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Zusammenfassung

Visuelles 3D Szenenverständnis stellt eine wichtige Komponente für

automatisiertes Fahren und die Navigation von Robotern dar. Inner-

städtische Kreuzungsszenarien sind hierbei in gleichem Maße in-

teressant wie auch anspruchsvoll: Straßenkreuzungen können kom-

plexe Geometrien annehmen und oft werden wichtige Hinweise auf

die Geometrie, wie zum Beispiel Fahrbahnmarkierungen oder andere

Verkehrsteilnehmer, durch Objekte im Sichtfeld verdeckt. Während

autonomes Fahren auf Schnellstraßen (Dickmanns et al. [51]) sowie

das Überqueren einfacher annotierter Kreuzungen (DARPA Urban

Challenge [31]) bereits erfolgreich gezeigt wurde, bleibt die Behand-

lung des allgemeinen innerstädtischen Falls mit geringem Vorwis-

sen auch weiterhin ein ungelöstes Problem. Diese Arbeit stellt einen

Beitrag zum Verständnis von Verkehrsszenen basierend auf Videose-

quenzen dar. Ein auf dem Dach des Versuchträger AnnieWay [106]

angebrachtes Kamerasystem liefert die dafür benötigten Sensorinfor-

mationen. Vorgestellt wird ein probabilistisches generatives Modell,

welches die 3D Szenengeometrie sowie die Position und Orientie-

rung von Objekten in der Szene schätzt. Insbesondere werden die

Topologie, Geometrie sowie Aktivitäten der Verkehrsteilnehmer aus

kurzen Videosequenzen bestimmt. Das Verfahren zieht dabei mo-

nokulare Informationen wie Objekte, Fluchtpunkte sowie eine se-

mantische Bildsegmentierung als Merkmale heran. Zusätzlich wird

der Einfluss stereoskopischer Merkmale wie Szenenfluss und Bele-

gungsgitter untersucht. Motiviert durch die beeindruckende Fähig-

keit des Menschen wird kein weiteres Wissen wie beispielsweise

GPS-, Lidar-, Radar- oder Karteninformationen vorausgesetzt. Die

auf 113 repräsentativ ausgewählten Sequenzen durchgeführten Ex-

perimente zeigen dass der vorgestellte Ansatz für eine Vielzahl von
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Szenarien geeignet ist. Eine umfangreiche Auswertung und Analy-

se gibt Aufschluss über die Relevanz der einzelnen Merkmale. Des

Weiteren wird aufgezeigt, wie durch das vorgeschlagene Verfahren

eine verbesserte Objektdetektion und -orientierungsschätzung erreicht

werden kann.



Abstract

Visual 3D scene understanding is an important component in au-

tonomous driving and robot navigation. Intelligent vehicles for ex-

ample often base their decisions on observations obtained from video

cameras as they are cheap and easy to employ. Inner-city intersec-

tions represent an interesting but also very challenging scenario in

this context: The road layout may be very complex and observa-

tions are often noisy or even missing due to heavy occlusions. While

Highway navigation (e.g., Dickmanns et al. [51]) and autonomous

driving on simple and annotated intersections (e.g., DARPA Urban

Challenge [31]) have already been demonstrated successfully, under-

standing and navigating general inner-city crossings with little prior

knowledge remains an unsolved problem. This thesis is a contri-

bution to understanding multi-object traffic scenes from video se-

quences. All data is provided by a camera system which is mounted

on top of the autonomous driving platform AnnieWAY [106]. The

proposed probabilistic generative model reasons jointly about the

3D scene layout as well as the 3D location and orientation of ob-

jects in the scene. In particular, the scene topology, geometry as

well as traffic activities are inferred from short video sequences. The

model takes advantage of monocular information in the form of ve-

hicle tracklets, vanishing lines and semantic labels. Additionally,

the benefit of stereo features such as 3D scene flow and occupancy

grids is investigated. Motivated by the impressive driving capabili-

ties of humans, no further information such as GPS, lidar, radar or

map knowledge is required. Experiments conducted on 113 repre-

sentative intersection sequences show that the developed approach

successfully infers the correct layout in a variety of difficult scenar-

ios. To evaluate the importance of each feature cue, experiments

iii



with different feature combinations are conducted. Additionally, the

proposed method is shown to improve object detection and object

orientation estimation performance.
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Notation and Symbols

This chapter introduces the notation and symbols which are used in

this thesis. In cases where a symbol has more than one meaning, the

context (or a specific statement) resolves the ambiguity.

General Notation

Scalars Regular (greek) lower case a, b, c, σ, λ
Vectors Bold (greek) lower case a, b, c, σ, λ
Matrices Bold upper case A, B, C, Σ, Λ
Sets Calligraphic upper case A, B, C
Distributions Calligraphic upper case U(·), N (·),

Cat(·)
Numbers Blackboard/greek upper case N, Z, R, Δ

Indexing

i First-order index i ∈ {1, . . . , N}
j Second-order index j ∈ {1, . . . ,M}
ai i’th element of vector a
Ai,j (i, j)’th element of matrix A
[a1,a2] Matrix A = [a1,a2] is composed of

columns a1 and a2

Numbers

N Natural numbers

Z Integer numbers

R Real numbers

ΔN N-simplex



Geometry

R Intersection parameters R = {κ, c, w, r, α}
κ Intersection topology κ ∈ {1, . . . , 7}
c Center of intersection c ∈ R

2

w Road width w ∈ R
+

r Road layout orientation r ∈ [−π
4 ,+

π
4 ]

α Crossing street angle α ∈ [−π
4 ,+

π
4 ]

l Lane index

s Spline index

K Number of intersection arms K ∈ {2, 3, 4}
L Number of lanes/parking spots

Image Evidence

E Image evidence E = {T ,V,S,F ,O}
T Tracklets T = {t1, . . . , tNt}
t Tracklet t = {d1, . . . ,dMd

}
d Detection d = (fd,md,Sd,od)
fd Frame number of object detection fd ∈ N

md, Sd Object location distribution N (md ∈ R
2,Sd ∈ R

2×2)
od Object orientation distribution od ∈ Δ7

V Vanishing points V = {v1, . . . , vNv}
v Vanishing point/line angle v ∈ [0, π)
S Scene labels S = {s1, . . . , sNs}
s Scene label s ∈ Δ2

F Scene flow F = {f1, . . . , fNf
}

f Scene flow vector f = (pf ,qf ), pf ∈ R
2, qf ∈ R

2

O Occupancy grid O = {o1, . . . , oNo}
ρ Occupancy grid cell ρ ∈ {−1, 0,+1}

Projection

(x, y, z)T World coordinates

(u, v)T Image coordinates

π(·) Projection onto the image plane



K Camera calibration matrix K ∈ R
3×3 (intrinsics)

P Camera projection matrix P ∈ R
3×4

R, r Rotation matrix, rotation vector

T, t Translation matrix, translation vector

I Image

D Disparity map

Probabilistic Model

Θ Model parameters

E , R Training set (E = {E1, .., ED}, R = {R1, ..,RD})

p(·) Probability

log p(·) Log-probability

φ(·), ϕ(·) Image likelihood helper functions

ψ(·), Ψ(·) Potential functions

ζ, λ Image likelihood outlier and importance variables

σout Standard deviation of outlier distribution

q(·) Metropolis-Hastings proposal distribution

pMH(·) Metropolis-Hastings acceptance probability

U(·) Uniform distribution (discrete or continuous)

N (·) Gaussian distribution

Cat(·) Categorical distribution

μ, μ Mean

σ2, Σ Variance, covariance matrix

λ, Λ Precision λ = σ−2, precision matrix Λ = Σ−1

〈·〉p(·) Expectation with respect to p(·)
[·] Iverson bracket (1 if true, 0 otherwise)

Notation of Probability Distributions

This thesis follows the common notation of probability distributions

and uses p(x) = D(x|θ) and x ∼ D(θ) interchangeably, where x is

a random variable, D denotes some probability distribution and θ are

the parameters of the distribution.





1. Introduction

Recent progress in self-driving vehicles makes us believe that only a

few decades from now drivers can be replaced by autonomous sys-

tems that excel humans in terms of perception (e.g., omni-directional

sensors), availability and the ability to respond. Improved safety and

time for work and leisure activities while traveling are the conse-

quence. While vehicle control and trajectory planning algorithms

have already been demonstrated successfully, robust environment

perception is still a challenging unsolved problem. This thesis presents

a method to extend the vehicle’s field of view to the challenging sce-

nario of cluttered real-world intersections while relying solely on

close-to-production stereo image sensors.

1.1. Problem Statement

Given a short traffic video sequence of 5 to 30 seconds in length

captured from a movable platform we are interested in extracting

information about the scene layout and the dynamic objects, e.g., ve-

hicles, present in the scene. In particular, we tackle traffic scenarios

with complex interactions. They pose an interesting problem and are

challenging due to the heavy occlusions and the clutter present in

these scenes. Additional difficulties are caused by the low camera

viewpoint leading to noisy depth estimates and the limited camera

field of view. In particular, the proposed method tries to answer the

following questions:

• Where are the streets and the center of the intersection located?

• What is the width and the orientation of the streets?

1



1. Introduction

• Where are the vehicles located and how are they oriented?

• Which car is driving? On which street?

• Which cars are parked at the side of the road?

• What is the current traffic situation?

• Does object detection benefit from the extracted road layout?

We try to answer the aforementioned questions from visual measure-

ments alone, which are easy and cheap to acquire, never get out-

dated (as maps do) and mimic the human perception process. All

sequences used for evaluation end when the observer is required to

take a decision, i.e., when the traffic light turns green or the ego-

vehicle enters the crossing. This requires predicting into the future

and makes the task very challenging. Much like for human drivers no

additional information such as 3D point clouds from a laser scanner,

radar or maps is used.

While the problem of lane detection has been tackled intensely

over the last decades [4, 44, 51, 137, 173, 185], the detection and

recognition of lane markings in isolation is not sufficient to infer the

scene layout in complex situations. Consider for example the scene

illustrated in Fig. 1.1, where all non-road pixels of the image have

been whitened. Even for a human being it is almost impossible to

judge the situation using lane markings as the only source of infor-

mation. In contrast, Fig. 1.2 reveals the full picture and shows that a

variety of feature cues are important to understand the scene in con-
text [179]. Amongst them are: Other traffic participants, buildings,

vegetation, vanishing points and the sky region. Drawing from these

observations, this thesis combines a variety of features in a proba-

bilistic framework to tackle the problem as illustrated in Fig. 1.3(b).

1.2. Applications

We highlight three important applications of traffic scene under-

standing.

2



1.2. Applications

Figure 1.1.: Intersection from a Lane Detector’s Point of View. This

figure shows a typical traffic scene with all non-road pixels masked. Note

how difficult it is to correctly assess the intersection geometry using this

information alone. To see the full picture, please turn over to Fig. 1.2 on

page 4.

Autonomous Driving: While the total number of fatal traffic ac-

cidents has been slightly decreasing over the last couple of years, in

2010 still more than 12, 000 fatalities have been reported in the US1

and more than 3, 500 cases have been registered in Germany2. The

ultimate goal of autonomous driving is to substitute the human driver

with an intelligent system which is able to process the incoming sen-

sor information and react appropriately in order to maneuver the ve-

hicle from A to B. However, autonomous driving has the potential

to significantly reduce traffic accidents [138] and vehicle emissions

[187] at the same time, for example by increasing roadway capacity

and reducing traffic jams [146]. As a side effect, passengers gain ad-

ditional time which can be utilized for work or leisure activities. So

far, autonomous driving has been successfully demonstrated on high-

ways with little or no traffic. Busy inner-city navigation, however, is

still an open challenge.

Advanced Driver Assistance Systems: While autonomous driv-

ing at large scale might still be decades away, many research find-

1National Highway Traffic Safety Administration Facts Sheet 2010
2Statistisches Jahrbuch 2011
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1. Introduction

Figure 1.2.: Intersection from a Human’s Point of View. To interpret
complex scenes as the one from Fig. 1.1 on page 3, humans make use of
a variety of different cues such as infrastructure (e.g., buildings or vege-
tation), vanishing points, objects and dynamic information. The presented
approach builds on this observation and integrates the different comple-
mentary features into a probabilistic model for analyzing traffic scenes.

ings have already made their way into commercial driver assistance
systems such as lane departure warning [127], automatic parking or
collision avoidance [189]. Visual scene analysis at intersections can
add to these functionalities by warning the driver of overlooked traf-
fic participants or when entering the wrong lane. Furthermore, navi-
gation systems will benefit from the extracted 3D information by en-
hancing their visual experience and simplifying the interaction with
the user.

Visually Impaired People: Traffic scene understanding is of high
importance for blind people as well, for example the situation must
be assessed correctly before to crossing the street [1]. Today’s as-
sistance is typically provided by short-range white canes or guide
dogs which both can only be employed for navigating known terrain
[52]. Computer-based scene analysis in combination with visualiza-
tion techniques such as acoustic auralization [182] has the potential
to increase the range of perception, contribute to a higher quality of
life and increase safety.

4



1.3. Contributions

1.3. Contributions

The contributions of this thesis are as follows:

• A novel intersection model is proposed which, in contrast to

existing lane or road detection methods, is flexible in the num-

ber of intersecting streets and the location, orientation and

width of the intersection arms.

• Compared to existing approaches, no static camera, bird’s eye

view or information from maps is required.

• In contrast to previous approaches, the proposed model com-

bines static features (e.g., building facades or vanishing points)

with dynamic features (e.g., traffic participants) for improved

performance and robustness.

• Efficient learning and inference algorithms based on Markov

Chain Monte Carlo sampling and belief propagation are de-

veloped to infer the scene layout and the location of objects

within the scene.

• Extensive evaluations on 113 real-world sequences demon-

strate the applicability of the method and confirm that context

helps in scene estimation as well as object recognition. The

importance of each of the proposed feature cues for the prob-

lem of 3D scene understanding is evaluated and discussed.

1.4. Thesis Outline

This thesis is structured as follows: Chapter 2 surveys the current

state-of-the-art and contrasts the proposed approach with respect to

previous work. Chapter 3 presents the proposed geometric and prob-

abilistic intersection model and the parameter learning and model in-

ference techniques that are employed. Chapter 4 gives details about

the image evidence and the computation of the features used by the

5



1. Introduction











(a) Video-based Image Cues are the Input to the Proposed Model

(b) Inference Result: Scene Layout and Objects (c) Experimental Platform AnnieWAY

Figure 1.3.: 3D Intersection Understanding. (a) Image cues. (b) Inferred

scene layout and objects, active lanes are shown in red. (c) Autonomous

vehicle AnnieWAY which has been used for capturing the evaluation se-

quences.

model. Finally, Chapter 5 describes the autonomous platform, the

data collection process and the experiments that have been carried

out. Conclusions are drawn in Chapter 6. A brief tutorial on the

sampling techniques that we use for learning and inference is given

in Appendix A.
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2. Related Work

This chapter discusses the state-of-the-art in autonomous driving sys-

tems and scene understanding, and positions the contributions of this

thesis with respect to the existing literature, summarized in Fig. 2.1.

We start with an overview of the development of autonomous driving

systems, survey their capabilities and current challenges.

2.1. Autonomous Driving

In 1939 General Motors invited the industrial designer Bel Geddes

to submit a proposal for an exhibit at the New York’s World Fair

’Building The World of Tomorrow’. The exhibit, called ’Futurama’,

envisioned a world 20 years into the future featuring automated high-

ways as a solution to traffic congestion of the day. Electric cars were

powered by circuits embedded in the roadway and controlled by ra-

dio, much like modern production lines work today. In 1986, sup-

ported by the rapid development of computers, a team of engineers

around Ernst Dickmanns in collaboration with Daimler equipped a

Mercedes-Benz van with cameras and successfully demonstrated the

first self-driving car on well-marked streets without traffic [51]. Sub-

sequently, the European Commission began funding the EUREKA

Prometheus Project on autonomous vehicles (1987–1995). In 1995

the team demonstrated semi-autonomous driving in real traffic from

Munich in Germany to Odense in Denmark at speeds up to 175 km/h,

with human intervention for about 5% of the distance. At the same

time, the CMU Navlab project achieved 98.2% autonomous driving

with manual longitudinal control using the RALPH (Rapidly Adapt-

ing Lateral Position Handler) computer program [152]. Similar ef-

forts have been undertaken in 1996 and 2010 by the research group
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of Alberto Broggi [28], amongst others. In 2011, the Grand Co-

operative Driving Challenge has benchmarked the state-of-the-art in

autonomous platooning systems with Christoph Stiller’s Team An-

nieWAY from KIT taking the lead [68].

All aforementioned projects are targeted at tasks like highway

driving, lane-keeping/-following or overtaking. In contrast, this the-

sis deals with the more challenging task of understanding traffic sit-

uations at intersection, which are much more flexible in terms of

topology, geometry and vehicle constellation.

2.1.1. The DARPA Urban Challenge

Motivated by the success of the Grand Challenges in 2004 and 2005

[30], the American Defense Advanced Research Projects Agency

initiated the DARPA Urban Challenge [31, 106, 139, 100] in 2007

to benchmark the state-of-the-art in autonomous inner-city driving

on a 96 km test course at an abandoned Air Force Base. As for

the previous challenges and in contrast to the early approaches men-

tioned above, 100% autonomous driving was required throughout the

course.

While the Urban Challenge endeavor came closer to urban traffic

situations, the streets were wider than usual, the field of view was

unobstructed and only a very limited number of traffic participants

were present. Furthermore, sub-meter precise manually annotated

maps were required and all teams made use of expensive 3D laser

scanner equipment for localization and collision avoidance. In con-

trast, the approach presented in this thesis aims at analyzing complex

and cluttered scenes in the absence of maps or 3D point clouds.

2.1.2. The Google Driverless Car

Under the guidance of Sebastian Thrun, Google gathered a team

of engineers, amongst them Chris Urmson (the current team lead),

Mike Montemerlo and Anthony Levandowski who had experienced

8
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the DARPA Grand [30] and Urban [31] Challenges, to equip a Toy-

ota Prius with self-driving capabilities [188]. In August 2012 Google

announced that they have completed over 300,000 miles without ac-

cident.

Similarly to the participants of the DARPA Urban Challenge, the

Google driver-less car is equipped with a Velodyne 3D laser scanner

for perception and requires manually annotated maps at lane-level

accuracy for path planning. Furthermore, its precise localization sys-

tem is based on registering depth and reflectance measurements with

respect to a 3D map, which is recorded a-priori. In contrast, this the-

sis targets scene understanding in the more general and challenging

case where no a-priori location-specific information is required.

2.2. Environment Perception

One major challenge for intelligent autonomous driving systems is

the requirement to perceive and interpret their environment. We fo-

cus on cheap and easy-to-employ video-based perception and this

section surveys the current state-of-the-art in this field. The spec-

trum of the referenced works ranges from very task-specific meth-

ods (e.g., lane detection) to more general scene understanding ap-

proaches (e.g., scene segmentation and 3D interpretation).

2.2.1. Lane Detection

The pioneering works of Dickmanns et al. [51] made use of an ex-

tended Kalman Filter [105] to recursively estimate lane parameters

such as the steering angle, slip angle, lateral offset from the road

center, heading relative to the road tangent and the horizontal and

vertical road curvature parameters. The road was represented using a

clothoid (or Euler spiral) which is commonly employed in road plan-

ning and construction. As features, edge elements were extracted by

correlating the image with filter templates. Besides modeling the

road shape with clothoids [51, 45, 176], splines [4, 16, 45, 36] have
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Futurama (1939) Blocks World (1963) VaMP Car (1994)

Road Classification (2003) Geometric Context (2005) Urban Challenge (2007)

Lane Detection (2008) Segmentation (2009) Road Detection (2010)

VIAC Challenge (2010) Activity Recognition (2009) Google Car (2011)

Figure 2.1.: Related Work in autonomous driving/environment perception.
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been proposed to more accurately represent road segments that do

not obey a clothoidal shape. Apart from edge features, other cues

such as color, lane width [8, 44] and adaptive binarization techniques

[55, 27] have been investigated. In order to remove the effect of

distortions introduced by the perspective projection, the inverse per-

spective mapping has been proposed [27, 4, 66], constructing a vir-

tual bird’s eye view of the road area ahead of the vehicle by means

of the homography between the road and the image plane. Due to

the increase in computing power over the last decades, the extended

Kalman filter has been replaced by the more powerful particle filter

[44, 173, 185] for tracking the road parameters over time. In con-

trast to the extended Kalman filter no linearization is required and

multi-modal distributions can be represented more accurately, given

a sufficient number of particles – or equivalently – computation time.

To distinguish lane markings from clutter such as cast shadows and

damages in the road surface, robust methods have been developed

[4, 8, 185]. Furthermore, the use of stereo information has been re-

ported to additionally boost performance [16, 45, 44, 111, 177, 186]

as it enables distinguishing edge information on the road from edges

located on objects and infrastructure. While early stereo-based ap-

proaches applied the idea of Helmholtz shear [111] for computa-

tional reasons, recent progress in dense real-time stereo matching

[113, 64, 93, 133, 73] allows to directly estimate the free space and

segment road from objects and infrastructure [10, 12, 11] in an online

fashion. Paetzold et al. [147] have cast lane recognition as an optimal

control problem where the vehicle trajectory is directly optimized to

avoid obstacles and maximize comfort at the same time. The use of

maps has been investigated bei Heimes, Huang et al. [90, 100]. They

map line segments into the image using GPS as initialization to im-

prove localization accuracy [90]. Furthermore, map information in

combination with a precise GPS system have been key to successful

navigation during the DARPA Urban Challenge [100]. For a more

complete survey on recent developments in lane detection, the reader

is referred to [107, 137].
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While all of the methods mentioned above focus on the detection

of one to three adjacent lanes, this thesis is concerned with the inter-

section scenario and handles lane detection as a subset of intersection

understanding.

2.2.2. Road Detection

While lane detection approaches try to fit parametric models to the

lane boundaries, methods for road detection are non-parametric in

the sense that they directly produce a segmentation of the image into

road and non-road pixels. This is useful in cases of less structured

roads, for example when driving on dirt roads as required during the

DARPA Grand Challenge [30]. Early approaches directly classify

each pixel using the gray value structure tensor as feature [199]. To

increase robustness, different cues such as color, vanishing points

and the 3D scene layout have been proposed and integrated over time

[3]. Online learning approaches [2, 42] inspect a small road patch in

front of the vehicle, e.g., identified by lidar [42], to learn a statistical

model of the road ahead and classify image regions further away.

According to Dahlkamp et al. [42], such a mechanism turned out to

be key for increasing the range of vision in order to drive fast enough

to win the 2005 DARPA Grand Challenge.

All state-of-the-art road detection methods focus on recognizing a

single road and work well in unstructured terrain where texture and

color are discriminative enough to distinguish road from vegetation

or background. As will be shown in this thesis, texture based classi-

fication alone, which is one of the features in our framework, is in-

sufficient for extracting higher-level information about intersections

such as the topology or geometry.

2.2.3. Intersection Recognition

Back in the early 1990’s the problem of intersection understanding

has been recognized as a difficult one [41, 56, 77]. In the case of
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unstructured terrain, pattern recognition techniques have been em-

ployed to partition the image into road and non-road pixels and clas-

sify the shape of the road using template matching [41] or classifica-

tion [154, 58]. To increase the field of view, active camera vision sys-

tems have been proposed [104, 136]. For well marked roads, Enkel-

mann et al. [56] aim at recovering gaps between road markings as

indications of intersections. Gengenbach [77], Heimes [89, 90] and

Mueck [140] project intersection models, which have been manually

annotated or obtained from maps [29] in a semi-supervised fashion,

into the image in order to localize the vehicle when the approximate

location is known up to a couple of meters. Richer prior knowledge

has been incorporated into these methods using description logic. In

[102, 103], for example, a description logic base for arbitrary road

and intersection geometries has been developed. Based on map in-

formation, logically stated geometric constraints and road building

regulations are employed in a deductive inference scheme to answer

questions like ’is this lane a right turn lane?’ or ’which lane is the

vehicle on?’.

All existing methods deal with very simple scenarios, neglecting

clutter and occlusions, or require an immense amount of labor in-

tense prior knowledge. This prevents them from being employed to

real-world urban traffic situations. We argue that road and lane fea-

tures by themselves are insufficient to robustly infer the road layout.

Instead a more diverse set of feature cues such as the scene flow fields

induced by other participants [67], infrastructure elements [69], van-

ishing points and scene labels [74] need to be considered in order to

accomplish the task.

2.2.4. Semantic Image Segmentation

While the approaches described so far are largely rooted in the do-

main of robotics and intelligent vehicles, the perceptual side of scene

understanding has received a lot of attention in the computer vision

and machine learning communities as well. In the following, we in-
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troduce the most important developments in these fields and relate

the material presented in this thesis with respect to them.

The goal of semantic image segmentation [118, 117, 58, 174, 9,

203, 54, 21, 63, 81, 83, 83, 120, 170, 170, 181, 191] is to partition

the input image into disjoint regions and assign a unique class label

(e.g., car, building, vegetation or sky) to each of them. Contextual

information is typically integrated by means of a Markov random

field model.

While these models reason directly at the pixel-level, they pro-

vide useful cues which are exploited as features in the proposed ap-

proach. We aim to infer the full 3D layout of traffic intersections

from a monocular view including the accurate position of buildings,

the street and all vehicles.

2.2.5. 3D Indoor Scene Understanding

Several decades after Roberts first attempts [155] in 1963, the prob-

lem of 3D scene understanding has witnessed novel interest thanks

to the developments in object detection, semantic segmentation and

image classification, amongst others. A wide variety of approaches

have been proposed to recover the 3D layout of indoor scenes in the

form of 3D cuboids from a single image [126, 87, 183, 125, 168].

These methods mainly build on edges and image segments as fea-

tures, and most of them rely on the Manhattan world assumption

[114, 157], i.e., edges in the image can be associated with vanish-

ing points which are orthogonal to each other. With a moderate de-

gree of clutter, accurate geometry estimation has been shown for this

scenario. To improve performance, several methods have tried to

explicitly model the room clutter using 3D occupancy grids [87] or

cuboids [88, 149, 125, 195]. Recently, depth information from the

Kinect sensor has been explored towards the goal of estimating sup-

port relationships between objects [171]. Context from observing

people and their interaction with the environment has been investi-
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gated by Breitenstein, Delaitre et al. [25, 49] and a vertical structure

prior has been proposed by Zeisl et al. [198].

Unfortunately, these approaches can only cope with limited amounts

of clutter (e.g., beds), and rely on the fact that indoor scenes closely

satisfy the Manhattan world assumption, i.e., walls (and objects) are

aligned with the three dominant vanishing points. In contrast, out-

door scenes as considered in this thesis are often more cluttered, 3D

lines are not necessarily orthogonal [166, 15], and objects might not

always agree with the dominant orientations.

2.2.6. 3D Outdoor Scene Understanding

Apart from the efforts towards geometric multi-view reconstruction

[128, 40, 151] for urban scenes, a large body of work has focused

on estimating 3D popups from single images captured outdoors
[96, 94, 97, 98, 163, 161, 162, 164, 91, 142]. Often a Manhattan

world [15, 114, 157] is assumed to infer vanishing points from line

segments. Reminiscent to the Blocksworld model, physical con-

straints between objects such as ’object A supports object B’ are

imposed in [84]. Large datasets such as LabelMe [160] allow for

similarity-based scene understanding [159], where ground truth la-

bels are transferred from the most similar scenes in the database.

Several methods have tried to infer the 3D locations of objects in

outdoor scenarios [95, 14, 50]. In order to estimate 3D object lo-

cations, tree-structured models have been proposed [95, 14] which

also reason about the camera tilt. Murphy et al. [141] exploit ob-

ject co-occurrence statistics to improve object detection, while Sud-

derth at al. [175] make use of hierarchical Dirichlet processes to

model visual scenes. The most successful approaches use tracklets

to prune spurious detections by linking consistent evidence in suc-

cessive frames [108, 101, 65]. However, these models are either

designed for static camera setups in surveillance applications [101]

or do not provide a rich scene description [108, 65]. Notable excep-

tions are [37, 57, 190, 192, 193], which jointly infer the camera pose
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with respect to a single ground plane and the location of objects in

the scene. Unfortunately, most urban scenes violate the Manhattan

world assumption and several approaches have focused on estimating

vanishing points in this more adversarial setting [166]. For example,

Barinova et al. [15] proposed to jointly perform line detection as well

as vanishing point, azimuth and zenith estimation.

Unfortunately, most of the existing 3D scene layout estimation

techniques are mainly qualitative, do not model object dynamics,

suffer from clutter and lack the level of accuracy necessary for real-

world applications such as autonomous driving or robot navigation.

Existing methods that take objects into account usually model the

scene in terms of a simple ground plane and thus are not able to draw

conclusions from the complex interplay of the objects with the larger

scene layout. In contrast, we propose a method that is able to extract

accurate geometric information by reasoning jointly about static and

dynamic elements as well as their interplay. Towards this goal we de-

velop a rich image likelihood model that takes advantage of vehicle

tracklets, vanishing points, segmentations, scene flow and occupancy

grids.

2.2.7. Object Tracking and Activity Recognition

For a long time dynamic objects have been considered either in iso-

lation [153, 65, 20, 6, 7, 13, 43, 112, 131] or jointly using simple

motion models [101, 24, 32, 57, 109, 129, 130, 167, 172, 194, 200,

197, 202]. Only very recently, social interaction between individu-

als has been taken into account [196, 38, 37, 124]. Choi et al. [38]

introduce a hierarchy of activities, modeling the behavior of groups

and Pellegrini et al. [148] explicitly account for collisions. Meth-

ods for unsupervised activity recognition and abnormality detection

[115, 184] are able to recover spatio-temporal dependencies from a

static camera mounted on top of a building.

While promising results have been shown, the interplay of objects

with their environment is neglected and the focus is put on surveil-
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lance scenarios with a fixed camera viewpoint, limiting applicability.

In contrast, the method developed in this thesis infers semantics at a

higher level such as multi-object traffic patterns at intersections, in

order to improve the layout and object estimation processes. Impor-

tantly, we do inference over intersections that we have never seen be-

fore and our viewpoint is substantially lower compared to the surveil-

lance scenario, which renders the problem very challenging.
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This thesis tackles the problem of estimating complex 3D traffic

scenes (e.g., intersections) from video sequences. The sequences

have been captured from a moving vehicle as illustrated in Fig.

1.3(c). Here, 2D refers to observations in the image plane and 3D

refers to coordinates in bird’s eye perspective. We assume a flat road

surface and model the scene layout and all objects in the road coor-

dinate system. The road coordinate system is located directly below

the left camera in the last frame using the same yaw angle and coor-

dinate axis definition (x = right, y = down, z = forward). All points

on the road satisfy y = 0. An illustration of the road coordinate

system with respect to the camera is given in Fig. 3.1(b) and Fig.

4.3.

3.1. Geometric Model

The proposed model is based on our observation of typical traffic

scenes: We assume that the global layout of the scene is dominated

by two, three or four roads intersecting at a single point, the cen-

ter of the intersection. All vehicles are either parked at designated

parking areas at the side of the road or they drive on lanes and ad-

here to some basic traffic rules such as right-hand driving. Lanes are

modeled using B-splines and connect every inbound street with ev-

ery outbound street. Road boundaries determine the border between

drivable regions and areas that are likely to contain buildings and in-

frastructure. We model seven different scene topologies and use the

following parameters to describe the intersection:
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• Topology. The discrete topology variable κ distinguishes be-

tween the scene topologies ’straight’, ’turn’, ’T-intersection’

and ’X-intersection’ as illustrated in Fig. 3.1(a). κ ∈ {1, . . . , 7}.

• Center of intersection. The intersection center c defines the

point where all roads join and is specified in terms of the road

coordinate system, depicted in Fig. 3.1(b). c = (x, z)T ∈ R
2.

• Street width. As our depth measurements are very noisy and

the size of the opposing streets are often not observable, we

assume that all streets share the same width w. The conse-

quences of this assumption are analyzed in our experimental

evaluation. w ∈ R
+.

• Rotation. The rotation r accounts for the observer’s yaw ori-

entation with respect to the incoming street. r ∈ [−π
4 ,+

π
4 ].

• Crossing angle. The crossing angle α refers to the relative

orientation of the crossing street. Alternate intersection arms

are forced to be collinear, which is a reasonable assumption.

α ∈ [−π
4 ,+

π
4 ].

All variables are illustrated in Fig. 3.1. In the following they will be

subsumed using the road layout variable R = {κ, c, w, r, α}.

Lane Model: An important contribution of the proposed model is

to account for the interplay of dynamic objects (i.e., vehicles) with

their environment (e.g., streets or buildings). This is realized by as-

suming that, given the road layout, all traffic participants can be ex-

plained as either driving on designated lanes, which we model with

the help of B-splines, or being parked at a parking area at the side of

the road.

For simplicity, we restrict our focus to two lanes per street, one in-

coming and one outgoing lane for each intersection arm. Streets with

multiple lanes can be represented in our model by means of a larger

street width w. As vehicles are allowed to cross the intersection in
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  
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

(a) Topology Model κ ∈ {1, . . . , 7} (b) Geometry Model (for κ = 4)

Figure 3.1.: Road Topology and Geometry. (a) shows the 7 different

topologies κ we consider: Straights (1), turns (2,3), T-intersections (4-6)

and X-intersections (7). The gray shaded areas illustrate the flexibility of

the crossing street. (b) shows the geometric parameters of the model for

κ = 4. All modeling is done in bird’s eye perspective (road plane coordi-

nates).

any possible direction, we have K(K−1) lanes for a K-armed inter-

section. For each street we model two parking areas at the side of the

road, one at the left side and one at the right side, yielding 2K park-

ing areas in total. Two (out of six) lanes of a 3-armed intersection as

well as one parking area are illustrated in Fig. 3.2(a).

Lane centerlines are modeled using quadratic B-splines [48] gov-

erned by five control points {q1, . . . ,q5} which are located at the

center of the lane as illustrated in Fig. 3.2(b), with q3 the intersec-

tion center. Using de Boor’s recursion formula [48], a spline can be
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(a) Lanes and Parking Lots (b) B-Spline Control Points
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(c) B-Splines

Figure 3.2.: Lane Model. This figure illustrates the location of the lane

centerlines with respect to the road layout using B-splines. (a) shows 2 out

of 6 lanes and 1 out of 6 parking areas for a 3-armed intersection. All lanes

and parking areas are discretized at 1m intervals to facilitate inference. The

placement of the 5 control points that define a lane spline is depicted in (b).

A set of quadratic B-splines with knot vector t is illustrated in Fig. 3.2(c).

recursively expressed as

s(t) =
5∑

i=1

bi,2(t)qi

bi,j(t) =
t− ti

ti+j − ti
bi,j−1(t) +

ti+j+1 − t

ti+j+1 − ti+1
bi+1,j−1(t)

bi,0(t) = [ti ≤ t < ti+1] (3.1)

where t ∈ [0..1] is the curve parameter, ti is the i’th entry of the knot

vector t, b(t) are the basis B-splines, qi ∈ R
2 is the i’th control point

as illustrated in Fig. 3.2(b), and [·] denotes the Iverson bracket. The

knot vector, controlling the shape of the B-spline through Eq. 3.1,

is chosen as t = (0 0 0 0.1 0.9 1 1 1)T which forces the spline to

interpolate all but the central control point. Empirically this resulted

in realistic curvatures as illustrated in Fig. 3.2(c). We refer the reader

to [48] for details.

Given all lane splines and all parking areas, we equidistantly de-

fine discrete vehicle locations (s) at 1m intervals as illustrated in Fig.
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3.2(a). This makes inference very efficient as dynamic programming

algorithms can be employed for calculating marginals and MAP es-

timates. At inference, the vehicle locations are obtained by assigning

all detected objects to one of these locations. Note that this assign-

ment links the object detections with the static elements in the scene

(e.g., road, buildings, vanishing points).

3.2. Image Evidence

Besides the geometric model, which is entirely determined by the

road parameters R = {κ, c, w, r, α}, we define a probabilistic model

to explain the evidence E in the image. The observations are col-

lected from a set of monocular and stereo feature cues which we

introduce in the following.

First, we detect objects and track them over time, yielding vehicle

tracklets, which we denote by T . They provide us with information

about where the lanes and the parking areas might be located, which

are central in our geometric model described in Section 3.1. Further-

more, vanishing points V give useful hints about the direction of the

streets since many scene elements such as road markings or building

facades are often aligned with the principal axes of the scene. Seg-

menting the image into semantic categories S such as road, back-

ground or sky, provides valuable information about the extend of the

roads and urban canyons.

In addition to the monocular feature cues described so far, we also

leverage low-level stereo features. For instance, 3D scene flow F is

extracted as a cue for moving objects in the scene and an occupancy

grid O provides complementary hints at the location of buildings and

infrastructure alongside the road.

We summarize all feature cues as image evidence, denoted by E =
{T ,V,S,F ,O}, which we will define in the following. For details

on the feature extraction pipeline, we refer the reader to Chapter 4.
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Vehicle Tracklets: Let T denote the set of vehicle tracklets T =
{t1, . . . , tNt} that have been detected in the sequence. A vehi-

cle tracklet t is defined as a sequence of object detections pro-

jected into bird’s eye perspective t = {d1, . . . ,dMd
} with d =

(fd,md,Sd,od). Here, fd ∈ N is the frame number and md ∈
R
2,Sd ∈ R

2×2 are the mean and covariance of the Gaussian distri-

bution N (m,S) describing the object location in road coordinates.

od ∈ Δ7 are the parameters of a categorical distribution over eight

possible viewpoints (estimated by the object detector) with the unit

N -simplex ΔN defined by

ΔN =

{
x ∈ R

N+1

∣∣∣∣∣
N+1∑
i=1

xi = 1 ∧ ∀i : xi ≥ 0

}
(3.2)

Vanishing Points: Furthermore, we detect up to two (Nv) domi-

nant vanishing points V = {v1, . . . , vNv} and represent them by a

single rotation angle around the yaw axis of the road coordinate sys-

tem vi ∈ [0, π). The vertical vanishing point is non-informative for

our task and not considered here.

Semantic Scene Labels: We define the set of semantic labels S =
{s1, . . . , sNs} by subdividing the image into Ns patches (or ’super-

pixels’) of size ns × ns pixels. For each patch, si ∈ Δ2 denotes the

discrete probability distribution over the semantic categories road,

background and sky. This feature is computed for the last frame in

each sequence as this gives us the best possible view at the scene.

Scene Flow: The scene flow F = {f1, . . . , fNf
} features capture

the 3D motion in the scene, compensated for the observer’s ego-

motion. Each flow vector f = (pf ,qf ) is defined by its location

pf ∈ R
2 and velocity qf ∈ R

2 on the road plane. All velocity vec-

tors are normalized to ‖qf‖2 = 1 as our scene flow model does not

explicitly reason about vehicle velocities.
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Occupancy Grid: The occupancy grid O = {ρ1, . . . , ρNo} is

represented by No cells of size no × no meters. Each cell ρi ∈
{−1, 0,+1} can be either free (−1), occupied (+1) or unobserved
(0).

3.3. Probabilistic Model

By assuming all observations E = {T ,V,S,F ,O} to be condition-

ally independent given the road layout R, the joint distribution over

the image evidence E and the road parameters R factorizes as

p(E ,R|Θ) = p(R|Θ)︸ ︷︷ ︸
Prior

[
Nt∏
i=1

p(ti|R,Θ)

]
︸ ︷︷ ︸

Vehicle Tracklets

×
Nv∏
i=1

p(vi|R,Θ)

︸ ︷︷ ︸
Vanishing Points

Ns∏
i=1

p(si|R,Θ)

︸ ︷︷ ︸
Scene Labels

×
Nf∏
i=1

p(fi|R,Θ)

︸ ︷︷ ︸
Scene Flow

No∏
i=1

p(ρi|R,Θ)

︸ ︷︷ ︸
Occupancy Grid

(3.3)

where Θ denotes the set of all parameters in our model. This is also

illustrated in the graphical model shown in Fig. 3.3.

3.3.1. Prior

The prior on road parameters R factorizes as

p(R|Θ) = p(κ|Θ)p(c, r, w|κ,Θ)p(α|κ,Θ) (3.4)
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Figure 3.3.: Directed Graphical Model. This figure shows the factoriza-

tion of the joint probability distribution in Eq. 3.3 using a directed graph.

Random variables are depicted with circles, observed variables are filled

and dependencies between random variables are highlighted using directed

arrows. The plate notation is adopted to denote copies.

with

κ ∼ Cat(ξp) (3.5)

(c, r, logw)T|κ ∼ N
(
μ(κ)
p ,Λ(κ)

p

−1
)

(3.6)

α|κ ∼ fκ(α, σα)
λp (3.7)

where Cat(·) denotes the categorical distribution

p(κ|Θ) = Cat(κ|ξp) = ξp,κ with

7∑
i=1

ξp,i = 1 (3.8)

and c, r and w are modeled jointly to capture correlations between

the variables. w is modeled using a log-Normal distribution due

to its positivity constraint. Empirically we found α to be highly

multi-modal and model it using kernel density estimation fκ(α, σα)
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with kernel bandwidth σα. All parameters ξp,μp,Λp, λp ∈ Θ are

learned from training data using real-world intersections labeled in

GoogleMaps aerial imagery as described in Section 5.3. Note that

the symmetric positive definite precision matrix Λp has to be param-

eterized appropriately. For details on the parameterization and the

learning procedure the reader is referred to Section 3.5. The likeli-

hood terms in Eq. 3.3 are described in the following.

3.3.2. Vehicle Tracklets

Recall that a vehicle tracklet t is defined as a sequence of object

detections projected into bird’s eye perspective t = {d1, . . . ,dMd
}

with object detections d = (fd,md,Sd,od), where fd ∈ N is the

frame number, md ∈ R
2,Sd ∈ R

2×2 describe the object location

in road coordinates and od ∈ Δ7 is the discrete object orientation

distribution. Let l be an additional latent variable representing either

the lane or the parking area where tracklet t has been observed as

illustrated in Fig. 3.2(a). Assuming a uniform prior on all K(K − 1)
lanes and all 2K parking areas

l ∼ U({1, . . . ,K(K − 1) + 2K}) (3.9)

the tracklet likelihood is defined as the marginal distribution

p(t|R,Θ) =

L∑
l=1

p(t, l|R) (3.10)

p(t, l|R) = p(l|R)p(t|l,R) ∝ p(t|l,R) (3.11)

where the tracklet index i and the dependency on the parameters Θ
have been dropped for clarity of notation. In order to keep inference

tractable, we marginalize over l when estimating the road model pa-

rameters R. When estimating the location of individual objects in

the scene, the posterior over l becomes important and is explicitly
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computed. The tracklet distribution conditioned on the lane and road

layout is given by

p(t|l,R) =

{
pl(t|l,R) if l ≤ K(K − 1) (lane)
pp(t|l,R) if K(K − 1) < l ≤ 2K (parking)

(3.12)

where pl(t|l,R) and pp(t|l,R) denote the likelihood terms for the

lanes and parking areas, respectively.

In order to evaluate the tracklet posterior for lanes pl(t|l,R), all

object detections t = {d1, . . . ,dMd
} must be associated to locations

on the spline of lane l. As this subroutine is called very often dur-

ing inference (i.e., once per sample and observed tracklet) and for

maintaining efficiency, we discretize the lane spline at 1m intervals

and augment the observation model with an additional discrete la-

tent variable s per object detection d which indexes the location on

the lane as illustrated in Fig. 3.2(a). Note that a 1m discretization

interval is sufficient as for most viewpoints the observation noise

will be larger than 1m. As dynamical model we employ a left-to-

right Hidden Markov Model. Marginalizing over all hidden states

{s1, . . . , sMd
} yields

pl(t|l,R) =
∑

s1,...,sMd

pl(t, s1, . . . , sMd
|l,R)

=
∑

s1,...,sMd

p(s1)pl(d1|s1, l,R)

×
Md∏
j=2

p(sj |sj−1)pl(dj |sj , l,R) (3.13)

where Md denotes the number of object detections in the tracklet and

tracklets are allowed to start anywhere on the lane with equal prob-

ability, i.e., s1 ∼ U({1, . . . ,Ml}), with Ml the number of spline

points on lane l. Our motion model is simple, yet effective: By con-
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straining all tracklets to move forward with uniform probability

p(sj |sj−1) =

{
1

Ml−sj−1+1 if sj ≥ sj−1

0 otherwise
(3.14)

the model is able to distinguish the lane of a crossing street purely

based on the vehicle’s motion. This is of importance as distance mea-

surements of far objects are noisy to an extend which is preventing

the distinction from the object location alone. The emission prob-

ability for lanes pl(d|s, l,R) is factorized into the probability over

object location md,Sd and object orientation od

pl(d|s, l,R) = p(md|s, l,R,Sd) p(od|s, l,R) (3.15)

For clarity of notation the detection index j has been dropped. The

3D object location in Eq. 3.15 is modeled as a Gaussian mixture

p(md|s, l,R,Sd) = (1− ζt) pin(md|s, l,R,Sd)

+ ζt pout(md|s, l,R) (3.16)

with inlier and outlier distributions defined by

pin(md|s, l,R,Sd) ∝ exp

(
−1

2
(φt −md)TS

−1
d (φt −md)

)

pout(md|s, l,R) ∝ exp

(
− 1

2σ2
out

mT
dmd

)
, (3.17)

respectively. Here, φt(s, l,R) ∈ R
2 denotes the 2D location of

spline point s on lane l according to the B-spline model presented

in Section 3.1, ζt ∈ Θ is the outlier probability and σout ∈ Θ is a

parameter controlling the ’spread’ of the outlier distribution.

For the object orientation likelihood, we impose a categorical dis-

tribution over object orientations od

p(od|s, l,R) = Cat(ϕt(s, l,R)|od) = od,ϕt(s,l,R) (3.18)
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where ϕt(s, l,R) ∈ {1, . . . , 8} selects the orientation bin that rep-

resents the relative direction the object would be viewed by the ob-

server when it was driving into the direction of the lane. Intuitively,

Eq. 3.18 encourages lane associations such that the estimated vehi-

cle orientation and the direction of the lane coincide. The relative

viewing direction is computed from the tangent of lane l at spline

point s.

For parking areas, all cars are assumed to be static. Thus, no dy-

namics needs to be incorporated into the observation model and the

tracklet’s parking area likelihood reduces to

pp(t|l,R) =
∑
s

pp(t, s|l,R)

=
∑
s

Md∏
j=1

p(s) pp(dj |s, l,R) (3.19)

assuming a uniform prior p(s) on the location s within parking area l.
Furthermore, for parked cars we do not make any assumption about

the orientation. Thus, the emission probability becomes

pp(d|s, l,R) =
1

8
p(md|s, l,R,Sd) (3.20)

with p(md|s, l,R,Sd) as in Eq. 3.16.

3.3.3. Vanishing Points

Assuming all Nv ∈ {0, 1, 2} vanishing points V = {v1, . . . , vNv},

represented by their orientations on the ground plane vi ∈ [0, π), to

be independent given the road layout R, we define

p(v|R,Θ) ∝ ζv + (1− ζv) exp (−λvφv(v,R,Θ)) (3.21)
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with orientation error

φv(v,R,Θ) = 1− cos(2v − 2ϕv(R)) (3.22)

where ζv ∈ Θ is a small constant capturing outlier detections. The

last term in Eq. 3.21 correspond to the cyclic von Mises distribu-

tion [22] up to a normalizing factor that depends on the zeroth-order

Bessel function of the first kind. ϕv(R) is the orientation of the

closest street, based on the current road model configuration R, and

λv ∈ Θ is a precision parameter and controls the importance of this

term. As lines belonging to a vanishing point are undirected, i.e.,

v ∈ [0, π) instead of v ∈ [0, 2π), a factor of 2 is added in Eq. 3.22 to

accommodate this fact.

3.3.4. Semantic Scene Labels

Let s ∈ S represent the (discrete) distribution over the three differ-

ent semantic classes ’road’, ’background’ and ’sky’ for a particular

image patch. The semantic label likelihood for that patch is modeled

as

p(s|R,Θ) ∝ exp

(
λs

Ns
ws,φs(R) sφs(R)

)
(3.23)

where λs ∈ Θ is a parameter controlling the importance of the

semantic label cue, φs(R) ∈ {1, 2, 3} picks the class label corre-

sponding to the same pixel in a ’virtual’ segmentation of the scene

according to the current road model configuration R and ws ∈ R
3

is a weight vector. We assume that the background (i.e., buildings,

trees) starts directly behind the curb of the road and buildings reach

a height of four stories on average, thereby defining the background

area which separates the sky from the road region. Facades adjacent

to the observer’s own street are not considered. Despite the fact that

this approximation seems quite crude, many inner-city scenes in our

dataset follow this scheme closely. Fig. 3.4 illustrates the scene la-

beling returned by our boosting classifier described in Section 4.3

(left) as well as the labeling generated from the re-projection of our
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Figure 3.4.: Illustration of Scene Label Likelihood. This figure shows

the semantic segmentation returned by a joint boosting classifier (top) and

the ’virtual’ image segmentation corresponding to the current road layout

configuration R (bottom). The semantic scene label likelihood in Eq. 3.23

encourages a large overlap between the virtual segmentation and the clas-

sification result.

model (right). A large overlap corresponds to a large likelihood in

Eq. 3.23.

3.3.5. Scene Flow

Compared to the tracklet observations, the 3D scene flow likelihood

directly explains all moving objects in the scene with the road model

described by R. However, in contrast to vehicle tracklets, objects

that do not fit the appearance model of the car detector (e.g., trucks,

tractors, quad bikes, motorbikes) and hence have been missed at de-

tection time are considered here as well, unless they do not move.

Recall that each 3D flow vector f = (pf ,qf ) is defined by its

location pf and normalized velocity qf on the road plane. The prob-

ability of a scene flow vector depends on its proximity to the closest
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lane and on how well its velocity vector aligns with the tangent of

the respective B-spline at the corresponding foot point

p(f |R,Θ) ∝ φf (f ,R,Θ)
1

Nf (3.24)

where

φf (f ,R,Θ) = ζf exp

(
−‖pf‖22

2σ2
out

)
+ (1− ζf ) exp

(
−φ̃f (f ,R,Θ)

)
(3.25)

and

φ̃f (f ,R,Θ) = −λf1‖pf −ϕf (pf ,R)‖22 − λf2(1− qT
f ϕ̃f (pf ,R))

(3.26)

with parameters ζf , λf1, λf2, σout ∈ Θ. Here, ζf accounts for out-

liers and λf1 and λf2 control the importance of the location and the

orientation term, respectively. Similar to the vehicle tracklet model

from Section 3.3.2, σout denotes the width of the outlier distribu-

tion. The functions ϕf (pf ,R) ∈ R
2 and ϕ̃f (pf ,R) ∈ R

2 return

the spline foot point and tangent vector at the location closest to pf ,

respectively. This is illustrated in Fig. 3.5(a). The dependencies are

modeled as a hard mixture, i.e. for each flow vector we select the

spline l that maximizes Eq. 3.24.

3.3.6. Occupancy Grid

Free space information is incorporated by means of a 2D occupancy

grid O = {ρ1, . . . , ρNo}, modeled in road coordinates (y = 0), with

No the number of cells in the grid. Here, our assumption is that

the road area should coincide with free space while non-road areas

may be covered by buildings or vegetation. Each cell ρ in the grid

takes one of three values ρ ∈ {−1, 0,+1} representing free space,

unobserved areas and obstacles. The occupancy likelihood of cell ρ
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(a) Scene Flow Likelihood (b) Occupancy Grid Likelihood

Figure 3.5.: Scene Flow and Occupancy Grid Observation Model. (a)

The proposed scene flow likelihood encourages flow vectors to agree with

the lane geometry. (b) The geometric prior, a ’template’ of freespace and

occupied areas, determines the occupancy grid likelihood.

is defined as

p(ρ|R,Θ) ∝ exp

(
λo

No
ρ · φo(R)

)
(3.27)

where φo(R) ∈ {wo,1, wo,2, wo,3} is a mapping that for any cell ρ
returns the value (or weight) of a model-dependent geometric prior

expressing the belief on the location of free space (i.e., road) and

buildings alongside the road. The geometric prior is illustrated in

Fig. 3.5(b) for the case of a right turn. Intuitively, it encourages

free space where the road is located and obstacles elsewhere, with a

preference towards the roadside region. λo ∈ Θ controls the strength

of this term.

3.4. Inference

Given the image evidence E , we are interested in determining the

underlying road layout R and the location of cars C = {(l, s)} in the
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scene

R̂, Ĉ = argmax
R,C

p(R, C|E ,Θ) (3.28)

where l denotes the lane index and s contains the spline points of

all detections in a tracklet. Unfortunately, the posteriors involved in

this computation have no analytical solution and can’t be solved in

closed form. Thus we approximate them using Metropolis-Hastings

sampling [5, 78, 86, 123, 79]. A short review on the sampling tech-

niques employed in this thesis is given in Appendix A. To keep com-

putations tractable, the problem is split into two sub-problems: First,

we estimate R while marginalizing C

R̂ = argmax
R

p(R|E ,Θ) = argmax
R

∑
C

p(R, C|E ,Θ) (3.29)

Given an estimate of R, the object locations C can be inferred as

Ĉ = argmax
C

p(C|E ,R,Θ) (3.30)

Both steps are detailed in the following two subsections. Through-

out inference, the calibration parameters, the camera poses and the

ground plane are assumed to be known, i.e., estimated with sufficient

accuracy, and fixed.

3.4.1. Inferring the Road Layout

Our first goal is to estimate the road layout R given the image evi-

dence E
R̂ = argmax

R
p(R|E ,Θ) (3.31)

where

p(R|E ,Θ) ∝ p(E ,R|Θ) (3.32)

as p(E) is constant. For computing the maximum a-posteriori esti-

mate in Eq. 3.31 we run a Markov chain for ninfer iterations and
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Local Metropolis Proposals (33%)
1. Vary center of crossroads c (σc)

2. Vary width of all roads w (σw)

3. Vary angle of crossing street α (σα)

4. Vary overall orientation r (σr)

5. Vary center c and width w jointly

6. Vary center c, width w, angle α and rotation r jointly

Inter-Topology Metropolis Proposals (33%)
7. Re-sample κ uniformly

Global Metropolis-Hastings Proposals (33%)
8. Re-sample all parameters R = {κ, c, w, r, α} from the prior

Table 3.1.: Metropolis-Hastings Proposals for Inference. We randomly

propose one of the above moves with probability given in brackets and

accept the move according to the acceptance probability in Eq. 3.33.

pick the sample with the highest probability. As the normalization

constant p(E) does not depend on R, it cancels in the sampler’s ac-

ceptance ratio

pMH(R′|R) = min

{
1,

p(R′|E ,Θ)q(R|R′,Θ)

p(R|E ,Θ)q(R′|R,Θ)

}

= min

{
1,

p(E ,R′|Θ)q(R|R′,Θ)

p(E ,R|Θ)q(R′|R,Θ)

}
(3.33)

Here, q(R′|R,Θ) denotes the proposal distribution and R′ is the

proposed state computed from the old state R using one of the moves

in Table 3.1. A short tutorial on sampling techniques and Metropolis-

Hastings can be found in Appendix A.

We exploit a combination of local, inter-topology and global moves

to obtain a well-mixing Markov chain. While local moves modify

R slightly, global moves sample R directly from the prior. This

ensures a quick traversal of the search space, while still explor-

ing local modes. For local moves we choose symmetric proposals
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Algorithm 1 Tracklet Marginals (Forward Algorithm)
Input: E = [e1, . . . , eMd

], Ej,s ∝ pl(dj |s, l,R)
Output: log pl(t|l,R)
α1 ← 1

Ms
e1

β ←∑Ms
k=1 α1,k, α1 ← 1

βα1, log pl ← log β
for j ← 2, . . . ,Md do

for k ← 1, . . . ,Ms do
αj,k ← Ej,k

1
k

∑k
k′=1 αj−1,k′

β ←∑
k αj,k, αj ← 1

βαj , log pl ← log pl + log β
return log pl

in the form of Gaussians centered on the previous state such that

the proposal ratio in Eq. 3.33 cancels. To avoid trans-dimensional

jumps [82], we do not alter the existence of the variable α. Instead,

we include α in all models, also when κ = 1. Table 3.1 gives an

overview of the move categories picked at random. Note that while

the local and inter-topology moves are symmetric and thus purely

’Metropolis’, the global moves result in a proposal distribution ratio

q(R|R′,Θ)/q(R′|R,Θ) 
= 1.

Each sample requires the evaluation of p(R|E ,Θ) up to a normal-

izing constant. The marginalization in Eq. 3.13 can be carried out

efficiently using the forward algorithm [22] for hidden Markov mod-

els, which for the dynamical model in Eq. 3.14 is given in Algorithm

1. Numerical instabilities due to limitations in the floating point

arithmetic precision are mitigated through proper re-normalization

in each step of the algorithm.

3.4.2. Inferring the Location of Objects

Given the road model R, we are interested in recovering the loca-

tion of cars C = {(l1, s1), . . . , (lNt , sNt)}, where li denotes the lane
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index and si are the spline indices of all detections in tracklet i

Ĉ = argmax
C

p(C|E ,R,Θ) (3.34)

Conditioned on R, all tracklets become independent such that the

inference problem decomposes into sub-problems. Neglecting the

tracklet index i and the dependency on Θ for notational clarity and

observing that p(t) is constant, l can be inferred by marginalizing

over the object locations {s1, . . . , sMd
} on the lane spline

l̂ = argmax
l

p(l|t,R) = argmax
l

p(t, l|R) (3.35)

with p(t, l|R) defined by Eq. 3.11. Given l, the object locations on

the lane spline

ŝ1, . . . , ŝMd
= argmax

s1,...,sMd

pl(s1, . . . , sMd
|t, l,R)

= argmax
s1,...,sMd

pl(t, s1, . . . , sMd
|l,R) (3.36)

are easily inferred using Viterbi decoding for hidden Markov models.

The procedure is sketched in Algorithm 2, assuming uniform forward

motion probability as discussed in Section 3.3.2.

3.5. Learning

A principled way to estimate the parameters Θ of our model is to

learn them from training data using maximum likelihood. Let us as-

sume we are given a training set (E ,R) of cardinality D, with E =
{E1, . . . , ED} denoting the image evidence and R = {R1, . . . ,RD}
the annotated road layouts for each sequence, respectively. We per-

form ten-fold cross-validation. As we have 113 annotated sequences

in total this leads to D ≈ 113 − 11 = 102 training sequences per

fold. For the ease of indexing, let us further assume that all model

parameters are absorbed into the parameter set Θ = {θ1, . . . , θMΘ
},
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Algorithm 2 Vehicle Locations (Viterbi Decoding)
Input: E = [e1, . . . , eMd

], Ej,s ∝ pl(dj |s, l,R)
Output: {s1, . . . , sMd

} = argmaxs1,...,sMd
pl(s1, . . . , sMd

|t, l,R)

δ1 ← 1
Ms

e1
for j ← 2, . . . ,Md do

for k ← 1, . . . ,Ms do
δj,k ← Ej,k maxk′=1,...,k δj−1,k′

ψj,k ← argmaxk′=1,...,k δj−1,k′

sMd
← ψMd,Ms

for j ← Md − 1, . . . , 1 do
sj ← ψj+1,sj+1

return {s1, . . . , sMd
}

with θi denoting a single parameter (e.g., λt, λv, . . . ) and MΘ is the

total number of parameters.

3.5.1. Learning the Model Parameters

Given a training fold (E ,R), our goal is to find the parameter set Θ̂
that maximizes the likelihood of the data

Θ̂ = argmax
Θ

p(E ,R|Θ) (3.37)

with

p(E ,R|Θ) =

D∏
d=1

p(Ed,Rd|Θ) (3.38)

Unfortunately, maximizing Eq. 3.38 directly for Θ is intractable due

to the integral over R that appears in the partition function

Z(Θ) =

∫
p(E ,R|Θ)dR (3.39)
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Instead, let us define a Gibbs random field by writing p(Ed,Rd|Θ)
as

p(Ed,Rd|Θ) =
1

Zd(Θ)
exp (−Ψ(Ed,Rd,Θ)) (3.40)

where Ψ(Ed,Rd,Θ) is the sum of a set of potential functions {ψi}.

Details on the shape of the individual potentials, corresponding to the

prior and the likelihoods from Section 3.3 will be given in Section

3.5.2 and the resulting factor graph is depicted in Fig. 3.6. Zd(Θ) is

the partition function corresponding to data point d

Zd(Θ) =

∫
exp(−Ψ(Ed,R,Θ))dR (3.41)

necessary for turning p(Ed,Rd|Θ) into a proper distribution. Note

that in Eq. 3.41 and in the following we abuse the integral over R
to express integration and summation in order to avoid clutter in the

notation. Substituting Eq. 3.40 into Eq. 3.38, we obtain

p(E ,R|Θ) =
1

Z(Θ)
exp (−Ψ(E ,R,Θ)) (3.42)

with

Ψ(E ,R,Θ) =
D∑

d=1

Ψ(Ed,Rd,Θ) (3.43)

and Z(Θ) =

D∏
d=1

Zd(Θ) (3.44)

The partition functions in Eq. 3.41 and Eq. 3.44, required for evalu-

ating Eq. 3.38, are still intractable to compute. However, it is possi-
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ble to approximate the gradients of the log-likelihood function

L(E ,R,Θ) =

D∑
d=1

log p(Ed,Rd|Θ)

= −
D∑

d=1

(Ψ(Ed,Rd|Θ) + logZd(Θ)) (3.45)

which can be optimized as surrogate for Eq. 3.38. Taking the partial

derivative of L(E ,R,Θ) with respect to parameter θi, we obtain

∂

∂θi
L(E ,R,Θ) = −

D∑
d=1

(
∂

∂θi
Ψ(Ed,Rd,Θ) +

∂

∂θi
logZd(Θ)

)
(3.46)

While the first term in this sum can be evaluated easily as it only de-

pends on the potential functions themselves, the second term seems

intractable at first glance as it involves derivatives of the log-partition

function. By re-arranging the terms, however, we obtain

∂

∂θi
logZd(Θ)

=
1

Zd(Θ)

∂

∂θi
Zd(Θ)

=
1

Zd(Θ)

∫
∂

∂θi
exp(−Ψ(Ed,R,Θ))dR

= − 1

Zd(Θ)

∫
exp(−Ψ(Ed,R,Θ))

∂

∂θi
Ψ(Ed,R,Θ)dR

= −
∫

p(Ed,R|Θ)
∂

∂θi
Ψ(Ed,R,Θ)dR

= −
〈

∂

∂θi
Ψ(Ed,R,Θ)

〉
p(Ed,R|Θ)

(3.47)

Here, the derivative with respect to θi and the integral operator can be

swapped because the partial derivative of the integrand is continuous
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and the limits of integration do not depend on θi (Leibniz integral

rule). Thus, the derivative of the log-partition function can be ex-

pressed as the expectation of the potential derivatives with respect

to the model distribution p(Ed,R|Θ). In contrast to [92, 156] the

potentials Ψ additionally depend on Ed in our case. While it is im-

possible to evaluate this expression exactly, it can be approximated

by drawing samples using Markov Chain Monte Carlo as described

in Section 3.4. Sampling exhaustively from the model distribution is

computationally prohibitive. However, it has been shown [92] that

when starting from the data distribution, a couple of sampling itera-

tions, say nlearn iterations, are sufficient to draw the samples closer

to the (current) model distribution. This change is sufficient to ap-

proximate the gradients well enough. Given the approximation to the

gradient, we take niter steps into its direction

δθi = −ηi
D

D∑
d=1

(
∂

∂θi
Ψ(Ed,Rd,Θ) +

〈
∂

∂θi
Ψ(Ed,R,Θ)

〉
p(Ed,R|Θ)

)
(3.48)

where ηi is the learning rate controlling the speed of convergence.

The choice of ηi is subtle: When ηi is chosen too small, the parame-

ters converge very slowly. On contrary, values that are too large can

easily cause parameter divergence. Furthermore, choosing a single

η for all parameter dimensions i will inherently lead to slow conver-

gence rates as η has to be chosen small enough such that convergence

for all parameters is guaranteed.

Thus, we employ a simple optimization heuristic: We initialize

all ηi small enough (ηi = 10−6) and analyze the normalized second

derivative of each parameter, which is an indicator for the smooth-

ness of the learning curves, in a time interval of 10 iterations. For

all smooth curves we multiply ηi by a factor of 10 while we divide

all ηi’s by 10 in case the curves become noisy. In practice, this al-

gorithm led to quick and stable convergence. We also observed the

procedure to be largely independent of the initialization, which has

been empirically chosen for all parameters.
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3.5. Learning

Figure 3.6.: Factor Graph. This figure shows the factor graph representa-

tion of the directed graphical model in Fig. 3.3 corresponding to the distri-

bution in Eq. 3.49. Dependencies between random variables are expressed

using factor nodes (black squares) and the latent tracklet variables s and l
have been marginalized for clarity of presentation.

3.5.2. Energy Potentials and Derivatives

For applying the learning procedure described in Section 3.5.1, all

potential functions1 need to be properly defined and their derivatives

with respect to the model parameters Θ must be calculated. The joint

potential Ψ(E ,R,Θ) from Eq. 3.40 decomposes as

Ψ(E ,R,Θ) = ψp(R,Θ) + ψt(T ,R,Θ)

+ ψv(V,R,Θ) + ψs(S,R,Θ)

+ ψf (F ,R,Θ) + ψo(O,R,Θ) (3.49)

using the same subscript notation as in Eq. 3.3. The corresponding

factor graph is illustrated in Fig. 3.6. In the following, we derive

each potential in Eq. 3.49.

1Note that throughout this section we call ’ψ(·)’ a potential function for clarity of

notation, even though (strictly speaking) ’−ψ(·)’ is the actual energy potential.
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3. Urban Scene Understanding

Prior: By taking the negative logarithm of Eq. 3.4 and absorbing

all constant terms into the partition function, we obtain the prior po-

tential

ψp(R,Θ) = − log ξp,κ − λp log fκ(α)

+
1

2
φp(R,μ(κ)

p )TΛ(κ)
p φp(R,μ(κ)

p ) (3.50)

with

φp(R,μ(κ)
p ) = (c, r, logw)T − μ(κ)

p (3.51)

and ξp, λp ∈ Θ. While μp ∈ R
4 can be parameterized element-wise,

i.e. μp ∈ Θ, Λp ∈ R
4×4 has to fulfill the properties of a precision

matrix, i.e. it must be symmetric positive definite. These properties

can be enforced by considering the Cholesky decomposition of Λ,

Λ = LTL (3.52)

into a lower triangular matrix LT and an upper triangular matrix L,

omitting all indices for clarity of notation. Clearly, Λ is symmetric

positive definite and L can be parameterized as

L =

⎡
⎢⎢⎣
L1,1 L1,2 L1,3 L1,4

0 L2,2 L2,3 L2,4

0 0 L3,3 L3,4

0 0 0 L4,4

⎤
⎥⎥⎦ (3.53)
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3.5. Learning

with ∀i≤j : Li,j ∈ Θ. The required derivatives with respect to ξp,i,
μ, Li,j and λp are readily given by

∂ψp(R,Θ)

∂ξp,i
= − [κ = i]

ξp,i

∂ψp(R,Θ)

∂μ
= −Λφp(R,μ)

∂ψp(R,Θ)

∂Li,j
=

1

2
φp(R,μ)T

(
∂LT

∂Li,j
L+ LT ∂L

∂Li,j

)
φp(R,μ)

∂ψp(R,Θ)

∂λp
= − log fκ(α) (3.54)

In practice, one can directly optimize for log ξp,i instead of ξp,i for

stability.

Vehicle Tracklets: The potential corresponding to the vehicle track-

let likelihood and its derivative are obtained by taking the logarithm

of Eq. 3.10 and differentiating it:

ψt(T ,R,Θ) = − λt

Nt

Nt∑
i=1

log

(
L∑
l=1

p(ti, l|R)

)
(3.55)

∂ψt(T ,R,Θ)

∂λt
= − 1

Nt

Nt∑
i=1

log

(
L∑
l=1

p(ti, l|R)

)
(3.56)

Here, λt ∈ Θ is a parameter controlling the strength of the feature

cue and the tracklet probability p(t, l|R) is defined by Eq. 3.10. We

have added an additional degree of freedom λt to the tracklet po-

tential ψt, which accommodates for violations of the naïve Bayesian

observation model and controls the relative strength of the tracklet

feature with respect to the prior and all other features.
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3. Urban Scene Understanding

Vanishing Points: Similarly, the vanishing point potential and its

derivative are obtained from Eq. 3.21 as

ψv(·) = −
Nv∑
i=1

log (ζv + (1− ζv) exp (−λvφv(vi,R,Θ)))

∂ψv(·)
∂ζv

= −
Nv∑
i=1

1− exp (−λvφv(vi,R,Θ))

ζv + (1− ζv) exp (−λvφv(vi,R,Θ))

∂ψv(·)
∂λv

= −
Nv∑
i=1

(ζv − 1) exp (−λvφv(vi,R,Θ))φv(vi,R,Θ)

ζv + (1− ζv) exp (−λvφv(vi,R,Θ))

(3.57)

with φv(v,R,Θ) measuring the error with respect to the orientation

of the closest street as defined in Eq. 3.22.

Semantic Scene Labels: The semantic scene label potential is

given by taking the logarithm of Eq. 3.23 and differentiating with

respect to λs

ψs(S,R,Θ) = − λs

Ns

Ns∑
i=1

ws,φs(R) si,φs(R) (3.58)

∂ψs(S,R,Θ)

∂λs
= − 1

Ns

Ns∑
i=1

ws,φs(R) si,φs(R) (3.59)

where φs(R) ∈ {1, 2, 3} selects the class label according to the seg-

mentation of the scene induced by the current road layout R. For

further details, we refer the reader to Section 3.3.4 and the illustra-

tion in Fig. 3.4.

46
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Scene Flow: The scene flow potential is obtained by taking the

logarithm of Eq. 3.24 and differentiating with respect to the outlier

constant ζf and the importance weights λf1 (location) and λf2 (ori-

entation):

ψf (·) = − 1

Nf

Nf∑
i=1

log φf (fi,R,Θ) (3.60)

∂ψf (·)
∂ζf

= −
Nf∑
i=1

exp
(
−‖pf,i‖22

2σ2
out

)
− exp

(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂ψf (·)
∂λf1

= −
Nf∑
i=1

(ζf − 1) exp
(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂φ̃f (fi,R,Θ)

∂λf1

∂ψf (·)
∂λf1

= −
Nf∑
i=1

(ζf − 1) exp
(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂φ̃f (fi,R,Θ)

∂λf2

with the unnormalized probability of a single scene flow vector given

by

φf (f ,R,Θ) = ζf exp

(
−‖pf‖22

2σ2
out

)
+ (1− ζf ) exp

(
−φ̃f (f ,R,Θ)

)
(3.61)

and

φ̃f (f ,R,Θ) = −λf1‖pf −ϕf (pf ,R)‖22 − λf2(1− qT
f ϕ̃f (pf ,R))

(3.62)

The partial derivatives with respect to λ are given by

∂φ̃f (f ,R,Θ)

∂λf1
= −‖pf −ϕf (pf ,R)‖22 (3.63)

∂φ̃f (f ,R,Θ)

∂λf2
= qT

f ϕ̃f (pf ,R)− 1 (3.64)
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3. Urban Scene Understanding

with ϕf (pf ,R) and ϕ̃f (pf ,R) returning the foot point and tangent

of the closest lane spline as in Eq. 3.26 and illustrated in Fig. 3.5(a).

Occupancy Grid: Taking the logarithm of Eq. 3.27 and its deriva-

tive, the occupancy grid potential reads

ψo(O,R,Θ) = − λo

No

No∑
i=1

ρi · φo(R) (3.65)

∂ψo(O,R,Θ)

∂λo
= − 1

No

No∑
i=1

ρi · φo(R) (3.66)

where φo(R) ∈ {wo,1, wo,2, wo,3} is a mapping that for any cell ρ
returns the value of the model-dependent geometric prior express-

ing the belief on the location of free space (i.e. road) and buildings

alongside the road. For more details the reader is referred to Section

3.27 and the illustration in Fig. 3.5(b).
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4. Image Evidence

This chapter describes the feature cues used by our probabilistic

model described in Section 3.3. They can be categorized into monoc-

ular cues (i.e., vehicle tracklets, vanishing points and semantic scene

labels) for which one camera is sufficient and stereo cues (i.e., 3D

scene flow and occupancy grids) which require a stereo camera setup.

We represent all features in the reference coordinate system which

as described in Chapter 3 is located below the left camera coordinate

system in the last frame of each sequence as illustrated in Fig. 4.3.

The required ego-motion falls off as a by-product when computing

the scene flow features as described in Section 4.4.

4.1. Vehicle Tracklets

Vehicle tracklets are sets of vehicle detections which are associated

over time and represent one of the strongest cues in our framework.

This is because the observation of moving objects tells us a lot about

the structure of the scene as well as where the lanes are located and

which vehicles are allowed to move given the current traffic light

situation. Empirically, we found that pedestrians occur much more

rarely in our datasets and are thus less important in this context.

While it would be straightforward to extend our model to include

pedestrians, we focus on vehicles (i.e., cars) here. As we are inter-

ested in reasoning about the scene in bird’s eye perspective, we also

propose a way to extract 3D location estimates from the 2D object

detections.

As mentioned earlier, we define a tracklet as a set of object de-

tections, projected into bird’s eye perspective t = {d1, . . . ,dMd
}

with d = (fd,md,Sd,od). Here, fd ∈ N is the frame number and
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4. Image Evidence

(a) Bounding Box b = (u, v, w, h) (b) Orientation o ∈ R
8

Figure 4.1.: Illustration of Vehicle Detections. We detect objects in adja-

cent frames, estimate their orientation and associate them over time.

md ∈ R
2,Sd ∈ R

2×2 are the mean and covariance of the Gaussian

distribution N (m,S) describing the object location in road coordi-

nates. od ∈ Δ7 is a discrete orientation distribution over 8 possible

points of view. The goal of the tracking stage is to associate object

detections to tracklets and project them into 3D using cues such as

the object size or the bounding box ground contact point in combi-

nation with the height and the pitch angle of the camera. Association

of detections to tracklets is performed in image-scale space to better

account for uncertainties of the object detector.

4.1.1. Detection

First, let us define a 2D object detection as d̃ = (f,b,o)1, with

frame index f ∈ N and 2D object bounding box b = (u, v, w, h) ∈
R
4, where (u, v)T is the bottom-center and (w, h)T are the width and

height of the bounding box. In contrast to most traditional object

detectors, we also estimate a (discrete) distribution over 8 possible

points of view, o ∈ Δ7, giving us a sense of orientation of the object.

All involved variables are illustrated in Fig. 4.1.

In order to detect objects {(f,b,o)} in an image, we train the part-

based object detector2 of [60] on a large set of manually annotated

1We use a tilde for distinguishing 2D object detections d̃ (or vehicle tracklets t̃)

from 3D detections d (or vehicle tracklets t)
2Source code available at: http://people.cs.uchicago.edu/~rbg/latent/
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4.1. Vehicle Tracklets

Algorithm 3 Multi-Class Non-Maximum-Suppression
Input: L-SVM detections with orientation and score {(b, o, s)}
Output: NMS detections with orientation distribution {(b,o)}
A ← {(b, o, s)}
B ← ∅
while A 
= ∅ do

// Get all detections that overlap with the highest scoring one
a ← argmaxx∈A score(x)

Aa ←
{
x | x ∈ A ∧ box(x) ∩ box(a)

box(x) ∪ box(a) > τd

}
// For each orientation, get highest score within Aa

for i ← 1, . . . , 8 do
Ai ← {x | x ∈ Aa ∧ orientation(x) = i}
oi ← maxx∈Ai score(x)

// Apply softmax normalization
Z ←∑

i exp(oi)
for i ← 1, . . . , 8 do

oi ← 1
Z exp(oi)

// Add detection to B and remove Aa from A
B ← B ∪ (box(a),o)
A ← A \ Aa

return B

images. The object detection system described in [60] is based on

mixtures of multi-scale deformable part models, can represent highly

variable object classes and achieves state-of-the-art performance in

difficult scenarios such as the ones presented in the PASCAL ob-

ject detection challenge [59]. For training object models we employ

a latent SVM [60] where the location of the individual parts of an

object are assumed to be unknown at training time and maximized

over. The model parameters are found using stochastic gradient de-

scent, embedded into an alternating scheme which also estimates the

hidden variables at the same time.

In contrast to the original model of [60], our annotations do not
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Figure 4.2.: Confusion Matrix of the orientation estimates by the part-

based object detector presented in [60], trained in a semi-supervised fash-

ion.

only comprise the bounding boxes b, but also the relative object ori-

entations o, discretized into 8 viewpoints as illustrated in Fig. 4.1(b).

We use one component per viewpoint and fix the latent variables such

that they correspond to the components according to the ground truth

orientations relative to the observer. By introducing this additional

degree of supervision we are able to recover a distribution over pos-

sible object orientations o ∈ Δ7 at test time for each detected object.

Algorithm 3 illustrates the non-maximum-suppression mechanism

which computes a small number of non-maximum suppressed detec-

tions with discrete orientation distributions from all raw detections

with associated orientation and score. In order to obtain a proper

distribution o ∈ Δ7 with
∑

i oi = 1, the softmax transformation is

applied to the maximum of all detections scores over all orientation

bins. Fig. 4.2 illustrates the quality of the MAP orientation estimate

in terms of the confusion matrix over orientation classes.
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4.1. Vehicle Tracklets

4.1.2. Tracking

The association of 2D object detections {d̃} to 2D object tracks t̃ =
{d̃1, . . . , d̃T } with d̃ = (f,b,o) is solved using a two-stage process

which utilizes the Hungarian algorithm [116] for global frame-to-

frame data association. As all measurements are made in the image

domain, it is natural to associate objects directly in the image rather

than in 3D to better account for uncertainties.

Frame-to-Frame Association: First, individual frames are asso-

ciated frame-by-frame in a tracking-by-detection framework. For

all frames of a sequence, we associate all object detections above

a certain detection score to the existing tracklets using the Hungar-

ian algorithm [116]. If a detection has not been assigned to any of

the existing tracklets, a new tracklet is spawned. The affinity ma-

trix is computed using both geometry and appearance cues of the

object. Experimentally we found that combining both cues yields

the best association results possible. As geometry cue we employ

the bounding box intersection over union score. The appearance cue

is computed by correlating the bounding box region in the previous

frame with the bounding box region in the current frame, using a

small margin (20%) to account for the localization uncertainty of the

object detector. Let d̃i and d̃j denote two object detections in con-

secutive frames. Then, the (i, j)’th entry of the affinity matrix A is

given by

Ai,j =

{
Γ(d̃i, d̃j) if Γ(d̃i, d̃j) < τt1

∞ otherwise
(4.1)

Γ(d̃i, d̃j) =

(
1− box(d̃i) ∩ box(d̃j)

box(d̃i) ∪ box(d̃j)

)
×
(
1− xcorr(d̃i, d̃j)

)

where box(·) returns the bounding box b that belongs to a detected

object, xcorr(·, ·) returns the maximum of the normalized cross-

correlation of two detections, and τt1 is the gating threshold of stage
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one. The optimal assignment given the affinity matrix Aij can be

efficiently computed in polynomial time using the Kuhn-Munkres

algorithm [116], yielding a set of initial tracklets.

Tracklet-to-Tracklet Association: So far, only adjacent object de-

tections have been considered. In practice, however, it occurs quite

frequently that object detections are missing for a couple of frames.

This may be caused by imperfections of the object detector, or sim-

ply by the fact that other objects like cars, pedestrians or traffic signs

occlude the target of interest. Yet, longer tracklets provide more in-

formation to our model than short tracklets. Thus we employ a sec-

ond association stage where we associate tracklets with each other

which may be occluded for up to 20 contiguous frames. Similar to

the problem above we make use of the Hungarian algorithm for op-

timal data association, but this time we associate tracklets instead of

detections and consider the whole sequence at once. Each entry of

the association matrix refers to a pair of tracklets within the whole

sequence. The affinity matrix A is given by

Ai,j =

{
Γ(t̃i, t̃j) if fΔ(t̃i, t̃j) < N ∧ Γ(t̃i, t̃j) < τt2

∞ otherwise
(4.2)

Γ(t̃i, t̃j) = min
(
dist(t̃i, t̃j), dist(t̃j , t̃i)

)
×
(
1− xcorr(t̃i, t̃j)

)
where fΔ(·, ·) returns the frame gap between tracklets and dist(·, ·)
extrapolates the bounding boxes of each tracklet linearly to predict

the bounding boxes of the other tracklet and returns the mean of the

normalized prediction errors with respect to the bounding box lo-

cation, width and height. Extrapolation is carried out by linear re-

gression, i.e., we fit lines to the bounding box location, width and

height, where each of these modalities is considered a function of

the frame number. We also experimented with higher-order pre-

diction schemes, but found a decrease in performance due to the

large and correlated noise in our measurements. Similar to above,

xcorr(·, ·) compares object appearances via the normalized cross-
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correlation score, but this time maximized over all possible combi-

nations of object detections within t̃i and t̃j . We found that this

procedure to significantly alleviate the effect of semi-occlusions and

moderate appearance changes and leads to longer and more stable

tracklet associations. The gating threshold of stage two is denoted

by τt2.

4.1.3. Projection into 3D

While the object detection and object tracking stages in Section 4.1.1

and Section 4.1.2 operate directly in the 2D image domain (t̃), the

proposed intersection model reasons about tracklets in 3D (t). In

order to extract 3D information, we make the following two obser-

vations:

• Intersections are typically flat and can be well approximated

using a single ground plane, which is easily and robustly ex-

tracted from structure-from-motion point clouds or disparity

maps. For an overview on plane-fitting methods, the reader

is referred to [39, 169, 201, 62]. As cars are driving on the

ground, the bounding box contact point (bottom of the bound-

ing box) in combination with an estimate of the ground plane

can be employed to ’triangulate’ the 3D location of the object.

• Given the 2D bounding box and the 3D dimensions of an ob-

ject, its distance can be estimated. Hereto, we learn the statis-

tics of cars from bounding boxes and disparity images using

a held-out car dataset and back-propagate the location and its

uncertainty into 3D.

Both ideas are illustrated in Fig. 4.3 and detailed in the following.

Let ϕ : b → m,S be a mapping which takes an object bounding box

b ∈ R
4 as input and maps it to a 3D location (x, z)T ∼ N (m,S) on

the road surface, where m is the mean and S denotes the covariance

matrix. Again, 3D refers to the bird’s eye perspective (y = 0 plane in
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Figure 4.3.: Projection of 2D Object Detections into 3D. Assuming

known calibration parameters K, a rigid 3D ground plane transformation

T and knowledge about typical object dimensions (Δx,Δy), the 3D loca-

tion (x, z) can be estimated from the bounding box size (w, h) and ground

contact point (u, v).

road coordinates) as we are making a ground plane assumption, i.e.

we assume that all objects are attached to and move on a common

ground plane. Let us further assume that the mapping is probabilis-

tic. As cues for this mapping we use the location of the bounding

box ground contact point as well as the bounding box width and

height. The unknown parameters of the mapping are the uncertainty

in bounding box location σu, σv and size σw, σh as well as the real-

world object dimensions Δx,Δy and their uncertainties σΔx, σΔy.

All parameters are learned from a held out training dataset with an-

notated bounding boxes and depth from stereo.

More formally, let (u, v)T denote the image coordinates of the

bottom-center point of the object’s bounding box and let w, h be the

width and height of the bounding box. Let (x, 0, z)T be the 3D loca-

tion of an object in ground plane coordinates (y = 0) as illustrated

in Fig. 4.3. Further, let Δx,Δy be the object width and height in

meters, measured via parallel-projection to the plane z = 0, which

is coplanar to the image plane. Finally, let o denote the MAP orien-

tation of the vehicle as returned by the object detector.
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The posterior on the object’s 3D location is factorized as

p(x, z|u, v, w, h,Δx,Δy, o)

∝ p(u, v, w, h|x, z,Δx,Δy, o)p(x, z)

= p(u, v|x, z,Δx,Δy, o) p(w|x, z,Δx,Δy, o)

× p(h|x, z,Δx,Δy, o)

= p(u, v|x, z) p(w|z,Δx, o) p(h|z,Δy)

∝ p(x, z|u, v) p(z|w,Δx, o) p(z|h,Δy) (4.3)

where we have assumed a uniform prior over x and z. The first term

on the right hand side of Eq. 4.3 relates the bounding box ground

contact point (u, v)T to the object’s 3D location (x, 0, z)T. The sec-

ond and the last term model the relationship between the distance

z of the object to the observer and the bounding box width w and

height h, respectively. Note that the term p(z|w,Δx, o) which mod-

els the width Δx in terms of parallel projection to the z = 0 plane

depends on the object orientation o. This is because the width of a

vehicle differs from its length, thus we learn a separate set of statis-

tics for each object orientation. However, for clarity of presentation

the dependency on o will be dropped in the following. Let

x, z|u, v ∼ N (μ1,Λ
−1
1 ) (4.4)

z|w,Δx ∼ N (μ2, λ
−2
2 ) (4.5)

z|h,Δy ∼ N (μ3, λ
−2
3 ) (4.6)

Then, from Eq. 4.3 we have x, z|u, v, w, h,Δx,Δy ∼ N (m,S)
with

m = SΛ1μ1 + SΛ2

[
0
μ2

]
+ SΛ3

[
0
μ3

]
S = (Λ1 +Λ2 +Λ3)

−1 (4.7)
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where Λ1 has full rank and Λ2,Λ3 are singular matrices of the form

Λ2 =

[
0 0
0 λ2

]
Λ3 =

[
0 0
0 λ3

]
(4.8)

The individual feature cues are described in the following.

Ground Contact Point: Let x, z|u, v ∼ N (μ1,Λ
−1
1 ) and let us

assume a standard pinhole camera model which projects a 3D ground

plane point (x, 0, z)T to the point (u, v)T on the image plane. In

homogeneous coordinates, this projection can be written as

⎡
⎣uv
1

⎤
⎦ = P3×4

⎡
⎢⎢⎣
x
0
z
1

⎤
⎥⎥⎦ (4.9)

where P = KTR is the product of a calibration matrix K3×3, the

transformation from ground plane coordinates to camera coordinates

T3×4 (estimated a-priori) and an additional camera pitch error θ,

parameterized by the rotation matrix

R4×4(θ) =

⎡
⎢⎢⎣
0 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ (4.10)

Given (u, v)T we obtain μ1 = (x, z)T by solving the linear system

A

[
x
z

]
= b (4.11)
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with

A =

[
uP31 − P11 u(P33 cos θ − P32 sin θ)− (P13 cos θ − P12 sin θ)
vP31 − P21 v(P33 cos θ − p32 sin θ)− (P23 cos θ − P22 sin θ)

]

=

[
uP31 − P11 uP33 − P13

vP31 − P21 vP33 − P23

]

b =

[
P14 − uP34

P24 − vP34

]
(4.12)

where Pij denotes the ij’th element of P and we have made use

of E(θ) = 0 as R only models the error in pitch. Assuming the

covariance of (u, v)T to be known, the covariance of (x, z)T can

be approximated using error propagation. Since the transformation

implied by Eq. 4.11 is non-linear with respect to u, v and θ, we

linearize it by means of a first-order Taylor expansion. Given σu, σv
and σθ we have

Λ1 = Σ−1
1 Σ1 = J

⎡
⎣σ2

u 0 0
0 σ2

v 0
0 0 σ2

θ

⎤
⎦JT (4.13)

where the Jacobian J ∈ R
3×3 is given by

J =
(

∂
∂uA

−1b ∂
∂vA

−1b ∂
∂θA

−1b
)

(4.14)

with

∂(A−1b) = ∂A−1b+A−1∂b

= −A−1∂AA−1b+A−1∂b

= A−1
(
∂b− ∂AA−1b

)
(4.15)
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and

∂
∂uA =

[
P31 P33

0 0

]
∂
∂ub =

[
−P34

0

]
∂
∂vA =

[
0 0
P31 P33

]
∂
∂vb =

[
0

−P34

]
∂
∂θA =

[
0 P12 − uP32

0 P22 − vP32

]
∂
∂θb =

[
0
0

] (4.16)

Object Width: As state above, we assume z|w,Δx, o ∼ N (μ2, σ
2
2).

From the pinhole model we obtain the relationship

w =
fΔx

z
(4.17)

with f the focal length, or equivalently

μ2 = z =
fΔx

w
(4.18)

which is a non-linear function in w. Using the same reasoning as

above, we obtain the variance in z through error propagation as

λ2 = σ−2
2 σ2

2 = J

[
σ2
w 0
0 σ2

Δx

]
JT (4.19)

with Jacobian

J =
[
−fΔx

w2
f
w

]
(4.20)

In order to properly account for the viewing angle represented by a

set of discrete object orientation classes o, we learn a separate set of

parameters (μ2, σ
2
2) for each o as illustrated in Fig. 4.4 and 4.5.

Object Height: Similarly to the object width term, we assume a

Gaussian distribution z|h,Δy ∼ N (μ3, σ
2
3) for the object height
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term. We obtain

μ3 = z =
fΔy

h
(4.21)

with variance

λ3 = σ−2
3 σ2

3 = J

[
σ2
h 0
0 σ2

Δy

]
JT (4.22)

and Jacobian

J =
[
−fΔy

h2
f
h

]
(4.23)

Note that the height does not depend on the object heading o.

Learning the Parameters of the 3D Projection Model: The un-

known parameters of the proposed projection model σu, σv, σw, σh,

Δx, Δy, σΔx and σΔy are learned automatically from annotated

training data. For this purpose we have collected a dataset of 1020
images that capture 3634 vehicles with annotated 2D bounding boxes

and computed the corresponding disparity maps. The labels do not

only include the bounding box but also the heading of the vehicles,

quantized into 8 orientations o ∈ {1, . . . , 8}. This is important as the

object width depends on the orientation of the vehicle.

We first estimate the parameters related to detection accuracy σu,

σv, σw and σh by comparing the object detections with the manually

labeled 2D bounding boxes. Due to the characteristics of sliding-

window detectors, we expect the noise to be dependent on the object

scale. A good approximation to object scale is the bounding box

height h as in contrast to the bounding box width it is largely in-

variant with respect to the viewing angle. Furthermore, it is readily

given by the object detector. Figure 4.4 depicts σu, σv, σw and σh as

a function of h. As the noise σ depends approximately linearly on h
it can be well represented via the linear model

σx(h) = ax,o h+ bx,o (4.24)
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(a) Object Orientation o ∈ {1, 2}
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(b) Object Orientation o ∈ {3, 4}
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(c) Object Orientation o ∈ {5, . . . , 8}
Figure 4.4.: Bounding Box Uncertainty. This figure illustrates the linear

relationship between the error of the object detector and the object size

(height h) for the 3 object orientation classes.
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Figure 4.5.: Object Size Statistics. Cars in our dataset are ∼ 1.9m wide

and ∼ 4.4m long. Here, Δx and Δy are the width and height of the object

after parallel projection onto the z = 0 plane, with z the optical axis.

with x ∈ {u, v, w, h}. Here, a and b are obtained using least squares

estimation. The parameters describing the real-world dimensions of

the object’s parallel projection to the z = 0 plane are Δx, Δy, σΔx

and σΔy. They are obtained from the annotated data in conjunction

with the stereo information. Given a rectified stereo camera rig, the

following relations hold:

Δx =
zw

f
=

bw

d
Δy =

zh

f
=

bh

d
(4.25)

Here, z is the distance of the object to the camera, f denotes the

camera’s focal length, b is the camera baseline and d represents the

median disparity within the 2D bounding box. As noted above, spe-

cial care has to be taken for Δx as it depends on the orientation of

the object. We learn a separate Δx for each of three car orientation

classes illustrated in Fig. 4.4. The results are depicted in Fig. 4.5.

When viewed frontally or from behind a typical car is ∼ 1.9 meters

wide. It spans ∼ 4.4 meters when viewed from the side. The result-

ing posterior probabilities for 3 tracklet detections are illustrated in
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Figure 4.6.: Depth Posterior Distribution. This figure depicts

the marginal depth distributions for each feature cue individually

(red,green,blue) and the posterior distribution (black) when combining the

results using Eq. 4.3.

Fig. 4.6. The colored curves are the individual cues discussed in the

previous sections and the black curves depict the combined posterior

results.

4.1.4. Temporal Integration

As the raw 3D location estimates {(m,S)} are noisy due to the

low camera viewpoint, the uncertainties in the object detector and

the ground plane estimation process, we temporally integrate detec-

tions within a tracklet t using a Kalman smoother [105] assuming a
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4.2. Vanishing Points

(a) Frame 40 (b) Frame 80

Figure 4.7.: Filtered 3D Vehicle Tracklets. This figure shows two frames

of a crossing sequence. The top row depicts the input image with the de-

tected objects and the bottom row shows the 3D tracklets in bird’s eye per-

spective after smoothing. The covariance ellipsoids are shown for the cur-

rent frame. The gray trajectory is generated by the moving observer. The

top-right tracklet is caused by outlier detections from the tipper at the right

side of the image.

constant velocity model. This step finally yields the tracklet obser-

vations which are augmented by the frame number fd and the ob-

ject orientation distribution od to tracklets t = {d1, . . . ,dMd
} with

d = (fd,md,Sd,od) and serve as input to our probabilistic model

in Section 3.3.2. An illustration of the estimated 3D tracklets is pro-

vided in Fig. 4.7, where the covariance ellipses depict the uncertainty

in object location.

4.2. Vanishing Points

Vanishing points are good street orientation cues as image gradients

from road markings or buildings are often aligned with the dominant

streets. For example, in Fig. 1.2 the forward facing street is well

supported by the curbstones. In many cases, the crossing street is

supported by road markings, windows or building outlines as well.
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Figure 4.8.: Vanishing Points. For each scene, we detect up to two

dominant vanishing points, one corresponding to the forward-facing street

(shown in green with vanishing lines in red) and one corresponding to the

crossing street (vanishing lines in blue, the corresponding vanishing point

is located outside of the image).

We detect up to Nv = 2 vanishing points V = {v1, . . . , vNv},

where a vanishing point is defined by a rotation angle around the y-

axis in road coordinates, i.e. we assume that all vanishing lines are

collinear with the ground plane and vi represents their yaw angle.

All 3D lines that are collinear with a vanishing line intersect at the

same vanishing point. For typical scenarios, two vanishing points are

dominant: One which is collinear with the forward facing street and

one which is collinear with the crossing street. The vertical vanishing

points are not informative.

In order to detect vanishing points we first extract long line seg-

ments. Towards this goal we make use of the method described by

Kosecka et al. [114], which detects long lines in the image by Canny

edge detection [35] followed by labeling the connected orientation

components and fitting the line parameters using principal compo-

nent analysis. Given the line segments, we detect vanishing points

similarly to [114], but taking into account the (known) camera cali-

bration information and restricting the search space such that all van-

ishing lines are collinear with the ground plane. Additionally, we

relax the model to also allow for non-orthogonal vanishing points as

this is required by the intersection types in our dataset.

Unfortunately, traditional vanishing point detection methods [114,

66



4.2. Vanishing Points

15] require relatively clean scenarios and tend to fail in the presence

of clutter such as cast shadows on a sunny day, railway tracks or de-

fects in the road surface that easily mislead the vanishing point detec-

tion process. To tackle this problem, we learn a k-nearest-neighbor

classifier based on a held-out annotated set of 185 images, in which

all detected line segments have been manually labeled as either struc-
ture or clutter. Here, structure refers to the line segments of interest,

which are aligned with the major orientations of the streets or build-

ing facades. The classifier’s confidence on structure is used as a

weight in the vanishing point voting process.

The feature set for classification comprises multiple types of infor-

mation: As geometric information the position, length and orienta-

tion of the line are included. Further, we incorporate context knowl-

edge by counting the number of lines with similar and perpendicular

orientation in a local window around the target pixel. The local ap-

pearance is represented by the mean, standard deviation and entropy

of all pixels, computed over a small margin of 3 pixels at both sides

of the line. Finally, we add texton-like features from a Gabor filter

bank as well as the 3 principal components of the scene GIST [145].

The benefits of this additional learning step are highlighted in Fig.

4.9(a), which shows the ROC curve for classifying lines into struc-
ture and clutter. The curves have been obtained by adjusting k for

the k-nn classifier in the learning based method and by varying the

inlier threshold for [114]. Fig. 4.9(b) compares the classification re-

sults for a particular scene: While the cast shadows in the lower-left

part of the image causes wrong evidence for traditional vanishing

point detectors [114] (top), the proposed classification step is able to

reject most of those line segments (bottom).

Applying the restricted version of [114] to all structured line seg-

ments and thresholding yields up to Nv = 2 vanishing points V =
{v1, . . . , vNv} which serve as input to the vanishing point likelihood

in Section 3.3.3.
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(a) ROC curve for classifying line segments

into structure and clutter.

(b) Kosecka et al. (top) vs. proposed approach

(bottom). Red corresponds to structure.

Figure 4.9.: Structured Line Segments. As cast shadows and road de-

fects generate a lot of structured line segments which can easily confuse

the vanishing point estimation process, we classify each detected line into

structural information versus clutter.

4.3. Semantic Scene Labels

The appearance of objects and what is often referred to as ’stuff’ in

the computer vision literature (i.e., objects without extend such as

sky road or vegetation) provides additional cues about the layout of

the scene. For example, the texture statistics of road area usually

differs from the statistics of building or sky. Furthermore, geomet-

ric priors can be taken into account, e.g. buildings are located above

the road and below the sky. We can make use of this information by

comparing a semantic segmentation of the scene to a projection of

our model into the image. See Fig. 3.4 and Fig. 4.10 for an illustra-

tion.

For extracting semantic information in the form of scene labels we

use the joint boosting framework proposed in [180] to learn a strong

classifier. Following Wojek et al. [191], we divide the last image of

each sequence into patches of size ns × ns pixels and classify them

into the categories road, background and sky. In order to avoid hard

decisions and to interpret the boosting confidences as probabilities
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Figure 4.10.: Semantic Image Segmentation. We learn a classifier to com-

pute per-pixel likelihoods for the classes sky, background and foreground.

we apply the softmax transformation [119] to the resulting scores.

The semantic label of a single patch is defined as s ∈ Δ2, where Δ2

is the unit 2-simplex as described in Section 3.2. We make use of the

following features for classification:

• Generic texture cues are computed from the first 16 coeffi-

cients of the Walsh-Hadamard transform [2], which is a dis-

crete approximation to the cosine transformation and has been

shown to perform well in practice [191] on sequences similar

to the ones used in this work.

• As urban scenes contain many man-made structures we in-

clude the feature set for man-made structure detection de-

scribed by Kumar et al. [118, 117] on patches of size 16×16,

32×32 and 64×64 pixels.

• Finally, the image location is incorporated by concatenating

the pixel coordinates to the feature vector. This enables to
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Figure 4.11.: Scene Flow. By matching features between the left and right

images of a stereo pair and over time, we obtain 3D flow vectors (left).

Color codes disparity from large (red) to small (green) values. When com-

pensating the egomotion the dynamic parts of the scene can be extracted

and accumulated in a common coordinate system (right, bird’s eye view).

encode knowledge such as the sky being located on top and

the road at the bottom of the image.

For training, we use a hold out dataset of 200 hand-labeled images.

Fig. 4.10 illustrates the results of the proposed semantic image fea-

ture cue on one of the test images from our database. After softmax

normalization we obtain a (discrete) scene label distribution s for

each image patch s ∈ S , which is used in our semantic scene label

likelihood described in Section 3.3.4.

4.4. Scene Flow

Due to the low viewpoint of the car-mounted camera depth infor-

mation is very noisy when only relying on monocular feature cues.

Thus, we also investigate the use of stereo features, which are de-

scribed in this and the following section. Note that even for stereo

features the depth error increases quadratically with the distance.

However, due to the different noise properties a gain in performance

can be expected when properly combining stereo and monocular

cues, which we verify in the experimental section of this thesis.
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The first feature cue we pursue here is the 3D scene flow caused

by moving traffic participants. The observation is that most of the

non-background motion in the scene is caused by vehicles following

a street or crossing the intersection. Assuming right-handed traffic

and that the majority of traffic participants keep up with the traffic

rules, these flow vectors should be explained by the underlying scene

model, i.e. all vehicles are driving on the correct lanes into the right

direction.

Towards extracting 3D scene flow vectors f , we first extract feature

matches from the image sequence. In order to find stable feature

locations, we filter the input images with 5×5 blob and corner masks

as illustrated in Fig. 4.12(a). Next, we employ non-maximum- and

non-minimum-suppression [143] on the filtered images, resulting in

feature candidates which belong to one of four classes (i.e., blob

max, blob min, corner max, corner min). To reduce computational

efforts, only features within those classes are matched.

In contrast to methods concerned with reconstructions from un-

ordered image collections, here we assume a smooth camera trajec-

tory, superseding computationally intense rotation and scale invari-

ant feature descriptors like SURF [18, 17], SIFT [134, 135] or others

[34, 33, 158, 132]. We compute a compact 32 byte feature descriptor

from the 8 bit quantized horizontal and vertical Sobel responses at

the 16 locations shown in Fig. 4.12(b). Since the sum-of-absolute-

differences of 16 bytes can be computed very efficiently using a sin-

gle SSE instruction we only need two calls in order to evaluate this

error metric.

We match features between the left and right images and between

two consecutive frames. This is achieved by matching features in a

’circle’: Starting from all feature candidates in the current left image,

we find the best match in the previous left image within a M × M
search window, next in the previous right image, the current right
image and last in the current left image again. A ’circle match’ gets

accepted, if the last feature index coincides with the first feature in-

dex. When matching between the left and right images, we addition-
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(a) Blob and Corner detector (b) Feature Descriptor (c) Motion Estimation

 





(d) Feature Matching

Stage Time
Filter 6.0 ms

NMS 12 ms

Matching 1 2.8 ms

Matching 2 10.7 ms

Refinement 5.1 ms

Total time 36.6 ms

(e) Running Time

Figure 4.12.: Feature Matching and Egomotion Estimation. Blob and

corner features are detected with filters (a), described using Sobel filter

responses arranged in a star-like shape (b) and matched in two consecutive

stereo pairs (d). Egomotion is obtained using the 3-point algorithm (c).

Running times are given in (e).

ally make use of the epipolar constraint using an error tolerance of 1

pixel. For further details3, the reader is referred to [75].

Given all ’circular’ feature matches from the previous section, we

compute the camera motion by minimizing the sum of re-projection

errors using the 3-point algorithm [144, 47, 85]. First, bucketing

[110] is applied to reduce the number of features (in practice we re-

tain between 200 and 500 features) and spread them uniformly over

the image domain. Next, we project the feature points from the previ-

ous frame into 3D via triangulation using the calibration parameters

3Source code available at: http://www.mrt.kit.edu/software/
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of the stereo camera rig. Assuming squared pixels and zero skew, the

reprojection into the current image is given by

⎛
⎝u
v
1

⎞
⎠ =

⎛
⎝f 0 cu
0 f cv
0 0 1

⎞
⎠
⎡
⎢⎢⎣[R(r), t]

⎛
⎜⎜⎝
x
y
z
1

⎞
⎟⎟⎠−

⎛
⎝s
0
0

⎞
⎠
⎤
⎥⎥⎦ (4.26)

with

• homogeneous image coordinates (u v 1)T

• focal length f

• principal point (cu, cv)

• rotation matrix R(r) = Rx(rx)Ry(ry)Rz(rz)

• rotation vector t = (rx ry rz)T

• translation vector t = (tx ty tz)T

• 3D coordinates x = (x y z)T

• and shift s = 0 (left image) or s = baseline (right image)

Let now πl(x; r, t) : R
3 → R

2 denote the projection implied by Eq.

4.26, which takes a 3D point x and maps it onto the left image plane.

Similarly, let πr(x; r, t) be the projection onto the right image plane.

Using Gauss-Newton optimization, we iteratively minimize

r̂, t̂ = argmin
r,t

N∑
i=1

∥∥∥y(l)
i − πl(xi; r, t)

∥∥∥2 + ∥∥∥y(r)
i − πr(xi; r, t)

∥∥∥2
(4.27)

for the rigid motion parameters r and t. Here, y
(l)
i and y

(r)
i denote

the feature locations in the current left and right images and xi are

the triangulated 3D points from the previous frame. The required Ja-

cobians are readily derived from Eq. 4.26. In practice, even a simple
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initialization (r0 = t0 = 0) proved sufficient to converge in only

a couple of iterations (4-8). For robustness with respect to outliers,

we wrap the estimation approach into a RANSAC scheme [62]: We

first estimate (r̂, t̂) nf times independently using 3 randomly drawn

correspondences. Afterwards, all inliers of the winning iteration are

used for refining the parameters, yielding the final transformation

parameters (r̂, t̂). While more sophisticated methods for structure

and motion estimation could be employed [121, 122], we found the

aforementioned procedure to be simple and accurate enough for our

purpose.

The final step is to compensate the 3D scene flow vectors using

the egomotion given by the transformation parameters {(r̂, t̂)} over

time. Towards this goal, we accumulate all vectors in the coordinate

system of the last frame of the sequence and threshold them by their

length, i.e., we remove short vectors that are likely to belong to the

static environment. As the 3D scene flow likelihood doesn’t account

for object velocities, we normalize all flow vectors to unit length and

project them onto the estimated road plane as illustrated in Fig. 4.11

(right), yielding the scene flow features F = {f1, . . . , fNf
} which

are modeled by the scene flow likelihood in Section 3.3.5.

4.5. Occupancy Grid

Buildings represent obstacles in the scene and thus should never co-

incide with drivable regions (road). This assumption is incorporated

into the occupancy grid feature. We construct a 2D voxel grid in road

plane coordinates from disparity measurements. The grid classifies

the area in front of the vehicle into the categories obstacle, free space
and unobserved segments as illustrated in Fig. 4.13.

For stereo matching we propose the efficient large-scale stereo

matcher ELAS4 [73], that is capable of computing disparity maps

at large image resolutions in real-time on the CPU. The method is

4Source code available at: http://www.mrt.kit.edu/software/
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Figure 4.13.: Occupancy Grid. From the input disparity maps of a T-

intersection (left), we compute evidence for static obstacles and free space
in bird’s eye view, and accumulate it over time in a common coordinate

system (right, top view). Here, white denotes obstacle, black is free space
and gray represents unobserved areas.

inspired from the observation that despite the fact that many stereo

correspondences are highly ambiguous, some of them can be ro-

bustly matched. Assuming piecewise smooth disparities, such re-

liable ’support points’ carry valuable prior information for the esti-

mation of the remaining, ambiguous disparities in between. First,

the disparities of a sparse set of support points are computed us-

ing the full disparity range. The image coordinates of the support

points are then used to create a 2D mesh via Delaunay triangulation.

From the mesh, a piecewise linear prior is computed to disambiguate

the matching problem and increasing the efficiency by restricting the

search to a plausible subspace. The algorithm automatically deter-

mines the disparity range, can be easily parallelized and has shown

impressive performance on the realistic KITTI dataset [71] and on

the large-scale Middlebury benchmark [165] while at the same time

achieving significant speedups with respect to competing methods.

Two matching results are illustrated in Fig. 4.13 (left). For a more

in-depth discussion on the algorithm, the reader is referred to [73].

Given the disparity maps for all frames of the sequence, we com-

pute a 2D occupancy grid [178] of the environment, representing

obstacles and drivable (road) areas. Using the visual odometry ap-

75



4. Image Evidence

proach described in Section 4.4, we represent all dynamic and static

features in the bird’s eye perspective of the last frame’s camera coor-

dinate system.

More formally, let O = {ρ1, . . . , ρNo} be the occupancy grid

map with ρi denoting if the i’th cell is free (ρi = −1) or occupied

(ρi = +1). Let the probability of an occupied grid cell be denoted

by p(ρi) ≡ p(ρi = +1). Further, let D = {D1, . . . ,DT } denote the

set of all disparity maps, with Di the disparity map of the i’th frame.

Assuming the odometry estimates to be known, we are interested in

computing the posterior p(O|D). To make computations tractable

the individual cells are assumed to be independent conditioned on

the measurements D, yielding

p(O|D) =

No∏
i=1

p(ρi|D) (4.28)

As this is a binary static state estimation problem, the discrete Bayes

filter can be applied to p(ρi|D). For ease of computation and numer-

ical stability, we follow [178] and make use of the log-odds repre-

sentation

l(ρ|D) = log
p(ρ|D)

p(¬ρ|D)
= log

p(ρ|D)

1− p(ρ|D)
(4.29)

p(ρ|D) =
exp l(ρ|D)

1 + exp l(ρ|D)
(4.30)

where we have dropped the grid cell index i for clarity. Let Dt =
{D1, . . . ,Dt} denote the set of disparity observations till time t. The

recursive filter update gives rise to

p(ρ|Dt)

p(¬ρ|Dt)
=

p(Dt|ρ,Dt−1)p(ρ|Dt−1)

p(Dt|¬ρ,Dt−1)p(¬ρ|Dt−1)

=
p(Dt|ρ)
p(Dt|¬ρ)

× p(ρ|Dt−1)

p(¬ρ|Dt−1)
(4.31)
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4.5. Occupancy Grid

or – equivalently – in log-odds representation

l(ρ|Dt) = l(Dt|ρ) + l(ρ|Dt−1) (4.32)

Here, l(Dt|ρ) takes the form

l(Dt|ρ) =

⎧⎨
⎩

+1 if cell ρ is not occluded

−1 if cell ρ is occluded for < 5m

0 otherwise (> 5m)

(4.33)

where the occlusion state of a cell ρ at time t is computed by tracing

rays from the camera into the direction of ρ. If an obstacle higher

than 2 meters from the ground plane is hit before the cell is reached,

the cell is called occluded. Note that we only assign negative log-

odds to cells within a 5 meter margin as no information about the

region behind an obstacle is available (gray areas in Fig. 4.13, right).

The minimum height requirement alleviates the problem of clutter

produced by other traffic participants which are (typically) of lim-

ited height. Ray tracing on the occupancy grid can be performed

efficiently using the Bresenham algorithm [26]. The last step rounds

all occupancy grid cells to ρ ∈ {−1, 0,+1}, yielding the final occu-

pancy grid O = {ρ1, . . . , ρNo} which is modeled with the occupancy

grid likelihood from Section 3.3.6.
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The dataset used in the experimental section of this thesis is part

of an early version of the KITTI vision dataset [71, 70], which has

been recorded from a VW Passat station wagon [68, 106] (estab-

lished in the context of the SFB/Transregio 28 special research field

and illustrated in Fig. 5.1) while driving around Karlsruhe, Germany.

Our setup includes camera images, laser scans, high-precision GPS

measurements and IMU accelerations/angular velocities from a com-

bined GPS/IMU system. The main purpose of this dataset is to

push forward the development of computer vision and robotic al-

gorithms targeted to dynamic inner-city and freeway scenes. From

the recorded data1 we have extracted benchmarks for different tasks

such as stereo, optical flow, visual odometry, SLAM, 3D object de-

tection and 3D tracking [71]. For a review on related datasets and

evaluation efforts, the reader is referred to [71].

5.1. System Setup

Our sensor setup, illustrated in Fig. 5.1, is as follows:

• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4

Megapixels, 1/2" Sony ICX267 CCD, global shutter

• 2 × PointGray Flea2 color cameras (FL2-14S3C-C),

1.4 Megapixels, 1/2" Sony ICX267 CCD, global shutter

• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦, verti-

cal opening angle of region of interest (ROI) ∼ 35◦

1The dataset available from: http://www.mrt.kit.edu/software/datasets.html
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(a) Karlsruhe, Germany
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(c) Sensor Setup (Top View)

Figure 5.1.: Recording Platform. A VW Passat station wagon has been

equipped with four video cameras (two color and two gray scale cameras).

A rotating 3D laser scanner and a GPS/IMU inertial navigation system unit

have been installed for obtaining ground truth annotations.

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64

beams, 0.09 degree angular resolution, 2 cm distance accuracy,

collecting ∼ 1.3 million points/second, field of view: 360◦

horizontal, 26.8◦ vertical, range: 120 m

• 1× OXTS RT3003 inertial and GPS navigation system, 6 axis,

100 Hz, L1/L2 RTK, resolution: 0.02m / 0.1◦
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5.2. Sensor Calibration

As color cameras are less sensitive to light we use two stereo

camera rigs, one for grayscale and one for color. The baseline of

both stereo camera rigs is approximately 54 cm and the calibration

between all sensors is known. In the early setup used for the in-

tersection subset of KITTI, we only had access to a monochrome

video camera stereo rig and an GPS/IMU system for localization.

The trunk of our vehicle houses a PC with two six-core Intel XEON

X5650 processors and a shock-absorbed RAID 5 hard disk system,

storing up to 4 terabytes. Our computer runs Ubuntu Linux (64 bit)

and a database for cognitive automobiles [80] to store the incoming

data streams in real-time.

5.2. Sensor Calibration

We took care that all sensors are carefully synchronized and cali-

brated [72, 150]. To avoid drift over time, we calibrated the sensors

at each day of our recordings. The coordinate systems are defined as

illustrated in Fig. 5.1, i.e.:

• Camera: x = right, y = down, z = forward

• Velodyne: x = forward, y = left, z = up

• GPS/IMU: x = forward, y = left, z = up

5.2.1. Synchronization

In order to synchronize the sensors, we use the timestamps of the

Velodyne 3D laser scanner as a reference and consider each spin as

a single frame. We mounted a reed contact at the bottom of the con-

tinuously rotating scanner, triggering the cameras when it is facing

forward. This minimizes the differences in range and image obser-

vations caused by dynamic objects. Unfortunately, the GPS/IMU

system cannot be synchronized that way. However as it provides

updates at 100 Hz, we collect the data with the closest time stamp
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5. Experimental Evaluation

to the laser scanner time stamp for a particular frame. The remain-

ing worst-case time difference of 5 ms can be taken into account

by comparing the corresponding timestamps which are provided for

each sensor modality.

5.2.2. Camera Calibration

For calibrating the cameras intrinsically and extrinsically, we use the

approach proposed in [72], which delivers all calibration and rectifi-

cation parameters fully automatically after only a couple of minutes

processing. While our cameras are fixed with respect to the vehicle

body, flexible arrangements could be dealt with using self-calibration

methods [46]. Note that the focal points of all cameras are aligned

on the same x/y−plane. This is important as it allows us to rectify

all cameras jointly. The calibration parameters are:

• s(i) ∈ N
2 . . . . . . . . . . . . . . . . Original image size (1392× 512)

• K(i) ∈ R
3×3 . . . . . . . . . . . . . Calibration matrices (unrectified)

• d(i) ∈ R
5 . . . . . . . . . . . . . . Distortion coefficients (unrectified)

• R(i) ∈ R
3×3 . . . . . . . . . . . Rotation from camera 0 to camera i

• t(i) ∈ R
1×3 . . . . . . . . . .Translation from camera 0 to camera i

• s
(i)
rect ∈ N

2 . . . . . . . . . . . . . . . . . . . . Image size after rectification

• R
(i)
rect ∈ R

3×3 . . . . . . . . . . . . . . . . . . . Rectifying rotation matrix

• P
(i)
rect ∈ R

3×4 . . . . . . . . . . . Projection matrix after rectification

Here, i ∈ {0, 1, 2, 3} is the camera index, where 0 is the left gray

scale, 1 the right gray scale, 2 the left color and 3 the right color cam-

era. The variable definitions are compliant with the OpenCV library

[23], which has been used for warping the images. After rectifica-

tion, only the variables with rect-subscripts are relevant. Note that
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5.2. Sensor Calibration

due to the pincushion distortion effect the images have been cropped

such that the size of the rectified images is slightly smaller than the

original size of 1392× 512 Pixels.

The projection of a 3D point in rectified camera coordinates x =
(x, y, z, 1)T to a point y = (u, v, 1)T in the i’th image is given as

y = P
(i)
rect x (5.1)

with

P
(i)
rect =

⎛
⎜⎝f

(i)
u 0 c

(i)
u −f

(i)
u b

(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0

⎞
⎟⎠ (5.2)

the i’th projection matrix. Here, b
(i)
x denotes the baseline (in meters)

with respect to reference camera 0. In order to project a 3D point x
in reference camera coordinates to a point y on the i’th image plane,

the rectifying rotation matrix Rrect
cam must be considered as well:

y = P
(i)
rect R

rect
cam x (5.3)

with Rrect
cam = R

(0)
rect as camera 0 serves as reference. Here, Rrect

cam

has been expanded to a 4× 4 matrix by appending a fourth zero-row

and column and setting Rrect
cam(4, 4) = 1.

5.2.3. Velodyne and IMU Calibration

The Velodyne laser scanner has been registered with respect to the

reference camera coordinate system by initializing the rigid body

transformation using the method proposed in [72]. Additionally, we

have optimized an error criterion based on the Euclidean distance

of 50 manually selected correspondences and a robust measure on

the disparity error with respect to the 3 top performing stereo meth-

ods in the KITTI stereo benchmark [71]. The optimization has been

carried out using Metropolis-Hastings sampling, yielding the rigid
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5. Experimental Evaluation

Figure 5.2.: Illustration of the Dataset. This figure depicts 18 out of the

113 sequences used for evaluation of the presented method. Note the com-

plexity and diversity in scene layout and appearance.
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5.3. Data Collection and Annotation

body transformation Tcam
velo . A 3D point x in Velodyne coordinates

gets then projected to a point y in the i’th camera image via

y = P
(i)
rect R

rect
cam Tcam

velo x (5.4)

where Tcam
velo denotes the rigid transformation between the laser scan-

ner and the reference camera coordinate system.

For registering the IMU/GPS with respect to the Velodyne laser

scanner, we drove an ’∞’-loop and registered the point clouds us-

ing the Point-to-Plane ICP algorithm. Given two trajectories this

problem corresponds to the well-known hand-eye-calibration prob-

lem which can be solved using standard tools [99], yielding the rigid

body transformation Tvelo
imu. A 3D point x in IMU/GPS coordinates

can then be projected to y in the i’th image using

y = P
(i)
rect R

rect
cam Tcam

velo Tvelo
imu x (5.5)

Note that the Velodyne sensor only serves as a reference and is not

used in our experiments in Chapter 5. However, we have included it

here for completeness.

5.3. Data Collection and Annotation

For the experiments conducted in this thesis 113 realistic video se-

quences have been recorded with a duration of 5 to 30 seconds

each, featuring straights, 3-armed and 4-armed intersection scenar-

ios. Each sequence captures the moment of approaching an inter-

section or waiting in front of a red traffic light. All sequences are

manually clipped at the moment the intersection is entered as this

is the time when an autonomous system would need to take a deci-

sion. Note that this would also be possible in an automatic manner

using approximate maps and state-of-the-art localization techniques

[29]. Fig. 5.2 depicts a couple of sequences from our dataset. Note
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5. Experimental Evaluation

Figure 5.3.: Intersection Annotation Utility. The annotation of the 113
sequences with ground truth information has been carried out with an

OpenGL tool, that displays image sequences, trajectories, GoogleMaps im-

ages and labeled intersections in bird’s eye perspective.

the large variability in terms of scene layout and dynamic objects

present in the scene.

Annotation of the data has been carried out via GoogleMaps aerial

images. For each intersection in the database we labeled the center

of the intersection as well as the number, orientation and width of

the intersecting streets in bird’s eye perspective. A screen shot of

our OpenGL annotation tool is shown in Fig. 5.3. Afterwards, the

annotated geometry is mapped into the road coordinate system using

the GPS coordinates of the vehicle, the road plane estimate and the
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calibration parameters described in the previous section. Fig. 5.6

shows the variability in terms of road layouts (red) in our dataset.

Additionally, we annotated all vehicle tracklets that have been de-

tected by the approach described in Section 4.1 with the index (l) of

the corresponding lane or parking area. For vehicles that have been

associated to a lane, the tangent at the closest foot point of lane l is

used as object orientation ground truth. Furthermore, we manually

annotate all lanes in each scenario with a binary label indicating if

the lane is ’active’ or not, i.e., if moving vehicles on that lane can be

observed or not.

5.4. Experimental Results

Our experiments target at evaluating the overall performance as well

as the importance of each individual feature cue for the different

tasks, which are detailed in the following sections. Let us define the

following feature abbreviations

P = Prior (see Section 3.3.1)

T = Tracklets (see Section 3.3.2)

V = Vanishing Lines (see Section 3.3.3)

S = Semantic labels (see Section 3.3.4)

F = Scene Flow (see Section 3.3.5)

O = Occupancy Grid (see Section 3.3.6)

which allow for easy indexing of the prior and the feature cues. To

gain insights into the strengths and weaknesses of each term in the

proposed model, we conduct experiments using the following fea-

ture combinations

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prior only

PT, PV, PS, PF, PO . . . . . . . . . . . . . . . . . . . . . . . Single term

PVSFO, PTSFO, PTVFO, PTVSO, PTVSF . All terms but one

PTVSFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full model
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5. Experimental Evaluation

i.e., we evaluate the prior without any image cues, the prior in com-

bination with a single feature term, all feature terms but one and the

full model including all terms from Section 3.5.2. For each of these

settings a separate set of parameters Θ maximizing the respective

probability distribution is learned.

5.4.1. Learning the Model Parameters

Due to the relatively small number of sequences in the dataset, we

leverage 10-fold cross-validation to evaluate the proposed method:

We hold out every 10’th data point (i.e., sequence) for evaluation

when training the model parameters Θ using the approach described

in Section 3.5.2. Fig. 5.4 and Fig. 5.5 depict the learning curves of

the first fold for each feature term combination. For fitting all curves

into a single plot, all values have been normalized to the interval

[0, 1]. In contrast to classical gradient ascent methods, our gradients

are noisy due to the non-deterministic nature of the Markov chains

that run within the learning procedure. Nevertheless, convergence

typically occured after 150-250 gradient ascent steps. During the

final iterations of the learning procedure we reduce the learning rate

η step-by-step to force all parameters to settle at their final values.

Note that for the prior parameters we slightly deviate from the

derivations in Section 3.5.2 and only optimize a scalar precision pa-

rameter that we multiply with the maximum-likelihood estimate of

the precision matrix. Empirically we found this to perform equally

well compared to the full optimization while at the same time being

significantly faster and more stable to optimize. Similarly, the mean

vector is obtained using maximum-likelihood and kept constant dur-

ing optimization. Furthermore, we exclude ζt, ζv and ζf from the

optimization as these parameters are difficult to optimize and can be

easily chosen based on empiric reasoning. All parameters which are

not part of Θ and thus not optimized for are summarized in Table 5.1

for reproducibility of the results.
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Figure 5.4.: Learning the Model Parameters. This figure depicts the evo-

lution of the parameters Θ over the number of gradient ascent steps for each

of the settings from Section 5.4.
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Figure 5.5.: Learning the Model Parameters. This figure depicts the evo-

lution of the parameters Θ over the number of gradient ascent steps for each

of the settings from Section 5.4.
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Prior: (Section 3.3.1)

σα = 0.1 rad KDE kernel bandwidth

Vehicle Tracklets: (Section 3.3.2 and Section 4.1)

τd = 0.2 NMS overlap threshold (object detection)

τt1 = 0.5 Gating threshold (tracking stage 1)

τt2 = 0.3 Gating threshold (tracking stage 2)

ζt = 10−20 Outlier threshold

σout = 70 m Std. deviation of outlier distribution

Vanishing Points: (Section 3.3.3)

ζv = 10−10 Outlier threshold

Semantic Scene Labels: (Section 3.3.4 and Section 4.3)

ns = 4 Px Image patch (superpixel) size

ws = (1, 1, 4) Scene label weights

Scene Flow: (Section 3.3.5 and Section 4.4)

nf = 50 Number of RANSAC samples

ζf = 10−15 Outlier threshold

σout = 70 m Std. deviation of outlier distribution

Occupancy Grid: (Section 3.3.6 and Section 4.5)

no = 1 m Occupancy grid cell size

wo = (−1, 4, 1) Weights of geometric prior

Δo = (2, 20) m Margins of geometric prior

Inference and Learning: (Section 3.4 and Section 3.5)

ninfer = 10, 000 Number of samples drawn at inference

nlearn = 10 Number of samples per learning iteration

niter = 500 Number of learning iterations

Sampling: (Table 3.1)

σc ∈ {0.5, 5.0} m Proposal std. deviation (center)

σw ∈ {0.5, 5.0} m Proposal std. deviation (street width)

σα ∈ {0.02, 0.2} rad Proposal std. deviation (crossing angle)

σr ∈ {0.01, 0.1} rad Proposal std. deviation (rotation)

Table 5.1.: Constants. This table shows the setting of all constants in our

model. All values have been kept fix throughout all experiments reported

in this thesis.
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5.4.2. Expressive Power and Generality

To accommodate for the noise in the features and the difficult nature

of the estimation problem in general, the proposed geometric model

from Section 3.1 is simplified in a sense that it forces opposing streets

to be collinear and all streets to share the same width. To justify this

approximation and demonstrate the applicability of the proposed in-

tersection model to real-world scenes, we fit the model parameters

R = {κ, c, w, r, α} to the true intersection layouts that have been an-

notated using GoogleMaps images and compare the road area over-

lap. This leads to an ’oracle’ measure of the maximum performance

that can be achieved with our model when assuming complete and

perfect observations. For each scene, we maximize the overlapping

road area using iterative non-linear optimization on the intersection-

over-union criterion

R̂ = argmax
R

road(R, w̄) ∩ road(G, w̄)
road(R, w̄) ∪ road(G, w̄)︸ ︷︷ ︸

overlapping road area

(5.6)

where road(·, d) is a function that returns the road region clipped

at distance d from the intersection center c, w̄ is the average street

width, R is the simplified model and G denotes the ground truth

layout.

Fig. 5.6 shows the results of this optimization, ordered by decreas-

ing overlap. The ground truth and the simplified intersection layout

are shown in red and blue, respectively. The average overlap on all

113 sequences is 86.9%. Given the fact that preliminary experiments

[69, 74] indicate an expected performance between 45% and 60%,

and that the street width is often hard to observe or not observable at

all (e.g., due to the low camera viewpoint and clutter), the geometric

approximations seem justified. For the vast majority of intersection

geometries in Fig. 5.6 the simplified model in blue is a good approx-

imation to the full model, illustrated in red, yet it can be described

with a significantly smaller amount of parameters. Note that the 113
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Figure 5.6.: Expressive Power of the Geometric Model. This figure illus-

trates the generality of the restricted geometric model presented in Section

3.1 (blue) with respect to the ground truth road layout (red). All 113 in-

tersections from our dataset are shown, sorted by decreasing overlap. As

expected, straight roads can be approximated best, while X-crossings some-

times appear in more esoteric shapes. Overall, the simplified model pro-

vides a good approximation to the true intersection layout.
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scenarios under consideration are chosen at random from real-world

test runs and are representative for the distribution of intersection

layouts in Karlsruhe.

5.4.3. Sampling from the Road Layout Prior

To confirm the quality of the learned road layout prior p(R; Θ) we

draw 120 random samples from it using the parameter set Θ from

training fold one. The resulting samples are depicted in Fig. 5.7 us-

ing the same axis limits for each subplot. As evidenced by this exper-

iment, the synthesized intersections exhibit different topologies, lo-

cations, scales and street orientations. Qualitatively, the samples re-

semble natural intersections well. The impact of including this prior

knowledge into the inference process is evaluated quantitatively in

Section 5.4.4. Note that simple left or right turns (κ ∈ {2, 3}) have

not been observed in our dataset which is also reflected by the sam-

ples from the prior.

5.4.4. Topology and Geometry

To judge the performance of the proposed model, we evaluate the

estimation results of each setting against several metrics. First, we

measure the accuracy in topology estimation, which is the percentage

of all 113 cases in which the correct topology κ has been recovered.

Furthermore, we propose three geometric metrics: We compute the

average Euclidean error in estimating the center of the intersection,

the average street orientation error and the road area overlap.

Regarding the street orientation, we assign each street to its (rota-

tionally) closest counterpart in the ground truth layout in order to de-

couple the orientation measure from the estimated topology κ. More

precisely, we take the layout with the smaller number of streets and

assign all streets to their closest counterparts in the layout with the

larger number of streets. Consider for example a three-way intersec-

tion that has been recovered as a four-way intersection or vice versa.

If all street orientations have been estimated correctly except for the
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Figure 5.7.: Samples from the Prior. This figure shows 120 random sam-

ples from the learned prior p(R) in road coordinates (y = 0), using the

same axis limits in each plot: x ∈ [−75, 75] and z ∈ [−50, 100]. For

clarity, only the left and right road boundaries are shown here.
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one that does not exist in the other layout the orientation error is not

affected as desired. On contrary, a street that is part of the correct

layout but is estimated badly in terms of orientation increases the

error.

Finally, the road area overlap measures how much the estimated

road layout overlaps with the ground truth layout by computing the

intersection-over-union of both road areas. For this evaluation we

make use of the measure introduced in Eq. 5.6 in Section 5.4.2. Note

that the accuracy is upper bounded by the oracle results depicted in

Fig. 5.6 due to the simplified geometric model.

All metrics have been evaluated for each setting and the results

are depicted in Table 5.2 (row 1 to 4). The corresponding topol-

ogy confusion matrices are shown in Fig. 5.8. As evidenced by the

experiments, each feature is able to improve the results compared

to using prior information alone (column 1-6). The strongest cues

in our framework are vehicle tracklets, 3D scene flow and the occu-

pancy grid features. This indicates that despite its noisy nature, depth

information is important for solving the problem. The smallest gain

in performance is observed for the vanishing point feature. This is

because this feature cue only works in combination with other cues

as it only allows for ’fine tuning’ the street orientations but does not

directly influence the existence of a street.

Additional performance gains can be achieved when combining

the feature cues. In terms of topology estimation, the best results

have been obtained by making us of all information. Without the se-

mantic scene label cue, the geometric error measures can be slightly

improved. While these differences are only marginal, our experi-

ments suggest that the semantic scene label cue is the weakest when

considered in combination with all the other cues. In contrast, im-

portant information is coming from the occupancy grid. Removing

this cue significantly impacts the performance, especially in terms

of topology and road area estimation, but also regarding the inter-

section location and street orientation errors. We believe that this is

because occupancy information is most complementary to the other
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cues, while 3D scene flow and vehicle tracklets can partly replace

each other.

Note that our learning procedure described in Section 3.5.1 has no

access to the metrics we employ here. Instead, it directly maximizes

the likelihood of the data with respect to the proposed model. Thus,

errors and uncertainties in the ground truth labeling impact perfor-

mance and explain the differences between the models.

5.4.5. Tracklet Associations and Semantic Activities

Besides the geometric reasoning discussed so far, an important as-

pect in real-world applications is to understand the scene at a higher

level. This includes the association of vehicle tracklets to lanes

(’Tracklet Accuracy’ in Table 5.2) as well as the detection of ac-

tive lanes (’Lane Accuracy’ in Table 5.2). With active we refer to

lanes that have the right of way, i.e., where the green light is turned

on in the case of signalized intersections. Note that we are able to in-

fer such information merely by looking at the dynamic objects in the

scene. No detection and recognition of traffic lights is required and

the state of traffic lights facing towards the other streets are recovered

as well.

For evaluating the above mentioned metrics we extract all unique
tracklets. We define a tracklet as unique if it has a minimum track-

let length of 10 meters and if it has been uniquely assigned to one

of the lanes, where uniqueness is measured by the distance of the

most likely lane to the second likely in terms of their log-likelihood

log p(t|l,R) as defined in Eq. 3.12. For all unique tracklets, we

evaluate the accuracy in tracklet-to-lane association as well as the

accuracy in detecting active lanes. We define a lane as active if at

least one tracklet has been uniquely assigned to it. Note that we

assign the tracklets to the closest lanes in the ground truth layout

to account for the fact that the model topology κ might have been

wrongly estimated. This is similar to the street orientation evalu-
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Figure 5.8.: Topology Confusion Matrices. This figure depicts the confu-

sion matrices for each setting, with estimated topologies and true topologies

at the x- and y-axis, respectively.
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ation in the previous section and decouples the error metrics from

other parameters.

The tracklet and lane accuracies for all settings are depicted in Ta-

ble 5.2 (rows 5 and 6). As expected, the best results are obtained

in all cases where either the 3D scene flow or the vehicle tracklet

features are included in the model, with 80% accuracy in tracklet as-

sociations and 90% accuracy in the active lane detection experiment.

While the boost in tracklet accuracy performance is dramatic com-

pared to using prior knowledge alone (28% accuracy), lane accuracy

increases from 77% to 90%. The reason is that most of the lanes

are inactive, hence strongly biasing the dataset. However, note that

the improvements by our model still correspond to a relative error

reduction of over 50%.

5.4.6. Object Orientation Estimation

The estimated object orientations that serve as input to our tracklet

model in Section 3.3.2 are noisy as evidenced by the confusion ma-

trix in Fig. 4.2. In fact, the average orientation error made by the

object detector described in the previous section is 32.6 degrees.

Using our extracted scene topology, geometry and lane association

knowledge, however, we are able to re-estimate the orientations of

each object assuming that all vehicles adhere to some basic traffic

rules, i.e., right handed traffic. For associating the tracklets to lanes

and the detections to lane spline points, we employ the inference pro-

cedure described in Section 3.4.2. Next, we select the tangent angle

at the associated spline’s foot point s on the inferred lane l as our

novel orientation estimate. Since parked cars are often oriented ar-

bitrarily, our evaluation focuses on moving vehicles only. Table 5.2

(row 7) shows that we are able to significantly reduce the orientation

error from 32.6 degrees, which corresponds to the orientation error

of the raw detections (not depicted in the table), down to 14.0 de-

grees when using our model in combination with vehicle tracklets or

3D scene flow.
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5.4.7. Object Detection

As we have shown in Section 5.4.4, objects help in estimating the

layout and geometry of the scene. On the other hand, knowledge

about the road layout should also help in improving the performance

of object detectors. To verify this hypothesis, we conduct the follow-

ing experiment.

We manually annotated all cars in the last frame of each sequence

using 2D bounding boxes. This results in 355 labeled car instances

in total. Next, we ran our pre-trained part-based object detector

[60] from Section 4.1.1 on those images and apply non-maxima-

suppression on the detections. Note that these detections are the

same as the ones that serve as input to our tracking model described

in Section 3.3.2 and Section 4.1.2. Given the object detections and

the inferred road geometry from Section 5.4.4, we re-score each ob-

ject detection by adding the following term to the scores of [60]

0.5

[
max

l
exp

(
− Δ2

l

2w2

)
+

3∑
i=1

exp

(
−(xi − μi)

2

2σ2
i

)]
− 1 (5.7)

Here Δl is the distance of a car detection to lane spline l, w is the

estimated street width and {μi, σi} are mean and standard deviation

of the object width, height and position, respectively, obtained from

a held-out training set using maximum likelihood estimation. Due

to the choice of Eq. 5.7, a value between −1 and +1 will be added

to the detector score, depending on the agreement in size and the

proximity to the closest lane.

Fig. 5.9 depicts the precision-recall curves for the L-SVM baseline

[60] and our approach. As evidenced by this figure, our geometric

and topological constraints increase detection performance signifi-

cantly, improving average precision from 69.9% to 74.2%. The ben-

efits of including this knowledge into the detection process are also

illustrated in Fig. 5.10. In order to include the partly occluded car to

the right into the detection result, the threshold of the baseline has to
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Figure 5.9.: Improving Object Detection. This figure shows the precision-

recall curves for the object detection task using an overlap threshold of

50%. Compared to Felzenszwalb et al. [60] (L-SVM), context from the

proposed model helps to improving object detection performance.

be lowered to a value which produces two false positives (top). In

contrast, our re-scored ranking is able to handle this case (bottom).

The average precision for each setting is listed in Table 5.2 (row 8).

5.4.8. Runtime

In this section we evaluate the computational complexity of the pro-

posed approach experimentally. Towards this goal, we measure the

running times of our mixed MATLAB/C++ implementation. While

parts of the algorithm already run in real-time and others can be ac-

celerated using instruction- or thread-level parallelism, this was not

the primary goal of this thesis and is left to future work. However,

this evaluation provides a good indication of the bottlenecks and the

more efficient stages in our implementation.

Table 5.3 lists the average running times of the individual stages

of our algorithm, separated into feature extraction (top) and model

inference (bottom). Learning times are in the order of hours, de-

pending on the quality of the gradient approximation, but not listed

here as learning can be performed offline. On average, our method
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Figure 5.10.: Improving Object Detection. By using context from our

model for re-weighting object hypothesis our algorithm (bottom) is able to

eliminate false positives of state-of-the-art part-based object detectors [60]

(top).

runs at ∼ 8 seconds per frame, when including the time for feature

extraction and drawing 10, 000 samples from the model. While the

time for inference could be dramatically reduced when using a pure

C++ implementation and parallel Markov chains, the main bottle-

neck of our method is the feature extraction stage. In particular, the

running times are heavily dominated by the time consumed to detect

and track objects, even though the cascaded version [61] of the part-

based object detector [60] has been leveraged, which reduces object

detection runtime by a factor of 10, approximately. With the avail-

ability of faster object detectors [53, 19] and heavy multi-processing,

a real-time implementation seems within reach.
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Frame Sequence

Object Detection (Section 4.1.1) 3.88 s 314.01 s

Object Tracking (Section 4.1.2) 0.46 s 37.55 s

Long Line Detection (Section 4.2) 0.03 s 2.14 s

Vanishing Line Estimation (Section 4.2) 0.01 s 0.70 s

Semantic Scene Labels (Section 4.3) 0.01 s 1.01 s

Scene Flow / Egomotion (Section 4.4) 0.31 s 24.87 s

Road Plane Estimation (Section 4.4) 0.06 s 5.13 s

Stereo Matching (Section 4.5) 0.30 s 23.90 s

Occupancy Grid Estimation (Section 4.5) 0.09 s 7.41 s

Prior (Section 3.3.1) 0.12 s 9.85 s

Tracklets (Section 3.3.2) 1.28 s 103.54 s

Vanishing Points (Section 3.3.3) 0.10 s 8.19 s

Semantic Labels (Section 3.3.4) 0.60 s 48.21 s

Scene Flow (Section 3.3.5) 0.50 s 40.22 s

Occupancy Grid (Section 3.3.6) 0.18 s 14.41 s

Total 7.92 s 641.13 s

Table 5.3.: Running Times per Frame/Sequence on a Intel Core7@2.67
Ghz. This figure shows the average running times of the individual parts of

our algorithm on a single CPU core using a mixed MATLAB/C++ imple-

mentation. The first part of the table lists the time used for computing the

image evidence (feature extraction) and the second part shows the timings

for evaluating 10, 000 samples. On average, our basic implementation runs

at ∼ 8 seconds per frame.

5.4.9. Qualitative Results

Fig. 5.11-5.13 illustrate our inference results for the setting ’PTVSFO’,

with the most likely lanes for each unique tracklet, indicated by an

arrow. The ego-vehicle (observer) is depicted in black. For a defini-

tion of uniqueness, the reader is referred to Section 5.4.5.

For most sequences the road layout has been estimated correctly

and the vehicles have been assigned to the correct lanes. Only vehi-

cles that are very far away or visible only for a couple of frames pose

104



5.4. Experimental Results

problems in terms of their lane associations. However, note that this

didn’t affect the layout estimation. In Fig. 5.11 (top-left) the moving

vehicle in front of the observer and the static vehicles at the side of

the road have been identified correctly. In Fig. 5.11 (bottom-left) the

cyan object has been observed only for a short period of time, leading

to a probability of moving forward as well as making a right turn. In

Fig. 5.11 (bottom-right) the two crossing vehicles have been identi-

fied correctly and distinguished from the vehicles waiting in front of

the traffic light. However, the red car has been assigned to the wrong

lane as the object detector orientation estimate was too uncertain and

no motion has been observed. The same holds true for the red ve-

hicle in Fig. 5.12 (top-left), which has been detected only for a very

short period of time.

Typical failure modes are depicted in Fig. 5.14. In Fig. 5.14 (top-

left, top-right, bottom-right) the wrong intersection layout has been

recovered. However, note that given the estimated layout, most of the

lane associations are correct. Fig. 5.14 (middle-right) is a difficult

case as no moving vehicles were present to support the hypothesis

of a third intersection arm, resulting in a straight road. While the

street width has been wrongly estimated in Fig. 5.14 (bottom-left),

the layout is correct and almost all vehicles have been associated

with the right lanes. In summary, the proposed system works well

and robustly. Furthermore, even in the rare event of topology or

geometry estimation failures many objects are still correctly inferred.
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Figure 5.11.: Inference Results. For each sequence, the top plot shows the

input image with the bounding boxes of the detected objects. The bottom

plot shows the inference result from bird’s eye perspective. Arrows indicate

the predicted driving direction(s).
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Figure 5.12.: Inference Results. For each sequence, the top plot shows the

input image with the bounding boxes of the detected objects. The bottom

plot shows the inference result from bird’s eye perspective. Arrows indicate

the predicted driving direction(s).
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Figure 5.13.: Inference Results. For each sequence, the top plot shows the

input image with the bounding boxes of the detected objects. The bottom

plot shows the inference result from bird’s eye perspective. Arrows indicate

the predicted driving direction(s).
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Figure 5.14.: Failure Cases. This figure shows some failure modes of our

algorithm, where either the topology, geometry or the tracklet associations

are (partly) wrong. Section 5.4.9 gives further details.
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This thesis has proposed a probabilistic generative model, which is

able to reason about complex inner-city traffic scenes using features

extracted from short (stereo) video sequences recorded from a mov-

able platform. The application is autonomous driving, which cur-

rently cannot handle urban environments due to missing or corrupt

GPS information, outdated maps, the complexity of the scenes, the

amount of clutter (e.g., shadows, vegetation) as well as the high level

of occlusions (e.g., occlusions caused by cars, buildings, vegetation

or infrastructure). Simple extensions of state-of-the-art lane detec-

tors or lane-keeping systems to intersections are doomed to fail as

lane markings are often missing, damaged or occluded.

To provide an alternative, here we have proposed a probabilis-

tic model and image likelihoods using five complementary feature

cues that consider the scene as a whole: Vehicle tracklets, vanishing

points, semantic labels, 3D scene flow and occupancy grids. By mak-

ing use of these cues our model is able to extract information such

as the topology and geometry of the road layout, as well as the lanes

on which vehicles are driving. We have shown that, despite the fact

that the partition function of the probabilistic model is intractable to

compute, parameter learning is still possible in our model. We have

cast the problem as a Gibbs random field and apply contrastive di-

vergence in combination with Markov Chain Monte Carlo inference

techniques.

The validity of the proposed model has been substantiated by com-

prehensive experiments, considering individual image cues as well

as a large variety of combinations. On a set of 113 realistic real-

world intersection sequences we are able to estimate the topology of

the scene with an accuracy of up to 90% while at the same time ac-
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curately determining the intersection center and the individual street

orientations. Vice-versa, we have shown that context from our model

helps in improving the performance of state-of-the-art object detec-

tors in terms of detecting objects as well as estimating their orien-

tation. Considering the scene as a whole turned out to be crucial,

especially in the presence of clutter and missing data.

While we have discovered that all features proposed in this work

were able to improve performance individually, occupancy grids as

well as vehicle tracklets and 3D scene flow have been identified as

the strongest and most important feature cues. This is comprehen-

sible as human drivers likewise examine other traffic participants as

well as the 3D structure (e.g., buildings, urban canyons) to picture

the scene.

Regarding future extensions, models that incorporate typical traf-

fic patterns and traffic light phases will present an interesting area

of research. Presently, noise in the observations can lead to implau-

sible configurations such as cars colliding with each other. Includ-

ing higher-level information such as traffic patterns and traffic light

phases will help to reduce ambiguities and increase robustness. Such

information will also allow for the detection of abnormalities in the

traffic flow and to warn the driver before entering the intersection.

Furthermore, more complex vehicle motion models are required.

The presented model uses a simple forward motion constraint with a

B-spline based lane model. Improved sensor observations and more

computing power will allow for more accurate motion models and

lane representations. Another interesting direction will be to inte-

grate information from other traffic participants (e.g., pedestrians)

into the model as well as to make use of further sources of infor-

mation such as road markings whenever they are visible and reliable

or street maps, e.g., OpenStreetMap. While maps can be noisy or

even outdated, they still provide valuable prior information and can

be updated in an online manner as soon as enough vehicles have been

equipped with a scene understanding system like the one proposed

in this thesis.
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A. Sampling Techniques

This appendix gives an introduction to sampling techniques, in par-

ticular Markov Chain Monte Carlo (MCMC) methods [5, 123], which

are adopted for inference in the scene understanding model presented

in this thesis. The robot localization examples used for illustration

are gratefully borrowed from a tutorial presentation of Martin Lauer

in 2010 [123].

A.1. Introduction

Many statistical problems of practical relevance lead to problems

which include solving an integral that is analytically intractable. In

Bayesian inference, for example, one is typically interested in infer-

ring unknown variables x from observed data y, which leads to the

following problems:

• Normalization: p(x|y) = p(y|x)p(x)∫
p(y|x′)p(x′)dx′

• Marginalization: p(x|y) =
∫
p(x, z|y)dz

• Expectation: Ep(f(x)) =
∫
f(x)p(x)dx

Examples for the latter are:

• The expectation:
∫
xp(x)dx,

• The variance:
∫
x2p(x)dx−

(∫
xp(x)dx

)2
, or

• The expected risk:
∫

risk(x)p(x)dx
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










Figure A.1.: Monte Carlo Approximation of an integral with a finite sum.

Unfortunately, these integrals are often analytically intractable and

sometimes p can not even be expressed as a function. An approxi-

mation scheme for solving these tasks is random Monte Carlo simu-

lations, in which the integral∫
f(x)p(x)dx (A.1)

is approximated by a finite sum

1

N

∑
i

f(xi) (A.2)

where xi are samples drawn from p. The longer we run the Monte

Carlo simulation, the better the approximation of the integral:

1

N

N∑
i=1

f(xi)
N→∞−−−−→

∫
f(x)p(x)dx (A.3)

Thus the estimate is unbiased and will almost surely converge to the

right value by the strong law of large numbers. The Monte Carlo

approximation principle is illustrated in Fig. A.1. Maintaining effi-

ciency is one of the main challenges of Monte Carlo methods.
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A.2. Basic Sampling Strategies

Before moving on to Markov chains [5], we will review a set of basic

sampling algorithms and illustrate them on simple toy cases.

A.2.1. Inverse Transform Sampling

Assuming we are provided with a random number generator, one can

draw samples from distributions for which the cumulative probability

distribution is invertible. When this is not the case, one can still

draw samples by approximating the inverted cumulative probability

distribution using interpolation.

More formally, let us consider a one-dimensional random variable

x with probability distribution p(x) from which we want to sam-

ple. Let us further assume a uniformly distributed random variable

y ∼ U(0, 1) and a function f(y), such that x = f(y). Since proba-

bility mass in any differential area must be invariant under change of

variables |p(x)dx| = |p(y)dy|, the distribution of x will be governed

by

p(x) = p(y)

∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣dydx
∣∣∣∣ . (A.4)

By integration we obtain the cumulative density function (CDF)

h(x) ≡
∫ x

−∞
p(x′)dx′ = y (A.5)

with x = f(y) = h−1(y). This means that to obtain a sample from

x we can sample y ∼ U(0, 1) and transform it using the inverse of

the integral of the target distribution p(x). To illustrate this fact we

sample from an exponential distribution by sampling from a uniform

distribution using this method. Consider

p(x) =

{
exp(−x) 0 ≤ x,

0 else
(A.6)
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(a) 100 uniform samples from y ∼ U(0, 1)
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(b) 100 transformed samples from x ∼
p(x)

Figure A.2.: Inverse Transform Sampling. This figure illustrates sam-

pling from a distribution p(x) with invertible CDF by uniformly drawing

samples on the interval (0, 1) and transforming them by the inverse of the

CDF.

which gives h(x) = 1− exp(−x). The inverse mapping is given by

f(y) = h−1(y) = − ln(1− y). This is illustrated in Fig. A.2, which

shows 100 samples drawn from the distribution Eq. A.6.

A.2.2. Rejection Sampling

Unfortunately, for many distributions the inverse transform sampling

procedure is impractical due to their complex form or high dimen-

sionality. An alternative is rejection sampling, which can be applied

whenever another proposal distribution q(x) satisfying

p(x) ≤ Mq(x) with M < ∞ (A.7)

is available from which samples are obtained more easily and p(x)
can be evaluated up to some normalizing constant as illustrated in

Fig. A.3. Each sample from the rejection sampler involves generat-

ing two random numbers and an accept/reject step:

• Draw a sample x from p(x).
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xi~q(x)

p(xi)

2q(xi)

p(x)
2q(x)

(a) Rejection sampling

Figure A.3.: Rejection Sampling. This figure illustrates the target dis-

tribution p and the proposal distribution q, satisfying the requirement

p(x) ≤ 2q(x).

• Draw a sample u from U(0,Mq(x))

If u ≤ p(x) the sample is accepted, otherwise it gets rejected. As

all accepted samples (x, u) follow a uniform distribution under the

curve of p(x) the corresponding x-values are distributed according

to p(x) as desired:

p(x) ∝ q(x)
p(x)

Mq(x)
(A.8)

The procedure is illustrated in Algorithm 4. In practice it is often

difficult to bound p(x) by Mq(x). If M is chosen too conservatively

(too large) the acceptance probability

Pr(x accepted) = Pr

(
u <

p(x)

Mq(x)

)
≈ 1

M
(A.9)

gets too small to accept enough samples within reasonable time. This

makes rejection sampling impractical in high dimensions.

Let us now consider a simple example. Given independent sam-

ples from a Gaussian distribution N (0, 0.5), we wish to estimate

the mean μ and standard deviation σ using rejection sampling. The

graphical model is shown in Fig. A.4(a). We draw 50 samples xi

117



A. Sampling Techniques

Algorithm 4 Rejection Sampling

i ← 1
while i < N do

draw sample xi ∼ q(x)
draw sample ui ∼ U(0, 1)
if ui < p(xi)

Mq(xi)
then

accept xi
i ← i+ 1

from N (μ, σ) and assume μ ∼ U(−0.5, 0.5) and σ ∼ U(0.1, 1.1) as

prior distributions (Fig. A.4(b)). The posterior simplifies to

p(μ, σ|x1, ..., xN ) ∝ p(μ, σ)p(x1, ..., xN |μ, σ)

= p(μ)p(σ)

N∏
i=1

p(xi|μ, σ)

= [−0.5 ≤ μ ≤ 0.5]× [0.1 ≤ σ ≤ 1.1]

×
(

1√
2πσ2

)N

exp

(
− 1

2σ2

N∑
i=1

(xi − μ)2

)

Unfortunately, a tight bound to this density is hard to derive analyti-

cally. Hence, we set q(μ, σ) = p(0, 0.5, |x1, ..., xN ) to be constant.

This highlights the main problem with rejection sampling: Finding a

tight bound to make sampling tractable. The results of sampling from

this posterior are illustrated and compared against the true posterior

in Fig. A.4(c)-A.4(e).

Let us now consider a second example which is illustrated in Fig.

A.5. Assume, we have a robot which is located in a 2D field of

size 1 × 1 meters, equipped with sensors that measure its distance

di with respect to the four corners ei of the field. We assume a

uniform prior for the robot location x ∼ U([0, 1] × [0, 1]) and the

measurements are given by the robot’s position and Gaussian noise

di|x ∼ N (‖x − ei‖, σ2) Since all measurements are assumed to
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(a) Graphical Model
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(c) 1000 Samples
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(d) Kernel Density Estimate
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Figure A.4.: Rejection Sampling. Given N = 50 independent samples

from a Gaussian distribution N (μ, σ) we infer the posterior over μ and σ.

be independent, the posterior of the robot’s position x given the 4
measurements {d1, ..., d4} can be written as

p(x|d1, d2, d3, d4) ∝ p(x)p(d1|x)p(d2|x)p(d3|x)p(d4|x)
∝ [0 ≤ x1, x2 ≤ 1]

× exp

(
− 1

2σ2

4∑
i=1

[‖x− ei‖ − di]
2

)

Since we know that the maximum of the unnormalized posterior is 1,

we set q(x) = [0 ≤ x1, x2 ≤ 1] which tightly bounds Zp(x), where

Z is the normalizing constant. The sampling results are depicted in

Fig. A.5(c) and Fig. A.5(d). Note how many rejected samples are

required for accepting 50 samples in total.
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

(a) Robot in the Field (b) Graphical Model for Localization
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(c) Samples (x = (0.9, 0.1), σ = 0.1)
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(d) Samples (x = (0.5, 0.5), σ = 0.1)

Figure A.5.: Robot Localization using Rejection Sampling. Illustration

of the robot localization example: The task is to infer the robot’s location

given noisy measurements of its distances to the field corners. The lower

plots show samples drawn using rejection sampling.

A.3. Markov Chains

While the methods discussed so far are simple, they can be only ap-

plied to very simple low-dimensional problems. As a step towards

the much more powerful Markov Chain Monte Carlo methods, this

section first introduces Markov chains and their properties.

A.3.1. Definition of Markov Chains

Let us start with the definition of Markov chains.
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      

Figure A.6.: Markov chain. Each state depends only on its predecessor.

Definition 1 (Markov Chain). A Markov chain (named after Andrey
Markov) is a discrete random process with the Markov property.

Definition 2 (Random Process). Let (Ω,F , P ) be a probability space,
with sample space Ω, σ-field F ⊆ 2Ω and probability measure
P : F → [0, 1]. Let further (Ψ,X ) be a measurable observation
space. A random process is a collection of Ψ-valued random vari-
ables on Ω:

X = {xi : i ∈ {1, ..., N} ∧ xi : Ω → Ψ}

Definition 3 (Markov Property). A random process is said to be
Markov, iff the conditional probability distribution of successor states
in the process depends only upon the present state:

P (xi|xi−1, ..., x1) = P (xi|xi−1)

This simplifies the joint distribution of X to:

P (x1, ..., xN ) = P (x1)
N∏
i=2

P (xi|xi−1)

The Markov property is illustrated in Fig. A.6, where each variable

of the process depends only on the previous variable. An example of

a Markov process is the random walk where, at each step, the new

position only depends upon the current position. If dynamics is intro-

duced, for example in form of a continuous velocity assumption, the

process is no longer Markov, since the new position depends on the

current and the previous position. However, increasing the dimen-
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T =
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(a) Stochastic Transition Matrix
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

(b) Stochastic Transition Graph

Figure A.7.: Homogeneous Discrete Markov Chain. This figure shows

the stochastic transition matrix and the transition graph of a Markov chain

with 3 states. In (a), the ij-th entry of T denotes the probability of transi-

tioning from i to j. (b) shows the corresponding graph.

sionality of the state to two (position, velocity) restores the Markov

property again.

A Markov chain for which the transition operator does not depend

on time is called homogeneous Markov chain. It is convenient to

describe homogeneous Markov chains via stochastic transition ma-

trices and directed graphs. This is illustrated in Fig. A.7. Here, tran-

sition probabilities are represented as entries in the transition matrix

T or labels in the transition graph. Probabilities must be positive

and sum to one. The probability distribution for the new state pi is

obtained by multiplying the previous probability vector pi−1 by the

transition matrix T:

pT
i = pT

i−1T (A.10)

Note that we will use p = (p(x = s1), ..., p(x = sm))T for dis-

tributions and p for probabilities, or elements of p. To ensure that

probabilities sum to one (
∑

i p̃i = 1), all rows of T must sum to

one. This can be easily verified by rewriting the transition in terms
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of sums:

p̃j =
∑
i

piTij (A.11)

Because of
∑

j p̃j = 1 we have
∑

j

∑
i piTij =

∑
i pi

∑
j Tij =

1 and since
∑

i pi = 1, it is sufficient that all rows of T sum to

one (
∑

j Tij = 1) to ensure valid distributions. In the following we

illustrate some iterations of a Markov process. Let’s consider the

transition matrix

T =

⎛
⎝0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

⎞
⎠ (A.12)

and start with p1 = (1, 0, 0)T, a distribution which has all it’s prob-

ability at state 1. By iterating pT
i ← pT

i−1T, we get:

Iteration i pT
i

1 (1.00, 0.00, 0.00)

2 (0.50, 0.00, 0.50)

3 (0.25, 0.25, 0.50)

4 (0.25, 0.38, 0.38)

5 (0.31, 0.38, 0.32)

6 (0.34, 0.34, 0.32)

7 (0.33, 0.33, 0.33)
...

...

∞ (0.33, 0.33, 0.33)

This example already exhibits a desired property of Markov chains:

After several iterations the chain stabilizes at a fix point. It is said

to be stationary at p∞ = (0.33, 0.33, 0.33)T. For this T, no matter

what initial distribution p1 we use, the chain will always converge to

the same stationary point. Note that the stationary point can be com-

puted directly from the stochastic transition matrix T. Since for p∞
we have pT∞ = pT∞T, p∞ is the left eigenvector of T corresponding

to eigenvalue 1. In the following we will examine sufficient condi-

tions which guarantee convergence of Markov chains.
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A.3.2. Properties of Markov Chains

Definition 4 (Stationarity). A probability distribution p on a state
space of a Markov chain with transition matrix T is called station-
ary, if

pT = pTT.

or in, other words, the probability of being in state x′ is invariant

p(x′) =
∑
x

p(x)Txx′

for any possible state x′. For the continuous case, the matrix T is
replaced by a transition kernel T (x′|x) which models the transition
probabilities. Thus stationary distributions are those, for which

p(x′) =
∫

p(x)T (x′|x)dx

holds.

A stochastic transition matrix T, for which any Markov chain con-

verges to the invariant distribution p(x) is called ergodic. An ergodic

Markov chain has exactly one stationary distribution.

Definition 5 (Ergodicity). Let T∞ = limk→∞Tk. A Markov chain
with transition matrix T is called ergodic, if

• T∞ exists

• All entries of T∞ are positive

• All rows of T∞ are identical

A Markov chain is ergodic, iff it is irreducible and aperiodic.

Definition 6 (Irreducibility). A Markov chain is called irreducible,
if any state x′ of the chain can be reached by any other state x in
a finite number of steps. More formally, there must be a sequence
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of states (x = x1, ..., xN = x′) such that Txi−1xi > 0 for all i ∈
{1, ..., N − 1}.

Through proper state assignment or via permutation using an appro-

priate permutation matrix Q, the transition matrix T of a reducible

Markov chain can be partitioned into the canonic form

QTQT =

(
C A
0 T

)
(A.13)

with square stochastic matrix C, rectangular non-negative matrix A
and square sub-stochastic matrix T. The states of the Markov chain

are partitioned into closed states belonging exclusively to C and tran-

sient states belonging to T. Once a transition into a closed state

has been performed, transient states are never reachable again. The

eigenvectors of C define the behavior of the Markov chain at equi-

librium.

Definition 7 (Aperiodicity). A Markov chain is called aperiodic, if
the occurrence of states is not restricted to periodic events, but any
state may occur at any time. More formally, we define the period of
state x as1

dx = gcd
{
n | ∃(x = x1, ..., xn = x) ∧ ∀i∈{2,..,n} : Txi−1xi > 0

}
A Markov chain is aperiodic, if all states x have period dx = 1.

If a Markov chain is aperiodic, returns to state x can occur at irregu-
lar times.

Definition 8 (Detailed Balance). A Markov chain with transition ma-
trix T fulfills the detailed balance condition for a distribution p, iff

p(x)Txx′ = p(x′)Tx′x

1gcd: greatest common divisor
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or in the continuous case

p(x)T (x′|x) = p(x′)T (x|x′)

holds for all x and x′.

Informally this means that the probability of being in state x and

moving to state x′ equals the probability of being in state x′ and

moving back to state x. The detailed balance condition is sufficient

to ensure that p(x) is stationary for T (or T ).

Theorem 1 (Detailed Balance). If T (or T) satisfies the detailed bal-
ance condition for distribution p, then p is stationary distribution of
T (or T).

Proof.∑
x

p(x)Txx′ =
∑
x

p(x′)Tx′x = p(x′)
∑
x

Tx′x = p(x′)∫
p(x)T (x′|x)dx =

∫
p(x′)T (x|x′)dx = p(x′)

To illustrate the convergence properties of Markov chains, let us ran-

domly draw 10 points on the probability simplex and perform 30
Markov chain iterations. To provide a more vivid visualization, we

interpolate all points using polynomials. We show convergence re-

sults on a unit 2-simplex (dim(p) = 3) in Fig. A.8 and on a unit

3-simplex (dim(p) = 4) in Fig. A.9. A black square marks the final

state of each Markov chain. Stationary distributions are computed

from the first eigenvector of T and depicted as a black circles. For the

periodic and reducible case, all chains converge to the sub-simplex

of the reduced transition matrix (for the 2-simplex the sub-simplex

corresponds to a line), but continue oscillating in this space. Thus no

stationary distribution can be found. For the periodic and irreducible

example, all chains are orbiting around the center of the simplex and
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never converge. For the aperiodic and reducible case, all Markov

chains converge to a common stationary distribution, but the station-

ary point is confined to the sub-simplex of the reduced matrix. When

the transition matrix is aperiodic and irreducible, all trajectories con-

verge to a stationary distribution, defined by the first eigenvector of

T.

A.3.3. Combining Kernels

Transition kernels of Markov chains have the nice property that they

can be combined by concatenation. This allows for constructing

complex moves from simple ones.

Theorem 2 (Kernel Concatenation). Let T1 and T2 be kernels with
stationary distribution p. Then T (x′|x) ≡

∫
T2(x

′|x̃)T1(x̃|x)dx̃ is
another transtion kernel with stationary distribution p.

Proof.∫
T (x′|x)p(x)dx =

∫ ∫
T2(x

′|x̃)T1(x̃|x)dx̃ p(x)dx

=

∫
T2(x

′|x̃)
∫

T1(x̃|x)p(x)dx dx̃

=

∫
T2(x

′|x̃)p(x̃)dx̃

= p(x′)
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Figure A.8.: Markov chains on the 2-Simplex. From left to right: Stochas-

tic transition matrix T, transition graph and 10 runs of the process. Squares

denote final states after 30 iterations, circles denote stationary states.
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Figure A.9.: Markov chains on the 3-Simplex. From left to right: Stochas-

tic transition matrix T, transition graph and 10 runs of the process. Squares

denote final states after 30 iterations, circles denote stationary states.
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Theorem 3 (Kernel Mixing). Let T1 and T2 be transition kernels
with stationary distribution p and w1, w2 ≥ 0 with w1 + w2 = 1.
Then T (x′|x) ≡ w1T1(x

′|x) + w2T2(x
′|x) is another transtion ker-

nel with stationary distribution p.

Proof.∫
T (x′|x)p(x)dx =

∫ (
w1T1(x

′|x) + w2T2(x
′|x)

)
p(x)dx

= w1p(x
′) + w2p(x

′)
= p(x′)

A.4. Markov Chain Monte Carlo

To make use of Markov chains for sampling, we need to construct

a chain with stationary distribution p(x). This is called the Markov

Chain Monte Carlo approach. In contrast to the sampling schemes

discussed so far, samples from a Markov chain will be temporally

correlated, but for many applications this is not a problem. The first

samples we draw will be biased towards the user-specified initial

state of the Markov chain and should thus be removed. This stage

is often called ’burn-in’ phase.

A.4.1. Metropolis-Hastings Sampling

First, we consider the popular Metropolis-Hastings (MH) algorithm,

which is very easy to implement and satisfies the detailed balance

condition. The idea is to use a proposal distribution q from which

samples can be drawn easily and efficiently. Given x, a proposed

sample x′ ∼ q(x′|x) is accepted with probability

pMH(x′|x) = min

{
1,

p(x′)q(x|x′)
p(x)q(x′|x)

}
(A.14)
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Algorithm 5 Metropolis-Hastings

x1 ← initial state

i ← 2
while i < N do

draw xi ∼ q(xi|xi−1)
draw ui ∼ U(0, 1)
if ui > p(xi)q(xi−1|xi)

p(xi−1)q(xi|xi−1)
then

xi ← xi−1

i ← i+ 1

Informally this means that a proposed state is accepted, if the target

density p(x′) is high and it is likely to get back to the old state q(x|x′)
using the next proposal. If a sample x′ is accepted, it is added to the

Markov chain, otherwise the old state x is added. If q is symmetric

Eq. A.14 becomes

pMH(x′|x) = min

{
1,

p(x′)
p(x)

}
(A.15)

and the resulting algorithm is called Metropolis sampling. The gen-

eral Metropolis-Hastings algorithm is summarized in Algorithm 5.

To show that p is a stationary distribution of T , let us write down the

transition kernel T in terms of the acceptance probability Eq. A.14:

T (x′|x) = q(x′|x)pMH(x′|x)

+ δ(x′ − x)

∫
q(x̃|x)[1− pMH(x̃|x)]dx̃ (A.16)

Informally T (x′|x) is the probability of moving from state x to state

x′ times the acceptance probability of state x′ or the probability of

staying at state x because either x was proposed and accepted or any

other state has been proposed and rejected.
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Theorem 4 (Metropolis-Hastings). p is stationary distribution of T .

Proof.∫
T (x′|x)p(x)dx =

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+

∫
p(x′)q(x̃|x′)[1− pMH(x̃|x′)]dx̃

=

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+p(x′)
∫

q(x̃|x′)d̃x

−
∫

p(x′)q(x̃|x′)pMH(x̃|x′)dx̃

=

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+p(x′)

−
∫

min{p(x′)q(x̃|x′), p(x̃)q(x′|x̃)}dx̃

= p(x′)

Let us now turn back to our example of sampling the mean μ and

variance σ of a univariate Gaussian. Again, we first sample N = 50
data points from N (μ = 0, σ = 0.5). For sampling x = (μ, σ)T, we

use the Metropolis algorithm with the proposal distribution

q(x′|x) ∼ N (x, 0.05 I) (A.17)

Fig. A.10 shows that the Metropolis sampler has a better acceptance

rate than the rejection sampler from Section A.2.2. Unfortunately

this rate depends heavily on the particular choice of the proposal

distribution q and making the right choice is crucial for applying

Metropolis-Hastings to problems of practical relevance. A Markov
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(a) Graphical Model

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
p(

x)
(b) 50 samples from N (0, 0.5)

−0.4 −0.2 0 0.2 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

mu

si
gm

a

Markov chain
1000 accepted
782 rejected

(c) 1000 Samples

−0.4 −0.2 0 0.2 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

mu

si
gm

a
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Figure A.10.: Markov Chain Monte Carlo Sampling. Given independent

samples from a Gaussian distribution we infer the posterior over μ and σ
using the Metropolis sampling algorithm with q(x′|x) ∼ N (x, 0.05 I).

chain that traverses the state space efficiently is said to be well mix-
ing. In contrast, a Markov chain that easily gets trapped in small

areas of the search space is called poorly mixing. The first samples

of the chain (’burn-in’ samples) are typically rejected from the final

estimate.

Let us now reconsider the robot localization problem from Fig.

A.5, but this time using the Metropolis algorithm and assuming un-

known noise in the distance measurements σ as illustrated in Fig.

A.11. Since we are also concerned about estimating the sensor noise

σ, we use 16 measurements (instead of only four in the previous ex-

ample) in order to gain robustness. Again, the prior for the robot’s

location x is assumed to be uniformly distributed on the unit square
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Figure A.11.: Robot Localization using the Metropolis Algorithm. The

second row shows the Markov chain for the robot’s position x and the mea-

surement noise σ. The true parameters are x = (0.5, 0.5) and σ = 0.1.

and we assume a uniform prior on the interval [0.01, 0.5] for σ, which

is now a stochastic variable as well:

x ∼ U([0, 1]× [0, 1]) (A.18)

σ ∼ U(0.01, 0.5) (A.19)

The measurements are modeled using a Gaussian distribution

di|x, σ ∼ N (‖x− ei‖, σ2) (A.20)

Since all measurements are assumed independent, the posterior of
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the robot’s position given the 16 measurements {d1, ..., d16} is

p(x, σ|d1, ...d16) ∝ p(x)p(σ)p(d1|x, σ) · · · p(d16|x, σ)
∝ [0 ≤ x1, x2 ≤ 1]× [0.01 ≤ σ ≤ 0.5]

×
exp

(
− 1

2σ2

∑16
i=1[‖x− ei‖ − di]

2
)

(2πσ2)8

Sampling results with accepted and rejected samples are depicted in

Fig. A.11. After a small ’burn-in’ period, the mode of the posterior

is found in terms of position as well as in terms of noise, while only

rejecting a relatively small number of samples.

A.4.2. Gibbs Sampling

When dealing with multivariate posterior distributions, it is also pos-

sible to update variables only partly and loop over the updates. One

popular and efficient choice of such a cyclic MH kernel is known as

Gibbs sampling. The idea in Gibbs sampling is to introduce knowl-

edge about the distributions into the sampling process by adopting

full conditional distributions

p(xk|x1, ..., xk−1, xk+1, ..., xD) (A.21)

as proposal distributions for each k. Note that in contrast to the pre-

vious section, here xk denotes the k’th dimension of random vector

x and dim(x) = D is its dimensionality. By applying this procedure

all samples get accepted, making Gibbs sampling very efficient in

practice. However, the conditional posterior must be easy to sample,

whereas for Metropolis-Hastings the posterior must only be evalu-

ated up to a multiplicative constant. Note that it is also possible to

group variables and sample from grouped conditionals.

In Gibbs sampling, the proposal distribution is chosen as

q(x′|x) = p(xk|x−k) δ(x
′
−k − x−k) (A.22)
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Algorithm 6 Gibbs sampling

x1 ← initial state

for i ← 2 to N do
for k ← 1 to D do

draw sample xki ∼ p(xki |x1i , ..., xk−1
i , xk+1

i−1 , ..., x
D
i−1)

for k ∈ {1, ..., D}. Here x−k denotes all entries of x without entry

k. It is easy to show that all Gibbs moves are accepted using this

proposal distribution.

Theorem 5 (Gibbs). Gibbs moves are accepted with probability 1.

Proof. As x′
−k = x−k, the acceptance probability becomes

pMH(x′|x) = min

{
1,

p(x′)q(x|x′)
p(x)q(x′|x)

}

= min

{
1,

p(x′)p(xk|x′
−k)

p(x)p(x′k|x−k)

}

= min

{
1,

p(x′k,x
′
−k)p(xk|x′

−k)

p(xk,x−k)p(x
′
k|x−k)

}

= min

{
1,

p(x′k|x′
−k)p(x

′
−k)p(xk|x′

−k)

p(xk|x−k)p(x−k)p(x
′
k|x−k)

}
= min {1, 1} = 1

Note that the proposal distribution is reducible, since we are not ex-

ploiting the full state space. This ’problem’ is addressed by sampling

several times from different components k of x (=different dimen-

sions). After a full cycle the sample is added to the list. The full

algorithm is given in Algorithm 6.

Let us illustrate Gibbs sampling on our previous example of sam-

pling the posterior parameters of a univariate Gaussian. Note that

the simple uniform priors we employed in the other examples cannot
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Figure A.12.: Gibbs Sampling. Given 50 independent samples from a

Gaussian distribution the posterior over μ and σ is sampled using Gibbs

sampling. Non-informative priors on μ and σ are assumed.

be used for Gibbs sampling as they lead to non-standard conditional

posterior distributions. Instead, we focus on posterior distributions

with a well-defined analytical form, for which out-of-the-box sam-

plers can be used. Such posteriors can be obtained by using con-

jugate priors, which have the same analytical form as the posterior.

The only difference is an update on the parameters. It is well known

that the conjugate prior for the mean of the Gaussian is Gaussian, and

the conjugate prior for the precision (inverse variance) is a Gamma

distribution. For details on conjugate priors the reader is referred to

[76].

Let us now show that the state conjugacy relationships hold in-

deed, starting with the Gaussian mean. Instead of working with the

137



A. Sampling Techniques

variance σ2 we employ the so-called precision parameter λ = σ−2

for notational simplicity. Assuming that the data likelihood and the

prior for the mean μ and precision λ are given by

xi|μ, λ ∼ N (μ, λ−1) ∝
√
λ exp

{
−λ

2
(xi − μ)2

}
(A.23)

μ ∼ N (ξ, κ−1) ∝ exp
{
−κ

2
(μ− ξ)2

}
(A.24)

λ ∼ Γ(α, β−1) ∝ λα−1 exp {−λβ} (A.25)

the posterior of μ given λ and the posterior of λ given μ is easily

found by completing the square:

μ|x1, .., xN , λ ∼ N
(
λ
∑

i xi + κξ

λN + κ
, (λN + κ)−1

)
(A.26)

λ|x1, .., xN , μ ∼ Γ

⎛
⎝α+

N

2
,

(
1

2

∑
i

(xi − μ)2 + β

)−1
⎞
⎠(A.27)

The bivariate Gibbs sampler for the posterior of a Gaussian is now

readily given by drawing samples alternately from p(λ|x1, .., xN , μ)
and p(μ|x1, .., xN , λ), while keeping the other variable fixed in turn.

This is illustrated in Fig. A.12 using uninformative priors with ξ =
κ = α = β = 0.
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Visual 3D scene understanding is an important component in autonomous  
driving and robot navigation. Intelligent vehicles for example often base their 
decisions on observations obtained from video cameras as they are cheap 
and easy to employ. Inner-city intersections represent an interesting but also 
very challenging scenario in this context: The road layout may be very com-
plex and observations are often noisy or even missing due to heavy occlusions.
While Highway navigation and autonomous driving on simple and annotated  
intersections have already been demonstrated successfully, understanding and 
navigating general inner-city crossings with little prior knowledge remains an 
unsolved problem. This work is a contribution to understanding multi-object 
traffic scenes from video sequences. All data is provided by a camera system 
which is mounted on top of the autonomous driving platform AnnieWAY. The 
proposed probabilistic generative model reasons jointly about the 3D scene  
layout as well as the 3D location and orientation of objects in the scene. In par-
ticular, the scene topology, geometry as well as traffic activities are inferred from 
short video sequences. The model takes advantage of monocular information 
in the form of vehicle tracklets, vanishing lines and semantic labels. Addition-
ally, the benefit of stereo features such as 3D scene flow and occupancy grids 
is investigated. Motivated by the impressive driving capabilities of humans, no 
further information such as GPS, lidar, radar or map knowledge is required.  
Experiments conducted on 113 representative intersection sequences show that 
the developed approach successfully infers the correct layout in a variety of  
difficult scenarios. To evaluate the importance of each feature cue, experiments 
with different feature combinations are conducted. Additionally, the proposed 
method is shown to improve object detection and object orientation estimation 
performance.
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