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Deutsche Zusammenfassung

Proteine regeln viele biologische Prozesse des menschlichen Körpers. Neben unzähligen weite-

ren Prozessen nehmen sie an der Katalyse von biochemischen Reaktionen teil, regulieren Ionen-

konzentrationen oder vermitteln die Immunantwort. Mutationen und Fehlfaltungen von Protei-

nen werden häufig in Zusammenhang mit Krankheiten, wie zum Beispiel Alzheimer oder Krebs

gebracht. Die meisten Proteine falten eigenständig in ihre eindeutige, funktionale, dreidimensio-

nale Struktur, welche durch die Abfolge der Aminosäuren, der Bausteine der Proteine, bestimmt

ist. Obwohl die Proteinsequenz häufig durch Analyse der DNA zugänglich ist, existieren bei wei-

tem nicht für alle medizinisch und biologisch relevanten Proteine 3D Strukturen ihrer gefalteten

dreidimensionalen Struktur. Die Diskrepanz zwischen der Anzahl von Millionen von bekannten

Proteinsequenzen und den etwa 80.000 bekannten, experimentell aufgelösten Proteinstrukturen,

zeigt die Schwierigkeiten, welche mit der experimentellen Bestimmung einer Proteinstruktur

verbunden sind.

Methoden zur theoretischen Vorhersage von Proteinstrukturen generieren häufig durchwachsene

Resultate. Proteine mit mindestens 40% Sequenzübereinstimmung zu einer bekannten Protein-

struktur können zwar häufig mit angemessener Qualität vorhergesagt werden, für Proteine ohne

oder mit nur sehr geringer Sequenzähnlichkeit gibt es jedoch noch keine zuverlässige Methode

zur Proteinstrukturvorhersage. Die durchwachsene Qualität vieler Proteinmodelle spiegelt sich

in der geringen Akzeptanz vieler vorhergesagter Strukturen in den biologischen und medizini-

schen Wissenschaften wider und führte zur kompletten Entfernung aller theoretischer Vorher-

sagen aus der Datenbank der bekannten Proteinstrukturen. Gerade in den Lebenswissenschaf-

ten würde ein fundiertes Proteinmodell einen enormen Erkenntnisgewinn bei der Analyse von

Krankheitsbildern oder allgemeinen biologischen Prozessen darstellen.

Die Forschung in den Lebenswissenschaften kommt immer mehr zu der Erkenntnis, dass Prote-

ine nicht als statische Objekte sondern als dynamische Maschinen verstanden werden müssen.

Da die Aufklärung von Proteindynamik experimentell noch wesentlich aufwändiger ist, als die

Bestimmung der Struktur, ergibt sich hier eine Chance für Simulationsverfahren die experimen-

tellen Untersuchungen zu ergänzen. Hierzu werden überwiegend Verfahren der Molekulardyna-

mik eingesetzt, die jedoch aus fundamentalen Gründen in der Länge der behandelbaren Zeitskala

und damit der Komplexität der zu Grunde liegenden Prozesse beschränkt sind.

Vor kurzem konnte mit der Methode der Molekulardynamik der Faltungsprozeß eines aus 56

Aminosäuren bestehenden Proteins über 1ms lang simuliert werden. Diese Simulationen wur-

den auf einer kostspieligen, spezialisierten Computerarchitektur durchgeführt, welche bislang

nur einer einzigen Forschergruppe zur Verfügung steht. Aufgrund von atomaren Schwingun-

gen im Femtosekundenbereich benötigt eine Molekulardynamiksimulationen einen Integrations-

schritt in der gleichen Größenordnung. Der hohe Aufwand einer Molekulardynamiksimulation
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begründet sich daher in der großen Diskrepanz der Zeitskalen: Für die Simulation eines Proteins

über eine Millisekunde werden 1012 Simulationsschritte benötigt.

Monte-Carlo Algorithmen charakterisieren das thermodynamische Ensemble einer Proteinstruk-

tur, ohne eine direkte Simulation der Kinetik zu benötigen. Da sehr schnelle Bewegungen des

Systems dadurch innerhalb der Simulation eliminiert werden können, erlauben Monte-Carlo

Simulationen die Charakterisierung von großen Konformationsübergängen oder Selbstassemb-

lierung; Prozessen, die typischerweise auf langen Zeitskalen ablaufen.

Bisherige Monte-Carlo Strategien, welche in unserer Gruppe implementiert wurden, erlaubten

die Simulation von Proteinfaltungsprozessen, die Vorhersage von Protein-Liganden Komplexen

und die Simulation der Morphologie vieler, für die Materialwissenschaften relevanter, Materia-

lien. Bis heute gibt es jedoch kein allgemein anwendbares, effizientes Monte-Carlo Simulations-

paket.

Mein Beitrag zur Entwicklung von Monte-Carlo basierten Systemen umfasste:

• Die Implementierung Monte-Carlo basierter Algorithmen zur Simulation von Proteinen,

dem Protein-Ligandendocking und allgemeiner Nanosysteme in einer Vielzahl von Kraft-

feldern.

• Die Implementierung und Verifikation einer Methode zur absoluten Qualitätskontrolle von

Proteinmodellen.

• Die Vorhersage von Proteinstrukturen und Komplexen in Übereinstimmung mit experi-

mentellen Ergebnissen.

• Die Simulation nanoskaliger Morphologien neuartiger Materialien.

Ein Großteil dieser Dissertation umfasste die Entwicklung des Monte-Carlo basierten Simulati-

onspaketes SIMONA: SImulation of MOlecular and NAnoscale systems. Das Programmpaket

ist Teil dieser Dissertation und erhältlich auf http://www.int.kit.edu/nanosim/.

Absolute Qualitätskontrolle von Proteinmodellen
Biologische Prozesse auf der Nanoskala können häufig durch die Kenntnis von den am Prozess

beteiligten Proteinstrukturen erklärt werden. Obwohl nur eine begrenzte Menge an experimentell

aufgelösten Proteinstrukturen von biologischer Relevanz bekannt ist, finden theoretisch vorher-

gesagte Proteinstrukturen nur selten Akzeptanz in den biologischen und medizinischen Wissen-

schaften. In vielen Fällen kann für Proteinsequenzen jedoch eine korrekte Proteinstruktur auf

Basis der Homologiemodellierung vorhergesagt werden. Selbst in Abwesenheit von Homologie

zu einer bekannten, experimentell aufgelösten, Proteinstruktur ist es in Einzelfällen möglich eine

korrekte Proteinstruktur nahe der nativen Proteinstruktur zu generieren. Jedoch ist es gerade für

Proteine, bei denen keine, oder nur wenig, Homologie zu einer experimentell aufgelösten Pro-

teinstruktur besteht, nicht möglich Aussagen über die Qualität eines Proteinmodells zu treffen.

Dies gilt in besonderem Maße für Proteinstrukturen, welche von vollautomatischen Struktur-

vorhersageservern generiert wurden. Die Entwicklung einer Methode für die Qualitätskontrolle
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von solchen Proteinmodellen könnte die Akzeptanz theoretisch vorhergesagter Proteinmodelle

in den Lebenswissenschaften drastisch verbessern.

In dieser Arbeit entwickelten wir daher einen statistischen Test zur a-priori Bestimmung der

Qualität von Proteinmodellen. Da Proteine in ihrer funktionalen Form nur marginal stabil sind,

vermuteten wir, dass auch einzelne Aminosäuren einen optimalen Beitrag zur Energie der glo-

balen Proteinstruktur in ihrer aktiven, biologischen Konformation leisten. Daher erfassten wir

Statistiken für diese Energiebeiträge für einen Satz hochaufgelöster experimenteller Protein-

strukturen und entwickelten einen N -dimensionalen statistischen Test, welcher die Qualität ei-

nes Modells durch Vergleich mit den erfassten Statistiken überprüft. Die Energiestatistiken von

Aminosäuren im gefalteten Zustand unterschieden sich, wie vermutet, von den Energien der

Aminosäuren von Proteinmodellen in vorhergesagten Strukturbibliotheken. Durch die Anwen-

dung des statistischen Tests auf Aminosäuretriplets, war es uns möglich die Spezifizität des Tests

zu erhöhen, so dass die Proteinstrukturen schlechter Qualität für insgesamt 93% der getesteten

160 Proteinmodelle korrekt identifiziert werden konnten. Die verbleibenden 7%, welche nicht

korrekt identifiziert wurden, waren entweder Oligomere, nicht globulare Proteine, oder an Ko-

faktoren gebunden, welche in unserem Kraftfeld nicht berücksichtigt wurden. Mit Hilfe von

Methoden der Bioinformatik lässt sich allerdings vor Durchführung unseres Tests und nur mit

Kenntnis der Proteinsequenz bestimmen, ob ein Protein diesen Proteinklassen angehört und zu-

verlässig bewertet werden kann. Durch Kombination beider Techniken hoffen wir, dass unser

Test als ein Prototyp für die Entwicklung weiterer statistischer Tests zur Qualitätskontrolle von

Proteinmodellen dient und die Akzeptanz von Proteinstrukturvorhersagen für positiv evaluierte

Proteinmodelle steigert.

Genetische Modifikation eines Hydrophobins zur Veredelung von Implantaten
Durch die allgemein steigenden Lebenserwartungen von Implantatträgern, welche ihr erstes

Implantat häufig bereits im Alter von unter 50 Jahren bekommen, ist es immer häufiger not-

wendig, Implantate in hohem Alter auszutauschen. Für viele ältere Patienten bedeutet dies ein

hohes Risiko. Es ist daher wichtig, Implantatmaterialien zu entwickeln, welche länger als zwei

bis drei Jahrzehnte im Körper verweilen können. Eine Möglichkeit zur Entwicklung haltbarer

Implantate ist die Entwicklung von biokompatiblen Oberflächenbeschichtungen, welche eine

Anhaftung von neuem Zellmaterial, idealerweise Knochenstammzellen, ermöglicht, ohne eine

Ausbildung von Biofilmen zu fördern.

In einer Kollaboration zwischen zwei Arbeitsgruppen am KIT und dem Universitätsklinikum

Heidelberg entwickelten wir ein genetisch modifiziertes Protein zur biokompatiblen Implan-

tatbeschichtung. Hydrophobine sind pilzstämmige Proteine mit interessanten physikalisch-

chemischen Eigenschaften, da sie eine hydrophile Oberfläche durch Hydrophobinbeschichtung

in eine hydrophobe Oberfläche umwandeln können, welche somit weniger anfällig für die Aus-

bildung von Biofilmen ist. Pilotstudien zeigten allerdings, dass Hydrophobine keine ausgeprägte

Zellbindung ermöglichen. Wir entwickelten daher eine Strategie zur genetischen Modifikati-

on von Hydrophobinen, welche eine Zellbindung ermöglicht, ohne die Hydrophobizität der

Hydrophobine zu beeinträchtigen. Vor der Durchführung unseres Projekts existierte keine

experimentelle Proteinstruktur des untersuchten Hydrophobinkomplexes. Mittels Proteinstruk-

turvorhersagemethoden, entwickelten wir daher ein atomistisches Modell des Hydrophobins
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und identifizierten eine Wasser-zugewandte Stelle, welche sich für eine genetische Modifikation

eignete. Durch Aufnahme der zellbindenden Sequenzmotive RGD und LG3 an besagter Stelle,

konnten wir die Bindung von Zellen auf Hydrophobinschichten immens verbessern, ohne dabei

eine Biofilmbildung zu begünstigen.

Strukturelles Modell zur Erklärung der Ausbildung von Gasvesikeln
Seit der Entdeckung von Krankheiten, welche in Zusammenhang mit Proteinaggregation stehen,

wie zum Beispiel die Formierung von Amyloid Strukturen bei Alzheimer Patienten, ist die Erfor-

schung von aggregierten Proteinstrukturen ein zentrales wissenschaftliches Thema. Strukturelle

Informationen über aggregierte Proteinzustände sind nur schwer experimentell zu charakteri-

sieren, da unstrukturierte Proteinkomplexe für Kristallographietechniken ungeeignet, und viele

Proteinaggregate zu groß für die Studie mit NMR Methoden sind. Ein interessantes Beispiel sind

Gasvesikel, welche den Auftrieb vieler wasserstämmiger Bakterien regulieren. Mit zwei Kolla-

borationspartnern der Universität Darmstadt entwickelten wir Modelle für Proteinaggregate, die

in der Ausbildung von Gasvesikeln in Bakterien wichtig sind. Für das innerhalb der Gasvesikel-

wand befindliche Protein GvpA gibt es bislang keine experimentelle Proteinstruktur. Durch de-

novo Modellierung erstellten wir ein Proteinmodell, welches in den experimentell arbeitenden

Gruppen bestätigt werden konnte. Mittels dieses Modells konnten wir den strukturellen Grund

zur Ausbildung von Proteinaggregaten durch das Protein GvpA erklären und zeigen, wie Gas

durch eine hydrophobe Oberfläche innerhalb des Vesikels eingeschlossen wird.

Die durch in-silico Protein-Protein Docking erstellte Struktur ist sowohl mit früheren solid-state

NMR Ergebnissen, als auch mit Mutageneseexperimenten kompatibel, welche spezielle Kon-

taktstellen innerhalb der Aggregatstruktur untersuchten.

Hochdurchsatzvorhersage unbekannter Peptidstrukturen
Seit 1970 wurden nur drei neue Klassen Antibiotika für die klinische Nutzung zugelassen. An-

timikrobielle, antifungale und antibiotisch wirkende Peptide werden daher als Hoffnungsträger

der Medizin gesehen, um der immer weiter fortschreitenden Immunität einiger Bakterienstäm-

me gegen bekannte Antibiotika entgegenzuwirken. Experimentelle Hochdurchsatzscreenings

zur Überprüfung der Wirksamkeit dieser Peptide sind sehr aufwändig und ressourcenintensiv,

da sie die Synthese vieler verschiedener Peptidsequenzen erfordern. Die 3D-Struktur einer

Peptidsequenz könnte zur Entwicklung von Struktur-Funktions-Modellen genutzt werden und

so eine verbesserte Möglichkeit zur Identifikation funktionaler Peptide darstellen.

Homologie- und andere wissensbasierte Methoden schlagen bei der Peptidstrukturvorhersage

häufig fehl, da Peptidsequenzen zu kurz sind, um eine aussagekräftige Homologie dafür abzulei-

ten. Im Vergleich zu größeren Proteinen führen Punktmutationen in Peptiden häufiger zu großen

Änderungen in der Tertiärstruktur. In diesem Projekt implementierten wir daher ein Protokoll

zur de-novo Peptidstrukturvorhersage auf POEM@HOME, dem von mir entwickelten, weltweit

verteilten, Rechnernetz für Proteinsimulation, das eine Hochdurchsatzvorhersage von Peptid-

strukturen ermöglicht. Wir verifizierten das Protokoll durch die Vorhersage der Strukturen von

vier experimentell aufgelösten Peptiden. Weiterhin untersuchten wir die niederenergetischen

Strukturcluster der Energielandschaft der Peptide und erklärten damit eine Scherungsbewegung,
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mit der ein β-Peptid zwischen seinen niederenergetischen Zuständen wechseln kann.

In-silico Untersuchung von Interaktionshotspots in Protein-Protein Interfaces
Eine Vielzahl biologischer Signalprozesse wird durch die Assoziation von Proteinen in Protein-

Protein Komplexen vermittelt. Das Verständnis dieser Interaktionen kann daher Einblick in diese

Prozesse geben und möglicherweise ihre Manipulation ermöglichen. Protein-Protein Interfaces

sind daher vielversprechende Ziele für die Entwicklung neuer Medikamente. Im Vergleich zu

Bindungstaschen, welche zur Medikamentenentwicklung mit niedermolekularen Liganden inhi-

biert werden, sind die Bindungsflächen von Protein-Protein Komplexen weit ausgedehnt. Eine

Inhibierung der Protein-Protein Bindung konnte mit mehreren experimentellen Methoden, wie

zum Beispiel der Bindung mit Antikörpern, erreicht werden. Eine Inhibierung mit kleinen Mo-

lekülen ist aufgrund von besserer Bioverfügbarkeit und geringerem Preis jedoch wünschenswer-

ter. Hierfür muss jedoch bekannt sein, welche Aminosäuren auf der Bindungsfläche den größten

Einfluss auf die Bindung haben, damit ein niedermolekularer Ligand für genau diese Bindungs-

stelle generiert werden kann. Zur Bestimmung dieser sogenannten Hotspots kann experimentell

ein Alanin Mutagenese Screening durchgeführt werden, in welchem jede Aminosäure in der

Nähe der Bindungstasche durch Alanin ersetzt wird. Wir haben den experimentellen Aufbau

in-silico nachempfunden und verifizierten ihn anhand von zwei experimentell charakterisierten

Systemen. Dieses Projekt wurde in Zusammenhang mit der Young Investigator Group von Dr.

Katja Schmitz (ehemals KIT) durchgeführt, welche Bindungshotspots am System der Chemoki-

ne analysierte.

De-novo Protein-Protein und Protein-Liganden Docking
In-silico drug-design untersucht Liganden aus umfassenden Liganden-Datenbanken und dockt

sie in bekannte Bindungstaschen von pharmazeutisch relevanten Proteinstrukturen. In SIMONA

wurden ebenfalls Parametrisierungen für Liganden implementiert. Diese testeten wir anhand

von Benchmarksystemen und erhielten in allen Fällen die korrekte Dockingpose. Ein identi-

sches Dockingprotokoll führten wir auch für die in der vorherigen Sektion untersuchten Protein-

Protein Komplexe durch. Wiederum reproduzierten wir die Benchmarkstrukturen innerhalb der

experimentellen Genauigkeit.

Da sich die Benchmarksimulationen nicht für Hochdurchsatzscreenings von Protein-Liganden

Interaktionen eignen, entwickelten wir ein hierarchisches Dockingprotokoll, welches mit einem

Bruchteil des Aufwandes auskommt und verifizierten es an weiteren sechs experimentell be-

kannten Protein-Liganden Systemen. Diese Methode kann nun zum effizienten in-silico Protein-

Ligandenscreening verwendet werden.

Morphologiesimulationen von Pentacenclustern
Die in der vorherigen Studie implementierten Kraftfelder für allgemeine organische Moleküle

wurden in diesem Projekt zur Simulation der Selbstorganisation von Pentacenclustern verwen-

det. Pentacen ist ein vielversprechendes Material zur Verwendung in der emittierenden Schicht

von OLED Displays. Bevor jedoch elektronische Betrachtungen dieser Schicht durchgeführt
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werden können, muss eine entsprechende amorphe Morphologie der Schicht erstellt werden.

Die simulierten Pentacencluster nukleiren zu Strukturen, wie sie auch der experimentell be-

stimmte native Pentacenkristall aufweist. Die teilweise auch amorphen Strukturen sind jedoch

in der Größe limitiert. Wir stellen daher abschließend eine Methode vor, welche das Verschmel-

zen zweier Pentacencluster stark beschleunigt und so Simulationen von nahezu unbegrenzten

Clustergrößen ermöglicht.

Sortierung von Kohlenstoffnanoröhren durch spezifische Polymerwicklung
Aufgrund ihrer vielfältigen Eigenschaften sind Kohlenstoffnanoröhren ein äußerst vielverspre-

chendes Material für zahlreiche Anwendungen der Elektronik und Mechanik. Weil die intrinsi-

schen Eigenschaften der Nanoröhre von ihren Chiralitätsindizes (n,m) abhängen, müssen die-

se für den gezielten industriellen Einsatz nach ihrer Produktion erst getrennt und dann sortiert

werden. Bestimmte Polymere mit Fluorengruppen binden präferentiell an Nanoröhren mit de-

finierter Chiralität. Wir konnten diese Präferenz in all-atom Monte-Carlo Simulationen sowohl

für Polymere mit Fluorengruppen als auch für eine weitere Polymerart mit Carbazolgruppen bei

zwei Nanoröhren unterschiedlicher Chiralität nachweisen. Die so erlangten Erkenntnisse decken

sich mit den experimentellen Dispersionsspektren und klären die dominanten Bindungsmodii

zwischen Nanoröhre und Polymer auf. Sie stellen den ersten Schritt zum zielgerichteten Design

neuer spezifischer Polymere zur Dispersion anderer Chiralitätskonfigurationen dar.

Ich bedanke mich herzlich bei der Carl-Zeiss Stiftung, die dieses Dissertationsprojekt über den

Zeitraum von 3 Jahren ermöglichte.
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1. Introduction

1.1. Overview

Proteins constitute the nano-scale machinery carrying out most of the biological processes in the

human body. Among many other functions, they catalyze biochemical reactions, exert mechan-

ical force or possess a structural function by providing the building blocks of cells. Sequencing

techniques were developed to obtain the primary amino acid sequences of many proteins: the

human genome project, which mapped most of the human DNA, in particular the protein-coding

sequences, has been completed in 2003[1]. However, knowledge of the genetic code yields all

but a glimpse at biological function. Most proteins spontaneously assume a unique structure,

determined by their amino acid sequence, in which they function. Where available, the medical

and biological sciences benefit greatly from such structural information, as it often offers key

insights into biological processes in general and diseases in particular. Unfortunately, to date,

three-dimensional structures are available only for a fraction of the interesting proteins. This

is particularly true for some pharmaceutically relevant protein classes, such as transmembrane

proteins. Often the experimental determination of the 3D-structure of these proteins is either a

very difficult and resource-intensive task or even not amenable to presently available techniques.

Modeling methods increasingly attempt to predict the structure of proteins, for which no experi-

mental structures exist, but the results of these methods have been mixed. For proteins with high

sequence similarity to a structurally resolved protein, adequate models can be generated. Occa-

sionally modeling even succeeds in the absence of a good template[2], but none of the presently

available methods can decide with certainty, whether a proposed model or an experimentally

determined structure is correct. This problem hinders the acceptance of theoretical protein

models in the life-sciences. In 2006 the database of all known protein models (RCSB)[3] was

pruned of all previously deposited theoretical predictions[4].

Prior to the deposition of an experimentally resolved protein structure in the RCSB database,

quality control software is applied to the protein structure, as even experimental structures can

feature local unphysical conformations, such as steric clashes, missing atoms or unphysical

sidechain conformers[5]. A similar local quality control method for theoretical protein models

does not help to identify low quality models, which have an incorrect global fold, but seem to be

correct locally. The development of a method for absolute quality control of protein models, one

of the tasks presented in this thesis, would significantly contribute to increase the acceptance of

theoretical protein models in the life science research.
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Presently Molecular Dynamics simulations dominate modeling attempts in the life and mate-

rials science. The high computational cost incurred in these simulations stems from the small

timescales, which need to be simulated due to atomic vibrations; a fundamental problem which

severely limits the timescales that can be realistically modeled by these techniques. Recently

Molecular Dynamics algorithms were optimized to work on a highly parallel architecture to

fold multiple small proteins repeatedly[6]. These simulations, which spanned more than 1ms
folding time, took multiple months on a very expensive high performance computer available to

only a single research group.

The timescale problem is not specific to the simulation of proteins, but to many systems, which

form their nano-scale structure in complex processes, such as polymer glass transitions[7].

Considering this situation it is surprising, that Monte-Carlo techniques, which historically pre-

ceded Molecular Dynamics simulations in the material sciences, have received considerably less

attention in the last decades. Monte-Carlo algorithms permit computation of thermodynamic

expectation values by generating the thermodynamically relevant ensemble of conformations

and do not exhibit the timescale problem. Previous Monte-Carlo investigations in our group

demonstrated their applicability for several different problems, including the protein folding

process[8, 9], protein-ligand docking[10] and morphology simulations of nanostructures in the

material sciences[11]. Unfortunately, in contrast to Molecular Dynamics, there is no code-basis

for adaptable and efficient Monte-Carlo simulations readily available.

The overwhelming fraction of the method development, required for the investigations reported

in this thesis, went into the development of a novel Monte-Carlo based simulation package,

which we named SIMONA: SImulation of MOlecular and NAnoscale systems, downloadable

from http://www.int.kit.edu/nanosim/.

In the work presented here, I contributed to the development of Monte-Carlo based simulation

for nano-scale systems by:

• Implementing Monte-Carlo algorithms using a variety of forcefields for proteins, protein-

ligand docking and general nanosystems.

• Implementing and testing a method for absolute quality control of protein models.

• Predicting protein structures and complexes and verifying the results experimentally.

• Simulating the nano-scale morphologies of novel materials.

I would like to express my gratitude to the Carl-Zeiss Stiftung, which funded my Ph.D project

over the course of three years.
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1.2. Outline

I structured the thesis into two method and four application chapters:

In chapter 2, I introduce the structural basis for protein simulations, which included applications

to protein folding (section 4 and section 5), protein-protein interaction and protein-ligand

docking (section 6). In addition to biomolecular systems I have implemented forcefields and

simulation protocols for nanomaterials, including carbon nanotubes and pentacene (section 7).

In chapter 3, I discuss Monte-Carlo methods, required to simulate the systems studied in this

thesis, and the forcefields, required for the simulation. Section 3.2.1 presents a general N-Body

(Lennard-Jones, Electrostatics) algorithm for emerging high-performance computer graphics

cards, which accelerate some of the simulations, in particular for the materials sciences over

100-fold compared to standard CPUs. I continue the chapter with the discussion of implicit

solvent models in section 3.2.2 used to simulate most of the biomolecular systems and conclude

with implementation specific details of the development of SIMONA in section 3.3.

Method for absolute Quality Control of Protein Structures
In chapter 4, I present a method for absolute quality control of protein models. Knowledge of a

protein’s 3D structure allows insight into its function and possible avenues to modulate its func-

tion. However the reliability of many protein models arising from protein-structure-prediction

methods, in particular those generated by fully automated servers, is unclear, which has led to

a low acceptance of theoretical protein models in the life-science community. In this chapter,

I report on the development of a novel approach for absolute quality assessment of protein

models for the important subclass of globular proteins.

As proteins are only marginally stable I hypothesized that not only the complete global protein

structure is in the state of lowest free-energy, but that also the distribution of energies of single

amino acids is characteristic for the folded state. I therefore collected statistics of energy

contributions of individual amino acids, using a biomolecular forcefield developed previously

in the group from a set of experimental high-resolution protein structures and derived a N -

dimensional statistical test to assess the quality of a single protein structure by comparing

against the experimental data. Our method does not rely on extensive sampling of the protein’s

conformational space, as it is able to judge the quality a-priori. Applied to decoy sets of globular

proteins, we could identify the low quality structures in the sets in 93% of the cases.

Chapter 5 presents three applications of several projects for protein-structure prediction, in part

in collaboration with experimental groups.
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Design of genetically engineered proteins for biocompatible surfaces
Development of novel materials for implants has become an urgent issue in medicine. The

longer life-expectancy of patients, who often get their first implant before the age of 50,

increasingly necessitates implantreplacement at very high age, when operations carry a highly

increased risk. Development of implant materials that last longer than two or three decades

would obviate the need for many of these operations. One possibility to develop such implants

is research into surfaces with engineered biocompatibility with respect to cell adhesion. Ideally

the surfaces should attract bone stem-cells, but at the same time repel bacteria and other cells

that do not participate in strong adhesion between the newly grown bone and the implant.

In section 5.2, I report a joint investigation of groups at the KIT and the orthopedic clinic at the

University of Heidelberg to develop genetically-modified proteins for biocompatible implant

coating. Hydrophobins, which are fungal proteins with interesting physico-chemical properties,

are one possible candidate for the coating of implants as they are able to turn hydrophilic

surfaces hydrophobic and therefore less susceptible to the adhesion of bacteria. However, initial

studies of hydrophobin coated surfaces did not show improved cell adhesion. We have therefore

developed a strategy to design genetically modified hydrophobins, which inherit the hydropho-

bic and immunologically inert characteristics of the parent protein, but improve the differential

adhesion of cells. After designing the protein with computational tools its characteristics are

verified experimentally.

To date there is no experimental structure of the hydrophobin-fusion-protein complex which we

investigated. We therefore developed an atomistic model of the protein using structure predic-

tion. With this model we identified a solvent-exposed surface suitable for genetic modification.

By fusing RGD and LG3 binding motifs into the exposed site, we improved the cell adhesion

properties of the hydrophobin: Stem-cells now adhere better to the surface coated with the

genetically modified hydrophobin, while adhesion of bacteria and fibroblasts is suppressed. As

one possible avenue to improve these coatings even further we investigated assembly mecha-

nisms of hydrophobins into very stable rodlets at air-water interfaces to determine, which parts

of the protein are essential for the rodlet formation.

Structural model of the development of gas-vesicles in aqueous bacteria
The study of protein aggregation has been an active research topic for many years, which

increased further with the discovery of aggregation-related diseases, such as the formation of

amyloid fibrils in patients with Alzheimer’s disease. Presently structural information about

many aggregates is difficult to obtain, because aggregations of unstructured assemblies are

difficult to investigate with x-ray crystallography, while the complexes are too large for inves-

tigation with NMR. An example for such protein aggregates are gas-vesicles, which are not

soluble and tend to form amorphous aggregates. Gas vesicles are present in many bacteria

living in water and used by these organisms to regulate their buoyancy. Although the genetic

information of the proteins participating in gas-vesicle formation have been identified, it has not

been possible to resolve the three-dimensional structure of some of the most important proteins

in gas-vesicle formation. Together with an experimental group at the University of Darmstadt,

I have developed a first model for gas-vesicle formation in aqueous bacteria, which I report in
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section 5.4.

Using protein-structure prediction methods we developed a nano-scale structure of the gas-

vesicle protein GvpA, a major component of the gas-vesicle wall and its assembly into extended

structures. Our results provide insight into the mechanism by which gas-vesicles are formed

and how gas is trapped inside the vesicle. This investigation was complicated by the fact, that

no structural information of similar (homologous) proteins was available. We therefore resorted

to model the protein using de-novo structure prediction methods based on secondary structure

analysis. The predicted structure of the protein monomer could be used to model the aggregation

of the β-sheets by docking monomers to form an extended superstructure, which fits well with

the observed rib-like shape of the gas-vesicles. We were able to provide experimental validation

for the predicted structure by mutagenesis and protease cleavage experiments validating the

most important contact sites predicted in the model and ATR-FTIR to validate the secondary

structure content.

High-throughput prediction of peptide structures
In section 5.5, we extended our protein structure prediction efforts to design a method for the

high-throughput prediction of peptides. Antimicrobial, antibiotical and antifungal peptides are

emerging as novel drugs, to combat the growing immunity of some bacterial strains against

current antibiotics. The experimental high-throughput screening of the activity of these peptides

is a very costly and demanding task and requires the synthesis of thousands of different peptide

sequences. This work could be significantly reduced by the knowledge of the peptide’s 3D

structure which could be used as the basis for structure-function relationships.

Homology or knowledge based methods for peptide structure prediction frequently fail to

predict the correct peptide structure as peptide sequences are too short to find a viable homolog.

In contrast to large proteins point mutations lead more often to large structural change. In this

study, we implemented a de-novo prediction protocol on the POEM@HOME server to perform

high-throughput prediction of peptide structures. We verified this protocol by predicting the

structure of four experimentally known peptides of different topology. We further introduce

a clustering algorithm to elucidate the low-energy landscape of the peptides and identify a

shearing mechanism, by which a β-peptide transitions between its low energy states.

Chapter 6 presents two applications investigating protein-protein and protein-ligand inter-

faces.

Computational Alanine Screening
Many biological signaling processes are mediated by protein-protein association; many pro-

teins function only as part of a complex assembly of subunits. For this reason protein-protein

interfaces are emerging as novel drug targets. In comparison to complexes of proteins and small-

molecule ligands, protein-protein interfaces are more extended. Several experimental techniques

to target these extended interfaces, e.g. with antibodies have been demonstrated, but these re-

main costly and limited in the range of applicability. In particular small-molecule ligands are
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highly desirable, because of their lower cost, ease of handling and better bioavailability. Due to

the usually large area of protein-protein interactions, it is even more difficult to develop viable

ligands that modify protein-protein binding. One of the established experimental techniques to

identify the binding hotspots within protein-protein interfaces is alanine screening, which re-

quires genetic modification of the protein sequence for every amino acid. Because this is costly,

development of computational alanine screening protocols, which we report in section 6.1, can

aid understanding the experiments and reduce the associated effort. We have developed an in-

silico alanine-screening protocol to pre-screen specific interaction sites and verified its precision

by investigating the binding hotspots of two experimentally known protein-protein complexes.

This work was carried out in cooperation with an experimental group, the young investigator

group of Dr. Katja Schmitz, to identify hotspots in the binding of chemokines, which are im-

portant target molecules in inflammation, to their receptors. The validation of the predictions by

experimental methods is still ongoing.

De-novo protein-protein and protein-ligand interactions
In section 6.2, we present a strategy for protein-protein and protein-ligand docking. Methods for

in-silico alanine screening (presented in the previous project) rely on the existence of a model

of the protein complex, which is sometimes not available, even if structures for the binding

partners exist. For this reason we implemented an algorithm to predict the binding pose of

protein-protein complexes and verified it by docking three different protein-protein complexes.

We were able to transfer the protein-protein docking protocol to dock also small-molecule lig-

ands into protein receptors for drug design. We further introduce a method for high-throughput

screening of protein-ligand complexes for drug development, which was verified by docking of

six pharmaceutically relevant small molecule ligands to their protein receptors.

In chapter (Ch. 7), I report the first morphology simulations using the new SIMONA code for

two nanoscale systems of interest to the materials sciences:

Morphology Simulations of Pentacene Clusters
In section 7.1, we introduce a method to model the morphology of amorphous pentacene

clusters. Pentacene is a widely used material for the electroluminescent layer of OLED, as mo-

bilities of pentacene composites rival those of amorphous silicone. Simulating the morphology

of amorphous pentacene is the first step towards electronic structure calculations to modeling

electronic transport in these systems, which is required for the development of computer-aided

strategies to optimize the properties of OLED/OPV materials. We identify nucleation centers

of pentacene stacking in a herringbone conformation, which have the same local order as

pentacene crystals.

Dispersion of Single-Walled Carbon Nanotubes by Chiral Index
In section 7.2, we implement a strategy to investigate the wrapping of polymers around
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nanotubes. Mechanical and electronic properties of nanotubes vary depend strongly on their

chiral index. Efficient exploitation of these properties in industrial applications requires an

efficient and inexpensive sorting methods to obtain a homogeneous nanotube material. A

promising approach to nanotube sorting was the discovery of polymers, which bind selectively

to nanotubes with specific chiral indices. Since many polymers can be envisioned for this

purpose understanding of the mechanism of selective binding is essential. In agreement with

the experimental results we modeled selective binding of polymers to nanotubes the different

diameter and chiral index.

Chapter 8 concludes this thesis and summarizes the main insights won during the various

projects.
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2. Biomolecular Systems

Proteins incorporate many different functions vital to the human body. They catalyze chemical

reactions, transcribe DNA, exert physical force by muscle contraction and mediate the immune

response among many other functions[12]. Many proteins assume a unique, functional 3D struc-

ture, determined only by the sequence of amino acids they consist of. The misfolding and muta-

tion of proteins is the cause of many serious and often fatal diseases. To understand biomolecular

function and malfunction, the first step is to understand the structure of biomolecules.

In this chapter, we characterize the structure of biomolecules. In section 2.1, we introduce the

components of proteins from the protein’s sequence of amino acids, to local and global structural

motifs. In section 2.1.3, we report folding mechanisms, by which some proteins fold into their

tertiary structure. In section 2.2, we briefly discuss hypotheses explaining the marginal stability

of proteins.

2.1. Biomolecular Structure

Proteins are polymers of amino acids, most of which fold spontaneously into a unique 3D struc-

ture. The amino acid chain of a protein is comprised of an alphabet of twenty different amino

acids[12]. The DNA carries the information for all primary amino acid sequences in the human

body. It is transcribed in multiple intermediate steps from an alphabet of four nucleotides of the

DNA into an alphabet of twenty amino acids.

H

H

N CC

H
H

O

O

Sidechain

H

H

N CC

H
H

O

O

Sidechain

H

O

H

Two unconnected amino acids

H2O

H

H

N CC

H

O

SC

SC

H

N CC

H
H

O

O

Formed dipeptide

Fig. 2.1.: Formation of a peptide bond between two amino acids. The terminal OH group from the N-
terminal amino acid and a hydrogen atom from the C-terminal amino acid form a water molecule. The
now open bond positions are bonded together by a new peptide bond between carbon and nitrogen.
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2.1.1. Primary Structure – Amino acid sequence

Amino acids are molecules containing both a functional amide- and a carboxyl-group[12].

Amino acids can be linked by covalent peptide bonds illustrated in Fig. 2.1. The terminal

carboxyl- and amino- groups of the respective amino acids are linked together and form a water

molecule. Twenty amino acids, which feature identical backbone and distinct sidechain atoms,

exist in the human body. The carbon atom bound to the sidechain is usually denoted as Cα, the

other carbon in the mainchain is denoted as C ′.

The polypeptide of linked amino acids of a protein is called the primary structure. The in-

formational content stored in this sequence is equivalent to the corresponding strand of DNA.

Because of the planarity of the peptide bond shown in Fig. 2.1, two consecutive Cα atoms lie

almost in the same plane. Two backbone dihedral angles define the relative orientation of the

peptide planes. The dihedral angle φ involves the backbone atom C ′ of the preceding amino

acid in the chain and N ,Cα, and C ′ of the following amino acid, while the dihedral angle ψ

involves the backbone atoms N ,Cα,C ′ and N of the next amino acid in the chain. Shear within

the peptide plane is denoted with the angle ω, which involves the atoms Cα,C ′ from one and

N and Cα of the successive amino acid. Two different amino-acid isomers exist: Most amino

acids occur in the trans-isomer (ω ≈ 180◦) in the folded state, with an exception being Proline,

which also frequently occurs in the cis-isomer (ω ≈ 0◦). The definitions of the three dihedral

angles, φ,ψ,ω are shown in Fig. 2.2. According to their sidechains, amino acids can be grouped

by their various chemical properties into charged, polar and hydrophobic amino acids. Twelve

of the twenty amino acids can be synthesized by the human body, the eight remaining amino

acids are called essential amino acids and need to be supplied externally. The properties of the

twenty amino acids can be found in Fig. 2.3[13].

2.1.2. Secondary Structure – Formation of locally stable segments

Pauling and Corey proposed two locally stable segments in proteins: β-sheets[14] and α-

helices[15]. Both motifs are stabilized by the development of multiple mainchain hydrogen

Fig. 2.2.: Illustration of three mainchain dihedral angles (φ, ψ, ω). The dihedral angle φ involves C ′,
N ,Cα of one and C ′ of the following amino acid. ψ involves the backbone atoms N ,Cα,C ′ of one and N
of the next amino acid. The dihedral angle ω involves Cα,C ′ from one and N and Cα from the following
amino acid. As the dihedral angle ω is close to 180◦ in the trans isomer, Cα atoms lie in plane (gray
areas). The circle denotes the atoms of a single amino acid from N- to C-terminal. Sidechains are not
shown.
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(a) α-Helix (b) β-Sheet

Fig. 2.4.: Two major secondary structure motifs: α-helix and β-sheet. Both motifs are stabilized by
development of multiple hydrogen bonds. While the α-helix is stabilized by hydrogen bonds (blue dashed
lines) between every turn, the β-sheet is stabilized by hydrogen bonds between two bridges.

bonds. The α-helix winds the mainchain helically, while pointing the sidechain outwards as

seen in Fig. 2.4a. The mainchain oxygen group of each amino acid ai develops a hydrogen

bond to the nitrogen group of the amino acid ai+4. β-sheets are pleated conformations of the

mainchain exposing the sidechains of following amino acids on opposite sides (Fig. 2.4b). The

N and O groups are exposed perpendicular to the sheets direction and form hydrogen bonds

with adjacent β-bridges. Depending on the bond order, sheets are classified as antiparallel (two

amino acids on opposing side share two hydrogen bonds) or parallel (N and O groups of one

amino acid bond to two amino acids on the other sheet, which are separated in sequence by

another amino acid).

2.1.3. Tertiary Structure – Development of long range native contacts

The assembly of the local secondary structure into a global fold is called tertiary structure.

Anfinsen’s thermodynamic hypothesis states that a protein finds its native conformation as the

global minimum of its free-energy G = H − T S[16]. The protein’s unique 3D structure is

therefore defined only by its primary amino acid sequence. Several folding theories exist, which

explain how a protein reaches this unique conformation. Levinthal ruled out a simple random

search through conformational space by estimating the time to find the unique folded conforma-

tion using just random sampling to exceed the age of the universe[17]. One of the most prevalent

folding hypotheses is the theory of a folding funnel[18], illustrated in Fig. 2.5. In this theory,

a trade-off between internal energy U and entropy S occurs in the folding process. While dur-

ing the initial stages the protein has a large conformational freedom (high entropy) the chain

collapses into a molten globule state afterwards reducing in energy and entropy. During this

stage the first native contacts form, leading to the transition state, after which the protein may or

may not pass discrete folding intermediates towards the final native conformation (see Fig. 2.5).

Literature reports three different generalizations of this funnel scenario:

• Hydrophobic collapse model: Proteins in the hydrophobic-collapse model first develop
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Fig. 2.5.: Protein folding in the funnel view. The entropy is shown as the width; the energy as the depth
of the funnel. The protein has large conformational freedom in its extended conformation when starting
to fold (top). It drops down in energy and entropy into a molten globule collapsed state in which the first
native contacts start forming. At the end of the folding process the protein undergoes several discrete
intermediate conformations until it rests at the global free energy minimum. Figure based on work by
Onuchic et al[18].

a hydrophobic protein core by enclosing hydrophobic amino acids within a hydrophilic

shell. Secondary structure development is proposed to occur afterwards[19].

• Framework model: The framework model predicts secondary structure development as

the initial stage of folding. The stable secondary structure elements then diffuse through

conformational space until native contacts stabilize the complete tertiary structure[20].

• Nucleation condensation model: In the nucleation model locally-stable segments form

first. The rest of the structure then forms incrementally around this nucleation point. The

three sheet WW domain protein FIP35, which was recently studied in extensive Molecular

Dynamics simulations[6], showed this behavior: Before the second sheet was able to fold,

the first β-sheet had to be created from the nucleated β-turn. A further specialization exists

in the nucleation-condensation model, where nucleation points fold and unfold during the

folding process.

Very often one cannot attribute the folding mechanism of a specific protein to a single of the three

theories, but rather to a mix of the above[21]. Fig. 2.6 shows the folding of the fructose repressor

DNA-binding domain 1UXD, which featured properties of both the hydrophobic collapse model

and the framework model.

2.2. Protein stability

It is widely accepted that most globular proteins are marginally stable with ∆G ranging from

5 to 15 kcal/mol[23]. Experimental and theoretical studies successfully increased the thermo-
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Fig. 2.6.: Three snapshots of a folding simulation of the fructose repressor DNA-binding domain 1UXD.
During the initial stage, the protein undergoes both development of secondary structure (upper row)
and hydrophobic collapse (lower row). After initial helix development, the third helix diffuses into the
gaps left by the other two helices (upper row, second and third image). During this process most of the
hydrophobic surface (white, lower row) remains covered after the initial collapse. The hydrophobicity
(Eisenberg-Scale[22]) is encoded in shades of green. Fig. published in Strunk[21].

dynamic stability of proteins. The most popular method for increasing thermostability was the

optimization of hydrogen bond networks and internal hydrophobic packing by mutation[24].

While it seems obvious that optimizing hydrogen bonding will lead to increased thermostability,

it was expected that this optimization should have already occurred in nature due to evolutionary

pressure, i.e. the protein structures should favor conformations of maximum thermostability.

Multiple hypotheses exist to explain, why proteins are only marginally stable[25, 26]. They ei-

ther propose an active reason implying that low thermostability is required for the correct protein

function or state a passive reason attributing the low stability to a side effect of evolution.

Active Hypotheses

• The protein’s low stability results in high flexibility required for proper biophysical func-

tion[27].

• Protein degradation is rendered impossible if proteins are too thermostable[27, 28].

• High protein stability could extend folding time or trap the protein in intermediate trapped

states[25].

• Low thermostability might be needed for structural uniqueness[25].

Passive Hypotheses

• An (energetical) stability threshold exists above which random mutations dominate.
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• The mutational random walk below the stability threshold is biased towards destabilizing

mutations, as stabilizing mutations occupy only a minimal fraction of the whole configu-

rational space[25].

The consensus of these theories is that proteins are marginally stable over the vast configurational

space sampled by random mutations, which permit the correct function of the protein.
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3. SIMONA: Simulation of Molecular and Nanoscale Systems

The exponential growth of the available computational resources increasingly permits molecu-

lar simulation methods to complement experiment and theory in understanding and predicting

the properties of molecular and nanoscale systems in the life- and materials sciences [6, 29–

31]. While Monte-Carlo algorithms are widely used to estimate thermodynamic properties in

condensed matter physics[32], the majority of simulations in the life-sciences use Molecular

Dynamics methods as the main workhorse[33–35].

For many processes in biological systems and materials development, it is sufficient to consider

the equations of motion that describe the time evolution of a system of particles in a classical

forcefield. The simulation of the trajectory of these particles can be carried out using Molecular

Dynamics methods. Molecular Dynamics methods solve the Newton equations of motion (Eq.

3.1) using various numerical integration techniques.

mi
∂2~ri(t)
∂t2

= ~Fi(t), i = 1, ..., N (3.1)

~Fi = −∂V
∂~ri

. (3.2)

Most of these techniques discretize the equations of motion at timesteps ∆t. One of the most

popular integration techniques is the Verlet-Störmer method[36]:

~r(t+ ∆t) = 2~r(t)− ~r(t−∆t) +
~F (t)
m

(∆ t)2 +O(∆t4) (3.3)

~v(t) = 1
2 ∆t (~r(t+ ∆t)− ~r(t−∆t)) +O(∆t2) (3.4)

The local error of ~r(t) in a Verlet-integration (Eq. 3.3) is therefore of fourth order in ∆t. As

the local errors accumulate over time, the global error of a Verlet integration is O(∆t2) for both

~r(t) and ~v(t). To guarantee stability of the simulations, the timestep ∆t has to be chosen com-

mensurate with the shortest timescale occurring in the system: atomic oscillations happen on

femtosecond timescales, therefore timesteps of 1 fs are common in most Molecular Dynamics

simulations. This discretized timestep is many orders of magnitude smaller than the timescales

of most relevant processes, which occur on ms to s timescales. A millisecond simulation at

a femtosecond timestep requires about 1012 evaluations of the force F for all particles in the

system. Investing in this effort, the reproducible folding of small proteins was reported with

simulations spanning trajectories of more than a millisecond[6]. These simulations were only

possible using a specialized computing architecture currently available only to a single research

group worldwide. The de-novo folding of large proteins or simulations of large conformational

change are still out of reach, even with these specialized architectures.

In comparison most Metropolis Monte Carlo techniques, and variants thereof, do not suffer
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from the timescale problem and provide equivalent thermodynamic information of the system.

A Monte-Carlo algorithm generates a chain of conformations, by perturbing the old conforma-

tion and accepts or rejects the proposed conformation based on its physical distribution. In this

approach, motions on short timescales (oscillations) can be averaged out and do not need to

be modeled explicitly. Unlike Molecular Dynamics algorithms, most Monte-Carlo algorithms

do not offer kinetic information about the system, although Kinetic Monte-Carlo generalizations

exist for special systems[37]. Presently few efficient code packages for Monte-Carlo simulations

are available, such that the full potential of this method family is not realized.

This chapter comprises the development of SIMONA, a general-purpose tool for Monte-Carlo

simulations. Section 3.1 reports the Metropolis Monte-Carlo method. In section 3.2, we will

discuss the forcefields needed to parametrize the systems under study and explain their imple-

mentation into the SIMONA simulation package developed in section 3.3. Parts of this chapter

were previously published in Strunk et al.[38]. I thank the publisher John Wiley and Sons and

all co-authors for the possibility to republish these materials as part of my thesis.

3.1. Monte-Carlo simulation techniques

Monte-Carlo methods generate a chain of conformations, such that the time-average of the sam-

pled conformations equals the ensemble average in the limit of long simulation time. The most

widely used algorithm employs Metropolis Monte-Carlo sampling to evaluate thermodynamic

expectation values according to an equilibrium distribution (Eq. 3.5)[39].

〈A〉ρ = Tr(Ae−β H)
Tr(e−β H) . (3.5)

Explicit evaluation of Eq. 3.5 is not numerically feasible for most non-trivial systems, because

of the size of the configuration space. However, for many systems, the partition function Z is

dominated by a much smaller subspace, which is sampled by means of importance sampling in

Metropolis Monte-Carlo simulations.

Metropolis Monte-Carlo
Metropolis Monte-Carlo methods implement a Markov-Chain process, in which a proposed con-

formation ~R(i) is generated from the previous conformation ~R(i−1) without memory of prior

conformations[39]. The general Markov-chain algorithm follows the scheme shown in Fig. 3.1.

The transition probability πi→j between conformations i and j is chosen such that the distribu-

tion of states ρ(i) converges towards the target equilibrium distribution ρ = ρ(∞). If we denote

the distribution of states at step i with ρ(i), the distribution in step i + 1 can be obtained by

multiplying with the transition probability matrix Π(i, j) = πi→j (Eq. 3.6):

ρ(i+1) = ρ(i)Π . (3.6)
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generate

new conformation

Input

True

False

Evaluate A

every q steps

repeat

The Metropolis Monte-Carlo algorithm:
1. We start with an initial conformation ~R(i).
2. We generate another conformation by a

random perturbation ~R(p).
3. We draw a new random number r ∈ [0, 1].
4. If r is smaller than the transition proba-

bility πi→p, we accept ~R(p) as the new
~R(i+1); otherwise we continue with ~Ri as
the new ~R(i+1).

5. Every q steps, we evaluate our observable
A and update the mean value 〈A〉ρ.

Fig. 3.1.: Generalized Markov-Chain Monte-Carlo simulation flow: New conformations are generated
and accepted according to the transition probability πi→p.

In equilibrium, the distribution is invariant under the same transformation (Eq. 3.7):

ρ(∞) = Πρ(∞) . (3.7)

Hence ρ(∞) has to be eigenvector to Π with eigenvalue 1. The probability to observe the system

in any of the states i is
∑
ρi = 1 (the system is definitely in one state). As the probability

content
∑
ρi must not increase or decrease in any step i → i + 1, the sum of all transition

probabilities in a row of the matrix has to also be 1. A matrix with these features is called a

stochastic matrix. One example to fulfill Eq. 3.7 is:

πi→j
πj→i

= ρi
ρj

. (3.8)

Eq. 3.8 is called the detailed balance condition, which needs to be fulfilled to converge towards

the equilibrium distribution. The most popular choice for πi→j is the Metropolis criterion[39]

given in Eq. 3.9.

πi→j,M =
{
M exp(−β (Ej − Ei)) Ej > Ei

M otherwise
. (3.9)

Evolutionary algorithm
Often Metropolis Monte-Carlo techniques are not efficient enough to reach the thermodynamic

equilibrium for large systems. Sometimes, for example for the problem of protein structure

prediction and refinement, the detailed balance criterion does not need to be fulfilled, as one

is only interested in the conformations of lowest energy, but not the complete equilibrium en-

semble. Extensions of Metropolis Monte-Carlo algorithms exist to reach the equilibrium faster

and sample a larger area of the conformational space in parallel. In this section we present an
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Fig. 3.2.: Flowchart of the Evolutionary Algorithm. The Evolutionary Algorithm focuses on evolving
structures in a population by balancing structural diversity and energy optimization. After randomly
annealing a single structure from the population, the conformation is extracted and compared to the
population. In case of similar conformations worse of energy, these are discarded from the population. If
the new conformation is energetically viable and structurally dissimilar to the existing ones it is included
in the population.

evolutionary algorithm, which evolves many protein conformations inside a population towards

the global energy minimum, while balancing population diversity (see Fig. 3.2). Balancing the

structural diversity of the population of conformations allows the parallel sampling of different

parts of the free-energy landscape, also those inaccessible by barriers. In comparison, multiple

Metropolis Monte-Carlo simulations started from N similar replica, would sample mostly the

area around the thermodynamic equilibrium, where they were started.

One iteration of this algorithm consists of the following steps:

1. Metropolis Monte-Carlo simulations are started from the members of the population (usu-

ally as many as the number of available CPUs).

2. A fixed amount of Metropolis Monte-Carlo steps is simulated.

3. The structures are assembled at the end of the simulations and sorted into the population:

a) If no similar conformations are found within the population:

i. The structure is accepted, if the population consists of not enough members.

ii. The structure is accepted, if it has a better energy than the worst energy structure

currently in the population.

iii. The structure is rejected otherwise.

b) If similar conformations are found inside the population:

i. If the conformation has the best energy among all similar ones, all similar struc-

tures are deleted, the new conformation is retained.

ii. The structure is rejected otherwise.
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As a similarity criterion one can use the RMSD between two structures. If the RMSD is below

a threshold, conformations are regarded similar and removed from the population. This algo-

rithm ameliorates the problem of Monte-Carlo to freeze the conformation on a rugged energy

landscape, where a Monte Carlo algorithm can get stuck in local minima. The evolutionary al-

gorithm solves this problem in a similar way to Tabu search algorithms[40, 41]. In Tabu search

algorithms, a single simulation is carried out, which keeps a memory of visited conformations.

These visited conformations must not be revisited by the algorithm in subsequent simulation

steps, they are “taboo”. If the simulation has once visited a local minimum, subsequent simula-

tion steps will sample the vicinity of the minimum and ultimately be able to leave region of the

conformational space near the minimum, as all conformations in the vicinity will be forbidden.

In comparison, the evolutionary algorithm allows a single member of the population to be

“stuck” in a local minimum. Due to the similarity criterion, other members of the population

are not allowed to reside near the same conformation and are therefore forced to sample other

regions of the energy landscape.

If the population size is too small, the evolutionary algorithm can still freeze and get stuck in

many local minima. We have implemented a multi-temperature generalization, which evolves

several populations at different temperatures. A temperature is assigned to each replica, when

a new simulation is started. This temperature can either be the temperature of the population

it resides in, or the temperature of the population one step higher or one step lower in temper-

ature. Using this algorithm, which is akin to parallel tempering[42–45], barriers in the energy

landscape can be overcome, by switching into another population.

3.2. Forcefields

Many processes in nature, which do not break or form covalent bonds, can be described by clas-

sical mechanics. The potential functions that approximate the energy of the systems under study

are called forcefields. Many forcefield terms are now completely standard and many specific

parametrizations of forcefields exist for the systems of interest[46–50]. This section introduces

the types of forcefields implemented in SIMONA. In section 3.2.1, we first introduce gener-

alized distance dependent forcefields and discuss the parallel evaluation of these energy terms

for N-body systems. In section 3.2.2, we present methods for implicit treatment of solvation

effects.

3.2.1. Pairwise interactions

Pairwise interactions are modeled using forcefields of the form:

EP =
N∑
i=0

N∑
j=0,j 6=i

f(~ri, ~rj) . (3.10)

Most systems simulated in this thesis require a potential that models Pauli-exclusion and dipole-

induced London attraction. These are modeled using a standard 6-12 Lennard-Jones poten-
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tial[51]. The most common form of the Lennard-Jones potential is:

U = 4 ε
[(

σ

R

)12
−
(
σ

R

)6
]

. (3.11)

Electrostatic interactions are most often described using partial-charge Coulomb electrostat-

ics[52]:

E = q1 q2
4π ε0

1
|~ri − ~rj |

. (3.12)

With increasing system size, the N-Body problem, i.e. the evaluation of pairwise potentials

for a system of N atoms, constitutes the most computing intensive component. For systems

with 50, 000 atoms or more, 95% of the time are spent in the O(N2) evaluation loop of the

forcefield evaluation in Eq. 3.10, e.g. for the electrostatic energy. We therefore developed a par-

allel implementation to evaluate general N-Body terms on GPU architectures using the OpenCL

framework[53]. Previous implementations of efficient pairwise potentials often evaluated only

a fraction (usually O(N log(N)) of the interactions by a spatial (tree-) decomposition of the

atom coordinates to optimize the simulation of large systems[54]. Short-range interactions, such

as Lennard-Jones use cutoffs, while long-range interactions, most notably electrostatic inter-

actions, use multipole-expansions[55]. The work presented here is based on work by Elsen et

al.[56] and was previously published in Strunk et al.[57]. It uses an algorithm of higher order

O(N2) than treecode algorithms, but is easier to parallelize and therefore faster for the systems

of intermediate size (104 − 105 atoms)[58].

GPU optimization of N-Body forcefield evaluations

To port the evaluation of Eq. 3.10 efficiently, we have to keep the limitations of modern SIMT

(Single Instruction, Multiple Threads) architectures, like GPUs, in mind[59]. An off-the-shelf

2012 single-chip graphics card can have up to 2048 cores grouped into 32 compute units (Data

from AMD Radeon 7970). Each compute unit is only able to execute the same codepath at the

same time using different data as input. Every branch (if, else statement) inside an OpenCL

kernel doubles the execution time of the branches, as one branch is idle, waiting for the other

branch to finish.

As different compute units can execute different code branches at the same time, workitems (also

called tasks or threads) are grouped into workgroups, which are executed on different compute

cores: The size of one workgroup has to be divisible by the size of a compute unit[59]. Most

GPUs nowadays adopt a three-stage memory hierarchy (see Fig. 3.3). Global off-chip memory

is the largest memory area with sizes of 2GB for consumer products to 24GB for compute

cluster solutions. Access to this memory is generally slow compared to the on-chip cache and

should only occur in an ordered fashion, i.e. 64 cores should access 64 consecutive memory

positions, of which the first is aligned to the on-chip memory (see Fig. 3.3 b). Whenever an

unordered memory access occurs, an extra read instruction is generated: 16 ordered reads result

in one read instruction, 16 unordered reads result in 16 read instructions. All cores have access

to the whole segment of global memory.
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Workitem/Core

private memory

(single floats)

Workitem/Core

private memory

(single floats)

Workitem/Core

private memory

(single floats)

Workitem/Core

private memory

(single floats)

Compute Core

Workgroup

Local Memory

(64 K)

Local Memory

(64 K)

Broadcast

and Ordered

Access

Global Memory

(multiple GB)

Ordered

Access

(a) OpenCL memory models (b) Memory access patterns

Fig. 3.3.: Memory hierarchy and access patterns of SIMT architectures[53]. (a) Current GPUs adopt a
three-staged memory model. A large segment (multiple GB) of global memory is placed off chip, i.e.
not within the GPU. This memory allows efficient ordered reads from all cores. Workgroups can access
a faster shared local memory segment. Local memory sizes differ between architectures but are usually
less than 100K. This memory segment allows ordered and broadcast reads. Every core has a very small
segment of private memory, which usually holds only a few floating point values. These segments allow
for random access. (b) Ordered (up) and Broadcast (down) memory access patterns. In a broadcast read,
every workitem of a single workgroup reads the same memory position. In an ordered read, consecutive
cores read consecutive memory positions.
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Fig. 3.4.: N-Body parallelization strategy. Step 1: Every core loads its assigned coordinate ordered into
the private memory of a core. Step 2: A coordinate segment is loaded into the local memory (ordered load,
ordered store). Step 3: All cores iterate over the loaded coordinates by broadcast loads and calculate
the interaction energy between their assigned coordinates and the loaded one. This is repeated for all
coordinate segments.

Access to local memory is faster as it is usually situated on-chip and shared between workgroups.

A common local memory size is 64KB. Local memory only persists for a single execution of a

kernel in a workgroup; afterwards it is cleared. Similar to the global memory, only ordered reads

can be carried out in parallel. Additionally local memory supports a broadcast in one operation.

During a broadcast the workgroup can read one memory position at the same time. Random

access is only possible from register memory local to the single core. Only a few floating point

numbers fit into this memory.

Keeping the GPU and memory limitations in mind we designed the N-Body kernel in the fol-

lowing way; N denotes the number of atoms and also the number of started kernels, WS denotes

the workgroup size:

1. For each atom one workitem (kernel) is started grouped into N /WS workgroups.

2. Each workitem loads its coordinate in an ordered manner.

3. The sequence of all N coordinates is split into segments of length WS . The last segment

might have an overhang containing empty elements.

4. The following instructions are carried out for each integer segment number between 1 and

N/WS .

a) A segment i of length WS is loaded by each workgroup ordered and stored in local

memory.

b) The workitems iterate over all (i·WS ,i+1·WS] coordinate members in this segment

and load the matching coordinate via a broadcast read from local memory.

c) Each core calculates the interaction energy with its own assigned coordinate and

accumulates it locally.

5. Once all segments are computed, the sum over all N energies is returned.

This evaluation strategy is illustrated in Fig. 3.4. The reader should note that no memory access
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in this algorithm is more expensive than a single instruction, as only ordered reads are used from

global memory and ordered and broadcast reads and writes are used from local memory. The

drawback of this strategy is however that segments have to be loaded multiple times for multiple

coordinates. This strategy scales perfectly for architectures with exactly N cores. Benchmarks

could show a speedup of 150 compared to a single CPU core for a 240 core graphics adapter

running at 1.5Ghz compared to a single 2Ghz CPU for systems of 30, 000 atoms (data in

Strunk et al.[57]).

3.2.2. Implicit treatment of solvent molecules

Simulations of biomolecules in aqueous solution have to include up to ten times more water

atoms, than are present in the main constituent of the simulation. To alleviate the complexity of

the simulation very often implicit solvent models are employed. To this end, the Hamiltonian

is split into three separate parts, describing the energy of the main constituent (the protein)

HS(~R), the solvent HW ( ~W ) and interaction HSW (~R, ~W ). Here, ~R denotes the configuration

of the main system, ~W the configuration of the water molecules[60, 61].

HC(~R, ~W ) = HS(~R) +HW ( ~W ) +HSW (~R, ~W ) . (3.13)

Using Eq. 3.13 the partition function can be split into two terms as shown in Eq. 3.16.

Z =
∫
R,W

exp(−β HC(~R, ~W )) d~R d ~W , (3.14)

=
∫
R,W

exp(−β HS(~R)) exp(−β HW ( ~W )− β HSW (~R, ~W )) d~R d ~W , (3.15)

=
∫
R

exp(−β HS(~R))

∫
W

exp(−β HW ( ~W )− β HSW (~R, ~W )) d ~W

 d~R .(3.16)

If we define an effective Hamiltonian HW,eff , we can simplify Eq. 3.16.

HW,eff (~R) = − 1
β

ln

∫
W

exp(−β HW ( ~W )− β HSW (~R, ~W )) d ~W

 . (3.17)

Equations 3.16 and 3.17 then simplify to Eq. 3.18:

Z =
∫
R

exp
(
−β[HS(~R) +HW,eff (~R)]

)
. (3.18)

HW,eff is called an implicit solvent model. The effective Hamiltonian HW,eff can be inter-

preted as the free energy ∆GW of the solvent[62]. An analytical solution for Eq. 3.17 is too

complicated for simulations of the size of biomolecules, but many models exist in literature. In

the following section, we present two implicit solvent models: a solvent accessible surface area

model and a generalized Born model.
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Solvent Accessible Surface Area Model

In a Solvent Accessible Surface Area (SASA) model, one popular implicit solvent model, the

solvent contribution to the free-energy is modeled linear in the solvent accessible surface area

Ai of the atoms i (Eq. 3.19), as proposed by Eisenberg and McLachlan[60].

∆GW =
N∑
i=0

σiAi . (3.19)

As the evaluation of the solvent exposed surfaces Ai take a significant amount of computational

time, SIMONA employs an efficient evaluation protocol for the solvent accessible surface, as de-

scribed in Klenin et al.[63]. The σi can be determined empirically by fitting to the known transfer

energies of single amino acids or GLY-X-GLY tripeptides from octanol to water[61].

Generalized-Born electrostatics

The linear solvation model does not completely account for polarizability of the solvent. Solvent

free-energy contributions ∆GW can be split into polar ∆GW,polar and non-polar ∆GW,non-polar

contributions. The polar contribution to the effective water Hamiltonian could, in theory, be

evaluated by solving the Poisson-Boltzmann equation[64]. As this would be too expensive to

compute in each simulation step, approximations have been available in the form of generalized

Born models[65]. Generalized Born models introduce effective Born radii Ri describing the

burial of charge i inside the low-dielectric medium. The expression for the generalized Born

energy reads:

GGB = 1
8π ε0

( 1
εW
− 1
εP

) N∑
i,j

qi qj√
r2
ij +RiRj exp(−r2

ij/4RiRj)
. (3.20)

The variables εP and εW represent the dielectric constant of the protein and the solvent, Ri is

the Born radii of atom i. Various definitions of the Born radii can be found in Still et al.[65] and

elsewhere. After evaluating the Born radii, the evaluation of the energy constitutes a pairwise

interaction term and can be parallelized with the strategy described in section 3.2.1.

The combined GB/SA implicit solvent model combines a linear non-polar solvent accessible

surface area contribution to model non-polar free energy ∆GW,non-polar with the generalized

Born term to model polar contributions ∆GW,polar. It is a popular choice to describe solvent

effects and used in the implicit solvent version of the Amber99SB forcefield[46, 47, 66].

Protein forcefield PFF02

The forcefield PFF02[9] (Eq. 3.21) models the internal free energy of protein conformations.

It is comprised of five terms modelling electrostatics, angle-dependent hydrogen bonding,
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Lennard-Jones, solvent interactions and mainchain torsions.

EPFF02 = Vlj + Vele + Vhb + Vpse + Vtor (3.21)

Vlj : Lennard-Jones potential

Vele : Electrostatics

Vhb : Hydrogen bonding

Vpse : Linear solvation contribution

Vtor : Torsional potential

PFF02 was shown to select the near-native conformations for all 32 monomeric proteins from the

ROSETTA decoy set[67]. It was also used to fold a set of 27 proteins with up to 72 amino acids

with helical, sheet and mixed secondary-structure from extended conformations[9, 68]. A full

forcefield specification can be found in Verma et al.[9]. The electrostatics model Vele includes

polarization effects by scaling the electrostatic interaction with the exposed surface area of the

group. Solvent is treated by a linear implicit solvent accessible surface area term as presented in

section 3.2.2.

3.3. Implementation of the general purpose Monte-Carlo simulation
package SIMONA

Proteins are nanoscale structures consisting of an amino acid chain of an alphabet of twenty

amino acids, i.e. well known components. One of the primary aims of developing SIMONA

was to ease the parametrization of these standard systems for the user as much as possible. At

the same time, we aimed to simplify simulation of other components of biological system, like

small-molecule ligands, and material simulations on the nanoscale. The simulation of these

systems requires either different parametrizations in one of the existing forcefields, or the devel-

opment of completely novel forcefields.

SIMONA provides a two-stage concept to implement the simulation: A Python-preprocessor

splits the input information into abstract coordinates (the Configuration object), assigns force-

field information (radii, forcefield parameters) and stores them in a Forcefield object, detects

degrees of freedom (Moves object) and implements a temporal simulation hierarchy for the sim-

ulations (Algorithm). These four distinct sections (Configuration, Moves, Forcefield and Algo-

rithm) are stored in a user editable XML file and read by the SIMONA kernel written in C++ to

run the simulation (Fig. 3.5). The Python preprocessor is implemented as a GUI application; the

C++ SIMONA kernel is a command-line application compatible with x86 and PowerPC CPU

architectures on Linux and x86 architectures on Mac and Windows.

The generation of the input XML can be controlled by the user at various levels, in the following

listed in the order of the complexity of the required changes of the protocol or program.

• For standardized applications (proteins, amino acids) the user can set up the simulation

with the graphical interface by employing several tutorials for selected applications.

• Non-standard interactions or parameter values can be defined by changing assignments in
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Fig. 3.5.: Definition of a system for use with SIMONA. The SIMONA preprocessor splits the information
required to simulate a system into four categories: 1. The Configuration section contains only the co-
ordinates of the atoms. 2. The Moves section contains specifications of degrees of freedom, which can
be perturbed during the simulation (dihedral angles, rigid body movements) 3. The Algorithm section
contains the protocol, which is used to perturb the system using the specifications in the Moves section
(Metropolis Monte-Carlo, Parallel Tempering). 4. The Forcefield section implements all interactions
between the atoms in an energy model.

the preprocessors.

• Complex algorithms, which are key to many specialized MC methods, can be encoded

using a XML-based programming language.

• Class derivation on the Python and C++ side permit the expert user to implement novel

methods, while inheriting all existing features.

Input definitions of the four XML sections (Configuration, Forcefield, Moves and Algorithm)

can be found in the code documentation[38].

Algorithm section of a SIMONA XML file
An exemplary input file for the Algorithm section is shown in Fig. 3.6. Due to the modularity

of the XML file, transformations and acceptance criterions can be replaced with other classes

to customize the simulation. Simulation strategies currently implemented in this way include

Parallel Tempering[42–45] and a multiple-try Monte-Carlo scheme[69]. As a more complex

example, we implemented the evolutionary algorithm previously introduced in section 3.1. The

XML code for this algorithm is shown in Fig. 3.7. Comparison with Fig. 3.6 for the standard

Metropolis Monte-Carlo algorithm illustrates that the much more complex algorithm can be

implemented very easily.

Implementation of novel potentials
Similar to the modularity of transformations carried out during the simulations, forcefields can

also be easily adapted inside the XML. All the forcefields presented in section 3.2 are available
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Fig. 3.6.: Algorithm section of a Metropolis Monte Carlo implementation translated into pseudocode. In
every repeat of the RepeatedMove a Transformation is carried out (in this case a displacement, rotation
or dihedral rotation). The resulting state is accepted or rejected by the Metropolis acceptance criterion.
Right: Pseudocode, Left: Actual XML Code

Fig. 3.7.: XML specification of the SIMONA Algorithm section for a simulation using the multiple popu-
lation evolutionary algorithm. In comparison to the specification of a Metropolis Monte-Carlo simulated
annealing simulation in Fig. 3.6, only a single XML class (MultiEA) had to be added with various con-
figuration parameters. Right: Pseudocode, Left: Actual XML Code
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<DistanceConstraint>
<first_id>30</first_id>
<second_id>55</second_id>
<distribution type="UserDefinedDist">

<function>5*(r-7)^2</function>
</distribution>

</DistanceConstraint>

Fig. 3.8.: XML code required to implement a custom distance constraint potential. In this case the poten-
tial f(x) = 5 (r − 7)2 was implemented, where r = |~r30 − ~r55|. The <function> object is an arbitrary
string, which is compiled, when SIMONA reads the XML file.

including parametrizations for protein systems. The implementation of novel forcefields is pos-

sible using the functionparser interface[70]. To allow for rapid prototyping, these forcefields are

integrated into the XML code and work without recompilation of the SIMONA binary. Multi

body and constraint potentials of the form f(~r1, ~r2, · · · , ~rN ) can be implemented in cleartext

in the XML. The XML code for a single parabolic potential modeling a distance constraint of

the coordinates of two particles is shown in Fig. 3.8. This scheme is extensible and was imple-

mented for sets of atoms using the XML class MultiBodyPotential. As the implementation of

the MultiBodyPotential derives the number of variables, i.e. the number of atom indices used in

one evaluation of the forcefield, at runtime, the potential can be used to test very complex poten-

tials to model for example reactive forcefields or coordination chemistry for transition metals.

3.4. Conclusions

In this chapter we presented the Monte-Carlo method and various forcefields that are widely used

for the simulations of biomolecules. Monte-Carlo techniques avoid the timescale problem of

Molecular Dynamics and provide thermodynamic information for the systems studied, but few

implementations are presently available. We have also briefly described the implementation of a

novel Monte-Carlo based simulation package, called SIMONA, to permit efficient simulation of

molecular and nanoscale systems. The main paradigm in the design of SIMONA was to allow

the easy extension to conduct simulations not considered during the development. The modular

structure of the XML input file and the system agnostic implementation of the C++ code, allow

for the parametrization of novel systems without changing the C++ code. The performance of

many of the underlying forcefield components was proven to be very efficient[63, 71].

Given the wide range of possible Monte-Carlo methods and applications, we hope that other

groups build upon our framework and extend the versatility of SIMONA. SIMONA is free for

academic use and available at http://www.int.kit.edu/nanosim/simona.php .
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4. Absolute Quality Assessment of Protein Structures

Modeling methods increasingly attempt to close the gap between the number of known protein-

coding sequences[72] to that of structurally resolved proteins[3], but the results of these methods

have been mixed. Adequate models can be built for proteins with high sequence similarity

to a structurally resolved protein[73]. Occasionally modeling even succeeds in the absence of

a good template[74], but none of the presently available methods can decide with certainty,

whether a proposed model is of correct topology. For this reason acceptance of protein structure

prediction has been low. While the development of accurate prediction methods for proteins with

low homology is a long term goal[75], better acceptance of models from structure prediction

would be achieved with methods that rank the likelihood that a particular structure represents an

accurate model.

Current quality assessment methods can be grouped into two different categories: statistical

(knowledge-based) and physics-based energy methods and machine-learning methods.

• DOPE – Discrete Optimized Protein Energy

The DOPE (Discrete Optimized Protein Energy) scoring function is a statistical atomic

distance dependent scoring function used in the Modeller program package[76]. As many

similar approaches it is derived from a joint probability density function of the Cartesian

coordinates of the protein atoms in a set of 1472 high-resolution crystallographic sample

structures.

By relating the statistical score to a single amino acid, DOPE obtains a per-residue statis-

tical assessment indicating the “nativeness“ of the state of a single amino-acid. Although

the DOPE potential was successfully verified by decoy assessment, only few applications

of the score are reported in literature[73, 77].

• SVM – Support Vector Machines

Meta-servers draw the predicted native conformation from a population of structures ob-

tained from various different sources. One approach to construct a relative measure of

protein quality to assess structures from different sources employs a support vector ma-

chine (SVM), a concept originating from machine learning.

In one implementation by Eramian et al.[78] 24 different individual scoring functions

were included in a SVM. By optimizing the weights in a linear combination of all sin-

gle functions in respect to the RMSD error of the model, a unified model score could be

constructed, which outperformed the 24 individual scores.

However, such quality assessment scores deliver only a relative score value for a set of structures.

The statistical ”average“ value of the scoring function obtained for a single specific structure is

compared to energies of other models to identify the native structure. Therefore these methods

are unable to judge the ”nativeness“ from a single model alone.
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We investigate a novel approach for absolute quality assessment and elucidate, whether such

a measure can be devised. We concentrate on monomeric, globular proteins, as an important

subclass of proteins that avoids additional difficulties encountered in oligomers or membrane-

bound proteins. In section 4.1, we introduce the main idea behind our approach for quality

assessment. In section 4.2, we derive a N-dimensional statistical test, present our choice of the

energy model and introduce the training- and decoy-sets. We conclude by analyzing the success

of our method in section 4.3 and provide an outlook and other application areas of our data in

the discussion section (section 4.4).1

4.1. Introduction

Many protein structure prediction methods rate protein structures using an established scoring

function[73, 77, 80, 81] by comparing the energies of an ensemble of structures and choosing

the lowest energy members of said ensemble as the prediction. Here we investigate an approach

to provide an a-priori estimator of the quality of a protein model without comparing it to a

competing ensemble using a free-energy scoring function.

The free-energy G of a protein’s macrostate can be formally divided into energy contributions

gi by amino acid i as shown in Eq. 4.1.

G =
N∑
i=0

gi . (4.1)

Pair- or higher-order contributions are evenly split among the participating atoms. For a particu-

lar protein conformation ~R, the single contributions gi for amino acidAA can now be understood

as random values drawn from the distribution ρAA(gi). The probability of the total free-energy

G = g1 + g2 of a two amino acid protein would then be the fold of the two probability distribu-

tions ρAA1 and ρAA2 as in Eq. 4.2.

ρAA1,AA2 = ρAA1 ∗ ρAA2 . (4.2)

This can be generalized to sequences of N amino acids by folding the native distributions of

the N amino acids. The resulting Gaussian distribution is a distribution for the total free-energy

G of the folded protein, which can be used as a quality measure in a standard statistical test.

We recall that according to C.B. Anfinsen’s thermodynamic hypothesis the distribution of

the competing unfolded macrostates states must differ on a protein-by-protein basis from the

free energies of the folded macro-states in order to stabilize the latter thermodynamically[16].

Although we will also investigate this testvalue, the main statistical test introduced in this

chapter uses the values of all single amino acid energies gi. It is explained in the next section.

1Parts of this section will be published as part of Strunk et al.[79]. I thank all co-authors for the opportunity to
publish it as part of my thesis.
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4.2. Methods

N-Dimensional hypothesis tests
The basis of our method consists of a N-dimensional hypothesis test. In the following section, we

derive an expression for the smallest N-dimensional confidence interval for a specific confidence

level α. The hypothesis of this test is:

• Null-Hypothesis: The per amino acid contributions ~G = g1, ..., gN of the protein are

drawn from the energy distribution of native structures.

• Alternative Hypothesis: The per amino acid energy contributions are incompatible with

the native distributions: The protein model cannot be a native protein structure.

Let us now assume to know all single distributions of our test parameter ~G = (g1, . . . , gN ) and

call them ρi(gi). For a confidence value α (usually 0.95 to 0.99), we will derive an equation

for defining an optimal confidence interval Ξ. We define the optimal interval to be the smallest

confidence interval treating all amino acid contributions equal. If the estimated free energy ~GM

of a model is outside of the optimal interval Ξ, we discard the protein structure. The probability

to incorrectly classify a protein structure from the native conformation, i.e. a Type-I error, is

1− α. The definition of the confidence level is:

α =
∫
· · ·
∫

Ξ
ρ1(g1) . . . ρN (gN ) dg1 . . . dgN . (4.3)

We assume the single distributions ρi to be of Gaussian type, resulting in:

α = 1
(2π)

N
2
∏
i σi

∫
· · ·
∫ N∏

i=0
e
− 1

2

(
gi−µi
σi

)2

dxi . (4.4)

Introducing new coordinates ξi = gi−µi
σi

will simplify the integral borders. The integration is car-

ried out over N -dimensional spherical coordinates, dΩ denotes the angular component:

α = 1
(2π)

N
2

∫
· · ·
∫ ∫ Rκ

0
dΩN−1 dRR

N−1 e−
R2
2 , (4.5)

= ΩN−1

(2π)
N
2

∫ Rκ

0
RN−1 e−

R2
2 dR . (4.6)

The integral in Eq. 4.6 can be simplified, as shown in Eq. 4.8

IN :=
Rκ∫
0

RN e−
R2
2 dR (4.7)

=


(N − 1)!! I0 −

N
2∑
i=1

(N−1)!!
(2i−1)!!f2i−1

∣∣∣Rκ
0

N even

(N − 1)!! I1 −
N−1

2∑
i=1

(N−1)!!
(2i)!! f2i

∣∣∣Rκ
0

N odd

(4.8)

with: fN = RN e−
R2
2 . (4.9)
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Here A!! denotes the double factorial with A!! = A · (A− 2)!! with 0!! = 1!! = 1. The proof for

Eq. 4.8 can be found in appendix A.1. I1 can be evaluated analytically:

I1 =
Rκ∫
0

Re−
R2
2 dR = −e−

R2
2

∣∣∣Rκ
0

. (4.10)

I0 is usually tabulated as the error function erf:

erf(x) := 2√
π

x∫
0

e−t
2
dt , (4.11)

I0(Rκ) =
Rκ∫
0

e−
t2
2 dt =

√
2

Rκ√
2∫

0

e−x
2
dx , (4.12)

=
√
π

2 erf
(
Rκ√

2

)
. (4.13)

The integral over the angular part ΩN evaluates to:

ΩN−1 = N π
N
2

Γ
(
1 + N

2

) . (4.14)

Using these identities an equation for α can be given, which is only dependent on the Rκ:

α = ΩN−1

(2π)
N
2
IN−1 (4.15)

=


N

Γ(1+N
2 ) 2

N
2

(N − 2)!!
√

π
2 erf

(
Rκ√

2

)
−

N−1
2∑
i=1

(N−2)!!
(2i−1)!!f2i−1

∣∣∣Rκ
0

 N odd

N

Γ(1+N
2 ) 2

N
2

(N − 2)!! (1− e−
R2
κ

2 )−
N−2

2∑
i=1

(N−2)!!
(2i)!! f2i

∣∣∣Rκ
0

 N even

.

(4.16)

This equation can be solved numerically, resulting in the RK(N) shown in Fig. 4.1 for a confi-

dence level of 95%.

Residue-specific energy model
As we have no access to the ideal free energy of a protein model, the test must be developed

with respect to an estimate, for which we selected the protein free-energy force-field PFF02

(section 3.2.2). The energy model was broken down into per-amino-acid contributions as shown

in Fig. 4.2. As the dihedral potential was already amino-acid specific only the SASA and

pairwise terms needed to be split into amino acid contributions as shown in Eq. 4.17 (SASA)
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Fig. 4.1.: Critical values ofRK(N) for a confidence level of α = 0.95. The critical values were estimated
using Eq. 4.16. Due to the close proximity of individual data points, a line was plot through the discrete
values of RK(N) to guide the eye.

(a) Pairwise terms (b) SASA

Fig. 4.2.: Illustration of the derivation of per-amino acid energies. a) For generalized pairwise terms,
interactions are broken down pair-wise and accumulated for every amino acid. b) The solvent accessible
surface area was evaluated and stored for every amino acid separately.
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Fig. 4.3.: Criterion used to decompose amino acid triplet energies for adjacent amino acids. The circles
A,B,C are considered adjacent, as all three Van der Waals sphere touch. D,E,F are considered non-
adjacent as D and F are not in contact. Note that amino acids need not follow each other in the sequence.

and Eq. 4.20 (Pairwise).

ESASA =
Nat∑
i=0

σiAi =
Namino∑
i=0

Nat∈AAi∑
j=0

σj Aj =
Namino∑
i=0

ei,SASA . (4.17)

EPairwise =
Nat∑
i=0

Nat∑
j=0,i 6=j

f(ri, rj) , (4.18)

=
Namino∑
i=0

Namino∑
j=0,i 6=j

Nat∈AAi∑
k=0

Nat∈AAj∑
l=0

δij,kl f(ri,k, rj,l) , (4.19)

=
Namino∑
i=0

ei,Pairwise . (4.20)

The per-amino acid energy functions were evaluated for a set of 256 high-resolution protein

structures compiled by Dunbrack et al. into the CulledPDB dataset[82]. The PDB IDs used can

be found in appendix A.2. We excluded membrane or multimer proteins, because their free

energy contributions per amino acid cannot be reliably estimated on the basis of the monomer

structure. Before the energies were calculated, missing atoms were added and bond lengths were

normalized using the Rosetta idealization protocol[80]. Afterwards a relaxation simulation was

started for 100 copies of each structure on POEM@HOME using fixed temperature simulations

at 250K. The low temperature was selected to keep structures near the native minimum.

We then extracted the contributions for the single amino acid energies of all individual PFF02

terms. Furthermore energies for neighboring amino acid pairs and triplets were extracted and

accumulated. As the extracted pairs and triplets were not sequence dependent, i.e. ρALA,CYS =
ρCYS,ALA, only 1540 triplet and 210 pair distributions needed to be recorded. Information for

triplets was restricted to amino acids where all three amino acids were in close geometric prox-

imity (atom centers of the neighboring amino acids were closer than 5 Å), as illustrated in Fig.

4.3. The TM-Score, which ranges from 0 to 1, was used to quantify the quality of a protein

structure in comparison with the native structure[83]. A score below 0.4 can be viewed as a

random prediction and denotes decoys of a bad quality. TM-Scores higher than 0.9 are close

to the experimental structure. In principle the RMSD-value could also be used to quantify the

quality of a protein model, but it is difficult to identify a uniform RMSD threshold for proteins

of different size.

Decoy Sets
We selected 160 random decoy sets of monomeric proteins from the database assembled by
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Rajgaria et al.[84] as a test set. Membrane proteins were not considered. Structures binding

metal ions or containing heme groups were removed from the population, as these interactions

are not modeled in PFF02. All models in the sets were relaxed three times each using the

same protocol as in the training set. Additionally the sets were enriched with three copies of

the native structure. Per-amino acid energies were extracted and the testvector T 2
abs (Eq. 4.21)

was calculated individually for all PFF02 energy contributions and the unweighted solvent

accessible surface area.

T 2
abs =

NDOF∑
i=0

(
ei − µi
σi

)2
(4.21)

The T 2
abs value was used to test for the model quality using the threshold RK(N) derived in Eq.

4.16. In the following investigation, we always show the score T 2 normalized to the critical

threshold (Eq. 4.22):

T 2 = T 2
abs

RK(N)2 . (4.22)

Using the normalized score, structures passing the test have a T 2 value below 1.0; rejected struc-

tures have a T 2 value above 1.0. For large N , most of the area of the integral in the derivation

of the threshold equation (Eq. 4.16) lies directly beneath the surface of the N-dimensional shell.

Most of the structures drawn from native distributions are presumed to lie close to the shell.

We therefore relaxed the critical T 2 value to 1.05 to allow for small errors in the numerical

derivation of the RK .

4.3. Results

The energy statistics for all 256 high resolution structures of the training set and the 160 decoy-

sets are shown in Fig. 4.4. We always observe an overlap between decoy and native structures.

A slight shift towards higher energies is observed for the distributions of the decoy structures

(green histograms in Fig. 4.4). Especially for the hydrophobic amino acids ILE, PHE, TYR,

VAL and LEU, we observe a large difference in the mean energy of the histogram between na-

tive and decoy structures. One possible explanation is that decoy structures are very often not

perfectly packed; hydrophobic amino acids could still remain exposed, which leads to an un-

favorable energy. The distribution of exposed surface areas for these amino acids shows that

roughly one to two times more hydrophobic amino acids are buried in the native structures than

in the decoy set. Most of the distributions of hydrophobic amino acids also feature a skew to-

wards higher energies. The same observation holds for the distribution of exposed surface areas;

hydrophobic amino acids are sometimes exposed even in the native state, leading to large con-

tributions in energy.

Charged amino acids (ARG, ASP, GLU, HIS, LYS) cover a large energy range due to their long-

range electrostatic contribution. Especially the mainchain hydrogen bonding energies showed

a large deviation between native and non-native energies: All histograms present three major

peaks for one, two or no main-chain hydrogen bonds. Native conformations incorporated two

main-chain hydrogen bonds far more often than decoy structures. It is likely that the protocols
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Fig. 4.5.: Comparison of the sampled PFF02 energies with the energy ranges calculated for the specific
convolutions. Confidence intervals (3σ) of the convolution histograms are shown as red error bars; the
actual energies are shown as black crosses. 418, of the 450 structures, lie in the confidence intervals.
Only one outlier lies below the error bars: The large positive energy contribution of the 31 remaining
outliers can be accounted to steric overlap in the relaxation simulations.

used to construct the decoys did not optimize the hydrogen bonding network fully or simply

did not discover a structure with an optimal hydrogen bond network. Figures for the SASA,

electrostatics and hydrogen bonding contributions can be found in appendix A.3. As previously

mentioned, a per-amino acid energy e in a globular protein can be interpreted as a random value

drawn from the sampled distributions ρAA1(e1). The energy of protein structure with a specific

sequence SEQ is then drawn from the convolution of all single amino acid distributions (Eq.

4.23):

ρSEQ

(∑
i

ei

)
= ρAA1(e1) ∗ ρAA2(e2) ∗ · · · ∗ ρAAN (eN ) . (4.23)

Testing the total energy as a quality control test, we applied this convolution to the sequences of

an extended set of 450 high-resolution structures of the Dunbrack PDB database and evaluated

the complete PFF02 energy for them and extracted the mean µ and the three σ radius of the

convolutions. Results are shown in Fig. 4.5.

Of the 450 structures the energies of 418 structures lie within the confidence range. All 32
outliers, except for a single one, lie above the confidence intervals. Sometimes a high energy

can be attributed to a simulation artefact: A single steric collision within the structure during the

relaxation simulation could have caused a large energy contribution for these structures. These

results show that the sampled histograms are consistent with the energies of proteins of various

topologies.

Statistical test for single amino acid statistics

Due to the large overlap in the energy distributions it was unlikely that a quality assessment

method using only single amino acid energy distributions can succeed. Fig. 4.6 shows four

characteristic distributions for the single amino acid energy criterion. For most of the analyzed

structures, the bulk of the decoys cannot be separated. Although the initial hypothesis that
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Fig. 4.6.: Illustrative results for the quality assessment using single amino acid statistics of four decoy
sets. The critical T 2 threshold was set to 1.05 (blue line). Relaxed native structures are encircled in
red. a) Results for the bacillus cell fate determinant protein 1H4X: Although only low quality structures
are present in the decoy set (TM-Score below 0.5), native and decoy structures cannot be differentiated
by T 2 value. Most of the decoy structures exhibit per amino acid energies compatible with the native
distributions. b) Results of the decoy set of Phl PII from timothy grass pollen 1BMW: The decoy set
is higher in quality than the previous one of 1H4X. Although a tendency of the three native structures
towards a lower T 2 deviation is visible, a classification by T 2 value is still impossible, as most of the bad
quality decoy structures are considered native by our algorithm. c) Results of the decoy set screening
of superantigen spe-h 1ET9: A tendency for the native structures towards lower T 2 values is visible. A
significant amount of low quality decoys lies below the critical T 2 score. d) Results of the ligand binding
domain of the EPHB2 receptor tyrosine kinase 1NUK: The low quality decoys are perfectly separated
from the native structures. Within the population of 160 structures only very few decoy sets show this
characteristic. a)+b)+c)+d) The native structures are below the T 2 threshold and therefore accepted for
all four histograms.
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per-amino acid energy distributions are different between decoy sets and native experimental

structures was true (see Fig. 4.4), the difference in these distributions was too small to differ-

entiate between native and decoy structures. The proposed critical T 2 value lies above the T 2

value of many decoys: The decoy structures exhibit local amino acid energies compatible with

the native amino acid energy distribution. Only for a few large proteins (see Fig. 4.6d) a good

separation of decoy and native structures can be observed. Many optimization protocols, for

example the Rosetta[85] and Modeller[76] toolkits, optimize the final prediction by amino acid

energies. This could explain, why a large part of the amino acids are observed in states com-

patible with the native distribution. The results were similar for pairs of amino acids. We will

therefore focus on the statistical test using triplet amino acid energies.

Statistical test for amino acid triplets
The statistical test using triplet amino acid energies calculates the energies for all triplet pairs

of amino acids inside the protein. The energy of a triplet is the sum of three single amino acid

energies:

etriplet,i,j,k = ei + ej + ek . (4.24)

The T 2 value is afterwards calculated against the 1540 means µi,j,k and standard deviations

σi,j,k of the triplet energy statistics of the experimental structures:

T 2 = 1
R2
K(Ntriplets)

Ntriplets∑
i=0

(
ei,j,k − µi,j,k

σi,j,k

)2

. (4.25)

A T 2 score below the critical T 2 threshold of 1.05 denotes the classification as a native structure.

Structures exhibiting T 2 scores exceeding 1.05 are classified as low quality models. The quality

assessment plot for four representative proteins is shown in Fig. 4.7 using the same proteins,

which could not be discriminated in the test considering only a single or pairs of amino acids,

previously shown in Fig. 4.6. In the T 2 test incorporating triplet information, the separation

is much more pronounced in three populations. Especially in the case of bacillus cell fate de-

terminant protein 1H4X, the results are very favorable: While over 2500 structures resulted in

false positive selections using single amino acid statistics (Fig. 4.6a), only five false positives

remained using the triplet test (Fig. 4.7a).

We evaluated the True Negative Ratio (TNR = TN/(TN + FP)) for all structures of the test sets.

Here TN is the number of correctly identified low quality decoys (True Negative) and FP the

number of incorrectly identified low quality decoys (False Positive). Fig. 4.8 shows an explana-

tion of these definitions. A structure with a TM-Score exceeding 0.94 was considered native; a

structure with a TM-Score below 0.7 was considered a non-native decoy. We did not consider

structures with a TM-Score in the range between 0.7 and 0.94 in the estimation of positive and

negative results, as structures in this TM-Score range can already be considered native for the

most part and only contain subtle local errors, which might lie within experimental resolution.

A good quality assessment algorithm exhibits a very high True Negative Ratio (TNR), which

indicates the fraction of structures correctly identified as low quality models. A TNR of 100%
corresponds to the correct identification of all low quality models; a TNR of 0% corresponds to
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Fig. 4.7.: Illustrative results for the quality assessment using triplet amino acid statistics of four decoy
sets. The critical T 2 threshold was set to 1.05 (blue line). Relaxed native structures are encircled in
red. Results are shown for the proteins also shown in Fig. 4.6. a) 1H4X: Although previously more than
2500 false positive results were present in the single amino acid statistical test, the new T 2 test correctly
identifies the three native structures, while producing only 5 false positive structures. b) 1BMW: Only a
single false positive result (TM-Score < 0.7) is observed for protein 1BMW. This is in stark contrast to the
previous Fig. 4.6b, where no separation between decoys and native structures was visible at all. c) 1ET9:
The false positive structures observed in the previous quality assessment of 1ET9 (Fig. 4.6c) are moved
above the critical T 2 threshold. No false positive event is generated. d) 1NUK: Similar to the previous
quality assessment in Fig. 4.6d, no false positive event is generated. The native conformations exhibit a
slightly increased T 2 score by the new metric and are therefore rejected.
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Fig. 4.8.: Explanation of the variables TN, TP, FN, FP. A True Positive (TP) denotes a correctly identified
native structure. A True Negative (TN) denotes a correctly identified low quality model. A False Negative
(FN) denotes a misclassified native structure. A False Positive (FP) denotes a misclassified low quality
model. Good statistical tests feature data points in the green regions and no data points in the red regions.
The True Negative Ratio (TNR) is the ratio of the number of structures observed in the upper left region
(TN) divided by the number of all low quality decoys, i.e. the structures in the lower left region (FP) and
the upper left region (TN). It denotes the quality of the discrimination of a single decoy set.

the identification of all low quality models as native models and would therefore indicate a bad

statistical test.

In summary using the triplet amino acid quality assessment, native protein structures could be

discriminated against low quality decoys. The average TNR for all 160 proteins is 96.0%±1.0%.

The distribution of TNR scores for each decoy set (Fig. 4.10) shows that for most decoy sets

a perfect TNR score of 100% could be achieved. For these decoy sets, all low quality decoys

could be correctly identified and removed from the population. Only 11 decoy sets of the full

population of 160 decoy sets feature a TNR of less than 85 %. The distribution of the T 2 values

of all structures is shown in Fig. 4.9. Only a small number of bad quality decoys fall below

the critical T 2 score and are misclassified. In total 466143 models were investigated for their

quality. Of these models, 4%, or 18517 structures, were found to be false positives, which may

be worrisome at first. However: the total number of false positives in the 11 decoy populations

with a TNR score below 85% already amounted to 13961, i.e. more than 75% of the false pos-

itives were generated by less than 7% of all decoy sets, suggesting a systematical error during

the analysis of these decoy sets. This is also apparent in Fig. 4.10, as the 11 misclassified

populations all exhibited TNR scores far lower than 85% with the smallest TNR score being

24%. Classifications for the eleven proteins, which could not be discriminated using the triplet

algorithm, are shown in Tab. 4.1. Except for one protein (Carnobacteriocin B2 - PDB: 1CW5),

all proteins, exhibiting a low TNR, bind to another molecule in their active conformation. The

training set was based around globular, monomeric proteins. As DNA-binding or chaperone

proteins were not explicitly included, it is therefore not surprising that a discrimination using

the T 2 statistic will not be accurate for these protein classes. The two metal ion binding pro-

teins (Whiting Parvalbumin - 1A75 and the phosphotransfer domain of Arcb - 1A0B) were not

identified by the pruning script, which removed all metal-binding structures from the population

prior to the decoy analysis. In summary 10 of these 11 structures should have been removed ini-
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Fig. 4.9.: Combined quality assessment results of all 160 decoy sets. a) Combined results of all quality
assessment results for the low and high quality models. The bulk of bad decoy structures (TM-Score below
0.7) are situated above the critical T 2 value and are therefore recognized. As far more bad decoys were
sampled than native structures, the native structures are not visible in this figure. Especially for native-
like decoys (TM-Score between 0.7 and 0.94), structures are observed crossing the critical T 2 score.
These structures can neither be considered native protein structures, nor bad, as many of the structures lie
within experimental resolution or differ due to native protein flexibility. b) Quality assessment results for
all high quality protein structures considered native (TM-Score above 0.94). For TM-Scores above 0.95
most of the protein structures are observed below the critical T 2 score and therefore correctly classified
as being native. It is expected that many native-like structures lie above the critical T 2 threshold: Steric
overlap can lead to very large non-physical energies, while only slightly changing the topology. a and b:
The green bar denotes the critical T 2 below which a model is recognized as native.

Fig. 4.10.: True Negative Rates (TNR) for all 160 decoy sets. The y axis shows the percentage of decoy
sets, for which a specific TNR score was achieved. Over 90% of the decoy quality assessments exhibit a
very high True Negative Ratio (TNR). Only 11 decoy sets feature TNR values less than 85%.
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PDB FP TNR [%] special properties
1FAF 2285 26 chaperone protein[86]
1ADR 2058 28 DNA binding[87]
1ICH 1817 34 aggregation[88]
1VGH 2583 46 heparin binding[89]
1B4Q 558 64 glutathione binding[90]
1ITP 751 65 chaperone[91]
1A0B 385 65 zinc ion binding[92]
1CW5 1553 66 large unstructured segments[93]
1MEK 488 75 quaternary complex[94]
1BQZ 1013 76 chaperone[95]
1A75 515 78 calcium ion binding

Tab. 4.1.: Eleven structures with a True Negative Ratio below 85%. A large amount of false positive
structures was observed for all these structures. Except for 1CW5, all proteins show propensities to bind
other proteins or metal ions. As no multimer- or DNA binding- structures were considered in the testset,
the discrimination using the T 2 test did not succeed. FP: False Positives, TNR: True Negative Ratio

PDB TP FP TN FN TNR ACC PDB TP FP TN FN TNR ACC

1JHJ 3 0 645 0 100.0 100.0 1C25 3 0 985 0 100.0 100.0
1IQ3 0 0 3333 0 100.0 100.0 1A29 0 0 2865 0 100.0 100.0
1BFI 0 4 2676 0 99.9 99.9 1B6F 2 0 747 0 100.0 100.0
1HQI 0 0 3183 0 100.0 100.0 1HBK 0 2 2440 0 99.9 99.9
1K3K 0 0 681 0 100.0 100.0 1CLH 0 0 1390 2 100.0 99.9
1I82 2 0 354 225 100.0 61.3 1BM8 2 0 1899 1 100.0 99.9

1GGL 3 0 794 7 100.0 99.1 1JW3 0 0 741 3 100.0 99.6
1CSK 1 41 2492 0 98.4 98.4 1CW5 0 1553 3010 0 66.0 66.0
2ALP 3 0 303 21 100.0 93.6 1QKF 0 67 2816 0 97.7 97.7
1G6Z 0 63 2946 0 97.9 97.9 1JT8 0 0 2544 0 100.0 100.0
1H5P 0 409 2544 0 86.1 86.1 1HDN 3 231 1484 0 86.5 86.6
1BCX 3 0 344 54 100.0 86.5 1DX8 0 11 2830 0 99.6 99.6
1RFS 3 0 1891 0 100.0 100.0 1I7K 2 1 930 0 99.9 99.9
1EWX 3 0 710 0 100.0 100.0 1ODD 1 40 1936 0 98.0 98.0
1BQZ 0 1013 3163 0 75.7 75.7 1KRS 0 6 2474 0 99.8 99.8
1G2R 0 16 2488 0 99.4 99.4 1A9V 0 0 1478 3 100.0 99.8
1QFT 0 0 550 3 100.0 99.5 1I2U 0 0 4803 0 100.0 100.0
1FJR 0 0 840 0 100.0 100.0 1DUJ 0 0 283 42 100.0 87.1
1H4X 2 5 2584 0 99.8 99.8 1I17 0 33 2832 0 98.8 98.8
1A7I 0 89 2464 0 96.5 96.5 1FHS 0 1 2515 0 100.0 100.0

1KQR 3 0 525 100 100.0 84.1 1E68 0 4 2791 0 99.9 99.9
1GMM 3 0 763 0 100.0 100.0 1FAF 0 2285 820 0 26.4 26.4
1A7H 3 5 2118 0 99.8 99.8 1NUK 0 0 2250 3 100.0 99.9
2NCM 3 0 1912 0 100.0 100.0 1VIB 0 0 4233 0 100.0 100.0
1ET9 3 0 2727 0 100.0 100.0 1GNY 0 0 626 23 100.0 96.5
1B2T 0 0 2979 0 100.0 100.0 1AEY 1 244 2414 0 90.8 90.8
2AFP 0 0 2210 0 100.0 100.0 1BOE 0 659 4134 0 86.3 86.3
1MUT 0 0 1295 3 100.0 99.8 1BOR 0 2 2437 0 99.9 99.9
1DBW 0 0 783 3 100.0 99.6 1CLF 0 3 2673 0 99.9 99.9
1ITP 0 751 1412 0 65.3 65.3 1AXJ 0 0 1512 3 100.0 99.8
1DG4 3 1 1998 0 99.9 100.0 1I8N 2 36 2109 1 98.3 98.3
1DAX 0 0 2512 0 100.0 100.0 1BMW 1 24 2331 0 99.0 99.0
1EHX 0 58 2242 0 97.5 97.5 1G28 3 0 2502 0 100.0 100.0
1HYK 0 0 4802 0 100.0 100.0 1DBY 3 16 1612 0 99.0 99.0
1G9P 0 234 4569 0 95.1 95.1 1FW9 3 0 436 53 100.0 89.2
1EM9 2 27 667 0 96.1 96.1 1JKZ 0 353 3860 0 91.6 91.6
1EWI 0 0 2573 0 100.0 100.0 1PFT 0 4 4757 0 99.9 99.9
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PDB TP FP TN FN TNR ACC PDB TP FP TN FN TNR ACC

1CMO 0 0 2290 0 100.0 100.0 1MEK 0 488 1436 0 74.6 74.6
1BVH 0 1 1146 4 99.9 99.6 1A0B 3 385 726 2 65.3 65.3
1G7E 1 1 1644 0 99.9 99.9 1HPW 0 2 2785 0 99.9 99.9
1JRM 0 16 2356 0 99.3 99.3 1B6E 0 0 1894 0 100.0 100.0
1ADR 0 2058 781 0 27.5 27.5 1AGY 3 0 304 25 100.0 92.5
1PIH 0 58 2518 0 97.7 97.7 1H6H 0 0 1212 0 100.0 100.0
1CL3 0 0 1275 1 100.0 99.9 1HKS 0 1 2981 0 100.0 100.0
1DNY 0 54 3361 0 98.4 98.4 1MKN 0 0 3684 0 100.0 100.0
1A44 3 0 831 0 100.0 100.0 1BS4 3 0 702 2 100.0 99.7
1BJX 0 0 2814 0 100.0 100.0 1I27 0 114 3374 0 96.7 96.7
1AAZ 1 130 2564 1 95.2 95.1 1VHR 3 4 493 3 99.2 98.6
1CTO 0 0 2504 0 100.0 100.0 1A75 2 515 1853 0 78.3 78.3
1MNL 0 5 2616 0 99.8 99.8 3CRD 0 0 2512 0 100.0 100.0
1H8U 0 0 1263 3 100.0 99.8 1LIH 1 9 665 0 98.7 98.7
1H75 0 247 2620 0 91.4 91.4 1F0Z 0 27 2712 0 99.0 99.0
1E5K 3 0 321 14 100.0 95.9 1B9G 0 27 3012 0 99.1 99.1
1AW0 3 182 2443 0 93.1 93.1 1E8R 0 115 2297 0 95.2 95.2
1B00 3 7 933 0 99.3 99.3 2PNA 0 0 2963 0 100.0 100.0
1IQQ 3 0 522 1 100.0 99.8 1XNA 3 0 891 0 100.0 100.0
1KXL 0 0 671 3 100.0 99.6 1A3K 2 0 686 1 100.0 99.9
1DT4 1 1 3134 1 100.0 99.9 1IJT 2 0 1215 1 100.0 99.9
3NCM 3 0 1868 0 100.0 100.0 1EUJ 3 0 504 22 100.0 95.8
1ICH 0 1817 934 0 34.0 34.0 1G12 7 3 356 7 99.2 97.3
1QLC 2 0 2226 0 100.0 100.0 1HX2 0 210 3204 0 93.8 93.8
1EHD 0 23 2618 0 99.1 99.1 1K5W 0 0 818 5 100.0 99.4
1VGH 0 2583 2220 0 46.2 46.2 1B9W 0 2 2227 0 99.9 99.9
1DZ7 0 0 2364 0 100.0 100.0 1IDY 0 13 3283 0 99.6 99.6
1AO3 3 0 106 132 100.0 45.2 1B75 0 0 3056 3 100.0 99.9
1MUP 0 0 640 3 100.0 99.5 1CDQ 0 24 2675 0 99.1 99.1
1GH8 0 0 2335 0 100.0 100.0 1K8M 0 0 2110 0 100.0 100.0
1B4Q 3 558 1009 0 64.4 64.5 1AHL 0 31 2608 0 98.8 98.8
1JGK 0 2 4798 0 100.0 100.0 1QMY 2 0 568 3 100.0 99.5
2FNB 0 0 2232 2 100.0 99.9 1AAL 0 1 2792 0 100.0 100.0
1QND 0 48 2419 0 98.1 98.1 1CQQ 3 0 407 8 100.0 98.1
1WIT 0 0 1616 3 100.0 99.8 1G1K 3 0 689 137 100.0 83.5
1JBI 3 0 2340 0 100.0 100.0 1AC0 0 0 2177 0 100.0 100.0

1FGY 1 0 2667 0 100.0 100.0 1EQK 0 0 2575 0 100.0 100.0
1B6B 1 0 633 2 100.0 99.7 1GPS 0 53 4382 0 98.8 98.8
1JH3 1 196 2416 0 92.5 92.5 1EWW 0 56 2390 0 97.7 97.7
1AAC 2 0 1027 3 100.0 99.7 1JF8 3 11 1056 0 99.0 99.0
1TIF 0 28 2444 0 98.9 98.9 1J8K 0 0 2496 0 100.0 100.0

1THX 3 35 1155 0 97.1 97.1 1YUF 0 84 4719 0 98.3 98.3
1COL 106 0 4 395 100.0 21.8 1BBN 0 1 958 1 99.9 99.8

Tab. 4.2.: Results of the quality assessment of all 160 decoy structures using the triplet amino acid
statistics. TP: True Positives, FP: False Positives, AP: Actual Positives within the population, PREC:
Fraction of positives observed (set to 100 if AP=0), TN: True Negatives, FN: False Negatives, AN: Actual
Negatives within the population, TNR: True Negative Ratio, TNR=TN/(TN+FP), ACC: Accuracy. ACC =
(TP + TN)/(TP+TN+FP+FN)

tially, prior to the testing benchmark. The initial selection process removed all proteins from the

test and training sets, which were classified as membrane or multimeric proteins in the PDBML

metadata available for every experimental protein structure in the RCSB database[3]. Our se-

lection process did not detect structures, where the binding propensities to other proteins were

only recorded in the manuscript usually deployed in conjunction with the experimental structure.

This is very often the case for chaperone and DNA binding proteins, which are resolved in their
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isolated form. Except for the 11 decoy sets, the triplet test could reliably remove the low quality

decoys from the population of all models. The results of the quality assessment of all decoy sets

are shown in Tab. 4.2.

4.4. Discussion

In this investigation we developed a method for absolute quality assessment of globular protein

models. We first derived a N-dimensional statistical test, based on amino acid specific energies

ei and assembled statistics of the required energies for a representative high-resolution set of

globular protein structures. Three test methods were developed using single amino acid ener-

gies and neighboring amino-acid pairs and triplets. While the single amino acid test was not

sensitive enough to discriminate between native and decoy structures, the triplet amino acid test

could deliver correct results for 149 of 160 structures with a average True Negative Ratio (TNR)

of 96.0%. For most of the globular protein structures, native structures were observed very close

to the critical 95% probability threshold of the T 2 test. Ten of the eleven proteins with false

positives in the testset were shown to bind other proteins, DNA or other cofactors in their native

conformation and should have therefore been removed from the testset.

The triplet test could reliably discriminate low quality protein models against the native protein

structure. Theoretically an extension to four, five or more amino acids might increase the accu-

racy of the proposed method even further; practically not enough experimentally resolved PDB

structures are available to prepare high-dimensional distributions of sufficient quality.

The success of fragment-based methods in protein structure prediction indicates that sequence

fragments of size longer than three contain sufficient structural information to build protein

models de-novo[96, 97]. These fragments are local in sequence, i.e. only three sequential amino

acids are considered. Our method also considers non-local motifs (3AA) for protein quality as-

sessment. This may indicate that also non-local motifs contain sufficient information to identify

the correct tertiary fold. This structural information could therefore also be used in structure

prediction methods akin to the Rosetta fragment assembly protocol and allow the prediction of

non-local contacts.
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5. Protein Structure Prediction

Biochemical machinery of all cellular life are made of proteins. Although the genome of sev-

eral species has been completely sequenced[1, 98], a large gap exists between the number of

about 80, 000 structurally resolved proteins[3] and that of millions of known protein-coding se-

quences[72]. This discrepancy results from the high cost of experimental methods for protein

structure determination and the difficulty to prepare entire classes of proteins, such as trans-

membrane proteins, for analysis with experimental techniques. Structural insight is enormously

helpful to analyze a protein’s function and possibly to modulate its activity in pharmaceutical

research. The ability to predict a protein’s three-dimensional structure from the sequence alone

promises to yield a wealth of biomedical information.

In this chapter, we apply and develop methods for protein structure prediction to various biolog-

ical systems and investigate their aggregation. In section 5.1, we briefly discuss two methods for

protein structure prediction. In section 5.2, we apply these methods to predict structures of hy-

drophobin proteins for functionalization as efficient and biocompatible coating of implants[99].

In section 5.3, we investigate how hydrophobins develop stable structures on air-water interfaces.

In section 5.4, we investigate the mechanism of gas-vesicle formation in aqueous bacteria and

provide the first nano-scale structural model of the main constituent of the gas-vesicle wall[100].

We conclude the chapter in section 5.5, where we present the development of a high-throughput

technique for the structure prediction of peptides[101].

5.1. Knowledge-based protein structure prediction

The experimental determination of protein structures is a very difficult and resource-intensive

task. The simulation of the folding process of a protein from an initial random-coil structure

to the functional tertiary assembly would theoretically elucidate the protein’s structure, practi-

cally the theoretical characterization of the folding process has been accomplished for a few,

small proteins to date[6]. If only the tertiary structure of the protein in its native state is required,

knowledge-based methods can sometimes build an adequate model. The quality of protein struc-

ture prediction methods is regularly assessed in the bi-annual CASP competition[2]. Methods

used in this thesis include homology modeling[78] and fragment assembly[80].

Homology Modeling: Protein sequences of functional proteins are the product of millions

of years of evolution. As such, many families of protein sequences exist, which encode similar

3D structures (similar ancestors), but differ in the primary sequence. This hereditary relationship

is called Homology[102]. Homology modeling uses this relationship to infer structural informa-

tion about the target protein, i.e. the protein of unknown structure, by analyzing the template
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protein, i.e. a protein homologous to the target sequence with an experimentally resolved 3D -

structure.

Homology modelling is usually separated into three stages:

• Template Search

The number of experimentally known protein structures has surpassed 80, 000 structures

in 2012[3]. Of these 80, 000 structures about 12, 500 are non-redundant (Data from the

Vast database as of 2012, clustering at a p-value of 10−7[103]). In the template search

step, one uses a scoring function between these non-redundant sequences and the input

sequence to find a homologous protein. Template search algorithms usually approximate

alignment algorithms explained in the next step to construct scoring functions.

• Alignment

For each template an optimal alignment is constructed, which is rated by a scoring func-

tion. The minimal requirement for a scoring function is that it needs to align the sequence

with itself with a maximum score. Alignments of different amino acids with each other are

often penalized by scores in a substitution matrix depending on the compatibility of their

physical properties. One such choice for a substitution matrix is BLOSUM[104], which is

derived from the naturally occurring mutations observed within a family of protein struc-

tures. Gaps in the alignment are allowed but also penalized by a gap-penalty. Two popular

alignment algorithms are the Smith-Waterman[105] and Needleman-Wunsch[106] algo-

rithms for local and global alignment respectively.

• Model construction

Model information (backbone dihedrals, tertiary contacts) is extracted from the template

structure and applied to the target chain. Protein segments, which could not be aligned to

the template will be unstructured and need to be reconstructed, for example using Monte-

Carlo or Molecular Dynamics simulations. Experience shows that about 40% sequence

similarity is sufficient to build an adequate structure[73]. Modeller is one of the most well

known programs implementing this strategy[76].

Fragment Based Modeling: When no homologous protein can be discovered, shorter

alignments of part of the target sequence can yield structural fragments. Rosetta[80] uses

fragments of fixed length of 3 and 9 amino acids and inserts them using a Monte-Carlo proce-

dure. Fragments are selected not only according to their sequence similarity with the predicted

sequence, but also based on the predicted secondary structure of the target sequence. Fragments

similar in secondary structure to the prediction are selected with a higher probability. The final

predicted structure is then optimized based on a physical or empirical scoring function. This

approach was benchmarked in multiple occasions by predicting proteins without homologous

templates during the CASP benchmark[96, 97].

Numerous other threading algorithms exist, which introduce longer alignments and thread them

together to form a prediction. Notably Zhang et al.[107] were successful with this approach

by using the constructed model structure to rate the initial alignment. If the model could show

similarity with the alignments used to build it, a high score was assigned to the model.
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Fig. 5.1.: Hydrophobins show the ability to reverse hydrophobicity of materials by coating. The scheme
shows a high contact angle for water droplets on hydrophobic materials and a low contact angle for
droplets on hydrophilic materials. Coating with hydrophobin reverses this relationship. This property
can be used to convert the hydrophobicity of hydrophilic materials (for example implants) hydrophobic
and therefore prevent biofilm formation.

5.2. Design of genetically engineered variants of hydrophobin DewA

5.2.1. Motivation

The project presented in this section, describes an investigation to create a novel biocompatible

coating material for cell adhesion of stem-cells, while preventing biofilm formation. Biocom-

patible surfaces possess a multitude of different applications in the medical sciences[108, 109].

They are topics of interest especially in the fields of tissue engineering and medical implants. If

a material is used, which allows the attachment of stem cells and their further differentiation into

bone stem cells (for example Mesenchymal stem cells - MSCs, which are present in the bone

marrow), bone can grow around the implant and therefore stabilize it in the body[110, 111].

At the same time bacterial adhesion has to be prevented, as biofilm development and inflamma-

tion can lead to infection, which can be fatal[112]. In less severe cases it is often necessary to

remove the implant. Functionalizing a surface to bind stem cells therefore must not facilitate

bacterial adhesion[110].

In this project we investigated, whether we can modify DewA, a protein of the hydrophobin pro-

tein family, to exhibit both impaired biofilm growth and increased cell binding on hydrophobin

covered surfaces compared to untreated implant surfaces. Unmodified hydrophobins have been

shown to suppress the immune response[113] and are known to be biocompatible. Further they

form hydrophobic-hydrophilic layers at air-water interfaces (Fig 5.1). Due to their hydropho-

bicity they were a likely target to inhibit biofilm formation. We therefore genetically modified

hydrophobin DewA, for which high-throughput synthesis methods had been developed, to also

enhance cell-binding. This project was carried out as a joint project with the experimental groups

of Prof. Fischer and Prof. Schimmel from the KIT and Prof. Richter from Universitätsklinik

Heidelberg funded by the Landesstiftung Baden-Württemberg1

1Parts of the following text have been published in Boeuf et al.[99] courtesy of Elsevier.
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• X26-85-C-X 5-8-C-C-X17-39-C-X8-23-C-X5-6-C-C-X6-18-C-X2-3 Class-I
• X17-67-C-X9-10-C-C-X11-11-C-X16-8-C-X6-9-C-C-X10-1-C-X3-7 Class-

II[118].

Fig. 5.2.: Hydrophobins can be grouped into two different classes by their characteristic Cysteine (C)
pattern. An Xi−j in the above motif denotes a series of random amino acids (bar Cysteine) of a minimal
length i up to a maximum length of j.

This section is structured as follows: In section 5.2.2 I discuss the general properties of hy-

drophobin proteins and afterwards introduce the specifics of hydrophobin DewA in section 5.2.3.

After presenting the used methods for model generation of DewA (section 5.2.4 and section

5.2.5) and the synthesized mutants (section 5.2.6), the models will be analyzed in section 5.2.6.

The experimental binding efficiency of the proposed mutants is reported in section 5.2.7 and

further set into context in the final discussion of the results in section 5.2.8.

5.2.2. Introduction - The family of hydrophobin proteins

The hydrophobin protein family consists of small (80 - 200 amino acid) amphipathic pro-

teins structurally defined by a unique arrangement of 8 Cysteine residues forming 4 disulfide

bonds[114]. Proteins are classified into the hydrophobin family, because of similar hydropathic-

ity patterns around the characteristic Cysteine residues. Hydrophobins are fungal proteins with

the ability to form amphipathic membranes by self-assembling at hydrophilic-hydrophobic in-

terfaces. If these membranes are formed on a solid surface, they can invert the hydrophobicity

of this surface. Janssen et al. could show that a Teflon surface can be made hydrophilic by the

addition of a hydrophobin layer[115].

The assembly of class I hydrophobins is associated with the formation of amyloid fibrils[116]

and assembled class I hydrophobins bind strongly to their supports, resisting harsh treatments

such as boiling using water or detergents[117]. Two distinct hydropathicity patterns are rec-

ognized resulting in the classification of hydrophobins into two classes as shown in Fig. 5.2.

Although both classes share the amphipathic nature of the proteins, some class-I hydrophobins

are considered more stable, as they form distinct insoluble rodlets[119]. In contrast class-II hy-

drophobins are water soluble and adhere to the Cysteine spacing more strictly. Both families

share the same Cysteine pairing:

C1 – C6, C2 – C5, C3 – C4, C7 – C8.

Various loops are attached to the hydrophilic base, a β-barrel fixed by the Cysteine residues

prevalent throughout the complete hydrophobin family. In context of the structure determination

of Class-I hydrophobin EAS[120] it was hypothesized that the rodlet formation is mediated

by a rise in β-content of loop C3 – C4, which would result in an extended β-barrel. Further

investigations[121] could show that not only is the loop unimportant in the formation of rodlets,

but that the truncated mutant also exhibited more distinct rodlets, while retaining its amphipathic

character.

Hydrophobins can be observed on the surface of fungal spores and tissues of fruiting bodies

that have been exposed to air[122, 123]. Among other features a hydrophobin coating enables
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the spore’s dispersal in the air by creating an affinity with hydrophobic surfaces. Additionally

it could be shown that the hydrophobin RodA from Aspergillus fumigatus is immunologically

inert; i.e. it does not create an apparent immune-response by activating helper T-cells[113]. Due

to their non-immunogenic nature, hydrophobins are a viable choice to change surface properties

in medical applications[117].

5.2.3. Functionalization of DewA – Aspergillus Nidulans

Here we focused on the hydrophobin DewA for which large-scale production has been achieved

[124]. DewA is a class-I hydrophobin located in the sporewall of Aspergillus Nidulans[125].

For functionalization we wanted to integrate protein sequence motifs known to bind cells into

appropriate places of the hydrophobin protein structure. We introduced two known binding

motifs to increase cell-adhesion: the RGD (ARG GLY ASP) site of fibronectin[126, 127] and

the laminin globular domain LG3[128].

In a previous study Janssen et al. fused an RGD peptide into the sequence of the SC3

hydrophobin from Schizophyllum commune, which promoted growth of fibroblasts on a

hydrophobic solid[115]. Although the results were very promising the major downside of

functionalizing SC3 is that currently SC3 cannot be mass-produced in E.Coli and has to be

collected from the mushroom.

We used all-atom molecular modelling to predict suitable insertion sites for RGD or LG3

motives at surface-accessible sites in the engineered A. nidulans DewA molecule, and used

these purified proteins to produce hydrophobin surfaces that enhance adhesion of human cells.

5.2.4. Homology Modeling of DewA

The Cysteine pattern of DewA matches with the class-I hydrophobin pattern:

X24-C-X6-C-C-X31-C-X23-C-X5-C-C-X6-C-X13.

DewA exhibits a hydropathicity plot unlike most class-I hydrophobins (Fig. 5.3). In contrast to

the class-I hydrophobin EAS, DewA does not form rodlets[125]

No experimental structure is available for DewA, which makes modelling a necessity. As no

direct sequence similarity to a known protein could be observed, a motif conserving alignment

(Fig. 5.4) with the only structurally resolved class-I hydrophobin EAS (PDB: 2FMC) is pre-

pared to build a 3D-model using comparative modeling with Modeller[130].

Although the alignment has various big gaps, the model quality can still be adequate as it is

dependent on the generation of the hydrophilic β-barrel: Most of the protein’s structure is sus-

pected to be in disordered loops that do not possess a distinct structure.

The alignment was used to build comparative models using the standard Modeller single align-

ment protocol[130] (Alignment in Fig. 5.4, Starting Model in Fig. 5.5 (a)). Although the

models did not exhibit secondary structure elements the β-elements of the chain were aligned

and present in the model. In addition the correct disulfide pairing is present in the model.
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Fig. 5.3.: Hydropathicity patterns for class-I hydrophobins EAS and DewA. The frequent variation in
local hydrophobicity of DewA differs from most class-I hydrophobins. The hydrophobicity shown in
the plot is averaged over a window of 9 amino acids. The Kyte-Doolittle Scale was used for the y-
Axis[129]. In this scale ARG has a value of −4.5 (hydrophilic) and Isoleucine has a value of +4.5 (high
hydrophobicity). A large hydrophobic patch is observed in protein EAS. While also DewA features many
hydrophobic sections, they are separated by short hydrophilic sections.

Fig. 5.4.: Alignment between DewA and EAS (PDB: 2FMC). The location of the 8 Cysteine residues is
conserved to permit the formation of a β-barrel in the molecular modeling simulations. Similar colored
intervals represent paired β-strands in the template structure. One β-sheet is formed of four β-strands
(green color). The numbers below the strands represent the bonding order: Strands with consecutive
numbers are bound towards each other. β-sheets were classified according to the experimental struc-
ture[131].
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(a) starting Model, paired β-strands in the template are dis-
played in the same color

(b) refined Model, the two red loops are hypothesized to be
unstructured in the globular structure

Fig. 5.5.: Models obtained by comparative modeling using the alignment in Fig. 5.4. a) The resulting
model is missing all secondary structure; the observed Cysteine-pairing corresponds to the one of Class-I
hydrophobins. b) The refined model features a developed β-barrel. Unstructured loops in the first model
a) are collapsed into a more compact structure.

Pop. # 1 2 3 4 5
Temp. [K] 1176 676 388 223 128

Memb. 50
Accepted 2407 2911 3142 3408 3345
Rejected 195265 272391 232733 270792 192078

Total 197672 275302 235875 274200 195423
Ratio 1.2% 1.1% 1.3% 1.2% 1.7%

Tab. 5.1.: Statistics from the mEA relaxation simulation of hydrophobin DewA. The temperature values
between the populations are geometrically scaled. The low acceptance probabilities are explained by the
fact that the input structure was already near convergence and the large number of simulations.

5.2.5. All-atom structural refinement of the DewA model

The local secondary structure is obtained by refinement simulations using the all-atom free-

energy forcefield PFF02 in SIMONA with the multiple population evolutionary algorithm setup

with the parametrization shown in Tab. 5.1. Probabilities to switch temperature were set to 1/3.

The RMSD and energy ranges sampled by this mEA configuration are shown in Fig. 5.6. While

at high temperature only one cluster of structures can be observed, this cluster breaks down into

substructures, which are separated by barriers at low temperatures. The lowest energy structure

features a RMSD of 7 Å to the initial conformation.

In our simulations we observe a stabilization of the β-content. Three of the four proposed β-

pairings (2: G28 - CYS32 3: ILE92-CYS96 4: ASP102-ALA105, compare Fig. 5.4) develop

further and stay stable, while the fourth one (1: ALA66 - LEU74) is destroyed due to fluctuations

(Fig. 5.5 (b)). This is in agreement with CD-spectra of EAS, which show a rise in β-content

either due to the regularization of β-structure or the development of β-structure in the loops upon

rodlet formation[120]. As the third β-sheet lies within the proposed rodlet binding interface of
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Fig. 5.6.: Energy and RMSD statistics of the five mEA populations of protein DewA. RMSD is plotted
against the initial structure. Temperatures: a) 1176K b) 676K c) 388K d) 223K e) 128K. The lowest
energy structure has a RMSD of 7 Å to the initial structure. From high to low temperature it can be seen
that tempering in multiple temperatures permits the protein to hop barriers by transitioning to different
temperature populations: The single high-temperature cluster of structures seen in a) gradually separates
into substructures separated by barriers, when moving to lower temperatures
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Fig. 5.7.: Proposed sequences for increased cell-adhesion. Mass production of DewA required the fusion
of a shortened variant of protein yaaD to the hydrophobin. LG3 and RGD sequences were attached to
the N-Terminal of the fusion protein.

hydrophobin DewA, it is possible that it is not stable in isolated structures.

5.2.6. Structure-based design of genetically modified DewA

In order to engineer cell-adhesive DewA surfaces, it was necessary to design genetically mod-

ified DewA variants. Among peptide sequences promoting cell adhesion, the RGD sequence

(DewA-RGD) and a 12 amino acid long LG3 sequence (DewA-LG3) were selected (Fig. 5.7).

For the large-scale expression of DewA in Escherichia Coli the protein yaaD[132] needed to be

fused using a linker to protein DewA. These two modifications resulted in the sequences shown

in Fig. 5.7.

To generate a model of the DewA-Fusion construct, the structure of the truncated yaaD protein

was required. Fortunately, an experimentally resolved structure for the full yaaD protein ex-

ists[132].

As shown in Fig. 5.8 the shortened part of yaaD represents only a small fraction of the whole

protein. In order to generate an unbiased ensemble of models, 20, 000 structures for each yaaD

variant containing either the LG3 or RGD motif were prepared using the Rosetta 3 fragment

assembly protocol and relaxed afterwards in SIMONA twice for 500, 000 steps from 200K to

50K. Dihedral angles were perturbed randomly by drawing them from a Gaussian distribution

with a width of 10◦ around the current angle. The complete DewA-fusion protein complex was

then modeled comprising the existing models for DewA and yaaD with modeler (Fig. 5.10).

Model evaluation Analysis of the models shown in Fig. 5.10 demonstrated that the protein

comprises two distinct domains (DewA-RGD: hydrophobin domain MET52-VAL176, fusion-

interaction domain MET1-ARG51). The hydrophobin domain exhibited the same character-

istic beta-barrel structure stabilized by cysteine-bridges as before (CYS99-CYS165, CYS102-

CYS159, CYS103-CYS135, CYS166-CYS173 for DewA-RGD) and four β-sheets (ILE100-

CYS103, CYS135-LYS137, ILE162-CYS165, CYS173-VAL176 for DewA-RGD), while the

binding domains formed an unstructured conformational ensemble at the N-terminus of the
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Fig. 5.8.: Experimental structure of the full fusion protein yaaD. The helix bundle (shown in magenta in
the full structure) is the only remaining part in the truncated yaaD variant. This part is also seen isolated
in the lower right. As most structural features of the full protein are truncated, the remaining part will
refold into a new conformation unlike the experimental structure. Molecular modeling has to therefore
start ab-initio.

(a) RGD (b) LG3

Fig. 5.9.: Solvent Exposure of LG3 and RGD motifs in Fusion-Peptide constructs. Both sequence motifs
feature significant solvent exposure per amino-acid. a) The RGD solvent motif features two preferred
conformations. While the lowest energy structure features a solvent exposure of 80 Å2 per amino acid,
a second cluster exists with a mean solvent exposure of 150 Å2 per amino acid. b) Only one cluster of
structures was observed for the LG3 motif. Members of this cluster presented a mean accessible surface
area of 80 Å2.
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(a) RGD (b) LG3

Fig. 5.10.: Lowest energy structures of both fusion constructs of RGD and LG3. a) Cartoon and surface
visualization of the lowest energy model of the full engineered protein variant fused with RGD. The model
features two distinct domains: the hydrophobin domain MET52-VAL176 (light blue) and the hydrophobic
loops (dark blue); and the fusion-interaction domain MET1-ARG51 (green) with the RGD (magenta) b)
Cartoon and surface visualization of the lowest energy model of construct LG3 (magenta) fused with
yaaD (MET1-ARG60, green). The DewA domain (MET61-VAL185) is not shown. Tight packing towards
the fusion part of the protein can be explained by the big amount of hydrophobic amino acids present in
the LG3 motif

fusion-protein domain. Additionally, two large unstructured hydrophobic loops were identified,

which give the hydrophobin its characteristic amphipathicity (SER105-SER133 and LYS137-

PRO157 for DewA-RGD).

The resulting models were analyzed for the exposure of the cell-binding motifs RGD and LG3.

Two populations of different solvent exposure of the RGD motif were identified among simu-

lated ensembles seen in 5.9 a). Most structures in the ensemble exhibited tightly packed helical

folds for the truncated fusion protein domain and no apparent secondary structure for the RGD

motif. While the lowest energy structure of the complex featured a solvent exposure of 80 Å2

per amino acid of the motif, the second cluster, with a mean solvent exposure of 150 Å2 per

amino acid, was separated by less than 1 kcal/mol. Models from both clusters showed the RGD

motif to be exposed to the solvent. Fig. 5.9 b) illustrates that the lowest energy model for the

RGD motif lies in plane with the hydrophobic amino acids of the hydrophobin. When estimating

the partition between the two populations at 120 Å2 surface area per amino acid, the population

of structures with a mean accessible surface of about 80 Å2 comprised 9100 members, while

the population with a mean accessible surface area of about 150 Å2 comprised 6000 members.

The overall ratio was therefore roughly 2:3. The lowest energy structure was located in the 80
Å2 population. The structures of the models with the lowest energies are shown in Fig. 5.10.

A mean solvent exposure of the LG3 motif of 80 Å2 per amino acid was observed inside the

single cluster of simulated models (Fig. 5.9 b). Compared to the RGD structure, the LG3 motif

may tend to be less exposed to the solvent in the tertiary fold. The observed tight packing of

the binding peptide to the fusion domain can be explained by the large number of hydropho-

bic amino acids in the LG3 sequence (Fig. 5.7); however, the low-energy ensemble contained

many models in which a large fraction of LG3 is exposed to the solvent. Modelling showed
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that both DewA fusion proteins may be able to enhance cell adhesion; therefore, these proteins

were synthesized and purified for subsequent experimental testing by the groups Fischer and

Richter.

5.2.7. Experimental verification of Bacterial and Cell Adhesion

The proposed DewA mutants were inserted via primer ligation and expressed in transformed

E.coli Rosetta (DE3) pLysS cells as reported in Boeuf et al.[99]2. Cell-culture wells were coated

with the unmodified hydrophobin with linker and RGD- and LG3 variants by exposing them to

hydrophobin solution and incubation overnight. Cell-culture wells with fibronectin and BSA

acting as positive and negative control were also prepared.

A medium containing multiple cell types (MSCs, chondrocytes, osteoblasts and fibroblasts) was

applied to the cell culture wells incubated again and washed, after which the cells were counted.

Results are shown in Fig. 5.12 a). MSC adhesion to DewA was significantly increased for both

RGD and LG3 variants of the hydrophobin compared to the wild-type DewA (Fig. 5.12 a)).

Although the adhesion was increased it remained significantly lower than the positive control

fibronectin. More cells adhered to DewA-RGD than to DewA-LG3 at hydrophobin concentra-

tions of 20µg/ml and upwards (Fig. 5.12 a). To mimic in-vivo conditions in patients with

(bone-)implants, the above experiment was reproduced using titanium as a coating substrate.

Adhesion was similar to the previous results. Bacterial adhesion was quantified by exposing the

titanium discs for one hour with colonies of an S. aureus strain. After exposing the covered discs

for one hour, they were washed, photographed and the percentage of the covered surface was

estimated graphically.

Again the highest coverage was achieved with the positive-control fibronectin as shown in Fig.

5.12 b). Although also DewA, DewA-RGD and DewA-LG3 showed bacterial adhesion, the

covered surface area was significantly lower than that of fibronectin, albeit being higher than for

uncoated surfaces. It is interesting to note that the inclusion of the RGD motif did not increase

bacterial adhesion compared to the unmodified DewA: Bacterial adhesion was not mediated by

the RGD motif.

5.2.8. Discussion

In this section I have reported the successful structure based design of genetically modified

DewA hydrophobins with enhanced cell-binding properties. After initial model generation a

suitable site for mutation could be located. The integration of the RGD motif[126] and the

laminin globular domain LG3[128] introduced binding sites for improved cell adhesion, which

could be validated using adhesion assays. At the same time no increased bacterial adhesion was

observed compared to unmodified DewA hydrophobins.

2As this work was a collaboration, it will only be presented in a brief fashion. Please review the cited manuscript
for quantitative details. This experimental part of the work was conducted by AG Fischer (primer ligation and
insertion), AG Schimmel (surface characterization using AFM) and AG Richter (cell adhesion assays)
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(a) Original Image (b) Masked used for counting

Fig. 5.11.: Images used for the estimation of the DewA covered area used in the cell adhesion experiments.
a) Fluorescence image of a DewA cell culture well. b) The in-focus part of the image shown in a) was
extracted and converted into a black and white mask. By counting of all the black pixels in the image the
coverage can be estimated to about 20%.

One of the domains in the model of the fusion proteins corresponded to an intact amphi-

pathic DewA domain with a large hydrophobic patch, which may be involved in impairing

cell adhesion. Both RGD and LG3 motifs are part of the second domain, including the fusion

peptide, and were exposed at least partially in many of the low-energy models. The RGD motif

was identified as facing the same side as the hydrophobic loops, indicating that it is exposed to

area accessible by cells, which is supported by the experimentally observed increased adhesion

of cells to the engineered binding-peptide mutants.

On the basis of the proposed orientation (hydrophobic loop up) of the DewA-RGD variant, we

estimated an area of 13nm2 per protein/RGD motif or 8 · 1010 ligands per mm2 for perfect

packing, but the apparent surface density was lower. We have estimated the covered surface

for a DewA-RGD covering used in the cell adhesion studies as about 20% of the total surface

area of the cell culture wells. This was estimated by counting the fluorescent pixels on a sample

image of about 1mm2 (Fig. 5.11).

Binding studies with similar surface densities of RGD were reported by Le Saux et al.[133].

Using a variety of mirror-polished and etched silicone materials, they investigated the influence

of RGD ligand density and surface roughness for endothelial cell adhesion. For an observed

RGD density of 6 · 1011 ligands per mm2 (compared to 8 · 1010 ligands per mm2 in this study),

they report 700 endothelial cells per mm2 for a mirror-polished surface, which fell to 300
cells per mm2 for a silicone surface etched for 10 min. Adherent endothelial cells featured a

mean cell surface of 400µm2. The cells used in this investigation featured a surface area of

roughly 700−1000µm2 and therefore occupy roughly double the area. Our investigations were

performed in cell culture wells of unknown roughness; however, the number of cells for the

fibronectin positive control in this study is comparable to the etched silicone surface in the study

by Le Saux et al.[133] (300 cells on silicone vs. 180 cells per mm2 in this study), considering

the increased surface area of the stem cells: The total area of 300 cells with a mean cell surface

of 400µm2 (Le Saux et al.) is comparable to the total area of 180 cells with a mean surface area
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(a) RGD

(b) LG3

Fig. 5.12.: a) Cell adhesion on surfaces coated with DewA variants. For the quantification of cell ad-
hesion, cells were allowed to adhere for 1 h. After fixation, the number of adherent cells per mm2 was
counted in three randomly selected photographic fields. MSCs were allowed to adhere to surfaces coated
with BSA (2%), fibronectin (10µg/ml) and various concentrations of the hydrophobins DewA, DewA-
RGD and DewA-LG3. *Significant difference in comparison to DewA at the same concentration and to
fibronectin; #significant difference in comparison to DewA-LG3 at the same concentration (p < 0.05).
Adhesion of S. aureus to titanium discs coated with fibronectin and DewA variants. The fraction of the
surface of the disc covered with S. aureus was quantified using the measure function of ImageJ and is
shown as a percentage. *Significantly lower than fibronectin, significantly higher than uncoated; # sig-
nificantly higher than uncoated (p < 0.05). Image courtesy of Beouf et al.[99]
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of 800µm2 (Fibronectin positive control in this study).

About 40% less cells were observed on surfaces covered with the RGD-modified hydrophobin

compared to the Fibronectin positive control. This efficiency of 60% of the RGD-modified

hydrophobin construct in comparison to fibronectin can be explained by the unordered surface

coverage of 20% of the hydrophobin (Fig. 5.11). Intuition would suggest that the incomplete

coverage of the surface with DewA would reduce also the binding efficiency to 20% instead of

the measured 60% compared to the fibronectin positive control due to the decreased amount of

RGD binding motifs on the surface, however Le Saux et al.[133] could show that a decreased

RGD ligand density can actually lead to increased endothelial cell binding. Our sample showed

unordered ligand densities, which could explain the difference of 60% in binding efficiency,

when comparing DewA and the Fibronectin positive control.

Furthermore, it should be noted that surface coating with DewA was heterogeneous. Whereas

the A. nidulans hydrophobin RodA is able to form rodlets on the spore surface, DewA does not

have this ability[134, 135]. The low adhesion on DewA-LG3 compared to DewA-RGD could

result from a less exposed conformation of the cell binding motif as shown in the models or to

differential adhesion potentials of cells to RGD and LG3.

Neither changes in proliferation of MSCs nor a change in differentiation potential of MSCs

could be observed on DewA surfaces compared to uncoated cell culture wells (data in [99]).

Further studies can include modular peptide sequences known to promote osteogenic differ-

entiation[136]. As we could locate a sequence segment in the protein, where mutations will

conserve the overall tertiary structure and function of the hydrophobin, introducing additional

short sequences is possible.

Compared to untreated titanium disks a higher amount of bacteria was observed on titanium

disks coated with DewA. Adhesion was still significantly lower than with fibronectin, a common

wound fluid. Hydrophobin coated implants can therefore induce lower bacterial adhesion than

fibronectin, which can immediately form after implantation. Binding motifs for cell adhesion

did not increase the bacterial adhesion.
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Fig. 5.13.: Starting model of the docking simulations of protein EAS. The experimental structure com-
prises the green barrel in the center and the red and blue hydrophobic loops. Amino acids were removed
in these loops to form the truncated mutant including the green barrel and the magenta loops.

5.3. Modeling of Rodlet formation of hydrophobin EAS

5.3.1. Introduction

Class-I hydrophobins, presented in the previous section (section 5.2), form long, cylindrical

rodlet structures at air-water interfaces. The hydrophobin EAS (PDB: 2FMC) is a hydrophobin

protein, where such rodlet development was observed experimentally. The structural mech-

anism, these hydrophobins use to link into cylindrical rodlet structures, is currently unclear.

Kwan et al. [131] indicated that the involvement of the flexible loops in hydrophobin EAS is

unclear, but resolved a β-barrel as the main structural motif mediating aggregation into rodlets.

A later publication even demonstrated that more defined rodlets could be observed once the flex-

ible loops were truncated[137].

In this section, we want to elucidate the structural mechanism by which hydrophobin EAS de-

velops rodlets, and investigate the role of the flexible loops in rodlet formation. Multiple sim-

ulations using mutants of protein EAS missing the flexible loops are carried out (Fig. 5.13), to

assess, if a periodic structure is developed without the formation of additional β-content by the

loops. In section 5.3.2, we assess, whether a β-barrel structure can be observed using a truncated

EAS mutant modeled by means of homology modeling and protein-protein docking. We discuss

the results in section 5.3.3.

5.3.2. Docking of a truncated mutant of protein EAS

Homology modeling was carried out with the standard Modeller protocol as used by Fiser et

al.[76, 130]. The resulting ensemble does not present any variability. The structural ensemble

created using homology modeling exhibits less structural variability, than the 20 experimental
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2FMC ATTIGPNTCSIDDYKPYCCQSMSGPAGSPGLLNLIPVDLS 40
2FMCD15D8 ATTIGPNTCSIDDYKPYCCQSMSG...............S 25

2FMC ASLGCVVGVIGSQCGASVKCCKDDVTNTGNSFLIINAANC 80
2FMCD15D8 ASLGCVVGVIGSQCGASVKCCKDD........LIINAANC 57

2FMC VA 82
2FMCD15D8 VA 59

X acidic (−)
X basic (+)
X polar uncharged
X hydrophobic nonpolar

Fig. 5.14.: Alignment of the two sequences of 2FMC. Especially the first loop contained multiple hy-
drophobic residues cut in the mutant.

snapshots of the full structure of EAS[131]. The hydrophilic barrel structure remains intact,

while the flexible loops lost their flexibility, due to truncation of most amino acids they contain

(Fig. 5.13).

Next, we modeled 2000 complex structures using the FFT-based docking approach Zdock[138].

As rodlet covered surfaces show a defined uniform hydrophobicity along the rodlet surface, it

can be assumed that rodlets do not include shear between the hydrophobin subunits: If a a hy-

drophobin would be twisted around the long axis of the rodlet, hydrophobicity of the rodlet

would not be uniform. Therefore only structures with a shearing angle less than 40 degrees are

included from the Zdock predictions for further analysis.

While the Zdock predictions might represent physical reality, high or low quality predictions

cannot be easily discriminated. Therefore the resulting structures were offset by 10% of their

center of mass distance and then relaxed in SIMONA on POEM@HOME[71] in a 25.000 step

Metropolis Monte-Carlo simulation comprising 50% rigid body movement and 50% sidechain

relaxation moves. During the simulations the temperature was annealed from 300K to 5K us-

ing a geometric cooling schedule (temperature units given in respect to the temperature scale of

the used forcefield PFF02). Afterwards the energies of the structures and the RMSDs to the min-

imum energy structure were evaluated. Special care needed to be taken to evaluate the RMSD,

as most programs provided false results, because they did not treat the two 2FMC subunits in

the models equal. Therefore RMSDs were evaluated twice using the McLachlan algorithm[139]

in the Profit program, one time for each mapping; the resulting RMSD is the smaller one of the

two evaluations.

Results are shown in Fig. 5.15. Two highly symmetric low-energy conformations could be

identified; the lowest energy structure at −97kcal/mol is the primitive unit cell structure (Fig.

5.15c), which can be extended into periodical rodlets. Another low-energy structure is observed

at −94kcal/mol in an antisymmetric binding pose (Fig. 5.15b) and represents a possible dimer

of two subunits, which cannot be easily periodically extended.

When aligning the lowest energy structure orthogonal to the hydrophobicity gradient, a period-

ical rodlet can be observed as displayed in Fig. 5.16. The hydrophobicity gradient is a likely

orientation of the EAS subunits at air-water interfaces.
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Fig. 5.15.: Results of the docking approach of the truncated hydrophobin EAS mutant. a) Energy and
RMSD values of the simulation of two docked EAS monomers. The RMSD is evaluated in comparison
to the lowest energy structure. The two lowest energy structurally dissimilar models are observed at
−97kcal/mol and−94kcal/mol. It is striking that both binding poses involve the β-barrel interface and
are highly symmetric b) The higher energy (−94kcal/mol) antisymmetric binding pose. This binding
cannot be easily extended as the β interfaces on opposite point in different directions. c) The lowest
energy (−97kcal/mol) symmetric binding pose. This binding pose can be extended into an extended
rodlet structure.

Fig. 5.16.: Rodlet structure observed when assembling the lowest energy structure of the truncated 2FMC.
The z-axis orthogonal to the rodlet plane is the axis of the hydrophobic gradient. White spots are hy-
drophobic, while green spots are hydrophilic. Exposed white spots can be seen on the top of the rodlets.
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(a) Rodlets of hydrophobin EAS on a surface (b) Theoretical model of a single rodlet sub-
units

Fig. 5.17.: Comparison of rodlet dimensions to experimental results. a) AFM image of EAS rodlets on
surface by Mackay et al.[140]. The height of the rodlets can be estimated to roughly 4 − 7nm for the
full EAS. Our truncated variant shows a height of 3nm. The height difference can be explained by the
truncated flexible loops. b) A simulated rodlet for comparison.

5.3.3. Discussion

In this section, we predicted a structural model of rodlet formation of class-I hydrophobin EAS,

which may explain rodlet assembly on air-water interfaces. Although earlier experimental stud-

ies hypothesized an involvement of the large flexible loops in rodlet formation[131], our simu-

lations confirm the subsequent evidence[137] that a rodlet can be developed also by a structure

without flexible loops.

The structural features of the proposed rodlet are compatible with experimental observations:

Mackay et al. published AFM images of protein EAS on surfaces[140]. The height of the rodlets

in these images can be roughly estimated to 5−7nm. This is comparable to the height observed

in the full rodlet image, measured to 3.4nm. The difference in sizes can be attributed to the trun-

cated loops, as the AFM image resolved the full EAS rodlet structure and the rodlet in Fig. 5.17

is built from the truncated mutants.

In conclusion, we could identify the mode of protein-protein aggregation, by attachment of

the β-barrel subunits of hydrophobin monomers. The aggregation was possible in spite of the

truncations introduced in the mutant protein. Our findings are compatible with experimental

results obtained by Kwan et al.[137]
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5.4. Structural model of the development of gas-vesicles in aqueous
bacteria

5.4.1. Motivation

Protein-protein aggregation has been an important subject for study in the biological sciences,

which gathered increasing momentum in the discovery of aggregation related diseases such as

Alzheimer’s[141, 142]. Because of the difficulties to study such assemblies with traditional ex-

perimental techniques, detailed structural information is only rarely available[143]. One example

of a protein forming macroscopic aggregates is the gas-vesicle protein GvpA, which aggregates

into a macroscopic helical, rib-shaped gas-vesicles. Gas-vesicles provide the lift for aquatic

bacteria to enable flotation on natural water bodies by increasing the bacteria’s buoyancy[144].

Recently new microscopic information about the GvpA protein and its assembly has been dis-

covered by a combination of many different approaches[145, 146], but a complete structure for

the protein and its assembly is not yet available. In this chapter, we present a first structural

model of the gas-vesicle forming protein GvpA obtained by de novo modelling using the GvpA

sequence of Haloferax mediterranei (Fig. 5.18).

In section 5.4.2, we first introduce known structural information of protein GvpA. Afterwards

we present the methods used for de-novo prediction of GvpA and the analysis of the model and

assessment of its stability in section 5.4.3. Subsequently, we briefly discuss the results regarding

the various aspects of our investigation, such as the monomer model and its stability and dimer-

ization in section 5.4.4 and compare the model’s properties with experimental results in section

5.4.5. The model presented here is compatible with most of the currently available structural

information on GvpA3.

5.4.2. Introduction

Here we investigate the proteins forming the gas-vesicle wall of bacteria Haloarchaea. The

gas-vesicle wall of Haloarchea is built solely of proteins with the 8 kDa protein GvpA being

the dominant species present in the wall[144]. Macroscopic imagery shows them as spindle- or

cylinder-shaped structures up to 1µm in length and 200nm in diameter. To contain the gas,

the inner gas-vesicle wall is more hydrophobic than the outer hydrophilic shell. The protein

GvpC, which is also part of the vesicle wall, is attached to the outer shell, which stabilizes the

gas-vesicle wall.

Gas enters the vesicles passively by diffusion of gas molecules dissolved in the cytoplasm. It is

hypothesized that although water molecules might enter the structure, the hydrophobic, curved

inner surface prevents condensation. Collapsed gas vesicles exhibit a rib-shaped structure with

5nm ribs running perpendicular to the long axis that are presumably formed by GvpA[147–

149]. The amino acid sequence of GvpA is highly conserved among bacterial species (Fig.

5.18), whereas the sequences of GvpC are more divergent.

Although most of the macroscopic properties of gas-vesicles are known, there is still no
3Parts of this text were previously published in Strunk et al.[100]. I thank the publisher John Wiley and Sons and

all the coauthors for the permission to republish it as part of my thesis.

68



Fig. 5.18.: Alignment of GvpA sequences and prediction of α-helices and β-sheets. The 51-amino-acid
conserved core region is indicated by a bar and the sites accessible to peptidases (Trp: trypsin, GluC) are
marked by arrows[145]. pGvpA and cGvpA derive from Hbt. salinarum, mcGvpA from Hfx. mediterranei,
nvGvpA from Halorubrum vacuolatum and hqGvpA from Haloquadratum walsbyi. Ms, Methanosarcina.
The model structure is given in the last line with (H) depicting α-helical and (E) depicting β-sheet regions.
For comparison, the PSIPRED and NMR results for GvpA of Anabaena are added[146]. The differences
between PSIPRED and NMR results are marked by small letters (h = α-helical, e = β-sheet, additionally
observed in NMR, but not in PSIPRED).

nano-scale structural model of the GvpA monomer or the formed vesicle. Previous solution

NMR studies encountered difficulties to resolve the protein structure, since GvpA monomers

aggregate in solution and dissolve only in 80% formic acid. Removal of the formic acid via

dialysis results in amorphous GvpA precipitates[145].

Recently a solid-state NMR study suggested a coil-α-β-β-α-coil fold[146]. Furthermore FTIR

spectra indicated antiparallel β-sheets in the GvpA structure, while X-ray diffraction and atomic

force microscopy suggested that the β-strands of GvpA are tilted in the ribs at an angle of 54◦

to the axis of the rib[145, 148, 150, 151].

The exposure of peptide bonds of GvpA inside the gas vesicle structure was determined using

proteolytic cleavage using trypsin among other proteases in the bacteria Anabaena flos-aquae

and Hbt. salinarum[145]: It could be shown that a highly conserved (51 AA) part of the

sequence of GvpA is not cleaved by trypsin in either case (Fig. 5.18). GvpA was accessible

to trypsin as the C-terminal K60-I61 bond was cleaved in the case of Hbt. salinarum, whereas

other possible trypsin cleavage sites were not affected. Cleavage at K60 resulted in collapsed

gas vesicles[145]. Similar results were obtained, when cleaving with GluC endopeptidase. Also

GluC endopeptidase could not cleave sites within the conserved segment of GvpA (Fig. 5.18);

only the C-terminal portion could be cleaved, which is therefore presumed to lie at the outer

surface of the gas-vesicle.

The single GvpA subunits inside the vesicle structures were shown to be non-equivalent in

solid-state NMR studies of gas-vesicles of A. flos-aquae due to a small folding variation in

alternating subunits[152]. The model derived implies that the β-sheet portion of GvpA achieves

a hydrophobic surface, and that complementary charges and aromatic-aromatic interactions are

present at the subunit interfaces.
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Fig. 5.19.: Helices (H) and β-sheets (E) in GvpA as determined by different model programs. Most
notable is the agreement of the assignment of two beta-strands in three of the programs (PSIPRED, SAM-
T02-Stride and SSPro). The single long helix as predicted by SAM-T02-DSSP is possible, but unlikely as
the single β-strand would not be paired in the resulting structure.

5.4.3. Methods

Model generation

Templates for template based modeling were obtained by querying the 3DJury[153] meta-server.

Among the servers queried were PSIPRED[154] and two SAM-T02[155] secondary structure

prediction servers. Furthermore the PHYRE fold recognition server[156] was used to identify

the secondary structure in similar sequences. Finally a separate alignment using FUGUE[157]

was created, which was translated into a three-dimensional model using the Modeller program.

The GvpA protein was also modeled directly by the I-Tasser[158] and SAM-T08[159] web-

based threading servers.

To enlarge the model diversity of the attained structures another modeling attempt using frag-

ment based modeling was carried out. The de novo structure prediction scheme consisted

of a model generation step and a refinement step. In the model generation step we used

ROSETTA[160] to generate a set of decoys, which were clustered using MaxCluster in order to

avoid rescoring the same model multiple times. Afterwards the decoys were ranked using the

all-atom free-energy force field PFF02[9] as a scoring function. Each of the models had to be be

relaxed in a short simulation to a close-by local minimum in the PFF02 force field, previously

described in section 3.2.2.

Fragments were obtained using the Robetta server[161]. We assembled these fragments into

mainchain models using the ROSETTA 2.3 software suite using the default ab initio proto-

col[161, 162]. Subsequently a short idealization simulation was carried out, which added the

missing sidechain atoms and removed clashes in the ROSETTA force field. The resulting

ensemble of models was clustered using MaxCluster with a 3DJury (MaxSub)[163] score

threshold of 0.55 and a 3DJury pair threshold of 20. Each of the MaxCluster cluster centroids

was relaxed in five independent simulations per model, using a simulated annealing protocol

with a starting/end temperature of 700K/5K, respectively, and a geometrical cooling protocol.

We note that these temperatures must be scaled against the energy scale of the forcefield PFF02,

which has not been calibrated. Each simulation comprised 1.5 million steps. In each step one

randomly selected dihedral angle of the model was changed by a maximum of five degrees.

Backbone/sidechain dihedral angles were selected for rotation with a ratio of 70%/30%[164].
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Fig. 5.20.: Ribbon illustration of the lowest energy model of a GvpA monomer. A single central β-
strand (red) is observed comprising of two bonded β-strands from positions V23 to L31 and E35 to V43.
Furthermore there is a long helix (blue) from V48 to T67 and a smaller helix from amino acids L9 to
K19. The accessible surface area is colored using the Eisenberg-Schwarz hydrophobicity scale encoded
in the intensities of green and includes the two lysine residues that were observed in solid-state NMR
results[146] to be solvent-accessible.

Model evaluation

To judge the stability of the model predicted for the monomer, we simulated the dynamics of

this molecule with the NAMD molecular dynamics package[165] for 20ns at two different salt

concentrations in reference to the halophilic organisms: (i) at 1M KCl and (ii) at 1M NaCl and

5M KCl in the CHARMM force field[166]. Trajectory analysis was performed with the GRO-

MACS software suite[167]. We repeated the simulations five times for each salt concentration.

A model of docked GvpA subunits was prepared using the ROSETTA protein-protein docking

protocol[168] by the group of Prof. Dr. Kay Hamacher.

5.4.4. Results

Template-based modelling and secondary structure prediction

The amino acid sequence of mcGvpA derived from Hfx. mediterranei (see Fig. 5.18) was

used to obtain a structural model. No alignments with significant prediction scores could

be discovered using 3DJury. The FUGUE server delivered a single marginally significant

result. While tertiary structure prediction using template-based modelling proved difficult, all

secondary structure prediction methods resulted in similar secondary structure content (Fig.

5.19). Helical regions were predicted between L9-V16 and V48-I58, while a β-strand was

predicted for V22-V32, both in good agreement with recent results from solid-state NMR[146].

PSIPRED’s secondary structure prediction seems the most plausible, as it permits a pairing of

two equal-length β-strands; again in correspondence with solid-state NMR[146] (see Fig. 5.18).
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(a) Energy-RMSD values of the simulated structures (b) Low energy ensemble

Fig. 5.21.: a) RMSD versus energy of the relaxed 1850 centroid models scored with PFF02. The RMSD
is measured with respect to the lowest energy structure. The lowest energy cluster of models (dark grey
region) comprised similar models (see b) ). The lowest energy model is separated by an energy gap
of 7.6kcal/mol from the first structurally dissimilar model, which has an RMSD of 8 Å. b) Structural
ensemble of the ten lowest energy models. The cartoon plot in the middle represents the lowest energy
structure.

PHYRE did not detect homology to known proteins, but its secondary structure prediction

element (using sspro) coincides with the PSIPRED secondary structure prediction.

In addition to the 3DJury results FUGUE was directly used as an alignment server. A marginally

significant result (Z-score: −3.95) was obtained for the PDB-template 2JOI. A model was built

using Modeller, 2JOI and the FUGUE alignment. In contrast to the previous hypothesis of two

paired strands, the model shows four paired strands stabilized by two helices. Since a large

fraction of the amino acids in this model remained unstructured, this approach was not pursued

further.

De novo modelling

Since no models of promising quality emerged from 3DJury, separate FUGUE, I-Tasser and

SAM-T08 modelling attempts, we resorted to a de novo prediction using the predicted sec-

ondary structure elements as constraints. In total 53, 000 mainchain models were created using

ROSETTA, which resulted in 1850 centroid models after clustering. The lowest energy structure

(Fig. 5.20) has a PFF02 energy of−163kcal/mol and is separated by a gap of about 8kcal/mol
to the next structure of different topology (∆RMS = 8 Å - Fig. 5.21). Sampled models with

an energy below −155kcal/mol fall into a structurally similar cluster with a 2 Å radius. An il-

lustration of the ensemble of this cluster is shown in Fig. 5.21b. The model features two bonded

β-sheet regions at V23-L31 and E35-V43, each of which is 9 AA long (Fig. 5.18). In addition

there is one long α-helix (V48-T67) that is arranged almost in the same direction as the β-sheets

but faces the other surface. These regions agree with the secondary structure predictions we used
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Fig. 5.22.: Fraction of β-sheet and helical content in the models created by ROSETTA. The values of the
lowest energy model are indicated by arrows. The models span a large interval of different secondary
structure combinations. The selected prediction contains both high amounts of β and α topologies.

to generate the models. Another α-helix is observed from amino acid L9 to amino acid K19.

Eleven hydrogen bonds are located between the two strands of the β-sheet. The whole popu-

lation of models created using ROSETTA has a large fraction of secondary structure elements

(Fig. 5.22). Refining these models with PFF02 selected the lowest energy model among many

competitors with similar secondary structure.

Stability analysis

The RMSD in the five simulated trajectories was observed to saturate around 4 Å in both salt

conditions (Fig. 5.23a,b), which is commensurate with the deviations observed in simulations

started with high resolution crystal structures using the same forcefield[169].

These results indicate the overall stability of the proposed monomer structure. Especially the

secondary structure elements proved to be stable as individual dihedral angles in α and β regions

only showed small deviations from the starting structure.

Dimerization

Next we attempted to assemble the monomer models into dimers, generating 622, 000 decoys

in total using the Rosetta dimerization simulations. Structures with the two lowest dimerization

energies observed in the simulations were −128.9kcal/mol and −128.7kcal/mol, which dif-

fered only by 0.09 Å from each other (Fig. 5.24). The dimer model is nearly symmetric, i.e.

the two subunits have a vanishing shearing angle towards each other. Furthermore, the dimer

presents an inner concave surface with high hydrophobicity. We hypothesize that the surface

faces towards the vesicle inner in agreement with results from solid-state NMR[146].
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Fig. 5.23.: RMSD over the course of time in the MD simulation for the two simulated high-salt concen-
trations (a and b). The reference structure is always the predicted GvpA monomer. We repeated the
simulations five times each to show stability of the monomeric structure. The RMSDs lie within typical
regions of fluctuations of proteins around an experimental structure.

5.4.5. Discussion

In this section I have presented a first structural model for dimerization of the major gas-vesicle

forming protein GvpA using ab-initio all-atom modeling. The model is consistent with previ-

ously determined properties, such as the existence of a hydrophobic inner gas-vesicle wall and

the hydrophilic shell. The model features a hydrophobic-inner and hydrophilic-outer surface

and contains two α-helices separated by two anti-parallel 9-AA long β-strands of 3.67nm
length. Overall the structure contains 47% helical, 25% β-sheet and 28% of unknown structure.

The antiparallel β-strands presumably form the inner surface of the gas vesicle wall. Nine out

of ten residues in the beta-sheets are hydrophobic and point towards the gas-facing surface of

the wall, whereas six out of eight amino acids, pointing to the other side of the β-sheet, are

hydrophilic/charged. Helix I is also located at the gas-facing surface and forms the broader back

of the triangular-shaped GvpA monomer (Fig. 5.24).

Our findings disagreed with previous investigations, which postulated that GVPA consists only

of β-structures[144]. The presence of a significant amount of α-helices was confirmed by FTIR

measurements performed by our experimental partners (data in Strunk et al.[100]). Apart from

the presence of significant helical secondary structure elements, the FTIR measurements could

also confirm connected anti-parallel β-sheets as observed in the proposed model. Our structural

results and their assignment to secondary structure elements agrees very well with the NMR

results obtained for cyanobacterial GvpA of Anabaena [146] (Fig. 5.18). The only differences

occur in the C-terminal region, where the haloarchaeal and cyanobacterial GvpA sequences

substantially differ.

The model of the GvpA dimer contains two antiparallel GvpA monomers of triangular

shape that are connected by contacts between half of the antiparallel β-sheet region of monomer

1 and monomer 2 (Fig. 5.24). The relatively large extension (tip) formed by the second half

of the anti-parallel β-strands and the β-turn should contact the next GvpA dimer located in

the adjacent rib, with one monomer in contact with the rib on top and the other one with the

rib below as indicated in Fig. 5.24B. It is striking how perfectly the dimers fit to each other

when a single layer of GvpA is formed. The orientation of the antiparallel β-sheet relative
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Fig. 5.24.: Predicted dimerization mode. Blue resides are hydrophilic, Gray residues hydrophobic. Or-
ange residues were mutated in a mutation experiment introduced in section 5.4.5 A) Two of the monomers
shown in Fig. 5.20 are docked in an antisymmetrical mode in both a cartoon representation (left) and a
surface representation (right). B) Concave side of the proposed vesicle wall. The hydrophobic wall facing
outwards shows high hydrophobicity and is therefore implied to be facing towards the gas pocket. Two of
the dimers shown in A) are arranged to form a 4.3nm wide rib. Figure courtesy of Strunk et al.[100].

to the axis of the rib corresponds well with the 55◦ angle shown by X-ray diffraction studies

of cyanobacterial gas vesicles [148]. Such periodicities are also observed by atomic force

microscopy [150]. The unit cell of the GvpA monomer model measures 4.3nm (across the rib

without the tip region) ×2.2 nm (along the rib defined by the dimer structure) ×2.1nm (wall

thickness) (Fig. 5.24). These dimensions were measured from the most distant atoms along the

respective axes, effectively neglecting the unknown separation of unit cells. The measurements

are close to the dimensions of the unit cell (4.57 × 1.15 × 1.95nm) known from fibre X-ray

crystallography using gas vesicles from the cyanobacterium A. flos-aquae[148]. It should be

noted that the length of the β-sheet (3.67nm) is significantly shorter compared with the width

of the rib (4.3nm) and thus constitutes only part of it. However, the tip of an adjacent GvpA

monomer (constituted by antiparallel β-sheet + β-turn) interacts with the β-sheet of a second

GvpA monomer, which might result in the strong interactions between two adjacent ribs.

The structural model of GvpA deduced here defines putative contact sites of GvpA. The major

contact sites besides the β-turn at the tip are helix I (near the bottom) and helix II (alongside

the dimer). The contacts predicted by the model to be vital to the forming of the vesicle or

monomer structure were deleted or substituted in mutagenesis experiments. In summary eight

point mutants and three deletion mutants were produced and screened for their ability to produce

gas-vesicles (quantitative details in Strunk et al.[100]). All mutations are shown in Fig. 5.24b.
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Fig. 5.25.: Mutations assessing the validity of the GvpA model. a) Sequence and secondary structure for
the predicted model of GvpA. Point mutations are indicated below the sequence. Truncations at the C-
terminal are indicated by arrows. b) Locations of the single point mutations inside the structure. Mutated
sidechains are indicated in orange. Blue indicates hydrophilic residues. Figure courtesy of Strunk et
al.[100]

The single point mutations I34M and E35A (location indicated in Fig. 5.25) changed the

overall shape of the gas-vesicles to be long and thin or cylinder-shaped respectively. Similarly

the two mutations (F51Y and K60L) in helix II, presumed to be in contact with the adjacent

GvpA molecule of the same rib, change the form of the gas-vesicles, but keep them intact.

The importance of the second helix was further assessed in the truncation mutants, as the

∆11 mutant (the truncation of the last 11 amino acids and thereby the last two amino acids

of helix 2) inhibited all gas-vesicle formation. In contrast ∆5 and ∆7 mutants, which do not

truncate the terminal helix, were still able to form gas vesicles. This is compatible with the

fact that the C-Terminal of the GvpA family is not highly conserved and even missing in some

species (Fig. 5.18). Another indicator for the the lack of importance of the C-terminal in the

formation of gas-vesicles is that cleavage at the GluC endopeptidase cleavage sites contained

in the C-terminal region left the gas-vesicles intact, while cleavage at the trypsin accessible site

K60-I61, within the helix II region, led to the collapse of the vesicles[145].

The structural model shows ARG15 in the center of helix I to play an important role in the

aggregation between two GvpA subunits of adjacent ribs. Mutations at this site (R15A and

R15K) both led to the inhibition of gas-vesicle formation: ARG15 could be bound to the

oppositely charged amino acids of helix I of the adjacent GvpA dimer. In summary the in vivo

data on the GvpA mutants support the major structural features deduced from the model of

GvpA.
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5.5. High-throughput prediction of peptide structures

5.5.1. Motivation

The availability of effective antibiotics is one important contribution to improved health in the

last century. As bacteria adapt to and resist current drugs, effectiveness of available antibiotics

decreased for some diseases, e.g. tuberculosis[170, 171]. Since 1970 only three novel antibi-

otic drugs were released to market[172]. Antimicrobial, antibiotic and antifungal peptides[173,

174] present one possible alternative to complement current antibiotics. Recent investigations

to develop novel antimicrobial and antibiotic drugs have therefore focused on the development

of artificial peptides[175]. Short peptides are naturally involved in many important biological

processes in the cell and therefore target many kinds of cells. For antimicrobial and antifungal

applications, it is vital to design peptides, which can differentially target bacterial and eucariotic

cells. Experimental large-scale screening endeavors introduce changes in the peptide sequence

to discover new functional peptides[176–178], but the number of possible sequences is over-

whelmingly large. For a peptide of length 20, 2020 = 1026 different possible combinations exist.

Although the length of the peptides investigated in this study was limited to 16 amino acids, the

number of possible peptide sequences is still too large to synthesize in a trial- and error manner,

therefore requiring a method for directed, but also high-throughput peptide design. By predicting

the structure of peptide proteins, this design process can be supported through structure-function

analysis[179] and peptide-membrane interaction simulation[180], which would improve novel

peptide development.

Here we present a method to generate structural ensembles of peptides in an automated manner.

In section 5.5.2, we introduce the protocol used for structure prediction and explain the clus-

tering method used to characterize representative low energy conformations. In section 5.5.3,

we present the results of the de-novo predictions and analyze the low energy conformations.

We conclude in section 5.5.4 and give a short overview of the success of the prediction proto-

col.4

5.5.2. Methods

Simulation Protocol

For a specific peptide sequence the initial random-coil structure was created using Profasi[181].

Bond-lengths were idealized using the standard Rosetta 3.0 idealization protocol[80]. After-

wards a SIMONA Metropolis Monte-Carlo simulation was started. In each Monte-Carlo step

we randomly rotated one angular degree of freedom, i.e. the mainchain and sidechain dihedral

angles. There are two move classes: In one move class, values for the angles were drawn from

Gaussian distributions with a width of ten degrees around the original angles. In the other move

class they were selected randomly from a distribution reflecting the naturally occurring distribu-

tion of phi- and psi-angles in the Ramachandran plot[182]. To model the Ramachandran plot we

4This work was published as part of Strunk et al.[101]. I thank the publisher Springer and all co-authors for the
opportunity to publish it as part of my thesis.
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used angles randomly drawn from equidistributions of two circles with radii of 45◦ at the centers

(−125◦, 135◦), for the right-handed helical region, and (−70◦,−35◦), for the β-sheet region of

the Ramachandran plot.

Starting from a completely extended conformation, we performed 5000 simulations, each com-

puting 1.5 million steps using a simulated annealing protocol with a geometrical cooling sched-

ule (Tstart = 700K, Tend = 5K). The lowest energy conformation was then selected as the

predictive model of the experimental structure.

Clustering
The population of structures at the end of the simulations was clustered by RMSD to identify

representative low-energy conformations using the following algorithm:

1. The current lowest energy structure is selected from the population.

2. All structures in the vicinity of the current lowest energy structure (RMSD < 1.6 Å) are

merged into a cluster.

3. The structures in this cluster are removed from the population.

4. The algorithm repeats from step 1, until the population is empty.

This procedure generates clusters around minimum energy conformations and always selects an

energetically favorable centroid structure as a representative conformation of a cluster. Further

analysis was based on the minimum energy conformations of all clusters. Only conformations

within an energy threshold (∆G < 2.5 kcal/mol) to the lowest energy structure were selected

for further analysis.

5.5.3. Results

We validated the prediction protocol by investigating four peptides of different topologies.

Among these are the one-turn helical fold of the GroES mobile loop 1EGS[183], the Tryptophan-

zipper derived β-hairpin 1N0D[184] and two random coil-like folds, the RGD peptide isomer-A

1FUV[185] and the allostatin neuropeptide 2JQU[186] (four letter codes correspond to RCSB

PDB ids[3]).

The overlay between the predicted and experimental structure of β-sheet 1N0D is shown in

Fig. 5.26a. The predicted structure agrees with the experimental structure to a RMSD of 0.85 Å.

The RMSD-energy distribution of the ensemble in Fig. 5.26b shows that the cluster with the

next higher energy is separated by an energy gap of about 1 kcal/mol. It is notable that apart

from these two clusters, no other low energy conformation of different topology was discovered.

We note that the lowest energy structure features an energetically unfavorable hydrophobic

patch (dark red spot in Fig. 5.26a) in agreement with the experiment.

The collapsed coil-fold of 1FUV could be predicted to a RMSD of 2.4 Å to the experimental

conformation (Fig 5.26c). The cluster closest to the experimental structure has a RMSD of 1.6
Å and is separated by a large gap of 5 kcal/mol to the lowest energy structure.

The fold of 1EGS (Fig. 5.27a) resembles a distorted β-sheet conformation. The stabilizing
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Fig. 5.26.: a) Result of the predictions of peptide 1N0D (overlay). The predicted β-fold (green) agrees
with the experimental structure (red-white) to within experimental resolution. b) RMSD-Energy plot of
all simulated structures of 1N0D. The lowest energy structure has an all-atom RMSD of 0.85 Å to the
experimental structure. (circle) c) Comparison of the predicted structure of 1FUV (green) with the exper-
imental structure (red) with a RMSD of 2.4 Å. d) RMSD vs. Energy plot of all simulated conformations
for 1FUV. Conformations closer in RMSD to the experimental structure were discovered; they were ener-
getically disfavored. a and c: Dark red tones correspond to hydrophobic amino acids. Light red to white
tones correspond to hydrophilic amino acids.
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Fig. 5.27.: a) Result of the predictions of peptide 1EGS. Similar to the experimental structure (red) the
predicted structure shows a shift in the β-like fold. b) RMSD-Energy plot of all simulations of 1EGS.
The lowest energy structure has an all-atom RMSD of 1.4 Å (circle) to the experimental structure. c)
Comparison of the predicted structure (green) of 2JQU with the experimental structure (red). The helical-
like fold of 2JQU was correctly identified. d) RMSD vs. Energy plot of all simulated conformations for
2JQU. The population comprises only few structures, which exhibit a smaller RMSD to the experimental
conformation than the lowest energy structure at 1.5 Å (circle). a and c: Dark red tones correspond to
hydrophobic amino acids. Light red to white corresponds to hydrophilic amino acids.
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Fig. 5.28.: Connectivity tree of the distinct low energy clusters of peptide 1EGS below an energy of
6.3 kcal/mol. The connections show the relative RMSDs between the connected structures, while the
labels show the cluster ID and the respective energy in kcal/mol. IDs correspond to the plots in Fig.
5.29. Clusters with green ellipses are low in energy, clusters with red ellipses are high in energy, clusters
with blue ellipses are intermediate.

zipper-mechanism is not as pronounced as in peptide 1N0D. The lowest energy structure of

1EGS exhibited a RMSD of 1.4 Å to the experimental structure, which is separated by about

3 kcal/mol from the next unfolded conformation (Fig. 5.27c).

All sampled conformations of peptide 2JQU are displayed in Fig. 5.27d. An energy difference

of 3 kcal/mol separates the lowest energy structure and the next sampled unfolded conforma-

tion. There was no pronounced low energy conformation sampled with a RMSD bigger than

4.5 Å. This can be rationalized by the fact that the native helical conformation (Fig. 5.27c) is

stabilized mostly by local interactions. The funnel towards the helical structure might therefore

be so pronounced that no other structure of completely different topology was visited in the

simulation.

Low energy conformations of 1EGS

The low energy conformations of 1EGS were analysed using the clustering scheme presented

in section 5.5.2. Seven distinct low energy conformations were identified within a range from

−8.73 kcal/mol to −6.31 kcal/mol. The connectivity of the clusters is shown in Fig. 5.28.

Two clusters were considered adjacent, if the RMSD of their centroids was smaller than 2.5 Å.

The minimum energy conformation is connected to two distinct conformations with an RMSD

of 1.7 Å and 1.6 Å, respectively. Structure C (Fig. 5.29) is the cluster with the most connections

and acts like a ”travel hub“ among the low energy conformations. This may be understood, by

analyzing the conformation of structure C. Fig. 5.29 C shows that structure C features a relaxed

β conformation, which resembles the experimental conformation (Fig. 5.29 H), the broken β

conformation (Fig. 5.29 B) and the partially helical coiled conformation (Fig. 5.29 D). The
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Fig. 5.29.: Low energy conformations of peptide 1EGS. Energies are sorted in increasing order from A to
G. The structure H is the experimental conformation shown for comparison. Conformations C and G can
be converted to most of the other conformations as only a slight shearing move is necessary to transform
them into either coiled or β-conformations. The connectivity tree for these structures is shown in Fig.
5.28.

higher energy structures included a warped β-sheet (Fig. 5.29 E) and a coiled helical turn simi-

lar to structure (C) in Fig. 5.29 F.

Traversing the low energy landscape of protein 1EGS can therefore be represented by a shearing

motion for most of the peptide structures, which transforms many of the low energy conforma-

tions into one-another either by increasing the shear, leading to a coiled structure, or reducing

the shear, leading to the correct β-fold.

5.5.4. Discussion

In this investigation we have developed a technique to predict peptide structures de-novo, i.e.

based on the sequence information alone, using a massively parallel simulation scheme. We

sample the peptide’s conformational space using Monte-Carlo simulations in the free-energy

forcefield PFF02[9] on the volunteer computing network POEM@HOME[71]. We could iden-

tify the native conformation of peptides of different topologies in a completely automated man-

ner that allows for the high-throughput screening of large peptide databases for their structural

features, enabling the rapid prototyping needed for novel peptide design. Due to the short pep-

tide length, homology modeling and fragment based modeling attempts will not work, as even

single amino acid mutations can have a large impact on the function and therefore the structure

of a peptide[187]. We could generate structural ensembles for peptides of very different struc-

ture, including collapsed folds without apparent secondary structure. The simulations did not

only elucidate the biologically active structure of the peptides, but could also characterize their

low energy ensemble, which might be involved during the folding process of the peptide. This

method may enable further analysis to establish structure function relationships for peptide li-

braries and thereby help optimize their biological activity. Due to the automated nature of this

prediction scheme, many different sequences can be structurally characterized in a short time

allowing the integration of this method in experimental peptide-design investigations.
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6. Protein-Ligand Interactions

Many processes in cells are regulated by the association of proteins with other proteins and

small-molecule ligands[188, 189]. The manipulation of these processes presents an opportunity

for the development of novel drugs. The experimental characterization and directed targeting

of these interfaces is a complicated and costly process and requires the analysis of millions of

ligands[190, 191]. In-silico protein-ligand screening may present a viable alternative to alleviate

some of these costs[192].

In this chapter, we discuss simulation protocols that may contribute to the development of

novel therapeutic agents. In section 6.1, we first present a method for identifying specific

hotspots as possible therapeutic targets for structure-based drug design. In section 6.2, we report

the first applications of SIMONA to protein small-ligand docking. Our group has developed

FlexScreen[193], a high throughput receptor ligand docking program, for the last decade. For

technical reasons this implementation has now reached the limits of its efficiency. Implemen-

tation in the general purpose simulation program SIMONA would make it possible to rapidly

develop highly efficient protocols for in-silico screening using all the tools and force fields avail-

able within SIMONA.1

6.1. Computational Alanine Screening

6.1.1. Motivation

Many different biological signaling processes are mediated by protein-protein interactions. Un-

derstanding of protein-protein interactions gives insights into a wealth of biological processes

and may even enable their manipulation. Protein-protein interfaces are emerging as novel

drug targets[195]. In comparison to interactions between proteins and small-molecule ligands,

protein-protein interfaces are more extended. While targeting these extended interfaces with

antibodies has been successful[190], smaller ligands are more desirable, because of their lower

cost, ease of handling and better bioavailability. Due to the often large area of protein-protein

interaction sites, it is difficult to modify the attachment site to affect binding[196]. In spite of

these difficulties, high-throughput screening studies were successful targeting protein-protein

interfaces with small-molecule ligands[197–199]. Designed binding partners, which are derived

from the natural ligand, were used to inhibit protein-protein binding and served as a model for

1The two protein-protein docking simulations of 1MFG and 1ILP were previously published in Meliciani et al.[194].
The third docking simulation and the cascaded strategy was published in Strunk et al.[100]. I thank all of the co-
authors and especially the publishers American Institute of Physics (Meliciani et al.) and John Wiley and Sons
(Strunk et al.) for their permission to publish these results again as part of my thesis. In the investigation presented
in this chapter, I was responsible for the brute-force protein-protein and protein-ligand docking simulations with-
out prior knowledge of the docking interface and the forcefield implementations. Alexander Biewer parametrized
the FlexScreen forcefield in SIMONA and did most of the work on the simulation cascade.
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the development of small-molecule analogs[200–202].

Alanine exchange screening is a widely used method to discover and characterize binding

hotspots, i.e. key interactions between the two interacting proteins. The amino acids located at

these hotspots provide most of the binding energy supporting a stable complex. After identifi-

cation of the binding interface, charged, polar or bulky amino acids in its vicinity are mutated

in alanine screening experiments to the non-polar alanine residue and the binding affinity is

measured[203–205]. After identification of the binding hotspots, ligands can be designed to

target the most important amino acids in the interface and compete with the natural binding

partner.

Experimental alanine screening is a time-consuming process, as it requires creation of large

mutagenesis assays. Simulation of the properties of the binding interface can reduce the

experimental work involved by estimating the differences in interaction energy upon mutation

and therefore guide the experiment. Additional insight about the the mode of binding can be

obtained by analyzing the energies contributing most to the binding mechanism2.

In section 6.1.2, we will introduce the method for computational alanine screening and the

validation protocol. In section 6.1.3, we present the mutational protocol. The results of our

simulations are presented in section 6.1.4. In section 6.1.5, we discuss our findings in the

context of experimental screening investigations.

6.1.2. Introduction

Many computational methods for computational alanine screening have been reported in the

literature[206–210]. The bulk of these methods are based on Molecular Dynamics simulations,

the first of which investigated a complex of oncoprotein Mdm2 bound to a peptide from tumor

suppressor protein p53[211]. Ideally such simulations should estimate the difference in the free

energy of binding ∆∆G upon mutation, but estimation of this quantity is notoriously difficult

in Molecular Dynamics simulations and their derivatives. For this reason many sequence- and

knowledge-based methods have been developed to provide rapid and computationally efficient

predictors for the affinity change.

Here we investigate a Metropolis Monte-Carlo-based protocol to study protein-protein interac-

tions and their modification under mutation and validate the approach on two pharmaceutically

relevant complexes. We calculate the binding energy of the wild-type complex from the

experimental structure and subsequently mutate each of the amino acids in the vicinity of the

binding interface to alanine. We then compute the binding energy and thus obtain an estimate

of the enthalpic contribution to the free energy change. Hot-spots are being identified as the

sequence positions, where a significant energy change was induced by alanine substitution.

We rationalize the energy changes by decomposition of the total binding energy into the most

important physical contributions.

2Parts of this section have been published in Meliciani et al.[194]. I thank the publisher AIP and all the authors
for their permission to publish them as part of this dissertation. In the presented project Dr. Irene Meliciani
investigated the specific systems and their properties and performed the subsequent analysis. I was responsible
for the development of the simulation and evaluation scripts and their implementation on BOINC. Dr. Konstantin
Klenin took care of the mutagenesis scripts and adapted the simulation parameters.
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First we screen the influence of mutations for the complex of the chemokine Interleukin-8

(CXCL8) and a N-terminal peptide mimic of its cognate receptor CXCR1[212]. The family of

chemokine proteins direct the movement of cells carrying receptors for chemokines towards

sites of inflammation. Due to the large number of cells carrying chemokine receptors, many

chemokines are involved in clinical conditions like chronic inflammations, allergies, autoim-

mune diseases and even cancer[213, 214]. We further tested our approach by investigating the

ERBIN/ERBB2 complex[215, 216] and identify the most important interaction hot spots in

agreement with experimental data[215, 217].

6.1.3. Methods

To predict the change in interaction energy between receptor and ligand upon mutation, we first

anneal the compound structure to a near minimum in the selected forcefield PFF02 (see section

3.2.2) using long simulated annealing simulations. From this simulation we obtain the internal

free-energy of the complex before mutation GC , which comprises the inter- and intra-molecular

contributions to the energy, as well as an approximation to the solvent interactions, including the

solvent entropy. It is important to note that this estimate contains no contribution of the back-

bone entropy of either binding partner. After moving both binding partners apart, we calculate

their internal free-energies GR and GL in the unbound state. We define the energy of binding as

∆GB = GC − (GR +GL).

We then repeat the simulations, after mutating a single interface residue to alanine to obtain the

energy after mutation GaB . The change ∆∆G in binding energy is then ∆∆G = ∆GaB −∆GB .

Neglecting entropic effects in computing the differential binding energy is justified if the change

in the free-energy of binding is dominated by the enthalpic effect. In the simulations reported

below, we have investigated only mutations of the peptide-ligand, which implies that the ma-

jority of the missing entropic correction is likely to arise from contributions to the entropy of

the unbound peptide. The overall interaction energy ∆G is therefore overestimated using this

protocol.

We modeled the mutation of a single residue to alanine by removal of all sidechain atoms except

for the β-carbon atom Cβ . Hydrogen is then placed into the now open bond positions of the

β-carbon. For all relaxation and annealing simulations, moves for the dihedral-angles are drawn

from an equidistributed interval with a maximum change of 5◦. Rigid-body transformations (ro-

tations and translations) and dihedral angle rotations are selected at a ratio of 1:2. The molecule

is rotated by a random angle, drawn from an equidistribution with maximal rotation of 5◦ around

a random axis, or displaced along a random axis by a maximal radius of 1 Å also drawn from

an equidistribution.

In the relaxation simulations, we annealed the native and mutated structures for 50, 000 steps

starting at 300K and ending at 2K using a geometric cooling schedule. The low final temper-

ature is selected to differentiate between low-lying metastable conformations. Unless otherwise

specified only sidechain dihedral angles and rigid-body motions were sampled in this investi-

gation. For more complex systems, in particular when backbone reorganization is expected to

play a significant role, more complex simulation protocols may be required[68, 218–220]. The
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(a) Receptor-peptide present (b) Only the ligand is shown

Fig. 6.1.: Structure of Interleukin-8 (CXCL8) a) Interleukin-8 (surface representation) in complex with a
peptide derived from its native receptor CXCR1 (drawn in stick representation). Red surfaces correspond
to charged amino acids, blue surfaces correspond to hydrophobic amino acids. The receptor-peptide fits
into the rift on the surface of Interleukin-8. b) Isolated Interleukin-8. Only amino acids in contact with
the CXCR1 receptor peptide (not drawn) are colored according to a). Additionally yellow amino acids
are not in contact with CXCR1. Large hydrophobic patches are covered by CXCR1 in the bound state.
Many charged amino acids are adjacent to the rift (red).

simulations were carried out on the POEM@HOME network[71, 221], allowing us to simulate

all possible mutations of a single ligand in 1000 independent simulations.

6.1.4. Results

The NMR structure of Interleukin-8 (ligand) bound with a peptide derived from its native recep-

tor CXCR1 contains the non-natural amino acid ACA (PDB code: 1ILP)[212]. For parametriza-

tion in PFF02 this non-natural amino acid was mutated to the naturally occurring glycine. The

NMR structure of the receptor-ligand complex is displayed in Fig. 6.1. The figure shows the

close fit between ligand and receptor: The receptor-peptide fills a rift inside the surface of the lig-

and structure. The N-terminal part (MET1-TRP2) of the peptide shows a high degree of disorder

in the NMR ensemble. As it also exhibits no contacts to the binding partner, it will presumably

not partake strongly in the stabilization of the binding.

Prior to the alanine screen, the native complex is annealed into its pocket to establish the ref-

erence energy in the forcefield PFF02. In this simulation, mainchain dihedral angles were per-

turbed. The obtained energy-optimized conformation differs by 2.25 Å RMSD from the NMR

structure. Convergence of this simulation was verified by long simulated annealing simulations

(500, 000 steps). After moving the receptor away from the ligand structure the energy was re-

calculated.
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Fig. 6.2.: Interaction energy difference for all alanine mutations of the receptor peptide CXCR1. The bar
color indicates the sidechain properties: charged sidechains (black), nonpolar sidechains (gray), polar
sidechains (white).

Mutational analysis of CXCR1

Each of the 17 receptor peptide amino acids was mutated to alanine. The resulting estimates of

the changes in the free energy of binding are shown in Tab. 6.1. Mutations in the N-terminal part

(MET1,TRP2) did not contribute significantly to the stabilization of the complex as expected,

as their alanine mutations had little effect on the interaction energy. The mutations of most non-

polar and polar sidechains (GLY7, MET8, PRO9, PRO10, TYR15, SER16, and PRO17) also

exhibited only a slight energy change upon mutation. The only exception was the non-polar

PHE4 (see Fig. 6.2). Mutation of charged amino acids had the most severe effect on the interac-

tion energy (ASP3, PHE4, ASP5, ASP6, ASP12, GLU13, and ASP14), with the largest impact

being the ASP12 hotspot.

The NMR structure (Fig. 6.1, right panel) features a large number of charged or polar residues

in the vicinity of the binding site explaining the large impact of mutation of charged residues.

Only a small change in solvation energy is observed for most polar amino acids since the polar

residues are exposed in the complex and the isolated molecules. To better understand these re-

sults the energy contributions of the interactions were analyzed independently (solvation, main-

chain and sidechain- electrostatics, torsion potential and Lennard-Jones interactions). Pair-wise

interactions were assigned to both of the interaction partners with half interaction strength. We

found that most of the interaction energy can be assigned to the sidechain electrostatic inter-

actions of the charged amino acids. Contributions to the backbone electrostatics energies are

almost unchanged, because the mainchain conformation is unchanged and intermolecular con-

tacts are mediated by sidechain atoms. Apart from the electrostatics hot-spots the amino acid

PHE4 has a large contribution towards the binding energy, due to the large change in solvation

energy upon its mutation.

In summary the dominant changes in interaction energy can be attributed to hydrophobic ef-

fects for most polar and hydrophobic amino acids and to electrostatic contributions for charged

amino acids. Except for PHE4 the important energy differences arise from electrostatic interac-

tions (see Tab. 6.1). Solvation energies are favorable for PHE4 in comparison to the mutated

ALA4, since PHE4 covers the hydrophobic pocket of the ligand (PHE17, PHE21 and LEU47;

IDs are relative to the ligand) better than ALA4 and also contributes a destabilizing interaction
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Res. Amino Solvation Electrostatics Backbone Lennard Total

No. acid Sidechain Mainchain Torsion Jones

1 Met 0, 90 −2, 82 −0, 30 0, 09 0, 48 −1, 65
2 Trp 0, 85 −1, 21 −0, 29 0, 09 0, 50 −0, 06
3 Asp 0, 90 6, 14 −0, 30 0, 09 0, 48 7, 31
4 Phe 7, 79 −0, 05 −0, 24 0, 09 0, 84 8, 43
5 Asp 1, 02 6, 95 −0, 54 0, 03 0, 59 8, 05
6 Asp −1, 01 6, 11 −0, 30 0, 09 0, 62 5, 51
7 Gly −0, 52 0, 29 −0, 30 0, 09 0, 45 0, 01
8 Met 3, 07 0, 29 −0, 30 0, 09 0, 59 3, 74
9 Pro 2, 09 0, 25 −0, 31 0, 09 0, 67 2, 79
10 Pro 2, 07 0, 20 −0, 23 0, 09 0, 78 2, 91
12 Asp 1, 09 9, 42 −0, 30 0, 09 0, 53 10, 83
13 Glu 1, 29 6, 23 −0, 30 0, 09 0, 72 8, 03
14 Asp 0, 90 7, 14 −0, 30 0, 09 0, 48 8, 31
15 Tyr 4, 15 −0, 07 −0, 30 0, 09 0, 59 4, 46
16 Ser 1, 28 0, 29 −0, 30 0, 09 0, 50 1, 86
17 Pro 2, 99 0, 25 −0, 26 0, 09 0, 69 3, 76

Tab. 6.1.: Result of the alanine substitutions of the individual amino acids in the receptor peptide derived
from CXCR1. Energy contributions are decomposed into solvation, electrostatics, torsion and Lennard-
Jones potentials. Numeric values are in kcal/mol. The large changes in interaction energy can almost
exclusively be attributed to changes in solvation and sidechain-electrostatics contributions. Darker val-
ues present hotspots in the peptide. Light-Dark values are significant contributions. Residue ALA11 is
not listed.

in the unbound state due to its own exposed hydrophobic surface.

Experimentally the residues PRO9, TYR15, PRO16, ASP12, GLU13, and ASP14 were iden-

tified as hotspots by Skelton et al.[212], while another study also attributed a crucial role to

ASP3[222, 223]. The data in Tab. 6.1 demonstrate that these hot-spots were also identified by

this study. No false negative was reported. Additionally a stabilizing contribution was observed

for PHE4, ASP5, ASP6, MET8, PRO10, and SER17.

Mutational analysis of the ERBIN/ERBB2 complex

The second system studied here is the complex of a 15 amino acid C-terminal peptide of human

receptor tyrosine kinase ERBB2 bound to the PDZ domain of the ERBIN (ERBb2 Interact-

ing proteiN) protein. The ERBB2 C-terminal domain contains two recognition motifs. It was

simulated as a benchmark system as it is widely studied by mutagenesis and functional stud-

ies in cellular environments[215, 216, 224]. One important hotspot identified in these studies

was a critical tyrosine residue (TYR2 in the following investigation) in a recognition motif of

ERBB2, where substitution resulted into the misdirection of the mutant protein. A similar study

found that even phosphorylation of the tyrosine residue inhibits binding between the two do-

mains[225].

Similar to the previous analysis of Interleukin-8, the simulations started using the experimental

structure of the ERBIN-PDZ domain bound to the C-terminal tail of the ERBB2 receptor (PDB
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Fig. 6.3.: Structure of the ERBIN PDZ domain bound to the C-terminal tail of the ERBB2 Receptor
(PDB: 1MFG). The ERBB2 receptor peptide (stick representation) docks into a burrow of charged and
hydrophobic amino acids on the surface of ERBIN (surface representation). The sidechain of TYR2 (left
from the orange peptide N-terminal) is located below the mainchain adjacent to the surface. Red surfaces
correspond to charged amino acids, blue surfaces correspond to hydrophobic amino acids.

Fig. 6.4.: Result of the computational alanine screen of the ERBIN receptor peptide. Especially mutation
of TYR2 resulted in a large change in interaction energy. Color coding: charged sidechains (black),
nonpolar sidechains (gray), polar sidechains (white).
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Res. Amino Solvation Electrostatics Backbone Lennard Total

No. acid Sidechain Mainchain Torsion Jones

1 Glu 0.53 −0.11 −0.05 0.05 0.12 0.54
2 Tyr 5.42 −0.23 −0.05 0.05 0.66 5.85
3 Leu 0.77 0.1 −0.06 0.05 0.28 1.14
4 Gly 0.53 0.1 −0.05 0.05 0.1 0.73
5 Leu 3.21 −0.36 −0.05 0.05 0.28 3.13
6 Asp −0.46 0.44 −0.05 0.05 0.27 0.25
7 Val 2.72 0.1 −0.05 0.05 0.17 2.99
8 Pro 0.54 0.13 −0.12 0.05 0.15 0.75
9 Val 2.42 0.1 −0.06 0.05 0.48 2.99

Tab. 6.2.: Energy contributions (in kcal/mol) of alanine substitutions of individual amino acids in the N-
terminal peptide of ERBIN. The total energy is split into contributions by solvation effects, electrostatics
(sidechain and mainchain), backbone torsion and Lennard-Jones potential. Large changes in interaction
energy can be attributed to solvation effects in case of polar and nonpolar residues. Compared to the
Interleukin-8 screen no significant changes in binding energy can be attributed to electrostatic effects.
Darker colors indicate stronger interactions.

Code: 1MFG, shown in Fig. 6.3) in agreement with the experimental observations. Only the

alanine mutation of TYR2 could show a significant change in binding energy of 5.85 kcal/mol,
mostly due to a rise in solvation energy (Fig. 6.4 and Tab. 6.2). The increase in solvation energy

relates to the burial of a hydrophobic pocket (SER1296, GLY1301, ASN1304, and PRO1305,

IDs relate to ERBB2) by TYR2. Furthermore TYR2 develops a hydrogen bond with ASN1304

(ERBB2) in the experimental structure. Mutation of TYR2 to alanine exposes the pocket and

therefore increases the solvation energy.

In contrast to the previous investigation of Interleukin-8 most hotspots can be attributed to

changes in solvation energy. Less significant solvation contributions were observed for LEU5,

VAL7 and VAL9. The only significant hotspot observed was TYR2 (Tab. 6.2).

6.1.5. Discussion

The understanding of key interactions in protein-protein association is vital to allow design of

small-molecule ligands binding to a protein-protein interface. Large databases of protein-protein

interaction hotspots were accumulated by experimental studies[10, 226]. These were used to de-

velop and benchmark computational methods for prediction of interaction hotspots[227–230] or

to provide insight into the common means of protein association, like densely packed regions of

conserved polar residues[231–234].

Previous approaches to predict the importance of hotspot residues included the physical and

knowledge-based neural network approach KFC, which had been trained to recognize features

of interfaces from existing structural data[229, 235] and an approach trained on data based on

the sequence environment, environmental trace and the accessible surface area; information ob-

tainable from sequence data alone[230]. Although these bioinformatics-based approaches are far

less computationally demanding than the one presented here, they do not always offer insight

into the structural mechanisms underlying binding energy changes. Qualitative insight into such
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Method True False True False Precision Recall
Positive Positive Negative Negative

PFF02 8 10 8 0 44% 100%
FoldX 3 5 15 3 38% 50%

Robetta 2 2 17 5 50% 29%
KFC 3 1 18 4 75% 43%

Tab. 6.3.: Performance of our method (PFF02) in comparison to three other approaches FoldX, Robetta,
and KFC. Precision is the number of true positives divided by the number of predicted hot spots; recall
is the number of true positives divided by the number of experimental hot spots.

effects could be gained by multiple structure alignments of conserved residues in the vicinity of

the binding interface[231, 232, 236].

In comparison to the knowledge-based approaches, the energy-based approach presented here

permits a quantitative analysis of the binding interface. Energy-based approaches can further be

divided into empirical bioinformatics-based approaches, such as functional matrices[237] and

molecular mechanics based approaches using physical forcefields such as MM-GBSA, a gener-

alized Born surface area (GBSA) based approach, which estimates the free-energy of binding

by calculating gas-phase energies, solvation free energies, and entropic contributions for the

free proteins and the complex[162, 206, 207, 211, 236, 238–240]. In contrast to MM-GBSA,

the approach presented here is less computationally expensive. We approximate the enthalpic

contributions to the free-energy of a protein complex in the bound and unbound states using

the PFF02 forcefield, which also models part of the solvent entropy. In contrast to MM-GBSA,

backbone entropy contributions are not considered in our approach.

The accuracy of the approach studied here is dependent on the quality of the underlying force-

field. To compare it with other similar approaches, we recalculated the energies given in the

results section 6.1.4 with the ROBETTA server (and its corresponding potential)[74, 241], the

FoldX server[227, 242] and the KFC server[229, 235]. A mutation was considered indicative of

a hotspot if a binding energy change of more than 1 kcal/mol was observed (Tab. 6.3). Only our

method predicted all seven hot spots of the IL-8 receptor peptide, while ROBETTA, FOLDX,

and KFC predicted one, two, and three hot spots, respectively. Additionally six false positive

hotspots were identified, while ROBETTA, FOLDX, and KFC yielded only one, two, and one

false positive. Three of the four methods considered PHE4 of the IL-8 receptor peptide to be a

hotspot. The involvement of PHE4 in binding could be underestimated by current experimental

methods.

With the exception of KFC all methods identified the TYR2 hotspot in the ERBB2/ERBIN

complex. PFF02 generates three more false-positive structures with minor energy contributions

compared to TYR2. Precision and recall statistics are shown in Tab. 6.3. Precision is the frac-

tion of true positives divided by the sum of true and false positives. Recall is the fraction of true

positives divided by the number of experimentally determined hotspots[229]. The precision was

44% for our method, comparable to the one of ROBETTA (50%) and FOLDX (38%). While

KFC had the best precision (75%) in the Interleukin-8 system, it did not identify the hotspot in

the ERBB2/ERBIN complex.

In summary PFF02 yields more false positives than the other methods; no false negative was
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reported. Most of the false positives are related to an overestimation of the electrostatic con-

tribution. The overestimation of the electrostatic contributions has since been addressed by the

development of a new generalized Born electrostatics and implicit solvent model. Preliminary

results are available in Strunk et al.[38].
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6.2. De-Novo Protein-Protein and Protein-Ligand Docking

6.2.1. Motivation

The development of SIMONA aimed to replace the three in-house programs for protein folding

simulations (POEM)[9, 61], for in silico screening (FlexScreen)[193] and for the modeling of

thin-film materials (DEPOSIT). FlexScreen performs high throughput small-molecule protein

docking simulations to discover and optimize novel small-molecule ligands. In contrast to

other in-silico docking tools FlexScreen is based on a biophysical model of the interactions and

incorporates very efficient sampling techniques to model structural changes in the receptor and

the ligand during the binding process[243]. The field of in silico-screening has increasingly

recognized the importance of receptor flexibility in the binding process, which was simply

too costly to sample when these methods were introduced two decades ago[244]. With the

incorporation of receptor flexibility many of the components required for in-silico screening

now overlap with the techniques required to model protein conformational change. For this

reason, we implemented the FlexScreen forcefields[193] in SIMONA and establish and validate

its novel docking protocols for various benchmark systems.

In section 6.2.3 we validated a very simple brute-force docking protocol for the streptavidin

biotin complex. Using the enhanced capabilities of SIMONA it is possible to apply the same

type of protocol not only to protein small-molecule docking, but also to protein-protein docking,

which was not possible with FlexScreen. We also present a cascaded docking strategy, which

was merged into SIMONA in the scope of the diploma thesis of Alexander Biewer[245]. In

section 6.2.4 initial results for protein-protein docking simulations are reported for three test

cases: ERBIN-PDZ domain bound to the C-Terminal peptide derived of its receptor ERBB2

(PDB: 1MFG), the complex of Interleukin-8 with its native receptor peptide CXCR1 (1ILP) and

the fire ant venom homodimer (2YGU). The two systems 1MFG and 1ILP were discussed in

the previous section concerning in-silico alanine screening (section 6.1).

6.2.2. Methods

The docking simulations are initiated from the experimental structure. Prior to the simulation,

the ligand is offset multiple times from the receptor by a random translation and rotation. Each

structure is simulated using Metropolis Monte-Carlo including rigid-body (rotations and trans-

lations) and sidechain degrees of freedom. The quantitative details, such as stepcount, tempera-

tures and forcefield used for the simulations are located in the respective results sections.

6.2.3. Results of the Protein-Ligand docking benchmarks

Protein-Ligand Docking was benchmarked using the streptavidin-biotin complex (PDB-ID:

1STP), one of the most common examples for protein-ligand docking, as its binding energy

is one of the highest measured for noncovalent binding systems[246]. It is therefore one of
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Fig. 6.5.: Results of the protein-ligand docking of a streptavidin-biotin complex done in SIMONA. Dis-
played are 660, 720 structures with an energy below−2400 kJ/mol and a RMSD below 10 Å. The correct
binding pose was discovered at 0.88 Å to the native structure.

Stage No. of poses No. of steps Forcefields

0 96 1000 ELJ
1 96 5000 ELJ + EC + EHB + EISE
2 16 30000 ELJ + EC + EHB + EISE
3 8 75000 ELJ + EC + EHB + EISE

Tab. 6.4.: Configuration of the cascaded docking approach. The first stage only comprises a short relax-
ation simulation inside a Lennard Jones potential to remove steric overlap in the initial structure. Further
stages comprise extended simulation times and incorporate the full FlexScreen potential[193]. Only the
last eight remaining lowest energy structures are relaxed for the full runtime of 111, 000 MC steps.

the most popular benchmark systems for protein-ligand docking. We relaxed randomly placed

ligand conformation at constant temperature T = 300K for 300, 000 Monte-Carlo steps. The

maximum translational displacement was set to 2.0 Å. The ligand was completely flexible in

dihedral space, but we kept the receptor backbone dihedrals fixed and allowed the rotation of 29
sidechain dihedrals around the binding pocket. All energies were evaluated in the FlexScreen

forcefield[193].

The ligand in the 1STP docking simulations was docked into the correct docking pose. The

low-energy subset of the results of this brute-force sampling approach, including the 660, 720
structures with an energy below−2400 kJ/mol (absolute energy) and an all atom RMSD below

10 Å is shown in Fig. 6.5. The structure of lowest energy has a RMSD of 0.88 Å to the native

structure and therefore models the correct docking pose to experimental resolution.

The results presented here should be understood as a proof-of-concept. While elucidating the

mode of binding for protein-protein interactions is possible with the presented protocol, efficient

drug design requires protocols that are far less computing intensive.

FlexScreen[10] implemented a four-stage cascaded docking approach using the prior knowledge

of the docking pocket.

In this protocol, the ligand is placed into the docking pocket, displaced randomly by maximum

displacement of 2 Å and randomly perturbed 10, 000 times by rotations around single bonds,

which are identified by an automated procedure. These structures enter stage 0 of the cascade

as starting conformations. The idea of the cascades is to perform many short simulations on

a large possible set of ligand poses and then to select the lowest energy poses at the end of
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Fig. 6.6.: Illustrative results of the cascaded docking strategy used for the efficient sampling of six different
drug targets. The images show the experimental reference structure in green and the prediction in yellow.
Following are the respective PDB IDs of the benchmark complexes and the RMSDs toward the respective
experimental structure: A 1RNT, 1.45 Å B: 1STP, 0.95 Å C: 1XBC, 0.38 Å D: 1ROB, 1.45 Å E: 1ABE,
0.31 Å F: 1C5C, 1.34 Å.

the stage. These poses are passed to the next stage and subjected to longer simulations until

only a few conformations are left in the last stage. As in the standard FlexScreen protocol,

individual simulations use the stochastic tunneling method. Although single simulations of this

approach still simulate for a maximum of 111, 000 Monte-Carlo steps, this is only done for

8 of 96 replica. Fig. 6.6 shows six benchmark simulations conducted with a fraction of the

CPU resources needed in the benchmark simulations presented here. The configuration of the

simulations is shown in Tab. 6.4. All six predicted protein-ligand complexes could be predicted

to experimental resolution.

6.2.4. Results of the Protein-Protein docking benchmark

1ILP and 1MFG The protein-protein docking simulations for Interleukin-8 with its native

receptor peptide CXCR1 (1ILP) and the complex of the ERBIN-PDZ domain bound to the C-

Terminal peptide derived of its receptor ERBB2 (1MFG) were carried out using the PFF02

forcefield. For each complex we generated 5, 000 random structures by a center-of-mass trans-

lation of 15 Å away from the docking site and a random rigid-body rotation. All simulations

started from conformations, where ligand and receptor were not in contact.

This initial conformation was then relaxed in 5000 center-of-mass moves comprising random

rigid-body displacements of 0.5 Å and random rigid-body rotations of 3◦ of the molecule. Ad-

ditionally sidechain dihedral angles were perturbed by a maximal angle of 5◦ drawn equidis-

tributed. Side-chain and rigid-body moves were selected with a fraction of 2:1 respectively. In
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(a) 1ILP short simulations (b) 1ILP further relaxation

(c) 1MFG

Fig. 6.7.: Results of docking simulations for 1ILP and 1MFG: a) Plotting the energy vs. RMSD of the
relaxed conformations for 1ILP yields two candidate conformations with nearly identical energy. The
chemokine is shown in blue, while the competing peptide conformations are shown in red and magenta.
b) Further relaxation of the energetically lowest 60 conformations uniquely identified the native model to
within 0.5 Å . The chemokine is shown in blue, the native model in red and the docked model as spheres
(colors: N - blue, C - green, O -red, H-white). c) For 1MFG the native model was identified in the first
set of relaxation simulations. (Colors as in b).

the case of 1MFP the 60 lowest energy structures were relaxed for another 100, 000 steps to

achieve convergence. The simulations were conducted using simulated annealing with geomet-

rical temperature scaling from 700 to 50K.

A near-native conformation was selected in the 5, 000 step simulations for 1MFG (Fig. 6.7c).

The lowest energy conformation had a RMSD of below 0.5 Å to the native conformation. Two

competing low energy conformations were observed in the docking simulations of 1ILP at 1.3 Å

and 3.8 Å RMSD distance to the experimental conformation, separated by less than 1 kcal/mol
(see Fig. 6.7a). We concluded that the length of the short Monte-Carlo annealing simulation was

too short to achieve convergence. The 60 lowest energy structures observed in the first simula-

tion were therefore relaxed another time for 100, 000 steps. The resulting ensemble is displayed

in Fig. 6.7 b). Upon convergence, the lowest energy conformation had a RMSD of 0.5 Å in

comparison to the experimental structure. Structures similar to the incorrect prediction observed

in the short relaxations remained at a RMSD of 3.6 Å to the experimental conformation.
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(a) Docking results, annealed conformations

(b) Docking results, snapshots

Fig. 6.8.: Energy/RMSD of all results for the docking of protein 2YGU. a) The native conformation was
discovered to experimental resolution with a RMSD of 1.0 Å. It is offset to the next low energy structure of
different topology by an energy difference 5.6 kcal/mol. Due to the strong energetical funnel towards the
correctly docked structure, no structures near the correct docked pose were discovered. b) Energy/RMSD
snapshots taken during the simulations. The funnel is clearly visible for structures below 4.0 Å. To speed
up the sampling in the snapshot simulations, internal energies were not evaluated leading to an offset in
the energy scales, when comparing the two figures.
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2YGU We studied the dimerization of the fire ant venom allergen (PDB: 2YGU)[247]. The

protein occurs as a homodimer in its native state and comprises 125 amino acids per chain. The

crystal structure was resolved to 2.6 Å and the complex is stabilized via a disulfide bond that

links the CYS21 of both chains. In forming such a complex, the question arises, whether the na-

tive conformation of the complex is a unique free energy minimum in the absence of the disulfide

bridge, or selected via conformational selection from a multitude of competing structures[248,

249].

The simulations replicated the setup of the protein-protein docking benchmark of 1ILP and

1MFG with modifications by generating 200, 000 starting structures with an offset of 15 Å in a

random direction and rotating them about an arbitrary axis by a random angle. The simulations

comprised 50, 000 steps to achieve convergence. Rigid-Body translations were drawn from a

uniform distribution with a maximum displacement of 1.4 Å. In contrast to the previous simu-

lation a biased rigid-body translation was carried out, whenever the two proteins were further

away than 15 Å. In the event the two structures moved too far away from each other, the ligand

was pulled towards the receptor structure by a maximum displacement of 2.0 Å.

The lowest energy conformation of 2YGU lies within experimental resolution at a RMSD of

1.0 Å to the experimental structure and is offset by an energy gap of 5.6 kcal/mol from the next

lowest energy conformation, which has a RMSD of 15.5 Å to the experimental conformation.

The intermolecular disulfide bridge (not included in the forcefield) can only form correctly in

the cluster of lowest energy structures shown in the left panel of Fig. 6.8. The forcefield PFF02

favored complex conformations which envelop the docking interface near the actual docking

site of 2YGU. The lowest energy structure selects the native conformation in the absence of a

potential modeling the disulfide bridge, because most of the surface of the docking interface is

covered. It is interesting to note that there are few competing low-energy structures featuring a

low RMSD around the lowest energy structure. This can be attributed to a sharp funnel of the

energy towards the correctly docked pose. Due to the long relaxation simulations, intermedi-

ate structures inside the funnel are not observed. To further test this hypothesis RMSD/energy

snapshots during the simulations are shown in Fig. 6.8b. A sharp funnel can be observed for

conformations near the correct docking pose (RMSD < 4 Å).

6.2.5. Discussion

In this section, we presented a protein-ligand docking approach and benchmarked it, by pre-

dicting the complex of streptavidin-biotin to experimental resolution. We further presented

a method suitable for the high-throughput screening of protein-ligand complexes required to

assist experimental drug design investigations.

The presented protocol was further used without modifications for protein-protein docking

to predict the docking pose of two protein-protein complexes with different binding partners

and one homodimer. While the simulation of 1ILP required further manual intervention to

achieve convergence and used information about the binding interface, the later simulations of

1MFG and 2YGU were simulated without knowledge about the binding interface and converged

immediately due to exhaustive sampling. As SIMONA includes both, efficient protocols to

study protein conformational change and protein-ligand docking, later studies will include
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protein-ligand docking studies with a higher degree of receptor flexibility to also enable the

study of induced-fit docking events.
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7. Simulations of nano-scale systems

The Monte-Carlo simulation techniques applied to biological systems in the previous chapter

can be applied to many different systems on the nano-scale currently studied in the material

sciences. Morphology simulations using the techniques introduced in chapter 3 are possible for

systems at energies, where no covalent bond breaking occurs. If it is known prior to the simu-

lation that no covalent bond breakage will occur, many nano-scale systems can be parametrized

and studied with semi-classical Monte-Carlo approaches. Above these energies simulations

of changes in covalent bonding require hybrid QM/MM schemes, such as the Car-Parinello

method[250, 251], Density Functional Theory[252] or Hartree-Fock based quantum chemistry

methods[253]. These techniques are very resource intensive and only allow the simulation of

either short timescales or small conformational change. Previous Monte-Carlo investigations

report polymer crystallization simulations[254], the morphology of multi-component metallic

glasses[255] or self-organization of magnetic nanoparticles and its phase transitions[256], to

name just a few. We have implemented a generic methodology to parametrize these systems and

simulate them in SIMONA. We first applied it to simulate morphologies of organic materials.

The emergence of printable (organic) electronics sparked an increased interest in the research of

organic materials. In comparison to traditional semiconductors, like silicon, organic electronics

do not require clean-room handling and multi-step lithography. Often the required materials are

flexible and biodegradable opening new application areas, such as the usage as flexible e-paper.

Many promising applications of organic electronic components like OLED, OFET and organic

CMOS were developed[257–260]. Presently organic materials have deficiencies, such as lower

mobilities and a higher resistance than their inorganic counterparts. To optimize the electronic

structure of organic materials, morphologies of the material have to be modeled. This chapter

therefore focuses on two applications, simulation of morphologies of amorphous pentacene and

carbon nanotube sorting.

In section 7.1, we simulate morphologies of amorphous pentacene, a material, which rivals

silicon in its electronic properties due to its high mobility and low resistance. The generation of

morphologies of amorphous pentacene is the first step to enable electronic calculations of this

material. In section 7.2, we focus on the specific sorting of carbon nanotubes. The electronic

properties of carbon nanotubes are very well known and very attractive for usage in both, me-

chanical and electronical, applications[261]. The usage of carbon nanotubes however requires a

homogeneous carbon nanotube bulk. We therefore introduce a polymer, which selectively binds

nanotubes with specific chiral angles to allow their sorting.
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Fig. 7.1.: Differences between semiconductor LED and organic LED. a) A pn-junction of a semiconductor
LED. When applying a voltage, holes and electrons travel to the junction between the p- and n-doped
semiconductors. They recombine emitting a photon. b) Holes inside the conductive layer diffuse into the
emissive layer. Electrons and holes recombine in the emissive layer and emit a photon.

7.1. Morphology simulations of amorphous pentacene

7.1.1. Motivation

Organic components were developed for many devices, which are traditionally constructed from

inorganic semiconductors like OLED, OFET and organic CMOS[257–260]. In spite of their at-

tractive properties like low cost, application using printing techniques and very often biodegrad-

ability, they cannot replace their inorganic counterparts completely, due to their often lower

mobility, higher resistance and shorter life period.

The light-emitting layer of traditional light emitting diodes (LEDs) consists of a np-junction be-

tween an anode and a cathode (see Fig. 7.1a). If a forward voltage is applied between anode and

cathode, electrons are relocating to the p-doped side and holes are moving towards the n-doped

side. Recombination in the np-junction then allows photon emission for direct-gap semiconduc-

tors with a frequency according to the band-gap of the semiconductor[262].

OLEDs replace the n and p-type semiconductors by a conductive and an emissive layer (see Fig.

7.1b). When applying a voltage, holes are created in the conductive layer, which can diffuse into

the emissive layer due to their higher mobility (compared to electrons in the emissive layer).

Recombination of electrons from the cathode with holes from the conductive layer inside the

emissive layer then generates photons. The gap between the HOMO and LUMO orbitals of the

organic material, forming the emissive layer, define the wavelength of the emitted light. The

emissive layer of an OLED is formed of amorphous arrangements of small organic molecules

or polymers. For the design of OLEDs a p-type semiconductor with a high mobility is required

in the emissive layer. Pentacene (C22H14) is an interesting candidate for the electrolumines-

cent layer of OLED[263]. Pentacene is a planar molecule consisting of five benzene rings as

displayed in Fig. 7.2a. Composites of pentacene rival mobilities of amorphous silicone, with

mobilities of approximately 5 cm2V −1s−1 for polycrystalline pentacene films. Interest in pen-
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(a) Single pentacene Molecule (b) Herringbone-stacked layer

Fig. 7.2.: Isolated and crystallized pentacene. a) Isolated pentacene. Pentacene consists of five benzene
rings. Green atoms represent carbon, white atoms represent hydrogen. b) Layer of crystallized pentacene.
Pentacene crystallizes in a face-on-edge herringbone conformation.

tacene grew especially after the discovery that bulk and thin-film pentacene is a p-type organic

semiconductor and therefore compatible with the usage in the emissive layer of OLED[264]. To

model electronic transport in such materials, the morphology of the pentacene layer needs to be

known.

Upon crystallization bulk pentacene stacks in herringbone conformation with a layer spacing of

14.1 Å. Apart from that three thin-film conformations could be identified with spacings slightly

bigger than the bulk[265–267]. The native crystal conformation can be observed in Fig. 7.2b. In

this section, we investigate initial pentacene cluster nucleation. The simulations are preparatory

for a project including compound Monte-Carlo moves, moving complete clusters of pentacene

as a whole to allow for crystal formation.1 We present the simulation parameters and the analy-

sis method of the nucleated clusters in section 7.1.2 and analyze the obtained cluster geometry

in section 7.1.4. In conclusion we show the shortcomings of this simulation strategy in the scope

of crystal formation, which will be published as part of Schönauer[269].

7.1.2. Methods

The cluster growth simulations started from a random assembly of molecules. As input, we

used the pentacene morphology from the Cambridge Crystallographic Data Centre (CIF ID

2012157)[270] and assigned partial charges of pentacene using DFT[271]. Lennard-Jones pa-

rameters were included from the standard FlexScreen parametrization[10]. The partial charges

were used for a vacuum electrostatics potential evaluated on the GPU (see section 3.2.1 for

1Results in this project were published as part of Strunk et al.[38]. Pentacene was parametrized initially in the scope
of the bachelor thesis of Paul-Jakob Kleine[268]. The mentioned cluster move scheme is still being researched as
part of a bachelor thesis of Benedikt Schönauer. I helped supervise both of the theses and developed the cluster
move code together with Benedikt Schönauer[269]. I also wrote the analysis code explained in the methods
section.
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the GPU implementation). Starting from this setup, we ran 400, 000 simulations with 500, 000
steps each with a constant temperature of 300.0K on the distributed POEM@HOME architec-

ture[71].

The resulting cluster topologies were analyzed for their size and order using the following algo-

rithm:

• We generate the power diagram (described in Klenin et al.[63]) and calculate its dual

Delaunay tesselation.

• We iterate over all vertex neighbor pairs (corresponding to atoms in the pentacene). If two

vertices are close to each other (two atoms closer than 4 Å) they are assigned to the same

cluster.

• For each pentacene molecule inside a cluster the tensor of inertia is calculated and trans-

formed into its principal axis system. The axis of smallest inertia then corresponds to the

long axis of the pentacene.

• Starting from a random pentacene molecule, we iterate over all members in the cluster and

calculate the relative angle between two pentacene molecules. If the relative orientations

of two pentacene molecules are similar (angle θ < 0.8) they were counted as in-plane and

therefore ordered. Otherwise they were counted as facing in different directions.

• The ordered pentacene molecules inside the current stack are counted and accumulated.

7.1.3. Results

In the following text, we will separate between total and ordered cluster sizes. Total cluster

sizes count all pentacene members within a cluster, even unordered ones. Ordered cluster sizes

count only pentacene molecules within a cluster, which point into the same long direction (es-

timated using the algorithm in section 7.1.2). This differentiation is made to elucidate, whether

or not clusters attained local order. Pentacene crystallizes in a herringbone conformation (see

Fig. 7.2b); all pentacene molecules are aligned along their long axis and would be identified

inside an ordered layer by our algorithm. The histogram of all cluster sizes encountered during

the simulation is shown in Fig. 7.3. The total cluster sizes show a near-exponential decay over

five orders of magnitude. Only a small amount of clusters with total sizes above 50 are formed.

The distribution of ordered cluster-sizes trails the distribution of total cluster sizes. The proba-

bility to find an ordered cluster size is negligible for ordered clusters of a size of 20 and above.

A significant amount of all ordered clusters below size 20 has attained local order. Character-

istic examples of clusters observed during the simulation are shown in Fig. 7.4. Simulations

comprised clusters with pentacene molecules ordered in a herringbone formation, as seen in Fig.

7.4a. Furthermore single layers of π-stacked clusters were also observed (Fig. 7.4b). Many

clusters featured amorphous pentacene arrangements unable to attain higher local order (Fig.

7.4 c). Bigger cluster sizes then consisted mostly of smaller clusters as seen in 7.4 a-c, merged

into higher superclusters (Fig. 7.4 d and e).
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Fig. 7.3.: Histogram of cluster sizes and number of pentacene molecules in ordered layers. For small
counts, both distributions decrease exponentially. Although pentacene forms a crystal, the Monte-Carlo
simulation freezes and crystals stop growing. As only rigid body moves of single pentacene molecules are
allowed, it gets exponentially harder to move a complete cluster.

Fig. 7.4.: Various examples characteristic for the cluster topologies observed in the simulations of pen-
tacene clustering. a) Initial stage of building a herringbone conformation. b) Direct Face-on-Face π
stacking conformation. c) Unordered pentacene bundle with pentacene ordered in z-direction. d) and e)
Two pentacene cluster directions merged into a single cluster, space-fill, and licorice visualizations.
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7.1.4. Discussion

We observed pentacene clusters exhibiting pentacene binding in a herringbone formation akin

to the native crystal structure, which demonstrates the correct parametrization of pentacene in

SIMONA. The further growth of these clusters will allow future electronic structure calcula-

tions based on the morphology and thereby allow the optimization of the electronic properties

of OLED.

Significant numbers of ordered clusters with cluster sizes beyond 20 could not be produced.

This is due to a freezing effect in our Monte-Carlo simulations: As we only perturb single

molecules inside a cluster, acceptance rates for diffusion processes of a complete cluster are

very low. Molecules inside a cluster rarely break off making cluster extension by single pen-

tacene molecules unlikely once most molecules have migrated to a cluster. Although better

results might be obtained by using more advanced simulation techniques like parallel temper-

ing[42–44] or multiple try Monte-Carlo[69], the main simulation flaw impeding further cluster

growth is the usage of single subunit moves.

Simply choosing to move one cluster at a time would break detailed balance and therefore skew

evaluation of observables. Multiple cluster move schemes have therefore been developed[272–

274]. We implemented the simulation scheme of Whitelam et al.[275], previously tested on sin-

gle atoms and applied it to pentacene clusters: Every Monte-Carlo step a random particle of the

simulation is selected, the seed particle i (in our case one of the pentacene molecules).

In this method, a pseudocluster C, which is a subcluster of a cluster observed in the simulation,

is selected and an acceptance probability for moving this pseudocluster in the ensemble is calcu-

lated. For this single molecule, a transformation is suggested from state µ to state ν. For every

neighbor of the seed particle a link probability pij(µ→ ν) is calculated to include the particle j

also in the subcluster C. The transformation µ → ν can be interpreted as a translation of parti-

cles i and j. The link-fail probability is then qij = 1 − pij . Both are recorded and the particle

is accepted to the pseudocluster with the link-probability pij . For a specific i this is done for all

other particles. Whenever a particle j is accepted to the pseudocluster all link probabilities pjk,

of pseudoparticles not yet in the cluster are also tested.

Using the still unspecified link and link-fail probabilities pij and qij , the probability to generate

a specific configuration C is:

Wgen(µ→ ν) = PSeed(µ)
C∑
R

∏
[i,j]6∈R

qi,j(µ→ ν)
∏

[i,j]∈R
pij(µ→ ν) . (7.1)

Here R denotes a link-representation of C. For a specific pseudocluster C, multiple link-orders

called representations R exist. The first product in the equation comprises of all pairs i, j, which

were tested, but rejected. The second product comprises all accepted i, j. For big pseudoclusters,

the evaluation of the whole sum is not feasible as the enumeration of all representations grows

approximately with the factorial of cluster members.

IfWgen is the probability of generating a move andWacc is the acceptance criterion, the transition

probability is W = Wgen · Wacc. To derive an acceptance probability, which maintains the

detailed balance criterion (Eq. 7.2) the exact probability of move generation Wgen has to be
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Fig. 7.5.: Final configuration of a 400, 000 step simulation of pentacene using cluster moves started
from 100 isolated pentacene molecules; one of two clusters observed in the simulation is shown. Due to
the mobility of the clusters during the simulation, clusters can merge more frequently and form bigger
assemblies.

known.

ρ(µ)W (µ→ ν) = ρ(ν)W (ν → µ) . (7.2)

Another possibility to converge to an equilibrium state is to fulfill super-detailed balance:

ρ(µ)W (µ→ ν|R) = ρ(ν)W (ν → µ|R) . (7.3)

Eq. 7.3 fulfills the weaker detailed balance criterion even for a specific representation R of the

pseudocluster C. In this case Wgen(µ → ν) is obtained as the product of accepted and rejected

probabilities of links in the cluster (Eq. 7.4):

Wgen(µ→ ν|R) = PSeed(µ)
∏

[i,j] 6∈R
qi,j(µ→ ν)

∏
[i,j]∈R

pij(µ→ ν) . (7.4)

With this definition a possible choice for Wacc is given in Eq. 7.5:

Wacc = min

1, Pseed(ν)
Pseed(µ) e

−β (Eν−Eµ) ×

∏
ij 6∈R

qij(ν → µ)∏
ij 6∈R

qij(µ→ ν)

∏
ij∈R

pij(ν → µ)∏
ij∈R

pij(µ→ ν)

 . (7.5)

A specific link probability pij based on the binding energies between two subunits can now be

proposed. This approach uses the interaction energy between the two particles i and j to propose

a link (Eq. 7.6):

pij(µ→ ν) = max(0, 1− eβ (Ec(i,j)−EI(i,j)) . (7.6)

The algorithm starts by choosing a seed particle with even probability PSeed(µ) = PSeed(µ) =
1/N . Then from this seed particle, other particles are selected, for which pij(µ → ν) is sig-

nificantly bigger than 0; these are particles, which are in close vicinity in the limit of strongly

interacting particles. Once the algorithm has tried all particles within a cluster, the move is car-

ried out and back probabilities ν → µ are calculated. All pij values and qij values are recording
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during this process; in the end Wacc is evaluated and the new state is accepted or rejected. Vari-

ous further optimizations to this algorithm can be found in Whitelam and Geissler[275].

Initial results of simulations carried out using this algorithm are promising. Fig. 7.5 shows a

typical simulation starting from 100 isolated pentacene molecules for 400, 000 steps of Cluster-

moves interleaved with single pentacene rigid-body translations and rotations. Only two clusters

of amorphous pentacene exist in this simulation, which still show remarkable mobility. Quanti-

tative results analyzing the effect of cluster moves on cluster formation and dissociation will be

reported in the bachelor thesis of Benedikt Schönauer[269].
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7.2. Dispersion of Single-Walled Carbon Nanotubes by chiral index

7.2.1. Motivation

Due to their interesting properties and emerging applications, single-walled carbon nanotubes

(SWNT) have been the focus of research attention. While nanotube bulk production methods

have been established[276, 277], the attained bulk of nanotubes is often heterogeneous with

nanotubes of many different chiral angles and diameters. As physical properties of nanotubes

depend on diameter, chiral index and the length of an individual nanotube, it is important to

separate the bulk selectively into samples with specific properties[276–282]. This was an exper-

imental collaboration between the group Mayor of the INT. Experimental details and parts of

this text can be found in Lemasson et al.[283].

In section 7.2.2, we will characterize the main properties of nanotubes and the polymers used for

dispersion in the simulations. The results of the dispersion simulations are found in section 7.2.3.

Section 7.2.4 discusses the dispersive properties of the polymers observed in the simulations in

the context of the experimental results.

7.2.2. Introduction

Carbon nanotubes are rolled up sheets of graphene. Graphene is a monoatomic hexagonal lattice

of carbon molecules as shown in Fig. 7.6a. Carbon atoms inside nanotubes are bound in sp2

configurations leaving one electron per carbon in the π-orbital. As seen in Fig. 7.6b a nanotube

can be characterized solely by its two chiral indices (n,m). Depending on the chiral index, a

nanotube can be either metallic or semiconducting. As a rule of thumb, nanotubes are semicon-

ducting with a vanishing band-gap, if n − m is a multiple of 3. They are metallic, if n = m

and moderately semiconducting otherwise. There are exceptions to this rule especially for the

case of large chiral indices. Apart from their extraordinary strength and stiffness, many of those

configurations also possess unique electronic characteristic like their high electric current den-

sity[261].

Due to their attractive properties they have been the focus of research attention for some time.

Nanotubes interact by interactions of the π-electrons. For morphology simulations, which keep

the overall bond structure of the nanotube intact, it is therefore sufficient to parametrize the

nanotube in a Van-der-Waals forcefield[51]. Using the definitions in Fig. 7.6b, one can easily

obtain the chiral angle Θ and the diameter d of the nanotube from the chiral indices as in Eq. 7.7

and Eq. 7.8:

Θ = arctan
(√

3 m

m+ 2n

)
, (7.7)

d =
√

3 a
π

√
n2 + nm+m2 . (7.8)

Before sorting of the nanotubes can be accomplished they need to be debundled, for example by

sonication-assisted dispersion in a suitable solvent. The attained dispersion can then be stabi-

lized by adding water soluble polymers[284] or surfactants in water or by polymers in organic
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(a) Graphene (b) (7,7) nanotube

Fig. 7.6.: Graphene sheet and carbon nanotube. a) A flat graphene sheet. a1 and a2 are the lattice vectors
of the unit cell. A nanotube is defined solely by its chiral indices (n,m). The tube is rolled along the blue
axis orthogonal to the lattice vector. Two specific nanotube configurations are drawn: an armchair tube
(n,n) and a zig-zag tube (n,0) b) A rolled up (7,7) armchair nanotube for comparison.

solvents[278–282, 285].

Polymers containing 9,9 dialkyl-2,7-fluorene subunits were found to be unexpectedly selective

for semiconducting tubes with differences in chiral indices (n −m) = 1 or 2. Further research

focused on the fine tuning of the aryl subunits to increase specificity towards the binding of

single nanotube configurations[278–282], but the mechanisms remain unclear. These polymers

were shown to only slightly alter the nanotube’s electronic properties upon binding[280, 281,

286].

Here we present Monte-Carlo simulations using polymers of a fluorene decamer and addition-

ally a carbazole decamer and show their selectivity towards different chiral indices exemplary

for (10,2) and (7,6) nanotubes. Using models of these polymers and two nanotubes known to be

dispersed by only one polymer, we could show that differences in the π − π stacking interac-

tion are the reason for the unexpected selectivity. We observed energetically favored complexes

between the (10,2) nanotube and the carbazole decamer and between the (7,6) nanotube and

the fluorene decamer, respectively. These results agree with experimental findings[283], where

multiple other polymer - nanotube combinations were analysed with respect to their selectivity.

The simulated polymers are shown in Fig. 7.7. The carbazole decamer (polymer 1) has a planar

N-bridging atom, whereas the fluorene decamer (polymer 2) has a tetragonal C-bridging atom

(Fig. 7.7) leading to different steric Van-der-Waals configurations of the polymers. Furthermore

polymer 1 has only a single alkyl sidechain, while the fluorene polymer possesses 2 (also Fig.

7.7).

For our binding studies, we simulated single-walled nanotubes with the chiral indices (10,2) and

(7,6), as they both have comparable diameters (Eq. 7.9), but were each preferentially dispersed

by only one of the two polymers. The forcefield used in these simulations was comprised only of

a standard 6-12 Lennard-Jones potential as the system was uncharged. By applying Eq. 7.7 and

7.8 to the n,m pairs we obtain the nanotube diameters dn,m and their chiral angles θn,m:

d7,6 = 8.95 Å Θ7,6 = 27.457◦ d10,2 = 8.84 Å Θ10,2 = 8.95◦ . (7.9)

110



Fig. 7.7.: Single subunits of the two simulated polymers. 1. Structure of the carbazole polymer. In
comparison to the fluorene polymer, the carbazole one incorporates only a single alkyl sidechain per
subunit. The nitrogen atom leads to a planar bond of the sidechain, while the fluorene polymer has a
tetragonal binding carbon atom. 2. Structure of the fluorene polymer.

7.2.3. Results

Starting from conformations with well-separated structures of both polymer decamers and nano-

tubes, we conducted atomistic basin-hopping simulations.

All four decamer - nanotube combinations were initially optimized by four independent basin

hopping simulations. The lowest energy conformation was then subjected to long simulated an-

nealing simulations to obtain an estimate for the energy minimum[164, 287–289].

Each single hopping step comprised a Monte-Carlo annealing running initially for NSteps =
10, 000 steps as shown in Eq. 7.10:

NSteps =
√

100 ·Niter · 1000 . (7.10)

The annealing process employed a geometrical cooling schedule starting from a random high

temperature (between 1000K and 3000K) to an end temperature of 1000K to allow for the

hopping over barriers. As we did not gauge the forcefield the temperature unit K is only an

arbitrary unit in this case and represents the forcefield gauge. We immediately observed that

the fluorene decamer, representative of polymer 2, showed no tendency to wrap around the

(10,2) nanotube, lying essentially flat on the tube. This qualitative result was obtained in all four

independent simulations. In contrast, some wrapping of the fluorene compound was observed

for the (7,6) tube, as illustrated in the bottom part of Fig. 7.8. The energies of this complex were

significantly lower than for the (10,2) tube (red symbols in Fig. 7.9). Close alignment of the

rings of the polymer and the tube was observed for the carbazole decamer. Here we observed

the complexes formed with the (10,2) tube (Fig. 7.8) to be energetically favored compared to

the ones formed with the (7,6) tubes (Fig. 7.9). Because the energy model incorporates a short-

range term for the π−π interactions between the aromatic carbons and the polymer models and

the nanotubes, the binding energy is dominated by the number of aromatic C-C contacts in the

complex.

The number of such contacts is constrained by the geometry of the molecule, which has only

one free backbone dihedral per unit and steric repulsion between the sidechain atoms and the

nanotube. The results of the fluorene-(10,2) simulations indicate that only the trivial solution (all
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Fig. 7.8.: Energy-minimized structures of the complex of the two nanotubes with the simulated decamers.
a) The carbazole decamer attached to a (10,2) nanotube. The flat alignment of the polymer to the tube
is stabilized by π − π stacking. b) Wrapping of the fluorene decamer to the (7,6) tube. Compared to the
carbazole decamer this stacking is not as uniform. Only small segments are π-stacked. The sidechains
seem to be more involved in the binding of the polymer.

Fig. 7.9.: Energy evolution of the final simulated annealing basin-hopping simulations. Carbazole (blue)
favors binding to the (10,2) tube (made apparent by the lower energy in the wrapping simulations). The
simulations of the fluorene polymer (red) show an inverted binding propensity: the (7,6) tube features a
lower energy bound to fluorene compared to the (10,2) system. Shown binding energy units are arbitrary
as solvation effects were not taken into account.
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Fig. 7.10.: Fractions of nanotube content observed using Photoluminescence Excitation. a) PLE image of
nanotubes dispersed with polymer 1 in toluene. b) Merged intensities transformed into the diameter/chiral
angle plane. Blue: PLE signal observed in solution dispersed by polymer 1, Red: PLE signal observed
in solution dispersed by polymer 2. Black: Control dispersed by Na-cholate in D2 O. Images courtesy of
Lemasson et. al[283].

backbone dihedrals straight) is possible for this system. When the radius of the tube changes or

the sidechain constraints simplify by removing one sidechain, other solutions for the backbone

dihedrals become feasible. The chiral index of the tube will then determine how many favorable

aromatic contacts become possible, which obviously depends on many nontrivial geometrical

constraints. The increased tendency of the carbazole decamer to wrap around both types of tubes

thus results from an increased π−π interaction made possible by the reduced steric requirements

of a single alkyl chain at the bridging atom.

7.2.4. Discussion

We could show selective binding of two polymers containing either fluorene or carbazole sub-

units towards nanotubes of different chiral angles. These results represent the first step towards

further sorting of nanotubes into bulks homogeneous in chiral angle and diameter. We were

able to pinpoint this selective interaction to be based on the aromatic stacking of the polymer

mainchain with the nanotube. Geometric constraints allow the polymers to only bind a specific

nanotube selectively by optimizing the stacking interactions.

Our findings agree with experimental results. Photoluminescence excitation spectra were used

to determine the fractions of nanotubes in solutions treated with Polymer 1 or 2 after sonica-

tion and density gradient centrifugation[283]. Due to the characteristic excitation and emission

spectra of nanotubes, it is possible to convert the PLE image into an image normalized in chi-

ral angle Θ and diameter d (Fig. 7.10). The excitations observed in solutions of Toluene with

polymers 1 or 2 clearly disperse the nanotube also energetically favored in the simulations (Fig.

7.10b)[283].
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8. Summary

Proteins govern many biological processes of the human body. Among countless other functions

these nanomachines catalyze complex biochemical reactions, regulate ion concentrations or me-

diate the immune response. Mutation and misfolding of proteins are implied in many diseases,

such as Alzheimer’s disease and cancer. Most proteins fold spontaneously into a unique tertiary

structure, encoded by their amino acid sequence. Although complete genomes of protein-coding

sequences were compiled, only a small fraction of experimentally resolved protein structures

are currently available. Of the 80, 000 resolved proteins only 12, 500 are structurally dissimilar.

The huge gap between millions of known protein-coding sequences and the available protein

structures shows the difficulty involved in resolving a protein structure experimentally.

Methods for theoretical prediction of protein structures produce mixed results. While models

with reasonable accuracy can be expected for proteins with at least 40% sequence similarity to

a protein with a known structure, no reliable method exists to predict structures with no or very

distant homologs. This state of the art led to mistrust in the biological and medical community

towards theoretical protein structure predictions and resulted in the pruning of the PDB database

of all theoretical predictions. If a reliable method to assess the quality of these structures would

exist, theoretical predictions could be introduced as a new source of information for biological

and medical research and provide insight into many biological processes and diseases, where

we lack understanding.

It is now well established that beyond single structures, the dynamics of proteins and their

association is very important to understand their function. Some of these properties are acces-

sible via Molecular Dynamics simulations, but severe limitations remain. Due to the timescales

involved, Molecular Dynamics simulations are frequently not able to simulate large conforma-

tional change or de-novo folding in spite of recent technological advances.

In this thesis, I have therefore explored Monte-Carlo simulations as a tool to investigate

structure and thermodynamic properties of biomolecular and nanoscale systems. Monte-Carlo

simulations do not suffer from the timescale problem, as they characterize the thermodynamic

ensemble of the system and avoid sampling processes on very short timescales that are often

irrelevant for the large-scale properties of the underlying thermodynamic ensemble. We have

implemented the novel generic Monte-Carlo simulation program, SIMONA, because previously

no efficient general-purpose Monte-Carlo code has been available.

We have optimized this program package on multiple architectures and parallelized it using a

variety of optimization algorithms. The resulting program, SIMONA, is available for free for

115



academic use under http://www.int.kit.edu/nanosim/simona.php .

I have then applied the simulation methodology to various problems, including absolute qual-

ity assessment of protein models, several applications requiring protein structure prediction,

protein-protein and protein-ligand docking and the simulation of morphologies in organic

nanostructures. Most of the results obtained during the course of these simulations have been

experimentally verified showing the validity and generality of our approach. In the following, I

provide an overview of the insights gained in the various projects.

Absolute Quality Assessment of Protein Structures
Protein structures are frequently used to explain biological processes on the nano-scale. Al-

though only a limited set of experimental protein structures of medical and biological relevance

is available, the acceptance of theoretical predictions of protein models in the life-sciences is

low. Using methods like homology modeling, very often a prediction within experimental res-

olution can be made for highly homologous sequences. In the absence of homology, there are

isolated cases where protein models close to the native conformation were constructed. However

in the grey area of intermediate degrees of homology, little is known about the quality of protein

models, in particular those generated from fully automated servers. Development of methods

for absolute quality assessment of protein structures would therefore go a long way to increase

the acceptance of theoretical models in life-science research.

We therefore developed a protocol for absolute quality assessment, based on the concept of

marginal stability of proteins. We hypothesized that every amino acid must contribute an opti-

mal energy contribution towards the global protein structure in its biologically active state. We

collected statistics for these energy contributions for a set of high-resolution protein structures

and derived a N -dimensional statistical test, which assesses the quality of a protein model by

comparing against these statistics. We found that the energy statistics of amino acids in their

folded state differ from those of low quality protein models. By introducing energy statistics of

triplets of amino acids, we could increase the specificity of our methods and reject 93% of the

low quality protein models for 160 proteins tested. The remaining 7% of the protein models were

found to be either oligomeric, not globular, or bound to cofactors, all classes of proteins, where

the initial hypothesis was bound to fail. Given the present state of the art it is important to de-

velop methods that reject false positives with high certainty, even if these work only for a specific

subclass of proteins. There are bioinformatics-based approaches that can be used to predict with

high reliability, whether, for a given protein sequence, a model belongs to one of the classes that

our present algorithm cannot discriminate well. In combination of these techniques we hope that

our approach will serve as a prototype for further development of quality assessment protocols

and help the further acceptance for those models which are evaluated positively.

Design of genetically engineered variants of hydrophobin DewA
Adhesion and proliferation of biofilms on implants frequently requires the replacement of the

implant. Attributable to the increasing life-expectancies, many current patients will face the
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problem of implant replacement. Especially for patients of old age, implant surgeries can be

life-threatening. It is therefore important to design implants, which can remain in the body for

more than two decades. One method, which would allow longer usage times of implants in the

human body is the coating of the implant with a material suppressing the formation of biofilms,

while allowing for the development of new tissue cells. Hydrophobin proteins have been con-

sidered as one promising candidate for implant coatings, because hydrophobin aggregates form

hydrophobic-hydrophilic surfaces at air-water interfaces and can turn a hydrophilic (implant-)

surface hydrophobic and less susceptible to the formation of biofilms. One drawback discovered

in previous studies was the low degree of cell-adhesion on hydrophobin coatings.

We therefore functionalized the class-I hydrophobin DewA to allow cell adhesion on DewA

covered surfaces. As no experimentally resolved structure of hydrophobin DewA was available,

we predicted a model using homology modeling on the basis of a distant homolog and identi-

fied a solvent exposed area, which could be modified without impairing the overall hydrophobin

protein structure. We inserted two previously identified cell-binding peptide motifs into the se-

quence and modeled the fusion protein. Protein expression was then carried out by the group of

Prof. Fischer (KIT) and the resulting surface was characterized by the group of Prof. Schimmel

(KIT). Cell binding assays performed by the group of Prof. Richter (UIC Heidelberg) could

show significantly increased binding propensities of mesenchymal stem cells, required for bone

growth compared to the unmodified hydrophobin. Remarkably, at the same time, we did not

observe any increase in the formation of biofilms. Apart from applications for implant coating,

hydrophobins allow many other uses for industrial application areas in the field of medical engi-

neering. One area of application, which we are currently investigating with an industrial partner

is their application in dialysis machines to allow the filtering of blood cells, while preventing

the accumulation of life-threatening biofilms. Future development will focus not only on the

adhesion, but especially the specificity of the cells bound to the hydrophobin.

Rodlet development of Class-I hydrophobins
Even better surfaces could be engineered if it were possible to exploit the subclass of hy-

drophobin that form stable monolayer rodlets on the implant surface. The mechanism and re-

quirements for rodlet formation are presently not well understood. We therefore investigated

possible reasons, why class-I hydrophobins form stable amyloid structures upon aggregation on

surfaces. It was hypothesized that the flexible loops, prevalent throughout the family of class-I

hydrophobins, take a considerable part in rodlet formation. However, subsequent publications

could show indications that a rodlet might even develop upon truncation of the flexible loops.

Using a truncated hydrophobin model, obtained from the experimental structure of the class-I

hydrophobin EAS by means of homology modeling, we docked subunits of the hydrophobin

together and discovered a periodically extensible dimer with defined hydrophobicity. This struc-

ture is compatible with the previous experimental results, suggesting that even a truncated mu-

tant can form a rodlet, and may serve as the basis for further structure characterization of the

rodlets and the mechanism of their formation.
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Structural model of the gas-vesicles in aqueous bacteria
In collaboration with the groups of Prof. Pfeifer and Prof. Hamacher (Darmstadt University), we

could develop the first nano-scale structural model explaining the development of gas-vesicles in

aqueous bacteria. Protein-protein aggregation has been a thoroughly studied topic, since the dis-

covery of protein-aggregation related diseases, such as Alzheimer’s disease. The experimental

study of protein aggregation is difficult with traditional structure determination methods, such as

X-ray crystallography or NMR methods, as these proteins are frequently insoluble or aggregate

into amorphous structures, when subjected to the requirements of the structure determination

experiments. In this project, we studied gas-vesicles, macroscopic protein aggregates, which

allow bacteria to swim afloat natural water bodies.

Prior to our investigation, no structural model for the monomer of protein GvpA, the main con-

stituent of the gas-vesicle wall, was available. Using fragment-based modeling techniques we

were able to not only generate a model compatible with prior solid-state NMR and ATR-FTIR

measurements, but also to provide insight into the quaternary structure of the gas vesicle and

its rib-like superstructure. We explain the gas retention by identifying the inner hydrophobic

gas-vesicle wall and predict various contact sites important for the formation of the vesicle,

which were validated in mutagenesis experiments. When introducing protease proteins only

sites shown to be accessible in our model were cleaved. Remarkably, cleavage of the evolution-

ary non-conserved C-terminal did not impair gas-vesicle formation at all in accordance with our

model.

High-throughput prediction of peptide structures
In the last four decades only four new classes of antibiotics achieved FDA approval. Antimicro-

bial, antifungal and antibiotical peptides are vigorously investigated as possible alternatives to

complement current antibiotic drugs and therefore alleviate the increasing problems stemming

from resistance of bacteria against existing antibiotics. In contrast to small molecule drugs in-

silico design of peptides is complicated by the lack of structural information for novel peptide

sequences. Although the conformational space of peptides is far smaller than the one of large

proteins, knowledge-based methods frequently fail to produce correct structure predictions, as

even single point mutations often affect peptide structure.

We therefore developed a high-throughput peptide structure prediction method and benchmarked

it on the distributed volunteer computing architecture POEM@HOME by de-novo prediction of

four peptides of different secondary structure. The results of the four peptide structure models

are within experimental resolution. We further investigated the low energy conformations and

elucidated possible shearing conformations, one of the peptides may switch between, near its

native conformation. Only a small fraction of the resources of POEM@HOME is required to

screen these peptides. This methodology will be further pursued in a new project of the BMBF

biotechnology 2020+ initiative aimed at the rational design of peptides for protein immobiliza-

tion on magnetic nanoparticles and other technologically relevant surfaces.

Computational Alanine Screening
A multitude of biological processes are mediated by protein-protein interaction and their mal-
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function is implied in many diseases. Understanding protein-protein interaction gives insight

into the underlying biological processes and might even offer avenues for their manipulation.

One problem impeding the progress in the exploitation of protein-protein interfaces as drug tar-

gets is their large area in comparison to the compact docking pockets targeted by many small

molecule inhibitors. Although the inhibition of protein-protein binding was possible with anti-

bodies, the bioavailability of these costly molecules is low. Development of smaller inhibitors is

therefore desirable due to better bioavailability, lower price and ease of handling. The targeted

design of these small-molecule ligands is aided by the identification of interaction hotspots,

which are most important for the stabilization of the protein-protein interface. One of the most

widely used experimental methods for the identification of these hotspots is alanine screening,

where each individual amino acid in the interface must be mutated.

To reduce the cost and effort involved in these experiments, we implemented an in-silico alanine

screening protocol and benchmarked it using two important chemokine systems. Chemokines

are small proteins, which guide cells of the immune system towards sites of infection. As many

cells contain binding receptors for chemokine proteins, chemokines are implied in many serious

conditions, such as chronic inflammations or allergies, but also fatal diseases such as autoim-

mune disorders or cancer. Using the alanine screening protocol, we predict the hotspots of the

ERBIN/ERBB2 complex and Interleukin-8 complexed with its native receptor CXCR1. Our

method was the only of the tested methods to predict all seven hot spots of the Interleukin-8

receptor peptide. We could also correctly identify the interaction hotspot in the ERBIN/ERBB2

complex. We did not observe a single false-negative hotspot, as validated by subsequent ex-

perimental alanine screens that could focus on the reduced set of amino acids identified by the

computational screen. Our method therefore reduces the work involved for a complete mutage-

nesis assay of a protein interface significantly.

De-novo protein-protein and protein-ligand docking
The study of protein-protein interactions presented in the previous section is only possible, if an

experimental structure of the bound mode is available. When only the monomer structures are

known, it is not immediately evident, which amino acids constitute the binding interface. We

therefore predicted the binding pose of three protein-protein complexes. We extended the proto-

col to small-molecule protein docking, integrating the functionality of the FlexScreen in-silico

screening approach into SIMONA. In addition to brute-force docking simulations, we developed

a cascaded docking strategy for protein-ligand docking and verified it by docking six protein-

ligand complexes to within experimental resolution. This project extended the application area

of SIMONA to also efficiently tackle problems of protein-ligand docking.

Morphology simulations of pentacene clusters
The electronic properties of amorphous organic materials are widely investigated in the con-

text of the development of organic light emitting diodes and materials for organic photovoltaics.

Prior to a characterization of the electronic properties realistic models for the physical mor-

phology of the amorphous material have to be generated. We have implemented forcefields to

describe such materials and specifically parametrized pentacene as one widely studied mate-

119



rial for the emissive layer in OLED and simulated self organization in clusters. The simulated

clusters feature herringbone sub-structures as observed in the pentacene crystals, but extended

amorphous superclusters of those topologies are also observed. To speed these simulations we

implemented a cluster move scheme, which maintains superdetailed-balance. Using the novel

approach the clusters showed faster relaxation rates, which helps us to better describe extended

clusters.

Dispersion of Single-Walled Carbon Nanotubes by chiral index
Carbon nanotubes are widely investigated as an attractive nanomaterial for many applications

in electronics and mechanics. As their properties depend on the specific type of nanotubes as

defined by their chiral indices, nanotubes need to be separated and dispersed, before they can

be used in specific industrial applications. Presently few low-cost separation techniques ex-

ist, but recent investigations could show that some polymers selectively bind towards specific

nanotube subpopulations. We were able to explain this selectivity by analyzing the preferential

binding mode for two different polymers towards two exemplary nanotubes of different chiral

indices. This finding is remarkable as both nanotubes exhibit similar diameters. The proposed

binding preferences are compatible with photoluminescence maps. The dominant binding mode

between nanotubes and polymers can be attributed to aromatic stacking, which, due to geomet-

rical constraints of the polymers, can only be optimal for either one of the polymers. The results

pose a first step to enable the targeted design of polymers dispersing nanotubes of specific chiral

indices.
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A. Additional data of the absolute quality assessment
methods

A.1. Proof of equation 4.8

We want to show:

IN :=
Rκ∫
0

RN e−
R2
2 dR (A.1)

=


(N − 1)!! I0 −

N
2∑
i=1

(N−1)!!
(2i−1)!!f2i−1

∣∣∣Rκ
0

N even

(N − 1)!! I1 −
N−1

2∑
i=1

(N−1)!!
(2i)!! f2i

∣∣∣Rκ
0

N odd

(A.2)

with:fN = RN e−
R2
2 . (A.3)

Proof. By differentiating fi, Eq. A.4 is obtained:

d

dR
RN−1 e−

R2
2 =

(
(N − 1)RN−2 −RN

)
e−

R2
2 (A.4)

which gives:fN (R) = (N − 1) fN−2(R)− d

dR
fN−1(R) . (A.5)

This can now be inserted into the definition of IN to obtain Eq. A.7:

IN =
Rκ∫
0

(N − 1) fN−2(R) dR− d

dR
fN−1(R) dR (A.6)

= (N − 1)
Rκ∫
0

fN−2(R) dR− fN−1
∣∣∣Rκ
0

(A.7)

By observing Eq. A.7 an ansatz for the case of even N can be guessed (Eq. A.8):

Rκ∫
0

fN (R) dR = (N − 1)!!
Rκ∫
0

f0(R) dR−
N
2∑
i=1

(N − 1)!!
(2i− 1)!!f2i−1

∣∣∣Rκ
0

. (A.8)

By inserting the definition of Eq. A.1, one obtains:

IN = (N − 1)!! I0 −
N
2∑
i=1

(N − 1)!!
(2i− 1)!!f(2i−1)

∣∣∣Rκ
0

. (A.9)

This can be proven for even N using complete induction starting from N = 2. The case of
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N = 2 is trivial, when comparing with Eq. A.7. The inductive step ((N − 2) → N ) will now

be shown starting from Eq. A.7:

IN = (N − 1)IN−2 − fN−1
∣∣∣Rκ
0

. (A.10)

Eq. A.2 can now be inserted for IN−2:

IN = (N − 1)

(N − 3)!! I0 −
N−2

2∑
i=1

(N − 3)!!
(2i− 1)!!f(2i−1)

∣∣∣Rκ
0

− fN−1
∣∣∣Rκ
0

, (A.11)

= (N − 1)!! I0 −
N−2

2∑
i=1

(N − 1)!!
(2i− 1)!!f(2i−1)

∣∣∣Rκ
0
− fN−1

∣∣∣Rκ
0

, (A.12)

= (N − 1)!! I0 −
N
2∑
i=1

(N − 1)!!
(2i− 1)!!f(2i−1)

∣∣∣Rκ
0

. (A.13)

This concludes the proof for even N . For odd N Eq. A.8 has to be modified as in Eq. A.14:

IN = (N − 1)!! I1 −
N−1

2∑
i=1

(N − 1)!!
(2i)!! f(2i),Rκ . (A.14)

The case N = 3 is also trivial (compare with Eq. A.7). In this case for the inductive step

((N − 2)→ N ) one obtains:

IN = (N − 1)IN−2 − fN−1,Rκ (A.15)

= (N − 1)

(N − 3)!! I1 −
N−3

2∑
i=1

(N − 3)!!
(2i)!! f(2i)

∣∣∣Rκ
0

− fN−1
∣∣∣Rκ
0

, (A.16)

= (N − 1)!! I1 −
N−3

2∑
i=1

(N − 1)!!
(2i)!! f(2i)

∣∣∣Rκ
0
− fN−1

∣∣∣Rκ
0

, (A.17)

= (N − 1)!! I1 −
N−1

2∑
i=1

(N − 1)!!
(2i)!! f(2i)

∣∣∣Rκ
0

. (A.18)

A.2. Set used to train the absolute quality assessment method

The following list contains all PBD codes used in the training set used to compile the distribu-

tions of the per-amino-acid energies in the absolute quality assessment protocol:

1JF4, 1BKR, 1JF8, 1JHJ, 1JL1, 1JNI, 1JO0, 1JOV, 1BX7, 1JYK, 1K4N,

1K5C, 1K7C, 1K7J, 1KMT, 1A62, 1KMV, 1KNG, 1KOE, 1KQ6, 1KQR, 1KT6,

1L3K, 1LC0, 1C1K, 1LMI, 1LNI, 1LS1, 1LTZ, 1LWB, 1LYQ, 1M1Q, 1M40,

1M4L, 1M9Z, 1MC2, 1MF7, 1MFW, 1MJ4, 1C75, 1MJ5, 1MK0, 1MQO, 1N08,

1C7K, 1N8V, 1NG6, 1CC8, 1NNF, 1NNX, 1NQJ, 1NU0, 1NWA, 1NWZ, 1NYC,
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1NZJ, 1O4Y, 1O7I, 1OI7, 1OK0, 1OOH, 1OQJ, 1P3C, 1PJX, 1CY5, 1PMH,

1PZ4, 1Q0R, 1QDD, 1QG8, 1QGI, 1QTW, 1CZP, 1QWY, 1R5L, 1R9L, 1AH7,

1RG8, 1RJU, 1D4O, 1RKI, 1ROC, 1RTQ, 1RTT, 1RUT, 1RV9, 1RW1, 1RYL,

1RYO, 1RYQ, 1DD9, 1S29, 1S9U, 1SAU, 1SFS, 1SVS, 1SZH, 1T3Y, 1T8K,

1TCA, 1TJX, 1TP6, 1TQG, 1TT8, 1TU9, 1TUA, 1TUK, 1U84, 1UCD, 1UCS,

1UI0, 1UJP, 1UKF, 1DS1, 1UNQ, 1UOY, 1US0, 1UTE, 1UYL, 1DY5, 1V2B,

1VBW, 1VCC, 1VE4, 1E29, 1VKK, 1VLY, 1VYI, 1E5K, 1W0H, 1W0N, 1W4S,

1W66, 1WC2, 1WCW, 1WHZ, 1WNA, 1WPA, 1AHO, 1WVH, 1EAQ, 1X0T, 1X6O,

1X6Z, 1X8Q, 1X91, 1XBI, 1XDN, 1EB6, 1XDZ, 1XGK, 1XMK, 1XMT, 1XOD,

1XQO, 1ECA, 1Y8A, 1Y9L, 1YD0, 1YE8, 1YN3, 1Z2N, 1Z2U, 1Z3X, 1Z67,

1Z6M, 1EJG, 1ZCE, 1ZDY, 1ZGK, 1ZI8, 1ZK5, 1ZMM, 1ZZK, 1ELK, 2A6Z,

2ABS, 2AP3, 2AYD, 2B97, 2BBR, 2BKM, 2BL8, 2BOG, 2BRF, 2BWF, 2C71,

2CB8, 2CBZ, 2CCQ, 2CCW, 2CG7, 2CKK, 2CMP, 2CNQ, 2CS7, 2CVE, 2CWS,

2CXA, 2CXY, 2CYG, 2CYJ, 1EW4, 2D3D, 2DDX, 2DHO, 2DSX, 1EYH, 2DT8,

2DXA, 2E3H, 2E3N, 2END, 2ENG, 2ERF, 2ERL, 2EW0, 2F23, 2F46, 2F60,

1F94, 1F9V, 1FK5, 1ARB, 1FT5, 1FYE, 1G2R, 1G66, 1ATG, 1G8A, 1GBS,

1GCI, 1GK7, 1GMX, 1GP0, 1GPP, 1GU2, 1B3A, 1GVD, 1GWM, 1H4A, 1H97,

1HDO, 1HXI, 1I27, 1I2T, 1I5G, 1I71, 1IE9, 1IFR, 1IN4, 1IO0, 1IQZ,

1J0P, 1J3A, 1J77

A.3. Statistics of single amino acid energies
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