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Abstract—Human are social beings and spend most of their
time in groups. Group behavior is emergent, generated by
members’ personal characteristics and their interactions making
it difficult to recognize in peer-to-peer (P2P) systems where the
emergent behavior itself cannot be directly observed. We intro-
duce 2 novel algorithms for distributed probabilistic inference
(DPI) of group activities using loopy belief propagation (LBP). We
evaluate their performance using an experiment in team sports
activities and show that these activities are emergent in nature
through natural processes. Centralized recognition performs very
well, upwards of an F-score of 0.95 for large window sizes. The
distributed methods iteratively converge to solutions which are
comparable to centralized methods, even surpassing them in some
situations. DPI-LBP also greatly reduces energy consumption
of the node, where a centralized unit or infrastructure is not
required, although memory and processor consumption increases.

I. INTRODUCTION

Human beings are social creatures, and as such we spend
most of our time in groups [1]. It has been shown that groups
are better than individuals at accomplishing tasks, which is
often why they are formed in the first place [2]. Understanding
group behavior and context is then crucial for intelligent
environments. The process of understanding what a group is
doing, or the physical attributes of the group behavior, is called
group activity recognition (GAR) [3].

The behavior of the group is emergent behavior, emerging
from the personal characteristics of the individual members
and the group dynamic [4], [2]. Human perception of group
behavior can be explained by Gestalt Theory, where only
when observing the complete whole can its properties be
described (see Fig. 1) [4], [2]. Recognition of that behavior
is irrefutably bound to human perception, as it is the human
who labels a group activity based on his/her perception. Kurt
Lewin, a pioneer of modern social psychology, uses the term
“emergence” to signify that the properties of the behavior of
the group are fundamentally different than the properties of the
behavior of the individuals, or of the “sum” of those behaviors
[4], a definition which we follow. This is a generalization of
many definitions of the term emergence [5], where all agree
that emergence is a difference between (human) observations
of micro and macro properties.

Mobile devices such as Smart Phones present an attractive
platform both for human activity recognition (HAR) and the
recognition of emergent group activities. Sensor information

a) b)

c) d)

Fig. 1. Following Gestalt theory, an image of a cube emerges from distinct
objects (a). An incomplete set obscures the emergent properties (b). The same
is valid for group activities where from a complete image a sport can be
identified from context (c). A partial view of player’s physical behavior without
context makes identification difficult (d).

from these devices is used by a recognition algorithm to
learn the ability to make the same observations as a human
would. This paper shows that a global observer - a centralized
detection algorithm - having the complete picture can perform
detection of emergent group actives. It then analyzes if a local
observer - a decentralized algorithm running on individual
devices - having limited peer-to-peer communication with
other peers can also deliver such observations and studies
how well such local detection performs in comparison with a
centralized approach. It also studies the communication range
required to detect the emergent behavior with respect to the
spatial size of the group, and if sparse communication can
still reach acceptable detection rates compared to a global
observer. We also study how much energy can be saved using
the decentralized approach and how much energy needs to be
invested for local processing instead.

We present novel methods for distributed GAR using
distributed probabilistic inference (DPI) combined with loopy
belief propagation (LBP) [6]. For each group activity, the
behavior is broken down into individual clusters using unsuper-
vised methods. Each node then estimates its belief over its local
clusters for all group activities given current sensor observa-
tions, and then communicates this information to its neighbors.



All nodes then iteratively update and re-communicate their
beliefs based on their local sensory evidence, the belief esti-
mates received, and a model of individual-to-individual group
dynamics. The network then iterates and converges towards a
response prediction. We present two methods for LBP, one
linear regression over soft posterior probabilities over user
behaviors (SLBP) and one using expectations based on hard
classifications (HLBP).

The novel algorithms are evaluated using an experiment
in team sports. 10 subjects play 6 different sports and are
monitored using Android phones as wearable sensors. The
experiment naturally creates emergent group behavior where
the algorithms are then evaluated in terms of their effectiveness
at recognizing that behavior. The evaluation is in terms of
performance with respect to the number of iterations required
for convergence. The effects of P2P communication range are
also evaluated by simulating local links using the devices’
GPS locations. The results are then compared with centralized
inference of group behavior, where the complete set of sensor
data provides the complete picture of the emergent behavior.

The results show that centralized inference of emergent
group behavior when presented with the complete set of group
sensor data is relatively straight-forward, approaching an F-
score of 0.81 for a window length of 2 seconds and 0.96
for 10 seconds. However inference using solely the data of
each subject individually is poor at around 0.55 for the same
window. The novel DPI-SLBP approach begins at iteration 0
at the same value as with individual subject inference, but then
rapidly improves with each iteration, surpassing the centralized
naive Bayes approach after three iterations and converging to
an F-score of 0.84 after about 10 iterations. This method incurs
an increase in the amount of local memory consumed and
processing required, but reduces the amount of energy required
overall for classification factor of almost 7.

The simplified DPI-HLBP algorithm performs similarly
but converges to a lower value of 0.81, just under the cen-
tralized approach. However compared to DPI-SLBP, memory
consumption energy required for classification drop by a factor
of more than 6, which is 40 times less than that required by
the centralized approach.

II. RELATED WORK

Recognizing emergent behavior has historically been a
topic in HAR for quite some time, although it has not been
named as such directly. Human perception of other human
activities is also governed by Gestalt Theory in that we observe
a single individual instead of a collection of limbs, therefore
inferring behavior of a single individual from the distributed
behavior of their body is emergent [7]. The problem is however
simpler, as limbs don’t change roles, and there interactions
with each other are mechanical in nature.

Multi-user activity recognition (MAR) is the process of
recognizing the activities of multiple individuals in parallel [3].
Wearable sensing approaches leverage centralized inference
structures to infer multiple activities in parallel. Subjects may
be interacting with each other or may even be in the same
group, but the problem presented is of a different nature,
recognizing distinct activities for different subjects [8], as
opposed to emergent group activities. However often these

approaches gray the boundaries between MAR and GAR,
where some of the activities recognized are group labels of
emergent activities, where behavior of multiple subjects is
necessary to infer certain activities, and others are single-user
activities [9].

Approaches have also been presented to distributing the
recognition process for contexts and activities across the
network of sensing nodes [10]. Distributed methods leverage
knowledge about the conditions which govern distributed sens-
ing to fuse information into recognition, e.g. someone climbing
a fence will create similar disturbances at multiple measure-
ment locations [10]. However these approaches are not focused
on emergent behavior. One approach which was inspirational
for our research here is a method of distributed probabilistic
inference for sensor calibration [11]. The approach uses the
assumption that the distance between the measurement loca-
tions of nodes will provide temperature measurements which
are correlated with each other, over which a potential function
can be built. The approach is however fundamentally different
from emergent GAR, as it does not address the human factor,
where this factor is the main cause of complexity in HAR as a
field in general. It is more akin to MAR, where each node must
estimate its own bias under the assumption that measurements
are correlated. For that application, loopy belief propagation
does not converge, requiring a complex networking architec-
ture for clique structuring and belief propagation [12].

Other sensing modalities have also been used for recog-
nizing group activities. Video systems present an advantage as
they are able to view local individual behavior and the resulting
emergent group behavior simultaneously [13], and are also
able to scale to larger groups. They are also able to measure
certain properties of individual roles, for example a player’s
position in an American Football team [14]. However such
approaches are accompanied with infrastructure requirements
for communicating and processing the constant flow of video
data, and therefore can only be applied in instrumented envi-
ronments. Many human interactions are verbal, and monitoring
these conversations using microphones also provides insight
into the group activity [15]. An understanding of the audio
situation can even allow extraction of certain types of role
information present in the group behavior [16]. However for
activity recognition, microphones are an orthogonal sensing
approach as they do not sense the physical parameters of the
behavior directly, and extracting this information from audio
data is a different branch of research with its own set of
challenges.

Monitoring location has also been shown to give insight
into emergent properties of larger groups or crowds [17]. Here
emergent spacial properties can be computed as a function
of the location of multiple individuals and the properties of
the space in which they are located. Adding motion sensors
also allows properties such as affiliation of users to each other
and to groups, building subgroups within a larger group or
crowd [18]. Emergent behavior has also been addressed in
the separate but related field of swarm intelligence, usually
addressing this behavior in animals and insects [19]. Here
the problems addressed usually have one of three different
goals, either looking to simulate the emergent group behavior
based on models of individuals (generation) [20], discover
the rules governing individuals based on the emergent be-



havior produced (discovery) [21], or evaluate the correctness
of assumptions about the relationship between local agents
and emergent group behavior (evaluation) [20]. Our approach
here differs from this field because we wish to predict the
emergent group behavior based on observations of agents
(humans) who are admittedly far too complex to model using
expert knowledge. We therefore approach the problem from a
machine learning standpoint in order to discover and model
pertinent characteristics of agents in an automatic fashion,
using only the sensing devices.

III. CONCEPTS AND APPROACH

In this section we present the concepts and theories which
motivate the design decisions made. We begin with the funda-
mental principles which govern group behavior from the field
of group dynamics and social psychology. Inspired by these
abstract models and theories, we construct concrete models
and methods for modeling and classifying group behavior in
a probabilistic fashion. The goal of this section is to create
models for centralized and distributed recognition of emergent
group behavior, methods for evaluating them independently,
and a metric for judging the degree of emergence of a
recognition problem given specific models.

A. From Field Theory to Probability Theory

Kurt Lewin’s “Field Theory” [4] states that the individual
behavior Bind. of members of a group is a function of their
individual attributes and characteristics c and the social envi-
ronment of the group E. He quantified this as “interactionism”
in Eq. (1).

Bind. = f(c, E) (1)

He stated that the resulting group behavior is “a dynamic whole
[that] has properties which are different from the properties of
[its] parts or from the sum of [its] parts” [4]. “According to
Lewin, whenever a group comes into existence, it becomes
a unified system with emergent properties that cannot be
fully understood by piecemeal examination” [2]. However,
the behavior of an individual is not only governed by their
individual attributes, but also their role in the group dynamic
[22]. These roles, as with group behavior, are generated as
emergent norms when the group is formed, and members adapt
their behavior to fit the norms for different roles [2]. As a result
we can update Lewin’s equation to account for emergent roles
ρ ∈ R: Bind. = f(c, ρ, E).

From a probabilistic standpoint, we can model the proba-
bility p of all group behaviors p(B) as the joint probability of
all individuals. We know that this is the joint distribution of
C,R and E which symbolizes the social dynamic:

p(B) = p(Bind.
s1 , Bind.

s2 , . . . , Bind.
sn ) = p(C,R,E) (2)

where C is the set of characteristics of all group members
c ∈ C. When Lewin used this term, he was referring to all
possible relevant characteristics of the individual, psycholog-
ical, sociological, physiological, metaphysical, etc., meaning
the state space of C approaches infinite. However, for ac-
tivity recognition we focus on the physical characteristics of
contexts, activities and behaviors. These physical properties
can be observed and differentiated using sensors (the premise
for HAR), therefore we make the assumption that we can

replace the infinite state-space of C with our observations of
the physical properties of C, referred to as X . Here we use the
notation xτs to indicate a single observation, or observations
over a window, for subject s at time τ . Xs refers to all
observations for subject s, Xb refers to the evidence of all
subjects for a single group activity, and X is the complete
set of observations for all subjects and activities. We now
have the following equation for the joint probabilities of group
activities: p(B) = p(Bind.

s1 , Bind.
s2 , . . . , Bind.

sn ) = p(X,R,E).
We can break down the right hand side to approach the
problem of differentiating b ∈ B given observations and
models as the following:

p(B|X,R,E) =
∏
si∈G

p(B|Xsi , ρsi , E) (3)

However, we still have the role of each user in the equation.
Identification and annotation of roles and individual-to-role
affiliation requires behavioral experts, meaning this approach
lacks versatility and requires a great deal of preparation.
Also, the double annotation of group activity, and role greatly
increases the effort required for training. To circumnavigate
this issue, we make a key assumption. The evidence X is
conditionally dependent on both the individuals characteristics,
and the role of the individual in the group [2]. We can
therefore use this conditional dependence to gain the pertinent
information about the observations and roles. This is done by
combining the evidence in its conditionally dependent form
using a transformation into a different space:

K = f(X ⊗R) = ∀b∈B∀s∈Gclust(Xs|b) (4)

We cluster the evidence into clusters κ ∈ K, where κbs is
a cluster from subject s generated by group behavior b and
their role ρbs in that behavior. To be clear, we are not making
the assumption that these clusters equate semantically to the
role of the individual in the activity. Our assumption is that the
clusters contain a factorization of the conditional dependencies
between the evidence, the roles and the group behavior, or
p(K|B) = p(X,R|B). For example, assuming experts in the
sport soccer inform us that one of the roles is goal-tender, no
single cluster would equate to this role for a specific subject.
The assumption is that the role goal-tender for a specific
subject will however generate one or several clusters in which
the different modalities in which this user behaves in this role
are quantified. It is also possible that a similar behavior from
the same or different subject in the same or different group
activity could generate a cluster of the same dimensions.

B. Modeling and Classifying Group Activities

The clustering approach used is a probabilistic clustering
using Expectation Maximization. For each group activity and
subject, X is separated into Xb

s and then clustered, yielding
clusters Kb

s . The probability density function (PDF, or P ) of
the clusters for a subject and group activity is given by a
Gaussian mixture model (GMM) [2]:

P (Xb
s |Ks) =

∑
κb
s∈Kb

s

πκb
s
N (Xs|µκb

s
,Σκb

s
) (5)

Each node s has clusters Ks where each cluster κs is generated
by a certain group behavior b, giving a subset of clusters
for each group activity κbs ∈ Kb

s . These clusters now build



the evidence function for inference of group activities. The
posterior probability distribution p(K|X) can be obtained
using Bayesian inference, where each posterior is normalized
using the following equation:

p(κbs|xτs ) = Post(κbs|xτs )︸ ︷︷ ︸
GMM posterior

like(Kb
s |xτs )∑

b′∈B like(Kb′
s |xτs )︸ ︷︷ ︸

GMM likelihoods normalization

(6)

Here posteriors are generated over the Gaussian mixtures
for each class Kb

s given an observation xτs , after which the
posterior distribution is normalized by the likelihood of all
activity cluster models for that subject. Both the likelihood of
a GMM and the posterior of a cluster given an observation
are obtained by applying Bayesian inference and the Law of
Total Probability [6]. It is important to note that due to the
normalization in Eq. (6), the resulting probability distribution
over all clusters for all activities for each subject (Ks) sums to
1. As will be explained later on, this step is necessary in order
for nodes to be able to learn relative probability distributions
of neighboring nodes based on histories of these distributions
generated by observations. Classification of the current group
activity at any point in time for a single subject is achieved
by Eq. (7).

p(B = b|Ksi , x
τ
si) =

∑
κb
si
∈Kb

si

p(κbsi |x
τ
si) (7)

The classification approach of evaluating local posteriors using
local evidence (Eq. (6)) can be used to evaluate the ability
of a single node to infer the group activity based on local
observations alone, which we call the independent local
inference (ILI) method.

Returning to the original problem of inferring group be-
havior, we have now combined the user’s role with the
evidence in clusters. We now have the following equation:
p(B) = p(K,E). The term E is problematic, since it is
difficult to quantify. We know, however, that group behavior
can be observed by applying Gestalt Theory, meaning that
observation of the whole allows it to appear in its emergent
form, rather than as a sum of unrelated aspects. The indication
is that for complete set of K, the effects of E are already
present with respect to the interpretation of the group behavior
B. The same concept can be seen in Fig.1, where presented
presented with the complete image, a cube appears through
the Gestalt principles in 1a. This is the emergent whole with
properties different than the sum of the individual circles,
which are actually not circles, but appear as such on the right
in in 1b. Therefore observing all distributed observations in a
single location should allow a complete view of the emergent
group behavior. To examine this hypothesis, we used two
methods of central inference.

The first is Bayesian inference using the complete prob-
ability distributions of K. For this purpose, ξ is constructed
such that:

ξ
τ

:= ∀
Ks∈K

append(p(Ks|xτs )) (8)

For each time-step τ , ξ
τ

is then a vector of the complete
normalized posters across K. Using this set as observations,
a naive Bayesian classifier is constructed to model P (ξ|B)
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Ksn

Xsn
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Evidence ...

Potential ψ
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Role-Behavior 

Clusters K

Group 

Behaviors

Fig. 2. Factor Graph for DPI-LBP with Evidence p(K,X), Potential
ψ(Ksi ,Ksj ) (for All i, j, Some are Omitted), and Classification p(B,K)

and then to infer p(B|ξτ ) for each time-step τ . This method
is referred to as centralized cluster-based inference (CCI).
A more concrete description of the training process will
be explained in Sec. IV. The second centralized method a
more traditional naive Bayesian inference method using the
observations directly. Here P (X|B) is modeled as a GMM
using the Expectation Maximization (EM) algorithm [2], and
p(B|X) can then be inferred, referred to hereon as centralized
naive Bayes (CnB).

Our goal is to recognize emergent group behavior using
distributed mobile phones, where E can no longer be ignored.
We propose to approach this problem using DPI with LBP.
The missing information sampled by other nodes which is
necessary in order to infer the emergent behavior is propagated
through the network in the form of beliefs from other nodes.
The equation for exact inference is shown in Eq. (9) where
each node calculates its own belief based on its evidence, as
well as its belief of other nodes states based on its own local
evidence. Evidence is propagated through the network in the
form of posteriors known as beliefs

p(K|X) =
∏
si∈G

p(Ksi |Xsi)︸ ︷︷ ︸
local evidence

∏
sj 6=i∈G

p(Ksi |Xsj )︸ ︷︷ ︸
distributed belief

(9)

This method has the advantage of being exact, meaning
the accuracy achieve is equal to that of a centralized system
[6]. However, the state space of all random variables must be
modeled redundantly at every node at process at each iteration
step. More attractive are methods of approximate inference
where each node propagates beliefs for other nodes based on
its internal beliefs and a model for relations between its random
variables and those of other nodes [6].

For standard DPI problems, clique graphs can be built to
factor priors using some form of expert knowledge or as-
sumptions about conditional independence between nodes [11].
These clique graphs are structured as directed a-cyclical graphs
(DAG) and then traversed for belief propagation, guaranteeing
that loops do not occur. Constructing a recognition system in
this manner is guaranteed to converge to the optimal solution
with respect to a centralized system with a full sensory image
of the emergent behavior. For group activity recognition this is
not the case, as all variables within are influenced by the group
dynamic E, making the entire group a single clique graph.

One approach which may or may not work in such situa-
tions is loopy belief propagation (LBP) where cyclical belief



propagation paths are allowed. However several problems may
occur depending on the inference problem. Several types of
inference problems do not converge to single solution, and it
is unclear which types of problems do and do not converge [6].
Also, the convergence rate, meaning how many iterations of
belief propagation are required for convergence, are unknown.
Luckily for emergent GAR, the system does converge in
relatively few iterations with a resulting high accuracy, as we
will see in Sec. V. The equation for loopy and non-loopy belief
propagation is given in Eq. (10).

p(K|X) =
∏
si∈G

p(Ksi |Xsi)︸ ︷︷ ︸
local evidence

∏
sj 6=i∈G

ψi,j(Ksi ,Ksj )︸ ︷︷ ︸
potential function

(10)

The potential function ψ can be any positive function which
defines the relationship between the variables at subject si and
sj [2]. For this function we used linear regression [6] to model
the relationship between the variables of each pair of subjects,
or Ksi and Ksj . As stated before, the evidence function is
trained using EM for unsupervised clustering of each subjects
data for each group activity. Each potential function is trained
using linear regression from the variables Ksj of other subjects
to each cluster κsi separately. The resulting linear mapping
takes the form:

ψi,j = ∀
κsi
∈Ksi

∀
sj 6=i∈G

α+ [β1, β2, . . . , βn]× [p(Ksj )] (11)

Where [p(Ksj )] is a column vector of all cluster posteriors
κsj ∈ Ksj . This method we call DPI with soft LBP (DPI-
SLBP) due to the “soft” posterior probability distributions
which are mapped.

Each iteration consists of a local inference step followed
by several update and classification steps. In the inference
step, each node si generates a posterior distribution over
its clusters using its local evidence function from Eq. (10),
creating an initial estimate of the group activity based only
on local estimates. In the first update step, this information is
propagated to all neighboring nodes sj , i.e. all nodes within
range of one-hop communication. These nodes then convert
this estimation of the posterior probability distribution over
Ksi to a belief over Ksj using the mappings generated from
Eq. 11. These beliefs are then combined with the current
beliefs of node sj over Ksj and the resulting classification
of the group behavior is reevaluated using Eq. (7) in the
classification step. The update and classification steps then
repeated until the network is satisfied that convergence has
been reached, where we will empirically evaluate how man
update steps are required in Sec. V.

We also present a simplified version of the aforementioned
DPI with LBP approach. That method requires each node to
broadcast its posterior p(Ks|Xs) to all neighboring nodes.
Probabilistic classification works on the assumption that the
most likely model given specific evidence is the correct model
for a given instance. Based on this assumption, the most
valuable information p(Ks|Xs) is the most likely cluster in the
most likely activity, namely argmaxkbsj

p(kbsj ). We present a
simplified method where beliefs are calculated using only this
information, instead of the full cluster posteriors p(Ks|Xs).

This simplified method takes the same form as Eq. (10) with
a modified potential function presented in Eq. (12).

ψsimp.
ij = p(Ksi | argmax

kbsj

p(kbsj )) (12)

Training for the simplified potential model is done by
calculating the expectation E instead of the method using
regression previously introduced. Training ψsimp.

ij for node si to
sj for argmaxkbsj

∑
kbsj
∈Kb

sj

p(kbsj ) = κbsj is done by creating

a posterior probability for p(Ksj ) given the posteriors of
instances of training data data where the most like behavior for
node si is κbsj . Intuitively, we model a belief for the behavior of
node j at times when node i is behaving in a specific manner.
For example, if node i is behaving as a goal keeper in a soccer
game, the belief that node j is playing soccer as a midfielder
would (assumedly) be higher than than the belief that node j
is serving a volleyball. The equation for computation of ψsimp.

ij
is the following. First we define κsi to be the most probable
role-behavior cluster for si:

κsi = argmax
kbsi
∈Kb

si

p(kbsi |x
t
si) (13)

Then, for each cluster κsi the expectation is calculated given
Ksi and xτsi :

ψsimp.
ij (κsi) = ∀

τ |κsj
=κb

sj

E(κsj |Ksi , x
τ
si) (14)

where the probability of Ksi , x
τ
si is given by Eq. (6). We

refer to this method as DPI with hard LBP (DPI-HLBP)
due to the hard role-behavior classification in the potential
function. Lewin’s definition of emergence in group behavior
as the whole having properties different than the parts or
the “sum” of those parts [4], and emergence is a function
of observational difference between the micro and the macro
[5]. We define a metric for evaluating this disparity. For a
physical activity recognition system, trained to recognize a set
of group activities identified by human observations, we define
the “degree of emergence” ε as the proportional information
gain, quantified using the F-score, of activity recognition with
the complete picture, to the mean of activity recognition of all
nodes using their local observations.

ε(B|X) =
F-score(p(B|X))−

∑
s∈G F-score(p(Bs|Xs))

|G|

F-score(p(B|X))
(15)

This measure is dependent on and specific to the models used,
the subjective observations (labels), and only for the behavior
recognition problem, and does not necessarily be generalized
over these parameters, other definitions of emergence, or other
recognition problems.

IV. EXPERIMENT AND PROCEDURE

To evaluate the approach detailed in the preceding section
we constructed an experiment with emergent group activities.
The activities performed were team sports, where the emer-
gent behavior is the sport being played itself, based on the
observations of the physical behavior of the individuals.

The devices used LG Nexus 4 Android devices with a
custom application. The software sampled the accelerometer,
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Fig. 3. Device Placement (Left) for the Team Sports Group Activity Experiment (Middle) with Relative Subject Locations on the Field (Right)

magnetometer and gyroscope, each a 3 axis vector value, with
the maximum sampling rate. The accelerometer measures on-
body acceleration, the magnetometer delivers orientation and
heading information relative to the local ambient magnetic
field, and the gyroscope samples rotation information. Effec-
tively a sample rate of about 50 Hz was delivered for the
accelerometer and gyroscope, while the orientation sensor only
delivered an approximate sample rate of 20 Hz. In addition
to the behavioral sensing, the devices sampled their absolute
location using the GPS sensor. The location information was
not used for group activity recognition, but was used for
simulation of performance of a the P2P recognition system.

The devices where attached at the right side of the hip, as
the hip has been shown to be the most beneficial single location
for activity sensing [7]. This was done using an elastic sports
belt for the device, where the phones where inserted into the
belt with the face outwards and the top of the phone forward
as shown in Fig. 3. 6 different team sports where performed
by all subjects: volleyball, badminton, football (soccer),
ultimate Frisbee, touch rugby, and flunky-ball. Each sport
was performed for 10 minutes, with a break between each type
of sport. The experiment was conducted outdoors in an open
field with a natural turf of dimensions 15m by 20m, and a
video recording was made from an elevated standpoint of the
experiment.The day was sunny with high temperatures around
29◦C, making breaks between activities necessary.The subjects
were made up of 7 males and 3 females. On a scale of 0 (no
experience in any of the sport) to 10 (very experienced in all
of the sports) over all sport types, the average experience was
4.5 with a variance of 3.5.

The data recorded was synchronized and input into an
offline sensor replay mechanism in a MATLAB simulation
environment, where the algorithms are implemented. 50% of
the data is used to train the algorithms, and the other 50% for
evaluating algorithmic performance. All sensor measurements
where then hold-resampled to 50 Hz to provide equidistant
measurements for feature calculation. GPS location annota-
tions where also resampled and smoothed to account for
asynchronous updates. This sensor data was cut into windows
of lengths from 1 to 10 seconds, where the window is advanced
by 0.5 seconds each iteration over which features where
calculated. The features used were the mean and variance of
the total acceleration signal, the mean and variance of the
azimuth orientation with respect to the subject’s body, and
the mean and variance of the rotation around the X and Z
axes (see Fig. 3 for orientation). These features calculated for
subject s then represent the observations Xs of the subject,

where τ is the last timestamp of a sensor data window. For
each window length, all models are retrained and reevaluated
using the features generated over the windows.

Based on these locations we simulated performance un-
der different communication capabilities. We then simulated
performance for a communication range φ of 5m, 10m, 15m,
and 20m sequentially, compared to the diagonal of the field
of 25m which is also a good approximation of the radius of
the group. We used the relative Euclidean distance between
two subjects dist(si, sj) based on their GPS coordinates, and
judged them to be able to communicate if dist(si, sj) ≤ φ. The
timestamp used to evaluate dist(si, sj) is the final timestamp of
the window τ , as this is the point where the network is able to
evaluate the distributed evidence functions and communicate
beliefs. we simulated performance with full inter-connectivity
of all nodes in the network, meaning the range local P2P
communication was greater than the maximum distance be-
tween any two subjects during the course of the experiment,
or φ = ∞. No multi-hop communication is implemented,
simulated or required for the methods presented here. The
results are generated using only loopy belief propagation and
the models previously trained for this window length.

During the course of the simulation we evaluate the F-score
of the described algorithms by constructing confusion matrices
over the output of the algorithm for each node. How the output
is determined based on a node’s belief is described in Eq.
(7). This is monitored for each node, at each iteration of the
belief propagation algorithm. We also monitored the processor
time required for each operation and iteration, as well as the
memory required to store and process information.

V. EVALUATION

The goal of the algorithms presented in Sec. III is to allow
distributed mobile devices sensing the physical activities of
individuals to be able to recognize the activity of the group.
Since group behavior is emergent, the correct response is not
dependent on any single node, but the combine implications
of all distributed measurements. The presented DPI with LBP
methods may be a solution, but there are open questions in the
literature about their performance under GAR circumstances.
For one, it is unclear if the algorithms will converge to
response. If they do, it is unclear what the accuracy of that
response will be, or how long it will take to converge.

A. Centralized Recognition of Emergent Group Behavior

To analyze performance of centralized inference of emer-
gent group behavior using the complete picture of sampled
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sensor data, we looked at 3 different approaches which where
explained in Sec. III, namely CnB, CCI, ILI and the degree of
emergence ε of this specific problem.

The results of the centralized analysis are presented in Fig.
4 where performance is shown in the form of the F-measure
over varying lengths of the feature analysis window. The CnB
algorithm performs the best, with F-measures of 0.71 for a
window of 1 second, increasing up to a recognition rate of
0.96 for a window of 10 seconds. The implications are that
for the given scenario and set of conditions, the emergent
group behavior can be recognized using relatively straight
forward methods, if observations of all members of the group
are present. Admittedly, there are many other issues in GAR
which are not present in this experiment, such as variance of
group members and the number of group members over time,
device location, etc. [23], however these problems are outside
the scope of this work.

The CCI approach yields an F-score of 0.52 for an observa-
tion window length of 1 second, with an optimum of 0.70 for
a window length of 3 seconds, after which it subsides towards
random classifications with an F-score of 0.31 at 10 seconds.
This would appear to indicate that posteriors over role-behavior
clusters do not contain the pertinent information required to
infer group behavior. However, as we will see later, the is not
the case. The implication is therefore only that naive Bayesian
inference is not the correct method for inference using these
posteriors. This is due to the fact that Bayesian inference
using GMMs separates the data probabilistically using EM for
clustering, but the posteriors themselves do not separate well
into such clusters.

The evaluation of the accuracy of the ILI method provides
insight into the nature of the experiment. For a window size
of 1 second, the mean F-measure of all nodes across all
experiments was 0.48, with a variance of 0.05. For 10 seconds,
the mean increases to 0.82 and variance drops slightly to 0.03.
The longer the time-line of data used to classify the group
activity, the better the group activity can be recognized, both
for the centralized as distributed evidence functions. Also the
quantified emergence of the group activity shrinks with the size
of the window from 0.34 for 1 second to 0.16 for 10 seconds.

Sports activities in general are very dynamic in nature,
where players change roles rapidly. For a longer observation
time, a single player may change roles enough, allowing a
classifier to observe the majority of role-behaviors from a
single subject in that time, and therefore improve classification
of the emergent behavior. This effect cannot be generalized
to other forms of group activities such as social gatherings or
meetings and is specific to the experiment conducted here. For
the remaining evaluation of the novel distributed algorithms, a
window size of 2 seconds has been selected, as it represents a
a good level of emergence, and none of the algorithms in Fig.
4 have saturated or reached their peak results, allowing us to
compare relative values.

B. DPI with LBP

The results of DPI with LBP for a window size of 2 seconds
and a communication range of φ = ∞ are displayed in Fig.
5. The shape of the curve presented demonstrates clearly that
the distributed algorithm does indeed converge to a solution.
This solution is reached after 15 iterations at an F-measure of
0.86. At iteration 0, the lower bound is given by the evaluation
of the local evidence functions of each node separately, and
corresponds to the value for a window size of 2s in Fig. 4.
This value even exceeds the centralized approach at 0.81 after
3 iterations where 95% of convergence, a value of 0.84 is
already reached after 6 iterations. It must be noted here that the
indication is not distributed inference performs better, but that
the potential performance using posteriors over K is higher
than the performance of a nB classifier over X . The standard
deviation across nodes is 0.045 for iteration 0, but drops to
0.027 already after one iteration and then converges to a value
of 0.021.

The results of DPI with LBP with the same parameters
(φ = ∞, ws = 2) but with the simplified potential function
ψsimp. is shown in Fig. 6. Iteration 0 also begins at the same
lower bound as in Fig. 5. A similar convergence is also clearly
visible, but convergence occurs at 0.80, as compared to a value
of 0.86 for the full potential method. The standard deviation
also drops dramatically after one iteration from 0.045 to 0.037,
and then iteratively converges to 0.031. This value is however
greater than the standard deviation of 0.021 for the regression-
based potential function. Here again, 95% of convergence is
reached fairly quickly after 5 iterations.

The effects of the simplified potential function are clear.
Convergence occurs slightly faster (1 iteration less for 95%),
but converges to an optimum 7% less than when using a full
regression-based potential function, and the standard deviation
across nodes also increases by 68%. As we will see later, the
reduced F-measure and increased standard deviation come with
reductions in resource consumption, where the performance
trade-off can be advantageous for certain applications.

C. Effects of P2P Communication

The two novel distributed methods where also simulated for
various communication ranges. The range φ was simulated for
5m, 10m, 15m, 20m, and∞, or full connectivity. The mean F-
measure results for regression-based potential function are dis-
played in Fig. 7. There the man value for φ =∞ corresponds
to the same mean in Fig. 6. Mean values for 20m and 15m
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Fig. 6. DPI-HLBP for a Window of 2 Seconds and Full Inter-
Connectivity (φ = ∞)

perform similarly to full connectivity, converging at an almost
identical rate to a value of 0.85 and 0.84 respectively, compared
to 0.86 for full connectivity. Reducing communication to 10m
however incurred larger losses, converging to a value of 0.80,
although with an identical rate of convergence as well. At 5m,
convergence only achieved and F-measure of 0.68, although
the rate of convergence remained constant.

Similar behavior was also observed for performance us-
ing the simplified potential function for the same simulated
communication distances in Fig. 8. Communication ranges
of 20m and 15m iteratively incur a loss of less than one
F-measure point, although 95% of convergence requires one
further iteration, namely 6 iterations. At 10m, convergence
occurred at an F-measure of 0.76 with 95% reached after
8 iterations. Reducing communication further to 5m also
required 8 iterations and converged to an F-measure of 0.65.

A survey of convergence values for both algorithms after 5
iterations can be seen in Tab. I, where the coverage is simply
the ratio of the of φ to the diameter of the group, assumed
to be the diagonal of the field 25m. From full connectivity
to 15m range there is little effect on the convergence times,
although the using the simplified potential function incurred
a greater reduction of 4.9 percentage points (pp) as apposed
to 2.4 pp for regression-based potentials. This effect is due
to the speed of belief propagation for the two algorithms. For
ψsimpl. the propagation takes more “effort” as a node must
receive enough belief contrary to its current state before its
internal belief about its must probable cluster changes. For the
regression-based approach, this occurs more quickly as beliefs
are integrated and propagated in a continuous manner. For
these communication ranges, the large majority of nodes are in
the same network with occasional disconnection of individuals
as they leave the group, e.g. to collect the ball. Hence, only the
small changes in recognition rates over these ranges as belief
propagates over intermediary nodes throughout the network.

For a communication distance of 10m, both algorithms
propagate information at the same speed as before, but the
network breaks apart into disjoint sub-networks as groups of
nodes and individuals are out of range of each other. This
is also the cause of the reduced recognition rates in Figs. 7

TABLE I. CONVERGENCE IN % AFTER 5 ITERATIONS

Range Coverage (%) Convergence SLBP (%) Convergence HLBP (%)
∞ 100 91.2 94.6

20m 80 89.6 91.5
15m 60 88.8 89.7
10m 40 86.5 86.5
5m 20 91.1 91.7

and 8 for a range of 10m, where necessary information cannot
propagate to all nodes due to the lack of a link between nodes
in different sub-networks. For a range of 5m the problem
is exacerbated as the network breaks up into many different
subgroups, and nodes only have one or two other nodes in
their neighborhoods, many disjunct neighborhoods appear. The
results can be seen clearly in the low convergence rates in Figs.
7 and 8. However, convergence occurs quickly, as beliefs are
only propagated to small subgroups of G.

D. Resource Consumption Analysis

The resource consumption is only for recognition, where
training would incur higher costs and is more efficient when
conducted in a centralized manner. The values presented here
are simplified approximations, calculated from the bitrate and
power consumption of different communication technologies
[24]1. The results of the embedded resource consumption anal-
ysis for the different approaches are presented inn Tab. II. For
the CCI and CnB algorithms, we simulated communication of
local information to a centralized instance using 3G networks.
For the DPI algorithms, 10 iterations are assumed which is
well over the amount required for 95% convergence presented
in Tab. I. Here DPI-SLBP reduced power consumption due
to communication by 84% compared to CnB, and DPI-HLBP
presents a reduction of 97.5%. In terms of time required for a
classification, DPI-SLBP increases response time by a factor
of 2.5, although server-side calculations for CnB are not taken
into account [3]. DPI-HLBP however reduces the reaction time
of the system by 51% with respect to CnB, which is around 5.5
times less then the reaction time of DPI-SLBP. It is important

1http://www.csr.com/sites/default/files/white-papers/comparisons between
low power wireless technologies.pdf

http://www.csr.com/sites/default/files/white-papers/comparisons_between_low_power_wireless_technologies.pdf
http://www.csr.com/sites/default/files/white-papers/comparisons_between_low_power_wireless_technologies.pdf
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Fig. 8. Convergence Curves for DPI-HLBP for Varying Ranges φ

to note than the necessity to communicate with a server or
centralized instance is removed for DPI-LBP algorithms.

The memory required to perform CnB is only the amount of
memory required to store 1 window of sensory data. For DPI-
SLBP, around 30 times more storage is required or almost 100
kB. DPI-HLBP only requires around 5 times more memory
than CnB, representing a reduction of over 83% compared to
DPI-SLBP due to the reduced size of the expectation look-up
table compared to linear regression mappings.

VI. DISCUSSION

The large reductions in resource consumption and low
convergence time make DPI-HLBP an attractive approach.
However for many applications there are some drawbacks.
The effect of reducing simulated communication range was
more pronounced than with DPI-SLBP. For both algorithms,
conversion time increases as the group grows proportional to
the communication range (see Tab. I), but it grows slower
for DPI-SLBP then for DPI-HLBP. For applications where
the surface area of the group is large proportional to the
communication range of the group, e.g. groups or crowds in
public areas, propagation rates for DPI-SLBP could be greatly
affected. For such applications the indications are that DPI-
SLBT is the best approach to take, although performance and
scalability to large groups was not evaluated here. However
through the use of LBP, each node is only dependent on
neighboring nodes, meaning the approach is very scalable,
where the limiting factor is the time required for information
to propagate over the group. For small groups such as the one
analyzed here, this time is negligible. However if the required
response time of the system drops below the processing time
required, the number of iterations possible becomes limited
and may not suffice for convergence.

For both algorithms however, it is important that the
communication range be proportional to the surface area of
the group such that the vast majority of group members are
connected to at least one other member by one link, and to
all members by at least one multi-hop path so that belief may
propagate. In the case of sport activities, this requirement is
fulfilled by a range of around 12.5m-15m, or 50% of the
surface area of the group.

For the presented experiment, it is conceivable that dis-
tributed majority voting techniques could achieve high GAR
rates. However, in general for GAR, this will not be applicable.
For problems with a higher degree of divergence ε, majority
voting will inevitably degrade into noise by the definition
of majority voting and ε. For this reason an analysis and
comparison of such methods has been omitted here.

In the field of group activity recognition there are other
aspects which are not addressed here [23]. Group members can
come and go over time, leading to changing group sizes and
changes in individual and group behavior characteristics. These
aspects are outside the scope of this work and must still be
researched, for GAR in general and for GAR using DPI-LBP.
Integration of explicit roles into the approaches presented here,
along with generalized models for each role and automatic role
detection is a path for future research which we will follow,
and which could potentially further address these open issues
in the field of GAR.

VII. CONCLUSION

Group activities are emergent from the individual character-
istics of group members, their roles in the group, and the group
dynamic [2]. The group behavior therefore has properties
which are different from the properties of the behavior of the
individuals, as well as the “sum” of those individual properties
[4]. Recognition of these activities is the process of inferring
the properties of the whole, based on the properties of the
individual behaviors.

We have shown that the emergent behavior of the group
can be inferred using centralized inference methods where the
distributed observations of all members are present with F-
scores upwards of 95% possible. We use clustering to address
the problem of inference without explicitly requiring role. We
presented two methods of inferring emergent behavior in a
distributed fashion, based local estimations (distributed proba-
bilistic inference DPI) and exchange of belief estimates (loopy
belief propagation LPB). The first (DPI-SLBP) propagates
beliefs based on linear potentials over posteriors from subject
to subject. The second (DPI-HLBP) propagates beliefs as
expectation based on the most likely behavior of an individual.
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TABLE II. RESOURCE CONSUMPTION ANALYSIS FOR ALL ALGORITHMS FOR 1 CLASSIFICATION AFTER 10 ITERATIONS

Memory Used Comm. Per Classification Comm. Time Comm. Energy Proc. time Proc. energy Total Time Total Energy
Approach (kB) (B) (ms) (mJ) (ms) (mJ) (ms) (mJ)
CnB (3G) 3.6 3600 71.53 32.47 2.13 0 73.65 32.47
CCI (3G) 14.48 51.5 1.02 0.46 7.16 0 8.18 0.47
ILI 14.48 0 0 0 2.56 0 2.56 0
DPI-SLBP (BT) 99.35 5150 119.5 4.57 76.31 0.38 195.81 4.96
DPI-HLBP (BT) 16.6 800 18.56 0.71 17.7 0.09 36.26 0.8

DPI-SLBP and DPI-HLBP converged to relatively high
rates of recognition, with F-scores of 0.84 and 0.80 respec-
tively compared to a centralized inference of 0.81 for the
same parameters. Reducing the the communication range to
50% of the diameter of the group only marginally affected
the value which the distributed algorithms converged to, as
long as the range did not create disjunct networks out of the
single group. However it did affect convergence time, where
the effect on DPI-HLBP was greater, increasing the number
of iterations needed. For larger groups such as crowds where
local communication range is small in proportion to the surface
area of the group, DPI-SLBP is then preferable. However, DPI-
HLBP greatly reduces local resource consumption compared
to DPI-SLBP, making it attractive for small group applications.
In total, the distributed approaches allow inference of emergent
group behavior using only local observations and classification
from the mobile devices themselves, without the need for a
centralized instance or infrastructure. They also reduce local
energy consumption of the nodes themselves, although for both
algorithms the memory required locally increases, although
still remaining under 100 kB. Response time also increases
slightly for DPI-SLBP, although DPI-HLBP reduces response
time against a cloud or server based centralized system.
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