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1 Introduction

Quantum bits, or qubits, are a hot topic in physics at present. In fact, on a
quantum computer some mathematical problems can be solved in much shorter
time than on conventional computers. The key difference between a qubit and
a classical bit lies in the laws of quantum mechanics. While the state of a bit is
either ``0'' or ``1'', the state of a qubit is an arbitrary superposition 𝑎|0⟩ + 𝑏|1⟩.
In analogy to a two-state quantum systems, |0⟩ and |1⟩ are referred to as the
ground and excited state, respectively, and 𝑎 and 𝑏 are complex numbers. Qubits
must be controllable, i.e. one must be able to initialize them in an arbitrary
state and perform a readout. It should be possible to couple qubits to establish
quantum gates and to extend the qubit array to a desired number of qubits.
Furthermore, qubits have to have very long coherence times to yield reliable
results. These are the criteria postulated by D. DiVincenzo in the year 2000
which identify a quantum system as a qubit. A set of qubits fulfilling these
requirements constitutes the base of a quantum computer.
Although a computer based on quantum manipulation has not yet been

implemented, qubits also spark great interest in the scientific society due to the
new possibility to study quantum phenomena. For example, qubits are excellent
objects to gain a deeper understanding of decoherence effects that constitute,
in fact, the link between quantum and classical physics. On the one hand, full
control over one qubit requires a connection to the laboratory equipment. On the
other hand, the qubit has to be sufficiently isolated from the noisy environment
to ensure long coherence times. By coupling only two or three qubits it becomes
possible to observe the complicated state evolution of the entangled systems
by measuring each qubit independently. Furthermore, a many qubit system can
be used as a so-called quantum simulator which may help to understand better
some very peculiar quantum effects, such as high Tc superconductivity.
Many approaches exist how to realize qubits, for example, electron or nuclear

spins, trapped ions or photons. Furthermore, one of the most promising ways
is based on electrical circuits made of superconducting materials. This feature
makes controlling and coupling very easy. Initialization, operation and readout
of the qubit are achieved by using a current source, a voltmeter and a microwave
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1 Introduction

generator. The interaction between qubits can be established either by inductive
or capacitive coupling. Furthermore, superconducting qubits are made on
wafers using standard lithography techniques.

Superconducting qubits are based on the Josephson effect. The Josephson
junction (JJ) is avery thin (≈ 2 nm) insulating layerbetween twosuperconducting
bulks, which allows a loss-free tunneling of theCooper pairs. Due to the junction
capacitance and the non-linear Josephson inductance, this type of qubits can
be compared to non-linear resonators. Thus, they are multi-level systems with
non-equidistant level separation, which is a crucial factor for their use as qubits.
The two lowest states are defined as the ground state |0⟩ and the excited state
|1⟩. There are three main types: charge, flux and phase qubits. Charge qubits
work with only one Cooper pair that tunnels onto or off a superconducting
island. The basis states of a flux qubit are superpositions of the current flowing
clockwise or counterclockwise. A phase qubit is also based on a persistent
current, where the states correspond to wavefunctions of the Josephson phase
in an anharmonic potential. A few years ago, also combinations of these
approaches were presented, e.g. those nick-named Quatronium, Transmon or
Fluxonium. Recently, the ``3D-Transmon'' placed in a cavity reached coherence
times which allow one to perform several thousand quantum operations, thus
approaching the threshold of quantum error correction.

The insulating layer of the JJ is blamed to significantly contribute to the
qubit decoherence. On the one hand, superconducting qubits suffer from the
dielectric losses. On the other hand, the spectra of the qubits show avoided
level crossings due to parasitic two-level systems coherently interacting with
the qubit. The real nature of these systems is still under debate. The majority,
however, was identified to be located inside the JJ. Among other theories, the
most studied and promisingmodel is that of atomic two-level tunneling systems,
which are well known from amorphous solids like glasses. These sometimes
very coherent quantum systems can be observed, in particular, in phase qubits
due to the relatively large JJ. It was even suggested to use them as quantum
memory or as auxiliary qubits.

Also for glasses, the two-level tunneling systems (TLSs) were found more by
accident than design. Until the 70s, the Debye model successfully described the
characteristics of solids. Defects were the main reason for phonon scattering
at higher temperatures. However, at temperatures about 1K and below, the
wavelength of phonons is so long that single point-like impurities should not
play a role. In fact, the mean free path of phonons is rather limited by the
sample dimension. Therefore, it is all the more astonishing, that Zeller and Pohl
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1 Introduction

found not only a large quantitative discrepancy but also a different temperature
dependence of the thermal conductivity between crystalline and vitreous SiO2.
This was the starting point of a new field in solid state physics. Only one
year after their publication, Phillips, and independently also Anderson et al.,
developed the so-called tunneling model. They still blamed defects to be the
reason for the different behavior. However, they assumed that some atoms, or a
small group of atoms, have two stable configurations, which are coupled to each
other via a small tunneling probability. Thus, tunneling systems are not only able
to scatter, but also create and annihilate phonons. Obviously, the consequences
are also an increased heat capacity and, in the case of charged tunneling entities,
different dielectric characteristics. Within the 40 years of research, not only
essentially all experiments are compatible with the tunneling model, but it also
seems that the model is applicable to a large variety of amorphous materials
which show a rather universal behavior at low temperatures.
Although in the past only expectation values of a large number of tunneling

systems were studied, the tunneling model is based on a single tunneling
system. The two stable states are represented by a double well potential the
main parameters of which are the tunneling and the asymmetry energy. The
coherence characteristics of a TLS are mainly determined by the tunneling
probability. However, measurements and theory suggest that the variation of
the asymmetry energy is responsible for the coupling of the tunneling system
to its environment. Electric and elastic fields dictate which well is energetically
more favorable. To better understand these two coupling types, we consider
two examples. All tunneling systems in amorphous silicon are uncharged and
couple therefore only to strain fields like phonons or deformation. In contrast,
the tunneling systems in the salt KCl doped with Li+-ions have large electric
dipole moments and a negligible interaction with elastic fields.
The aim of this thesis was to prove whether the coherent quantum systems

in the disordered AlO𝑥 layer inside the JJ of a phase qubit behave as predicted
by the tunneling model for the TLSs. While their electric dipole character is
responsible for the coupling to the qubit, we investigated their interaction to an
externally applied static strain.
In the second chapter, the two-state quantum systems are presented in general

and the used simulation routine is described. The JJ and the mode of operation
of the phase qubit are explained in the third chapter, while the tunneling systems
are described in the fourth chapter. In the fifth chapter the experimental setup
and results are presented showing excellent agreement with the tunnelingmodel.
From a chance observation of two coherently interacting TLSs inside the JJ, the
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theoretical description is derived using solely the assumptions of the tunneling
model.
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2 Theoryof two-statesystems

In this chapter the theory concerning the quantummechanical behavior of a qubit
is summarized. In the first part, the two-state system (TSS) is introduced. In
particular, the Bloch sphere, used to represent the quantum states as vectors and
to visualize the time evolution, is explained. By using the master equation in the
Lindblad form decoherence effects are taken into account which is demonstrated
on three standard protocols: Rabi oscillations, exponential decay and Ramsey
fringes. In the second part, the simulation written by me during my diploma
and PhD theses will be described in detail. It calculates the time evolution of
a three level qubit coupled to two TSSs, later referred to as TLSs (two-level
tunneling systems, Sec. 4).

2.1 A two-state system (TSS)

A many-state system is the basis of any coherent dynamical process on the
quantum scale. Although a large number of physical realizations exists like
spins, atoms or even macroscopic objects like a superconducting qubit, the time
evolution of the state can be calculated by using the laws of quantummechanics.
As soon as the energetic difference between neighboring states is sufficiently
large and the temperature of the heat bath to which it couples is below a critical
value, the system can be approximated with a very high accuracy as a TSS
consisting only of the ground and the first excited state. In this case, the system
can be used as a qubit.

2.1.1 The Bloch sphere

The Hamiltonian for a TSS is written as

𝐻 = 𝐸
2

𝜎𝑧 +
𝑔re
2

𝜎𝑥 +
𝑔im
2

𝜎𝑦 = 1
2 (

𝐸 𝑔∗

𝑔 −𝐸) , (2.1)
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|0⟩

|1⟩

||+𝑖⟩

||−𝑖⟩
|−⟩ |+⟩

𝑥

𝑦

𝑧

|𝜓⟩

⃗𝑟
𝜃

𝜑

Figure 2.1:Bloch sphere. Quantumstates and (x,y,z)-representations |0⟩ =̂(0, 0, −1),
|1⟩ =̂(0, 0, 1), |±⟩ =̂(±1, 0, 0), ||±𝑖⟩ =̂(0, ∓1, 0). The state |𝜓⟩ (red bold arrow) is

defined by the angles 𝜃 and 𝜑.

with 𝜎𝑗 (𝑗 = {𝑥, 𝑦, 𝑧}) being the Pauli matrices [MD01] and the complex
coupling strength between the two states 𝑔 = 𝑔re + 𝑖 𝑔im. In the case of 𝑔 = 0, 𝐻
is diagonal and the eigenstates are the ground state |0⟩ and the excited state |1⟩
with the corresponding energies ±𝐸/2. The vectorial notation for theses states
is

|0⟩ = (
0
1), |1⟩ = (

1
0). (2.2)

An arbitrary state |𝜓⟩ of this system can be expressed as a superposition
of the basis states with complex coefficients. These four degrees of freedom
reduce to two after normalizing and eliminating the global phase, e.g. setting
the phase of the ground state to zero. Thus, |𝜓⟩ can be expressed as

|𝜓⟩ = cos 𝜃
2

|0⟩ + sin 𝜃
2

𝑒−𝑖𝜑|1⟩ = (
sin 𝜃

2 𝑒−𝑖𝜑

cos 𝜃
2

). (2.3)

This representation is very convenient because it illustrates the state graph-
ically by a vector on the so called Bloch sphere (Fig. 2.1). The Bloch sphere
is centered at the origin of a right-handed coordinate system with unit radius.
The ground state |0⟩ is placed on the bottom (𝑧 = −1) and the excited state |1⟩
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2.1 A two-state system (TSS)

on top (𝑧 = +1). On the x-axis, the states |±⟩ (𝑥 = ±1) and on the y-axis the
states ||±𝑖⟩ (𝑦 = ∓1) are located. These states are defined as follows:

|±⟩ =
|0⟩ ± |1⟩

√2
; ||±𝑖⟩ =

|0⟩ ± 𝑖 |1⟩

√2
(2.4)

The definitions were chosen in a way that the prefactor in front of the ground
state is always real and positive, and only the state |1⟩ may have a complex
phase. Although the cosine term in Eq. (2.3) might be negative for some 𝜃,
one can always make it positive by multiplying the state by −1. Using 𝜃 and
𝜑 as azimuthal and polar angles, respectively, the state 𝜓 can be represented
as a vector on the Bloch sphere. For example, 𝜃 = 0° corresponds to the
ground state, and 𝜃 = 𝜑 = 90° results in the state ||−𝑖⟩. Since the Bloch
sphere is not only spanned by the quantum states but also by the 𝑥-, 𝑦- and
𝑧-axis, it is useful to find also an expression of the quantum mechanical state
in the (𝑥, 𝑦, 𝑧)-representation. One can verify easily that the components of the
position vector ⃗𝑟 can be written as

𝑟𝑗 = ⟨𝜓| 𝜎𝑗 |𝜓⟩ , 𝑗 = {𝑥, 𝑦, 𝑧}, (2.5)

and so

⃗𝑟 =
⎛
⎜
⎜
⎝

sin 𝜃 cos 𝜑
sin 𝜃 sin 𝜑

− cos 𝜃

⎞
⎟
⎟
⎠

, (2.6)

which is known from the spherical coordinates.
Let us now come back to the Hamiltonian defined in Eq. (2.1). The eigenen-

ergies are
𝐸± = ±1

2
√𝐸2 + |𝑔|2. (2.7)

||𝜓±⟩ denote the eigenstates. They can be expressed as

||𝜓−⟩ = cos 𝛼
2

|0⟩ + sin 𝛼
2

𝑒−𝑖𝛽 |1⟩ = (
sin 𝛼

2 𝑒−𝑖𝛽

cos 𝛼
2

) and

||𝜓+⟩ = sin 𝛼
2

|0⟩ − cos 𝛼
2

𝑒−𝑖𝛽 |1⟩ = (
− cos 𝛼

2 𝑒−𝑖𝛽

sin 𝛼
2

), (2.8)

with
tan 𝛼 = −

|𝑔|
𝐸

, and 𝑔 = |𝑔|𝑒𝑖𝛽. (2.9)
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2 Theory of two-state systems

The eigenstates are orthogonal, since ⟨𝜓+ ||𝜓−⟩ = 0. Due to the factor 1/2,
however, 180° have to be added to 𝛼 of one eigenstate to get the orthogonal one.
Thus, ||𝜓±⟩ always point into opposite directions on the Bloch sphere forming
an axis, which will be very important when regarding the time evolution of the
Bloch vector.

2.1.2 Time evolution and rotation

The time evolution of a two-state system starting with an arbitrary state ||𝜓0⟩
can easily be calculated analytically by solving the time dependent Schrödinger
equation. In the following, the corresponding behavior on the Bloch sphere is
shown. Let |𝜓0⟩ have the form

||𝜓0⟩ = cos 𝜃
2

|0⟩ + sin 𝜃
2

𝑒−𝑖𝜑 |1⟩ = (
sin 𝜃

2 𝑒−𝑖𝜑

cos 𝜃
2

). (2.10)

The time evolution of this state is given by the Schrödinger equation

𝑑
𝑑𝑡

|𝜓(𝑡)⟩ = − 𝑖
ℏ

𝐻 |𝜓(𝑡)⟩ . (2.11)

One can use the representation |𝜓(𝑡)⟩ = 𝑈(𝑡) ||𝜓0⟩ with 𝑈(𝑡) being a unitary
matrix. The differential equation is then solved by writing the eigenstates of 𝐻
into the matrix 𝐵 and the eigenvalues into the diagonal matrix1 𝐷, and so

𝑈(𝑡) = 𝑒−𝑖𝐻𝑡/ℏ = 𝐵𝑒−𝑖𝐷𝑡/ℏ𝐵−1 (2.12)

=
(

cos 𝜔
2 𝑡 + 𝑖 sin 𝜔

2 𝑡 cos 𝛼 −𝑖 sin 𝜔
2 𝑡 sin 𝛼 𝑒−𝑖𝛽

−𝑖 sin 𝜔
2 𝑡 sin 𝛼 𝑒𝑖𝛽 cos 𝜔

2 𝑡 − 𝑖 sin 𝜔
2 𝑡 cos 𝛼)

(2.13)

with

𝜔 =
√𝐸2 + 𝑔2

ℏ
. (2.14)

Comparing 𝑈(𝑡) with the standard expression for an unitary rotation matrix

𝑅 ⃗𝑛(𝛿) = 1 cos 𝛿
2

− 𝑖 sin 𝛿
2

⃗𝑛 ⋅ ⃗𝜎 (2.15)

1𝐻 = 𝐵𝐷𝐵−1, 𝐷 = (
𝐸+ 0
0 𝐸−)

8



2.1 A two-state system (TSS)

|0⟩

|1⟩

||+𝑖⟩

||−𝑖⟩

|−⟩ |+⟩
𝑥

𝑦

𝑧

||𝜓+⟩

||𝜓−⟩

(a) (b)

Figure 2.2: (a) Time evolution of a Bloch vector (red arrow): the vector rotates

around the axis formed by the eigenstates of the Hamiltonian ||𝜓+⟩ (dark grey

arrow) and ||𝜓−⟩ (grey arrow) with 𝐸+ > 𝐸−. The curved red arrow with the dark

edge shows the direction of rotation. (b) Visualization of (a) with the right-hand

rule. The thumb points into direction of the energetically higher state ||𝜓+⟩

which rotates a vector around the unit vector ⃗𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) by an angle 𝛿
[Lis08] ( ⃗𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) symbolizes the set of Pauli matrices) yields 𝛿 = 𝜔𝑡
and ⃗𝑛 pointing exactly to the state |𝜓+⟩ fulfilling Eq. (2.6)

⃗𝑛 =
⎛
⎜
⎜
⎝

sin 𝛼 cos 𝛽
sin 𝛼 sin 𝛽
− cos 𝛼

⎞
⎟
⎟
⎠

. (2.16)

So, for future experiments we can find the time evolution of the Bloch vector
very easily. The matrix in Eq. (2.15), and thus also 𝑈(𝑡), are satisfying the
right-hand rule. This means, if the thumb of the right hand is parallel to the
rotation axis defined by the eigenstates and is pointing to the energetically higher
state, then the other fingers show the direction of rotation of the Bloch vector
(Fig. 2.2).

2.1.3 Density matrix and Lindblad equation

The formalism of the density matrix was introduced by Lev Landau [LL81] and
independently by John von Neumann in 1927. The density matrix allows not

9



2 Theory of two-state systems

only to describe a pure state, which is a superposition of the basis states, but also
statistical mixtures. Therefore, this representation is crucial when considering
the measurement of a quantum system coupled to a bath and so being subject
to decoherence effects. The density matrix is able to describe temporal (many
successive measurements on one system, e.g. one qubit) as well as spacial
ensembles (one measurement involving many equal systems, e.g. spins in host
crystals [Bus+11]).

The density matrix 𝜌 describing a mixed state is defined as

𝜌 = ∑
𝑗

𝑝𝑗 ||𝜓𝑗⟩ ⟨𝜓𝑗||, ∑
𝑗

𝑝𝑗 = 1, 𝑝𝑗 > 0, (2.17)

where 𝑝𝑗 is the probability to find the system in the pure state ||𝜓𝑗⟩. The diagonal
entries of the density matrix reflect the probabilities to measure a system in a
particular state. Therefore, the trace has to be 1. The non-diagonal entries shed
light on the phase coherence.

Let us consider some special cases to demonstrate these ideas. For the ground
state and the excited state,

𝜌0 = |0⟩ ⟨0| = (
0 0
0 1) , 𝜌1 = |1⟩ ⟨1| = (

1 0
0 0) . (2.18)

For example, we have prepared the qubit in the excited state. After some time,
the probability to measure the qubit in the state |1⟩ will be only 0.5 due to
relaxation effects. This is exactly the case of a statistical mixture without any
coherence:

𝜌mixt = 0.5𝜌1 + 0.5𝜌0 = (
0.5 0
0 0.5) . (2.19)

In contrast, the density matrix for the pure states |±⟩ is

𝜌+ = |+⟩ ⟨+| = 0.5 (
1 1
1 1) , 𝜌− = |−⟩ ⟨−| = 0.5 (

1 −1
−1 1 ) . (2.20)

Here, the off-diagonal entries clearly identify these pure states. If the system in
this case is not affected by relaxation but only by dephasing, only off-diagonal
terms will vanish with time. Thus, both density matrices 𝜌± will pass into 𝜌mixt
(Eq. (2.19)). The former pure states turn into a statistical mixture where only
the state population 𝑃(|1⟩) = Tr(𝜌mixt |1⟩ ⟨1|) = 0.5 = 𝑃(|0⟩) is conserved. For
a more detailed analysis and interpretation, please refer to literature [CDL06].

10



2.1 A two-state system (TSS)

The Schrödinger equation in the density matrix formalism can be written as

̇𝜌 = ∑
𝑖

𝑝𝑖( ̇||𝜓𝑖⟩ ⟨𝜓𝑖|| + ||𝜓𝑖⟩ ̇⟨𝜓𝑖||) = − 𝑖
ℏ

[𝐻, 𝜌]. (2.21)

This expression describes the time evolution of an ensemble, which is, however,
perfectly isolated from its environment. The simplest mathematical solution
for also taking decoherence effects into account is the master equation in the
Lindblad form [Lin76]

̇𝜌 = − 𝑖
ℏ

[𝐻, 𝜌] + ∑
𝑗
Γ𝑗ℒ𝑗,

ℒ𝑗 = 𝐿𝑗𝜌𝐿†
𝑗 − 1

2
(𝐿†

𝑗 𝐿𝑗𝜌 + 𝜌𝐿†
𝑗 𝐿𝑗). (2.22)

𝐿𝑗 and Γ𝑗 are the Lindbladian operator and the corresponding characteristic
rate of the 𝑗th decoherence channel. There are three main decoherence channels
which are briefly described in the following. We rewrite the 2x2 density matrix
(Eq. (2.17)) in the general form

𝜌 = (
𝜌11 𝜌10
𝜌∗

10 1 − 𝜌11) . (2.23)

The relaxation to the ground state is described by the characteristic decay time
𝑇1 = 1/Γ1. The corresponding matrix is the annihilation operator

𝜎− = (
0 0
1 0) . (2.24)

By setting 𝐿1 = 𝜎− we get

ℒ1 = (
−𝜌11 −𝜌10/2

−𝜌∗
10/2 𝜌11 ) (2.25)

ℒ1 has diagonal as well as off-diagonal nonzero entries and is therefore not
only responsible for decay but also for dephasing. Usually, the creation operator
𝜎+ = 𝜎†

− is also taken into account. However, in our case it is negligible. The
excitation frequency of the qubit is of the order of 6GHz. In contrast, the
temperature of 30mK corresponds to 𝑘B𝑇/ℎ ≈ 0.6GHz. The probability to
have an excitation is given by the Boltzmann factor 𝑒−ℎ𝑓/𝑘B𝑇 ≈ 5 ⋅ 10−5.
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2 Theory of two-state systems

The third decoherence channel is called pure dephasing. Setting the Lindblad
operator 𝐿2 to be equal 𝜎𝑧/√2 results in2

ℒ2 = (
0 −𝜌10

−𝜌∗
10 0 ) (2.26)

with only off-diagonal entries. The characteristic time 𝑇∗
2 = 1/Γ ∗

2 does not
symbolize a complex conjugated time but it should be distinguished from the
time 𝑇2 (Sec. 2.1.6) defined as

1
𝑇2

= Γ2 =
Γ1
2

+ Γ ∗
2 = 1

2𝑇1
+ 1

𝑇∗
2

. (2.27)

The complete Lindblad equation (Eq. (2.22)) for our case then is

𝑑
𝑑𝑡 (

𝜌11 𝜌10
𝜌∗

10 1 − 𝜌11) = − 𝑖
ℏ

[𝐻, 𝜌] + (
−Γ1𝜌11 −Γ2𝜌10
−Γ2𝜌∗

10 Γ1𝜌11 ) . (2.28)

In the case of large 𝑇∗
2, the dephasing time is limited by 𝑇1 only so that 𝑇2 = 2𝑇1.

This is fulfilled by the ideal, fully isolated atom. The decoherence times 𝑇1 and
𝑇2 are usually extracted from the decay (Sec. 2.1.5) and a Ramsey measurement
(Sec. 2.1.6) [Chi+03].

2.1.4 Rabi oscillations

Rabi oscillations are coherent oscillations between two states of a quantum
system interacting with a resonant or near-resonant field. First observations
were published by Isidor Rabi in 1938 (Nobel Price in 1944), who investigated
the magnetic moments of atomic nuclei. Rabi oscillations appear for example
when perturbing a spin 1/2-systemwith an oscillatingmagnetic field [Web10] or,
in quantum optics, when an atom is passing a resonant cavity field [SZ97]. This
rather complex effect can be simplified by using two standard approximations,
which make it also possible to solve the master equation (2.22) analytically.

Rotating wave approximation (RWA) and

Jaynes-Cummings-Hamiltonian (JCH)

To describe Rabi oscillations, E. Jaynes and F. Cummings used a quantized
electro-magnetic field [JC63]. The main simplification is referred to as the

2𝜎𝑧 symbolizes the noise of the energy and so of the Bloch vector oscillation frequency

12



2.1 A two-state system (TSS)

rotating wave approximation (RWA). Here we follow the analysis of Zimmer-
mann [Zim06]. The total Hamiltonian can be written as

𝐻tot = 𝐻q + 𝐻µ + 𝐻int, (2.29)

with 𝐻q and 𝐻µ = ℏ𝜔µ(𝑎†𝑎 + 1/2) being diagonal Hamiltonians of the qubit
(Eq. (2.1)) and the microwave field, respectively. 𝐻int is the interaction term
which is usually expressed as

𝐻int = ⃗𝐸 ⋅ ⃗𝑑. (2.30)

⃗𝐸 is the oscillating electrical field of the microwave and ⃗𝑑 is the dipole operator
of the qubit. Using the field quantization, the electrical field is proportional to

⃗𝐸 ∝ (𝑎 + 𝑎†). (2.31)

Assuming the microwave field being polarized parallel to the 𝑥-axis, ⃗𝐸 = 𝐸𝑥 ⃗𝑒𝑥,
it couples only to the 𝑥-component of the qubit dipole moment so that the dipole
operator of the qubit can be simplified to

𝑑𝑥 ∝ 𝜎𝑥 = 𝜎− + 𝜎+. (2.32)

Obviously, polarization makes only sense for quantum systems like spins or
atoms. However, the result can be fully applied to qubits in general using the
advantages of the Bloch representation.
Thus, the interaction Hamiltonian can be written as

𝐻int =
ℏΩ0

2
(𝜎− + 𝜎+)(𝑎 + 𝑎†) (2.33)

with the coupling strength ℏΩ0. In the Heisenberg picture, the corresponding
time evolution of the operators 𝑎, 𝑎† and 𝜎± is

𝑎(𝑡) ∝ 𝑒−𝑖𝜔µ𝑡, 𝑎†(𝑡) ∝ 𝑒𝑖𝜔µ𝑡 and (2.34)

𝜎±(𝑡) ∝ 𝑒±𝑖𝜔q𝑡, (2.35)

where 𝜔µ/2𝜋 and 𝜔q/2𝜋 are the microwave and qubit frequency, respectively.
The fundamental idea of the RWA is to neglect the fast oscillating terms 𝜎+𝑎†

and 𝜎−𝑎 [WL84], when 𝜔µ/2𝜋 ≈ 𝜔q/2𝜋. On long time scales, i.e. when

13



2 Theory of two-state systems

the slow oscillating terms 𝜎−𝑎† and 𝜎+𝑎 show little variations, the integrated
contribution of the fast oscillating terms averages very rapidly to zero since
they rotate in opposite directions with angular frequencies of ∼ ±2𝜔µ to each
other. Moreover, both terms violate the conservation of energy since they
imply a simultaneous excitation of the qubit and creation of a photon, or a
decay of the qubit combined with an annihilation of a photon. This would be
important only on a very short time scale. The resulting Hamiltonian is the
Jaynes-Cummings-Hamiltonian (JCH). It has the form

𝐻JCH = 𝐻q + 𝐻µ +
ℏΩ0

2
(𝜎−𝑎† + 𝜎+𝑎) (2.36)

Dressed states model

For further analysis we need a matrix representation of the JCH. In first
instance, it is not obvious how to solve this problem since the JCH works with
the electromagnetic field which has an infinite number of modes. However, the
dressed states picture suggests a simple solution.

Assuming the microwave field to have 𝑛 photons and the qubit to be in its
ground state, the initial state is |0, 𝑛⟩.

𝐻JCH |0, 𝑛⟩ = (−𝐸
2

+ (𝑛 + 1
2) ℏ𝜔µ) |0, 𝑛⟩ +

ℏΩ0
2

√𝑛 |1, 𝑛 − 1⟩ (2.37)

If, on the other hand, we consider the state |1, 𝑛 − 1⟩ then

𝐻JCH |1, 𝑛 − 1⟩ = (
𝐸
2

+ (𝑛 − 1
2) ℏ𝜔µ) |1, 𝑛 − 1⟩ +

ℏΩ0
2

√𝑛 |0, 𝑛⟩ (2.38)

We see that the JCHcombines only the states |0, 𝑛⟩ and |1, 𝑛 − 1⟩. In otherwords,
one excitation is oscillating between the qubit and the microwave field with a
frequency scaling with √𝑛. In the case of coherent field, the photon number has
a Gaussian distribution yielding for the coupling strength Ω = Ω0√⟨𝑛⟩. Since
adding a multiple of the unit matrix does not affect the time evolution, we can
subtract 𝑛ℏ𝜔µ12 from 𝐻JCH, resulting in

𝐻JCH = 1
2 (

𝐸 − ℏ𝜔µ ℏΩ
ℏΩ ℏ𝜔µ − 𝐸) . (2.39)
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2.1 A two-state system (TSS)

The angular Rabi frequencyΩR is defined as the difference between the eigenen-
ergies 𝐸± (Eq. (2.7))

Ω𝑅 =
𝐸+ − 𝐸−

ℏ
= √(

𝐸
ℏ

− 𝜔µ)
2

+ Ω2. (2.40)

The matrix in Eq. (2.39) looks very similar to the Hamiltonian considered at the
beginning of this chapter (Eq. (2.1)). The difference, on the one hand, is that the
coupling between the states is a real number. This has no physical meaning since
it follows from the assumption that the microwave field is polarized parallel to
the x-axis. On the other hand, the energy of the excited state is lowered and
the ground state energy increased by the energy of the microwave. In terms
of the RWA, this means to go into the rotating frame and to express the phase
evolution of the qubit states with respect to the field.
The formalism described in Sec. 2.1.2 allows to draw the time evolution of the

qubit on the Bloch sphere. Since the coupling is real, the angle 𝛽 in Eq. (2.16) is
zero. If the qubit is in resonance with the microwave field, 𝐸 = ℏ𝜔µ, 𝐸+ > 𝐸−,
𝛼 = 90∘ and so the Bloch vector rotates around the 𝑥-axis from the ground
state to the excited state (Fig. 2.2) passing ||−𝑖⟩ and back to the ground state on
the other side of the Bloch sphere. In the off-resonant limit, the rotation axis
converges to the z-axis either with 𝛼 going to zero (𝐸 < ℏ𝜔µ) or approaching
180∘ (𝐸 > ℏ𝜔µ). The corresponding frequency of Rabi oscillations ΩR/2𝜋 will
then be faster, but with a much smaller amplitude (Fig. 2.3a). It is necessary to
mention here that if the microwave source is turned off and Ω = 0, Eq. (2.39)
still describes the state evolution of the qubit in the rotating frame defined by
the microwave frequency 𝜔µ/2𝜋 [WL84].

Damping of Rabi oscillations

After analyzing the driven qubit without any losses it is also important to
consider decoherence effects. The coherent interaction between the qubit and
the microwave field is a crucial factor for applications on longer time scales. To
simplify matters, the microwave is assumed to be in resonance with the qubit.
The Hamiltonian (Eq. (2.39)) can then be written as

𝐻res = ℏ
2 (

0 Ω
Ω 0) . (2.41)
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Figure 2.3: (a) Rabi oscillations without decoherence effects. 𝛿 is the detuning

between microwave and qubit. (b) Two examples for damped Rabi oscillations are

plotted

As discussed above, the eigenstates of 𝐻res are |±⟩ and so 𝛼 = 90∘ and
𝛽 = 0∘. Starting from the ground state, the corresponding rotation matrix 𝑈(𝑡)
(Eq. (2.13)) dictates the time evolution of the system

|𝜓(𝑡)⟩ = (
−𝑖 sin Ω

2 𝑡

cos Ω
2 𝑡 ). (2.42)

The Bloch vector always stays in the yz-plane. The density matrix for this
undamped rotation is

𝜌no dec(𝑡) = |𝜓(𝑡)⟩ ⟨𝜓(𝑡)| = 1
2 (

1 − cos Ω𝑡 −𝑖 sin Ω𝑡
𝑖 sin Ω𝑡 1 + cos Ω𝑡) . (2.43)

Rabi oscillations without decoherence are shown in Fig. 2.3(a).
In order to be able to compare this result with the density matrix taking

decoherence effects into account (Eq. (2.43)), we define

𝜌(𝑡) = (
𝜌11(𝑡) −𝑖𝜌10(𝑡)
𝑖𝜌10(𝑡) 1 − 𝜌11(𝑡)) . (2.44)

16



2.1 A two-state system (TSS)

with real functions 𝜌11 and 𝜌10. Using the master equation in the form of
Eq. (2.28) we find the differential equations for these two unknown functions
that have to be solved:

̇𝜌11 = −Γ1𝜌11 + Ω𝜌10 (2.45)

̇𝜌10 = −Ω𝜌11 − Γ2𝜌10 + Ω
2

. (2.46)

An equivalent expression is

(
̇𝜌11
̇𝜌10
) = (

−Γ1 Ω
−Ω −Γ2) (

𝜌11
𝜌10

) + (
0

Ω/2). (2.47)

One can easily verify that the solution of a differential equation of the form

̇𝑦 = 𝐴𝑦 + 𝑏 (2.48)

with a matrix 𝐴 and a vector 𝑏 is

𝑦(𝑡) = 𝐶 ⋅ 𝑒𝐴𝑡 − 𝐴−1𝑏, (2.49)

where C is the starting condition. We will see in further equations that the
homogeneous part decays with time, yielding the steady state

(
𝜌11
𝜌10

)
𝑡→∞

−−−−→ 1
2(Γ1Γ2 + Ω2)(

Ω2

ΩΓ1
). (2.50)

With typical decay rates of the qubit and the Rabi frequencies of

Γ1 ≈ Γ2 ≈ 10MHz < Ω ≈ 2𝜋 ⋅ 30MHz, (2.51)

Eq. (2.50) can be simplified to

(
𝜌11
𝜌10

)
𝑡→∞

−−−−→ (
0.5
0 ). (2.52)

This is in agreementwith the time independent part of the undamped oscillations
in Eq. (2.43).
The procedure to find also the time dependent part of the solution is the same

as in Eq. (2.12) by using eigenstates and eigenvalues. To simplify calculations,
we apply the approximation

|
|
||

Γ1 − Γ2
Ω

|
|
||

≪ 1. (2.53)
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2 Theory of two-state systems

The eigenvalues of the matrix in Eq. (2.47) then are

𝜆± = −
Γ1 + Γ2

2
± 𝑖Ω, (2.54)

and the eigenvectors simplify to

𝑣± = (
1
±𝑖)

. (2.55)

After putting everything together, the final solution is

(
𝜌11(𝑡)
𝜌10(𝑡))

= 1
2

𝑒−Γ1+Γ2
2

(
cos Ω𝑡 sin Ω𝑡

− sin Ω𝑡 cos Ω𝑡) ⋅ 𝐶 + (
0.5
0 ). (2.56)

By comparing this result to the density matrix in Eq. (2.43) we find the starting
condition 𝐶 = (−1 0) and so

𝜌(𝑡) = 1
2

𝑒−𝑡/𝜏
(

− cos Ω𝑡 −𝑖 sin Ω𝑡
𝑖 sin Ω𝑡 cos Ω𝑡 ) + (

0.5 0
0 0.5) , (2.57)

where 𝜏 is the characteristic time of the damping

𝜏 = (
1

2𝑇1
+ 1

2𝑇2 )

−1
. (2.58)

Fig. 2.3(b) displays decaying Rabi oscillations simulated using the Lindblad
equation (Sec. 2.2).

In our experiments, the qubit is excited by a so called 𝜋-pulse. This means
that the qubit is performing Rabi oscillations for half a period. Accordingly, a
𝜋/2-pulse and a 3𝜋/2-pulse brings the Bloch vector of the qubit to the states ||−𝑖⟩
and ||+𝑖⟩, respectively.

2.1.5 Relaxation

Measuring the qubit relaxation directly provides 𝑇1. After exciting the qubit
by a 𝜋-pulse its excitation probability is recorded as a function of time. The
Hamiltonian has the simple form

𝐻 = 1
2 (

𝐸 0
0 −𝐸) . (2.59)
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2.1 A two-state system (TSS)

Since during relaxation no coherence is expected, the density matrix can be
expressed as

𝜌 = (
𝜌11 0
0 1 − 𝜌11) (2.60)

with the initial condition 𝜌11(0) = 1. Thus, the master equation (2.28) reduces
to the differential equation

̇𝜌11 = −Γ1𝜌11, (2.61)

and so
𝜌11(𝑡) = 𝐶𝑒−Γ1𝑡. (2.62)

with the decay rate Γ1 and a constant 𝐶.

2.1.6 Ramsey fringes

Norman Ramsey was a PhD student of Isidor Rabi. Among other things, he
explored the nuclear spin by using magnetic resonance techniques (Nobel Price
in 1989). By measuring the Ramsey fringes, one is able to extract the dephasing
time 𝑇2, fromwhich by knowing 𝑇1 the pure dephasing time 𝑇∗

2 can be calculated
(Eq. (2.27)). The protocol for the pulse sequence is displayed in Fig. 2.4(a). The
upper curve symbolizes the excitation spectrum of the qubit in dependence on
the external flux (see next chapter). After the first 𝜋/2-pulse, the qubit evolves
freely for some time 𝑡. During this period, it is useful to detune the qubit slightly
from the microwave frequency, which is denoted by 𝛿 = 𝜔q − 𝜔µW. Before
the sequence is terminated by the readout, a second 𝜋/2-pulse is applied to the
qubit. In terms of the RWA and the rotating frame picture we can rephrase this
problem as follows: the first 𝜋/2-pulse brings the qubit to the state |−𝑖⟩. The
Bloch vector then starts to oscillates around the z-axis. Since after the time 𝑡
another microwave pulse is applied, we only have to consider the accumulated
phase of the Bloch vector in comparison to that of the microwaves, which is
𝛿𝑡. Then, after the free evolution time, the qubit is mapped back on the state
|−𝑖⟩ because this state will be rotated to |1⟩ by the second 𝜋/2-pulse. The
decoherence effects during both pulses can be neglected, because on the one
hand, the pulse duration is usually much shorter than 𝑇1 and 𝑇2, and on the
other hand, the pulse duration is fixed yielding the same amount of decoherence
for every measurement. Therefore, the relevant loss of information takes place
between both pulses.
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These ideas significantly simplify the calculations. The Hamiltonian for the
free evolution of the Bloch vector in this case is

𝐻 = 1
2

ℏ (
𝛿 0
0 −𝛿) . (2.63)

Using the general expression of the 2x2 density matrix

𝜌 = (
𝜌11 𝜌10
𝜌∗

10 1 − 𝜌11) . (2.64)

we can express the time dependence by solving the master Eq. (2.28) as

𝜌(𝑡) = (
𝐶0𝑒−Γ1𝑡 𝐶1𝑒−Γ2𝑡𝑒−𝑖𝛿𝑡

𝐶∗
1𝑒−Γ2𝑡𝑒𝑖𝛿𝑡 1 − 𝐶0𝑒−Γ1𝑡 ) , (2.65)

where 𝐶0 and 𝐶1 are independent starting parameters. By setting

𝜌(0) = |−𝑖⟩⟨−𝑖| = 1
2 (

1 −𝑖
𝑖 1 ) (2.66)

we find 𝐶0 = 1/2 and 𝐶1 = −𝑖/2. Thus, the expectation value to measure the
system in the state |−𝑖⟩ or equivalently to find the system in the excited state
after the whole pulse sequence is

⟨−𝑖|𝜌(𝑡)|−𝑖⟩ = 𝑒−Γ2𝑡

2
cos 𝛿𝑡 + 1

2
. (2.67)

This expression describes oscillations with the detuning frequency 𝛿/2𝜋 and
the damping rate Γ2. In Fig. 2.4(b), the blue curve with no detuning acts
as the envelope for the red oscillating curve. A surface plot with varying
detuning and time between the two 𝜋/2-pulses is displayed in Fig. 2.4(c). When
performing the Ramsey experiment with only the time as parameter, a controlled
detuning during the free evolution period is strictly recommended, because small
detunings are hard to avoid in practice, and very slow oscillations affect the
fitting procedure.

2.2 Simulation

To interpret and fit the experimental results and to be able to give theoretical
predictions, it is useful to have a simulation of the quantum systems which uses
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Figure 2.4: (a) Pulse sequence used in a Ramsey experiment. Upper part: resonance

curve of the qubit as a function of the applied flux (see Sec. 3.3.3). Lower part:

sequence of the Ramsey experiment (see text) (b) Exponentially decaying Ramsey

fringes with no detuning (blue curve) and a detuning of 50 MHz (red curve). (c)
A surface plot of the probability to measure the qubit in the excited state as a

function of time and detuning (red maximal, blue minimal).
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an algorithmmimicking the experimental procedure as well as possible. During
my diploma thesis [Gra10], I implemented a simulation in the programming
language Matlab®3. It took into account three coupled TSSs with decoherence
by solving the Lindblad equation (2.22). Although this is a first-order differ-
ential equation, it is possible to calculate the time evolution of the quantum
states exactly. The density matrix is therefore transformed into a vector of di-
mensionality dim(𝜌)2 and a corresponding superoperator matrix is constructed.
The time evolution of the density matrix can then be calculated via the usual
procedure by using the eigenbasis and eigenvalues of the superoperator. All
necessary steps are described in [CAG09]. The simulated results are in excellent
agreement with measurements.

This simulation proved to be extremely helpful also during my PhD thesis.
Therefore, I continued to implement new features as the knowledge about the
TLSs grew. On the one hand, the second excited state of the qubit was added
to the simulation. It is obvious that the state |2⟩, and also higher states present
in the phase qubit, may slightly influence the time evolution and measurement.
In our case, however, the second excited state seems to play quite an active role
as being one of the reasons for the shadow lines in the single photon spectra
(Figs. 5.10 and 5.11). Furthermore, looking for a pulse sequence to measure
the energy of the double excited state of two coupled TLSs, as described in
Sec. 5.3.2, one possibility would be to use the |2⟩ ↔ |1⟩ transition to populate
the TLSs. On the other hand, simulating the experiments presented in this thesis
strictly requires a generalization of the TLS Hamiltonians, in particular, they
do not have to be diagonal initially (Sec. 4). To take the initial and projection
states and the driving of the qubit by microwaves into account correctly, the
simulation procedure had to be rewritten. In the following, the simulation
routine is presented.

2.2.1 Simulation without decoherence

The idea of the simulation is to implement a control of the qubit energy and
the microwave pulse sequence similar to the experiment. This is managed by
creating a Hamiltonian for each step in the pulse sequence and letting the system
evolve for the pulse duration according to this Hamiltonian (Fig. 2.5). Starting
from, e.g. the ground state, the system undergoes several stepwise evolutions

3R2012a (7.14.0.739)
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Figure 2.5: A pulse sequence in the experiment consists of a combination of varying

qubit positions and switching the microwaves on and off. This can be modeled by

the corresponding Hamiltonians 𝐻′, 𝐻″ etc. and the corresponding time evolution

matrices.

via the unitary matrix 𝑈 = exp(−𝑖𝐻𝑡/ℏ). The result is then projected on the
state to be measured, e.g. the excited qubit.
The full Hamiltonian has the form

𝐻 = 𝐻1 + 𝐻(𝑑)
q + 𝐻2 + 𝐻q1 + 𝐻q2 + 𝐻12, (2.68)

with the Hamiltonians of the respective systems 𝐻1, 𝐻(𝑑)
q , 𝐻2 (TLS1, qubit,

TLS2) and the corresponding coupling terms. For example, the TLS1 Hamil-
tonian is programmed as

𝐻1 = (
1
2

𝜀1𝜎𝑧 + 1
2
∆1𝜎𝑥) ⊗ 13 ⊗ 12 = (

1
2

𝜀1𝜎𝑧,1 + 1
2
∆1𝜎𝑥,1) (2.69)

and its coupling to the qubit is

𝐻q1 = 1
2

𝑣1 ⋅ 𝜎𝑧 ⊗ 𝜏(𝑑)
𝑥 ⊗ 12. (2.70)

𝑣1 is the coupling strength and 𝜎𝑗 the corresponding Pauli matrix. Since the
qubit is simulated as a three state system and the dipole transition between the
states |2⟩ and |1⟩ is √2-times larger than that between the first excited and the
ground state (as it is the case in a harmonic oscillator [DCL06]),

𝜏(𝑑)
𝑥 =

⎛
⎜
⎜
⎝

0 √2 0
√2 0 1
0 1 0

⎞
⎟
⎟
⎠

. (2.71)

The superscript (𝑑) represents an operator acting on the eigenstates rather than
physical states. Throughout this work, the phase qubit Hamiltonian is assumed
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2 Theory of two-state systems

to be already diagonal due to its similarity to the harmonic oscillator. This
allows one to use 𝜏(𝑑)

𝑥 as the coupling operator to electric fields, at least for the
two lowest states. In the simulation, 𝐻(𝑑)

q is defined as

𝐻(𝑑)
q =

⎛
⎜
⎜
⎝

𝐸q − ∆aq 0 0
0 0 0
0 0 −𝐸q,

⎞
⎟
⎟
⎠

(2.72)

with ∆aq = 2𝐸|0⟩↔|1⟩ − 𝐸|0⟩↔|2⟩ being the asymmetry of the qubit.
The Hamiltonian defined in Eq. (2.68) can be used to find the spectrum of

the three-partite system, and by fitting the experimental data, parameters like
energies and coupling strengths can be found, and even different coupling types
can be tested. This Hamiltonian also defines the unitary time evolution matrix.
However, to be able to make time domain simulations, one has to think about
the initial and projection states, in other words about the question of the basis.
A very convenient basis consists of the eigenstates of individual uncoupled
subsystems

basis = {||𝑒1⟩ , ||𝑔1⟩} ⊗ {|2⟩ , |1⟩ , |0⟩} ⊗ {||𝑒2⟩ , ||𝑔2⟩}, (2.73)

where ||𝑔𝑗⟩ and ||𝑒𝑗⟩ are the ground and excited state of the 𝑗th TLS, respectively.
The problem is, however, how to transform 𝐻 into this basis. This can be done
in two steps. First, both TLS Hamiltonians are diagonalized resulting in

𝐻(𝑑) = 𝐻(𝑑)
1 + 𝐻(𝑑)

q + 𝐻(𝑑)
2 + 𝐻(𝑑)

q1 + 𝐻(𝑑)
q2 + 𝐻(𝑑)

12 . (2.74)

This step is straightforwardbecausewego into the eigenbasis of theTLSswithout
destroying the order of subsystems in the Hamiltonian. The TLS1 Hamiltonian,
for example, reads 𝐻(𝑑)

1 = 𝐸1 ⋅ (𝜎(𝑑)
𝑧 ⊗ 13 ⊗ 12) with 𝐸1 = √∆2

1 + 𝜀2
1. The

coupling terms, of course, have to be transformed in the same way. This means,
although all sub-Hamiltonians in 𝐻(𝑑) are diagonal, now the coupling terms
have all possible combinations of ``xx'', ``zx'', ``xz'' and ``zz''. From all
these combinations, only the ``xx''-terms are responsible for energy transfer
inducing anti-crossings and entangled states. The other coupling terms, on the
other hand, are responsible for a change of the eigenstates (``xz'' and ``zx'')
or just energy shifts (``zz''). Therefore, we can try to correct the change
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2.2 Simulation

of eigenstates by going into the eigenbasis 𝐴 of the matrix 𝐻(𝑑) − 𝐻(𝑑)
𝑥𝑥 with

𝐻(𝑑)
𝑥𝑥 = 𝐻(𝑑) ∗(𝜎(𝑑)

𝑥 ⊗𝜏(𝑑)
𝑥 ⊗12 +...) (here ∗means element wisemultiplication)4.

𝐻(𝑑,2) = 𝐴−1𝐻(𝑑)𝐴 = 𝐴−1(𝐻(𝑑) − 𝐻(𝑑)
𝑥𝑥 )𝐴 + 𝐴−1𝐻(𝑑)

𝑥𝑥 𝐴. (2.75)

In contrast to the previous basis transformation, now the full 12x12 matrix is
diagonalized so that the order of eigenenergies has to be reestablished by using
the elements in 𝐴. Since the coupling strengths are much smaller than the TLS
and qubit energies, it turns out that the new basis 𝐴 is already almost Cartesian
and so 𝐴−1𝐻(𝑑)

𝑥𝑥 𝐴 ≈ 𝐻(𝑑)
𝑥𝑥 . The time evolution resulting from 𝐻(𝑑,2) is still exact

but referring to the basis which is practically the desired one, therefore it is used
for simulation.

2.2.2 Driving and decoherence

A qubit driven by a microwave field undergoes Rabi oscillations which can be
modeled in the RWA picture (Sec. 2.1.4). Therefore, we use the matrix

𝑈µ(𝑡) = exp(−𝑖𝜔µ𝑈µ,0𝑡), (2.76)

with the microwave frequency 𝜔µ/2𝜋 and

𝑈µ,0 = 1
2

(𝜎(𝑑)
𝑧 ⊗ 13 ⊗ 12 + 12 ⊗ 𝜏(𝑑)

𝑧 ⊗ 12 + 12 ⊗ 13 ⊗ 𝜎(𝑑)
𝑧 ). (2.77)

By transforming |Ψ⟩ into ||Ψµ⟩ = 𝑈µ(𝑡) |Ψ⟩, the time-dependent Schrödinger
equation (2.11) can be rewritten with the corresponding Hamiltonian

𝐻µ = − 𝑖
ℏ

(𝑈𝐻(𝑑,2)𝑈† + ℏ𝜔µ𝑈µ,0). (2.78)

Depending on whether the microwave field is off or on, the Hamiltonian
𝐻(𝑑,2) or the corresponding 𝐻µ is used, which is referred to as 𝐻end.
The Hamiltonian, and so the density matrix 𝜌, are 12x12 matrices. The idea

of the Lindblad superoperator is to use the density matrix as a column vector 𝜌v
with 144 elements and to create a 144x144 matrix 𝐻s fulfilling the relation

̇𝜌v = 𝐻s 𝜌v. (2.79)
4This procedure corresponds to the following trick. To find the eigenstates of the respective

subsystems, the subsystems are far detuned from each other and then the Hamiltonian is
diagonalized. In principle, this corresponds to simply neglecting the ``xx''-terms.
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2 Theory of two-state systems

The time evolution of 𝜌v can then be calculated analytically by finding the
eigenstates and eigenenegies of 𝐻s. As explained in [CAG09]

𝐻s = −𝑖 (𝐻end ⊗ 1 − 1 ⊗ 𝐻𝑇
end)

+ ∑
𝑗
Γ𝑗 (𝐿𝑗 ⊗ 𝐿∗

𝑗 − 1
2

𝐿†
𝑗 𝐿𝑗 ⊗ 1+ 1

2
1 ⊗ (𝐿†

𝑗 𝐿𝑗)
𝑇

) (2.80)

with the Lindbladian operators 𝐿𝑗 discussed in Sec. 2.1.3.
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3 Thephasequbit

Asmentioned in the introduction, superconductingphasequbits canbe compared
with 𝐿𝐶-resonators. They possess some capacitive and inductive elements, and
therefore form a multi-level system. A simple 𝐿𝐶-resonator is not suitable to
serve as a qubit since due to the equidistant level separation addressing only the
|0⟩ ↔ |1⟩ transition is not possible. Trying to excite the |1⟩-state would result
in a Poissonian distribution of the population [Kul11]. One can circumvent this
problem by ensuring a sufficiently large transition frequency difference between
neighboring states, in particular between the states |0⟩ and |1⟩ and the states
|1⟩ and |2⟩. This difference is referred to as the qubit asymmetry

∆aq = 𝐸|1⟩↔|0⟩ − 𝐸|2⟩↔|1⟩ = 2𝐸|1⟩↔|0⟩ − 𝐸|2⟩↔|0⟩. (3.1)

To achieve ∆aq ≠ 0, a nonlinear element is required. In fact, all types of
superconducting qubits are based on the Josephson junction (JJ), which will be
introduced in Sec. 3.1. From all different superconducting qubit types, the phase
qubit requires the largest JJ area to have a sufficiently large critical current. Since
the two-level systems (TLSs) are located inside the JJ [Mar+05], it is best suited
for investigating TLSs. The first proposal for a phase qubit was just a current
biased JJ [DWM04]; [Mar09]. This approach was modified due to several
reasons (Sec. 3.2.2). A better way is to enclose the JJ in a superconducting loop
which is also know as the rf-SQUID [BP82]; [CB04]. Then, biasing is managed
via an inductively coupled flux coil and for microwaves a waveguide connected
to the JJ via a coupling capacitor is used. The principles of the rf-SQUID
and the qubit operation will be discussed in Sec. 3.2, the realization and the
experimental setup are described in Sec. 3.3.

27



3 The phase qubit

3.1 The Josephson junction

3.1.1 The Josephson equations

Brian Josephson formulated his famous equations in 1974 [Jos74] and was
honored with the Nobel Prize in 1973. He considered two superconductor bulks
interrupted by aweak link. This is a small region across the superconducting line
where the density of Cooper pairs is smaller than in the surrounding bulk. An
example is a point-like contact of two superconductors. In our case, theweak link
is a thin insulating layer forming a tunneling barrier between two overlapping
superconducting lines. According to the Ginzburg-Landau theory [Sch+02],
the superconducting state is described as a cooper pair condensate defined by a
single wave function Ψ

Ψ = Ψ0( ⃗𝑥, 𝑡)𝑒𝑖𝜙( ⃗𝑥,𝑡), (3.2)

where 𝜙 is a collective phase and the wave function is normalized to the density
of Cooper pairs. When sending a super-current through the so-called Josephson
junction (JJ), the Cooper pairs have to tunnel from one side of the weak link to
the other resulting in a phase change across the JJ

𝜑 = 𝜙1 − 𝜙2, (3.3)

where 𝜙1 and 𝜙2 denote the phases of the two bulk superconductors. The
Josephson equations depend only on the relative phase 𝜑. The first Josephson
equation predicts a super-current through the JJ

𝐼s = 𝐼c sin 𝜑, (3.4)

where 𝐼c is the critical current or the maximal super-current. 𝐼c depends on
the parameters of the superconductor and on the geometry of the JJ. According
to the first Josephson equation a current biased JJ with a current 𝐼s less than
𝐼c will still be superconducting and will not yield a voltage drop. The second
Josephson equation becomes important when considering currents above 𝐼c or
alternating currents. Then, there is a nonzero time evolution of the Josephson
phase resulting in a voltage drop 𝑉, which can be calculated from the second
Josephson equation,

�̇� = 2𝑒
ℏ

𝑉 = 2𝜋
Φ0

𝑉 ≈ 2𝜋 ⋅ 483.6MHz
µV

𝑉 (3.5)
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3.1 The Josephson junction

whereΦ0 = ℎ/2𝑒 is themagnetic flux quantumand 𝑒 is the electron charge. Thus,
the phase velocity �̇� is proportional to the voltage drop with the characteristic
factor 483.6MHz/µV.

3.1.2 The RCSJ model

The rather complex phase dynamics of a current biased JJ can be understood by
considering the resistively and capacitively shunted JJ [Ste68]; [McC68]. The
RCSJ model is only valid for small JJs with dimensions smaller than the spatial
variations of the Josephson phase, typically about 30 µm. In contrast, in long
JJs the spatial distribution of 𝜑 has to be taken into account as well resulting in
much more complex differential equations [Wal01].
According to the RCSJ model, a small JJ can be modeled as three elements

in parallel: a superconducting element according to Eqs. (3.4) and (3.5), an
ohmic resistance 𝑅, which is responsible for damping and thus energy loss, and
a capacitance 𝐶 (Fig. 3.1(a)). According to Kirchhoff's law, the total current
flowing through the junction yields the differential equation

0 = −𝐼 + 𝐼c sin 𝜑 + 𝑉
𝑅

+ 𝐶 ̇𝑉 = −𝐼 + 𝐼c sin 𝜑 + 1
𝑅
Φ0
2𝜋

�̇� + 𝐶
Φ0
2𝜋

�̈�. (3.6)

This equation can be compared to the equation of motion for a particle in a
one-dimensional potential𝑈(𝑥). According to classical Hamiltonianmechanics,
the equation of motion reads

0 = 𝑚�̈� + 𝐷�̇� + 𝜕𝑈(𝑥)
𝜕𝑥

, (3.7)

where𝑚 is themass of the particle and𝐷 is the damping constant. Bymultiplying
Eq. (3.6) withΦ0/2𝜋 and identifying 𝑥with𝜑, we find the corresponding factors
to be

𝑚 = 𝐶 (
Φ0
2𝜋 )

2
, 𝐷 = 1

𝑅 (
Φ0
2𝜋 )

2
, (3.8)

and

𝑈J(𝜑) =
𝐼cΦ0
2𝜋 (− 𝐼

𝐼c
𝜑 − cos 𝜑) . (3.9)
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3 The phase qubit

By introducing the Josephson energy 𝐸J = 𝐼cΦ0/2𝜋 and normalizing the total
current flowing through the junction 𝛾 = 𝐼/𝐼c, Eq. (3.9) can be rewritten as

𝑈J(𝜑) = 𝐸J(−𝛾𝜑 − cos 𝜑). (3.10)

The resulting washboard potential is plotted in Fig. 3.1(b) for three different
values of 𝛾. For currents larger than 𝐼c, the potential barrier disappears and the
particle starts to run down the potential which results in a voltage drop across
the JJ. Due to quantum tunneling, however, the bias current does not have to
overcome 𝐼c to cause a voltage drop, but, depending on the JJ parameters and
the temperature, currents very close to the critical current might be sufficient,
yielding other interesting effects like phase diffusion [MK89]. The angular
resonance frequency 𝜔0 can be obtained by solving the differential Eq. (3.7).
For small underdamped JJs 1 the expression for 𝜔0 reads

𝜔0 =
√

1
𝑚

𝜕2𝑈
𝜕𝜑2 = 𝜔p√cos 𝜑 = 𝜔p

4√1 − 𝛾2, (3.11)

with the angular plasma frequency

𝜔p =
√

2𝜋𝐼c
Φ0𝐶

. (3.12)

One can see from Eq. (3.11) that the resonance frequency decreases with
increasing bias current. At the bias current 𝐼 = 𝐼c, 𝜔0 is zero and the potential
well disappears. Here we introduce the Josephson inductance 𝐿J according to
the relation

𝜔0 = 1
√𝐿J𝐶

. (3.13)

Thus,

𝐿J =
Φ0
2𝜋

1
𝐼c cos 𝜑

= 𝐿J,0
1

cos 𝜑
, (3.14)

where we have defined 𝐿J,0 = Φ0/2𝜋𝐼c. Note that the expression for 𝐿J is
consistent with the standard definition of the inductance 𝐿 = 𝑉/ ̇𝐼. However,
the nature of this inductance is not a stored energy in the magnetic field.

1Small damping factor corresponds to large 𝑅 and so a very small current through the
resistance.
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Figure 3.1: (a) The circuit diagram for a current biased JJ according to the RCSJ

model is sketched and the resulting washboard potential is drawn in (b) for different

bias currents. The inset shows the quantization of a potential well. (c) The circuit

diagram for a flux biased rf-SQUID is shown schematically. (d) The potential

corresponding to (c) is plotted for different 𝛽L parameters at Φext = Φ0/2. The

potential for 𝛽L = 3 is also shown for Φext = 0 (dashed, light blue curve)

The inductance can be rather explained by the kinetic inductance [DWM04];
[Sch+02] known, e.g., from the behavior of superconductors at high frequencies.
Most strikingly, 𝐿J can be also negative and it can take any large number.

3.2 The phase qubit – theory

3.2.1 The current biased JJ as a phase qubit

In fact, first phase qubits were initially designed from current biased Josephson
junctions [DWM04]; [Mar09]. The plasma frequency 𝜔p is fixed by design
parameters. By current biasing the JJ during the experiment, the resonance
frequency𝜔0 canbeadjusted (Eq. (3.11)). Then, thequbit operation is performed
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3 The phase qubit

by combining the dc-current with themicrowave signal. The readout is managed
by a short current pulse. This tilts the potential for a short time so that the
particle, if being in the excited state, tunnels out from its well and starts to run
down the potential (Fig. 3.1(b)). Thus, by measuring the voltage drop across
the JJ the final state of the qubit can be determined. The first experimental data
were published byMartinis et al. in 2002 [Mar+02] which proved that a current
biased JJ can perform all operations needed for a single qubit: initialization,
Rabi oscillations and readout [DiV00].

3.2.2 The rf-SQUID

To be able to increase the coherence times, the phase qubit had to be re-
designed. A current biased JJ requires a direct connection to the environment,
which introduces a significant amount of noise into the system. Furthermore,
the impedance of a JJ, 𝑍J = √𝐿J/𝐶, is comparable with the standard 50Ω
impedance opening a significant decay channel [Lis08]. The solution is to
enclose the JJ in a superconducting loop [Mar09] thus forming an rf-SQUID
(Fig. 3.1(c)). The loop is galvanically disconnected from the environment, but
it is still inductively coupled to the lines via a transformer, which significantly
modifies the impedance of the JJ circuit. The readout ismanaged by a dc-SQUID
magnetometer [Sch+02] coupled inductively to the qubit (see next section).

Fig. 3.1(c) illustrates the rf-SQUIDusedas thephasequbitwhich is inductively
coupled to the current source. A detailed analysis of this circuit can be found in
[BP82]. The externally applied magnetic flux Φext induces a current in the loop
which adds to the external flux. The resulting flux Φtot through the rf-SQUID
loop can be expressed as

Φtot = Φext + 𝐿geo𝐼q (3.15)

where 𝐿geo is the geometrical inductance of the loop and 𝐼q the circulating
current. Due to flux quantization in a superconducting loop with the phase 𝜑
across the JJ as a degree of freedom, we find 𝜑 to be [Sch+02]

𝜑 = 2𝜋
Φtot
Φ0

. (3.16)

Thus, the circulating current 𝐼q can be expressed as

𝐼q =
Φtot − Φext

𝐿geo
=

Φ0
2𝜋𝐿geo (𝜑 − 2𝜋

Φext
Φ0 ) . (3.17)
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3.2 The phase qubit – theory

The rf-SQUID potential 𝑈(𝜑) is the sum of the junction energy 𝑈J(𝜑) given in
Eq. (3.10) [Lis08] and the magnetic energy 𝐿geo𝐼2

q/2.

𝑈(𝜑) = 𝐸J (
1 − cos 𝜑 +

(𝜑 − 2𝜋Φext/Φ0)2

2𝛽L )
, (3.18)

where 𝛽L is defined as

𝛽L =
2𝜋𝐿geo𝐼c

Φ0
=

𝐿geo

𝐿J,0
, (3.19)

the ratio of the geometric and the Josephson inductance at𝜑 = 0. The rf-SQUID
potential is plotted for different 𝛽L values in Fig. 3.1(d). Aiming to operate the
rf-SQUID as a phase qubit (Sec. 3.3.3), it is recommended for 𝛽L to satisfy

1 < 𝛽L < 4.6. (3.20)

There are two reasons for this condition. On the one hand, it should be possible
to initialize the qubit. Therefore, at a particular flux bias, e.g. Φext = 0,
the potential 𝑈(𝜑) should have only a single global minimum facilitating the
initialization of 𝜑 always to the same value. This defines the upper limit of 𝛽L.
On the other hand, the readout of the qubit is only possible if there are at least
two wells in the qubit potential. By applying a flux pulse, the potential is tilted
so that the particle tunnels to the other well if it was in the excited state. This
defines the lower condition for 𝛽L.

3.2.3 The dc-SQUID

In contrast to the rf-SQUID, which has only one junction in its loop and is driven
via ac-current, the dc-SQUID uses two junctions connected in parallel (Fig. 3.2).
As thenamesuggests, a dc-current isflowing through the twobranches [Sch+02].
By referring to the two branches as 𝑎 and 𝑏, and assuming both junction to have
the same critical current 𝐼c, the current sent through the dc-SQUID is

𝐼 = 𝐼𝑎 + 𝐼𝑏 = 𝐼c(sin 𝜑𝑎 + sin 𝜑𝑏) = 2𝐼c cos
𝜑𝑎 − 𝜑𝑏

2
sin

𝜑𝑎 + 𝜑𝑏
2

. (3.21)
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𝐼sq

𝑉sq
𝜑a 𝜑b

(a) (b)

Φsq

2𝐼c

ΦsqΦ0−Φ0

𝐼sw

Figure 3.2: (a) The dc-SQUID is formed by two JJs enclosed in a superconducting

loop. The dc-current 𝐼sq is sent through both JJs connected in parallel while

measuring a voltage drop 𝑉sq across the SQUID. (b) The switching current of the

SQUID, 𝐼sw, depends periodically on the flux through the SQUID loop.

Due to the two phases of the junctions, a dc-SQUID has two degrees of
freedom. However, by using the relation of the flux quantization, one degree
can be eliminated:

𝜑𝑎 − 𝜑𝑏 = 2𝜋
Φsq

Φ0
, (3.22)

and so

𝐼 = 2𝐼c cos (𝜋
Φsq

Φ0 ) sin (𝜑𝑏 + 𝜋
Φsq

Φ0 ) . (3.23)

Φsq is the flux inside the SQUID loop, which can be controlled by an external
coil. As can be seen from Eq. (3.23), the maximal super-current which can
flow through the device strongly depends on the external flux. The equation
has only one degree of freedom, which is inside the sine-term. Therefore, we
can substitute all other parts of Eq. (3.23) by a prefactor corresponding to the
maximal, or the critical, current of the device

𝐼c,sq = 2𝐼c
|
|
||
𝜋
Φsq

Φ0

|
|
||
. (3.24)

In the definition of the critical current of the SQUID, the absolute values are
used. Obviously, a negative maximal current makes no sense, and furthermore,
a negative sign can be taken into account in the sine-term by adjusting 𝜑𝑏.

Being inductively coupled to a phase qubit, the switching current of the
dc-SQUID reveals the flux produced by the qubit loop and so its state. Varying
the qubit flux bias in a wide range, one can see the qubit steps due to tunneling
of the qubit virtual particle between different wells [Lis08].
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3.3 The phase qubit – experimental

3.3 The phase qubit – experimental

3.3.1 The samples

For this thesis, two different qubit chips were used. Both chips were kindly
provided to us by the UCSB group (Prof. John Martinis). Sample 1 represents
the first generation of flux controlled phase qubits, whereas in sample 2 some
important improvements were realized increasing the coherence by a factor of
ten. Consequently, it has much less strongly coupled TLSs. However, it allows
using time-domain measurements which are much more sensitive in retrieving
TLS resonances.

25 µm

1

34
2

5

(a)

50 µm

1

34
2

(b)

Figure 3.3: The two chips used in this thesis were provided to us by the group

of J. Martinis (UCSB). The design of the flux bias lines (1) is gradiometric for the

SQUID (2), but not for the qubit (3) which allows to control the qubit's frequency.

On the other side of the SQUID an auxiliary structure is placed (4) for reasons of

symmetry.
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3 The phase qubit

Sample 1 [Sim+04]

A photo of the chip is shown in Fig. 3.3(a). The group of Martinis attaches great
importance to the gradiometric design. The flux bias lines and the dc-SQUID
are arranged in such a way that the integral over the flux in the SQUID loop is
zero. In contrast, the qubit is placed closer to one bias line than to the other
resulting in a non-zero flux bias. On the opposite side of the SQUID an auxiliary
structure is added for symmetry reasons. Thus, it is ensured that the SQUID
magnetometer is always at the best working point resulting in a readout of the
qubit with high fidelity. Furthermore, the lower part of all three loops is twisted
by 180° with respect to the corresponding upper part to annihilate the magnetic
noise due to homogeneous field fluctuations.

Silicon is used as the substrate. The tunneling barrier of the JJ is a disordered
AlO𝑥 layer between two Al films. The junction area is about 32 µm2. With a
critical current density of 40A/cm2, 𝐼c equals 12 µA [Sim+04]. The ratio of the
loop inductance of 168 pH to the Josephson inductance (𝐿J,0 = 28 pH) results
in a 𝛽L parameter (Eq. (3.19)) of 6. This value is too large to be used as a phase
qubit without additional auxiliary means. The critical current of an identically
fabricated sample is given in [Joh+05] as 8.5 µA and so 𝛽L = 4.5. Assuming
the same critical current density, the JJ area is 21 µm2. The self capacitance of
the JJ equals 1.2 pF. The relaxation time 𝑇1 was measured by Simmonds et al.
to be 41 ns. Our sample, which has been designed and produced in the same
way, possesses a 𝑇1 time of only about 13 ns, 9 years after the fabrication.

Sample 2 [Ste+06]

Sample 2 is shown in Fig. 3.3(b). The layout is basically unchanged in
comparison to sample 1. However, there are several critical improvements.
Now, sapphire is used as the substrate due to its very low loss tangent [Kru+06].
To reduce the number of anti-crossigns in the spectrum, the JJ area is scaled
down to 1 µm2. The critical current density is increased to 170A/cm2 yielding
𝐼c equal to 1.7 µA and 𝛽L = 3.6 (𝐿geo = 720 pH, 𝐿J,0 = 200 pH).

The self capacitance of the JJ equals 𝐶J = 50 fF. To reduce the resulting
plasma frequency 𝜔𝑝/2𝜋 (Eq. (3.12)), the JJ is shunted by a large plate capacitor
with an area of 60×60 µm2 and silicon-nitride as the dielectric [Mar+05]. This
capacitance,𝐶ext, is designed to be 800 fF, yielding𝐶 = 𝐶J+𝐶ext = 850 fF. The
decoherence times 𝑇1 and 𝑇2 were measured to be 110 and 105 ns, respectively.
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3.3 The phase qubit – experimental

Although we have been taking data with this qubit for 7 years already, the
decoherence times have not changed at all.

𝐴 𝐶 𝐼c 𝐿geo 𝛽L
Qubit 1 32 µm 1.2 pF 8.5 µA 168 pH 4.5
Qubit 2 1 µm 850 fF 1.7 µA 720 pH 3.6

𝑇1 𝑇2
13 ns -

110 ns 105 ns

Table 3.1: Most important design and quantum mechanical parameters.

3.3.2 Experimental setup

The frequency range for superconducting qubits lies
in the microwave spectrum between 5 and 20GHz.
This has two reasons. In principle, going to higher
frequencies (about 100GHz) would be possible.
However, the complexity of the setup and the costs
for microwave equipment increase drastically for
frequencies above ≈ 20GHz. The lower end of the
range is determined by temperature. For example, a
frequency of 1 GHz corresponds to a temperature of
𝑇 = ℎ𝑓/𝑘B ∼ 50mK. To ensure that the first excited
state cannot be populated due to thermal excitation,
the operating temperature has to be significantly
lower than the excitation energy. Modern Dilution
refrigerators (picture on the left, Oxford Kelvinox
100) may reach temperatures down to 10 mK[Ins],
in our case about 30mK. Their mode of operation is
comparable to evaporative cooling. At temperatures
below 2 K, which can be achieved just by pumping
on liquid 4He, amixture of two isotopes 3He and 4He

undergoes a spontaneous phase separation to form a 3He-rich and a 3He-poor
phase. Exactly like in an evaporation process, a transition of 3He atoms from
the 3He-rich to the 3He-poor phase costs energy resulting in a cooling effect.
The volume in which this takes place is known as the mixing chamber. In a
continuous circulation process, the 3He/4He-mixture is pumped from the side
of the 3He-poor phase, outside the mixing chamber 3He is separated from 4He
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3 The phase qubit

(3He has a lower boiling temperature) and delivered back to the 3He-rich phase
in the mixing chamber.

The experimental setup is outlined in Fig. 3.4. The green dashed box
symbolizes thechip (Sec. 3.3.1),which is cooled toa temperatureof≈ 30mK. To
perform quantum manipulations on the qubit (blue), the continuous microwave
generated by the microwave source2 (µW) passes two mixers3 connected in
series. In the ``off''-state, they attenuate the signal sufficiently to ensure free
evolution of the quantum system. The DC pulses of the first port of the arbitrary
waveform generator4 (AWG), with the help of the mixers, are used to switch
the microwave on and off. Before the microwaves reach the qubit they are
attenuated by ≈ 30 dB (as sketched in the purple box in Fig. 3.4) and they pass
the on-chip DC-break (dashed orange box) which filters out the low frequency
noise.

As discussed in Sec. 3.2.2, the potential energy of the qubit is controlled
by applying external flux, which is provided by the current source 𝐼ext. The
second port of the AWG generates the fine tuning of the flux bias. Furthermore
it is responsible for the realization of the flux pulse sequences, as well as
the readout pulse. Both signals are combined by a bias tee (bias-T, red) and
damped by approximately 30 dB at low temperatures to decrease the noise
level and to increase the resolution of the pulse amplitude. To filter out high
frequency components, the chip has a series of low-pass 𝐿𝐶-filters (light blue).
After generating the readout pulse, the state of the qubit is measured with the
dc-SQUID (black) 3.2.3. The experimental setup is described in [Lis08] in
more detail.

3.3.3 The measurement cycle

The measurement cycle is displayed in Fig. 3.5. It starts and ends with the
reset, where the external flux is turned off (or tuned to the reset level) for some
time. Thus, the qubit's virtual mass particle falls down into one well and the
dc-SQUID, after being measured, has time to get superconducting again. Then,
the qubit potential is tuned to the working point by the current source and the
pulse sequence of interest, the length of which should not exceed the qubit
coherence times by much, may be applied. Each pulse sequence is terminated

2Agilent E8257D
3Marki M80420LS
4Tektronix, AWG7062B
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Figure 3.4: Sketch of the experimental setup. The green dashed box symbolizes

the chip at a temperature of ≈ 30mK. The qubit is controlled by microwaves,

which are pulsed by using a continuous microwave source (µW) and two mixers in

series connected to a channel of our AWG, and by the external flux bias which is

partially also controlled by our AWG. The microwave and the flux bias coaxial lines

have attenuators at the 1K (−20 dB) and 30mK (−10 dB) levels as skeched in the

purple box. The readout is performed by measuring the switching current of the

dc-SQUID. At the 1K level a current divider (factor 50) and a low pass filter (cut

off at 100 kHz) are installed.
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𝑡

Φext AWG
current source

𝑡

𝐼sq
reset

𝑡

#
|0⟩ |1⟩

≲ 100 ns
0.5ms 2ms

readout pulse

Figure 3.5: The upper plot shows the pulses generated by the current source and

AWG. For reading out the qubit, it is parked at a level where both wells are deep

enough so that no tunneling occurs. While increasing 𝐼sq (middle plot), the time

is measured until a voltage drop over the dc-SQUID arises, which results in two

histograms, each for the corresponding qubit state |0⟩ and |1⟩ (lower panel).

by the readout pulse. The qubit is then tuned to a stable position where the
tunneling between the two qubit wells is turned off, in other words where both
qubit wells are deep enough. This allows to determine the switching current of
the dc-SQUID and so the qubit state. 𝐼sq is increased linearly and the time is
measured until a voltage drop occurs. To get a distribution of time intervals,
a lot of values (usually between 500 and 2000) are recorded and sorted in a
histogram. A time between the two histograms corresponding to the |0⟩ and
to the |1⟩ state is chosen as a threshold 𝑡th for calculating the qubit population
probability as, e.g., 𝑃(|1⟩) = #(𝑡 < 𝑡th)/#tot (# denotes the number of events).

3.3.4 Basic experiments for characterizing quantum systems

Excitation spectrum

To find the resonance frequency at a particular flux bias Φext, long microwave
pulses with varying frequencies 𝑓µ are applied to the qubit after which the
qubit is read out. The duration of this pulse has to be much longer than the
decoherence times of the qubit to ensure that the qubit is in the stationary limit
of Rabi oscillations (Sec. 2.1.4). The pulse sequence and the result are shown
in Fig. 3.6(a).
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Figure 3.6: Excitation spectrum of the qubit. The upper inset of (a) shows the

pulse sequence. The upper blurry curve symbolizes the spectrum of the qubit.

At different biases (indicated by two grey arrows) long microwave pulses (500 ns)

are applied on the qubit and then the readout is performed. A plot of the full

excitation spectrum of sample 2 (in the lower inset of sample 1) as a function of

the external flux is shown with the excitation probability 𝑃(|1⟩) encoded in color.

(b) A zoom into the spectrum (with recalculated qubit frequency 𝑓𝑞) reveals two

anti-crossings due to coupled TLSs (measurement on the left, simulation on the

right).
41



3 The phase qubit

Since the induced current in the qubit loop is proportional to the externally
applied flux, we can express the resonance frequency of the qubit 𝑓q (Eq. (3.11))
as

𝑓q = 𝑓p

4

√1 − (
Φext − Φoff

Φc )

2
, (3.25)

where 𝑓p is the plasma frequency of the qubit and Φc is the critical flux
corresponding to the critical current of the Josephson junction 𝐼c. Φoff accounts
for a possible offset of the external flux. In particular, this factor plays an
important role when considering the resonance frequency of the qubit as a
function of the flux generated by the AWG only. Then, the flux bias produced
by the current source tuning the qubit potential to the working point is carried
by Φoff. In further analysis, we will rather use the qubit frequency 𝑓q than
Φext. Φext is not only usually given in arbitrary units, but the qubit frequency
is also more convenient for comparing the experimental results with theoretical
predictions.

At some qubit frequencies, the qubit resonantly interacts with a parasitic
system (two-level tunneling system, TLS), and the spectrum shows a level
splitting. In Fig. 3.6(b) two anti-crossings can be recognized, which were
extensively studied in my diploma thesis [Gra10]. The line width of the
spectrum depends on the microwave power which is proportional to the Rabi
frequency of the qubit. Thus, in the simulation, one only has to adjust the Rabi
frequency which is usually ≈ 5MHz for qubit spectroscopy.

Decoherence times of the qubit

Once the qubit resonance is found as function of the external flux, one can
perform measurements to characterize the qubit's coherence times 𝑇1 and 𝑇2.
The 𝜋-pulse duration to excite the qubit corresponds to the first peak of the
Rabi oscillations (inset in Fig. 3.7(a)). The damping rate of the oscillations
1/𝜏 was measured to be 100 ns. To extract the decay time 𝑇1 (Sec. 2.1.5),
the qubit is excited by a 𝜋-pulse in each measurement cycle and then read out
after waiting for different times 𝑡 yielding the characteristic exponential decay
(Fig. 3.7(a)). The Ramsey fringes (Sec. 2.1.6), which result when applying two
𝜋/2-pulses with varying waiting time 𝑡 and some detuning of the qubit from the
microwave frequency 𝛿 in-between, yield the dephasing time 𝑇2 (Fig. 3.7(b)).
The pure dephasing time 𝑇∗

2 can be extracted by using Eq. (2.27). To get reliable
values for qubit decoherence times, they have to be measured far away from the
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Figure 3.7: Characterization of the qubit. Measurements of the exponential decay

and Rabi oscillations (a) and Ramsey fringes (c) are shown. The simulated curves

were renormalized (scaled and shifted) to fit the experiment.
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Figure 3.8: Being in resonance with a TLS, the qubit population starts to oscillate

between the qubit and the TLS. Close to the TLS resonance, the oscillations are

faster but with a smaller amplitude, resulting in a chevron-like pattern.

anti-crossing as they can be very strongly suppressed by the TLS [Mar+05].
The extracted decoherence times 𝑇1 and 𝑇2 of ≈ 100 ns are in good agreement
with the damping rate of Rabi oscillations (Eq. 2.58).

Decoherence times of TLSs

Since TLSs behave in the same manner as qubits, they are characterized by
performing the same experiments. The only difference lies in the excitation
and readout. Both procedures can be achieved by swapping the qubit state with
that of the TLS, by tuning the qubit in resonance with the TLS of interest and
waiting for a full oscillation (Fig. 3.8). It is worth to mention that although
there is no other way to readout a TLS, it can be excited directly by the
microwaves [Lis+10a]; [Bus+10].

Another very important result of Fig. 3.8 is the obvious sensitivity of the
method to detect TLSs. Although the spectrum in Fig. 3.6(b) shows only two
TLSs, the time-domainmeasurement reveals a weakly coupled TLS in-between.
This feature will play a key role in the following experiments.
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4 Two-level tunnelingsystems(TLSs)

The tunneling model, which will be discussed in the first section of this chapter,
is a phenomenological model developed about 40 years ago. Its aim was to
describe the physics behind amorphous solids, or glasses, showing very peculiar
and unexpected low temperature characteristics. Although at those times the
glass community had only access tomacroscopic quantities being average values
over a very large number and broad distribution of TLSs, the tunneling model is
based on a single tunneling system. Nowadays, it is possible to control quantum
systems at the single excitation level. In particular superconducting qubits show
coherent interaction with parasitic two-level systems, which is briefly described
in the second section. In fact, there are very strong indications that the still
existing 1/𝑓-noise, the limited qubit coherence times, and also parasitic but
very coherent quantum systems originate from microscopic tunneling states.
Therefore, it is important to verify the tunneling model also on the single TLS
level and unmask the physics behind the decoherence effects.

4.1 Tunnelingmodel

4.1.1 A universal model for glasses

Till the year 1971, the thermal characteristics of solids, like the thermal conduc-
tivity and heat capacity, were successfully described by theDebyemodel [EH00]
which explained the𝑇3-dependenceof bothmentionedquantities at low tempera-
tures below≈ 1K. For amorphous solids, no significantly different behaviorwas
expected. This is why the publication of Zeller and Pohl [ZP71] received great
attention showing that at low temperatures amorphous quartz has completely
different characteristics than its crystalline counterpart (Fig. 4.1). Obviously,
glasses have a large number of defects (Fig. 4.2). However, according to the
Debye model, single defects should not play a role at low temperatures. Due
to the long wavelength of thermal phonons, a point-like atomic defect does
not introduce scattering so that the mean free path of phonons is limited by
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Figure 4.1: According to the Debye model, the thermal conductivity Λ (a) and

the heat capacity 𝐶 (b) of solids at low temperatures scales as 𝑇3. Point-like

defects, due to the long phonon wavelengths, should not play a role. Zeller and

Pohl [ZP71] (a) showed the first clear discrepancy between the Debye model and

the characteristics of amorphous solids, which, among others, was also confirmed

by [Las+75].

the dimensions of the sample. Furthermore, it was completely unclear, how
defects should be able to store energy. Another very interesting fact is the
universality of such low temperature behavior. It turned out, that also other
types of glasses, and even inorganic and organic polymers show almost same
characteristics as amorphous silica [EH00]. This lead to the development of a
lot of new models [Phi81].

4.1.2 Tunneling systems

Phillips [Phi72], and independently also Anderson et al. [AHV72], developed in
1972 the tunneling model. This model has been tested already over four decades
and till now it provides correct results for a great variety of experiments on amor-
phous solids, e.g. phonon scattering, sound velocity, ultrasonic measurements,
interactions with external dc and ac electric fields, dielectric characteristics,
and last but not least the strain dependence of single quantum systems coupled
to the phase qubit studied in this work. Although the tunneling model was a
breakthrough, there are also measurements being not fully consistent with the
assumptions that are usually made, e.g. [BH77]; [Ska10].
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(a) (b)

Figure 4.2: (a) A crystalline structure of SiO2 is shown, with silicon atoms colored

in red and oxygen in blue. (b) An amorphous glass might have not only ``simple''

defects, but also atoms, or a small group of atoms, having two stable positions with

a nonzero tunneling probability between them. Nevertheless, the stoichiometric

coefficients have to stay constant. (Picture taken from [Hun07])

The tunneling model is based on defects, which, however, are not just
impurities in the lattice but form bistable systems. Fig. 4.2(b) shows three
different possibilities, how amorphous quartz can look like on atomic scale
(copied from [Hun07]). Not only tunneling of single atoms between two
positions might occur, but even tunneling of a group of atoms is imaginable.
It is important to mention that on larger scale, the stoichiometric coefficients
stay unchanged, since oxygen atoms still need two neighbors and silicon atoms
three. Quantum mechanically, such a two-level tunneling system (TLS) can be
described by using a double well potential (Fig. 4.3). The important parameters
are on the one hand the asymmetry energy 𝜀, and on the other hand the tunneling
mass 𝑚, the distance between the two wells 𝑑, the barrier height 𝑉, and the
ground state energy 𝐸0, which are combined to the tunneling energy

∆ = 𝐸0𝑒−𝜆, 𝜆 = 1
ℏ

𝑑√2𝑚𝑉 (4.1)

by using the WKB-approximation. The Hamiltonian for a TLS has then the
form

𝐻TLS = 1
2 (

𝜀 ∆
∆ −𝜀) . (4.2)
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Figure 4.3: (a) According to the tunneling model, a TLS is described by a double

well potential with the parameters being the distance between the two wells 𝑑,
the ground state energy of one well 𝐸0, the barrier height 𝑉, the tunneling mass

𝑚 and the asymmetry energy 𝜀. All parameters except 𝜀 can be combined into the

tunneling energy ∆ (see text), so that the energy splitting of the eigenstates (b) of

a TLS is 𝐸 = √∆2 + 𝜀2.

Diagonalization of this matrix yields for the level splitting of the eigenstates

𝐸 = √∆2 + 𝜀2. (4.3)

Obviously, all tunneling systems in an amorphousmaterial are different so that
for a macroscopic analysis a concrete distribution of the parameters is required.
The success of the tunneling model is based on two assumptions [Phi81]. The
first one is to take the independent parameters 𝜀 and 𝜆 for the distribution and
to assume that the distribution is constant in the intervals 𝑑𝜀 and 𝑑𝜆, i.e.

𝑃(𝜀, 𝜆) = 𝑃0 𝑑𝜀 𝑑𝜆. (4.4)

The second assumptions concerns the way of coupling between the TLSs and
their environment, which is briefly discussed in the following.

4.1.3 Coupling of TLSs to their environment

Being local defects, the TLSs couple to local strain, e.g. phonons or static
deformation of the sample. In such experiments, e.g., the phonon scattering or
the ultrasonic absorption were studied [Cla+94]. Furthermore, charged TLSs
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interact also with external electric fields due to their dipole character. The
interesting values in that case are, e.g., resonance measurements or dielectric
losses [VH77]. In particular in the case of elastic fields, a change of basically
all parameters of the double well potential (Fig. 4.3) is expected. However,
measurements suggest that the change of the asymmetry energy dominates the
modification of ∆ by much [EH00]. In principle, the reason is the large factor
𝜆, whose variations are exponentially suppressed. Therefore, the corresponding
perturbation Hamiltonian reads

𝐻per = 1
2 (

𝛿𝜀 0
0 −𝛿𝜀) . (4.5)

The variation of 𝜀 scales as

𝛿𝜀 = 2𝛾𝜀d (4.6)

where 𝜀d denotes the mechanical deformation, e.g. due to phonons or external
strain, and 𝛾 is the so-called deformation potential of the respective TLS
describing its strength of the strain dependence with a rough magnitude of
1 eV [BH77]. Taking into account the perturbation, the function of the TLS
excitation energy (Eq. 4.3) has the form

𝐸 = √∆2 + (𝜀 + 𝛿𝜀)2. (4.7)

On the other hand, assuming the TLS to be a charged dipole, the asymmetry
energy can be also controlled by external electric fields. Then, 𝛿𝜀 = 2 ⃗𝑝 ⃗𝐸 with ⃗𝑝
and ⃗𝐸 being the TLS electric dipole moment and the externally applied electric
field, respectively. In our case, the TLS dipole moment plays in so far an
important role as it is responsible for coupling the TLS to the qubit.

4.1.4 An example tunneling system: KCl:Li

To get a more concrete image of tunneling systems, in the following an artificial
and very well studied example is presented. Harrison et al., under supervision
of Pohl, investigated the characteristics of the salt KCl doped with Li+-ions
(KCL:Li). They published their results in [HPP68], which is also summarized
in [EH00].
A cross-section of the crystal KCl is schematically shown in Fig. 4.4(a). The

Li+-ion is smaller than K+-ion and has therefore eight equal corners of a cube
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(a) (b)

𝐸

(1)

(3)

(3)

(1)

∆

∆

∆

Figure 4.4: (a) The KCl lattice is shown (K+ in blue and Cl− in red) with a K+-ion

replaced by a small Li+-ion. The ion sizes on the picture correspond to real

proportions: 𝑟Cl− = 1.81Å, 𝑟K+ = 1.33Å and 𝑟Li+ = 0.6Å. (b) This results in eight

eigenstates, where the first and the second excited states are triply degenerated

(see text). Among this, the levels are separated equidistantly.

to occupy. From the measurements shown in Fig. 4.5 the main parameters of
this eight-well potential can be extracted. The tunneling distance of the Li-ions
along an edge is 1.4Å, which is a bit less than half the lattice constant, while
the barrier height corresponds to 𝑉/𝑘B = 100K. Due to symmetry reasons, the
eight states have only four different energies. The ground and the highest excited
states, which correspond to a superposition of all wells with the same phases and
with 𝜋-shifts between the neighboring wells, respectively, are non-degenerated.
The other two states are triply degenerated, where either the phases of opposite
sides (first excited state) or of neighboring edges (second excited state) of the
cube differ by 𝜋. Apart from degeneracy, the energies of the eigenstates differ
by the same amount, so that the results of this model resemble strongly those of
a double-well potential. The energy splitting is estimated to be ∆ = 10−4 eV
which corresponds to 24GHz. Such a tunneling system has obviously a large
electric dipole moment, which was also extensively investigated. For example,
in external electric fields the degeneracy is lifted.

Furthermore, this experiment allows one to also investigate the tunneling
behavior as a function of the tunneling mass. Harrison et al. used two isotopes
of Li: 6Li and 7Li. The result is shown in Fig. 4.5(b). The heavier ions have a
larger contribution to the specific heat. By rescaling the temperature axes, the
points of both measurements can be ``tuned'' to lie on one curve. One can see
that the theoretical curve then fits both isotopes perfectly.
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Figure 4.5: (a) Below 1K the tunneling Li+-ions start to dominate the phonon con-

tribution to the specific heat that has a 𝑇3 dependence on temperature in undoped

KCl salt. (b) The points and the theory corresponds to the difference between the

specific heat of doped and undoped KCl, in other words to the difference between

the two curves in (a). Furthermore, also the different contributions to the specific

heat of the two isotopes 6Li+ and the slightly heavier 7Li+ were investigated.

4.2 A TLS seen by the qubit

4.2.1 Incoherent interaction

Superconducting qubits are promising candidates for being used in a sold-state
quantum computer. While a decade ago only qubit resonances could be observed
[NPT99]; [Mar+02], nowadays the coherence times exceed the duration of an
elementary quantum gate by many hundred times. This quite rapid progress
was not only achieved by clever engineering, but also by an intensive material
research [Kli+09]; [Ska10]. In future, the defect states in the usedmaterials will
be the limiting factor for further improvement of the qubit coherence [Pal+13].
The confidence is growing that incoherent TLSs, or fluctuators, cause the
mysterious 1/𝑓-noise [Shn+05]. This type of noise is present in a very large
variety of systems suggesting to be ubiquitous [Pre78]. For the superconducting
qubits, the most important sources for decoherence effects are charge and
flux noise and noise of the critical current of the Josephson junction, as
well as dielectric losses [Pal+13], all of which can be explained by spurious
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defects located inside the junction or on the surfaces of the substrate and the
superconductor. The decoherence of the qubit-TLS system was extensively
studied in [MSM09].

4.2.2 Coherent interaction

Beside the incoherent interaction, a superconducting qubitmight be also strongly
and coherently coupled to a TLS. In particular, the phase qubits suffer from
these parasitic systems due to their relatively large JJ. First observations of
anti-crossings in the qubit spectra were published by the group of J. Martinis
in 2004 [Sim+04], and four years later, with improved characteristics of phase
qubits, Neely et al. demonstrated full control of the TLS state [Nee+08]
using TLSs with coherence times even exceeding that of the qubit [MSM09];
[Lis+10b]; [Gra+11]. For example, a coherent oscillation of the excitation
between the qubit and a TLS is plotted in Fig. 4.6(b). In agreement with the
tunneling model is the fact that the TLS distribution is reset when the sample is
warmedup to about 20K, on the one hand allowing to study aTLSensemblewith
only one sample [Sha+10], on the other hand, however, making it significantly
difficult or impossible to use them for quantum computing. The most concrete
model of a TLS was provided by Cole et al. assuming oxygen atoms tunneling
inside the amorphous AlO1.25 layer [DuB+13]. Fig. 4.6(a) shows the ground
state in such a case.

4.2.3 Alternative models

Beside the tunneling model, there are also other models phenomenologically
explaining the anti-crossings in the qubit spectra. Each theory describing a
potential quantum system interacting with the phase qubit has to suggest a
coupling mechanism. Therefore, we have to look at the full Hamiltonian of
superconducting qubits:

𝐻q = 𝐸C( ̂𝑞 − 𝑛G)2 + 𝐸L(�̂� − 𝜑ext)2 − 𝐸J cos 𝜑. (4.8)

The Hamiltonian consists of a harmonic potential modulated by the cosine term.
The conjugated variables are still the charge operator ̂𝑞 and the Josephson phase
�̂� fulfilling [ ̂𝑞, �̂�] = 𝑖ℏ. The first term corresponds to the charging energy which
can be controlled by a gate electrode 𝑛G, the second term is responsible for the
magnetic energy which depends on the external normalized flux 𝜑ext and the
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Figure 4.6: (a) A ``photograph'' of a possible TLS ground state which is formed by a

tunneling oxygen atom inside the JJ with a stoichiometry of AlO1.25 [DuB+13]. (b)

Observed and fitted coherent oscillations between the phase qubit and a TLS. The

amplitude of the oscillations (red curve) can be derived analytically [MSM09].

last part determines the energy of the Josephson junction (JJ). The idea is now
to think about physical systems which might couple to one or to several of these
three terms. All theories have in common that they are based on microscopic
defects. Adetailed analysis of experimental results could not completely exclude
some theories, however, it provided a restriction on the coupling mechanism
by confirming a basically zero longitudinal coupling [Col+10]). Therefore,
the effective interaction Hamiltonian between the qubit and the TLS can be
assumed to have only a perpendicular component (see also Sec. 5.3.1) being
responsible for the coherent energy oscillations (Figs. 3.8 and 4.6(b)). In the
case of coupling to electric fields, this condition is fulfilled right from the start.
The most obvious coupling mechanism is the electric interaction, predom-

inantly inside the JJ due to the strong electric fields required for a coupling.
While in this thesis we consider tunneling of charged atoms, Agarwal et al.
recently published a polaronic model of two-level systems suggesting that all
TLSs in amorphous solids observed so far are actually electrons dressed by
optical frequency phonons tunneling between atoms [Aga+13]. Other possible
candidates for the parasitic systems are entangling bonds or Andreev bound
states [Sou+09]. For the latter two models it has to be investigated whether and
how they couple to strain fields. The flux noise might be introduced by a large
number of free spins on the surface of the superconductor [Sen+08]. However,
due to the largemagneticmoment required for an appropriate interaction strength
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4 Two-level tunneling systems (TLSs)

(105 electron spins, [Col+10]), this idea can be ruled out for explaining coherent
interaction with the phase qubit. The last possibility to couple to the qubit is via
modulation of the critical current of the JJ, in other words coupling to cos 𝜑.
Interestingly, this approach was the first one considered to be responsible for
inducing anti-crossings in the qubit spectrum [Sim+04]; [FI07]. To understand
the principle, we have to apply the model of superconducting channels existing
in the JJ making it transparent for cooper pairs [KY05]. Then, either again a
tunneling system or a hopping electron between an impurity and the conduction
band of the electrodes can open and close such a conduction channel. This
has also to be investigated, how far the results presented in this thesis can be
reproduced.
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5 Experimental

The aim of my PhD thesis was to investigate the behavior of two-level sys-
tems (TLSs, Sec. 4) coupled to a superconducting phase qubit (Sec. 3) as a
function of the externally applied mechanical strain and thus verify the tun-
neling model [Phi72]; [AHV72]. In the first section, all necessary parts and
pre-calculations are presented concerning the bending of the chip. The two
spectroscopy techniques used for the measurements are explained in detail in
the second section. By chance, in one spectrum we found a very peculiar,
non-linear and non-hyperbolic TLS trace, which could be readily qualitatively
and quantitatively explained and simulated by assuming two TLSs interacting
coherently with each other via dipole-dipole coupling. The full description of
the formed tripartite system is presented in the third section.

5.1 Preparations

5.1.1 Sample holder

In order to bend the chip with a piezo actuator, we firstly had to construct a
completely new sample holder. It is shown in Fig. 5.1 and described in much
more detail (including engineering drawings) in [Pei12]. The main part of the
sample holder consists of two pieces: the carrier plate with a notch for the chip
and the carrier housing where the piezo is mounted. The chip is embedded
into the notch ``face down'' and fixed from the side of the housing with a
self-adhesive copper foil. The piezo is glued onto a support plate which can be
displaced very accurately by a fine-thread screw. To minimize the shear forces
on the piezo and to have a well defined point on the chip on which the force
generated by the piezo is acting on a gold plated zirconia ball was glued on the
piezo.
According to the datasheet, the used piezo actuator1 has a nominal displace-

ment of 65 nm/V in the approved voltage range between −30 and 120V. Being
1PICMA®Piezoelectric Stack Actuators, P-882.11
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(a) (b)
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Figure 5.1: (a) Schematic of the sample holder. (1) The carrier material is a

copper-beryllium alloy. The chip with the qubit (2) is held by a notch from one side

and by a self-adhesive copper foil (3) from the other side. The chip is bent with

the help of the piezo actuator (4) whose force is mediated to practically a single

point on the backside of the chip via the zirconia ball (5). For accurate positioning

(see text), the piezo can be shifted by a screw (6). Both qubits on the chip (purple

rectangles) are connected to the lines via bonding wires (7) through a hole in the

carrier plate. An image of the sample holder is shown in (b). The SMA-connectors

were mounted only for the determination of the piezo constant via capacitance

measurements.
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Figure 5.2: The calibration of the piezo actuator at 4.2K. Measuring and comparing

the voltage ranges for corresponding capacitances formed by the gold plated ball

and the housing yields a reduction factor of ≈ 5 of the piezo constant between

room and liquid helium temperature.

56



5.1 Preparations

not in contact, the gold plated ball and the copper foil on the carrier plate together
with the housing form the capacitor 𝐶bh which allows the characterization of
the piezo at low temperatures. Fig. 5.1(b) shows the sample holder modified
specially for this type of measurement with the SMA connectors used to con-
nect the ball-housing capacitor to the high frequency signal of the capacitance
meter2. At room temperature, the initial distance between the ball and the
plate can be easily adjusted and the capacitance curve shows also the expected
hysteresis of the actuator (Fig. 5.2). While cooling down to low temperatures,
however, it turns out that the expansion coefficient of the metal is much higher
than that of the piezo stack (will be discussed some lines below) yielding very
rapidly a contact between the housing and the ball. Therefore, several cool
downs are required until the distance between the ball and the carrier plate is
adjusted via the fine-thread screw so that the capacitance at low temperature is
in a proper range. The capacitance values for the whole piezo range (Fig. 5.2)
of 150V at 4.2K correspond to a range of only ≈ 30V at room temperature
yielding a factor of 5, which is also in correspondence with [Tay+06]. Taylor
et al. measured a piezo actuator of the same type but with slightly different
dimensions and, although they decreased the temperature only down to 40K, a
linear extrapolation of their results to 4.2K yields exactly the factor 5. Since
we do not expect the piezo characteristics to change significantly at 30mK, the
value of the piezo constant is evaluated to be 13 nm/V. Furthermore, Taylor
et al. [Tay+06] also measured the expansion coefficients of copper and their
piezo actuator directly. Again, extrapolating their curves3 down to very low
temperatures yields a shrinking of 33 µm for a 9mm bulk of copper, while the
length of the piezo ceramic changes only by 11 µm. The difference is about
22 µm. This value is in agreement with our observations. Even when adjusting
the distance to the maximal verifiable value of 10 µm between the ball and the
copper foil4, the ball comes into contact with the copper foil very quickly after
starting to cool down the setup.
Before cooling down the sample holder with the qubit chip to the base

temperature of 30mK, we adjust the ball to be in contact with the copper foil.
This is the easiest way to ensure a permanent contact between the chip and the

2Andeen Hagerling, 2500A 1 kHz ultra-precision capacitance bridge
3Linear approximation of the expansion coefficients of the data in [Tay+06]: copper:

𝛼Cu(𝑇) = {0, 𝑇 < 14K; 0.13 ⋅ 10−6/K ⋅𝑇−1.8 ⋅ 10−6, 14K < 𝑇 < 140K; 16.5 ⋅ 10−6/K, 140K <
𝑇 < 300K}; piezo stack: 𝛼p(𝑇) = 0.021 ⋅ 10−6/K ⋅ 𝑇 + 0.66 ⋅ 10−6.

4In the maximal voltage range between −30 and 120V the maximal displacement is about
10 µm at room temperature.
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Figure 5.3: (a) Geometrical considerations allow to get a feeling for the chip

deformation. Approximating the chip surface to have a uniform deformation (like

bent on a cylinder), the very small 𝜁 and 𝑟 ≫ 𝑎 yield a strain of 𝜀d = 3 ⋅ 10−7 at 1V
on the piezo (𝑙 = 13 nm). This corresponds to a bending radius of 𝑟 = 370m and

to an angle of 𝜁 = 5 ⋅ 10−4° (see text). (b) Numerical simulation of the bending

process yields a more precise value of 𝜀d = 7.8 ⋅ 10−7, which is in the same order

of magnitude.

ball. Therefore, we can expect the chip to be initially pre-bent by ≈ 20 µm,
however, for the experiment itself, this is completely irrelevant since it is just a
constant offset in strain.

5.1.2 Bending of the chip

Fig. 5.3(a) shows an exaggerated sketch of the bent chip. One can easily make
rough estimations of the deformation by assuming the chip surface to have a
cylindrical shape, because the notch is holding the chip at two opposite sites.
The size of the chip, which corresponds to the middle line, is 𝑎 = 6.2mm and it
has a thickness of 𝑑 = 400 µm. When displacing the center of the chip by 𝑙 from
its resting position, the chip surface gets elongated by 𝛿𝑎. The bending angle 𝜁
and radius 𝑟 as a function of 𝑎 and 𝑙 are evaluated by using the two equations

𝑎 = 2𝜁𝑟 and 𝑙 = 𝑟 − 𝑟 cos 𝜁 ≈ 1
2

𝑟𝜁2 (5.1)

yielding

𝑟 = 𝑎2

8𝑙
and 𝜁 = 4𝑙

𝑎
. (5.2)
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5.2 Tuning the TLSs

The deformation coefficient 𝜀d for such a simple case can be expressed as

𝜀d = 𝛿𝑎
𝑎

=
2𝜁(𝑟 + 0.5 𝑑) − 2𝜁𝑟

𝑎
=

𝜁𝑑
𝑎

= 4𝑙𝑑
𝑎2

𝑙=13 nm
≈ 3 ⋅ 10−7 𝑉p

V
. (5.3)

For each Volt on the piezo, 𝑙 increases by 13 nm resulting in an enhancement of
the deformation 𝜀d by 3 ⋅ 10−7.
A much better estimation of the deformation parameters is, however, a finite

element simulation. We used the engineering program Autodesk Inventor to
model the chip bending as a stress analysis. The model of our sample holder
was implemented into the program as close to reality as possible, including the
design, the zirconia ball and, of course, the corresponding parameters of all
used materials. The result is shown in Fig. 5.3(b). The displacement of the chip
center from the point of origin corresponds again to 1V on the piezo actuator,
which is 13 nm. The deformation profile has an elliptic-like form. The two black
dots on the chip symbolize the position of the qubits (or JJs). At these places the
local strain results to be 7.8 ⋅ 10−7 being in the same order as the geometrically
estimated value. Another very interesting outcome of the simulation is the
spring constant of the chip, in other words the back acting force on the piezo.
In the case of this force being not negligible, the piezo displacement would be
strongly affected. At room temperature, the piezo stiffness [PI], defined as the
generated maximal force over maximal displacement, is 24N/µm for our piezo.
Compared to this, the simulated spring constant of the silicon chip of 0.7N/µm
is indeed negligible. Unfortunately, it is difficult to find the piezo characteristics
at low temperatures. Assuming that the acting force of the piezo decreases in
the same manner as the displacement [Pei12], the stiffness remains more or less
the same and the back action of the chip can be neglected.

5.2 Tuning the TLSs

After constructing and analyzing the experimental features of the sample holder,
we could test whether the TLSs feel the generated strain and change their
resonance frequencies. The first measurements were performed with sample
1 (Sec. 3.3.1) due to its high number of TLSs. We could already observe
first hints for the shift of the TLS resonance frequencies by recording standard
spectra as in Fig. 3.6. By using the so called multi photon spectroscopy protocol
(MPS), we succeeded in taking the TLS traces more systematically. The rather
low coherence times of sample 1 (≈ 13 ns) did not allow us to also perform
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Figure 5.4: Full qubit spectra recorded at different piezo voltages and shifted

horizontally for clarity. Three anti-crossings moving with strain are marked by blue

rectangles.

time domain experiments. However, by using a more coherent qubit (≈ 100 ns,
Sec. 3.3.1), we developed a new technique which is much more sensitive and
significantly decreases the measuring time (single photon spectroscopy, SPS).

5.2.1 Multi Photon Spectroscopy (MPS)

The most obvious way to verify whether the TLSs feel the changing strain is
to observe the moving anti-crossings in the qubit spectrum. The spectra were
recorded as explained in Sec. 3.3.4 at several piezo voltages. In Fig. 5.4 some of
suchmeasurements are shownwhich are shifted horizontally for better visibility.
Three moving anti-crossings are marked showing a random direction and strain
dependence already at this stage.

In principle, it is superfluous to record a whole spectrum at each voltage.
Instead, only the information whether there is a TLS at a frequency or not
is interesting. Therefore, we fit the qubit resonance curve as a function of
the external flux by the theoretically derived formula in Eq. (3.25), and try
to excite the qubit at each flux, and voltage, only at the expected resonance
frequency. Fig. 5.5 visualizes this idea. The points along the yellow curve are
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Figure 5.5: For the MPS, only the points along the expected qubit resonance curve

(yellow) are measured, or, as shown on the plot, extracted from the full spectrum.

In such a curve, the anti-crossings are represented as dips, because in the middle

of the anti-crossing the qubit-TLS system does not get excited. Measuring and

merging such curves into a 3D plot yield the MPS.

extracted from the spectrum and plotted on the right side of the figure. The TLS
resonances, being anti-crossings on the spectrum, now turn into dips in 𝑃(|1⟩).
The reason is that in absence of a TLS, the qubit gets excited normally by a
resonant microwave pulse and yields a corresponding excitation probability. In
resonance with a TLS, however, due to the level repulsion the qubit-TLS system
is not excited and the qubit population is therefore nearly zero. Merging such
curves into a 3D plot with the piezo voltage as the horizontal axis yields an
overview image as shown in Fig. 5.6, where the TLS resonances appear in bright
color. Such a measurement is referred to as the multi photon spectrum (MPS).
Several key featuresof the tunnelingmodel (Sec. 4.1) canbeclearly recognized

in Fig. 5.6 [Gra+12]; [Pei12]. First of all, there are a lot of linear traces, some of
which reveal very weakly coupled TLSs which cannot be identified in a standard
spectrum as such. Linear frequency dependences arise in the case when the
tunneling energy∆ is much smaller than the asymmetry energy 𝜀 (the other way
around, 𝜀 ≪ ∆, results in completely horizontal traces, which are, however,
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Figure 5.6: In the MPS, the resonance frequencies of TLSs are revealed by bright

traces indicating lower qubit population (𝑃(|1⟩) encoded in color). Most of the

traces have a linear strain dependence, which is the case if ∆ ≪ 𝜀. On the left of
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jumping between two values (see text). The most important feature, however, is

the hyperbolic trace where 𝜀 ≲ ∆.
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Figure 5.7: (a) A histogram of the asymmetry energy dependence on piezo voltage

of 41 TLSs. The shape of the histogram strongly resembles a Gaussian distribution

(solid curve). (b) The extracted frequencies and the fit to the hyperbolic TLS on

Fig. 5.6 is plotted (see text).

hardly observed). In Fig. 5.7(a) a histogram of 41 TLSs is shown covering a
range of the deformation potential(Eq. 4.6) of

|𝛾| = 1
2

|
|
||

𝛿𝜀
𝛿𝜀d

|
|
||

≲ 0.3 eV. (5.4)

This number is slightly smaller than expected in glasses (𝛾 ≈ 1 eV) [BH77].
However, it is of the same order ofmagnitude. One reason for the different values
might be that TLSs with larger deformation potentials are strongly asymmetric
and therefore coupled to the qubit more weakly (Sec. 5.3.3). Furthermore, the
number of visible TLSs in our junction is about 10 per GHz, so that the TLS
density is about two orders of magnitude smaller than the expected number in
glasses [Pei12]. Another very interesting feature is a TLS possessing telegraphic
noise of its resonance frequency dependence around the piezo voltage of −20V.
Such structures are predicted by the tunneling model due to a possible direct
interaction between TLSs [AH75]. A coherent TLS coupled to the qubit might
interact with another TLS jumping incoherently from one well to the other and
thus changing the excitation energy of the visible one. In this case, the average
resting time is about one hour. An example of a coherent TLS-TLS coupling
is presented in the next section. The last but not least striking feature is the
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broad, nonlinear TLS trace extending over the whole plot. One can extract its
resonance frequencies (Fig. 5.7(b)) and fit them with the hyperbolic function
(Eq. (4.7))

𝑓TLS = 1
ℎ√∆2 + (2𝛾𝜀d(𝑉p)), (5.5)

where

𝜀d(𝑉p) = 7.8 ⋅ 10−7

V
(𝑉p − 𝑉0) (5.6)

with𝑉0 being the voltage offset. The fit yields∆/ℎ = 12.4GHz for the tunneling
frequency and 𝛾 = 0.2 eV for the deformation potential.

5.2.2 Single Photon Spectroscopy (SPS)

Amore coherent phase qubit (sample 2, Sec. 3.3.1) opened a door to time domain
measurements. It allowed us not only to verify quantum protocols like Ramsey
fringes (Fig. 3.7) or echo sequences [Hah50], but also to observe coherent
oscillations with strongly coupled TLSs (Fig. 3.8) and even implement more
complex protocols, for example entangling two TLSs [Gra10]. In particular, to
detect TLSs, measuring the time domain oscillations is a much more sensitive
way than recording a spectrum [Sha+10]. The reason is that the line width of
the qubit resonance of ∼ 1/𝑇1 ≈ 10MHz limits the visibility of anti-crossings.
For example, the weakly coupled TLS being responsible for oscillations in the
middle of Fig. 3.8 of ≈ 12MHz, can hardly be recognized on the corresponding
spectrum (Fig. 3.6(b)). One further disadvantage of the MPS is the high
sensitivity to qubit resonance drifts, so that a time consuming calibration
procedure has to be repeated several times to get accurate results.

A significant improvement can be achieved by using the technique of the
single photon spectroscopy (SPS). The pulse sequence is shown in Fig. 5.8(a).
After exciting the qubit with a 𝜋-pulse at an energy preferably outside the region
of interest, the qubit is brought to the frequency to be tested, parked there for
some time 𝜏 S and read out afterwards. If there is no coupled TLS in the vicinity
of the waiting position, the qubit will just decay exponentially yielding a more
or less constant excitation probability independent of frequency. If the qubit
is resonantly exchanging energy with a TLS, even if it is weakly coupled, the
qubit's excitation probabilitywill be less in comparison to the previous casemost
of the time (Fig. 4.6(b)). Therefore, this measurement using only one photon is
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Figure 5.8: (a) The pulse sequence for the single photon spectroscopy (SPS) consists

of a 𝜋-pulse on the qubit and a waiting time 𝜏 S of about 45 ns. When the qubit

hits a resonance of a TLS (indicated by the anti-crossing on the right) the measured

qubit probability will be lower due to coherent energy exchange with the TLS. A

resulting curve at one piezo bias is shown in (b).

much more sensitive to TLSs [Sha+10]. Fig. 5.8(b) shows the qubit excitation
probability as function of 𝑓q at one piezo voltage with very sharp and deep dips
representing TLS resonances. While still yielding better results, the resolution
can be decreased, thus shortening the time needed to record a spectrum by a
factor of three. It is also clear, that the described procedure hardly needs a
calibration, except for the 𝜋-pulse. Due to the large microwave power required,
it is not sensitive to small drifts of the qubit resonance. Only the recalculation
from the flux bias to the frequency needs an additional measurement, which can
also be done after taking the spectrum, if needed.

If a TLS is of special interest, the waiting time should be made equal to
the swap time 𝜏 S = 1/2𝑣, where 𝑣 is the qubit-TLS coupling strength. For a
spectroscopymeasurement of all TLSs, 𝜏 S should be chosen so that the spectrum
reveals as many TLS traces as possible. To detect strongly (≥ 30MHz) as well
as weakly (≤ 10MHz) coupled TLSs and to stay within the qubit's coherence
times, we choose a 𝜏 S in the range of 40 − 50 ns, usually 45 ns.

The SPS is generated by composing the corresponding curves like in
Fig. 5.8(b). Usually, in our experiments, the qubit is excited at lower fre-
quencies. This is recommended, because at larger bias flux the qubit potential
has a stronger asymmetry which suppresses the excitation of the higher excited
states. However, while tuning the qubit to higher frequencies and then back to
lower energies for the readout, the qubit looses some of its population due to
interactions with other TLSs ``on the way'', which can be seen as a gradient of
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Figure 5.9: A comparison between the two spectra taken according to MPS (a) and

SPS (b). SPS is not only much more precise and has a much higher contrast, but it

also only takes approximately one third of the time needed for MPS.

the maximal excitation probability as a function on the qubit frequency. This
gradient, however, can be subtracted in data postprocessing.

Fig. 5.9 shows the comparison between MPS (a) and SPS (b). Already at
first sight one can see the increased sharpness and better TLS trace visibility.
While only ≈ 10 traces can be recognized on the MPS, the SPS reveals nearly
twice as many. One can argue, of course, that the run of the MPS was badly
calibrated, this can be in particular identified by the white-black double traces.
Such structures appear when the expected qubit resonance differs slightly from
the real one, e.g. due to flux drifts. In other words, the yellow curve in
Fig. 5.5 is not lying directly on the qubit resonance but slightly off. Then, the
qubit is excited less, and, more importantly, passing an anti-crossing the qubit
population first increases and then decreases again to zero. This confirms the
problem of calibration which is a very crucial task for taking the MPS. On the
other hand, the SPS also yields some artifacts in its spectrum, which, however,
do not affect the TLS visibility negatively. For example, choosing a fixed time
𝜏 S for all TLSs has the disadvantage, that the traces of TLSs with a coupling
strength to the qubit of 𝑣 ≈ 1/𝜏 S will appear as double curves with the real TLS
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Figure 5.10: An SPS of the same qubit as in Fig. 5.11 taken in December, 2012.

𝑃(|1⟩) is encoded in color.
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Figure 5.11: An SPS of the same qubit as in Fig. 5.10 taken in March, 2013. 𝑃(|1⟩)
is encoded in color.
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5.3 Two coupled TLSs

traces in-between. Being in resonance with such a TLS, the qubit gets its energy
back after 𝜏 S. Since the oscillation frequency between the qubit and the TLS
increases with detuning, the minimal qubit excitation is measured at a frequency
slightly different from the TLS resonance. This is also the explanation for the
``shadows'' visible around the TLS traces in general. Such structures can be
recognized clearly in Fig. 5.9(b), e.g. the two hyperbolas at the very top or
bottom of the plot and, in particular, in Figs. 5.10 and 5.11. Another point
concerns the mentioned loss of the qubit energy. Exciting the qubit at lower
energies, tuning it to higher frequencies and then back for the readout does not
only decrease the qubit population, but also introduces interference effects as
can be seen, e.g., in Fig. 5.10 between 40 and 70V.
Figs. 5.10 and 5.11were taken on the same qubit with a time difference of four

months and a warm up to room temperature in-between. On both plots, many
hyperbolic and linear traces can be recognized, but also several single abrupt
jumps. In particular, in the upper part of Fig. 5.11, one TLS trace is permanently
jumping between two frequencies. Another important observation is that the
distribution of TLSs and their traces changed completely due to the warm up.
Comparing SPSs of the same qubit but after a warm up to room temperature, one
can find linear and hyperbolic traces with the same strain dependence but shifted
in frequency and piezo voltage. However, many more temperature cycles and
measurements are required to be able to identify individual traces arising from
the same defects. To change the Al/AlO𝑥 barrier completely one has to go close
to the melting temperature, which the qubit would not survive5. Therefore, it is
easily comprehensible that at room temperature a lot of atomic arrangements in
the tunneling barrier of the JJ are conserved.

5.3 Two coupled TLSs

By chance, an SPS revealed a non-linear and also non-hyperbolic TLS trace
(Fig. 5.12(a)). The form rather resembles a stretched ``S'' with an anti-crossing
symmetrically on each side. We will refer to this TLS as TLS1. After further
investigation, the first impression was confirmed that this shape originates from
an additional TLS interacting with TLS1, called TLS2, which is, however,
hardly visible on the spectrum.

5For example, crystalline sapphire has its melting point at about 2000 °C.

69



5 Experimental

In principle, simple classical considerations of two interacting dipoles al-
ready explain the ``S''shape. Being in a stationary state, the dipole-dipole
interaction (Eq. (5.34)) introduces an energy shift, preferring one configuration
of two dipoles to another. This interaction also yields an energy exchange, i.e.
oscillations of one dipole are transferred to the other, which in quantum me-
chanics results in an anti-crossing. In this sense, 𝑔⟂ and 𝑔∥, being the coupling
strengths corresponding to the transversal energy exchange interaction and the
longitudinal energy shift, respectively, can be defined and fitted. However, this
model looks like being ``patched together'' and not all of the aspects resulting
from the tunneling model are taken into account. In the following, the complete
theory behind two interacting TLSs is presented, with one or the other surprising
result.

5.3.1 The Hamiltonian and the ``S''

The full tripartite Hamiltonian reads

𝐻 = 𝐻1 + 𝐻2 + 𝐻(𝑑)
q + 𝐻1q + 𝐻2q + 𝐻12. (5.7)

𝐻𝑖 (i={1,2}) is the Hamiltonian of the 𝑖th TLS, which is not a priori diagonal,

𝐻𝑖 = 1
2

𝜀𝜎𝑧 + 1
2
∆𝜎𝑥 (5.8)

with 𝜎𝑗 being the Pauli matrices, and 𝜀 and ∆ the asymmetry and tunneling
energy between the two wells, respectively. In contrast to the TLSs, the
qubit states only exist in one potential well resembling a harmonic oscillator.
Therefore, the qubit Hamiltonian is assumed to be diagonal initially, which is
denoted by the superscript (𝑑),

𝐻(𝑑)
q = 1

2
𝐸𝑞𝜏(𝑑)

𝑧 (5.9)

with 𝜏𝑗 being the Pauli matrices referring to the qubit. Since the coupling
between the qubit and the TLS is assumed to be of electrical nature [Mar+05],
the corresponding qubit operator6 is 𝜏(𝑑)

𝑥 , whereas the coupling of a TLS to its
6Another demonstrative explanation for the qubit coupling to E-fields to be 𝜏(𝑑)

𝑥 is the
following: In agreement with the double well potential, the two lowest states of a harmonic
potential can also be defined as |𝐿, 𝑅⟩ = (|0⟩ ± |1⟩)/√2. This corresponds to a particle located
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Figure 5.12: (a) SPS showing the region of interest. The S-shape and both

anti-crossings (marked by white arrows) on each side of the ``S'' can be clearly

seen. (b) The numerically calculated spectrum overlaid with the measurement

shows excellent agreement. The full spectrum, including the TLS2 hyperbola

(dashed) and the fully excited state (dotted), is plotted in (c).
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environment is established via the 𝜎𝑧 operator (modification of the asymmetry
energy). Thus, the coupling terms are

𝐻𝑖q = 1
2

𝑣𝑖𝜎𝑧,𝑖𝜏
(𝑑)
𝑥 (5.10)

𝐻12 = 1
2

𝑔𝜎𝑧,1𝜎𝑧,2, (5.11)

where the TLS1-TLS2 interaction is mediated via electric or elastic fields, or a
combination of both. For a deeper analysis, it is more convenient to go into the
eigenbasis of the corresponding subsystem. Therefore, we diagonalize the TLS
Hamiltonians via the unitary transformation

𝑈(𝛼𝑖) = (
cos 𝛼𝑖

2 sin 𝛼𝑖
2

− sin 𝛼𝑖
2 cos 𝛼𝑖

2
) (5.12)

with tan 𝛼𝑖 = −∆𝑖/𝜀𝑖 (Eqs. (2.8) and (2.9))7. The choice of 𝑈(𝛼𝑖) is so that

𝐻(𝑑)
𝑖 = 𝑈(𝛼𝑖)†𝐻𝑖𝑈(𝛼𝑖) = 1

2
𝐸𝑖𝜎

(𝑑)
𝑧,𝑖 . (5.13)

It is important to also mark the corresponding operators with the superscript
(𝑑). Although having the same mathematical representation, 𝜎(𝑑)

𝑗 are referring
to the eigenbasis of the TLSs, whereas 𝜎𝑗 operate on the physical space. The
diagonalization also transforms the 𝜎𝑧,𝑖 operators,

𝜎𝑧,𝑖 → 𝑈(𝛼𝑖)†𝜎𝑧,𝑖𝑈(𝛼𝑖) = sin 𝛼𝑖𝜎
(𝑑)
𝑥,𝑖 + cos 𝛼𝑖𝜎

(𝑑)
𝑧,𝑖 , (5.14)

and so the coupling Hamiltonians. The full Hamiltonian in Eq. (5.7), expressed
in the eigenbasis of the subsystems, reads

𝐻(𝑑) = 𝐻(𝑑)
1 + 𝐻(𝑑)

2 + 𝐻(𝑑)
q + 𝐻(𝑑)

1q + 𝐻(𝑑)
2q + 𝐻(𝑑)

12 . (5.15)

For numerical calculations and simulations (Sec. 2.2), this one or the Hamilto-
nian in Eq. (5.7) can be used to get exact results. For analytical analysis and
demonstrative representation, however, some important approximations can be

rather on the left or the right side (as the right and the left well) so that the coupling to the
E-fields is mediated by the operator 𝜏(𝑑)

𝑧 . After diagonalization, we get the eigenstates |0⟩ and |1⟩
while 𝜏(𝑑)

𝑧 transforms to 𝜏(𝑑)
𝑥 .

7It is assumed that ∆𝑖 is real.
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applied to simplify the problem significantly. The three coupling Hamiltonians
consist of two (Eq. (5.10)) or even four terms (Eq. (5.11)), e.g.

𝐻(𝑑)
12 = 1

2
𝑔( cos 𝛼1 cos 𝛼2 𝜎(𝑑)

𝑧,1 𝜎(𝑑)
𝑧,2 + sin 𝛼1 sin 𝛼2 𝜎(𝑑)

𝑥,1 𝜎(𝑑)
𝑥,2

+ cos 𝛼1 sin 𝛼2 𝜎(𝑑)
𝑧,1 𝜎(𝑑)

𝑥,2 + sin 𝛼1 cos 𝛼2 𝜎(𝑑)
𝑥,1 𝜎(𝑑)

𝑧,2). (5.16)

The ``xx''- and ``zz''-terms are easy to handle since these common couplings
introduce an anti-crossing for resonant systems and a constant energy shift,
respectively, as explained in the introduction to this section. The idea is to
neglect all ``xz''- and ``zx''-terms. For example, the matrix representation of
the 𝜎(𝑑)

𝑧,1𝜎(𝑑)
𝑥,2-operator is

𝜎(𝑑)
𝑧,1𝜎(𝑑)

𝑥,2 =
⎛
⎜
⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟
⎟
⎟
⎠

, basis =
⎡
⎢
⎢
⎢
⎣

|𝑒𝑒⟩
|𝑒𝑔⟩
|𝑔𝑒⟩
|𝑔𝑔⟩

⎤
⎥
⎥
⎥
⎦

, (5.17)

where |𝑒𝑔⟩, e.g., means that TLS1 is excited and TLS2 is in its ground state.
This corresponds to a modification of the eigenstates of TLS2 as a function
of the population of TLS1 without introducing an anti-crossing. The only
remaining question is whether the prefactors of the coupling terms are small
enough to be neglected. As it is shown in the following, the results won't
change qualitatively. For the qubit-TLS coupling this is obvious. While
the qubit energies 𝐸q are between 5 and 10 GHz, the coupling strength to
the TLSs 𝑣 is not larger than ≈ 50MHz according to our observations.
The 𝜏(𝑑)

𝑥 𝜎(𝑑)
𝑧,𝑖 -term slightly changes the qubit eigenenergy by a maximum of

√(7GHz)2 + (50MHz)2 − 7GHz ≈ 0.2MHz. In the case of TLS1-TLS2
coupling, one has to pay more attention. In our case, the interaction strength is
𝑔 = −872MHz. As can be seen in Fig. 5.12, the TLS1 energy hardly changes
with strain so that 𝛼1 remains constant with the estimated value of 60° (Tab. 5.1,
Sec. 5.3.2). The largest of the twocoupling strengths tobeneglected is∝ 𝜎(𝑑)

𝑥,1 𝜎(𝑑)
𝑧,2

with the prefactor |𝑔 sin 𝛼1 cos 𝛼2| ≤ 755MHz (𝛼2 = 0). The maximal induced
energy shift is then √(7GHz)2 + (755MHz)2 − 7GHz ≈ 40MHz. Although
not very small, this frequency change is still an order of magnitude smaller than
the longitudinal energy shift ∝ 𝜎(𝑑)

𝑧,1 𝜎(𝑑)
𝑧,2 of |𝑔 cos 𝛼1 cos 𝛼2| ≤ 428MHz and

approximately one forth of the size of the TLS1-TLS2 anti-crossing. Therefore,
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only the perpendicular and longitudinal coupling strengths are important for
qualitative agreement between theory and experiment:

𝑣𝑖,⟂ = 𝑣𝑖 sin 𝛼𝑖, 𝑔⟂ = 𝑔 sin 𝛼1 sin 𝛼2, 𝑔∥ = 𝑔 cos 𝛼1 cos 𝛼2. (5.18)

Thus, the significant part of the full Hamiltonian, (Eq. 5.15), is

𝐻(𝑑)
sig = 1

2
(𝐸q𝜏(𝑑)

𝑧 + 𝐸1𝜎(𝑑)
𝑧,1 + 𝐸2𝜎(𝑑)

𝑧,2 + 𝑔∥𝜎(𝑑)
𝑧,1𝜎(𝑑)

𝑧,2 + 𝑔⟂𝜎(𝑑)
𝑥,1𝜎(𝑑)

𝑥,2

+𝑣1,⟂𝜎(𝑑)
𝑥,1𝜏(𝑑)

𝑥 + 𝑣2,⟂𝜎(𝑑)
𝑥,2𝜏(𝑑)

𝑥 ). (5.19)

As mentioned before, in the numerical simulations the full Hamiltonian is taken
into account. Based on 𝐻(𝑑)

sig, we can make the following link to the ideas in
the beginning of this section, where two oscillating and stationary dipoles were
considered classically. The expectation value of the location of the atom, and
so its charge, is ⟨𝜎𝑧⟩ = cos 𝛼. In other words, 𝑔∥ = 𝑔 ⟨𝜎𝑧,1⟩ ⟨𝜎𝑧,2⟩ corresponds
to the classical energy shift due to dipole-dipole interaction. On the other
hand, a quantum mechanical evolution of the wave function corresponding to
oscillations of the expectation value of the charge position can only be achieved
by a superposition of the two TLS states. Therefore, we have to know the
expectation value of the |±⟩ states, or ⟨𝜎𝑥⟩ = sin 𝛼, and so 𝑔⟂ = 𝑔 ⟨𝜎𝑥,1⟩ ⟨𝜎𝑥,2⟩.

5.3.2 Characterizing the TLS1-TLS2 system

Considering solely the interacting TLS1-TLS2 system, we define the Hamilto-
nian 𝐻T as

𝐻T = 𝐻1 + 𝐻2 + 𝐻12. (5.20)

This Hamiltonian has seven parameters: three for each TLS (tunneling energy
∆, deformation potential 𝛾 and voltage offset for which the asymmetry energy
𝜀 is zero) and the coupling strength 𝑔. In principle, all these parameters can be
determined by fitting the S-shape (see below). However, fitting a single curve
with so many degrees of freedom is quite a dirty solution. A much better idea,
as will be explained in the following, is to also measure the energy of the full
excited TLS1-TLS2 system at the strain where both systems are in resonance.

Measuring the energy of the full excited state

We considered several solutions. Obviously, we have to bring two excitations of
different energies into the system (Fig. 5.13(a)). A straight forward way would
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Figure 5.13: (a) The level structure at the right TLS1-TLS2 anti-crossing is shown.

Measuring the frequencies 𝐸′
± = 𝐸𝑒𝑒 − 𝐸± allows to determine the energies of the

unperturbed TLSs 𝐸1 and 𝐸2 and the coupling strengths 𝑔⟂ and 𝑔∥ directly. (b) The

pulse sequence to measure 𝐸𝑒𝑒 is shown schematically. After exciting the qubit,

its excitation is swapped to one of the |±⟩ states. Afterwards, the SPS protocol

should reveal the energies 𝐸′
±.

be to use two microwave sources, which, however, complicates the experi-
mental setup, and the usage of additional microwave components introduces
new sources of noise and reflections. Another possibility would be to fully
excite the TLS1-TLS2 system directly by a resonant microwave pulse or via a
two-photon-absorption [Bus+10]. This idea was simulated using our program
and it turns out that the coupling strength is too low to achieve measurable
results. Much more promising are the following two pulse sequences using the
qubit to excite the TLSs. For example, one can populate the qubit into the state
|2⟩ and then tune the |1⟩ ↔ |2⟩ transition into resonance with one of the |±⟩
branches (TLS1 and TLS2 are in resonance). After the swap, the now singly
excited qubit is used to find the missing energy to fully excite the TLS1-TLS2
system. Another idea is to singly excite the qubit, swap its population to one of
the two branches, and subsequently perform the SPS protocol (Sec. 5.2.2) in the
frequency range of interest. After analyzing the simulation results, we decided
to concentrate on the latter sequence.
Fig. 5.13(a) shows the level structure of the TLS1-TLS2 anti-crossing on

the right of the ``S'' where the energies of the |±⟩ states are shifted to higher
frequencies. The pulse sequence to find the missing energies 𝐸′

± = 𝐸𝑒𝑒 − 𝐸±
which bring the TLS1-TLS2 system into to the full excited state |𝑒𝑒⟩ is displayed
in Fig. 5.13(b). After exciting the qubit with a 𝜋-pulse, its excitation is swapped
either to the state |+⟩ or |−⟩, which takes ≈ 50 ns. Subsequently, the qubit is
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Figure 5.14: The results of the pulse sequence from Fig. 5.13(b). The arrows on the

plots show the additional traces appearing if swapping the qubit excitation first to

the upper (a) (𝐸′
+) or the lower (b) (𝐸′

−) branch.

excited again and then tuned to the frequency of interest, where it resides again
for the swap pulse duration. The two SPSs taken in such a way, one for each
of the two branches, then show two additional TLS traces (Fig. 5.14). To show
the result more clearly, one plot is subtracted from the other (Fig. 5.15(b)). On
the one hand this procedure completely cancels the background structure, on
the other hand the two traces of interest appear in the new plot as dips (red, 𝐸′

+)
and as peaks (green, 𝐸′

−).

Determination of the parameters and simulation results

As mentioned in the beginning of this section, in principle, all seven parameters
of the Hamiltonian in Eq. (5.20) can be estimated by fitting the S-curve from
Fig. 5.12 due to following reasons. The three parameters of the TLS2 hyperbola
are fixed by the two anti-crossings, and so the angle 𝛼2 at the TSL1-TSL2
resonance is known. As can be seen from Fig. 5.13(a), the amplitude of the
``S'' is 2𝑔∥ and the splitting size is 𝑔⟂, which are directly related to the bare
TLS1-TLS2 coupling strength 𝑔 and 𝛼1 (Eq. 5.18). Finally, 𝛼1 determines the
decomposition of the TLS1 frequency into the tunneling and asymmetry energy,
which in turn yields the deformation potential of TLS1.
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Figure 5.15: Some relevant parameters can be estimated directly from the right

TLS1-TLS2 anti-crossing (a) and the corresponding energies to fully excite the

TLS1-TLS2 system (b). The size of the anti-crossings equals 𝑔⟂ while the energetical

difference between them corresponds to 2𝑔∥. Adding up the energies as shown by

black arrows results in 𝐸𝑒𝑒 which equals twice the unperturbed TLS energies 𝐸𝑖.
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Although all parameters seem to be responsible for different features of the
``S'', it is very difficult to extract them ``one by one''. However, a step into
this direction is the knowledge of the energies of the complete TLS1-TLS2
system at their resonance. Instead of one, the parameters are now determined
in three independent steps. First, only the three parameters of the TLS2
hyperbola are fitted from the spectrum. Then, as shown in Fig. 5.15, at the
TLS1-TLS2 resonance 𝑔⟂, 𝑔∥, and the unperturbed TLS energies 𝐸1 and 𝐸2
can be determined by using the formulas

2𝐸1 = 2𝐸2 = 𝐸+ + 𝐸′
+ = 𝐸− + 𝐸′

− = 𝐸𝑒𝑒

𝑔⟂ = 𝐸+ − 𝐸− = 𝐸′
− − 𝐸′

+
2𝑔∥ = 𝐸+ − 𝐸′

− = 𝐸− − 𝐸′
+, (5.21)

with 𝐸′
± = 𝐸𝑒𝑒 − 𝐸±. Now, almost all parameters are known. The only

remaining value, 𝛾1, can be easily estimated from the slope of TLS1 in the
S-curve.

Unexpected frequency jump

Unfortunately, approximately two weeks passed between the measurement of
the S-shape and the additional experiment; and the TLS1 energy changed
by approximately 100MHz towards lower frequencies. In general, during
our measurements we occasionally observe abrupt jumps of individual TLS'
resonance frequencies on a time-scale of days. The jumps are more frequent
directly after the cool down and their occurrence decreases very strongly with
time so that after several weeks of operation the TLS frequencies are mostly
stable. If a jump of a hyperbolic trace occurs completely within the frequency
range accessible by the qubit, we can identify the minimum of the hyperbola
as being shifted in both, the piezo voltage as well as the frequency, suggesting
that the asymmetry and tunneling energy have changed. However, we never
detected a change of the deformation potential 𝛾 ∝ 𝛿𝜀1/𝛿𝑉p, i.e. a modified
slope or curvature of the traces. For a full characterization of the system we
further have to assume that ∆2 did not change appreciably in comparison to 𝜀2
at the TLS1-TLS2 anti-crossing. We can prove these assumptions by comparing
the numerically calculated spectrum and the left TLS1-TLS2 anti-crossing after
the jump. Taking the parameters ∆2, 𝛾2 and 𝛾1 from the ``S'', and all other
values from the additional experiment (Tab. 5.1), a good agreement can be
found (Fig. 5.16).
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Figure 5.16: The measured left TLS1-TLS2 anti-crossing after the jump and the

simulated spectrum (with the values in Tab. 5.1) show good agreement. This

confirms that the TLS2 energies remain mostly unchanged.

Nevertheless, one can try to find out which of the two parameters, 𝜀1 or ∆1,
or their combination, is responsible for the frequency jump of TLS1 towards
lower energies. Increasing only 𝜀1 yields a larger 𝑔∥ (Eq. (5.18)), while adapting
the TLS1 energy using only ∆1 reduces the ``S''-amplitude. It turns out that
the spectrum of Fig. 5.12 can be very accurately reproduced by just increasing
∆1 from 5.47GHz to 5.55GHz and slightly shifting the TLS2 hyperbola to the
right by changing the voltage of the symmetry point of TLS2 from −14.05V to
−13.55V (Fig. 5.12(b)).
Finally, Fig. 5.17 shows the simulation results of thepulse sequencespresented

in this section. The SPS protocol yielding the full spectrum is shown in
Fig. 5.17(a), where the 100MHz jump is taken into account. The simulation
of the additional experiment measuring the energies of the TLS1-TLS2 level
structure (Fig. 5.15) is presented in Fig. 5.17(b) and (c).

5.3.3 The qubit-TLS2 coupling

Experiments

By looking very closely on the right anti-crossing of the ``S'', it seems that
the upper branch vanishes faster than the lower, which was confirmed by
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Figure 5.17: (a) The simulation of the full spectrum according to the SPS protocol

perfectly reproduces the ``S'' with the anti-crossings. The 100MHz jump of

TLS1 is taken into account. (b) and (c) show the simulated results being in

excellent agreement with the additional experiment characterizing the TLS1-TLS2

level structure at the right anti-crossing.
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Figure 5.18: (a) The relaxation times 𝑇1 of the upper (red) and the lower (green)

branches were measured in the vicinity of the right TLS1-TLS2 anti-crossing. The

corresponding pulse sequence (``sw'' is a swap) and an example of the decay is

shown in (c). (b) We tried to estimate the dephasing time of the two branches

by entangling the qubit with the |±⟩ states (see text). Since the decay time

of the beating suffers from qubit decoherence, it is denoted as 𝜏2. The pulse

sequence and an example of the oscillations is shown in (d). By simulating this

pulse sequence, 𝑇2 could be estimated.

81



5 Experimental

∆𝑖 𝜀𝑖(𝑉p) @ 𝜉𝑖 @ |𝑣𝑖,⟂|@ |𝑣|
𝜀2 = 0 𝐸1 = 𝐸2 𝐸1 = 𝐸2

TLS1 5.47 GHz 3.18 GHz 60∘ 15.4 MHz 18.7 MHz
− 4 MHz/V

TLS2 1.3 GHz 295 MHz/V 12∘ 3 MHz 14.3 MHz

𝑔∥ = − 428 MHz
|𝑔⟂| = 155 MHz
𝑔 = − 872 MHz

Table 5.1: This table summarizes the relevant parameters. The asymmetry energy

𝜀𝑖 is given at the TLS2 symmetry point (𝑉p = −14.05V). The parameters 𝜉𝑖 and

𝑣𝑖,⟂ were estimated at the TLS1-TLS2 resonance at 𝑉p = 7V and so 𝑣𝑖 could be

calculated. Furthermore, the values for the TLS1-TLS2 coupling 𝑔 and at the same

piezo voltage (𝑉p = 7V) its decomposition into 𝑔∥ and 𝑔⟂ are given.

more accurate measurements (data not shown). One possible explanation for
this effect might be a difference in coherence times between both branches.
Therefore, we tried to estimate the 𝑇1 and 𝑇2 times. The relaxation time could
be measured directly by exciting the qubit, swapping its energy to one of the
two branches, and after the qubit was detuned for some time 𝑡 the remaining
excitation of the excited branch was swapped back onto the qubit and measured
(inset in Fig 5.18(c)). The resulting curves (Fig. 5.18(c)) were fitted by an
exponentially decaying function [Nee+08] and the decay time 𝑇1 as a function
of the piezo voltage is plotted in Fig. 5.18(a). Due to the large relaxation
times for both TLSs (𝑇1 ≈ 2 µs) and a sufficiently large detuning of the qubit
during the waiting time, any qubit influence can be excluded. The results show
that neither a 𝑇1 dependence on strain nor on branch can be recognized. The
measurement of the dephasing time 𝑇2 was a more challenging task. 𝑇2 was
known to be quite small so that the standard Ramsey sequence would not work.
We decided to use the qubit as an auxiliary system andmeasured the oscillations
resulting from entangling the qubit with one of the two branches by a √sw-gate,
detuning the qubit from the branch for some time 𝑡, and performing an additional
√sw-gate. The qubit excitation probability as a function of 𝑡 (Fig. 5.18(d))
was fitted by damped oscillating curves and the decay time 𝜏2 was extracted.
Again, no significant change of 𝜏2 can be seen. Due to the complex time
evolution involving three quantum systems, we completely relied on simulation
to extract 𝑇2. By taking the qubit coherence times of 110 ns (relaxation) and
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105 ns (dephasing), a 𝜏2 of 25 ns could be achieved by setting 𝑇2 = 70 ns for
both TLSs. In summary, the coherence times do not explain the asymmetry
in visibility of the two branches, but even rather suggest that they should be
approximately the same for both TLSs.
However, we found an asymmetry in the coupling strength between the qubit

and the |±⟩ states. By exciting the qubit and parking it in resonance with one
or the other branch for some time (Fig. 5.19(a)), the qubit population shows
oscillations (Figs. 5.19(c) and (d)), the frequency 𝑓osc of which equals the
coupling strength, as a function of the piezo voltage 𝑉p (Fig. 5.19(b)). Indeed,
while increasing 𝑉p, the coupling between the qubit and the upper branch
decreases faster than that with the lower branch. As can be seen in Fig. 5.19(a),
the measured coupling strengths for each branch do not cross at 𝑉p = 7V, where
it would be expected if 𝑣2,⟂ = 0. If, however, 𝑣2,⟂ ≠ 0, the shift of the coupling
strength, and also the difference in visibility, can be explained.

Theory

This can be seen very easily by the following considerations. Under the condition
that there is no TLS-qubit coupling (𝑣𝑖,⟂ = 0) but only TLS1-TLS2 interaction
of strength ̃𝑔 (in principle, ̃𝑔 = 𝑔⟂), the 3×3matrix of the single excitation space
of the TLS1-qubit-TLS2 system has in the basis of diagonalized subsystems the
form

1
2

⎛
⎜
⎜
⎝

Δ𝐸 0 ̃𝑔
0 0 0

̃𝑔 0 −Δ𝐸

⎞
⎟
⎟
⎠

, basis =
⎡
⎢
⎢
⎣

TLS1
qubit
TLS2

⎤
⎥
⎥
⎦

, (5.22)

where Δ𝐸 = 𝐸1 − 𝐸2 is the detuning between the two TLSs, the relative qubit
energy does not matter. By diagonalizing this matrix with its eigenvectors

𝐵 =
⎛
⎜
⎜
⎝

cos 𝛼
2 0 sin 𝛼

2
0 1 0

− sin 𝛼
2 0 cos 𝛼

2

⎞
⎟
⎟
⎠

(5.23)

with tan 𝛼 = − ̃𝑔/Δ𝐸 we go into the {|+⟩ |q⟩ |−⟩} basis, where the |±⟩ states are
superpositions of the TLS1 and TLS2 eigenstates.
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Figure 5.19: (a) To measure the coupling strength between the qubit and the |±⟩
states, the qubit is excited and tuned into resonance with one of the two branches.

The beating, as a function of strain, is visible for the upper and the lower branch on

(c) and (d), respectively. By fitting the time domain curves with damped oscillations,

the beating frequencies 𝑓osc can be extracted (b). Dashed lines correspond to the

case when 𝑣2 = 0. The obvious shift of the expected frequencies can be explained

by introducing a non-zero qubit-TLS2 coupling strength (see text).
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Figure 5.20: The calculated coupling strength in terms of ̃𝑔 between the qubit and

both branches with 𝑣2,⟂ = 0 (dashed) and 𝑣2,⟂ = 3MHz (solid) (𝑣1,⟂ = 15.4MHz).
The region between the dotted lines corresponds to the measured range assuming

that ̃𝑔 = 𝑔⟂. As can be recognized, at some TLS1-TLS2 detuning the qubit-upper

branch coupling equals zero.

If now coupling TLS1 and TLS2 to the qubit and looking at the situation
from the {|+⟩ ; |𝑞⟩ ; |−⟩} basis,

𝐵† 1
2

⎛
⎜
⎜
⎝

Δ𝐸 𝑣1,⟂ ̃𝑔
𝑣1,⟂ 0 𝑣2,⟂

̃𝑔 𝑣2,⟂ −Δ𝐸

⎞
⎟
⎟
⎠

𝐵 =

1
2

⎛
⎜
⎜
⎝

√Δ𝐸2 + ̃𝑔2 𝑣+,⟂ 0
𝑣+,⟂ 0 𝑣−,⟂

0 𝑣−,⟂ −√Δ𝐸2 + ̃𝑔2

⎞
⎟
⎟
⎠

, (5.24)

with

𝑣±,⟂ = 𝑣1,⟂ cos 𝛼
2

± 𝑣2,⟂ sin 𝛼
2

(5.25)

being the coupling strength between the qubit and the upper and the lower
branch, respectively (Fig. 5.20). Please note that with the definition of the
angle 𝛼, at the TLS1-TLS2 resonance (Δ𝐸 = 0) the upper branch is coupled
to the qubit less strongly than the lower one, so that the oscillation frequencies
between the qubit and the two branches are 𝑓osc = (𝑣1,⟂ ∓ 𝑣2,⟂)/√2. The fit
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(Fig. 5.19(b)) yields 𝑣1,⟂ = 15.4MHz and 𝑣2,⟂ = 3MHz for the transversal
coupling strengths. Recalculating the bare coupling strengths from this, 𝑣𝑖,
using the known angles 𝛼𝑖 yields a surprising result (Tab. 5.1). The reason for
the very small value of 𝑣2,⟂ is not a small dipole moment or its orientation, as
one might think on first sight. On the contrary, 𝑣2 is even comparable to 𝑣1. The
point is that at the TLS1-TLS2 anti-crossing TLS2 is already very asymmetric
yielding a small 𝛼2 and therefore a hardly measurable 𝑣2,⟂.

5.3.4 An attempt to estimate the TLS1-TLS2 distance

On the one hand, the evaluation of the distance between TLS1 and TLS2 is based
on the equation given in [Mar+05] relating the qubit-TLS coupling strength
to its dipole moment. This equation will be derived in the following. On
the other hand, the estimated dipole sizes of both TLSs and some particular
configurations will be used to get an idea of the TLS1-TLS2 distance via the
well known equation for the dipole-dipole interaction.

Quantum mechanical treatment of the qubit-TLS coupling

Martinisetal. publisheda relationbetween thequbit-TLScoupling strength𝑣and
the dipole moment component of the TLS 𝜇∥ parallel to the ⃗𝐸-field [Mar+05],

𝑣 = 2
𝜇∥

𝑥 √
𝐸10
2𝐶

, (5.26)

with the junction thickness 𝑥, the qubit capacitance 𝐶 and the qubit transition
energy 𝐸10. We can understand this equation by the following considerations.

The classical interaction Hamiltonian 𝐻q−T between an electric dipole in a
homogeneous electric field ⃗𝐸 is

𝐻q−T = ⃗𝜇 ⋅ ⃗𝐸 = 𝜇 ⋅ 𝑈
𝑥

⋅ cos 𝜙, (5.27)

with 𝜙 being the angle between the dipole and the field direction and 𝑈 is the
voltage at the capacitor with the distance 𝑥 between the plates. The classical
voltage 𝑈 turns in quantum physics into the operator �̂�,

𝑈 = ⟨�̂�⟩ =
⟨�̂�⟩
𝐶

(5.28)
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with the expectation value of the charge on the capacitor 𝑄 = ⟨�̂�⟩. For the two
lowest states, a phase qubit can be modeled as an harmonic LC-resonator with
the Hamiltonian

�̂�LC = �̂�2

2𝐶
+

̂Φ2

2𝐿
= 𝐸10 ( ̂𝑎† ̂𝑎 + 1

2) , (5.29)

and so

⟨�̂�⟩ = 𝑖√
𝐶𝐸10

2
⟨( ̂𝑎† − ̂𝑎)⟩. (5.30)

For the eigenstates, ⟨𝑛|�̂�|𝑛⟩ = 0 and therefore there is no (oscillating) electric
field in the capacitor. However, a superposition of eigenstates, e.g. ( |𝑛⟩ +

𝑖 |𝑛 + 1⟩ )/√2 yields

1
2(⟨𝑛| − 𝑖⟨𝑛 + 1|) ( ̂𝑎† − ̂𝑎) (|𝑛⟩ + 𝑖|𝑛 + 1⟩) = −𝑖√𝑛 + 1, (5.31)

and with 𝑛 = 0

𝐻q−T =
𝜇
𝑥 √

𝐸10
2𝐶

cos 𝜙 (5.32)

For Martinis' Eq. (5.26) a factor 2 is still missing. However, this is only a
question of definition. Classically, 𝐻q−T would be the value by which the
energy of the qubit-TLS system is decreased or increased due to interaction.
However, the coupling strengths used in this thesis, and also by Martinis et al.,
base on the energy differences in the experiment, which are then 2𝐻q−T = 𝑣. For
example, 𝑣⟂ denotes the transversal qubit-TLS coupling strength corresponding
to the size of the anti-crossing. This means that due to the level repulsion the
unperturbed energy was increased or decreased by 𝑣⟂/2. Therefore,

𝑣 = 2
𝜇 cos 𝜙

𝑥 √
𝐸10
2𝐶

= 2
𝜇∥

𝑥 √
𝐸10
2𝐶

, (5.33)

where 𝜇𝑖,∥ = 𝜇𝑖 cos 𝜙 is the geometrical dipole moment component parallel to
the electric fields inside the JJ. 𝑣 represents the bare qubit-TLS coupling strength
depending on the dipole size and orientation, which have nothing to do with the
quantum angles 𝛼𝑖 (and 𝛽𝑖) responsible for the TLS asymmetry.
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(a) (b) (c) (d) (e)

Figure 5.21: Some special configurations of two dipoles are presented. The red

connecting lines are parallel to ⃗𝑟. (a) and (b) show the two main cases of parallel

oriented dipoles located perpendicular or parallel to ⃗𝑟, respectively. Although being
parallel, (a) corresponds to a repulsive but (b) to an attractive case. The sketches

(c)-(e) visualize situation with zero interaction energy. As blue arrows show, in (d)

and (e) the attractive and repulsive forces annihilate each other if the magic angle

condition is fulfilled.

Electric dipole-dipole interaction

Assuming that TLS1 and TLS2 interact directly via their electric dipoles, the
relation between the interaction energy and the spatial configuration of the
dipoles is known to be

𝐻dd = 1
4𝜋𝜀0𝜀𝑟𝑟3 ( ⃗𝜇1 ⋅ ⃗𝜇2 −

3( ⃗𝜇1 ⋅ ⃗𝑟)( ⃗𝜇2 ⋅ ⃗𝑟)
⃗𝑟2 ) , (5.34)

where ⃗𝑟 is the relative position vector from TLS1 to TLS2. Kocbach et al.
derived a much nicer representation of this formula [KL10] by decomposing the
dipole moments into their parallel and perpendicular components relative to ⃗𝑟,

⃗𝜇𝑖 = ⃗𝜇𝑖,⟂ + ⃗𝜇𝑖,∥. (5.35)

The dipole-dipole interaction can then be rewritten as

𝐻dd = 1
4𝜋𝜀0𝜀𝑟𝑟3 ( ⃗𝜇1⟂ ⃗𝜇2⟂ − 2 ⃗𝜇1∥ ⃗𝜇2∥) . (5.36)

Since the TLSs couple to their environment via the charge (or the asymmetry),
this potential energy equals 𝑔/2.

Fig. 5.21 displays some special and interesting cases. In (a) and (b) the
dipoles are parallel, but while in (a) the interaction energy is positive, it is
negative in (b). (c) shows a trivial case with no interaction. However, there are
also non-trivial non-interacting configurations. Assuming both dipoles to be
parallel, and going from the repulsive situation in (a) to the attractive in (b), it is
obvious that at some angle 𝜃 between the dipole direction ⃗𝜇 and the connecting
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vector ⃗𝑟 the interaction strength is zero. Eq. (5.36) yields an obvious equation
for this so called magic angle 𝜃mag,

𝐻dd ∝ 𝜇1𝜇2(sin2 𝜃mag − 2 cos2 𝜃mag) = 0 (5.37)

⇒ tan 𝜃mag = √2 ⇔ 𝜃mag = 54.74°. (5.38)

Also if ⃗𝜇1 ∦ ⃗𝜇2, a configuration such as in (e), the interaction energy might be
zero. For 𝜃1 = 45°, for example, 𝜇1,⟂ = 𝜇1,∥. 𝜃2 has then to fulfill the relation
𝜇2,⟂ = 2𝜇2,∥ yielding 𝜃2 = 63.43°.

Some special assumptions on TLS1 and TLS2 dipoles

The main conclusion from the previously discussed paragraph is that there is no
minimal distance between the two TLSs. In principle, one could think the closer
the dipoles are, the stronger is the interaction. However, if, e.g., the magic angle
condition is fulfilled, they can be very close together without feeling each other.
Also flipping (or exciting) one TLS does not change this.
To get a very rough estimate of the maximal TLS1-TLS2 distance, there

is no other way than making several arbitrary assumptions. The first step is
to determine the TLS dipole moment components 𝜇𝑖,∥ parallel to the ⃗𝐸-field
by using Eq. (5.33). The parameters of the qubit are 𝑥 = 2 nm, 𝐶 = 850 fF,
𝐸01 = 6.3GHz, yielding

𝜇1,∥ = 0.5 𝑒Å, 𝜇2,∥ = 0.4 𝑒Å. (5.39)

If 𝜇𝑖 = 𝜇𝑖,∥, the upper limit for the distances can be calculated by assuming
a vertical or horizontal arrangement of the TLSs (Eq. (5.36) and 𝜀𝑟 = 10
(sapphire)). This leads to distances of 6.8 nm or 5.4 nm, respectively. Due to
the JJ thickness of 2 nm the first case can be ruled out.
Another meaningful assumption is to take for both dipoles the moments

estimated in other publications. Martinis et al., for example, based on Eq. 5.33
and their maximal observed qubit-TLS coupling strength [Mar+05] evaluated
a dipole moment of 𝜇 = 1.3 𝑒Å. A value of about 1𝑒Å was also confirmed
in [Col+10] and also theoretically in [DuB+13]; [Aga+13]. Therefore, we
take 1𝑒Å as the TLS dipole moments. By using the parallel components of the
dipole moment of TLS1 and TLS2 (Eq. (5.39)), we get as the angles between
the moments and the electric field

𝜙1 = 60° and 𝜙2 = 66°. (5.40)
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TLS1
TLS2

𝛾𝜙1

𝜃1

𝛾
𝜙2

𝜃2

⃗𝐸

Figure 5.22: The geometry of TLS1 and TLS2 with respect to the electric fields is

explained. Although the absolute values of the angles |𝜃′
𝑖 | are fixed, it is possible

to use ±𝜃′
𝑖 resulting in 𝜃𝑖 = 𝛾 ± 𝜃′

𝑖 . However, there are only two different cases,

for example, a positive 𝜃′
1 and ±𝜃′

2. The maximal distance between TLS1 and TLS2

results to be between 7 and 12 nm.

One could argue that due to the low frequency dependence of TLS1 on strain,
TLS1 should be oriented rather perpendicular to the E-field (parallel to the
strain change). For TLS2 it would be rather the other way round. However,
although the mean strain change is indeed perpendicular to the E-field, locally
due to leverage effects and electrical interaction the atoms might be shifted
in arbitrary directions, thus completely destroying this argument. In contrast,
since the qubit-TLS coupling has to be a purely electric interaction, the E-field
represents a distinct direction for the moments.

To maximize the interaction, we assume the TLS1 and TLS2 dipoles to lie in
one plane (Fig. 5.22). We define the angle 𝛾 as the angle between ⃗𝑟 and ⃗𝐸, so
that the main angle for the dipole-dipole interaction, 𝜃𝑖, is simply replaced by
𝜃𝑖 = 𝛾 ± 𝜙𝑖. Without loss of generality, we set 𝜃1 = 𝛾 − 𝜙1 and consider only
the two cases 𝜃2 = 𝛾 ± 𝜙2, as shown in Fig. 5.22. The four trivial configurations
with 𝛾 = 0 and 𝛾 = 90° yield as the distance between TLS1 and TLS2 values
between 7 nm and 11 nm, so that again the arrangement where ⃗𝑟 ∥ ⃗𝐸 is not
realistic. The absolutely maximal distance occurs when TLS1 and TLS2 show
approximately in the same direction, 𝛾 = 63°, resulting in a distance of 12 nm.
However, this case is not really possible, because the displacement of the two
TLSs in direction of the electric field exceeds the JJ thickness.

Altogether, one can conclude that the distance of the two TLSs is in the
range of about ≈ 10 nm. Distributing all "visible" ≈ 50 TLSs in the qubit
spectrum on our 1 µm2 large junction, the average area for one TLS is about
140×140 nm2. Therefore, the estimated maximal distance makes insofar sense
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as it really corresponds to a quite rare case to observe two coherently coupled
TLSs with a phase qubit.
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6 Conclusion

The aim of my PhD thesis was to link two completely different fields of
physics. Our group, including me and, in particular, my supervisor during my
diploma thesis Jürgen Lisenfeld, were working with superconducting quantum
bits (qubits), while the PhD student Torben Peichl from the group of Prof. Georg
Weiss investigated the two-level tunneling systems (TLSs) in solids. We started
this project together. Torben Peichl finished his PhD approximately one year
ago and Jürgen and I continued to take data and improve the experiment.
Qubits are controllable quantum devices, which may become very helpful

in solving complicated mathematical problems and better understanding the
physics of the microcosm. However, a lot of fundamental research has to be still
done. As it is always the case in quantummechanics, decoherence effects are the
main problem. Jointly with low temperatures, clever engineering and low-noise
electronics, the usedmaterials play also amajor role. In superconducting qubits,
the insulating layer inside the Josephson junction (JJ), usually AlO𝑥, is blamed
to contribute to the qubit decoherence rate significantly, mainly due to dielectric
losses. Furthermore, it is assumed that inside of this disordered tunneling barrier
parasitic quantum systems are located, which couple coherently to the qubit
and induce avoided level crossings in its spectrum. In particular, the spectra of
phase qubits show many anti-crossings due to their relatively large JJ.
The two-level tunneling systems (TLSs) constitute the basis of the tunneling

model. They explain the large discrepancies between the characteristics of
amorphous solids and crystals at low temperatures. TLSs are defects where
atoms or small groups of atoms tunnel between two stable configurations, which
is described by a double well potential. A key feature of this model, which
is also one of the most important assumptions in this thesis, is that the elastic
deformation of the crystal changes only the asymmetry energy 𝜀, which is
defined as the energy difference between the two wells. The tunneling energy
∆, which depends on other parameters like the barrier height or the tunneling
distance, remains constant. The excitation energy has the form 𝐸 = √𝜀2 + ∆2
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and therefore has a hyperbolic dependence on strain. Far outside the ``sweet
point'', |𝜀| ≫ |∆|, the hyperbola turns into a linear function of strain.

Our aim was to verify experimentally, whether the parasitic quantum systems
seen by the superconducting qubit behave the way predicted for TLSs when
applying strain fields. Therefore, we constructed a sample holder, in which a
built-in piezo actuator generates force on the chip and thus slightly deforms
it. Our estimations and simulations yield a deformation value of 8 ⋅ 10−7 per
1V on the piezo, which corresponds to a relative length change of an atomic
nucleus per 1 nm. We studied the TLSs in two qubits from different generations.
The qubit from the first generation of flux-biased phase qubits has rather poor
coherence times, but therefore shows many anti-crossings in its spectrum. The
second sample has much fewer anti-crossings, however, its coherence times
allow one to take time domain measurements, which significantly improve the
results and reduce the measuring time. Via a special protocol, the resonance
frequencies of the parasitic systems could be tracked as a function of the applied
strain. The resulting spectroscopy images of both samples are qualitatively
similar. Both qubits reveal that the resonance frequencies of almost all parasitic
systems depend linearly or hyperbolically on strain, as predicted for TLSs by
the tunneling model. Sometimes, abrupt frequency jumps can be observed.
With regard to those TLS traces that show a jump within the frequency range
accessible by the phase qubit, we never detected a change of the resonance
frequency dependence on strain other than a shift. We could even observe
``double traces'' between which the parasitic system is constantly switching
back and forth. These phenomena are explained in terms of the tunneling
model in the following way: In the vicinity of the coherent TLS coupled to the
qubit another, incoherent TLS might be located which modifies the resonance
frequency of the first one and which switches only once per hour, day, month
etc.

If the second TLS does not flip abruptly, but one is able to control the ratio of
thepositional probabilities in the twowells byvarying the strainfield, oneexpects
the first TLS to show a smooth change of its resonance frequency. We could
study exactly such an S-shape in detail. Furthermore, the trace of TLS1, which is
strongly coupled to the qubit, shows an anti-crossing on each side of the S-shape.
This proves that TLS1 is coherently interacting with TLS2, which is, however,
invisible on the qubit spectrum. On the one hand, the observed structures can
be explained classically by assuming two interacting electric dipoles. Smoothly
flipping the second dipole shifts the energy of the first one resulting in the
S-shape. If both dipoles are in resonance, rotations of one dipole are transferred
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to the other and vice versa, which induces the anti-crossings. On the other
hand, one can use the predictions of the tunneling model. As it is shown in this
thesis, the data are qualitatively as well as quantitatively reproduced with very
high accuracy. However, due to the large number of parameters, we performed
an additional experiment. With the help of my simulation accounting for three
quantum systems, we succeeded to optimize the pulse sequence and to measure
the energy of the full excited TLS1-TLS2 system at the TLS1-TLS2 resonance.
This allowed us to determine several parameters directly and thus to improve
the fitting procedure significantly. Further investigation of the TLS1-TLS2
anti-crossing indicated a different visibility of the two branches. This could be
explained by assuming an existing but very small direct qubit-TLS2 coupling,
which decreases the interaction between the qubit and the upper branch but
enhances the coupling between the qubit and the lower branch. One of the main
results is that TLS2 is not invisible to the qubit due to a particular orientation of
its dipole moment or its value. On the contrary, the bare qubit-TLS2 coupling
is approximately as strong as that between the qubit and TLS1. However, the
tunneling energy ofTLS2 is so small, that at qubit frequencies its potential is very
asymmetric, which dramatically decreases the observable qubit-TLS2 coupling
strength. Finally, we made a very rough estimation of the TLS1-TLS2 distance.
We assumed the TLS1-TLS2 interaction to be purely electric and analyzed
for some particular TLS1 and TLS2 orientations the formula describing the
dipole-dipole interaction. On the one hand, there is no minimal distance. This
means, that for a particular situation two dipoles can be located arbitrarily close
together without feeling each other. On the other hand, the maximum distance
was estimated to be of the order of 10 nm. If we distribute all visible ≈ 50
TLSs on the 1 µm2 large Josephson junction, one TLS can be found in an area
of 140x140 nm2. These numbers confirm that it is a very rare case to observe
to coherently interacting TLSs with a phase qubit on average.
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Das Ziel meiner Doktorarbeit war es, zwei auf den ersten Blick komplett unter-
schiedliche physikalische Bereiche zu verknüpfen. Auf der einen Seite werden
schon seit über 40 Jahren Defekte in Gläsern studiert. Manche Fehlstellen kön-
nen instabil sein, so dass einzelne Atome zwischen zwei Positionen tunneln
und somit Zwei-Zustands-Quantensysteme bilden können, so genannte TLS
(two-level tunneling system). Auf der anderen Seite entwickelt man bereits
seit ca. zehn Jahren die Technologie, einzelne und kohärente Zwei-Zustands-
Quantensysteme auf Basis supraleitender Schaltungen zu konstruieren und zu
kontrollieren (superconducting qubits). Interessanterweise beobachtet man bei
diesen Systemen eine kohärente Wechselwirkung mit anderen Quantensyste-
men, deren mikroskopischer Ursprung noch nicht vollständig geklärt ist. Durch
ein ausgeklügeltes Experiment ist es uns gelungen zu zeigen, dass sich diese
mysteriösen Quantensysteme im Bezug auf mechanische Spannung genauso
verhalten wie es von tunnelnden Atomen erwartet wird.
Die Quantenbits, oder Qubits, sind die Analogons der klassischen Bits in der

Quantenwelt. Es gibt Theorien, die belegen, dass ein Quantencomputer tatsäch-
lich einige wichtige mathematische Probleme in viel kürzerer Zeit lösen kann
als ein herkömmlicher Computer. Abgesehen von dieser Zukunftsvision sind
Qubits ausgezeichnete Objekte, um die Quantenmechanik tiefer zu ergründen
und umdieDekohärenz, die die eigentlicheVerknüpfung zwischen derQuanten-
und der klassischen Physik darstellt, besser zu verstehen.
Eines der erfolgversprechendsten Konzepte für die Basis eines Quantencom-

puters sind elektronische Schaltkreise aus supraleitenden Materialien. Dieser
Ansatz ermöglicht sowohl eine sehr einfache Kontrolle des Qubits als auch
die Kopplung von mehreren Qubits. Allerdings sind sehr tiefe Temperaturen
erforderlich, zu deren Erzeugung Mischungskryostaten eingesetzt werden, die
den Chip auf bis zu 30mK abkühlen. Die Funktionsweise von supraleitenden
Qubits basiert auf dem Effekt des Josephson-Kontaktes (JK). Dies ist eine sehr
dünne Isolatorschicht (∼ 2 nm), die den Supraleiter unterbricht. Der maximale
Suprastrom durch einen JK ist zwar klein, der JK stellt aber aufgrund seiner
nicht-linearen Strom-Spannungs-Kennlinie ein komplett neuartiges elektroni-
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schesBauteil dar. Es gibt verschiedene Typen von supraleitendenQubits, die den
JK in jeweils unterschiedlichen Regimes verwenden. Die Experimente in dieser
Doktorarbeit wurden mit einem Phasenqubit durchgeführt. Ein Phasenqubit ist
eine supraleitende Schleife, die durch einen JK unterbrochen ist. Mit Mikrowel-
lenpulsen, die auf dasQubit geschickt werden, kann die Eigenfrequenz gefunden
und der Qubitzustand manipuliert werden und mittels eines angelegten externen
Flusseswird dieResonanzfrequenz desPhasen-Qubits kontrolliert.Die Spektren
von Phasenqubits als Funktion des externen Flusses weisen Unterbrechungen
bzw. Aufspaltungen bei bestimmten Frequenzen auf. Die Erklärung hierfür sind
mikroskopische Zweiniveausysteme, die kohärent mit dem Qubit wechselwir-
ken. Die eigentliche Natur dieser Systeme ist noch nicht vollständig erforscht.
Allerdings gibt es eindeutige Hinweise, dass sie innerhalb der Tunnelbarriere
des JK lokalisiert sind. Deshalb ist es das Nächstliegendste anzunehmen, das es
sich hierbei um die TLS handelt. Das Hauptargument dieser Annahme ist, dass
die Isolatorschicht eine ähnlich ungeordnete Struktur hat wie es bei den Gläsern
der Fall ist.

In amorphen Materialien wurden die TLS erst Anfang der 70er Jahre als
solche identifiziert. Davor galt das Debyemodell als äußerst erfolgreich in
der Beschreibung der Wärmeeigenschaften von Festkörpern. Allerdings fanden
1971 Zeller und Pohl heraus, dass die Eigenschaften von amorphen Festkörpern
bei Temperaturen unter 1K sehr stark von dem Debyemodell abweichen. Ein
Jahr später entwickelten Phillips und unabhängig auch Anderson et al.das Tun-
nelmodell. Demnach gibt es einzelne Defekte, bei denen manche Atome bzw.
Atomgruppen zwischen zwei stabilen Konfigurationen, die über eine kleine
Übergangsrate miteinander gekoppelt sind, tunneln können. Ausgehend davon
ist es nicht mehr verwunderlich, dass bei Gläsern, aufgrund einzelner Anregun-
gen der TLS, die spezifische Wärme und die Phononenstreurate um Ordnungen
größer ist. Bei geladenen TLS unterscheiden sich auch die dielektrischen Eigen-
schaften erheblich von denen der kristallinen Festkörper. In den letzten 40 Jahren
der Forschung wurde das Tunnelmodel nicht nur durch unzählige Messungen
untermauert, sondern auch ein universelles Verhalten amorpher Materialien bei
tiefen Temperaturen nachgewiesen.

Auch wenn damals nur Erwartungswerte von einer sehr großen Anzahl und
auch unterschiedlicher TLS zugänglich waren, basiert das Tunnelmodel auf
einem einzelnen Tunnelsystem. Dieses wird durch ein Doppelmuldenpotetial
beschrieben, bei dem die zwei wichtigsten Größen die Asymmetrieenergie 𝜀
und die Tunnelenergie ∆ sind. Die Energiedifferenz der Eigenzustände beträgt
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𝐸 = √∆2 + 𝜀2. Das Tunnelmodel liefert zwei Kopplungsmechanismen zwi-
schen einem TLS und der Umgebung: über elektrische Felder, z.B. mit Hilfe
eines äußeren Kondensators, und über elastische Felder, welche z.B. durch
die Phononen oder auch durch eine externe Deformation der Probe erzeugt
werden. Dem Tunnelmodel zufolge verändern elektrische und elastische Felder
nur die Asymmetrieenergie, die Tunnelenergie bleibt erhalten. Da weiterhin
angenommen wird, dass sich 𝜀 linear mit der Feldstärke ändert, ergibt sich
eine hyperbolische Abhängigkeit der Anregungsenergie 𝐸 als Funktion von der
Feldstärke, die im Falle von |𝜀| ≫ |∆| in eine lineare Funktion mündet.

Durch das Spektroskopieren des Phasenqubits lassen sich die Resonanzen der
TLS vermessen. Wie bereits erwähnt, erwarten wir eine Wechselwirkung der
TLS mit äußeren elektrischen oder elastischen Feldern. In unserem Fall ist die
Wechselwirkung zwischen dem TLS und dem elektrischen Feld verantwortlich
für die Qubit-TLS-Kopplung, denn der JK stellt aufgrund seiner Geometrie ei-
nen Kondensator dar. Eine Erzeugung externer elektrischer Felder kommt nicht
in Frage, da der JK des Phasenqubits über einen Supraleiter kurzgeschlossen ist
und deshalb äußere elektrische Felder abgeschirmt werden. Allerdings lässt sich
eine mechanische Deformation des JK bewerkstelligen. Mittels eines speziell
angefertigten Probenträgers mit einem eingebauten Piezostellenelement haben
wir den Chip verbogen. Unsere Abschätzungen liefern eine Deformation von
8 ⋅ 10−7 pro anliegendes Volt am Piezostellenelement, was einer Verlängerung
eines Nanometers um einen Atomkerndurchmesser entspricht. Wie erwartet
zeigen die TLS eine überwiegend lineare oder hyperbolische Resonanzabhän-
gigkeit von der Deformation. Ab und zu können wir abrupte Änderungen der
TLS-Frequenzen beobachten. Allerdings stellen wir fest, dass, sofern sich der
Sprung innerhalb des mit dem Qubit messbaren Frequenzfensters ereignet, die
Deformationsabhängigkeit (bis auf eine Verschiebung) erhalten bleibt. Falls
solch ein TLS sehr schnell zwischen zwei Frequenzen hin und her springt,
ergibt sich eine Doppelspur, welche wir auch beobachten konnten. Dieses Phä-
nomen lässt sich wunderbar mit dem Tunnelmodel erklären. In der direkten
Nachbarschaft des kohärenten TLS (TLS1), das an das Qubit koppelt, kann es
ein weiteres, inkohärentes TLS geben (TLS2), das seinen Zustand nur ab und
zu ändert und somit einen Sprung der Resonanzfrequenz von TLS1 bewirkt.

Eine sehr interessante Situation ergibt sich, wenn man so ein gekoppeltes
TLS1-TLS2-System hat, bei dem allerdings auch TLS2 sehr stark deformations-
abhängig ist, sodassmandenSchwerpunkt seinerGrundzustandswellenfunktion
kontrolliert von einer Mulde in die andere verschieben kann. Man rechnet dann
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nicht mit einem plötzlichen Sprung sondern mit einer glatten Verschiebung der
TLS1-Resonanz. In der Tat haben wir so eine

”
S“-förmige Spur beobachtet,

die sich sowohl qualitativ als auch quantitativ mit dem TLS1-TLS2-Modell er-
klären lässt. Des Weiteren weist die Spur symmetrisch um das

”
S“ jeweils eine

Niveauaufspaltung auf. Diese ist auf eine kohärente Wechselwirkung zwischen
den beiden TLS zurückzuführen. Eine vollständige Analyse des Systems wird
dadurch erschwert, dass TLS1 nahezu unabhängig von der Deformation und
dass die Spur von TLS2 auf dem Spektrum kaum zu erkennen ist. Da die quan-
tenmechanische Beschreibung viele Parameter beinhaltet, war es unumgänglich
durch ein zusätzliches und kompliziertes Experiment die Energie des vollständig
angeregten TLS1-TLS2-Systems zumessen. Dies ermöglichte es, einigeGrößen
direkt zu extrahieren und somit die Fittingprozedur entscheidend zu verbessern.
Des Weiteren konnten wir noch eine sehr kleine direkte Qubit-TLS2-Kopplung
nachweisen. Es stellt sich heraus, dass die

”
reine“ Qubit-TLS2-Kopplung fast

genauso groß ist wie die zwischen Qubit und TLS1. Allerdings verringert sich
dieKopplungsstärke erheblich, wenn das TLSPotential stark unsymmetrisch ist.
Dies ist bei TLS2 im Bereich der Qubitfrequenzen der Fall. Abschließend haben
wir versucht, den Abstand zwischen TLS1 und TLS2 zu bestimmen, indem
wir von einer reinen elektrischenWechselwirkung und der Dipol-Dipol-Formel
ausgingen. Auf der einen Seite ergibt sich, dass es keinen Mindestabstand gibt.
Das bedeutet, dass zwei Dipole bei einer bestimmten Ausrichtung beliebig nahe
lokalisiert sein können, ohne sich gegenseitig zu beeinflussen. Auf der anderen
Seite liegt die Maximaldistanz in der Größenordnung von 10 nm. Wenn wir
alle sichtbaren ≈ 50 TLS gleichmäßig im 1 µm2 großen JK verteilen, dann
findet man jeweils ein TLS in einem Bereich der Größe 140x140 nm2. Diese
Abschätzung bestätigt, dass es ein sehr seltener Fall ist, zwei kohärente und
gekoppelte TLS zu beobachten.
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