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CHAPTER 1

Introduction

In the first half of the past century, progress in particle physics was driven by experimental
results which physicists struggled to explain with one fundamental theory. In the second
half, local gauge symmetries emerged as guiding principle to construct renormalisable rel-
ativistic quantum field theories, which finally led to the Standard Model of particle physics
(SM). The SM describes three of the four fundamental interactions: the strong and weak
nuclear force as well as electromagnetism. Only gravity, the weakest of the interactions,
could not be embedded into the framework of a renormalisable quantum field theory up
to now. The SM as formulated in the 1970s relies on a special mechanism for generating
the masses of the elementary particles [1–3]. However, this mechanism requires at least
one particle that had not been discovered until recently [4, 5]: the Higgs boson. Even
though most experiments in the following decades featured an impressive consistency with
the SM, it remained incomplete without the detection of this postulated particle.
In 2011, when I started working on this PhD thesis, the detectors at the Large Hadron
Collider (LHC) at CERN had started to take data, but there was no evidence of the Higgs
boson so far. However, several results obtained at the Tevatron collider and other experi-
ments seemed to hint at deviations from the SM, e.g. the measurement of the top quark
forward-backward asymmetry, the like-sign dimuon charge asymmetry or the magnetic
dipole moment of the muon, to mention some of them. Also cosmological observations like
dark matter, the baryon asymmetry in the universe or dark energy cannot be explained
within the framework of the SM. Furthermore, the SM does not offer solutions to theoret-
ical issues like the hierarchy problem, the unification of the gauge couplings or the origin
of the fermion mass hierarchy. On the search for alternatives, many new models have been
discussed. They need to have the SM as an effective “low energy” limit in order to describe
experimental findings. On the other hand a new model has to solve one or more of the
shortcomings of the SM. Most of these SM extensions involve additional particles, which
have large masses or small couplings to the SM particles to avoid effects on the measured
observables that agree with the SM. These properties, however, make it difficult to verify
or falsify the theories beyond the SM, especially if many free parameters are introduced.
In the first part of this thesis I examine a model that stands out not due to its elegance
from theoretical perspective but rather due to its simplicity: the Standard Model extended
by a perturbative fourth fermion generation (SM4). Contrary to more complex models like
supersymmetry, the SM4 is comparably easy to assess because it only has few additional
free parameters, which could potentially be determined at the LHC. Compared to the SM,
the SM4 features additional CP violating phases, which were discussed as possible contri-
butions to the asymmetry between the existing matter and antimatter in our universe [6].
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Figure 1.1: The yearly amount of publications about the SM4 between 2004 and 2011 can be
described by an exponential function (dashed line).

There have been attempts to explain certain flavour measurements with fourth generation
particles [7, 8], and the SM4 neutrinos could even contribute to dark matter [9, 10]. The
increased interest in the SM4 since 2004 is illustrated in Fig. 1.1: For each year, I show
the number of particle physics publications containing either “fourth generation”, “4th
generation”, “fourth family”, or “4th family” in their title [11]. The popularity growth
can be approximated by an exponential function.

But then the first LHC results in 2011 and 2012 revealed that the missing piece of the SM
had been found: the discovery of a bosonic resonance in the γγ and ZZ invariant mass
distribution was probably the most exciting event in particle physics in many years. The
properties of this new particle are in good agreement with the predictions for the SM Higgs
boson, which imposes strong constraints on many SM extensions. The SM4 happens to
be the first popular model that can even be ruled out on the basis of these measurements.
To quantify whether a model is excluded or not, one has to carry out a global analysis of
its possible parameter constellations, taking into account all relevant experimental con-
straints, and compare it with the SM using a likelihood ratio test. Due to the interplay
of different observables this comparison is usually non-trivial; for the SM4 it is even more
complicated, because it does not decouple from the SM. Therefore, my collaborators and I
have performed a likelihood ratio test for non-nested models combining Higgs observables
and electroweak precision data, and eventually excluding the SM4 [12].
Similar to the extension of the fermionic SM content by a quark and a lepton doublet, one
can add a second scalar doublet to its Higgs sector. This so-called Two-Higgs-Doublets
model (2HDM) can arise as effective theory from several models, like for instance super-
symmetry. I will explain in the second part of this thesis that the 2HDM parameters are
also severely constrained by electroweak precision observables as well as LHC and flavour
measurements. However, the 2HDM has a decoupling limit and cannot be ruled out com-
pletely like the SM4.
The SM4 and the 2HDM are comparably simple modifications of the SM; nevertheless,
the correct statistical treatment of a model comparison is non-trivial. Therefore, I first
want to explain the statistical tools that I need in Chapter 2, and discuss the Standard
Model of particle physics in Chapter 3. Only then I am prepared to introduce new models
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1 – Introduction

and to compare them with the SM. This is done in Chapter 4 for the SM4 and in Chapter
5 for the 2HDM, before I conclude in Chapter 6.
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CHAPTER 2

Statistics

The challenge of theoretical particle physics is to develop a model that describes all ob-
served phenomena as well as possible and serves to predict the outcome of future exper-
iments. With the Standard Model we already have a powerful theory, but there are a
few aspects that indicate that it is only an effective limiting case of a more fundamental
theory. Many SM extensions with different virtues have been formulated, of which one
might be realized, whereas the others sooner or later will be ruled out by experiments.
When we now consider one of these new theoretical models, we want to make a statement
on how compatible experimental measurements are with it, and furthermore we want to
test the new model against the conventional model, which in our case is the SM. In the
frequentist approach – the statistical method that I have chosen for this work – this model
comparison is done by means of a likelihood ratio test. It provides us with a p-value (also
called statistical significance) which tells us to which level a model is excluded. After
reviewing the foundations of frequentist statistics following [13–16], I will introduce the
likelihood ratio test (referring to the discussion in [15]) and its statistical interpretation
in Sect. 2.3, and then address two important aspects in our analyses, the treatment of
systematic errors and non-nested model comparisons, in Sect. 2.4 and 2.6.

2.1 The likelihood

A theoretical model is characterized by its model parameters ξj (j = 1, ...,Nξ), which
can only be determined by experimental observations. Let us assume that there are NX

observables Xi (i = 1, ...,NX ) with a certain probability density function (p.d.f.) fi(x
exp
i , ξ).

Let us further assume that we have the measurements x
exp
i of the observables Xi . The

probability that one measurement is between x and x+dx is given by fi(x , ξ)dx . Adopting
vector notation, I can write the joint p.d.f. of all measurements as f (xexp, ξ). For a certain
set of measurements xexp0 , we can define the likelihood as

L(ξ) = f (xexp0 , ξ). (2.1)

If all measurements are statistically independent, we can write the likelihood as the product
of the individual p.d.f.s:

L(ξ) =

NX
∏

i=1

fi(x
exp
0,i , ξ)

11



2.2 Gaussian distributions

In order to test the compatibility of the model with the experimental results, we must try
to bring the theoretical predictions into agreement with the measurements by adapting the
parameters. The most popular method to do this is the maximization of the likelihood
with respect to the model parameters. I want to refer to this procedure as fit in the
following and call the parameters which maximize the likelihood best-fit parameters ξbf .

2.2 Gaussian distributions

One essential property of experiments in particle physics is that we cannot obtain reliable
information from a single measurement, but rather have to measure many times to extract
the p.d.f. of an observable. If it is an average of a large number of measurements, the
observable Xi will commonly have a Gaussian p.d.f. with the statistical error σi as standard
deviation around the central value µi . If there are n different measurements x

exp
i ,k for one

observable Xi , where k is between 1 and n, this corresponds to n draws of the same
random variable. They can be combined to the average x

exp
i ,comb

. This average itself can be
interpreted as Gaussian distributed random variable with error σi ,comb. The average and
its error can be computed in the following way [13]: To each x

exp
i ,k , we assign a weight wi ,k ,

which is defined as the inverse squared error:

wi ,k =
1

σ2
i ,k

The combined statistical error shrinks according to

σi ,comb =

(

n
∑

k=1

wi ,k

)− 1
2

, (2.2)

which means that the combined standard deviation decreases by 1/
√
n, if the number of

equivalent measurements with equal weights is increased by the factor n. For an estimate
of the central value of this combination, all individual xexpi ,k are weighted:

x
exp
i ,comb

= σ2
i ,comb

n
∑

k=1

wi ,kx
exp
i ,k (2.3)

Inverting these relations, one can also reconstruct information about parts of the combi-
nation.
On the theory side, the true value of the observable Xi can be described by the function
x theoi (ξ), assuming the realization of a particular theory. If this assumption is correct,
x theoi (ξ) will coincide with the central value µi of the p.d.f. In the NX -dimensional space
of observables the images of the expressions xtheo (ξ) form the so-called theory manifold
M.
For every Gaussian distributed observable, we can calculate the deviation, which is the
difference between the measured value and the theoretical expression around the best-fit
point, normalized to the experimental error:

χi (ξ) =
x
exp
i − x theoi (ξ)

σi
(2.4)
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2 – Statistics

With this definition a one-dimensional Gaussian distribution (normal distribution) is given
by the function

fG(x
exp
i , x theoi (ξ),σi ) =

1√
2πσi

exp

[

−1

2
χ2
i

]

. (2.5)

This p.d.f. is depicted in Fig. 2.1(a) for x theoi = 0 and σi = 1. Some experiments also have
an asymmetric Gaussian distribution, which is characterized by different lower and upper
Gaussian errors σl and σu :

faG(x
exp, x theo(ξ),σl ,σu) =















2σl
σl + σu

fG(x
exp, x theo(ξ),σl ), if xexp < x theo(ξ)

2σu
σl + σu

fG(x
exp, x theo(ξ),σu), if xexp ≥ x theo(ξ)

An example is shown in Fig. 2.1(b). If we want to determine the deviation of an observable
with an asymmetric Gaussian, we have to choose the appropriate error in the denominator
of Eq. (2.4) according to the sign of the difference xexp − x theo(ξ).

(a) (b)

Figure 2.1: The symmetric Gaussian distribution is shown with a standard deviation of 1 (a). The
lower standard deviation σl and the upper standard deviation σu of an asymmetric Gaussian distribution
have different values (b). The central value was chosen to be 0 for both.

For multi-dimensional Gaussian distributions, we need to take into account the correlations
between different observables: In general, all observables x theoi depend on the same set of
parameters. Changing the value of a parameter to diminish the squared deviation of
one observable and to increase the total likelihood also affects the other observables and
their deviations. Around the best-fit point, this correlation is quantified by the covariance
matrix Vc , which is the inverse of the Hessian matrix of the negative logarithm of the
likelihood:

(V−1
c )nm = − ∂2 ln L(ξ)

∂ξn∂ξm

∣

∣

∣

∣

ξbf

.
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2.3 The likelihood ratio test

The quadratic expansion of the likelihood around the maximum is proportional to

χ2(ξ, xexp) = χT (ξ)V−1
c χ(ξ),

which can be minimized instead of maximizing the likelihood. For independent observ-
ables, Vc = 1, the χ2 is equal to the sum of the squared deviations, and the likelihood is
the product of the individual Gaussian p.d.f.s.
The minimal χ2 of a fit, which I will call χ2

min, is a common measure of how well ξ de-
scribes the data xexp. Often, a first estimate of how well a theory performs is given by the
minimal χ2 per degree of freedom, χ2

min/Ndof . The number of degrees of freedom Ndof is
given by the difference NX −Nξ if we do not artificially constrain ξ in the fit. By definition,
Ndof is only positive if we have more observables than fit parameters; a system like that is
called overconstrained and all parameters can be fixed by the experimental inputs in a fit.
Since the expectation value of the deviation is 1, the expected outcome of the fit will be
χ2
min/Ndof ≈ 1 if we have many observables which are described well by the theory. The

best-fit parameter values ξbf for which the χ2 is minimal will become important in the
next section. Moreover, it is of interest how large the “allowed” ranges for the parameters
and observables around their best-fit values are. I will also come back to these so-called
confidence intervals in the next section.
As defined in Eq. (2.4), the deviation is the minimal difference between x theoi (ξ) and x

exp
i ,

i.e. the deviation of the best-fit point of a complete fit using all NX measurements x
exp
i .

One can also use the first NX − 1 observables to predict the last one; I will refer to this
method as prediction. The χ2

min difference ∆χ2 between the complete fit and the predic-
tion fit gives us a measure of how large the impact of the measurement of XNX

on the
model fit is. Note that ∆χ2 and the squared deviation χ2

NX
are not the same because

other observables will in general have a different best-fit deviation in the prediction fit and
in the complete fit.
An example in particle physics for a parameter determination with the help of a prediction
fit is the Higgs boson mass: Before this last missing parameter of the SM was measured
directly in 2012 as mentioned in the introduction, there had been fits that could exclude
the Higgs mass outside a certain confidence interval. So under the assumption that the
Standard Model was true, experimentalists knew in which mass region to search.

2.3 The likelihood ratio test

Instead of leaving out or adding information on the experimental side, we can also add
new parameters or fix existing ones, hence change the theory. This is especially useful,
if we have a model that we do not doubt in general, and we want to check whether a
particular realization could exist. Let us define a constrained theory B which differs from
the full theory A by fixing ν of the parameters of A. To quantify the viability of B or to
exclude it we need to perform a hypothesis test. Let us assume that B is realized for a
given set of measurements xexp0 (“null hypothesis”). To compare the compatibility of the
two models with these measurements we could use the ratio of their maximized likelihoods
Lmax
B and Lmax

A .

14



2 – Statistics

Instead we can also use

S(xexp) = −2 ln
Lmax
B

Lmax
A

. (2.6)

If S(xexp) is greater than a predefined value S0, we will reject the null hypothesis and
accept A as realized. Therefore, this hypothesis test is called likelihood ratio test. S(xexp)
is a random variable called test statistic and is itself characterized by a p.d.f. Since A

has more free parameters, Lmax
A cannot be smaller than Lmax

B , and S(xexp) is positive semi-
definite. Usually, one chooses the rejection condition S0 to be S(xexp0 ), i.e. the value the
test statistic would take if B was realized with its best-fit parameters ξbf,B for xexp0 and if
A was realized with the best-fit parameters of B and the last ν parameters fitted to xexp0 . If
we denote the p.d.f. of the test statistic by fts(x

exp, ξbf,B), we can calculate the probability
for wrongly rejecting B , which is called the p-value, by the integration of fts(x

exp, ξbf,B)
over the observable regions where B is rejected:

p =

∫

fts(x
exp, ξbf,B) Θ (S(xexp)− S0) d

NX xexp (2.7)

Θ denotes the Heaviside step function. In our calculations, the measurements xexp will be
simulated toy measurements, and the integration is done numerically.
If we want to depict the calculation of the p-value, it is convenient to modify the observable
space: In the NX dimensional observable space we can always find a transformation such
that in the new coordinate system xexp0 −xtheo,B(ξbf,B) is mapped to the origin with σexp

i = 1
and Vc = 1. M′

A and M′
B are the theory manifolds of A and B in the transformed space

of observables. By definition, M′
A ⊃ M′

B (because B is A with ν parameters fixed),
and both contain the origin. If y is the transformed vector of observables xexp, we can
write the transformed test statistic as S(y). Under the assumption that M′

A and M′
B are

hyperplanes, |y|2 is simply the squared distance between the (toy) measurements and the
best-fit value of model B , corresponding to the squared deviation χ2

i in one dimension.
Defining y2 as the orthogonal part to M′

B of the projection of y on M′
A, the test statistic

reads S(y) = |y2|2. The p-value is now the integral over the y regions, where S(y) > S0,
i.e. outside an infinitely long “hyper-cylinder” around M′

B . As illustration I show a three-
dimensional projection of the observable space with a two-dimensional M′

A and a one-
dimensional M′

B in Fig. 2.2.
I will resort to this picture of the transformed observable space in Sect. 2.6 when I want
to discuss the case where B does not emerge from A by fixing some parameters.
If all measurements have a Gaussian p.d.f., the test statistic directly translates into the
difference χ2

min,B − χ2
min,A of the respective minimal χ2 values of the models:

S(xexp) = χ2
min,B − χ2

min,A (2.8)

The test statistic is distributed according to a χ2 distribution, and

p =
1

Γ(ν/2)

∞
∫

S(xexp0 )

ς
ν
2
−1e−ςdς. (2.9)
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2.3 The likelihood ratio test

Figure 2.2: Nested models in three dimensions (graphic from [15]). The blue shaded region indicates
the p.d.f. of the toy measurements. The dashed planes are the boundaries for the model rejection of
B.

Commonly, the p-value is calculated analytically with this formula in theoretical particle
physics. This implies three assumptions [15]: The theory expressions should be linear
in the vicinity of the measurements, i.e. the theory manifold should be approximately a
hyperplane, such that the closest point to some xexp is unique. Next, the p.d.f.s should be
of Gaussian shape. And the last important condition, which I want to discuss in Sect. 2.6,
is that the constrained theory B should be embedded in the full theory A. Only if these
requirements are met, S(xexp0 ) is given by Eq. (2.8) and can be converted into a p-value by
Eq. (2.9). This is known under the name Wilks’ theorem [17]. In the following, I will refer
to this simplification as naive p-value. The use of Wilks’ theorem is common practice in
theoretical particle physics even though the applicability in some cases is questionable.
Visualizing Eq. (2.9) in one dimension in the observable space, the p-value can be identi-
fied with the integral over the “tails” of a (Gaussian) distribution. On the contrary, the
regions that are not part of the tails, cannot be excluded; they are the above-mentioned
confidence intervals. This is illustrated by the different shaded regions of Fig. 2.1: while
the red region corresponding to deviations smaller than 1 constitutes more than 68% of
the integral over fG (x

exp
i , x theoi ,σi ), scenarios with large deviations only contribute little to

the total integrated surface. According to their maximal deviation the red, yellow and
blue shaded regions are referred to as 1σ, 2σ and 3σ regions. I will use the same colour
coding in the figures of the next chapters. Stating that a parameter value is excluded at a
certain confidence level CL – where CL is between 0% and 100% – connotes that the cor-
responding p-value is less than 1−CL. But this does not only hold for single parameters.
By analogy with the one-dimensional Gaussian case, the p-value for multi-dimensional
problems is also commonly translated into a “σ” statement: One can claim to exclude
model B at nσ if its p-value corresponds to the one-dimensional picture of the integrated
area under the Gaussian tails where |χi | > n.
Observations in particle physics are also based on the hypothesis test idea: Defining a
“background” model and a “signal plus background” model, one can also exclude the

16



2 – Statistics

former, hence claiming an observation. Over the last decades, certain exclusion and dis-
covery levels evolved as a rule of thumb for particle physicists [16]: If a particular point
is outside the 2σ boundary (which roughly corresponds to a confidence level of 95%), it
is considered to be disfavoured; everything outside the 3σ region appears to be excluded.
For the decision between “signal plus background” and “background only”, the criteria
are a bit different: If a signal has a deviation of 3 from the background expectation, one
speaks of an evidence; only if its deviation is 5 or more, one can claim a discovery (or
observation).
The naive definition of the p-value usually gives a good approximation and I will use it
to illustrate the confidence intervals of single observables and parameters throughout this
thesis; however, for the comparison of two models differing in multiple aspects we rely
on the correct formulation from Eq. (2.7), which holds for non-Gaussian p.d.f.s as well
as non-linear theory manifolds. The only requirement that we maintain at this point is
that B is nested in A, meaning that it is a constrained version of A. In Chapter 5, we
will find exactly these circumstances when comparing the Two-Higgs-Doublets model to
the SM. However, in Chapter 4, we will also need to calculate the p-value for non-nested
theories. Before we discuss non-nested model comparisons, I want to go into detail about
the treatment of systematic uncertainties.

2.4 Systematic uncertainties

Up to this point, we have only treated p.d.f.s of a Gaussian shape with statistical errors
as standard deviation in detail. However, there are as well uncertainties which cannot be
diminished by increasing the number of measurements according to Eq. (2.2). They can
originate from the detectors, as for example detector calibration errors, and thus be part
of the experimental error, but they also result from theory, as for instance uncertainties
on lattice calculations. All these errors are offsets between the true value x theoi and the
measured value x

exp
i of an observable which do not average out when the experiment is

repeated. Irrespective of their origin, they can be subsumed under the name systematic

uncertainties. In the Rfit scheme [14], one introduces additional fit parameters, the so-
called nuisance parameters, which account for systematic uncertainties in the following
way: to each observable Xi with a systematic error σsyst

i , we assign the nuisance parameter
ξνi , which is allowed to float between −1 and 1, and add ξνi ·σ

syst
i to x theoi . In Fig. 2.3, three

different profile likelihood function are shown: the left one is an ordinary Gaussian distri-
bution, the red line displays an observable without statistical error but with a systematic
error, and the right curve illustrates the resulting profile likelihood of an observable which
has both, statistical and systematic errors, when maximizing with respect to all ξνi .

The notation implies that all systematic errors (including experimental uncertainties) are
converted into bounded theory parameters, where several systematic uncertainties adher-
ent to one observable can be combined by adding them linearly.
The Rfit method can also be used to limit parameters by relating them to an artificial
observable with only a systematic error like in Fig. 2.3(b). On the one hand this can be
useful to prevent masses from becoming negative or to limit angles to take values between
0 and 2π, but on the other hand this smears the definition of Ndof because the number of
parameters can be arbitrarily increased with this method [16].
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2.5 CKMfitter

(a) (b) (c)

Figure 2.3: Three different likelihood profiles: the blue curve (a) is a Gaussian distribution, like in
Fig. 2.1(a), the red line (b) displays a range of likelihood (Rfit with systematic error), and the green
function (c) is the profile of a quantity with both, statistical and systematic errors.

2.5 CKMfitter

For the fits in this thesis I used the CKMfitter package [14], which is based on the Rfit
method. The package is written in WOLFRAM Mathematica files; the minimization
is outsourced to Fortran subroutines. A global parameter fit with CKMfitter usually
involves two steps: the first is minimizing the χ2 with respect to all parameters, and the
optional second part is the scan over one or two parameters or observables. For the initial
minimization, all parameters are treated as free within their allowed ranges, a certain
number of starting points is randomly generated, and the χ2 minimum is searched for using
numerical gradients. (Analytical gradients are in principle supported but not applicable if
the external routines come into play that I want to use.) For the one-dimensional scans,
the specified range for the scan quantity is divided into N equally spaced points for each
of which a “constrained” minimization is performed, in which the scan quantity is fixed.
(N is the granularity defined by the user.) The same applies for two-dimensional scans,
respectively. One important feature is that the scans do in general not start at one end of
the scan range(s) but at the scan point that is closest to the best-fit point. All following
scan steps use the χ2 information of the previous step. Hence, one usually gains better
convergence of the “constrained” fits in the sense that the minimum is found more reliably.
Especially in two-dimensional fits this behaviour can be an advantage compared to plain
“left-to-right” scanning. In spite of this virtue I wrote a program that parallelizes 2D
scans by partitioning them into 1D scans, which reduces the scan time by a factor 1/N,
provided that one has the possibility to execute the parallelized scans on N processors at
the same time. For details, see App. D. The duration of one fit plus scan procedure is
from a second to several days, depending on the complexity of the theory expressions, on
the external routines attached to the fitter, and on whether parallelization was used or
not. I will comment on the performance of the single CKMfitter model implementations
when discussing the combined fit results of the following chapters.
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2.6 Non-nested models

If two models A and B are not nested, the determination of the p-value becomes more
complicated. Like in Sect. 2.3, I will follow [15] to construct a definition based on a geo-
metrical picture: Non-nestedness directly translates into the fact that one theory manifold
is not a subset of the other. Let us again take B as the null hypothesis. The test statistic
as defined in (2.6) is not positive semi-definite any longer, so we set S = 0 if Lmax

B > Lmax
A .

Assuming Gaussian p.d.f.s, one can find a mapping of the observable space like in Sect. 2.3
such that in the new coordinate system xexp0 − xtheo,B(ξbf,B) corresponds to the origin with
σexp
i = 1 and Vc = 1. If we approximate M′

B , the transformed theory manifold of model
B , by its tangent hyperplane H ′

B in the new observable space, the tangent hyperplane H ′
A

of M′
A will now not be a subset of it, nor vice versa. We can decompose the transformed

vector of a (toy) measurement y into a parallel part y‖ and an orthogonal part y3 with
respect to H ′

B and further divide y‖ into y1 and y2, of which the latter is defined to be
orthogonal to H ′

A. Let Y1, Y2 and Y3 be the corresponding subspaces and let c be the
projection of yA on Y2, where yA is any point on H ′

A; then the distance of H ′
A from the

subspace Y1 is given by |c|. In Fig. 2.4, a three-dimensional example is given with H ′
A

being one-dimensional and a two-dimensional H ′
B .

Figure 2.4: Non-nested models in three dimensions (graphic from [15]). The blue shaded region
indicates the p.d.f. of the toy measurements.

The χ2
min,B of theory B is now |y3|2, but where in the nested case we would have χ2

min,A =
|y2|2+ |y3|2, we now only get the lower bound of |y2−c|2 for the minimal χ2 of A, which is
realized if y− (y2− c) is on H ′

A. So again requiring S(y) to be smaller than some reference
value S0 we need to integrate over the regions where |y3|2 < S0 + |y2 − c|2, but this time
there are also contributions of toy measurements with |y3|2 > S0 + |y2− c|2 to the p-value
integral in (2.7) because we only have a lower bound for χ2

min,A. (For instance, take the
point yA0 on H ′

A in Fig. 2.4: if the Y3 components of yA0 have a different sign than the
ones of a toy measurement y, and at the same time their Y1 and Y2 components agree,
the point will always be closer to H ′

B than to H ′
A, regardless of whether |y3|2 is smaller

or greater than S0.) The difficulty now is that these “special” regions are not as easy to
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2.6 Non-nested models

identify since their boundaries (where S(y) = S0) are curved, even though we made use
of the linear approximation with hyperplanes. Therefore we need to specify a sampling
density ρ(xexpk ) that is tuned to generate Monte Carlo integration points inside and outside
the boundaries; the p-value expression for the original observable space then reads

p =
1

N

N
∑

k=1

f (xexpk , ξbf,B)

ρ(xexpk )
Θ
(

S(xexpk )− S0
)

.

As our final formulation only depends on S(xexpk ) and not on χ2 values, it is also valid
if the p.d.f.s are not Gaussian. And dismissing the hyperplane approximation makes the
problem harder to picture, but will not pose a problem to the numerical integration. To
obtain a trustworthy result with small uncertainties within reasonable time, it is crucial
how ρ(xexpk ) is chosen. In our fits we use a customized sampling density which is adjusted
during the calculation.
The SM4 model, which I will discuss in Chapter 4, and the SM are not nested; furthermore,
linearity is not satisfied and there are systematic errors involved. For our hypothesis
test, we used Martin Wiebusch’s program myFitter [15] to calculate the p-value. To test
the performance of the SM4, we need to define our standard first. In particle physics
this standard is the Standard Model which will be analyzed thoroughly in the following
chapter. Only then we are able to discuss its extensions, where we will need to apply our
knowledge about nestedness and linearity.
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CHAPTER 3

The Standard Model

The Standard Model of particle physics (SM) describes three of the four fundamental in-
teractions of all elementary particles we know. (A summary can e.g. be found in [18] and
in [19].) It is based on an SU(3) ⊗ SU(2) ⊗ U(1) gauge symmetry. The corresponding
quantum numbers are the colour, the weak isospin I and the hypercharge Y , respectively.
The gauge couplings are the strong coupling g3, the weak coupling g2, and the hypercharge
coupling g1. The particle content of the SM consists of elementary fermions and bosons,
which transform according to the representations of the gauge groups shown in Table 3.1.
The fermions can be divided into quarks and leptons, which transform in the fundamental
and singlet representation of SU(3), respectively. Left-handed quarks and leptons trans-
form as SU(2) doublets Qj and Lj . For the right-handed fields, which are singlets under
SU(2) transformations, we differentiate between up-type quarks uj on the one hand and
down-type quarks dj and the charged leptons ℓj on the other hand, which correspond to
the SU(2) isospin up and down components of the left-handed doublets. Originally, the
neutrinos νj , which are the right-handed equivalent of the isospin up component of Lj , do
not belong to the SM fields. However, I will treat them just like the other fermions as
massive Dirac particles. The index j denotes the generation the fields are attributed to;
the SM has three generations, which each consist of an SU(2) doublet of an up-type and
a down-type quark, and one containing a charged lepton and a neutrino, as well as the
right-handed partners.

j = 1 j = 2 j = 3

Quark doublets:

(

u

d

)

,

(

c

s

)

,

(

t

b

)

Lepton doublets:

(

νe

e

)

,

(

νµ

µ

)

,

(

ντ

τ

)

To every fermion one can attribute a specific quantum number called flavour. Whereas
the first generation would be sufficient to describe the constituents of atoms and thus
explain most aspects of nature as we know it, for this work about high-energy physics
primarily the heaviest fermions are of interest: the top quark t, the bottom quark b and
the τ lepton.
In addition to the elementary fermions, the SM also contains elementary bosons: The
gauge vector bosons G a

3 , G
a
2 and G1 transform as adjoint representations under SU(3),

SU(2) and U(1), respectively; they can be combined with the generators T a
n of the nth
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gauge group to form linear operators Gn = G a
nT

a
n on some arbitrary representations. Fi-

nally, the Higgs field Φ is a complex scalar SU(2) doublet.

Fermion Representation Boson Representation

Qj (3,2, 1/3) G a
3 (8,1, 0)

uj (3,1, 4/3) G a
2 (1,3, 0)

dj (3,1,−2/3) G1 (1,1, 0)

Lj (1,2,−1) Φ (1,2, 1)

νj (1,1, 0)

ℓj (1,1,−2)

Table 3.1: The elementary particles of the SM and their SU(3) and SU(2) representations and
hypercharge.

The SM Lagrangian can be split into four parts:1

LSM = LG + LF + LH + LY

The first term contains the Yang-Mills Lagrangians of the gluons G a
3 , the weak bosons G a

2 ,
and G1:

LG = −1

4

3
∑

n=1

tr [(Fn)µν(Fn)
µν ] ,

where the field strength tensors (Fn)
µν are defined as

(Fn)
µν = ∂µ(Gn)

ν − ∂ν(Gn)
µ − ign[G

µ
n ,G

ν
n],

a sum of gauge boson field derivatives and the commutator of the bosons. (The U(1)
commutator is zero.)
The next part of the Lagrangian consists of the kinetic terms of the fermions:

LF = iγµ

3
∑

j=1

(

Q jD
µQj + LjD

µLj + ujD
µuj + d jD

µdj + ℓjD
µℓj + νjD

µνj
)

(3.1)

Here, the covariant derivatives

Dµ = ∂µ − i

3
∑

n=1

gnG
µ
n

include the couplings to the gauge bosons.

1I will not list gauge fixing terms.
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3 – The Standard Model

After the vector bosons and the fermions and their interactions, we now address the scalar
sector of the SM. It contains one SU(2) doublet Φ, the so-called Higgs field:

LH = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ

4
(Φ†Φ)2 (3.2)

All massive elementary particles receive their masses by coupling to the Higgs field. How-
ever, Φ needs to have a non-zero, but finite vacuum expectation value v in order to fulfil
this feature, which in turn means that the quadratic coupling µ2 and the quartic coupling
λ have to be positive. The fermion mass terms arise from the Yukawa Lagrangian

LY = −
3
∑

j ,k=1

[

Y d
jk

(

Q jΦ
)

dk + Y u
jk

(

Q j iσ2Φ
∗) uk

+Y ℓ
jk (LjΦ) ℓk + Y ν

jk (Lj iσ2Φ
∗) νk + h.c.

]

. (3.3)

It describes the interaction between fermions and the Higgs field. Here, the Y f
jk are the

Yukawa matrices coupling the Higgs field to the right-handed field f of the generation k

and to a left-handed partner from generation j . In order to introduce mass terms in the
SM, the vacuum expectation value of the SU(2) doublet Φ has to be non-zero. Exploiting
gauge symmetry, it can be brought to the form

〈Φ〉0 =
1√
2

(

0

v

)

with v > 0. This vacuum expectation value breaks the electroweak symmetry SU(2)⊗U(1)
spontaneously to the electromagnetic symmetry group U(1)em, with the conserved electric
charge given by

Q = I3 +
Y

2
,

where I3 is the third component of the weak isospin. The three arising Goldstone bosons
become the longitudinal components of three of the four electroweak gauge bosons. The
corresponding charge eigenstates are the electrically charged W+ and W− with mass mW

as well as two neutral states which can be rotated to the massive Z boson and to the
massless photon γ by the so-called weak mixing angle θw . This angle also gives us the
electrical charge coupling e = g2 sin θw . The Z and γ boson couplings to left-handed and
right-handed fermions can be rearranged into a vector part proportional to γµ and an axial
part with Dirac structure γµγ5. Let gVf and gAf be the corresponding couplings of the Z

to fermion f , which will be used in the following.
Furthermore, we find one real massive Higgs boson H. Such a particle was postulated in
1964 by Peter Higgs [1], but it has been found only in 2012 at the LHC (see Sect. 3.3),
thus completing the particle content of the SM from the experimental point of view.
As for the fermions, LY contains the mass terms after electroweak symmetry breaking.
Neutrino masses are very small; there are only upper limits on their masses available, how-
ever, two neutrino mass eigenvalue differences are known to be non-zero (see e.g. [13] for
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3.1 Parameters

a review). Diagonalizing the 3× 3 Yukawa couplings matrices yields the mass eigenvalues;
the flavour eigenstates are accordingly transformed to mass eigenstates. The price one has
to pay are flavour-changing couplings in LF , generated by non-zero off-diagonal elements
of the product of the down-type and the up-type transformation matrices. For the quarks,
this product is called quark mixing matrix V or simply CKM matrix, according to its
developers Cabibbo, Kobayashi and Maskawa [20, 21]. It is a 3× 3 matrix and mixes the
quark flavour eigenstates. As a unitary matrix, it has nine degrees of freedom, of which
five are unphysical. The remaining four parameters can be expressed as three rotation
angles θ12, θ13 and θ23, which describe the size of the mixing between two generations
each, and one complex phase δ13. With the abbreviations cij = cos θij and sij = sin θij , the
standard parametrization of the CKM matrix reads [13]

V ≡









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









=



























c12c13 s12c13 s13e
−iδ13

−s12c23 c12c23 s23c13

−c12s23s13e
iδ13 −s12s23s13e

iδ13

s12s23 −c12s23 c23c13

−c12c23s13e
iδ13 −s12c23s13e

iδ13



























. (3.4)

Also in the lepton sector, such a matrix exists, yet throughout this thesis, I will assume it
to be diagonal and neglect its parameters.
Apart from its gauge symmetry structure, one can formulate three discrete symmetry
transformations for LSM: replacing particles by their antiparticles is called C symmetry, the
parity operation P is equivalent to mirroring the space coordinates just as T inverses the
time. LSM is not symmetric under these transformations, but as a Lorentz transformation
invariant local quantity, the SM Lagrangian must be invariant under the combination
CPT . While P is violated by the weak interaction [22], the combination CP seemed to
be conserved until in 1964 an asymmetry in neutral meson decays showed that LSM is
not totally CP symmetric [23]. This result was the original motivation for the postulation
of a third generation [21] because CP violation requires physical complex phases in the
Lagrangian. Only if there are at least three fermion generations, the complex phases of
the CKM matrix cannot be compensated by phase rotations of the quark fields, and LF

contains complex quark couplings.

3.1 Parameters

After electroweak symmetry breaking, LSM contains 21 real parameters:2

• 3 gauge couplings g1 = e/ cos θw , g2 = e/ sin θw , g3,

• µ and the quartic Higgs coupling λ from LH , connected via v = 2
√

µ2

λ
,

2In principle, the SU(3) part of the SM could contain one additional CP violating parameter θ, but |θ|
is very small and consistent with zero.
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3 – The Standard Model

• 6 quark masses mu, md , ms , mc , mb, mt , and 6 lepton masses me , mµ, mτ ,mνe , mνµ ,

mντ , which are identified by 1√
2
Ỹ f
jj v , where Ỹ

f
jj are the eigenvalues of the diagonalized

Yukawa matrices Y f
jk from (3.3), and j is the generation index,

• 3 quark mixing angles θ12, θ13, θ23, and

• 1 quark mixing phase, denoted as δ13.

These parameters are a priori free, but I assume perturbative couplings for the high energy
observables that I want to discuss in the following. It is useful to switch to a handier set
of parameters; all masses well below the Z scale (i.e. all fermion masses except for the top
quark mass) can be treated as fixed since their uncertainties are too small to affect our
observables. As next step, I relate v to the well-measured Fermi constant GF = 1/(

√
2v2)

and also treat it as fixed. Instead of the electromagnetic coupling e and θw , I want to use
the Z boson mass and the hadronic contribution to the fine structure constant αem ≡ e2

4π
at the Z scale. They are related to the original parameters by

mZ =
ev

sin(2θw )

√

1

1−∆r

∆α
(5)
had(mZ ) = 1− αem(0)

αem(mZ )
−∆αlep −∆αtop,

where ∆r includes higher order corrections, and ∆αlep and ∆αtop denote the leptonic and
the t loop contribution to the photon propagator at the Z scale, of which the error is
negligible. Also the fine structure constant is very well known at the Z scale as well as

for low energy processes; the main error of αem(mZ ) stems from ∆α
(5)
had [24]. The SU(3)

coupling constant is traded for the strong coupling αs = g2
3 /(4π). Next, the Higgs mass

can be derived from the quadratic coupling of Φ, mH =
√
2µ. Finally, taking the quark

mixing parameters as they are, we end up with nine fit parameters:

mt , mZ , ∆α
(5)
had, αs , mH , θ12, θ13, θ23, δ13 (3.5)

Now that we have defined the model, we can compare it with experimental results. For all
fits in this thesis I used the CKMfitter package which treats systematic errors in the Rfit
scheme [14] as introduced in Sect. 2.4. The CKM angles and the phase were constrained
by taking mainly the PDG values for the CKM matrix elements and a CKMfitter look-up
table for the unitarity triangle angle γ, compare App. A. I will not explicitly mention them
in the following. Before discussing the measurements by the detector collaborations at the
Large Hadron Collider (LHC), I want to address the results obtained at three preceding
colliders: the LEP collider, SLC and the Tevatron. The first two started in the years
1989 and 1992, respectively, to collide electrons and positrons at a centre-of-mass energy
of

√
s ≈ mZ and later at LEP up to

√
s = 209GeV. The SLC was shut down in 1998 and

the LEP collider in 2000 [24]. The Tevatron, a proton-antiproton collider, ran from 1983
to 2011 at maximally

√
s = 1.96 TeV [25].
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3.2 Electroweak precision observables

3.2 Electroweak precision observables

Amongst the main results of the LEP collider and SLC experiments are precision mea-
surements: After the discovery of the W and Z bosons, their fundamental features and
decay properties could be determined with relatively small statistical uncertainties due
to the large amount of collected data. Measuring electron-positron collisions, the LEP
and SLC experiments benefited from the low background, due to which the systematic
errors are small. Over the years, a certain set of observables evolved that was used to test
the Standard Model parameters at the Z scale; it is commonly referred to as electroweak
precision observables (EWPO). As their experimental values are mainly based on LEP
measurements, I will only mention the SLC data explicitly, where its contribution is im-
portant. (Most of the EWPO description is taken from [24] and [19]). They consist of the
following quantities:
The Z mass mZ is assigned to the peak of the bosonic resonance at approximately 91GeV.
Its total decay width ΓZ is extracted from a beam energy scan around the centre-of-
mass energy

√
s = mZ . On the theory side, it is the sum of the hadronic decay width

ΓhadZ = ΓuZ+ΓdZ+ΓsZ+ΓcZ+ΓbZ , the width of decays into charged leptons ΓleptZ = ΓeZ+ΓµZ+ΓτZ ,

and the invisible decay width ΓinvZ = N
light
ν ΓνZ into light neutrinos. ΓfZ is the partial decay

width of a Z decaying into the final state f f . It can be related to the real effective vector
and axial couplings of fermions to the Z boson, gVf and gAf :

ΓfZ = N f
C

GFm
3
Z

6
√
2π

(

g2
Vf + g2

Af

)

The colour factor N f
C of fermion f is 3 for quarks and 1 for leptons. (I do not explicitly

show radiator factors or non-factorisable contributions here.) Independent measurements
of ΓZ and all visible partial decay widths were used to fit the number of neutrinos which
have a mass smaller than mZ/2 to

N light
ν = 2.9840 ± 0.0082. (3.6)

The measured total hadronic Z cross section can be compared to the theoretical expecta-
tion

σ0
had =

12π

m2
Z

ΓeZΓ
had
Z

Γ2Z
.

Here and in the following, the index 0 indicates the theoretically corrected pole observables
that were extracted from the measurements. (Strictly speaking, these quantities are not
observables but merely pseudo-observables, i.e. parameters determined by a fit to the
observed cross sections and asymmetries.) Another ratio of decay widths is

R0
q =

ΓqZ
ΓhadZ

,
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the partial width of a Z decaying into a specific quark pair, normalized to the total
hadronic decay width. The corresponding leptonic quantity is defined reversely:

R0
ℓ =

ΓhadZ

ΓℓZ

It is the ratio of the total hadronic Z width and the width of a Z decaying into a charged
lepton pair. Here, lepton universality is assumed, which means that gV ℓ and gAℓ are equal
for the charged leptons and thus R0

e = R0
µ = R0

τ .
Further important observables are forward-backward asymmetries. They are defined as
the difference between the number of events with the final state particles scattered into
forward and backward direction as compared to the incoming electron beam, normalized
to the sum of all events:

AFB =
NF − NB

NF + NB

At LEP, forward-backward asymmetries have been measured for decays into c and b quarks
as well as charged leptons (again assuming lepton universality). On the theory side, they
can be related to the asymmetry parameters Ae and Af stemming from the tree-level
differential cross-section expression for the process e+e− → f f :

dσ
f f

d cos θ
=

3

8
σtot
f f

[

(1−PeAe)
(

1 + cos2θ
)

+ 2 (Ae − Pe)Af cos θ
]

,

where θ is the scattering angle between the incoming electron and the decay product f ,
and Pe is the electron beam polarization. The fermionic asymmetry Af can be expressed
in terms of the ratio of the above-mentioned effective couplings of fermions to the Z :

Af =
2gVf /gAf

1 + (gVf /gAf )2

Ae can also be identified with the left-right asymmetry of electrons, which is defined
as the difference of the cross sections of left-handed and right-handed electrons in the
initial state, normalized to their sum. Once again assuming lepton universality, I take the
effective leptonic asymmetry Aℓ from [26], which is the combination of all three leptonic
asymmetries from the LEP detectors as well as the left-right asymmetry measured by the
SLD detector at the SLC. In terms of these asymmetries, the expression for the forward-
backward asymmetries reads

A0,f
FB =

3

4
AeAf . (3.7)

Another asymmetry is the hadronic forward-backward charge flow: The difference between
charged jet events in forward and backward direction with respect to the incoming electron
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beam allows us to extract the squared sine of the effective weak mixing angle, which can
be written as

sin2 θeffℓ =
1

4

(

1− gV ℓ

gAℓ

)

(3.8)

Apart from the Z pole observables, I also take into account the W boson mass, which at
tree level can be expressed by mW = g2v/2. It is the first of the mentioned EWPO for
which the Tevatron combination is competitive with the LEP value. I also use the total
W boson decay width ΓW in my fit, even if its measurement is not precise enough to yield
a strong constraint. Furthermore, I take the Tevatron combination of the top quark pole

mass mpole
t , the ∆α

(5)
had(mZ ) determination from [27] and the αs(mZ ) extraction from tau

decays [28] as inputs.
In short, that amounts to a total of 18 observables, of which the first four coincide with
parameters from our above parametrization (3.5):

mpole
t , mZ , ∆α

(5)
had, αs , ΓZ , σ0

had, R0
b , R0

c , R0
ℓ ,

A0,b
FB, A0,c

FB, A0,ℓ
FB, Ab, Ac , Aℓ, mW , ΓW , sin2 θeffℓ

For the fits, I linked the subroutine DIZET from the Zfitter code [29–31] to CKMfitter.
DIZET calculates the EWPO including higher order corrections. Moreover, I created a
general multi-purpose interface which can be used to connect any external programs to
the CKMfitter program, see App. D. (Even if Zfitter includes a minimization routine,
in my fits the minimization of the parameters was performed by CKMfitter.) The two-
loop electroweak corrections for R0

b from [32], which are not implemented in Zfitter,
have been included. They increase the deviation of R0

b from less than 1 to more than

2. Aside from the four CKM matrix parameters, I used mZ , αs(mZ ), ∆α
(5)
had(mZ ), m

pole
t

and mH as fit parameters. The Higgs mass is not constrained by direct measurements in
this section, reproducing the pre-LHC status. All numerical inputs for the electroweak
precision observables that I used can be found in App. A. The best-fit values of the single
quantities as well as their deviations in the SM fit can be found in Fig. 3.1. I also list the
difference ∆χ2 between the minimal χ2 values of the complete fit and the prediction fit as
defined in Sect. 2.2. The b quark forward-backward asymmetry and the R0

b ratio exhibit
the largest deviations with absolute values greater than 2. They also yield the largest
contributions to the total χ2

min of the EWPO fit, which is 21.21.
Here the difference between the squared deviation from the best-fit point and the ∆χ2

is obvious: While ΓZ and Ab have the very same ∆χ2, the best-fit deviation of the Z

width is smaller than the one of the b asymmetry. This means that the larger discrepancy
between experiment and theory of Ab is accommodated just as well by shifts of the other
observables when comparing the prediction fit with the complete fit.
Due to their small uncertainties, the EWPO yield strong constraints to physics beyond the
SM, because effects of heavy particles in loop corrections have not been measured. Often
when new physics models are analyzed, the electroweak precision fit is taken into account
using the so-called oblique parameters S , T and U, introduced by Peskin and Takeuchi
[33, 34]. In the SM, they are zero by definition. They can be used for heavy non-SM

28



3 – The Standard Model

Observable Best-fit value Deviation ∆χ2

mpole
t [GeV]

mZ [GeV]

∆α
(5)
had

αs

ΓZ [GeV]

σ0
had [nb]

R0
b

R0
c

R0
ℓ

A0,b
FB

A0,c
FB

A0,ℓ
FB

Ab

Ac

Aℓ

mW [GeV]

ΓW [GeV]

sin2 θeffℓ

172.42

91.1876

0.02758

0.1186

2.4957

41.477

0.21477

0.1722

20.743

0.1035

0.0740

0.0163

0.935

0.668

0.1476

80.377

2.092

0.2315

0.09

0.42

0.26

0.00

0.10

2.82

4.61

0.16

0.66

6.40

0.50

0.63

0.10

0.01

2.09

0.21

0.03

0.64

−3 −2 −1 +1 +2

package

CKM
f i t t e r

Figure 3.1: Deviations of the EWPO from the best-fit point in the SM fit before the Higgs discovery.
(As defined in Eq. (2.4), the deviation of the observable Xi is

(

x
exp
i − x theoi

)

/σi .) The experimental
inputs can be found in App. A. I also present the individual χ2 contributions in the last column.
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particles, if three requirements are met: the electroweak gauge part of the new theory has
to be SM-like (SU(2) ⊗ U(1) before spontaneous symmetry breaking), the new particles
must be heavier than the Z scale, and there must be no vertex corrections from the heavy
particles. I will discuss their applicability in the next two chapters in the respective EWPO
section.
As already stated, until last year the only unknown SM parameter, which could only be
roughly extracted from the EWPO, was the Higgs mass. Even if the EWPO depend only
logarithmically on mH [35], they constituted the strongest available upper bounds on it.
This was usually presented in the so-called “blue-band plot”, the minimal χ2 value as
a function of mH resulting from a global fit with mH fixed. The plot before the Higgs
discovery from [24] and my own fit are displayed in Fig. 3.2(a) and 3.2(b), respectively.
Using inputs from [24], I could reproduce the old blue-band plot. I also show the more
restrictive fit including the latest inputs for the EWPO from Table A.2 in App. A. Its
Higgs mass prediction is mH = 93+35

−21 GeV. The historic blue-band plot is also based on
Zfitter fits; but since no Rfit method was used, the theoretical uncertainty is overlaid
in the blue band, while in Fig. 3.2(b) the theoretical uncertainty is contained in the ∆χ2

value.
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Figure 3.2: The blue-band plot from [24] on the left shows the χ2 dependence of the Higgs mass mH

in a global fit to the EWPO. The theoretical errors determine the width of the blue band. The yellow
range is excluded by direct Higgs searches at the LEP collider. In my fit on the right, the theoretical
errors were taken into account using the Rfit scheme (cf. Sect. 2.4). The dashed line is a fit using the
old inputs from [24].

The LEP detectors could only set a lower bound of 114.4 GeV at 95% CL to mH [36],
corresponding to the yellow-shaded excluded region in Fig. 3.2(a). In the year 2010,
Tevatron Higgs searches could also exclude a Higgs mass range between 162 and 166 GeV
at 95% CL [37]. The actual discovery, however, could be achieved by the LHC detectors
ATLAS and CMS.
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3.3 Higgs searches

On 4th July 2012, the ATLAS and CMS collaborations announced the discovery of a new
boson “at a mass near 125 GeV”, for which they claimed a local significance of 5.9 σ and
5.0 σ, respectively, in the corresponding publications [4, 5]. This statement was based on
the evaluation of the 2011 data set of around 5 fb−1, taken at a centre-of-mass energy of√
s = 7 TeV, as well as up to 5 fb−1 from the 2012 run at

√
s = 8 TeV. The complete

2011 and 2012 Higgs search data were presented at the Moriond conferences in 2013 and
comprise up to 25 fb−1. Also the Tevatron collaborations of the CDF and D∅ detectors
declared a statistical significance of 3.1σ at 125 GeV in their latest combined analysis [38]
which uses up to 10fb−1 of integrated luminosity. In the context of the SM, this new boson
is interpreted as the Higgs boson H introduced at the beginning of this chapter. More
detailed analyses concentrating on further characteristics like the spin are also in good
agreement with SM expectations [39–41]. Therefore, I will refer to this discovery as the
Higgs discovery in this work. Whereas the Tevatron was a proton-antiproton collider with
a maximal centre-of-mass energy of

√
s = 1.96 TeV, the LHC used two proton beams with√

s = 7TeV in 2011 and with
√
s = 8 TeV in the 2012 run. At LHC and Tevatron, the

main Higgs production processes are gluon-gluon fusion (ggF), vector boson fusion (VBF),
W and Z associated production (WH and ZH, sometimes combined to VH), as well as
tt associated production (ttH). I subsume WW and ZZ fusion in one VBF category but
mostly consider WH and ZH separately, because in contrast to the two fusion processes
the vector boson associated Higgs productions have distinguishable signatures in the final
state and hence can be separated into different observables. The five final states of a Higgs
decay that are separable from background are bb, WW ∗, ZZ ∗, ττ as well as γγ. Since mW

and mZ are greater than mH/2, only one of the produced massive bosons can be on the
mass shell; the other one is virtual, which is denoted by the asterisk. The overview in Fig.
3.3 shows the leading order processes and also assigns the relative size of the individual
production cross sections and the partial decay widths.

Due to different initial states and different collision centre-of-mass energies, the LHC
production fractions differ from the ones at Tevatron; at both colliders, the gluon-gluon
fusion is dominant. Almost 8.5% of the produced Higgs bosons decay into two gluons;
however, those decays cannot be separated from the background. The missing 3% of
the decays (e.g. H → Zγ) are also not (yet) separable from background events. In the
SM, gluons and photons couple to the Higgs boson only via loop processes; the main
contributions originate from top quark and W boson loops at leading order. In other
models, however, also other particles could be involved already at one-loop level. This
fact makes the Higgs particle an excellent probe for physics beyond the SM.
As already explained in Chapter 2, a discovery is defined as a signal that has a statistical
significance of at least 5σ. For the Higgs searches, the “signal” is quantified by the signal
strength µ, the ratio of measured and theoretically expected signal events and can be
translated into the ratio of the specific process cross sections σ(X → H → Y ) of a certain
initial state X producing a Higgs H which then decays into the specific final state Y :

µ(X → H → Y ) ≡ Nobserved

Nexpected

=
σobserved(X → H → Y )

σSM(X → H → Y )
(3.9)
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Production:

LHC 87.5 % 7.1 % 3.1 % 1.7 % 0.6 %

Tevatron 74.8 % 5.8 % 11.8 % 7.3 % 0.3 %

gg → H WW ,ZZ → H W ∗ → WH Z ∗ → ZH gg → t tH

Decay:

mH = 126 GeV 0.2% 23.1% 2.9% 6.2% 56.1%

H → γγ H → WW ∗ H → ZZ ∗ H → ττ H → bb

Figure 3.3: The most important Higgs production and decay modes with corresponding relative
contributions and branching ratios in the SM at leading order. Gluons and photons only couple via loop
processes to the Higgs boson, which are illustrated as inclusive vertices. The LHC values are taken from
[42] for a centre-of-mass energy of 8 TeV, the Tevatron values are for 1.96 TeV [43], both assuming
mH ≈ 126 GeV. the branching ratios and [44]

µ(X → H → Y ) is mass dependent and should be 1 at the Higgs mass and 0 everywhere else
in the SM, if one neglects the Higgs decay width. The signal cross section σ(X → H → Y )
factorizes in narrow-width approximation:

σ(X → H → Y ) = σ(X → H) · ǫXY · B(H → Y ), (3.10)

where σ(X → H) is the Higgs production cross section of the production mode X , and
B(H → Y ) is the branching ratio of a Higgs boson decaying into the final state Y . The
efficiencies ǫXY incorporate all detector, selection and reconstruction efficiencies; they
are different for each X → H → Y process. Effective Higgs couplings to fermions and
vector bosons, like e.g. in [45–48], can be used to test the details of the SM, but for our
SM extension fits they are not applicable; therefore, I will not use them in this thesis.
A combination of the four best Higgs mass measurements in the decays H → γγ and
H → ZZ ∗ at ATLAS and CMS gives us mH = 125.96+0.18

−0.19. The inputs can be found
in Table A.4. All available relevant Higgs signal strengths that were used in the fits
were measured at the LHC, where the initial state is pp, and Tevatron with pp in the
initial state, and can be found in Fig. A.1 in App. A together with a detailed description.
Combining them yields a Higgs signal strength of 1.007+0.099

−0.098 at mH ≈ 126 GeV. If one is
especially interested in the decay properties, the experimental results can be combined for
the five decay channels from Fig. 3.3.
Table 3.2 is only for illustration; in the fits, I used all individual observables rather than
these combinations. However, when discussing particular features of one of the decay

32



3 – The Standard Model

Decay channel µcomb Number of ∆χ2 Deviation

observables from 0

H → γγ 1.16 ± 0.18 39 53.94 6.44

H → WW ∗ 0.75 ± 0.16 5 7.77 4.69

H → ZZ ∗ 1.13 ± 0.24 4 2.03 4.71

H → bb 1.30+0.45
−0.44 6 2.26 2.95

H → ττ 1.12 ± 0.29 9 8.57 3.86

all channels 1.007+0.099
−0.098 63 72.76 10.17

Table 3.2: Higgs signal strength combinations at mH ≈ 126 GeV, ordered by decay products. The
Ndof and the compatibility with signal and background are given in the third, fourth and fifth column.

channels, this picture will be useful.
The inclusion of Higgs mass measurements to the precision SM fit means at the same time
basically fixing the last unknown parameter of the SM; it raises the χ2 of the EWPO fit
from 21.21 to 26.93. The CKMfitter performance of a fit with 100 minimizations and a
1D scan with granularity 20 was 9 to 14 minutes. The impact on the single electroweak
observables can be seen in Fig. 3.4, where I show the deviations with and without Higgs
mass input.

Before the Higgs discovery, A0,b
FB featured the strongest tension between theory and exper-

iment. In the new fit this tension is a bit relaxed, but the deviation is still greater than
two and now equal to the slightly increased deviation of R0

b . In Fig. 3.5(a), I show the
measured values and the 1, 2 and 3σ regions surrounding the best-fit point of these two
observables. This is the most dramatic illustration of SM incompatibility present in the
EWPO. A much weaker discrepancy is exhibited by the comparison of fit and experiment
in the mpole

t -mW plane next to it in Fig. 3.5(b). This figure has always been used to il-
lustrate the EWPO fit and its dependence on the Higgs mass, compare [13, 24, 26]. And
indeed, by fixing mH , the best-fit central values of the top quark mass and the W mass
receive the largest shifts of all EWPO with respect to their experimental errors. However,
this is only visible for the deviation of the bosonic mass (which nevertheless is smaller
than one); while in the “old” fit the central value of mpole

t was set to the lower end of the
range assigned by the Rfit treatment due to the systematic uncertainty, it is now fixed at
its upper end, so the difference between both best-fit values of almost 3σ does not result
in a sizeable change of the deviation nor in a noteworthy increase of the ∆χ2.
Also the discrepancy of the Aℓ measurement with the SM increased. In total, however,
all EWPO data are basically consistent with SM expectations. Also the combined signal
strengths are in good agreement with the theory. While the first published data on the
H → γγ signal strengths seemed to indicate an excess around 126 GeV even too large
for the SM and caused a lot of excitement, the deviation of µcomb(H → γγ) has dropped
below one if we take the latest data into account. Only µcomb(H → WW ∗) has a devi-
ation greater than one because less events than expected in the SM have been detected
and the experimental uncertainty is the smallest of all combined signal strengths. For all
electroweak precision observables and combined signal strengths I also performed predic-
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Observable Best-fit value Deviation ∆χ2

mpole
t [GeV]
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∆α
(5)
had
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ΓZ [GeV]

σ0
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Figure 3.4: Deviations of the EWPO and the Higgs signal strengths from the best-fit point in the
SM fit before (orange) and after (blue) the Higgs discovery. (The deviations are defined as in Fig.
3.1.) For the individual ∆χ2 of the signal strength combinations in the last column, I give the average
contribution per observable (compare Table 3.2).

34



3 – The Standard Model

tion fits, where the latter were assumed to have the same efficiencies as the corresponding
ATLAS categories at 8TeV. The predictions illustrate the compatibility with the other
observables as well as the effect of adding the respective measurement to the fit. The
(naive) p-value scans in the SM can be found in App. B together with the measurements
and the prediction fit results in the other models which I want to discuss in the next two
chapters.
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Figure 3.5: The 1, 2 and 3σ regions are shown in the R0
b -A

0,b
FB plane (a) and in the mpole

t -mW plane
(b), shaded in red, yellow and blue, respectively. The direct measurements are marked by the cross,
where the inner error bars are the theoretical errors, and the outer error bars denote the statistical
uncertainties. A plot similar to (b) can be found in [12].

Our analysis is the first global fit to all available EWPO and Higgs data performed after
the discovery of the Higgs boson [12]. The results largely agree with the electroweak fit
by the Gfitter collaboration [49] and the Bayesian fit by Ciuchini et al. [50].
As the Higgs observables are hardly influenced by little modifications of all SM parameters
except for the Higgs mass, and the EWPO only have a logarithmic dependence on mH [35],
both analyses can to a good approximation be performed separately. This in turn means
that the individual ∆χ2 contributions of the signal strength fit can simply be added to
the EWPO fit χ2, amounting to a total of χ2

min = 99.69. Four of the best-fit parameters
can be found in Fig. 3.4; the remaining values are

mH = 125.96 GeV, θ12 = 0.227, θ13 = 0.00405, θ23 = 0.0409, δ13 = 1.15.

The Higgs mass is simply the combination of the mass extractions presented in Table A.4,
and the mixing angles are mainly constrained by the CKM matrix elements from Table
A.1 in App. A.
The consistency of the precisely measured experimental data with the SM is astonishing
and gives us the opportunity to severely constrain or even rule out physics models beyond
the SM. In the next two chapters, I want to shed light on two of such SM extensions.
For both, Higgs search measurements and EWPO depend on the same set of parameters,
such that combined fits of the Higgs signal strengths and EWPO are mandatory. The
primary goal of this thesis was originally to perform a combined fit of the SM4, which will
be discussed in the next chapter.
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CHAPTER 4

The Standard Model with four fermion generations

At the beginning of Chapter 3, I mentioned that there are three generations of fermions
in the Standard Model. The number of generations, however, cannot be deduced from a
fundamental theoretical principle, nor is there a direct indication from the experimental
side pointing at exactly three generations. The SM4 is the SM amended by a sequential
fermion generation with the same quantum numbers as the knwon three generations.
Adding a new generation of four fermions is equivalent to replacing the 3 in (3.1) and
(3.3) by a 4, and the complete fermion content ordered in SU(2) doublets looks like the
following:

(

u

d

)

,

(

c

s

)

,
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t

b

)
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t ′

b′

)
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e
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)

An assumption that I impose on the model I want to analyze in this chapter is the one
of perturbativity : increasing the mass of a fermion means enlarging its Yukawa coupling,
cf. Eq. (3.3). But like for the other couplings we require a converging power series if we
want to treat Yukawa interactions perturbatively. It has only been very roughly quantified
how large fermion masses can be before perturbativity breaks down. Tree-level partial-
wave unitarity arguments limit the quark masses to be lighter than 500GeV and the
lepton masses to be lighter than 1 TeV if we assume that the corresponding doublets are
almost mass degenerate [51, 52], meaning that their mass eigenvalues are almost equal.
Analyses of electroweak next-to-leading order contributions to Higgs production with a
fourth generation also reveal an incipient breakdown of the perturbation expansion at
mass scales around 600 GeV [53]. However, a precise value at which perturbativity fails
cannot be deduced easily; one might be able to apply perturbative methods well above
these scales. Nevertheless, it is important to state clearly that for the fourth generation
model discussed in the following perturbative behaviour is assumed. So my definition of
a Standard Model with four generations (SM4) is an SM extension by a complete and
perturbative generation of chiral fermions.
Now why should I add this fourth fermion generation? As already stated, the number of
fermion generations cannot be related to any other parameter of the SM. It was shown
that there need to be at least three generations in order to have CP violation in the
Yukawa sector in Eq. (3.3) [21]. From LEP data can be inferred that there are only three
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types of neutrinos lighter than mZ/2, cf. Eq. (3.6). However, heavier neutrinos could still
exist and were even discussed as possible dark matter candidates [9, 10]. But also the
quarks of the fourth generation could possibly contribute to the solution of a cosmological
puzzle: the apparent excess of matter in our universe as compared to antimatter discloses a
disproportion which cannot be explained by the SM phase δ13 alone; further CP violating
mechanisms are necessary to account for baryogenesis in order to satisfy the Sakharov
criteria [54]. A sizeable contribution might stem from the two additional phases contained
in the 4×4 CKM matrix of the SM4 [6], even if it is not sufficient to account for the entire
asymmetry. Furthermore, a fourth generation of fermions could solve some discrepancies
between measured and calculated flavour observables, such as CP violation in B meson
measurements [7, 8, 55].
In this chapter, I will introduce the four generations model thoroughly in Sect. 4.1, I
will discuss the same constraints as in the previous chapter, and finally show that after
combining the most important observables in a global fit, the SM4 can be excluded at a
statistically significant level.

4.1 Parameters

In addition to the nine SM parameters from (3.5) we have nine new parameters in the
SM4: the four fermion masses mt′ , mb′ , mℓ4 and mν4 , three more quark mixing angles θ14,
θ24, θ34, and two additional quark mixing phases δ14 and δ24.
In this work, I will use 800 GeV as somewhat arbitrary upper limit for the fourth generation
fermion masses assuming that the mentioned breakdown of perturbativity occurs beyond
this threshold. For the lower bounds, the direct searches need to be taken into account.
Concerning the quarks, the most powerful constraints to date are bounds from the LHC
detectors; the latest measurements state mt′ > 656GeV [56] and mb′ > 675GeV [57] at
95% CL. However, both analyses assume specific decay properties: the t ′ (b′) is supposed
to decay to Wb (Wt) with a branching ratio of 100%. Another analysis shows that mass
degenerate fourth generation quarks must be heavier than 685 GeV [58]. The Particle
Data Group still lists mt′ > 420 GeV and mb′ > 372 GeV at 95% CL as largest exclusion
limits in their latest review [13]. Since there are no LHC exclusion bounds without any
assumption on the branching ratios or mass degeneracy available a conservative lower mass
limit of 400 GeV for the t ′ and b′ quarks seems to be appropriate in order to not exclude
any possible scenario from the beginning. The most stringent direct search limits for the
fourth generation leptons were obtained at the LEP detectors. They are mℓ4 > 100.8 GeV
[59] from W ν decays and mν4 > 45 GeV from invisible Z decays [60], again at 95% CL.
There are no observables that constrain the new CKM matrix parameters directly, so in
principle the angles are allowed to take any value between −π

2 and π
2 and the phases are

varied between 0 and 2π. However, the 4 × 4 CKM matrix needs to be unitary, which
severely constrains its off-diagonal elements in the fourth row and in the fourth column
as already the 3 × 3 SM part satisfies the unitarity conditions to a good approximation.
In this context, it is important to stress that the SM parameters of the CKM matrix have
to be reinterpreted in the SM4 [61]. The CKM matrix parametrization of Eq. (3.4) is
only valid in the SM4 if all extra mixing angles are set to zero; in general the SM 3 × 3
part of the SM4 4 × 4 CKM matrix does not have to be unitary. In principle, one could
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also parametrize the leptonic Yukawa sector in a similar way; the resulting mixing matrix
is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [62–64]. However, leptonic
mixing effects on the observables that I want to discuss here are of minor importance and
only occur in higher order corrections. Therefore, I will assume a diagonal lepton mixing
matrix in the following, setting all mixing angles and CP phases of the PMNS matrix to
zero. The neutrinos are supposed to be Dirac particles.
Whereas the EWPO and Higgs measurements in the SM have turned out to be effectively
orthogonal in the parameter space, we will see that in the SM4 both sets of observables are
entangled with respect to the parameters they depend on. A relation between Higgs mass
and heavy fermions is also indicated by lattice studies: analyses of the non-perturbative
parameter region up to 1 TeV have shown that for a Higgs mass of 126GeV fermions with
masses of about 300 GeV or more can destabilize the Higgs potential [65, 66]. However,
this does not necessarily mean that heavy fermions are excluded, but may merely indicate
that “our” vacuum is only metastable. Here, I want to focus on the perturbative part
and discuss the interplay of the EWPO and the Higgs signal strengths in the following
sections.

4.2 Electroweak precision observables

Many studies have investigated the viable parameter space of the SM4; I will discuss the
most prominent ones in Sect. 4.4. The majority of them used the oblique parameters (cf.
Sect. 3.2) instead of the full set of electroweak precision observables. It was shown in
[67–69] that in the SM4 the oblique parameter U is negligible if one uses S and T ; so one
ends up with only two pseudo-observables. Only taking into account S and neglecting T ,
the mass degenerate SM4 was even said to be excluded at 6σ in former PDG reviews [70].
But this approximation has proven to be illegitimate once a non-trivial CKM matrix is
assumed [69]. Any way, the preconditions for the use of the oblique parameters are not
satisfied: not only could the new leptons be as light as the Z scale, the neutrino could
even be lighter. Furthermore, in our general formulation of the model the heavy quarks
are allowed to mix with the light species, such that vertex corrections are possible. This
is why we decided to use the complete information from the EWPO instead of the oblique
parameters.
To this end, we chose the “hybrid” approach introduced in [71]: as in Chapter 3, the
SM expressions for the EWPO (except for R0

b) are calculated with Zfitter on the level
of the effective Z–fermion couplings gVf and gAf , while the one-loop SM4 corrections to
the effective couplings, δgVf ≡ gSM4

Vf − gVf and δgAf ≡ gSM4
Af − gAf are obtained using

FeynArts, FormCalc and LoopTools [72–74]. We can now reduce all SM4 expressions to
the SM formulae and correction terms depending on δgVf and δgAf .
In the SM4, the EWPO fit alone is slightly better than in the SM: the total χ2

min amounts
to 20.82 without fixing mH , and to 26.26 taking its measurement into account. (The SM
fit produced χ2

min values of 21.21 and 26.93 respectively.) If the Higgs boson had not been
found in the mass region below 200 GeV, the EWPO fit would have been much better
in the SM4 than in the SM, compare the prediction fit in Fig. B.3(g). Before the Higgs
discovery, this feature was a frequently quoted argument to motivate the SM4. With the
Higgs mass around 126 GeV, many deviations of the individual observables do not change
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a lot (cf. Fig. 4.3). The deviations of the W and Z boson mass change the sign, and
while the largest deviations in the SM, i.e. the ones of A0,b

FB and R0
b , are diminished in their

absolute values, the ones of σ0
had and Aℓ are increased. There are two major features of

the EWPO fit: The first is that large mass splittings in the fourth generation fermion
doublets are excluded: Fig. 4.1(a) shows that the allowed mass difference ∆m at 95% CL
is between −75 and 82GeV for the quarks and between −167 and 109 GeV for the leptons.
This will be important for the combination with the Higgs signal strength fit that I want
to present in the next section. The second important result of the electroweak fit is that
mixing between the fourth generation and the SM quarks is disfavoured. θ34 is smaller
than 0.16 at 95% CL with a best-fit value of 0, which can be seen in Fig. 4.1(b), where a
p-value scan over θ34 is shown. Quark mixing between the fourth and the third generation
would even be stronger suppressed if I used a larger central value for Vtb (cf. Table A.1).
The constraints on the other two angles are even stronger.
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Figure 4.1: The mass splitting of the fourth generation SU(2) doublet partners is strongly con-
strained by the EWPO: the absolute quark mass difference cannot exceed 82 GeV at 95% CL, while the
lepton mass splitting is somewhat less limited to 167 GeV at most at 95% CL (a). The scan over θ34
shows that scenarios are favoured where fourth generation quark decays into SM quarks are suppressed.

4.3 Higgs searches

The Higgs content of the SM4 is the same as in the Standard Model: there is one scalar
SU(2) doublet that acquires a non-zero vacuum expectation value by electroweak sym-
metry breaking. The only free parameter of the scalar sector of the SM4 is the Higgs
mass mH . The measured signal strengths are assumed to be the SM4 ones. I consider the
same five production mechanisms as in the SM (ggF, VBF, WH, ZH, ttH), but if mν4 is
small enough, we get an additional, invisible decay channel to the five SM decay modes
[75]. From Eqns. (3.9) and (3.10) one can see that in narrow-width approximation the
SM4 signal strength splits up into a production and a decay ratio, if one attributes the
efficiencies ǫXY to the production part:

µ(X → H → Y ) =
σSM4(X → H) · ǫXY
σSM(X → H) · ǫXY

· BSM4(H → Y )

BSM(H → Y )
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I assume that the efficiencies of the SM4 are the same as in the SM. Instead of ǫXY I use the
percentage contributions ̺XY in the following, which incorporate the relative admixture of
the respective production process X → H in a particular decay channel to Y :

̺XY =
σSM(X → H) ǫXY BSM(H → Y )
∑

i

σSM(i → H) ǫiY BSM(H → Y )
(4.1)

If we sum over the five possible initial states X , the ̺XY add up to 1. The percentage
contributions are convenient when we want to use signal strengths from the proton colliders
Tevatron and LHC: as we have no information about the particular production on parton
level for an individual process, we have to sum over all possible production channels. For
some signal strengths measurements, additional signatures in the final state indicate a
predominance of a specific production process. In that case one can simply set all other
percentage contributions to zero. The ̺XY inputs used in this thesis can be found in
Tables A.5, A.6 and A.7. If no values were provided by the detector collaborations, I
simply take the relative proportions from Fig. 3.3, thus assuming efficiencies of 100%. We
can sum over the five production modes, attribute the corresponding ̺XY , and then trade
the production cross sections for the total decay widths and the branching ratios, which
gives us the convenient expression

µ(H → Y ) =

(

∑

i

BSM4(H → i)

BSM(H → i)
̺iY

)

· Γ
SM4
H

ΓSM
H

· BSM4(H → Y )

BSM(H → Y )
. (4.2)

For our fits, we used the publicly available code HDecay v. 4.45 [76] to generate branching
ratios and total decay width in the SM as well as in the context of the SM4. The program
includes higher order corrections from [53, 77–79]. The calculated quantities depend on
the Higgs mass and – in case of the SM4 – on the fourth generation fermion masses, but it
is implicitly assumed that θ14 = θ24 = θ34 = 0. As for the last angle, we have seen in Fig.
4.1(b) that this simplification is supported by the EWPO. Since the matrix elements of
the first two rows of the SM CKM matrix have been determined quite precisely, and they
fulfil the corresponding 3 × 3 unitarity conditions, we expect |Vub′ | ≪ 1 and |Vcb′ | ≪ 1,
and thus also the other two angles to be small, so the suppression of quark mixing between
the fourth generation and the SM particles seems to be justified. The HDecay output was
saved in look-up tables and during the fit procedure an algorithm was used to interpolate
their entries. The small interpolation error of this treatment was neglected.
In the SM4, the predominant production and decay channels have quite different at-
tributes: the gluon-gluon fusion, which already in the SM is the main production process
at proton colliders, is naively enhanced by roughly a factor of 10 at leading order due to
the additional heavy quark contributions in the loop [80]. On the other hand, the decay
H → γγ is heavily suppressed: Already in the SM, the diphoton production exhibits a de-
structive interference; at leading order, the t andW loop enter calculations with a different
sign and partially cancel each other. In the SM4, this cancellation is even stronger [81].
Taking into account next-to-leading order corrections, the suppression is almost perfect;
the Higgs decay to two photons is very unlikely [53]. However, as discussed in Chapter 3,
the LHC detectors at first even measured a larger excess of the signal strengths than they
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would have expected in the SM. Even if the latest µ(H → γγ) values are more SM-like
now, their experimental errors have also decreased, and these observables thus strongly
contradict the SM4 hypothesis. (The deviation of the diphoton signal strength can roughly
be estimated by the deviation from 0 in Table 3.2.) Also the other signal strengths are
affected: the fit favours a neutrino mass which is lighter than mH/2, so the total decay
width of the Higgs boson ΓSM4

H is larger than in the SM. But if BSM4(H → ν4ν4) and
BSM4(H → gg) are increased, all other branching ratios are diminished at the same time,
which in turn means that the Higgs decay into vector bosons is suppressed compared to
the SM. This also affects the decay to b quarks because they are assumed to be produced
in association with vector bosons, and additionally because BSM4(H → bb) is also reduced.
On the other hand, the H → ττ signal strength receives such a large boost by the ggF
enhancement and the invisible decay width that its predicted value is larger than 4 at 99%
CL. This circumstance legitimates the assumption of a diagonal PMNS matrix because
lepton mixing effects would additionally increase µ(H → ττ).
Next, I briefly comment on effective Higgs couplings approaches in the literature like e.g.
[45–48], which for our purposes are not applicable for the SM4 for several reasons: The
mentioned higher order corrections have different effects on the effective couplings for
different decay products. Some of the approaches are oversimplified in the sense that
they do not leave room for invisible decay channels as present in the SM4 case. Apart
from the effective couplings, we would furthermore need their correlations. Moreover, the
errors on the Higgs signal strengths are relatively large, such that a quadratic χ2 distri-
bution is only a vague approximation. Finally, the numerical p-value determination with
toy-measurements would not be applicable.

4.4 Combined analysis

Before combining the discussed constraints, I want to briefly sum up the most important
literature on the SM4, which is a story of premature exclusion and resurrection: After
the success of the third fermion generation postulated by Kobayashi and Maskawa [21] a
fourth generation was a self-evident next step. However, the SM4 was put under pressure
by the oblique parameters in the 1990s as T was fitted to be negative while it is by
definition larger than zero in the SM4. This lead to an exclusion statement in the PDG
review of 99.2% CL [82]. Around the year 2000, updated EWPO fits hinted at positive
T values, and several authors inferred that a fourth generation was no longer excluded
by electroweak precision data, see e.g. [67, 83–85]. Furthermore, the Higgs boson was still
not found, neither at the LEP detectors nor at the Tevatron, and the fact that in the
SM4 the Higgs boson could in principle be much heavier than the upper bound deduced
from the blue-band plot of the SM made the fourth generation a quite popular model
[68], see also Fig. B.3(g) in App. B. The SM4 analyses became more intricate and also
considered quark mixing effects between the SM fermion content and the fourth generation
[55, 61, 69, 86, 87]. But as soon as the first LHC data were published, the strong interest
in this revived model was damped because the first Higgs search results posed serious
problems to the SM4 [88–91]. However, if one wants to exclude the model, all possible
realizations need to be analyzed, such as e.g. the possibility of “light” fourth generation
neutrinos. Before the ICHEP conference 2012, where the Higgs discovery was proclaimed,
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our collaboration presented the first quantitative exclusion statement at 3.1σ, taking into
account available Higgs search data and the EWPO and combining them with a newly
developed p-value calculation method for non-nested models [92]. The update of this
analysis, which belongs to the main achievements presented in this thesis, finally sealed
the fate of the SM4, excluding it to more than 5σ [12].
In the following, I want to elaborate on the details of this work. In particular, I will
repeat parts of the analyses with up-to-date inputs and show that the constraints from
the direct Higgs searches have become even stronger since the Higgs discovery. The SM4
parametrization including the quark mixing matrix was implemented into CKMfitter by
Andreas Menzel. On this basis, I added the discussed observables and performed global
fits that were cross-checked by Martin Wiebusch using myFitter. One CKMfitter fit with
100 minimizations and a 1D scan with granularity 20 takes between one hour and several
hours. The bottleneck is the call of the Zfitter subroutine DIZET as well as the calculation
of the SM4 contributions for the EWPO.
The χ2

min of the SM4 EWPO fit (20.82) is comparable with the one of the SM (21.21); the
one of the signal strengths fit alone amounts to 124.05. The combination of both sets of
constraints in the fit yields χ2

min = 145.33, corresponding to a χ2
min/Ndof greater than 2.0.

The best-fit parameter values that are not listed in Fig. 4.3 are

mH = 125.97 GeV, θ12 = 0.227, θ13 = 0.00415, θ23 = 0.0410, δ13 = 1.17,

mt′ = 401 GeV, mb′ = 407 GeV, mν4 = 56.7 GeV, mℓ4 = 105 GeV,

θ14 = 0.01, θ24 = 0.08, θ34 = 0.00.

The two mixing phases δ14 and δ24 are not constrained by the fit. Exploring best-fit point
in detail shows that the SM4 Higgs data fit wants to compensate for the large diphoton
and the small ττ signal strength by allowing for large fourth generation mass splittings.
And exactly this is forbidden by the EWPO: In Fig. 4.2(a), I show the χ2 depending
on mν4 . One can see that the best-fit value of 56.7 GeV is slightly below mH/2. This
is due to the fine-tuned Higgs decay width, which in this neutrino mass range is highly
sensitive to the invisible decay H → ν4ν4. Above the Higgs threshold, this invisible
decay is kinematically excluded; the enormous χ2 is basically flat. If one leaves away the
EWPO in the fit, the strong exclusion of an SM4 without invisible decays is relaxed by the
permission of large mass splittings. While this effect was clearly visible in our publications
[91, 92], it is hardly recognizable now that the χ2 has become that huge: The χ2 difference
between a fit without and with EWPO at the best-fit neutrino mass (which is equal in
both cases) is about 20; the difference above the Higgs threshold is 40. If one assumes a
Majorana character of the fourth neutrino, the result will almost be the same, since the
signal strength fit does not change and the effect on the EWPO can be neglected.

The most important parameter of the SM4 exclusion is, of course, the Higgs mass. Whereas
in the SM, mH can be treated as fixed, it is not a priori clear that this also holds for
the SM4, so a short comment on this is necessary. For most of the fits in this thesis,
I used the four mass extractions from Table A.4, but in [12] we compare the explicit
χ2 dependence of the Higgs mass in the SM and SM4. To this end, I digitalized the
plots showing the individual signal strengths as functions of mH that were provided by
the detector collaborations at the ICHEP 2012 conference (see Fig. A.2). Furthermore,
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Figure 4.2: On the left side I show a scan over the fourth generation neutrino mass (a); the hatched
areas are the regions below the LEP limit on light neutrinos and above mH/2. On the right, the blue-
band plot for the SM and the SM4 including the signal strength information from July 2012 is displayed
(b). It depicts the best-fit discrepancy between the SM and the SM4: While the SM is compatible with
the signal strengths, the χ2

min of the SM4 is much larger.

the signal information was used to disfavour non-signal Higgs mass regions: As already
mentioned, the signal strength would be one at the Higgs mass and zero everywhere else,
if the experimental errors were negligible and ΓSM4

H is small. To find the signal region,
one would have to choose different Higgs mass bins and check for each bin whether the
signal strength deviates from zero or not. If we attributed this deviation from zero to each
bin, this would translate into a constant shift of the χ2. Now we would perform several
hypothesis tests, each comparing two non-nested models which only differ in their Higgs
mass values. Assuming the realization of a specific Higgs mass (our hypothesis) we would
have to subtract from the χ2 the squared deviation from zero and add the squared signal
strength deviation for the considered mass bin instead. Finally, the hypothesis with the
smallest χ2 prevails, which in the Higgs case is the mass bin around 126GeV. (In a more
thorough analysis of this problem, one would of course rather determine the p-value.)
Since for the calculation of the p-value only the χ2 difference with respect to the best-fit
point is important, I simply subtracted the squared deviation from zero at the respective
Higgs mass value. That is why not the total χ2, but rather a ∆χ2 depending on mH is
shown in Fig. 4.2(b), approximately reproducing the figure from [12]. In both models, the
SM and the SM4, the best-fit Higgs mass value is about 126GeV. Therefore, I will only
use the four direct mass measurements from Table A.4 in the following and exclusively
discuss signal strengths at 126 GeV.
Another difference between our publications [12, 91, 92] and this work is that I do not
set θ34 = 0 here because the bounds have relaxed a bit compared to [92]. Nevertheless, a
qualitatively different outcome of the fit is not expected; at the best-fit point essentially
no mixing between the fourth generation and the SM quarks is favoured.
The deviations at the best-fit point of the SM4 can be found in Fig. 4.3, where they are
compared to the SM deviations. Again, the signal strengths from Table 3.2 are represented
by the ATLAS 8 TeV quantities. As already mentioned, the EWPO fit is roughly as good
as in the SM. An interesting feature is that the top quark mass has the second largest
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∆χ2, whereas its deviation is zero. This shows the dependence of the other observables
on mpole

t : Other than in the SM, the SM4 fit has the freedom to choose relatively light
top quarks in order to compensate for the Higgs mass measurement if direct top quark
measurements are not taken into account; the predicted value is even mpole

t = 148 GeV.
(All prediction fits can be found in App. B, where they are also compared to the SM.) As
soon as the measured t quark mass is included to the fit, mpole

t takes a value at the lower
end of the allowed Rfit range. On the contrary, ΓZ has a larger deviation than in the SM,
but its ∆χ2 is equally small. While the tensions of A0,b

FB and R0
b , which feature the largest

deviations of the SM, are a bit ameliorated in the SM4, the discrepancy of Aℓ is enhanced.
What poses serious problems on the SM4 fit are the signal strengths: As discussed above,
tauonic Higgs decays would be seen more often than expected in the SM, and the decays
to two photons or b quarks would hardly be visible. However, exactly the contrary seemed
to be the case considering the first published Higgs data. Even if the deficit of H → ττ
events and the apparent excess of the diphoton signal strength seem to converge to their
SM expectations with more evaluated and published measurements, more data means
at the same time that the experimental errors become smaller, which in turn increases
the deviations of the fermionic decay signal strengths. The largest impact is the one on
the H → γγ signal strength. The SM4 parameters cannot by any means be adapted in
such a way that they can account for the accidental cancellation of fermionic and bosonic
contributions to the decay amplitude. The largest potential value for µ(H → γγ) is 0.18
at 95% CL, and that is by far not enough to explain the measurement. Its best-fit value of
0.08 is even smaller; this is due to the tauonic Higgs decays, which determine the behaviour
of the SM4 parameters and have the largest ∆χ2 on average. The dilemma of the SM4
is that a small absolute deviation of µ(H → ττ) simultaneously means large deviations of
µ(H → γγ) and µ(H → bb) and vice versa. This unsolvable discrepancy finally leads to
the exclusion of the SM4.
The SM4 and the SM are not nested. For the calculation of the p-value, we use Martin
Wiebusch’s program myFitter [15], which deals with all the subtleties described in Sect.
2.6. With the data available after the Higgs discovery, we found a p-value of 1.1 · 10−7,
corresponding to 5.3σ (4.8σ, leaving aside Tevatron data) [12]. Since then, the signal
strengths have become even more stringent: On the one hand, the seeming suppression of
µ(H → ττ) has been lifted, but this fact cannot compensate for the deviations of µ(H →
γγ) and µ(H → bb) on the other hand, which have grown by 1.7 and 2.2, respectively. For
the determination of the p-value in [12], the simulations already took several days because
one needs to generate a sufficient amount of toy measurements that contribute to the
numerical integration of the test statistic to guarantee a small uncertainty on the central
value. Considering the fact that the convergence of the numerical integration can only
have worsened with the new inputs, I refrained from re-calculating the p-value with the
available Higgs data. Naively applying Wilks’ theorem today, with ν being the difference
in the number of model parameters, we obtain 7.0·10−7 for the p-value, which corresponds
to 5.0σ. The correct p-value is expected to be considerably smaller. Altogether we can
regard the possibility of additional fermion doublets in a perturbative sequential generation
as SM extension as excluded and turn to the analogon in the scalar sector: an additional
Higgs doublet.
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Figure 4.3: Deviations of the EWPO and the Higgs signal strengths from the best-fit point in the
SM4 (red) and in the SM (blue).
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CHAPTER 5

The Two-Higgs-Doublets model

In generic Two-Higgs-Doublets models, one has two scalar SU(2) Higgs doublets Φ1 and
Φ2 instead of a single Φ as in the SM [93]. The most general definition of a Two-Higgs-
Doublets model as extension of the SM is given by the replacement of LH by the Higgs
Lagrangian

L2HDM
H =(DµΦ1)

†(DµΦ1) + (DµΦ2)
†(DµΦ2)

−m2
11Φ

†
1Φ1 −m2

22Φ
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. (5.1)

(I adopt the notation of Gunion and Haber [94]. A general discussion can be found e.g. in
[95].) If one sets Φ2 to zero, one reobtains the SM Higgs part from (3.2) identifying −m2

11

with µ2 and λ1 with λ/2. However, this general definition, which goes by the name 2HDM
of type III, violates CP symmetry and contains flavour-changing neutral currents at tree
level. A sufficient condition for a CP-conserving Higgs sector are real parameters m2

12, λ5,
λ6 and λ7. (The other parameters are real by hermiticity of L2HDM

H .) Flavour-changing
neutral currents are strongly constrained by experimental data; therefore we can impose
an additional Z2 symmetry to eliminate the relevant terms from the Lagrangian [96, 97]:
If the full model Lagrangian L2HDM is invariant under the transformation Φ1 → −Φ1, Φ1

does not couple to the SM particles at all. This model is called 2HDM of type I. If the Z2

symmetry transformation is Φ1 → −Φ1 and dj → −dj , one speaks of the 2HDM of type II.
In this scenario, Φ2 only couples to up-type quarks and neutrinos, whereas Φ1 exclusively
couples to down-type quarks and charged leptons; the Yukawa Lagrangian of the 2HDM
of type II takes the following shape:

L2HDM
Y = −

3
∑

j ,k=1

[

Y d
jk

(

Q jΦ1

)

dk + Y u
jk

(

Q j iσ2Φ
∗
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uk

+Y ℓ
jk (LjΦ1) ℓk + Y ν

jk (Lj iσ2Φ
∗
2) νk + h.c.

]
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With this Z2 symmetry, flavour-changing neutral currents are automatically absent at tree
level. The m2

12, λ6 and λ7 terms in the Higgs Lagrangian violate this symmetry, but we
keep m2

12 to permit soft Z2 breaking without spoiling the desired form of L2HDM
Y .

In this work, I want to focus on the CP-conserving 2HDM of type II with soft Z2 breaking
term, which I will refer to as 2HDM in the following context. Its Higgs Lagrangian is (5.1)
without the last line (λ6 = λ7 = 0), and m2

12 and λ5 are real. The reason why this specific
model is very popular is that it could be a limiting case of supersymmetric models, and
the discovery of a second Higgs doublet with the characteristics of a 2HDM type II could
be an indication for the realization of supersymmetry in nature, see e.g. [98] for a review.
Moreover, the 2HDM of type II easily complies with most of the constraints from flavour
physics because it lacks flavour-changing neutral currents at tree level.

5.1 Parameters

In the above formulation, the 2HDM is parametrized by the couplings of the quadratic
and quartic Higgs field terms in the Lagrangian. These couplings, however, have to fulfil
several requirements to describe a consistent theory of the physical nature. It is there-
fore convenient to change to a more intuitive basis, which sometimes is called physical

parametrization. If we expand both SU(2) doublets around their vacuum expectation
value, we get

Φa(x) =
1√
2

(

φ+
a

va + ha + iχa

)

(a = 1, 2). (5.2)

Simultaneous diagonalization of the 2×2 squared mass matrices of the charged components
φ+
a and the imaginary parts χa is characterized by the rotation angle β. It gives us

two zero eigenvalues that are identified by the longitudinal components of the massive
W and Z bosons, and two finite mass eigenvalues m2

H+ and m2
A0 , corresponding to the

eigenstates H+ and A0, which are the charged Higgs boson and CP-odd Higgs boson.
The vacuum expectation values are related to the diagonalization angle via tanβ = v2

v1
.

Furthermore, they have to account for electroweak symmetry breaking in the well-known
way, so v21 + v22 = v2. The squared mass matrix of the CP-even components ha are not
diagonalized by β, but we have the additional freedom to perform this rotation, and call
the corresponding angle α. The mass eigenvalues are called h0 and H0, where the former
is by definition the lighter one and in this work will be interpreted as the new boson
discovered at the LHC. The SM Higgs field would be a linear combination of both of
them: H = −h0 sin(β − α)− H0 cos(β − α). The ratios of all resulting tree-level couplings
of the neutral Higgs bosons to fermions and gauge bosons and the respective SM coupling
only depend on α and β, see Table 5.1.

Since in the W and Z coupling ratios only the difference between the two diagonalization
angles appears, I will choose β − α as the relevant fit parameter. Moreover, I will use the
quartic coupling λ5, which can be related to the soft breaking parameter m2

12. I fix all SM
parameters including v to their best-fit values and set mh0 = 126GeV because varying
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Higgs boson djdj , ℓjℓj ujuj WW ,ZZ

h0 − sinα

cos β

cosα

sinβ
sin(β − α)

H0 cosα

cos β

sinα

sinβ
cos(β − α)

A0 tanβ cot β 0

Table 5.1: Neutral Higgs couplings to fermions and vector bosons, normalized to the SM Higgs
couplings.

them is not expected to change the 2HDM fit results qualitatively. We then end up with
six free parameters in the 2HDM:

mH+ , mA0 , mH0 , β − α, tanβ, λ5

The relations between the couplings and the physical parameters of the 2HDM are listed
in App. C.
Before completely switching to the physical parametrization, let us explore some theoret-
ical restrictions first: In the SM, the condition that the Higgs potential must be bounded
from below can be simply expressed by requiring λ ≥ 0. This feature, called positivity,
looks a bit more complicated in the 2HDM. Gunion and Haber have showed that the
following inequalities must be satisfied if one wants to avoid an unstable Higgs potential
[94]:

λ1 > 0, λ2 > 0, λ3 > −
√

λ1λ2, λ4 > |λ5| − λ3 −
√

λ1λ2 (5.3)

Furthermore, we want to guarantee that the minimum of the Higgs potential at 246GeV
is the global minimum. If it was only a local minimum, it would be metastable and the
different vacuum expectation value of the global minimum could be attained one day such
that all particle masses would change. However, this scenario is strongly constrained by
the lifetime of our universe, and therefore I want to make the assumption that we live in
the global minimum of the Higgs potential. This topic was extensively discussed in [99]; it
was found that requiring that the global minimum is the one around 246GeV is equivalent
to the validity of the following inequality:

m2
12

(

m2
11 −

√

λ1

λ2
m2

22

)(

tanβ − 4

√

λ1

λ2

)

> 0 (5.4)

I will refer to this property as stability condition.
The last aspect on the theoretical side will be a similar one to that in the SM4: as with
the fourth generation Yukawa couplings, I want to require perturbativity of the 2HDM
quartic couplings. In principle, higher order calculations are necessary to determine the
maximal absolute values of the λi above which perturbativity fails. Since this is beyond
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the scope of this thesis, I simply choose a universal upper limit on the quartic couplings
and impose

|λi | ≤ 2π. (5.5)

The most conservative estimate of the perturbative breakdown is |λi | ≤ 4π, but it was
shown in [100] that in the SM |λ| ≤ 2π is a more appropriate upper bound for the quartic
coupling λ. Since the same applies in the 2HDM, where we have five λi , I adopt this
convention. The consequences of a different choice of the perturbativity bound will be
discussed in Sect. 5.5. The main effect of the limitation of the |λi | values is that the
mass splitting between mH0 , mA0 and mH+ has to be of order of the vacuum expectation
value v ≈ 246GeV. In all fits in the following sections, the three constraints of positivity,
stability, and perturbativity are implicitly employed.
Like for the SM4 particles we also have to take direct Higgs particle searches into account
in the 2HDM. For the neutral heavy Higgs particles almost the same bounds apply as
for the SM Higgs. The charged Higgs, however, is of particular interest for experimental
searches, as it would contribute to flavour-changing neutral current processes at loop level.
At LEP, mH+ has found to be larger than 79.3GeV at 95% CL [101]. For the lower bounds
on the masses of the neutral Higgs bosons, I refer to the discussion in Sect. 5.3. In the fits
I use 10 TeV as arbitrary upper mass limit for the heavy Higgs masses. (Heavier Higgs
particles would be out of reach for the current LHC even if it ran at its design energy of√
s = 14 TeV.) In our parametrization, we assume β to be between 0 and π

2 without loss
of generality, which translates into a range from 0 to ∞ for tanβ. α is supposed to be in
the fourth quadrant (between −π

2 and 0), so β − α is in the interval from 0 to π.
In contrast to the SM4, the SM is nested in the 2HDM. The SM can be reobtained by
fixing β − α = π

2 and sending all heavy Higgs masses to infinity. This limit is called the
decoupling limit [94]. As 2HDM realizations in the vicinity of this limiting case are hardly
distinguishable from the SM, I want to focus on the parameter regions where the 2HDM
phenomenology deviates from the SM, i.e. primarily analyze the low mass scenarios with
masses below 1 TeV. Let us again start the discussion of experimental model constraints
with the EWPO.

5.2 Electroweak precision observables

As in the SM4, we cannot use the oblique parameters due to Z vertex contributions by
the 2HDM particles. Especially for the decay Z → bb, heavy Higgs contributions play a
role at loop level [102–104], which affects e.g. R0

b or Ab. So once more the method from
[71] is applied: we obtain the SM values using Zfitter and add the 2HDM contributions
calculated at one-loop level with FeynArts, FormCalc and LoopTools. For details, see
Sect. 4.2. Compared to the SM4 case we now need to call the Zfitter routine DIZET only
once for each fit, since we fixed the SM parameters, and thus avoid the bottleneck that
took most of the SM4 fit running time. (Varying SM parameters might have an impact
on the 2HDM EWPO fit, but the best-fit parameter region will be near the decoupling
limit even without EWPO constraints, so an SM-like EWPO fit outcome is expected.)
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The EWPO modify the heavy Higgs mass spectrum of the 2HDM in the following way:
While perturbativity of the quartic couplings limits the mass splittings to a few hundred
GeV, they now additionally have to fulfil the condition that either the H0 or the A0 mass
have to be closer to mH+ than about 150 GeV. Since both, the perturbativity bound and
the EWPO constrain the heavy Higgs masses, I illuminate the differences in Fig. 5.1 for
a fixed charged Higgs mass of 500GeV with a small Gaussian error of 3GeV. On the left
side I only use the above-mentioned theoretical constraints, which forbid that the neutral
Higgs masses exceed mH+ by more than 300 GeV and that the mass difference mH0 −mA0

becomes too large in magnitude. The right figure shows the impact on the same fit if the
EWPO are included: For mH0 < mH+ , the mass of the CP-odd Higgs is basically also fixed
to mH+ . If mH0 is larger than the charged Higgs mass, one of the neutral Higgs particles
needs to have a mass which differs from mH+ at most by 150GeV.
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Figure 5.1: I show scans over the mH0-mA0 plane formH+ =500 GeV without (a) and with (b) EWPO
constraints. The requirement of perturbativity cuts away large mass splitting regions at the edges (a),
whereas one of the neutral boson masses is forced to stay closer than 150 GeV to the charged Higgs
mass if we add the EWPO to the fit (b).

5.3 Higgs searches

I interpret the new boson discovered at around 126GeV at the LHC to be the lighter
CP-even eigenvalue and thus discard the possibility that it is the heavier H0 and that
the h0 was not seen at LEP, as discussed in [105]. I also want to dismiss the idea of a
mass degenerate Higgs resonance at the LHC implying that mh0 ≈ mH0 ≈ 126GeV [106].
In order to clearly separate the heavy Higgs bosons from h0, I impose a lower limit of
150GeV on their masses.
To make use of the Higgs signal strength information, I want to change notation: Let us
define the factor r 2HDM

i as the ratio of the squared 2HDM vertex coupling of a neutral
Higgs H to the particle i and the respective squared SM coupling. This ratio corresponds
to the ratio of the partial widths in the corresponding models: Γi ,2HDM

H = r 2HDM
i Γi ,SMH . By

analogy with the SM4 expression (4.2), and taking the percentage contributions from Eq.
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(4.1), we can rewrite the signal strength in a compact way as

µ(H → Y ) =
∑

i

r 2HDM
i · ̺iY · r 2HDM

Y
∑

f

r 2HDM
f BSM(H → f )

. (5.6)

So to calculate the theoretical 2HDM expectation for the signal strengths, the only re-
maining quantities we need are the r 2HDM

i factors, the percentage contributions and the
SM branching ratios. All information about the 2HDM contributions are encoded in the
r 2HDM
i if we again assume that the efficiencies and thus the percentage contributions in the
2HDM do not differ from their SM values. We only need to know the couplings of the
Higgs boson to the heavy fermions and the massive gauge bosons, for which we take the
squared tree-level expressions from Table 5.1, as well as the coupling ratios to g and γ.
The latter two couple to H only via loop processes, which also involve the heavy Higgs
particles of the 2HDM. In my CKMfitter implementation, r 2HDM

g and r 2HDM
γ are calculated

by an external routine written by Martin Wiebusch that I linked to the rest of the code.
The above definition of the signal strength may also be applied to the heavy neutral Higgs
particles. In this work, I have only used it for h0 and H0. For the latter, I digitalized
the 95% confidence level exclusion limits of H → ZZ searches at CMS up to 1 TeV [107],
for details see App. A. Similar exclusion limits are available for the H → WW decay, but
since the 2HDM Higgs couplings to W and Z are the same, I confined myself to using only
the H → ZZ exclusion information.
In the SM4, the combination of the EWPO and the Higgs searches was sufficient to exclude
the model. As the 2HDM cannot be excluded because the SM is nested, it is worthwhile to
include further observables to the fit. Since we have decided to discuss a flavour conserv-
ing Higgs sector, strong constraints can be derived from flavour-changing neutral currents,
which can only occur at loop level like in the SM.

5.4 Flavour observables

Many flavour observables are important fit constraints for tanβ < 1 or in the large tanβ
region. When tanβ & 40, the heavy Higgs couplings to down-type quarks and charged
leptons are enhanced, and observables like the branching ratios of the decays B → τν,
B → Dτν or B → D∗τν, which receive sizeable contributions from the charged Higgs
boson, would have to be included to the fit [108]. However, I want to concentrate on
low tanβ scenarios in this thesis for two reasons: I will show that only then sizeable
deviations from the decoupling limit condition β−α = π/2 are possible; and furthermore,
the measurements of the mentioned (semi-)tauonic B decays are in conflict with each other
in the SM, and the disagreement becomes worse in the 2HDM of type II [109]. So the very
large tanβ regions of the figures in this thesis have to be taken with a grain of salt, in the
sense that the p-value of the 2HDM is overestimated.
Yet there are two flavour observables which I want to use in my fits because they are
powerful constraints for moderate tanβ values: the B0

s –B
0
s mixing frequency ∆mBs

and
the branching ratio of B mesons decaying into Xsγ, where Xs is a hadronic state containing
an s or s quark. Both processes can only be described by flavour-changing neutral currents
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5 – The Two-Higgs-Doublets model

at loop level, to which in the 2HDM also the charged Higgs contributes. In Fig. 5.2 I show
examples of relevant SM diagrams and possible 2HDM diagrams for B0

s –B
0
s mixing and

b → sγ transitions.
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Figure 5.2: Sample diagrams for one-loop B0
s –B

0
s mixing (a) and b → sγ decays (b). The occurring

virtual particles include W and t in the SM (upper diagrams) as well as H+ in the 2HDM (lower
diagrams).

The oscillation frequency in the B0
d system has also been determined experimentally, how-

ever the ratio ∆mBd
/∆mBs

is the same in the 2HDM of type II and in the SM, and since
the relative error of ∆mBs

is much smaller, B0
d–B

0
d mixing would not additionally constrain

our parameters. I now discuss how I include the two flavour observables to my fits and
show their impact on the parameter space.

5.4.1 B
0
s –B

0
s mixing

The first measurement of the oscillation frequency of a B0
s meson changing to its antiparti-

cle B0
s and vice versa dates back to the year 2006 [110]. Of all neutral mesons systems, the

B0
s –B

0
s mixing has the highest oscillation frequency and was determined to unprecedented

precision only recently [111]. This frequency is equal to the mass difference between the
heavier and the lighter mass eigenstate of the B0

s –B
0
s system and in the 2HDM it reads

[112–116]

∆mBs
=

G 2
F

24π2
|V ∗

tsVtb|2 f 2Bs
ηBs

B̂Bs
mBs

m2
t (SWW + SWH + SHH) , where

SWW = 1 +
9

1− xtW
− 6

(1− xtW )2
− 6

x2tW ln(xtW )

(1− xtW )3
,

SWH =
xtH

tanβ2

(

(2xHW − 8) ln(xtH)

(1− xHW )(1 − xtH)2
+

6xHW ln(xtW )

(1− xHW )(1 − xtW )2
+

8− 2xtW
(1− xtW )(1 − xtH)

)

,

SHH =
xtH

tanβ4

(

1 + xtH

(1− xtH)2
+

2xtH ln(xtH)

(1− xtH)3

)

,
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and xij = m2
i /m

2
j . In this context, H denotes the charged Higgs boson H+. The SM part

is incorporated in the function SWW . The additional 2HDM diagrams with one or both
W bosons exchanged by H+ lead to the occurrence of SWH and SHH , which both are zero
in the limit mH+ → ∞ or tanβ → ∞. Apart from the Fermi constant and the CKM
matrix elements, the appearing prefactors are the decay constant fBs

, the bag factor B̂Bs
,

the QCD correction ηBs
, the B0

s mass mBs
, and the MS top mass mt . Since we fixed the

top pole mass to its SM best-fit value, also mt is treated as fixed in my fits; the same
applies for the CKM matrix elements. The remaining numerical input values are listed in
Table A.9 in App. A. ∆mBs

has a sizeable impact on the allowed tanβ values and sets a
lower limit of 0.17 at 95% CL to it, even if mH+ is at the upper end of its scan range, see
Fig. 5.3. For mH+ < 1 TeV the corresponding requirement is tanβ > 0.7.
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Figure 5.3: B0
s –B

0
s mixing disallows small tanβ values. The exact lower bound depends on the

mass of the charged Higgs particle. The 1σ, 2σ and 3σ, regions are the coloured in red, yellow and
blue, respectively.

Whereas B0
s meson mixing provides us with a bound on tanβ, I will now address an

observable for which low mH+ contradicts the experimental measurement – regardless of
tanβ.

5.4.2 b → sγ

For the flavour-changing neutral current b → sγ as displayed in Fig. 5.2(b) I included to
my fit the branching ratio of B mesons decaying into hadrons containing an s quark and a
photon with an energy larger than 1.6GeV. Since for these processes also three-loop effects
are important, the analytical formulae are quite complicated. Therefore, I parametrized
the most up-to-date next-to-next-to-leading order result available [117]:

B(B → Xsγ) = B(B → Xce
−ν)exp

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2 6 αem

π C

·
{

0.1271 + 2.884 (cosh(3.097 − 1.345L) + 15.17)−1
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+
1

tan2 β

[

(

0.05342 + 1.210 (0.4343L − 1)1.9 + 9.125 (0.4343L − 1)5
)

(cosh(6.696 − 2.908L))−1
]

+
1

tan4 β

[

(

186.3 − 810.0L + 1605L2 − 1909L3

+ 1501L4 − 811.8L5 + 303.9L6

− 77.49L7 + 12.86L8 − 1.252L9

+0.05439L10
)

(cosh(13.24 − 5.750L))−1
]

}

L = log(mH+/GeV) is the logarithm1 of the charged Higgs mass in units of GeV and
B(B → Xce

−ν)exp is the measured branching ratio of semileptonic B to D decays, which
is corrected with the factor C to account for its charm quark mass dependence [118]. The
used values can be found in Table A.9 in App. A. This parametrized approximation is valid
for all tanβ > 0.1 andmH+ up to 10 TeV; its error σpar is around 2% at most for small tanβ,
compare Fig. 5.4(a). But we are only interested in scenarios which are compatible with
the ∆mBs

bound, for which σpar is well below 1%. Together with the uncertainties from
the prefactors, which were estimated according to [117], I obtain a total theoretical error
of 14%. When including B(B → Xsγ) to the fit, the main effect is that the lower charged
Higgs mass bound is increased to mH+ > 250GeV at 95% CL for all tanβ, compare Fig.
5.4(b). This limit is slightly different from the one obtained in [108], because my error
estimation is a bit more conservative.
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Figure 5.4: The left figure displays the normalized error for my B(B → Xsγ) approximation de-
pending on mH+ for three different values of tanβ. On the right, the effect of B(B → Xsγ) on the
charged Higgs mass fit is shown: mH+ < 230 GeV is excluded at 3σ.

Similar figures like 5.3 and 5.4(b) can be found in the CKMfitter analysis of 2HDM effects
on flavour observables [116].

1Note that “log” is the decadic logarithm whereas I denote the natural logarithm by “ln” throughout
this work.
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5.5 Combined analysis

Like in the previous chapter, I first want to list the relevant literature in order to compare
my results with them. The original formulation of the 2HDM dates back to the 1970s, but
comprehensive analyses have only been performed in the past years, because only now,
we are equipped with observables that can sizeably constrain the 2HDM parameter space.
Since it is almost impossible to go into detail about all of these studies, I want to restrict
myself to a small selection:
In 2008, the Gfitter collaboration published a 2HDM fit of tanβ and the charged Higgs
mass, using observables that depend – apart from SM parameters – only on those two
parameters. With R0

b , B(B → Xsγ) and B → τν as their strongest constraints, they
found mH+ > 240GeV at 95% CL [26]. Before the LHC announced the first hints of the
Higgs in 2011, the CKMfitter collaboration performed an extensive fit which in addition
to the Gfitter analysis included more flavour observables like e.g. ∆mBs

[116], also spe-
cializing on tanβ and mH+ only. After the Higgs discovery the general interest in the
2HDM increased: The question arose whether the detected boson was the SM Higgs or a
Higgs particle of a different model, possibly followed by the observation of further Higgs
bosons. Furthermore, the measured Higgs signal strengths could be used as constraints
of the 2HDM parameters. A lot of analyses addressed the compatibility of the discovered
Higgs with the light CP-even Higgs eigenstate of 2HDM of various types [48, 119–128];
even the possibilities were discussed that the heavy CP-even [105] or the CP-odd Higgs
had been found [129], or that two mass degenerate Higgs particles hide behind the bosonic
resonance [106], as already mentioned. When the viability of various 2HDM manifesta-
tions was tested, most authors presented their results of scans over the 2HDM parameter
space, which, however, strongly depends on the chosen parametrization. For instance in
[128], a parameter scan was performed combining Higgs data, some flavour constraints
and the ρ parameter related to the oblique parameter T as well as perturbativity and
stability. They did not find allowed parameter sets with tanβ > 4 because they chose a
parametrization with disadvantageous scan steps. This shows the crucial virtue of param-
eter fits: In parameter scans one usually scans with predefined steps over the single model
parameter ranges, calculates the χ2 at each point and finally takes the lowest χ2 as global
minimum. But these scans will only find the correct global χ2

min if one of the scan points
by chance is the best-fit point, which is highly improbable. Parameter fits, however, use
the information about the gradient to converge to the χ2 minimum, so one cannot miss
the global χ2 minimum.
In my combined fit, I use the following bounds to constrain the 2HDM parameters: posi-
tivity of the Higgs potential, stability of the 246 GeV vacuum, perturbativity of the quartic
couplings, the EWPO, the light Higgs signal strengths, direct H searches up to 1 TeV,
and the measurements of ∆mBs

and B(B → Xsγ). The SM parameters were set to their
best-fit values from Chapter 3 because they are known to a good precision compared to
the 2HDM parameters and are not expected to change sizeably. As in the SM4 case, there
was already an existing implementation of the 2HDM in the CKMfitter package for their
above-mentioned publication on flavour constraints [116]. But apart from the Bs mixing
part, I did not use it because in [116] the only free parameters were tanβ and the charged
Higgs mass, and in the most general 2HDM of type II further parameters enter the analy-
sis of the Higgs signal strengths and EWPO. A fit with 100 minimizations and a 1D scan
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with granularity 20 took CKMfitter a few minutes. Having fixed the SM parameters to
their best-fit values, I only have to call the Zfitter routine DIZET once for every fit and
once for every scan, so the main source of slow-down of the SM4 fits was avoided here.
I do not show the figures from [108] as they are based on data produced with the myFitter
framework and cross-checked by my CKMfitter implementation; the figures in this work
stem from my CKMfitter fits and are in some sense the invisible half of our publication.
Differences between the publication and this thesis can be traced back to slightly changed
inputs in the flavour sector, a different parametrization of the 2HDM (CKMfitter uses
the physical basis whereas the original couplings of (5.1) were used in myFitter) and the
inclusion of the latest R0

b expression in the SM, which changed the SM best-fit values. At
the best-fit point, χ2

min = 91.76; the corresponding parameter values are

mH+ = 387GeV, mA0 = 394GeV, mH0 = 465GeV,

β − α = 1.581 = 0.5032π, tanβ = 4.42, λ5 = 0.56

Most notably is that β−α takes approximately the decoupling limit value of π
2 at the best-

fit point, making the 2HDM and the SM hard to distinguish in low energy observables.
Hence, the electroweak precision fit only marginally differs from the SM fit as shown
in the deviations list in Fig. 5.5. The signal strength part is a bit more interesting:
all bosonic Higgs decays are slightly suppressed in the 2HDM, which could release the
tension of the µ(H → WW ∗) measurements, but on the other hand, more Higgs decays
to two photons or Z bosons have been observed than one would expect in the SM, and
that is exactly the opposite of the 2HDM prediction, so the corresponding deviations
are somewhat increased. (The diminished signal strength can also be seen in the one-
dimensional observable predictions of the Higgs decays to neutral bosons in App. B.)
Although I also use the two mentioned flavour observables, I do not show their deviation
because they are zero due to the theoretical errors involved. Furthermore, they do not
contribute to the total χ2

min of the best-fit point.

To further investigate how much β − α can deviate from π
2 , I show a scan over the tanβ-

(β − α) plane in Fig. 5.6(a). One important feature is that tanβ is only constrained
from below by the ∆mBs

measurement, and only because I impose mH+ < 10 TeV. At
one standard deviation, β − α cannot depart from π

2 by more than 0.02π, independent of
tanβ. For tanβ < 0.5, β − α is basically fixed to the decoupling value. This is due to the
flavour observables, which can only compensate the large low tanβ contributions with a
heavy H+. This in turn entails heavy neutral Higgs masses because of the EWPO, and we
obtain the decoupling limit. If tanβ is larger than 3, a second branch appears, and β − α
can be smaller than 0.4π. This branch, however, which is characterized by comparably
small heavy Higgs masses, is excluded at 1σ by the same observables that force β − α
to the decoupling limit for small tanβ. For large tanβ, this strip also approaches the
β − α = π

2 limit. In the plane of the coupling ratios r 2HDM
g and r 2HDM

γ in Fig. 5.6(b), the
branch directly corresponds to the disjoint region at the lower right, which features an
enhanced ggF Higgs production and at the same time a suppression of diphoton decays.
Opposed to this, the 1σ region prefers SM like Higgs couplings, because β − α = π

2 is
equivalent to r 2HDM

i = 1 for all i (compare Table 5.1).

In Fig. 5.7(a) I show the tanβ-mH+ plane, compared to Fig. 5.3 and Fig. 5.4(b) only for
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Figure 5.5: Deviations of the EWPO and the Higgs signal strengths from the best-fit point in the
2HDM (green) and in the SM (blue). (∗) The first four parameters have been treated as fixed in the
fit, so their 2HDM deviations are the ones from the SM fit.
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Figure 5.6: Large regions in the tan β-(β−α) plane are excluded (a). The lower branch is excluded
at 1σ. It corresponds to the right area in the r 2HDM

g -r 2HDM
γ plane (b).

small charged Higgs masses. The flavour observables cut away low tanβ and low mH+

regions. If tanβ < 1, the charged Higgs has to be heavier than 600GeV at 95% CL.

Scans over the heavy 2HDM masses can be found in Fig. 5.7(b)-(d). One can see that large
mass splittings are disfavoured; especially in the high mass regions, perturbative quartic
couplings force the masses of the heavy Higgs particles to be relatively close to each other.
In combination with constraints for the low mass scenarios like the flavour observables, this
allows us to exclude certain on-shell decays for mH0 larger than 715GeV: the possibility
that an H0 can decay into two charged Higgs bosons is excluded at 3σ, which can be
seen in Fig. 5.7(d), and its decay into two A0 is also excluded at 3σ, compare Fig. 5.7(b).
Both decays can be ruled out at 1σ independent of the 2HDM masses. Moreover, 2HDM
realizations where the H0 and the A0 are simultaneously lighter than 250GeV are excluded
at two standard deviation; mA0 < 200GeV is disfavoured at 1σ. The heavy CP-even Higgs
mass is not constrained from below. If we chose 4π as a more conservative perturbativity
bound on the quartic couplings, the mass splittings can be larger by 250 GeV [108].

As already mentioned, the SM is nested in the 2HDM. However, the assumption of linear
behaviour of the Higgs signal strengths is only an approximation since their errors are still
sizeable. And especially the flavour observables are not Gaussian distributed, because they
have large theoretical uncertainties. As all experimental data pushes the 2HDM towards
its decoupling limit, i.e. the SM, it is useless to calculate the p-value of the SM: it will be
one.
The next step could be the inclusion of further flavour observables to examine the large
tanβ regions. As the (semi-)tauonic B decay measurements cannot be explained in the
framework of the 2HDM of type II, it would be interesting to consider a more general
model of type III, where flavour-changing neutral currents can occur at tree level.
As a final remark about the 2HDM, I want to mention that there have been analyses which
combine the idea of a fourth fermion generation with an additional Higgs doublet [130, 131].
The signal strengths, which essentially ruled out the SM4, have to be reinterpreted in
these scenarios. For example, due to supplementary Higgs loops in this combined model
the diphoton decay would not necessarily be suppressed like it was the case in the SM4.
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Figure 5.7: Light charged Higgs bosons and low tan β values are excluded by a combination of
flavour observables (a). The allowed heavy Higgs mass values are shown in the mH0-mA0 plane (b),
the mH+-mA0 plane (c) and the mH+-mH0 plane (d). mA0 > 200 GeV and mH+ > 290 GeV at 1σ. The
magnitude of potential mass splittings decreases with heavier Higgs masses. The decays H0 → A0A0

and H0 → H+H− can be excluded at 1σ and for mH0 > 715 GeV even at 3σ.

If perturbative heavy fermions were to be found at the LHC (to which there are no
indications at the moment), it would mean at the same time that some other part of the
SM Lagrangian needs to be modified – the most obvious choice would then probably be
the Higgs sector.
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CHAPTER 6

Conclusions

In this thesis I have presented comprehensive analyses of the viable parameter regions of
the Standard Model of particle physics and two of its extensions: the Standard Model with
four fermion generations and the Two-Higgs-Doublets model of type II. I have performed
global fits which show that the SM is compatible with electroweak precision data and the
Higgs signal strengths, the SM4 is excluded by the experimental results at more than 5σ,
and that in the 2HDM, despite the fit preferring the decoupling limit where it mimics the
SM, neutral Higgs boson masses below 200GeV are still allowed.

The Higgs discovery announced on 4th July 2012 means that for the first time we are
equipped with direct measurements of all SM parameters. In that sense one could say
that the SM is complete now. After that date, we accomplished the first global SM fit to
EWPO and Higgs data [12]. Almost all observables of the EWPO and the Higgs signal
strengths are in good agreement with the SM; the b quark forward-backward asymmetry
and the decay width ratio R0

b have the largest deviations. If the combined Higgs mass
input is included in the fit, the W boson mass and the top quark mass receive shifts which
are sizeable compared to their experimental uncertainties from their measured central val-
ues.
The same observables which corroborate the SM are in conflict with the SM4 hypothesis.
Most notably, the signal strength of Higgs decays to two photons, which should approxi-
mately vanish in the SM4, has a deviation of 6σ. Also the signal strength of H → bb decays
is expected to be suppressed in the SM4, yet the measurements seem to favour the SM
expectation, and the SM4 deviation is almost 3σ. The best-fit neutrino mass is required
to be lighter than mH/2, such that the invisible decay H → ν4ν4 is possible. Even then
fewer tauonic Higgs decays than expected in the SM4 have been observed. The EWPO
fit prefers no mixing between the fourth generation and the SM quarks, and it demands
small mass splittings in the SU(2) fermion doublets, so the best-fit mass of the fourth
generation charged lepton is almost as low as allowed by direct searches. This also holds
for the fourth generation quarks: the SM4 particles do not decouple, and the higher their
masses the larger is the effect on the discussed observables. This non-nestedness makes it
difficult to reliably determine the p-value. However, exactly this property enables us to
rule out a fourth fermion generation. For this purpose, we have used the newly developed
program myFitter to carry out a likelihood ratio test comparing the SM and the SM4.
With the data that was publicly available shortly after the announcement of the Higgs
discovery, we could exclude the SM4 with a p-value of 1.1 ·10−7 corresponding to 5.3σ [12].
With the latest Higgs search data, the p-value is expected to be even smaller. After the
Higgs discovery, the interest in the SM4 dropped almost immediately. The rise and fall
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of the SM4 in the last decade is illustrated in Fig. 6.1, which can be approximated by the
very same asymmetric Gaussian p.d.f. that we know already from Fig. 2.1(b), assuming
an offset of 7. Like in the introduction I display the publication density function of articles
containing the expressions “fourth generation”, “4th generation”, “fourth family”, or “4th
family” in their title [11]. Fig. 6.1 shows the number of papers released within the last ten
years ordered by the year of publication. While the slope seemed to be an exponential at
the beginning (dashed line), the publication rate reached a maximum in the year 2011 and
has been receding since then. (The 2013 data shaded in grey were extrapolated assuming
a constant distribution over the year.)

Figure 6.1: Distribution of SM4 publications over the last decade.

In contrast to the SM4, the 2HDM and the SM are nested, so that one can only exclude the
parameter regions of the 2HDM which exhibit a fundamentally different phenomenology
than the SM. In order to analyze these regions, I implemented the 2HDM of type II
with soft Z2 breaking and with perturbativity, positivity and stability conditions into
CKMfitter. Additionally to the EWPO and Higgs signal strengths I also included the
flavour-changing neutral current observables B(B → Xsγ) and∆mBs

in the fit because they
severely constrain low mass regions of the parameter space. The discovered Higgs boson
is interpreted as the lighter CP-even mass eigenstate throughout and its signal strengths
are treated similar to the SM4. The heavy CP-even mass eigenstate was constrained by
the non-observation of H → ZZ decays between 150GeV and 1TeV. The result of the fit
is that the decoupling limit is preferred. While low tanβ and mH+ values are excluded by
the flavour observables, perturbativity and the EWPO delimit the mass splittings of the
heavy Higgs particles. Only for an intermediate tanβ range β − α is allowed to deviate
substantially from the decoupling value π

2 , but these shifts are excluded at 1σ. The decays
H0 → H+H− and H0 → A0A0 are excluded at 3σ, if the H0 is heavier than 715 GeV.
The results have been published in [108]. Furthermore, I have performed scans predicting
the EWPO and the Higgs signal strengths in the three models, which can be found in
Appendix B.
The main message of the evaluated LHC data from 2011 and 2012 is that the SM is
now complete and confirmed to an unprecedented extent. Many physicists hope that the
next LHC run, which will start in 2015 with an increased centre-of-mass energy, reveals
unexpected signatures, maybe even the discovery of new particles. It will certainly provide
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6 – Conclusions

us with constraints on many models beyond the SM. However, to determine their viability
or even to state an exclusion, it is indispensable to perform statistically correct analyses.
The methodology and the tools developed for this thesis can be used to study a wide class
of these new physics models.
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APPENDIX A

Inputs

In this appendix I list all numerical inputs that were used for the fits in this thesis. First
of all, I present the data that were important for the SM fit in Chapter 3. It is followed by
a discussion of the Higgs observables, which are crucial for the SM4 fits in Chapter 4, but
also for the other two models. Finally, the numerical values for the flavour observables that
were used as constraints in Chapter 5 are shown. For all observables, I give the central
input value and the errors as well as the source. The first error is always the statistical
uncertainty – in some cases they are asymmetric –, and the second is the systematic
uncertainty, if any.
As far as the CKM matrix elements are concerned, I rely on the values from the Particle
Data Book. Yet especially for the SM4 part one needs to be careful not to include any
inputs basing on 3 × 3 unitarity of V . For example |Vtb| = 1 is a valid approximation in
the SM and in the 2HDM, because we know to good precision that |Vub| and |Vcb| are
small and the unitarity relation is |Vub|2 + |Vcb|2 + |Vtb|2 = 1. But this relation does not
necessarily hold in the SM4, so I chose the tree-level values below and let the fitter parts
of the respective model account for unitarity. A CKMfitter look-up table for the unitarity
triangle angle γ was used to constrain the CP phase(s).

Quantity Input value Source

|Vud | 0.97425 ± 0.00022 [132]

|Vus | 0.2252 ± 0.0009 [13]

|Vub| 4.15 · 10−3 ± 0.49 · 10−3 [13]

|Vcd | 0.230 ± 0.011 [13]

|Vcs | 0.98 ± 0.01 ± 0.10 [13]

|Vcb| 40.9 · 10−3 ± 1.1 · 10−3 [13]

|Vtb| 0.89 ± 0.07 [13]

γ CKMfitter fit [133]

Table A.1: CKM matrix inputs.
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The EWPO fits presented in Sect. 3.2 and 3.3, and also the SM4 and 2HDM fits are based
on the following experimental values, mainly stemming from the LEP detectors and SLD:

Quantity Input value Source

mpole

t 173.18 ± 0.56 ± 0.75GeV [134]

mZ 91.1876 ± 0.0021 GeV [13]

∆α
(5)
had 0.02757 ± 0.00010 [27]

αs 0.1202 ± 0.0006 ± 0.0021 [28]

ΓZ 2.4952 ± 0.0023 GeV [24]

σ0
had 41.541 ± 0.037 nb [13]

R0
b 0.21629 ± 0.00066 [24]

R0
c 0.1721 ± 0.0030 [24]

R0
ℓ 20.767 ± 0.025 [24]

A0,b
FB 0.0992 ± 0.0016 [24]

A0,c
FB 0.0707 ± 0.0035 [24]

A0,ℓ
FB 0.0171 ± 0.0010 [24]

Ab 0.923 ± 0.020 [24]

Ac 0.670 ± 0.027 [24]

Aℓ 0.1499 ± 0.0018 [24, 49]

mW 80.385 ± 0.015 ± 0.004 GeV [135, 136]

ΓW 2.085 ± 0.042 GeV [137]

sin2 θeffℓ 0.2324 ± 0.0012 [24]

Table A.2: EWPO inputs.

The systematic uncertainty for mW was adopted from [136] like in the Gfitter publication
[49], but the systematic error on sin2 θeffℓ was neglected in this work, since its magnitude is
less than 4% of the statistical error. During the last stage of this work, a new combination
of Tevatron top mass measurements was released: mpole

t = 173.20± 0.51± 0.71 GeV [138].
Compared to the above value used for my fits, the central value stays approximately
the same and the errors decrease slightly; however, I do not expect that the improved
uncertainties fundamentally change the results presented in this thesis. Some of the Z

pole observables are correlated; their inverse covariance matrix entries are displayed in
Table A.3.
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A – Inputs

MZ ΓZ σ0
had R0

ℓ A0,ℓ
FB

MZ 1 −0.02 −0.05 0.03 0.06

ΓZ 1 −0.30 0 0

σ0
had 1 0.18 0.01

R0
ℓ 1 −0.06

A0,ℓ
FB 1

A0,c
FB A0,b

FB Ac Ab R0
c R0

b

A0,c
FB 1 0.15 0.04 −0.02 −0.06 0.07

A0,b
FB 1 0.01 0.06 0.04 −0.10

Ac 1 0.11 −0.06 0.04

Ab 1 0.04 −0.08

R0
c 1 −0.18

R0
b 1

Table A.3: Correlations between Z and leptonic observables
and between b and c precision measurements at LEP [24].

The W mass and decay width are also correlated, but this correlation is only small, and
since the values for the two observables originate from different experiments, I neglect it.
The last missing input on the SM fit was the Higgs mass. I use a combination of the
following LHC measurements:

Quantity Input value Source

mATLAS
H (H → γγ) 126.8 ± 0.2± 0.7 GeV [139]

mCMS
H (H → γγ) 125.4 ± 0.5± 0.6 GeV [140]

mATLAS
H (H → ZZ ) 124.3+0.6

−0.5 ± 0.4 GeV [141]

mCMS
H (H → ZZ ) 125.8 ± 0.5± 0.2 GeV [107]

Table A.4: Mass measurements for the bosonic resonance
around 126 GeV. The combination yields mH = 125.96+0.18

−0.19.
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But not only the reconstructed invariant mass of the (light CP-even) Higgs boson is of
importance, also other information like the relative occurrence of decay products compared
to the SM expectation are relevant; this is expressed by the collection of signal strengths
in Fig. A.1 which represents the status after the Moriond 2013 conferences.
The upper index denotes the data set the measured signal strength relies on. “T” stands
for the complete evaluated Tevatron data of up to 10 fb−1. “A7” and “A8” are the pub-
licly available ATLAS signal strengths obtained at

√
s = 7TeV and at

√
s = 8 TeV,

respectively; “C7” and “C8” label the corresponding measurements by the CMS detec-
tor. The Higgs decay products XX (∗) are indicated by the bracket (H → XX ), where
X ∈ {γ, τ ,W ,Z}. For signal strengths characterized by the decay H → bb I assumed that
only vector boson associated production plays a role (except for µC7(t tH → ttbb), where
exclusively tt associated production is important), therefore I explicitly list the associated
particles. µA8(H → ττ), µA8(H → ZZ ), µC8(VH → Vbb), the tauonic signal strengths of
CMS at

√
s = 8TeV and µC8(H → ZZ ) were reconstructed from the combined values in

the quoted publications using Equations (2.2) and (2.3) and our knowledge of the 7TeV
data. The tags of the tauonic decays measured at CMS denote the reconstructed final
states additional to the τ pair. H → γγ events were separated into up to fourteen cate-
gories, which were provided by the detector collaborations together with the corresponding
percentage contributions. I refer to the related publications for further explanation. This
figure represents the situation at the beginning of May 2013; the latest CMS updates in
the middle of May 2013 have not been included. Even if there are correlations between
Higgs signal strengths, I could not take them into account because they were not provided
by the detector collaborations.
Since we do not know the production mechanism of the individual Higgs candidate events,
I chose to use percentage contributions. If they are not given directly, one can derive them
from the efficiencies via Eq. (4.1). For the tauonic Higgs decays at CMS the percentage
contributions were derived using the summed efficiencies of the five decay sub-channels
µτh, eτh, eµ, µµ and τhτh (where τh is a τ lepton decaying into hadrons); they can be
found in Table A.5. Whereas the ggF and VBF (“qq → H”) dominated production parts
are explicitly given in [151], the three less important production channels are subsumed
under the tag “qq → Htt or VH”; they were split to the channels defined in Sect. 3.3
according to the relative occurrence from Fig. 3.3. Same efficiencies at 7 and 8TeV were
assumed.

ggF VBF WH ZH ttH

CMS 0/1 jet 0.808 0.119 0.042 0.024 0.008

VBF 0.245 0.742 0.007 0.004 0.001

Table A.5: Percentage contributions as defined in equation
(4.1) for the H → ττ signal strengths derived from the efficien-
cies in [151].
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A – Inputs

µT(VH → Vbb) = 1.59+0.69
−0.72 [38]

µT(H → γγ) = 5.97+3.39
−3.12 [38]

µT(H → ττ) = 1.68+2.28
−1.68 [38]

µT(H → WW ) = 0.94+0.85
−0.83 [38]

µA7(VH → Vbb) = 0.481± 2.185 [142]

µA7(H → γγ)jj = 2.896 ± 1.887 [143]

µA7(H → γγ)cch = −3.665 ± 1.916 [143]

µA7(H → γγ)ccl = 5.276± 2.554 [143]

µA7(H → γγ)crh = −0.675+2.845
−2.816 [143]

µA7(H → γγ)crl = 2.779+1.945
−1.916 [143]

µA7(H → γγ)ct = 0.370+3.628
−3.599 [143]

µA7(H → γγ)uch = 0.022+1.887
−1.916 [143]

µA7(H → γγ)ucl = 0.602 ± 1.422 [143]

µA7(H → γγ)urh = 10.936 ± 3.657 [143]

µA7(H → γγ)url = 1.967 ± 1.597 [143]

µA7(H → ττ) = 0.407+1.630
−2.037 [142]

µA7(H → WW ) = 0.0+0.6
−0.6 [144]

µA7(H → ZZ) = 1.185+1.222
−0.815 [142]

µA8(VH → Vbb) = 1.0± 0.9± 1.1 [145]

µA8(H → γγ)lept = 2.711+1.980
−1.657 [139]

µA8(H → γγ)cch = 2.005+1.519
−1.258 [139]

µA8(H → γγ)ccl = 1.391+1.043
−0.951 [139]

µA8(H → γγ)crh = 1.299+1.320
−1.274 [139]

µA8(H → γγ)crl = 2.220+1.166
−0.997 [139]

µA8(H → γγ)ct = 2.818+1.688
−1.596 [139]

µA8(H → γγ)lhmjj = 2.772+1.780
−1.381 [139]

µA8(H → γγ)lmjj = 0.332+1.734
−1.458 [139]

µA8(H → γγ)/ET
= 2.987+2.716

−2.164 [139]

µA8(H → γγ)thmjj = 1.621+0.829
−0.675 [139]

µA8(H → γγ)uch = 0.962+1.090
−0.936 [139]

µA8(H → γγ)ucl = 0.885+0.721
−0.706 [139]

µA8(H → γγ)urh = 2.711+1.350
−1.151 [139]

µA8(H → γγ)url = 2.527+0.921
−0.783 [139]

µA8(H → ττ) = 0.756+0.775
−0.745 [142, 146]

µA8(H → WW ) = 1.26± 0.35 [144]

µA8(H → ZZ) = 1.603+0.423
−0.459 [141, 142]

µC7(ttH → ttbb) = −0.729+2.018
−1.853 [147]

µC7(VH → Vbb) = 0.588+1.235
−1.153 [147]

µC7(H → γγ)u0 = 3.832+2.042
−1.671 [140]

µC7(H → γγ)u1 = 0.193+1.002
−0.965 [140]

µC7(H → γγ)u2 = 0.045± 1.262 [140]

µC7(H → γγ)u3 = 1.493± 1.634 [140]

µC7(H → γγ)jj = 4.203+2.339
−1.782 [140]

µC7(H → ττ)0/1 jet = 1.000+1.441
−1.400 [147]

µC7(H → ττ)VBF = −1.718+1.318
−1.153 [147]

µC7(H → ττ)VH = 0.671+4.076
−3.047 [147]

µC7(H → WW ) = 0.726+0.417
−0.412 [148]

µC7(H → ZZ) = 0.671+0.700
−0.494 [147]

µC8(VH → Vbb) = 1.584+0.771
−0.704 [147, 149]

µC8(H → γγ)u0 = 2.198+0.928
−0.817 [140]

µC8(H → γγ)u1 = 0.045± 0.705 [140]

µC8(H → γγ)u2 = 0.304± 0.483 [140]

µC8(H → γγ)u3 = −0.327+0.817
−0.854 [140]

µC8(H → γγ)e = −0.661+2.785
−1.968 [140]

µC8(H → γγ)jj loose = 0.824+1.077
−1.002 [140]

µC8(H → γγ)jj tight = 0.304+0.668
−0.594 [140]

µC8(H → γγ)/ET
= 1.938+2.599

−2.339 [140]

µC8(H → γγ)µ = 0.416+1.819
−1.411 [140]

µC8(H → ττ)0/1 jet = 1.109+0.416
−0.417 [147, 150]

µC8(H → ττ)VBF = 2.375+0.674
−0.703 [147, 150]

µC8(H → ττ)VH = 0.780+1.613
−1.723 [147, 150]

µC8(H → WW ) = 0.647+0.225
−0.221 [148]

µC8(H → ZZ) = 0.975+0.332
−0.275 [107, 147]

−6 −4 −2 0 2 4 6 8 10 12 14

Figure A.1: Individual signal strengths measured by D∅, CDF, ATLAS and CMS (status April 2013
after the Moriond conferences). The combination yields µcomb = 1.007+0.099

−0.098 and is depicted by
the green band. A similar figure can be found in [108].
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In the diphoton decay channel, percentage contributions for both, the 7 and 8 TeV data
set are stated in the respective ATLAS and CMS publications. They are listed in Table
A.6. The different tags correspond to the sub-channels in Fig. A.1.

ggF VBF WH ZH ttH

ATLAS 7 TeV

jj 0.225 0.767 0.004 0.002 0.001

cch 0.666 0.153 0.100 0.057 0.025

ccl 0.928 0.040 0.019 0.010 0.002

crh 0.653 0.160 0.110 0.059 0.018

crl 0.928 0.038 0.020 0.011 0.002

ct 0.894 0.052 0.033 0.017 0.003

uch 0.665 0.157 0.099 0.057 0.024

ucl 0.929 0.040 0.018 0.010 0.002

urh 0.654 0.161 0.108 0.061 0.018

url 0.928 0.039 0.020 0.011 0.002

ATLAS 8 TeV

lept 0.022 0.006 0.632 0.154 0.186

cch 0.789 0.126 0.043 0.027 0.015

ccl 0.936 0.040 0.013 0.009 0.002

crh 0.777 0.130 0.052 0.030 0.011

crl 0.932 0.041 0.016 0.010 0.001

ct 0.907 0.055 0.022 0.013 0.002

lhmjj 0.450 0.541 0.005 0.003 0.001

lmjj 0.481 0.030 0.297 0.172 0.019

/ET 0.041 0.005 0.357 0.476 0.121

thmjj 0.238 0.760 0.001 0.001 0.000

uch 0.793 0.126 0.041 0.025 0.014

ucl 0.937 0.040 0.014 0.008 0.002

urh 0.781 0.133 0.047 0.028 0.011

url 0.932 0.040 0.016 0.010 0.001
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A – Inputs

ggF VBF WH ZH ttH

CMS 7 TeV

u0 0.614 0.168 0.121 0.066 0.031

u1 0.876 0.062 0.036 0.020 0.005

u2 0.913 0.044 0.025 0.014 0.003

u3 0.913 0.044 0.026 0.015 0.002

jj 0.268 0.725 0.004 0.002 0.000

CMS 8 TeV

u0 0.729 0.116 0.082 0.047 0.026

u1 0.835 0.084 0.045 0.026 0.010

u2 0.916 0.045 0.023 0.013 0.004

u3 0.925 0.039 0.021 0.012 0.003

e 0.011 0.004 0.502 0.285 0.198

jj loose 0.470 0.509 0.011 0.006 0.005

jj tight 0.207 0.789 0.002 0.001 0.001

/ET 0.220 0.026 0.407 0.230 0.117

µ 0.000 0.002 0.504 0.286 0.208

Table A.6: Percentage contributions from [139, 140, 152].

If neither percentage contributions nor efficiencies were provided by the detector collabo-
rations, I used the relative occurrences as listed in Fig. 3.3. (In the case of the H → bb

signal strengths, I set all other contributions to zero.) They can be found in Table A.7.

ggF VBF WH ZH ttH

Tevatron 0.748 0.058 0.118 0.073 0.003

Tevatron VH only 0.000 0.000 0.619 0.381 0.000

LHC 7 TeV 0.875 0.070 0.032 0.018 0.005

LHC 7 TeV VH only 0.000 0.000 0.644 0.356 0.000

LHC 8 TeV 0.875 0.071 0.031 0.017 0.006

LHC 8 TeV VH only 0.000 0.000 0.638 0.362 0.000

Table A.7: Percentage contributions as defined in equation
(4.1) as extracted from [42, 43].
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Figure A.2: Higgs signal strengths as functions of mH after the summer conferences in 2012. They
stem from the CDF, D∅, ATLAS and CMS detectors [4, 142, 153, 154] and serve as inputs for the
Higgs mass scan in Fig. 4.2(b). (The Tevatron combination was normalized to the red SM expectation.

In Fig. 4.2(b), I show the explicit Higgs mass dependence of the SM and SM4 fits to the
signal strength that were publicly available after the Higgs discovery in July 2012. They
are based on the digitalized plots shown in Fig. A.2.
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A – Inputs

In the 2HDM fits information on non-observation of heavy Higgs bosons were included.
I digitalised the CMS signal strength exclusion plot for the H → ZZ decay (Fig. A.3)
and extrapolated the data up to 10 TeV in order to ameliorate the convergence of the
fit minimization. I did not take into account the update published in May 2013 [155].
Instead of the actually observed exclusion limits, I use the expected limits because above
150GeV, both lines agree within 2σ and I want to prevent the fit from being sensitive to
background fluctuations.
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Figure A.3: An H0 lighter than about 800 GeV can be excluded at 95% CL by CMS searches in
H → ZZ decays [107].

Furthermore, the SM Higgs decay branching ratios are of major importance. Since un-
certainties on them are already included in the experimental signal strength errors, I only
need to take the fixed central values from [42]. (Some of the values were already shown in
Fig. 3.3; here I list them ordered by magnitude.)

B(H → bb) 0.561 B(H → cc) 0.0283

B(H → WW ∗) 0.231 B(H → γγ) 2.28 · 10−3

B(H → gg) 0.0848 B(H → Zγ) 1.62 · 10−3

B(H → ττ) 0.0615 B(H → µµ) 2.14 · 10−4

B(H → ZZ ∗) 0.0289

Table A.8: Branching ratios of a Higgs boson with a mass of
126 GeV [42].
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Finally, the inputs for the flavour observables B(B → Xsγ) and ∆mBs
, which I need for

the 2HDM fit, are presented in Table A.9. The inputs for B(B → Xsγ) were fixed for
the parametrization; their systematic errors are accounted for by an additional theoretical
error on the observable.

Quantity Input value Source

∆mBs
17.768 ± 0.023 ± 0.006~ ps−1 [111]

GF 1.16638 · 10−5 GeV−2 [13]

fBs
225± 0± 4GeV [133, 156]

ηB 0.5510 ± 0± 0.0022 [116, 157]

B̂s 1.322 ± 0.040 ± 0.035 [133, 158]

mBs
5.367 GeV [13]

mt 166.6 GeV SM fit

B(B → Xsγ) (3.43 ± 0.21 ± 0.55) · 10−4 [117, 118, 159]

B(B → Xceν)exp 0.1061 [118]

C 0.580 [118]

Table A.9: Flavour inputs
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APPENDIX B

Prediction fits

The larger the deviation of an observable, the larger is its potential to exclude a specific
model. In this appendix I want to illustrate the individual impact of all observables used in
this thesis on the three discussed models. In the following plots, the one-dimensional scans
over all important observables are shown with the corresponding naive p-value as defined
in (2.9): the blue curves show the SM prediction, the red ones the SM4 prediction, and
the green ones the 2HDM prediction. Furthermore, the experimental values are shown at
the 1σ level (p ≈ 0.31) with systematic and statistical errors, where the former correspond
to the inner error bars and the latter to the outer error bars.
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Figure B.1: p-value scans predicting mpole
t , mZ , ∆α
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had and αs in the SM and in the SM4.
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B – Prediction fits
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Figure B.3: p-value scans predicting Ab , Ac , Aℓ, mW , ΓW and sin2 θeffℓ in the SM, in the SM4 and
in the 2HDM, and a χ2 scan of the Higgs mass prediction by the EWPO in the respective models.
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Figure B.4: p-value scans predicting the combined Higgs signal strengths in the SM4 and in the
2HDM.
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B – Prediction fits

All SM predictions of the EWPO largely agree with the predicted 1σ confidence intervals
of the Bayesian analysis by Ciuchini et al. [50]. The top quark pole mass prediction in
the SM4 features remarkably small allowed values. Due to technical reasons, I required
mpole

t > 130 GeV, so the p-value vanishes at that point; however, a top mass below 130GeV
would be allowed at 95% CL. For σ0

had, R
0
b , A

0,b
FB and Aℓ, which were introduced in Sect.

3.2, none of the prediction fits agrees at one standard deviation with the experiment. The
fits of R0

c , Ab and Ac show that the measurements are less precise than the predictions, so
only a limited range of the 1σ interval is shown. However, in some models the observables
might be important constraints. A good example is ΓW , for which the SM prediction is
within a narrow interval, but in the SM4, the W decay width is allowed to deviate sizeably
from the SM value. In the 2HDM fits, the SM parameters from (3.5) were fixed to the SM
best-fit values (not to the SM predictions!) as mentioned in Chapter 5. Without Higgs
discovery data, the Higgs mass fit of the SM4 prefers lighter values for mH than the SM
fit does. Around the measured value of the Higgs mass, the χ2

min of the SM4 is slightly
lower than the one of the SM.All signal strength predictions agree well with the SM and
with the 2HDM. The fermionic and the diphoton Higgs decays interpreted in the SM4 are
incompatible with the measured signal strength values. Here, the prediction scans reveal
complementary information to the deviations Fig. 4.3: µ(H → ττ) features a best-fit
deviation smaller than one. However, its prediction is in conflict with the best-fit value of
1.34. Without tauonic Higgs decay measurements, the best-fit parameters are completely
different. The fourth generation neutrino mass is pushed to mH/2, which changes all
Higgs decay branching ratios sizeably; mt′ and mb′ are at the upper end of their allowed
range. In the complete SM4 fit, µ(H → ττ) is as small as possible, which in turn requires
a high invisible Higgs decay probability. Shifting mν4 to 56.7 GeV suppresses the Higgs
branching ratio to τ leptons by a factor of five. The reduction of the µ(H → ττ) deviation
is compensated by large deviations of µ(H → γγ) and µ(H → bb), however, the tauonic
Higgs decay observables exhibit the largest ∆χ2, even larger than the ones of the diphoton
decay observables.
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APPENDIX C

2HDM relations

There are different parametrizations of the 2HDM of type II (see for instance [94]). Starting
from the quadratic and quartic couplings from the Lagrangian (5.1), I want to list the
relations connecting mij and λi to the parameters that I used in my fits, i.e. the four
physical Higgs masses mh0 , mH0 , mA0 , mH+ , the vacuum expectation value v , the quartic
coupling λ5, and the two mixing angles α and β.
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APPENDIX D

External programs and parallelization with

CKMfitter

In this appendix, I want to elaborate on the possibilities of adding external programs to the
CKMfitter package and parallelizing two-dimensional CKMfitter scans, which I developed
in the last two years.

D.1 External programs

When I wanted to use the Zfitter subroutine DIZET to calculate electroweak precision
observables in the SM, I encountered a problem that was new to CKMfitter users: up to
this point, everybody had added theoretical formulae as analytic expressions. Fortunately,
one can switch off the analytic gradient for the global minimum searches in CKMfitter,
such that the minimization routine can be used even for numerical input. (As mentioned
in Sect. 2.4, the minimization is performed by a Fortran part.) So I had to establish an
interface that linked DIZET to the CKMfitter code. For this purpose, I had to assign on
Mathematica level one Fortran function for each of the EWPO, from which in turn I called
DIZET with a given set of parameters. The Zfitter subroutine returns all EWPO values
at once, so I interposed a query that tests whether the input parameters have changed
since the last call of DIZET, and if not only reads the stored values from the last call. As
we have 14 EWPO, this yields approximately a factor of 1/14 in run time because the
DIZET call is the bottleneck of the fits.
Generalizing this interface, I provided a method to include any external programs to the
CKMfitter package. Only a few months later, when I wanted to add the Higgs signal
strengths to the SM4 fits, I decided to use HDecay to calculate the Higgs decay width
and the branching ratios. Although it was not possible to link HDecay directly like I did
with DIZET, I ran HDecay for many parameter values and collected its output in look-up
tables. (Neglecting flavour mixing, the relevant SM4 parameters are the fourth generation
fermion masses and the Higgs mass; thus, the corresponding tables have five parameter
dimensions.) With the help of an interpolation algorithm provided by Martin Wiebusch,
I was now able to connect these tables to predefined observables in the code, following the
same pattern as in the EWPO case.
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D.2 Parallelization

D.2 Parallelization

As discussed in Sect. 2.4, I wrote a parallelization program for two-dimensional scans
with CKMfitter. If the granularity for a scan is N and supposed one is equipped with N

processors, this program called parallelize can speed up the scan time by a factor of
1/N. (Note that the fit time of the initial global minimization is not affected. So if a
complete scan is dominated by the first fit, the parallelization will not ameliorate the run
time.) The two-dimensional 2HDM scans in Chapter 5, for instance, have a granularity
of 200. With the run time of a one-dimensional fit of up to 50 minutes, I saved up to one
week for each plot, even though some of the 1D fits did not converge properly, and I had
to re-run them.
parallelize is a simple bash script. One needs to hard-code the path leading to a generic
job description for the cluster computer (“qsub script”) as well as the command that sends
the qsub script to the computing cluster. CKMfitter stores input data, theory expressions
and job instructions in different files; the latter are called analysis cards and are the
only files that parallelize needs to access: it reads the relevant job parameters such as
the granularity, the scan quantities and their ranges from the specified analysis card and
creates N subdirectories in the working directory. Each of these new directories is provided
with its own analysis card, in which the 2D scan has been changed to a 1D scan by setting
one of the scan quantities to a fixed value. This value is different for each subdirectory.
Moreover, each subdirectory gets its own modified qsub script. If successful, parallelize
then submits all N jobs to the cluster. (Several security queries such as a maximal allowed
granularity and syntax checks along this procedure have been implemented.)
When all parallelized jobs have finished, we need to unite all data from the subfolders.
For that purpose, I wrote a second bash script, called unify. The crux of the unification
is the correct calculation of the (naive) p-value. If we combined all one-dimensional scan
points by simply concatenating the data files, we would get at least N points with an
assigned p-value of 1 because every 1D scan has been normalized to its own χ2 minimum.
So the relevant information are the χ2 values. unify finds the global χ2

min in all data files
and subsequently re-calculates the p-value for all scan points. At the end, ckmgnuplot
is called, which is another bash script written by Andreas Menzel and myself to visualize
CKMfitter data using the open source plotting program gnuplot. (unify can be called if
at least one of the N parallelized jobs has finished – in that case a fake p-value of −1 is
assigned to the missing data points, which is converted into white space by ckmgnuplot.)
The drawback of the parallelization is that for the constrained scan fits at the individual
scan points, CKMfitter cannot resort to the information of all neighbouring scan points.
Hence, some of the 1D scan fits may not converge to its global minimum; in the resulting
plot one gets a few “streaks” from one-dimensional scans where the minimum has obviously
not been found. In order to cope with this, I additionally wrote the short bash script
redo that saves the old data files and restarts on request single 1D scans. unify has been
modified such that it automatically merges the old and the new data file and for every scan
point takes the smaller χ2 value. Making use of the three parallelization tools, CKMfitter
users can save a lot of time; the scripts are available on the CKMfitter software system.
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