,E,c)

(6.3)

Definition 6.3.13 The function #visited provides the number of elements

visited during execution for a given element type and specification:

#visited : L×E→ N+

S,E 7→ sum(E e | #visits(e)> 0)

#visited(E) is used as short notation of #visited(S,E)

(6.4)

Definition 6.3.14 The function MinRequiredTests provides the required

number of visits to observe an element at least once with a given confi-

dence level c equal to 1−α if a transition to the element occurs with a

given probability p:
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MinRequiredTests : R∩ [0,1]×R∩ [0,1]→ N+

p, c 7→


0 if c = 0

d log(1−α)
log(1−p) e if c > 0∧ p > 0

∞ else

(6.5)

The definitions above are used in the following for the definition of the
coverage criteria, the definition of their TER, reasoning about pairwise sub-
sumption, and for providing algorithms to estimate the average number of
required test executions for a given (probabilistic) specification.

6.3.2.2. Functional Call Coverage

This section describes and defines functional call coverage criteria for Pal-
ladio. These criteria belong to the criteria with respect to covered nodes
and edges.

Functional coverage requires that all calls to functions have been visited.
Functional call coverage for Palladio is separated into two criteria: One

criterion for specified calls, which might have a frequency of 0, and one for
specified calls which have a frequency greater than 0. This first allows to
uncover unvisited calls, and the second one allows to uncover visited calls
which have not been executed by tests.

Ccall spec coverage allows to detect call specifications which have not been
visited.
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XCcall spec(S,T ) =

#visited(InternalCall)

+#visited(ExternalCall)

+#visited(In f rastructureCall)

+#visited(ResourceCall)

+#visited(ParametricResourceDemand)

XCcall spec(S) =

#(InternalCall)

+#(ExternalCall)

+#(In f rastructureCall)

+#(ResourceCall)

+#(ParametricResourceDemand)

T ERCcall spec =
XCcall spec(S,T )

XCcall spec(S)

(6.6)

Ccall obs refines Ccall spec and allows to identify calls which are specified
and visited but no actual call has been observed.
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XCcall obs(S,T ) =

#visited(InternalCall)

+#visited(ExternalCall)

+#visited(In f rastructureCall c

|c. f requency > 0)

+#visited(ResourceCall c

|c. f requency > 0)

+#visited(ParametricResourceDemand d

|d.value > 0)

XCcall obs(S) =

#(InternalCall)

+#(ExternalCall)

+#(In f rastructureCall)

+#(ResourceCall)

+#(ParametricResourceDemand)

T ERCcall obs =
XCcall obs(S,T )

XCcall obs(S)

(6.7)

Ccall obs subsumes Ccall spec but not the other way around because of the
refinement relation.
|Ccall spec|L and |Ccall obs|L equal 0 for the ResourceDemandingBehavi-

our consisting of StartAction and subsequent StopAction without any
calls. |Ccall spec|U is given in listing 6.1. All actions in the control-flow se-
quence are checked by the loop starting at line 3. Control-flow alternatives
with deterministic transition conditions must each be visited often enough
to cover the specified calls within that alternative (lines 7 and 8). Alter-
natives with probabilistic transition conditions also must each be visited
often enough to cover the specified calls within that alternative. Addition-
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ally, the chance of entering the alternative with a given confidence must
be taken into account (lines 9 and 10, see also definition 6.3.14). Line 12
ensures that the number of required visits req is updated with the number
of visits required for all alternatives of a BranchAction. This update must
ensure that req is never reduced and compensates that each visit to the
ResourceDemandingBehavior containing the BranchAction implies a
visit to one of the branches (min(req, 1)). c actions requiring a single
visit do not require c but only 1 visit to the behavior. Line 15 ensures that
the body of a loop is visited often enough if it contains any calls. Again,
the compensation is applied. Lines 17 to 19 ensure that forked behaviors
are visited often enough if they contain calls. The compensation is applied
in line 18, as all behaviors are started for each visit to the fork action. Lines
22 to 26 ensure that a behavior and all actions contained in it is visited at
least once if one of the actions contains call specifications.
|Ccall obs|U is given in listing 6.2. The difference to |Ccall spec|U is in the

lines 21 to 27 in which for each specified call a frequency greater than 0
has to be ensured by tests. Again, the compensation is applied in line 26.

6.3.2.3. Entry / Exit Coverage

This section describes and defines the entry and exit coverage criterion for
Palladio. This criterion belongs to the criteria with respect to covered nodes
and edges.

Functional entry / exit coverage requires that all possible points in the
control-flow of entry and all possible points of exit have been visited.

Centry/exit coverage for Palladio is defined to check if for each StartAc-

tion as entry point the corresponding StopAction as exit point has been
visited for a specification. Besides the entry and exit point of the spec-
ification (ResourceDemandingSEFF), this includes all ResourceDeman-
dingBehaviour, which are forked asynchronously during execution and
are therefore location directly beneath ForkActions. This criterion un-
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Listing 6.1: Algorithm for |Ccall spec|U
1 f u n c t i o n C C a l l S p e c T e s t s ( ResourceDemandingBehaviour b ,

C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += C C a l l S p e c T e s t s ( c . b e h a v i o r ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req += C C a l l S p e c T e s t s ( c . b e h a v i o r ) ∗
M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , b r eq − min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += max ( 0 , C C a l l S p e c T e s t s ( a . b e h a v i o r ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) , a l p h a )
− min ( req , 1 ) ) ;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += max ( 0 , C C a l l S p e c T e s t s ( fb ) − min ( req

, 1 ) ) ;
19 enddo
20 e n d i f
21 enddo
22 i f any a in b c o n t a i n s c a l l s
23 i f r e q = 0
24 r e q = 1 ;
25 e n d i f
26 e n d i f
27 re turn r e q ;
28 endfunc t ion
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Listing 6.2: Algorithm for |Ccall obs|U
1 f u n c t i o n CCal lObsTes t s ( ResourceDemandingBehaviour b ,

C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += CCa l lObsTes t s ( c . b e h a v i o r ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req += CCa l lObsTes t s ( c . b e h a v i o r ) ∗
M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , b r eq −min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += max ( 0 , CCa l lObsTes t s ( a . b e h a v i o r ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) , a l p h a )
−min ( req , 1 ) ) ;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += max ( 0 , CCa l lObsTes t s ( fb ) − min ( req

, 1 ) ) ;
19 enddo
20 e n d i f
21 i f a c o n t a i n s c a l l s
22 i n t c a l l r e q = 0 ;
23 do f o r C a l l s c in a
24 c a l l r e q += M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( c .

f r e q u e n c y > 0) , a l p h a ) ;
25 enddo
26 r e q += max ( 0 , c a l l r e q − min ( req , 1 ) ) ;
27 e n d i f
28 enddo
29 re turn r e q ;
30 endfunc t ion
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covers unvisited or only partially visited control-flow partitions within a
specification.

XCentry/exit(S,T ) =

#visits(StartAction s|

s.behavior.isKindO f (ResourceDemandingSEFF)

∨s.behavior.isKindO f (ForkAction))

+#visits(StopAction s|

s.behavior.isKindO f (ResourceDemandingSEFF)

∨s.behavior.isKindO f (ForkAction))

XCentry/exit(S) =

2∗#(StartAction s|

s.behavior.isKindO f (ResourceDemandingSEFF)

∨s.behavior.isKindO f (ForkAction))

T ERCentry/exit =
XCentry/exit(S,T )

XCentry/exit(S)

(6.8)

T ERCentry/exit can go down during execution if behaviors are forked.
T ERCentry/exit = 1 implies that the execution of a test has come to an end.
The denominator ensures that each specified StartAction is at least cov-
ered once and each execute StartAction is terminated by a StopAction.
Palladio ensures that there are only pairs of these actions.

An illustrating example is the specification with the sequence StartAc-
tion, Loop( frequency=2: ForkAction( Asynchronous( Start-

Action, StopAction))), and StopAction. Figure 6.7 shows the values
of T ERCentry/exit during a possible execution. T1 shows that uncovered spec-
ification are identified correctly. The difference between T4 and T5 shows
how the value can go down if new behaviors are forked. T6 shows that the
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Figure 6.7.: Values of T ERCentry/exit for the Illustrating Example.

case is considered that asynchronous behaviors end later than the behavior
from which they are started.

Ccall spec and Ccall obs do not subsume Centry/exit because T ERCentry/exit are
not equal to 1, T ERCcall spec is equal to 1, and T ERCcall obs is equal to 1
for the most simple Palladio specification and no test execution. Centry/exit

does not subsume Ccall spec and Ccall obs because T ERCentry/exit is equal to 1,
T ERCcall spec is not equal to 1, and T ERCcall obs is not equal to 1 for the spec-
ification with the sequence StartAction, BranchAction( Guarded-

BranchTransition(true, StartAction, StopAction), Guarded-

BranchTransition (false, StartAction, InternalAction (Re-

sourceDemand (1)), StopAction), and the StopAction and one test
execution.
|Centry/exit|L is equal to 1 as a valid specification must have exactly one

entry point (StartAction) and one exit point (StopAction). Listing 6.3
describes |Centry/exit|U . Lines 3 to 7 reflect that behaviors, which specify the
behavior for an operation, must be visited once. Other behaviors do not
have to be visited. Line 13 reflects that parameter can be chosen specif-
ically to enter a parameter-dependent branch and the branch only has to
be entered if it contains an exit point. Line 15 reflects that probabilistic
branches require a number of tests to visit them at least once for a given
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confidence. The branch only has to be visited if it contains an exit point.
Line 19 reflects that a loop must be visited if it contains an exit point. The
loop frequency can be probabilistic and the confidence level must be taken
into account. Line 23 reflects that each asynchronous forked behavior must
be visited at least once, as it contains an exit point. Line 25 reflects that the
synchronized forked behaviors can contain exit points. Line 29 reflects that
for each entry to a behavior all actions in the behavior are visited once and
this offset must be compensated when iterating over all actions.

6.3.2.4. Decision Coverage

This section describes and defines the decision coverage criterion for single
decisions in Palladio. This criterion belongs to the criteria with respect to
covered nodes and edges.

Decision coverage requires that each decision, at which the control-flow
branches, must have evaluated to any possible outcome (true and false) at
least once. A formal specification in Z is given in [VB08].

Cdecision coverage for Palladio is defined taking parametric (Guarded-
BranchTransition) and probabilistic (ProbabilisticBranchTransi-
tion) control-flow decisions into account. The frequencies of loops and
forked behaviors are not regarded as there are no decisions involved for
specifications. This criterion uncovers decisions which did not evaluate to
all possible outcome at least once.
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Listing 6.3: Algorithm for |Centry/exit|U
1 f u n c t i o n C E n t r y E x i t T e s t s ( ResourceDemandingBehaviour b ,

C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q ;
3 i f b hasType ResourceDemandingSEFF
4 r e q = 1 ;
5 e l s e
6 r e q = 0 ;
7 e n d i f
8 do f o r Ac t i on a in b
9 i f a hasType BranchAc t ion

10 i n t b req = 0 ;
11 do f o r B r a n c h C o n d i t i o n c in a
12 i f c hasType GuardedBranchCond i t i on
13 b req += C E n t r y E x i t T e s t s ( c . b e h a v i o r ) ;
14 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n
15 b req = max ( breq , M i n R e q u i r e d T e s t s ( c .

p r o b a b i l i t y , a l p h a ) ∗ C E n t r y E x i t T e s t s ( c . b e h a v i o r ) ) ;
16 e n d i f
17 enddo
18 e l s e i f a hasType LoopAct ion
19 b req += C E n t r y E x i t T e s t s ( a . b e h a v i o r ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) , a l p h a )
;

20 e l s e i f a hasType F o r k A c t i o n
21 do f o r ResourceDemandingBehaviour fb in a
22 i f fb . b e h a v i o r = a
23 b req += max ( 1 , C E n t r y E x i t T e s t s ( fb ) ) ;
24 e l s e
25 b req += C E n t r y E x i t T e s t s ( fb ) ;
26 e n d i f
27 enddo
28 e n d i f
29 r e q += max ( 0 , b r eq − min ( req , 1 ) ) ;
30 enddo
31 re turn r e q ;
32 endfunc t ion
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XCdecision(S,T ) =
#visited(ProbabilisticBranchTransition)

+#visited(GuardedBranchTransition)

XCdecision(S) =
#(ProbabilisticBranchTransition)

+#(GuardedBranchTransition)

T ERCdecision =
XCdecision(S,T )

XCdecision(S)

(6.9)

Cdecision does not subsume Centry / exit as for the most simple Palladio spec-
ification T ERCde- cision = 1 without being visited at all. At least one visit is
required for T ERCentry/exit . Cdecision does not subsume Ccall spec or Ccall obs

as the specification with the sequence of StartAction, InternalAction
with resource, hardware and infrastructure demand, ExternalCallAc-
tion, and StopAction does not need to be visited for T ERCdecision = 1.
Centry/exit, Ccall spec, and Ccall obs do not subsume Cdecision as T ERCdecision 6= 1
if one of the branches is not taken while the others are equal to 1 for the
specification with the sequence StartAction, Branch( Probabilis-

ticBranchTransition( StartAction, StopAction), Probabilis-

ticBranchTransition(StartAction, StopAction)), andStopAc-
tion and one test execution.
|Cdecision|L equals 0 for the most simple Palladio specification as it does

not contain any decisions. Listing 6.5 describes |Cdecision|U . Lines 8 and 10
reflect that each branch should be tested at least once. Line 15 reflects that a
loop must be covered in order to cover actions contained in its body. Lines
17 to 19 reflect that all forked behaviors must be covered and coverage
of each ResourceDemandingBehaviour may require different parameter
values.
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Listing 6.4: Algorithm for |Cdecision|U
1 f u n c t i o n C D e c i s i o n T e s t s ( ResourceDemandingBehaviour b ,

C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += max ( 1 , C D e c i s i o n T e s t s ( c .

b e h a v i o r ) ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req += M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y
, a l p h a ) ∗ max ( 1 , C D e c i s i o n T e s t s ( c . b e h a v i o r ) ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , b r eq −min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += C D e c i s i o n T e s t s ( a . b e h a v i o r ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) , a l p h a )
;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += C D e c i s i o n T e s t s ( fb ) ;
19 enddo
20 e n d i f
21 enddo
22 re turn r e q ;
23 endfunc t ion

6.3.2.5. Probabilistic Decision Coverage

This section describes and defines the probabilistic decision coverage cri-
terion for single decisions in Palladio. This criterion belongs to the criteria
with respect to covered nodes and edges. It is the only criterion which re-
quires statistical hypothesis testing due to the probabilistic nature of the
decision specification. The definition of the criterion uses the terms intro-
duced in section 2.2. The other criteria do not require to test probabilities,
which allows making decisions without statistical testing.

There are no pre-existing definition of probabilistic decisions coverage
on the code level, as decisions on this level always depend on paramet-
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ric values. These values may be generated by a (pseudo) random number
generator but the decision itself remains deterministic.

Cprobabilistic decision coverage for Palladio is defined for probabilistic con-
trol-flow decisions and is based on statistical hypothesis testing. It focusses
on the aspect if all probabilistic decisions have been visited often enough
during an execution to reason about the accuracy of the branch probability
taking the validation limits on hypothesis testing into account. These limits
can be provided with the HypothesisBasedSimpleTestPlan element of
a TBValidationQuality (see figure 6.5).

In Palladio, probabilistic decisions can be made within BranchAction

elements. Each single possible outcome of a decision is modeled with a
ProbabilisticBranchTransition. Each transition has a probability
and all probabilities for the same BranchAction sum up to 1. Statisti-
cal hypothesis testing is used for the probabilities. The tested hypothe-
sis are H0 : pimpl = pspec and H1 : pimpl 6= pspec, where pimpl denotes the
behavior of the implementation and pspec denotes the probability of the
specification. This maps to a Bernoulli experiment, where a success de-
notes taking the branch and a failure not taking the branch. The sample
size n is calculated based on the significance level α and the power of at
least 1− β against given alternatives. The alternatives are created based
on the maximal allowed deviations in the accuracy statements for the de-
cision. The resulting thresholds for lower and upper probability values are
denoted plt and put with plt < pspec < put. If one of the threshold proba-
bilities lies outside the interval [0,1] then pspec is only compared with the
other threshold. If both threshold probabilities lie outside the interval [0,1]
then either 0 or 1 is used as threshold, depending which is farther away
from pspec. The statistic must explicitly lie within or outside the confi-
dence interval [F−1(α/2,n, pspec),F−1(1−α/2,n, pspec)] and outside the
intervals if the probability alternatives are considered. The sample size is
the smallest n for which F−1(1−β ,n, put)+1 <= F−1(α/2,n, pspec) and
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Figure 6.8.: Example Statistic Distribution Functions and Acceptance Thresholds

F−1(1−α/2,n, pspec)+1 <= F−1(β ,n, put) hold. Adding 1 to the bound-
aries ensures the definite assignment for values on the interval thresholds.

Figure 6.8 visualizes the distribution functions for the statistic value k,
pspec equal to 0.9, an allowed absolute deviation of 3%, α equal to 0.05,
and β equal to 0.2. The statistic is with 80% probability lower than the
red dashed vertical line on the left if the probability would be plt. The
statistic is with 95% probability between the black solid vertical lines if
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the probability would be pspec. The statistic is with 80% probability high
than the blue long dashed vertical line if the probability would be put.
The distance of 1 making the assignment definite can be seen between
the red dashed and black solid line at the left side. This positive dis-
tance does not exists for n less than 877. Hence, the sound evaluation of
the hypothesis if specified and implemented probability are equal requires
at least a sample size of n equal to 877. If the BranchAction contain-
ing the ProbabilisticBranchTransition with ptransition[1] equal to 0.9
has two other transitions with probabilities of ptransition[2] equal to 0.01 and
ptransition[3] equal to 0.09, then the BranchAction must be visited at least
max{n(transition[1]), n(transition[2]), n(transition[3])} = max{877, 197,
812} = 877 times to reason about all transitions. This results in the follow-
ing TER definition.
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XCprobabilistic decision(S,T ) =

sum(ProbabilisticBranchTransition t

|#visits(t.branchAction)>= n(t)

∧F−1(α/2,#visits(t), t.probability)≤ #visits(t)

∧#visits(t)≤ F−1(1−α/2,#visits(t), t.probability))

+sum(BranchAction b

|b.transition.typeO f (ProbabilisticBranchTransition)

∧#visits(b)≥ max{n(b.transition)})

XCprobabilistic decision(S) =

#(ProbabilisticBranchTransition)

+#(BranchAction b

|b.transition.typeO f (ProbabilisticBranchTransition))

T ERCprobabilistic decision =
XCprobabilistic decision(S,T )

XCprobabilistic decision(S)

(6.10)

Cprobabilistic decision does not subsume Centry / exit as for the most simple
Palladio specification T ERCprobabilistic decision equals 1 without being visited at
all. At least one visit is required for T ERCentry/exit . Cprobabilistic decision does
not subsume Ccall spec or Ccall obs as the specification with the sequence of
StartAction, InternalAction with resource, hardware and infrastruc-
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ture demand, ExternalCallAction, and StopAction does not need to be
visited for T ERCprobabilistic decision becoming equal to 1. Cprobabilistic decision does
not subsume Cdecision as the Palladio specifications with the sequence of
StartAction, BranchAction(GuardedBranchTransition( Start-

Action, StopAction), GuardedBranchTransition( StartAction,

StopAction ), and the StopAction does not need to be visited for
T ERCprobabilistic decision becoming equal to 1. Centry/exit, Ccall spec, Ccall obs, and
Cdecision do not subsume Cprobabilistic decision as T ERCprobabilistic decision is not
equal to 1 if both branches of the sequence StartAction, BranchAc-

tion( ProbabilisticBranchTransition( StartAction, StopAc-

tion), ProbabilisticBranchTransition( StartAction, Stop-

Action)), StopAction have been visited once but n(Probabilisic-
BranchTransition) is not reached for one of the branches.
|Cprobabilistic decision|L equals 0 for the most simple Palladio specification

as it does not contain any decisions. Listing ?? describes |Cprobabilistic decisi-

on|U . Line 8 reflects that deterministic branches have to be visited only in
case they contain a probabilistic branch. Line 10 reflects that each prob-
abilistic branch must be visited at least with a sample size appropriate to
the specified probability. The sample size is the maximum of the previ-
ously required visits, the sample size for the specified probability, and the
sample size for the specified probability with the additional restriction that
there are least CProbabilisticDecisionTests(c.behavior) success-
ful visits in case the probability is within the accuracy limits. The maxi-
mum function also ensures that the transition requiring the most effort sets
the required visits for the BranchAction. Line 15 reflects that a loop must
be covered in order to cover actions contained in its body. Lines 17 to
19 reflect that all forked behaviors must be covered and coverage of each
ResourceDemandingBehaviour may require different parameter values
and the required number must be added for each behavior.
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Listing 6.5: Algorithm for |Cdecision|U
1 f u n c t i o n C P r o b a b i l i s t i c D e c i s i o n T e s t s (

ResourceDemandingBehaviour b , C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += C P r o b a b i l i s t i c D e c i s i o n T e s t s ( c .

b e h a v i o r ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req = max ( breq , n ( c ) , n (
C P r o b a b i l i s t i c D e c i s i o n T e s t s ( c . b e h a v i o r ) , c ) ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , b r eq −min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += C P r o b a b i l i s t i c D e c i s i o n T e s t s ( a . b e h a v i o r )

∗ M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) ,
a l p h a ) ;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += C P r o b a b i l i s t i c D e c i s i o n T e s t s ( fb ) ;
19 enddo
20 e n d i f
21 enddo
22 re turn r e q ;
23 endfunc t ion

6.3.2.6. Statement Coverage

This section describes and defines the action coverage criterion for Palla-
dio. This criterion belongs to the criteria with respect to covered nodes and
edges.

Statement coverage requires that all code statements are visited. A for-
mal specification in Z is available in [VB08].

Caction coverage for Palladio defines that each action contained in a
ResourceDemandingBehaviour must be visited. This criterion allows
to detect unused actions and unvisited areas within Palladio specifications.
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XCaction(S,T ) = #visited(AbstractAction)

XCaction(S) = #(AbstractAction)

T ERCaction =
XCaction(S,T )

XCaction(S)

(6.11)

Caction subsumes Centry/exit as a specification must at least have the two ac-
tions StartAction and StopAction and both are coved if the path from
the single entry to the single exit is tested. Caction subsumes Ccall spec as
calls can only be part of Actions and cannot be contained otherwise in
specifications. It does not subsume Ccall obs as it does not check if specifi-
cations contain calls with a frequency greater than 0. Centry/exit, Ccall spec,
and Ccall obs do not subsume Caction because the specification with the se-
quence StartAction, Branch( ProbabilisticBranchTransition(

StartAction, StopAction), ProbabilisticBranchTransition(

StartAction, StopAction)), and StopAction shows T ERCcall obs =

T ERCcall spec = T ERCentry/exit equals 1 after one visit but T ERCaction is not
equal to 1. Caction subsumes Cdecision as each decision has exactly one
ResourceDemandingBehaviour and each ResourceDemandingBeha-

viour must at least contain a StartAction and StopAction.
Cdecision does not subsume Caction as T ERCdecision equals 1 for the specifica-
tion StartAction and subsequent StopAction but T ERCaction equals 0 if
the specification is not visited. Caction does not subsume Cprobabilistic decision

as T ERCprobabilistic decision is not equal to 1 if all actions of the sequence Start-
Action, BranchAction( ProbabilisticBranchTransition(

StartAction, StopAction), ProbabilisticBranchTransition(

StartAction, StopAction )), StopAction have been visited at least
once but n(ProbabilisicBranchTransition) is not reached for one of
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the branches. Cprobabilistic decision does not subsume Caction as for the most
simple Palladio specification T ERCprobabilistic decision equals 1 without being
visited at all. At least one visit is required for T ERCaction

|Caction|L equals 1 as a valid specification must have at least a StartAc-
tion and a StopAction. |Caction|U is given in listing 6.6. Lines 5 to 13
reflect that actions in each branch must be covered. Line 15 reflects that
actions in the body of a loop must be covered. Lines 21 to 23 reflect that
each action in a forked behavior must be covered at least once but one
test is sufficient to test a sequence of actions which have no control-flow
alternative.

6.3.2.7. Branch Coverage

This section describes and defines the branch coverage criterion for Palla-
dio. This criterion belongs to the criteria with respect to covered nodes and
edges.

Branch coverage requires that all branches in the control-flow have been
visited. A formal specification in Z is given in [VB08].

Cbranch coverage for Palladio is defined to cover all branches, including
forked behaviors. As there is exactly one way to enter a ResourceDe-

mandingBehaviour and ResourceDemandingBehaviour are only used
within BranchAction, LoopAction, and ForkAction, it is sufficient to
check that every target is visited at least once. This criterion allows to detect
unvisited branches in the control-flow of specifications.
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Listing 6.6: Algorithm for |Caction|U
1 f u n c t i o n C A c t i o n T e s t s ( ResourceDemandingBehaviour b ,

C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += C A c t i o n T e s t s ( c . b e h a v i o r ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req += C A c t i o n T e s t s ( c . b e h a v i o r ) ∗
M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , b r eq −min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += max ( 0 , C A c t i o n T e s t s ( a . b e h a v i o r ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y > 0) , a l p h a )
−min ( req , 1 ) ) ;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += max ( 0 , C A c t i o n T e s t s ( fb ) − min ( req , 1 )

) ;
19 enddo
20 e n d i f
21 i f r e q = 0
22 r e q = 1 ;
23 e n d i f
24 enddo
25 re turn r e q ;
26 endfunc t ion

XCbranch(S,T ) = #visited(ResourceDemandingBehaviour)

XCbranch(S) = #(ResourceDemandingBehaviour)

T ERCbranch =
XCbranch(S,T )

XCbranch(S)

(6.12)
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Table 6.2.: Example for Possible Evaluations for Boolean Condition c(a1,a2) =
a1∧a2

(a) Full Evaluation

a1 a2 c(a1,a2)
false false false
false true false
true false false
true true true

(b) Short-Circuit Evaluation

a1 a2 c(a1,a2)
false − false
true false false
true true true

Control-flow restrictions lead to Cbranch subsuming Caction and vice versa:
Visiting all actions means all ResourceDemandingBehaviour have been
visited. If all ResourceDemandingBehaviour have been visited, all bran-
ches have been visited. ResourceDemandingBehaviour must always
contain at least one StartAction and StopAction, which means there
is no branch without an action and the criteria are equivalent with respect
to subsumption. This equivalence with respect to subsumption implies that
Cbranch has the same subsumption relations to Ccall spec,Ccall obs,Centry/exit,

Cdecision, and Cprobabilistic decision as Caction. See section 6.3.2.6 for details.
|Cbranch|L equals 1 for the most simple Palladio specification. Listing 6.6

describes |Cbranch|U as it is equal to |Caction|U .

6.3.2.8. Simple Condition Coverage

This section describes and defines the simple condition coverage criterion
for Palladio. This criterion belongs to the criteria with respect to the struc-
ture of decisions.

Simple condition coverage requires that each evaluated atomic condi-
tion of a decision must have had all outcomes at least once (true and
false) and that each atomic condition must be evaluated at least once.
This means that simple condition coverage differs if full or short-circuit
evaluation is applied. For example, complete coverage of the condition
c = (i > 0)∧ ( j > 0) with the atoms a1 = (i > 0) and a2 = ( j > 0) can
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be achieved with the boolean value pairs ( f alse, true) and (true, f alse)

for full evaluation (see 6.2(a)) but short-circuit evaluation requires testing
( f alse,−),(true, f alse), and (true, true) (see 6.2(b)). The good thing is
that the number of potential evaluations is limited by n+1 for short-circuit
evaluations instead of exponentially (2n) [AOH03], where n is the number
of atoms. This coverage is shown to subsume branch coverage in [Lig09,
p. 95]. Common conditions leading to control-flow decisions are related to
branches or loops.

Csimple condition coverage for Palladio is defined taking probabilistic bran-
ches and loop frequency specifications into account. Each decision of a
branch must be visited at least once and the body of each loop must be exe-
cuted at least once. Additionally, each sequence of actions must be covered
at least once in order to to cover decision-free ResourceDemandingBeha-
viour. This allows to check the structural aspects of performance-relevant
decisions in the control-flow.
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c boolean condition of atoms

atoms(c) = (a1, . . . ,an),ai ∈ {true, f alse} for i ∈ 1, . . . ,n

eval(i,a1, . . . ,an,c) =

1 if ai is evaluated for c

0 else

visited(c,a1, . . . ,an) : condition c was visited

leading to the given evaluation of atoms.

simple(c, i) =


1

( visited(c,a1, . . . ,an)

∧eval(i,a1, . . . ,an,c) = 1∧ai = f alse)

∧(visited(c,a1, . . . ,an)

∧eval(i,a1, . . . ,an,c) = 1∧ai = true )

0 else

simple(c) =
1
n

n

∑
i=1

simple(c, i)

XCsimple condition(S,T ) =

#visited(ResourceDemandingBehaviour)

+#visited(LoopAction l|l. f requency > 0)

+#visited(ProbabilisticBranchTransition)

+simple(GuardedBranchTransition.condition c)
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XCsimple condition(S) =

#(ResourceDemandingBehaviour)

+#(LoopAction)

+#(ProbabilisticBranchTransition)

+|atoms(GuardedBranchTransition.condition c)|

T ERCsimple condition =
XCsimple condition(S,T )

XCsimple condition(S)
(6.13)

Csimple condition subsumes Cbranch. It ensures that the body of a loop is
visited. All loops will terminate. If all branch transitions have been taken
and each loop has been executed at least once then all simple conditions
have been visited. Decision-free specification parts are covered by both
due to ResourceDemandingBehaviour coverage. Cbranch does not sub-
sume Csimple condition as the structure of conditions is not addressed by the
former. If the same branch contains two GuardedBranchTransition,
one with the exemplary condition c = (i > 0) ∧ ( j > 0) and one with
¬c, complete branch coverage can be achieved for example by testing
the value pairs (true, true) and (true, f alse). Complete simple condition
coverage is not achieved by these value pairs. Csimple condition subsumes
Caction but not the other way round because Caction and Cbranch are equal
with respect to subsumption. Csimple condition does not subsume Ccall obs.
The specification with the sequence StartAction, InternalAction(

ParametricResourceDemand( CPU: 0)), StopAction has a T ER

Csimple condition of 1 but T ERCcall obs equals 0 after one test execution. Ccall obs

does not subsume Csimple condition. The specification with the sequence
StartAction, GuardedBranchAction( GuardedBranchTransition

(c<0: StartAction, StopAction), GuardedBranchTransition(

c>=0: StartAction, StopAction)), StopAction has a T ERCcall obs
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of 1 but T ERCsimple condition is not equal to 1 after one single test execution.
Csimple condition does not subsume Cprobabilistic decision as T ERCprobabilistic decision is
not equal to 1 if both branches of the sequence StartAction, BranchAc-

tion( ProbabilisticBranchTransition( StartAction, StopAc-

tion), ProbabilisticBranchTransition( StartAction, Stop-

Action )), StopAction have been visited once but n(Probabilisic-
BranchTransition) is not reached for one of the branches. Cprobabilistic

decision does not subsume Csimple condition as T ERCprobabilistic decision equals 1 for
the sequence with two GuardedBranchTransition and the conditions
c < 0 and c > 0 shown above without being visited at all. At least two visits
are required for Csimple condition. Csimple condition subsumes Ccall spec,Centry/exit,

and Cdecision but not the other way around because its relation to Caction and
the relation of Caction to these criteria.
|Csimple condition|L equals 1 for the most simple Palladio specification.

|Csimple condition|U is given in listing 6.7. Line 8 reflects the complexity
of n+1 [AOH03] where n is the number of atoms of a condition c denoted
with atoms(c). Lines 10, 13, and 15 reflect that each probabilistic branch
and each loop must be covered at least once. Line 18 reflects that each
forked behavior must be covered as well.

6.3.2.9. Condition / Decision Coverage

This section describes and defines the condition / decision coverage crite-
rion for Palladio. This criterion belongs to the criteria with respect to the
structure of decisions.

Condition / decision coverage extends simple condition coverage and
additionally requires that each evaluated condition (atomic or composed)
must have had all possible outcomes at least once.

Ccondition / decision coverage for Palladio is equal to simple coverage as
short-circuit evaluation ensures decision coverage. Hence, it allows to
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Listing 6.7: Algorithm for |Csimple condition|U
1 f u n c t i o n C S i m p l e C o n d i t i o n T e s t s ( ResourceDemandingBehaviour

b , C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i f a hasType BranchAc t ion
5 i n t b req = 0 ;
6 do f o r B r a n c h C o n d i t i o n c in a
7 i f c hasType GuardedBranchCond i t i on
8 b req += max ( atoms ( c ) +1 ,

C S i m p l e C o n d i t i o n T e s t s ( c . b e h a v i o r ) ) ;
9 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n

10 b req += max ( 1 , C S i m p l e C o n d i t i o n T e s t s ( c .
b e h a v i o r ) ) ∗ M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;

11 e n d i f
12 enddo
13 r e q += max ( 0 , breq−min ( req , 1 ) ) ;
14 e l s e i f a hasType LoopAct ion
15 r e q += max ( 0 , max ( 1 , C S i m p l e C o n d i t i o n T e s t s ( a .

b e h a v i o r ) ) ∗ M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y
> 0) , a l p h a ) −min ( req , 1 ) ) ;

16 e l s e i f a hasType F o r k A c t i o n
17 do f o r ResourceDemandingBehaviour fb in a
18 r e q += max ( 0 , C S i m p l e C o n d i t i o n T e s t s ( fb ) −

min ( req , 1 ) ) ;
19 enddo
20 e n d i f
21 i f r e q = 0
22 r e q = 1 ;
23 e n d i f
24 enddo
25 re turn r e q ;
26 endfunc t ion
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check the structural aspects of performance-relevant decisions as well as
implicit control-flow decisions.

T ERCcondition / decision = T ERCsimple condition (6.14)

Ccondition / decision is identical to Csimple condition as short-circuit evaluation
ensures all possible outcomes of decisions have been evaluated if simple
condition coverage is achieved. All relations of Csimple condition hold for
Ccondition / decision.
|Ccondition / decision|L equals 1 for the most simple Palladio specification.

|Ccondition / decision|U equals |Csimple condition|U and is hence available in listing
6.7.

6.3.2.10. minimal multiple condition

This section describes and defines the minimal multiple coverage criterion
for Palladio. This criterion belongs to the criteria with respect to the struc-
ture of decisions.

Minimal multiple condition coverage extends condition / decision cover-
age and additionally requires that each composed boolean condition must
be evaluated to all possible outcomes at least once. This criterion focuses
on the logical structure of the decision. A formal specification in Z is given
in [VB08] denoted as Multiple Condition Coverage.

Cminimal multiple coverage for Palladio is taking the whole structure of de-
cisions into account. Short-circuit evaluation means that Csimple condition also
covers composed conditions and both criteria are identical. This criterion
uncovers unevaluated outcomes of the logical structure of decisions and
hints on invariants in the decision.

In the following, the definition for the TER is provided. It uses the addi-
tional function terms to check which conditions in a composition are true or
f alse. The function evalt allows to check if a condition in the composition
is evaluated in order to determine the value of the composition. The func-
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tion visitedt allows to check if a condition was visited while the evaluation
of the composed conditions would have been as specified as parameter. The
function simplet(c, i) checks if a composed condition was evaluated at least
once with the result of being true as well as f alse. The function simplet(c)

checks if this holds for all composed conditions.

terms(c) = (b1, . . . ,bn),bi ∈ {true, f alse}for i ∈ 1, . . . ,n

evalt(i,b1, . . . ,bn,c) =

1 if bi is evaluated for c

0 else

visitedt(c,b1, . . . ,bn) : condition c was visited

leading to the given evaluation of terms.

simplet(c, i) =


1

(visitedt(c,b1, . . . ,bn)

∧evalt(i,b1, . . . ,bn,c) = 1∧bi = f alse)

∧(visitedt(c,b1, . . . ,bn)

∧evalt(i,b1, . . . ,bn,c) = 1∧bi = true)

0 else

simplet(c) =
1
n

n

∑
i=1

simplet(c, i)

XCminimal multiple(S,T ) =

#visited(ResourceDemandingBehaviour)

+#visited(LoopAction l|l. f requency > 0)

+#visited(ProbabilisticBranchTransition)

+simplet(GuardedBranchTransition.condition c)
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XCminimal multiple(S) =

#(ResourceDemandingBehaviour)

+#(LoopAction)

+#(ProbabilisticBranchTransition)

+|termst(GuardedBranchTransition.condition c)|

T ERCminimal multiple =
XCminimal multiple(S,T )

XCminimal multiple(S)

(6.15)

Cminimal multiple is identical to Csimple condition because of short-circuit eval-
uation and although it additionally considers composed conditions within
a decision and not only atoms and the final decision. All relations of
Csimple condition hold for Cminimal multiple.
|Cminimal multiple|L equals 1 for the most simple Palladio specification.

|Cminimal multiple|U equals |Csimple condition|U and is hence available in listing
6.7.

6.3.2.11. Modified Condition / Decision Coverage

This section describes and defines the Modified Condition / Decision Cov-
erage (MCDC) coverage criterion for Palladio. This criterion belongs to
the criteria with respect to the structure of decisions.

MCDC for short-circuit evaluations requires that each atomic condition
must have been evaluated to all possible outcomes and that its outcome in-
fluences the overall decision to have all possible outcomes. This means that
tests for an atomic condition must have equal values for the other evaluated
atomic conditions (see [Lig09, CM94, p. 106] for more details). A formal
specification in Z is given in [VB08], a mathematical definition in [AOH03]
denoted as Correlated Active Clause Coverage.

Cmodified condition / decision coverage for Palladio is focusing on the logical
structure of the decisions and that there are no unnecessary conditions. The
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values of unevaluated conditions are allowed to change, analogous to Mask-
ing Modified Condition Decision Coverage.

T ERCmodified condition / decision = T ERCsimple condition (6.16)

Cmodified condition / decision subsumes Cminimal multiple as the consequence of
showing the influence of each evaluated atomic condition on the overall de-
cision also forces composed conditions to be evaluated and have all possible
outcomes at least once. Cminimal multiple subsumes Cmodified condition / decision

because each atomic condition must be evaluated at least once to true and
false and it is only evaluated if it influences the composed conditions and
the decision itself due to short-circuit evaluation. Cmodified condition / decision

does not subsume Ccall obs or Cprobabilistic decision or the other way around
for the same reason as Csimple condition. Cmodified condition / decision subsumes
Ccall spec,Centry/exit,Cdecision,Caction and Cbranch but not the other way around
because its relation to Cminimal multiple and the relations of Cminimal multiple to
these criteria.
|Cmodified condition / decision|L equals 1 for the most simple possible Palla-

dio specification. The upper bound |Cmodified condition / decision|U is equal to
|Csimple condition|U and hence described in listing 6.7.

6.3.2.12. Reinforced Condition / Decision Coverage

This section describes and defines the Reinforced Condition / Decision
Coverage (RCDC) coverage criterion for Palladio. This criterion belongs
to the criteria with respect to the structure of decisions.

RCDC refines MCDC and additionally requires that it should be shown
(if possible) that the change of an atomic condition does not change the
decision output. This should be shown for a resulting value of true and
false. Details on the criterion and a formal definition using Z are available
in [VB08].
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Creinforced condition / decision coverage for Palladio is extending MCDC in or-
der to cover cases in which the decision should not vary if an atomic con-
dition varies. However, this is not always feasible and hard to determine
automatically. An example is the decision d(b1,b2) = b1 ∨ b2 and how if
can be kept to an overall value of f alse.

In the following, the definition for the TER is provided. It uses the addi-
tional function stayx

t to check if each composed condition would have both
truth values although the composition truth value stays the same.

stayx
t (c, i) =



1

(visitedt(c,b1, . . . ,bn)

∧terms(c) = x

∧bi = f alse

∧evalt(i,b1, . . . ,bn,c) = 0))
∧(visitedt(c,b1, . . . ,bn)

∧terms(c) = x

∧(bi = true

∧evalt(i,b1, . . . ,bn,c) = 0)))

0 else

stayx
t (c) =

1
n

n

∑
i=1

stayx
t (c, i)
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XCreinforced condition / decision(S,T ) =

#visited(ResourceDemandingBehaviour)

+#visited(LoopAction l|l. f requency > 0)

+#visited(ProbabilisticBranchTransition)

+simplet(GuardedBranchTransition.condition c)

+staytrue
t (GuardedBranchTransition.condition c)

+stay f alse
t (GuardedBranchTransition.condition c)

XCreinforced condition / decision(S) =

#(ResourceDemandingBehaviour)

+#(LoopAction)

+#(ProbabilisticBranchTransition)

+3∗ |termst(GuardedBranchTransition.condition c)|

T ERCreinforced condition / decision =
XCreinforced condition / decision(S,T )

XCreinforced condition / decision(S)
(6.17)

Creinforced condition / decision subsumes Cmodified condition / decision due to the re-
finement relation. Cmodified condition / decision does not subsume Creinforced con-

dition / decision as MCDC does not require to test that the decision stays the
same although an atomic condition is changed. Creinforced condition / decision

does not subsume Ccall obs or Cprobabilistic decision or the other way around
for the same reason as Csimple condition. Creinforced condition / decision subsumes
Ccall spec,Centry/exit, Cdecision,Caction,Cbranch,Csimple condition,Ccondition / decision,
and Cminimal multiple but not the other way around. This is the case because its
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relation to Cmodified condition / decision and the relations of Cmodified condition / de-

cision to these criteria.
|Creinforced condition / decision|L equals 1 for the most simple Palladio specifi-

cation. The upper bound |Creinforced condition / decision|U is based on the algo-
rithm for |Csimple condition|U given in listing 6.7. It only replaces atoms(c)
+ 1 in line 8 by 6 * atoms(c). This reflects that up to 6 different tests
are necessary to check that the decision stays at its truth value while the
condition is at least once true and at least once f alse and that the deci-
sion changes its truth value when the condition changes [KB05, p. 31].
A condition consists of at least one atom and hence atoms(c) ≥ 1 and
|Creinforced condition / decision|U ≥ |Csimple condition|U .

The effort estimation of 6 times the number of atomic conditions was
determined by Chilenski and Miller in [CM94]. They also found that weak
coupling does not cause problems in practice but strong coupling does. A
further discussion including effort estimation of test set size and number
of potential test sets for MCDC variants and RCDC is provided by Kapoor
and Bowen in [KB05].

6.3.2.13. Multiple Condition Coverage

This section describes and defines the multiple condition coverage crite-
rion for Palladio. This criterion belongs to the criteria with respect to the
structure of decisions.

Multiple condition coverage requires that all combinations of atomic
conditions must be tested. If short-circuit evaluation is used then some
combinations might be equal to others and not all conditions must be eval-
uated for a decision. Covering these cases can be used to ensure that the
specified behavior matches the intended behavior. Additionally note that
dependencies between atomic conditions can render some combinations
infeasible. For example c(b1,b2) = b1 ∨ b2 = (ch ==′ 1′)∨ (ch ==′ 2′)
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cannot be covered with the atoms b1 = b2 = true and ch representing a
character.

Cmultiple condition coverage for Palladio is taking all combinations of condi-
tions into account. This criterion uncovers invalid realizations of decisions
with respect to the intended and specified behavior, unevaluated outcomes
of the logical structure of decisions, and hints on invariants in the decision.
This definition assumes independence of atomic conditions which means
that if there are infeasible combinations full coverage cannot be achieved.

In the following, the definition for the TER is provided. It uses the ad-
ditional function complete to check if all possible truth values of the com-
posed conditions have been tested.

complete(c) = visited(c, f alse, . . . , f alse)

∧visited(c, true, f alse, . . . , f alse)

∧visited(c, f alse, true, f alse, . . . , f alse)

∧visited(c, true, true, f alse, . . . , f alse)

∧ . . .∧ visited(c, true, . . . , true)
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XCmultiple condition(S,T ) =

#visited(LoopAction l|l. f requency > 0)

+#visited(ProbabilisticBranchTransition)

+complete(GuardedBranchTransition.condition c)

XCmultiple condition(S) =

#(LoopAction)

+#(ProbabilisticBranchTransition)

+2|atoms(GuardedBranchTransition.condition c)|

T ERCmultiple condition =
XCmultiple condition(S,T )

XCmultiple condition(S)
(6.18)

Cmultiple condition subsumes Creinforced condition / decision as the coverage of all
combinations of atomic conditions includes the subset used for RCDC.
Creinforced condition / decision does not subsume Cmultiple condition as is shown in
the case study [VB08]. It shows the application of RCDC to a decision and
requires only 6 out of 213 = 8192 test cases required for Cmultiple condition

coverage. Cmultiple condition does not subsume Ccall obs or Cprobabilistic decision or
the other way around for the same reason as Csimple condition. Cmultiple condition

subsumes Ccall spec,Centry/exit,Cdecision,Caction,Cbranch,Csimple condition,

Ccondition / decision,Cminimal multiple, and Cmodified condition / decision but not the
other way around because its relation to Creinforced condition / decision and the
relations of Creinforced condition / decision to these criteria.
|Cmultiple condition|L equals 0 for the most simple Palladio specification.

The algorithm for |Cmultiple condition|U is based on |Csimple condition|U , which is
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given in listing 6.7. It only replaces atoms(c)+1 in line 8 by 2atoms(c). This
reflects that testing all combinations of potential truth values of a decision
requires 2n test cases if it consists of n independent atomic conditions.

6.3.2.14. Structured Path Testing Coverage

This section describes and defines Structure Path Testing (SPT) coverage
criteria for Palladio. These criteria belong to the criteria with respect to
the coverage sequence. The definitions have been published in [Gro12b]
except for the TER and the relation to non-path coverage criteria.

SPT focuses on covering all possible paths but restricts the number of
loop frequencies to a given parameter k in order to reduce the overall num-
ber of paths. We use the definition of Ntafos [Nta88] for the criterion:

Structured path testing requires covering all paths P, where
P does not contain any subpath p such that P consists of some
subpath β , followed by more than k repetitions of p, followed
by some subpath γ . The structured path testing criterion is
referred to hereafter as sptk.

Ck
spt coverage for Palladio is defined as follows: Let a be an Abstract-

LoopAction in S, let a f denote the frequency f of a, let Π = {π} be the
set of paths in S, β be a path from the StartAction of S to an action a,
γ be a path from a to the StopAction of S, and ◦ denote the control-flow.
Then Πk

spt = {π1 : (π1 ∈ Π)∧ (π1 /∈ {π2 : π2 = β ◦ a f ◦ γ, f > k})} is the
set of control-flow paths in the specification S. Ck

spt requires covering Πk
spt.

Call paths covers all possible paths including any number of loop frequencies.
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Xn
Cspt

(S,T ) = |{π ∈Π
n
spt : visited(π) = true}|

Xn
Cspt

(S) = |Πn
spt|

T ERn
Cspt

=
Xn

Cspt
(S,T )

Xn
Cspt

(S)

T ERCboundary = T ER0
Cspt

T ERCbasic paths = T ER1
Cspt

T ERCall paths = T ER∞
Cspt

(6.19)

Subsumption of Cn
spt to non-Palladio metrics is shown in [YM09, fig. 3]

using definitions of [WHH80]. The subsumption for the Palladio metrics is
presented in the following.

Cboundary does not subsumes Centry/exit because forked behaviors can lie
within loops, which are not executed for boundary coverage, and their
StopAction must be covered for Centry/exit coverage. Cboundary does not
subsume Ccall spec, Ccall obs,Cdecision,Cprobabilistic de- cision,Caction,Cbranch, or
any of the structure of decision criteria as call specifications, actions, and
branches with decisions can lie within the body of loops, which do no have
to be executed for Cboundary. Ccall spec, Ccall obs,Centry/exit,Cdecision,Cprobabilistic

decision,Caction, Cbranch, or any of the structure of decisions criteria do not
subsume Cboundary because none of them requires covering loops with a fre-
quency of 0.

Cbasic paths subsumes Cbranch by definition. Cbranch does not subsume
Cbasic paths as the boundary conditions of loops does not have to be cov-
ered. Cbasic paths subsumes Ccall spec, Centry/exit,Cdecision, and Caction but not
the other way around because its relation to Cbranch and the relations of
Cbranch to these criteria. Cbasic paths does not subsume Ccall obs as it does
not check if specifications contain calls with a frequency greater than 0.
Ccall spec does not subsume Cbasic paths because the most simple Palladio
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specification has a T ERCcall spec of 1 and a T ERCbasic paths of 0 if the specifi-
cation is not tested at all. Cbasic paths does not subsume Cprobabilistic decision

as T ERCprobabilistic decision is not equal to 1 if both branches of the sequence
StartAction, BranchAction( ProbabilisticBranchTransition(

StartAction, StopAction), ProbabilisticBranchTransition(

StartAction, StopAction )), StopAction have been visited at least
once but n(ProbabilisicBranchTransition) is not reached for one of
the branches. The criterion Cprobabilistic decision does not subsume Cbasic paths

as for the most simple Palladio specification T ERCprobabilistic decision equals 1
without being visited at all. At least one visit is required for T ERCbasic paths .
Cbasic paths does not subsume any of the structure of decisions criteria be-
cause only the outcome of decisions is relevant for path coverage but not
the structure of the decisions. The structure of decisions criteria do not
subsume Cbasic paths because none of them requires covering loops with a
frequency of 0. Cbasic paths subsumes Cboundary by definition. Cboundary does
not subsume Cbasic paths because it does not require to cover all loops with a
frequency of 1.

Cn
spt,n ∈ N subsumes Cn−1

spt by definition. Cn
spt,n ∈ N0 does not subsume

Cn+1
spt because a higher value of n additionally requires to cover all loops

with a frequency higher than n, which is not included in Cn
spt. Cn

spt,n ∈ N
subsumes Cm

spt,m ∈ N0,m < n because it subsumes Cn−1
spt ,n ∈ N0 and that

criterion subsumes Cm
spt,m ∈ N0,m < n. The first step of the induction was

shown for Cbasic paths = C1
spt in the last paragraph. Cn

spt,n ∈ N subsumes
Cbranch by definition. Cbranch does not subsume Cn

spt,n ∈ N as the boundary
conditions of loops do not have to be covered. Cn

spt,n ∈ N does not sub-
sumes Ccall obs and the other way around because of the same reasons as
Cbasic paths. Cn

spt,n ∈ N subsumes Ccall spec,Centry/exit,Cdecision, and Caction but
not the other way around because its relation to Cbranch and the relations
of Cbranch to these criteria. Cn

spt,n ∈ N does not subsume Cprobabilistic decision

as T ERCprobabilistic decision is not equal to 1 if both branches of the sequence
StartAction, BranchAction( ProbabilisticBranchTransition(
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StartAction, StopAction), ProbabilisticBranchTransition(

StartAction, StopAction )), StopAction have been visited at least
once but n(ProbabilisicBranchTransition) is not reached for one of
the branches. Covering the two different paths crossing the transitions once
is sufficient for Cn

spt being equal to 1. Cprobabilistic decision does not subsume
Cn

spt,n ∈N as for the most simple Palladio specification T ERCprobabilistic decision

equals 1 without being visited at all. At least one visit is required for
Cn

spt,n ∈ N. Cn
spt,n ∈ N does not subsume any of the structure of decisions

criteria because only the outcome of decisions is relevant for path coverage
but not the structure of the decisions. The structure of decisions criteria do
not subsume Cn

spt,n ∈N because none of them requires covering loops with
a frequency of 0.

Call paths there must be a number c for a terminating program, which cov-
ers all paths. Call paths then has the same subsumption relation as Cc

spt by
definition.
|Cn

spt|L equals 1 for the most simple ResourceDemandingBehaviour,
as the contained sequence has to be covered once. |Cn

spt|U is given in listing
6.8. The parameter n is the n from Cn

spt. Line 2 reflects that each behavior
is tested at least once. The variable areq reflects the number of control-
flow path alternatives for each action. Line 28 reflects that every path,
including all combinations of control-flow path alternatives, restricted by
the number of loop frequencies, is tested. Lines 9 and 11 reflect that each
branch is taken at least once. Lines 16 to 19 reflect that each loop fre-
quency up to n is tested but the body only influences tests with a frequency
greater than 0. Lines 21 to 23 reflect that each forked behavior is tested
and uses an offset of 1 to compensate that contained behaviors are covered
once for each visit of the current action. Line 26 reflects that any action
beside BranchAction, AbstractLoopAction, and ForkAction is tested
but there are no control-flow alternatives.
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Listing 6.8: Algorithm for |Cn
spt|U

1 f u n c t i o n CSPTTests ( ResourceDemandingBehaviour b ,
C o n f i d e n c e a lpha , i n t n ) : i n t

2 i n t r e q = 1 ;
3 do f o r Ac t i on a in b
4 i n t a r e q = 0 ; / / f o r t h i s a c t i o n
5 i f a hasType BranchAc t ion
6 i n t b req = 0 ;
7 do f o r B r a n c h C o n d i t i o n c in a
8 i f c hasType GuardedBranchCond i t i on
9 b req += max ( 1 , CSPTTests ( c . b e h a v i o r ) ) ;

10 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n
11 b req += max ( 1 , CSPTTests ( c . b e h a v i o r ) ) ∗

M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;
12 e n d i f
13 enddo
14 a r e q += max ( 0 , breq−min ( req , 1 ) ) ;
15 e l s e i f a hasType A b s t r a c t L o o p A c t i o n
16 a r e q += max ( 0 , max ( 1 , CSPTTests ( a . b e h a v i o r ) ) ∗

M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y = 0) , a l p h a )
−min ( req , 1 ) ) ;

17 do f o r k = 1 t o n
18 a r e q += max ( 0 , max ( 1 , CSPTTests ( a . b e h a v i o r ) )

∗ M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y = k ) ,
a l p h a )−min ( req , 1 ) ) ;

19 enddo
20 e l s e i f a hasType F o r k A c t i o n
21 do f o r ResourceDemandingBehaviour fb in a
22 a r e q += max ( 1 , CSPTTests ( fb ) − min ( areq , 1 ) )

;
23 enddo
24 e n d i f
25 i f a r e q = 0
26 a r e q = 1 ;
27 e n d i f
28 r e q ∗= a r e q ;
29 enddo
30 re turn r e q ;
31 endfunc t ion
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6.3.2.15. Boundary Interior

This section describes and defines the relaxed basic paths coverage crite-
rion for Palladio, which is analogous to boundary interior criteria for pro-
gramming languages. This criterion belongs to the criteria with respect to
the coverage sequence. The definitions have been published in [Gro12b]
except for the TER, the relation to non-path coverage criteria, and the com-
plete algorithm.

Covering all possible frequencies for each loop usually requires pro-
hibitive effort. Loop coverage is therefor often restricted to the following
equivalence classes: Covering the boundary condition (no execution of the
body), the execution of the interior (at least one execution of the body), and
at least two executions of the interior. The latter allows uncovering data
anomalies due to the transition from the body to the body, e.g. redefin-
ing instead of using variables. See [Lig09, p.117ff] for a more detailed
discussion on these anomalies. Boundary interior testing is equivalent to
structured path testing with k equal to2.

In Palladio, data anomalies cannot occur due to body execution isolation
and do not need to be checked. Hence, boundary interior coverage can be
reduced to tests with a frequency of 0 and a frequency of 1. This coverage
is equivalent to Cbasic path.

It is not always feasible that a loop is iterated exactly once and the same
error equivalence class is covered for any frequency greater or equal to one.
We relax the condition of a loop’s frequency f of exactly 1 and only require
any frequency f > 0. This eases testing but does not require covering all
paths up to a given frequency for all loops, which would be equivalent to
Cc

spt for a constant c representing loop frequencies.
Crelaxed basic paths coverage for Palladio is defined as follows based on the

definition of the SPT criterion. Let Πrbp = {(πrbp ∈ Π0
spt)∨ (∃πspt ∈ Π0

spt :
πspt = β ◦a0◦γ,πrbp = β ◦ak ◦γ,k≥ 1)}. Crelaxed basic paths requires covering
Πrbp. This allows detecting loops which always or never execute their bod-
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ies in the control-flow of behavior specifications while covering sequence
effects between paths.

XCrelaxed basic paths(S,T ) = |{π ∈Πrelaxed basic paths : visited(π) = true}|

XCrelaxed basic paths(S) = |Πrelaxed basic paths|

T ERCrelaxed basic paths =
XCrelaxed basic paths(S,T )

XCrelaxed basic paths(S)

(6.20)

Crelaxed basic paths does not subsume Ccall obs and the other way around be-
cause of the same reasons as Cbasic paths. Crelaxed basic paths subsumes Ccall spec,

Centry/exit,Cdecision, and Caction but not the other way around because its rela-
tion to Cbranch and the relations of Cbranch to these criteria. Crelaxed basic paths

does not subsume Cprobabilistic decision for the same reason as the non-relaxed
criterion Call paths, which requires a superset of covered paths. The sub-
sumption relations of the superset also show that Cprobabilistic decision does
not subsume Crelaxed basic paths.

Crelaxed basic paths does not subsume any of the structure of decisions cri-
teria because only the outcome of decisions is relevant for path coverage
but not the structure of the decisions. The structure of decisions criteria do
not subsume Crelaxed basic paths because none of them requires covering loops
with a frequency of 0.

Crelaxed basic paths subsumes Cbranch and Cboundary by its definition. Cbranch

does not subsume Crelaxed basic paths as the boundary conditions do not have to
be covered for branch coverage.Cboundary does not subsume Crelaxed basic paths

because it does not ensure that loops are executed at least once. Crelaxed basic

paths does not subsume Cbasic paths because it does not require that every
loop is iterated with a frequency of exactly one. Cbasic paths subsumes
Crelaxed basic paths if all loops can be executed with a frequency of 1. If a loop
is executed with a frequency of at least 2 then the former does not require
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coverage but the latter does. Cm
spt,m ∈ N0,m≥ c subsumes Crelaxed basic paths

for a constant c ∈ N which is the supremum of all minimal required loop
frequencies to execute a loop at least once. Crelaxed basic paths does not sub-
sume Cm

spt,m ∈N0,m≥ c as the latter one can mean some of the loops must
be covered more than once although there is one loop which is only cov-
ered once (hence the c). Crelaxed basic paths only requires covering each loop at
least once (and its boundary condition). Call paths subsumes Crelaxed basic paths

because only a subset of all paths is required. Crelaxed basic paths does not
subsume Call paths because the latter one can mean some of the loops must
be covered more than once.
|Crelaxed basic paths|L equals 1 for the most simple ResourceDemanding-

Behaviour, as the path from StartAction to StopAction must be cov-
ered. |Crelaxed basic paths|U is given in listing 6.9. The relaxation with respect
to C1

spt and its algorithm is that each loop is iterated at least once but not for
any possible number up to a given n. The lines 17-19 of algorithm |Cn

spt|U
in listing 6.8 are replaced. Listing 6.9 shows the resulting algorithm for
|Crelaxed basic paths|U .

6.3.2.16. JJ-Paths

This section describes and defines Jump to Jump Paths (JJ-Paths) coverage
criteria for Palladio. These criteria belong to the criteria with respect to the
coverage sequence.

JJ-Paths coverage is also known as Linear Code Sequence and Jump (LC-
SAJ) coverage. This criterion focuses on covering paths between a point
which is the target of a control-flow decision and a point involving a sub-
sequent control-flow decision. As a consequence, such a JJ-Path can lie
within the overall control-flow of a path π and does not have to start at the
beginning of π nor end at π’s end. It is defined in [YM09] as:

An LCSAJ is a sequence of one or more consecutively num-
bered basic blocks: p,(p+1), ...,q, of a code unit, followed by
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Listing 6.9: Algorithm for |Crelaxed basic paths|U
1 f u n c t i o n C R e l a x e d B a s i c P a t h T e s t s ( ResourceDemandingBehaviour

b , C o n f i d e n c e a l p h a ) : i n t
2 i n t r e q = 0 ;
3 do f o r Ac t i on a in b
4 i n t a r e q = 0 ; / / f o r t h i s a c t i o n
5 i f a hasType BranchAc t ion
6 i n t b req = 0 ;
7 do f o r B r a n c h C o n d i t i o n c in a
8 i f c hasType GuardedBranchCond i t i on
9 b req += max ( 1 , C R e l a x e d B a s i c P a t h T e s t s ( c

. b e h a v i o r ) ) ;
10 e l s e / / P r o b a b i l i s t i c B r a n c h C o n d i t i o n
11 b req += max ( 1 , C R e l a x e d B a s i c P a t h T e s t s ( c

. b e h a v i o r ) ) ∗ M i n R e q u i r e d T e s t s ( c . p r o b a b i l i t y , a l p h a ) ;
12 e n d i f
13 enddo
14 a r e q += max ( 0 , breq−min ( req , 1 ) ) ;
15 e l s e i f a hasType LoopAct ion
16 a r e q += max ( 0 , max ( 1 , C R e l a x e d B a s i c P a t h T e s t s ( a .

b e h a v i o r ) ) ∗ M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y
= 0) , a l p h a )−min ( req , 1 ) ) ;

17 a r e q += max ( 0 , max ( 1 , C R e l a x e d B a s i c P a t h T e s t s ( a .
b e h a v i o r ) ) ∗ M i n R e q u i r e d T e s t s ( p r o b a b i l i t y ( a . f r e q u e n c y
> 0) , a l p h a )−min ( req , 1 ) ) ;

18 e l s e i f a hasType F o r k A c t i o n
19 do f o r ResourceDemandingBehaviour fb in a
20 a r e q += max ( 1 , C R e l a x e d B a s i c P a t h T e s t s ( fb ) −

min ( areq , 1 ) ) ;
21 enddo
22 e n d i f
23 i f a r e q = 0
24 a r e q = 1 ;
25 e n d i f
26 r e q ∗= a r e q ;
27 enddo
28 re turn r e q ;
29 endfunc t ion
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Figure 6.9.: Control-Flow Graph Meta-Model

a control flow jump either out of the code or to a basic block
numbered r , where r 6= (q+1), and either p = 1 or there exists
a control flow jump to block p from some other block in the
unit. (A basic block to which such a control flow jump can be
made is referred to as a target of the jump.) [. . . ]

Sequences of JJ-Paths of length n are denoted as JJn-Paths
(n≥ 1, JJ1-Paths=JJ-Paths).

A mapping from Palladio specifications to control-flow graphs is neces-
sary to apply JJ-Paths coverage. We define the following mapping in order
to respect the probabilistic as well as parametric dependencies of Palladio
specifications while taking actual control-flow decisions into account.

The developed and used meta-model is shown in figure 6.9. The meta-
model extends classic control-flow graphs by several properties of vertices.
A graph consists of any number of vertices. Each vertex can be be con-
nected to any number of other vertices. The start vertex of the graph is the
one with an empty from transition relation. It has the number 1. The final
vertex is the one with an empty to transition relation. It has the total num-
ber of all vertices in the graph as number. The transitionProbability
specifies the probability of taking the corresponding to transition under the
assumption that the parameters allow taking the transition. It is necessary

200



6.3. Performance Specification Coverage

Listing 6.10: Algorithms for calculating the probability to reach a vertex

1 f u n c t i o n P r o b a b i l i t y ( V e r t e x v ) : Rea l
2 Real [ ] p r o b a b i l i t i e s ;
3 do f o r V er t e x v in g . v e r t i c e s
4 do f o r V er t e x t a r g e t in v . t o
5 i f t a r g e t . number > v . number / / e x c l u d e

backward t r a n s i t i o n s from l o o p s
6 p r o b a b i l i t i e s [ t a r g e t ] += p r o b a b i l i t i e s [ v .

number ] ∗ v . t r a n s i t i o n P r o b a b i l i t y [ i n d e x of t a r g e t ] ;
7 e n d i f ;
8 enddo
9 enddo

10 re turn p r o b a b i l i t i e s [ v . number ] ;
11 endfunc t ion

to determine how many tests are required to cover this control-flow deci-
sion with a given confidence. The sum over all transitionProbability
of a vertex can be unequal to 1 due to parameter-dependent control-flow
decisions with different parameter sets for each decision outcome. If only
one to is defined this is always taken regardless of its transitionProba-
bility. This ensures that the probability to reach a vertex for a single test
can be calculated as shown in listing 6.10. The attribute iterations spec-
ifies the mean frequency for visits to that vertex for each visit of the graph’s
first vertex (if the parameter values allow taking a path which includes the
vertex). It allows taking fixed loop frequencies into account for calculating
the required tests to cover JJ-Paths. Iterations has a default value of 1 if
not specified otherwise.

Mapping Palladio specification starts at the StartAction of a Re-

sourceDemandingBehaviour and continues the sequence of actions until
the StopAction is mapped. Each action which does not influence the
control-flow is directly mapped to a vertex and connected to the mappings
of the predecessor and successor actions via the from and to transitions.
Both transition probabilities are 1 as there are no control-flow decisions
involved. The number of a new mapped vertex is the next integer greater
or equal to 1 which has not been assigned to a vertex yet.
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(a) Notation
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(b) Probabilistic Loops
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(c) Parametric
Loops
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(d) Example Para-
metric Branch
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(e) Example Proba-
bilistic Branch

Figure 6.10.: Mapping of Loops Depending on Frequency Specification and Branch
Examples
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An AbstractLoopAction with a probabilistic specification of its fre-
quency is mapped to the vertices shown in figure 6.10(b) using the notation
depicted in figure 6.10(a). The Header vertex represents the decision if
the loop’s body is visited at least once. If the visit of the loop’s body is
optional then a transition from the Header vertex to the Merge vertex is
created. Its probability of transition is set to the probability value of not
visiting the body. For example, if the specification for the frequency is the

probability mass function pmf f =

0 20%

5 80%
then the transition probability

of Header to Merge is 0.2. If a visit to the loop’s body is mandatory then
there is no transition from Header to Merge. If the loop’s body is visited
at least once then a transition from Header to Body is created. The tran-
sition probability is set to 1 minus the probability of not visiting the body.
The mapping continues with the Palladio specification for the body of the
loop. The iterations of all vertices which result from that mapping is
multiplied with the frequency of the loop. This results in a multiplication
of 0 ∗ 0.2+ 5 ∗ 0.8 = 4 for the given example. This algorithm allows to
take into account nested loops. For example the number of iterations
for the inner body of two nested loops with pmf f is 4∗4 = 16. If the body
is never visited then the body’s vertices and transition to the body are not
created. This mapping ensures that only the decision on visiting the body is
included in JJ-Paths on the control-flow graph while taking the frequency
for the loop’s body into account for calculating the required number of tests
for the vertices created for the body.

An AbstractLoopAction with a parameter-dependent frequency spec-
ification is mapped to the vertices shown in figure 6.10(c). The Header

vertex represents the decision if the loop’s body is visited. There is a tran-
sition to the first vertex created for the body and the transition from the
last vertex created for the body. Both have a transition probability of 1 (cf.
meta-model description). The transition probability from the Header ver-
tex to the Merge vertex is also 1. This mapping ensures that JJn-Paths cover
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(b) Probabilistic Branches

Figure 6.11.: Mapping of Branches and Forks

each possible loop frequency from 0 to ∞ restricted by the sequence limit n

of JJn-Paths.
A GuardedBranchAction with its parametric dependencies is mapped

to the vertices shown in figure 6.11(a). The from transition for the first ver-
tex of each mapped branch of a GuardedBranchAction is set to the Fork
vertex. All transition probabilities are 1, as the branch selection depends
on distinct parameters but the same branch is always taken for that same
parameter values. This ensures each branch is covered with different JJ-
Paths. The to transition of the last vertex of each mapped branch is set to
the Join vertex. The transition probability is 1

n as there is no control-flow
decision involved but the probability of reaching the Join vertex must be
equal to the one of the Fork vertex.

A ForkAction is mapped to the vertices shown in figure 6.11(a). Com-
pared to the mapping of the branch action, all of the branches are always
taken. The branches are isolated although there is no decision involved
because the parameter set required to test each branch can be different in
general. The to transition of the last vertex of each mapped branch is set
to the Join vertex. The transition probability is 1

n as there is no control-
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flow decision involved but the probability of reaching the Join vertex must
be equal to the one of the Fork vertex and the entry probability for each
branch.

A ProbabilisticBranchAction is mapped to the vertices shown in
figure 6.11(b). The to transition from the Fork vertex is set to the first
vertex of the mapped branches with the transition probability assigned to
that branch. Palladio ensures that all probabilities add up to 1. The to

transition of the last vertex of each branch is set to the Join vertex. A
transition probability of 1 is used, as there are no control-flow decisions
involved.

The presented mapping covers all meta-model elements of Resource-
DemandingBehavior specifications, which are relevant for the control-
flow. Especially the elements AbstractLoopAction, BranchAction, and
ForkAction, which model control-flow decisions, alternatives or concur-
rent control-flow. This complete mapping supports mapping any Palladio
performance specification.

Cjjpath coverage for Palladio is based on the defined mapping to control-
flow graphs and takes into account all control-flow alternatives including
loops. This criterion allows covering different paths in the specification
and provides an upper bound for covered paths.

Xn
Cjjpath

(S,T ) =
executed distinct sequences of JJ-Paths

of length m≤ n

Xn
Cjjpath

(S) =
total number of distinct sequences of JJ-Paths

of length m≤ n

T ERn
Cjjpath

=
Xn

Cjjpath
(S,T )

Xn
Cjjpath

(S)
m,n ∈ N

(6.21)
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The relation to criteria with respect to visited nodes and edges is compa-
rable to the non-Palladio definitions and is provided in detail in [YM09]
and [WHH80]. The results are that Cn

jjpath,n ∈ N subsumes Cbranch but
not the other way around. Cn

jjpath does not subsume Ccall obs and the other
way around because of the same reasons as Cbasic paths. Cn

jjpath subsumes
Ccall spec,Centry/exit,Cdecision, and Caction but not the other way around because
its relation to Cbranch and the relations of Cbranch to these criteria. Cn

jjpath,n ∈
N does not subsume Cprobabilistic decision because the superset C∞

jjpath is equiv-
alent with respect to subsumption to Call paths and Call paths does not subsume
Cprobabilistic decision. Cprobabilistic decision does not subsume Cn

jjpath,n ∈ N as for
the most simple Palladio specification T ERCprobabilistic decision equals 1 without
being visited at all. At least one visit is required for Cn

jjpath,n ∈ N.
Cn

jjpath,n ∈ N as well as C∞
jjpath do not subsume any of the structure of

decisions criteria because only the outcome of decisions is relevant for path
coverage but not the structure of the decisions. The criteria with respect
to structure of decisions coverage do not subsume Cn

jjpath or C∞
jjpath because

none of them requires covering loops with a frequency of 0.
Cn+1

jjpath,n ∈ N subsumes Cn
jjpath by definition. Cn

jjpath does not subsume
Cn+1

jjpath because the sequence of JJ-Paths with length n+ 1 is not tested by
the former one. As shown in [YM09] and [WHH80], C∞

jjpath is equivalent
to C∞

spt. The equivalence also implies that Cboundary, Cbasic paths, and Ck+1
spt

are subsumed by C∞
jjpath but not the other way around. Ck

jjpath,k ∈ N does
not subsume C0

spt because the specification with k+2 consecutive control-
flow alternatives and without loops has JJ-Paths of length k+1, which, by
definition, do not have to be covered by Ck

jjpath but by C0
spt. As Cn

spt,n ∈ N
includes the requirements for C0

spt by definition, Ck
jjpath,k ∈ N does not sub-

sume Cn
spt,n ∈ N. Ck

jjpath,k ∈ N subsumes Crelaxed basic paths and Cboundary if
Ck

jjpath = C∞
jjpath. Ck

spt,k ∈ N does not subsume Ck
jjpath but Ck+1

spt does. If a
specification contains a body there must be a jump to and from the body.
The maximal frequency of the body for Ck

jjpath is k+ 1, as the body must
be reached using JJ-Paths and a sequence of length k of the JJ-Paths con-

206



6.3. Performance Specification Coverage

taining the body in the worst case. Ck
spt does not cover a frequency of

k+ 1. Ck+1
spt covers all paths up to a frequency of k+ 1 and therefore sub-

sumes Ck
jjpath. Cboundary does not subsume Cn

jjpath,n ∈ N as JJ-Paths can lie
within a loop. The equivalence of C∞

jjpath and C∞
spt implies that C∞

jjpath sub-
sumes Cboundary,Cbasic paths, and Ck+1

spt ,k ∈N. Ck
jjpath,k ∈N does not subsume

Call paths if k is not big enough and Ck
jjpath is not equal to C∞

jjpath. Call paths sub-
sumes Ck

jjpath,k ∈ N by definition.
|Cn

jjpath|L equals 1 for the most simple ResourceDemandingBehaviour,
as the only possible path must be covered once. |Cn

jjpath|U can be calculated
by the following process. First, a Palladio specification can be mapped to
a control-flow graph. Second, the JJ-Path algorithm provided in [YM09]
by Yates can be used to determine JJ-Paths in the graph. Third, JJn-Paths
are calculated. Finally, the lower and upper bound for the required number
of tests can be calculated by the algorithms in listing 6.11. All transfor-
mations are realized using QVT Operational [Obj11a] and are available
using anonymous SVN access [Gro12d]. The calculation algorithms are
described in the following.

The upper bound for the required number of tests (lines 1-11 in listing
6.11) can be estimated by the sum of tests required for each JJn-Path (line
8). If all JJn-Paths start at the first node and end at the final node then
the overall required number of test cases is the sum over the test cases
(line 8) required for each JJn-Path. The number of required test cases for
each path is determined by the probability to follow that path (lines 5-7)
in case probabilistic decisions are involved. If JJn-Paths do not start at
the first node then additional tests might be necessary to reach the first
node of the path (line 4). The example shown in figure 6.10(d) consists of
a single parameter-dependent branch. The notation (F-L,J) is used for JJ-
Paths and states the first node F , the last node L in a sequence of nodes with
consecutive numbers, and the node to which he final jump J is made. The
JJ-Paths for the example are (1-2,5), (1-4,7), (5-7,8), and (7-7,8). Its JJ2-
Paths are (1-2,5)(5-7,8) and (1-4,7)(7-7,8). Each of the JJ2-Paths requires
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one test and both must be tested independently, which requires overall two
tests for JJ2-Paths coverage.

The lower bound for the required number of tests (lines 13-23 in list-
ing 6.11) can be estimated by the maximum number of tests required
for an individual JJn-Path (line 20) out of the JJn-Paths. The function
MinRequiredTestsRaw is the same as MinRequiredTests but without
the application of the ceiling method. The number of required test cases
could be reduced if the part of the graph containing the path is iterated
several times for each tests. The number of required test cases for each
path must be divided by the minimal number of iterations (line 20, 25-31)
over the included vertices. The separation of the number of iterations and
the probability allows to ensure that the number of required tests is calcu-
lated based on the probability for the path but still allows compensating
fixed iteration numbers. If the number of iterations would be included in
the probability, a path with probability 0.5 and 2 iterations would have a
resulting probability of 1 which prevents taking into account that the path
must be tested at least once for a given confidence level greater than 0.
The minimal number over all included vertices is required as JJn-Paths can
start within a loop with a fixed frequency but its end may be outside of
the loop. The example shown in figure 6.10(e) consists of a single prob-
abilistic branch. JJ-Paths and JJ2-Paths are identical to the example with
the deterministic branch by construction. The iterations for each node
are 1, hence the minimum over the iterations of each path is also 1. For a
confidence of al pha = 0.95, (1-2,5)(5-7,8) requires log(1−0.95)

log(1−0.2)∗1 ≈ 13.4 (cf.

section 6.3.2.1) test cases and (1-4,7)(7-7,8) requires log(1−0.95)
log(1−0.8)∗1 ≈ 1.9 test

cases. Using the maximum instead of the sum works because not taking a
specific probabilistic branch means that another one is taken in the rest of
the cases. As a result, overall d log(1−0.95)

log(1−0.2)∗1e = 14 test are required in the
mean to cover all JJ2-Paths of the specification.
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In general, the number of required tests determined by the lower bound is
more likely if probabilistic elements outweigh deterministic elements and
vice versa.

Malevris shows algorithm adaptation in [Mal04] which addresses infea-
sible JJ-Paths (e.g. because a certain number of loop frequencies is nec-
essary until a condition is true or conflicting conditions exists, which may
change after iterations of the body). The underlying issues cannot arise for
Palladio because of loop isolation and because our definition already covers
pre-defined number of loop frequencies.

6.3.2.17. Summary

The criteria with respect to covered nodes and edges were presented in
the sections 6.3.2.2 to 6.3.2.7. The criteria with respect to the structure
of decisions were presented in the sections 6.3.2.8 to 6.3.2.13. Finally,
the criteria with respect to the sequence of coverage were presented in the
sections 6.3.2.14 to 6.3.2.16.

The subsumption relations described in these sections for the defined
coverage criteria are summarized in figure 6.12 and a complete overview on
the subsumption relation is given in table 6.3. It is visible that most of the
criteria with respect to the structure of decisions are equivalent for Palladio
specifications and that these criteria are incomparable to the criteria with
respect to the sequence of coverage.

The selection of a criterion involves the covered aspects and the effort
for testing. The criteria and their application advantage are summed up in
the following for the categories of covered nodes and edges, the structure
of decisions, and the sequence of coverage.

Selecting a criterion covering the nodes and edges is recommended in
general. This ensures that each performance-relevant block, modeled by
an AbstractAction, and the control-flow between these blocks is at least
tested once and the general structure of the performance specification is
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Listing 6.11: Algorithms for calculating bounds of |Cn
jjpath|U

1 f u n c t i o n C J J P a t h s T e s t s U p p e r ( J J n P a t h [ ] p a t h s , C o n f i d e n c e
a l p h a ) : i n t

2 i n t r e q u i r e d = 0 ;
3 do f o r p a t h in p a t h s
4 Real p r o b a b i l i t y = P r o b a b i l i t y ( p a t h . from ) ;
5 do f o r v e r t e x , n e x t V e r t e x in p a t h
6 p r o b a b i l i t y ∗= v e r t e x . t r a n s i t i o n P r o b a b i l i t y [

i n d e x of n e x t V e r t e x ] ;
7 enddo ;
8 r e q u i r e d += M i n R e q u i r e d T e s t s ( p r o b a b i l i t y , a l p h a ) ;
9 enddo

10 re turn r e q u i r e d ;
11 endfunc t ion
12
13 f u n c t i o n C J J P a t h s T e s t s L o w e r ( J J n P a t h [ ] p a t h s , C o n f i d e n c e

a l p h a ) : i n t
14 i n t r e q u i r e d = 0 ;
15 do f o r p a t h in p a t h s
16 Real p r o b a b i l i t y = P r o b a b i l i t y ( p a t h . from ) ;
17 do f o r v e r t e x , n e x t V e r t e x in p a t h
18 p r o b a b i l i t y ∗= v e r t e x . t r a n s i t i o n P r o b a b i l i t y [

i n d e x of n e x t V e r t e x ] ;
19 enddo ;
20 r e q u i r e d = max ( r e q u i r e d , MinRequiredTestsRaw (

p r o b a b i l i t y , a l p h a ) / M i n I t e r a t i o n s ( p a t h ) ) ;
21 enddo
22 re turn c e i l i n g ( r e q u i r e d ) ;
23 endfunc t ion
24
25 f u n c t i o n M i n I t e r a t i o n s ( J J n P a t h p a t h ) : r e a l
26 i n t m i n I t e r a t i o n s = p a t h . from . i t e r a t i o n s ;
27 do f o r v e r t e x in p a t h
28 m i n I t e r a t i o n s = min ( m i n I t e r a t i o n s , v e r t e x .

i t e r a t i o n s ) ;
29 enddo ;
30 re turn m i n I t e r a t i o n s ;
31 endfunc t ion
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an accurate abstraction. Caction/Cbranch provides this general coverage and
subsumes the criteria Cdecision focusing on the decision outcomes, Centry / exit

focusing on the flow into and out of the specification, and Ccall spec focusing
on calls via required interfaces. The required number of tests grows only
linearly with the number of actions in the specification. If the specification
contains probabilistic control-flow decisions, Cprobabilistic decision allows val-
idating the accuracy of the probabilities for the whole parameter space for
which accuracy statements are provided. This reduces the error of invalid
probabilities especially if the probability has been identified from a set of
observations, which is only a small partition of the parameter space. The
number grows linearly with the number of probabilistic decisions in the
specification. Ccall obs focuses on calls which may but do not have to appear
and ensures that each possible call is covered at least once. It extends the
general coverage and provides the advantage of checking if the dependency
of the number of calls has the right threshold. The required number of tests
grows linearly with the number of specified calls.

Selecting a criterion covering the structure of decisions is recommended
if the specification contains complex decisions as complex decisions are
more likely be faulty. The proportion of the parameter space leading
to a certain outcome of a condition within the decision is usually not
equal between the conditions. The chance that random testing misses cer-
tain parameter combinations, which would influence the decision and the
performance-relevant behavior, is higher. This advantage comes at the cost
of effort requiring an exponential number of test cases with respect to the
number of conditions in a decision if Cmultiple is used. The criterion closest
in the subsumption hierarchy is Creinforced condition / decision, which reduces the
effort to 6 times the number of conditions. The next closer criteria in this
category are equivalent with respect to subsumption and require only an
effort multiplier of 1 for the number of conditions. The trade-off for spend-
ing higher effort should honor how the conditions and decisions have been
created. For example, if they are taken directly from an implementation
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without further abstraction then a manual comparison and limited testing
on the specification are usually a good trade-off.

Selecting a criterion covering the sequence of coverage is recommended
if the specification contains complex sequences of performance-relevant
blocks, which involve control-flow decisions. The criteria ensure that the
combination of sequential blocks in the specification is accurate. Covering
all potential paths in the specification will likely lead to prohibitive effort
if the specifications has loops or branches in sequence. The number of po-
tential paths is multiplied by the alternatives of a branch or possible loop
frequencies if it occurs as a step in a sequence. Call paths, and the equivalent
C∞

spt and C∞
jjpath, are the most powerful criteria but have the disadvantage of

the required effort, which can grow exponentially. The required number of
test cases can be reduced if the parameter value k ∈ N for Ck

jjpath or Ck+1
spt

is reduced. However, the effort will remain exponential and only the over-
all effort is reduced. C1

spt/Cbasic paths reduces the multiplier to 2 for each
loop. However, loops with frequencies bigger than 1 (or k in the general
case) are not covered. Increasing the k to cover those loops has the disad-
vantage of the exponentially rising effort. C0

spt/Cboundary has the advantage
of covering loops whose body is not visited but this also implies that any
behavior within that body is not covered. This is the only criterion of this
category which has the disadvantage of not subsuming Caction/Cbranch cov-
erage. Crelaxed basic paths is a trade-off between the effort and the covered
sequences as it requires loops to be covered with a frequency of 0 as well
as with a frequency greater than 0. In contrast to Ck

jjpath or Ck+1
spt , it does not

require to choose an appropriate parameter and covers the combinations in
which some loop bodies are not executed. This should be a good trade-
off for most cases, especially because its mitigation of the effect of loop
frequencies on the overall effort.

For all criteria, the algorithmic complexity for calculating the lower and
upper bounds for the required number of test cases is in O(n) where n is
the number of actions contained in a ResourceDemandingBehaviour or
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recursively in the ResourceDemandingBehaviour of one of the contained
actions.
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Figure 6.13.: Link Overview

6.4. Link Meta-Model

This section presents the developed meta-model for linking Palladio ele-
ments to other meta-models. It is used to map Palladio specifications to
implementations, instrumenting the implementation, and gather measure-
ments at runtime. The link meta-model is an annotation or mark meta-
model. It allows to annotate Palladio model elements with links to other
models without the need to change any of the referred meta-models.

Figure 6.13 shows how links are stored. The storage of the link an-
notations is independent of the target language, for example Palladio or
ByCounter.

The LinkRepository stores a set of links, usually semantically con-
nected. This could be a bundle of links used for a single validation run.
The links are stored via the linkElements containment.

The abstract LinkElement is a template for any link between Palladio
and another model. It should be specialized through subclasses for each
different referred meta-model in order to distinguish the different type of
links. The different types are presented in sections 6.4.1 and 6.4.2.

6.4.1. ByCounter Link Meta-Model

This section presents the model-elements for linking Palladio and By-
Counter elements. ByCounter is an instrumentation and measurement util-
ity which allows bytecode-exact performance measurements (see also the
description at the beginning of section 6.2). More information about By-
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki and ByCounter elements in light green.

Figure 6.14.: Elements Linking Palladio and ByCounter

Counter and the meta-model for its input and output is available at its web
page[ByC12].

Figure 6.14 provides an overview about all links to ByCounter model
elements.

The abstract BycounterLink is used to tag all links to the ByCounter
model. Its subclasses are presented in the following.
AbstractActionBycounterLink is a link between one AbstractAc-

tion of a performance specification in Palladio and one Instrumented-

CodeArea. This allows mapping instrumented code sections and the per-
formance specification. It is required to compare the actual and specified
performance. The first one is an abstraction of the control-flow and the
second one an area in the code between two statements. The first is linked
via the abstractAction reference, the later is linked via the codeArea

reference.
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AbstractActionGroupedAreasBycounterLink links a single Ab-

stractAction with multiple code sections in the implementation. There
must be at least one code section in order to distinguish between repeated
executions of the whole action and multiple measurements for the same
action. It is required if code sections are split into multiple parts and all
of these parts belong to one single action. The action is linked via the
abstractAction reference. All sections are linked via the grouped-

CodeAreas reference. There can be more than one last section in the
control-flow, for example if the section starts before a branch and always
ends within the branches.

6.4.2. GAST Link Meta-Model

This section presents the model-elements for linking Palladio and General
Abstract Syntax Tree (GAST) elements. GAST is a representation of the
syntax tree of the implementation. The links allow mapping the elements
of performance specifications to the implementation. Its documentation is
available in [Q-I08, sections 3.3 and 6.12–6.19].

Figure 6.15 shows the elements which link components and implemen-
tation.

The abstract GastLink tags all links to the GAST model. Its subclasses
are presented in the following.
ImplementationComponentTypeGastLink links a single component

to all of its Java classes and stores the information necessary to instantiate
the component. The component is linked via the implementationCom-

ponentType reference. It can be either a business or infrastructure com-
ponent. The Java classes are linked via the gastClasses reference. There
must be an implementation and, hence, at least one class. Instantiation of
the component requires knowledge on how component parameters are set,
dependencies to other components are resolved, and dependencies to hard-
ware resources are resolved. The mechanisms for setting component pa-

218



6.4. Link Meta-Model

Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki and GAST elements in light purple.

Figure 6.15.: Elements Linking Palladio Components and Implementation via the
GAST Meta-Model
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rameters are stored for each parameter via the componentParameterDe-

pendencyInjections containment. The mechanisms for resolving com-
ponent dependencies are stored for each parameter via the requiredRole-
DependencyInjections containment. The mechanisms for resolving
resource dependencies are stored for each required resource via the re-

sourceRequiredRoleDependencyInjection containment.
The abstract ComponentParameterDependencyInjection models

the strategy for setting a single component parameter. The parameter for
which the strategy is available is linked via the componentParameter ref-
erence. There is currently just one available algorithm, which is presented
in the following. Other algorithms like container-managed dependencies or
injection techniques like google guice [Goo12] are possible extensions.
MethodBasedComponentParameterDependencyInjection models

the technique to use a setter-method for a component parameter. This
method must have the component parameter as only parameter. The method
in the implementation is linked via the gastMethod reference.

The abstract RequiredRoleDependencyInjection models the strat-
egy for resolving the dependency of a component requiring another com-
ponent in a certain role. The required role refers to the required component
and is linked via the requiredRole reference. There is currently just one
available algorithm, which is presented in the following. Comparable to
setting component parameters, other algorithms like container-managed de-
pendencies or injection techniques like google guice [Goo12] are possible
extensions.
MethodBasedComponentParameterDependencyInjection models

the technique to use a setter-method for connecting another component
to the required role. The method must have the required component’s in-
terface as only parameter. The method in the implementation is linked via
the method reference.

The abstract ResourceRequiredRoleDependencyInjection models
the strategy for resolving the dependency of a component to a required
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki and GAST elements in light purple.

Figure 6.16.: Elements Linking Palladio Interfaces and Parameters to an Implemen-
tation via the GAST Meta-Model

hardware resource. The role of the required resource must be linked via the
resourceRequiredRole reference. There is currently just one available
algorithm, which is presented in the following. The same possible alterna-
tives apply as for the two other presented strategies.
MethodBasedRequiredRoleDependencyInjection models the tech-

nique to use a setter-method for connecting a required resource to the re-
quired role. The method must have the resource’s interface as only param-
eter. The method in the implementation is linked via the method reference.

Figure 6.16 shows the elements which link Palladio interfaces and the
parameters of their signatures to an implementation.
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InterfaceGastLink links a single business or infrastructure interface
to the implementing Java interface or a Java class. The business or infras-
tructure interface is linked via the interface reference. The explicit Java
interface or the Java class implementing an implicit interface are linked via
the gastInterface reference.
SignatureGastLink links a single signature of a business or infras-

tructure interface to a single method in the implementation. The signature
must be linked separately from the interface as the order of defined sig-
natures and their names can differ between performance specification and
implementation. The signature is linked via the signature reference. The
method in the implementation is linked via the gastMethod reference.
ResourceInterfaceGastLink links the interface of a resource to the

Java interface or class responsible for accessing the resource. The resource
interface is linked via the resourceInterface reference. The Java inter-
face or class is linked via the gastInterface reference.
ResourceSignatureGastLink links the signature of a resource inter-

face to the method in the implementation responsible for accessing the re-
source. Again, signatures must be linked separately as the specified inter-
face may have a different order or a different name than in the implemen-
tation. The resource interface is linked via the resourceSignature refer-
ence. The method for accessing the resource is linked via the gastMethod
reference.

The ParameterGastLink links the parameter within a signature to the
parameter of the implementation. As with signatures, the data types, names,
and order of parameters between the performance specification and the im-
plementation may be different. This requires explicit links between these
elements. The specification’s parameter is linked via the parameter ref-
erence. The implementation’s parameter is linked via the gastParameter
reference.

Figure 6.17 shows the elements which link Palladio performance speci-
fications to an implementation.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki and GAST elements in light purple.

Figure 6.17.: Elements Linking Palladio Performance Specifications and Imple-
mentation via the GAST Meta-Model
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ResourceDemandingSEFFGastLink links the performance specifica-
tion for a single business or infrastructure operation with a method in the
implementation. A ResourceDemandingSEFF element is the behavior
abstraction for a single operation of a component’s interface. It can be
mapped to a method in the component’s implementation. It can be used
to execute the code which is described by the specification after the com-
ponent is instantiated. The performance specification is linked via the
resourceDemandingSEFF reference. The method in the implementation
is linked via the gastMethod reference. Palladio behavior specifications
consist of subclasses of AbstractActions describing the performance-
relevant behavior of a code section and the control-flow between these ac-
tions. The different actions are linked using the following specific links.
The most specific link must be used. This allows easy adaption of this
meta-model in case a new action is introduced in the specification language
and must be handled differently.
InternalCFActionGastLink is a generic link to a code section for

actions other than the ExternalCallAction and for which no explicit link
is defined. Examples are StartAction and StopAction. The behavior
specification is linked via the resourceDemandingSEFF reference. The
code section is linked via the statementLink containment.
StatementLink models a link to a single code section. The code

section is determined by the first and the last statement within that sec-
tion. There must be at least one statement in the section. This state-
ment can be the first and last at the same time. The first statement is
linked via the gastFromStatement. The last statement is linked via the
gastToStatement.
ExternalCallActionGastLink links actions which represent calls

to required components to a code section. The action is linked via the
ExternalCallAction reference. Thecodesection is linkedvia thestate-
mentLink containment.
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BranchActionGastLink links actions at which the control-flow fol-
lows one of the specified alternatives to one or more code sections. There
can be one or more sections depending on the implementation in the code.
For example if-then-else-cascades have another representation than switch-
statements. Both are still valid models of the behavior. In order to have a
precise definition which performance belongs to this action and which to
one of the specified alternatives requires allowing more than one code sec-
tion. The code sections are linked via the overheads containment. There
must be at least one code section.
ForkActionGastLink links actions at which the control flow is split

and can be merged again to one or more code sections. There must be at
least one code section. There can be more than one section depending on
the implementation of the definition of threads and their forking and join-
ing. Only multiple sections allow an accurate measurement of performance
caused by the actions. The code sections are linked via the overheads

containment.
LoopActionGastLink links all actions representing a loop in the con-

trol-flow to one or more code sections. There must be at least one code
section. There can be more than one section depending on the implemen-
tation of the loop. For example do-while , for, while-do, and for-each have
different representations in the code and are split differently although all
have the behavior corresponding to this action. Only multiple sections al-
low an accurate measurement of all of these cases. The code sections are
linked via the overheads containment.

The presented meta-model allows linking all parts of Palladio specifica-
tions, which are necessary to instantiate, instrument, and measure the per-
formance requests of an implementation of that component. This includes
the mapping of the specified control-flow abstraction to the implementa-
tion, the interfaces and signatures, and the description of the components
and their composed parts. The meta-model is designed extensible and new
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model elements or dependency resolution techniques are easy to integrate.
These extension points were pointed out.

6.5. Validation Results Reporting Meta-Model

This section presents the developed meta-model for reporting results of a
test-based validation. Its statements provide formalized means to report and
assess success or failure of a test-based validation. The provided informa-
tion shows errors and allows fault identification. It is suitable for humans
as well as programs. It consists of a generic and a language-dependent part.
A language-dependent part is developed and shown for Palladio.

The developed meta-model depends on overall five other meta-models:
the meta-model for accuracy statements presented in chapter 4, the meta-
model for test-based validation presented in section 6.1, the link meta-
model presented in section 6.4, the meta-model for ByCounter’s input and
output available at [ByC12], and the Palladio meta-model presented in sec-
tion 2.4.

The following are the requirements for reporting validation results. The
list additionally shows how this approach addresses each requirement.

1. No need to modify specification, instrumentation or validation
languages. This approach defines a meta-model which uses existing
meta-models and annotates validated specifications with validation
results including detailed failure and error messages.

2. Automated processing of validation information. The developed
meta-model is accessible using EMF. This ensures the conformance
with standards and industry-suitable tooling. The defined meta-
model elements allow a precise semantic definition and references
to elements leading to a validation failure. Validation settings are
recorded and can be re-used for subsequent validations.
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3. Viewable by human users. Human-oriented graphical editors are
provided to display model instances. It is ensured by using EMF.
Detailed human-readable messages for elements describing valida-
tion failures provide convenient access to errors and for fault identi-
fication.

This section is structured as follows. Section 6.5.1 describes the language-
independent meta-model for reporting results. Section 6.5.2 describes the
customizations for a specific modeling language and shows its extensions
for reporting validation results of Palladio-based specifications.

6.5.1. Results Meta-Model

This section shows the language-independent meta-model part for reporting
results of a test-based validation.

Figure 6.18 shows the elements for storing the result of validation runs.
The RunProtocol stores the result for a single validation run. Its refer-

ences and attributes are explained in the next two paragraphs.
The validated specification and its tested quality is linked via the qual-

ityAnnotation reference (see section 4.1 for details). The quality of the
validation and the validated aspects are linked via the validationQual-

ity reference (see section 6.1 for details). Comparing implementation
and specifications requires links between these artifacts. The reference
to the link repository is stored via the pcmGastLinkRepository ref-
erence (see section 6.4.2 for details). The implementation is measured
using ByCounter. This measurement requires setting measurement pa-
rameters. These parameters are stored via the bycounterInput refer-
ence. The measured code sections are stored in the link repository via
the pcmBycounterLinkRepository reference. The raw results with ob-
served bytecode and function call measurements are linked via the execu-
tionObservationTrace containment. This documentation allows cross-
checking and fault identification based on the raw results reported by By-
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Fully qualified names are provided for external elements. ByCounter elements are additionally
shown in light green.

Figure 6.18.: Elements for Storing Validation Run Results

Counter. The measurement-related information helps identifying faults for
reported errors and failures (see 2.1 for term definitions). The expectations
stated in the specification are linked via the expectationTrace contain-
ment. Information on experienced failures for unsuccessful validations are
stored via the validationFailureNotices containment.

Management information for a protocoled validation run is stored in the
attributes of the ProtocolRun. The validation requires a random num-
ber generator to create samples within the parameter space. The random
number generator is initialized with the seed provided via the randomSeed
attribute. The time when the described protocol is created is stored via
the creationTime attribute. The wall clock times of start and end of
the described test-based validation are stored via the validationBegin

and validationEnd attributes. They also provide the timespan required
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Fully qualified names are provided for external elements. ByCounter elements are additionally
shown in light green.

Figure 6.19.: Validation failure notices

for the validation. The number of executed test cases is stored via the
testcaseExecutions attribute for statistical and documentation purposes.
Finally, the verdict of the validation is stored via the validationSuc-

cessful attribute.
The ExpectationTrace stores the expected behavior during validations

including parameter values. The expectations are derived from the tested
specification and the test cases. It is an abstract class and must be cus-
tomized for the parameters and behavior statements of the specification
language.

Figure 6.19 shows the elements for stating validation failure notices in a
specification language-independent way.

The ValidationFailureNotice stores the information about a vali-
dation failure and provides additional details. The attribute description

must contain a meaningful messages explaining the error for human read-
ers. The message depends on the specification language in order to help
with the interpretation of the message and ease fault identification. It is an
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abstract class and must be customized for the failure types. The language-
independent failure types are as follows.

The abstract element ExecutionObservation is used to mark that
other elements provide an execution observation and ensure a single and
simple way to access the execution observation linked with a validation fail-
ure. An observation can contain bytecode and function call measurements.
The observation is linked via the executionObservation reference.
CallVFN models a failure relating to calls or call parameters. It pro-

vides information on the error and references the measurements by inher-
iting from ExecutionObservation. It is an abstract class and must be
customized for the call and call parameter types of a specification language.
SequenceVFN models a failure relating to the sequence of behavior state-

ments. It provides information on the error and references the measure-
ments by inheriting from ExecutionObservation. It is an abstract class
and must be customized for the behavior statements of a specification lan-
guage.
ValidationStoppedVFN models that the validation was aborted due to

experienced validation failures. These difference between specification and
implementation is grave enough that further validation does not provide any
benefit. An example for such a case is the use of business operation return
parameters in a specification although the implementation does not even
issue the call.
ProbabilityVFN models that there was a failure at validating the deci-

sion probabilities. It should provide information on the statistic, acceptance
thresholds and reference the decision with the invalid probability. It is an
abstract class and must be customized for the behavior statements of the
specification language.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.20.: Palladio expectations

6.5.2. Palladio Customizations

This section shows the language-dependent meta-model part for reporting
results of a test-based validation. The statements in this section are cus-
tomized for the Palladio specification language.

Figure 6.20 shows the elements used to state expectations for Palladio.
PCMExpectationTrace stores the trace consisting of a sequence of ex-

pectations. It is the result of customizing ExpectationTrace. The single
steps are linked via the pcmExpectations containment.

The PCMExpectation models a single expectation. It must be special-
ized through subclasses for the different types of expectations. For Palladio,
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.21.: Sequence validation failure notices for Palladio

these are the actions representing expected behavior and parameter modifi-
cations.
PCMActionExpectation models the expectation of a single action. The

action is linked via the action reference. Palladio has actions, which allow
forking synchronized and asynchronous threads. Currently, this behavior
is limited to ForkAction instances. The expectation trace for each of the
forked threads is linked via the forkedExpectationTraces containment.
PCMVariableModification models the modification of a Palladio var-

iable. The fully qualified name of the variable including its namespace
must be provided via the qualifiedName attribute. If it is an unnamed
variable then the qualified name must be empty. The value of each vari-
able is described in the Palladio way by providing characterizations of the
value. These are stored via the modifiedVariableCharacterization

containment.
The ModifiedVariableCharacterization models the characteriza-

tion for a single characterization type of a variable. It reuses the Variable-
Characterization by inheritance but still supports other containment re-
lations.

Figure 6.21 shows the elements for validation failure notices regarding
the specified behavior sequence.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.22.: Call validation failure notices for Palladio

The PCMSequenceVFN describes the deviation between the last and ex-
pected action on the one hand and the (unexpectedly) observed action on the
other hand. It is the result of customizing SequenceVFN. Last and expected
action are linked via the lastAction and expectedAction references. If
there is no last action, for example because the overall first action is ex-
pected, the expected action reference is not used. If there is no expected
action, for example because the overall last action in the behavior specifi-
cation was successfully visited, the last action reference is not used. The
unexpectedly observed action is linked via the observedAction reference.
It is a direct reference to the action as there is by definition no expectation.
If there is an expected action but none is observed, for example because the
implementation ends processing, the observed action reference is not used.

Figure 6.22 shows the elements for validation failure notices regarding
calls and their parameters.
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PCMCallVFN models a failure relating to a call and its call parameters
and is the result of customizing CallVFN for Palladio specifications. The
position in the specification during validation can be referenced via the
whileInAction reference. This aids in identifying the fault, especially
of grave differences between specification and implementation. The de-
scription of failures for each of the parameters is linked via the pcmCall-

ParameterFailures containment. It is empty if there are no call param-
eter failures. If the number of expected and observed calls for a type does
not match this failure is described via the pcmNumberOfCallsFailure

containment. This is an abstract element and must be customized for the
different call types of Palladio. This customization is described at the end
of this section.
PCMCallParameterFailure models a failure for the value of a single

call parameter. The information on the error for this variable is described
in the Palladio way by providing information on the error of the characteri-
zations of the value. The information on the error for each characterization
is linked via the characterizationFailures containment. This is an
abstract element and must be customized for the different parameter types
of Palladio. This customization is described together with figure 6.23 later
in this section.
PCMCPCharacterizationFailure provides information on the error

of the failure of a single characterization of a Palladio parameter. The
expected characterization value is stored via the expected attribute in
form of a stochastic expression’s specification (see section 2.4). The ob-
served characterization value is stored via the observed attribute in form
of a stochastic expression’s specification. The characterization type its
stored via the characterizationType attribute. The qualified name
including the namespace is stored via the hierarchicalName attribute.
The stipulated precision which makes the error a failure is linked via the
requiredElementPrecision reference.
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.23.: Call parameter failure types for Palladio

PCMNumberOfCallsFailure provides information on the error of fail-
ures, where the number of expected and observed calls for a type doesn’t
match. The expected number of calls is stored via the expected attribute
in form of a stochastic expression’s specification (see section 2.4). The
observed number of calls is stored via the observed attribute in form of a
stochastic expression’s specification. The stipulated precision which makes
the error a failure is linked via the requiredElementPrecision refer-
ence.

Figure 6.23 shows the customized elements for the parameter types
which can lead to a call parameter failure.
PCMIncomingParameterFailure models the parameter type which is

part of the signature of interfaces and is provided as input for an operation
or resource access. The parameter is linked via the parameter reference.
PCMOutgoingParameterFailure models the parameter type which is

returned by business operations as part of their signature. Palladio provides
exactly one implicit parameter per signature. This parameter is linked via
the operationSignature reference.

Figure 6.24 shows the customized elements for the call types, which can
lead to call validation failure notices.
PCMBusinessCallVFN models calls to business signatures. They can

only be specified using ExternalCallAction elements. This action is
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Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.24.: Validation failure notices for the different call types of Palladio

linked via the expectedExternalCallAction reference. If there is only
an observation but no stated expectation then no action is linked.
PCMInfrastructureCallVFN models calls to infrastructure signatures.

They can only be specified using InfrastructureCall elements. The
corresponding element is linked via the expectedInfrastructureCall

reference. It is only referenced if there is no stated expectation but an ob-
servation.
PCMResourceCallVFN models calls to resources using explicit inter-

faces. They can only be specified using ResourceCall elements. The cor-
responding element is linked via the expectedResourceCall reference.
It is only referenced if there is no stated expectation but an observation.
PCMResourceDemandVFN models calls to resources using implicit in-

terfaces. They can only be specified using ParametricResourceDemand

elements. The corresponding element is linked via the expectedParame-
tricResourceDemand reference. It is only referenced if there is no stated
expectation but an observation.

236



6.6. Tooling

Fully qualified names are provided for external elements. Palladio elements are additionally
shown in khaki.

Figure 6.25.: Probability validation failure notices for Palladio

Figure 6.25 shows the elements for validation failure notices regarding
decision probabilities.
PCMDecisionProbabilityVFN models a failure relating to a branching

probability and is the result of customizing ProbabilityVFN for Palla-
dio specifications. The transition with the invalid branchProbability

is referenced via the probabilisticBranchTransition. The sample
size used for the validation is provided via the numberBranchVisited at-
tribute. The statistic for the visits to the transition itself is provided via the
numberTransitionVisited attribute. The lower and upper acceptance
thresholds for the statistic are provided via the lowerAcceptanceThre-

shold and upperAcceptanceThreshold attributes.

6.6. Tooling

This section provides an overview on the validation framework developed
in this thesis. The framework can be downloaded as eclipse feature from an
update site as described on the corresponding web page [Gro13c]. A tai-
lored framework is required to take into account the execution semantics of
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specification elements and enable comparisons between specification and
implementation with respect to the provided accuracy statements.

Existing tools for model-based testing and test value generation based
on coverage criteria have limited support for specifications containing both,
probabilistic and parametric, dependencies. They have their own specifica-
tion languages with tailored criteria. Palladio specifications can be mapped
and applied to these tools but their criteria and meaning of coverage are not
necessarily good matches for Palladio specifications. A case study demon-
strating the mapping of Palladio specifications and using built-in criteria
with the tool Conformiq Designer is provided by Ernst in [Ern11]. The
results show that the tool does not support test case generation for the prob-
abilistic control-flow elements of Palladio and the generated test cases can-
not be executed on such specifications.

Figure 6.26 shows the code packages of the core of the validation frame-
work including the management functionality for the packages. The struc-
ture and mapping of the packages to the activities of the validation process
(see section 6.2) is provided in the following.

The packages are grouped according to their functionality. The de.fzi.
se.validation.testbased package contains the validation framework.
It is controlled via the ValidationManager. The functionality of this and
the other control elements is explained later in combination with the map-
ping to the process. The package execution contains everything related to
the execution of the implementation. It is controlled via the OUTManager

and controls the measurements of the ByCounter framework (see also the
description at the beginning of section 6.2). The package expectation

contains everything related to specification execution. It is controlled via
the ExpectationManager. The package parameters contains everything
related to parameter conversion and generation between the specification
language and the implementation. The package conversion contains ev-
erything related to parameter conversion. The conversion is controlled via
the VariableConversionManager. The package generation contains
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everything related to goal-oriented parameter value generation. It is con-
trolled via the SampleManager. The package tests contains jUnit test
cases. They ensure that the validation framework works correctly and are
used for regression testing. The package util contains utility and conve-
nience functions.

The first action of the process, create default RunProtocol, is re-
alized by the method createRunProtocol of the ValidationManager.
It requires the quality of the validation, the stipulated accuracy of the spec-
ification, and the links between specification and implementation as in-
put. The method returns the corresponding Prepared RunProtocol. The
main validation loop and the subsequent activities record stop time

and update protocol are coordinated by the method validate of the
ValidationManager. It requires a Prepared Run Protocol, adds the
validation information to the run protocol. The final RunProtocol is avail-
able after the method execution is finished.

The loop initialization partition maps as follows. The instrument activ-
ity maps to the method instrument of the OUTManager. The initialization
of the parameter value generation strategies of the activity initialize

strategies is controlled by the method validate of the Validation-

Manager. It delegates the generation strategy to the method createAnd-

Register of the SampleManager. The decision check influence

analysis type is again controlled by the method validate. The activ-
ity instantiate maps to the method instantiate of the OUTManager.
The activity record start time is again controlled by the method val-

idate.
The loop condition partition maps as follows. The decision TestExecu-

tionStopStrategy: check condition and resulting loop iteration or
exit is controlled by the method validate of the ValidationManager.

The body of the loop maps as follows and is controlled by the method
simulateAndValidate of the ExpectationManager. The decision
check influence analysis type is part of the method. It uses the

239



Accuracy Statement Validation

method instantiate of the OUTManger if the activity instantiate

is executed. The activity initialize component maps to the method
setObjectParameters of the OUTManager. It is responsible to set the
component parameters of the deployed component instance according to
the testes specification parameters. This uses the conversion functionality
provided by VariableConversionManager. The activity execute and

validate test case maps to the method execute of the OUTManager.
The call parameters are sampled according to the parameter value gener-
ation strategy. Samples are drawn using the method getSample of the
SampleManager. The ExpectationManager reacts on the measured be-
havior of the implementation and validates it at runtime. Calls from the im-
plementation to required components are mocked. Return values of these
calls which may influence the behavior of the implementation are sampled
using the method getSample of the SampleManager. The method’s pa-
rameters allow the distinct identification of all calls regardless of their ori-
gin. Origins can vary in the issuing threads, actions, and targeted operation
of the required interfaces.

After the validation loop, the activities record stop time and update
protocol ensure that the required validation time is properly recorded,
the protocol states the correct result, and that the protocol is in a consis-
tent state. These activities are controlled by the method validate of the
ValidationManager. The activity store protocol is realized in the
tests package containing the jUnit regression tests. The protocol and ref-
erenced models are bundled and stored together for easy access and assess-
ment.

Validating arbitrary specifications requires the conversion of custom
data types used in the implementation or specification. The conversion
itself is realized by the VariableConversionManager. Implementa-
tion data types are converted to specification data types using the method
convert(Object). Specification data types are converted using the me-
thod convert(String, PCMParameterValue). The data type in the
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implementation must be provided by its fully qualified textual name. The
textual representation is used as decoupling technique. It allows measuring
the overhead of data type handling in the implementation. The implementa-
tion data type itself must be provided as the same specification data type can
be converted to different implementation data types. The list of available
converters is provided via the REGISTERED_CONVERTER_CLASSES list. It
consists of the fully qualified names of the converters. Again, this decou-
pling allows taking into account their impact on the performance. The
VariableConversionManagerImpl instantiates instrumented versions
within the measurement framework. New converters can be provided and
added to the converter list programmatically. The converters must provide
a default constructor and implement the interface VariableConverter.
The method getSupportedTypes provides a list of qualified names of the
implementation data types supported by the converter. The method build-
From(PCMParameterValue) must provide an instance of the implementa-
tion data type based on the given parameter. The method buildFrom(Ob-

ject) must provide a specification data type based on the given implemen-
tation data type instance.

Figure 6.27 shows the code packages related to the coverage criteria.
The package de.fzi.se.validation.effort contains the effort es-

timation algorithms for the coverage criteria, which were presented in sec-
tion 6.3.2. The estimations are loosely coupled to the validation. They
are available in a standalone fashion. This separation allows criteria se-
lection and effort estimation even without the validation framework in
the background. New estimation algorithms can be provided using the
extension point mechanism of eclipse. The existing algorithms are imple-
mented as QVTO transformations. They are contained in the qvtoscripts
package. QVTO-based estimations are supported by the abstract class
AbstractEstimateQVTO, which provides convenient access to the se-
lected specification. The algorithms must be registered at the extension
point with the ID de.fzi.se.validation.effort.estimation and
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implement the interface IEstimator. This interface provides program-
matic access to configuration options via the method buildAndSetCus-

tomConfiguration. This solution supports arbitrary criterion-specific
configuration options. The human readable name for the criterion is avail-
able via the method getCriterionName. The estimation is requested via
the method getEstimation.

The package de.fzi.se.pcmcoverage contains coverage requirement
information for Palladio specifications. Coverage requirements are the re-
sult of applying a coverage criterion on a specification. They state the el-
ements and the sequence in which they must be covered for that particular
specification. The achieved coverage of a validation run for each require-
ment can be stored and visualized. The package criteria contains the
algorithms to create the coverage requirements. The package ui contains
the visualization of fulfilled requirements. The package example contains
an example demonstrating coverage requirements and their visualization.
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de.fzi.se.validation.testbased

execution

expectation util

parameter

conversion

generation

+createRunProtocol(TBValidationQuality, QualityAnnotation, LinkRepository) : RunProtocol

+validate(RunProtocol)

ValidationManager

+instrument(RunProtocol)

+instantiate()

+setObjectParameters(List<ParameterInstance>)

+execute(List<ParameterInstance>)

OUTManager

+simulateAndValidate()

ExpectationManager

+convert(Object) : PCMParameterValue

+convert(String, PCMParameterValue) : Object

+REGISTERED_CONVERTER_CLASSES : List<String>

VariableConversionManager

+getSupportedTypes() : List<String>

+buildFrom(PCMParameterValue) : Object

+buildFrom(Object): PCMParameterValue

VariableConverter

+createAndRegister(QualityAnnotation, TBValidationQuality)

+getSample(Long, AbstractAction, PCMParameterReference) : ParameterInstance

SampleManager

VariableConversionManagerImpl

tests

Figure 6.26.: Code Packages and Managers of the Validation Framework
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de.fzi.se.pcmcoverage

criteria ui example

de.fzi.se.validation.effort

qvtoscripts

+getEstimation() : EffortEstimationResult

+getCriterionName() : String

+buildAndSetCustomConfiguration(ILaunchConfiguration)

IEstimator

Figure 6.27.: Code Packages for Managing the Coverage Criteria for Palladio
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7. Specification Certification

This chapter demonstrates how product certification ensures the trustwor-
thiness of performance specifications. The trust in specifications and their
accuracy varies depending on the roles and parties participating in compo-
nent and system development. Personal or professional relations to creators
of specifications and accuracy statements influence appropriate measures
for ensuring trust. This chapter shows appropriate measures and their se-
lection for different application scenarios.

Product certification (see also section 1.3.4) for performance specifica-
tions is about the confirmation that a given specification with its accuracy
statements match the behavior of an implementation. Therefore, the cer-
tificate defines which aspects have been validated to which extent. The
certificate defined in this thesis (see section 7.2.2) uses the validation and
coverage criteria presented in chapter 6 and the accuracy statements pre-
sented in chapter 4. The certificate takes into account graduations of the
quality of the validation including the covered aspects and the thorough-
ness of the validation itself.

The certified specifications allow the sound and trustworthy evaluation
and selection of components on the architecture level for an envisioned sys-
tem purely on the base of the specifications and their accuracy statements.
Without the presented approach, component evaluation required sharing the
implementation in order to assess the quality characteristics of components
and their effect on the envisioned system. This need for sharing the imple-
mentation for evaluation purposes transferred contained knowledge and IP,
for example efficient algorithms and their implementations. The presented
certification approach allows to keep knowledge and IP to the component
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owner until a final acquisition decision has been made. The confidential-
ity is kept by design and not by complex contracts with regulations and
penalties. The certified specifications and their accuracy statements can be
distributed freely. This distribution speeds up the evaluation process and
requires less contract negotiations without hampering the value for evalua-
tions.

Product certification must be embedded into the component-based devel-
opment processes used by software engineers for a successful application.
This chapter describes how certification of performance specifications can
be integrated into own component-based development processes. The de-
fined development process roles point out responsibilities and make the
required collaboration explicit. The different roles can span several inde-
pendent parties. The integration of certification is demonstrated for the
Palladio reference development process described in [RBB+11a]. The tai-
lored process is applicable for top-down, bottom-up, and combined devel-
opment approaches. The development can be restricted to one company
or span different companies. The certificates can be used in conjunction
with component repositories or on marketplaces. Software engineers gain
instructions and an application example, which allows tailoring their own
used component-based development processes.

Certificates can be issued by different parties within a component-based
development process. As mentioned above, the relation of the parties and
their mutual trust plays an important role for trusting issued certificates.
The level of trust between the participating parties determines the effort
spent to ensure that the specifications and accuracy statements are sound.
The assignment of the issuing party therefore affects the evaluation effort
and distribution of effort between the parties. The different application
scenarios are pointed out and a guideline is provided, which allows to se-
lect an appropriate assignment and compare it with assignment alternatives.
The guideline points out the evaluation effort share of potential component
integrators. This share allows reasoning about the attractiveness of the of-
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fered component for Component Integrators caused by the necessary
evaluation effort. This information is the basis for justified and objective
assignment decisions.

The presented work transfers the concept of re-use from components and
their implementation to the validation of performance specifications of such
components. The maturity of prediction approaches is elevated as the re-use
of specifications in different systems and contexts is eased. They can be ap-
plied on a broader scale without endangering the quality characteristics of
the composed systems or engineering principles. The maturity of Palladio
is elevated as the risks are reduced for sound predictions in scenarios with
multiple parties and use of marketplaces. The presented work addresses the
scientific challenge of certification criteria formulation by defining a per-
formance specification certificate based on the accuracy statements valida-
tion meta-model. The workflow for performance specification certification
for repositories and marketplaces is addressed by showing the integration
of certification in development processes. The adapted component-based
development process is addressed by demonstrating the integration of the
workflow for the Palladio reference development process.

The certificate defined in this chapter supports performance engineering
on the architecture level. It is usable in scenarios with cross-party com-
ponent (re-)use and component storage in repositories or marketplaces.
The soundness of decisions is ensured by trustworthy specifications and
quality statements. The certificate eases the assessment of covered aspects
and thoroughness of the specification and accuracy statement assessments.
Software engineers have a tool at their disposal, which allows integrating
certification and quality assurance for performance specifications in their
used component-based development process.

This chapter is structured as follows. Section 7.1 shows the generic
workflow for certified specifications, which is a basis for tailoring own de-
velopment processes. It furthermore provides the guideline on selecting
the certificate issuing party including an evaluation effort overview for dif-
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ferent application scenarios. Section 7.2 demonstrates the integration of
certification into the Palladio reference development process and defines a
certificate for Palladio.

7.1. Product Certification Process Integration

This section introduces the generic workflow steps and development pro-
cess roles, which are required to integrate specification certification into
own component-based development processes. The steps and roles are in-
troduced in section 7.1. The role responsible for evaluating and certify-
ing the specification and according accuracy statements can be assigned
to different parties participating in component development and use. The
assignment choices are narrowed down by ensuring trust in the targeted
application scenario and provide different advantages and disadvantages.
The inherent trade-off decisions are shown and discussed in section 7.1.2.

7.1.1. Integrating Specification Certification into Development
Processes

This section provides details on the necessary workflows steps and devel-
opment process roles for integrating specification certification into own
component-based development processes. This development process ag-
nostic part has been published previously in [Gro12c].

The roles and workflow steps are explained in the following and depicted
using UML activity diagrams. The necessary knowledge for the different
roles and possible interactions are pointed out. The description uses the
Proficiency Levels defined in the Architecture Skills Framework of The
Open Group Architecture Framework (TOGAF) in [Ope11]. The levels
are additionally depicted in table 7.1. The presentation and structure for
defining the proficiency levels of the skills desirable by the roles is oriented
at the TOGAF Version 9.1.
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Table 7.1.: Proficiency Levels as Defined in the Architecture Skills Framework
[Ope11]

Level Achievement Description
1 Background Not a required skill, though should be able to

define and manage skill if required.
2 Awareness Understands the background, issues, and im-

plications sufficiently to be able to understand
how to proceed further and advise client ac-
cordingly.

3 Knowledge Detailed knowledge of subject area and capa-
ble of providing professional advice and guid-
ance. Ability to integrate capability into archi-
tecture design.

4 Expert Extensive and substantial practical experience
and applied knowledge on the subject.

This thesis defines the Performance Engineering Skills for spec-
ification certification as follows. The skill Performance Modeling is
about creating performance specifications for implementations. The skill
Accuracy Statements is about creating accuracy statements and the po-
tential calibration of the statements according to the current level of ab-
straction. The skill Validation and Verification is about testing and
ensuring accuracy statements for a specification in a systematic and goal-
oriented way. The description focusses on these skills and does not discuss
other relevant software development skills. The skills for each role are pre-
sented in combination with the description of the role and its interaction
with the development process.

The Component Supplier role is responsible for the development and
sharing of the component. The role needs Expert proficiency in Perfor-

mance Engineering in order to create a performance specification for
the developed component. The role must have substantial practical expe-
rience in creating performance models in order to create and handle the
performance model. The role needs Knowledge proficiency in Accuracy
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Figure 7.1.: Component Supplier Key Activity Realize

Statements in order to create accuracy statements for the performance
model. There must be detailed knowledge about the quality of performance
specifications but limited practical experience is sufficient. The role can use
white-box information and experience from the development or experience
in the component’s domain to create the model and statements. The roles
needs Awareness proficiency in Validation and Verification in or-
der to ensure that the model and accuracy statements match the behavior of
the implementation. The role must know about validation and verification
but it is sufficient if it is applied for the developed component and its con-
text. The role can use a constructive approach and own knowledge about
the domain and does not require a strong skeptical view point on the model
and statements. If no architecture level reasoning is used then this role does
not need any proficiencies in Performance Engineering Skills. The
role is responsible for the two key activities realize and share. They are
described in the following.

The key activity realizemodels the development including the possible
initial creation and maintenance of the component. The activity is depicted
in figure 7.1. The activity consists of the activities develop and maintain.

In the activity develop, the implementation for the component is aug-
mented or adapted according to the Change Request. The development
of a new implementation for an envisioned component is also regarded as
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Figure 7.2.: Component Supplier Key Activity Share

a (big) Change Request. After the development, the Implementation

of the component, the Specification of the performance model, the
corresponding Accuracy Statements, and Assisting Information is
available. The Assisting Information provides additional details on
the mapping between the performance model and the implementation or
how the accuracy statements have been created or tested. This information
is not necessary in order to use the component or performance specification
but can ease the certification.

In the activity maintain, feedback on the implemented component,
its performance specification and accuracy statements is gathered and re-
viewed. If some of the artifacts should be modified then a Change Re-

quest is created. If the maintenance of the component should end with-
out changes than the control flow leaves the realize activity after the
change? decision node.

The key activity share models sharing the different possible artifacts be-
fore acquisition between the Component Supplier and other participat-
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ing roles. The activity is depicted in figure 7.2. The Component Supplier

must decide, which artifacts should be provided. The guideline presented
in chapter 7.1.2 eases making these decisions.

If the implementation should be available freely without restrictions
then the implementation is always shared. This sharing is modeled with the
share Implementation activity. If certification is used and the Compo-

nent Certifier roles is assigned to the same party as the Component

Integrator then Assisting Information should accompany the im-
plementation. This is modeled with the share Assisting Information

activity and eases the certification and required effort.
If the Specification or performance model should be available then it

is always shared. This sharing is modeled with the share Specification

activity. If Accuracy Statements for the Specification should be
provided then they are always shared. This sharing is modeled with the
share Accuracy Statements activity. If certification is used and the
Component Certifier is assigned to the same party as the Component

Supplier or an Independent Third Party then the certificate for the
accuracy statements and the specification is shared. This sharing is mod-
eled with the share Certificate activity. The sharing of artifacts ends
if one of the artifacts should not longer be shared.

The Component Certifier role is responsible for the certification it-
self and for verifying the validity of issued certificates. The role needs
Knowledge proficiency in Performance Engineering. Detailed knowl-
edge about the performance specification language and possible pitfalls or
modeling alternatives is required but it does not have to be extensive and
substantial. The role need Expert proficiency in Accuracy Statements

in order to assess the validity of accuracy statements. Substantial practi-
cal experience and applied knowledge is based for efficiency assessments.
The role needs Expert proficiency in Validation and Verification

for assessing the correctness of provided accuracy statements and specifi-
cation and implementation. Extensive and substantial practical experience
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Figure 7.3.: Component Certifier Key Activities

is required for a thorough and goal-oriented assessment leading to issuing
a certificate. If no architecture level reasoning is used then this role is omit-
ted. It does not need any proficiencies in Performance Engineering

Skills.The roles is responsible for the two key activities certify and
verify. They are described in the following.

The key activity certify models the certification of a given specifica-
tion, accuracy statements, and implementation of a component. The activity
is depicted in figure 7.3. The activity consists of the activities evaluate
Accuracy, issue Certificate, and report Failures.

In the activity evaluate Accuracy, the given Specification and
Accuracy Statements are verified with respect to the given Implemen-

tation optionally using Assisting Information. The role scrutinizes
the available Additional Information if it poses a danger for the ver-
ification. The Accuracy Statements are assessed and evaluated in an
objective and goal-oriented way. The goals are provided by the definition
of the certificate. A test suite is used to evaluate the correctness of the state-
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ments. The verification adheres to the PECT development process defined
by Hissam et al. in [HMSW02] and presented in section 3.3. The result
after running the test suite is a list of Evaluation Failures or the asser-
tion of the validity of the provided statements. The decision node valid?

models the decision depending on this validity.
In the activity issue Certificate, the certificate for the given Accu-

racy Statements and Implementation is created. The Specifica-

tion is included as it is referenced from the Accuracy Statements. The
Accuracy Statements contain an additional checksum allowing to check
if a Specification and given Accuracy Statements belong together.
This eases the validation if the specifications are merged and composed
into a single system. A fingerprint of the Implementation used in the
certification must be stored in the certificate as well. This allows checking
if an appropriate Implementation is provided after acquisition for an is-
sued Certificate. The result is the Certificate. The authenticity of
the Certificate can be ensured by digital signatures and a Public Key
Infrastructure (PKI), for example by using the OpenPGP Message Format
[CCD+07].

In the activity report Failures, the failures occurred during the eval-
uation are processed and reported to the role requesting the certificate. Ad-
ditional information on alternatives for preventing the failures with chan-
ges to the Specification or Accuracy Statements can be provided
together with the Feedback. The processed Evaluation Failures are
reported as Feedback and potential change Requests.

The key activity verifymodels the verification of a given Certificate
and Implementation of a component. The activity is depicted in figure
7.3. The authenticity of the Certificate and the issuing party can be
checked using digital signatures and a PKI. The activity allows to check if
a Certificate and the contained Accuracy Statements were certified
using the given Implementation. It can also be used to check if there
was an Implementation at the time of certification. This means that the
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statements and specification can be used for reasoning on the architecture
level and that a fitting implementation can be acquired. The fingerprint of
the Implementation can be provided, if necessary, by means of a hash
value of an archive containing the implementation. This allows protecting
the IP and verifying the certificate. The Validity Statement provides
information on the validity of the given information or verification failures.

The Component Integrator role is responsible for the selection and
integration of components into an envisioned system. The role needs
Awareness proficiency in Performance Modeling. The role must be
aware of the general features of performance modeling and able to inter-
pret if using models is applicable and helpful in the given situation. It does
not require detailed knowledge on model creation or the ability to guide
and consult others on performance modeling. The role needs Awareness
proficiency in Accuracy Statements. The role must be aware of the lim-
itations and able to interpret the implications of given accuracy statements.
The role does not have to change or improve accuracy statements but should
be able to make what-if analyses. The role must reason on component se-
lection and the degree of fulfillment of quality requirements for the envi-
sioned system. The role needs Background proficiency in Validation

and Verification in order to trust the certification. Background knowl-
edge allows judging what is checked during a certification. However, the
result of the certification is important and not the certification process. If
the role does not use Specifications and Accuracy Statements to
reason on the architecture level then it does not require any proficiency in
Performance Modeling and Accuracy Statements but Expert pro-
ficiency in Validation and Verification. The latter is required in
order to make sound decision based on component implementations inte-
grated into complex systems. The role is responsible for the key activity
integrate / update, which is described in the following.

The key activity integrate / update models the selection, integra-
tion and updating of components for an envisioned system. It serves the
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Figure 7.4.: Component Integrator Key Activities

evaluation if a new or updated component is appropriate for the system and
worth the integration effort. The activity is depicted in figure 7.4. It con-
sists of the activities evaluate based on specification, acquire,
evaluate based on implementation, and integrate. These activ-
ities are described in the following. If the decision on component selec-
tion should use evaluations on the architecture level these are made in
the next step. Otherwise, the step is skipped. This is modeled with the
Architecture level evaluation? decision node.

In the activity evaluate based on specification, the role analyses
on the architecture level how the component would influence the behavior
of the envisioned system. This requires the performance Specification

and should be accompanied by Accuracy Statements, a Certificate,
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Table 7.2.: Performance Engineering Skills Overview for Roles

Notation: with / without use of architecture level evaluations.

Roles Component
Supplier

Component
Certifier

Component
Integrator

Performance Engineering Skills
Performance Modeling 4 / - 3 / - 2 / -

Accuracy Statements 3 / - 4 / - 2 / -
Validation and Verification 2 / - 4 / - 1 / 4

and the Validity Statement as verification result. If the component is
not suitable and selected for the system then the integration is finished. This
is modeled with the suitable? decision node. If the component is suitable
then the integration continues on the implementation level.

In the activity acquire, the implementation is acquired from the Compo-
nent Supplier. This may range from creating and using customized
contracts to downloading a freely available source code archive. A pro-
vided Implementation is verified to match the provided Certificate,
Specification, and Accuracy Statements. This verification results in
the Validity Statement. This part can be skipped if there was no eval-
uation on the architecture level. The result and output is the Implementa-
tion corresponding to the provided Specification and Accuracy

Statements.
In the activity evaluate based on implementation, the component

is prototypically integrated into the system and the properties of the system
are evaluated. This evaluation can require a lot of effort if there was no
evaluation on the architecture level in order to ensure quality properties of
the system in a sound way. If the component is not suitable then the integra-
tion is finished. Otherwise, the control flow continues with the integrate
activity. This is modeled with the suitable? decision node.

In the activity integrate, the component is finally fully integrated and
embedded into the envisioned system.

257



Specification Certification

:Component 

Supplier

:Component 

Certifier

:Component 

Integrator

develop

certify

maintain

share

integrate

verify

evaluate

based on

specification

acquire

evaluate

based on

implementation

integrate

verify

:Marketplace

Figure 7.5.: Workflow Steps Interaction Application Example

The presented Performance Engineering Skills definitions for the
different roles are summarized in table 7.2.

An example for the interaction between the roles and their workflow
steps is provided in figure 7.5. A Component Supplier starts to develop

a component. The component and developed performance specifications
and accuracy statements are sent to the Component Certifier. The
Component Certifier checks and certifies the provided information suc-
cessfully. The Component Supplier continues with the maintenance

activity and shares the component using a Marketplace. The implemen-
tation is not shared freely. It is transferred after contracting and acquisition
directly between Component Supplier and Component Integrator.
The certificate is additionally used to demonstrate that the Component

Supplier cares about performance and is able to create accurate specifica-
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tions. An interested Component Integrator can get the Specification
and Accuracy Statements from the Component Supplier directly or
from the Marketplace. The Component Integrator gets the informa-
tion for architecture level evaluations from the Marketplace and veri-

fies the certificate. The evaluation is successful. The Component Inte-

grator acquires the implementation from the Component Supplier

and verifies that it matches the information used for the evaluation.
The evaluation continues on the implementation level. The evaluation is
successful and the component is finally integrated into the system of the
Component Integrator.

This section introduced the three different Performance Engineering

Skills and the necessary certification process roles Component Sup-

plier, Component Certifier, and Component Integrator. The nec-
essary skills for each roles were defined and explained. Workflow steps
for the different roles were described in detail an an application example
showed their possible interaction in a marketplace scenario. The work-
flow steps are a basis for integrating certification into own development
processes.

7.1.2. Certifier Party Selection

This section presents the guideline for selecting the certificate issuing party
while maintaining trust in the certificate. It points out the different applica-
tion scenarios and corresponding evaluation effort distribution for the par-
ticipating roles. The guideline has been published previously in [Gro12c].
It supports the identification of possible alternatives and shows assignment
consequences. The consequences allow reasoning about the attractiveness
of an offered component for other parties and for making justified trade-off
decisions. The value of specification and accuracy statement certification
should be considered separately for each quality characteristic. The infor-
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mation provided in this section is also valid for quality characteristics other
than performance.

The issuer of a certificate must be trusted in order to take advantage of
certification. The issue with trust, as Meyer pointed out in [MMS98], is
that it is very subjective and hard to state in general. For the presented
process integration, the main influence on trust is the trust relation between
Component Supplier and Component Integrator. A component can
be integrated by more than one Component Integrator, for example if
it is distributed via marketplaces. The trust relationship is considered indi-
vidually for each possible Component Integrator.

In theory, the Component Certifier can be combined with the party
of the Component Supplier or the Component Integrator, it can be
assigned to an independent third party, or it can be omitted if no certification
is used.

If the Component Supplier self-certifies the specification then a con-
flict of interest is likely as the Component Supplier may be interested
in providing whitewashed information. The implementation remains at the
party of the Component Supplier only for the first alternative. It must be
shared temporarily with the independent third party in the second alterna-
tive.

If an independent third party is responsible for certification then Compo-

nent Supplier and Component Integrator have to trust this party in
order to realize the advantages. The independent Component Certifier

should only use necessary information for the certification in order to en-
sure the correctness of the evaluation result.

If Component Integrator and Component Certifier belong to the
same party then it is assumed that the Component Supplier assists in
the specification and accuracy statement certification by providing test
suites and/or links between implementation and specification. This assist-
ing information eases the evaluation if the specification and given accuracy
statements are correct for the provided tests. In this case, the Component
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Integrator does not need to infer a specification and according accuracy
statements in order to use architecture-level prediction approaches.

The alternative without a certificate of the specification and accuracy
statements does not require an issuing party or information assisting in the
certification.

The trust in a certificate is also affected by the characteristics of the avail-
able and applied assessment tools and techniques. For example, security
assessments of components according to standards like the Common Cri-
teria [Comer] usually require manual inspections and automated support is
limited. Automation does not only speed up assessments but also ensures
objectivity and reproduces the same results. The accuracy statement va-
lidation approach presented in chapter 6 is such an automated tool. This
kind of trust in a certificate is strongly connected with the definition of the
certificate itself. It is not affected by the assignment of the Component

Certifier as long as the person having the certifier role can apply the
tool or technique correctly.

In general, Component Supplier and Component Certifier require
the evaluation effort once per release of the component. If Component
Supplier and Component Certifier belong to the same party then they can
re-use information and benefit from synergy effects. The Component

Integrator requires the evaluation effort each time a new released com-
ponent is assessed for acquisition. If the Component Integrator uses
the specification in the envisioned system outside of its provided accuracy
statements then corresponding accuracy statements must be evaluated and
certified.

The need for taking into account the effort was also identified by Over-
hage and Thomas in [OT04]. They identified that:

Although component testing may well be an integral part of
the suitability assessment process, it should not primarily be
used to determine component characteristics, but rather to val-
idate them - otherwise, the total assessment costs will quickly
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exceed any savings that are achieved by component reuse and
COTS (commercial-off-the-shelf) based software engineering
in general is likely to fail. [OT04]

The following guideline shows the different alternatives and how this issue
can be taken into account.

The assignment on the issuing party on the Component Suppliers side
requires a trade off between the need to keep knowledge and IP to the
Component Supplier until a final acquisition decision is made, the eval-
uation effort and attractiveness for Component Integrators , and the
competitive advantage of demonstrating the quality characteristic manage-
ment capabilities by providing specifications and accuracy statements.

The application scenario of certification depends on the availability of
accuracy statements, implementation and the mutual trust between Compo-

nent Supplier and Component Integrator. Using a specification
without accuracy statements increases the risks for acquisition decisions
but matches the current practice in industry. The implementation can ei-
ther be freely available or protected by the Component Supplier until
an acquisition decision is made and contracts are signed. Specifications
and accuracy statements are values for freely available implementations as
well as they allow decision making on the architecture-level and can reduce
the evaluation effort. The mutual trust between Component Supplier an
Component Integrator can either be weak or strong.

The guideline consists of a two step selection process for the assignment.
First, the application scenario is narrowed down. Second, the trade-off for
evaluation effort distribution is considered and the issuing party assigned.
The guideline is shown in table 7.3. The thorough evaluation and certi-
fication of a specification and its accuracy statements is assumed to take
increase effort. The shift of the evaluation effort is discussed in the follow-
ing.

Independent third party certification requires a thorough validation by
the Component Certifier, which restricts reusing information created
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by the Component Supplier. The Component Supplier must prepare
the certification but does not need to execute it himself. This involves only
moderate effort. Component Integrators can trust the specification and
accuracy statements and do not require own evaluation effort.

Self certification allows information reuse as Component Supplier and
Component Certifier are at the same party. Their white-box knowledge
on the component and eases the identifying and addressing potential accu-
racy deviation risks. If there is only weak mutual trust then the accuracy
statements should be ensured by a test sample requiring low effort at the
Component Integrator. Otherwise, the Component Integrator does
not need evaluation effort.

Assisted certification requires a thorough evaluation of specification and
accuracy statements by the Component Supplier. The information as-
sisting in checking the correctness of the accuracy statement must be ad-
ditionally provided. Overall, increased evaluation effort is required. If the
Component Integrator does not trust the provided specification and ac-
curacy statements then using the assisting information for an own eval-
uation requires moderate effort. If there is mutual trust, the Component

Integrator does not need to spend evaluation effort.
Without certificates, the Component Integrator must spend at least

increased evaluation effort if he does not trust provided the specification
and accuracy statements. The required evaluation effort is high if there
are no accuracy statements available and they must be identified and cre-
ated first. The effort can be very high if there are no accuracy statements
available and there is only weak trust in the correctness of the specification
itself.

This section discussed the trade-offs inherent to assigning certificate is-
suing parties. The presented guideline narrows down the selection for given
application scenarios. Its application allows risk estimation and ensuring
that Component Supplier and Component Integrator trust the pro-
vided specification and accuracy statements.
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7.2. Palladio Specification Certification

This section describes how certification can be integrated with the Palladio
approach. It demonstrates the integration of the generic workflow steps
presented in section 7.1.1 in the Palladio reference development process.
This integration is presented in section 7.2.1. Furthermore, a certificate
for Palladio specifications is defined. The definitions states, which aspects
have to be covered to which extent in order to receive a valid certificate. It
allows users to reasons about the quality of the validation and verification
during the certification and estimate if it is sound enough for their use case.
The definition is provided in section 7.2.2.

7.2.1. Product Certification Aware Palladio Development
Process

This section shows the integration of the generic workflow steps in the Pal-
ladio reference development process. Section 2.5 provides details on the
pre-existing reference development process. The resulting adapted pro-
cess supports certification. This section presents the properties of the pre-
existing process from a certification and validation and verification view-
point. It shows the existing gaps towards integrating certification and adapts
the workflow step from section 7.1 to the process in order to close these
gaps. Finally, it presents the adapted reference process taking into account
certification.

This paragraphs describes the properties of the pre-existing reference
process from a certification and validation and verification viewpoint. The
process has a single Component Repository in which all component im-
plementations and specifications are stored. It does not take into account
that there may be different levels of trust and multiple repositories, which
may contain different descriptive information on the same component. The
QoS Analyst is responsible for assessing the soundness of specifications
(see description about the QoS Analysis workflow in section 2.5). It is
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not described how the QoS Analyst can achieve this, especially if only
specifications are provided by a third party, which is interested in selling
its component instead of its competitors. The process model focusses on
the development and composition of a system and does not distinguish to
which party the persons belong, which have a certain role. As a conse-
quence, the presentation does not support or require the differentiation from
which party a component’s specification or implementation come. There is
no distinguished activity or role suggesting or fostering certification. Over-
all, the pre-existing process assumes a strong trust in specifications in the
repository but provides no explicit means to back this trust.

The integration of specification certification in the reference develop-
ment process is oriented at the order of presentation of roles, workflow
steps and activities in section 7.1. Figures 7.7 to 7.10 show the final version
of the process after all adaptations.

The Component Supplier maps to the roles Software Architect

and Component Developer. The former is responsible for the system
and composition. The latter is responsible for the development of a sin-
gle component. Component Developers can develop components for a
marketplace without a prior request of Software Architects.

The key activity realize and the input artifacts Development Re-

quests and Change Requests are already covered on a more fine granu-
lar scale by explicitly elicited requirements and subsequent design and im-
plementation workflows. The artifacts Implementation and Specifica-

tion map to the artifacts of the same name. New output artifacts are
Accuracy Statements and Assisting Information. Both stem from
the develop activity. The required adaptations are discussed together with
the mapping of that activity.

The activity develop within the key activity realize maps to the
component development share of the Provisioning workflow presented
together with the Specification workflow (see figure 2.14). In or-
der to reduce misunderstanding between the different types of specifica-
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Table 7.4.: Artifact Terms and Operators used in this Chapter and the Process Model

Usage example: a specification artifact containing requirements and functional specifica-
tions is denoted Spec(R,F). If such an artifacts flows between activities always in connec-
tion with an architecture and may flow together with assets then it is denoted Spec(R,F) +
Architecture +| Assets.

Term / Operator Meaning
Spec(R) Requirement specifications.
Spec(F) Functional specifications.
Spec(I) Interface specifications. Also denoted as Interfaces

in the pre-existing process. Interfaces are first class
entities and can exists without components or imple-
mentations using them.

Spec(D) Dependency specifications.
Spec(B) Behavior specifications: denoted as QoS-relevant

information in the pre-existing process and
Specification in section 7.1.1.

Spec(Ac) Accuracy Statements.
Spec(As) Assisting Information.
Architecture Architecture including all available Information on

the specifications of the composed components. Ex-
cludes specifications of the QoS of the environment
and the usage model.

Assets Information on interfaces and components. Includes
all different specification types and the implementa-
tion.

+ Binary operator modeling a mandatory and-relation
of artifacts.

+| Binary operator modeling an optional and-relation of
artifacts.

| Binary operator modeling an exclusive or-relation of
artifacts.
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tion artifacts for a component, the terms and operators presented in ta-
ble 7.4 are used from now on. The mapping requires an extension of the
QoS Property Specification activity. This activity must additionally
process Accuracy Statements and Assisting Information beyond
pure behavior specifications. These type of specifications are strongly
linked with implementations. These artifacts need to be consistent at
the end of a component’s development and multiple steps back and forth
between the activities QoS Property Specification and Component

Implementation are likely. The artifacts must flow in both ways and
be updated accordingly. Hence, the Component Implementation activ-
ity additionally provides Spec(Ac,As) beyond the Implementation +

Spec(R,F,I,D) +| Spec(B) artifacts in the pre-existing process as out-
put.

The activity maintain within the key activity realize maps to the flow
back and forth between the activities and workflows for different process
iterations and phases. The iterations are controlled by the management
instead of the development process and not discussed for the development
process.

The key activity share maps to the artifact flow between the activ-
ity Component Implementation and the Component Repository. The
pre-existing transition does neither allow to respect the availability of the
implementation nor the decisions involved in sharing. Hence, the new ac-
tivity Component Sharing is introduced. It uses the outputs of the ac-
tivity Component Implementation as input. It ensures that the assets
are stored in appropriate repositories or marketplaces. Examples are pro-
vided together with the summary of the adapted process. It provides the
Available Assets for the Component Identification activity of the
Specification workflow instead of the Component Implementation

activity in the pre-existing process. Available Assets denote the as-
sets, which can be accessed by the party identifying components. If that
party can only access public component repositories or marketplaces then
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the assets in protected component repositories of other parties remain un-
available. Figures 7.8 and 7.9 in the summary section further down give an
impression, which information is available in which repository depending
if the implementation is available freely or not. See also the documenta-
tion of the key activity share in section 7.1.1 and the guideline for party
selections including the different decision options in section 7.1.2. The
key activity share allows sharing Certificates. Requesting a certificate
requires the Implementation and according Spec(B,Ac,As). Because
of the strong link of specifications with the implementation the request
for the Certificate is additionally assigned to the activity Component

Implementation. An equally suitable alternative would be an assignment
to the activity QoS Property Specification. The disadvantage of that
alternative is that it is in front of the activity Component Implementation

in the usual control flow. The selected solution adds the possibility to op-
tionally transfer a requested Certificate from the activity Component

Implementation to the activity Component Sharing. The resulting pro-
cess integration including issuing the certificate is described together with
the key activity certify of the Component Certifier later in this sec-
tion.

The Component Certifier can not be mapped to the pre-existing pro-
cess. The role is added.

The key activity certify is added to the process under the name Com-

ponent Certification for the role Component Certifier due consis-
tency with the naming scheme of the pre-existing process. The purpose of
the key activity is described in section 7.1.1 and not repeated at this point.
Its input artifacts are the Implementation, behavior Specification,
Accuracy Statements and Assisting Information. Its output arti-
fact is either the Certificate or the report with the Evaluation Fail-

ures. The activity is connected with the Component Implementation

activity. This is sufficient for certifying that the developed implemen-
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tation and specifications are accurate. The added activity is part of the
Provisioning workflow.

The key activity verify is added to the process under the name Certi-
ficate Verification for the role Component Certifier due to con-
sistency with the naming scheme of the pre-existing process. The purpose
of the key activity is described in section 7.1.1. Its mandatory input artifacts
are the Certificate and the Accuracy Statements. Its optional in-
put artifact is the Implementation. The Implementation allows check-
ing if the supplied implementation was used for the certification or is a
different one. The output artifact is a Validity Statement. The ac-
tivity is connected with the activity Component Identification. This
allows to check for all Available Assets containing Certificates if
the provided Accuracy Statements are valid. The activity is part of the
Specification workflow.

The Component Integrator maps to the Software Architect,
System Deployer, Domain Expert, and QoS Analyst. It involves the
selection of components in the Specification workflow. The involve-
ment continues through the QoS Analysis, Provisioning and Assem-

bly workflows. The final integration decision is in the Test workflow and
includes the verification that the selected component fulfills the require-
ments.

The key activity integrate / update is distributed over the work-
flows listed for the Component Integrator. It addresses the evaluation
and selection of a single component within a system. The aspect of indi-
vidual component selection is contained within activities of the workflows
and mapped directly to the activities. The mapping is discussed for each
activity allowing a better understanding. The input artifacts of the behav-
ior Specifications, the Accuracy Statements, the Certificates,
and Validity Statements are required for certified specification. The
pre-existing process additionally supports system development without be-
havior specifications and certificates. Preserving this property renders all
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input artifacts optional in the general case. Furthermore, the types of assets
for each component can differ even within the same system. For exam-
ple, certificates may suffice for externally supplied components while the
availability of behavior specifications, accuracy statements, and assisting
information is sufficient for self-developed components. The adapted pro-
cess will show the general solution with optional artifacts although the use
of them is highly recommended.

The decision node Architecture level evaluation? maps to not
spending effort or leaving out the activities Interoperability Check

and Certificate Verification in the Specification workflow and
the whole QoS Analysis workflow. The transition can be regarded as
if going directly from the activity Component Specification in the
Specification workflow to the Provisioning workflow. The activ-
ities in the Provisioning workflow do not have to provide behavior
specifications, accuracy statements, assisting information, or certificates.
This information is simply not used in the non-architecture level evalua-
tion case. As a consequence, there is nothing done in the QoS Property

Specification activity, all output artifacts of that activity are optional.
The activity evaluate based on specification maps exactly to

the activities and workflow left out if there is no architecture level evalua-
tion. In the Component Identification activity of the Specification
workflow, the Available Assets containing Certificates are verified.
The certified assets have to contain a behavior Specification, Accuracy
Statements, Certificate, and Validity Statement, which are the
input artifacts of the activity. With this input information, invalid assets can
be identified and excluded from the evaluation and integration into the sys-
tem. If an asset does not contain behavior specifications, their creation can
be initiated from the Component Specification activity as part of the
Provisioning workflow. The evaluation on the architecture level itself
maps to the QoS Analysis workflow. The System Deployer identifies
the necessary environment of the system and allocates the component in-
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stances of the system into the environment. This results in Deployment

Diagrams and the Deployment-Annotated Architecture. The Do-

main Expert analyses the usage of the system in different Scenarios
and provides detailed Usage Models of the system. The QoS Analyst

ensures that behavior specifications exist for all QoS Requirements and
QoS Metrics and metric thresholds are defined based on the Business

Requirements. QoS Analysts integrate the behavior specifications of
composed components and system-external services, the Usage Model,
and the Deployment-Annotated Architecture into an Annotated

Architecture. The soundness of the specifications and their accuracy
is additionally verified in the Component Integration activity of the
Specification workflow if certificates are used. Otherwise, a validation
of the behavior specifications and accuracy statements is necessary. Valida-
tion approaches like the one presented in chapter 6 can be used for this pur-
pose. Assisting information linked with the component in the architecture
can aid this purpose. The Annotated Architecture and Usage Model

describe all influence factors of a system and the QoS of the system can
be evaluated. This system information is combined with information on
QoS Metrics, which allows reasoning about the satisfaction of require-
ments, and transformed into a QoS Evaluation Model. This model is
evaluated in the last activity and the Results for the QoS Metrics are
used by the Software Architect to reason about the architecture in the
Component Identification activity in the Specification workflow.

The decision node suitable? maps to the decision about component
selection and is part of the reasoning on the architecture in the Component
Identification activity in the Specification workflow. If a compo-
nent is not suitable then it is removed from the architecture and further
considerations. Otherwise, it is kept in the architecture.

The activity acquire maps to component acquisitions after make-or-
buy decisions in the Provisioning workflow. In case of a buy-decision,
if a behavior Specification, Accuracy Statements, or Certificate
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have been used for the reasoning then these should be used to request the
fitting implementation. The Implementation, behavior Specification,
and Accuracy Statements can be verified with the activity Certifi-

cate Verification of the Component Certifier. In case of reusing
an own component, it can be directly retrieved from the appropriate repos-
itory. In case of creating a new component, the activities for developing a
new component come into play.

The activity evaluate based on implementation maps to the As-

sembly and Test workflow. The implementation of the components is
assembled and deployed to a test system. The fulfillment of the system’s
requirements is verified by testing in the Test workflow.

The decision node suitable? maps to the decision about component
selection and is part of the reasoning after comparing requirements and
component as well as system properties. As for the pre-existing process,
the test evaluation results are fed back to other workflows. If a compo-
nent is not suitable then it is removed from the architecture. A new ar-
chitecture must be designed and the process continues in the Component

Identification activity in the Specification workflow.
The activity integrate maps to keeping components in the architecture

if their evaluation based on the implementation was successful. They are
integrated and delivered to the customer as part of the Tested System in
the Deployment workflow.

The process taking specification certification into account is shown with
all adaptation in the following. The terms and operators shown in table 7.4
are used instead of the terms and operators of the pre-existing process. Fur-
ther renaming is discussed together with the presented share of the process.

Figure 7.6 shows the adapted process model. The workflow-level is
equal to the pre-existing process. An incorrectly missing artifact flow from
Business Requirements to the QoS Analysis workflow was added.
The Architecture can additionally flow to the Specification work-
flow. This models that the architecture is kept and may be adapted if the
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Figure 7.6.: Process Model Taking Into Account Specification Certification

Table 7.5.: Roles for the Process Taking Into Account Specification Certification

Notation: * marks roles, which are unmodified and inherited from the RUP.

Role
Component Developer
Software Architect
System Deployer
Domain Expert
Component Certifier
Test Engineer*
System Integrator*
Integration Tester*
System Tester*

change from activity is from a later workflow. An example for this situa-
tion is if a component is identified as not suitable in the Test workflow and
needs to be replaced by another one. The roles used in the adapted process
are shown in table 7.5. They have been introduced above or are unmodified
roles from [CD03], which are described in detail in [JBR99].

Figure 7.7 shows the adapted Specification workflow. The Compo-

nent Identification activity can now access all available instead of all
existing assets. The architecture is usually designed in several iterations,
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Figure 7.7.: Specification Workflow Taking Into Account Specification Certification
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which may involve later workflows. Different component selection tech-
niques can be applied, for example based on quality models like in Andreou
and Tziakouris’s approach presented in [AT07], Saaty’s generic Analytic
Hierarchy Process [Saa08], or gap analysis as proposed by [CD03]. The
selection technique is not constrained by the adapted process. The term
(Preliminary) Architecture is used instead of Initial Component

Specs & Architecture in order to reduce misunderstandings and point
out the potential iterative aspect. Interfaces, Signatures, and Spec(B,
Ac) are also part of the architecture. They are additionally shown as arti-
fact flow besides the architecture in the figure to point out, which informa-
tion must be specifically provided for the next activity. The Certificate
Verification is part of the Specification workflow.

Figure 7.7 additionally shows the Provisioning workflow with respect
to the development of new components. The flow of artifacts is more pre-
cise in the adapted version. For example, QoS-relevant Information

is replaced by +| Spec(B) +| Spec(B,Ac,As). Component Sharing

is a part of the Provisioning workflow. The effect of the introduced
Component Sharing activity on the availability of assets is described for
freely available and unavailable specifications in the following.

Figure 7.8 shows the distribution and availability of information for
freely available specifications. Depending on the decisions, which infor-
mation should be created and shared, this information can be stored into
a Protected Component Repository or a Marketplace / Public

Component Repository. The information in the former one is only avail-
able to selected parties, whereas the information in the latter one is freely
available. Usually, the same information will be shared in this scenario, but
in theory some of it may be held back. For example, the original require-
ments may not influence the later use of the component and can be stored
in the protected repository for documentation and backup purposes.

Figure 7.9 shows the distribution and availability of information for spec-
ifications, which are not freely available. The Implementation and, op-
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Figure 7.8.: Activity Component Sharing of the Specification Workflow for Freely
Available Implementations
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Figure 7.10.: QoS Analysis Workflow Taking Into Account Specification Certifica-
tion

tionally, requirements and assisting information are stored in the protected
repository. The requirements do not have to be protected per se but do
not necessarily help in evaluating and selecting a component. Only the
information relevant for evaluation and selection should be shared in this
scenario. The assisting information is necessary for the verification of be-
havior specifications but is only valuable in combination with the imple-
mentation. Hence, it should be stored together with the implementation.
The information shared on the marketplace supports the identification of
the component. If specification and certificates are used then even the ar-
chitecture level evaluation and selection are supported without sharing the
implementation and contained knowledge and IP.
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Figure 7.10 shows the adapted QoS Analysis workflow. The terms
used for the QoS information regarding the different influence factors on a
system and component is more precise. Annotated Architecture con-
tains all necessary annotations and consists of the Behavior-Annotated

Architecture and Deployment-Annotated Architecture. The Ac-

curacy Statements, which can be connected with the components in the
architecture, improve reasoning about the accuracy effects on the overall
prediction. This can indicate if behavior specifications are used outside of
the boundaries for which accuracy statements are provided and aid in risk
assessment. The Certificates of components in the architecture reduce
the effort for reasoning about the soundness of accuracy statements. Other-
wise, validation approaches like the one presented in chapter 6 can be used
to verify accuracy statements.

This section showed the necessary adaptations for including specification
certification into the Palladio reference development process. It discussed
the mapping of the process agnostic roles, activities and artifacts to the pro-
cess and introduced terms and operators for precise descriptions of artifact
flows. The adaptation were summarized and the resulting new process was
presented. Adapted terms were referenced easing the comparison between
the pre-existing and the adapted process. Additionally, the distribution of
information to protected and public repositories or marketplaces was dis-
cussed for two scenarios, which differ in the degree of protection of the
implementation.

7.2.2. Palladio Certificate

This section defines a certificate for Palladio performance specifications.
It states which aspects of a specification are validated and verified and it
states the extent of the checks. The knowledge about these aspects allows
reasoning if the quality of the checks is adequate for the intended use case.
It permits comparability between results of independent certifiers by pro-
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viding a common set of requirements. However, an evaluation is limited to
the evaluated QoS, for example performance, and users should check if the
other properties of the certified component fits their use case.

The certification requirements are stated for general specifications and
are analogous to the definition of the Protection Profile (PP) in the Common
Criteria [Comer, sec. 9.3]. Their application on a selected specification
is analogous to a Security Target (ST), and the validation and verification
itself represents the evaluation on the Target Of Evaluation (TOE). The
separation between the level of PP and ST is not necessary as there is no
human intervention required to generate the ST.

The Palladio certificate is based on the test-based validation of specifica-
tions presented in chapter 6.

The Palladio certificate requires that an implementation has been suc-
cessfully validated against a given specification with its accuracy state-
ments and a given validation quality. The validation quality is part of the
certificate and represents the predefined assurance levels of rigor and detail
of the validation. This stating of the coverage requirements and covered as-
pects supports reasoning on the confidence of the result taking into account
the intended composition of the specification. The available performance-
oriented testing strategies and their configuration options are presented in
section 6.3.2 in detail.

The Palladio certificate consists of an archive containing the validation
quality information in a single TBValidationQuality element, which
was presented in section 6.1, the validated accuracy statements as Quali-
tyAnnotation element, which was presented in section 4.1, a fingerprint
of the implementation, and the specification itself including its required ar-
chitecture specifications, for example interfaces, parameters, and required
roles. The integrity and authenticity of the archive can be ensured using
signatures and a PKI. The specification itself is referenced from the accu-
racy statements and its integrity is additionally ensured by a checksum (see
ServiceSpecification in section 4.1). This integrity check includes
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ensuring the integrity of the architectural specifications for data types, pa-
rameters and required roles. This solution provides the advantage that dif-
ferent component specifications can be merged into a single architecture
specification and the authenticity check still provides the same result. The
certificate is not needed for this simple check.

Issued certificates and fingerprints for the corresponding implementa-
tions must be stored by the Component Certifier in order to allow their
verification. Additionally, a certificate revocation list should be considered
in case an issued certificate needs to be invalidated.
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8. Evaluation

This chapter describes the evaluation of the solutions described in this the-
sis. Chapter 4 describes the solutions for the Accuracy Statements, chapter
5 for Accuracy Effects on Overall Prediction, chapter 6 for Accuracy Vali-
dation, and chapter 7 for Specification Certification. The evaluation itself
is based on several experiments, which in turn utilize overall three sys-
tems for experimentation. The systems cover a realistic industrial use case
as well as technology demonstrations for further remaining features of the
presented solutions. This chapter shows the derivation of experiments for
the research questions, the goal and setting for each experiment, discusses
the experiment execution, and presents the evaluation results.

The chapter is structured as follows. Section 8.1 describes derivation of
experiments and the goals and validation of the experiments. Section 8.2
describes the common aspects of the three different experiment systems in
detail, which are used for the experiments. Section 8.3 demonstrates the
application of the solutions proposed in this thesis and shows the results for
each experiment. Section 8.4 summarizes the evaluation results and found
evidence.

8.1. Experiments

The experiments serve to evaluate if the overall aim, the contributions, and
questions raised in the introduction are addressed. Accordingly, the exper-
iments are derived from the goal, contributions, and questions. The exper-
iments are presented in separate sections for each work area. This eases
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reasoning on goals, the success in reaching them, and the differentiation of
aspects in need of coverage.

The aim and contributions were initially introduced and explained in sec-
tion 1.3 and are repeated in the following for the reader’s convenience. The
aim of the thesis is advancing cross-party component-based engineering by
improving the evaluation of appropriate use of performance specifications
and increasing the trustworthiness in predictions, especial if specifications
are reused during the lifecycle of a system.

The contributions towards this aim were listed in section 1.4 and are as
follows.

C1 Performance engineering can be used in scenarios with cross-party
component repositories or marketplaces. The trustworthy specifica-
tions allow exploiting the benefits of architecture level performance
predictions without reducing the quality of the evaluation and selec-
tion of components.

C2 Reproducible and more reliable validation results. Automated valida-
tion and formalized coverage criteria reduce human validation errors
and ensure a sound validation.

C3 Faster validation by higher degree of automation.

C4 Reduced effort for specification creation by lowering bar for correct
reuse of existing specifications.

C5 Better architectural decisions, especially on the selection of compo-
nents, based on the knowledge of error margins of predictions due to
specification inaccuracies.

C6 Reduced effort of performance engineers required for validation and
evaluation of specifications.

C7 Software architects need less performance engineering interpretation
knowledge when using architecture level predictions. Results are
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easier to interpret, inappropriate specifications are easier identified
and the understanding of validated aspects is more precise with the
criteria.

The raised questions were shown in table 1.1. Their mapping to the
work areas was shown in table 1.2. They are repeated in the following for
the readers convenience together with their directly related work area.

Q1 Are the targeted implementations appropriately described by the
specifications? This relates to Accuracy Validation. Sections 8.1.3
discusses the derived experiments.

Q2 Which accuracy does each specification have? This relates to Accu-
racy Statements and Accuracy Validation. Sections 8.1.1 and 8.1.3
discuss the derived experiments.

Q3 Is the accuracy of each specification valid for the propagated usage
profile? This relates to Accuracy Effects on Overall Prediction. Sec-
tion 8.1.2 discusses the derived experiments.

Q4 How trustworthy are the statements about targeted implementation
and accuracy? This relates to Accuracy Validation and Specification
Certification. Sections 8.1.3 and 8.1.4 discuss the derived experi-
ments.

Q5 What is the effect of the accuracies of the composed components on
the overall prediction? This relates to Accuracy Effects on Overall
Prediction. Section 8.1.2 discusses the derived experiments.

The following sections discuss the evaluation scope and derive experi-
ments for each work area.

8.1.1. Accuracy Statements

The evaluation of providing a suitable answer to question Q2 requires that
users can specify the accuracy of a specification. The applicability and
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whether the input can be acquired and stated is evaluated. In specifica-
tions, the control-flow and resource demand is usually an abstraction and
approximation of the implemented behavior in order to reduce the com-
plexity. Depending on the measurement method, individual measurements
are subject to relative and absolute deviation thresholds. Users must be
able to specify this deviation. For ensuring proper component descriptions,
it must be ensured that users can specify that there are no calls to required
components other than the specified ones.

Experiment E1 checks the hypothesis if statements can be made for all
influence factors of a Palladio specification. The completeness should be
shown via all representations of these factors in the Palladio meta-model.

Experiment E2 checks the hypothesis if statements for Palladio specifi-
cations can be made, which are exact matches of the implemented behavior
of a component. The considered influence factors are the resource demand
in bytecode instructions and calls to business components. This allows
demonstrating the general applicability while limiting the complexity for
presentation and comprehension.

Experiment E3 checks the hypothesis if statements for Palladio speci-
fications can be made, which deviate from the implemented behavior of
a component in the relative amount of the resource demand but are exact
matches with respect to calls to required components. The considered in-
fluence factors are the resource demand in bytecode instructions and calls
to business components. The relative deviation is set to 10%, which allows
abstractions but is significantly lower than the bound of 30% acceptable
error proposed by Menasce in [MA01] for predictions in software engi-
neering. This allows demonstrating the general applicability while limiting
the complexity for presentation and comprehension.

Experiment E4 checks the hypothesis if statements for Palladio specifi-
cations can be made, which deviate from the implemented behavior of a
component with respect to the resource demand and are are exact matches
with respect to calls to required components. The considered influence
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factors are the resource demand in processing units and calls business com-
ponents. The calls to business components are exact matches. The relative
deviation for the resource demand is set to 10%, the absolute deviation to
3 processing units. This deviation allows to take the precision and resolu-
tion of processing unit measurement into account. Additionally, it allows
to hide small performance effects in the abstraction and ease specification
creation. This allows demonstrating the general applicability while limiting
the complexity for presentation and comprehension.

The combination of the experiments E2, E3, and E4 ensures that evi-
dence is provided if all different deviation types can be specified success-
fully.

The evaluation of providing a suitable answer to contribution C4 requires
assessing if the accuracy for a specification is valid for the intended use case
or if there are additional constraints. A common constraint is the range of
parameters, as this allows reducing the validation effort. The range spec-
ification should support nominal and ordinal scales in order to reflect the
meaning of parameter values.

Experiment E5 checks the hypothesis if parameter space limitations can
be stated for each parameter type in Palladio. The completeness should be
shown via all data type modeling elements in the Palladio meta-model.

Experiment E6 checks the hypothesis if a range of explicitly stated pa-
rameter values can be specified by users for Palladio specifications. This
ensures that limitations for nominal parameters can be specified. Only one
nominal parameter type is considered. This allows demonstrating the gen-
eral applicability while limiting the complexity for presentation and com-
prehension.

Experiment E7 checks the hypothesis if parameter intervals can be stated
as parameter space limitations by users for Palladio specifications. This
ensures that limitations for ordinal parameters can be specified. Only one
ordinal parameter type is considered. This allows demonstrating the general
applicability while limiting the complexity.
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The combination of the experiments E6 and E7 ensures that evidence
is provided that specification for all different types of parameters can be
provided.

8.1.2. Accuracy Effects on Overall Prediction

The evaluation of providing a suitable answer to question Q3 requires re-
porting if the propagation of the usage profile leads to using a specification
outside of parameter ranges with accuracy statements. Users are typically
interested in knowing the parameter values leading to the failure in order to
validate the specification in the experienced range.

Experiment E8 checks the hypotheses if the use of inappropriate Palla-
dio specifications is recognized and if the defaulting parameter values are
reported correctly by the approach. A specification which is only valid in
a fraction of the propagated usage profile according to its accuracy state-
ments is created for that purpose. It is checked if the inappropriate use is
recognized and if the user is informed about the parameter values causing
the failure.

The evaluation of providing a suitable answer to question Q5 requires
showing the added value by margins for a prediction taking into account
the propagated usage profile as well as the specifications and their accu-
racy. The tested hypothesis is if deviations of the composed specifications
do provide valuable information even in simple cases with equal and low
deviation for all specifications when compared to applying the accuracy on
an undeviated result on real-world systems.

Experiment E9 checks this hypothesis and that the approach provides the
information on the margins to the user for predictions using Palladio. The
resource demand of the specifications are allowed to have a limited relative
deviation of 10%. The predictions including the accuracy influence analysis
are compared against applying the deviation on the prediction result for
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undeviated specifications and possible consequences for decision making
are discussed.

The evaluation of providing a suitable answer to contribution C4 requires
that incorrect Palladio specification (re-)uses are recognized and reported
to the user. The user only has to create or validate specifications if they
are incorrectly used and not always upfront. Experiment E8 provides the
required information and ensures that users can act according to the given
situation.

The evaluation of providing a suitable answer to contribution C5 requires
showing the margins around an undeviated prediction help decision mak-
ing. Experiment E9 can provide the required evidence that margins are
provides and gives an example how decision making benefits from the in-
formation about the margins.

The evaluation of providing a suitable answer to contribution C7 re-
quires showing that the interpretation of predictions is eased. Experiment
E9 demonstrates that the effect of inaccuracies on an overall prediction
is hard to estimate for human users and how the knowledge eases the in-
terpretation. Experiment E8 can provide the evidence that inappropriate
specifications are easier identified as only incorrectly used specifications
are reported.

8.1.3. Accuracy Statement Validation

The evaluation of providing a suitable answer to contribution Q1 requires
knowing if a specification and given quantitative accuracy statements de-
scribe an implementation or the observed deviation exceeds these quantita-
tive thresholds. The evaluations show that the approach correctly identifies
accurate and inaccurate specifications accordingly.

Experiment E10.1 checks the hypothesis if an accurate Palladio specifi-
cation is correctly identified as such. Experiment E10.2 checks the hypoth-
esis if an inaccurate Palladio specification is correctly identified as such.
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Both use a complex and realistic specification and the Crelaxed basic paths. Im-
plementation and specification differ in the issued resource demand. The
specification is accurate for the relative deviation threshold used in exper-
iment E3. It is inaccurate if no deviation is allowed (see experiment E2).
The examples demonstrate the applicability in practice, provide evidence
that failures are identified correctly, and the power of the approach pre-
sented in chapter 6.

Experiment E11.1 checks the hypothesis if an accurate Palladio speci-
fication with probabilistic control-flow decisions is correctly identified as
such. The implemented and specified branching probability for a control-
flow decision with three alternatives is 1% for alternative A, 90% for alter-
native B, and 9% for alternative C. The accuracy of experiment E2 without
allowing deviations is used. Experiment E11.2 checks the hypothesis if an
inaccurate Palladio specification is correctly identified as such. The speci-
fied probabilities are 10% (A), 80% (B), and 10% (C). This specification is
compared against the implementation of experiment E11.1. The examples
focus on providing evidence on the correct identification and demonstrate
how probabilistic branches are checked and how these specific results are
interpreted. The accuracy of experiment E2 without allowing deviations is
used. Experiment E11.3 check the hypothesis that the approach identifies
inappropriate testing as such. It demonstrates the risks of partition-based
random testing and how the approach supports risk identification. It uses
the implementation and specification of experiment E11.1 but requires only
one test case, which is not enough to ensure that all branches are covered
at least once. The accuracy of experiment E2 without allowing deviations
is used.

Experiment E12.1 checks the hypothesis if an accurate specification us-
ing multithreading is correctly identified as accurate. The specification con-
tains asynchronous and synchronized forked threads ensuring all different
types of concurrency are handled correctly. Experiment E12.2 checks the
hypothesis if an inaccurate specification is correctly identified. In contrast
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to experiment E12.1, an asynchronously forked thread and a calculation af-
ter a thread synchronization have an inaccurate behavior description. For
both, the accuracy of experiment E2 without allowing deviations is used.
The validation uses partition-based random testing. The examples focus
on demonstrating how multithreaded implementation are checked and pro-
vides evidence that inappropriate specifications are identified correctly.

The evaluation of providing a suitable answer to contribution Q2 requires
showing that existing statements can be checked and their validity ensured.
All experiments derived for question Q1 also provide answers to this ques-
tion if all validations of the specified accuracies are successful.

The evaluation of providing a suitable answer to contribution Q4 requires
reasoning about the covered aspects of a verification and the thoroughness
of the verification. This includes selecting an appropriate coverage crite-
rion. The assessment of coverage-based verification risks is demonstrated
in example E11.3. Knowing about the criteria and their implied coverage of
aspects together with their appropriateness allows assessing their trustwor-
thiness. Consequently, the experiments for appropriateness also address the
trustworthiness.

Experiment E13 checks the hypothesis that calculations of the test set
size are supported for complex systems and the provided information aids
in criterion selection. It uses a complex and realistic specification as ba-
sis and shows the size complexity for the specified criteria, which aid in
making a trade-off decision between test effort and verified aspects. The
effect of probabilistic modeling on the size complexity is shown using a
different version of the specification. This version uses fixed probability
distributions instead of the parametric dependencies.

The evaluation of providing a suitable answer to contribution C2 requires
showing that a verification run is reproducible and can be repeated with the
same input values. This allows an independent verification of test runs. The
degree of automation and formalized coverage criteria ensures that no as-
pects, which should be checked are left out. The experiments E10.1, E10.2,
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E11.1, and E11.2 use coverage criteria as verification stop conditions and
document the applicability. The experiment E11.3 shows how coverage
analyses for tests with non-criteria stop conditions help in identifying un-
covered aspects, as they can pose a danger to reproducibility.

Experiment E14 checks the hypothesis if the testing framework is able
to repeat validation runs if the behavior of the implementation is the same.
This ensures the verifiability of validation results by independent parties.
The result of experiment E10.1 is compared with a repetition of that exper-
iment using the same settings.

The evaluation of providing a suitable answer to contribution C3 requires
showing that there is less time required for the validation. The higher de-
gree of automation compared to manual validation for parameter value se-
lection reduces the overall necessary amount of time and is covered by
experiment E15.

The evaluation of providing a suitable answer to contribution C6 requires
showing the degree of automation for the validation.

Experiment E15 checks the hypothesis if the required input for the ap-
proach can be provided and that less human intervention is required than
with a manual validation. The experiments provides evidence which in-
formation must be supplied by users and which parts are automated. It
demonstrates if users only have to specify parameter constraints for the va-
lidation and don’t have to determine appropriate parameter input values for
testing.

The evaluation of providing a suitable answer to contribution C7 requires
showing that the interpretation and validation requires less knowledge than
a manual non-criteria based validation. The interpretation is already ad-
dressed in the experiments E8 and E9. The use of formalized criteria in-
stead of fuzzy definitions or pure experience-based test selection requires
less background knowledge to reason about the aspects, which are covered
with certainty. Their limited number eases keeping them in mind. Their
categorization and the subsumption relation further eases comparisons be-
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tween different criteria. The degree of automation in the validation frame-
work reduces the need to contest validations. Experiment E15 addresses
the degree of automation. The degree of automation further eases reason-
ing on the quality of tests because reasoning can remain on the criteria level
instead of the test execution and individual parameter value level. Hence,
successful evaluation of experiments E8, E9, and E15 provides evidence
for the fulfillment of contribution C7.

8.1.4. Specification Certification

The evaluation of providing a suitable answer to contribution Q4 requires
confidence that the adapted development process allows creating certified
specifications. The applicability of the adapted development process and
whether the input and output artifacts are available is demonstrated.

Experiment E16 checks the hypothesis if the adapted development pro-
cess is applicable for offering components. The flow of artifacts and activi-
ties for certification should be shown for the development of a new compo-
nent. The use of the guideline should be demonstrated to decide on certifier
party selection. This scenario addresses the development of a component,
which should be offered on a marketplace. The experiment provides evi-
dence that the process is applicable.

Experiment E17 checks the hypothesis if the adapted development pro-
cess is applicable for selecting offered components. The flow of artifacts
should be shown for the evaluation and selection of a component. The ex-
periment should show if a component can be successfully acquired for a
system if a certificate is used. The experiment is based on the results of
experiment E16.

Experiments E16 and E17 should provide evidence in combination that
the adapted development process is applicable.

The evaluation of providing a suitable answer to contribution C1 requires
showing that the development process successfully covers evaluations on
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the architecture level without having the implementation of a component.
Experiment E16 demonstrates that a certificate can be issued and the exper-
iments shown in section 8.1.3 ensure the trustworthiness. Experiment E17
demonstrates the selection itself. If these experiments are successful they
provide evidence that the contribution is fulfilled.

The evaluation of providing a suitable answer to contribution C6 requires
showing that performance engineers require less effort for the evaluation
of a specification. Experiment E17 can provide evidence that there is no
effort necessary to validate the specification if a certificate is used and the
specification is correctly used. This would be a reduced effort and provide
evidence that the contribution is fulfilled.

8.2. Systems for Experimentation

This section introduces and describes the systems used in the experiments.
There are overall three experiment systems. The first example system is the
Common Component Modelling Example (CoCoME), which represents an
industrial use-case and is a benchmark for prediction approaches. It is used
as running example but does not cover all aspects, which the approach pre-
sented in this thesis supports. Therefore, two additional example systems
focus on highlighting selected features. The second example system is the
Probabilistic Modeling Example (PME), which is a technology demonstra-
tor showing how probabilistic control-flow decisions are handled and val-
idated. The last example system is the Multithreaded Modeling Example
(MME), which is a technology demonstrator showing how multithreaded
specifications are handled and validated.

Each example system is described in a separate section. These sections
introduce the systems from high-level descriptions down to the behavior
of the implementation. They describe the use case and origin of the ex-
ample as well as the implemented and specified architecture and partici-
pating components. This includes the presentation of different versions of
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Table 8.1.: Relations of Experiments, Question, Contributions, and Systems

Notation: X means a an experiment uses a system or addresses a question or contribution.
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E1 X - - -
E2 X X
E3 X X
E4 X X
E5 X X
E6 X X
E7 X X
E8 X X X X
E9 X X X X

E10.1 X X X X
E10.2 X X X X
E11.1 X X X X
E11.2 X X X X
E11.3 X X X X
E12.1 X X X
E12.2 X X X

E13 X X
E14 X X
E15 X X X
E16 X X X
E17 X X X X

the specifications and discussing their differences, where such versions are
required for the experiments. They are for example required in order to
show that a fault in a specification leads to a failure and that this is identi-
fied correctly only for the faulty version by the presented approach. Table
8.1 provides an overview on the relation of experiments to systems and the
addressed questions and contributions.
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This section is structured as follows. Section 8.2.1 describes the Co-
CoME experiment system. Section 8.2.2 describes the PME experiment
system. Section 8.2.3 describes the MME experiment system.

8.2.1. Common Component Modelling Example (CoCoME)

This section provides an overview on CoCoME and introduces the relevant
aspects for the experiments in more detail. The CoCoME is a benchmark
for comparing component-based modeling and prediction approaches. The
approaches KobrA, Rich Service, rCOS, CoIn, AutoFocus, Java/A, Boxes,
GCM, DisCComp, Palladio, KLAPER, SOFA, and Fractal were initially
benchmarked in 2007. The application results are documented in the book
about CoCoME by Rausch et al. [RRMP08]. Later, it was used for the ap-
proaches JCoBox and ABS. In the European research project SLA@SOI,
it was supplemented by Web-Service interfaces and a management infras-
tructure for Software as a Service (SaaS) deployments including a Service
Level Agreement negotiation and monitoring framework. This environ-
ment also features a BPEL-Engine for the Payment Service and supports
multi-tenant installations [RG11]. The most recent implementation is avail-
able at [WB11].

CoCoME as a system supports selling products in a supermarket chain,
which has a common headquarter and any number of stores. Its function-
ality covers back-office store keeping as well as the actual exchange of
products and money at the front desk. It is a distributed system with servers
and clients at the headquarter as well as the individual stores. It features a
diverse environment from enterprise servers to embedded scanner devices
at the stores. The stores are equipped with multiple cash desk lines with
scanners, displays, printers, and card readers. The stores are linked directly
with the headquarter and banks in order to allow customers to buy their
products in cash or via credit cards. A detailed introduction to the system
is provided by Herold et al. in [HKW+08].
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Figure 8.1.: Implementation of the CoCoME

The section of CoCoME used in the experiments is the main part of use
case 8 (UC 8): product exchange among stores. The use case models the
cost-effective exchange of products between stores if one of the stores runs
low on a product. It is selected as it contains a complex specification featur-
ing nested branches and loops and a single operation controls the use case,
which eases understanding the scenario. The following provides details
on the respective implementation. In addition, the implemented jUnit test
cases for the experiments are available at [Gro13d]. The implemented be-
havior is discussed together with the specification, which is an exact match
of the component’s behavior.
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Figure 8.1 provides an overview on the relevant section of the implemen-
tation of the CoCoME. The selected section consists of a single compo-
nent. The component ProductDispatcherServer provides the business
interface ProductDispatcher, which allows to exchange products cost-
efficiently between stores of an enterprise. The operation dispatchPro-

ductsFromOtherStores is responsible for the planning and implementa-
tion of the exchange. It requires the identifier of the store requesting the
product and the information on the required products and their quantity as
input parameters. It returns a list of the products and their quantity, which
are shipped to the requesting store.

The component requires the business interface OptimizationSolver,
which encapsulates the functionality for optimizing the costs of an ex-
change based on the geographic location of the stores. The interface
has the single operation solveOptimization. The operation requires
the information on the exchanged products, the availability of products
at the stores and the distance between the stores, and the geographic dis-
tance between the stores. The operation provides a list of stores and the
quantity of shipped products for each product and store. The compo-
nent requires the business interface Persistence, which allows access-
ing the persistent state of business objects. The interface has the sin-
gle operation getPersistenceContext. The operation provides a con-
text, which allows the access to the business objects. The component
requires the business interface StoreInventoryManager, which is re-
sponsible to manage the inventory of a store. The interface has 11 opera-
tions, of which only the operation markProductsUnavailableInStock

is used. This operation requires information on the products and their
quantity, which are marked unavailable and scheduled to be removed from
the inventory of the store. The component requires the business interface
StoreQuery, which groups functionality for queries to the inventory of
a store. The interface has 12 operations, of which only the operations
queryStoreById and queryStockItemsByProductId are used. The
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<<artifact>> process specification

TradingSystem.Inventory.

Application.ProductDispatcher

ProductDispatcherIf

+ ProductAmountTO[] dispatchProductsFromOtherStores(INT 

callingStoreId, ProductAmountTO[] requiredProducts)

ProductDispatcherIf

+ StoreAndProducts[] solveOptimization(ProductAmountTO[] 

requiredProducts, StoreAndProducts[] storeStockItems, 

StoreAndDistance[] storeDistances)

OptimizationSolverIf

+ PersistenceContext getPersistenceContext()

PersistenceIf

+ markProductsUnavailableInStock(ProductMovementTO 

requiredProductsAndAmount)

[...]

StoreIf

+ Store queryStoreById(INT storeId, PersistenceContext pctx)

+ StockItem[] queryStockItemsByProductId(INT storeId, INT[] 

productIds, PersistenceContext pctx)

[...]

StoreQueryIf

OptimizationSolverIf

PersistenceIf

StoreIf

StoreQueryIf

Java

API

JVM

+ NOP()

+ ACONST_NULL()

+ ICONST_M1()

[...]

JVM

+ java__util__Collection__remove()

+ java__util__Collection__size()

+ java__util__Collection__iterator()

[...]

Java API

Figure 8.2.: Specification for the CoCoME

operation queryStoreById requires the identifier of a store and access to
the business objects. It provides the business object for the store. The oper-
ation queryStockItemsByProductsId requires the identifier of a store,
the identifiers for each product, and access to the business objects. It pro-
vides information on the available quantity of each product at the provided
store.
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Figure 8.2 provides an overview on the Palladio specification for the Co-
CoME. The specified component TradingSystem.Inventory.Appli-
cation.ProductDispatcher maps to ProductDispatcherServer.

The specified component has two additional interfaces: JVM and Java

API. These are infrastructure interfaces, which separate the runtime con-
tainer from the business implementation. They allow easy redeployment
on the model level. The behavior specifications for the infrastructure com-
ponents describe the performance effect in the hardware environment and
allow decoupling the business logic from performance measurements. The
JVM interface contains operations for all bytecode instructions, the Java

API for calls targeted at the API of Java.
Provided and required business interfaces map directly, the specifica-

tions have the additional ending If. The specified data types used in the
signature of the operations are abstractions of the real data types. Palladio
does no differentiate between arrays and collections. The respective data
types are CollectionDataTypes and denoted with the additional end-
ing []. in Palladio. The Palladio data type INT maps to int as well as
long. Palladio has no explicit data type for Map. CompositeDataTypes

with inner declarations representing a single entry in the map with key
and value is added as well as a CollectionDataType, which contains
all entries. Examples are StoreAndProduct[] instead of Map<Store,
Collection<ProductAmountTO> > or StoreAndDistance[] instead
of Map<Store, Integer>. The specified behavior for operation dis-

patchProductsFromOtherStores matches the implementation. The be-
havior is presented in the following. Section B.1 shows the complete Pal-
ladio representation for this example including the mapping to the imple-
mentation. In addition, the specifications are available at [Gro13d].

Figure 8.3 shows the specified behavior using an UML activity diagram
for operation dispatchProductsFromOtherStores. The process is de-
scribed in the following. First, access to the business objects is estab-
lished in the call to operation getPersistenceContext of the required
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PersistenceIf

.getPersistenceContext

StoreQueryIf

.queryStoreById

retrieve product IDs

and prepare query

repeat 

stores.NUMBER_OF_ELEMENTS

retrieve store

and flush cache

prepare exchange

of products

mark products

for transfer

StoreIf

.markProductsUnavailableInStock

summarize

exchanged products

return

stores = 

store.enterprise.stores

[optimizationSolution

.NUMBER_OF

_ELEMENTS == 0]

OptimizationSolverIf

.solveOptimization

repeat max{0, 

stores.NUMBER_OF_ELEMENTS – 1}

StoreQueryIf

.queryStockItemsByProductId

add to shippable

products

calculate distances

add to

exchanged products

[optimizationSolution

.NUMBER_OF

_ELEMENTS > 0]

NUMBER_OF_ELEMENTS = 

optimizationSolution.INNER.products.NUMBER_OF_EL

EMENTS

optimizationSolution 

= RETURN

repeat optimizationSolution

.NUMBER_OF_ELEMENTS

Exchange

products?

Figure 8.3.: Performance Behavior Specification for Opera-
tion dispatchProductsFromOtherStores of TradingSys-
tem.Inventory.Application.ProductDispatcher
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component with the interface PersistenceIf. Next, the set of all stores
belonging to the same enterprise as the store requiring the products is re-
quested. This is realized with an call to operation queryStoreById of
the required component with the interface StoreQueryIf. The relevant
aspects of the provided business object are stored in the local variable
stores. Next, the cache of available products is flushed for all stores of
the enterprise in retrieve store and flush cache. Next, the unique
identifiers of all required products are determined and the query for the
available quantity of the products is prepared in retrieve product IDs

and prepare query. Next, the available quantity of shippable prod-
ucts is request for each store beside the current store in repeat max{0,

stores.NUMBER_OF_ELEMENTS - 1}. Within this loop, the quantity of
the products is requested from the store using a call to operation query-

StockItemsByProductId from the required interface StoreQueryIf.
Finally, the results are collected and stored to an internal list of ship-
pable products in add to shippable products. Next, the geographi-
cal distance between the stores is calculated in calculate distances

as preparation of the cost optimization of the exchange. Next, the opti-
mization is started with a call to operation solveOptimization of the
required interface OptimizationSolverIf. The solution provided by the
call is stored in the local variable optimizationSolution. Next, the
control flow is split depending if products should actually be exchanged in
Exchange products?. If there are no stores exchanging products, noth-
ing is done until the control flow is merged again. If products are ex-
changed, a preprocessing step is required and represented with prepare

exchange of products. Next, the products from each store are ex-
changed according the the optimization solution in foreach store in

optimizationSolution. Within the loop, the exchange is prepared in
mark products for transfer. Next, the products are marked for ship-
ment using a call to operation markProductsUnavailableInStock. Fi-
nally, the successful transfer is noted in add to exchanged products.
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Then, the control flow merges at the unnamed decision node. Next, a
summary of all exchanged products is created in summarize exchanged

products. Finally, the returned performance-relevant information is set
in return. In this case, the NUMBER_OF_ELEMENTS of the return data
type ProductAmountTO[] is set to the number of products marked for ex-
change by the optimization solution. Please note that the resource demand
in bytecode instructions and the detailed assignment of input parameters in
Palladio is show in section B.1 but not depicted in figure 8.3 due to brevity.
Examples for resource demand specifications using bytecode instructions
are provided in the following sections for the other systems for experimen-
tation.

The Palladio specification of the process states that the resource demand
contains 3 + 12 * stores.NUMBER_OF_ELEMENTS ALOAD instructions.
However, the implementation issues only 3 + 11 * stores.stores.

NUMBER_OF_ELEMENTS instructions. This is an acceptable deviation if 10%
relative deviation are allowed but will lead to a validation error if no devia-
tion is allowed and the number of stores is greater or equal to 1.

Figure 8.4 shows a probabilistic version of the behavior specification
using an UML activity diagramm for operation dispatchProductsFrom-

OtherStores. This behavior is equal to the non-probabilistic one except
that the specification of the branch is changed from a deterministic depen-
dency on a parameter to a probabilistic specification. The probability pE

for exchanging products is calculated based on the propagated usage profile
for the deterministic version and is equal to 0.01. The probability pNE for
no product exchange is determined in the same way and equal to 0.99.

A Palladio model for predictions was developed by Krogmann for Co-
CoME as part of the original benchmark effort [KR08b]. In the original
usage model and requirements of CoCoME, customers bought 1 product
with a probability of 30%, 8 products with a probability of 10%, 15 prod-
ucts (15%), 25 products (%15), 50 products (%20), or 75 products (%10).
20 cash desk lines were open in parallel and a new customer arrived 11.25s
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PersistenceIf

.getPersistenceContext

StoreQueryIf

.queryStoreById

retrieve product IDs

and prepare query

repeat 

stores.NUMBER_OF_ELEMENTS
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of products
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for transfer
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.markProductsUnavailableInStock

summarize
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return
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store.enterprise.stores

[pNE=0.99]
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.solveOptimization
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stores.NUMBER_OF_ELEMENTS – 1}

StoreQueryIf

.queryStockItemsByProductId

add to shippable

products

calculate distances

add to

exchanged products

[pE=0.01]

NUMBER_OF_ELEMENTS = 

optimizationSolution.INNER.products.NUMBER_OF_EL

EMENTS

optimizationSolution 

= RETURN

repeat optimizationSolution

.NUMBER_OF_ELEMENTS

Exchange
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Figure 8.4.: Probabilistic Performance Behavior Specification for Operation dis-
patchProductsFromOtherStores of TradingSystem.Inventory.Applica-
tion.ProductDispatcher
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PMEImpl

IPME

+ process(String task)

IPME

Figure 8.5.: Implementation of the PME

after the last customer was finished. The version for the latest Palladio
meta-model uses the same settings and describes an enterprise with two
stores, where each enterprise or store has a client and server environment.
This model is used for predictions and available at [Gro13d].

8.2.2. Probabilistic Modeling Example (PME)

This section presents the PME. The PME is a technology demonstrator with
non-deterministic control-flow decisions. It is used to demonstrate the vali-
dation capabilities for probabilistic control-flow decisions. This section de-
scribes the implementation, the available Palladio specifications, and their
difference.

Figure 8.5 provides an overview on the implementation of the PME. The
example consists of a single component. The component PMEImpl pro-
vides the business interface IPME, which allows to work on tasks. The op-
eration process represents a simplified version operating on encoded task
descriptions. Section B.2 shows the complete Java implementations for this
example as reference. In addition, the code including automated jUnit test
cases for the validation is available at [Gro13b]. The implemented behavior
is discussed together with the specification, which is an exact match of the
component’s behavior.

Figure 8.6 shows the available Palladio specifications for the PME. The
specified interface IPME maps directly to the implementation. The speci-
fied component PME has a single performance specification for the opera-
tion process. The specified behavior matches the implementation. The
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<<artifact>> process 

specification

PME
IPME

+ process(String task)

IPME

<<artifact>> process 

specification

PMEInvalid
IPME

JVM

JVM

+ NOP()

+ ACONST_NULL()

[...]

JVM

Figure 8.6.: Specifications for the PME

Decision

Very Short

Running

Short

Running

Long

Running

[pB=0.9]

[pC=0.09][pA=0.01]

1x LDC, 1x 

INVOKESTAT

IC, 1x GOTO

1x LDC, 1x 

INVOKESTAT

IC, 1x GOTO

1x LDC, 1x 

GOTO, 1x 

INVOKESTATIC

Figure 8.7.: Performance Behavior Specification for Operation process of PME

specified component PMEInvalid has a single performance specification.
It deviates from the implementation. The specified components have the
additional infrastructure interface JVM, which describes the performance ef-
fect in the hardware environment and allows decoupling the business logic
from performance measurements. The JVM interface contains operations
for all bytecode instructions. The specified behaviors are presented in the
following. Section B.2 shows the complete Palladio representations for
this example including the mapping to the implementation. In addition, the
specifications are available at [Gro13b].

Figure 8.7 shows the specified behavior and resource demand using an
UML activity diagram for component PME. The resource demand in byte-
code instructions is linked to the activity via notes. The decision node

306



8.2. Systems for Experimentation

Decision

Very Short

Running

Short

Running

Long

Running

[pB=0.8]

[pC=0.1][pA=0.1]

1x LDC, 1x 

INVOKESTAT

IC, 1x GOTO

1x LDC, 1x 

INVOKESTAT

IC, 1x GOTO

1x LDC, 1x 

GOTO, 1x 

INVOKESTATIC

Figure 8.8.: Performance Behavior Specification for Operation process of PMEIn-
valid

Decision models a probabilistic decision between the three alternatives A,
B, and C. Alternative A is taken with probability pA = 0.01, Alternative B
with pB = 0.9, and alternative C with pC = 0.09. The control flow follows
only one of the alternatives for each entry to the decision node. The ac-
tivity Very Short Running models tasks with very short execution time.
The implementation is kept minimal for the technology demonstration and
waits for a period of 15 ms. This requires only 3 bytecode instructions.
1 time the LDC, 1 time the GOTO, and 1 time the INVOKESTATIC instruc-
tion. The activity Short Running models tasks with a short execution
time. The implementation for Short Running waits for 0.2 s. It requires
the same bytecode instructions as the activity in alternative A. The activ-
ity Long Running models tasks with a long execution time. The imple-
mentation for Long Running waits for 3 s. It requires the same bytecode
instructions as the activities in the alternatives A and B. The control flow
continues after the branch at the merge node and the operation process is
finished.

Figure 8.8 shows the specified behavior and resource demand using an
UML activity diagram for component PMEInvalid. The resource demand
in bytecode instructions is linked to the activity via notes. It differs from the
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MMEImpl
IMME

INotificationReceiver

+ int process(int input)

IMME

+ receiveNotification()

INotificationReceiver

Figure 8.9.: Implementation of the MME

specified behavior for component PME at three points. First, the probability
for alternative A is pA = 0.1 instead of pA = 0.01. Second, the probability
of alternative B is pB = 0.8 instead of pB = 0.9. Last, the probability of
alternative C is pC = 0.1 instead of pC = 0.09.

8.2.3. Multithreaded Modeling Example (MME)

This section presents the MME. The MME is a technology demonstrator
using asynchronous and synchronized threads. It is used to demonstrate
the validation capabilities in multithreaded environments. This section de-
scribes the implementation, the available Palladio specifications, and their
difference.

Figure 8.9 provides an overview on the implementation of the MME.
The example consists of a single component. The component MMEImpl
provides the business interface IMME, which allows to process data. The
operation process represents a simplified version operating on integer
data. The MME requires the business interface INotificationReceiver,
which will receive a notification about the processing. The operation
receiveNotification represents the information flow. Parameters are
omitted to reduce complexity and focus on multithreading issues. Section
B.3 shows the complete Java implementations for this example as refer-
ence. In addition, the code including automated jUnit test cases for the
validation is available at [Gro13a]. The implemented behavior is discussed
together with the specification, which is an exact match of the component’s
behavior.
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<<artifact>> process 

specification

MMEImplIMME
INotificationReceiver

+ int process(int input)

IMME

+ receiveNotification()

INotificationReceiver

<<artifact>> process 

specification

MMEImplInvalidIMME
INotificationReceiver

+ NOP()

+ ACONST_NULL()

+ ICONST_M1()

+ ICONST_0()

+ ICONST_1()

[...]

JVM

JVM

JVM

Figure 8.10.: Specifications for the MME

Figure 8.10 shows the available Palladio specifications for the MME.
The interfaces IMME and INotificationReceiver are mapped directly.
The specified component MMEImpl has a single performance specification
for the operation process. This component has the same name as the im-
plementation because the specification is an exact match of the behavior
of the implementation. The specified component MMEImplInvalid also
has a single performance description for the operation process. The spec-
ified components have the additional infrastructure interface JVM, which
describes the performance effect in the hardware environment and allows
decoupling the business logic from performance measurements. The JVM

interface contains operations for all bytecode instructions. The specifica-
tion of the behavior for the operation of MMEImplInvalid deviates from
the behavior of the implementation. The specified behavior is presented in
the following. Section B.3 shows the complete Palladio representations for
this example including the mapping to the implementation. In addition, the
specifications are available at [Gro13a].

Figure 8.11 shows the specified behavior and resource demand using
an UML activity diagram for component MMEImpl. The resource demand

309



Evaluation

2x ALOAD, 1x LDC, 1x INVOKEVIRTUAL, 1x GOTO, 
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2x ALOAD, 1x LDC, 1x 

INVOKEVIRTUAL, 1x GOTO, 1x 

GETFIELD, 2x INVOKESTATIC, 1x 

PUTFIELD

Figure 8.11.: Performance Behavior Specification for Operation process of
MMEImpl

in bytecode instructions is linked to the activity via notes. The activity
Preprocessing models input validity checks and required preparations.
The implementation is kept minimal for the technology demonstration and
only 11 bytecode instructions are required within the activity. 3 times the
NEW instruction, 3 times the DUP instruction, and so forth. After this prepa-
ration, an asynchronous thread is started, which is responsible to deliver
the notification. This notification should not influence the processing it-
self and is part of the Send Notification activity. This activity requires
solely a call to the operation receiveNotification and an unspecified
amount of bytecode instructions to prepare the call. The processing itself
requires the activities Calculate A and Calculate B, which can run in
parallel. The implementations for these activities request different types of
random numbers and wait for 2 (8) seconds for Calculate A (Calculate
B). The resulting 9 bytecode instructions do not show this difference. Each
of these activities runs in an own thread and they are synchronized before
the control flow continues. The Postprocessing activity is responsible
to combine the results of the preceding activities and provide the final pro-
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Figure 8.12.: Performance Behavior Specification for Operation process of
MMEImplInvalid

cessed data. The implementation adds the numbers and returns them. This
results in overall 5 bytecode instructions.

Figure 8.12 show the specified behavior and resource demand for com-
ponent MMEImplInvalid using an UML activity diagram. The resource
demand in bytecode instructions is linked to the activity via notes. It differs
from the specified behavior for component MMEImpl at two points. First,
there is no resource demand specified for the activity Send Notification.
Second, 0 instead of 1 IRETURN bytecode instruction is specified in Post-

processing. Instructions with a frequency can but do not have to be spec-
ified. A call frequency of 0 is equal to leaving out this part of the specifica-
tion.

8.3. Application and Experimental Results

This section provides details on the settings and results for the experiments
based on the experiment systems presented in the previous sections.
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Table 8.2.: Overview on Validation Strategies for the Experiments

Notation: E means the experiment uses a system and exact accuracy statements. R means
the experiment uses a system and (only) a relative deviation. A means the experiment uses a
system with absolute and relative deviation.

C
oC

oM
E

PM
E

M
M

E

Validation Strategy / Stop Criterion
E2 E
E3 R
E4 A
E8 E
E9 R

E10.1 R Relaxed Basic Paths
E10.2 E Relaxed Basic Paths
E11.1 E Hypothesis-based Probabilistic Branch Testing
E11.2 E Hypothesis-based Probabilistic Branch Testing
E11.3 E Random (1)
E12.1 E Random (1)
E12.2 E Random (1)

E14 E Relaxed Basic Paths

Different validation strategies and accuracy statements are used in the
experiments. Table 8.2 shows the experiments in which specifications are
validated and provides an overview on the used accuracy statements and
validation strategies.

This section presents the experiments structured by area of work and
increasing order.

8.3.1. Accuracy Statements

Experiment E1 addresses that accuracy statements can be provided for all
influencing factors of a Palladio specification. The influence factors are
1) the configuration and state of the model, 2) the behavior of required
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+variableUsage

required
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:PCMComponentParameterReference

:QualityAnnotation

<<ComponentParameter>> 
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Wipe

Component

:PCMInfrastructureOperationReference

+ transfer(amount : Double)

Billing : Interface

Billing Wipe

+ getSession() : Session

JavaEEAPI : Interface
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role

signature
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EEAPI

role:PCMBusinessOperationReference

:PCMRequiredBusinessOperation

ReturnParameterReference

signature

:PCMOperationParameterReference

+ sanTarget(size : Integer)

Wipe : Interface

parameter

+ implementationComponentType

Figure 8.13.: Examples for Accuracy Statements Addressing the Influence Factors

services, 3) the system environment, and 4) the usage profile. Each factor
is addressed in a separate paragraph in the following.

In Palladio, the configuration is modeled with component parameters.
Accuracy statements can use PCMComponentParameterReference in-
stance for specifying the limits on the parameter space. Figure 8.13 shows
an example of an accuracy statement for the component parameter number-
Passes of a component for wiping data securely.

In Palladio, required services or components are modeled via compo-
nent external calls. These can be business or infrastructure calls. Figure
8.13 shows an example of an accuracy statement for the required operation
transfer of the business component Billing and the required operation
getSession of the infrastructure component JavaEEAPI. Only business
component calls can return values. The limitations for these values can
be stated using PCMRequiredBusinessOperationReturnParameter-

Reference.
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In Palladio, the system environment can be accessed via calls to explicit
and implicit hardware interfaces. The system environment decides when a
call is finished. However, there are no return parameters involved. Therefor,
only the accuracy of calls made to the environment must be specified using
PCMRE elements.

In Palladio, the usage profile is propagated using parameters, which are
available in behavior specifications. Figure 8.13 shows an example of an
accuracy statement for the parameter size of the provided interface Wipe.

The experiment could show that accuracy statements can be provided
for all meta-model elements in Palladio representing the influence factors.
Showing the completeness is successful and the hypothesis is confirmed.

Experiment E2 addresses that accuracy statements can be provided for
specifications, which are exact matches of the implemented behavior. The
application is shown representatively for infrastructure resource demand
and calls to business components.

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.14. The num-
ber of calls to required business components as well as the call parameters
for these calls are exact matches. This is represented by the PCMRECate-

gory instance for the category Component. This solution could be applied
likewise to the categories Resource, Infrastructure, or Component-
Internal. It is shown for the category Infrastructure, which describes
resource demand in bytecode instruction. The category ResourceDemand

is a special case and its handling shown in experiment E4. This covers all
categories.

The experiment shows that statements for Palladio specifications exactly
describing implementations can be made. The hypothesis is confirmed.

Experiment E3 addresses that accuracy statements can be provided for
specifications, which deviate in the relative amount of resource demand but
are exact descriptions of calls to business components.
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forServiceSpecification

precision
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:REPrecision

:ExactlyAsSpecifiedPrecision

stipulatedREPrecisions

:ExactlyAsSpecifiedPrecision

+ category = Infrastructure

:PCMRECategory

Figure 8.14.: Examples for Accuracy Statements Describing Exactly Matching
Specifications

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.15. As in the
previous experiment, the calls to required business components and their
call parameters are exact matches. In contrast, the resource demand in byte-
code instructions is allowed to deviate up to 10%. The parameters passed to
the few bytecode instructions requiring performance-relevant parameters,
for example newarray, are assumed to be exact matches in the experiment.
This experiment shows that inaccuracies due to the level of abstraction with
relative errors can be stated correctly.
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forServiceSpecification
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Figure 8.15.: Examples for Accuracy Statements Describing Specifications with Al-
lowed Relative Deviations

The experiment shows that statements for Palladio specifications describ-
ing implementations with relative deviations can be made. The hypothesis
is confirmed.

Experiment E4 addresses that accuracy statements can be provided for
specifications, which are created based on measurements with precision
and resolution limitations. The statements are provided for a precision of
±10% and a resolution of 3 processing units.

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.16. As in the
previous experiments, the calls to required business component and their
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precision

stipulatedREPrecisions

defaultPrecisionNumberOfCalls

:QualityAnnotation

+ category = ResourceDemand

:PCMRECategory

:REPrecision

defaultPrecisionCallParameters

+ absolute = 3

+ relative = 0.1

:LimitedDeviationPrecision

:NoPrecision

precision

defaultPrecisionNumberOfCalls

defaultPrecisionCallParameter

:REPrecision

:ExactlyAsSpecifiedPrecision

:ExactlyAsSpecifiedPrecision

stipulatedREPrecisions

+ resourceDemandingSEFF = 

<orderProductsFromOtherStores>

:PCMServiceSpecification

+ category = Component

:PCMRECategory

Figure 8.16.: Examples for Accuracy Statements Describing Specifications with Al-
lowed Absolute and Relative Deviations

call parameters are exact matches. In contrast, the resource demand is spec-
ified using processing units and calls over implicit interfaces. The category
for this kind of resource demand is ResourceDemand. For this category,
only a precision for the number of calls can be provided as there are no
call parameters. The call parameter precision must be set to NoPrecision.
The precision and resolution limitation can be provided as depicted using
the attributes absolute and relative.

The experiment shows that statements for Palladio specifications describ-
ing implementations with absolute and relative deviations can be made. The
hypothesis is confirmed.
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+ queryStoreById(INT storeId, PersistenceContext pctx) : Store

+ queryStockItemsByProductId(INT storeId, INT[] productIds, 

PersistenceContext pctx) : StockItem[]

[...]

StoreQueryIf

validForParameterPartitions

validForParameterPartitions

validForParameterPartitions

:QualityAnnotation

parameterReference

parameterReference

parameterReference

+ role = <StoreQueryIf>

+ signature = queryStoreById(INT storeId, PersistenceContext pctx)

:PCMRequiredBusinessOperationReturnParameterReference

+ parameter = <callingStoreId : INT>

:PCMOperationParameterReference

+ parameter = <requiredProducts : ProductAmoutTO[]>

:PCMOperationParameterReference

:PCMParameterPartition

:PCMParameterPartition

:PCMParameterPartition

+ dispatchProductsFromOtherStores(INT callingStoreId, 

ProductAmountTO[] requiredProducts) : ProductAmountTO[]

ProductDispatcherIf

Figure 8.17.: Examples for Accuracy Statements Describing Palladio Parameter
Types

The confirmation of the hypotheses of experiments E2, E3, and E4 pro-
vides evidence that accuracy specifications can be provided for all different
deviation types.

Experiment E5 addresses that parameter space limitations can be stated
for each parameter data type in Palladio. These types are PrimitiveData-
Type, CollectionDataType, and CompositeDataType.

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.17. The pa-
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rameter callingStoreId of this operation is a PrimitiveDataType

and has the concrete data type INT. The parameter requiredProducts
of this operation is a CollectionDataType and has the concrete data
typeProductAmountTO[]. The parameter returned by a call to the business
operation queryStoreById of the interface StoreQueryIf is a Compo-

siteDataType and has the concrete data type Store. It must be refer-
enced via the role and signature because of the meta-model structure
of Palladio. The interface is additionally depicted in the figure. This shows
that all data types can be referenced. This means by construction that all
concrete data types can be referenced as well. Providing and limiting the
parameter space for characterizations of these parameters is demonstrated
in the experiments E6 and E7.

The experiment could show that accuracy statements can be provided
for all meta-model elements in Palladio representing parameter type defi-
nitions. Showing the completeness is successful and the hypothesis is con-
firmed.

Experiment E6 addresses statements for parameter ranges of ordinal and
nominal parameter characterizations.

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.18. The pa-
rameter range for the parameter returned from calls to operation query-

StoreById of interface StoreQueryIf is limited to the values Karlsruhe
and Stuttgart for the characterization VALUE for the inner declaration
location of the concrete data type Store. The definitions of the con-
crete data type Store and the interface StoreQueryIf are additionally
depicted in the figure. The data type Store describes a single store. This
description includes the tradingEnterprise to which the store belongs,
the unique identifier id of the store, the location of the store, and the
name of the store. Each of these descriptions has a concrete data type
and can be characterized according to its data type using the appropri-

319



Evaluation

parameterReference

validForParameterPartitions

:QualityAnnotation

:PCMParameterPartition

innerDeclaration_CompositeDataType

innerDeclaration_CompositeDataType

innerDeclaration_CompositeDataType

innerDeclaration_CompositeDataType

Store:CompositeDataType

+ tradingEnterprise : TradingEnterprise

:InnerDeclaration

+ id : INT

:InnerDeclaration

+ location : STRING

:InnerDeclaration

+ name : STRING

:InnerDeclaration

characterisedParameterPartitions

values

values

+ role = <StoreQueryIf>

+ signature = queryStoreById(INT storeId, PersistenceContext pctx)

:PCMRequiredBusinessOperationReturnParameterReference

+ forCharacterisation = VALUE

+ qualifiedElementName = "location"

:CharacterisedPCMParameterPartitionRange

+ specification = "Karlsruhe"

:PCMRandomVariable

+ specification = "Stuttgart"

:PCMRandomVariable

+ queryStoreById(INT storeId, PersistenceContext pctx) : Store

+ queryStockItemsByProductId(INT storeId, INT[] productIds, 

PersistenceContext pctx) : StockItem[]

[...]

StoreQueryIf

Figure 8.18.: Examples for Parameter Range Specifications in Accuracy Statements
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from

to

validForParameterPartitions

:QualityAnnotation

parameterReference

:PCMParameterPartition

characterisedParameterPartitions

+ forCharacterisation = NUMBER_OF_ELEMENTS

+ qualifiedElementName = ""

:CharacterisedPCMParameterPartitionRange

+ parameter = <requiredProducts : ProductAmoutTO[]>

:PCMOperationParameterReference

+ specification = "0"

:PCMRandomVariable

+ specification = "20"

:PCMRandomVariable

Figure 8.19.: Examples for Parameter Range Specifications in Accuracy Statements

ate qualifiedElementName and forCharacterization attributes. For
nominal parameter characterizations, the enumeration of values is the only
possibility to limit the validity. For ordinal parameter characterizations,
value intervals can be specified, which partition the parameter space.

The experiment shows that parameter range limitations for the accuracy
of Palladio specifications can be made. The hypothesis is confirmed.

Experiment E7 addresses statements for value intervals of ordinal param-
eter characterizations.

The accuracy statements are provided for the operation dispatchPro-

ductsFromOtherStores of component TradingSystem.Inventory.

Application.ProductDispatcher and shown in figure 8.19. The accu-
racy statements limit the accuracy for the characterization NUMBER_OF_E-

LEMENTS of the operation’s input parameter requiredProducts to the
interval [0,20].

The experiment shows that parameter interval limitations for the accu-
racy of Palladio specifications can be made. The hypothesis is confirmed.
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The confirmation of the hypotheses of experiments E6 andE7 provides
evidence that specifications for all different types of parameters can be pro-
vided.

8.3.2. Accuracy Effects on Overall Prediction

Experiment E8 addresses the reporting of specifications which are outside
for a prediction outside of the parameter space for which accuracy state-
ments are available.

The accuracy statements for all components in CoCoME state in this ex-
periment that all categories are exactly as specified. The statements are
valid in the whole possible parameter space of the components. The only
exemption is that the statement for the characterization NUMBER_OF_ELE-

MENTS of the parameter requiredProducts of the operation dispatch-

ProductsFromOtherStores of the component TradingSystem.Inven-
tory.Application.ProductDispatcher is only valid in the interval
[0,20]. This represents that the specification has only be validated for this
limited parameter space.

A prediction of CoCoME with enabled accuracy influence analysis gath-
ering 1000 samples of customers leads to the failure report shown in figure
8.20. 1000 samples are selected to reduce the effect of outliers and have
a good approximation of the resulting distribution. It is reported that ex-
trapolation is used and the result is accordingly endangered. It becomes
obvious, that the validity of the specification should be checked. At least
for the experienced values of 25, 50, and 75 (further down in the list shown
in the figure). The UUIDs of the model elements at which the failure for
a parameter was detected are additionally reported to ease cause identifica-
tion. This shows how the risk caused by the use of invalid specifications
can be considered for decision making. The precision in this experiment is
1 as all reported failures are failures. The recall is 1 as only and all failures
have been reported.
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Figure 8.20.: Screenshot of Range Failure Report

The experiment shows that the inappropriate use of a specification within
a system is identified and reported correctly. Both hypotheses are con-
firmed.

Experiment E9 addresses the capability of the approach to report margins
for the prediction based on accuracy statements. The reported margins are
compared with estimated margins based on calculating the deviation on the
prediction result for undeviated specifications. The propagation effect and
possible consequences for decision making are discussed based on these
results.

The accuracy statements for all components state that all categories are
exactly as specified but the ResourceDemand allows a relative deviation of
10% and no absolute deviation. This represents that the resource demand
statements for the processor are specified with an accuracy of ±10%.
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Figure 8.21.: Cumulative Distribution of the Response Time of Customer Interac-
tions with Accuracy Influence Analysis

A prediction of CoCoME with enabled accuracy influence analysis gath-
ering 1000 samples of customers leads to the cumulative distribution of the
customer’s interaction response time depicted in figure 8.21. 1000 samples
are selected to reduce the effect of outliers and have a good approximation
of the resulting distribution. The cumulative distribution function allows
identifying the response time for a given share of interactions. This is com-
monly used in service level agreement management. As an example, the
values of the 90% quantile are examined more closely. This quantile is
marked with a dotted line in the figure. The response times are approxi-
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Figure 8.22.: Comparison of Accuracy Influence Analysis and Modified Average
Result

mately 17.6 (Minimum), 20.1 (As Specified), and 23.6 (Maximum). The
resulting relative deviation with respect to As Specified is approximately
12.4% (Minimum) and 17.3% (Maximum). These deviations are above a de-
viation of ±10% and a result of resource contention, delay and mutual in-
fluence effects in general. Without the influence analysis, a response time
of 20.1s could have been assured. With the influence analysis, a response
time below 23.6s can be assured taking into account the accuracy assum-
ing that Palladio makes correct predictions. The correctness of Palladio
predictions is not part of this thesis but has been shown previously.
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The results of the accuracy influence analysis are compared to the results
of As Specified after taking into account a deviation of ±10% in figure
8.22. The response times of the 90% quantile are approximately 18.1 (As
Specified * 0.9) and 22.1 (As Specified * 1.1). As can be seen in
the trend of the distribution function, the contention effects are not equally
distributed but the size of the gap between a prediction with deviated val-
ues and the modified average result varies. This shows that even in such a
simple case of 10% resource demand deviation in general the mutual influ-
ence effects cannot be approximated by applying the deviation directly on
an undeviated result. The accuracy influence analysis allows to take into
account the features of the prediction approach to include such effects cor-
rectly. The results provide the advantage of knowing the margins, which
result from the prediction of a running system with deviated specifications.
This eases risk identification and assessment. Additionally, it can be used in
what-if-analyses to identify the effect that a higher accuracy of composed
specifications has on the result, which allows to focus (re-)validation effort.
Compared to pre-calculated response time tables for sizing, the accuracy
influence analysis has the advantage that it can be applied exactly for the
intended usage and environment of the system.

The experiment shows that the accuracy analysis provides valuable in-
formation even in simple cases when compared to applying the accuracy
on an undeviated result in real-world systems. The applicability and iden-
tification of margin was successfully shown. The hypothesis is confirmed.

8.3.3. Accuracy Statement Validation

Experiment E10.1 addresses the reliable identification of accurate complex
and realistic specifications using path coverage. The experiment uses the
system CoCoME and validates the specification for operation dispatch-

ProductsFromOtherStores of the component TradingSystem.Inven-
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tory.Application.ProductDispatcher against the implementation
ProductDispatcherServer.

The accuracy statements for the specification state that the resource de-
mand in bytecode instructions may deviate up to 10%. An absolute devia-
tion is not allowed. Implicit ResourceDemand is not validated. The other
categories are stated to behave exactly as specified. The chosen parameter
space limitations are as follows.

The NUMBER_OF_ELEMENTS of the input parameter requiredProduct
is either 1, 2, or 30. Business calls to the operation queryStoreId of
the required StoreQueryIf return a NUMBER_OF_ELEMENTS of either 0,
1, or 3. Business calls to the operation solveOptimization of the re-
quired OptimizationSolverIf return a NUMBER_OF_ELEMENTS of 0 or 3
and a NUMBER_OF_ELEMENTS for INNER.products of 0 or 4. The TYPE

of the component parameter dataInstance is set to NO_HIBERNATE as
only the component itself without the database access via Hibernate should
be validated. Business calls to the operation getPersistenceContext

of the required PersistenceIf return a TYPE of NONE, which allows to
resolve required component dependencies in the implementation of Co-
CoME. The operation queryStockItemsByProductId of the required
StoreQueryIf returns a NUMBER_OF_ELEMENTS of 0 or 30.

The TBValidationQuality states that a coverage driven test strategy
with the criterion Crelaxed basic paths is used for the validation. Random test-
ing is used and the internal state is not analyzed. The coverage require-
ments for this criterion and the specification lead to overall 13 different
paths. However, not all of these paths are feasible. The feasibility is dis-
cussed next. An overview on the paths with respect to the visited loops
in the specification is given in table 8.3. The second loop in the speci-
fication cannot be covered more often than the first one, which excludes
the paths with the number 3, 4, and 5. The third loop is part of a branch,
which restricts the number of possible loop iterations to values greater or
equal to 1. This excludes the paths with the numbers 1, 4, 8, and 11.
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Table 8.3.: Feasibility of Relaxed Basics Paths in Operation dispatchProductsFro-
mOtherStores

Notation: 0 means a loop is not iterated, 1 means a loop is iterated at least once, and
- means that the loop is not visited in the control flow.

Paths # Loop 1 Loop 2 Loop 3 Feasible
0 0 0 - Yes
1 0 0 0 No
2 0 0 1 Yes
3 0 1 - No
4 0 1 0 No
5 0 1 1 No
6 1 0 - Yes
7 1 0 1 Yes
8 1 0 0 No
9 1 0 1 Yes

10 1 1 - Yes
11 1 1 0 No
12 1 1 1 Yes

The attribute ignoreNumberOfCoverageRequirements of the strategy
CoverageDriven is set to 6 to reflect the number of infeasible paths. The
test set size estimation for this settings is 12.

The RunProtocol resulting from the validation shows that the validation
was successful. Overall, 11 tests were executed. The random generation of
input values and skipping of infeasible paths allows that 11 instead of 12
test cases are sufficient. The precision in this experiment is 1 as all reported
failures are failures. The recall is 1 as all contained failures have been
reported.

The experiment shows that accurate specifications are successfully iden-
tified as such. The hypothesis is confirmed.

Experiment E10.2 addresses the reliable identification of inaccurate com-
plex and realistic specifications using path coverage. The experiment uses
the same system and implementation as experiment E10.1.
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The accuracy statements for the specification state that the resource de-
mand in bytecode instructions behave as specified and may not deviate.
Implicit ResourceDemand is not validated. The other categories are stated
to behave exactly as specified. The chosen parameter space limitations are
identical to experiment E10.1.

The TBValidationQuality is identical to the one of experiment E10.1.
The RunProtocol resulting from the validation shows that the validation

was not successful. Overall, 7 tests were executed. The random generation
of input values and skipping of infeasible paths allows that 7 instead of
12 test cases are sufficient. There are overall 2 validation failure notices.
Both report that the number of specified and observed bytecode instruction
did not match for the activity calculate distances. Both report that 27
ALOAD instructions were expected but only 25 were observed. More details
and an example for such failure notices are provided in combination with
experiment E12.2. The coverage information observed during validation
and stored with the run protocol shows that all feasible coverage require-
ments have been met. The precision in this experiment is 1 as all reported
failures are failures. The recall is 1 as only and all failures have been re-
ported.

The experiment shows that inaccurate specifications are successfully
identified as such. The hypothesis is confirmed.

Experiment E11.1 addresses the reliable identification of specifications
with accurate decision probability descriptions. The experiment uses the
system PME and validates the specifications of component PME against the
implementation PMEImpl.

The accuracy statements for the specification of the operation process

state that the probability of all decisions do not have an absolute deviation
of more that 3%.

The TBValidationQuality states that random testing and the Hypo-

thesisBasedFixedSamplePlan testing strategy with the parameter al-
pha equal to 0.05 and beta equal to 0.2 is used for the validation. This
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requires 877 tests in order to fulfill the sample size requirements for the
specified probabilities.

The RunProtocol resulting from the validation shows that the validation
was successful. The coverage of BranchActions and Probabilistic-

BranchTransitions contained via the CoverageSuite shows that T ER

Cprobabilistic decision equals 1. Additionally, the contained expectations via the
PCMExpectationTrace and observed measurements via the ResultCol-
lection show that specified and implemented behavior match for all bran-
ches. The precision in this experiment is 1 as all reported failures are fail-
ures. The recall is 1 as all contained failures have been reported. These val-
ues are above the expected values for the precision of 1−α

1−α+β
= 0.95

1.15 ≈ 0.8
and the recall of 1−α , which is equal to 0.95. This deviation between a
single observation and the expected values of a sufficiently large number
of repetitions is consistent with the acceptable hypothesis testing errors of
Type I and Type II.

The experiment shows that accurate probabilistic specifications are suc-
cessfully identified as such. The hypothesis is confirmed.

Experiment E11.2 addresses the reliable identification of specifications
with inaccurate decision probability descriptions. The experiment uses the
system PME and validates the specifications of component PMEInvalid
against the implementation PMEImpl.

The accuracy statements for the specification of the operation process

are equal to experiment E11.1 and state that the probability of all decisions
do not have an absolute deviation of more that 3%.

The TBValidationQuality states that random testing and the Hypo-

thesisBasedFixedSamplePlan testing strategy with the parameters al-
pha equal to 0.05 and beta equal to 0.2 is used for the validation. This
requires 1466 tests in order to fulfill the sample size requirements for the
specified probabilities.

The validation failures and transition coverage from the resulting Run-

Protocol is depicted in figure 8.23 and shows that the validation was
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+ description = „The hypothesis that the specified and 

observed probabilities are not equal was accepted.“

+ lowerAcceptanceThreshold = 124

+ upperAcceptanceThreshold = 170

+ numberTransitionVisited = 16

+ numberBranchVisited = 1466

+ probabilisticBranchTransition = <Alternative A>

:PCMDecisionProbabilityVFN

+ description = „The hypothesis that the specified and 

observed probabilities are not equal was accepted.“

+ lowerAcceptanceThreshold = 1142

+ upperAcceptanceThreshold = 1203

+ numberTransitionVisited = 1321

+ numberBranchVisited = 1466

+ probabilisticBranchTransition = <Alternative B>

:PCMDecisionProbabilityVFN

:RunProtocol :CoverageSuite

:CoverageRun

+ covered = false

+ count = 16

:ObservedCoverageRequirement

+ covered = false

+ count = 1321

:ObservedCoverageRequirement

+ covered = true

+ count = 129

:ObservedCoverageRequirement

ObservedCoverage

RequirementSet

Figure 8.23.: Validation Failure Notices and Transition Coverage for PMEInvalid

not successful. There are overall 2 validation failure notices. The first
shows that the probability of Alternative A was not valid for the pro-
vided accuracy statements. The hypothesis that the specified and ob-
served probability are within an absolute deviation of 3% was rejected
at a confidence level of 0.05 and a power of 0.8. Testing the hypothe-
sis of Alternative B requires a minimal sample size of 1466. This re-
sults in acceptance threshold of 1142 and 1203. The acceptance thresholds
for Alternative A and Alternative C are calculated for the statistic
based on 1466 samples, although 877 samples would be sufficient. This
results in a lower acceptance threshold of 124 and an upper acceptance
threshold of 170. This means that the statistic of 16 forAlternative
A is outside the thresholds and the statistic of 129 for Alternative C

within. Hence, thy hypothesis holds for Alternative C. The relation of
numberTransitionVisited to numberBranchVisited for the differ-
ent transitions ( 16

1466 ≈ 1.1%, 1321
1466 ≈ 90.1%, 129

1466 ≈ 8.8%) allows reasoning
about the experienced probability and can help in improving the speci-
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fication. Experiments E11.1 and E11.2 show that failures are identified
correctly and give an impression how the information in the failure notices
eases the interpretation and specification improvement. The precision in
this experiment is 1 as all reported failures are failures. The recall is 1 as
only and all failures have been reported. As for experiment E11.1, these
values are above the expected values of approximately 0.8 for the precision
and 0.95 for the recall. This deviation between a single observation and the
expected values of a sufficiently large number of repetitions is consistent
with the acceptable hypothesis testing errors of Type I and Type II.

The experiment shows that inaccurate probabilistic specifications are
successfully identified as such. The hypothesis is confirmed.

Experiment E11.3 addresses how the coverage criteria support risk iden-
tification. The experiment uses the implementation and specification of
experiment E11.1. However, the experiment uses only a fixed amount of
tests and does not validate the decision probabilities.

The accuracy statements for the specification of the operation process

are equal to experiment E11.1 and state that the probability of all decisions
do not have an absolute deviation of more that 3%.

The TBValidationQuality states that random testing is used with a
minimal number of test cases of 1. Coverage is observed for the criterion
Caction.

The RunProtocol resulting from the validation shows that the valida-
tion was successful. The achieved coverage of the tests of the validation
run for criterion Caction is depicted in figure 8.24. As can be seen, only
Alternative B is visited and the other two remain unvisited and are not
validated. T ERCaction is 0.5 as 6 out of the 12 AbstractAction elements
are covered. This coverage information eases the reasoning and identifica-
tion of untested parts of the specification. The precision in this experiment
is 1 as all reported failures are failures. The recall is 1 as all contained
failures have been reported.
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Figure 8.24.: Screenshot of the Achieved Coverage for PME in Experiment E11.3

The experiment shows that the achieved coverage is identified correctly
and users are able to see that covering Caction failed. The hypothesis is
confirmed.

Experiment E12.1 addresses the identification of accurate specifications
for multithreading environments. It uses the experiment system MME and
validates the specifications of component MME against the implementation
MMEImpl.

The accuracy statements for the specification of the operation process

state that calls to business components and infrastructure calls are exactly
as specified. The constraints for the input parameter input of the operation
process restrict the validity to the VALUE characterization and the interval
[−10,1000000]. The interval was chosen arbitrarily, other values work as
well.
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The TBValidationQuality states that a single random test without in-
ternal state influence analysis is used for the validation. A single test is
sufficient in this case, as all parts of the specification are covered if the
specification itself is covered.

The RunProtocol resulting from the validation shows that the valida-
tion was successful. The contained expectations via the PCMExpectation-
Trace and observed measurements via the ResultCollection addition-
ally show that specified and implemented behavior match. The precision in
this experiment is 1 as all reported failures are failures. The recall is 1 as
all contained failures have been reported.

The experiment shows that accurate concurrent specifications are suc-
cessfully identified as such. The hypothesis is confirmed.

Experiment E12.2 addresses the identification of inaccurate specifica-
tions for multithreading environments. It uses the experiment system MME
and validates the specifications of component MMEImplInvalid against the
implementation MMEImpl. The accuracy statements and validation quality
are equal to the ones used for experiment E12.1.

The RunProtocol resulting from the validation shows that the vali-
dation was not successful. There are overall 5 validation failure notices.
The first four report validation failures while in the specified activity Send

Notification. For bytecode instructions, they report that unspecified
calls for the instructions ALOAD, GETFIELD, and INVOKEINTERFACE oc-
curred, which is outside of the stated accuracy threshold. For business calls,
they report that an unspecified call to INotificationRequired.re-

ceiveNotification() occurred. The last validation failure notice re-
ports that the observed (1 time) and specified (0 times) number of bytecode
instructions for IRETURN within the activity Postprocessing is exceed-
ing the deviation threshold. This shows that all faults were identified and
reported correctly. Additionally, the expectations show that all threads in
the specification were validated. The information on the activity eases cor-
relation and the information on the observed and specified number eases
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Figure 8.25.: Screenshot of the Validation Result for MMEImplInvalid

fault identification. See figure 8.25 for a screenshot of the structure of the
validation result. Experiments E12.1 and E12.2 show that failures are iden-
tified correctly and the additional information eases the interpretation. The
precision in this experiment is 1 as all reported failures are failures. The
recall is 1 as only and all failures have been reported.

The experiment shows that inaccurate concurrent specifications are suc-
cessfully identified as such. The hypothesis is confirmed.

Experiment E13 addresses the support for validation criterion selection
and the effect of probabilistic modeling on the test set size for a validation.
First, the criterion selection based on test set size estimations is shown for
the behavior specification of operation dispatchProductsFromOther-

Stores. Second, the estimated test set size estimations are compared to
the probabilistic version of dispatchProductsFromOtherStores.

For both specifications, the accuracy statements state that the probability
of all decisions does not have an absolute deviation of more that 3%. The
TBValidationQuality states that the HypothesisBasedFixedSample-
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Table 8.4.: Overview on Test Set Size Estimations for Specification of Operation
dispatchProductsFromOtherStores

Notation: For C1
jjpath , a range with lower and upper bounds for the test set size is provided.

See section 6.3.2.16 for details on the bound estimations.

Criterion Test Set Size Estimation Confidence Level
Ccall spec 1 0.9
Ccall obs 66 0.9
Centry/exit 1 0.9
Cdecision 2 0.9
Cprobabilistic decision 0 0.95 (β = 0.2)
Caction 2 0.9
Cbranch 2 0.9
Csimple condition 4 0.9
Ccondition / decision 4 0.9
Cminimal multiple 4 0.9
Cmodified condition / decision 4 0.9
Creinforced condition / decision 4 0.9
Cmultiple condition 4 0.9
Crelaxed basic paths 12 0.9
C3

spt 80 0.9
C1

jjpath 1..18 0.9

Plan testing strategy with alpha equal to 0.05 and beta equal to 0.2 is
used for the estimations. The other test set sizes are estimated with a confi-
dence level of 0.9.

Table 8.4 shows the test set size estimations for the upper bounds. Cov-
ering all specified calls only requires one test case, as the branch decision
in the specifications has only one branch with call specifications. The spec-
ification has only one entry and exit point and covering those requires one
test. Covering the decisions requires covering both branches of the branch
decision and, hence, two tests. Action or branch coverage also requires to
take both branches of the branch decision in order to cover all actions re-
sulting in overall 2 required tests. The remaining criteria for covered nodes
and edges not subsumed by other criteria are probabilistic decision and ob-
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served calls coverage. Covering probabilistic decisions does not require a
test, as the specification does not have probabilistic decisions. Covering the
observed calls requires 66 tests. The structure of decision criteria require
4 tests each, as both branches consist of a single condition, which must be
covered for all possible truth values. The interdependency between the out-
come of the branch decision specifications in this special case (inverse) is
not taken into account for bound estimation, hence 4 and not 2 is reported
to ensure coverage. Regarding the sequence of coverage requires more
tests. Covering the relaxed basic paths requires 12 tests, covering jj-path1

between 1 and 18, and spt3 already 80 tests.
Selecting a criterion should include the subsumption relations, an over-

view is provided in figure 6.12). Looking at the figures in general, rela-
tively few tests allow covering complex criteria and no criterion requires
prohibitive effort for automated validation. Hence, the criterion choice is
not severely limited by the test set size. The overall amount of time required
for the validation can be guesstimated based on the average run-time for a
few number of random validation executions and the number of estimated
test cases. The probabilistic decision criterion is already covered and does
not even need to be checked. Relaxed basic paths coverage requires only 12
tests and subsumes action coverage. The other path criteria do not add sig-
nificant advantages but require more tests. The criteria with respect to the
structure of decisions could be checked as well. Call observation coverage
can require more tests but subsumes only the specified calls. A good solu-
tion for the validation is the selection of the criterion relaxed basic paths and
the additional observation of the coverage of the criteria multiple and call
observations. If the tests for relaxed basic paths already include the criteria
then they are valid as well without requiring additional effort. Evaluating
the achieved coverage can provide additional insights on (un-)covered parts
of the specification.

Table 8.5 shows the test set size estimations for the upper bounds of the
probabilistic specification of the operation dispatchProductsFromOth-
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Table 8.5.: Overview on Test Set Size Estimations for the Probabilistic Specification
of Operation dispatchProductsFromOtherStores

Notation: For C1
jjpath , a range with lower and upper bounds for the test set size is provided.

See section 6.3.2.16 for details on the bound estimations.

Criterion Test Set Size Estimation Confidence Level
Ccall spec 1 0.9
Ccall obs 66 0.9

Centry/exit 1 0.9
Cdecision 232 0.9

Cprobabilistic decision 368 0.95 (β = 0.2)
Caction 232 0.9
Cbranch 232 0.9

Csimple condition 233 0.9
Ccondition / decision 233 0.9

Cminimal multiple 233 0.9
Cmodified condition / decision 233 0.9

Creinforced condition / decision 233 0.9
Cmultiple condition 233 0.9
Crelaxed basic paths 932 0.9

C3
spt 3760 0.9

C1
jjpath 0..935 0.9

erStores. The criteria specified calls, observed calls, and entry/exit have
the same estimations, as they are not influenced by the probabilistic deci-
sion. Covering the branch decision with the probability pE equal to 0.01 at
least once with a confidence level of 0.9 requires approximately 230 tests,
which can be seen in the estimations for the other criteria. The test set size
estimations for these criteria are significantly larger in general compared to
the specification with the deterministic decision. The criterion probabilistic
decision allows to check the branch decision probabilities. The hypothe-
sis for pE is compared with 0.04, and the hypothesis for pNE with 0.96.
Although 368 tests are required, the validation ensures that the specified
probability is within the allowed deviation. This criterion should be vali-
dated in addition to the criteria discussed for the deterministic version. If
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the guesstimated required run-time is too high, alternatives with a lower
confidence level or a modified version of the specification, which is easier
to validate, can be analyzed using the validation effort estimation.

The experiment shows that test set sizes can be calculated and how they
aid in criterion selection. The hypothesis is confirmed.

Experiment E14 addresses the reproducibility of validation results,
which allows independent verification of validation runs.

This experiment is a repetition of experiment E10.2. It uses the same
settings. The only difference is that this experiment is initialized with the
random number seed stored in the run protocol of E10.2.

The comparison of the expectations shows that the experiment is repeat-
able and the same results are provided. The expectations are compared
as they contain all provided parameter values and the sequence of covered
elements in the specification. The jUnit test case for this experiment is
available at [Gro13d]. As long as the behavior of the implementation is the
same, the expectations must remain the same if the same random number
seed used. The precision in this experiment is 1 as all reported failures are
failures. The recall is 1 as all contained failures have been reported.

The experiment shows the validation framework support repeating val-
idations and allows the verification of validations by independent parties.
The hypothesis is confirmed.

Experiment E15 addresses the provisioning of information required from
users of the validation approach. The required information, the evaluation
if this information is only required for the approach presented in this the-
sis, and the support in the eclipse IDE provided to users of the approach
are presented in the following. At the end, the discussed information and
consequences for the applicability are summarized.

Users need to provide the specification and the implementation, as well
as information on the quality of the specification and the mapping between
specification and implementation. Specification and implementation must
exist regardless of the approach for a validation. The quality of the specifi-
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cation must be stated using the accuracy statements. The information on the
quality must also exist regardless of the approach for a validation. Stating
the information with accuracy statements is supported using graphical ed-
itors and the EMF. Additionally, the file creation wizard Quality model

with default values for the batch generation of accuracy statements
for all specifications in a repository is provided integrated into the eclipse
Integrated Development Environment (IDE). The hierarchical organization
of statements for the different categories eases making general statements
about the accuracy while allowing deviations for certain elements. The
mapping between specification and implementation must exist regardless
of the approach for a validation if the performance effect for elements of
a specification are compared to the implementation. The approach pre-
sented in this thesis provides a customized editor for the mapping with user
friendly labels for the mapped elements. The implementation is mapped via
a model of the abstract syntax tree of the implementation. This model can
be generated fully automatically using the feature Structural Investigation
of Software Systems (SISSy) [Q-I11].

Users need to select, which aspects of the specification should be cov-
ered. Users either have to create tests manually and ensure all aspects are
properly covered or they can use coverage criteria and test set generation
tools. Manual tests and tested aspects are hard to verify by third parties
without additional documentation. This approach supports the estimation
of test set sizes via the Validation Effort Estimation run configura-
tion for given specifications and eases the selection of coverage criteria. It
can generate a test set and validate the coverage for the selected criterion au-
tomatically. There is no additional documentation necessary. The observed
coverage for the criteria during the validation can be additionally visualized
graphically on the specification itself via the PCM Coverage perspective.

Users need to provide data type converters between the specification and
implementation data types. Converters must exist if data samples should be
created automatically, for example to select random samples from a huge
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parameter space. A manual specification of explicit values and test cases
has the drawback that these values are not chosen arbitrarily and should not
be used for certifying that implementation and specification match. The
approach presented in this thesis already provides data converters for all
primitive data types in Palladio as well as for the data types related to the
validated partition of CoCoME. It is extensible and additional converters
can be easily plugged in. The execution of the validation itself is fully
automated for the approach presented in this thesis. The results contain
the expectations, observations, and - if occurred - validation failures easing
reasoning about the success, fault identification, and specification improve-
ment.

The consequences for the applicability of the approach presented in this
thesis summarized from the discussion above are that it does not require
more information than alternatives. The provisioning of the information by
users is feasible and the feedback provided by the approach eases selecting
validation settings. The automation of the validation itself requires less
human interaction and improves the validation process.

The experiment shows that the input can be provided successfully and
that less human intervention is required when compared to a manual vali-
dation. The hypothesis is confirmed.

8.3.4. Specification Certification

Experiment E16 shows the applicability and addresses the flow of artifacts
and the sequence of activities for the adapted and certification-aware devel-
opment process. The order of workflows and activities is described in the
following with a focus on the adapted process steps.

The applicability is shown for the development of a solution, which pro-
vides cost-efficient shipping of products between stores of an enterprise
and should be sold via marketplaces. This decision is an outcome of the
Requirements workflow. The Business Concept and the related Use
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+ ProductAmountTO[] dispatchProductsFromOtherStores(long 

callingStoreId, Collection<ProductAmountTO> requiredProducts)

ProductDispatcher

+ Map<StoreTO, Collection<ProductAmountTO>> 

solveOptimization(Collection<ProductAmountTO> 

requiredProductAmounts, Map <Store, Collection<StockItem> 

storeStockItems, Map<Store, Integer> storeDistances)

OptimizationSolver

+ Store queryStoreById(long StoreId, PersistenceContext pctx)

+ Collection<StockItem> queryStockItemsByProductId(long storeId, 

long[] productIds, PersistenceContext pctx)

[...]

StoreQuery

Optimization

Solver

OptimizationSolver

+ markProductsUnavailableInStock(ProductMovementTO 

requiredProductsAndAmount)

[...]

StoreInventoryManager

+ PersistenceContext getPersistenceContext()

Persistence

ProductDispatcher
Product

Dispatcher

OptimizationSolver

Persistence

StoreInventoryManager

StoreQuery

Figure 8.26.: (Preliminary) Architecture Artifact as Output of the Activity Compo-
nent Specification

Case Models are additional outcomes of the workflow. The workflow is
not described in detail, as section 7.2.1 did not introduce any changes.

In the Specification workflow, the Available Assets are checked
if the Business Concept and Use Case Models are already (partially)
supported by existing components. There are no Technical Con-

straints or Results of QoS Metrics yet. An analysis showed that the
ProductDispatcher interface is used in many shop solutions and its use
eases integration into existing shop systems. The realization of the solution
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requires access to information about the stores and their inventory as well
as the layout of the enterprise. The design rationale to separate data queries
and data modifying operations is applied. The interfaces Persistence,
StoreQuery, and StoreInventoryManager are therefore set as required
interfaces. The decision is made that the cost optimization algorithm is
realized as an own component in the solution in order to improve mainte-
nance and testing. The (Preliminary) Architecture of the solution
is determined in the Component Specification activity and depicted in
figure 8.26. The development of both components of the solution is real-
ized in different Provisioning workflows by subcontractors. Only the
flow for developing the ProductDispatcher component is described in
detail for brevity.

In the Provisioning workflow, the Requirements and Interfaces

are refined in the activity Component Requirement Analysis. The
specification of the implementation’s required functionality and final com-
ponent dependencies are set in the activity Functional Property Spe-

cification. An early estimation of the behavior and performance of
the component is created in the activity QoS Property Specification.
This information is used in the Specification workflow in the back-
ground in the activity Interoperability Check. The analysis shows
that the development can continue with the implementation. This is real-
ized in the activity Component Implementation of the Provisioning

workflow.
The guideline for the Certifier party selection is used in the Compo-

nent Implementation activity in order to identify the best opportunity
to market the solution. The decision is made as follows. It is a requirement
that the solution should be sold in marketplaces and the implementation
and contained knowledge should be protected. This limits the possible se-
lection alternatives to the ones stating after Acquisition for the avail-
ability of the implementation. It is assumed that previously unrelated com-
panies will look for the solution in the marketplaces. This means that only
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weak mutual trust can be assumed. The attractiveness of the offer for these
companies is assumed to be correlated with the effort required for testing.
Therefore, from the two remaining alternatives none and independent

third party the latter one is selected. This also implies that Accuracy
Statements must be shared and Assisting Information must be cre-
ated during development.

In parallel to the component development in the activity Component

Implementation, the QoS Analysis Workflow ensures that the System
Environment Specification matches the state of the development and
that Behavior annotations are added as soon as parts of the implementation
are mature. Combining these results from the business perspective of the
activity Usage Model Refinement with the Annotated Architecture

allows to check the QoS Metrics derived from the requirements and rea-
son on requirement fulfillment.

The development results in the specifications shown in experiment E10.2
for Behavior, Accuracy Statements, and Assisting Information.
The failure in the Accuracy Statements identified in the experiment has
not yet been identified by the developers. The specifications and implemen-
tation are passed to the activity Component Certification and conse-
quently results in Evaluation Failures. The certification report allows
the identification of the fault and leads to the creation of the information
presented for experiment E10.1, which passes validation and certification.
In the Component Sharing activity, the developed artifacts are transferred
from the subcontractor to the original company and stored in their own pro-
tected Repository.

The component and information is used to check the interoperability
in the Specification workflow and enables entering the activity QoS

Evaluation in the QoS Analysis workflow. The architecture level eval-
uation shows that the initial requirements are met. The workflow continues
with composing the solution in the Assembly workflow

344



8.3. Application and Experimental Results

In the Test and Deployment workflows, the composition is tested and
it is ensured that the requirements are met by the implemented system.
However, these are just test implementation as the solution should be inte-
grated into existing enterprise systems and sold on marketplaces. After this
quality assurance is completed successfully, the Functional, Interface,
Dependency, Behavior specification as well as the Accuracy State-

ments and the Certificate are published in the marketplaces.
Summarizing, it can be seen that not every activity is required for a spe-

cific product and many activities can run in parallel or iteratively after in-
crements of the solution become available. The constructive part of the
development process is applicable (type II validation, [BR08b]) and sup-
ports protecting implementation knowledge and IP. The selection part is
discussed in the next experiment.

The experiment shows that the adapted process is applicable for offering
components. The hypothesis is confirmed.

Experiment E17 shows the applicability of the architecture-based com-
ponent evaluation and selection for the adapted process.

An enterprise selling products in different shops is interested in improv-
ing its efficiency by allowing to transfer products directly between shops
instead of via a central warehouse. The current software solution does not
support this request. The new solution should provide a decreased time un-
til an exchanged product is available at a store and run within the current
hardware environment without endangering the SLA for the IT manage-
ment services provided for each shop.

This new Business Requirement is used in the Requirements Work-
flow to derive a Business Concept and Use Case Models.

In the Specification workflow, the Available Assets from mar-
ketplaces are identified in the Component Identification activity. As-
sume that different possible alternatives are identified, one of them the re-
sult from experiment E16. Assume further, that this is the only one with
Behavior specifications and a Certificate for its accuracy. Architec-

345



Evaluation

ture-level analysis of requirement fulfillment is selected as this reduces the
evaluation time and does not require to build a test system. If a good so-
lution is found, it is kept and the other alternatives are discarded. The
Provisioning workflow is not needed at this point. The validity of the
Certificate is checked successfully in the Certificate Validation

activity. A (Preliminary) Architecture is sketched, which describes
the current component-based system after integrating the component. The
interoperability check is successful and the architecture is analyzed.

In the QoS Analysis workflow, the Domain Expert derives the Usage
Model for the new system in the activities Use Case Analysis and Usage

Model Refinement. The Business Requirements and Deployment-

Annotated Architecture are used to reason about the QoS Metrics

and the fulfillment of the requirements. The final QoS Evaluation activ-
ity shows that the solution fulfills the requirements and the SLA are met.
The implementation of the component is acquired. That the implementa-
tion is a match for the specifications and accuracy statements is ensured by
a transition to the activity Certificate Validation and a verification
of the correctness.

In the Assembly workflow, the system is assembled according to the
architecture. The fulfillment of the analyzed QoS properties is assured
in the Test workflow. The final solution is put into production in the
Deployment workflow.

Summarizing, selecting components on the architecture-level taking into
account QoS requirements without implementation is applicable and sup-
ported by the adapted process. Invalid certificates would be identified be-
fore the specifications are used and decisions are made. The implementa-
tion needs only to be transferred if a decision has been made.

The experiment shows that the adapted process is applicable for the eval-
uation and selection of offered components. The hypothesis is confirmed.
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8.4. Discussion of Results

8.4.1. Internal Validity

All experiments using a prediction or executing a validation were designed
in a way that only one independent variable has been modified when com-
pared to another experiment in order to ensure distinct causal conclusions
between independent and dependent variables. For example, any experi-
ment with a successful validation of a specification goes along with an-
other experiment showing an unsuccessful validation with only one mod-
ified variable. All experiments showing the completeness via elements of
the Palladio meta-model were carefully reviewed. Literature references to
the meta-model definitions were provided allowing independent verifica-
tion. The design of the experiments ensured that the outcome for repeti-
tions of the experiments is the same or at least has a high confidence level
in the probabilistic case. The information contained in the validation re-
sults provides means to check the covariation of cause and effect as well as
exclude alternative explanations. This additional information was carefully
reviewed. The results and test cases used to generate them are made pub-
licly available in combination with the systems for experimentation. The
automated prediction or validation itself rules out any experimenter bias.
The random numbers used to generate parameter samples are drawn using
the pseudo random number generator provided by Java, which has been
thoroughly tested. A detailed discussion for each area of work follows.

The completeness of the accuracy statements with respect to the influ-
encing factors has been shown in experiment E1. The capability of the ap-
proach presented in this thesis for expressing relative and absolute deviation
thresholds for the precision of the number of calls as well as the call param-
eters for all influencing factors has been demonstrated in the experiments
E2, E3, and E4. This ensures that the accuracy of specifications can be
stated successfully and is applicable. These experiments provide evidence
that question Q2 is answered successfully for the area accuracy statements.
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The capability of limiting accuracy statements for each parameter type has
been shown in experiment E5. This ensures the completeness with respect
to parameter types. The support for nominal and ordinal parameter lim-
itations as well as a user convenient specification has been shown in the
experiments E6 and E7. These experiments provide evidence that contribu-
tion C4 is addressed successfully for the area of accuracy statements.

The capability to identify threats to the validity of overall predictions
based on the accuracies of the composed specifications has been shown in
experiment E8. This experiments also demonstrated how the feedback pro-
vided by the approach allows eliminating the faults in a goal-oriented way.
The experiment provides evidence that question Q3 is answered and contri-
bution C4 is addressed successfully for the area accuracy effects on overall
prediction. The achieved improvement for decision making when taking
into account the accuracies of the composed specification has been shown
in experiment E9. The experiment also demonstrated the added value of
margins calculated by the approach presented in this thesis in contrast to di-
rect modifications of undeviated results. The experiment provides evidence
that questions Q5 is answered and contributions C5 and C7 are addressed
successfully for the area accuracy effects on overall prediction.

The applicability and correctness of accuracy statement validation has
been shown on different systems and with different characteristics in the
experiments E10.1, E10.2, E11.1, E11.2, E11.3, E12.1, and E12.2. Exper-
iments E12.1 and E12.2 focussed on concurrent specifications. The vali-
dation of decision probabilities has been demonstrated in the experiments
E11.1, E11.2, and E11.3 on probabilistic specifications. The verifiability of
the validation using the defined coverage criteria has been shown in exper-
iment E11.3. The applicability on realistic and complex specifications as
well as implementations has been focussed in the experiments E10.1 and
E10.2. These experiments have shown the versatile applicability. The ex-
periments provide evidence that questions Q1, Q2, and Q4 are answered
successfully for the area statement validation. The applicability and cor-
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rectness of coverage criteria as stop conditions has been shown in the ex-
periments E10.1, E10.2, E11.1, and E11.2. The applicability of the criterion
selection support has been shown in experiment E13. The reproducibility
of validation runs has been shown in experiment E14. The experiments
provide evidence that contribution C2 is addressed successfully for the area
statement validation. The acquisition of required input and time for the
evaluation has been discussed in experiment E15. This experiment also
shows the ease of reasoning addressed by the provided degree of automa-
tion. The experiment provides evidence that contributions C3 and C6 are
addressed successfully for the area statement validation. The reduced effort
for the interpretation of validation results compared to manual non-criteria-
based validations has been shown in the experiments E8 and E9. The ex-
periments provide evidence that contribution C7 is addressed successfully
for the area statement validation.

The applicability of the adapted development process taking into account
specification certification has been shown in the experiments E16 and E17.
These experiments also show the process’ support for architecture-level
reasoning without acquired component implementations. The latter one
has also shown the reduced effort of component integrators for checking
the validity of specifications if certificates are available. The experiments
provide evidence that question Q4 is answered and contributions C1 and
C6 are addressed successfully for the area specification certification.

Summarizing, all experiments confirmed the hypotheses. The experi-
ments were derived in section 8.1 in order to answer the questions and
address the contributions for each area of work. This provides evidence
that the approach provides answer to all posed questions and addresses all
contributions successfully.
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8.4.2. External Validity

The accuracy statements consider all influencing factors, which are cur-
rently used in the specification languages identified in the surveys of Becker
et al. [BGMO06] and Koziolek [Koz10]. The applicability for Palladio has
been shown, which considers all of these influencing factors. The trans-
fer to other specification languages should be possible without having to
modify the customizable meta-model.

The accuracy statements support the indirect description of complex pa-
rameter data types, which is used in Palladio. This includes nominal and
ordinal numerical data types, strings, and composed data types. Other lan-
guages are likely to have a similar set of elements or less complexity. The
actual value description is part of the customizable meta-model and a trans-
fer should be possible without having to modify the customizable meta-
model.

The accuracy statements support relative as well as absolute deviation
thresholds. This specification of accuracy for elements of a behavior spec-
ification limits the allowed deviation without enforcing an additional as-
sumption on the probability of experiencing an error. If such an assump-
tion exists and is valid then it could be applied on the specification for the
number of calls or call parameters in the first place. This would provide a
more accurate description and reduce the need for such an error probability
function. Hence, the provided accuracy statements are adequate and likely
cover specifications beyond the validated Palladio specifications.

The effect of inaccuracies on the overall prediction has been shown for
the case that all composed specifications have the same accuracy. The
added value and contribution could be even shown for this simple case.
It could be further shown that the validations support different accuracy
statements for the experiments. The validation is designed for and sup-
ports different accuracy statements within the same composed system. The
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application and exploitation of the contributions for more complex cases is
straight forward although it was not explicitly validated in the experiments.

The developed heuristic for the minimal and maximal margins does not
guarantee to find minimal or maximal values by design although the as-
sumptions were checked with a survey on published case studies. However,
the trade-off allows to apply the accuracy influence analysis even in the case
if a single prediction run takes a few minutes or more execution time. Oth-
erwise, a full search of the parameter space would lead to prohibitive effort
in that case. Especially for highly parameterized specifications with several
influencing factors. A partitioned search reduces the number of runs but
requires assumptions on the error distribution. If such a distribution would
be known then the specification could be improved instead of applying this
function. The heuristic can be applied in general although it was only vali-
dated in the experiment systems. Threats on the outcome can be identified
easily in the specifications if negatively correlated dependencies to input
parameters exist.

The handling and validation of probabilistic decision specifications has
been shown using the technology demonstrator PME. The demonstrator
showed reduced complexity in resource demand and control-flow con-
structs besides the probabilistic decisions. However, each branch was val-
idated at least once besides the validation of the branch probabilities. The
applied validation framework was identical to the one applied to more com-
plex use cases. The application and exploitation of contributions should be
straight forward for complex specifications.

The handling and validation of concurrent behavior specifications has
been shown using the technology demonstrator MME. The demonstrator
showed reduced complexity in resource demand and control-flow con-
structs besides the specification of concurrent behavior. However, each
concurrent behavior and the sequence was validated at least once. The ap-
plied validation framework was identical to the one applied to more com-

351



Evaluation

plex use cases. The application and exploitation of contributions should be
straight forward for complex specifications.

The handling and validation of a complex specification on a benchmark
and industrial use case was shown in the running example taken from
the CoCoME system. The selected part uses all different parameter data
types, makes use of external service parameter dependencies for its internal
control-flow, and shows a complex and nested control-flow in general. The
application and exploitation of the contributions should be straight forward
on other real-world systems.

Exploiting the presented contribution of accuracy statement validation
for other prediction approaches than Palladio requires adapting the accu-
racy statements, coverage criteria, and expectations in the run protocol. The
meta-models were designed for customizability and oriented at the general
patterns used in component-based prediction approaches and specification
languages. Although the applicability has been demonstrated for Palladio
the explicit considerations in the design should allow the transfer to other
specification languages and prediction approaches as well.

Adapting a development process to take into account specification cer-
tification has been shown for the Palladio development process. The de-
veloped template was designed for process-agnostic support. The integra-
tion in other component-based development processes should be possible
as well.
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This chapter concludes the thesis. Section 9.1 summarizes the contribu-
tions of the presented approach and the validation results and describes the
benefits for software architects and performance engineers. Section 9.2
discusses the assumptions and limitations. Finally, section 9.3 provides a
perspective on short-term and long-term work.

9.1. Summary

The contributions of this thesis were provided in the four different area of
work accuracy statements, accuracy effects on overall prediction, accuracy
statement validation, and specification certification. In combination, they
ensure that the goal of evaluating the appropriate use of performance spec-
ifications is reached. The main conceptual and technical contributions are
summarized for each are of work in the following.

Accuracy Statements The thesis provided a formalization for stating
the accuracy of performance specifications in form of a meta-model.
The meta-model consists of a generic and language-independent part.
The abstractions in the generic part are independent of a certain spec-
ification language and provide a template, which can be extended for
different languages. The generic part provides a common vocabulary
and ensures that statements can be made for all influence factors.
The presented customization for the specification language of Palla-
dio shows that even complex parameter descriptions like the charac-
terizations in Palladio are supported. The tailoring and application
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also showed the capability for making statements about platform-
independent parameterized specifications, which may contain con-
current, probabilistic and deterministic parts. Accuracy statements
for required elements can be provided on several levels for each in-
fluence factor, which allows the easy specification of default values
as well as fine-granular specifications for each individual target. The
presented approach allows automated processing of the accuracy in-
formation and bundling accuracy statements with specifications but
does not require modifications of the performance specification lan-
guage itself.

Accuracy Effects on Overall Prediction The presented method al-
lows analyzing the influence of the accuracies of composed spec-
ifications on an overall prediction. It determines best and worst
case margins around predictions and supports reasoning if the ac-
curacy of the prediction is appropriate for making an architectural
decision. Threats based on the intra- and extrapolation of the re-
source demand and propagation of the usage profile in specifications
as well as mitigation actions were identified. The heuristic to deter-
mine only the best and worst case deviations for all specifications
was selected based on a survey of resource demand relations in case
studies with academical as well as industrial focus and based on
the run-time of prediction runs. The heuristic’s advantage in prun-
ing the analysis effort from hundreds or thousands to three times
of a prediction without influence analysis allows using simulation-
based solvers. These solver require less assumptions than analytical
solvers, have the ability to predict arbitrary distribution functions in-
cluding performance peaks, and provide more accurate distribution
functions for real-world systems. This allows overall predictions in
several minutes for typical applications and in-depth analysis on the
architecture level. The heuristic was integrated into the Palladio pre-
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diction process and complemented by the ability to report threats on
the prediction based on the actual use of the specification in a com-
position. These threat reports include failure details like experienced
parameter values without accuracy information and allows what-if-
analyses for modified accuracy statements as well as goal-oriented
re-validation of specifications.

Accuracy Statement Validation The introduced meta-model for test-
based validations allows stating the quality and validated aspects.
The defined strategies for the generation of parameter values, the
stop condition, the internal state influence analysis strategy, or the
probability validation can be easily adapted if new validation algo-
rithms should be supported and be re-used in combination with these
new algorithms. The presented test-based validation process is based
on exact measurements of the resource demand in bytecode instruc-
tions. This reduces the overall number of required tests heavily and
allows omitting the necessity for test repetitions in identical scenarios
in order to reduce measurement errors. The process shows the flow
of artifacts in the process and defines component initialization and
measurement points precisely. The validation of performance spec-
ifications is backed by the definition of performance-oriented cov-
erage criteria. These criteria cover all aspects of Palladio specifica-
tions including concurrent, probabilistic as well as deterministic, and
platform-independent elements. Thus, the criteria allow taking into
account the full semantics of the Palladio specification language and
their effect on covered aspects and mutual coverage. The thesis pro-
vided definitions for 13 unparameterized criteria and the two param-
eterized criteria Ck1

spt and Ck2
jjpath in the three categories covered nodes

and edges, structure of decisions, and sequence of coverage. The
criterion Cprobabilistic decisions specifically targets statistical hypothesis
testing of probabilistic decisions. It showed their relation to existing
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criteria on code level, their covered aspects as well as mutual cov-
erage and expected test set sizes. Reasoning about the test set size
supports selecting validation criteria and make trade-off decisions be-
tween the effort and quality of the validation. The introduced meta-
models for linking Palladio specifications with the implementation
and the measurement framework ByCounter were shown in detail
and support the traceability and the verification of validation results.
The presented meta-model for validation results is designed with the
same rationale in mind as the accuracy statements meta-model and
consists of a generic, specification language independent, part and
a customized extension for Palladio specifications. This common
vocabulary eases result interpretation for different languages. The
results link all required information on measurements, expectations
and validation failure notices. Especially, the validation failure no-
tices contain user-oriented descriptions as well as links to all ele-
ments leading to a failure. This supports automated and manual fault
identification likewise and is a base for goal-oriented improvement of
accuracy statements or specifications. The last contribution for this
area of work is an overview on the implemented automated validation
framework.

Specification Certification A novel approach for the protection of
knowledge and IP contained in implementations and the use of spec-
ifications in protected repositories as well as open marketplaces has
been presented. The approach is based on product certification of
specifications and can be applied for distributed development in time
or space well as across different parties. Certification ensures the
soundness of the specifications and their accuracies. Prediction ap-
proaches with influence analysis allow trustworthy reasoning on the
suitability of components and the quality properties of composed sys-
tems. The analysis of required adaptations of existing component-
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based software engineering processes for incorporating the use of
certified specifications lead to the definition of the roles Component
Supplier, Component Certifier, and Component Integrator including
their key activities and required performance engineering skills. The
assignment of these roles to parties can differ and a guideline was
provided for certifier party selection. The guideline takes into ac-
count the need for protection of the implementation, the mutual trust
between Component Supplier and Component Integrator as well as
the distribution of evaluation effort between the roles and the use of
accuracy statements. The guideline supports trade-off decisions be-
tween these degrees of freedom and the selection of the appropriate
assignment for each component and usage context. The adaptations
were applied on the RUP-based pre-existing development process for
Palladio. The resulting certification aware process was presented in
detail from the process model down to activities, participating roles,
and storage of artifacts in protected component repositories or open
marketplaces. A definition of the Palladio certificate, its contents,
and mechanisms to ensure its integrity were provided.

The evaluation confirmed that the accuracy statement language was com-
plete with respect to the influence factors. The accuracy influence analysis
showed the inappropriate (re-)use of specifications and the support of error
margins for decision making. The evaluation showed a heavy variation of
the deviation and that the 90% quantile of a prediction can be about 17%
off even if a constant and low deviation of the resource demand of 10%
in the specifications is assumed. The evaluation of the accuracy statements
validation showed that all failures in specifications were identified correctly
and no false positive were identified. They further showed that results are
reproducible and verifiable by independent parties if the same specifica-
tion, accuracy statements and validation quality is used. It has been shown
that component certificates allow the successful sharing, evaluation, and
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selection of a component in a public marketplace scenario in which the
implementation and the contained knowledge and IP is protected.

The benefits resulting from these contributions for software architects
and performance engineers are as follows.

Performance engineers benefit from stating and validating the accuracy
of specifications on the component level. They need to be less involved in
the actual validation and require less effort due to the automated validation
including implementation instrumentation, the actual measurements, and
the comparison of the specified and measured behavior. The reproducibil-
ity of validation results increases the trustworthiness and verifiability. The
coverage criteria ensure the ability for systematic testing of selected as-
pects. Coverage measurements ensure that nothing is missed and the omis-
sion of single elements due to human errors is eliminated by the automated
validation.

Software architects and performance engineers benefit from the defini-
tion of coverage criteria, which allows discussing about the covered aspects
and is a basis for optimizing test sets. Software architects and engineers can
use the coverage criteria to agree on a higher level on covered aspects re-
ducing the need to discuss performance validation details and test sets. The
documentation of a specification’s accuracy supports re-use of the specifi-
cation at a later point in time as well as by different parties. On the one
hand, the knowledge is persisted and transferred between participating per-
sons. On the other hand, the knowledge can be used for assessing if the
accuracies fits the expectations and context.

Software architects require less proficiency in performance testing and
can concentrate on architecture-level analyses. They benefit from the
knowledge about the appropriate use of specifications in composed sys-
tems and the quality of overall predictions. They are notified of inappro-
priate re-use and threats to the validity of a prediction, for example be-
cause specifications are used with a usage profile for which no accuracy
statements are available. The provided information supports goal-oriented
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(re-)validation of modified specifications or modified accuracy statements.
What-if-analyses with modified accuracy statements and their effect on an
overall prediction allow assessing if improving the accuracy of one or more
specifications has the desired effect. The accuracy statements and threat
identification supports the correct re-use of specifications. Thus, the ap-
proach can reduce the need for creating new specifications or validating a
specification again only to be sure it is appropriate for the current context.
Software architects can incorporate the error margins of predictions due to
specification inaccuracies into their decision making and are less likely to
make wrong decisions.

Performance engineering in general benefits from the trustworthy speci-
fications as architecture level performance analyses can be applied in sce-
narios across parties without endangering the quality of the evaluation or
selection decision while protecting the knowledge and IP in implementa-
tions. Previous restrictions are mitigated and the shown benefits can be
realized in scenarios with protected component repositories as well as pub-
lic marketplaces. The integration of certification into own development
processes is eased by the provided templates or using the certificate-aware
development process for Palladio directly. Results are easier to interpret,
inappropriate specifications are easier identified and the understanding of
validated aspects is more precise with the presented approach. Overall, this
shows that the aim of this thesis to improve the evaluation of the appropriate
use of performance specifications has been reached.

9.2. Assumptions and Limitations

This section points out and discusses assumptions and limitations of the
approach presented in this thesis.

Availability of Implementation The approach assumes that an imple-
mentation is available for the validation, which is not true in the
whole lifecycle. Specifications without according implementations
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can be used in early design stages for the relative ranking of differ-
ent design alternatives. They can be based on inaccurate estimations
and still lead to an equivalent ranking compared to implemented sys-
tem. However, predicting absolute performance values requires the
accurate description of an implementation. The implementation is
the responsible artifact determining the performance-related behav-
ior, besides the influence factors with separate specification, and the
assumption of its availability is not a strong one for actual behavior
comparisons.

Availability of Mapping Between Specification and Implemen-
tation The approach assumes that a mapping between the elements
of a validated specification and the corresponding implementation
exists. This is not a hard assumption as a mapping is also required
for determining the measured sections and instrumenting the imple-
mentation if the approach is not used. A mapping on the level of
actions in Palladio is required in order to ensure that the order and
number of component-external calls can be validated. This approach
does not require a more detailed mapping.

Noise-free Measurements The validation approach builds specifically
on the ability of measurement frameworks to determine resource de-
mands without noise or acquisition errors. This property is provided
for implementations using hardware-independent programming lan-
guages with intermediate languages by design, for example Java with
its bytecode or Microsoft’s .NET with its Common Intermediate Lan-
guage. This separation also eases the use of specifications for pre-
dictions in different hardware environments. Detailed information
about the prediction of and for platform-independent specifications
is provided by Kuperberg in his PhD thesis [Kup10], which is also
based on ideas for platform-specific calibration of specifications pre-
sented by Wu in [WW04]. Implementations in C, C++, ObjectiveC,
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Ada, Fortran, Python, or PHP are typically directly compiled for bi-
nary platforms but approaches like LLVM [LA04] allow address-
ing this issue. Gartner already identified in 2009 that the prevail-
ing categories of application server architectures are .NET and Java
EE and that they dominate the mainstream application server mar-
ket [NPI09]. The trend for job positions regarding development lan-
guages also shows that languages with intermediate language are
widespread and have a positive growth, while the other languages
are tending to stagnate [Dia12]. This job trend may be even stronger
if only business software and no software for embedded devices with
their serious restrictions are regarded. This shows that the assump-
tion of using a programming language with an intermediate language
is not a strong one for business systems. Furthermore, this assump-
tion is only required for the validation and is not required for the ac-
curacy influence analysis, which allows taking into account inaccu-
rate measurements due to noise. In general, intermediate languages
allow noise-free measurements, which makes this a weak assump-
tion.

Manual Specification of Limitations for Accuracy Statements
The presented approach assumes that software architects or perfor-
mance engineers provide the limits for accuracy statements. There
is no explicit support for determining these limits besides reporting
inappropriate use and experienced values if a specification is used
in a prediction with parameter values for which no accuracy state-
ments are available. The approach ensures that threats for predic-
tions are identified but judging about appropriate limits depends on
the context, intended use of the specifications, and acceptable valida-
tion effort. These decisions require reasoning and the integration of
software architects and performance engineers is considered a weak
assumption.
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Resource Demand Extremum at Accuracy Boundaries The ac-
curacy influence analysis heuristic assumes that the worst-case de-
viation for a single specification can be observed at the boundaries
for which accuracy statements exist. This assumption has been ac-
cepted after analyzing the usual behavior of case studies in the survey
described in section 5.2. The survey has shown that higher param-
eter values usually corresponds with higher resource demands. The
fulfillment of this assumption can be easily checked on composed
specifications and threats for prediction results are thus easy to iden-
tify. This assumption is only used for the accuracy influence analysis
heuristic.

Handling Software Resources Software resource validation is cur-
rently limited to ensuring the accuracy of the corresponding bytecode
instructions for acquiring and releasing the resources, which follows
the concept of monitors. Higher-order constructs may be built on this
basis and might require measuring additional parameters. However,
Palladio does not know such constructs and, in general, the possibil-
ity for specifying synchronized concurrent behavior in combination
with arbitrary explicit resource and infrastructure component access
makes it very likely that a semantically equivalent behavior to the
construct can be specified. This limitation is therefore seen as mini-
mal.

Approximation of Test Set Sizes The algorithms for the test set size
estimations do not necessarily find the lowest possible bounds. They
do not take all constraints into account, which are imposed by the
structure of the specification and the assignment of parameters within
the specification. This limitation does not impede calculations and
comparison for common cases and is therefor seen as possible im-
provement and weak limitation.
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Focus on Accuracy Influence The accuracy influence analysis is lim-
ited to the influence of the accuracy of composed specifications and
does not address the prediction approach with respect to handling
influence factors, resource consumption, or contention itself. These
factors are inherent to the selected prediction approach and solver.
The approach for accuracy influence analysis does show how over-
all predictions can deviate if the accuracy of the specifications varies
within their specified accuracy boundaries. This limitation does not
affect the validation of performance specifications, which can ensure
that the deviation is below given boundaries.

Analysis of Internal State The internal state influence analysis strategy
ReuseInstanceISIA is implemented and incorporated in the pro-
cess definition in section 6.2 but has not been evaluated. Further-
more, Palladio specifications have the underlying assumption that
components have no additional state beyond the behavior specifica-
tion and configuration settings. A component having internal state
would violate this assumption and threaten the trustworthiness of pre-
dictions. By design, no property of such a specification has a lower
or higher probability for experiencing internal state and coverage or
goal-oriented testing is difficult. Alternatives to test-based valida-
tion can provide advantages with respect to the overall effort and the
precision and recall. An example for such an alternative are code re-
views. A manual analysis of the systems for experimentation showed
that they do not have an internal state beyond configuration settings.
Analyzing the internal state during validation is therefore regarded as
weak limitation.

Coverage Criteria for Reliability An extension of Brosch [Bro12] for
analyzing the reliability of component-based systems was included
recently in Palladio. This extension introduces additional meta-
model elements and reliability-related information. Reliability-ori-
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ented coverage criteria could be defined to take these into account.
However, a test-based validation of reliability is essentially limited
by the necessary effort to cases with relatively low reliability re-
quirements from 10−2 to 10−4 failures per hour [Lap95, GPT01].
Furthermore, techniques like software reliability growth models are
often applied although their underlying assumptions are violated and
the significance of predictions results is threatened for business soft-
ware [BKH09]. Transferring reliability estimates and software defect
prediction models between projects has been identified as seriously
challenging and can threaten results [ZNG+09]. Using historic de-
fect information from the same software leads to precision and recall
values below 80% even with state of the art metrics and different
sampling strategies [PH11]. Taking into account this information, it
remains questionable if a test-based validation of reliability is desir-
able and the best way to proceed. This limitation does not affect the
validation of specifications focussing on performance.

9.3. Perspectives on Future Work

This section discusses ideas and open issues for short-term as well as long-
term future work. The amount of conceptional work and in-depth analysis
of concepts has a bigger share for long-term future work.

The perspective on short-term future work is as follows.

Coverage Criteria for Event-Based Systems Rathfelder developed
an extension of Palladio for modeling and predicting the performance
of event-based systems, which has been recently included and is de-
scribed in [Rat13]. This extension introduces additional meta-model
elements in order to ease the modeling for users. These additional
elements are transformed into pre-existing elements and are hence
compatible with the approach presented in this thesis. An analysis of
the semantics of these added elements should be made and it should
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be checked if the existing coverage criteria should be adapted or new
ones should be defined in order to reflect their meaning.

Integrated Certification Tool Support Issuing, signing and verifying
Palladio certificates is currently not fully automated and supported by
customized tools. A user-friendly reference implementation could
ease the application and make the approach more attractive for the
industry.

Handling Software Resources A survey and analysis of software re-
source handling in real-world systems allows identifying worthwhile
additional higher-order constructs, which might provide advantages
to users if they could be modeled more easily. However, this is
mainly a question of the specification language and the mapping of
specification language elements to the implementation than an exten-
sion of the validation approach.

Improve Internal State Analyses An approach to analyze if the im-
plementation of components is influenced by internal state could be
developed. If no guarantees can be provided a heuristic could be de-
vised, which points to areas more or less likely to show internal state,
and a goal-oriented validation could be applied.

Support Noised Measurements The validation framework could be
extended to support noised measurements. Noise distribution as-
sumptions and statistical analysis for repetitions with the exact same
set of parameters can be used to determine the most likely resource
demand including a confidence interval. However, the number of re-
quired tests will rise significantly in order to reduce errors of Type
I. The noise distribution assumption must be carefully validated for
each context. Measurement on the fine-granular level will be harder
to measure and must take into account warm-up, tear-down, and in-
strumentation effects. This increases the likeliness of accepting an in-

365



Conclusion

correct resource demand value only to validate a platform-dependent
specification.

Sequential Test Plans for Hypothesis Tests The simple test plan
for Cprobabilistic decision could be replaced by a sequential test plan.
This would allow faster results in case the specified probabilities are
invalid.

Intermedia Language Support Resource demand measurement could
be extended to further intermediate languages than Java and its byte-
code. Candidates are Microsoft’s .NET with its Common Inter-
mediate Language and the LLVM. LLVM is an intermediate lan-
guage, state-of-the-art compiler infrastructure, and run-time environ-
ment. LLVM originates from the University of Illinois at Urbana-
Champaign and has been started as a research project on program
analysis [LA04]. LLVM supports a variety of programming langua-
ges including C, C++, ObjectiveC, Ada, Fortran, Python, or PHP.
The most promising and interesting candidate for an extension is
LLVM as it allows measuring code from languages, which are usu-
ally compiled for a specific target platform only. This effort should
be accompanied by an in-depth analysis of the run-time of single
LLVM instructions on specific platforms. Combining these platform-
dependent specifications and the platform-independent specifications
allows reasoning about the performance on that platform. The ap-
proach of Kuperberg for these platform-dependent measurements
based on Java is presented in his PhD thesis [Kup10] and can be
transferred to other languages as well.

Infeasible Testing Requirements Handling The identification of
infeasible testing requirements could be supported by symbolic ex-
ecution and constraint solving algorithms. This would further im-
prove automated test generation and execution if a coverage driven
test strategy is used.
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The perspective on long-term future work is as follows.

Application to further Prediction Approaches The specification
language independent parts of the accuracy statements, the link meta-
model, and the validation results meta-model could be applied on a
broader scale to further prediction approaches. Coverage criteria for
the specification languages of these new approaches should be de-
vised and tailored to the elements and their semantics. This step is
likely to require a big share of conceptual effort. If a further approach
has a corresponding development process then it should be adapted
to be certification-aware.

Test-based Validation for Embedded Systems Embedded systems
usually have strong restrictions with respect to the available re-
sources. These restrictions impede measurements on the running
implementation, even if hardware-in-the-loop approaches are used.
Emulating the environment does not guarantee that the identical be-
havior is shown in the real environment and may take significantly
more time than direct execution. The processing of real-time data
with hard deadlines poses an additional obstacle for the instrumenta-
tion and measurements.

Large-Scale Validation A broad application of the approach on real-
world systems by people from academia as well as industry is de-
sirable. Additional experiments and experience reports could lead to
improved validation failure notices. It would require a lot of effort
but guide further development effectively and enable the identifica-
tion of new research topics, which are relevant for the industry as
well.

Specification Construction Performance specifications are often cre-
ated using reconstruction or reverse engineering techniques. They al-
low reducing the specification effort and probability for error. How-
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ever, neither all performance-relevant aspects can be extracted suc-
cessfully nor are they needed depending on the level of abstraction.
An example for such an behavior specifications extraction approach
is provided by Krogmann [KKR10]. Resulting specifications are cur-
rently not annotated with accuracy informations and may contain
heuristic estimations of the behavior shown in test cases. Unbiased
generation or selection of test cases is rarely addressed. Incorpo-
rating accuracy considerations into these techniques and storing the
accuracy information depending on the used heuristic could ease the
creation of accuracy statements. Furthermore, the mapping between
the specification and the implementation is often not stored in order
to ease subsequent validation if manual adaptations are applied to the
specification. Addressing these issues could improve the quality of
the specifications, reduce the required human effort for creating the
specifications, and ease the validation.

Test Set Optimization The currently available and implemented strate-
gies generate samples randomly within the parameter space included
in the validation. Developing test set optimization algorithms could
decrease the number of required tests for full coverage, especially for
complex and nested specifications tested with a huge parameter space
and an advanced path coverage criterion. These algorithms must be
able to reflect the complexity and constraints expressed in the param-
eter assignment language, which means that complex mathematical
calculations and the parameter characterization must be considered
for Palladio. At the same time, the algorithms for test set size esti-
mation could be improved by taking the additional constraints into
account.

Embedding Accuracy in the Lifecycle The handling and necessity
of quality and especially performance requirements and the accuracy
of specifications in requirements engineering has not been adopted
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to its full extend in the industry yet [BSGR+12]. An in-depth analy-
sis considering the whole lifecycle of components could identify the
critical points and allow focussing future research.
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A. Checksum Calculation Algorithm

Listing A.1: Validation Utilities - Checksum Calculation

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . q u a l i t y . u t i l ;
5

6 import j a v a . u t i l . A r r ay s ;
7 import j a v a . u t i l . L i s t ;
8

9 import de . f z i . s e . q u a l i t y . q u a l i t y a n n o t a t i o n .
S e r v i c e S p e c i f i c a t i o n ;

10

11 /∗ ∗C o n t a i n s g e n e r a l u t i l i t i e s used f o r t h e v a l i d a t i o n o f
per fo rmance s p e c i f i c a t i o n s .

12 ∗ P r o v i d e s checksum c a l c u l a t i o n a l g o r i t h m s .
13 ∗
14 ∗ @author groenda
15 ∗ /
16 p u b l i c c l a s s V a l i d a t i o n U t i l i t i e s {
17 /∗ ∗ L i s t o f a v a i l a b l e da ta t y p e c o n v e r t e r s . ∗ /
18 p u b l i c s t a t i c L i s t < S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r >

c a l c u l a t o r s =
19 A rr ay s . a s L i s t ( ( S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r

) new Checksum_PCM_10 ( ) ) ;
20

21 /∗ ∗ C a l c u l a t e s t h e checksum f o r t h e g i v e n s p e c i f i c a t i o n
w i t h a c a l c u l a t o r f o r t h e g i v e n i d e n t i f i e r .

22 ∗ @param s p e c i f i c a t i o n The per fo rmance s p e c i f i c a t i o n .
23 ∗ @param a l g o r i t h m I d e n t i f i e r The un iq ue i d e n t i f i e r

f o r t h e a l g o r i t h m .
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24 ∗ /
25 p u b l i c s t a t i c long c a l c u l a t e ( S e r v i c e S p e c i f i c a t i o n

s p e c i f i c a t i o n , S t r i n g a l g o r i t h m I d e n t i f i e r ) {
26 f o r ( S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r c a l c u l a t o r :

c a l c u l a t o r s ) {
27 i f ( c a l c u l a t o r . i d e n t i f y ( ) . e q u a l s (

a l g o r i t h m I d e n t i f i e r ) ) {
28 re turn c a l c u l a t o r . c a l c u l a t e ( s p e c i f i c a t i o n )

;
29 }
30 }
31 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " There was no

a l g o r i t h m known f o r t h e p r o v i d e d i d e n t i f i e r . The
i d e n t i f i e r was " + a l g o r i t h m I d e n t i f i e r ) ;

32 }
33

34 /∗ ∗Updates t h e checksum f o r t h e g i v e n s p e c i f i c a t i o n
u s i n g a c a l c u l a t o r f o r t h e g i v e n i d e n t i f i e r .

35 ∗ @param s p e c i f i c a t i o n The per fo rmance s p e c i f i c a t i o n .
36 ∗ @param a l g o r i t h m I d e n t i f i e r The un iq ue i d e n t i f i e r

f o r t h e a l g o r i t h m .
37 ∗ /
38 p u b l i c s t a t i c vo id u p d a t e ( S e r v i c e S p e c i f i c a t i o n

s p e c i f i c a t i o n , S t r i n g a l g o r i t h m I d e n t i f i e r ) {
39 f o r ( S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r c a l c u l a t o r :

c a l c u l a t o r s ) {
40 i f ( c a l c u l a t o r . i d e n t i f y ( ) . e q u a l s (

a l g o r i t h m I d e n t i f i e r ) ) {
41 c a l c u l a t o r . u p d a t e ( s p e c i f i c a t i o n ) ;
42 re turn ;
43 }
44 }
45 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " There was no

a l g o r i t h m known f o r t h e p r o v i d e d i d e n t i f i e r . The
i d e n t i f i e r was " + a l g o r i t h m I d e n t i f i e r ) ;

46 }
47 }
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Listing A.2: Validation Utilities - Checksum Calculation Interface

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . q u a l i t y . u t i l ;
5

6 import de . f z i . s e . q u a l i t y . q u a l i t y a n n o t a t i o n .
S e r v i c e S p e c i f i c a t i o n ;

7

8 /∗ ∗ I n t e r f a c e f o r a l g o r i t h m which c a l c u l a t e t h e checksum
f o r a g i v e n s p e c i f i c a t i o n .

9 ∗ @author groenda
10 ∗
11 ∗ /
12 p u b l i c i n t e r f a c e S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r {
13

14 /∗ ∗ C a l c u l a t e s t h e checksum f o r t h e p r o v i d e d
s p e c i f i c a t i o n .

15 ∗ Throws a r u n t i m e e x c e p t i o n i f t h e c a l c u l a t i o n f a i l s
, e . g . t h e s p e c i f i c a t i o n language i s n o t s u p p o r t e d .

16 ∗ @param s p e c i f i c a t i o n The per fo rmance s p e c i f i c a t i o n .
17 ∗ /
18 p u b l i c long c a l c u l a t e ( S e r v i c e S p e c i f i c a t i o n

s p e c i f i c a t i o n ) ;
19

20 /∗ ∗
21 ∗ @return The un iq ue i d e n t i f i e r f o r t h i s a l g o r i t h m .
22 ∗ /
23 p u b l i c S t r i n g i d e n t i f y ( ) ;
24

25 /∗ ∗Updates t h e checksum o f t h e p r o v i d e d s p e c i f i c a t i o n .
26 ∗ Throws a r u n t i m e e x c e p t i o n i f t h e c a l c u l a t i o n f a i l s

, e . g . t h e s p e c i f i c a t i o n language i s n o t s u p p o r t e d .
27 ∗ @param s p e c i f i c a t i o n The per fo rmance s p e c i f i c a t i o n .
28 ∗ /
29 p u b l i c vo id u p d a t e ( S e r v i c e S p e c i f i c a t i o n s p e c i f i c a t i o n )

;
30 }
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Listing A.3: Validation Utilities - Checksum Calculation Algorithm for Palladio

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . q u a l i t y . u t i l ;
5

6 import j a v a . i o . S t r i n g W r i t e r ;
7 import j a v a . u t i l . A r r a y L i s t ;
8 import j a v a . u t i l . l o g g i n g . Logger ;
9 import j a v a . u t i l . z i p . CRC32 ;

10 import j a v a . u t i l . z i p . Checksum ;
11

12 import de . f z i . s e . q u a l i t y . q u a l i t y a n n o t a t i o n .
P C M S e r v i c e S p e c i f i c a t i o n ;

13 import de . f z i . s e . q u a l i t y . q u a l i t y a n n o t a t i o n .
S e r v i c e S p e c i f i c a t i o n ;

14 import de . uka . i p d . sdq . pcm . c o r e . e n t i t y . R e s o u r c e R e q u i r e d R o l e
;

15 import de . uka . i p d . sdq . pcm . p a r a m e t e r . V a r i a b l e U s a g e ;
16 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . C o l l e c t i o n D a t a T y p e ;
17 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . Composi teDataType ;
18 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . DataType ;
19 import de . uka . i p d . sdq . pcm . r e p o s i t o r y .

I n f r a s t r u c t u r e R e q u i r e d R o l e ;
20 import de . uka . i p d . sdq . pcm . r e p o s i t o r y .

I n f r a s t r u c t u r e S i g n a t u r e ;
21 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . I n n e r D e c l a r a t i o n ;
22 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . O p e r a t i o n R e q u i r e d R o l e

;
23 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . O p e r a t i o n S i g n a t u r e ;
24 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . P a r a m e t e r ;
25 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . P a s s i v e R e s o u r c e ;
26 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . P r i m i t i v e D a t a T y p e ;
27 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . R e q u i r e d R o l e ;
28 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . S i g n a t u r e ;
29 import de . uka . i p d . sdq . pcm . r e p o s i t o r y . u t i l . R e p o s i t o r y S w i t c h

;
30 import de . uka . i p d . sdq . pcm . r e s o u r c e t y p e . R e s o u r c e S i g n a t u r e ;
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31 import de . uka . i p d . sdq . pcm . s e f f . ResourceDemandingSEFF ;
32

33 /∗ ∗
34 ∗ Checksum c a l c u l a t i o n a l g o r i t h m f o r PCM.
35 ∗
36 ∗ @author groenda
37 ∗ @version 1 . 0
38 ∗
39 ∗ /
40 p u b l i c c l a s s Checksum_PCM_10 implements

S p e c i f i c a t i o n C h e c k s u m C a l c u l a t o r {
41 /∗ ∗ Logger f o r t h i s c l a s s . ∗ /
42 p u b l i c s t a t i c f i n a l Logger l o g g e r = Logger . g e t L o g g e r (

Checksum_PCM_10 . c l a s s . ge tCanonica lName ( ) ) ;
43 /∗ ∗ I d e n t i f i e r f o r v e r s i o n 1 . 0 o f t h e PCM checksum

c a l c u l a t i o n a l g o r i t h m . ∗ /
44 p u b l i c s t a t i c f i n a l S t r i n g CHECKSUM_PCM_10_IDENTIFIER

= "PCM 1 . 0 " ;
45 /∗ ∗
46 ∗ S e p a r a t o r c h a r a c t e r f o r t h e same h i e r a r c h y l e v e l .

Improves r e a d a b i l i t y
47 ∗ f o r humans . T e c h n i c a l l y n o t n e c e s s a r y .
48 ∗ /
49 p r o t e c t e d s t a t i c f i n a l S t r i n g SEPARATOR = " _ " ;
50 /∗ ∗
51 ∗ S e p a r a t o r c h a r a c t e r f o r t h e open ing a new h i e r a r c h y

l e v e l . Improves
52 ∗ r e a d a b i l i t y f o r humans . T e c h n i c a l l y n o t n e c e s s a r y .
53 ∗ /
54 p r o t e c t e d s t a t i c f i n a l S t r i n g

SEPARATOR_HIERARCHY_START = " ( " ;
55 /∗ ∗
56 ∗ S e p a r a t o r c h a r a c t e r f o r c l o s i n g a h i e r a r c h y l e v e l .

Improves r e a d a b i l i t y
57 ∗ f o r humans . T e c h n i c a l l y n o t n e c e s s a r y .
58 ∗ /
59 p r o t e c t e d s t a t i c f i n a l S t r i n g SEPARATOR_HIERARCHY_END

= " ) " ;
60
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61 /∗ ∗ S t r i n g c o n v e r t e r f o r da ta t y p e s . ∗ /
62 p r i v a t e f i n a l Da ta Ty pe Con ve r t e r d a t a T y p e C o n v e r t e r =

new D ata Ty pe Co nve r t e r ( ) ;
63

64 @Override
65 p u b l i c vo id u p d a t e ( S e r v i c e S p e c i f i c a t i o n s p e c i f i c a t i o n )

{
66 Long checksum = c a l c u l a t e ( s p e c i f i c a t i o n ) ;
67 s p e c i f i c a t i o n . se tChecksum ( checksum ) ;
68 s p e c i f i c a t i o n . se tChecksumAlg (

CHECKSUM_PCM_10_IDENTIFIER ) ;
69 }
70

71 @Override
72 p u b l i c long c a l c u l a t e ( S e r v i c e S p e c i f i c a t i o n

s p e c i f i c a t i o n ) {
73 i f ( ! ( s p e c i f i c a t i o n i n s t a n c e o f

P C M S e r v i c e S p e c i f i c a t i o n ) ) {
74 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
75 " Th i s a l g o r i t h m can on ly c a l c u l a t e

checksums f o r PCM s e r v i c e s p e c i f i c a t i o n s . The
p r o v i d e d s p e c i f i c a t i o n t y p e must be
P C M S e r v i c e S p e c i f i c a t i o n . " ) ;

76 }
77 Checksum checksum = new CRC32 ( ) ;
78 checksum . r e s e t ( ) ;
79 ResourceDemandingSEFF r d s e f f = ( (

P C M S e r v i c e S p e c i f i c a t i o n ) s p e c i f i c a t i o n )
80 . getResourceDemandingSEFF ( ) ;
81 / / P r o v i d e d i n t e r f a c e must s t a y t h e same
82 upda t eChecksumWi thS igna tu r e ( checksum ,
83 r d s e f f . g e t D e s c r i b e d S e r v i c e _ _ S E F F ( ) ) ;
84 / / Component parame te r and component parame te r

must s t a y t h e same
85 f o r ( V a r i a b l e U s a g e usage : r d s e f f
86 .

g e t B a s i c C o m p o n e n t _ S e r v i c e E f f e c t S p e c i f i c a t i o n ( )
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87 .
ge tComponen tParamete rUsage_Implementa t ionComponen tType
( ) ) {

88 updateChecksum ( checksum ,
89 " ComponentParameter " + PCMUtil .

g e t Q u a l i f i e d N a m e ( usage ) ) ;
90 }
91 f o r ( P a s s i v e R e s o u r c e p a s s i v e R e s o u r c e : r d s e f f
92 .

g e t B a s i c C o m p o n e n t _ S e r v i c e E f f e c t S p e c i f i c a t i o n ( )
93 . g e t P a s s i v e R e s o u r c e _ B a s i c C o m p o n e n t ( ) ) {
94 updateChecksum ( checksum , p a s s i v e R e s o u r c e .

e C l a s s ( ) . getName ( )
95 + SEPARATOR + p a s s i v e R e s o u r c e . g e t I d ( )

+ SEPARATOR
96 + p a s s i v e R e s o u r c e . ge tEn t i t yName ( ) ) ;
97 }
98 / / R e q u i r e d i n t e r f a c e i d e n t i f i e r s and o p e r a t i o n

p a r a m e t e r s must s t a y t h e
99 / / same

100 f o r ( R e q u i r e d R o l e r e q u i r e d R o l e : r d s e f f
101 .

g e t B a s i c C o m p o n e n t _ S e r v i c e E f f e c t S p e c i f i c a t i o n ( )
102 . g e t R e q u i r e d R o l e s _ I n t e r f a c e R e q u i r i n g E n t i t y

( ) ) {
103 updateChecksum ( checksum , r e q u i r e d R o l e . e C l a s s ( )

. getName ( )
104 + SEPARATOR + r e q u i r e d R o l e . g e t I d ( ) ) ;
105 i f ( r e q u i r e d R o l e i n s t a n c e o f

O p e r a t i o n R e q u i r e d R o l e ) {
106 O p e r a t i o n R e q u i r e d R o l e

o p e r a t i o n R e q u i r e d R o l e = ( O p e r a t i o n R e q u i r e d R o l e )
r e q u i r e d R o l e ;

107 updateChecksum ( checksum , SEPARATOR
108 + o p e r a t i o n R e q u i r e d R o l e
109 .

g e t R e q u i r e d I n t e r f a c e _ _ O p e r a t i o n R e q u i r e d R o l e ( )
110 . g e t I d ( ) +

SEPARATOR_HIERARCHY_START) ;
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111 f o r ( S i g n a t u r e s i g n a t u r e :
o p e r a t i o n R e q u i r e d R o l e

112 .
g e t R e q u i r e d I n t e r f a c e _ _ O p e r a t i o n R e q u i r e d R o l e ( )

113 . g e t S i g n a t u r e s _ _ O p e r a t i o n I n t e r f a c e
( ) ) {

114 upda t eChecksumWi thS igna tu r e ( checksum ,
s i g n a t u r e ) ;

115 }
116 updateChecksum ( checksum ,

SEPARATOR_HIERARCHY_END) ;
117 } e l s e i f ( r e q u i r e d R o l e i n s t a n c e o f

I n f r a s t r u c t u r e R e q u i r e d R o l e ) {
118 I n f r a s t r u c t u r e R e q u i r e d R o l e

i n f r a s t r u c t u r e R e q u i r e d R o l e = (
I n f r a s t r u c t u r e R e q u i r e d R o l e ) r e q u i r e d R o l e ;

119 updateChecksum (
120 checksum ,
121 SEPARATOR
122 + i n f r a s t r u c t u r e R e q u i r e d R o l e
123 .

g e t R e q u i r e d I n t e r f a c e _ _ I n f r a s t r u c t u r e R e q u i r e d R o l e ( )
124 . g e t I d ( ) + SEPARATOR_HIERARCHY_START) ;
125 f o r ( S i g n a t u r e s i g n a t u r e :

i n f r a s t r u c t u r e R e q u i r e d R o l e
126 . g e t R e q u i r e d I n t e r f a c e _ _ I n f r a s t r u c t u r e R e q u i r e d R o l e ( )
127 . g e t I n f r a s t r u c t u r e S i g n a t u r e s _ _ I n f r a s t r u c t u r e I n t e r f a c e

( ) ) {
128 upda t eChecksumWi thS igna tu r e ( checksum ,

s i g n a t u r e ) ;
129 }
130 updateChecksum ( checksum ,

SEPARATOR_HIERARCHY_END) ;
131 } e l s e {
132 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
133 " R e q u i r e d r o l e s o f t h e component

c o n t a i n i n g t h e s p e c i f i c a t i o n may on ly have o p e r a t i o n
and i n f r a s t r u c t u r e r e q u i r e d r o l e s . E x p e r i e n c e d r o l e
was : "
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134 + r e q u i r e d R o l e . e C l a s s ( ) .
getName ( ) ) ;

135 }
136 }
137 f o r ( R e s o u r c e R e q u i r e d R o l e r r R o l e : r d s e f f
138 . g e t B a s i c C o m p o n e n t _ S e r v i c e E f f e c t S p e c i f i c a t i o n ( )
139 . g e t R e s o u r c e R e q u i r e d R o l e s _ _

R e s o u r c e I n t e r f a c e R e q u i r i n g E n t i t y ( ) ) {
140 updateChecksum ( checksum , SEPARATOR + r r R o l e .

g e t I d ( )
141 + SEPARATOR_HIERARCHY_START) ;
142 f o r ( R e s o u r c e S i g n a t u r e r e s o u r c e S i g n a t u r e :

r r R o l e
143 .

g e t R e q u i r e d R e s o u r c e I n t e r f a c e _ _ R e s o u r c e R e q u i r e d R o l e ( )
144 .

g e t R e s o u r c e S i g n a t u r e s _ _ R e s o u r c e I n t e r f a c e ( ) ) {
145 upda t eChecksumWi thS igna tu r e ( checksum ,

r e s o u r c e S i g n a t u r e ) ;
146 }
147 updateChecksum ( checksum ,

SEPARATOR_HIERARCHY_END) ;
148 }
149 / / S p e c i f i e d b e h a v i o r must s t a y t h e same
150 Act ionChecksumSwitch checksumSwitch = new

Act ionChecksumSwitch ( checksum ) ;
151 checksumSwitch . doSwi tch ( r d s e f f ) ;
152 re turn checksum . g e t V a l u e ( ) ;
153 }
154

155 /∗ ∗
156 ∗ Updates t h e checksum w i t h d e t a i l s abou t t h e

s i g n a t u r e s .
157 ∗
158 ∗ @param checksum
159 ∗ The checksum .
160 ∗ @param s i g n a t u r e
161 ∗ The s i g n a t u r e .
162 ∗ /
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163 p r o t e c t e d void upda t eChecksumWi thS igna tu r e ( Checksum
checksum ,

164 S i g n a t u r e s i g n a t u r e ) {
165 i f ( s i g n a t u r e i n s t a n c e o f O p e r a t i o n S i g n a t u r e ) {
166 O p e r a t i o n S i g n a t u r e o p e r a t i o n S i g n a t u r e = (

O p e r a t i o n S i g n a t u r e ) s i g n a t u r e ;
167 f o r ( P a r a m e t e r p a r a m e t e r : o p e r a t i o n S i g n a t u r e
168 . g e t P a r a m e t e r s _ _ O p e r a t i o n S i g n a t u r e ( ) )

{
169 updateChecksum (
170 checksum ,
171 p a r a m e t e r . ge tParamete rName ( )
172 + SEPARATOR
173 + d a t a T y p e C o n v e r t e r .

g e t U n i q u e I d e n t i f i e r ( p a r a m e t e r
174 .

g e t D a t a T y p e _ _ P a r a m e t e r ( ) ) ) ;
175 }
176 i f ( o p e r a t i o n S i g n a t u r e .

g e t R e t u r n T y p e _ _ O p e r a t i o n S i g n a t u r e ( ) != n u l l ) {
177 updateChecksum ( checksum ,
178 d a t a T y p e C o n v e r t e r .

g e t U n i q u e I d e n t i f i e r ( o p e r a t i o n S i g n a t u r e
179 .

g e t R e t u r n T y p e _ _ O p e r a t i o n S i g n a t u r e ( ) ) ) ;
180 }
181 } e l s e i f ( s i g n a t u r e i n s t a n c e o f

I n f r a s t r u c t u r e S i g n a t u r e ) {
182 f o r ( P a r a m e t e r p a r a m e t e r : ( (

I n f r a s t r u c t u r e S i g n a t u r e ) s i g n a t u r e )
183 .

g e t P a r a m e t e r s _ _ I n f r a s t r u c t u r e S i g n a t u r e ( ) ) {
184 updateChecksum (
185 checksum ,
186 p a r a m e t e r . ge tParamete rName ( )
187 + SEPARATOR
188 + d a t a T y p e C o n v e r t e r .

g e t U n i q u e I d e n t i f i e r ( p a r a m e t e r

380



Checksum Calculation Algorithm

189 .
g e t D a t a T y p e _ _ P a r a m e t e r ( ) ) ) ;

190 }
191 } e l s e {
192 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
193 " Only s i g n a t u r e o f o p e r a t i o n and

i n f r a s t r u c t u r e i n t e r f a c e s can be p r o c e s s e d . P r o v i d e d
t y p e was : "

194 + s i g n a t u r e . e C l a s s ( ) . getName ( )
) ;

195 }
196 }
197

198 /∗ ∗
199 ∗ Updates t h e checksum w i t h d e t a i l s abou t t h e

s i g n a t u r e s .
200 ∗
201 ∗ @param checksum
202 ∗ The checksum .
203 ∗ @param s i g n a t u r e
204 ∗ The s i g n a t u r e .
205 ∗ /
206 p r o t e c t e d void upda t eChecksumWi thS igna tu r e ( Checksum

checksum ,
207 R e s o u r c e S i g n a t u r e s i g n a t u r e ) {
208 updateChecksum ( checksum ,
209 I n t e g e r . t o S t r i n g ( s i g n a t u r e .

g e t R e s o u r c e S e r v i c e I d ( ) ) + SEPARATOR) ;
210 i f ( s i g n a t u r e . g e t P a r a m e t e r _ _ R e s o u r c e S i g n a t u r e ( ) !=

n u l l ) {
211 updateChecksum (
212 checksum ,
213 s i g n a t u r e .

g e t P a r a m e t e r _ _ R e s o u r c e S i g n a t u r e ( )
214 . ge tParamete rName ( )
215 + SEPARATOR
216 + d a t a T y p e C o n v e r t e r .

g e t U n i q u e I d e n t i f i e r ( s i g n a t u r e
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217 .
g e t P a r a m e t e r _ _ R e s o u r c e S i g n a t u r e ( )

218 .
g e t D a t a T y p e _ _ P a r a m e t e r ( ) ) ) ;

219 }
220 }
221

222 @Override
223 p u b l i c S t r i n g i d e n t i f y ( ) {
224 re turn CHECKSUM_PCM_10_IDENTIFIER ;
225 }
226

227 /∗ ∗
228 ∗ Updates checksum w i t h t h e g i v e n s t r i n g .
229 ∗
230 ∗ @param checksum
231 ∗ Checksum g e n e r a t o r and s t o r a g e .
232 ∗ @param s t r i n g
233 ∗ S t r i n g used t o u pd a t e t h e checksum .
234 ∗ /
235 p u b l i c s t a t i c vo id updateChecksum ( Checksum checksum ,

S t r i n g s t r i n g ) {
236 byte [ ] b y t e A r r a y = s t r i n g . g e t B y t e s ( ) ;
237 checksum . u p d a t e ( by t eAr ray , 0 , b y t e A r r a y . l e n g t h ) ;
238 }
239

240

241 /∗ ∗
242 ∗ C o n v e r t s da ta t y p e s t o s t r i n g s f o r t h e checksum

c a l c u l a t i o n s . Unique
243 ∗ i d e n t i f i e r s and names are i n c l u d e d .
244 ∗
245 ∗ @author groenda
246 ∗
247 ∗ /
248 p r i v a t e c l a s s Da ta Ty pe Co nve r t e r ex tends

R e p o s i t o r y S w i t c h < S t r i n g > {
249 /∗ ∗ L i s t o f da ta t y p e s hand led i n a c o n v e r s i o n .

A l l ow s t o t r a c k r e c u r s i v e d e f i n i t i o n s . ∗ /

382



Checksum Calculation Algorithm

250 p r o t e c t e d A r r a y L i s t <DataType > hand ledDa taTypes ;
251

252 /∗ ∗ C a l c u l a t e s and r e t u r n s t h e un iq ue s t r i n g f o r
t h e da ta t y p e .

253 ∗ @param dataType The da ta t y p e .
254 ∗ @return The un iq ue s t r i n g .
255 ∗ /
256 p u b l i c S t r i n g g e t U n i q u e I d e n t i f i e r ( DataType

da taType ) {
257 hand ledDa taTypes = new A r r a y L i s t <DataType > ( ) ;
258 re turn doSwi tch ( da taType ) ;
259 }
260

261 @Override
262 p u b l i c S t r i n g c a s e C o l l e c t i o n D a t a T y p e (

C o l l e c t i o n D a t a T y p e o b j e c t ) {
263 i f ( hand ledDa taTypes . c o n t a i n s ( o b j e c t ) ) {
264 re turn o b j e c t . e C l a s s ( ) . getName ( ) +

SEPARATOR + o b j e c t . g e t I d ( ) + SEPARATOR + o b j e c t .
ge tEn t i t yName ( ) ;

265 }
266 hand ledDa taTypes . add ( o b j e c t ) ;
267 S t r i n g r e s u l t = o b j e c t . e C l a s s ( ) . getName ( ) +

SEPARATOR + o b j e c t . g e t I d ( )
268 + SEPARATOR + o b j e c t . ge tEn t i t yName ( )
269 + SEPARATOR_HIERARCHY_START
270 + doSwi tch ( o b j e c t .

g e t I n n e r T y p e _ C o l l e c t i o n D a t a T y p e ( ) )
271 + SEPARATOR_HIERARCHY_END;
272 hand ledDa taTypes . remove ( o b j e c t ) ;
273 re turn r e s u l t ;
274 }
275

276 @Override
277 p u b l i c S t r i n g caseCompos i t eDa taType (

Composi teDataType o b j e c t ) {
278 i f ( hand ledDa taTypes . c o n t a i n s ( o b j e c t ) ) {
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279 re turn o b j e c t . e C l a s s ( ) . getName ( ) +
SEPARATOR + o b j e c t . g e t I d ( ) + SEPARATOR + o b j e c t .
ge tEn t i t yName ( ) ;

280 }
281 hand ledDa taTypes . add ( o b j e c t ) ;
282 S t r i n g W r i t e r r e s u l t = new S t r i n g W r i t e r ( ) ;
283 r e s u l t . append ( o b j e c t . e C l a s s ( ) . getName ( ) +

SEPARATOR
284 + o b j e c t . g e t I d ( ) + SEPARATOR + o b j e c t .

ge tEn t i t yName ( ) ) ;
285 f o r ( I n n e r D e c l a r a t i o n d e c l a r a t i o n : o b j e c t
286 . g e t I n n e r D e c l a r a t i o n _ C o m p o s i t e D a t a T y p e

( ) ) {
287 r e s u l t . append (SEPARATOR + d e c l a r a t i o n .

ge tEn t i t yName ( )
288 + SEPARATOR_HIERARCHY_START
289 + doSwi tch ( d e c l a r a t i o n .

g e t D a t a t y p e _ I n n e r D e c l a r a t i o n ( ) )
290 + SEPARATOR_HIERARCHY_END) ;
291 }
292 hand ledDa taTypes . remove ( o b j e c t ) ;
293 re turn r e s u l t . t o S t r i n g ( ) ;
294 }
295

296 @Override
297 p u b l i c S t r i n g c a s e P r i m i t i v e D a t a T y p e (

P r i m i t i v e D a t a T y p e o b j e c t ) {
298 hand ledDa taTypes . add ( o b j e c t ) ;
299 S t r i n g r e s u l t = o b j e c t . e C l a s s ( ) . getName ( ) +

SEPARATOR
300 + o b j e c t . ge tType ( ) . g e t V a l u e ( ) +

SEPARATOR
301 + o b j e c t . ge tType ( ) . g e t L i t e r a l ( ) ;
302 hand ledDa taTypes . remove ( o b j e c t ) ;
303 re turn r e s u l t ;
304 }
305

306 @Override
307 p u b l i c S t r i n g caseDataType ( DataType o b j e c t ) {
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308 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
309 " The p r o v i d e d d a t a t y p e i s n o t

s u p p o r t e d by t h i s i m p l e m e n t a t i o n . The d a t a t y p e was "
310 + o b j e c t . e C l a s s ( ) . getName ( ) ) ;
311 }
312 }
313

314 }

Listing A.4: Validation Utilities - Checksum Calculation Algorithm for Palladio

Specifications

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . q u a l i t y . u t i l ;
5

6 import j a v a . u t i l . z i p . Checksum ;
7

8 import de . uka . i p d . sdq . pcm . c o r e . PCMRandomVariable ;
9 import de . uka . i p d . sdq . pcm . p a r a m e t e r .

V a r i a b l e C h a r a c t e r i s a t i o n ;
10 import de . uka . i p d . sdq . pcm . p a r a m e t e r . V a r i a b l e U s a g e ;
11 import de . uka . i p d . sdq . pcm . s e f f . A b s t r a c t A c t i o n ;
12 import de . uka . i p d . sdq . pcm . s e f f . A b s t r a c t B r a n c h T r a n s i t i o n ;
13 import de . uka . i p d . sdq . pcm . s e f f .

A b s t r a c t I n t e r n a l C o n t r o l F l o w A c t i o n ;
14 import de . uka . i p d . sdq . pcm . s e f f . A c q u i r e A c t i o n ;
15 import de . uka . i p d . sdq . pcm . s e f f . BranchAc t ion ;
16 import de . uka . i p d . sdq . pcm . s e f f . C o l l e c t i o n I t e r a t o r A c t i o n ;
17 import de . uka . i p d . sdq . pcm . s e f f . E x t e r n a l C a l l A c t i o n ;
18 import de . uka . i p d . sdq . pcm . s e f f . F o r k A c t i o n ;
19 import de . uka . i p d . sdq . pcm . s e f f . Fo rkedBeha v iou r ;
20 import de . uka . i p d . sdq . pcm . s e f f . G u a r d e d B r a n c h T r a n s i t i o n ;
21 import de . uka . i p d . sdq . pcm . s e f f . I n t e r n a l A c t i o n ;
22 import de . uka . i p d . sdq . pcm . s e f f . I n t e r n a l C a l l A c t i o n ;
23 import de . uka . i p d . sdq . pcm . s e f f . LoopAct ion ;
24 import de . uka . i p d . sdq . pcm . s e f f .

P r o b a b i l i s t i c B r a n c h T r a n s i t i o n ;
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25 import de . uka . i p d . sdq . pcm . s e f f . R e l e a s e A c t i o n ;
26 import de . uka . i p d . sdq . pcm . s e f f . ResourceDemandingBehaviour ;
27 import de . uka . i p d . sdq . pcm . s e f f . S e t V a r i a b l e A c t i o n ;
28 import de . uka . i p d . sdq . pcm . s e f f . S t a r t A c t i o n ;
29 import de . uka . i p d . sdq . pcm . s e f f . S t o p A c t i o n ;
30 import de . uka . i p d . sdq . pcm . s e f f . s e f f _ p e r f o r m a n c e .

I n f r a s t r u c t u r e C a l l ;
31 import de . uka . i p d . sdq . pcm . s e f f . s e f f _ p e r f o r m a n c e .

Pa ramet r i cResourceDemand ;
32 import de . uka . i p d . sdq . pcm . s e f f . s e f f _ p e r f o r m a n c e .

R e s o u r c e C a l l ;
33 import de . uka . i p d . sdq . pcm . s e f f . u t i l . S e f f S w i t c h ;
34

35 /∗ ∗
36 ∗ B u i l d s t h e checksum f o r t h e c o n t e n t o f an a c t i o n .

S t r u c t u r e and
37 ∗ per formance−r e l e v a n t b e h a v i o r d i f f e r e n c e s l e a d t o a

d i f f e r e n t checksum ,
38 ∗ e n t i t y name and i d e n t i f i e r changes don ’ t .
39 ∗
40 ∗ @author groenda
41 ∗
42 ∗ /
43 p u b l i c c l a s s Act ionChecksumSwitch ex tends S e f f S w i t c h <

Boolean > {
44 /∗ ∗ Checksum g e n e r a t o r used t o c a l c u l a t e t h e checksum .

∗ /
45 p r i v a t e Checksum checksum ;
46

47 /∗ ∗
48 ∗ I n i t i a l i z e s t h e checksum c a l c u l a t o r s w i t c h .
49 ∗
50 ∗ @param checksum
51 ∗ I n s t a n c e o f t h e checksum g e n e r a t o r .
52 ∗ /
53 p u b l i c Act ionChecksumSwitch ( Checksum checksum ) {
54 t h i s . checksum = checksum ;
55 }
56
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57 /∗ ∗
58 ∗ Updates t h e checksum w i t h t h e i n f o r m a t i o n t h a t t h e

p r o v i d e d a c t i o n i s
59 ∗ n e x t i n t h e o r d e r .
60 ∗
61 ∗ @param a c t i o n
62 ∗ /
63 p r o t e c t e d void updateChecksumWithOrder ( A b s t r a c t A c t i o n

a c t i o n ) {
64 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
65 + a c t i o n . e C l a s s ( ) . getName ( ) ) ;
66 }
67

68 /∗ ∗
69 ∗ Updates t h e checksum w i t h t h e s p e c i f i c a t i o n s f o r

t h e p r o v i d e d v a r i a b l e
70 ∗ usage .
71 ∗
72 ∗ @param v a r i a b l e U s a g e
73 ∗ The usage .
74 ∗ /
75 p r o t e c t e d void upda teChecksumWithVar iab leUsage (

V a r i a b l e U s a g e v a r i a b l e U s a g e ) {
76 Checksum_PCM_10 . updateChecksum (
77 checksum ,
78 Checksum_PCM_10 . SEPARATOR_HIERARCHY_START
79 + PCMUtil . g e t Q u a l i f i e d N a m e (

v a r i a b l e U s a g e ) ) ;
80 f o r ( V a r i a b l e C h a r a c t e r i s a t i o n va rCha r :

v a r i a b l e U s a g e
81 . g e t V a r i a b l e C h a r a c t e r i s a t i o n _ V a r i a b l e U s a g e

( ) ) {
82 Checksum_PCM_10
83 . updateChecksum (
84 checksum ,
85 Checksum_PCM_10 . SEPARATOR
86 + varCha r . ge tType ( ) .

g e t L i t e r a l ( )
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87 + "="
88 +

t o U n f o r m a t t e d S p e c i f i c a t i o n ( va rCha r
89 . g e t S p e c i f i c a t i o n _ V a r i a b l e C h a r a c t e r i s a t i o n

( ) ) ) ;
90 }
91 Checksum_PCM_10 . updateChecksum ( checksum ,
92 Checksum_PCM_10 . SEPARATOR_HIERARCHY_END) ;
93 }
94

95 /∗ ∗
96 ∗ Updates t h e checksum w i t h t h e i n f o r m a t i o n on

i n t e r n a l r e s o u r c e demand f o r
97 ∗ { @link A b s t r a c t I n t e r n a l C o n t r o l F l o w A c t i o n } s .
98 ∗
99 ∗ @param a c t i o n

100 ∗ The a c t i o n .
101 ∗ /
102 p r o t e c t e d void updateChecksumWithAICFACalls (
103 A b s t r a c t I n t e r n a l C o n t r o l F l o w A c t i o n a c t i o n ) {
104 f o r ( I n f r a s t r u c t u r e C a l l i n f r a s t r u c t u r e C a l l :

a c t i o n
105 . g e t I n f r a s t r u c t u r e C a l l _ _ A c t i o n ( ) ) {
106 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
107 + i n f r a s t r u c t u r e C a l l .

g e t S i g n a t u r e _ _ I n f r a s t r u c t u r e C a l l ( )
108 . g e t I d ( ) ) ;
109 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
110 + i n f r a s t r u c t u r e C a l l .

g e t R e q u i r e d R o l e _ _ I n f r a s t r u c t u r e C a l l ( )
111 . g e t I d ( ) ) ;
112 Checksum_PCM_10 . updateChecksum (
113 checksum ,
114 Checksum_PCM_10 . SEPARATOR
115 + t o U n f o r m a t t e d S p e c i f i c a t i o n (

i n f r a s t r u c t u r e C a l l
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116 .
g e t N u m b e r O f C a l l s _ _ I n f r a s t r u c t u r e C a l l ( ) ) ) ;

117 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e :
i n f r a s t r u c t u r e C a l l

118 . g e t I n p u t V a r i a b l e U s a g e s _ _ C a l l A c t i o n ( ) )
{

119 upda teChecksumWithVar iab leUsage (
v a r i a b l e U s a g e ) ;

120 }
121 }
122 f o r ( R e s o u r c e C a l l r e s o u r c e C a l l : a c t i o n .

g e t R e s o u r c e C a l l _ _ A c t i o n ( ) ) {
123 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
124 + r e s o u r c e C a l l .

g e t S i g n a t u r e _ _ R e s o u r c e C a l l ( ) . g e t I d ( ) ) ;
125 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
126 + r e s o u r c e C a l l .

g e t R e s o u r c e R e q u i r e d R o l e _ _ R e s o u r c e C a l l ( )
127 . g e t I d ( ) ) ;
128 Checksum_PCM_10 . updateChecksum (
129 checksum ,
130 Checksum_PCM_10 . SEPARATOR
131 + t o U n f o r m a t t e d S p e c i f i c a t i o n (

r e s o u r c e C a l l
132 .

g e t N u m b e r O f C a l l s _ _ R e s o u r c e C a l l ( ) ) ) ;
133 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e :

r e s o u r c e C a l l
134 . g e t I n p u t V a r i a b l e U s a g e s _ _ C a l l A c t i o n ( ) )

{
135 upda teChecksumWithVar iab leUsage (

v a r i a b l e U s a g e ) ;
136 }
137 }
138 f o r ( Pa ramet r i cResourceDemand demand : a c t i o n
139 . ge tResourceDemand_Act ion ( ) ) {
140 Checksum_PCM_10
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141 . updateChecksum (
142 checksum ,
143 demand . e C l a s s ( ) . getName ( )
144 + Checksum_PCM_10 . SEPARATOR
145 + demand .

g e t R e q u i r e d R e s o u r c e _ P a r a m e t r i c R e s o u r c e D e m a n d ( )
146 . g e t I d ( )
147 + Checksum_PCM_10 . SEPARATOR
148 + demand .

g e t R e q u i r e d R e s o u r c e _ P a r a m e t r i c R e s o u r c e D e m a n d ( )
149 . g e tEn t i t yName ( )
150 + Checksum_PCM_10 . SEPARATOR_HIERARCHY_END
151 + t o U n f o r m a t t e d S p e c i f i c a t i o n ( demand
152 .

g e t S p e c i f i c a t i o n _ P a r a m e t e r i c R e s o u r c e D e m a n d ( ) ) ) ;
153 }
154 }
155

156 /∗ ∗
157 ∗ R e t u r n s a t e x t u a l r e p r e s e n t a t i o n s t r i p p e d o f

w h i t e s p a c e and f o r m a t t i n g
158 ∗ c h a r a c t e r s .
159 ∗
160 ∗ @param s p e c i f i c a t i o n
161 ∗ The s p e c i f i c a t i o n .
162 ∗ @return S t r i p p e d t e x t .
163 ∗ /
164 p r o t e c t e d S t r i n g t o U n f o r m a t t e d S p e c i f i c a t i o n (

PCMRandomVariable s p e c i f i c a t i o n ) {
165 re turn s p e c i f i c a t i o n . g e t S p e c i f i c a t i o n ( ) . r e p l a c e A l l

( " [ \ t \ n \ f \ r \ u000B ] " ,
166 " " ) ;
167 }
168

169 @Override
170 p u b l i c Boolean caseResourceDemand ingBehav iour (
171 ResourceDemandingBehaviour o b j e c t ) {
172 Checksum_PCM_10 . updateChecksum ( checksum ,
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173 Checksum_PCM_10 . SEPARATOR_HIERARCHY_START)
;

174 A b s t r a c t A c t i o n a c t i o n = PCMUtil . g e t I n i t i a l A c t i o n (
o b j e c t ) ;

175 whi le ( a c t i o n != n u l l ) {
176 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
177 + a c t i o n . e C l a s s ( ) . getName ( ) ) ;
178 doSwi tch ( a c t i o n ) ;
179 a c t i o n = a c t i o n . g e t S u c c e s s o r _ A b s t r a c t A c t i o n ( ) ;
180 }
181 Checksum_PCM_10 . updateChecksum ( checksum ,
182 Checksum_PCM_10 . SEPARATOR_HIERARCHY_END) ;
183 re turn true ;
184 }
185

186 @Override
187 p u b l i c Boolean c a s e S t a r t A c t i o n ( S t a r t A c t i o n o b j e c t ) {
188 updateChecksumWithOrder ( o b j e c t ) ;
189 updateChecksumWithAICFACalls ( o b j e c t ) ;
190 re turn true ;
191 }
192

193 @Override
194 p u b l i c Boolean c a s e S t o p A c t i o n ( S t o p A c t i o n o b j e c t ) {
195 updateChecksumWithOrder ( o b j e c t ) ;
196 updateChecksumWithAICFACalls ( o b j e c t ) ;
197 re turn true ;
198 }
199

200 @Override
201 p u b l i c Boolean c a s e I n t e r n a l A c t i o n ( I n t e r n a l A c t i o n

o b j e c t ) {
202 updateChecksumWithOrder ( o b j e c t ) ;
203 updateChecksumWithAICFACalls ( o b j e c t ) ;
204 re turn true ;
205 }
206

207 @Override
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208 p u b l i c Boolean c a s e I n t e r n a l C a l l A c t i o n (
I n t e r n a l C a l l A c t i o n o b j e c t ) {

209 updateChecksumWithOrder ( o b j e c t ) ;
210 updateChecksumWithAICFACalls ( o b j e c t ) ;
211 doSwi tch ( o b j e c t .

g e t C a l l e d R e s o u r c e D e m a n d i n g I n t e r n a l B e h a v i o u r ( ) ) ;
212 re turn true ;
213 }
214

215 @Override
216 p u b l i c Boolean c a s e E x t e r n a l C a l l A c t i o n (

E x t e r n a l C a l l A c t i o n o b j e c t ) {
217 updateChecksumWithOrder ( o b j e c t ) ;
218 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
219 + o b j e c t . g e t C a l l e d S e r v i c e _ E x t e r n a l S e r v i c e

( ) . g e t I d ( )
220 + Checksum_PCM_10 . SEPARATOR + o b j e c t .

g e t R o l e _ E x t e r n a l S e r v i c e ( )
221 + Checksum_PCM_10 .

SEPARATOR_HIERARCHY_START + " I n p u t =" ) ;
222 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e : o b j e c t
223 . g e t I n p u t V a r i a b l e U s a g e s _ _ C a l l A c t i o n ( ) ) {
224 upda teChecksumWithVar iab leUsage ( v a r i a b l e U s a g e )

;
225 }
226 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
227 + " Outpu t =" ) ;
228 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e : o b j e c t
229 . g e t R e t u r n V a r i a b l e U s a g e _ _ C a l l R e t u r n A c t i o n

( ) ) {
230 upda teChecksumWithVar iab leUsage ( v a r i a b l e U s a g e )

;
231 }
232 Checksum_PCM_10 . updateChecksum ( checksum ,
233 Checksum_PCM_10 . SEPARATOR_HIERARCHY_END) ;
234 re turn true ;
235 }
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236

237 @Override
238 p u b l i c Boolean c a s e S e t V a r i a b l e A c t i o n ( S e t V a r i a b l e A c t i o n

o b j e c t ) {
239 updateChecksumWithOrder ( o b j e c t ) ;
240 updateChecksumWithAICFACalls ( o b j e c t ) ;
241 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e : o b j e c t
242 . g e t L o c a l V a r i a b l e U s a g e s _ S e t V a r i a b l e A c t i o n

( ) ) {
243 upda teChecksumWithVar iab leUsage ( v a r i a b l e U s a g e )

;
244 }
245 re turn true ;
246 }
247

248 @Override
249 p u b l i c Boolean c a s e A c q u i r e A c t i o n ( A c q u i r e A c t i o n o b j e c t )

{
250 updateChecksumWithOrder ( o b j e c t ) ;
251 updateChecksumWithAICFACalls ( o b j e c t ) ;
252 Checksum_PCM_10 . updateChecksum ( checksum , o b j e c t
253 . g e t P a s s i v e r e s o u r c e _ A c q u i r e A c t i o n ( ) . g e t I d

( ) ) ;
254 re turn true ;
255 }
256

257 @Override
258 p u b l i c Boolean c a s e R e l e a s e A c t i o n ( R e l e a s e A c t i o n o b j e c t )

{
259 updateChecksumWithOrder ( o b j e c t ) ;
260 updateChecksumWithAICFACalls ( o b j e c t ) ;
261 Checksum_PCM_10 . updateChecksum ( checksum , o b j e c t
262 . g e t P a s s i v e R e s o u r c e _ R e l e a s e A c t i o n ( ) . g e t I d

( ) ) ;
263 re turn true ;
264 }
265

266 @Override
267 p u b l i c Boolean caseLoopAc t ion ( LoopAct ion o b j e c t ) {
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268 updateChecksumWithOrder ( o b j e c t ) ;
269 updateChecksumWithAICFACalls ( o b j e c t ) ;
270 Checksum_PCM_10 . updateChecksum (
271 checksum ,
272 Checksum_PCM_10 . SEPARATOR
273 + t o U n f o r m a t t e d S p e c i f i c a t i o n (

o b j e c t
274 .

g e t I t e r a t i o n C o u n t _ L o o p A c t i o n ( ) ) ) ;
275 doSwi tch ( o b j e c t . ge tBodyBehaviour_Loop ( ) ) ;
276 re turn true ;
277 }
278

279 @Override
280 p u b l i c Boolean c a s e C o l l e c t i o n I t e r a t o r A c t i o n (

C o l l e c t i o n I t e r a t o r A c t i o n o b j e c t ) {
281 updateChecksumWithOrder ( o b j e c t ) ;
282 updateChecksumWithAICFACalls ( o b j e c t ) ;
283 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
284 + o b j e c t .

g e t P a r a m e t e r _ C o l l e c t i o n I t e r a t o r A c t i o n ( )
285 . ge tParamete rName ( ) ) ;
286 doSwi tch ( o b j e c t . ge tBodyBehaviour_Loop ( ) ) ;
287 re turn true ;
288 }
289

290 @Override
291 p u b l i c Boolean c a s e B r a n c h A c t i o n ( BranchAc t ion o b j e c t ) {
292 updateChecksumWithOrder ( o b j e c t ) ;
293 updateChecksumWithAICFACalls ( o b j e c t ) ;
294 i n t i = 0 ;
295 f o r ( A b s t r a c t B r a n c h T r a n s i t i o n a b t : o b j e c t .

g e t B r a n c h e s _ B r a n c h ( ) ) {
296 Checksum_PCM_10 . updateChecksum ( checksum ,

Checksum_PCM_10 . SEPARATOR
297 + I n t e g e r . t o S t r i n g ( i ++) +

Checksum_PCM_10 . SEPARATOR
298 + a b t . e C l a s s ( ) . getName ( ) ) ;
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299 i f ( a b t i n s t a n c e o f G u a r d e d B r a n c h T r a n s i t i o n ) {
300 G u a r d e d B r a n c h T r a n s i t i o n g b t = (

G u a r d e d B r a n c h T r a n s i t i o n ) a b t ;
301 Checksum_PCM_10
302 . updateChecksum (
303 checksum ,
304 Checksum_PCM_10 . SEPARATOR
305 + t o U n f o r m a t t e d S p e c i f i c a t i o n ( g b t
306 .

g e t B r a n c h C o n d i t i o n _ G u a r d e d B r a n c h T r a n s i t i o n ( ) ) ) ;
307 } e l s e i f ( a b t i n s t a n c e o f

P r o b a b i l i s t i c B r a n c h T r a n s i t i o n ) {
308 P r o b a b i l i s t i c B r a n c h T r a n s i t i o n p b t = (

P r o b a b i l i s t i c B r a n c h T r a n s i t i o n ) a b t ;
309 Checksum_PCM_10 . updateChecksum (
310 checksum ,
311 Checksum_PCM_10 . SEPARATOR
312 + Double . t o S t r i n g ( p b t .

g e t B r a n c h P r o b a b i l i t y ( ) ) ) ;
313 } e l s e {
314 throw new I l l e g a l A r g u m e n t E x c e p t i o n (
315 " Branch t r a n s i t i o n must be gua rded

or p r o b a b i l i s t i c . E x p r i e n c e d t y p e : "
316 + a b t . e C l a s s ( ) . getName ( ) ) ;
317 }
318 doSwi tch ( a b t .

g e t B r a n c h B e h a v i o u r _ B r a n c h T r a n s i t i o n ( ) ) ;
319 }
320 re turn true ;
321 }
322

323 @Override
324 p u b l i c Boolean c a s e F o r k A c t i o n ( F o r k A c t i o n o b j e c t ) {
325 updateChecksumWithOrder ( o b j e c t ) ;
326 updateChecksumWithAICFACalls ( o b j e c t ) ;
327 i n t i = 0 ;
328 f o r ( Fo rkedBehav iou r b e h a v i o r : o b j e c t
329 .

g e t A s y n c h r o n o u s F o r k e d B e h a v i o u r s _ F o r k A c t i o n ( ) ) {
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330 Checksum_PCM_10 . updateChecksum ( checksum ,
Checksum_PCM_10 . SEPARATOR

331 + I n t e g e r . t o S t r i n g ( i ++) +
Checksum_PCM_10 . SEPARATOR

332 + " Asynchronous " ) ;
333 doSwi tch ( b e h a v i o r ) ;
334 }
335 i = 0 ;
336 f o r ( Fo rkedBehav iou r b e h a v i o r : o b j e c t
337 . g e t S y n c h r o n i s i n g B e h a v i o u r s _ F o r k A c t i o n ( )
338 .

g e t S y n c h r o n o u s F o r k e d B e h a v i o u r s _ S y n c h r o n i s a t i o n P o i n t ( )
) {

339 Checksum_PCM_10 . updateChecksum ( checksum ,
Checksum_PCM_10 . SEPARATOR

340 + I n t e g e r . t o S t r i n g ( i ++) +
Checksum_PCM_10 . SEPARATOR

341 + " S y n c h r o n i z e d " ) ;
342 doSwi tch ( b e h a v i o r ) ;
343 }
344 f o r ( V a r i a b l e U s a g e v a r i a b l e U s a g e : o b j e c t
345 . g e t S y n c h r o n i s i n g B e h a v i o u r s _ F o r k A c t i o n ( )
346 .

g e t O u t p u t P a r a m e t e r U s a g e _ S y n c h r o n i s a t i o n P o i n t ( ) ) {
347 upda teChecksumWithVar iab leUsage ( v a r i a b l e U s a g e )

;
348 }
349 re turn true ;
350 }
351 }

The listings A.1 and A.2 show how checksum calculation algorithm are
provided to developers. The first shows the API, the second the interface
each algorithm must implement.

The listings A.3 and A.4 show the implemented algorithm for the calcu-
lation of the checksum of Palladio performance specifications. Internally,
the CRC32 algorithm provided with Java is used to calculate hash values.
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B. Systems for Experimentation

This section presents additional details on the systems used for experimen-
tation and complements the information provided in section 8.2.

First, section B.1 provides details on the CoCoME. Section B.2 provides
details on the PME. Last, section B.3 provides details on the MME.

B.1. Common Component Modelling Example (CoCoME)

This chapter shows the Palladio specifications and implementations for the
CoCoME example. Showing the specifications allows comparing the given
UML diagrams to the Palladio models. This section also presents the map-
ping between specifications and implementation, which is used in the ex-
periments.

This section is structured as follow. First, it shows the specifications.
Then, it shows the mapping between specifications and implementation.
The implementation is available at [WB11].

Figure B.1 shows the component specification of TradingSystem.In-
ventory.Application .ProductDispatcher in Palladio. Figures B.2
to B.7 show the performance specification for its operation dispatchPro-

ductsFromOtherStores. Figures B.8 to B.13 show the version in which
the deterministic branch decision is replaced by a probabilistic branch de-
cision (compare figures B.5 and B.11).
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Figure B.1.: Component TradingSystem.Inventory.Application.ProductDispatcher
and its Provided and Required Roles
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Figure B.2.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 1 of 6)
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Figure B.3.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 2 of 6)
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Figure B.4.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 3 of 6)
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Figure B.5.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 4 of 6)
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Figure B.6.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 5 of 6)

403



Systems for Experimentation

Figure B.7.: Specification for Operation dispatchProductsFromOtherStores of
Component CoCoME (Part 6 of 6)
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Figure B.8.: Probabilistic Specification for Operation dispatchProductsFromOther-
Stores of Component CoCoME (Part 1 of 6)
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Figure B.9.: Probabilistic Specification for Operation dispatchProductsFromOther-
Stores of Component CoCoME (Part 2 of 6)
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Figure B.10.: Probabilistic Specification for Operation dispatchProductsFromOth-
erStores of Component CoCoME (Part 3 of 6)
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Figure B.11.: Probabilistic Specification for Operation dispatchProductsFromOth-
erStores of Component CoCoME (Part 4 of 6)
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Figure B.12.: Probabilistic Specification for Operation dispatchProductsFromOth-
erStores of Component CoCoME (Part 5 of 6)
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Figure B.13.: Probabilistic Specification for Operation dispatchProductsFromOth-
erStores of Component CoCoME (Part 6 of 6)

410
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Listing B.1: Mapping of CoCoME and Implementation

1 S p e c i f i c a t i o n
2 I m p l e m e n t a t i o n
3

4 Trad ingSys tem . I n v e n t o r y . A p p l i c a t i o n . P r o d u c t D i s p a t c h e r
5 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r , o rg . cocome
. t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e . S t o r e , o rg . cocome
. t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e .
F i l l T r a n s f e r O b j e c t s , o rg . cocome . t r a d i n g s y s t e m . u t i l .
j a v a . Maps , o rg . cocome . t r a d i n g s y s t e m . i n v e n t o r y .
a p p l i c a t i o n . s t o r e . ProductAmountTO , org . cocome .
t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e . ProductTO ,
org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e .
StoreTO , org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a .
p e r s i s t e n c e . P e r s i s t e n c e C o n t e x t , o rg . cocome .
t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e .
ProductMovementTO

6 Component P a r a m e t e r ’ d a t a I n s t a n c e ’ v i a ’ o rg . cocome .
t r a d i n g s y s t e m . i n v e n t o r y . d a t a . D a t a F a c t o r y .
s e t D a t a I n s t a n c e ( f i n a l Data d a t a I n s t a n c e ) ’

7 R e q u i r e d Role ’ P e r s i s t e n c e I f ’ v i a Method ’ de . f z i . s e .
v a l i d a t i o n . t e s t b a s e d . example . cocome . c o n v e r s i o n .
S e t t a b l e D a t a . s e t P e r s i s t e n c e ( P e r s i s t e n c e p e r s i s t e n c e ) ’

8 R e q u i r e d Role ’ S t o r e Q u e r y I f ’ v i a Method ’ de . f z i . s e .
v a l i d a t i o n . t e s t b a s e d . example . cocome . c o n v e r s i o n .
S e t t a b l e D a t a . s e t S t o r e Q u e r y ( S t o r e Q u e r y s t o r e Q u e r y ) ’

9 R e q u i r e d Role ’ E n t e r p r i s e Q u e r y I f ’ v i a Method ’ de . f z i .
s e . v a l i d a t i o n . t e s t b a s e d . example . cocome . c o n v e r s i o n .
S e t t a b l e D a t a . s e t E n t e r p r i s e Q u e r y ( E n t e r p r i s e Q u e r y
e n t e r p r i s e Q u e r y ) ’

10 R e q u i r e d Role ’
R e q u i r e d _ O p t i m i z a t i o n S o l v e r _ T r a d i n g S y s t e m . I n v e n t o r y .
A p p l i c a t i o n . P r o d u c t D i s p a t c h e r ’ v i a Method ’ org .
cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .
p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r .
s e t O p t i m i z a t i o n C o m p o n e n t ( O p t i m i z a t i o n S o l v e r
o p t i m i z a t i o n C o m p o n e n t ) ’
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11 R e q u i r e d Role ’ S t o r e I f ’ v i a Method ’ org . cocome .
t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . p r o d u c t d i s p a t c h e r
. P r o d u c t D i s p a t c h e r S e r v e r . s e t S t o r e I n v e n t o r y M a n a g e r (
S t o r e I n v e n t o r y M a n a g e r s t o r e I n v e n t o r y M a n a g e r ) ’

12

13 O p t i m i z a t i o n S o l v e r I f
14 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . O p t i m i z a t i o n S o l v e r
15 P e r s i s t e n c e I f
16 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . p e r s i s t e n c e .

P e r s i s t e n c e
17 S t o r e Q u e r y I f
18 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e .

S t o r e Q u e r y
19 E n t e r p r i s e Q u e r y I f
20 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . e n t e r p r i s e .

E n t e r p r i s e Q u e r y
21 S t o r e I f
22 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e .

S t o r e I n v e n t o r y M a n a g e r
23 J ava API : : j a v a _ _ u t i l _ _ A r r a y L i s t _ _ i n i t
24 j a v a . u t i l . A r r a y L i s t . A r r a y L i s t ( )
25 J ava API : : j a v a _ _ u t i l _ _ C o l l e c t i o n _ _ i t e r a t o r
26 j a v a . u t i l . C o l l e c t i o n . i t e r a t o r ( )
27 J ava API : : j a v a _ _ u t i l _ _ C o l l e c t i o n _ _ r e m o v e
28 j a v a . u t i l . C o l l e c t i o n . remove ( O b j e c t a rg0 )
29 J ava API : : j a v a _ _ u t i l _ _ C o l l e c t i o n _ _ s i z e
30 j a v a . u t i l . C o l l e c t i o n . s i z e ( )
31 J ava API : : j a v a _ _ u t i l _ _ I t e r a t o r _ _ h a s N e x t ( )
32 j a v a . u t i l . I t e r a t o r . hasNext ( )
33 J ava API : : j a v a _ _ u t i l _ _ I t e r a t o r _ _ n e x t ( )
34 j a v a . u t i l . I t e r a t o r . n e x t ( )
35 J ava API : : j a v a _ _ u t i l _ _ L i s t _ _ a d d A l l
36 j a v a . u t i l . L i s t . ad dAl l ( C o l l e c t i o n a rg0 )
37 J ava API : : j a v a _ _ u t i l _ _ L i s t _ s i z e ( )
38 j a v a . u t i l . L i s t . s i z e ( )
39 J ava API : : j a v a _ _ u t i l _ _ L i s t _ _ t o A r r a y ( )
40 j a v a . u t i l . L i s t . t o A r r a y ( O b j e c t [ ] a rg1 )
41 J ava API : : j a v a _ _ u t i l _ _ E n t r y _ _ g e t K e y ( )
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42 j a v a . u t i l . E n t r y . getKey ( )
43 J ava API : : j a v a _ _ u t i l _ _ E n t r y _ _ g e t V a l u e ( )
44 j a v a . u t i l . E n t r y . g e t V a l u e ( )
45 J ava API : : j a v a _ _ u t i l _ _ M a p _ _ e n t r y S e t ( )
46 j a v a . u t i l . Map . e n t r y S e t ( )
47 J ava API : : j a v a _ _ u t i l _ _ H a s h M a p _ _ i n i t
48 j a v a . u t i l . HashMap . HashMap ( )
49 J ava API : : j a v a _ _ u t i l _ _ M a p _ _ p u t ( )
50 j a v a . u t i l . Map . p u t ( O b j e c t key , O b j e c t v a l u e )
51 J ava API : : j a v a _ _ u t i l _ _ M a p _ _ v a l u e s ( )
52 j a v a . u t i l . Map . v a l u e s ( )
53 O p t i m i z a t i o n S o l v e r I f : : s o l v e O p t i m i z a t i o n ( j a v a . u t i l .

C o l l e c t i o n <ProductAmountTO > r e q u i r e d P r o d u c t s ,
S t o r e A n d P r o d u c t s s t o r e S t o c k I t e m s , S t o r e A n d D i s t a n c e s
s t o r e D i s t a n c e s )

54 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .
p r o d u c t d i s p a t c h e r . O p t i m i z a t i o n S o l v e r .
s o l v e O p t i m i z a t i o n ( C o l l e c t i o n <ProductAmountTO >
r e q u i r e d P r o d u c t A m o u n t s , Map < S t o r e , C o l l e c t i o n <
StockI tem >> s t o r e S t o c k I t e m s , Map < S t o r e , I n t e g e r >
s t o r e D i s t a n c e s )

55 S t o r e Q u e r y I f : : q u e r y S t o c k I t e m s B y P r o d u c t I d ( INT s t o r e I d , long
[ ] p r o d u c t I d s , o rg . cocome . t r a d i n g s y s t e m . i n v e n t o r y .
d a t a . p e r s i s t e n c e . P e r s i s t e n c e C o n t e x t p c t x )

56 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e .
S t o r e Q u e r y . q u e r y S t o c k I t e m s B y P r o d u c t I d ( long s t o r e I d ,
long [ ] p r o d u c t I d s , P e r s i s t e n c e C o n t e x t p c t x )

57 J ava API : : j a v a _ _ l a n g _ _ I n t e g e r _ _ v a l u e O f ( )
58 j a v a . l a n g . I n t e g e r . va lueOf ( i n t a r g )
59 S t o r e Q u e r y I f : : g e t L o c a t i o n ( )
60 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e . S t o r e .

g e t L o c a t i o n ( )
61 S t o r e Q u e r y I f : : g e t I d ( )
62 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . d a t a . s t o r e . S t o r e .

g e t I d ( )
63 J ava API : : j a v a _ _ l a n g _ M a t h _ a b s ( )
64 j a v a . l a n g . Math . abs ( i n t a rg0 )
65 J ava API : : j a v a _ _ l a n g _ _ O b j e c t _ _ O b j e c t ( )
66 j a v a . l a n g . O b j e c t . O b j e c t ( )
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67 J ava API : : j a v a _ _ l a n g _ _ S t r i n g _ _ c o m p a r e T o ( )
68 j a v a . l a n g . S t r i n g . compareTo ( S t r i n g a rg0 )
69 J ava API : : j a v a _ _ u t i l _ C o l l e c t i o n s _ _ e m p t y L i s t ( )
70 j a v a . u t i l . C o l l e c t i o n s . e m p t y L i s t ( )
71 S t o r e I f : : m a r k P r o d u c t s U n a v a i l a b l e I n S t o c k ( org . cocome .

t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e .
ProductMovementTO requ i r edProduc t sAndAmoun t )

72 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n . s t o r e .
S t o r e I n v e n t o r y M a n a g e r . m a r k P r o d u c t s U n a v a i l a b l e I n S t o c k (
ProductMovementTO movedProductAmounts )

73 J ava API : : j a v a _ _ u t i l _ M a p _ i s E m p t y ( )
74 j a v a . u t i l . Map . i sEmpty ( )
75

76 Trad ingSys tem . I n v e n t o r y . A p p l i c a t i o n . P r o d u c t D i s p a t c h e r : :
d i s p a t c h P r o d u c t s F r o m O t h e r S t o r e s ( INT c a l l i n g S t o r e I d ,
j a v a . u t i l . C o l l e c t i o n <ProductAmountTO >
r e q u i r e d P r o d u c t s )

77 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .
p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r .
d i s p a t c h P r o d u c t s F r o m O t h e r S t o r e s ( f i n a l long
c a l l i n g S t o r e I d , f i n a l C o l l e c t i o n <ProductAmountTO >
r e q u i r e d P r o d u c t s )

78 g e t P e r s i s t e n c e C o n t e x t < E x t e r n a l C a l l A c t i o n >
79 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 71
80 q u e r y S t o r e B y I d < E x t e r n a l C a l l A c t i o n >
81 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 77
82 r e t r i e v e s t o r e and f l u s h cache <LoopAction >
83 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
148−152

84 r e t r i e v e p r o d u c t s i d s and p r e p a r e que ry < I n t e r n a l A c t i o n >
85 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
90−127

86 g e t O f f e r e d S t o c k I t e m s P e r S t o r e <LoopAction >
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87 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .
p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
309−318

88 q u e r y S t o c k I t e m B y P r o d u c t I d < E x t e r n a l C a l l A c t i o n Y
89 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
313−315

90 add t o s h i p p a b l e p r o d u c t s < I n t e r n a l A c t i o n >
91 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 317
92 c a l c u l a t e d i s t a n c e s < I n t e r n a l A c t i o n >
93 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
338−345

94 s o l v e O p t i m i z a t i o n < E x t e r n a l C a l l A c t i o n >
95 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
129−133

96 s t o r e P r o d u c t A m o u n t s . s i z e ( ) > 0 < BranchAct ion >
97 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
95−104

98 No P r o d u c t s Exchanged Branch < G u a r d e d B r a n c h T r a n s i t i o n >
99 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
100−101

100 P r o d u c t s Exchanged Branch < G u a r d e d B r a n c h T r a n s i t i o n >
101 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 103
102 l o o p S t o r e s <LoopAction >
103 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
193−207

104 Map . p u t < I n t e r n a l A c t i o n >
105 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
204−206

106 m a r k P r o d u c t s U n a v a i l a b l e I n S t o c k < E x t e r n a l C a l l A c t i o n >
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107 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .
p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 237

108 mark p r o d u c t s f o r t r a n s f e r < I n t e r n a l A c t i o n >
109 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
197−235

110 p r e p a r e exchange o f p r o d u c t s < I n t e r n a l A c t i o n >
111 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
100−191

112 summarize exchanged p r o d u c t s < I n t e r n a l A c t i o n >
113 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e s
280−289

114 s e t R e t u r n V a l u e < S e t V a r i a b l e A c t i o n >
115 org . cocome . t r a d i n g s y s t e m . i n v e n t o r y . a p p l i c a t i o n .

p r o d u c t d i s p a t c h e r . P r o d u c t D i s p a t c h e r S e r v e r : l i n e 106

The mapping between the structural and behavioral aspects of specifica-
tion CoCoME and the implementation is shown in listing B.1.

B.2. Probabilistic Modeling Example (PME)

This chapter shows the Palladio specifications and implementations for the
PME example. Showing the specifications allows comparing the given
UML diagrams to the Palladio models and to the implementation. This
section also presents the mapping between specifications and implementa-
tion, which is used in the experiments.

This section is structured as follow. First, it shows the specifications.
Second, it shows the implementation. Last, it shows the mapping between
specifications and implementation.

Figure B.15 shows the component specification of PME in Palladio. Fig-
ure B.16 shows the performance specification for its operation process.
Figure B.17 shows the component specification of PMEInvalid in Pal-
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Figure B.14.: Specification for Operation process of Component PMEInvalid

Figure B.15.: Component PME and its Provided Role

Figure B.16.: Specification for Operation process of Component PME
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Listing B.2: Implementation of the Interface IPME

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme ;
5
6 /∗ ∗P r o v i d e d component i n t e r f a c e f o r t h e P r o b a b i l i s t i c

Model ing Example (PME) .
7 ∗ D e m o n s t r a t e s t h e v a l i d a t i o n f e a t u r e i f p r o b a b i l i s t i c

c o n t r o l−f l o w d e c i s i o n s
8 ∗ are i n v o l v e d .
9 ∗ @author groenda

10 ∗
11 ∗ /
12 p u b l i c i n t e r f a c e IPME {
13
14 /∗ ∗O p e r a t i o n f o r work ing on a p r o v i d e d t a s k .
15 ∗ @param t a s k Encoded t a s k d e s c r i p t i o n .
16 ∗ /
17 void p r o c e s s ( S t r i n g t a s k ) ;
18
19 }

Figure B.17.: Component PMEInvalid and its Provided Role

ladio. Figure B.14 shows the performance specification for its operation
process.

Listing B.3: Implementation of the Component PMEImpl

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme ;
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5

6 import j a v a . u t i l . Random ;
7

8 /∗ ∗Example i m p l e m e n t a t i o n f o r t h e P r o b a b i l i s t i c Model ing
Example (PME) .

9 ∗ See a l s o { @link IPME} f o r d o c u m e n t a t i o n .
10 ∗ @author groenda
11 ∗
12 ∗ /
13 p u b l i c c l a s s PMEImpl implements IPME {
14 /∗ ∗ P r o b a b i l i t y t h a t a l t e r n a t i v e A i s chosen . ∗ /
15 p u b l i c s t a t i c f i n a l double PROBABILITY_ALTERNATIVE_A =

0 . 0 1 ;
16 /∗ ∗ P r o b a b i l i t y t h a t a l t e r n a t i v e B i s chosen . ∗ /
17 p u b l i c s t a t i c f i n a l double PROBABILITY_ALTERNATIVE_B =

0 . 9 0 ;
18 /∗ ∗ P r o b a b i l i t y t h a t a l t e r n a t i v e C i s chosen . ∗ /
19 p u b l i c s t a t i c f i n a l double PROBABILITY_ALTERNATIVE_C =

0 . 0 9 ;
20

21 /∗ ∗ Random number g e n e r a t o r used f o r t h e d e c i s i o n . ∗ /
22 p r i v a t e s t a t i c f i n a l Random rng = new Random ( System .

c u r r e n t T i m e M i l l i s ( ) ) ;
23

24 /∗ ( non−Javadoc )
25 ∗ @see de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme .

IPME# p r o c e s s ( j a v a . l ang . S t r i n g )
26 ∗ /
27 @Override
28 p u b l i c vo id p r o c e s s ( S t r i n g t a s k ) {
29 / / a c t i v i t y Decide
30 double random = rng . nex tDoub le ( ) ;
31 i f ( random < PROBABILITY_ALTERNATIVE_A) {
32 t r y {
33 / / t e m p l a t e f o r a c t i v i t y Very S h o r t

Running
34 Thread . s l e e p ( 1 5 ) ;
35 } ca tch ( I n t e r r u p t e d E x c e p t i o n e ) {
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36 / / no e r r o r h a n d l i n g i n t e c h n o l o g y
d e m o n s t r a t i o n code

37 }
38 } e l s e i f ( random < PROBABILITY_ALTERNATIVE_A +

PROBABILITY_ALTERNATIVE_B) {
39 t r y {
40 / / t e m p l a t e f o r a c t i v i t y S h o r t Running
41 Thread . s l e e p ( 2 0 0 ) ;
42 } ca tch ( I n t e r r u p t e d E x c e p t i o n e ) {
43 / / no e r r o r h a n d l i n g i n t e c h n o l o g y

d e m o n s t r a t i o n code
44 }
45 } e l s e {
46 t r y {
47 / / t e m p l a t e f o r a c t i v i t y Long Running
48 Thread . s l e e p ( 3 0 0 0 ) ;
49 } ca tch ( I n t e r r u p t e d E x c e p t i o n e ) {
50 / / no e r r o r h a n d l i n g i n t e c h n o l o g y

d e m o n s t r a t i o n code
51 }
52 }
53 }
54

55 }

Listing B.4: Mapping of PME and Implementation

1 S p e c i f i c a t i o n
2 I m p l e m e n t a t i o n
3

4 PME
5 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl ,

j a v a . u t i l . Random , j a v a . l a n g . Thread , j a v a . l a n g . System
6

7 PME : : p r o c e s s ( S t r i n g t a s k )
8 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl .

p r o c e s s ( S t r i n g t a s k )
9 Decide < BranchAct ion >
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10 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :
l i n e s 28−30

11 Very S h o r t Running < I n t e r n a l A c t i o n >
12 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 32−37
13 S h o r t Running < I n t e r n a l A c t i o n >
14 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 39−44
15 Long Running < I n t e r n a l A c t i o n >
16 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 46−51

Listing B.5: Mapping of PMEInvalid and Implementation

1 S p e c i f i c a t i o n
2 I m p l e m e n t a t i o n
3

4 PMEInval id
5 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl ,

j a v a . u t i l . Random , j a v a . l a n g . Thread , j a v a . l a n g . System
6

7 PMEInval id : : p r o c e s s ( S t r i n g t a s k )
8 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl .

p r o c e s s ( S t r i n g t a s k )
9 Decide < BranchAct ion >

10 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :
l i n e s 28−30

11 Very S h o r t Running < I n t e r n a l A c t i o n >
12 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 32−37
13 S h o r t Running < I n t e r n a l A c t i o n >
14 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 39−44
15 Long Running < I n t e r n a l A c t i o n >
16 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . pme . PMEImpl :

l i n e s 46−51

Listing B.2 shows the implementation of the interface. Listing B.2 shows
the implementation of the component PMEImpl. The mapping between the
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Figure B.18.: Component MMEImpl and Provided and Required Roles

structural and behavioral aspects of specification PME and the implementa-
tion is shown in B.4. The mapping between the structural and behavioral
aspects of the specification PMEInvalid and the implementation is shown
in listing B.5.

B.3. Multithreaded Modeling Example (MME)

This chapter shows the Palladio specifications and implementations for the
MME example. Showing the specifications allows comparing the given
UML diagrams to the Palladio models and to the implementations. This
section also presents the mapping between specifications and implementa-
tion, which is used in the experiments.

This section is structured as follow. First, it shows the specifications.
Second, it shows the implementation. Last, it shows the mapping between
specifications and implementation.

Figure B.18 shows the component specification of MMEImpl in Palladio.
Figure B.19 shows the performance specification for its operation process.
Figure B.20 shows the component specification of MMEImplInvalid in
Palladio. Figure B.21 shows the performance specification for its operation
process.

Listing B.6: Implementation of the Interface IMME

1 /∗ ∗
2 ∗
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Figure B.19.: Specification for Operation process of Component MMEImpl

Figure B.20.: Component MMEImplInvalid and Provided and Required Roles
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Figure B.21.: Specification for Operation process of Component MMEImplInvalid

3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 /∗ ∗P r o v i d e d component i n t e r f a c e f o r t h e M u l t i t h r e a d e d
Model ing Example (MME) .

7 ∗ D e m o n s t r a t e s t h e v a l i d a t i o n f e a t u r e i f m u l t i p l e t h r e a d s
are used . The

8 ∗ per fo rmance i mp ac t can be d e t e r m i n e d f o r s y n c h r o n i z e d
and u n s y n c h r o n i z e d

9 ∗ t h r e a d s .
10 ∗ @author groenda
11 ∗
12 ∗ /
13 p u b l i c i n t e r f a c e IMME {
14

15 /∗ ∗O p e r a t i o n f o r p r o c e s s i n g da ta .
16 ∗ @param i n p u t The p r o v i d e d i n p u t da ta .
17 ∗ @return The p r o c e s s i n g r e s u l t .
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18 ∗ /
19 i n t p r o c e s s ( i n t i n p u t ) ;
20

21 }

Listing B.7: Implementation of the Interface INotificationReceiver

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 /∗ ∗ I n t e r f a c e f o r r e c e i v i n g a n o t i f i c a t i o n .
7 ∗ @author groenda
8 ∗
9 ∗ /

10 p u b l i c i n t e r f a c e I N o t i f i c a t i o n R e c e i v e r {
11

12 /∗ ∗Component− i n t e r n a l p r o c e s s i n g
13 ∗ /
14 void r e c e i v e N o t i f i c a t i o n ( ) ;
15

16 }

Listing B.8: Implementation of the Component MMEImpl

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 /∗ ∗Example i m p l e m e n t a t i o n f o r t h e M u l t i t h r e a d e d Model ing
Example (MME) .

7 ∗ See a l s o { @link IMME} f o r d o c u m e n t a t i o n .
8 ∗ @author groenda
9 ∗

10 ∗ /
11 p u b l i c c l a s s MMEImpl implements IMME {
12 /∗ ∗ Component r e c e i v i n g t h e n o t i f i c a t i o n ∗ /
13 p r i v a t e I N o t i f i c a t i o n R e c e i v e r dependency ;

425



Systems for Experimentation

14

15 /∗ ( non−Javadoc )
16 ∗ @see de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example . mme .

I S i m p l e # p r o c e s s ( )
17 ∗ /
18 @Override
19 p u b l i c i n t p r o c e s s ( i n t i n p u t ) {
20 / / p r e p r o c e s s i n g
21 S e n d N o t i f i c a t i o n s e n d e r = new S e n d N o t i f i c a t i o n (

dependency ) ;
22 C a l c u l a t e A calcA = new C a l c u l a t e A ( i n p u t ) ;
23 C a l c u l a t e B ca lcB = new C a l c u l a t e B ( i n p u t ) ;
24

25 / / f o r k t h r e a d s
26 s e n d e r . s t a r t ( ) ;
27 ca lcA . s t a r t ( ) ;
28 ca l cB . s t a r t ( ) ;
29 / / j o i n on s y n c h r o n i z e d t h r e a d s
30 t r y {
31 ca lcA . j o i n ( ) ; / / s t a r t c a l c u l a t e A
32 ca lcB . j o i n ( ) ; / / s t a r t c a l c u l a t e B
33 } catch ( I n t e r r u p t e d E x c e p t i o n e ) {
34 / / no e r r o r h a n d l i n g i n t e c h n o l o g y

d e m o n s t r a t i o n code
35 }
36

37 / / p o s t p r o c e s s i n g
38 re turn ca lcA . g e t R e s u l t ( ) + ca l cB . g e t R e s u l t ( ) .

i n t V a l u e ( ) ;
39 }
40

41 /∗ ∗
42 ∗ @param dependency The dependency t o s e t
43 ∗ /
44 p u b l i c vo id se tDependency ( I N o t i f i c a t i o n R e c e i v e r

dependency ) {
45 t h i s . dependency = dependency ;
46 }
47
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48 }

Listing B.9: Implementation of Activity Send Notification

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 /∗ ∗Thread s e n d i n g a p o s s i b l y long r u n n i n g n o t i f i c a t i o n t o
a dependency , which s h o u l d n o t run i n a main t h r e a d
b u t a s y n c h r o n o u s l y .

7 ∗ @author groenda
8 ∗
9 ∗ /

10 p u b l i c c l a s s S e n d N o t i f i c a t i o n ex tends Thread {
11 p r i v a t e f i n a l I N o t i f i c a t i o n R e c e i v e r dependency ;
12

13 p u b l i c S e n d N o t i f i c a t i o n ( I N o t i f i c a t i o n R e c e i v e r
dependency ) {

14 t h i s . dependency = dependency ;
15 }
16

17 @Override
18 p u b l i c vo id run ( ) {
19 dependency . r e c e i v e N o t i f i c a t i o n ( ) ;
20 }
21

22 }

Listing B.10: Implementation of Activity Calculate A

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 import j a v a . u t i l . Random ;
7
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8 /∗ ∗Templa te f o r a p o s s i b l y long r u n n i n g c a l c u l a t i o n . The
r e s u l t o f t h e c a l c u l a t i o n i s a c c e s s i b l e v i a { @link #
g e t R e s u l t ( ) } .

9 ∗ @author groenda
10 ∗
11 ∗ /
12 p u b l i c c l a s s C a l c u l a t e A ex tends Thread {
13 /∗ ∗ Random number g e n e r a t o r . ∗ /
14 p r i v a t e f i n a l Random random ;
15 /∗ ∗ R e s u l t o f t h e c a l c u l a t i o n . ∗ /
16 p r i v a t e I n t e g e r r e s u l t ;
17

18 /∗ ∗Cr ea t e a new c a l c u l a t i o n i n s t a n c e .
19 ∗ @param i n p u t I n p u t used f o r t h e c a l c u l a t i o n .
20 ∗ /
21 p u b l i c C a l c u l a t e A ( i n t i n p u t ) {
22 t h i s . random = new Random ( i n p u t ) ;
23 }
24

25 @Override
26 p u b l i c vo id run ( ) {
27 t r y {
28 / / t e m p l a t e f o r a c t i v i t y
29 Thread . s l e e p ( 2 0 0 0 ) ;
30 } catch ( I n t e r r u p t e d E x c e p t i o n e ) {
31 / / no e r r o r h a n d l i n g i n t e c h n o l o g y

d e m o n s t r a t i o n code
32 }
33 t h i s . r e s u l t = random . n e x t I n t ( ) ;
34 }
35

36 /∗ ∗
37 ∗ @return The r e s u l t o f t h e c a l c u l a t i o n .
38 ∗ /
39 p u b l i c I n t e g e r g e t R e s u l t ( ) {
40 re turn r e s u l t ;
41 }
42

43 }
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Listing B.11: Implementation of Activity Calculate B

1 /∗ ∗
2 ∗
3 ∗ /
4 package de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme;
5

6 import j a v a . u t i l . Random ;
7

8 /∗ ∗Templa te f o r a p o s s i b l y long r u n n i n g c a l c u l a t i o n . The
r e s u l t o f t h e c a l c u l a t i o n i s a c c e s s i b l e v i a { @link #
g e t R e s u l t ( ) } .

9 ∗ @author groenda
10 ∗
11 ∗ /
12 p u b l i c c l a s s C a l c u l a t e B ex tends Thread {
13 /∗ ∗ Random number g e n e r a t o r . ∗ /
14 p r i v a t e f i n a l Random random ;
15 /∗ ∗ R e s u l t o f t h e c a l c u l a t i o n . ∗ /
16 p r i v a t e Long r e s u l t ;
17

18 /∗ ∗Cr ea t e a new c a l c u l a t i o n i n s t a n c e .
19 ∗ @param i n p u t I n p u t used f o r t h e c a l c u l a t i o n .
20 ∗ /
21 p u b l i c C a l c u l a t e B ( i n t i n p u t ) {
22 t h i s . random = new Random ( i n p u t ) ;
23 }
24

25 @Override
26 p u b l i c vo id run ( ) {
27 t r y {
28 / / t e m p l a t e f o r a c t i v i t y
29 Thread . s l e e p ( 8 0 0 0 ) ;
30 } catch ( I n t e r r u p t e d E x c e p t i o n e ) {
31 / / no e r r o r h a n d l i n g i n t e c h n o l o g y

d e m o n s t r a t i o n code
32 }
33 t h i s . r e s u l t = random . nextLong ( ) ;
34 }
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35

36 /∗ ∗
37 ∗ @return The r e s u l t o f t h e c a l c u l a t i o n .
38 ∗ /
39 p u b l i c Long g e t R e s u l t ( ) {
40 re turn r e s u l t ;
41 }
42

43 }

Listing B.12: Mapping of MMEImpl and Implementation

1 S p e c i f i c a t i o n
2 I m p l e m e n t a t i o n
3

4 MMEImpl
5 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl , de

. f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .
S e n d N o t i f i c a t i o n , de . f z i . s e . v a l i d a t i o n . t e s t b a s e d .
example .mme . Ca l cu l a t eA , de . f z i . s e . v a l i d a t i o n .
t e s t b a s e d . example .mme . C a l c u l a t e B , j a v a . l a n g . Thread ,
j a v a . u t i l . Random , j a v a . l a n g . I n t e g e r , j a v a . l a n g . Long

6 R e q u i r e d _ I N o t i f i c a t i o n R e c e i v e r _ M M E I m p l
7 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl .

se tDependency ( I N o t i f i c a t i o n R e c e i v e r dependency )
8 I N o t i f i c a t i o n R e c e i v e r
9 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .

I N o t i f i c a t i o n R e c e i v e r
10

11 MMEImpl : : p r o c e s s ( i n t )
12 i n t de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl

. p r o c e s s ( i n t i n p u t )
13 P r e p r o c e s s i n g < I n t e r n a l A c t i o n >
14 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :

l i n e s 21−23
15 spawn < ForkAct ion >
16 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :

l i n e s 26−35
17 send n o t i f i c a t i o n < E x t e r n a l C a l l A c t i o n >
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B.3. Multithreaded Modeling Example (MME)

18 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .
S e n d N o t i f i c a t i o n : l i n e s 18−20

19 C a l c u l a t e A < I n t e r n a l A c t i o n >
20 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . C a l c u l a t e A :

l i n e s 27−33
21 C a l c u l a t e B < I n t e r n a l A c t i o n >
22 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . C a l c u l a t e B :

l i n e s 27−33
23 P o s t p r o c e s s i n g < I n t e r n a l A c t i o n >
24 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :

l i n e 38

Listing B.13: Mapping of MMEImplInvalid and Implementation

1 S p e c i f i c a t i o n
2 I m p l e m e n t a t i o n
3

4 MMEImplInvalid
5 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl , de

. f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .
S e n d N o t i f i c a t i o n , de . f z i . s e . v a l i d a t i o n . t e s t b a s e d .
example .mme . Ca l cu l a t eA , de . f z i . s e . v a l i d a t i o n .
t e s t b a s e d . example .mme . C a l c u l a t e B , j a v a . l a n g . Thread ,
j a v a . u t i l . Random , j a v a . l a n g . I n t e g e r , j a v a . l a n g . Long

6 R e q u i r e d _ I N o t i f i c a t i o n R e c e i v e r _ M M E I m p l
7 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl .

se tDependency ( I N o t i f i c a t i o n R e c e i v e r dependency )
8 I N o t i f i c a t i o n R e c e i v e r
9 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .

I N o t i f i c a t i o n R e c e i v e r
10

11 MMEImplInvalid : : p r o c e s s ( i n t )
12 i n t de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl

. p r o c e s s ( i n t i n p u t )
13 P r e p r o c e s s i n g < I n t e r n a l A c t i o n >
14 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :

l i n e s 21−23
15 spawn < ForkAct ion >
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Systems for Experimentation

16 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :
l i n e s 26−35

17 Send N o t i f i c a t i o n < I n t e r n a l A c t i o n >
18 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme .

S e n d N o t i f i c a t i o n : l i n e s 18−20
19 C a l c u l a t e A < I n t e r n a l A c t i o n >
20 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . C a l c u l a t e A :

l i n e s 27−33
21 C a l c u l a t e B < I n t e r n a l A c t i o n >
22 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . C a l c u l a t e B :

l i n e s 27−33
23 P o s t p r o c e s s i n g < I n t e r n a l A c t i o n >
24 de . f z i . s e . v a l i d a t i o n . t e s t b a s e d . example .mme . MMEImpl :

l i n e 38

Listings B.6 and B.7 show the implementation of the interfaces. List-
ing B.8 shows the implementation of the component MMEImpl. Listings
B.9, B.10, and B.11 show the implementations of the activities running
in parallel. The mapping between the structural and behavioral aspects
of specification MMEImpl and the implementation is shown in B.12. The
mapping between the structural and behavioral aspects of the specification
MMEImplInvalid and the implementation is shown in listing B.13.
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LTS Labeled Transition Systems.

MCDC Modified Condition / Decision Cover-
age.

MCITP Microsoft Certified IT Professional.
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Acronyms

MME Multithreaded Modeling Example.
MOSES MOdel-based SElf-adaptation of SOA

systems.

OCL Object Constraint Language.
OMG Object Management Group.

PACC Predictable Assembly from Certifiable
Components.

PAD Performance Antipattern Detection.
Palladio Palladio Component Model.
PECT Prediction-Enabled Component Tech-

nology.
PKI Public Key Infrastructure.
PME Probabilistic Modeling Example.
PP Protection Profile.
PUMA Performance by Unified Model Analy-

sis.

QoS Quality of Service.
QVTO Operational Query/View/Transforma-

tion.

RAQS Rapid Analysis of Queuing Networks.
RCDC Reinforced Condition / Decision Cover-

age.
ROBOCOP Robust Open Component Based Soft-

ware Architecture for Configurable De-
vices Project.

RUP Rational Unified Process.
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Acronyms

SEI Software Engineering Institute.
SISSy Structural Investigation of Software

Systems.
SLA Service Level Agreement.
SPE Software Performance Engineering.
SPICE Software Process Improvement and Ca-

pability Determination.
SPRT Sequential Probability Ratio Test.
SPT Structure Path Testing.
ST Security Target.
StoEx Stochastic Expression.
SUT System Under Test.
SVN Subversion.
SysML Systems Modeling Language.

TER Test Effectiveness Ratio.
TOE Target Of Evaluation.
TOGAF The Open Group Architecture Frame-

work.
TTCN-3 Testing and Test Control Notation.

UML Unified Modeling Language.
UML-MARTE UML Profile for Modeling and Analy-

sis of Real-Time Embedded Systems.
UML-PCM Performance Context Model.
UML-SPT UML Profile for Schedulability, Perfor-

mance, and Time.

WCET Worst-Case Execution Time.

450



Glossary

Bytecode Counter
Bytecode Counter is an instrumentation and measurement framework
which allows bytecode-precise measurements. It is purely based on
Java and does not require changes to the Java Virtual Machine. It is
a base for hardware-independent performance measurements. Mea-
surements include bytecode instruction as well as function calls.

Eclipse Modeling Framework
EMF is an open source framework of the eclipse community. It
allows to exchange, store, access, display, and modify meta-model
instances. The meta-models are described using the Ecore format
which is compatible to the Object Management Group (OMG)’s Es-
sential Meta Object Facility (EMOF) standard. Model instances are
usually stored using the OMG’s XML Metadata Interchange (XMI)
standard.

General Abstract Syntax Tree
Model of the syntax tree of an implementation. The GAST used in
this thesis was developed as part of the European Project Q-ImPrESS.

PECT
The Prediction Enabled Component Technology was defined by the
CMU’s SEI and targets the prediction of real time and safety critical
system. See also section 3.3.
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Glossary

Subversion
Subversion is a version or revision control system for files and direc-
tories. It enables storing and comparing file system artifacts includ-
ing meta-data on changes between different versions. It is a successor
of CVS and an alternative to other version control systems like GIT,
Perforce, or Visual Source Safe.

Validation
Fulfillment of user needs. Confirmation through objective evidence
that a performance specification fulfills user requirements. See also
section 1.3.3.

Verification
Fulfillment of specified requirements. Confirmation through objec-
tive evidence that specification and implementation are equal with
respect to a given definition of quality. See also section 1.3.3.
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