
Multi-Level Orthogonal Hopping Rendezvous
Jens P. Elsner,Student Member, IEEE, Hosung Park,Student Member, IEEE,
Jeonghoon Mo,Member, IEEE, Friedrich K. Jondral,Senior Member, IEEE

Abstract—We propose a rendezvous scheme based on multi-
level orthogonal hopping for multi-channel medium access con-
trol protocols. Its benefits compared to random hopping are
higher throughput due to higher rendezvous probability. Further-
more, it offers improved fairness over other orthogonal hopping
schemes.

I. I NTRODUCTION

Multi-channel MAC protocols organize and distribute data
traffic across multiple channels. Compared to single channel
MAC protocols they offer increased throughput, especiallyin
networks with a high number of nodes. A class of multi-
channel protocols are parallel rendezvous protocols such as
SSCH [1] or McMAC [2], that allow simultaneous trans-
mission agreements to improve performance: Each node has
its own home channel hopping sequence, so that multiple
connections can be negotiated at the same time1. Transmitters
tune to the home channels of their potential receivers to
establish a connection. In [3], Mo et al. showed that paral-
lel rendezvous protocols can achieve higher throughput than
single rendezvous protocols due to their better scalability. Dif-
ferent classes of multi-channel MAC protocols were analyzed,
including parallel rendezvous protocols with a random hopping
home channel strategy.

Our contribution with this letter is two-fold: First, we con-
sider a hopping strategy called multi-level orthogonal hopping
[4] as an alternative to random hopping [2], [3] in a multi-
channel MAC framework and show that its performance is
superior to that of random hopping. Second, we present the
first detailed evaluation of parallel rendezvous methods in
multi-channel MACs, as home channel (receiver side) colli-
sions were not studied in [3].

II. PARALLEL RENDEZVOUS MULTI-CHANNEL MAC AND

HOPPING STRATEGIES

In parallel rendezvous multi-channel MACs, each node
dwells in its home channel when idle. The home channels of
nodes are known within a neighborhood, e.g., by attaching a
random seed to each packet that is sent [2]. The home channel
of a device can be fixed or hopping based. The first approach
is simple but may lead to unbalanced channel utilization
unless home channels are carefully selected. Also, packet
interception and jamming are comparatively easy. We thus
limit our focus to synchronized packed based (”slow”) home
channel hopping strategies for parallel rendezvous MAC. They
find application in networks where robustness and security are
of great importance.

1In contrast, in single rendezvous MAC protocols, all nodes meet in a
dedicated channel to negotiate transmissions.
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Fig. 1. Rx and Tx channel hopping for random and orthogonal rendezvous;
M = 4, N = 4. The Tx plane shows on-going transmissions, e.g.,1 → 2
denotes a link from node1 to node2. The Rx planes show a realization of
home channels of idle nodes, overlaid with transmissions. We observe that,
for orthogonal hopping,idle nodes do not collide on the Rx plane, but they
can collide with on-going transmissions. E.g., in channel 4, slot 3 (drawn to
perspective) the home channel of idle node 1 collides with ”3 → 4”.

A. Random hopping

The simplest hopping strategy is random hopping in which
the next home channel is determined by a pseudo-random
sequence: Each device picks a seed to generate a different
pseudo-random hopping sequence.

B. Orthogonal hopping

With orthogonal hopping, orthogonal sequences are used
to minimize receiver side collisions. Two sequencess =
(s1, s2, . . .) and s′ = (s′1, s

′
2, . . .) are said to be orthogonal

if si 6= s′i for all i = 1, 2, . . .. E.g., assume that the
number of channels isM = 3. Then, two hopping sequences
(1, 3, 2, 1, . . .) and (3, 2, 1, 2, . . .) are orthogonal. Obviously,
the maximum number of orthogonal sequences isM . When
the number of devicesN is less than the number of channels, it
is possible to keep the home channels collision-free. However,
if N > M , home channels need to be shared. Fig. 1 shows
a possible realization for the receive (Rx) and transmit (Tx)
hopping sequences forN = M = 4 with orthogonal2 and
random hopping.

1) Orthogonal hopping with channel re-use: A straight-
forward solution to share home channels is assigning the same
hopping sequences to two or more nodes. We evaluate channel
re-use hopping for the purpose of comparison.

2) Multi-level orthogonal hopping: Another method to ad-
dress the limited number of orthogonal codes is orthogonal
hopping with multiple sets of orthogonal codes. Each of these
sets can be seen as alayer, stacked up in multiple levels.
Hence, a layer comprisesM sequences and any two sequences
in a layer are orthogonal. E.g., for5 nodes in3 channels there

2”Orthogonal” refers to the Rx (home) hopping sequences. Thetransmission
hop sets are always orthogonal. For robust networks, as in Fig. 1, Tx hopping
is used. McMAC [2] on the other hand does not employ Tx hopping; the
performance model is the same in both cases.



would be2 layers, one layer with3 nodes and another one
with 2 nodes. Each layer has an associated pseudo-random
sequence. To reduce correlation between layers, all sequences
in a layer are pseudo-randomly permutated in every hop. In
this way, collisions are avoided between nodes in the same
layer – thus keeping the benefits of orthogonal hopping – while
collisions between nodes in different layers are randomized.

III. PERFORMANCE MODEL

We use the discrete time Markov chain model of Mo
et al. [3] to compare different hopping strategies. For the
completeness of the paper, we briefly explain the model3.
There areN nodes that operate inM channels. Nodes select
communication partners uniformly and independently. In each
time slot, an idle node tries to transmit a request-to-send to
a chosen receiver with probabilityp; the parameterp hence
models the overall network load. If an agreement with the
intended receiver is reached, a packet is transmitted over the
following time slots. The packet lengths, given in number
of slots, are assumed to be geometrically distributed with
mean1/q. This implies that each ongoing packet transmission
ends independently with probabilityq in each slot, allowing
for a (memoryless) Markov chain model. The state space
S of the chain comprises the number of currently active
transmissions:S =

{

0, 1, . . . ,min
(⌊

N
2

⌋

,M
)}

, where ⌊·⌋
denotes the floor function. The state changes either if new
transmission agreements are made or if transmissions end.
Let S(i)

k and T
(j)
k denote the probability ofi transmissions

starting andj transmissions ending when the current state is
k, respectively. The maximum number of transmissions that
can end in the next time slot isk. The transition probability
pk,l from statek into statel can then be written as

pk,l =

k
∑

m=max{k−l,0}

S
(m+l−k)
k T

(m)
k . (1)

The pk,l are the elements of the stochastic transition prob-
ability matrix P . FromP , one can calculate the steady state
distribution vectorπ by solvingπP = π, i.e., by calculating
the eigenvector ofP associated with eigenvalue1. Using the
steady state distribution vectorπ, the total throughputC can
be calculated as4

C =

|S|−1
∑

i=0

iπi . (2)

The termination probabilityT (j)
k can be easily computed

from the assumption of independence:T
(j)
k =

(

k
j

)

qj(1−q)k−j .

However, the (success) probabilityS(j)
k of j new agreements

is quite complicated for a parallel rendezvous protocol andis
given by

S
(j)
k =

N−2k
∑

a=0

min(M,a)
∑

o=0

o
∑

i=0

P (A = a)P (O = o|A = a)

P (I = i|A = a,O = o)P (J = j|A = a, I = i, O = o)
(3)

3Confer [3] for further analysis and other relevant references.
4Note that this throughput measure includes the RTS/CTS messages, the

practical data throughput will hence be less.

The conditional probabilities are calculated in the following.
To have j new connections, the following conditions need
to be met: i) The number of nodesA attempting to start a
transmission should be equal to or larger thanj, ii) the number
of ”one-attempt” channelsO, i.e., the number of channels
where exactly one device tries to initiate a transmission should
be at leastj, iii) the number of idle one-attempt channelsI
should be larger thanj and iv) the number of idle receivers
in an idle one-attempt channelsJ should be exactlyj.

The probability ofa idle nodes wanting to start a trans-
mission givenk active nodes isP (A = a) =

(

N−2k
a

)

pa(1 −
p)N−2k−a. The one-attempt probabilityP (O = o|A = a)
depends on the home channel hopping strategy and will be
evaluated in the following for the different approaches. The
probability that a one-attempt channel is idle isP (I =

i|O = o,A = a) =
( k

o−i)(
M−k

i )
(Mo )

. Finally, the probability

that a given transmitter finds its receiver is approximated
by ps = N−2k−a

N−1 : We assume that all idle devices are
equally busy, i.e., that no node is selected more often than
others as a receiver. Accordingly, the probability thatj nodes
find their receivers and can establish a new connection is
P (J = j|I = i, O = o,A = a) =

(

i
j

)

pjs(1 − ps)
i−j .

A. One-attempt probability

The one-attempt probability orP (O = o|A = a) models
collisions in parallel rendezvous protocols and has a significant
effect on the throughputC. Collisions occur if transmitters
select i) the same receiver or ii) two different receivers with the
same home channel. The latter probability differs depending
on the home hopping strategies of devices and we would like
to compare them for different strategies: random hopping and
orthogonal hopping.

1) Random hopping: With random hopping, each node
chooses its current home channel with equal probability from
the number of available channels. Collisions can occur due
to two events: Transmitters can select the same receiver or
two selected receivers have the same home channel5. We
calculate the one-attempt probability by conditioning on a
certain selection of receivers and a certain selection of home
channels.

The probability of a certain outcome~ct = (c1, c2, . . . , cN )
of selected receivers is given byP (~Ct = ~ct|A = a) =
(

a

c1,c2,...,cN

) (

1
N

)a
, where ci denotes the number of trans-

mitters choosing nodei. Valid outcomes are all
(

N+a−1
a

)

N -compositions6 of a, i.e.,
∑N

i=1 ci = a, with ci ≥ 0.
Analogously, the probability of a certain outcome of re-

ceiver home channels~cr = (c1, c2, . . . , cM ) is given by
P (~Cr = ~cr|A = a) =

(

a

c1,c2,...,cM

) (

1
M

)a
, whereci denotes

the number of receivers dwelling in channeli. Valid outcomes
are allM -compositions ofa.

5The one-attempt probability given in [3] for the parallel rendezvous
protocols is correct for orthogonal hopping andN ≤ M . It gives an upper
bound on the one-attempt probability for random hopping since the probability
of receive channel collision is neglected. For orthogonal hopping andN > M ,
collisions of receive channels have to be taken into accountas well.

6The compositions can be efficiently enumerated by the NEXTCOM
algorithm described in [5, pp. 46].



~cr and~ct denote the number of transmitters and receivers
in a certain channel. For a given combination of~cr and~ct,
the number of one-attempts can be calculated by generating
all receive channel assignments that yield the same~cr and
counting the number of one-attempts when throwing balls into
bins according to~ct. Due to symmetry, this can easily be
achieved by generating one possible receive channel assign-
ment according to~cr and then generating alla! permutations of
this assignment. The one-attempt probabilityP (O = o|~Ct =
~ct, ~Cr = ~cr) is then calculated numerically by counting the
number of outcomes with exactlyo one-attempts.

To calculate the overall unconditional one-attempt probabil-
ity for random hopping, the probability of each transmit and
receive channel combination needs to be considered:

P (O = o|A = a) =

(N+a−1

a )
∑

i=1

(M+a−1

a )
∑

j=1

P (~Ct = ~ci)P (~Cr = ~cj)

P (O = o|~Ct = ~ct, ~Cr = ~cr) ,
(4)

where the~ci and ~cj run through all possible outcomes for
transmitter and receiver collisions.

2) Orthogonal hopping: Orthogonal hopping assigns one
of M orthogonal home channels to nodes. IfN > M ,
some nodes have to share a home channel. We distribute
the available channels to nodes evenly so that the maximum
of the number of nodes that have the same home channel
is minimized. LetL denote the number of full layers, i.e.,
L =

⌊

N
M

⌋

.
To describe the one-attempt probability, we need some

auxiliary expressions. Let the number of bins with exactly
one ball after throwingx balls uniformly into y bins be
denoted byB(y, x) and the number of bins with exactly zero
balls asZ(y, x). There is no closed-form solution for the
probability distribution ofB(y, x) andZ(y, x), but they can be
calculated by considering a Markov chain, for which the states
(Y

(n)
0 , Y

(n)
1 ) describe the number of bins containing zero balls

Y
(n)
0 and exactly one ballY (n)

1 aftern throws7.
First, assume thatN ≤ M . The one-attempt probability

P (O = o|A = a) is then given byP (B(M,a) = o).
Now, assumeN > M . If N mod M = 0, the one-attempt

probabilityP (O = o|A = a) is also given byP (B(M,a) =
o) due to symmetry, as all channels have equal probability of
being selected. IfN mod M 6= 0, R = N mod M channels
are used byL+ 1 nodes, whileM −R channels are used by
L nodes. The total one-attempt probability can be calculated
by considering all possible outcomes of the distribution of
attempts to the two partitionsR andM −R. The probability
of havingk attempts in theR bins is

(

a

k

)

pkR(1− pR)
a−k with

pR = R(L+1)
N

.

7For this Markov chain, the initial state is(Y (0)
0 , Y

(0)
1 ) = (N, 0)

and the transition probabilities areP ((Y
(n+1)
0 , Y

(n+1)
1 ) =

(y0, y1)|(Y
(n)
0 , Y

(n)
1 ) = (y0, y1)) = 1− y0+y1

N
, P ((Y

(n+1)
0 , Y

(n+1)
1 ) =

(y0 − 1, y1 + 1)|(Y
(n)
0 , Y

(n)
1 ) = (y0, y1)) = y0

N
and

P ((Y
(n+1)
0 , Y

(n+1)
1 ) = (y0, y1 − 1)|(Y

(n)
0 , Y

(n)
1 ) = (y0, y1)) =

y1
N

.

The one-attempt probability for orthogonal hopping is then

P (O = o|A = a) =
a
∑

o=1

∑

o1,o2

a
∑

k=0

(

a

k

)

pkR(1− pR)
a−k

P (B(R, k) = o1)

P (B(M −R, a− k) = o2) ,

(5)

where second sum runs over all
(

o+1
o

)

= o + 1 possible
2-compositions ofo one-attempts.

B. Single attempt collision probability

The probability of collisionpc gives the probability that
a chosen single representative attempting node collides with
one of thea− 1 other attempting nodes. We will see that this
probability depends on the home channel hopping strategy and
that multi-level orthogonal hopping is fairer, as the variance
of pc for different nodes is lower.

1) Random hopping: Consider two mutually exclusive
events: i) at least one ofa− 1 attempting devices selects the
representative node and ii) none of thea−1 attempting devices
selects the representative node. In the first case, a collision
occurs with probability1 while in the second case, a collision
only occurs if the home channel of another receiver is shared
with the home channel of the representative node.

The probability of the first event is1 −
(

1− 1
N

)a−1
, the

second event has probability
(

1− 1
N

)a−1
. Let 1 ≤ r ≤ a− 1

denote the number of selected receivers out ofN−1 potential
receivers. The probability thatr unique receivers are selected
is the same asP (Z(n − 1, a − 1) = N − r − 1), i.e.,
the probability thatN − r − 1 devices are not selected.
By noting that at least one home channel must overlap for
a collision, we have the collision probabilitypc = 1 −
(

1− 1
N

)a−1
+
(

1− 1
N

)a−1 ∑a−1
r=1 P (Z(N − 1, a− 1) = N −

r − 1)
(

1−
(

1− 1
M

)r)

.
2) Orthogonal hopping with channel re-use: Here, some

channels are occupied byL = ⌊N
M
⌋ nodes and the others by

L+1 nodes. The collision probabilitypc,re-usediffers depending
on whether the representative node is in a channel withL node
or L+ 1 nodes. It is given by

pc,re-use=

{

pc,re-use, high= 1− (1− L
N
)a−1, with L devices;

pc,re-use, low= 1− (1− L+1
N

)a−1 otherwise,
(6)

again assuming an even distribution of available channels to
nodes so that the maximum of the number of nodes that have
the same home channel is minimized. We see that the collision
probability of some devices is higher than that of others in this
scheme, which can be considered as being unfair.

3) Multi-level orthogonal hopping: In multi-level orthogo-
nal hopping, the layers are scrambled to retain orthogonality
within the layer but at the same time distribute the possible
conflicts evenly over all nodes. Again, we assume that the
layers are filled from the bottom. A node in a full layer
will then experience a collision with the probabilitypc,ML =
R
M

(

1−
(

1− L+1
N

)a−1
)

+
(

1− R
M

)

(

1−
(

1− L
N

)a−1
)

, and
with probabilitypc,ML = pc,re-use if it is in the last layer. Here
again,R = N mod M andL = ⌊N

M
⌋.
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Fig. 2. Throughput versus number of nodes forp = 0.3, q = 1.
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Fig. 3. Relative increase in throughput forp = 0.6, q = 1.

IV. N UMERICAL RESULTS

We now evaluate the system model numerically and analyze
the dependencies of various variables. The model closely
approximates the performance of real implementations of
parallel rendezvous MACs [2], [3].

A. Throughput improvements

Fig. 2 shows the total average throughputC for orthogonal
hopping and random hopping. A notable gain can be seen
for a larger number of channels. For a fixed number of
channelsM and a given network loadp, there is a saturation
point after which throughput decreases due to congestion.
Interestingly, after saturation for largeN orthogonal hopping
becomes slightly worse than random hopping. Orthogonal
hopping distributes the transmission attempts evenly; therefore
collisions happen in all channels. For random hopping there
is a chance that nodes collide only in a few channels, leading
to (slightly) higher throughput.

Fig. 3 shows the relative increase in throughput overN
andM . Also shown are lines indicatingN = M andN =
2M . If N = M , the relative increase is maximal due to the
fact that transmitter-side collisions have the greatest effect,
for N = 2M this effect is also visible. If the number of
nodes significantly exceeds the number of channels and the
network is operated in the congestion collapse regime, the gain
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Fig. 4. Collision probability for a single nodepc and fairness versusa for
different strategies,M = 10, N = 15.

eventually becomes smaller than1 as was already observed in
Fig. 2.

B. Collision probability

Fig. 4 shows the collision probabilities of a single connec-
tion as well as the fairness for each strategy. Fairness is defined
as the ratio of the collision probabilities of nodes from a full
layer to the collision probability of nodes from the last (non-
full) layer, i.e.,pc,low/pc,high. For the re-use strategy, there are
R(L+1) nodes experiencing a higher probability of collision,
whereas for the multi-level strategy this is the case for only
R nodes: The multi-layer hopping yields better fairness than
the re-use strategy.

V. CONCLUSION

We evaluated a new rendezvous scheme based on multi-
level orthogonal hopping for parallel rendezvous multi-channel
MACs and compared its performance to other schemes, i.e.,
with random hopping and channel re-use hopping. Com-
pared to those schemes, multi-level hopping offers increased
throughput at better fairness.

The implementation costs of coordinated hopping are
marginal since, in parallel rendezvous MACs, the hop se-
quences have to be communicated within a neighborhood
anyway. Considering this, multi-level orthogonal hoppingren-
dezvous can be beneficial in multi-channel MAC.
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