
Veech Groups
and Translation Coverings

Zur Erlangung des akademischen Grades eines

Doktors der
Naturwissenschaften

von der Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von
Dipl.-Math.Dipl.-Inform. Myriam Finster

aus Heidelberg

Tag der mündlichen Prüfung: 10. Juli 2013
Referentin: JProf. Dr.Gabriela Weitze-Schmithüsen
Korreferent: Prof. Dr. Frank Herrlich
Korreferent: Prof. Dr. Jan-Christoph Schlage-Puchta



Preface

The main objects in this thesis are Veech groups of translation surfaces that are coverings
of primitive translation surfaces. We start by shortly introducing these objects in an
informal way. Formal definitions will follow in Chapter 1.
Every translation surface can be constructed by taking finitely many polygons in the
plane and gluing their edges by translations in a way that leads to a connected, oriented
surface without boundary. If we remove the vertices of the polygons from the surface,
then the flat metric on the polygons induces a flat metric on the surface. If we extend
this metric to the vertices of the polygons, the metric may no longer be flat.
Some translation surfaces arise from billiards inside a polygon 𝑃 (see [ZK75] or [FK36]).
The idea of this construction is roughly as follows: take a polygon with all angles
commensurable to 𝜋. Then look at the straight line frictionless flow of a point particle in
the polygon with elastic reflections from the boundary. Instead of reflecting the particle
when it hits the boundary, one could also reflect the whole polygon in the boundary and
let the particle pass through the boundary. This straightens out the flow of the particle.
For example in a triangle with angles 𝜋/8, 𝜋/8 and 6𝜋/8, the beginning of a straightened
flow of a particle is shown in the following picture:

This so-called unfolding procedure leads to infinitely many polygons 𝑄𝑖 on the way of the
particle (if the particle never hits a vertex of the polygon). To each polygon 𝑄𝑖 we may
associate an element of O(2), describing the rotary reflection that transforms 𝑃 into 𝑄𝑖.
If two polygons on the way of the particle carry the same element of O(2), they differ
only by a translation and will be considered the same. As we assumed all angles of 𝑃
to be commensurable to 𝜋, the subgroup 𝐺 of O(2) generated by the reflections in the
edges of 𝑃 is finite. Hence, after identifying all polygons associated to the same element
in O(2), the straightened flow of the particle lies on a finite sequence of polygons. If we
do not only consider the flow of one particle in one specific direction, but all possible
particles and directions at once, then the above construction leads to a translation surface,
consisting of |𝐺| copies of 𝑃 . In the example above, where the internal angles of the
polygon are 𝜋/8, 𝜋/8 and 6𝜋/8, this gives the following translation surface (edges with the
same label are identified):
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On a translation surface we analyse the self-maps that locally (inside the polygons) are
of the form 𝑧 ↦→ 𝐴𝑧 + 𝑏 with 𝐴 ∈ SL2(R) and 𝑏 ∈ R2, the so-called affine maps. The
matrix 𝐴 of such a self-map is globally the same. It is called derivative of the map. All
derivatives of affine maps on a translation surface form the so-called Veech group of the
surface. The pure Veech group is the group of all derivatives of affine maps that fix every
singular point (which may arise from the vertices of the polygons).
In his fundamental work in 1989 (see [Vee89]), Veech connected the Veech group of
a surface to dynamical properties of the straight line flow on the surface: the Veech
alternative states that whenever the Veech group of a translation surface is a lattice, the
straight line flow in each direction is either periodic or uniquely ergodic. Hence, if the
Veech group is a lattice, then for every direction there are two possibilities: either each
straight line trajectory in this direction lies dense in 𝑋 or each such trajectory closes up
(or hits a singular point). The example of a translation surface shown above has a lattice
Veech group.
A translation covering (of degree 𝑑) of a surface intuitively arises as follows: cut up the
translation surface �̄� such that it becomes a simply connected polygon 𝑃 . Then each
edge in 𝑃 has an associated parallel edge. Now take 𝑑 copies 𝑃1, . . . , 𝑃𝑑 of the polygon 𝑃
and glue each edge of 𝑃𝑖 to its associated edge in 𝑃𝑗 , where 𝑗 may or may not be equal
to 𝑖. Do this in such a way that the gluing results in a connected surface, a covering
surface of �̄�. In particular, the gluing procedure gives a permutation in 𝑆𝑑 for every pair
of associated parallel edges in 𝑃 . If the cutting of the surface into the polygon uses a
minimal number of (geodesic) cuts, then the map {pairs of associated parallel edges in 𝑃}
→ 𝑆𝑑 induces the monodromy map of the covering. The group generated by the image of
this map in 𝑆𝑑 is the monodromy group of the covering.
We call a translation surface primitive if it cannot be glued from two or more copies of
the same polygon. Our example of a translation surface is not primitive. It has genus
3 and there exists a translation covering to a genus 2 surface, glued out of one regular
octagon. The next figure indicates how to construct this translation covering. First we
cut off triangles from the star-shaped polygon along the dashed lines in the picture and
then glue them along their other two edges. This transforms the star-shaped polygon
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into a regular double-8-gon. Mapping each of the regular octagons onto the same regular
octagon then gives the translation covering.
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It can be shown (see [Möl06]) that every affine map on a covering surface 𝑌 of a primitive
translation surface �̄� descends to an affine map on the primitive translation surface with
the same derivative. Thus the Veech group of 𝑌 is a subgroup of the Veech group of �̄�.
In [Fre08] a generalisation of results in [Sch05] shows how to actually compute the Veech
group of 𝑌 . The method uses automorphisms of the fundamental group 𝜋1(𝑋), induced
by the affine maps on �̄�.

Results and structure of this thesis
The main target in this thesis is to analyse which subgroups of the Veech group of a
primitive translation surface �̄� can be realised as the Veech group of a covering of �̄�. In
the first part of this thesis we introduce congruence subgroups of Veech groups. We prove
for many primitive translation surfaces �̄� that partition stabilising congruence subgroups
of Γ(𝑋) are the Veech group of a covering surface of �̄�. In a second part we address the
coverings via their monodromy groups and present coverings with short Γ(𝑋)-orbits, i.e.
with large Veech groups.
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We start in Chapter 1 by introducing the necessary background. In particular, we define
the mathematical objects mentioned above, such as translation surfaces, affine maps,
monodromy maps and so on.
For a primitive translation surface �̄� of genus 𝑔 we introduce in Chapter 2 a notion of
congruence subgroups of the pure Veech group pΓ(𝑋) of a translation surface via homo-
morphisms pΓ(𝑋) → 𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔. Then we prove that every congruence
subgroup that is the preimage of the stabiliser of a partition of (Z/𝑎Z)2𝑔 is the Veech
group of a covering of �̄�. For primitive translation surfaces �̄� whose Veech group Γ(𝑋)
acts in an appropriate way on the singularities of a characteristic covering of �̄� of degree
𝑎2𝑔, we extend this result to congruence subgroups of level 𝑎 of the Veech group. We say
that these surfaces have property (⋆). In particular, translation surfaces with exactly one
singularity have this property.
In Chapter 3 we introduce the primitive translation surfaces �̄�𝑛 that arise from billiards
in a triangle with angles 𝜋/𝑛, 𝜋/𝑛 and (𝑛−2)𝜋/𝑛 for odd 𝑛 ≥ 5. As we saw in our example
(for 𝑛 = 4), the translation surface that arises from billiards in a triangle with angles 𝜋/2𝑛,
𝜋/2𝑛 and (2𝑛−2)𝜋/2𝑛 where 𝑛 ≥ 4 is not primitive. But it is a translation covering of degree
2 of a primitive translation surface, glued from a regular 2𝑛-gon, which we call �̄�2𝑛. The
translation surface �̄�2𝑛 has 2 singularities if 𝑛 is odd. We show that �̄�2𝑛 for odd 𝑛 ≥ 5
has property (⋆) in level 𝑎 if and only if 𝑎 is coprime to 𝑛. As a second main result of the
chapter, we also determine the principal congruence group of level 2 in Γ(𝑋𝑛) and prove
that for odd 𝑛 ≥ 7, every congruence group of level 2 is the Veech group of a covering
surface of �̄�𝑛.
A list of the indices of the principal congruence groups of small level 𝑎 in the Veech group
Γ(𝑋𝑛) for 𝑛 ∈ {5, 7, 9} is given in Appendix A. The appendix also contains a list with the
number of congruence groups in Γ(𝑋5) of level 𝑎 ∈ {2, . . . , 7} that are the stabiliser of a
partition of (Z/𝑎Z)2𝑔. The list indicates the conjecture that this is not a rare property.
In Chapter 4 we analyse the relation between different congruence levels of a congruence
subgroup in Γ(𝑋). For translation surfaces �̄� whose Veech group is the normal closure
of a parabolic matrix 𝑇 that behaves in a standard way on the cylinder decomposition
in the direction of its eigenvector, we determine all parabolic elements in the principal
congruence groups. Furthermore, we define a generalised Wohlfahrt level for subgroups
in such Veech groups and show that it divides every congruence level of the subgroup
(if it has any). Afterwards we prove an even stronger correlation between the two level
definitions: every minimal congruence level of a congruence group contains only prime
divisors that also divide the Wohlfahrt level. We also give an example of a congruence
group whose Wohlfahrt level is not a minimal congruence level of the group. Hence, there
is not much space for improvement of this result.
In Chapter 5 we slightly change the point of view, no longer concentrating directly on
congruence subgroups in the Veech group of �̄�, but more on the monodromy groups of
translation coverings. We analyse how to simplify the calculations of the Veech group of a
covering surface 𝑌 → �̄� if the corresponding monodromy group is cyclic. If the covering
is in addition unramified, then the Veech group of 𝑌 is a congruence group of level 𝑑 in
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Γ(𝑋), where 𝑑 is the order of the monodromy group. In the special case where �̄� is a
regular double-𝑛-gon with odd 𝑛 ≥ 5, we give cyclic coverings that have Veech groups
with particularly small indices in Γ(𝑋).
Having investigated the rather small cyclic monodromy groups, we turn our attention in
Chapter 6 to the biggest monodromy groups 𝐴𝑑 and 𝑆𝑑. We prove that if the genus of
�̄� is at least 2, then every stratum of �̄�-coverings contains a covering with monodromy
group 𝑆𝑑. For 𝑑 ≥ 5 we also show that every stratum additionally contains a covering
with monodromy group 𝐴𝑑, if the ramification satisfies the obvious parity condition.
Appendix C completes this thesis by presenting a representative of every SL2(R)-orbit of
coverings 𝑝 : 𝑌 → �̄�5 of degree 2 up to degree 5.
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1. Translation surfaces

This chapter introduces the mathematical objects that are frequently used in this thesis.
Furthermore, it states some facts and theorems that are needed in the following.

Definition 1.1. A translation surface �̄� is a connected, compact, 2-dimensional, real
manifold with a finite, nonempty set Σ(�̄�) of singular points or singularities together
with a maximal 2-dimensional atlas 𝜔 on 𝑋 = �̄� ∖ Σ(�̄�) such that all transition maps
between the charts are translations. Furthermore, every singular point 𝑠 has an open
neighbourhood 𝑈 , not containing other singular points, such that there exists a continuous
map 𝑓𝑠 : �̂� → 𝑉 from �̂� := 𝑈 ∖ {𝑠} to a punctured open set 𝑉 ⊂ R2 that is compatible
with 𝜔, i.e. 𝑓𝑠 ∘ 𝜙−1 is a translation for every (𝑈 ′, 𝜙) ∈ 𝜔 with 𝑈 ′ ∩ 𝑈 ̸= ∅.

Thus, by definition all translation surfaces in this thesis are compact, have finite area,
and only very benign singular points. To distinguish them from the more general concept
of infinite translation surfaces, where all these assumptions no longer hold, one could also
call them finite translation surfaces.
The 2-dimensional atlas 𝜔 induces a flat metric on 𝑋, whereas the angles around points in
Σ(�̄�) are integral multiples of 2𝜋. If the angle around a singular point is 2𝜋, then the flat
metric can be extended to that point and the singularity is called removable. Otherwise
the metric has a conical singularity. A singular point is said to have multiplicity 𝑘, if its
angle is 𝑘 · 2𝜋.
If we identify R2 with C in the canonical way, translations in R2 give translations in
C. Thus the translation atlas on 𝑋 defines a complex atlas on 𝑋. For a singular point
𝑠 ∈ Σ(�̄�) of multiplicity 𝑚, the map 𝑓𝑠 may be chosen as an unramified covering of
degree 𝑚 whose image is a punctured 𝜖-disc with centre 0 ∈ C. By Theorem 5.10 in
[For81] the map 𝑓𝑠 factors as 𝑓𝑠 = 𝑝𝑚 ∘𝜙𝑠 where 𝜙𝑠 : �̂� → 𝑉 ′ is a biholomorphic map and
𝑝𝑚 : 𝑉 ′ → 𝑉 , 𝑧 ↦→ 𝑧𝑚. The homeomorphism 𝜙𝑠 can be extended to a homeomorphism
𝜙′
𝑠 : 𝑈 → 𝑉 , where 𝑉 is the 𝜖-disc with centre 0 and 𝑠 is mapped to 0 ∈ C. In open

sets that are small enough and do not contain 0 the map 𝑝𝑚 is biholomorphic. Thus the
transition maps of 𝜙′

𝑠 with the charts of the translation atlas are biholomorphic. Thus
𝜔 ∪ {𝜙′

𝑠 | 𝑠 ∈ Σ(�̄�)} defines a complex structure on �̄� making �̄� a Riemann surface.
An alternative way to define a translation surface is by gluing finitely many polygons
via identification of edge pairs using translations. In this construction, non-removable
singularities may only arise from the vertices of the polygons. A translation structure on
a torus for example can be obtained by gluing the parallel edges of a parallelogram. In
this special case, no non-removable singularity arises from the vertices of the polygon and
one has to add a removable singularity to meet the condition Σ(�̄�) ̸= ∅. Usually we take
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1. Translation surfaces

the image of the vertices of the parallelogram (which are identified to a single point) as
removable singularity.
Especially in the situation where we glue the translation surface from a polygon the
translation structure on 𝑋 is obvious, so we usually omit 𝜔 in the notation.
As the set of singular points of a translation surface �̄� is by definition nonempty, the
fundamental group of 𝑋 is free of rank 𝑛 = 2𝑔+(𝜈−1) where 𝑔 is the genus of the surface
and 𝜈 is the number of singular points. We fix an isomorphism 𝜋1(𝑋)

∼−→ 𝐹𝑛. Note that
we define the concatenation of elements in the fundamental group “from left to right”,
which means that the left-most path is the first traversed path in a composite path.

1.1. Translation coverings

Definition 1.2. Let �̄� and 𝑌 be translation surfaces. We call a continuous map
𝑝 : 𝑌 → �̄� a translation covering if 𝑝−1(Σ(�̄�)) = Σ(𝑌 ) and 𝑝|𝑌 : 𝑌 → 𝑋 is locally a
translation.
Furthermore, we call �̄� the base surface and 𝑌 the covering surface of 𝑝.

Note that some authors only assume 𝑝−1(Σ(�̄�)) ⊆ Σ(𝑌 ) for translation coverings and
call the objects in our definition balanced translation coverings.
Since translation surfaces are compact, a translation covering is a finite covering map in
the topological sense, ramified at most over the singularities Σ(�̄�). As a consequence,
𝑑 := |𝑝−1(𝑥)| is constant for all 𝑥 ∈ 𝑋. It is called the degree of the translation covering.
If 𝑝 is ramified over 𝑠 ∈ Σ(�̄�) then for every preimage 𝑠′ ∈ Σ(𝑌 ) of 𝑠 there are small
neighbourhoods of 𝑠′ and 𝑠 and charts of the complex structure on �̄�, such that the map
𝑝 locally equals 𝑧 ↦→ 𝑧𝑘 for some 𝑘 ≥ 1. The number 𝑘 is called the ramification index
ord(𝑠′) of 𝑠′. The point 𝑠′ is called ramification point if its ramification index is greater
than 1. A singular point 𝑠 ∈ Σ(�̄�) is called branch point of the translation covering, if
|𝑝−1(𝑠)| < 𝑑. That is the case if and only if one of its preimages in 𝑌 is a ramification
point (see [Mir95] Chapter II Definition 4.5 or [For81] 4.23). The total ramification index
of 𝑝 is defined as

∑︀
𝑠′∈Σ(𝑌 )(ord(𝑠′) − 1).

The Riemann-Hurwitz formula relates the total ramification index to the genus of the
surfaces in a (translation) covering.

Proposition 1.3 (Riemann-Hurwitz formula, see [For81] 17.14). Let 𝑝 : 𝑌 → �̄� be a
holomorphic covering map of degree 𝑑 between compact Riemann surfaces with total
ramification index 𝑏. Further let 𝑔(�̄�) and 𝑔(𝑌 ) be the genus of �̄� and 𝑌 , respectively.
Then

2𝑔(𝑌 ) − 2 = 𝑏+ 𝑑(2𝑔(�̄�) − 2) .

Every translation covering 𝑝 : 𝑌 → �̄� induces an inclusion 𝑝* : 𝜋1(𝑌 ) →˓ 𝜋1(𝑋) of the
corresponding fundamental groups of the punctured surfaces. The covering 𝑝 is called
normal if 𝜋1(𝑌 ) is normal in 𝜋1(𝑋) via 𝑝*. Conversely, every finite index subgroup 𝐻
of 𝜋1(𝑋) defines an unramified covering of Riemann surfaces 𝑝 : 𝑌 → 𝑋 of finite degree
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1. Translation surfaces

with 𝜋1(𝑌 ) = 𝐻. The surface is obtained by identifying the fundamental group of 𝑋
with the group of Deck transformations of �̃� → 𝑋, where �̃� is the universal covering of
𝑋. Then the subgroup 𝐻 ≤ 𝜋1(𝑋) acts on �̃� and 𝑌 := �̃�/𝐻 is a Riemann surface with
fundamental group 𝐻 such that �̃� → 𝑋 factors through 𝑌 via an unramified covering
map 𝑝 : 𝑌 → 𝑋. By Theorem 8.4 in [For81], this map extends to a holomorphic map
𝑝 : 𝑌 → �̄�. Note that a covering 𝑝 : 𝑌 → �̄� of Riemann surfaces, where the base surface
carries a translation structure 𝜔, induces a translation structure on the covering surface:
the pullback of the translation structure 𝜔 along 𝑝 is given by prepending 𝑝 to each chart
of �̄�. This makes 𝑝 a translation covering.

1.2. Monodromy maps

We will often define translation coverings through their monodromy map. A reference
for defining branched coverings of Riemann surfaces via the monodromy map is [Mir95]
Chapter III.4. We shortly review the basic facts and definitions, slightly adapted to
the situation of translations surfaces and especially to our order of concatenation in the
fundamental group.
Let 𝑝 : 𝑌 → �̄� be a (translation) covering of degree 𝑑. Choose a base point 𝑥 in 𝑋
and denote its preimages in 𝑌 by 1, . . . , 𝑑. Every closed path 𝑤 in 𝑋 through 𝑥 can be
lifted to a path in 𝑌 at every starting point in {1, . . . , 𝑑}. The end point of the lifted
path is again contained in {1, . . . , 𝑑} and thereby the lifts define a permutation 𝑚(𝑤) of
the points {1, . . . , 𝑑} in 𝑌 . Recall that we concatenate paths from left to right, i.e. the
left-most written path is traversed first. Permutations, however, are seen as functions
and are therefore applied from right to left. Thus the construction above leads to a map

𝑚 : 𝜋1(𝑋,𝑥) → 𝑆𝑑

with the property

𝑚(𝑤1 · 𝑤2) = 𝑚(𝑤2) ∘𝑚(𝑤1) for all 𝑤1, 𝑤2 ∈ 𝜋1(𝑋,𝑥) .

Therefore the map 𝑚 is a so-called anti-homomorphism. It is called the monodromy map
of the (translation) covering. The monodromy map of a covering is unique up to an inner
automorphism in 𝑆𝑑, i.e. renumeration of the elements {1, . . . , 𝑑}.
A subgroup 𝐺 ≤ 𝑆𝑑 is called transitive if for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑} there exists a 𝜎 ∈ 𝐺
such that 𝜎(𝑖) = 𝑗. The covering surface 𝑌 is connected, thus the image of 𝑚 in 𝑆𝑑
is a transitive permutation group, the monodromy group of the covering. Conversely,
every anti-homomorphism 𝑚 : 𝜋1(𝑋,𝑥) → 𝑆𝑑 with transitive image defines a degree 𝑑
translation covering of �̄�.
As discussed earlier, every finite index subgroup 𝐻 ≤ 𝜋1(𝑋) also defines a translation
covering 𝑝 : 𝑌 → �̄�. The corresponding monodromy map of 𝑝 may be defined directly
by 𝐻 as follows: each 𝑣 ∈ 𝜋1(𝑋) induces a permutation on the right cosets {𝐻𝑤1 =
𝐻,𝐻𝑤2, . . . ,𝐻𝑤𝑑} of 𝐻 in 𝜋1(𝑋), by 𝐻𝑤𝑖 ↦→ 𝐻𝑤𝑖𝑣. The map 𝜋1(𝑋) ∋ 𝑣 ↦→ 𝜎𝑣 ∈ 𝑆𝑑
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1. Translation surfaces

where 𝜎𝑣(𝑖) = 𝑗 iff 𝐻𝑤𝑖𝑣 = 𝐻𝑤𝑗 is an anti-homomorphism with a transitive permutation
group as image. Thus it is the monodromy map of a translation covering 𝑝 : 𝑌 → �̄�. The
subgroup 𝐻 equals both the preimage of the stabiliser of 1 and the fundamental group
𝜋1(𝑌 ) ≤ 𝜋1(𝑋).
Let 𝑐1, . . . , 𝑐𝜈 ∈ 𝜋1(𝑋) be simple closed curves such that 𝑐𝑖 can be freely homotoped into
every neighbourhood of the 𝑖-th singularity 𝑠𝑖 of �̄�. Then by Proposition 4.9 in [Mir95]
the monodromy map 𝑚 tells us the ramification of 𝑝 above 𝑠𝑖: if 𝑚(𝑐𝑖) has cycle structure
(𝑚1, . . . ,𝑚𝑘), then 𝑠𝑖 has 𝑘 preimages in 𝑌 with ramification indices 𝑚1, . . . ,𝑚𝑘.

1.3. Affine maps

Definition 1.4. An affine map on a translation surface �̄� is an orientation preserving
homeomorphism 𝑓 on �̄� with 𝑓(Σ(�̄�)) = Σ(�̄�) that is affine on 𝑋, i.e. that can locally
be written as 𝑧 ↦→ 𝐴𝑧 + 𝑏 with 𝐴 ∈ SL2(R) and 𝑏 ∈ R2. The translation vector 𝑏 depends
on the local coordinates, whereas the derivative 𝐴 is globally defined: the transition maps
between different charts are translations and therefore do not change 𝐴.
The affine group Aff+(�̄�) of �̄� is the group of all affine maps on �̄�.
The derivatives of the affine maps on �̄� form the Veech group Γ(𝑋) ≤ SL2(R) of �̄�. The
projective Veech group of �̄� is the image of Γ(𝑋) in PSL2(R).
Elements of the affine group with trivial derivative are called translations . They form the
group Trans(�̄�).

Remark 1.5. Every affine homeomorphism on 𝑋 can be extended to the metric comple-
tion �̄�. This extension is unique and gives a homeomorphism of �̄�. Thus an affine map
𝑓 on �̄� is uniquely determined by 𝑓 |𝑋 .

Definition 1.6. Let �̄� be a translation surface. An affine map �̄� → �̄� is called pure if
it preserves the singularities pointwise (and not only setwise as usually). The pure affine
group pAff+(�̄�) is the group of all pure affine maps on �̄� and its derivatives form the
pure Veech group pΓ(𝑋) of 𝑋.

An affine map 𝑓 on a translation surface �̄� defines an isomorphism between 𝜋1(𝑋,𝑥)
and 𝜋1(𝑋, 𝑓(𝑥)). Furthermore, each path from 𝑓(𝑥) to 𝑥 in 𝑋 induces an isomorphism
𝜋1(𝑋, 𝑓(𝑥)) → 𝜋1(𝑋,𝑥). Together with such a path, 𝑓 induces an automorphism of
𝜋1(𝑋,𝑥). The change of the path from 𝑓(𝑥) to 𝑥 corresponds to an inner automorphism
of 𝜋1(𝑋), thus the automorphism of 𝜋1(𝑋) induced by 𝑓 is well-defined up to an inner
automorphism of 𝜋1(𝑋). Hence we get a homomorphism 𝜄 : Aff+(�̄�) → Out(𝜋1(𝑋)),
where Out(𝜋1(𝑋)) = Aut(𝜋1(𝑋))/Inn(𝜋1(𝑋)). This homomorphism 𝜄 is injective: by
Lemma 5.2 in [EG97] the affine group injects into the mapping class group MCG(�̄�)
of �̄� (which is the group of homeomorphisms on the surface �̄� up to homotopy). By
the Dehn-Nielsen-Baer theorem (see e.g. Theorem 8.1 in [FM12]) the mapping class
group of �̄� is isomorphic to an index two subgroup of the outer automorphism group
Out(𝜋1(�̄�)) of the fundamental group of the closed surface. This gives an inclusion
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1. Translation surfaces

dnb : Aff+(�̄�) →˓ Out(𝜋1(�̄�)). The inclusion dnb factors through the map 𝜄, thus 𝜄 is
injective.

Aff+(�̄�) MCG(�̄�)

Out(𝜋1(𝑋)) Out(𝜋1(�̄�))

𝜄 dnb

Definition 1.7. We choose an isomorphism 𝐹𝑛
∼−→ 𝜋1(𝑋) and define Aut𝑋(𝐹𝑛) as the

group of all automorphisms whose equivalence class in Out(𝐹𝑛) ∼= Out(𝜋1(𝑋)) lies in the
image of 𝜄 : Aff+(�̄�) → Out(𝜋1(𝑋)).
For an affine map 𝑓 we call every preimage of 𝜄(𝑓) in Aut𝑋(𝐹𝑛) a lift of 𝑓 to Aut(𝐹𝑛).
As 𝜄 is injective, it induces a well-defined map

Aut𝑋(𝐹𝑛) � Out𝑋(𝐹𝑛)
𝜄−1

−→ Aff+(�̄�)
der−→ Γ(𝑋)

that sends every 𝛾 ∈ Aut𝑋(𝐹𝑛) to the derivative of the corresponding affine map. The
map is called

𝜗 : Aut𝑋(𝐹𝑛) → Γ(𝑋) .

Definition 1.8. A cylinder in a translation surface �̄� is a maximal connected set of
homotopic simple closed geodesics in 𝑋. We define the inverse modulus of a cylinder as
ratio of its circumference (the length of the closed geodesics) to its height. The direction
of the closed geodesics is called direction of the cylinder.

As Σ(�̄�) is assumed to be nonempty, every cylinder is bounded by geodesic intervals
joining singular points (or a singular point to itself). A geodesic interval in 𝑋, connecting
two singular points or a singular point to itself is called saddle connection. Hence the
boundary of every cylinder is a union of saddle connections and singular points.
If �̄� is the once-punctured torus, then the bounding geodesics on the top and bottom of
every cylinder coincide and consist of a single saddle connection. The cylinder together
with this saddle connection fills the whole surface �̄�. In general, in the case that a
translation surface �̄� decomposes entirely into disjoint cylinders, saddle connections and
Σ(�̄�), we call such a decomposition a cylinder decomposition of �̄�. All cylinders in a
cylinder decomposition have the same direction.
The Veech alternative states that if the Veech group of a translation surface is a lattice in
SL2(R), then the geodesic flow in each direction is either periodic or uniquely ergodic.
This important result by Veech (see [Vee89]) implies in particular that if �̄� has a lattice
Veech group and if there exists a closed geodesic in direction 𝜃 on 𝑋, then the surface
has a cylinder decomposition in direction 𝜃.

Definition 1.9. We call a translation surface with a lattice Veech group a Veech surface.

There is an important connection between parabolic elements with positive trace in the
Veech group Γ(𝑋) and cylinder decompositions of �̄�. Lemma 3.8 in [Vor96] states that a
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1. Translation surfaces

parabolic element 𝑇 ∈ Γ(𝑋) with positive trace always induces a cylinder decomposition
of �̄� in the direction of the eigenvector of 𝑇 . Moreover, the inverse moduli of the cylinders
are commensurable over Q, i.e. if the inverse moduli are 𝛼1, . . . , 𝛼𝑐, then there is an 𝛼 ∈ R
and 𝑞𝑖 ∈ Q such that 𝛼𝑖 = 𝑞𝑖𝛼 (see also [HS06] Lemma 4). Of course, we may choose 𝛼
such that 𝑞𝑖 ∈ Z for all 𝑖 ∈ {1, . . . , 𝑐}. Conversely, if the inverse moduli of the (without
loss of generality horizontal) cylinders of a cylinder decomposition are commensurable
over Q and 𝛼 is the largest real number such that every inverse modulus of a cylinder in
the decomposition is an integral multiple of 𝛼, then

𝑇 =

(︂
1 𝛼
0 1

)︂
∈ Γ(𝑋)

by Lemma 3.9 in [Vor96]. We call 𝑇 the parabolic element associated to this cylinder
decomposition. The affine map constructed by Vorobets with derivative 𝑇 is a multiple
Dehn twist on each cylinder. To be more precise, it fixes the boundary saddle connections
of each cylinder in the decomposition pointwise and twists its interior 𝑘 times if its inverse
modulus is 𝑘 · 𝛼. Note that 𝑇 does not have to be maximal parabolic in Γ(𝑋), i.e. there
might be a parabolic 𝑇 ∈ Γ(𝑋) and an 𝑚 ∈ N such that 𝑇𝑚 = 𝑇 .
If �̄� is a Veech surface, then in each cylinder decomposition the inverse moduli of the
cylinders are commensurable over Q (see e.g. [HS06] Remark 1).

1.4. Coverings of primitive translation surfaces

Definition 1.10. A translation surface (�̄�, 𝜔) that does not admit a translation covering
�̄� → 𝑌 of degree 𝑑 > 1 is called primitive.

In related work a translation surface is sometimes called primitive if it is not the covering
of a translation surface of smaller genus. By the Riemann-Hurwitz formula, the genus
of the covering surface of a translation covering of degree > 1 is always greater than
the genus of the base surface, whenever the genus of the base surface is > 1. Thus the
two definitions are equivalent for all surfaces of genus > 1. With our definition, there
are non-primitive translation surfaces of genus 1, whereas this is not the case in the
alternative definition.

Remark 1.11. If �̄� is primitive, then Trans(�̄�) = {id}. That is because if we have a
𝑡 ∈ Trans(�̄�) ∖ {id} then �̄� → �̄�/⟨𝑡⟩ is a translation covering of degree |⟨𝑡⟩| > 1, hence
�̄� is not primitive. In particular, this implies that for a primitive translation surface �̄�
the map der : Aff+(�̄�) → Γ(𝑋) is an isomorphism.

Throughout this section, let 𝑝 : 𝑌 → �̄� be a translation covering with a primitive base
surface. The following proposition states an important connection between the Veech
group of the primitive base surface and the Veech group of the covering surface.

Proposition 1.12 (see [Möl06]). Every affine map on 𝑌 descends to �̄�.
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1. Translation surfaces

This result of Möller uses the alternative definition of primitivity of a translation surface.
For our definition it is shown in the proof of Satz 10 in my diploma thesis [Fre08]. The
relation between the two Veech groups in a translation covering with primitive base
surface can be specified even more precisely as follows:

Proposition 1.13 (see Korollar 6.22 in [Fre08]). The Veech group element 𝐴 ∈ Γ(𝑋)
is contained in Γ(𝑌 ) if and only if there exists a lift 𝛾 of 𝐴 to Aut(𝜋1(𝑋)) such that 𝛾
stabilises 𝜋1(𝑌 ) ≤ 𝜋1(𝑋).

The proposition is a generalisation of Theorem 1 in [Sch05], using [Sch08].

Definition 1.14. As described in the last section, every affine map 𝑓 on 𝑌 defines an
automorphism 𝛾 ∈ Aut(𝜋1(𝑌 )), well-defined up to an inner automorphism of 𝜋1(𝑌 ) ≤
𝜋1(𝑋) ∼= 𝐹𝑛. The proposition tells us that 𝑓 descends to 𝑋 and thus also defines a
𝛾′ ∈ Aut𝑋(𝐹𝑛) ⊆ Aut(𝐹𝑛). We define Aut𝑌 (𝐹𝑛) ⊆ Aut𝑋(𝐹𝑛) as the set of all lifts of
affine maps on 𝑌 to Aut(𝐹𝑛).

1.5. The SL2(R)-orbit of �̄�

Let (�̄�, 𝜔) be a translation surface and 𝐴 ∈ SL2(R). If we compose the map 𝜙 of each
chart (𝑈𝜙, 𝜙) with the affine map ℎ𝐴 : R2 → R2, 𝑧 ↦→ 𝐴 · 𝑧, i.e. replace 𝜙 by ℎ𝐴 ∘ 𝜙, then
we get a new translation surface (�̄�, 𝐴 · 𝜔). This defines a group action of SL2(R) on the
set of translation surfaces. By abuse of notation we often call the new surface 𝐴 · �̄�.
If 𝐴 ∈ Γ(𝑋), then (�̄�, 𝐴 · 𝜔) ∼= (�̄�, 𝜔). An isomorphism, i.e. a translation covering
of degree 1, between (�̄�, 𝐴 · 𝜔) and (�̄�, 𝜔) is defined by any affine map 𝑓𝐴 on �̄� with
derivative 𝐴: the map is by definition a homeomorphism of �̄�. If (𝑈, ℎ𝐴 ∘ 𝜙) is a chart
of (�̄�, 𝐴 · 𝜔) at 𝑝 and (𝑉 ′, 𝜙′) a chart of (�̄�, 𝜔) at 𝑓𝐴(𝑝), then (𝑈,𝜙) is a chart of
(�̄�, 𝜔) at 𝑝, thus der(𝜙′ ∘ 𝑓𝐴 ∘ 𝜙−1) = 𝐴 and consequently der(𝜙′ ∘ 𝑓𝐴 ∘ (ℎ𝐴 ∘ 𝜙)−1) =
der(𝜙′ ∘ 𝑓𝐴 ∘ 𝜙−1) · der(ℎ−1

𝐴 ) = 𝐴 ·𝐴−1 = 𝐼. Similarly, every isomorphism between 𝐴 · �̄�
and �̄� is a translation and thus induces an affine map on �̄� with derivative 𝐴. Hence,
the Veech group of �̄� is the stabiliser of the translation structure (up to isomorphism) in
SL2(R).
Now let 𝑝 : 𝑌 → �̄� be a translation covering. If we replace �̄� by 𝐴 · �̄� and 𝑌 by 𝐴 · 𝑌 ,
then with respect to the new translation structures 𝐴 · 𝑌 and 𝐴 · �̄� the map 𝑝 is again
locally a translation. For 𝐴 ∈ Γ(𝑋) we compose 𝑝 : 𝐴 · 𝑌 → 𝐴 · �̄� with 𝑓𝐴 : 𝐴 · �̄� → �̄�
and obtain a translation covering 𝑝𝐴 := 𝑓𝐴 ∘ 𝑝 : 𝐴 · 𝑌 → �̄�.

𝑌 𝐴 · 𝑌

�̄� 𝐴 · �̄� �̄�

𝑝 𝑝
𝑝𝐴

𝑓𝐴
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1. Translation surfaces

Definition 1.15. Two coverings 𝑝 : 𝑌 → �̄� and 𝑝′ : 𝑌 ′ → �̄� of degree 𝑑 with monodromy
maps 𝑚 and 𝑚′ are called equivalent iff there exists an inner automorphism 𝜅 of 𝑆𝑑 such
that 𝑚 = 𝜅 ∘𝑚′. In this case, we write 𝑌 ∼= 𝑌 ′.

Each translation covering 𝑝 : 𝑌 → �̄� induces an inclusion 𝑝* : 𝜋1(𝑌 ) → 𝜋1(𝑋). The other
way around, every inclusion of the fundamental groups 𝜋1(𝑌 ) → 𝜋1(𝑋) determines a
translation covering 𝑝 : 𝑌 → �̄�.
The affine map 𝑓𝐴 ∈ Aff+(�̄�) does not act on the fundamental group, but of course
its lifts to Aut(𝜋1(𝑋)) do. A lift 𝛾𝐴 of 𝑓𝐴 to Aut(𝜋1(𝑋)) is only unique up to an inner
automorphism of 𝜋1(𝑋). Up to conjugation, the inclusion of 𝜋1(𝑌 ) to 𝜋1(𝑋) defining
the covering 𝑝𝐴 is given by (𝛾𝐴 ∘ 𝑝*)(𝜋1(𝑌 )). Thus up to equivalence 𝑝𝐴 is induced by
(𝛾𝐴 ∘ 𝑝*)(𝜋1(𝑌 )).

Lemma 1.16. Suppose that 𝑝 : 𝑌 → �̄� is given by 𝑚 : 𝜋1(𝑋) → 𝑆𝑑. Then 𝑝𝐴 : 𝐴 ·𝑌 → �̄�
is given by the anti-homomorphism 𝑚𝐴 := 𝑚 ∘ 𝛾−1

𝐴 , where 𝛾𝐴 ∈ Aut𝑋(𝐹𝑛) such that
𝜗(𝛾𝐴) = 𝐴.

Proof. Recall that 𝑝 is uniquely determined by the inclusion of the fundamental groups via
𝜋1(𝑌 ) ∼= 𝐻 := 𝑚−1(Stab(1)) ≤ 𝜋1(𝑋). The discussion above implies that the inclusion
associated to 𝑝𝐴 : 𝐴 · 𝑌 → �̄� is 𝜋1(𝑌 ) ∼= 𝛾𝐴(𝐻) ≤ 𝜋1(𝑋). Hence, we need to prove that
𝛾𝐴(𝐻) = 𝑚−1

𝐴 (Stab(1)):

𝑤 ∈ 𝛾𝐴(𝐻) ⇔ 𝛾−1
𝐴 (𝑤) ∈ 𝐻 ⇔ 𝑚(𝛾−1

𝐴 (𝑤))(1) = 1 ⇔ 𝑤 ∈ 𝑚−1
𝐴 (Stab(1))

If the base surface �̄� is primitive, then we know from Proposition 1.13 that the Veech
group of 𝑌 is a finite index subgroup of Γ(𝑋). If we combine this with the fact that the
Veech group is the stabiliser of the translation structure (up to isomorphism) in SL2(R),
then we get that the Veech group of 𝑌 is the stabiliser of 𝑝 : 𝑌 → �̄� (up to equivalence)
in Γ(𝑋).
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In Chapter 6 in [Sch05], Gabriela Weitze-Schmithüsen proves that many congruence
subgroups of SL2(Z) can be realised as Veech groups of Origamis, i.e. as Veech groups
of translation coverings of the once-punctured torus. In this chapter, we generalise her
results to translation coverings of primitive surfaces �̄�, and to our definition of congruence
subgroups of their Veech groups Γ(𝑋) or pure Veech groups pΓ(𝑋), respectively (see
Definition 2.2 and Definition 2.7).
In the following, �̄� is a primitive translation surface with 𝜈 ≥ 1 singularities and
genus 𝑔 ≥ 1. The fundamental group 𝜋1(�̄�) of the compact surface �̄� is generated
by 𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔 where the 𝑎𝑖, 𝑏𝑖 belong to the 𝑖-th handle and fulfil the relation
𝑎1𝑏1𝑎

−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 = 1. This relation does not hold in 𝜋1(𝑋) because it describes
a nontrivial path around the singularities. We amend the 𝑎𝑖, 𝑏𝑖 by paths 𝑐1, . . . , 𝑐𝜈−1 to
yield a basis of 𝜋1(𝑋), where 𝑐𝑖 is a simple closed path around the 𝑖-th singularity of 𝑋.
The group 𝜋1(𝑋) is free of rank 𝑛 = 2𝑔 + 𝜈 − 1. We choose an isomorphism 𝜋1(𝑋) ∼= 𝐹𝑛.
Let 𝑐𝜈 ∈ 𝐹𝑛 denote a simple closed path around the 𝜈-th singularity. This path is unique
up to conjugation. One can choose the generators in such a way that

𝑐𝜈 = 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 𝑐−1
1 · · · 𝑐−1

𝜈−1 .

Before we actually start with the construction of a translation surface with a given
congruence Veech group, we give a short outline of our strategy. To simplify this short
overview, we assume that �̄� has exactly one singularity.
The affine group of �̄� acts on the homology of the surface. As �̄� is primitive, Γ(𝑋)
and Aff+(�̄�) are isomorphic. Hence the action can be seen as an action of Γ(𝑋) on
the homology given by Γ(𝑋) → SL𝑛(Z). That naturally induces a notion of congruence
subgroups of Γ(𝑋) (see Section 2.1). We realise exactly the congruence groups that are
the preimage of the stabiliser of a partition of (Z/𝑎Z)𝑛.
A translation surface with such a congruence Veech group is constructed in three main
steps: in Section 2.2 we construct a translation covering 𝑌𝑎 → �̄�, such that 𝑌𝑎 has the
same Veech group as �̄�. The covering is unramified and has monodromy group (Z/𝑎Z)𝑛.
Since we assume that �̄� has only one singularity, Σ(𝑌𝑎) is in bijection to (Z/𝑎Z)𝑛. We
need the Veech group of �̄� to act on a subset of the singularities in 𝑌𝑎 in accordance with
the action on the homology 𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)𝑛. This is the reason why |Σ(�̄�)| = 1
is handy.
In the second step we partition the singularities of 𝑌𝑎 according to the partition of (Z/𝑎Z)𝑛.
Then we construct a covering 𝑌 → 𝑌𝑎 such that the ramification at the singularities of
𝑌𝑎 is predefined by numbers, assigned to each set in the partition of the singularities. As

9



2. Congruence Veech groups

a consequence of this ramification, all affine maps in 𝑌 have derivatives in the desired
congruence group.
In the last step we define a further covering 𝑍 of 𝑌 , such that Γ(𝑍) is exactly the desired
congruence group. Here, the ramification in the previous step assures that no element
outside the congruence group belongs to the Veech group of 𝑍.
The preliminary work for the ramification arguments is done in Section 2.3. The coverings
𝑌 → 𝑌𝑎 and 𝑍 → 𝑌 → 𝑌𝑎 → �̄� are defined in Section 2.4 for surfaces with only one
singularity and in Section 2.5 for surfaces with an arbitrary number of singularities that
allow an action of Γ(𝑋) on a subset of Σ(𝑌𝑎) as needed.

2.1. Action on homology

In SL2(Z), a congruence group of level 𝑎 is a subgroup of SL2(Z) that contains the
kernel of the map 𝜙𝑎 : SL2(Z) → SL2(Z/𝑎Z), obtained by sending each matrix entry to its
residue modulo 𝑎. We know that the Veech group of the once-punctured torus �̄� is SL2(Z).
Furthermore, 𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2 and the Veech group of �̄� acts as SL2(Z/𝑎Z) on
𝐻1(�̄�,Z/𝑎Z). Thus the principal congruence group of level 𝑎 can equivalently be defined
as the group of elements that act trivially on 𝐻1(�̄�,Z/𝑎Z). We generalise this definition
in a straight forward way.
On a primitive translation surface �̄�, the affine group and the Veech group are isomorphic,
as the translation group of �̄� is trivial. We use this isomorphism and identify Γ(𝑋) with
Aff+(�̄�). The action of Aff+(�̄�) on the absolute homology 𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔

with entries in Z/𝑎Z, can be derived from the outer action of the affine group on the
fundamental group 𝜋1(𝑋).
We compose the group homomorphism 𝜋1(𝑋) → 𝜋1(�̄�), given by 𝑎𝑖 ↦→ 𝑎𝑖, 𝑏𝑖 ↦→ 𝑏𝑖 and
𝑐𝑖 ↦→ 1, with the abelianisation 𝜋1(�̄�) → 𝜋1(�̄�)/[𝜋1(�̄�), 𝜋1(�̄�)] ∼= 𝐻1(�̄�,Z) that maps
the fundamental group of �̄� to the absolute homology of �̄� with integer coefficients. The
resulting homomorphism will be called ab: 𝜋1(𝑋) → 𝐻1(�̄�,Z). The images of the 𝑎𝑖
and 𝑏𝑖 form a basis of 𝐻1(�̄�,Z) and we use them to fix an isomorphism 𝐻1(�̄�,Z) ∼= Z2𝑔.
Next, we compose ab with the canonical projection pr𝑎 : Z2𝑔 → (Z/𝑎Z)2𝑔 and obtain the
canonical homomorphism 𝑚𝑎 : 𝜋1(𝑋) → 𝐻1(�̄�,Z/𝑎Z) from the fundamental group to
the first homology of �̄� with coefficients in Z/𝑎Z.

𝜋1(�̄�)

𝐹𝑛
∼= 𝜋1(𝑋) 𝐻1(�̄�,Z) ∼= Z2𝑔

𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔

ab

𝑚𝑎

/[𝜋1(�̄�), 𝜋1(�̄�)]

pr𝑎

A normal generating set for the kernel of 𝑚𝑎 can be obtained by taking normal generators

10



2. Congruence Veech groups

of ker(𝜋1(𝑋) → 𝜋1(�̄�)) and preimages of normal generators of ker(/[𝜋1(�̄�), 𝜋1(�̄�)]) and
ker(pr𝑎). It is not difficult to see that

ker(𝜋1(𝑋) → 𝜋1(�̄�)) = ⟨⟨ 𝑐1, . . . , 𝑐𝜈−1, 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 ⟩⟩ ,

ker(/[𝜋1(�̄�), 𝜋1(�̄�)]) = [𝜋1(�̄�), 𝜋1(�̄�)] and ker(pr𝑎) = (𝑎Z)2𝑔.
Let 𝐹2𝑔 = ⟨𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔⟩ ⊂ 𝜋1(𝑋) and let 𝐹 𝑎

2𝑔 be the set of all 𝑎-th powers of words
in 𝐹2𝑔. Then we have that

𝐻 := ker(𝑚𝑎) = ⟨⟨ {𝑐1, . . . , 𝑐𝜈−1} ∪ [𝐹2𝑔, 𝐹2𝑔] ∪ 𝐹 𝑎
2𝑔 ⟩⟩ .

Lemma 2.1. Each element in Aut𝑋(𝐹𝑛) respects 𝐻 = ker(𝑚𝑎).

Proof. Let 𝑓 : 𝑋 → 𝑋 be an affine map and 𝛾 ∈ Aut𝑋(𝐹𝑛) a lift of 𝑓 . The group
(Z/𝑎Z)2𝑔 is finite, so 𝐻 is of finite index in 𝐹𝑛 and all we have to show is that 𝛾 maps
the normal generators of 𝐻 to 𝐻.
First, consider a generator 𝑐𝑖. As 𝑓 sends singular points to singular points, 𝛾(𝑐𝑖) =
𝑤𝑐𝑗𝑤

−1 for some 𝑤 ∈ 𝐹𝑛 and 𝑗 ∈ {1, . . . , 𝜈}. For 𝑗 ∈ {1, . . . , 𝜈 − 1} it is obvious
that 𝛾(𝑐𝑖) ∈ 𝐻. Furthermore, we see that 𝑐𝜈 = 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 𝑐−1
1 · · · 𝑐−1

𝜈−1 ∈
[𝐹2𝑔, 𝐹2𝑔] · ⟨𝑐1, . . . , 𝑐𝜈−1⟩ ⊆ 𝐻, thus 𝑤𝑐𝜈𝑤−1 ∈ 𝐻.
The subgroup [𝐹2𝑔, 𝐹2𝑔] is generated by elements of the form 𝑤 = 𝑥𝑦𝑥−1𝑦−1 where
𝑥, 𝑦 ∈ 𝐹2𝑔. The group (Z/𝑎Z)2𝑔 is abelian so

𝑚𝑎(𝛾(𝑥𝑦𝑥−1𝑦−1)) = 𝑚𝑎(𝛾(𝑥)) +𝑚𝑎(𝛾(𝑦)) −𝑚𝑎(𝛾(𝑥)) −𝑚𝑎(𝛾(𝑦)) = 0.

Hence 𝛾(𝑥𝑦𝑥−1𝑦−1) ∈ ker(𝑚𝑎) = 𝐻.
Finally, let 𝑤 ∈ 𝐹 𝑎

2𝑔, i.e. 𝑤 = 𝑣𝑎 for some 𝑣 ∈ 𝐹2𝑔. Then

𝑚𝑎(𝛾(𝑤)) = 𝑚𝑎(𝛾(𝑣𝑎)) = 𝑎 ·𝑚𝑎(𝛾(𝑣))
∀𝑧∈(Z/𝑎Z)2𝑔 : 𝑎·𝑧=0

= 0 .

Consequently, it is true for all 𝑤 ∈ 𝐹 𝑎
2𝑔 that 𝛾(𝑤) ∈ 𝐻.

In total, we proved that 𝛾(𝐻) = 𝐻, so 𝛾 is contained in StabAut𝑋(𝐹𝑛)(𝐻).

A simple application of the fundamental homomorphism theorem and Lemma 2.1 imply
that for every 𝛾 ∈ Aut𝑋(𝐹𝑛) there is a unique homomorphism 𝜙𝑎(𝛾) that makes the
diagram

𝐹𝑛 𝐹𝑛

(Z/𝑎Z)2𝑔 (Z/𝑎Z)2𝑔

𝛾

𝑚𝑎 𝑚𝑎

𝜙𝑎(𝛾)
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commutative. As the composition of two commutative diagrams gives a commutative dia-
gram, this defines an action 𝜙𝑎 : Aut𝑋(𝐹𝑛) → Aut((Z/𝑎Z)2𝑔) of Aut𝑋(𝐹𝑛) on (Z/𝑎Z)2𝑔.
The homomorphism 𝜙𝑎(𝛾) does not depend on the chosen lift 𝛾 of 𝑓 to Aut𝑋(𝐹𝑛), because
the lift is unique up to an inner automorphism of 𝐹𝑛 and every inner automorphism clearly
lies in the kernel of 𝜙𝑎. Thus 𝜙𝑎 actually defines an action 𝜙𝑎 : Γ(𝑋) → Aut((Z/𝑎Z)2𝑔).
Indeed, this is the standard action of Γ(𝑋) on 𝐻1(�̄�,Z/𝑎Z). We denote it by 𝐴 ⋆ 𝑧 :=
𝜙𝑎(𝐴)(𝑧) for 𝐴 ∈ Γ(𝑋) and 𝑧 ∈ (Z/𝑎Z)2𝑔.
Now a generalisation of the notion of a congruence group in SL2(Z) to the definition of a
congruence group of a covering of �̄� suggests itself.

Definition 2.2. Let �̄� be a primitive translation surface. Its principal congruence group
Γ(𝑎) of level 𝑎 is the set of all elements in the Veech group Γ(𝑋) that act trivially on the
(absolute) homology 𝐻1(�̄�,Z/𝑎Z).
A subgroup Γ ≤ Γ(𝑋) is called congruence group of level 𝑎 if Γ(𝑎) ⊆ Γ.

Remark 2.3. As the principal congruence group of level 𝑎 is the kernel of the map 𝜙𝑎 it
is normal in Γ(𝑋).

2.2. A characteristic covering

Next we define a translation covering 𝑌𝑎 of �̄� that encodes the action of Γ(𝑋) on
𝐻1(�̄�,Z/𝑎Z): the group (Z/𝑎Z)2𝑔 can be seen as subgroup of the symmetric group 𝑆𝑎2𝑔
via its action on itself by addition, 𝑣 ↦→ (𝑥 ↦→ 𝑣 + 𝑥). Let 𝑝𝑎 : 𝑌𝑎 → �̄� be the translation
covering of degree 𝑎2𝑔 defined by the monodromy map 𝑚𝑎 : 𝐹𝑛 � (Z/𝑎Z)2𝑔 ⊆ 𝑆𝑎2𝑔 . The
covering 𝑝𝑎 is normal, because 𝑥 = 𝑣 + 𝑥 implies 𝑣 = 0, hence every element in the
monodromy group (Z/𝑎Z)2𝑔 that stabilises one element in (Z/𝑎Z)2𝑔, stabilises the whole
group (Z/𝑎Z)2𝑔. Thus 𝜋1(𝑌𝑎) ≤ 𝜋1(𝑋) equals the kernel of 𝑚𝑎 and is thereby a normal
subgroup. Now it is an immediate consequence of Lemma 2.1 that 𝑝𝑎 is a characteristic
covering.

Theorem 1. The translation covering 𝑝𝑎 is characteristic, i.e. all affine maps on �̄� can
be lifted to affine maps on 𝑌𝑎 and therefore Γ(𝑌𝑎) = Γ(𝑋).

Proof. Let 𝑓 : �̄� → �̄� be an affine map. By Proposition 1.13 we need to show that a lift
𝛾 of 𝑓 to Aut(𝐹𝑛) preserves 𝜋1(𝑌𝑎) as subgroup of 𝜋1(𝑋). As 𝜋1(𝑌𝑎) = ker(𝑚𝑎) = 𝐻,
Lemma 2.1 tells us that all 𝛾 ∈ Aut𝑋(𝐹𝑛) stabilise 𝜋1(𝑌𝑎).

Corollary 2.4. The group of lifts of affine maps on �̄� to Aut(𝐹𝑛) and the lifts of affine
maps on 𝑌𝑎 to Aut(𝐹𝑛) are equal, i.e. Aut𝑌𝑎(𝐹𝑛) = Aut𝑋(𝐹𝑛).

Proof. A map 𝛾 ∈ Aut𝑋(𝐹𝑛) lies in Aut𝑌𝑎(𝐹𝑛) iff there exists an affine map on �̄� with
lift 𝛾 that can be lifted to 𝑌𝑎.

In the proof of Lemma 2.1, we saw that 𝑚𝑎(𝑐𝜈) = 0. Obviously 𝑚𝑎(𝑐𝑖) = 0 for 𝑖 ∈
{1, . . . , 𝜈 − 1}, so we conclude that 𝑝𝑎 is unramified and 𝑌𝑎 has |(Z/𝑎Z)2𝑔| singularities
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2. Congruence Veech groups

above each singularity of �̄�. This implies that the Euler characteristics of 𝑌𝑎 and �̄�
satisfy 𝜒(𝑌𝑎) = 𝑑 · 𝜒(�̄�). Thus 2 · 𝑔(𝑌𝑎)− 2 = 𝑑 · (2𝑔− 2), where 𝑔(𝑌𝑎) is the genus of the
surface 𝑌𝑎 and 𝑑 = 𝑎2𝑔 is the degree of 𝑝𝑎. We conclude the following:

Remark 2.5. Let ℋ(𝑑1, . . . , 𝑑𝜈) be the stratum of translation surfaces containing �̄� (see
Remark 6.7 for the definition of a stratum of translation surfaces). Then Theorem 1
gives a characteristic translation covering whose covering surface lies in the stratum
ℋ(𝑎2𝑔 𝑑1, . . . , 𝑎

2𝑔 𝑑𝜈) and has genus 𝑔(𝑌𝑎) = 𝑎2𝑔(𝑔 − 1) + 1 for every 𝑎 ≥ 2.

As described in the introduction of this chapter, we want to define a ramified covering
𝑌 → 𝑌𝑎 such that the ramification above the singularities in 𝑌𝑎 forces all elements of
Γ(𝑌 ) to respect a given partition of 𝐻1(�̄�,Z/𝑎Z). In order to do so we need the Veech
group Γ(𝑌𝑎) = Γ(𝑋) to act by affine maps on a subset Σ′ of the singularities of 𝑌𝑎.
Recall that the surface 𝑌𝑎 is not primitive. It has nontrivial translations and consequently
there is more than one affine map per element in the Veech group Γ(𝑌𝑎), indicating more
than one possible action. Thus we need a surjective map Σ(𝑌𝑎) → 𝐻1(�̄�,Z/𝑎Z) such
that the action of Γ(𝑋) on Σ′ induces an action of Γ(𝑋) on 𝐻1(�̄�,Z/𝑎Z) via the map
Σ′ ⊆ Σ(𝑌𝑎) → 𝐻1(�̄�,Z/𝑎Z). Finally, this action has to be equal to the action on the
homology 𝐻1(�̄�,Z/𝑎Z), defined in Section 2.1.
As a first step we map the singularities of 𝑌𝑎 to 𝐻1(�̄�,Z/𝑎Z) in an appropriate way. For
a translation surface 𝑍 and a singularity 𝑠 ∈ Σ(𝑍), we say that an element of 𝜋1(𝑍) is
freely homotopic to the singularity 𝑠, if it is nontrivial and can be freely homotoped into
every neighbourhood of 𝑠.
Let Σ(�̄�) = {𝑠1, . . . , 𝑠𝜈}. We choose singularities {𝑠1, . . . , 𝑠𝜈} ⊆ Σ(𝑌𝑎) such that 𝑝𝑎(𝑠𝑖) =
𝑠𝑖 for all 𝑖 ∈ {1, . . . , 𝜈}. Furthermore, for each 𝑖 ∈ {1, . . . , 𝜈} we choose a simple closed
path 𝑐𝑖 ∈ 𝜋1(𝑌𝑎) ⊆ 𝜋1(𝑋) that is freely homotopic to 𝑠𝑖. This implies that 𝑐𝑖 can be
written as 𝑐𝑖 = 𝑤𝑖𝑐𝑖𝑤

−1
𝑖 with 𝑤𝑖 ∈ 𝐹2𝑔 = ⟨𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔⟩. One possible choice of the

singularities {𝑠1, . . . , 𝑠𝜈} would allow 𝑐𝑖 = 𝑐𝑖 for all 𝑖, but in Section 2.5 we will see that
this might not always be an appropriate choice for {𝑠1, . . . , 𝑠𝜈}.
Now we identify the singularities in 𝑌𝑎 above each singularity 𝑠𝑖 of �̄� with the elements
in (Z/𝑎Z)2𝑔 as follows:
As 𝑝𝑎 is unramified, every simple closed path that is freely homotopic to 𝑠 ∈ Σ(𝑌𝑎),
can be written as 𝑤′𝑐𝑖𝑤

′−1 and consequently also as 𝑤𝑐𝑖𝑤−1 for suitable 𝑖 ∈ {1, . . . , 𝜈}
and 𝑤′, 𝑤 ∈ 𝐹𝑛. Two elements 𝑤𝑐𝑖𝑤−1 and 𝑤′𝑐𝑗𝑤

′−1 in 𝜋1(𝑌𝑎) are homotopic to the
same singularity iff 𝑖 = 𝑗 and 𝑚𝑎(𝑤) = 𝑚𝑎(𝑤′). We use this to identify 𝑠 with 𝑚𝑎(𝑤) ∈
(Z/𝑎Z)2𝑔. Hence for every 𝑠𝑖 ∈ Σ(�̄�), this defines a bijection

Σ(𝑌𝑎) ⊇ 𝑝−1
𝑎 (𝑠𝑖)

∼−→ 𝐻1(�̄�,Z/𝑎Z) .

Altogether these bijections add up to a map

�̃�𝑎 : Σ(𝑌𝑎) � 𝐻1(�̄�,Z/𝑎Z) .

Of course �̃�𝑎 depends on the initially chosen singularities 𝑠𝑖. But the map does not
depend on the choice of the 𝑐𝑖, as two admissible choices for 𝑐𝑖 only differ by conjugation
with an element in 𝜋1(𝑌𝑎) = ker(𝑚𝑎).
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Example 2.6. The simplest example of this identification is shown in Figure 2.1. There,
the once-punctured torus 𝐸 is used as primitive base surface, glued of a unit square with
the identified vertices as unique singularity. The centre of the square is used as base
point of the fundamental group and the horizontal closed path 𝑥 and the vertical closed
path 𝑦 through the centre as free generating set. Then the surface 𝑌2 consists of four
copies of 𝐸, labelled by ( 0

0 ), ( 1
0 ), ( 0

1 ) and ( 1
1 ). A simple closed path, homotopic to the

singularity of �̄�, is given by 𝑥𝑦𝑥−1𝑦−1. We use it as 𝑐1. Furthermore, we choose the
centre of the copy labelled by ( 0

0 ) as base point of 𝜋1(𝑌2). Then the choice of 𝑐1 implies
that the upper right corner of the copy labelled by ( 0

0 ) (the centre of the drawing) is the
singularity 𝑠1. Figure 2.1 shows the resulting identification of the singularities in 𝑌2 with
(Z/2Z)2 through �̃�2. In addition, the path 𝑤𝑐1𝑤−1 with 𝑤 = 𝑥 is drawn to demonstrate
the correlation between 𝑤 with 𝑚2(𝑤) = ( 1

0 ) and the singularity labelled by ( 1
0 ).

𝑎 𝑏

𝑎 𝑏

𝑐

𝑑

𝑐

𝑑

𝑦−1

𝑥

𝑦

𝑥−1

𝑤(︂
0
0

)︂ (︂
1
0

)︂

(︂
0
1

)︂ (︂
1
1

)︂

(︂
1
0

)︂(︂
1
0

)︂ (︂
0
0

)︂

(︂
0
1

)︂

(︂
0
1

)︂(︂
1
1

)︂ (︂
1
1

)︂

(︂
1
1

)︂ (︂
1
1

)︂

Figure 2.1.: Singularities in 𝑌2, identified with 𝐻1(�̄�,Z/2Z) ∼= (Z/2Z)2.

If �̄� has more than one singularity and if some affine maps on �̄� permute these singular
points, then it might not be possible to define an action of the Veech group Γ(𝑋) on a
(non-empty) subset of Σ(𝑌𝑎) via affine maps that induces a well-defined action of Γ(𝑋) on
𝐻1(�̄�,Z/𝑎Z) via the above defined map �̃�𝑎 : Σ(𝑌𝑎) → 𝐻1(�̄�,Z/𝑎Z). At first we avoid
this problem by restricting to pure congruence groups (see Definition 2.7). Later, in
Section 2.5, we give conditions on �̄� that assure an action of Γ(𝑋) on a subset Σ′ ⊆ Σ(𝑌𝑎)
as needed. For surfaces fulfilling these conditions we then return to congruence groups.

Definition 2.7. Let �̄� be a primitive translation surface. Its pure principal congruence
group pΓ(𝑎) of level 𝑎 is the set of all elements in the pure Veech group that act trivially
on the (absolute) homology 𝐻1(�̄�,Z/𝑎Z) with entries in Z/𝑎Z.
A subgroup Γ ≤ pΓ(𝑋) is called pure congruence group of level 𝑎 if pΓ(𝑎) ⊆ Γ.

Of course the pure Veech group of a surface equals the Veech group, if the surface has
only one singularity. Then Definition 2.2 and Definition 2.7 coincide.
Before we define the action of the pure Veech group on a subset of 𝑌𝑎, we need some facts
about how translations act on translation surfaces.

14



2. Congruence Veech groups

Remark 2.8. Let 𝑝 : 𝑌 → �̄� be a normal translation covering and �̄� a primitive
translation surface. The translations on 𝑌 act transitively on the set of singularities above
a fixed singularity 𝑠 in �̄�.

Proof. The covering 𝑝 : 𝑌 → �̄� is normal, thus �̄� = 𝑌 /Trans(𝑌 ). The rest is obvious.

Lemma 2.9. Let 𝑌 be a translation surface. A translation 𝑡 on 𝑌 with 𝑡 ̸= id acts freely
on 𝑌 .

Proof. Let 𝑄 ∈ 𝑌 be a fixed point of 𝑡. There is a chart (𝑈,𝜙) with 𝑄 ∈ 𝑈 and
𝑡 := 𝜙 ∘ 𝑡 ∘ 𝜙−1 : 𝜙(𝑈) → 𝜙(𝑈), 𝑧 ↦→ 𝑧 + 𝑏 for some 𝑏 ∈ R2 in an open neighbourhood of
𝜙(𝑄). We have 𝑡(𝜙(𝑄)) = 𝜙(𝑄). Thus 𝑏 = (0, 0). Therefore 𝑡 = id on a neighbourhood
of 𝑄 and thus on 𝑌 , since it is holomorphic.

Lemma 2.10. Let 𝑝 : 𝑌 → �̄� be an unramified translation covering and �̄� a primitive
surface. Then the translations on 𝑌 act freely on the set of singularities of 𝑌 .

Proof. Suppose there exists a translation 𝑡 : 𝑌 → 𝑌 with 𝑡 ̸= id and fixed point 𝑄.
By Lemma 2.9 𝑄 ∈ 𝑌 . The translation 𝑡 naturally defines a translation covering
𝑝′ : 𝑌 → 𝑌 /⟨𝑡⟩. It is ramified because 𝑝′(𝑄) has only one preimage, and deg(𝑝′) > 1
because 𝑡 ̸= id. Let �̃� be the universal covering of 𝑋 with the induced translation
structure. The base surface �̄� is primitive, so according to [Sch08], 𝑋 = �̃�/Trans(�̃�).
The universal covering of 𝑌 is the same as the universal covering of 𝑋, so 𝑌 = �̃�/𝐻
for a suitable subgroup 𝐻 of Trans(�̃�) = Gal(�̃�/𝑋). Let 𝑡 be a lift of 𝑡 to �̃�, then
𝑌/⟨𝑡⟩ = �̃�/⟨𝐻 ∪ {𝑡}⟩ and 𝑝 factors through 𝑝′.

𝑌 𝑌/⟨𝑡⟩ 𝑋
𝑝′ 𝑝′′

𝑝

We have deg(𝑝) = deg(𝑝′) · deg(𝑝′′) with deg(𝑝′) > 1, but as 𝑝′(𝑄) has only one preimage
in 𝑌 , 𝑝(𝑄) = 𝑝′′(𝑝′(𝑄)) has at most 1 + (deg(𝑝′′) − 1) · deg(𝑝′) < deg(𝑝) preimages. That
is a contradiction to 𝑝 being unramified.

Corollary 2.11. For every 𝐴 ∈ Γ(𝑌𝑎) = Γ(𝑋) and every 𝑖 ∈ {1, . . . , 𝜈} there exists a
unique affine map 𝑓 with der(𝑓) = 𝐴 that maps the singularity 𝑠𝑖 in 𝑌𝑎 to one of the
singularities in {𝑠1, . . . , 𝑠𝜈}.

Proof. Let 𝑓 ∈ Aff+(𝑌𝑎) with der(𝑓) = 𝐴. The affine map 𝑓 maps 𝑠𝑖 to a singularity
𝑠′ ∈ Σ(𝑌𝑎). Let 𝑝𝑎(𝑠′) = 𝑠𝑗 .
By Remark 2.8 there exists a translation 𝑡 that sends the singularity 𝑠′ to the singularity
𝑠𝑗 (as 𝑝𝑎(𝑠𝑗) = 𝑠𝑗 = 𝑝𝑎(𝑠′)). It follows that der(𝑡 ∘ 𝑓) = der(𝑡) · der(𝑓) = 𝐼2 ·𝐴 = 𝐴 and
that (𝑡 ∘ 𝑓)(𝑠𝑖) = 𝑡(𝑠′) = 𝑠𝑗 . So the desired affine map is 𝑡 ∘ 𝑓 .
Now let 𝑓 and 𝑓 ′ be affine maps with der(𝑓) = der(𝑓 ′) = 𝐴 and 𝑓(𝑠𝑖) = 𝑠𝑗 and 𝑓 ′(𝑠𝑖) = 𝑠𝑘
with 𝑗, 𝑘 ∈ {1, . . . , 𝜈}. Then der(𝑓 ∘𝑓 ′−1) = 𝐼2, so 𝑡 := 𝑓 ∘𝑓 ′−1 ∈ Trans(𝑌𝑎) is a translation

15



2. Congruence Veech groups

with 𝑡(𝑠𝑘) = 𝑠𝑗 . The translation 𝑡 descends to a translation 𝑡𝑋 on 𝑋 and since 𝑋 is
primitive it follows that 𝑡𝑋 = id𝑋 , so 𝑗 = 𝑘. By Lemma 2.10 (𝑝𝑎 is unramified!), all
nontrivial translations act freely on the set of singularities of 𝑌𝑎, so it follows that 𝑡 = id
and 𝑓 = 𝑓 ′.

Now we define the action of the pure Veech group pΓ(𝑋) on the singularities of 𝑌𝑎.

Definition 2.12. For 𝐴 ∈ pΓ(𝑋), let 𝑓𝐴 be the unique affine map on 𝑌𝑎 with der(𝑓𝐴) = 𝐴,
obtained from Corollary 2.11, that sends 𝑠1 to 𝑠1. The set of all these affine maps is closed
under composition, thus 𝐴 ↦→ 𝑓𝐴 defines a group homomorphism aff : pΓ(𝑋) → Aff+(𝑌𝑎).
The pure Veech group pΓ(𝑋) acts via the map aff on the singularities of 𝑌𝑎.
The homomorphism aff depends on the choice of 𝑠1. Changing 𝑠1 leads to the composition
of aff with an inner automorphism of Aff+(𝑌𝑎) that is the conjugation with a translation of
𝑌𝑎: the group Trans(𝑌𝑎) acts transitively on 𝑝−1

𝑎 (𝑠1), so for every other choice 𝑠′𝑖 ∈ 𝑝−1
𝑎 (𝑠1)

there is a 𝑡 ∈ Trans(𝑌𝑎) with 𝑡(𝑠′𝑖) = 𝑠𝑖. Thus 𝑠′𝑖 leads to the homomorphism aff ′ with
aff ′ = 𝜏 ∘ aff where 𝜏 : Aff+(𝑌𝑎) → Aff+(𝑌𝑎), 𝑓 ↦→ 𝑡−1 ∘ 𝑓 ∘ 𝑡.

Every path 𝑤𝑐𝑖𝑤
−1 ∈ 𝜋1(𝑌𝑎) with 𝑤 ∈ 𝐹𝑛 can be decomposed into a (not necessary

simple) start (and end) path and a simple closed path that is freely homotopic to a
singularity 𝑠 in 𝑌𝑎, where 𝑝𝑎(𝑠) = 𝑠𝑖 is the 𝑖-th singularity of �̄�. We say that 𝑤𝑐𝑖𝑤−1

represents the singularity 𝑠.
Choose a map lift : Aff+(𝑌𝑎) → Aut𝑌𝑎(𝐹𝑛) that sends each affine map 𝑓 on 𝑌𝑎 to a lift 𝛾
in Aut𝑌𝑎(𝐹𝑛). The lift 𝛾 of an affine map 𝑓 is only unique up to conjugation in 𝐻. So in
general the map lift is not a homomorphism. But it satisfies 𝜗 ∘ lift ∘ aff = idΓ(𝑋), where
𝜗 : Aut𝑌𝑎(𝐹𝑛) = Aut𝑋(𝐹𝑛) → Γ(𝑋) = Γ(𝑌𝑎), 𝛾𝐴 ↦→ 𝐴 maps each lift to its Veech group
element (see Chapter 1).

Proposition 2.13. The action of pΓ(𝑋) on Σ(𝑌𝑎) from Definition 2.12 can be re-
stricted to an action of pΓ(𝑋) on Σ′ := 𝑝−1

𝑎 (𝑠1). This action induces via �̃�𝑎|Σ′ : Σ′ →
𝐻1(�̄�,Z/𝑎Z) an action 𝜌 of pΓ(𝑋) on 𝐻1(�̄�,Z/𝑎Z). The action 𝜌 equals the action ⋆
of pΓ(𝑋) ⊆ Γ(𝑋) on 𝐻1(�̄�,Z/𝑎Z) from Section 2.1.

Proof. Lifts of pure affine maps on �̄� to 𝑌𝑎 respect Σ′. This immediately implies that the
action of pΓ(𝑋) on Σ(𝑌𝑎) from Definition 2.12 can be restricted to an action of pΓ(𝑋)
on Σ′ := 𝑝−1

𝑎 (𝑠1).
We use the map lift ∘ aff to describe the relationship between the action of pΓ(𝑋) on
Σ(𝑌𝑎) and its action on 𝐻1(�̄�,Z/𝑎Z):
For 𝑧 ∈ (Z/𝑎Z)2𝑔 we choose a preimage 𝑤 ∈ 𝜋1(𝑋) = 𝐹𝑛 of 𝑧 via the map 𝑚𝑎. Then
𝑤𝑐1𝑤

−1 represents the singularity above 𝑠1 that corresponds to 𝑧. For 𝐴 ∈ pΓ(𝑋) and
𝛾𝐴 := lift(aff(𝐴)), there exists a 𝑣 ∈ 𝐹𝑛 with 𝑚𝑎(𝑣) = 0 such that 𝛾𝐴(𝑤𝑐1𝑤

−1) =
𝛾𝐴(𝑤) · 𝑣𝑐1𝑣−1 · 𝛾𝐴(𝑤)−1 for all 𝑤 ∈ 𝐹𝑛. Therefore, the singularity above 𝑠1, identified
with 𝑧, is sent by aff(𝐴) to a singularity identified with 𝑚𝑎(𝛾𝐴(𝑤)𝑣) = 𝑚𝑎(𝛾𝐴(𝑤)).
Recall that the action of 𝐴 on 𝐻1(�̄�,Z/𝑎Z) from Section 2.1 was defined via the map
𝜙𝑎 : Aut𝑋(𝐹𝑛) → Aut((Z/𝑎Z)2𝑔) with 𝑚𝑎 ∘ 𝛾 = 𝜙𝑎(𝛾) ∘𝑚𝑎 for all 𝛾 ∈ Aut𝑋(𝐹𝑛). Hence
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2. Congruence Veech groups

𝑚𝑎(𝛾𝐴(𝑤)) = (𝜙𝑎(𝛾𝐴))(𝑚𝑎(𝑤)) = (𝜙𝑎(𝛾𝐴))(𝑧) = 𝐴 ⋆ 𝑧. Consequently, the action of
pΓ(𝑋) on 𝐻1(�̄�,Z/𝑎Z) via its action on Σ′ and �̃�𝑎 equals its action on 𝐻1(�̄�,Z/𝑎Z)
via 𝜙𝑎.

This induces the following simple remark that is very useful for an intuitive conception of
the pure principal congruence groups.

Remark 2.14. The pure Veech group of the surface 𝑌𝑎 equals the pure principal congru-
ence group of 𝑋 of level 𝑎.

2.3. Curves around singularities of 𝑌𝑎

The pure congruence groups that we realise as Veech groups of covering surfaces are the
groups that can be written as stabilisers of partitions of (Z/𝑎Z)2𝑔 as follows.

Definition 2.15. Let 𝐵 = {𝑏1, . . . , 𝑏𝑝} be a partition of (Z/𝑎Z)2𝑔. Define

pΓ𝐵 := {𝐴 ∈ pΓ(𝑋) ⊆ Γ(𝑋) = Γ(𝑌𝑎) | the action of 𝐴 on (Z/𝑎Z)2𝑔 respects 𝐵}
and Γ𝐵 := {𝐴 ∈ Γ(𝑋) = Γ(𝑌𝑎) | the action of 𝐴 on (Z/𝑎Z)2𝑔 respects 𝐵} .

In the next section we construct a covering surface of 𝑌𝑎 with Veech group pΓ𝐵. Later
on in Section 2.5, we also realise Γ𝐵 as Veech group of a covering of 𝑌𝑎, whenever the
Veech group of �̄� acts on a set Σ′ ⊆ Σ(𝑌𝑎) via appropriate affine maps (this depends on
the choice of �̄� and 𝑎).
The action of 𝐴 ∈ Γ(𝑌𝑎) was defined in a way that guarantees 𝐴 ⋆ 0(Z/𝑎Z)2𝑔 = 0(Z/𝑎Z)2𝑔 ,
so without loss of generality 𝐵 = {{0(Z/𝑎Z)2𝑔}, 𝑏2, . . . , 𝑏𝑝}. We choose 𝑝+ 𝜈 − 1 different
natural numbers 𝑟1, . . . , 𝑟𝑝, 𝑟𝑝+1, . . . , 𝑟𝑝+𝜈−1 greater than 1 and define three subsets of
𝐻 = 𝜋1(𝑌𝑎): the first one is the set 𝐶𝑋 of all simple closed curves that are freely homotopic
to a singularity in �̄� up to a (not necessarily simple) varying start path:

𝐶𝑋 := {𝑤𝑐𝑖𝑤−1 | 𝑤 ∈ 𝐹𝑛, 𝑖 ∈ {1, . . . , 𝜈} } ⊆ 𝐻 .

As 𝑝𝑎 is unramified, 𝐶𝑋 is also the set of all simple closed curves, freely homotopic to a
singularity in 𝑌𝑎 modulo a starting path.
The second set 𝐶𝐵 contains all closed curves that are freely homotopic to the singularities
in 𝑌𝑎 above 𝑠1 and wind around this singularity 𝑟𝜍 times iff the singularity belongs to 𝑏𝜍
via the identification �̃�𝑎. It additionally includes all paths that wind around a singularity
of 𝑌𝑎 above 𝑠𝑖 with 𝑖 ∈ {2, . . . , 𝜈} exactly 𝑟𝑝+𝑖−1 times:

𝐶𝐵 := {𝑤𝑐𝑟𝜍1 𝑤
−1 | 𝑤 ∈ 𝐹𝑛 where 𝑚𝑎(𝑤) ∈ 𝑏𝜍} ∪ {𝑤𝑐𝑟𝑝+𝑖−1

𝑖 𝑤−1 | 𝑤 ∈ 𝐹𝑛, 𝑖 ∈ {2, . . . , 𝜈} }

For each 𝜇 ∈ {1, . . . , 𝜈} we further define the set

𝐶𝐵,𝜇 := {𝑤𝑐𝑟𝜍𝑖 𝑤−1 | 𝑤 ∈ 𝐹𝑛 where 𝑚𝑎(𝑤) ∈ 𝑏𝜍 , 𝑖 ∈ {1, . . . , 𝜇} }
∪ {𝑤𝑐𝑖𝑤−1 | 𝑤 ∈ 𝐹𝑛, 𝑖 ∈ {𝜇+ 1, . . . , 𝜈} } .
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Note that for the definition of 𝐶𝐵,𝜇 only the first 𝑝 chosen natural numbers are used.
The set 𝐶𝑋 is invariant under conjugation in 𝐹𝑛, so 𝑁𝑋 := ⟨𝐶𝑋⟩ is a normal subgroup of
𝐹𝑛. Because of 𝑚𝑎(𝐻) = 0, the set 𝐶𝐵 is invariant under conjugation with elements in
𝐻 and consequently 𝑁𝐵 := ⟨𝐶𝐵⟩ is a normal subgroup of 𝐻. Similarly 𝑁𝐵,𝜇 := ⟨𝐶𝐵,𝜇⟩ is
normal in 𝐻.
Later on in Section 2.4 we use 𝑁𝐵 to construct a covering of 𝑌𝑎 whose Veech group is
contained in pΓ𝐵 and in Section 2.5 (under some assumptions on �̄�) we use 𝑁𝐵,𝜇 to
construct a covering surface of 𝑌𝑎 whose Veech group is contained in Γ𝐵.
Following the proof of Lemma 6.5 in [Sch05], we now prove a characterisation of paths
winding (several times) around a singularity and lying in 𝑁𝐵.

Lemma 2.16. Let 𝑤 ∈ 𝐹𝑛 with 𝑚𝑎(𝑤) ∈ 𝑏𝜍 then

𝑤𝑐𝑙1𝑤
−1 ∈ 𝑁𝐵 ⇔ 𝑟𝜍 | 𝑙

and furthermore for 𝑖 ∈ {2, . . . , 𝜈}

𝑤𝑐𝑙𝑖𝑤
−1 ∈ 𝑁𝐵 ⇔ 𝑟𝑝+𝑖−1 | 𝑙 .

Proof. By definition 𝑤𝑐𝑟𝜍1 𝑤
−1 ∈ 𝑁𝐵. Thus if 𝑟𝜍 | 𝑙, then 𝑤𝑐𝑙1𝑤

−1 ∈ 𝑁𝐵. Analogously
𝑤𝑐

𝑟𝑝+𝑖−1

𝑖 𝑤−1 ∈ 𝐶𝐵. Hence if 𝑟𝑝+𝑖−1 | 𝑙, then 𝑤𝑐𝑙𝑖𝑤
−1 ∈ 𝑁𝐵.

To prove the reverse implication, let 𝑝∞ : 𝑌∞ → 𝑋 be the unramified covering defined by
the subgroup 𝑁𝑋 , i.e. the normal unramified covering with monodromy map 𝑚 : 𝐹𝑛 →
𝐹𝑛/𝑁𝑋 . By lifting the charts from𝑋 to 𝑌∞, the surface 𝑌∞ becomes an infinite translation
surface. For every 𝑖 ∈ {1, . . . , 𝜈}, the path 𝑐𝑖 ∈ 𝜋1(𝑋) is freely homotopic to the singularity
𝑠𝑖 in �̄�. Hence if we develop the path 𝑐𝑖 along appropriate charts in R2, then we get a
closed curve that has winding number 𝜅 around an innermost point iff the singularity 𝑠𝑖 has
multiplicity 𝜅. The path 𝑐𝑖 is contained in 𝑁𝑋 , so 𝑚(𝑐𝑖) = 1𝐹𝑛/𝑁𝑋

, thus 𝑚(𝑐𝑖) = 1𝐹𝑛/𝑁𝑋
.

This implies that, in 𝑌∞, the path 𝑐𝑖 also describes a closed path with finite winding
number 𝜅 when projected to R2. The same is obviously true for every conjugate of 𝑐𝑖.
Thus the metric completion 𝑌 ′

∞ of 𝑌∞ adds a finite angle singularity to the translation
structure of 𝑌∞ for every singularity 𝑠𝑖 ∈ Σ(�̄�) and for every 𝑘 ∈ 𝐹𝑛/𝑁𝑋 . The covering
𝑌∞ → 𝑋 extends to an unramified covering map 𝑌 ′

∞ → �̄� and we get a commutative
diagram

𝑌∞ 𝑌 ′
∞

𝑋 �̄�

𝛽

𝛼

with inclusions 𝛼 : 𝑋 →˓ �̄� and 𝛽 : 𝑌∞ →˓ 𝑌 ′
∞. The maps 𝛼 and 𝛽 induce maps

𝛼* : 𝜋1(𝑋) → 𝜋1(�̄�) and 𝛽* : 𝜋1(𝑌∞) → 𝜋1(𝑌
′
∞) and a commutative diagram of the

fundamental groups:
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𝑁𝑋 = 𝜋1(𝑌∞) 𝜋1(𝑌
′
∞)

𝜋1(𝑋) 𝜋1(�̄�)

𝛽*

𝛼*

The surfaces 𝑋 and �̄� and thereby also 𝑌∞ and 𝑌 ′
∞ differ only in a discrete set of points.

Hence 𝛼* and 𝛽* are surjective. Furthermore, 𝛼*(𝑐𝑖) = 1 thus 𝛼*(𝑐𝑖) = 1 and 𝛼*(𝑁𝑋) = 1.
This implies that 𝜋1(𝑌 ′

∞) = 𝛽*(𝑁𝑋) = 𝛼*(𝑁𝑋) = {1} is trivial. Thus 𝑌 ′
∞ is the universal

covering of �̄� and in particular simply connected. In particular, this implies that the
genus of 𝑌 ′

∞ is 0. Consequently, 𝑌∞ is homeomorphic to a plane with a discrete subset of
points removed. For every 𝑠 ∈ Σ(�̄�) and every element in 𝐹𝑛/𝑁𝑋 there is a singularity in
𝑌∞. Thus 𝜋1(𝑌∞) is freely generated by a set that contains a simple closed path around
each singularity of 𝑌∞:
As 𝑁𝑋 ⊆ 𝐻, 𝑌∞ is a covering of 𝑌𝑎. The elements 𝑐𝑖 are by definition simple closed paths
in 𝑌𝑎 thus they are simple in 𝑌∞. If we choose a preimage 𝑣ℎ of every ℎ ∈ 𝐹𝑛/𝑁𝑋 , then
the following set is a free generating set of 𝜋1(𝑌∞):

𝑆 := {𝑣ℎ𝑐𝑖𝑣−1
ℎ | ℎ ∈ 𝐹𝑛/𝑁𝑋 , 𝑖 ∈ {1, . . . , 𝜈} } .

Define
𝜙ℎ : 𝜋1(𝑌∞) → (Z,+), 𝑤 ↦→ #𝑣ℎ𝑐1𝑣

−1
ℎ

(𝑤) .

This map is a well-defined group homomorphism because it is induced from the map
𝑆 → Z that sends the generator 𝑣ℎ𝑐1𝑣−1

ℎ to 1 and all other free generators to 0.
Now let 𝑤 ∈ 𝐹𝑛 with 𝑚(𝑤) = 𝑘. Then 𝑚(𝑤𝑣−1

𝑘 ) = 𝑚(𝑤) ·𝑚(𝑣𝑘)−1 = 𝑘 · 𝑘−1 = 1, i.e.
𝑤𝑣−1

𝑘 ∈ 𝜋1(𝑌∞). Consider the image of 𝑤𝑐𝑙𝑗𝑤
−1 through 𝜙ℎ:

𝜙ℎ(𝑤𝑐𝑙𝑗𝑤
−1) = 𝜙ℎ(𝑤𝑣−1

𝑘 )+𝑙·𝜙ℎ(𝑣𝑘𝑐𝑗𝑣
−1
𝑘 )−𝜙ℎ(𝑤𝑣−1

𝑘 ) =

{︂
0 , if 𝑚(𝑤) ̸= ℎ or 𝑗 ̸= 1
𝑙 , if 𝑚(𝑤) = ℎ and 𝑗 = 1

.

As 𝑁𝑋 ⊆ 𝐻 the map 𝑚𝑎 factors through 𝑚:

𝐹𝑛 𝐹𝑛/𝐻 ∼= (Z/𝑎Z)2𝑔

𝐹𝑛/𝑁𝑋

𝑚𝑎

𝑚
𝜑

As 𝐶𝐵 ⊆ 𝑁𝑋 we have 𝑁𝐵 ⊆ 𝑁𝑋 = 𝜋1(𝑌∞). Now let 𝑤𝑐𝑙1𝑤−1 ∈ 𝑁𝐵 with 𝑚𝑎(𝑤) ∈ 𝑏𝜍 .
We choose a preimage 𝑘 ∈ 𝐹𝑛/𝑁𝑋 of 𝑚𝑎(𝑤). Every 𝑤′ ∈ 𝐹𝑛 with 𝑚(𝑤′) = 𝑘 has the
property 𝑚𝑎(𝑤′) = 𝜑(𝑚(𝑤′)) = 𝜑(𝑘) = 𝑚𝑎(𝑤) ∈ 𝑏𝜍 . Thus

𝜙𝑘(𝐶𝐵) = 𝜙𝑘({𝑤𝑐𝑟𝜍1 𝑤
−1 | 𝑤 ∈ 𝐹𝑛 with 𝑚(𝑤) = 𝑘}) = {𝑟𝜍} .

Therefore 𝜙𝑘(𝑁𝐵) = ⟨𝑟𝜍⟩ and we conclude that 𝜙𝑘(𝑤𝑐𝑙1𝑤
−1) = 𝑙 ∈ ⟨𝑟𝜍⟩, thus 𝑟𝜍 | 𝑙.
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In a similar manner we define 𝜓𝑖 : 𝜋1(𝑌∞) → (Z,+) for 𝑖 ∈ {2, . . . , 𝜈} as the homomor-
phism induced by sending the generators 𝑣ℎ𝑐𝑖𝑣ℎ−1 to 1 (for all ℎ ∈ 𝐹𝑛/𝑁𝑋) and the
remaining generators to 0. Then for 𝑤 ∈ 𝐹𝑛 with 𝑚(𝑤) = 𝑘

𝜓𝑖(𝑤𝑐
𝑙
𝑗𝑤

−1) = 𝜓𝑖(𝑤𝑣
−1
𝑘 ) + 𝑙 · 𝜓𝑖(𝑣𝑘𝑐𝑗𝑣

−1
𝑘 ) − 𝜓𝑖(𝑤𝑣

−1
𝑘 ) =

{︂
0 , if 𝑗 ̸= 𝑖
𝑙 , if 𝑗 = 𝑖

.

Thus 𝜓𝑖(𝐶𝐵) = 𝜓𝑖({𝑤𝑐
𝑟𝑝+𝑖−1

𝑖 𝑤−1 | 𝑤 ∈ 𝐹𝑛}) = {𝑟𝑝+𝑖−1}, hence 𝜓𝑖(𝑁𝐵) = ⟨𝑟𝑝+𝑖−1⟩. If
now 𝑤𝑐𝑙𝑖𝑤

−1 ∈ 𝑁𝐵 then 𝜓𝑖(𝑤𝑐
𝑙
𝑖𝑤

−1) = 𝑙 ∈ ⟨𝑟𝑝+𝑖−1⟩, thus 𝑟𝑝+𝑖−1 | 𝑙.

The analog statement for the set 𝑁𝐵,𝜇 can be proven in complete analogy.

Lemma 2.17. Let 𝑤 ∈ 𝐹𝑛 with 𝑚𝑎(𝑤) ∈ 𝑏𝜍 and 𝑖 ∈ {1, . . . , 𝜇} then

𝑤𝑐𝑙𝑖𝑤
−1 ∈ 𝑁𝐵,𝜇 ⇔ 𝑟𝜍 | 𝑙 .

Proof. Again 𝑟𝜍 | 𝑙 obviously implies 𝑤𝑐𝑙𝑖𝑤
−1 ∈ 𝑁𝐵,𝜇.

Recall the covering 𝑝∞ : 𝑌∞ → 𝑋 and the generating set 𝑆 of 𝜋1(𝑌∞) from the proof of
Lemma 2.16. For 𝑖 ∈ {1, . . . , 𝜇} and ℎ ∈ 𝐹𝑛/𝑁𝑋 we define the homomorphism

𝜙𝑖,ℎ : 𝜋1(𝑌∞) → (Z,+), 𝑤 ↦→ ♯𝑣ℎ𝑐𝑖𝑣−1
ℎ

(𝑤) .

by sending the free generator 𝑣ℎ𝑐𝑖𝑣−1
ℎ to 1 and the remaining generators to 0.

For 𝑤 ∈ 𝐹𝑛 with 𝑚(𝑤) = 𝑘 it follows that

𝜙𝑖,ℎ(𝑤𝑐𝑙𝑗𝑤
−1) = 𝜙𝑖,ℎ(𝑤𝑣−1

𝑘 ) + 𝑙 ·𝜙𝑖,ℎ(𝑣𝑘𝑐𝑗𝑣
−1
𝑘 )−𝜙𝑖,ℎ(𝑤𝑣−1

𝑘 ) =

{︂
0 , if 𝑘 ̸= ℎ or 𝑗 ̸= 𝑖
l , if 𝑘 = ℎ and 𝑗 = 𝑖

.

Now let 𝑤𝑐𝑙𝑖𝑤
−1 ∈ 𝑁𝐵,𝜇, 𝑚𝑎(𝑤) ∈ 𝑏𝜍 and let 𝑘 ∈ 𝐹𝑛/𝑁𝑋 be a preimage of 𝑚𝑎(𝑤), then

𝜙𝑖,𝑘(𝐶𝐵,𝜇) = 𝜙𝑖,𝑘({𝑤𝑐𝑟𝜍𝑖 𝑤
−1 | 𝑤 ∈ 𝐹𝑛,𝑚(𝑤) = 𝑘}) = {𝑟𝜍} ,

implying 𝜙𝑖,𝑘(𝑁𝐵,𝜇) = ⟨𝑟𝜍⟩. Then 𝜙𝑖,𝑘(𝑤𝑐𝑙𝑖𝑤
−1) = 𝑙 ∈ ⟨𝑟𝜍⟩ thus 𝑟𝜍 | 𝑙.

The partition 𝐵 = {𝑏1, . . . , 𝑏𝑝} of (Z/𝑎Z)2𝑔 induces a partition �̃� = {�̃�1, . . . , �̃�𝑝} of the
elements in 𝐶𝑋 above 𝑠1 where 𝑤𝑐1𝑤−1 ∈ �̃�𝜍 ⇔ 𝑚𝑎(𝑤) ∈ 𝑏𝜍 . We complete it to a partition
of 𝐶𝑋 by adding the sets 𝑐𝑖 = {𝑤𝑐𝑖𝑤−1 | 𝑤 ∈ 𝐹𝑛} for every 𝑖 ∈ {2, . . . , 𝜈}.
The partition �̃� has a strong correlation with the set 𝐶𝐵 . We analogously define for each
𝜇 ∈ {1, . . . , 𝜈} a partition �̃�𝜇 = {�̃�𝜇1 , . . . , �̃�

𝜇
𝑝 , �̃�

𝜇
𝑝+1} of 𝐶𝑋 that corresponds to 𝐶𝐵,𝜇: for

𝜍 ∈ {1, . . . , 𝑝} let

�̃�𝜇𝜍 := {𝑤𝑐𝑖𝑤−1 | 𝑖 ∈ {1, . . . , 𝜇}, 𝑤 ∈ 𝐹𝑛 with 𝑚𝑎(𝑤) ∈ 𝑏𝜍}

and define �̃�𝜇𝑝+1 := {𝑤𝑐𝑖𝑤−1 | 𝑖 ∈ {𝜇+ 1, . . . , 𝜈}, 𝑤 ∈ 𝐹𝑛}.
Affine maps send singular points to singular points, so the elements 𝛾 in Aut𝑌𝑎(𝐹𝑛) =
Aut𝑋(𝐹𝑛) stabilise the set 𝐶𝑋 , i.e. the restriction 𝛾|𝐶𝑋

: 𝐶𝑋 → 𝐶𝑋 is a well-defined map.
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Remark 2.18. The partitions �̃� ∪ {𝑐𝑖 | 𝑖 ∈ {2, . . . , 𝜈}} and �̃�𝜇 of 𝐶𝑋 depend on the
choice of the singularity 𝑠1 ∈ Σ(𝑌𝑎) or on {𝑠1, . . . , 𝑠𝜇} ⊆ Σ(𝑌𝑎), respectively, but not
on the additional choice made by selecting a simple closed path 𝑐𝑖, freely homotopic to
𝑠𝑖 ∈ Σ(𝑌𝑎).

Define

𝐺𝐵 = {𝛾 ∈ Aut𝑋(𝐹𝑛) | 𝛾|𝐶𝑋
(�̃�𝜍) = �̃�𝜍 and 𝛾|𝐶𝑋

(𝑐𝑖) = 𝑐𝑖
for 𝜍 ∈ {1, . . . , 𝑝} and 𝑖 ∈ {2, . . . , 𝜈} }

and 𝐺𝐵,𝜇 = {𝛾 ∈ Aut𝑋(𝐹𝑛) | 𝛾|𝐶𝑋
(�̃�𝜇𝜍 ) = �̃�𝜇𝜍 for 𝜍 ∈ {1, . . . , 𝑝+ 1} } .

Remark 2.19. An alternative definition of the set 𝐺𝐵 is the following:

𝐺𝐵 = {𝛾 ∈ Aut𝑋(𝐹𝑛) | ∀𝑖 ∈ {1, . . . , 𝜈} ∃𝑣𝑖 ∈ 𝐹𝑛 : 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣
−1
𝑖 , 𝑚𝑎(𝑣1) = 0 and

∀𝑤 ∈ 𝐹𝑛 : 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) are in the same 𝑏𝜍}

To see this, let 𝛾 ∈ Aut𝑋(𝐹𝑛). As 𝑤𝑐𝑖𝑤−1 and 𝑤′𝑐𝑗𝑤
′−1 are in different partition sets

for 𝑖 ̸= 𝑗, 𝛾 ∈ 𝐺𝐵 implies: ∀𝑖 ∈ {1, . . . 𝜈} ∃𝑣𝑖 ∈ 𝐹𝑛 : 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣
−1
𝑖 . We assumed

𝑏1 = {0}, thus if 𝛾 ∈ 𝐺𝐵, then 𝑐1 and 𝛾(𝑐1) = 𝑣1𝑐1𝑣
−1
1 are in the same partition set of

�̃�, hence 𝑚𝑎(𝑣1) = 𝑚𝑎(1𝐹𝑛) = 0. This implies 𝛾(𝑤𝑐1𝑤
−1) = 𝛾(𝑤)𝑣1𝑐1𝑣

−1
1 𝛾(𝑤)−1 with

𝑚𝑎(𝛾(𝑤)𝑣1) = 𝑚𝑎(𝛾(𝑤)) + 𝑚𝑎(𝑣1) = 𝑚𝑎(𝛾(𝑤)), so 𝑤𝑐1𝑤−1 and 𝛾(𝑤𝑐1𝑤
−1) are in the

same partition set of �̃� if and only if 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) are also in the same partition
set of 𝐵.
In exactly the same way, one sees that

𝐺𝐵,𝜇 = {𝛾 ∈ Aut𝑋(𝐹𝑛) | ∀𝑖 ∈ {1, . . . , 𝜇} ∃𝑗𝑖 ∈ {1, . . . , 𝜇} and 𝑣𝑖 ∈ 𝐹𝑛 :

𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣
−1
𝑖 , 𝑚𝑎(𝑣𝑖) = 0 and

∀𝑤 ∈ 𝐹𝑛 : 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) are in the same 𝑏𝜍} .

At a first glance, the assertion “∀𝑖 ∈ {𝜇+1, . . . , 𝜈} : 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣
−1
𝑖 for some 𝑣𝑖 ∈ 𝐹𝑛 and

𝑗𝑖 ∈ {𝜇+ 1, . . . , 𝜈}” is missing in this equivalent definition of 𝐺𝐵,𝜇. But if an affine map
stabilises the set of singularities {𝑠1, . . . , 𝑠𝜇} then it also preserves Σ(𝑌𝑎) ∖ {𝑠1, . . . , 𝑠𝜇} =
{𝑠𝜇+1, . . . , 𝑠𝜈}. Therefore, this constraint is redundant.

In analogy to Lemma 6.7 in [Sch05] we prove the following description of the group 𝐺𝐵.

Lemma 2.20. 𝐺𝐵 = StabAut𝑋(𝐹𝑛)(𝐶𝐵) = StabAut𝑋(𝐹𝑛)(𝑁𝐵).

Proof. Claim 1: StabAut𝑋(𝐹𝑛)(𝐶𝐵) = StabAut𝑋(𝐹𝑛)(𝑁𝐵)
“⊆”: This is obvious because 𝑁𝐵 = ⟨𝐶𝐵⟩.
“⊇”: Let 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵) and ℎ = 𝑤𝑐𝑟𝜍1 𝑤

−1 ∈ 𝐶𝐵 , i.e. 𝑚𝑎(𝑤) ∈ 𝑏𝜍 . Affine maps on
�̄� send singular points to singular points, thus there is a 𝑗 ∈ {1, . . . , 𝜈} and a 𝑣 ∈ 𝐹𝑛

such that 𝛾(𝑐1) = 𝑣𝑐𝑗𝑣
−1. Then

𝛾(ℎ) = 𝛾(𝑤)𝑣𝑐𝑟𝜍𝑗 𝑣
−1𝛾(𝑤)−1 ∈ 𝑁𝐵.
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For 𝑚𝑎(𝛾(𝑤)𝑣) ∈ 𝑏𝜚, Lemma 2.16 implies 𝑟𝑝+𝑗−1 | 𝑟𝜍 if 𝑗 ̸= 1, and 𝑟𝜚 | 𝑟𝜍 if 𝑗 = 1.
In the following we use that 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵) implies that 𝛾−1 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵).
First suppose that 𝑗 = 1. The element ℎ′ := 𝛾(𝑤)𝑣𝑐

𝑟𝜚
1 𝑣

−1𝛾(𝑤)−1 lies in 𝐶𝐵. Thus

𝛾−1(ℎ′) = 𝑤 · 𝛾−1(𝑣𝑐1𝑣
−1)𝑟𝜚 · 𝑤−1 = 𝑤𝑐

𝑟𝜚
1 𝑤

−1 ∈ 𝑁𝐵 .

Then, once again Lemma 2.16 implies that 𝑟𝜍 | 𝑟𝜚. Thus 𝑟𝜍 = 𝑟𝜚 and 𝛾(ℎ) ∈ 𝐶𝐵.
Now suppose that 𝑗 ̸= 1 and consider the element ℎ′ := 𝛾(𝑤)𝑣𝑐

𝑟𝑝+𝑗−1

𝑗 𝑣−1𝛾(𝑤)−1 ∈ 𝐶𝐵.
Then

𝛾−1(ℎ′) = 𝑤 · 𝛾−1(𝑣𝑐𝑗𝑣
−1)𝑟𝑝+𝑗−1 · 𝑤−1 = 𝑤𝑐

𝑟𝑝+𝑗−1

1 𝑤−1 ∈ 𝑁𝐵 .

Lemma 2.16 implies that 𝑟𝜍 | 𝑟𝑝+𝑗−1. Hence 𝑟𝜍 = 𝑟𝑝+𝑗−1. But the numbers 𝑟1, . . . , 𝑟𝑝,
𝑟𝑝+1, . . . , 𝑟𝑝+𝜈−1 are pairwise different. Thus this is a contradiction.
It remains to show that all ℎ = 𝑤𝑐

𝑟𝑝+𝑖−1

𝑖 𝑤−1 ∈ 𝐶𝐵 are mapped to an element of 𝐶𝐵 by
𝛾. As above there exists a 𝑗 ∈ {1, . . . , 𝜈} and a 𝑣 ∈ 𝐹𝑛 such that 𝛾(𝑐𝑖) = 𝑣𝑐𝑗𝑣

−1. Then
𝛾(ℎ) = 𝛾(𝑤)𝑣𝑐

𝑟𝑝+𝑖−1

𝑗 𝑣−1𝛾(𝑤)−1 ∈ 𝑁𝐵. Let 𝜚 ∈ {1, . . . , 𝑝} such that 𝑚𝑎(𝛾(𝑤)𝑣) ∈ 𝑏𝜚.
Again we have to distinguish two cases:
If 𝑗 = 1, then Lemma 2.16 implies 𝑟𝜚 | 𝑟𝑝+𝑖−1. We compute

𝛾−1(𝛾(𝑤)𝑣𝑐
𝑟𝜚
1 𝑣

−1𝛾(𝑤)−1) = 𝑤𝑐
𝑟𝜚
𝑖 𝑤

−1 ∈ 𝑁𝐵

and Lemma 2.16 induces 𝑟𝑝+𝑖−1 | 𝑟𝜚. This is a contradiction as 𝜚 ̸= 𝑝+ 𝑖− 1 and the 𝑟𝜍
are pairwise different.
If 𝑗 ̸= 1, then 𝑟𝑝+𝑗−1 | 𝑟𝑝+𝑖−1. Because

𝛾−1(𝛾(𝑤)𝑣𝑐
𝑟𝑝+𝑗−1

𝑗 𝑣−1𝛾(𝑤)−1) = 𝑤𝑐
𝑟𝑝+𝑗−1

𝑖 𝑤−1 ∈ 𝑁𝐵 ,

we see that 𝑟𝑝+𝑖−1 | 𝑟𝑝+𝑗−1. Hence 𝑟𝑝+𝑖−1 = 𝑟𝑝+𝑗−1, implying 𝛾(ℎ) ∈ 𝐶𝐵.

Claim 2: StabAut𝑋(𝐹𝑛)(𝐶𝐵) = 𝐺𝐵

Now let 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝐶𝐵). As 𝑐1 ∈ �̃�1, 𝛾(𝑐1) = 𝑣𝑐𝑗𝑣
−1 ∈ �̃�1 thus 𝑗 = 1 and 𝑚𝑎(𝑣) =

𝑚𝑎(1𝐹𝑛) = 0. The calculations in the proof of Claim 1 showed that 𝛾(𝑐1) = 𝑣𝑐1𝑣
−1 with

𝑚𝑎(𝑣) ∈ 𝑏1 = {0} and that 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) are contained in the same partition
set of 𝐵 for every 𝑤 ∈ 𝐹𝑛. Also 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣

−1
𝑖 was shown in Claim 1. Together with

Remark 2.19 this proves 𝛾 ∈ 𝐺𝐵.
On the other hand, let 𝛾 ∈ 𝐺𝐵 and ℎ = 𝑤𝑐𝑟𝜍1 𝑤

−1 ∈ 𝐶𝐵, then 𝑚𝑎(𝛾(𝑤)) ∈ 𝑏𝜍 and
𝛾(𝑐1) = 𝑣𝑐1𝑣

−1 with 𝑚𝑎(𝑣) = 0. Thus 𝛾(ℎ) = 𝛾(𝑤)𝑣𝑐𝑟𝜍1 𝑣
−1𝛾(𝑤)−1 ∈ 𝐶𝐵 because

𝑚𝑎(𝛾(𝑤)𝑣) = 𝑚𝑎(𝛾(𝑤)) + 𝑚𝑎(𝑣) = 𝑚𝑎(𝛾(𝑤)) ∈ 𝑏𝜍 . For 𝑖 ∈ {2, . . . , 𝜈}, 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣
−1
𝑖

thus ℎ′ = 𝑤𝑐
𝑟𝑝+𝑖−1

𝑖 𝑤−1 ∈ 𝐶𝐵 maps to 𝛾(ℎ′) = 𝛾(𝑤)𝑣𝑖𝑐
𝑟𝑝+𝑖−1

𝑖 𝑣−1
𝑖 𝛾(𝑤−1) ∈ 𝐶𝐵. Hence

𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝐶𝐵).

As before, we can state an analogous lemma for the set 𝐶𝐵,𝜇.

Lemma 2.21. 𝐺𝐵,𝜇 = StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇) = StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇)
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Proof. The proof is very similar to the proof of Lemma 2.20.
The inclusion StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇) ⊆ StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇) is trivial.
Now let 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇). We start by showing the following claim: for 𝑖 ∈
{1, . . . , 𝜇} : 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣

−1
𝑖 where 𝑗𝑖 ∈ {1, . . . , 𝜇} (and 𝑣𝑖 ∈ 𝐹𝑛). Furthermore, if

𝑖 ∈ {𝜇+ 1, . . . , 𝜈} then 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣
−1
𝑖 with 𝑗𝑖 ∈ {𝜇+ 1, . . . , 𝜈} (and 𝑣𝑖 ∈ 𝐹𝑛).

So at first let 𝑖 ∈ {1, . . . , 𝜇} and suppose that 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑣
−1
𝑖 where 𝑗 > 𝜇. Then

𝑣𝑖𝑐𝑗𝑣
−1
𝑖 ∈ 𝑁𝐵,𝜇. Because 𝛾−1 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇) and 𝛾−1(𝑣𝑖𝑐𝑗𝑣

−1
𝑖 ) = 𝑐𝑖 ∈ 𝑁𝐵,𝜇,

Lemma 2.17 implies that 𝑟1 | 1. That is a contradiction to 𝑟1 > 1.
Now let 𝑖 ∈ {𝜇 + 1, . . . , 𝜈} and suppose that 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑣

−1
𝑖 where 𝑗 ≤ 𝜇. Then

𝛾−1 ∈ StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇) and 𝛾−1(𝑐𝑗) = 𝛾−1(𝑣−1
𝑖 )𝑐𝑖𝛾

−1(𝑣𝑖). But this is something that
we just excluded.
Elements of 𝐶𝐵,𝜇 are either of the form 𝑤𝑐𝑟𝜍𝑖 𝑤

−1 with 𝑤 ∈ 𝐹𝑛, 𝑚𝑎(𝑤) ∈ 𝑏𝜍 and
𝑖 ∈ {1, . . . , 𝜇} or of the form 𝑤𝑐𝑖𝑤

−1 with 𝑤 ∈ 𝐹𝑛 and 𝑖 ∈ {𝜇 + 1, . . . , 𝜈}. For
𝑖 ∈ {𝜇 + 1, . . . , 𝜈} the above claim states that 𝛾(𝑐𝑖) ∈ 𝐶𝐵,𝜇 and 𝛾(𝑤𝑐𝑖𝑤

−1) ∈ 𝐶𝐵,𝜇

follows immediately. If 𝑖 ∈ {1, . . . , 𝜇}, then ℎ := 𝑤𝑐𝑟𝜍𝑖 𝑤
−1 with 𝑤 ∈ 𝐹𝑛 and 𝑚𝑎(𝑤) ∈ 𝑏𝜍

is mapped to 𝛾(ℎ) = 𝛾(𝑤)𝑣𝑖𝑐
𝑟𝜍
𝑗𝑖
𝑣−1
𝑖 𝛾(𝑤−1) ∈ 𝑁𝐵,𝜇. Thus Lemma 2.17 implies that

𝑟𝜚 | 𝑟𝜍 where 𝜚 ∈ {1, . . . , 𝑝} such that 𝑚𝑎(𝛾(𝑤)𝑣𝑖) ∈ 𝑏𝜚. As in the proof of Lemma 2.20,
𝛾−1(𝛾(𝑤)𝑣𝑖𝑐

𝑟𝜚
𝑗𝑖
𝑣−1
𝑖 𝛾(𝑤−1)) = 𝑤𝑐

𝑟𝜚
𝑖 𝑤

−1 ∈ 𝑁𝐵,𝜇 implies 𝑟𝜍 | 𝑟𝜚. Thus 𝜍 = 𝜚 and 𝛾(ℎ) ∈ 𝐶𝐵,𝜇.
This completes StabAut𝑋(𝐹𝑛)(𝑁𝐵,𝜇) ⊆ StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇).
The preceding paragraph also shows that for 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇), 𝑤 ∈ 𝐹𝑛 and
𝑖 ∈ {1, . . . , 𝜇}, the elements 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)𝑣𝑖) lie in a common partition set 𝑏𝜍 of
𝐵. Thus 𝑚𝑎(𝑣𝑖) = 0 and 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) are in the same partition set of 𝐵 for all
𝑤 ∈ 𝐹𝑛. Hence by Remark 2.19 it follows that StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇) ⊆ 𝐺𝐵,𝜇.
It remains to show that StabAut𝑋(𝐹𝑛)(𝐶𝐵,𝜇) ⊇ 𝐺𝐵,𝜇. Therefore let 𝛾 ∈ 𝐺𝐵,𝜇 and
ℎ := 𝑤𝑐𝑟𝜍𝑖 𝑤

−1 ∈ 𝐶𝐵,𝜇 with 𝑤 ∈ 𝐹𝑛, 𝑚𝑎(𝑤) ∈ 𝑏𝜍 and 𝑖 ∈ {1, . . . , 𝜇}. Then by Remark 2.19
𝛾(ℎ) = 𝛾(𝑤)𝑣𝑖𝑐

𝑟𝜍
𝑗𝑖
𝑣−1
𝑖 𝛾(𝑤)−1 with 𝑖𝑗 ∈ {1, . . . , 𝜇}, and𝑚𝑎(𝛾(𝑤)𝑣𝑖) = 𝑚𝑎(𝛾(𝑤))+𝑚𝑎(𝑣𝑖) =

𝑚𝑎(𝛾(𝑤)) lies in the same partition set of 𝐵 as 𝑚𝑎(𝑤). Thus 𝛾(ℎ) ∈ 𝐶𝐵,𝜇. To that
end, let 𝑤𝑐𝑖𝑤−1 ∈ 𝐶𝐵,𝜇 with 𝑤 ∈ 𝐹𝑛 and 𝑖 ∈ {𝜇+ 1, . . . , 𝜈}. Then 𝛾(𝑐𝑖) = 𝑣𝑐𝑗𝑣

−1 with
𝑗 > 𝜇 because 𝛾 is the lift of an affine map 𝑓 on 𝑋, and this affine map permutes the
singularities of 𝑋. As the set of singularities {𝑠1, . . . , 𝑠𝜇} is preserved by 𝑓 , its complement
{𝑠𝜇+1, . . . , 𝑠𝜈} is also respected by 𝑓 . This implies 𝛾(𝑤𝑐𝑖𝑤

−1) ∈ 𝐶𝐵,𝜇.

Lemma 2.22. Let 𝜗 : Aut𝑋(𝐹𝑛) → Γ(𝑋), 𝛾𝐴 ↦→ 𝐴 be defined as in Chapter 1. Then
𝜗(𝐺𝐵) = pΓ𝐵.

Proof. “⊇”: By definition 𝐴 ∈ pΓ𝐵 if it is contained in pΓ(𝑋) and if 𝜙𝑎(𝛾), where
𝛾 := lift(aff(𝐴)) (see Definition 2.12), maps each 𝑧 ∈ (Z/𝑎Z)2𝑔 to an element in the same
partition set of 𝐵. These conditions imply that 𝛾(𝑐1) = 𝑣1𝑐1𝑣

−1
1 with 𝑣1 ∈ 𝐻 = ker(𝑚𝑎)

and 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣
−1
𝑖 for all 𝑖 ∈ {2, . . . , 𝜈} and appropriate 𝑣𝑖 ∈ 𝐹𝑛. As 𝑚𝑎(𝑤) and

𝑚𝑎(𝛾(𝑤)) = (𝜙𝑎(𝛾))(𝑚𝑎(𝑤)) lie in a common 𝑏𝜍 , this implies that 𝛾 ∈ 𝐺𝐵. Hence
pΓ𝐵 ⊆ 𝜗(𝐺𝐵).
“⊆”: Let 𝛾 ∈ 𝐺𝐵 and 𝑓 ∈ Aff+(�̄�) such that 𝛾 is a lift of 𝑓 . Then by Remark 2.19
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𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑖𝑣
−1
𝑖 for every 𝑖 and appropriate 𝑣𝑖 ∈ 𝐹𝑛. Hence 𝑓(𝑠𝑖) = 𝑠𝑖 for all 𝑖 ∈ {1, . . . , 𝜈}.

Thus 𝑓 is a pure affine map on �̄� and 𝜗(𝛾) = der(𝑓) ∈ pΓ(𝑋). As 𝛾 maps each 𝑤 ∈ 𝐹𝑛

to an element 𝑤′ ∈ 𝐹𝑛 such that 𝑚𝑎(𝑤) and 𝑚𝑎(𝑤′) lie in the same partition set of 𝐵,
𝜗(𝛾) respects 𝐵 and therefore lies in pΓ𝐵.

2.4. Pure Congruence groups as Veech groups

Recall the important connection between stabilising groups and Veech groups of covering
surfaces of primitive base surfaces from Proposition 1.13: for a translation covering
𝑝 : 𝑌 → �̄� with primitive base surface �̄�, the Veech group Γ(𝑌 ) of the covering surface
𝑌 is

Γ(𝑌 ) = 𝜗(StabAut𝑋(𝐹𝑛)(𝑈)) ,

where 𝑈 = 𝜋1(𝑌 ) ≤ 𝜋1(𝑋) = 𝐹𝑛 is the finite index subgroup of 𝐹𝑛 defining 𝑝.
To achieve our goal and construct pΓ𝐵 as Veech group of a covering surface, we introduced
a subgroup 𝑁𝐵 of 𝐹𝑛 with

pΓ𝐵 = 𝜗(StabAut𝑋(𝐹𝑛)(𝑁𝐵))

in the last section. Unfortunately this group 𝑁𝐵 has infinite index in 𝐹𝑛. Thus we need
to make it larger without changing the image of its stabiliser under 𝜗. A first step in this
direction is the following corollary.

Corollary 2.23 (see Corollary 6.8 in [Sch05]). Let 𝑈 ≤ 𝐹𝑛 with 𝑈 ∩𝑁𝑋 = 𝑁𝐵.
Then StabAut𝑋(𝐹𝑛)(𝑈) ⊆ 𝐺𝐵.

Proof. Every affine map respects the set of singularities, so every 𝛾 ∈ Aut𝑋(𝐹𝑛) stabilises
the set 𝐶𝑋 . As 𝑁𝑋 = ⟨𝐶𝑋⟩, 𝛾(𝐶𝑋) = 𝐶𝑋 implies 𝛾(𝑁𝑋) = 𝑁𝑋 . It follows that

StabAut𝑋(𝐹𝑛)(𝑈) = StabAut𝑋(𝐹𝑛)(𝑈) ∩ StabAut𝑋(𝐹𝑛)(𝑁𝑋)

⊆ StabAut𝑋(𝐹𝑛)(𝑈 ∩𝑁𝑋)

= StabAut𝑋(𝐹𝑛)(𝑁𝐵)

(by Lemma 2.20) = 𝐺𝐵

Of course the proof still holds if we replace 𝑁𝐵 by 𝑁𝐵,𝜇, 𝐺𝐵 by 𝐺𝐵,𝜇 and Lemma 2.20
by Lemma 2.21, so we also get the following observation.

Corollary 2.24. Let 𝑈 ≤ 𝐹𝑛 with 𝑈 ∩𝑁𝑋 = 𝑁𝐵,𝜇. Then StabAut𝑋(𝐹𝑛)(𝑈) ⊆ 𝐺𝐵,𝜇.

Next we introduce two subsets of 𝑁𝑋 . They help us to increase the subgroup 𝑁𝐵 in a
way that guarantees that the 𝜗-image of the stabiliser of the enlarged subgroup remains
in Γ𝐵.

𝑃𝑋 := {𝑣𝑙 | 𝑣 ∈ 𝐶𝑋 , 𝑙 ∈ Z} = {𝑤𝑐𝑙𝑖𝑤−1 | 𝑤 ∈ 𝐹𝑛, 𝑖 ∈ {1, . . . , 𝜈}, 𝑙 ∈ Z}
𝑃𝐵 := {𝑣𝑙 | 𝑣 ∈ 𝐶𝐵, 𝑙 ∈ Z}

= {𝑤𝑐𝑙1𝑤−1 ∈ 𝑃𝑋 | 𝑚(𝑤) ∈ 𝑏𝜍 ⇒ (𝑟𝜍 divides 𝑙)}
∪ {𝑤𝑐𝑙𝑖𝑤−1 | 𝑖 ∈ {2, . . . , 𝜈}, 𝑟𝑝+𝑖−1 divides 𝑙} Lemma 2.16

= 𝑁𝐵 ∩ 𝑃𝑋
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For later purpose we also define

𝑃𝐵,𝜇 := {𝑣𝑙 | 𝑣 ∈ 𝐶𝐵,𝜇, 𝑙 ∈ Z}
= {𝑤𝑐𝑙𝑖𝑤−1 ∈ 𝑃𝑋 | 𝑖 ∈ {1, . . . , 𝜇} and 𝑚(𝑤) ∈ 𝑏𝜍 ⇒ (𝑟𝜍 divides 𝑙)}

∪ {𝑤𝑐𝑙𝑖𝑤−1 | 𝑖 ∈ {𝜇+ 1, . . . , 𝜈}, 𝑙 ∈ Z} Lemma 2.17
= 𝑁𝐵,𝜇 ∩ 𝑃𝑋 .

Note that the set 𝑃𝑋 is stabilised by every 𝛾 ∈ Aut𝑋(𝐹𝑛), because 𝛾(𝐶𝑋) = 𝐶𝑋 .

Corollary 2.25 (see Corollary 6.9 in [Sch05]). Let 𝑈 ≤ 𝐹𝑛 with 𝑈 ∩ 𝑃𝑋 = 𝑃𝐵.
Then StabAut𝑋(𝐹𝑛)(𝑈) ⊆ 𝐺𝐵.

Proof. Let 𝛾 ∈ StabAut𝑋(𝐹𝑛)(𝑈). As 𝛾 stabilises 𝑈 and 𝑃𝑋 , it stabilises 𝑃𝐵 = 𝑈 ∩ 𝑃𝑋 .
Then by 𝐶𝐵 ⊆ 𝑃𝐵 it follows that 𝛾(𝐶𝐵) ⊆ 𝛾(𝑃𝐵) ⊆ 𝑃𝐵 ⊆ 𝑁𝐵. As 𝑁𝐵 = ⟨𝐶𝐵⟩,
this implies that 𝛾(𝑁𝐵) ⊆ 𝑁𝐵. Thus 𝛾 stabilises 𝑁𝐵. By Lemma 2.20 we have that
𝛾 ∈ 𝐺𝐵.

Again we can exchange 𝑃𝐵 for 𝑃𝐵,𝜇, 𝐺𝐵 for 𝐺𝐵,𝜇, 𝐶𝐵 for 𝐶𝐵,𝜇, 𝑁𝐵 for 𝑁𝐵,𝜇 and
Lemma 2.20 for Lemma 2.21 to obtain:

Corollary 2.26. Let 𝑈 ≤ 𝐹𝑛 with 𝑈 ∩ 𝑃𝑋 = 𝑃𝐵,𝜇. Then StabAut𝑋(𝐹𝑛)(𝑈) ⊆ 𝐺𝐵,𝜇.

Composing Proposition 1.13 with Lemma 2.22, Corollary 2.23 and Corollary 2.25 proves
the following observation.

Corollary 2.27. Let 𝑝 : 𝑌 → �̄� be a translation covering with 𝑈 := 𝜋1(𝑌 ) ≤ 𝜋1(𝑋),
𝑈 ∩ 𝑃𝑋 = 𝑃𝐵 or 𝑈 ∩𝑁𝑋 = 𝑁𝐵. Then

Γ(𝑌 ) = 𝜗(StabAut𝑋(𝐹𝑛)(𝑈)) ⊆ 𝜗(𝐺𝐵) = pΓ𝐵.

In analogy to Theorem 3 in [Sch05] we can now prove that for all partitions 𝐵 of (Z/𝑎Z)2𝑔

there is a covering of �̄�, realising pΓ𝐵 as Veech group.

Theorem 2. Let 𝐵 = {𝑏1, . . . , 𝑏𝑝} be a partition of (Z/𝑎Z)2𝑔. There exists a translation
covering 𝑝 : 𝑍 → �̄� with Γ(𝑍) = pΓ𝐵.

Proof. We divide the proof into two steps. First we construct a covering surface whose
Veech group is contained in pΓ𝐵. Then we enlarge the degree of the covering and obtain
pΓ𝐵 as Veech group.
As before, we choose 𝑝 + 𝜈 − 1 pairwise different positive natural numbers 𝑟1, . . . , 𝑟𝑝,
𝑟𝑝+1, . . . , 𝑟𝑝+𝜈−1 ∈ N. One for every set in the partition 𝐵 = {𝑏1, . . . , 𝑏𝑝} and one for
every singularity of �̄� but for the first one. Now we construct a translation covering
𝑝 : 𝑌 → 𝑌𝑎 with the following ramification behaviour: all preimages of a singularity
𝑠 ∈ Σ′ = 𝑝−1

𝑎 (𝑠1) ⊆ Σ(𝑌𝑎) with �̃�𝑎(𝑠) ∈ 𝑏𝜍 have ramification index 𝑟𝜍 , and all preimages
of 𝑠 ∈ Σ(𝑌𝑎) ∖ Σ′ with 𝑝𝑎(𝑠) = 𝑠𝑖 have ramification index 𝑟𝑝+𝑖−1 for 𝑖 ∈ {2, . . . , 𝜈}.
In general, one can define the ramification behaviour of a surface covering of degree 𝑑 by
a set 𝒟 = {𝐴1, . . . , 𝐴𝑘} of sets 𝐴𝑖, where 𝑘 is the number of ramification points and 𝐴𝑖
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gives the ramification indices above the 𝑖-th ramification point (so especially
∑︀

𝑒∈𝐴𝑖
𝑒 = 𝑑

for each 𝑖).
According to [EKS84] Proposition 3.3, for a closed, connected, orientable surface 𝑁
with 𝜒(𝑁) ≤ 0 and a given ramification behaviour 𝒟 = {𝐴1, . . . , 𝐴𝑘}, there is a closed,
connected, orientable surface 𝑀 and a covering map 𝑝 : 𝑀 → 𝑁 with the ramification
behaviour given by 𝒟 if and only if the total ramification index

∑︀𝑘
𝑖=1

∑︀
𝑒∈𝐴𝑖

(𝑒 − 1) is
even. This Proposition tells us in particular that the Riemann-Hurwitz formula is the
only obstacle for possible ramification behaviours if the Euler characteristic of the base
surface is not positive.
For our covering, we simply choose all 𝑟𝑖 to be odd. Then all 𝑟𝑖 − 1 are even and so is the
total ramification index. Consequently Proposition 3.3 in [EKS84] assures the existence
of a topological covering map 𝑝 : 𝑌 → 𝑌𝑎 as desired. By lifting the translation structure
from 𝑌𝑎 to 𝑌 , we can make it a translation covering. Note that for base surfaces with
genus 𝑔 ≥ 2 we explicitly describe how to construct a translation covering with given
ramification 𝒟 with even total ramification index in Chapter 6. There the coverings meet
the additional condition of having monodromy group 𝑆𝑑.
The fundamental group 𝜋1(𝑌 ) is contained in 𝜋1(𝑌𝑎) = 𝐻 = ker(𝑚𝑎). Let ℎ := 𝑤𝑐𝑖𝑤

−1 ∈
𝐶𝑋 be a closed path, simple up to a start path 𝑤, freely homotopic to a singularity 𝑠 in
𝑌𝑎. For 𝑖 = 1 and 𝑚(𝑤) ∈ 𝑏𝜍 all preimages of the singularity 𝑠 via 𝑝 have ramification
index 𝑟𝜍 and for 𝑖 ̸= 1 they have ramification index 𝑟𝑝+𝑖−1. This is equivalent to the
statement that 𝜋1(𝑌 ) contains ℎ𝑟𝜍 or ℎ𝑟𝑝+𝑖−1 , respectively, and no smaller power of ℎ.
This immediately implies that 𝑃𝑋 ∩ 𝜋1(𝑌 ) = 𝑃𝐵 and with Corollary 2.27 it follows that
Γ(𝑌 ) ⊆ pΓ𝐵.
For the second step, let 𝑊 :=

⋂︀
𝛾∈𝐺𝐵

𝛾(𝜋1(𝑌 )). The index of 𝛾(𝜋1(𝑌 )) in 𝐹𝑛 equals the
index of 𝜋1(𝑌 ) in 𝐹𝑛 and since there are only finitely many subgroups of given finite index
𝑑 in 𝐹𝑛, the intersection is finite and 𝑊 is again a finite index subgroup of 𝐹𝑛. Thus 𝑊
defines a finite translation covering 𝑞 : 𝑍 → �̄� with 𝜋1(𝑍) = 𝑊 . It remains to prove that
StabAut𝑋(𝐹𝑛)(𝜋1(𝑍)) = 𝐺𝐵. Then Γ(𝑍) = 𝜗(𝐺𝐵) = pΓ𝐵.
Let 𝛾′ ∈ 𝐺𝐵, then

𝛾′(𝑊 ) = 𝛾′(
⋂︁

𝛾∈𝐺𝐵

𝛾(𝜋1(𝑌 )))
𝛾′ injective

=
⋂︁

𝛾∈𝐺𝐵

𝛾′(𝛾(𝜋1(𝑌 ))) =
⋂︁

𝛾′′:=𝛾′∘𝛾∈𝐺𝐵

𝛾′′(𝜋1(𝑌 )) = 𝑊 .

Thus 𝐺𝐵 ⊆ StabAut𝑋(𝐹𝑛)(𝜋1(𝑍)).
Furthermore, we have 𝑊 ⊆ 𝜋1(𝑌 ). Hence 𝑃𝑋 ∩𝑊 ⊆ 𝑃𝑋 ∩ 𝜋1(𝑌 ) = 𝑃𝐵. Of course
𝑃𝐵 ⊆ 𝑃𝑋 , so if 𝑃𝐵 ⊆ 𝑊 , then 𝑃𝑋 ∩ 𝑊 = 𝑃𝐵 and consequently, by Corollary 2.25,
StabAut𝑋(𝐹𝑛)(𝜋1(𝑍)) ⊆ 𝐺𝐵.
Let 𝛾 ∈ 𝐺𝐵, then 𝛾(𝑁𝐵) = 𝑁𝐵 and 𝛾(𝑃𝑋) = 𝑃𝑋 . Thus

𝑃𝐵 = 𝑁𝐵 ∩ 𝑃𝑋 = 𝛾(𝑁𝐵) ∩ 𝛾(𝑃𝑋)
𝛾 injective

= 𝛾(𝑁𝐵 ∩ 𝑃𝑋) = 𝛾(𝑃𝐵) .

As 𝑃𝐵 ⊆ 𝜋1(𝑌 ) this implies 𝑃𝐵 =
⋂︀

𝛾∈𝐺𝐵
𝛾(𝑃𝐵) ⊆

⋂︀
𝛾∈𝐺𝐵

𝛾(𝜋1(𝑌 )) = 𝑊 .
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2.5. Congruence groups as Veech groups

In Lemma 2.22 in Section 2.3 we proved that 𝜗(𝐺𝐵) = pΓ𝐵. Unfortunately we do not
find a 𝜇 ∈ {1, . . . , 𝜈} and 𝑆 = {𝑠1, . . . , 𝑠𝜇} ⊆ Σ(𝑌𝑎) for every primitive translation surface
�̄� and 𝑎 ≥ 2 such that 𝜗(𝐺𝐵,𝜇) = Γ𝐵 for every partition 𝐵. Theorem 4 in Section 3.3
proves that this problem occurs e.g. in level 5 for the surface �̄�10, obtained by gluing the
parallel sides of a regular 10-gon.
But suppose that for a particular primitive surface �̄�, 𝑎 ≥ 2, 𝜇 and 𝑠𝑖 the claim
𝜗(𝐺𝐵,𝜇) = Γ𝐵 is true. Then everything in Section 2.4 works equally well for Γ𝐵 as it did
for pΓ𝐵. Therefore we define the following property.

Definition 2.28. Let �̄� be a primitive translation surface with singularities {𝑠1, . . . , 𝑠𝜈}
and 𝑎 ≥ 2. The surface is said to have property (⋆) in level 𝑎 iff there exists a 𝜇 ∈ {1, . . . , 𝜈}
and singularities 𝑠1, . . . , 𝑠𝜇 in 𝑌𝑎 such that 𝑝𝑎(𝑠𝑖) = 𝑠𝑖 for 𝑖 ∈ {1, . . . , 𝜇} and such that
if 𝐺𝐵,𝜇 is defined with respect to the 𝑠𝑖, then 𝜗(𝐺𝐵,𝜇) = Γ𝐵 for every partition 𝐵 of
(Z/𝑎Z)2𝑔.

Recall that the group 𝐺𝐵,𝜇 depends only on the choice of {𝑠1, . . . , 𝑠𝜇} and not on the
additional choice made by selecting the 𝑐𝑖, used to define 𝐺𝐵,𝜇 (see Remark 2.18). Hence
property (⋆) is well-defined.

Remark 2.29. If �̄� has only one singularity, then 𝜇 = 𝜈 = 1, 𝐺𝐵,𝜇 = 𝐺𝐵 and Γ𝐵 = pΓ𝐵 .
Hence �̄� has property (⋆) in every level 𝑎 ≥ 2 by Lemma 2.22.

Lemma 2.30. Let 𝑎 ≥ 2 and suppose that �̄� has property (⋆) in level 𝑎. Furthermore,
let 𝐵 be a partition of (Z/𝑎Z)2𝑔, and let 𝑝 : 𝑌 → �̄� be a translation covering with
𝑈 := 𝜋1(𝑌 ) ≤ 𝜋1(𝑋) such that 𝑈 ∩ 𝑃𝑋 = 𝑃𝐵,𝜇 or 𝑈 ∩𝑁𝑋 = 𝑁𝐵,𝜇. Then

Γ(𝑌 ) = 𝜗(StabAut𝑋(𝐹𝑛)(𝑈)) ⊆ 𝜗(𝐺𝐵,𝜇) = Γ𝐵 .

Proof. Compose Proposition 1.13 with property (⋆), Corollary 2.24 and Corollary 2.26.

Now we can prove the analogue of Theorem 2 for Γ𝐵.

Theorem 3. Let 𝑎 ≥ 2 and suppose that �̄� has property (⋆) in level 𝑎. Furthermore,
let 𝐵 = {𝑏1, . . . , 𝑏𝑝} be a partition of (Z/𝑎Z)2𝑔. Then there exists a translation covering
𝑝 : 𝑍 → �̄� with Γ(𝑍) = Γ𝐵.

Proof. We choose 𝑝 pairwise different, positive, odd numbers 𝑟1, . . . , 𝑟𝑝 ∈ N. Then
we define a translation covering 𝑝 : 𝑌 → 𝑌𝑎 such that every preimage of a singularity
𝑠 ∈ Σ′ := 𝑝−1

𝑎 ({𝑠1, . . . , 𝑠𝜇}) ⊆ Σ(𝑌𝑎) with �̃�𝑎(𝑠) ∈ 𝑏𝜍 has ramification index 𝑟𝜍 . Outside
of Σ′, the covering 𝑝 is chosen to be unramified.
In analogy to the proof of Theorem 2, this implies for ℎ = 𝑤𝑐𝑖𝑤

−1 with 𝑖 ∈ {1, . . . , 𝜇}
and 𝑚𝑎(𝑤) ∈ 𝑏𝜍 that ℎ𝑟𝜍 is the smallest power of ℎ contained in 𝜋1(𝑌 ). The ramification
implies further that 𝑤𝑐𝑖𝑤−1 ∈ 𝜋1(𝑌 ) for every 𝑖 ∈ {𝜇+1, . . . , 𝜈}. Thus 𝜋1(𝑌 )∩𝑃𝑋 = 𝑃𝐵,𝜇

and Lemma 2.30 implies that Γ(𝑌 ) ⊆ Γ𝐵.
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As before we define 𝑊 :=
⋂︀

𝛾∈𝐺𝐵,𝜇
𝛾(𝜋1(𝑌 )). This is a finite index subgroup of 𝐹𝑛,

stabilised by all 𝛾 ∈ 𝐺𝐵,𝜇. Hence 𝐺𝐵,𝜇 ⊆ StabAut𝑋(𝐹𝑛)(𝑊 ). The subgroup 𝑊 defines
a finite translation covering 𝑞 : 𝑍 → �̄� with 𝜋1(𝑍) = 𝑊 , and it remains to prove
StabAut𝑋(𝐹𝑛)(𝜋1(𝑍)) ⊆ 𝐺𝐵,𝜇. Then Γ(𝑍) = 𝜗(𝐺𝐵,𝜇) = Γ𝐵.
The set 𝐺𝐵,𝜇 is defined in a way that assures 𝛾(𝑁𝐵,𝜇) = 𝑁𝐵,𝜇 for all 𝛾 ∈ 𝐺𝐵,𝜇. Hence,
in complete analogy to the proof of Theorem 2, for 𝛾 ∈ 𝐺𝐵,𝜇,

𝑃𝐵,𝜇 = 𝑃𝑋 ∩𝑁𝐵,𝜇 = 𝛾(𝑃𝑋) ∩ 𝛾(𝑁𝐵,𝜇) = 𝛾(𝑃𝑋 ∩𝑁𝐵,𝜇) = 𝛾(𝑃𝐵,𝜇) .

As 𝑃𝐵,𝜇 ⊆ 𝜋1(𝑌 ) this implies 𝑃𝐵,𝜇 =
⋂︀

𝛾∈𝐺𝐵,𝜇
𝛾(𝑃𝐵,𝜇) ⊆

⋂︀
𝛾∈𝐺𝐵,𝜇

𝛾(𝜋1(𝑌 )) = 𝑊 . Of
course 𝑃𝐵,𝜇 ⊆ 𝑃𝑋 , so 𝑃𝐵,𝜇 ⊆ 𝑃𝑋 ∩ 𝑊 . Furthermore, we have 𝑊 ⊆ 𝜋1(𝑌 ). Hence
𝑃𝑋 ∩𝑊 ⊆ 𝑃𝑋 ∩𝜋1(𝑌 ) = 𝑃𝐵,𝜇. Thus 𝑃𝑋 ∩𝑊 = 𝑃𝐵,𝜇 and consequently, by Corollary 2.26,
StabAut𝑋(𝐹𝑛)(𝜋1(𝑍)) ⊆ 𝐺𝐵,𝜇.

The next lemma gives conditions on affine maps in 𝑌𝑎 that guarantee property (⋆) in
level 𝑎. With its help we prove in Theorem 4 that there actually are primitive translation
surfaces with more than one singularity that have property (⋆) in many levels. Its proof
also shows that 𝜗(𝐺𝐵,𝜇) ⊆ Γ𝐵 holds for all primitive surfaces and all levels.

Lemma 2.31. Let �̄� be a primitive translation surface with Σ(�̄�) = {𝑠1, . . . , 𝑠𝜈}, Γ(𝑋) =
⟨{𝐴𝑗 | 𝑗 ∈ 𝐽}⟩ and 𝑎 ≥ 2. The surface �̄� has property (⋆) in level 𝑎 iff there exists a
𝜇 ∈ {1, . . . , 𝜈} and 𝑆 = {𝑠1, . . . , 𝑠𝜇} ⊆ Σ(𝑌𝑎) such that 𝑝𝑎(𝑠𝑖) = 𝑠𝑖 for 𝑖 ∈ {1, . . . , 𝜇} and
such that for every 𝑗 ∈ 𝐽 there is an affine map 𝑓𝑗 ∈ Aff+(𝑌𝑎) with der(𝑓𝑗) = 𝐴𝑗 and
𝑓𝑗(𝑆) = 𝑆.

Proof. First suppose the �̄� has property (⋆) in level 𝑎. Let 𝜇 ∈ {1, . . . , 𝜈} and 𝑆 =
{𝑠1, . . . , 𝑠𝜇} ⊆ Σ(𝑌𝑎) be as in the definition of property (⋆). As always, we choose
𝑐𝑖 ∈ 𝜋1(𝑌𝑎) to be a simple closed path, freely homotopic to 𝑠𝑖 in 𝑌𝑎 for 𝑖 ∈ {1, . . . , 𝜇}.
Now consider the partition 𝐵 = {{0}, (Z/𝑎Z)2𝑔 ∖ {0}} of (Z/𝑎Z)2𝑔. For this partition
Γ𝐵 = Γ(𝑋). Let 𝐴 ∈ Γ(𝑋) = Γ𝐵. By property (⋆) we have Γ𝐵 = 𝜗(𝐺𝐵,𝜇). Thus there
exists a lift 𝛾 of 𝐴 to Aut𝑋(𝐹𝑛) such that for every 𝑖 ∈ {1, . . . 𝜇} there is a 𝑗𝑖 ∈ {1, . . . , 𝜇}
and a 𝑣𝑖 ∈ 𝐹𝑛 such that 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣

−1
𝑖 and 𝑚𝑎(𝑣𝑖) = 0. These conditions on 𝛾

immediately imply that the affine map 𝑓 ∈ Aff+(𝑌𝑎) with lift 𝛾 respects 𝑆.
Now we reversely prove property (⋆) with the help of affine maps respecting 𝑆 =
{𝑠1, . . . , 𝑠𝜇} ⊆ Σ(𝑌𝑎). For 𝑖 ∈ {1, . . . , 𝜇} let 𝑐𝑖 be a simple closed path in 𝑌𝑎, freely
homotopic to the singularity 𝑠𝑖. For 𝑖 ∈ {𝜇+ 1, . . . , 𝜈} choose simple closed paths 𝑐𝑖 that
are freely homotopic to an arbitrary singularity in 𝑝−1

𝑎 (𝑠𝑖). We show that 𝐺𝐵,𝜇, defined
with respect to {𝑐1, . . . , 𝑐𝜈}, has the property 𝜗(𝐺𝐵,𝜇) = Γ𝐵 for every partition 𝐵 of
(Z/𝑎Z)2𝑔.
First let 𝛾 ∈ 𝐺𝐵,𝜇. Then by Remark 2.19, for all 𝑤 ∈ 𝐹𝑛, 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) lie in the
same partition set of 𝐵. Thus for 𝐴 := 𝜗(𝛾), arbitrary 𝑧 ∈ (Z/𝑎Z)2𝑔 and 𝑤 ∈ 𝐹𝑛 such
that 𝑚𝑎(𝑤) = 𝑧 we have:

𝐴 ⋆ 𝑧 = 𝜙𝑎(𝐴)(𝑧) = 𝜙𝑎(𝛾)(𝑚𝑎(𝑤)) = 𝑚𝑎(𝛾(𝑤)) .
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Thus 𝐴 respects the partition 𝐵 and therefore belongs to Γ𝐵. Note that this proves in
particular that the inclusion 𝜗(𝐺𝐵,𝜇) ⊆ Γ𝐵 holds for every primitive translation surface
�̄� and every level 𝑎.
Next let 𝐴 ∈ Γ𝐵 . Here we do need the extra assumptions on �̄�. We start by showing that
the assignment aff𝜇(𝐴𝑗) = 𝑓𝑗 induces a group homomorphism aff𝜇 : Γ(𝑋) → Aff+(𝑌𝑎)
such that der ∘ aff𝜇 = idΓ(𝑋).
An affine map 𝑓 ∈ Aff+(𝑌𝑎) with der(𝑓) = 𝐴𝑗 is unique up to a translation in 𝑌𝑎.
As translations in 𝑌𝑎 act transitively and freely on the singularities above 𝑠𝑖 for fixed
𝑖 ∈ {1, . . . , 𝜈}, there is at most one 𝑓 ∈ Aff+(𝑌𝑎) with der(𝑓) = 𝐴𝑗 and 𝑓(𝑠1) ∈ 𝑆.
Furthermore, if 𝑓, 𝑔 ∈ Aff+(𝑌𝑎) with 𝑓(𝑆) = 𝑆 and 𝑔(𝑆) = 𝑆 then (𝑓 ∘ 𝑔)(𝑆) = 𝑆. Thus
for every 𝐴 ∈ Γ(𝑋), aff𝜇(𝐴)(𝑆) = 𝑆. Hence aff𝜇(𝐴) is independent of the factorisation
of 𝐴 in the generators of Γ(𝑋).
If 𝐴 ∈ Γ𝐵 , then 𝐴 respects the partition 𝐵. Hence for every lift 𝛾 of 𝐴 to Aut(𝐹𝑛) and all
𝑤 ∈ 𝐹𝑛, 𝑚𝑎(𝑤) and 𝑚𝑎(𝛾(𝑤)) lie in the same partition of 𝐵. Now let 𝛾𝐴 := lift(aff𝜇(𝐴)).
Then by definition of the map aff𝜇, for every 𝑖 ∈ {1, . . . , 𝜇}, (aff𝜇(𝐴))(𝑠𝑖) = 𝑠𝑗 with
𝑗 ∈ {1, . . . , 𝜇}. Thus 𝛾𝐴(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑣

−1
𝑖 with 𝑚𝑎(𝑣𝑖) = 0. Together with Remark 2.19, this

implies that 𝛾𝐴 ∈ 𝐺𝐵,𝜇.

2.6. Partition stabilising groups

By Theorem 2 and Theorem 3 we are now able to find a translation covering 𝑍 → �̄�
for every primitive surface �̄�, every 𝑎 ≥ 2 and every partition 𝐵 of (Z/𝑎Z)2𝑔 such that
Γ(𝑍) = pΓ𝐵 . And whenever �̄� has property (⋆) in level 𝑎, then we can also realise Γ𝐵 as
Veech group of a covering surface of �̄�. Obviously the next question is, which subgroups
of Γ(𝑋) or pΓ(𝑋) equal Γ𝐵 or pΓ𝐵, respectively, for a suitable partition 𝐵.
By definition, the groups Γ𝐵 and pΓ𝐵 are the sets of Veech group elements or pure Veech
group elements, respectively, that respect the partition 𝐵 of (Z/𝑎Z)2𝑔. This implies in
particular that Γ𝐵 is a congruence group of level 𝑎 and pΓ𝐵 is a pure congruence group
of level 𝑎.
Let Γ ⊆ Γ(𝑋) be a (pure) congruence group of level 𝑎. Then Γ = Γ𝐵 or Γ = pΓ𝐵,
respectively, for the partition 𝐵 of (Z/𝑎Z)2𝑔 iff 𝜙𝑎(Γ) is the stabiliser of 𝐵 in 𝜙𝑎(Γ(𝑋))
or 𝜙𝑎(pΓ(𝑋)), respectively. So we would like to know which (pure) congruence subgroups
of Γ(𝑋) are stabilising groups in this sense.

Remark 2.32. A first observation is that the pure principal congruence group pΓ(𝑎) of
level 𝑎 equals pΓ𝐵 for 𝐵 = { {𝑧} | 𝑧 ∈ (Z/𝑎Z)2𝑔}. Thus, it is the stabiliser of a partition
of (Z/𝑎Z)2𝑔. Similarly, the principal congruence group Γ(𝑎) of level 𝑎 is the stabiliser of
𝐵 = { {𝑧} | 𝑧 ∈ (Z/𝑎Z)2𝑔} in Γ(𝑋).

Consequently, a first corollary to Theorem 2 and Theorem 3 is the following.

Corollary 2.33. Let �̄� be a primitive translation surface. Every pure principal congruence
group in Γ(𝑋) can be realised as Veech group of a translation surface. If �̄� has property
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(⋆) in level 𝑎, then also the principal congruence group of level 𝑎 is the Veech group of a
translation surface.

Given a group 𝐺 acting on a set 𝑋 one could ask the more general question: which
subgroups of 𝐺 are the stabiliser of a partition 𝐵 of 𝑋? This question was answered in
Chapter 6.5 in [Sch05]: Γ̄ is the stabiliser of a partition iff it is the stabiliser of its orbit
space (see Corollary 6.24 in [Sch05]). Thus we only have to check whether 𝜙𝑎(Γ) is the
stabiliser of its orbit space.
The smallest (pure) congruence group of a particular level is the (pure) principal congruence
group. It is the stabiliser of its trivial orbit space. The following lemma shows that the
next smallest (pure) congruence groups are stabilising groups as well.

Lemma 2.34. If Γ ≤ Γ(𝑋) is a pure congruence group of level 𝑎 with [Γ : pΓ(𝑎)] = 2 or
if �̄� has property (⋆) in level 𝑎 and Γ is a congruence group of level 𝑎 with [Γ : Γ(𝑎)] = 2,
then Γ is the Veech group of a covering surface of �̄�.

Proof. The image of Γ in Aut((Z/𝑎Z)2𝑔) has order 2, say 𝜙𝑎(Γ) = {𝐼, 𝐴}. Thus every
orbit has length ≤ 2. This implies that the image of 𝑣 ∈ (Z/𝑎Z)2𝑔 through 𝐴 is uniquely
determined by the orbit it lies in: if {𝑣} is an orbit consisting of one element, then
certainly 𝐴 · 𝑣 = 𝑣, and if 𝑣 lies in {𝑣, 𝑤}, then 𝐴 · 𝑣 = 𝑤 because otherwise �̄� · 𝑣 = 𝑣 for
all �̄� ∈ 𝜙𝑎(Γ), in contradiction to the orbit {𝑣, 𝑤}.
Now suppose that there exists a 𝐶 ∈ 𝜙𝑎(Γ(𝑋)) ∖ 𝜙𝑎(Γ) that respects the orbit space
of 𝜙𝑎(Γ). Then there would be 𝜙𝑎(Γ)-orbits {𝑣, 𝑤} and {𝑣′, 𝑤′} such that 𝐶 · 𝑣 = 𝑣,
𝐶 · 𝑤 = 𝑤, 𝐶 · 𝑣′ = 𝑤′ and 𝐶 · 𝑤′ = 𝑣′. This implies that 𝐶(𝑣 + 𝑣′) = 𝑣 + 𝑤′. Because of
𝑣′ ̸= 𝑤′ it follows that 𝑣+𝑣′ ̸= 𝑣+𝑤′ and as 𝐶 respects the 𝜙𝑎(Γ)-orbits, 𝐴(𝑣+𝑣′) = 𝑣+𝑤′.
But 𝐴(𝑣 + 𝑣′) = 𝑤 + 𝑤′ ̸= 𝑣 + 𝑤′, as 𝑤 ̸= 𝑣. This is a contradiction, hence 𝐶 does not
exist.

In Section 3.4 we analyse the congruence groups of level 2 in Γ(𝑋𝑛), where 𝑛 is odd and
�̄�𝑛 is the primitive translation surface, obtained by gluing two regular 𝑛-gons. They are
the biggest nontrivial congruence groups. We show for all 𝑛 ≥ 7 that every congruence
subgroup in Γ(𝑋𝑛) of level 2 stabilises its orbit space.
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Two important classes of examples of primitive translation surfaces in this thesis are
the family of regular double-𝑛-gons for odd 𝑛 ≥ 5 and the family of regular 2𝑛-gons for
𝑛 ≥ 4. Veech himself considered in [Vee89] the family of double-𝑛-gons for 𝑛 = 3 and all
𝑛 ≥ 5. He constructed these surfaces by the billiard unfolding construction in a polygon
with angles 𝜋/𝑛, 𝜋/𝑛 and (𝑛−2)𝜋/𝑛, as mentioned in the preface. For even 𝑛, the regular
double-𝑛-gon is a degree two covering of the regular 𝑛-gon. We only consider the cases
where the genus of the surfaces is greater than 1, which leads to the bounds 𝑛 ≥ 5 and
𝑛 ≥ 4, respectively. Other references concerning the double-𝑛-gons are [HS01] Chapter 1.7
and [Vor96] Chapter 4.

3.1. The regular double-𝑛-gon

As the name suggests, the regular double-𝑛-gon is obtained by gluing two regular 𝑛-gons.
There is only one way to glue them that results in a translation surface: first identify two
arbitrary sides of the two 𝑛-gons. This fixes their relative position in the plane and leads
to a 2(𝑛− 1)-gon 𝑃 . Each edge in 𝑃 has a unique parallel edge. Identifying each edge
with its partner gives a compact orientable surface of genus 𝑔 = 𝑛−1

2 that we call �̄�𝑛.
The surface �̄�5 is shown in Figure 3.1. The translation structure of �̄�𝑛 has exactly one

𝑎

𝑏

𝑐𝑑
𝑎

𝑏

𝑐 𝑑

𝑃

Figure 3.1.: Translation surface �̄�5.

singular point with conical angle (𝑛− 2) · 2𝜋. The fact that �̄�𝑛 is a primitive translation
surface is well known and proven e.g. in [Fin11] Lemma 3.3. There, the alternative
definition for a surface to be primitive (mentioned in Chapter 1) was used, but the given
proof also meets our definition.
If not stated otherwise, we use the following basis of the fundamental group 𝜋1(𝑋𝑛) of
the punctured surface 𝑋𝑛 (see Figure 3.2 for an example): the group is free of rank 𝑛− 1.
Define the centre of the initially glued edges of the two 𝑛-gons as base point. Furthermore,
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𝑃1

𝑃2

𝑥0

𝑥1

𝑥2𝑥3

Figure 3.2.: Generators of the fundamental group of 𝑋5.

call one of the polygons 𝑃1 and the other one 𝑃2. Number the edges of the polygon 𝑃1

counterclockwise with 0, . . . , 𝑛− 2, starting right after the initially glued edges, and do
the same with the edges of the polygon 𝑃2. The polygon 𝑃 is simply connected, thus up
to homotopy, there is a unique simple path in 𝑃 from the midpoint of edge 𝑖 in 𝑃1 to
the midpoint of edge 𝑖 in 𝑃2. The path is closed in �̄�𝑛 as edges with the same number
are parallel and therefore identified in �̄�𝑛. Furthermore, we choose the path to cross the
base point and call it 𝑥𝑖. Then the set {𝑥0, . . . , 𝑥𝑛−2} is a basis of 𝐹𝑛−1 = 𝜋1(𝑋𝑛), our
standard basis. An arbitrary element of the fundamental group 𝜋1(𝑋𝑛) can be factorised
in this basis by recording the labels of the crossed edges of 𝑃 and the directions of the
crossings. This makes the basis very favourable if one defines coverings of �̄�𝑛 by gluing
copies of 𝑃 .
Veech determined the Veech group of �̄�𝑛 in [Vee89] Theorem 5.8. It is generated by the
matrices

𝑅 = 𝑅(𝑛) =

(︂
cos 𝜋/𝑛 − sin 𝜋/𝑛
sin 𝜋/𝑛 cos 𝜋/𝑛

)︂
and 𝑇 = 𝑇 (𝑛) =

(︂
1 𝜆𝑛
0 1

)︂
where 𝜆𝑛 = 2 cot 𝜋/𝑛 .

The projective Veech group Γ(𝑋𝑛) is the orientation preserving part of the Hecke triangle
group with signature (2, 𝑛,∞), thus it is a lattice. Hence �̄�𝑛 is a Veech surface. A
presentation of Γ(𝑋𝑛) is ⟨𝑅, 𝑇 | 𝑅2𝑛 = 𝐼, (𝑇−1𝑅)2 = 𝑅𝑛, 𝑅𝑛𝑇 = 𝑇𝑅𝑛⟩, where 𝐼 is the
identity element.
As seen in Proposition 1.13, one can compute the Veech group of a covering surface of �̄�𝑛

by means of stabilising groups in Aut𝑋𝑛(𝐹𝑛−1). The group Aut𝑋𝑛(𝐹𝑛−1) is generated by
the set of inner automorphisms of 𝐹𝑛−1 and lifts of the generators of the Veech group.
Lifts of the generators 𝑅 and 𝑇 where computed in [Fre08] Chapter 7.3: a lift of 𝑅 to
Aut(𝐹𝑛−1) is

𝛾𝑅 :

{︃
𝐹𝑛−1 −→ 𝐹𝑛−1

𝑥𝑖 ↦→ 𝑥𝑛−1
2
𝑥−1
𝑖+𝑛+1

2

,

where the indices are taken modulo 𝑛 and 𝑥𝑛−1 denotes the identity element. A possible
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lift of 𝑇 to Aut(𝐹𝑛−1) is given by

𝛾𝑇 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹𝑛−1 −→ 𝐹𝑛−1

𝑥0 ↦→ 𝑥0 𝑥
−1
1

𝑥1 ↦→ 𝑥1
𝑥2 ↦→ 𝑥1 (𝑥2 𝑥𝑛−2

−1) 𝑥2
𝑥𝑖 ↦→ 𝑥1 (𝑥2 𝑥𝑛−2

−1) · · · (𝑥𝑖 𝑥𝑛−𝑖
−1)

𝑥𝑖 (𝑥𝑛−𝑖+1
−1 𝑥𝑖−1) . . . (𝑥𝑛−2

−1 𝑥2) for 𝑖 ∈ {3, . . . , 𝑛−1
2 }

𝑥𝑛−𝑖 ↦→ 𝑥1 (𝑥2 𝑥𝑛−2
−1) · · · (𝑥𝑖−1 𝑥𝑛−𝑖+1

−1)
𝑥𝑖 (𝑥𝑛−𝑖+1

−1 𝑥𝑖−1) . . . (𝑥𝑛−2
−1 𝑥2) for 𝑖 ∈ {3, . . . , 𝑛−1

2 }
𝑥𝑛−2 ↦→ 𝑥1 𝑥2

.

3.2. The regular 2𝑛-gon

All surfaces in the last section, the double-𝑛-gons for odd 𝑛 ≥ 5, have exactly one
singularity. The family of regular 2𝑛-gons with 𝑛 ≥ 4 additionally gives some examples of
primitive translation surfaces with more then one singularity (with two, to be precise).
These translation surfaces are obtained by identifying the parallel sides of a regular 2𝑛-gon.
We call them �̄�2𝑛. It is well known that �̄�2𝑛 is primitive.
A regular 10-gon is shown in Figure 3.3. By identifying edges with the same label, we
obtain the surface �̄�10. The vertices of the 10-gon are glued to two singularities, drawn
as circle and rectangle in the figure.

𝑎

𝑏
𝑐

𝑑

𝑒

𝑎

𝑏 𝑐 𝑑

𝑒

𝑃

Figure 3.3.: The translation surface �̄�10.

If 𝑛 is even, then �̄�2𝑛 has one singular point. If 𝑛 is odd, then �̄�2𝑛 has two singular
points. Computing the Euler characteristic we deduce that �̄�2𝑛 has genus

𝑔(�̄�2𝑛) =

{︂
𝑛/2 , if 𝑛 is even
(𝑛− 1)/2 , if 𝑛 is odd .

The fundamental group of 𝑋2𝑛 is in both cases free in 𝑛 generators. We use the following
basis of the fundamental group 𝜋1(𝑋2𝑛) (see Figure 3.4 for an example): the centre of
the 2𝑛-gon is our base point. Up to scaling and rotating, a regular 2𝑛-gon has its vertices
in (cos(𝑗 2𝜋2𝑛), sin(𝑗 2𝜋2𝑛)) with 𝑗 = 0, . . . , 2𝑛 − 1. We call this normalised regular 2𝑛-gon
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𝑥0

𝑥1
𝑥2

𝑥3

𝑥4

Figure 3.4.: Generators of the fundamental group of 𝑋10.

𝑃 . Next we number the first 𝑛 edges of 𝑃 counterclockwise with 0, . . . , 𝑛− 1, starting
with the edge from (1, 0) to (cos(2𝜋2𝑛), sin(2𝜋2𝑛)) and do the same with the next 𝑛 edges of
the polygon. Then for every 𝑖 ∈ {0, . . . , 𝑛 − 1}, there is an edge labelled with 𝑖 in the
lower half of 𝑃 and a parallel edge labelled with 𝑖 in the upper half of 𝑃 . The polygon
𝑃 is simply connected, thus up to homotopy, there is a unique simple path from the
midpoint of edge 𝑖 in the lower half to the midpoint of edge 𝑖 in the upper half of 𝑃 .
The path is closed in 𝑋2𝑛 because parallel edges are identified. Furthermore, we choose
the path to cross the base point and call it 𝑥𝑖. Then the set {𝑥0, . . . , 𝑥𝑛−1} is a basis
of 𝐹𝑛 = 𝜋1(𝑋2𝑛). As for the standard basis of the fundamental group of the regular
double-𝑛-gon, an arbitrary element of the fundamental group 𝜋1(𝑋2𝑛) can be factorised
in this basis by recording the labels of the crossed edges of 𝑃 and the directions of the
crossings.
According to Lemma J in [HS01], the Veech group of �̄�2𝑛 equals the Veech group of its
degree-2-covering, investigated by Veech. Thus Theorem 5.8 in [Vee89] implies that the
Veech group of the regular 2𝑛-gon for 𝑛 ≥ 4 is Γ(𝑋2𝑛) = ⟨𝑇,𝑅2, 𝑅𝑇𝑅−1⟩ where

𝑅 = 𝑅(2𝑛) :=

(︂
cos 𝜋/2𝑛 − sin 𝜋/2𝑛
sin 𝜋/2𝑛 cos 𝜋/2𝑛

)︂
, 𝑇 = 𝑇 (2𝑛) :=

(︂
1 𝜆2𝑛
0 1

)︂
and 𝜆2𝑛 = 2 cot 𝜋/2𝑛 .

This is the orientation preserving part of a Hecke triangle group with signature (𝑛,∞,∞).
In particular, Γ(𝑋2𝑛) is a lattice, hence �̄�2𝑛 is a Veech surface. The generators given as
words in 𝑅 and 𝑇 reflect its structure as index-2-subgroup of the orientation preserving
part of the Hecke triangle group with signature (2, 2𝑛,∞), i.e. of

⟨𝑅, 𝑇 | 𝑅4𝑛 = 𝐼, (𝑇−1𝑅)2 = 𝑅2𝑛, 𝑅2𝑛𝑇 = 𝑇𝑅2𝑛⟩ .

The relation (𝑇−1𝑅)2 = 𝑅2𝑛 implies that 𝑅𝑇𝑅−1 = 𝑅2−2𝑛𝑇−1. Hence the third gener-
ator of Γ(𝑋2𝑛) is redundant. With the Reidemeister-Schreier method (see e.g. [LS77]
Chapter II.4) and some simple transformations, one deduces the following presentation of
Γ(𝑋2𝑛):

Γ(𝑋2𝑛) = ⟨𝑇,𝑅2 | 𝑅4𝑛, (𝑅2)𝑛𝑇 = 𝑇 (𝑅2)𝑛⟩

As for the regular double-𝑛-gons we want to use lifts of the affine maps with derivative
𝑅2 and 𝑇 in Aut𝑋2𝑛(𝐹𝑛) in order to use Proposition 1.13. Recall that �̄�2𝑛 is primitive,
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hence there is a unique affine map 𝑓 with derivative 𝑅2 and a unique affine map 𝑔 with
derivative 𝑇 on �̄�2𝑛.
The affine map 𝑓 with derivative 𝑅2 is a counterclockwise rotation of 𝑃 by 𝜋/𝑛 around its
centre. It immediately induces the following lift of 𝑅2 to Aut(𝐹𝑛):

𝛾𝑅2 :

⎧⎨⎩
𝐹𝑛 → 𝐹𝑛

𝑥𝑖 ↦→ 𝑥𝑖+1 for 𝑖 = 0, . . . , 𝑛− 2

𝑥𝑛−1 ↦→ 𝑥−1
0

If we decompose the regular 2𝑛-gon into horizontal cylinders, as indicated in Figure 3.3 by
dashed lines, then the ratio of the width to the height of every cylinder is 𝜆2𝑛 (see [Fin11]
Section 3.2). Hence the (unique) affine map 𝑔 with derivative 𝑇 maps each horizontal
cylinder to itself and thereby shears each cylinder once. The image of a closed path in
𝑋2𝑛 through 𝑔 can be described as follows: every time the path traverses one of the
cylinders, the appropriately oriented core curve of the cylinder is inserted into the path.
As |Σ(�̄�2𝑛)| = 1 if 𝑛 is even, only the surfaces �̄�2𝑛 for odd 𝑛 are examples of primitive
translation surfaces with more then one singularity and add qualitatively new results to
the results on the double-𝑛-gons. Therefore we only compute a lift of 𝑇 to Aut(𝐹𝑛) for
odd 𝑛. The lift for even 𝑛 could be obtained similarly.
In analogy to the computations in Chapter 7.3 in [Fre08] for the double-𝑛-gon, a lift
𝛾𝑇 : 𝐹𝑛 → 𝐹𝑛 of 𝑇 to Aut𝑋2𝑛(𝐹𝑛) is for odd 𝑛 ≥ 5 defined by

𝑥𝑗 ↦→
𝑗∏︁

𝑖=0

(𝑥𝑖𝑥𝑛−1−𝑖
−1) · 𝑥𝑗 ·

𝑗∏︁
𝑖=1

(𝑥𝑛−1−(𝑗−𝑖)
−1𝑥𝑗−𝑖) for 𝑗 = 0, . . . ,

𝑛− 3

2
,

𝑥𝑛−1
2

↦→

𝑛−3
2∏︁

𝑖=0

(𝑥𝑖𝑥𝑛−1−𝑖
−1) · 𝑥𝑛−1

2
·

𝑛−3
2∏︁

𝑖=0

(𝑥𝑛−1−(𝑛−3
2

−𝑖)
−1𝑥𝑛−3

2
−𝑖) ,

𝑥𝑛−1−𝑗 ↦→
𝑗∏︁

𝑖=0

(𝑥𝑖𝑥𝑛−1−𝑖
−1) · 𝑥𝑛−1−𝑗 ·

𝑗∏︁
𝑖=1

(𝑥𝑛−1−(𝑗−𝑖)
−1𝑥𝑗−𝑖) for 𝑗 = 0, . . . ,

𝑛− 3

2
.

The rotation made by 𝑓 on �̄�2𝑛 interchanges the two singularities of �̄�2𝑛 whereas the
map 𝑔 fixes the singularities pointwise. The pure Veech group of a translation surface
with two singularities has at most index 2 = |𝑆2| in Γ(𝑋2𝑛). Thus we conclude that the
pure Veech group of �̄�2𝑛 is pΓ(𝑋2𝑛) = ⟨𝑅4, 𝑇,𝑅−2𝑇𝑅2⟩.

3.3. �̄�2𝑛 and property (⋆)

In Section 2.5 we introduced a property of primitive translation surfaces together with a
level 𝑎 ≥ 2, called property (⋆). For a primitive translation surface �̄�, we proved that
a congruence group of level 𝑎 in Γ(𝑋) that stabilises its orbit space in (Z/𝑎Z)2𝑔 can be
realised as Veech group of a covering surface of �̄�, whenever �̄� has property (⋆) in level
𝑎. Every primitive translation surface whose pure Veech group equals its Veech group has
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this property in every level. This applies in particular to the surfaces �̄�𝑛 for odd 𝑛 ≥ 5
and �̄�2𝑛 for even 𝑛 ≥ 4 as they have only one singular point.
The main goal of this section is to prove that �̄�2𝑛 has property (⋆) in level 𝑎 if and only if
𝑎 is coprime to 𝑛, where 𝑛 is odd and 𝑛 ≥ 5. As the pure Veech group of �̄�2𝑛 differs from
its Veech group, this shows that Section 2.5 indeed gives new results after Section 2.4.
At first we return to a general primitive translation surface �̄� with 𝜈 singularities. If we
want to use Lemma 2.31 to prove property (⋆) in level 𝑎, then we need to know how the
affine maps with derivative 𝐴 act on the singularities of 𝑌𝑎, where 𝐴 is a generator of
Γ(𝑋). Therefore we use the action of 𝐴 on the homology:
As in Section 2.2 let {𝑠1, . . . , 𝑠𝜈} denote the singularities of �̄�. We choose singularities
{𝑠1, . . . , 𝑠𝜈} ⊆ Σ(𝑌𝑎) with 𝑝𝑎(𝑠𝑖) = 𝑠𝑖 and simple paths {𝑐1, . . . , 𝑐𝜈} ⊆ 𝜋1(𝑌𝑎) such that
𝑐𝑖 is freely homotopic to 𝑠𝑖. The 𝑐𝑖 induce bijections

�̃�𝑎|𝑝−1
𝑎 (𝑠𝑖)

: 𝑝−1
𝑎 (𝑠𝑖)

∼−→ 𝐻1(�̄�,Z/𝑎Z)

as in Section 2.2. For every singularity 𝑠 ∈ Σ(𝑌𝑎) with 𝑝𝑎(𝑠) = 𝑠𝑖 choose a 𝑤 ∈ 𝐹𝑛 such that
𝑤𝑐𝑖𝑤

−1 ∈ 𝜋1(𝑌𝑎) is freely homotopic to the singularity 𝑠. Then define �̃�𝑎(𝑠) := 𝑚𝑎(𝑤).
Every singularity of 𝑌𝑎 is uniquely defined by a pair (𝑖, 𝑧), where 𝑖 ∈ {1, . . . , 𝜈} and
𝑧 ∈ 𝐻1(�̄�,Z/𝑎Z). For every 𝑤 ∈ 𝐹𝑛 with𝑚𝑎(𝑤) = 𝑧, the path 𝑤𝑐𝑖𝑤−1 is freely homotopic
to the singularity named (𝑖, 𝑧). Now we define the action of an affine map 𝑓 ∈ Aff+(𝑌𝑎)
on the singularities of 𝑌𝑎 via this identification.

Lemma 3.1. Let 𝑓 be an affine map of 𝑌𝑎 with derivative 𝐴. Furthermore, let 𝛾 be any
lift of 𝑓 to Aut𝑌𝑎(𝐹𝑛). As affine maps send singular points to singular points, there are
𝑗𝑖 ∈ {1, . . . , 𝜈} and 𝑣𝑖 ∈ 𝐹𝑛 such that 𝛾(𝑐𝑖) = 𝑣𝑖𝑐𝑗𝑖𝑣

−1
𝑖 . Define 𝑧𝑖 := 𝑚𝑎(𝑣𝑖).

Then 𝑓(𝑖, 0) = (𝑗𝑖, 𝑧𝑖) and 𝑓(𝑖, 𝑧) = (𝑗𝑖, 𝐴 ⋆ 𝑧 + 𝑧𝑖).

Proof. By definition 𝑓(𝑖, 0) = (𝑗𝑖, 𝑧𝑖).
Let 𝑤 ∈ 𝐹𝑛 with 𝑚𝑎(𝑤) = 𝑧, i.e. such that 𝑤𝑐𝑖𝑤−1 is freely homotopic to the singularity
(𝑖, 𝑧). Then 𝛾(𝑤𝑐𝑖𝑤

−1) = 𝛾(𝑤)𝑣𝑖𝑐𝑗𝑖𝑣
−1
𝑖 𝛾(𝑤)−1 and

𝑚𝑎(𝛾(𝑤)𝑣𝑖) = (𝜙𝑎(𝛾))(𝑚𝑎(𝑤)) +𝑚𝑎(𝑣𝑖) = 𝐴 ⋆ 𝑧 + 𝑧𝑖 .

Hence 𝑓 maps the singularity named (𝑖, 𝑧) to the singularity named (𝑗𝑖, 𝐴 ⋆ 𝑧 + 𝑧𝑖).

Lemma 3.1 implies that the action on the homology helps to compute the action of the
affine maps in 𝑌𝑎 on Σ(𝑌𝑎). The following remark recalls how the action of Γ(𝑋) on
𝐻1(�̄�,Z/𝑎Z) is related to the action of Γ(𝑋) on 𝐻1(�̄�,Z) in our context.

Remark 3.2. Recall that the group homomorphism 𝜙𝑎 which defines the action of Γ(𝑋)
on 𝐻1(�̄�,Z/𝑎Z) is the unique map with 𝜙𝑎(𝛾) ∘𝑚𝑎 = 𝑚𝑎 ∘ 𝛾 for all 𝛾 ∈ Aut𝑋(𝐹𝑛). The
map 𝑚𝑎 : 𝐹𝑛 → 𝐹𝑛/𝐻 ∼= (Z/𝑎Z)2𝑔 with 𝐻 = ⟨⟨ [𝐹2𝑔, 𝐹2𝑔] ∪ 𝐹 𝑎

2𝑔 ∪ {𝑐1, . . . , 𝑐𝜈−1} ⟩⟩ factors
over Z2𝑔 through ab: 𝐹𝑛 → 𝐹𝑛/�̂� ∼= Z2𝑔, where �̂� = ⟨⟨ [𝐹2𝑔, 𝐹2𝑔] ∪ {𝑐1, . . . , 𝑐𝜈−1} ⟩⟩ and
the canonical projection pr𝑎 : Z2𝑔 → (Z/𝑎Z)2𝑔. Note that the map pr𝑎 : Z2𝑔 → (Z/𝑎Z)2𝑔
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should be interpreted as pr𝑎 : 𝐻1(�̄�,Z) → 𝐻1(�̄�,Z/𝑎Z). The basis of 𝐻1(�̄�,Z/𝑎Z), used
to fix the isomorphism 𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔, is the image of the basis of 𝐻1(�̄�,Z)
by pr𝑎, which is used to fix the isomorphism 𝐻1(�̄�,Z) ∼= Z2𝑔. Every 𝛾 ∈ Aut𝑋(𝐹𝑛)
descends to a unique ab(𝛾) ∈ Aut(Z2𝑔) ∼= GL2𝑔(Z) with ab(𝛾) ∘ ab = ab ∘𝛾. This follows
immediately by the proof of Lemma 2.1. The map ab(𝛾) descends further to an element
pr𝑎(ab(𝛾)) in Aut((Z/𝑎Z)2𝑔) and because all the descendants where unique, the following
diagram commutes:

𝐹𝑛 𝐹𝑛

Z2𝑔 Z2𝑔

(Z/𝑎Z)2𝑔 (Z/𝑎Z)2𝑔

𝛾

𝑚𝑎

ab

𝑚𝑎

ab
ab(𝛾)

pr𝑎 pr𝑎

pr𝑎(ab(𝛾)) = 𝜙𝑎(𝛾)

As all 𝛾 ∈ Aut𝑋(𝐹𝑛) are orientation preserving, the map ab has its image in SL2𝑔(Z).
This further leads to the observation that 𝜙𝑎 = pr𝑎 ∘ ab: Aut𝑋(𝐹𝑛) → Aut((Z/𝑎Z)2𝑔)
has its image in SL2𝑔(Z/𝑎Z).

Now we return to the surfaces �̄�2𝑛. For the rest of this section let 𝑛 ≥ 5 be an odd
natural number. Simple paths that are freely homotopic to the singularities 𝑠1 or 𝑠2,
respectively, of �̄�2𝑛 are given by

𝑐1 = 𝑥0𝑥1
−1 · · ·𝑥𝑛−3𝑥𝑛−2

−1𝑥𝑛−1

and 𝑐2 = 𝑥0
−1𝑥1 · · ·𝑥𝑛−3

−1𝑥𝑛−2𝑥𝑛−1
−1 .

Hence the image of any subset of {𝑥0, . . . , 𝑥𝑛−1} with 𝑛− 1 elements under

ab: 𝜋1(𝑋2𝑛) � 𝜋1(�̄�2𝑛)/[𝜋1(�̄�2𝑛), 𝜋1(�̄�2𝑛)] ∼= 𝐻1(�̄�2𝑛,Z)

is a basis of 𝐻1(�̄�2𝑛,Z) and thereby induces an isomorphism 𝐻1(�̄�2𝑛,Z) ∼= Z𝑛−1. We
choose {ab(𝑥0), . . . , ab(𝑥𝑛−3

2
), ab(𝑥𝑛+1

2
), . . . , ab(𝑥𝑛−1)} as basis of 𝐻1(�̄�2𝑛,Z). Let 𝑒𝑗

denote the 𝑗-th standard unit vector according to this basis. Then ab(𝑥𝑗) = 𝑒𝑗+1 for
𝑗 ∈ {0, . . . , 𝑛−3

2 } and ab(𝑥𝑗) = 𝑒𝑗 for 𝑗 ∈ {𝑛+1
2 , . . . , 𝑛 − 1}. As ab(𝑐1) = ab(𝑐2) = 0 we

obtain

ab(𝑥𝑛−1
2

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑛−1
2∑︀

𝑖=1
(−1)𝑖 · 𝑒𝑖 +

𝑛−1∑︀
𝑖=𝑛+1

2

(−1)𝑖+1 · 𝑒𝑖 , if 𝑛 ≡ 1 mod 4

𝑛−1
2∑︀

𝑖=1
(−1)𝑖+1 · 𝑒𝑖 +

𝑛−1∑︀
𝑖=𝑛+1

2

(−1)𝑖 · 𝑒𝑖 , if 𝑛 ≡ 3 mod 4

,
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and hence we have:

ab(𝑥𝑛−1
2

) =

−1
1
...
−1
1
1
−1

...
1
−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−1
2

𝑛−1
2

if 𝑛 ≡ 1 mod 4 and ab(𝑥𝑛−1
2

) =

1
−1

...
1
−1
1
1
−1
1
...

−1
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−1
2

𝑛−1
2

if 𝑛 ≡ 3 mod 4.
Define �̄�2 := ab(𝛾𝑅2) and 𝑇 := ab(𝛾𝑇 ). Then with respect to the basis chosen above,

�̄�2 =

0 · · · · · · 0 −1 0 · · · · · · 0 −1

1 0 · · · 0 1
...

... 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 −1
...

...

0 · · · 0 1 1 0 · · · · · · 0
...

0 · · · · · · 0 1 0 · · · · · · 0
...

... −1 1 0 · · · 0
...

... 0
. . .

. . .
...

...
... 1

...
. . .

. . . 0
...

0 · · · · · · 0 −1 0 · · · 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−3
2

𝑛−3
2

𝑛−1
2

𝑛−1
2

𝑛−3
2

if 𝑛 ≡ 1 mod 4 and
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�̄�2 =

0 · · · · · · 0 1 0 · · · · · · 0 −1

1 0 · · · · · · 0 −1
...

... 0

0
. . .

. . .
... 1

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 −1

...
...

0 · · · · · · 0 1 1 0 · · · · · · 0
...

0 · · · · · · 0 1 0 · · · · · · 0
...

... −1 1 0 · · · · · · 0
...

... 0
. . .

. . .
...

1
...

. . .
. . .

. . .
...

...
... −1

...
. . .

. . . 0
...

0 · · · · · · 0 1 0 · · · · · · 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−3
2

𝑛−3
2

𝑛−1
2

𝑛−1
2

𝑛−3
2

if 𝑛 ≡ 3 mod 4.
Now we compute 𝑇 · ab(𝑥𝑗) = ab(𝛾𝑇 (𝑥𝑗)) for 𝑗 ∈ {0, . . . , 𝑛−3

2 , 𝑛+1
2 , . . . , 𝑛− 1} to receive

a matrix presentation for 𝑇 . For 𝑗 ∈ {0, . . . , 𝑛−3
2 }:

𝑇 · 𝑒𝑗+1 = ab(𝛾𝑇 (𝑥𝑗)) = ab(

𝑗∏︁
𝑖=0

(𝑥𝑖𝑥𝑛−1−𝑖
−1) · 𝑥𝑗 ·

𝑗∏︁
𝑖=1

(𝑥𝑛−1−(𝑗−𝑖)
−1𝑥𝑗−𝑖))

=

𝑗∑︁
𝑖=0

(𝑒𝑖+1 − 𝑒𝑛−1−𝑖) + 𝑒𝑗+1 +

𝑗∑︁
𝑖=1

(−𝑒𝑛−1−(𝑗−𝑖) + 𝑒𝑗−𝑖+1)

=

𝑗+1∑︁
𝑖=1

𝑒𝑖 −
𝑛−1∑︁

𝑖=𝑛−1−𝑗

𝑒𝑖 + 𝑒𝑗+1 −
𝑛−1∑︁

𝑖=𝑛−𝑗

𝑒𝑖 +

𝑗∑︁
𝑖=1

𝑒𝑖

= 2

𝑗+1∑︁
𝑖=1

𝑒𝑖 − 𝑒𝑛−𝑗−1 − 2
𝑛−1∑︁

𝑖=𝑛−𝑗

𝑒𝑖

and

𝑇 · 𝑒𝑛−1−𝑗 = ab(𝛾𝑇 (𝑥𝑛−1−𝑗)) = ab(

𝑗∏︁
𝑖=0

(𝑥𝑖𝑥𝑛−1−𝑖
−1) · 𝑥𝑛−1−𝑗 ·

𝑗∏︁
𝑖=1

(𝑥𝑛−1−(𝑗−𝑖)
−1𝑥𝑗−𝑖))

=

𝑗∑︁
𝑖=0

(𝑒𝑖+1 − 𝑒𝑛−1−𝑖) + 𝑒𝑛−1−𝑗 +

𝑗∑︁
𝑖=1

(−𝑒𝑛−1−(𝑗−𝑖) + 𝑒𝑗−𝑖+1)
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=

𝑗+1∑︁
𝑖=1

𝑒𝑖 −
𝑛−1∑︁

𝑛−1−𝑗

𝑒𝑖 + 𝑒𝑛−1−𝑗 −
𝑛−1∑︁

𝑖=𝑛−𝑗

𝑒𝑖 +

𝑗∑︁
𝑖=1

𝑒𝑖

= 2

𝑗∑︁
𝑖=1

𝑒𝑖 + 𝑒𝑗+1 − 2

𝑛−1∑︁
𝑖=𝑛−𝑗

𝑒𝑖 .

This implies

𝑇 =

2 2 · · · 2 2 · · · 2 1

0
. . .

. . .
...

... . .
.

. .
.

0
...

. . .
. . . 2 2 . .

.
. .
. ...

0 · · · 0 2 1 0 · · ·
...

0 · · · 0 −1 0 · · · · · · 0

... . .
.

. .
.

−2 −2
. . .

...

0 . .
.

. .
. ...

...
. . .

. . .
...

−1 −2 · · · −2 −2 · · · −2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−1
2

𝑛−1
2

𝑛−1
2

𝑛−1
2

.

Now we return to the main goal of this section and prove property (⋆) for �̄�2𝑛 in many
levels.

Theorem 4. Let 𝑛 ≥ 5 be an odd number and 𝑎 ≥ 2. Then the translation surface �̄�2𝑛

has property (⋆) in level 𝑎 if and only if gcd(𝑎, 𝑛) = 1.

Proof. Let 𝑎 ≥ 2. If gcd(𝑎, 𝑛) = 1 then we determine singularities 𝑠1 and 𝑠2 in 𝑌𝑎
with 𝑝𝑎(𝑠1) = 𝑠1 and 𝑝𝑎(𝑠2) = 𝑠2 and affine maps 𝑓 and 𝑔 on 𝑌𝑎 with der(𝑓) = 𝑅2

and der(𝑔) = 𝑇 , such that 𝑓(𝑠1) = 𝑠2, 𝑓(𝑠2) = 𝑠1, 𝑔(𝑠1) = 𝑠1 and 𝑔(𝑠2) = 𝑠2. For
gcd(𝑎, 𝑛) > 1 we prove that no such 𝑓 exists. Then the claim follows by Lemma 2.31.
We start by investigating the affine maps 𝑓 and 𝑔 on 𝑌𝑎 with der(𝑓) = 𝑅2 and der(𝑔) = 𝑇 ,
given by the lifts 𝛾𝑅2 and 𝛾𝑇 in Aut𝑋(𝐹𝑛) from Section 3.2. Recall that simple paths
around the singularities of �̄�2𝑛 are given as 𝑐1 = 𝑥0𝑥1

−1 · · ·𝑥𝑛−3𝑥𝑛−2
−1𝑥𝑛−1 and 𝑐2 =

𝑥0
−1𝑥1 · · ·𝑥𝑛−3

−1𝑥𝑛−2𝑥𝑛−1
−1. Obviously 𝛾𝑅2(𝑐1) = 𝑥0𝑐2𝑥0

−1 and 𝛾𝑅2(𝑐2) = 𝑥0
−1𝑐1𝑥0.

A slightly longer but still easy calculation shows that 𝛾𝑇 (𝑐1) = 𝑐1 and 𝛾𝑇 (𝑐2) = 𝑐2.
Then we define a second lift of 𝑅2 to Aut𝑋(𝐹𝑛):

𝛾𝑅2 :

⎧⎨⎩
𝐹𝑛 → 𝐹𝑛

𝑥𝑖 ↦→ 𝑥0
−1𝑥𝑖+1𝑥0 for 𝑖 = 0, . . . , 𝑛− 2

𝑥𝑛−1 ↦→ 𝑥−1
0

.

This lift fulfils 𝛾𝑅2(𝑐1) = 𝑐2 and 𝛾𝑅2(𝑐2) = 𝑥0
−2𝑐1𝑥0

2. An arbitrary lift of 𝑅2 to Aut𝑋(𝐹𝑛)
is given by

𝛾𝑅2(𝑤) = 𝑣 · 𝛾𝑅2(𝑤) · 𝑣−1
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for 𝑣 ∈ 𝐹𝑛. The corresponding affine map 𝑓 in Aff+(𝑌𝑎) is uniquely determined by
𝑧 := 𝑚𝑎(𝑣) ∈ (Z/𝑎Z)𝑛−1. Without loss of generality (the covering 𝑝𝑎 : 𝑌𝑎 → �̄� is normal),
we choose 𝑐1 := 𝑐1 and 𝑠1 ∈ Σ(𝑌𝑎) such that 𝑐1 is freely homotopic to 𝑠1. This forces
𝑠2 := 𝑓(𝑠1) and up to conjugation with an element in 𝐻 = 𝜋1(𝑌𝑎) it also forces

𝑐2 := 𝛾𝑅2(𝑐1) = 𝑣𝑐2𝑣
−1 .

As above, we use {𝑐1, 𝑐2} to identify the singularities Σ(𝑌𝑎) with {1, 2} × (Z/𝑎Z)2𝑔. By
definition 𝛾𝑅2(𝑐1) = 𝑐2 and

𝛾𝑅2(𝑐2) = 𝑣 · 𝛾𝑅2(𝑣𝑐2𝑣
−1) · 𝑣−1 = 𝑣 · 𝛾𝑅2(𝑣) · 𝑥0−2𝑐1𝑥0

2 · 𝛾𝑅2(𝑣−1) · 𝑣−1 .

As 𝑚𝑎(𝑣 · 𝛾𝑅2(𝑣) · 𝑥0−2) = 𝑧 + �̄�2𝑧 − 2𝑒1, Lemma 3.1 implies that 𝑓(1, 0) = (2, 0) and
𝑓(2, 0) = (1, 𝑧 + �̄�2𝑧 − 2𝑒1). Hence 𝑓 meets the conditions of Lemma 2.31 iff

𝑧 + �̄�2𝑧 − 2𝑒1 = 0 .

Now let gcd(𝑎, 𝑛) = 1. For 𝑛 ≡ 1 mod 4 we define

𝑧 :=
2

𝑛
·
(︀
𝑛−1
2 , −𝑛−3

2 , . . . , 2, −1, 1, −2, . . . , 𝑛−3
2 , −𝑛−1

2

)︀⊤
then

𝑧 + �̄�2𝑧 =
2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛−1
2

−𝑛−3
2
...
...
2
−1
1
−2
...
...

𝑛−3
2

−𝑛−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 −1 0 . . . . . . 0 −1

1 0 . . . 0 1
...

... 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 −1
...

...

0 . . . 0 1 1 0 . . . . . . 0
...

0 . . . . . . 0 1 0 . . . . . . 0
...

... −1 1 0 . . . 0
...

... 0
. . .

. . .
...

...
... 1

...
. . .

. . . 0
...

0 . . . . . . 0 −1 0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· 2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛−1
2

−𝑛−3
2
...
...
2
−1
1
−2
...
...

𝑛−3
2

−𝑛−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛−1
2 + 1 + 𝑛−1

2
−𝑛−3

2 + 𝑛−1
2 − 1

...
2 − 3 + 1
−1 + 2 − 1

1 − 1
−2 + 1 + 1

...
𝑛−3
2 − 1 − 𝑛−5

2
−𝑛−1

2 + 1 + 𝑛−3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛
0
...
0
0
0
0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2 · 𝑒1 .
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Analogously one checks for 𝑛 ≡ 3 mod 4 and

𝑧 :=
2

𝑛
·
(︀
𝑛−1
2 , −𝑛−3

2 , . . . , −2, 1, −1, 2, . . . , 𝑛−3
2 , −𝑛−1

2

)︀⊤
that 𝑧 + �̄�2𝑧 = 2 · 𝑒1.
As 𝑐1 = 𝑐1, 𝑔(𝑠1) = 𝑠1. Thus there are affine maps on 𝑌𝑎, fulfilling the conditions of
Lemma 2.31 iff 𝑔 also satisfies 𝑔(𝑠2) = 𝑠2, i.e. iff 𝑔(2, 0) = (2, 0). As

𝛾𝑇 (𝑐2) = 𝛾𝑇 (𝑣𝑐2𝑣
−1) = 𝛾𝑇 (𝑣)𝑐2𝛾𝑇 (𝑣)−1 = 𝛾𝑇 (𝑣)𝑣−1𝑐2𝑣𝛾𝑇 (𝑣)−1,

𝑔(2, 0) = (2, 0) iff 𝑚𝑎(𝛾𝑇 (𝑣)𝑣−1) = 𝑇𝑧 − 𝑧 = 0.
For 𝑛 ≡ 1 mod 4 we have

𝑇𝑧 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 . . . . . . . . . . . . 2 1

0
. . .

. . . . .
.

. .
.

0
...

. . .
. . . 2 2 . .

.
. .
. ...

... 0 2 1 . .
. ...

... 0 −1 0
...

... . .
.

. .
.

−2 −2
. . .

...

0 . .
.

. .
. . . .

. . .
...

−1 −2 . . . . . . . . . . . . −2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· 2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛−1
2

−𝑛−3
2
...
2
−1
1
−2
...

𝑛−3
2

−𝑛−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2

𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛− 1 + 2
∑︀𝑛−3

2
𝑖=1 (𝑖− 𝑖) − 𝑛−1

2

−(𝑛− 3) + 2
∑︀𝑛−5

2
𝑖=1 (𝑖− 𝑖) + 𝑛−3

2
...

4 − 2 + 2 − 2
−2 + 1

1
−2 + 2 − 2

...

𝑛−3
2 + 2

∑︀𝑛−5
2

𝑖=1 (𝑖− 𝑖)

−𝑛−1
2 + 2

∑︀𝑛−3
2

𝑖=1 (𝑖− 𝑖)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑧

and similarly for 𝑛 ≡ 3 mod 4 one checks that 𝑇𝑧 = 𝑧.
Now let gcd(𝑎, 𝑛) > 1. We saw at the beginning of this proof that there is an affine map
𝑓 on 𝑌𝑎 with der(𝑓) = 𝑅2 and 𝑠1, 𝑠2 ∈ Σ(𝑌𝑎) such that 𝑓(𝑠1) = 𝑠2 and 𝑓(𝑠2) = 𝑠1 iff
there exists a 𝑧 ∈ (Z/𝑎Z)𝑛−1 such that 𝑧 + �̄�2𝑧 = 2𝑒1.
For 𝑛 ≡ 1 mod 4, this gives the following system of 𝑛 − 1 linear equations in 𝑧 =
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3. Regular 𝑛-gons

(𝑧1, . . . , 𝑧𝑛−1)
⊤ over Z/𝑎Z (see �̄�2 on page 38):

Equation 1 : 2 = 𝑧1 − 𝑧𝑛−1
2

− 𝑧𝑛−1

Equation 𝑖 : 0 = 𝑧𝑖−1 + 𝑧𝑖 + (−1)𝑖 𝑧𝑛−1
2

for 𝑖 = 2, . . . , 𝑛−3
2

Equation 𝑛−1
2 : 0 = 𝑧𝑛−3

2
+ 2 𝑧𝑛−1

2

Equation 𝑛+1
2 : 0 = 𝑧𝑛−1

2
+ 𝑧𝑛+1

2

Equation 𝑖 : 0 = (−1)𝑖+1 𝑧𝑛−1
2

+ 𝑧𝑖−1 + 𝑧𝑖 for 𝑖 = 𝑛+3
2 , . . . , 𝑛− 1

If we add up (−1)𝑖-times the 𝑖-th equation for 𝑖 = 1, . . . , 𝑛−1
2 and (−1)𝑖+1-times the 𝑖-th

equation for 𝑖 = 𝑛+1
2 , . . . , 𝑛− 1 we get:

−2 = −(𝑧1 − 𝑧𝑛−1
2

− 𝑧𝑛−1) +

𝑛−3
2∑︁

𝑖=2

(−1)𝑖(𝑧𝑖−1 + 𝑧𝑖 + (−1)𝑖 𝑧𝑛−1
2

) + 𝑧𝑛−3
2

+ 2 𝑧𝑛−1
2

+ 𝑧𝑛−1
2

+ 𝑧𝑛+1
2

+
𝑛−1∑︁
𝑛+3
2

(−1)𝑖+1((−1)𝑖+1𝑧𝑛−1
2

+ 𝑧𝑖−1 + 𝑧𝑖)

= 𝑛 𝑧𝑛−1
2

As 𝑛 is odd gcd(𝑎, 𝑛) > 1 implies that 𝑏 := gcd(𝑎, 𝑛) > 2. So −2 = 𝑛 𝑧𝑛−1
2

implies
−2𝑎

𝑏 = 𝑛𝑎
𝑏 𝑧𝑛−1

2
= 𝑎𝑛

𝑏 𝑧𝑛−1
2

≡ 0 mod 𝑎. But −2𝑎
𝑏 ̸≡ 0 mod 𝑎 as 𝑏 > 2. Hence there is

no solution to 𝑧 + �̄�2𝑧 = 2𝑒1 if gcd(𝑎, 𝑛) > 1.
For 𝑛 ≡ 3 mod 4, we get a very similar system of 𝑛 − 1 linear equations in 𝑧 =
(𝑧1, . . . , 𝑧𝑛−1)

⊤ over Z/𝑎Z (see �̄�2 on page 39):

Equation 1 : 2 = 𝑧1 + 𝑧𝑛−1
2

− 𝑧𝑛−1

Equation 𝑖 : 0 = 𝑧𝑖−1 + 𝑧𝑖 + (−1)𝑖+1 𝑧𝑛−1
2

for 𝑖 = 2, . . . , 𝑛−3
2

Equation 𝑛−1
2 : 0 = 𝑧𝑛−3

2
+ 2 𝑧𝑛−1

2

Equation 𝑛+1
2 : 0 = 𝑧𝑛−1

2
+ 𝑧𝑛+1

2

Equation 𝑖 : 0 = (−1)𝑖 𝑧𝑛−1
2

+ 𝑧𝑖−1 + 𝑧𝑖 for 𝑖 = 𝑛+3
2 , . . . , 𝑛− 1

Here we add up (−1)𝑖+1-times the 𝑖-th equation for 𝑖 = 1, . . . , 𝑛−1
2 and (−1)𝑖-times the

𝑖-th equation for 𝑖 = 𝑛+1
2 , . . . , 𝑛− 1:

2 = 𝑧1 + 𝑧𝑛−1
2

− 𝑧𝑛−1 +

𝑛−3
2∑︁

𝑖=2

(−1)𝑖+1(𝑧𝑖−1 + 𝑧𝑖 + (−1)𝑖+1 𝑧𝑛−1
2

) + 𝑧𝑛−3
2

+ 2 𝑧𝑛−1
2

+ 𝑧𝑛−1
2

+ 𝑧𝑛+1
2

+
𝑛−1∑︁
𝑛+3
2

(−1)𝑖((−1)𝑖 𝑧𝑛−1
2

+ 𝑧𝑖−1 + 𝑧𝑖)

= 𝑛 𝑧𝑛−1
2

As above, this implies 2𝑎
𝑏 = 𝑎𝑛

𝑏 𝑧𝑛−1
2

≡ 0 mod 𝑎. But 2𝑎
𝑏 ̸≡ 0 mod 𝑎 as 𝑏 > 2.
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Thus there is no 𝑓 ∈ Aff+(𝑌𝑎) with der(𝑓) = 𝑅2 such that 𝑓 fixes a subset of Σ(𝑌𝑎) of
cardinality 2. By Lemma 2.31 it follows that �̄�2𝑛 does not have property (⋆) in level 𝑎 if
gcd(𝑎, 𝑛) > 1.

3.4. Level 2 congruence groups in Γ(𝑋𝑛)

We return to the regular double-𝑛-gon, �̄�𝑛, for odd 𝑛 ≥ 5 and investigate its principal
congruence groups. At first we compute the action of the generators 𝑅 and 𝑇 of Γ(𝑋𝑛)
on the homology 𝐻1(�̄�𝑛,Z).
As �̄�𝑛 has only one singular point, 𝐻1(�̄�𝑛,Z) ∼= 𝐻1(𝑋𝑛,Z). Thus the standard basis
{𝑥0, . . . , 𝑥𝑛−2} of 𝜋1(𝑋𝑛) (see Section 3.1) induces the basis

{𝑒1, . . . , 𝑒𝑛−1} := {ab(𝑥0), . . . , ab(𝑥𝑛−2)}

of 𝐻1(�̄�𝑛,Z) and the corresponding basis {𝑚𝑎(𝑥0), . . . ,𝑚𝑎(𝑥𝑛−2)} of 𝐻1(�̄�𝑛,Z/𝑎Z). We
use this basis to fix an isomorphism 𝐻1(�̄�𝑛,Z) ∼= Z𝑛−1. Then the lifts 𝛾𝑅 of 𝑅 and 𝛾𝑇 of 𝑇
to Aut(𝐹𝑛−1) from Section 3.1 give us �̄� := ab(𝛾𝑅) ∈ SL𝑛(Z) and 𝑇 := ab(𝛾𝑇 ) ∈ SL𝑛(Z)
such that the action of Γ(𝑋) on 𝐻1(�̄�𝑛,Z/𝑎Z) is given via 𝑇 ⋆ 𝑧 = pr𝑎(𝑇 ) · 𝑧 and
𝑅 ⋆ 𝑧 = pr𝑎(�̄�) · 𝑧.
As 𝑅 ⋆ 𝑒𝑖+1 = ab(𝛾𝑅(𝑥𝑖)) = ab(𝑥𝑛−1

2
𝑥−1
𝑖+𝑛+1

2

) = 𝑒𝑛+1
2

− 𝑒𝑖+𝑛+3
2

, where the indices are
taken modulo 𝑛 and 𝑒0 = 0, it follows that

�̄� =

0 · · · · · · · · · 0 −1 0 · · · · · · 0

...
... 0

. . .
. . .

...
...

...
...

. . . −1
. . .

...

...
...

...
. . .

. . . 0
0 · · · · · · · · · 0 0 · · · · · · 0 −1
1 · · · · · · 1 1 · · · · · · · · · · · · 1
−1 0 · · · 0 0 · · · · · · · · · · · · 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · 0 −1 0 · · · · · · · · · · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−1
2

𝑛−1
2

𝑛−1
2

𝑛−3
2

𝑛−3
2

𝑛+1
2

.

Now we calculate 𝑇 . As the action of 𝑇 𝑘 on 𝐻1(�̄�𝑛,Z) can be computed with only a
little bit more effort, we simultaneously compute 𝑇 𝑘 for all 𝑘 ≥ 1. We start with a lift
𝛾𝑇𝑘 of 𝑇 𝑘 to Aut(𝐹𝑛−1). In [Fre08] Section 7.3 the lift 𝛾𝑇 was obtained by considering
the decomposition of 𝑋𝑛 into horizontal cylinders, such that the unique affine map 𝑓
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3. Regular 𝑛-gons

with derivative 𝑇 shears every cylinder exactly once. Consequently, if a path 𝑣 traverses
a cylinder, then the core curve of the cylinder is inserted into 𝑣 when 𝑓 is applied to
the surface. The same cylinder decomposition also tells us what a lift of 𝑇 𝑘 looks like.
Every time 𝑓 leads to the insertion of the core curve, 𝑓𝑘 leads to the insertion of the 𝑘-th
power of the core curve of the cylinder. This gives us the lift 𝛾𝑇𝑘 : 𝐹𝑛−1 → 𝐹𝑛−1 of 𝑇 𝑘 to
Aut𝑋𝑛(𝐹𝑛−1) defined by 𝛾𝑇𝑘(𝑥0) = 𝑥0 𝑥

−𝑘
1 , 𝛾𝑇𝑘(𝑥1) = 𝑥1 and

𝛾𝑇𝑘(𝑥𝑖) = 𝑥1
𝑘

𝑖∏︁
𝑗=2

(𝑥𝑗 𝑥𝑛−𝑗
−1)𝑘 · 𝑥𝑖 ·

𝑖−2∏︁
𝑗=1

(𝑥𝑛−(𝑖−𝑗)
−1 𝑥𝑖−𝑗)

𝑘 ,

𝛾𝑇𝑘(𝑥𝑛−𝑖) = 𝑥𝑘1

𝑖∏︁
𝑗=2

(𝑥𝑗 𝑥𝑛−𝑗
−1)𝑘 · 𝑥𝑛−𝑖 ·

𝑖−2∏︁
𝑗=1

(𝑥𝑛−(𝑖−𝑗)
−1 𝑥𝑖−𝑗)

𝑘

for 𝑖 ∈ {2, . . . , 𝑛−1
2 }. Now we compute

𝑇 𝑘 · 𝑒1 = ab(𝛾𝑇𝑘(𝑥0)) = 𝑒1 − 𝑘 · 𝑒2, 𝑇 𝑘 · 𝑒2 = ab(𝛾𝑇𝑘(𝑥1)) = 𝑒2

and for 𝑖 ∈ {2, . . . , 𝑛−1
2 }

𝑇 𝑘 · 𝑒𝑖+1 = ab(𝛾𝑇𝑘(𝑥𝑖)) = ab(𝑥𝑘1

𝑖∏︁
𝑗=2

(𝑥𝑗 𝑥𝑛−𝑗
−1)𝑘 · 𝑥𝑖 ·

𝑖−2∏︁
𝑗=1

(𝑥𝑛−(𝑖−𝑗)
−1 𝑥𝑖−𝑗)

𝑘)

= 𝑘 · 𝑒2 +
𝑖∑︁

𝑗=2

𝑘 · (𝑒𝑗+1 − 𝑒𝑛−𝑗+1) + 𝑒𝑖+1 +
𝑖−2∑︁
𝑗=1

𝑘 · (−𝑒𝑛−(𝑖−𝑗)+1 + 𝑒𝑖−𝑗+1)

= 𝑘 · 𝑒2 + 𝑘 ·
𝑖+1∑︁
𝑗=3

𝑒𝑗 − 𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+1

𝑒𝑗 + 𝑒𝑖+1 − 𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+2

𝑒𝑗 + 𝑘 ·
𝑖∑︁

𝑗=3

𝑒𝑗

= 𝑘 · 𝑒2 + 2𝑘 ·
𝑖∑︁

𝑗=3

𝑒𝑗 + (𝑘 + 1) · 𝑒𝑖+1 − 𝑘 · 𝑒𝑛−𝑖+1 − 2𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+2

𝑒𝑗

and similarly

𝑇 𝑘 · 𝑒𝑛−𝑖+1 = ab(𝛾𝑇𝑘(𝑥𝑛−𝑖)) = ab(𝑥𝑘1

𝑖∏︁
𝑗=2

(𝑥𝑗 𝑥𝑛−𝑗
−1)𝑘 · 𝑥𝑛−𝑖 ·

𝑖−2∏︁
𝑗=1

(𝑥𝑛−(𝑖−𝑗)
−1 𝑥𝑖−𝑗)

𝑘)

= 𝑘 · 𝑒2 + 𝑘 ·
𝑖+1∑︁
𝑗=3

𝑒𝑗 − 𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+1

𝑒𝑗 + 𝑒𝑛−𝑖+1 − 𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+2

𝑒𝑗 + 𝑘 ·
𝑖∑︁

𝑗=3

𝑒𝑗

= 𝑘 · 𝑒2 + 2𝑘 ·
𝑖∑︁

𝑗=3

𝑒𝑗 + 𝑘 · 𝑒𝑖+1 + (1 − 𝑘) · 𝑒𝑛−𝑖+1 − 2𝑘 ·
𝑛−1∑︁

𝑗=𝑛−𝑖+2

𝑒𝑗 .

45



3. Regular 𝑛-gons

Hence

𝑇 𝑘 =

1 0 · · · · · · · · · · · · · · · · · · · · · 0
−𝑘 1 𝑘 𝑘 · · · · · · · · · · · · 𝑘 𝑘

0 0 1 + 𝑘 2𝑘 · · · 2𝑘 2𝑘 · · · 2𝑘 𝑘

...
... 0

. . .
. . .

...
... . .

.
. .
.

0
...

...
...

. . .
. . . 2𝑘 2𝑘 . .

.
. .
. ...

...
... 0 · · · 0 1 + 𝑘 𝑘 0 · · · 0

...
... 0 · · · 0 −𝑘 1 − 𝑘 0 · · · 0

...
...

... . .
.

. .
.

−2𝑘 −2𝑘
. . .

. . .
...

...
... 0 . .

.
. .
. ...

...
. . .

. . . 0
0 0 −𝑘 −2𝑘 · · · −2𝑘 −2𝑘 · · · −2𝑘 1 − 𝑘

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−3
2

𝑛−3
2

𝑛−3
2

𝑛−3
2

.

Remark 3.3. It is easy to see that 𝑇 𝑘 ≡ 𝐼𝑛−1 mod 𝑎 ⇔ 𝑘 ≡ 0 mod 𝑎 ⇔ 𝑎 | 𝑘. This
implies that

𝑇 𝑘 ∈ Γ(𝑎) ⇔ 𝑎 | 𝑘.

Every parabolic element in Γ(𝑋𝑛) with positive trace is conjugated to a power of 𝑇 .
Furthermore, Γ(𝑎) is normal for every 𝑎. Thus we know for every parabolic element in
Γ(𝑋𝑛) with positive trace, whether it is contained in Γ(𝑎) or not. We will generalise this
result in Proposition 4.4 to suitable parabolic elements with positive trace in the Veech
group of more general primitive translation surfaces.

The next lemma determines the principal congruence group of level 2 in Γ(𝑋𝑛) for every
odd 𝑛 ≥ 5.

Lemma 3.4. For odd 𝑛 ≥ 5, Γ(𝑋𝑛)/Γ(2) is the dihedral group with 2𝑛 elements.

Proof. According to Remark 3.3, 𝑇 2 ∈ Γ(2) and 𝑇 /∈ Γ(2). Furthermore, 𝑅𝑛 = −𝐼2 acts
as 𝑧 ↦→ −𝑧 on the homology, thus 𝑅𝑛 ∈ Γ(2).
Recall from Section 3.1 that 𝛾𝑅 : 𝐹𝑛−1 → 𝐹𝑛−1, 𝑥𝑖 ↦→ 𝑥𝑛−1

2
𝑥−1
𝑖+𝑛+1

2

is a lift of 𝑅 to

Aut(𝐹𝑛−1), where the indices are considered modulo 𝑛 and 𝑥𝑛−1 = 1𝐹𝑛−1 . Thus for
𝑙 ∈ {0, . . . , 2𝑛− 1} the map

𝛾𝑅𝑙 :

⎧⎪⎨⎪⎩
𝐹𝑛−1 → 𝐹𝑛−1

𝑥𝑖 ↦→ 𝑥−1
𝑙
2
−1

𝑥𝑖+ 𝑙
2

, if 𝑙 is even

𝑥𝑖 ↦→ 𝑥𝑛+𝑙−2
2

𝑥−1

𝑖+𝑛+𝑙
2

, if 𝑙 is odd

is a lift of 𝑅𝑙 (see also [Fre08] Chapter 8).
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For even 𝑙 ∈ {2, . . . , 𝑛−1} the image 𝑚2(𝛾𝑅𝑙(𝑥0)) = 𝑚2(𝑥−1
𝑙
2
−1

𝑥 𝑙
2
) = −𝑚2(𝑥 𝑙

2
−1)+𝑚2(𝑥 𝑙

2
)

does not equal 𝑚2(𝑥0) in (Z/2Z)𝑛−1: obviously 𝑙/2 ̸≡ 0 mod 𝑛 and 𝑙
2 − 1 ≡ 0 mod 𝑛 iff

𝑙 = 2 which implies 𝑙/2 = 1 ̸≡ 𝑛− 1 mod 𝑛, as 𝑛 > 2. Thus 𝑚2(𝑥1) ̸= 0. Similarly one
checks for odd 𝑙 ∈ {1, . . . , 𝑛− 2} that (𝑛+ 𝑙)/2 ̸≡ 0 mod 𝑛 and that (𝑛+ 𝑙 − 2)/2 ̸≡ 0
mod 𝑛. Thus 𝑚2(𝛾𝑅𝑙(𝑥0)) = 𝑚2(𝑥(𝑛+𝑙−2)/2) −𝑚2(𝑥(𝑛+𝑙)/2) ̸= 𝑚2(𝑥0). We conclude that
𝑅𝑙 /∈ Γ(2) for 𝑙 ∈ {1, . . . , 𝑛− 1}.
In Γ(𝑋𝑛), 𝑅 and 𝑇 fulfil the relation (𝑇−1𝑅)2𝑅𝑛 = 𝐼2. Their images 𝑅′ and 𝑇 ′ in
Γ(𝑋𝑛)/Γ(2) are of order 𝑛 and 2, respectively. Thus they satisfy 𝑇 ′𝑅′𝑇 ′ = 𝑅′−1. In total
we get Γ(𝑋𝑛)/Γ(2) ≤ 𝐷𝑛.
In Lemma 3.5 we see that the action of 𝜙2(Γ(𝑋𝑛)) ∼= Γ(𝑋𝑛)/Γ(2) on (Z/2Z)𝑛−1 has an
orbit of length 2𝑛. Hence

Γ(𝑋𝑛)/Γ(2) = 𝐷𝑛 = ⟨𝑅′, 𝑇 ′ | 𝑇 ′2, 𝑅′𝑛, 𝑇 ′𝑅′𝑇 ′ = 𝑅′−1⟩ .

By Corollary 6.24 in [Sch05] we know that a congruence group of level 𝑎 equals Γ𝐵 for a
suitable partition 𝐵 of (Z/𝑎Z)2𝑔 iff it is the stabiliser of its orbit space in (Z/𝑎Z)2𝑔. In
the next lemma we give a special orbit of Γ(𝑋𝑛) in (Z/2Z)𝑛−1 that will enable us to show
that for 𝑛 ≥ 7 every congruence group of level 2 in Γ(𝑋𝑛) is the stabiliser of its orbit
space.

Lemma 3.5. Let 𝑣 = (𝑣0, . . . , 𝑣𝑛−2)
⊤ ∈ (Z/2Z)𝑛−1 with 𝑣0 = 𝑣1 = 𝑣3 = 1 and 𝑣𝑗 = 0

for 𝑗 /∈ {0, 1, 3}. Consider the orbit of 𝑣 under the action of 𝜙2(Γ(𝑋𝑛)) = 𝐷𝑛 with its
natural structure as 𝐷𝑛-set.
Then for 𝑛 ≥ 7, the group 𝐷𝑛 as 𝐷𝑛-set via left multiplication is isomorphic to 𝐷𝑛 · 𝑣.

Proof. As before 𝜙2 : Γ(𝑋𝑛) → SL𝑛−1(Z/2Z) denotes the action of Γ(𝑋𝑛) on the homology
𝐻1(�̄�𝑛,Z/2Z). Let �̄�′ := 𝜙2(𝑅) and 𝑇 ′ := 𝜙2(𝑇 ). The group Γ(2) is the kernel of
𝜙2 : Γ(𝑋𝑛) � ⟨�̄�′, 𝑇 ′⟩ ⊆ SL𝑛−1(Z/2Z). Thus Γ(𝑋𝑛)/Γ(2) ∼= ⟨�̄�′, 𝑇 ′⟩.
Define the map

𝑓 :

{︂
⟨�̄�′, 𝑇 ′⟩ → ⟨�̄�′, 𝑇 ′⟩ · 𝑣

𝐴 ↦→ 𝐴 · 𝑣 .

Obviously 𝑓(𝐴 ·𝐵) = (𝐴 ·𝐵) · 𝑣 = 𝐴 · (𝐵 · 𝑣) = 𝐴 · 𝑓(𝐵) for all 𝐴,𝐵 ∈ ⟨�̄�′, 𝑇 ′⟩, making 𝑓
a morphism of 𝜙2(Γ(𝑋𝑛))-sets. Furthermore, 𝑓 is by definition surjective. To prove that
𝑓 is an isomorphism of 𝐷𝑛-sets, it is enough to show that |𝜙2(Γ(𝑋𝑛)) · 𝑣| = |𝐷𝑛| = 2𝑛.
In particular, this completes the proof of Lemma 3.4.
The inequality “≤” is obvious. For the reverse inequality we use the lifts of 𝑅𝑙 to
Aut(𝐹𝑛−1), given in the proof of Lemma 3.4. First we consider 𝑣 as vector in Z𝑛−1 and
define 𝑤 := �̄�𝑙 · 𝑣. The vector 𝑤 is given by its coordinates 𝑤0, . . . , 𝑤𝑛−2 ∈ Z. For some
combinations of 𝑙 and 𝑖, 𝑙

2 + 𝑖 or 𝑛+𝑙
2 + 𝑖, respectively, is 𝑛− 1. Therefore it is beneficial

to define an additional variable 𝑤𝑛−1.
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For even 𝑙, each of 𝑣0, 𝑣1, and 𝑣3 add −1 to 𝑤 𝑙
2
−1. In addition 𝑣𝑖 adds 1 to 𝑤 𝑙

2
+𝑖 iff 𝑣𝑖 = 1.

We conclude that 𝑤 𝑙
2
−1 = −3, 𝑤 𝑙

2
= 1, 𝑤 𝑙

2
+1 = 1, 𝑤 𝑙

2
+3 = 1, and all other 𝑤𝑗 = 0. For

odd 𝑙 and 𝑖 ∈ {0, 1, 3} the entry 𝑣𝑖 adds 1 to 𝑤𝑛+𝑙−2
2

and −1 to 𝑤𝑖+(𝑛+𝑙)/2. Consequently
𝑤𝑛+𝑙

2
−1 = 3, 𝑤𝑛+𝑙

2
= −1, 𝑤𝑛+𝑙

2
+1 = −1, 𝑤𝑛+𝑙

2
+3 = −1, and all other 𝑤𝑗 = 0.

In both cases, the projection of (𝑤0, . . . , 𝑤𝑛−1) ∈ Z𝑛 to (Z/2Z)𝑛 contains the sequence
(𝑤𝑘, . . . , 𝑤𝑘+4) = (1, 1, 1, 0, 1) for some 𝑘 ∈ {0, . . . , 𝑛 − 1} where the indices of 𝑤𝑖 are
considered modulo 𝑛 and all other entries are 0. More precisely for even 𝑙, 𝑘 = 𝑙

2 − 1

and for odd 𝑙, 𝑘 = 𝑛+𝑙
2 − 1. In particular, this implies that the elements 𝜙2(𝑅

𝑙) · 𝑣 are
pairwise different for 𝑙 ∈ {0, . . . , 𝑛− 1}.
We calculate

𝜙2(𝑇 ) = pr2(𝑇 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · 0
1 1 1 · · · · · · 1
0 0 0 · · · 0 1
...

...
... . .

.
. .
.

0
...

... 0 . .
.

. .
. ...

0 0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we add an additional 𝑛-th column with all entries 0 to 𝜙2(𝑇 ) and describe the indices
of the columns of 𝜙2(𝑇 ) by numbers modulo 𝑛 starting with 0, then 𝜙2(𝑇 ) ·𝑤 is the sum
of the 𝑘-th, the (𝑘+ 1)-th, the (𝑘+ 2)-th, and the (𝑘+ 4)-th column of 𝜙2(𝑇 ). This gives
the following images of 𝑤 for 𝑘 = 0, . . . , 𝑛− 1:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

...
0
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

...
0
1
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

...
0
1
0
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

...
0
1
0
1
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
0
1
1
1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
1
1
0
...

...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
0
...

...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
1
0
...

...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
...

...
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
...

...
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore the elements 𝜙2(𝑇𝑅
𝑙) · 𝑣 = 𝜙2(𝑇 ) · 𝑤 are all different. Let 𝑧 = 𝜙2(𝑇 ) · 𝑤 and

add an extra variable 𝑧𝑛−1 to 𝑧. We can choose 𝑧𝑛−1 such that 𝑧 = (𝑧0, . . . , 𝑧𝑛−1)⊤ always
contains the sequence (1, 0, 1, 1, 1) in cyclic order and is 0 elsewhere.
Now suppose 𝜙2(𝑇𝑅

𝑙) · 𝑣 = 𝜙2(𝑅
𝑙′) · 𝑣 then the cyclic subsequence (1, 0, 1, 1, 1) of

(𝑧0, . . . , 𝑧𝑛−1) has to be equal to the subsequence (1, 1, 1, 0, 1) of (𝑤0, . . . , 𝑤𝑛−1) (as they
are the only nonzero elements). This is only possible if the wraparound lies in the
subsequence and if in addition 𝑛 = 5, because in this case there are no zeros preceding or
following the sequence. Of course, the condition 𝜙2(𝑇𝑅

𝑙) · 𝑣 = 𝜙2(𝑅
𝑙′) · 𝑣 does not fix
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the auxiliary variables 𝑧𝑛−1 and 𝑤𝑛−1. But nothing changes by choosing 𝑧𝑛−1 and 𝑤𝑛−1

arbitrarily in Z/2Z.
For 𝑛 ≥ 7 it follows that the two sets {𝜙2(𝑇𝑅

𝑙) · 𝑣 | 𝑙 ∈ {0, . . . , 𝑛− 1}} and {𝜙2(𝑅
𝑙) · 𝑣 |

𝑙 ∈ {0, . . . , 𝑛− 1}} are disjoint. Hence |𝐷𝑛 · 𝑣| ≥ 2𝑛 and as |𝐷𝑛| = 2𝑛, |𝐷𝑛 · 𝑣| = 2𝑛.

Theorem 5. For odd 𝑛 ≥ 7, every congruence subgroup of Γ(𝑋𝑛) of level 2 is the Veech
group of a translation covering of �̄�𝑛.

Proof. We show that for 𝑛 ≥ 7 every congruence subgroup of Γ(𝑋𝑛) of level 2 is the
stabiliser of its orbit space. Then the claim follows by Theorem 2 or Theorem 3. As
|Σ(�̄�𝑛)| = 1, the two theorems coincide.
The map 𝜙2 : Γ(𝑋𝑛) → SL𝑛−1(Z/2Z) has the image 𝐷𝑛 (see Lemma 3.4). Consequently
each congruence subgroup of Γ(𝑋𝑛) of level 2 is the preimage of a subgroup of 𝐷𝑛 under
𝜙2.
The stabiliser of the orbit space of a group 𝐺 always contains 𝐺. Moreover the stabiliser
of the orbit space of 𝐺 has the same orbit space as 𝐺 (see Corollary 6.24 in [Sch05]).
Thus if we show that each subgroup of 𝐷𝑛 has its own orbit space in (Z/2Z)𝑛−1, then
every congruence group of level 2 stabilises its orbit space.
By Lemma 3.5 the 𝐷𝑛-set 𝐷𝑛 · 𝑣 is isomorphic to 𝐷𝑛 as 𝐷𝑛-set via the map 𝑓 : 𝐷𝑛 →
𝐷𝑛 · 𝑣, 𝐴 ↦→ 𝐴 · 𝑣. The orbit space of 𝐻 ≤ 𝐷𝑛 in 𝐷𝑛 equals the right cosets 𝐻 ·𝐴 of 𝐻
in 𝐷𝑛. Since different subgroups have different cosets in 𝐷𝑛, every subgroup has its own
orbit space in 𝐷𝑛 and via 𝑓 also in 𝐷𝑛 · 𝑣 ⊆ (Z/2Z)𝑛−1.

For 𝑛 = 5, all congruence subgroups of level 2 but one can be realised as Veech group of
a covering surface of �̄�5 using the results in Chapter 2.

Lemma 3.6. In Γ(𝑋5), every congruence subgroup of level 2, but ⟨𝑅⟩ · Γ(2), is the
stabiliser of its orbit space. The group ⟨𝑅⟩ · Γ(2) has the same orbit space as Γ(𝑋5).

Proof. The trivial subgroup {𝐼2} and 𝐷5 have Γ(2) and Γ(𝑋5), respectively, as preimage.
The stabiliser of the orbit space of a congruence group Γ ≤ Γ(𝑋5) always contains Γ.
Hence Γ(𝑋5) is the stabiliser of its orbit space. In Corollary 2.33 we saw that Γ(2) is the
stabiliser of its orbit space.
The group 𝐷5 has up to conjugation only two nontrivial subgroups (see e.g. [Rom12]
Theorem 2.37). The cyclic group generated by 𝑅′ := 𝜙2(𝑅) of order 𝑛 and the cyclic
group generated by 𝑇 ′ := 𝜙2(𝑇 ) of order 2. As |⟨𝑇 ′⟩| = 2, the preimage of ⟨𝑇 ′⟩ under 𝜙2

contains Γ(2) as subgroup of index 2. Thus by Lemma 2.34 it follows that 𝜙−1
2 (⟨𝑇 ′⟩) is

the stabiliser of its orbit space. Obviously the same holds for all conjugate subgroups.
As |⟨𝑅′⟩| = 5 = |𝐷5|/2, ⟨𝑅⟩ is of index 2 in Γ(𝑋𝑛) and thereby normal.
Now we show that the congruence subgroup ⟨𝑅⟩ · Γ(2) of level 2 in Γ(𝑋5) has the same
orbit space as Γ(𝑋5) in (Z/2Z)4:
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Let 𝑅′ := 𝜙2(𝑅) and 𝑇 ′ := 𝜙2(𝑇 ). Above we calculated the matrices �̄� = ab(𝛾𝑅) and
𝑇 = ab(𝛾𝑇 ). As 𝑅′ = pr2(�̄�) and 𝑇 ′ = pr2(𝑇 ), it follows that

𝑅′ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 1 1 1
1 0 0 0

⎞⎟⎟⎠ and 𝑇 ′ =

⎛⎜⎜⎝
1 0 0 0
1 1 1 1
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

The orbit space of ⟨𝑅⟩ · Γ(2) in (Z/2Z)4 equals the orbit space of ⟨𝑅′⟩, and the orbit
space of Γ(𝑋5) is the orbit space of 𝐷𝑛 = ⟨𝑅′, 𝑇 ′⟩.
In the proof of Lemma 3.5 we saw that the element 𝑣 = (1, 1, 0, 1)⊤ has the ⟨𝑅′⟩-orbit

{

⎛⎜⎜⎝
1
1
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
1
1

⎞⎟⎟⎠} .

The other ⟨𝑅′⟩-orbits are easily computed to be

{

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠}, {

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
1
0

⎞⎟⎟⎠} and {

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠} .

Now one checks that 𝑇 ′ stabilises these orbits and the proof is done.
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Chapter 2 is a strong motivation to investigate congruence groups. Therefore we would
like to determine which finite index subgroups Γ ≤ Γ(𝑋) are congruence groups for an
arbitrary level. If Γ is a congruence group for some level, then we would like to know
how its various congruence levels are related. We do not give an algorithm that decides
whether a given finite index subgroup Γ of Γ(𝑋) is a congruence group or not. But, e.g.
for subgroups of the Veech group of the regular double-𝑛-gons �̄�𝑛 for odd 𝑛, we restrict
the candidates for the potential congruence levels of Γ enormously.
A first general observation on different levels of a congruence group in Γ(𝑋) follows easily
by Remark 3.2:

Lemma 4.1. Let �̄� be a primitive translation surface, and 𝑎, 𝑘 ≥ 1. Then

Γ(𝑘𝑎) ⊆ Γ(𝑎) ⊆ Γ(𝑋) .

Proof. Recall that the principal congruence group contains exactly the elements in the
Veech group whose lifts 𝛾 to Aut𝑋(𝐹𝑛) lie in the kernel of 𝜙𝑎. In Remark 3.2 we saw that
𝜙𝑎 factors through ab and pr𝑎. The map pr𝑎 on the other hand factors through pr𝑎𝑘 for
every 𝑘 ≥ 1 and the following diagram commutes.

Z2𝑔 Z2𝑔

(Z/𝑘𝑎Z)2𝑔 (Z/𝑘𝑎Z)2𝑔

(Z/𝑎Z)2𝑔 (Z/𝑎Z)2𝑔

ab(𝛾)

pr𝑎

pr𝑎𝑘

pr𝑎

pr𝑎𝑘
𝜙𝑎𝑘(𝛾) = pr𝑎𝑘(ab(𝛾))

𝜙𝑎(𝛾) = pr𝑎(ab(𝛾))

Thus 𝛾 ∈ ker(𝜙𝑎𝑘) implies 𝛾 ∈ ker(𝜙𝑎).

Corollary 4.2. Let �̄� be a primitive translation surface. A congruence group of level 𝑎
in Γ(𝑋) is also a congruence group of level 𝑘 · 𝑎 for every 𝑘 ≥ 1.

This obviously implies that every congruence group has multiple congruence levels. Hence
it motivates the following definition.

Definition 4.3. If Γ ≤ Γ(𝑋) is a congruence group of level 𝑎, then 𝑎 will be called
minimal congruence level of Γ, if Γ is not a congruence group of a level 𝑏 with 𝑏 | 𝑎.
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4. Congruence levels

Note that if �̄� is the once-punctured torus, i.e. Γ(𝑋) = SL2(Z), then every congruence
group has a unique minimal congruence level, whereas this is not clear for congruence
groups in the Veech group of other primitive translation surfaces.

4.1. Parabolic elements

In Remark 3.3 we saw that the parabolic elements with positive trace in Γ(𝑎) ≤ Γ(𝑋𝑛)
are {𝑆𝑇 𝑎𝑏𝑆−1 | 𝑆 ∈ Γ(𝑋𝑛), 𝑏 ∈ Z}. Now we generalise this result.
Let �̄� be a primitive translation surface of genus 𝑔 ≥ 1. As �̄� is primitive, there are no
translations on �̄�. Thus the Veech group Γ(𝑋) and the affine group of �̄� are isomorphic.
Therefore elements in the Veech group will be identified with affine maps whenever this is
useful.
Recall that the principal congruence group Γ(𝑎) of level 𝑎 in the Veech group of �̄� is the
set of all elements in Γ(𝑋) that act trivially on 𝐻1(�̄�,Z/𝑎Z).

Proposition 4.4. Suppose that �̄� decomposes into 𝑐 cylinders with inverse moduli
commensurable in Z. Let 𝛼 ∈ R and 𝑘1, . . . , 𝑘𝑐 ∈ N with gcd(𝑘1, . . . , 𝑘𝑐) = 1 such that
the 𝑖-th cylinder has inverse modulus 𝑘𝑖 · 𝛼. Furthermore, let 𝑇 ∈ Γ(𝑋) be the parabolic
element associated to the cylinder decomposition (see Section 1.3). Then 𝑎 | 𝑏 implies
𝑇 𝑏 ∈ Γ(𝑎).
Suppose that in addition there is an 𝑙 ≥ 1 and cylinders 1, . . . , 𝑙 in the cylinder decompo-
sition with gcd(𝑘1, . . . , 𝑘𝑙) = 1 such that there exists a simple path in 𝑋 crossing each of
the cylinders 1, . . . , 𝑙 once from bottom to top. If the core curves of the cylinders 1, . . . , 𝑙
can be completed to a basis of the homology 𝐻1(�̄�,Z), then 𝑇 𝑏 ∈ Γ(𝑎) ⇔ 𝑎 | 𝑏.

Remark 4.5. We may assume that the direction of the cylinder decomposition of the
surface �̄� in Proposition 4.4 is horizontal. If necessary we rotate the surface �̄� by

composing each chart with a fixed rotation in R2. Then 𝑇 is of the form
(︂

1 𝛼
0 1

)︂
. In

particular, its trace is 2 (and not −2). The affine map with derivative 𝑇 is a 𝑘𝑖-fold Dehn
twist on the 𝑖-th cylinder.

Proof of Proposition 4.4. Let 𝑍 be the first cylinder of the decomposition. It is twisted
by 𝑇 exactly 𝑘1 times. Now consider a simple closed curve 𝑝1 around the centre of the
cylinder 𝑍, the core curve of 𝑍.
At first we want to understand, what 𝑇 𝑏 does to an arbitrary element 𝑣 in the fundamental
group: each time 𝑣 crosses the cylinder 𝑍 from bottom to top, 𝑇𝑣 follows the core curve
𝑘1 additional times around the waist of the cylinder, i.e. 𝑝𝑘11 is inserted into 𝑣. If 𝑣 crosses
𝑍 from top to bottom, 𝑝−𝑘1

1 is inserted at this particular position. On the other cylinders
of the cylinder decomposition, 𝑇 behaves similarly. Let 𝑝𝑖 be the core curve of the 𝑖-th
cylinder. The the 𝑖-th cylinder is twisted 𝑘𝑖 times by 𝑇 , so each time 𝑣 crosses the 𝑖-th
cylinder from bottom to top, 𝑝𝑖𝑘𝑖 is inserted into 𝑣 (see Figure 4.1). As 𝑇 leaves 𝑝𝑖
invariant, the application of 𝑇 𝑏 inserts 𝑝𝑖𝑏𝑘𝑖 into 𝑣 at each position where 𝑇 attaches 𝑝𝑖𝑘𝑖 .
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4. Congruence levels

In the same way 𝑇 𝑏 inserts 𝑝𝑖−𝑏𝑘𝑖 into 𝑣 each time 𝑣 passes through the 𝑖-th cylinder from
top to bottom.

𝑣

first cylinder

second cylinder

third cylinder

𝑇

𝑇 · 𝑣

𝑝1

𝑝2

𝑝3
2

𝑘3 = 2

𝑘2 = 1

𝑘1 = 1

Figure 4.1.: Application of 𝑇 to 𝑣.

Next we decompose 𝑇 𝑏𝑣 into elements of the fundamental group (see Figure 4.2). Therefore
we follow 𝑣 until we reach the first insertion of a 𝑝𝑖±𝑏𝑘𝑖 , then follow 𝑝𝑖

±𝑏𝑘𝑖 and afterwards
walk back to the base point along 𝑣−1. This is a closed path, i.e. an element in the
fundamental group of 𝑋. Next we follow 𝑣 until the second insertion of a 𝑝𝑖±𝑏𝑘𝑖 , walk
along 𝑝𝑖±𝑏𝑘𝑖 and back to the base point along 𝑣−1. We continue until there is no further
insertion of a 𝑝𝑖±𝑏𝑘𝑖 and finally follow 𝑣 entirely. Up to homotopy, i.e. the walking along 𝑣
back and forth, we walked exactly once along 𝑇 𝑏𝑣. This proves that by using parts of 𝑣 to
extend the 𝑝𝑖 to closed paths starting at the base point of the fundamental group, we can
decompose 𝑇 𝑏𝑣 as 𝑇 𝑏𝑣 =

∏︀𝑘
𝑗=1 𝑝

±𝑏𝑘𝑖𝑗
𝑖𝑗

· 𝑣 into elements of 𝜋1(𝑋), where 𝑖𝑗 ∈ {1, . . . , 𝑐},
𝑘 ∈ N.

𝑝1

𝑝2

𝑝3
2

Figure 4.2.: Decomposition of 𝑇 · 𝑣.

Let �̃� denote the image of 𝑤 ∈ 𝜋1(𝑋) in the absolute homology 𝐻1(�̄�,Z/𝑎Z). Then

𝑇 𝑏𝑣 = 𝑏 · ℎ̃+ 𝑣 ∈ 𝐻1(�̄�,Z/𝑎Z)

where ℎ =
∏︀𝑘

𝑗=1 𝑝
±𝑘𝑖𝑗
𝑖𝑗

. Now it is obvious that 𝑎 | 𝑏 is a sufficient condition for 𝑇 𝑏 to act
trivially on the homology.
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Now we assume that 𝑞 is a simple path in 𝑋 crossing each of the cylinders 1, . . . , 𝑙 once
from bottom to top and none of the other cylinders. Furthermore, gcd(𝑘1, . . . , 𝑘𝑙) = 1,
and the core curves 𝑝1, . . . , 𝑝𝑙 of the cylinders 1, . . . , 𝑙 can be completed to a basis of the
homology 𝐻1(�̄�,Z). It remains to show that 𝑇 𝑏 ∈ Γ(𝑎) implies that 𝑎 divides 𝑏.
Complete the images 𝑝𝑖 of the core curves 𝑝𝑖 of the cylinders 1, . . . , 𝑙 to a basis of
𝐻1(�̄�,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔. As 𝑞 crosses each of these cylinders exactly once and none
of the others, the image of 𝑞 under 𝑇 𝑏 contains exactly 𝑏 · 𝑘𝑖 additional copies of 𝑝𝑖 for
𝑖 ∈ {1, . . . , 𝑙}.

Thus 𝑇 𝑏𝑞 = 𝑞+ 𝑏 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
...
𝑘𝑙
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. If 𝑇 𝑏 acts trivially on 𝐻1(�̄�,Z/𝑎Z), then 𝑏 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1
...
𝑘𝑙
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ 0 mod 𝑎.

Thus 𝑏 · 𝑘1 ≡ · · · ≡ 𝑏 · 𝑘𝑙 ≡ 0 mod 𝑎. Hence 𝑏 = gcd(𝑏 · 𝑘1, . . . , 𝑏 · 𝑘𝑙) ≡ 0 mod 𝑎.

Example 4.6. The regular double-𝑛-gon �̄�𝑛 for odd 𝑛 ≥ 5 decomposes into horizontal
cylinders which all have the same inverse modulus (see [Fin11] Section 3.1). The parabolic
generator 𝑇 of the Veech group of �̄�𝑛 is the parabolic element associated to this cylinder
decomposition. Hence 𝑇 twists each of the horizontal cylinders of �̄�𝑛 exactly once.
Proposition 6.2 in [FM12] states that for a closed surface 𝑆𝑔 of genus 𝑔 ≥ 1 a nonzero
element in 𝐻1(𝑆𝑔,Z) is represented by an oriented simple closed curve if and only if it
is primitive. They call an element ℎ ∈ 𝐻1(𝑆𝑔,Z) primitive, if it cannot be written as
ℎ = 𝑙𝑞 with 𝑙 ≥ 2 and 𝑞 ∈ 𝐻1(𝑆𝑔,Z). We conclude that the image 𝑝 of the core curve of
a cylinder in 𝐻1(�̄�𝑛,Z) ∼= Z2𝑔 is primitive and therefore the greatest common divisor
of its entries is equal to 1. Then the fundamental theorem of finitely generated abelian
groups tells us that 𝑝 can be completed to a basis of the homology 𝐻1(�̄�𝑛,Z). The basis
of 𝐻1(�̄�𝑛,Z) ∼= Z2𝑔 induces a basis of 𝐻1(�̄�𝑛,Z/𝑎Z) ∼= (Z/𝑎Z)2𝑔 containing 𝑝 as first
basis element.
The first element 𝑥0 in our standard basis of the fundamental group 𝜋1(𝑋𝑛) crosses
the innermost cylinder of the horizontal cylinder decomposition of �̄�𝑛 once from top
to bottom and none of the other horizontal cylinders. Hence with the curve 𝑥−1

0 and
Proposition 4.4 we recover the result of Remark 3.3: 𝑇 𝑏 ∈ Γ(𝑋𝑛) ⇔ 𝑎 | 𝑏.

The proposition about the parabolic elements in Γ(𝑎) is particularly useful if the Veech
group of a primitive translation surface is generated by parabolic matrices. This is the
case for the surfaces �̄�𝑛 with 𝑛 odd and 𝑛 ≥ 5:

Lemma 4.7. For odd 𝑛 ≥ 5,

Γ(𝑋𝑛) = ⟨𝑇,𝑅−1𝑇𝑅⟩ .

Thus Γ(𝑋𝑛) is generated by parabolic elements.
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Proof. Recall that a presentation for Γ(𝑋𝑛) is given by

Γ(𝑋𝑛) = ⟨𝑅, 𝑇 | 𝑅2𝑛 = 𝐼, (𝑇−1𝑅)2 = 𝑅𝑛, 𝑅𝑛𝑇 = 𝑇𝑅𝑛⟩ .

Obviously 𝐺′ := ⟨𝑇,𝑅−1𝑇𝑅⟩ ⊆ Γ(𝑋𝑛). It remains to show that 𝑅 ∈ 𝐺′.
As

(𝑇−1𝑅)2 = 𝑅𝑛 ⇒ 𝑅−1𝑇𝑅−1𝑇 = 𝑅−𝑛 𝑅2𝑛=𝐼
= 𝑅𝑛

⇒ 𝑅−1𝑇𝑅 = 𝑅𝑛𝑇−1𝑅2 𝑅𝑛𝑇=𝑇𝑅𝑛

= 𝑇−1𝑅𝑛+2,

we get from 𝑇−1 ∈ 𝐺′ and 𝑅−1𝑇𝑅 ∈ 𝐺′ that 𝑅𝑛+2 ∈ 𝐺′. This implies that (𝑅𝑛+2)2 =

𝑅2𝑛+4 = 𝑅4 ∈ 𝐺′ and hence 𝑅gcd(2𝑛,4) 𝑛 odd
= 𝑅2 ∈ 𝐺′. Then

𝑅𝑛 = 𝑇−1𝑅𝑇−1𝑅 = 𝑇−1 ·𝑅2 · (𝑅−1𝑇𝑅)−1 ∈ 𝐺′

further implies that 𝑅gcd(𝑛,2) = 𝑅 ∈ 𝐺′.

4.2. Wohlfahrt level

In SL2(Z), the parabolic elements in a congruence subgroup completely determine its
minimal congruence level. This is a result due to Wohlfahrt (see [Woh64]). He uses the
fact that all parabolic elements in PSL2(Z) are conjugated to a power of 𝑇 = ( 1 1

0 1 ), i.e.
all parabolic matrices 𝐴 in SL2(Z) can be written as 𝐴 = ±𝑆𝑇𝑚𝑆−1 with 𝑆 ∈ GL2(Z)
and 𝑚 ∈ Z ∖ {0}. The number 𝑚 is uniquely determined by 𝐴. Its absolute value |𝑚| is
called the width of 𝐴. Wohlfahrt defines the level of Γ ≤ SL2(Z) (now called Wohlfahrt
level) as follows: let 𝐶 = {width(𝐴) | 𝐴 generates a maximal parabolic subgroup of Γ}. If
this set is unbounded or empty, the Wohlfahrt level is 0, otherwise it is the least common
multiple of the elements in 𝐶. Note that Wohlfahrt uses a definition of congruence groups
that slightly differs from ours. For him the principal congruence group of level 𝑎 contains
all matrices that are congruent to ±𝐼2 modulo 𝑎. By Remark 4.11 in Section 4.3, −𝐼2 is
never contained in Γ(𝑎) for 𝑎 > 2. Thus Wohlfahrt’s definition simply adds −𝐼2 to every
principal congruence group of level 𝑎 > 2. This implies that the two definitions agree for
all Γ ≤ SL2(Z) with −𝐼2 ∈ Γ. Using Wohlfahrt’s definition the minimal congruence level
and the Wohlfahrt level coincide for every congruence group in SL2(Z) (see [Woh64]).
Now let 𝐺 be a Fuchsian group in PSL2(R) with a finite area fundamental domain in H
that has exactly one cusp, i.e. with a fundamental domain that has exactly one vertex
in R ∪∞. By Corollary 4.2.6 in [Kat92] 𝐺 contains a maximal parabolic subgroup with
generator 𝑇 , such that all parabolic elements in 𝐺 can be written as 𝑆−1𝑇𝑚𝑆 where
𝑆 ∈ 𝐺, 𝑚 ∈ Z and 𝑚 is uniquely defined. A parabolic element 𝐴 ∈ Γ ≤ 𝐺 is called
maximal parabolic in Γ, if there does not exist a 𝐵 ∈ Γ such that 𝐵𝑙 = 𝐴 with 𝑙 > 1, i.e.
if 𝐴 generates a maximal parabolic subgroup of Γ. For finite index subgroups in 𝐺 we
generalise the Wohlfahrt level in a straight forward way.

55



4. Congruence levels

Definition 4.8. Let 𝐺 be a Fuchsian group in PSL2(R) with a finite area fundamental
domain in H that has exactly one cusp, and let 𝑇 ∈ 𝐺 be the generator of a maximal
parabolic subgroup as described above. Furthermore let 𝐴 ∈ 𝐺 be parabolic. If 𝐴 =
𝑆−1𝑇𝑚𝑆 with 𝑆 ∈ 𝐺 and 𝑚 ∈ Z, then we call |𝑚| the width of 𝐴. For a finite index
subgroup Γ ≤ 𝐺, we define the (generalised) Wohlfahrt level of Γ as

level(Γ) := lcm{width(𝐴) | 𝐴 ∈ Γ, 𝐴 is maximal parabolic in Γ}.

A finite index subgroup of 𝐺 contains only finitely many conjugacy classes of maximal
parabolic subgroups. Hence the set of widths of maximal parabolic elements in Γ is finite.
Furthermore, as Γ has finite index in 𝐺, there always exists a 𝑘 ∈ Z ∖ {0} such that
𝑇 𝑘 ∈ Γ. Thus level(Γ) is well-defined.
Next we see that the Wohlfahrt level of a group Γ is densely interwoven with the groups
𝐺(𝑚) := ⟨⟨𝑇𝑚 ⟩⟩ for 𝑚 ≥ 1, contained in Γ.

Proposition 4.9. Let Γ ≤ 𝐺 be a finite index subgroup with Wohlfahrt level 𝑚. Then
𝐺(𝑚) ⊆ Γ. If conversely 𝐺(𝑚) ⊆ Γ then level(Γ) | 𝑚.

Proof. Let Γ ≤ 𝐺 be a subgroup of finite index 𝑑. Then for each 𝐴 ∈ 𝐺 there exists a
positive number 𝑛 ≤ 𝑑 such that 𝐴𝑛 ∈ Γ. We have to show that 𝑆−1𝑇𝑚𝑆 belongs to Γ
for every 𝑆 ∈ 𝐺.
Let 𝐴 := 𝑆−1𝑇𝑆 and define 𝑙 := min{𝑛 > 0 | 𝐴𝑛 = 𝑆−1𝑇𝑛𝑆 ∈ Γ}. By the definition of
the Wohlfahrt level, 𝑙 | 𝑚 and therefore 𝑆−1𝑇𝑚𝑆 ∈ Γ. We conclude that 𝐺(𝑚) ⊆ Γ.
Now we want to prove that 𝐺(𝑚) ⊆ Γ implies that level(Γ) | 𝑚. So let 𝑆−1𝑇𝑛𝑆 ∈ Γ be
maximal parabolic with 𝑆 ∈ 𝐺 and 𝑛 ∈ Z. We need to show that 𝑛 divides 𝑚.
As 𝐺(𝑚) ⊆ Γ, we have 𝑆−1𝑇𝑚𝑆 ∈ Γ. This implies 𝑆−1𝑇 gcd(𝑚,𝑛)𝑆 ∈ Γ and as 𝑆−1𝑇𝑛𝑆 is
maximal parabolic in Γ, we get that gcd(𝑚,𝑛) ≥ |𝑛|, so gcd(𝑚,𝑛) = |𝑛|.

Proposition 4.9 adds up to the fact that the Wohlfahrt level of a finite index subgroup
Γ ≤ 𝐺 is the smallest 𝑚 ≥ 1 such that 𝐺(𝑚) ⊆ Γ. A simple observation regarding the
groups 𝐺(𝑚) is the following lemma:

Lemma 4.10. For 𝑚,𝑚′ ≥ 1 the product of the groups 𝐺(𝑚) and 𝐺(𝑚′) is

𝐺(𝑚) ·𝐺(𝑚′) = ⟨𝐺(𝑚), 𝐺(𝑚′)⟩ = 𝐺(gcd(𝑚,𝑚′)) .

Proof. As gcd(𝑚,𝑚′) divides 𝑚, 𝐺(𝑚) ⊆ 𝐺(gcd(𝑚,𝑚′)), and analogously 𝐺(𝑚′) ⊆
𝐺(gcd(𝑚,𝑚′)). The groups 𝐺(𝑚) and 𝐺(𝑚′) are normal, thus ⟨𝐺(𝑚), 𝐺(𝑚′)⟩ = 𝐺(𝑚) ·
𝐺(𝑚′). Furthermore, 𝑇𝑚 ∈ 𝐺(𝑚) and 𝑇𝑚′ ∈ 𝐺(𝑚′), thus the element 𝑇 gcd(𝑚,𝑚′)

lies in ⟨𝐺(𝑚), 𝐺(𝑚′)⟩ = 𝐺(𝑚) · 𝐺(𝑚′). As 𝐺(𝑚) · 𝐺(𝑚′) is normal, this implies that
𝐺(gcd(𝑚,𝑚′)) ⊆ 𝐺(𝑚) ·𝐺(𝑚′).
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4.3. Congruence level versus Wohlfahrt level

In this section we define the Wohlfahrt level for subgroups Γ of Γ(𝑋) ⊆ SL2(R) (instead
of PSL2(R)) for appropriate primitive translation surfaces �̄� and analyse its relation to
the congruence levels of Γ whenever Γ is a congruence group.
In order to define the Wohlfahrt level of a finite index subgroup Γ ≤ Γ(𝑋), we need
the projective Veech group of the primitive translation surface �̄� to be a group 𝐺 as
considered in Definition 4.8. Hence in the whole section, �̄� is a primitive translation
surface whose projective Veech group is a Fuchsian group with a finite area fundamental
domain in H that has exactly one cusp. Then there is a parabolic matrix 𝑇 ∈ Γ(𝑋) such
that every parabolic element in Γ(𝑋) can be written as (±)𝑆−1𝑇𝑚𝑆 with 𝑆 ∈ Γ(𝑋).
The element 𝑇 is unique up to conjugation and sign if −𝐼2 ∈ Γ(𝑋). We additionally
require that 𝑇 has positive trace and is retained as multiple Dehn twist on the cylinders
of the cylinder decomposition of �̄� in the direction of the eigenvector of 𝑇 . This makes
𝑇 unique up to conjugation. Furthermore, we require that 𝑇 𝑏 ∈ Γ(𝑎) ⇔ 𝑎 | 𝑏. Recall that
this is especially the case if there are cylinders with coprime moduli in the decomposition
of �̄� and a simple path traversing these cylinders as required in the second part of
Proposition 4.4.

Remark 4.11. If we forget about the translation structure on the surface and consider
only its topology, then the affine maps can be seen as elements in the mapping class group
of the surface. Corollary 1.5 in [Iva92] tells us that if �̄� has negative Euler characteristic,
i.e. if 𝑔(�̄�) ≥ 2, then Γ(𝑎) is torsion free for 𝑎 ≥ 3. Originally this result is due to Serre
(see [Ser60]). It is well known that the kernel of SL2(Z) → SL2(Z/𝑎Z) is torsion free for
𝑎 ≥ 3. Consequently, Γ(𝑎) contains no elliptic elements for 𝑎 ≥ 3 and 𝑔(�̄�) ≥ 1.

Remark 4.11 implies that −𝐼 /∈ Γ(𝑎) for 𝑎 ≥ 3. Thus if 𝑇 𝑏 ∈ Γ(𝑎) then (−𝑇 )𝑏 /∈ Γ(𝑎)
for odd 𝑏 and 𝑎 ≥ 3. It follows that if 𝑇 was obtained by Proposition 4.4, then the
implications of the proposition do not hold for −𝑇 .
Now we additionally require that Γ(𝑋) is generated by 𝑇 and its conjugates. Thereby
we get a strong relation between the Wohlfahrt level and the congruence levels of a
congruence subgroup, as we see in the following.

Definition 4.12. Let �̄� be a primitive translation surface. We say that it has property
(𝑝𝑎𝑟𝑎𝑏), if its Veech group contains a parabolic matrix 𝑇 with positive trace such that
𝑇 𝑏 ∈ Γ(𝑎) ⇔ 𝑎 | 𝑏 and such that 𝑇 and its conjugates generate Γ(𝑋).

Definition 4.13. Let �̄� be a primitive translation surface with property (𝑝𝑎𝑟𝑎𝑏) with
parabolic generator 𝑇 . Each parabolic matrix 𝐴 ∈ Γ(𝑋) with positive trace can be
written as 𝐴 = 𝑆−1𝑇𝑚𝑆 with 𝑚 ∈ Z and 𝑆 ∈ Γ(𝑋). Again we call |𝑚| the width of 𝐴.
This width is independent of the choice of 𝑇 in its conjugacy class. For a finite index
subgroup Γ ≤ Γ(𝑋), we call the least common multiple of the widths of its maximal
parabolic elements with positive trace the Wohlfahrt level of Γ.
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In complete analogy to the proofs in Section 4.2, one shows that the Wohlfahrt level of a
finite index subgroup Γ ≤ Γ(𝑋) is the smallest 𝑚 ≥ 1 such that 𝐺(𝑚) ⊆ Γ, where 𝐺(𝑚) :

= ⟨⟨𝑇𝑚 ⟩⟩ ⊆ Γ(𝑋𝑛). Also, for 𝑚 and 𝑚′, 𝐺(𝑚) ·𝐺(𝑚′) = ⟨𝐺(𝑚), 𝐺(𝑚′)⟩ = 𝐺(gcd(𝑚,𝑚′)).
Hence we simply cite these results from Section 4.2 in the following, and ignore that we
have subgroups in SL2(R) and not in PSL2(R).

Remark 4.14. As 𝑇𝑚 ∈ Γ(𝑚) for every 𝑚 ∈ N and as the subgroup Γ(𝑚) is normal
(see Remark 2.3), we have that 𝐺(𝑚) = ⟨⟨𝑇𝑚 ⟩⟩ ⊆ Γ(𝑚).

The simplest example of a surface with property (𝑝𝑎𝑟𝑎𝑏) is the once-punctured torus �̄�.
We saw earlier that the Veech group of the regular double-𝑛-gons �̄�𝑛 where 𝑛 is odd and
𝑛 ≥ 5 is the orientation preserving part of a triangle group with one cusp. Its generator
𝑇 , which is maximal parabolic, fulfils 𝑇 𝑏 ∈ Γ(𝑎) ⇔ 𝑎 | 𝑏. Recall from Lemma 4.7 that �̄�𝑛

is generated by the parabolic elements 𝑇 and 𝑅−1𝑇𝑅. As trace(𝑇 ) = 2, �̄�𝑛 has property
(𝑝𝑎𝑟𝑎𝑏).
Observe that the Wohlfahrt level of a finite index subgroup Γ of Γ(𝑋) is unique, whereas
Γ has infinitely many congruence levels if it is a congruence group. Furthermore, it is not
clear whether there is a unique minimal congruence level of a congruence subgroup, i.e.
whether all congruence levels are multiples of a common 𝑎 ∈ N.
The goal in this section is to prove the following theorem:

Theorem 6. Let �̄� be a primitive translation surface with property (𝑝𝑎𝑟𝑎𝑏).
Furthermore, let Γ ≤ Γ(𝑋) be a congruence group, 𝑏 a minimal congruence level of Γ and
𝑎 = level(Γ) its Wohlfahrt level. Then level(Γ) | 𝑏 and all prime numbers 𝑝 dividing 𝑏 also
divide 𝑎.
However, a minimal congruence level of Γ does not have to divide the Wohlfahrt level.
Hence the two level definitions are different.

The first part of the theorem, saying that the Wohlfahrt level of a congruence subgroup
divides every (minimal) congruence level is a fact that does not need that the Veech group
is generated by parabolic elements.

Lemma 4.15. If �̄� is a primitive translation surface with property (𝑝𝑎𝑟𝑎𝑏) and Γ ≤ Γ(𝑋)
is a congruence group of level 𝑏, then level(Γ) | 𝑏.

Proof. Being a congruence group of level 𝑏 is equivalent to containing Γ(𝑏). By Re-
mark 4.14, 𝐺(𝑏) ⊆ Γ(𝑏) ⊆ Γ and by Proposition 4.9 it follows that level(Γ) | 𝑏.

The next lemma is the first one in a row that makes use of property (𝑝𝑎𝑟𝑎𝑏). We always
call the parabolic generator that leads to property (𝑝𝑎𝑟𝑎𝑏) 𝑇 .

Lemma 4.16. Let �̄� be a primitive translation surface with property (𝑝𝑎𝑟𝑎𝑏), and let
Γ ≤ Γ(𝑋) be a congruence group of level 𝑎 and of level 𝑏 where gcd(𝑎, 𝑏) = 1. Then
Γ = Γ(𝑋).
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Proof. We have 𝑇 𝑎 ∈ Γ(𝑎) ⊆ Γ and 𝑇 𝑏 ∈ Γ(𝑏) ⊆ Γ. Thus 𝐺(𝑎) ⊆ Γ(𝑎) ⊆ Γ and
𝐺(𝑏) ⊆ Γ(𝑏) ⊆ Γ, implying that 𝐺(𝑎) ·𝐺(𝑏) ⊆ Γ. By Lemma 4.10 we have 𝐺(𝑎) ·𝐺(𝑏) =
𝐺(gcd(𝑎, 𝑏)) = 𝐺(1). We assumed that Γ(𝑋) is generated by conjugates of 𝑇 . As 𝐺(1)
contains all these parabolic elements, this gives Γ(𝑋) = 𝐺(1) ⊆ Γ, hence Γ(𝑋) = Γ.

Now we gradually prove Theorem 6, with the help of the following lemmas.

Lemma 4.17. Let �̄� be a primitive translation surface with property (𝑝𝑎𝑟𝑎𝑏), and let
𝑎, 𝑏 ∈ N with gcd(𝑎, 𝑏) = 1. Then

𝜙𝑏(𝐺(𝑎)) = 𝜙𝑏(Γ(𝑋)) .

This implies in particular that for a congruence group Γ ≤ Γ(𝑋) of level 𝑎, 𝜙𝑏(Γ) =
𝜙𝑏(Γ(𝑋)).

Proof. Again we use Remark 4.14, Lemma 4.10 and 𝐺(1) = Γ(𝑋) for Γ(𝑋) = 𝐺(𝑎) ·𝐺(𝑏).
Then 𝜙𝑏(Γ(𝑋)) = 𝜙𝑏(𝐺(𝑎) ·𝐺(𝑏)) = 𝜙𝑏(𝐺(𝑎)), as 𝐺(𝑏) ⊆ Γ(𝑏) = ker(𝜙𝑏).
If Γ ≤ Γ(𝑋) is a congruence group of level 𝑎, then 𝐺(𝑎) ⊆ Γ(𝑎) ⊆ Γ. Thus 𝜙𝑏(Γ(𝑋)) =
𝜙𝑏(𝐺(𝑎)) ⊆ 𝜙𝑏(Γ).

Remark 4.18. In the Veech group of every primitive translation surface �̄�, the following
holds:
Let 𝑎, 𝑏 ∈ N with gcd(𝑎, 𝑏) = 1 then Γ(𝑎) ∩ Γ(𝑏) = Γ(𝑎𝑏).

Proof. Let 𝐴 ∈ SL2𝑔(Z). If 𝐴 ≡ 𝐼2𝑔 mod 𝑎 and 𝐴 ≡ 𝐼2𝑔 mod 𝑏 then the Chinese
Remainder Theorem implies 𝐴 ≡ 𝐼2𝑔 mod 𝑎𝑏, thus Γ(𝑎) ∩ Γ(𝑏) ⊆ Γ(𝑎𝑏). On the other
hand, if 𝐴 ≡ 𝐼2𝑔 mod 𝑎𝑏 then clearly 𝐴 ≡ 𝐼2𝑔 mod 𝑎 and 𝐴 ≡ 𝐼2𝑔 mod 𝑏.

Lemma 4.19. Let �̄� have property (𝑝𝑎𝑟𝑎𝑏) and let 𝑎, 𝑏 ∈ N with gcd(𝑎, 𝑏) = 1. Then

𝐺(𝑎) · Γ(𝑎𝑏) = Γ(𝑎) .

Proof. First of all, 𝐺(𝑎) and Γ(𝑎𝑏) are normal subgroups of Γ(𝑋). Thus 𝐺(𝑎) · Γ(𝑎𝑏)
is a group and in particular a normal subgroup in Γ(𝑋). As before 𝐺(𝑎) ⊆ Γ(𝑎). By
Lemma 4.1, also Γ(𝑎𝑏) ⊆ Γ(𝑎). This proves 𝐺(𝑎) · Γ(𝑎𝑏) ⊆ Γ(𝑎).
For the converse inclusion let 𝐴 ∈ Γ(𝑎). Because of Lemma 4.17 we know that
𝜙𝑏(𝐴) ∈ 𝜙𝑏(Γ(𝑋)) = 𝜙𝑏(𝐺(𝑎)). Thus there exists 𝐵 ∈ 𝐺(𝑎) such that 𝜙𝑏(𝐵) = 𝜙𝑏(𝐴).
Consequently 𝐴 can be written as 𝐴 = 𝐵 · 𝐾, where 𝐾 ∈ Γ(𝑏) = ker(𝜙𝑏). As
𝐵 ∈ 𝐺(𝑎) ⊆ Γ(𝑎) and 𝐴 ∈ Γ(𝑎), also 𝐾 ∈ Γ(𝑎). Hence 𝐾 ∈ Γ(𝑎) ∩ Γ(𝑏). By Re-
mark 4.18, Γ(𝑎) ∩ Γ(𝑏) = Γ(𝑎𝑏). This completes the proof.

Now we can prove that every minimal congruence level of a congruence subgroup in Γ(𝑋)
has only prime divisors that also divide the Wohlfahrt level. This implies in particular
that if the Wohlfahrt level is prime, then the minimal congruence level is unique and a
power of the Wohlfahrt level.
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Proof of Theorem 6. Recall that Γ ≤ Γ(𝑋) is assumed to be a congruence group of
minimal congruence level 𝑏 with Wohlfahrt level 𝑎. We want to prove that every prime
number 𝑝 dividing 𝑏 also divides 𝑎.
Suppose that 𝑏 = 𝑐 · 𝑑 with gcd(𝑎, 𝑑) = 1 and gcd(𝑐, 𝑑) = 1. Then by Lemma 4.19
Γ(𝑐) = 𝐺(𝑐) · Γ(𝑐𝑑) = 𝐺(𝑐) · Γ(𝑏). As gcd(𝑎, 𝑏) = gcd(𝑎, 𝑐) | 𝑐, it follows that 𝐺(𝑐) ⊆ 𝐺(𝑏).
Furthermore, 𝐺(𝑎) ⊆ Γ and 𝐺(𝑏) ⊆ Γ(𝑏) ⊆ Γ. Thus by Lemma 4.10 𝐺(𝑎) · 𝐺(𝑏) =
𝐺(gcd(𝑎, 𝑏)) ⊆ Γ. Hence Γ(𝑐) = 𝐺(𝑐) · Γ(𝑏) ⊆ Γ and Γ is a congruence group of level 𝑐.
As 𝑐 | 𝑏 and 𝑏 was a minimal congruence level, 𝑑 = 1.
A proof that the Wohlfahrt level and the minimal congruence levels in general differ
follows in Lemma 4.21. There we give an example of a congruence group in Γ(𝑋5) that
has Wohlfahrt level 4 and minimal congruence level 8.

Remark 4.20. A nice consequence of Theorem 6 is the following: if the Wohlfahrt level
of a congruence group is a prime power 𝑝𝑚, then there is a unique minimal congruence
level of the group. It is 𝑝𝑛 with 𝑛 ≥ 𝑚, and all congruence levels of the group are multiples
of 𝑝𝑛.

Remark 4.11 implies that an example that proves that the Wohlfahrt level and the
congruence level are not equal for congruence subgroups in Γ(𝑋5) must take advantage of
hyperbolic elements in Γ(𝑎): the parabolic elements of positive trace in Γ(𝑎) and 𝐺(𝑎)
coincide by Proposition 4.4, and Γ(𝑎) does not contain any elliptic elements for 𝑎 ≥ 3 by
Remark 4.11, in particular −𝐼2 /∈ Γ(𝑎) for 𝑎 ≥ 3.

Lemma 4.21. The subgroup 𝑈 := ⟨⟨𝑇 4,Γ(8) ⟩⟩ ≤ Γ(𝑋5) has minimal congruence level 8
and Wohlfahrt level 4.

Proof. As ⟨⟨𝑇 4 ⟩⟩ ⊆ 𝑈 , Proposition 4.9 implies that the Wohlfahrt level of 𝑈 divides
4 = 22. By Remark 4.20, 𝑈 has a unique minimal congruence level and this minimal
congruence level is a power of 2. By construction Γ(8) ⊆ 𝑈 , thus the minimal congruence
level is at most 8.
Consider the action of 𝑅 and 𝑇 on 𝐻1(�̄�5,Z). They are given by the matrices

�̄� =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 1 1 1
−1 0 0 0

⎞⎟⎟⎠ and 𝑇 =

⎛⎜⎜⎝
1 0 0 0
−1 1 1 1
0 0 2 1
0 0 −1 0

⎞⎟⎟⎠ .

Set 𝐶 := 𝑇 2𝑅𝑇𝑅𝑇−2𝑅−1𝑇−1𝑅−1. Its image in Aut(𝐻1(�̄�5,Z)) is

𝐶 = 𝑇 2�̄�𝑇 �̄�𝑇−2�̄�−1𝑇−1�̄�−1 =

⎛⎜⎜⎝
−11 −16 −4 4
68 89 28 −24
56 68 25 −20
−36 −44 −16 13

⎞⎟⎟⎠ .

The matrix 𝐶 is congruent to 𝐼4 modulo 4. Hence 𝐶 ∈ Γ(4). We will prove that 𝐶 /∈ 𝑈 .
Then Γ(4) * 𝑈 , thus 𝑈 has minimal congruence level 8. It also follows that the Wohlfahrt
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level of 𝑈 is 4: in Lemma 4.22 we show that Γ(2) = 𝐺(2), thus level(𝑈) = 2 would imply
Γ(2) = 𝐺(2) ⊆ 𝑈 and thereby that 2 is a congruence level of 𝑈 . As 𝑈 ̸= Γ(𝑋5) = 𝐺(1)
the Wohlfahrt level is not 1 either.
We show that 𝐶 /∈ 𝑈 by proving that 𝐶 ′ := 𝜙8(𝐶) /∈ 𝑈 ′ := 𝜙8(𝑈) = 𝜙8(⟨⟨𝑇 4 ⟩⟩). Let
𝑅′ := 𝜙8(𝑅) and 𝑇 ′ := 𝜙8(𝑇 ). Then 𝜙8(⟨⟨𝑇 4 ⟩⟩) = ⟨{𝐴𝑇 ′4𝐴−1 | 𝐴 ∈ ⟨𝑅′, 𝑇 ′⟩}⟩. It can be
easily checked by a computer algebra system (e.g. magma) that this is a finite group of
32 elements and it does not contain

𝐶 ′ =

⎛⎜⎜⎝
5 0 4 4
4 1 4 0
0 4 1 4
4 4 0 5

⎞⎟⎟⎠ .

Lemma 4.22. In Γ(𝑋5), the principal congruence group of level 2 is generated by parabolic
elements with positive trace. We have Γ(2) = 𝐺(2).

Proof. Lemma 3.4 implies that Γ(2) = ⟨⟨𝑇 2, 𝑅5, 𝑇𝑅𝑇𝑅 ⟩⟩ which can be easily transformed
into Γ(2) = ⟨⟨𝑇 2, 𝑅5, 𝑇−1𝑅𝑇−1𝑅 ⟩⟩. From the presentation of Γ(𝑋5), we have the following
relations:

𝑅5𝑇 = 𝑇𝑅5 (4.1)

𝑅10 = 𝐼 (4.2)

𝑇−1𝑅𝑇−1𝑅 = 𝑅5 (4.3)

Hence Γ(2) = ⟨⟨𝑇 2, 𝑅5 ⟩⟩, and this implies that Γ(2) = 𝐺(2) = ⟨⟨𝑇 2 ⟩⟩ iff 𝑅5 ∈ 𝐺(2).
Equation (4.1) together with Equation (4.3) implies that (𝑇−1𝑅)2 lies in the centre of
Γ(𝑋5). From Equation (4.2) and (4.3), we get that (𝑇−1𝑅)4 = 𝐼, hence 𝑅−1𝑇 = (𝑇−1𝑅)3.
This implies

(𝑅−1𝑇 2)3 = ((𝑇−1𝑅)3𝑇 )3

= (𝑇−1𝑅)2 · 𝑇−1𝑅𝑇 · 𝑇−1𝑅𝑇−1𝑅𝑇−1𝑅𝑇 · 𝑇−1𝑅(𝑇−1𝑅)2 · 𝑇
(4.1),(4.3)

= (𝑇−1𝑅)2(𝑇−1𝑅)2 · 𝑇−1𝑅2𝑇−1𝑅𝑇−1𝑅2𝑇

= 𝑇−1𝑅2𝑇−1𝑅𝑇−1𝑅2𝑇
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and we get

𝑅5 (4.1)
= 𝑅3𝑇 ·𝑅5 · 𝑇−1𝑅−3

= 𝑅3𝑇𝑅3 · 𝑇 (𝑇−1𝑅𝑇−1)𝑇 ·𝑅𝑇−1𝑅−3

(4.3)
= 𝑅3𝑇𝑅3 · 𝑇 ·𝑅4 · 𝑇 ·𝑅𝑇−1𝑅−3

= 𝑅3𝑇𝑅3𝑇𝑅4𝑇 2(𝑇−1𝑅)2𝑅−4

(4.1),(4.3)
= 𝑅3𝑇𝑅2(𝑇−1𝑅)2𝑅𝑇𝑅4𝑇 2𝑅−4

= 𝑅3𝑇 2(𝑇−1𝑅2𝑇−1𝑅𝑇−1𝑅2𝑇 )𝑅4𝑇 2𝑅−4

= 𝑅3𝑇 2(𝑅−1𝑇 2)3𝑅4𝑇 2𝑅−4

= 𝑅3𝑇 2𝑅−3 ·𝑅2𝑇 2𝑅−2 ·𝑅𝑇 2𝑅−1 · 𝑇 2 ·𝑅4𝑇 2𝑅−4 .

Thus 𝑅5 ∈ ⟨⟨𝑇 2 ⟩⟩.

Of course also 𝐺(1) = Γ(𝑋5) = Γ(1). One can compute (e.g. with the help of magma)
that 𝐺(3) = Γ(3) (it is a subgroup of index 120 in Γ(𝑋5)).

Remark 4.23. Let 𝑎 ∈ N, and suppose that all nontrivial factors of 𝑎 lie in {2, 3}, or
more concretely, 𝑎 is a prime or contained in {4, 6, 9}. Then a congruence subgroup of
Γ(𝑋5) with minimal congruence level 𝑎 has Wohlfahrt level 𝑎.

Proof. Let Γ ≤ Γ(𝑋5) be a congruence subgroup of minimal level 𝑎 and Wohlfahrt level
𝑏. Lemma 4.15 tells us that 𝑏 | 𝑎. If 𝑏 is a proper factor of 𝑎, then 𝑏 ∈ {1, 2, 3}. But then
Γ(𝑏) = 𝐺(𝑏) ⊆ Γ, and Γ has congruence level 𝑏. This is a contradiction to the minimality
of 𝑎.

It is an immediate consequence of the last remark that 𝑈 ≤ Γ(𝑋5) from Lemma 4.21 is a
minimal example with respect to the congruence level for a congruence group which has
different minimal congruence level and Wohlfahrt level.
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Let �̄� be a primitive translation surface and 𝑝 : 𝑍𝑑 → �̄� a translation covering with
monodromy group Z/𝑑Z, i.e. with monodromy map 𝑚 : 𝜋1(𝑋) � Z/𝑑Z. The monodromy
group is always transitive, thus the covering is of degree 𝑑 and Z/𝑑Z ⊆ 𝑆𝑑. Without loss
of generality we assume that the monodromy group equals (⟨ (1 . . . 𝑑) ⟩, ∘) as subgroup of
(𝑆𝑑, ∘).

Lemma 5.1. Every covering with monodromy group Z/𝑑Z is normal.

Proof. Recall that the covering is uniquely defined by the preimage of the stabiliser of 1
under the monodromy map. This defines an embedding of 𝜋1(𝑍𝑑) in 𝜋1(𝑋). Up to an
inner automorphism of 𝑆𝑑, Z/𝑑Z = ⟨𝜎⟩ with 𝜎 = (1 2 . . . 𝑑). The claim then follows by
𝜎𝑎(1) = 1 ⇔ 𝑑 | 𝑎 ⇔ 𝜎𝑎 = id. Hence 𝜋1(𝑍𝑑) ⊆ 𝜋1(𝑋) is the kernel of the monodromy
map and thereby a normal subgroup.

Here the monodromy group is abelian, so the monodromy map becomes a homomorphism
and not only an anti-homomorphism as defined in Section 1.2. To stress this fact and
to simplify notation, we write the monodromy group Z/𝑑Z in its usual additive way as
({0, . . . , 𝑑− 1},+).

Remark 5.2. If �̄� has only one singularity, then the covering 𝑝 is unramified. To see
this, choose a basis of the fundamental group as in Chapter 2. Then a simple path around
the singularity of 𝑋 is 𝑐 = 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 , and

𝑚(𝑐) = −𝑚(𝑏𝑔) −𝑚(𝑎𝑔) +𝑚(𝑏𝑔) +𝑚(𝑎𝑔) + · · · −𝑚(𝑏1) −𝑚(𝑎1) +𝑚(𝑏1) +𝑚(𝑎1) = 0 .

Obviously this observation does not depend on the monodromy group Z/𝑑Z in particular.
Any abelian monodromy group works equally well.

Lemma 5.3. If 𝑝 is unramified, then every map 𝑚 : 𝜋1(𝑋) � Z/𝑑Z factors through
𝑚𝑑 : 𝜋1(𝑋) = 𝐹𝑛 → 𝐹𝑛/𝐻 = (Z/𝑑Z)2𝑔 where 𝐻 is the normal closure of [𝐹2𝑔, 𝐹2𝑔]∪𝐹 𝑑

2𝑔 ∪
{𝑐1, . . . , 𝑐𝜈−1} and 𝐹 𝑑

2𝑔 is the set of all 𝑑-th powers of words in 𝐹2𝑔 (see Chapter 2 for
more details on the chosen generators of the fundamental group or the map 𝑚𝑑).

𝐹𝑛 Z/𝑑Z

(Z/𝑑Z)2𝑔

𝑚

𝑚𝑑 ℎ
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Proof. The kernel of 𝑚𝑑 is 𝐻, so by the fundamental homomorphism theorem we have
to prove that 𝐻 is contained in the kernel of 𝑚. The group Z/𝑑Z is abelian so we get
[𝐹2𝑔, 𝐹2𝑔] ∋ 𝑥𝑦𝑥−1𝑦−1 𝑚↦→ 0. Furthermore, 𝑚(𝑥𝑑) = 𝑑 ·𝑚(𝑥) = 0 for all 𝑥 ∈ 𝐹𝑛 because
the group Z/𝑑Z has order 𝑑, and finally we have 𝑚(𝑐𝑖) = 0, as 𝑝 is unramified.

With the help of the previous lemma, we can now prove that Veech groups of covering
surfaces of coverings with cyclic monodromy group are congruence groups. Hence there is
a chance that we could also realise their Veech groups as Veech groups of coverings of the
surface with monodromy map 𝑚𝑑 from Section 2.2.

Lemma 5.4. If 𝑝 is unramified then the Veech group of 𝑍𝑑 is a congruence group of level
𝑑 in the sense of Definition 2.2.

Proof. According to Proposition 1.13, a matrix 𝐴 ∈ Γ(𝑋) is contained in Γ(𝑍𝑑) iff there
exists a lift of 𝐴 to Aut(𝐹𝑛) that maps ker(𝑚) to ker(𝑚).
For the definition of the principal congruence group Γ(𝑑) of level 𝑑, recall the unique
homomorphism 𝜙𝑑 with 𝑚𝑑(𝛾(𝑥)) = 𝜙𝑑(𝛾)(𝑚𝑑(𝑥)) for all 𝑥 ∈ 𝐹𝑛 and 𝛾 ∈ Aut𝑋(𝐹𝑛).
The principal congruence group is the set of Veech group elements with a lift to Aut(𝐹𝑛)
(or equivalently all lifts) in the kernel of 𝜙𝑑.

𝐹𝑛 𝐹𝑛

(Z/𝑑Z)2𝑔 (Z/𝑑Z)2𝑔

Z/𝑑Z Z/𝑑Z

𝛾

𝑚𝑑

𝑚

𝑚𝑑

𝑚
𝜙𝑑(𝛾) = id

ℎ ℎ

Now let 𝛾 ∈ Aut𝑋(𝐹𝑛) be a lift of 𝐴 ∈ Γ(𝑑) and 𝑥 ∈ ker(𝑚). Then

𝑚(𝛾(𝑥)) = ℎ(𝑚𝑑(𝛾(𝑥)) = ℎ(𝜙𝑑(𝛾)(𝑚𝑑(𝑥)) = ℎ(𝑚𝑑(𝑥)) = 𝑚(𝑥) = 0 .

Hence 𝛾(𝑥) ∈ ker(𝑚).

5.1. Veech group calculation

In order to determine the Veech group of the covering surface of a translation covering
𝑌 of �̄�, one can compute its Γ(𝑋)-orbit. An element 𝐴 ∈ Γ(𝑋) lies in the Veech group
of 𝑌 iff 𝐴 · 𝑌 ∼= 𝑌 as coverings of �̄�. We will explain in the following that the needed
calculations can all be done in (Z/𝑑Z)2𝑔 if the covering is unramified and has monodromy
group Z/𝑑Z.
So let 𝑚 : 𝐹𝑛 → Z/𝑑Z be the monodromy map of an unramified covering 𝑝 : 𝑍𝑑 → �̄�.
Denote by 𝑐1, . . . , 𝑐𝜈 simple closed curves around the singularities of �̄� then 𝑚(𝑐1) = · · · =
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5. Cyclic monodromy group

𝑚(𝑐𝜈) = 1. If we complete 𝑐1, . . . , 𝑐𝜈−1 arbitrarily with 𝑥1, . . . , 𝑥2𝑔 to a basis of 𝜋1(𝑋),
then the monodromy map 𝑝 is uniquely determined by (𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) ∈ (Z/𝑑Z)2𝑔

and the fact that 𝑝 is unramified.
As discussed in Lemma 1.16 for 𝐴 ∈ Γ(𝑋), the translation surface 𝐴 · 𝑍𝑑 is the covering
surface of 𝑝𝐴 : 𝐴 ·𝑍𝑑 → �̄� with monodromy map 𝑚𝐴 := 𝑚∘𝛾−1

𝐴 , where 𝛾𝐴 is a lift of 𝐴 to
Aut(𝐹𝑛). The ramification of a covering is invariant under the Γ(𝑋)-action, as this action
changes the translation structure on the covering surface but not the map itself. Thus
the covering 𝑝𝐴 is unramified as well. The following lemma describes the Γ(𝑋)-action
on the unramified coverings of �̄� with monodromy group Z/𝑑Z in terms of tuples in
(Z/𝑑Z)2𝑔. We use the basis {𝑥1, . . . , 𝑥2𝑔, 𝑐1, . . . , 𝑐𝜈−1} of 𝜋1(𝑋) to fix an isomorphism
𝜋1(𝑋) ∼= 𝐹𝑛. Furthermore, we choose {𝑚𝑑(𝑥1), . . . ,𝑚𝑑(𝑥2𝑔)} as basis of 𝐻1(�̄�,Z/𝑑Z),
fixing 𝐻1(�̄�,Z/𝑑Z) ∼= (Z/𝑑Z)2𝑔.

Lemma 5.5. Let 𝑍𝑑 be the unramified covering of �̄� with monodromy map 𝑚 : 𝐹𝑛 →
Z/𝑑Z, given by the tuple (𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) ∈ (Z/𝑑Z)2𝑔, and let 𝐴 ∈ Γ(𝑋). Further
let 𝜙𝑑(𝐴

−1) : 𝑧 ↦→ 𝐴−1𝑧 be the action of 𝐴−1 on the absolute homology 𝐻1(�̄�,Z/𝑑Z) ∼=
(Z/𝑑Z)2𝑔.
Then the image of the covering surface 𝑍𝑑 under 𝐴 is given by the tuple

(𝑚𝐴(𝑥1), . . . ,𝑚𝐴(𝑥2𝑔)) = (𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) ·𝐴−1 .

Proof. As above, let 𝛾𝐴 be a lift of 𝐴 to Aut(𝐹𝑛). According to Lemma 5.3, 𝑚 factors
through 𝑚𝑑. The map 𝛾−1

𝐴 descends to an automorphism 𝜙𝑑(𝛾−1
𝐴 ) = 𝜙𝑑(𝐴−1) : 𝑧 ↦→ 𝐴−1𝑧

of (Z/𝑑Z)2𝑔 ∼= 𝐻1(�̄�,Z/𝑑Z), making the following diagram commutative:

𝐹𝑛 𝐹𝑛

(Z/𝑑Z)2𝑔 (Z/𝑑Z)2𝑔

Z/𝑑Z Z/𝑑Z

𝛾−1
𝐴

𝑚𝑑

𝑚

𝑚𝑑

𝑚
𝜙𝑑(𝐴

−1)

ℎ ℎ

Let 𝑎𝑖,𝑗 be the coefficients of 𝐴−1 ∈ SL2𝑔(Z/𝑑Z) with respect to the basis of (Z/𝑑Z)2𝑔

given by {𝑚𝑑(𝑥1), . . . ,𝑚𝑑(𝑥2𝑔)}, then

𝑚𝐴(𝑥𝑗) = (𝑚 ∘ 𝛾−1
𝐴 )(𝑥𝑗) = ℎ(𝑚𝑑(𝛾−1

𝐴 (𝑥𝑗))) = ℎ(𝐴−1 ·𝑚𝑑(𝑥𝑗))

= ℎ(
∑︀2𝑔

𝑖=1 𝑎𝑖,𝑗 ·𝑚𝑑(𝑥𝑖)) =
∑︀2𝑔

𝑖=1 𝑎𝑖,𝑗 · ℎ(𝑚𝑑(𝑥𝑖))

=
∑︀2𝑔

𝑖=1 𝑎𝑖,𝑗 ·𝑚(𝑥𝑖) .

Consequently (𝑚𝐴(𝑥1), . . . ,𝑚𝐴(𝑥2𝑔)) = (𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) ·𝐴−1.

65



5. Cyclic monodromy group

The monodromy map of equivalent coverings differ by an inner automorphism of 𝑆𝑑.
The next lemma describes when monodromy maps, given by tuples in (Z/𝑑Z)2𝑔, define
equivalent translation coverings.

Lemma 5.6. Let 𝑚 : 𝐹𝑛 � Z/𝑑Z ⊆ 𝑆𝑑 and 𝑚′ : 𝐹𝑛 � Z/𝑑Z ⊆ 𝑆𝑑 be the monodromy
maps of unramified coverings of �̄�. The two coverings are equivalent iff there exists an
𝑎 ∈ (Z/𝑑Z)× such that

(𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) = 𝑎 · (𝑚′(𝑥1), . . . ,𝑚
′(𝑥2𝑔)) .

Proof. By definition two monodromy maps 𝑚 and 𝑚′ define equivalent coverings of �̄� of
degree 𝑑 iff there exists an inner automorphism 𝜅 of 𝑆𝑑 such that 𝑚 = 𝜅 ∘𝑚′.
First suppose that the two coverings are equivalent. The monodromy groups of 𝑚 and
𝑚′ both equal Z/𝑑Z. Thus we may assume that they are equal as transitive subgroups
of 𝑆𝑑. Then the inner automorphism 𝜅 of 𝑆𝑑 fixes Z/𝑑Z. Hence 𝜅 can be restricted
to an automorphism 𝜅′ of Z/𝑑Z = ⟨(1 2 . . . 𝑑)⟩. Every automorphism 𝜅′ of Z/𝑑Z is
uniquely defined by 𝜅′(𝜎), where 𝜎 = (1 2 . . . 𝑑). As the image of 𝜎 generates Z/𝑑Z,
𝜅′(𝜎) = 𝜎𝑎 with gcd(𝑎, 𝑑) = 1. If we now return to the additive notation of Z/𝑑Z, then
an automorphism 𝜅′ of Z/𝑑Z is of the form 𝑧 ↦→ 𝑎𝑧 with gcd(𝑎, 𝑑) = 1. We conclude that
𝑚(𝑥𝑖) = 𝜅(𝑚′(𝑥𝑖))) = 𝜅′(𝑚′(𝑥𝑖)) = 𝑎 ·𝑚′(𝑥𝑖) for all 𝑖 ∈ {1, . . . , 2𝑔}.
Now suppose that there exists an 𝑎 ∈ (Z/𝑑Z)× such that (𝑚(𝑥1), . . . ,𝑚(𝑥2𝑔)) = 𝑎 ·
(𝑚′(𝑥1), . . . ,𝑚

′(𝑥2𝑔)). Both coverings 𝑚 and 𝑚′ are unramified, i.e. 𝑚(𝑐𝑖) = 𝑚′(𝑐𝑖) = 1.
Then 𝜅′ : 𝑧 ↦→ 𝑎𝑧 defines an automorphism of Z/𝑑Z in the additive notation, such
that 𝑚 and 𝜅′ ∘ 𝑚′ agree on a generating set of 𝐹𝑛. Hence 𝑚 = 𝜅′ ∘ 𝑚′. If we see
Z/𝑑Z = ⟨(1 2 . . . 𝑑)⟩ as subgroup of 𝑆𝑑, then the automorphism 𝜅′ is defined by 𝜎 ↦→ 𝜎𝑎.
Consequently 𝜎𝑎 is a generator of Z/𝑑Z. Thus it has order 𝑑 and is again a 𝑑-cycle. This
implies that 𝜅′ is the restriction of an inner automorphism 𝜅 of 𝑆𝑑 to Z/𝑑Z. Hence 𝑚
and 𝑚′ define equivalent coverings.

The monodromy group is an invariant of the Γ(𝑋)-orbit of a covering. Thus the preceding
two lemmas show that after computing 𝐴𝑖 := 𝜙𝑑(𝐴𝑖) ∈ SL2𝑔(Z/𝑑Z) for a generating set
{𝐴𝑖 | 𝑖 ∈ 𝐼} of Γ(𝑋), we can compute the Γ(𝑋)-orbit of 𝑍𝑑 by means of calculations in
(Z/𝑑Z)2𝑔. Equivalently, the calculation of the Veech group of 𝑍𝑑 can be done in (Z/𝑑Z)2𝑔,
as the following proposition summarises.

Proposition 5.7. Let 𝑍𝑑 be the unramified cyclic covering of �̄� defined by the tuple

(𝑦1, . . . , 𝑦2𝑔) ∈ (Z/𝑑Z)2𝑔 .

Then the Veech group of 𝑍𝑑 can be characterised as follows:

Γ(𝑍𝑑) = {𝐴 ∈ Γ(𝑋) | ∃𝑎 ∈ (Z/𝑑Z)× : (𝑦1, . . . , 𝑦2𝑔) = 𝑎 · (𝑦1, . . . , 𝑦2𝑔) ·𝐴−1}

Proof. A matrix 𝐴 ∈ Γ(𝑋) lies in Γ(𝑍𝑑) iff 𝐴 · 𝑍𝑑
∼= 𝑍𝑑. Let 𝑚 denote the monodromy

map of 𝑍𝑑. By Lemma 5.5, the monodromy map 𝑚𝐴 of 𝐴 · 𝑍𝑑 is defined by the tuple
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(𝑦1, . . . , 𝑦2𝑔) · 𝐴−1. The monodromy group is invariant under the action of Γ(𝑋), thus
𝑚𝐴(𝐹𝑛) = Z/𝑑Z for all 𝐴 ∈ Γ(𝑋). Hence Lemma 5.6 implies that𝑚𝐴 and𝑚 are equivalent
iff there exists an 𝑎 ∈ (Z/𝑑Z)× such that (𝑦1, . . . , 𝑦2𝑔) = 𝑎 · (𝑦1, . . . , 𝑦2𝑔) ·𝐴−1.

If we do not start with an element in (Z/𝑑Z)2𝑔 but with an element in Z2𝑔, then this element
simultaneously defines coverings 𝑍𝑑 → �̄� for many 𝑑 ∈ N. An element (𝑦1, . . . , 𝑦2𝑔) of
(Z/𝑑Z)2𝑔 defines a covering of degree 𝑑 if and only if {𝑦1, . . . , 𝑦2𝑔} generates Z/𝑑Z.
The next lemma states the strong connection of the Veech groups Γ(𝑍𝑑1) and Γ(𝑍𝑑2) for
coprime 𝑑1, 𝑑2 ∈ N.

Lemma 5.8. Let (𝑦1, . . . , 𝑦2𝑔) ∈ Z2𝑔 and let 𝑑1, 𝑑2 ≥ 2 with gcd(𝑑1, 𝑑2) = 1 such that {𝑦1
mod 𝑑𝑗 , . . . , 𝑦2𝑔 mod 𝑑𝑗} generates Z/𝑑𝑗Z for 𝑗 ∈ {1, 2}. Further let 𝑑3 := 𝑑1 · 𝑑2.
Then (𝑦1, . . . , 𝑦2𝑔) ∈ Z2𝑔 defines unramified coverings 𝑍𝑑𝑗 of �̄� for 𝑗 ∈ {1, 2, 3} via the
monodromy map 𝑚 given by 𝐹𝑛 → Z/𝑑𝑗Z, 𝑥𝑖 ↦→ 𝑦𝑖 mod 𝑑𝑗 for 𝑖 ∈ {1, . . . , 2𝑔} and
𝑐𝑘 ↦→ 0 for 𝑘 ∈ {1, . . . , 𝜈 − 1}. Their Veech groups fulfil

Γ(𝑍𝑑1·𝑑2) = Γ(𝑍𝑑1) ∩ Γ(𝑍𝑑2) .

Proof. Let 𝐴 ∈ Γ(𝑋) and 𝐴𝑑1·𝑑2 := 𝜙𝑑1·𝑑2(𝐴). Then 𝐴 ∈ Γ(𝑍𝑑1·𝑑2) if and only if there
exists an 𝑎 ∈ (Z/(𝑑1𝑑2)Z)× such that (𝑦1, . . . , 𝑦2𝑔) · 𝐴−1

𝑑1𝑑2
= 𝑎 · (𝑦1, . . . , 𝑦2𝑔). This is a

system of linear equations in one variable 𝑎 over Z/(𝑑1𝑑2)Z.
As 𝑑1 and 𝑑2 are coprime, the Chinese Remainder Theorem states that the ring Z/(𝑑1𝑑2)Z
is isomorphic to Z/𝑑1Z× Z/𝑑2Z. Hence a system of linear equations has a solution over
Z/(𝑑1𝑑2)Z if and only if it has a solution over Z/𝑑1Z and one over Z/𝑑2Z.
If we set 𝐴𝑑1 := 𝜙𝑑1(𝐴) and 𝐴𝑑2 := 𝜙𝑑2(𝐴), then the equation (𝑦1, . . . , 𝑦2𝑔) · 𝐴−1

𝑑1𝑑2
=

𝑎 · (𝑦1, . . . , 𝑦2𝑔) has a solution if and only if (𝑦1, . . . , 𝑦2𝑔) · 𝐴−1
𝑑1

= 𝑎 · (𝑦1, . . . , 𝑦2𝑔) has
a solution in Z/𝑑1Z and (𝑦1, . . . , 𝑦2𝑔) · 𝐴−1

𝑑2
= 𝑎 · (𝑦1, . . . , 𝑦2𝑔) has a solution in Z/𝑑2Z.

Furthermore, gcd(𝑎, 𝑑1𝑑2) = 1 implies gcd(𝑎, 𝑑1) = 1 and gcd(𝑎, 𝑑2) = 1. And if 𝑎1 is
a solution in (Z/𝑑1Z)× and 𝑎2 is a solution in (Z/𝑑2Z)×, then they induce a solution
𝑎 ∈ (Z/(𝑑1 · 𝑑2)Z)×.
Altogether we see that 𝐴 ∈ Γ(𝑍𝑑1·𝑑2) if and only if it lies in Γ(𝑍𝑑1) and in Γ(𝑍𝑑2).

5.2. Cyclic coverings of the double 𝑛-gon

In this and the next section we use the results of the preceding section to find some
particularly short orbits of coverings of the regular double-𝑛-gon �̄�𝑛 for odd 𝑛 ≥ 5.
So let 𝑛 ≥ 5 be an odd number and let 𝑌 → �̄�𝑛 be a degree 𝑑 translation covering with
monodromy map 𝑚 : 𝐹𝑛−1 → Z/𝑑Z. The translation surface �̄�𝑛 has only one singularity.
Thus the covering is unramified (see Remark 5.2). Consequently all �̄�𝑛 coverings with
monodromy group Z/𝑑Z lie in the same stratum (see Remark 6.7 for the definition of a
stratum of translation surfaces). The genus of 𝑌 is

𝑔 =
−𝜒(𝑌 ) + 2

2
=

−(𝑑− 𝑑(𝑛− 1) + 𝑑) + 2

2
=
𝑛− 3

2
𝑑+ 1 .
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Remark 5.9. The regular double-3-gon �̄�3 is a torus. All unramified coverings of a torus
have genus 1. Hence 𝑛 = 3 would not lead to very interesting coverings in this section
and is therefore excluded.

In the following we determine the action of a generating set of Γ(𝑋𝑛) on the homology.
As basis of the fundamental group 𝜋1(𝑋𝑛) = 𝐹𝑛−1, we choose the set {𝑥0, . . . , 𝑥𝑛−2} as
described in Section 3.1. Each covering surface 𝑌 is uniquely defined by a tuple

(𝑦0, . . . , 𝑦𝑛−2) = (𝑚(𝑥0), . . . ,𝑚(𝑥𝑛−2)) ∈ (Z/𝑑Z)𝑛−1.

As proved in the last section, two tuples (𝑦0, . . . , 𝑦𝑛−2) and (𝑦′0, . . . , 𝑦
′
𝑛−2) define the

same translation surface if and only if there exists an 𝑎 ∈ (Z/𝑑Z)× such that 𝑦𝑖 = 𝑎 · 𝑦′𝑖
for all 𝑖 ∈ {0, . . . , 𝑛 − 2}. The image of the surface 𝑌 under 𝐴 ∈ Γ(𝑋𝑛) is given by
(𝑦0, . . . , 𝑦𝑛−2) ·𝐴−1, where 𝐴 is the matrix defined by the action of 𝐴 on 𝐻1(�̄�𝑛,Z/𝑑Z) ∼=
(Z/𝑑Z)𝑛−1.
For every 𝑑 ≥ 2, the matrices 𝑇−1

𝑑 = 𝜙𝑑(𝑇
−1) and �̄�−1

𝑑 = 𝜙𝑑(𝑅
−1) in SL𝑛−1(Z/𝑑Z) are

the images of 𝑇−1 = ab(𝛾𝑇−1) ∈ SL𝑛−1(Z) and �̄�−1 = ab(𝛾𝑅−1) ∈ SL𝑛−1(Z) (see Chapter
4).
As proved in [Fre08], a possible lift of 𝑇−1 ∈ Γ(𝑋𝑛) to Aut(𝐹𝑛−1) is

𝛾𝑇−1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹𝑛−1 −→ 𝐹𝑛−1

𝑥0 ↦→ 𝑥0 𝑥1
𝑥1 ↦→ 𝑥1
𝑥2 ↦→ 𝑥−1

1 𝑥𝑛−2

. . . ↦→ . . .
𝑥𝑖 ↦→ 𝑥1

−1 (𝑥𝑛−2 𝑥2
−1) · · · (𝑥𝑛−𝑖+1 𝑥𝑖−1

−1)
𝑥𝑛−𝑖 (𝑥𝑖−1

−1 𝑥𝑛−𝑖+1) . . . (𝑥2
−1 𝑥𝑛−2)

. . . ↦→ . . .
𝑥𝑛−𝑖 ↦→ 𝑥1

−1 (𝑥𝑛−2 𝑥2
−1) · · · (𝑥𝑛−𝑖 𝑥𝑖

−1)
𝑥𝑛−𝑖 (𝑥𝑖−1

−1 𝑥𝑛−𝑖+1) . . . (𝑥2
−1 𝑥𝑛−2)

. . . ↦→ . . .
𝑥𝑛−2 ↦→ 𝑥1

−1 (𝑥𝑛−2 𝑥2
−1) 𝑥𝑛−2

for 𝑖 ∈ {3, . . . , 𝑛−1
2 }.
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5. Cyclic monodromy group

Thus 𝑇−1 has the following form:

𝑇−1 =

1 0 0 · · · · · · · · · · · · · · · 0 0
1 1 −1 · · · · · · · · · −1 −1
0 0 0 −2 · · · −2 −2 · · · −2 −1

...
...

...
. . .

. . .
...

... . .
.

. .
.

0
...

...
...

. . . −2 −2 . .
.

. .
. ...

...
... 0 · · · · · · 0 −1 0 · · · 0

...
... 0 · · · 0 1 2 0 · · · 0

...
...

... . .
.

. .
.

2
...

. . .
. . .

...
...

... 0 . .
.

. .
. ...

...
. . . 0

0 0 1 2 · · · 2 2 · · · · · · 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛−3
2

𝑛−3
2

𝑛−3
2

𝑛−3
2

Recall that this does not depend on the choice of the lift 𝛾𝑇−1 , because that choice is
unique up to an inner automorphism of 𝐹𝑛−1, and inner automorphisms lie in the kernel
of the map ab.
In [Fre08] Section 7.3 the lift 𝛾𝑇−1 was obtained by considering the decomposition of �̄�𝑛

into horizontal cylinders, such that 𝑇−1 shears every cylinder exactly once. In complete
analogy to the discussion, leading to a lift of 𝑇 𝑘 to Aut(𝐹𝑛), in Section 3.4 this cylinder
decomposition induces the following lift of 𝑇−𝑘 to Aut(𝐹𝑛):

𝛾𝑇−𝑘 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐹𝑛−1 −→ 𝐹𝑛−1

𝑥0 ↦→ 𝑥0 𝑥1
𝑘

𝑥1 ↦→ 𝑥1
𝑥2 ↦→ 𝑥1

−𝑘 (𝑥𝑛−2 𝑥2
−1)𝑘 𝑥2

. . . ↦→ . . .
𝑥𝑖 ↦→ 𝑥1

−𝑘 (𝑥𝑛−2 𝑥2
−1)𝑘 · · · (𝑥𝑛−𝑖+1 𝑥𝑖−1

−1)𝑘 · (𝑥𝑛−𝑖 𝑥𝑖
−1)𝑘

𝑥𝑖 (𝑥𝑖−1
−1 𝑥𝑛−𝑖+1)

𝑘 . . . (𝑥2
−1 𝑥𝑛−2)

𝑘

. . . ↦→ . . .
𝑥𝑛−𝑖 ↦→ 𝑥1

−𝑘 (𝑥𝑛−2 𝑥2
−1)𝑘 · · · (𝑥𝑛−𝑖+1 𝑥𝑖−1

−1)𝑘 · (𝑥𝑛−𝑖 𝑥𝑖
−1)𝑘

𝑥𝑛−𝑖 (𝑥𝑖−1
−1 𝑥𝑛−𝑖+1)

𝑘 . . . (𝑥2
−1 𝑥𝑛−2)

𝑘

. . . ↦→ . . .
𝑥𝑛−2 ↦→ 𝑥1

−𝑘 (𝑥𝑛−2 𝑥2
−1)𝑘 𝑥𝑛−2

for 𝑖 ∈ {3, . . . , 𝑛−1
2 }.
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5. Cyclic monodromy group

Hence ab(𝛾𝑇−𝑘) = 𝑇−𝑘 has the form

𝑇−𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · · · · 0 0
𝑘 1 −𝑘 . . . · · · · · · −𝑘 −𝑘
0 0 −𝑘 + 1 −2𝑘 . . . · · · −2𝑘 −𝑘
...

... 0
. . .

. . . . .
.

. .
.

0
...

. . .
. . . −2𝑘 −2𝑘 . .

.
. .
. ...

...
... 0 −𝑘 + 1 −𝑘 0

0 𝑘 𝑘 + 1 0
...

...
... . .

.
. .
.

2𝑘 2𝑘
. . .

. . .
...

...
... 0 . .

.
. .
. . . .

. . . 0
0 0 𝑘 2𝑘 . . . 2𝑘 𝑘 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This induces (𝑦0, . . . , 𝑦𝑛−2) · 𝑇−𝑘 = (𝑧0, . . . , 𝑧𝑛−2) where 𝑧0 = 𝑦0 + 𝑘𝑦1, 𝑧1 = 𝑦1,

𝑧𝑖 = −𝑘𝑦1 +

𝑖−1∑︁
𝑗=2

(−2𝑘𝑦𝑗 + 2𝑘𝑦𝑛−𝑗) − (𝑘 − 1)𝑦𝑖 + 𝑘𝑦𝑛−𝑖 (5.1)

for 𝑖 ∈ {2, . . . , 𝑛−1
2 } and

𝑧𝑖 = −𝑘𝑦1 +

𝑛−1−𝑖∑︁
𝑗=2

(−2𝑘𝑦𝑗 + 2𝑘𝑦𝑛−𝑗) + (𝑘 + 1)𝑦𝑖 − 𝑘𝑦𝑛−𝑖 (5.2)

for 𝑖 ∈ {𝑛+1
2 , . . . , 𝑛− 2}.

The following lift of 𝑅−1 ∈ Γ(𝑋𝑛) to Aut(𝐹𝑛−1) can also be found in [Fre08] Section 7.3:

𝛾𝑅
−1 :

{︃
𝐹𝑛−1 → 𝐹𝑛−1

𝑥𝑖 ↦→ 𝑥𝑖+𝑛−1
2

−1 𝑥𝑛−3
2

, 𝑖 ∈ {0, . . . , 𝑛− 2}

Here the indices are considered modulo 𝑛 and 𝑥𝑛−1 := 1 ∈ 𝐹𝑛.
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5. Cyclic monodromy group

This gives

�̄�−1 =

0 · · · · · · · · · · · · 0 −1 0 · · · 0

...
... 0

. . .
. . .

...
...

...
...

. . .
. . . 0

0 · · · · · · · · · · · · 0 0 · · · 0 −1
1 · · · · · · · · · · · · 1 · · · · · · · · · 1
−1 0 · · · · · · 0 0 · · · · · · · · · 0

0
. . .

. . .
...

...
...

...
. . . −1

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · · · · 0 −1 0 · · · · · · · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑛+1
2

𝑛−3
2

𝑛−3
2

𝑛−1
2

𝑛−1
2

𝑛−1
2

and especially (𝑦0, . . . , 𝑦𝑛−2) · �̄�−1 = (𝑧0, . . . , 𝑧𝑛−2) where

𝑧𝑖 = 𝑦𝑛−3
2

− 𝑦𝑛−1
2

+𝑖 for 𝑖 ∈ {0, . . . , 𝑛− 2} ∖ {(𝑛− 1)/2}, 𝑧𝑛−1
2

= 𝑦𝑛−3
2

(5.3)

and the indices are again given modulo 𝑛. The distinction of cases can be eliminated, if
we define 𝑦𝑛−1 := 0.

5.3. Short Γ(𝑋𝑛)-orbits for 𝑑 | 𝑛

In the special case where 𝑑 | 𝑛, we now construct a covering 𝑌𝑛,𝑑 → �̄�𝑛 that has a short
Γ(𝑋𝑛)-orbit and thereby a big Veech group (i.e. the Veech group has a small index in
Γ(𝑋𝑛)).
Define for every odd 𝑛 ≥ 5 the tuple (𝑦0, . . . , 𝑦𝑛−2) by

𝑦𝑖 =
1

2
𝑖(𝑖+ 1) ∈ Z .

Recall that this is well-defined because for every natural number 𝑖 either 𝑖 or 𝑖 + 1 is
even. As discussed earlier, the tuple defines a covering surface 𝑌𝑛,𝑑 for every 𝑑 ≥ 1. The
element 𝑦1 = 1

2 · 1 · 2 = 1. Hence for every 𝑑 the greatest common divisor of 𝑦1 and 𝑑 is 1.
Consequently the covering has monodromy group Z/𝑑Z and covering degree 𝑑.
If for example 𝑛 = 𝑑 = 5, then the tuple (𝑦0, . . . , 𝑦𝑛−2) = (0, 1, 3, 6) and leads to the
monodromy map 𝑚 : 𝐹4 → 𝑆5 with 𝑥0 ↦→ 𝜎0 = id, 𝑥1 ↦→ 𝜎 = (1 2 3 4 5), 𝑥2 ↦→ 𝜎3 =
(1 4 2 5 3), and 𝑥3 ↦→ 𝜎. Figure 5.1 shows the resulting translation surface 𝑌5,5 (identify
edges with the same label).
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5. Cyclic monodromy group

1

𝑎

𝑏𝑐
𝑎

𝑛

ℎ 𝑝

2

𝑑

𝑒𝑓
𝑑

𝑘 𝑐

3

𝑔

ℎ𝑖
𝑔

𝑜 𝑓

4

𝑗

𝑘𝑙
𝑗

𝑏 𝑖

5

𝑚

𝑛

𝑜𝑝
𝑚

𝑒 𝑙

Figure 5.1.: Translation surface 𝑌5,5.

We now determine the Γ(𝑋𝑛)-orbit of the covering surface 𝑌𝑛,𝑑 when 𝑑 is a divisor of 𝑛.
The Γ(𝑋𝑛)-orbit of 𝑌𝑛,𝑑 gives us the Veech group of 𝑌𝑛,𝑑. The results of the computations
are summarised in Theorem 7. Note that 𝑛 odd implies 𝑑 odd, thus all powers of 2 are
invertible in Z/𝑑Z. Throughout this section fractions mostly mean inverse in Z/𝑑Z.

Theorem 7. Let 𝑑 = 𝑝𝑚 with 𝑚 ≥ 1 and 𝑝 prime such that 𝑑 | 𝑛, then

Γ(𝑌𝑛,𝑑) = ⟨ {𝑇 𝑑} ∪ { 𝑇−𝑘′𝑅𝑇 𝑘 | gcd(𝑘, 𝑑) = 1, 𝑘′ = − 1
4𝑘 + 1 ∈ Z/𝑑Z }

∪ { 𝑇−𝑘′𝑅2𝑇 𝑘 | gcd(𝑘, 𝑑) > 1, 𝑘′ = 3𝑘−1
4𝑘−1 ∈ Z/𝑑Z }

∪ { 𝑇−𝑘′𝑅−1𝑇𝑅𝑇 𝑘 | gcd(𝑘, 𝑑) > 1, 𝑘′ = 𝑘
−4𝑘+1 ∈ Z/𝑑Z } ⟩ .

A set of coset representatives of Γ(𝑌𝑛,𝑑) in Γ(𝑋𝑛) is

𝐼, 𝑇, . . . , 𝑇 𝑑−1, 𝑅,𝑅𝑇 𝑝, 𝑅𝑇 2𝑝, . . . , 𝑅𝑇 (𝑝𝑚−1−1)𝑝

thus the index of Γ(𝑌𝑛,𝑑) in Γ(𝑋𝑛) is [Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑)] = 𝑑+ 𝑝𝑚−1 = 𝑝𝑚−1(𝑝+ 1). In the
special case where 𝑚 = 1 and therefore 𝑑 is a prime this implies

Γ(𝑌𝑛,𝑑) = ⟨ {𝑇−𝑘′𝑅𝑇 𝑘 | 𝑘 ∈ {1, . . . , 𝑑− 1}, 𝑘′ = − 1

4𝑘
+ 1} ∪ {𝑇 𝑑, 𝑇−1𝑅2, 𝑅−1𝑇𝑅} ⟩

with [Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑)] = 𝑑+ 1.

One remarkable property of the Veech group of 𝑌𝑛,𝑑 is that the number 𝑛, defining the
primitive base surface, does not seem to matter for the generators. Of course the matrices
𝑅 and 𝑇 do depend on 𝑛, and also 𝑑 depends on 𝑛 because it has to divide 𝑛. But it is
true that the coset graph of Γ(𝑌𝑛,𝑑) in Γ(𝑋𝑛) equals the coset graph of Γ(𝑌𝑛′,𝑑) in Γ(𝑋𝑛′)
whenever 𝑑 divides both 𝑛 and 𝑛′.
Before we start to prove the theorem, we use it to obtain the Veech group of 𝑌𝑛,𝑑 for a
general divisor 𝑑 of 𝑛.

Proposition 5.10. Let 𝑑 =
∏︀𝑙

𝑖=1 𝑝
𝑚𝑖
𝑖 with pairwise different primes 𝑝𝑖. Then

Γ(𝑌𝑛,𝑑) =

𝑙⋂︁
𝑖=1

Γ(𝑌𝑛,𝑝𝑚𝑖
𝑖

)

and the index of Γ(𝑌𝑛,𝑑) in Γ(𝑋𝑛) is

[Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑)] =

𝑙∏︁
𝑖=1

𝑝𝑚𝑖−1
𝑖 (𝑝𝑖 + 1) .
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𝑇 10

𝑇 9

𝑅
𝐼2

𝑇 2

𝑇

𝑇 4

𝑇 3

𝑇 6

𝑇 5

𝑇 8

𝑇 7

Figure 5.2.: Coset graph of Γ(𝑌𝑛,11) in Γ(𝑋𝑛) where 11 | 𝑛.

Proof. By induction on 𝑙 Lemma 5.8 states that Γ(𝑌𝑛,𝑑) =
⋂︀𝑙

𝑖=1 Γ(𝑌𝑛,𝑝𝑚𝑖
𝑖

).

When we prove that for 𝑑 = 𝑑1 · 𝑑2 with gcd(𝑑1, 𝑑2) = 1 the index of Γ(𝑌𝑛,𝑑1𝑑2) in Γ(𝑋𝑛)
is

[Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑1𝑑2)] = [Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑1)] · [Γ(𝑋𝑛) : Γ(𝑌𝑛,𝑑2)] ,

then the claim follows by induction on 𝑙 with Theorem 7.
Lemma 5.8 states that Γ(𝑌𝑛,𝑑) = Γ(𝑌𝑛,𝑑1) ∩ Γ(𝑌𝑛,𝑑2). Furthermore, Lemma 5.4 tells us
that Γ(𝑌𝑛,𝑑𝑖) is a congruence group of level 𝑑𝑖 for 𝑖 ∈ {1, 2}, and therefore Γ(𝑑𝑖) ⊆ Γ(𝑌𝑛,𝑑𝑖).
The principal congruence groups Γ(𝑑𝑖) are normal, hence Γ(𝑑1) · Γ(𝑑2) is a group. More
precisely it is a congruence group of level 𝑑1 and a congruence group of level 𝑑2. As
gcd(𝑑1, 𝑑2) = 1, Lemma 4.16 implies that Γ(𝑑1) · Γ(𝑑2) = Γ(𝑋𝑛). Altogether we have

Γ(𝑋𝑛) = Γ(𝑑1) · Γ(𝑑2) ⊆ Γ(𝑌𝑛,𝑑1) · Γ(𝑌𝑛,𝑑2) ⊆ Γ(𝑋𝑛) .

Thus Γ(𝑌𝑛,𝑑1) · Γ(𝑌𝑛,𝑑2) is the group Γ(𝑋𝑛).
In general, if two finite index subgroups 𝑈 and 𝐻 of a group 𝐺 satisfy 𝑈 ·𝐻 = 𝐺, then
[𝐺 : 𝑈 ∩𝐻] = [𝐺 : 𝑈 ] · [𝐺 : 𝐻] (examine the bijection 𝑢𝐻 ↦→ 𝑢(𝐻 ∩𝑈) between the cosets
of 𝐻 in 𝐺 and the cosets of 𝐻 ∩ 𝑈 in 𝑈).
This completes the proof.

The ingredients to the proof of Theorem 7 are all shown in the remainder of this section.
In order to follow the proof, it might help to first look at some of the coset graphs of
Γ(𝑌𝑛,𝑑) in Γ(𝑋𝑛). The Figures 5.2, 5.3 and 5.4 show the coset graphs of Γ(𝑌𝑛,𝑑) in
Γ(𝑋𝑛) for 𝑑 ∈ {11, 15, 27} with respect to the generating set {𝑅, 𝑇} of Γ(𝑋𝑛). The
vertices of the graph represent the cosets Γ(𝑌𝑛,𝑑)∖Γ(𝑋𝑛). To distinguish the coset
Γ(𝑌𝑛,𝑑) with representative 𝐼2 from the other cosets, it is drawn as a box. The edges
𝐴 ·Γ(𝑌𝑛,𝑑) → 𝑇𝐴 ·Γ(𝑌𝑛,𝑑) are solid, while the edges 𝐴 ·Γ(𝑌𝑛,𝑑) → 𝑅𝐴 ·Γ(𝑌𝑛,𝑑) are drawn
dashed.
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𝑇 10𝑅2
𝑇 9𝑅

𝑇 10𝑅

𝑇 12𝑅

𝑇 9𝑅2

𝑇 3𝑅

𝑅

𝑇 6𝑅

𝑇 5𝑅

𝐼2
𝑇 2

𝑇

𝑇 4

𝑇 3

𝑇 6

𝑇 5

𝑇 8

𝑇 7𝑇 10

𝑇 9

𝑇 12

𝑇 11

𝑇 14

𝑇 13

Figure 5.3.: Coset graph of Γ(𝑌𝑛,15) in Γ(𝑋𝑛) where 15 | 𝑛.

Figure 5.4.: Coset graph of Γ(𝑌𝑛,27) in Γ(𝑋𝑛) where 27 | 𝑛.
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Now we calculate the orbit of 𝑌𝑛,𝑑 under the action of Γ(𝑋𝑛). The image of 𝑌𝑛,𝑑 by 𝑇 𝑘 is
(𝑧0(𝑘), . . . , 𝑧𝑛−2(𝑘)) = (𝑦0, . . . , 𝑦𝑛−2) · 𝑇−𝑘. We see that 𝑧0(𝑘) = 𝑦0 + 𝑘𝑦1 = 𝑘 and that
𝑧1(𝑘) = 𝑦1 = 1. Furthermore, in Z/𝑑Z,

𝑦𝑖 − 𝑦𝑛−𝑖 =
1

2
𝑖(𝑖+ 1) − 1

2
(𝑛− 𝑖)(𝑛− 𝑖+ 1) = 𝑖 .

Recall that 𝑑 | 𝑛, thus 𝑛 ≡ 0 mod 𝑑. Furthermore, recall that 𝑛 is odd, thus all
powers of 2 are invertible in Z/𝑑Z. It follows by Equation 5.1 and Equation 5.2 that for
𝑖 ∈ {2, . . . , 𝑛−1

2 }

𝑧𝑖(𝑘) = −𝑘𝑦1 − 2𝑘

𝑖−1∑︁
𝑗=2

(𝑦𝑗 − 𝑦𝑛−𝑗) − 𝑘(𝑦𝑖 − 𝑦𝑛−𝑖) + 𝑦𝑖

= −𝑘 − 2𝑘

𝑖−1∑︁
𝑗=2

𝑗 − 𝑘𝑖+ 𝑦𝑖

= −𝑘 − 2𝑘(
(𝑖− 1)𝑖

2
− 1) − 𝑘𝑖+

1

2
𝑖(𝑖+ 1)

= −𝑘(𝑖2 − 1) +
1

2
𝑖(𝑖+ 1)

and for 𝑖 ∈ {𝑛+1
2 , . . . , 𝑛− 2}

𝑧𝑖(𝑘) = −𝑘𝑦1 − 2𝑘

𝑛−1−𝑖∑︁
𝑗=2

(𝑦𝑗 − 𝑦𝑛−𝑗) + 𝑘(𝑦𝑖 − 𝑦𝑛−𝑖) + 𝑦𝑖

= −𝑘(𝑖2 − 1) +
1

2
𝑖(𝑖+ 1) .

Consequently

𝑧𝑖(𝑘) = −𝑘(𝑖2 − 1) +
1

2
𝑖(𝑖+ 1) for all 𝑖 ∈ {0, . . . , 𝑛− 2} .

Lemma 5.11. The translation surfaces 𝑌𝑛,𝑑, 𝑇 ·𝑌𝑛,𝑑, . . . , 𝑇 𝑑−1 ·𝑌𝑛,𝑑 are different whereas
𝑌𝑛,𝑑 and 𝑇 𝑑 · 𝑌𝑛,𝑑 coincide.

Proof. The fact that 𝑌𝑛,𝑑 ∼= 𝑇 𝑑 · 𝑌𝑛,𝑑 follows immediately by

𝑧𝑖(𝑑) = −𝑑(𝑖2 − 1) +
1

2
𝑖(𝑖+ 1) =

1

2
𝑖(𝑖+ 1) = 𝑦𝑖 ∈ Z/𝑑Z .

By Lemma 5.6, the surfaces 𝑇 𝑘 · 𝑌𝑛,𝑑 and 𝑇 𝑘′ · 𝑌𝑛,𝑑 are equivalent iff there exists an
𝑎 ∈ (Z/𝑑Z)× with 𝑎 · 𝑧𝑖(𝑘) = 𝑧𝑖(𝑘

′) for all 𝑖. So suppose that 𝑎 · 𝑧𝑖(𝑘) = 𝑧𝑖(𝑘
′) for an

𝑎 ∈ (Z/𝑑Z)× and all 𝑖 ∈ {0, . . . , 𝑛− 2}. Then for 𝑖 ∈ {0, . . . , 𝑛− 2}

𝑎(−𝑘(𝑖2 − 1) + 1
2 𝑖(𝑖+ 1)) = −𝑘′(𝑖2 − 1) + 1

2 𝑖(𝑖+ 1)
or equivalently (−𝑎𝑘 + 1

2𝑎+ 𝑘′ − 1
2)𝑖2 + (12𝑎−

1
2)𝑖+ 𝑎𝑘 − 𝑘′ = 0 .

For 𝑖 = 0 this implies 𝑎𝑘 = 𝑘′ , while 𝑖 = 1 gives 𝑎 = 1, thus 𝑘′ = 𝑘 mod 𝑑.
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5. Cyclic monodromy group

The surface 𝑅𝑇 𝑘 ·𝑌𝑛,𝑑 is represented by (ℎ0(𝑘), . . . , ℎ𝑛−2(𝑘)) = (𝑧0(𝑘), . . . , 𝑧𝑛−2(𝑘)) · �̄�−1.
We extend the formula for 𝑧𝑖(𝑘) from above to 𝑖 = 𝑛− 1 and obtain 𝑧𝑛−1(𝑘) = 0. This
implies that we do not have to make a case distinction. Then Equation 5.3 tells us that

ℎ𝑖(𝑘) = 𝑧𝑛−3
2

(𝑘) − 𝑧𝑛−1
2

+𝑖(𝑘)

= −𝑘((−3
2 )2 − 1) + 1

2
−3
2 (−3

2 + 1) + 𝑘((−1
2 + 𝑖)2 − 1) − 1

2(−1
2 + 𝑖)(−1

2 + 𝑖+ 1)
= 𝑘(𝑖2 − 𝑖− 2) − 1

2 𝑖
2 + 1

2

for 𝑖 ∈ {0, . . . , 𝑛− 2}.

Lemma 5.12. Let 𝑘 ∈ N with gcd(𝑘, 𝑑) = 1. Then 𝑅𝑇 𝑘 · 𝑌𝑛,𝑑 ∼= 𝑇 𝑘′ · 𝑌𝑛,𝑑, where
𝑘′ = − 1

4𝑘 + 1.

Proof. If gcd(𝑑, 𝑘) = 1, then 𝑘 ∈ (Z/𝑑Z)×. Set 𝑎 = − 1
2𝑘 ∈ Z/𝑑Z×. The calculation

𝑎 · ℎ𝑖(𝑘) = 𝑎𝑘(𝑖2 − 𝑖− 2) − 1
2𝑎𝑖

2 + 1
2𝑎

= − 1
2𝑘𝑘(𝑖2 − 𝑖− 2) − 1

2(− 1
2𝑘 )𝑖2 + 1

2(− 1
2𝑘 )

= −(− 1
4𝑘 + 1)(𝑖2 − 1) + 1

2 𝑖(𝑖+ 1)
= 𝑧𝑖(− 1

4𝑘 + 1)

finishes the proof.

Lemma 5.13. If 𝑘 ∈ N with gcd(𝑘, 𝑑) > 1, then there does not exist a 𝑘′ ∈ N such that
𝑅𝑇 𝑘 · 𝑌𝑛,𝑑 is equivalent to 𝑇 𝑘′ · 𝑌𝑛,𝑑.

Proof. Suppose that 𝑅𝑇 𝑘 ·𝑌𝑛,𝑑 ∼= 𝑇 𝑘′ ·𝑌𝑛,𝑑 for some 𝑘′. Then there exists an 𝑎 ∈ (Z/𝑑Z)×

such that 𝑎 · ℎ𝑖(𝑘) = 𝑧𝑖(𝑘
′) for all 𝑖 ∈ {0, . . . , 𝑛− 2}. Consider the case 𝑖 = 1:

𝑎 · ℎ1(𝑘) = 𝑎(−2𝑘) = 1 = 𝑧1(𝑘
′) .

An immediate consequence is that 𝑘 ∈ (Z/𝑑Z)×, contradicting gcd(𝑘, 𝑑) > 1.

Next, we analyse the 𝑅 and 𝑇 images of 𝑅𝑇 𝑘 · 𝑌𝑛,𝑑. They are not equivalent to the
elements in the Γ(𝑋𝑛)-orbit of 𝑌𝑛,𝑑 which we considered earlier iff gcd(𝑘, 𝑑) > 1. As
above, we extend the formula for ℎ𝑖(𝑘) to 𝑖 = 𝑛 − 1 and get ℎ𝑛−1(𝑘) = 0. Then,
according to Equation 5.3, the surface 𝑅2𝑇 𝑘 · 𝑌𝑛,𝑑 is represented by (𝜌0(𝑘), . . . , 𝜌𝑛−2(𝑘)) :

= (ℎ0(𝑘), . . . , ℎ𝑛−2(𝑘)) · �̄�−1, where

𝜌𝑖(𝑘) = ℎ𝑛−3
2

(𝑘) − ℎ𝑛−1
2

+𝑖(𝑘)

= 𝑘((−3
2 )2 − −3

2 − 2) − 1
2(−3

2 )2 + 1
2

−𝑘((−1
2 + 𝑖)2 − (−1

2 + 𝑖) − 2) + 1
2(−1

2 + 𝑖)2 − 1
2

= 𝑘(−𝑖2 + 2𝑖+ 3) + 1
2 𝑖

2 − 1
2 𝑖− 1 .

Equation 5.1 and Equation 5.2 with 𝑘 = 1, imply the following tuple as representatives
for 𝑇𝑅𝑇 𝑘 · 𝑌𝑛,𝑑: (𝜃0(𝑘), . . . , 𝜃𝑛−2(𝑘)) := (ℎ0(𝑘), . . . , ℎ𝑛−2(𝑘)) · 𝑇−1 where

𝜃0(𝑘) = ℎ0(𝑘) + ℎ1(𝑘) = −2𝑘 +
1

2
− 2𝑘 = −4𝑘 +

1

2
and 𝜃1(𝑘) = ℎ1(𝑘) = −2𝑘 .
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5. Cyclic monodromy group

Furthermore,

ℎ𝑖(𝑘) − ℎ𝑛−𝑖(𝑘) = 𝑘(𝑖2 − 𝑖− 2) − 1
2 𝑖

2 + 1
2 − 𝑘((−𝑖)2 − (−𝑖) − 2) + 1

2(−𝑖)2 − 1
2

= −2𝑘𝑖

so that

𝜃𝑖(𝑘) = −ℎ1(𝑘) − 2
𝑖−1∑︁
𝑗=2

(ℎ𝑗(𝑘) − ℎ𝑛−𝑗(𝑘)) + ℎ𝑛−𝑖(𝑘))

= 2𝑘 + 4𝑘(
(𝑖− 1)𝑖

2
− 1) + 𝑘((−𝑖)2 − (−𝑖) − 2) − 1

2
(−𝑖)2 +

1

2

= 𝑘(3𝑖2 − 𝑖− 4) − 1

2
𝑖2 +

1

2

for 𝑖 ∈ {2, . . . , 𝑛−1
2 } and

𝜃𝑖(𝑘) = −ℎ1(𝑘) − 2

𝑛−1−𝑖∑︁
𝑗=2

(ℎ𝑗(𝑘) − ℎ𝑛−𝑗(𝑘)) + (ℎ𝑖(𝑘) − ℎ𝑛−𝑖(𝑘)) + ℎ𝑖(𝑘)

= 2𝑘 + 4𝑘(
(−1 − 𝑖)(−𝑖)

2
− 1) − 2𝑘𝑖+ 𝑘(𝑖2 − 𝑖− 2) − 1

2
𝑖2 +

1

2

= 𝑘(3𝑖2 − 𝑖− 4) − 1

2
𝑖2 +

1

2

for 𝑖 ∈ {𝑛+1
2 , . . . , 𝑛− 2}.

We conclude that
𝜃𝑖(𝑘) = 𝑘(3𝑖2 − 𝑖− 4) − 1

2
𝑖2 +

1

2

for all 𝑖 ∈ {0, . . . , 𝑛− 2}.
Next we assume that 𝑑 = 𝑝𝑚 is a prime power.

Lemma 5.14. If 𝑑 = 𝑝𝑚 and 𝑘 = 𝑝 · 𝑙 where 𝑚 ≥ 1, 𝑝 is an odd prime number and 𝑙 ≥ 0,
then 𝑅2𝑇 𝑘 · 𝑌𝑛,𝑑 ∼= 𝑇 𝑘′ · 𝑌𝑛,𝑑 where 𝑘′ = 3𝑘−1

4𝑘−1 .

Proof. Note that 𝑝 | 𝑘, thus 𝑝 - 4𝑘 − 1 and 𝑘′ is well-defined.
Set 𝑎 = 4𝑘 − 1 ∈ (Z/𝑑Z)× and check that 𝜌𝑖(𝑘) = 𝑎 · 𝑧𝑖(𝑘′) for all 𝑖 ∈ {0, . . . , 𝑛− 2}:

𝜌𝑖(𝑘) − 𝑎 · 𝑧𝑖(𝑘′)

= 𝑘(−𝑖2 + 2𝑖+ 3) +
1

2
𝑖2 − 1

2
𝑖− 1 − 𝑎 · (−3𝑘 − 1

4𝑘 − 1
(𝑖2 − 1) +

1

2
𝑖(𝑖+ 1))

= 𝑘(−𝑖2 + 2𝑖+ 3) +
1

2
𝑖2 − 1

2
𝑖− 1 + (3𝑘 − 1)(𝑖2 − 1) − (4𝑘 − 1)

1

2
(𝑖2 + 𝑖)

= 𝑖2 · (−𝑘 +
1

2
+ (3𝑘 − 1) − 1

2
(4𝑘 − 1)) + 𝑖 · (2𝑘 − 1

2
− 1

2
(4𝑘 − 1)) + 3𝑘 − 1 − (3𝑘 − 1)

= 0
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Lemma 5.15. For 𝑑 = 𝑝𝑚 and 𝑘 = 𝑝 · 𝑙 where 𝑚 ≥ 1, 𝑝 is an odd prime number and
𝑙 ≥ 0, 𝑇𝑅𝑇 𝑘 · 𝑌𝑛,𝑑 ∼= 𝑅𝑇 𝑘′ · 𝑌𝑛,𝑑 where 𝑘′ = 𝑘

−4𝑘+1 .

Proof. As above 𝑝 | 𝑘, thus 𝑝 - −4𝑘+1 and 𝑘′ is well-defined. Set 𝑎 = −4𝑘+1 ∈ (Z/𝑑Z)×

and check that 𝜃𝑖(𝑘) = 𝑎 · ℎ𝑖(𝑘′) for all 𝑖 ∈ {0, . . . , 𝑛− 2}:

𝜃𝑖(𝑘) − 𝑎 · ℎ𝑖(𝑘′)

= 𝑘(3𝑖2 − 𝑖− 4) − 1

2
𝑖2 +

1

2
− (−4𝑘 + 1)(

𝑘

−4𝑘 + 1
(𝑖2 − 𝑖− 2) − 1

2
𝑖2 +

1

2
)

= 𝑘(3𝑖2 − 𝑖− 4 − (𝑖2 − 𝑖− 2) + 4(−1

2
𝑖2 +

1

2
)) − 1

2
𝑖2 +

1

2
− (−1

2
𝑖2 +

1

2
) = 0

Proof of Theorem 7. To finally prove Theorem 7, we only have to sum up the results of
the preceding lemmas. Remember that 𝑑 = 𝑝𝑚 for an odd prime number 𝑝.
Lemma 5.11 together with Lemma 5.13 proves that

𝐼, 𝑇, . . . , 𝑇 𝑑−1, 𝑅,𝑅𝑇 𝑝, 𝑅𝑇 2𝑝, . . . , 𝑅𝑇 (𝑝𝑚−1−1)𝑝

are representatives of pairwise disjoint cosets in Γ(𝑌𝑛,𝑑)∖Γ(𝑋𝑛).
Lemma 5.11 also states that 𝑇 𝑑 ∈ Γ(𝑌𝑛,𝑑).

{𝑇−𝑘′𝑅𝑇 𝑘 | 𝑘 ∈ N, gcd(𝑘, 𝑑) = 1, 𝑘′ = − 1

4𝑘
+ 1} ⊆ Γ(𝑌𝑛,𝑑) ,

Lemma 5.14 shows that

{𝑇−𝑘′𝑅2𝑇 𝑙𝑝 | 𝑙 ∈ {0, . . . , 𝑝𝑚−1 − 1}, 𝑘′ =
3𝑙𝑝− 1

4𝑙𝑝− 1
} ⊆ Γ(𝑌𝑛,𝑑) ,

and Lemma 5.15 states that

{𝑇−𝑘′𝑅−1𝑇𝑅𝑇 𝑙𝑝 | 𝑙 ∈ {0, . . . , 𝑝𝑚−1 − 1}, 𝑘′ =
𝑙𝑝

−4𝑙𝑝+ 1
} ⊆ Γ(𝑌𝑛,𝑑).

Now the Reidemeister-Schreier method (see e.g. [LS77] Chapter II.4) implies that these
elements form a generating set for a group which has the set {𝐼, 𝑇, . . . , 𝑇 𝑑−1, 𝑅, 𝑅𝑇 𝑝,
𝑅𝑇 2𝑝, . . . , 𝑅𝑇 (𝑝𝑚−1−1)𝑝} as system of left coset representatives (or, to be more precise, as
left Schreier transversal). Note, that in [LS77] Chapter II.4 a Schreier transversal is a
system of right coset representatives 𝑆 such that every initial segment of an element in
𝑆 (as word in the generators) is again contained in 𝑆. If one interchanges right cosets
by left cosets then everything works the same if one reverts the order in all words. In
particular, a left Schreier transversal is a system of left coset representatives 𝑆 such that
all terminal segments of elements in 𝑆 are contained in 𝑆.
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6. Monodromy group 𝑆𝑑 or 𝐴𝑑

Our goal in this chapter is to show that every stratum that contains a covering surface
of a primitive translation surface �̄� of genus 𝑔 ≥ 2 also contains a covering surface of
�̄� with monodromy group 𝑆𝑑 and, if 𝑑 ≥ 5 and the ramification indices match 𝐴𝑑 (see
the conditions in Theorem 8), also a covering surface with monodromy group 𝐴𝑑. In
order to do so, we use the fact that for all 𝑑 ̸= 4 every nontrivial element in 𝑆𝑑 and 𝐴𝑑,
respectively, can be completed to a two element generating set of 𝑆𝑑 or 𝐴𝑑. This will be
shown in the first section.

6.1. Generating 𝑆𝑑 and 𝐴𝑑 with two elements

To construct the generating sets, we use the following two theorems from the 19th century.

Proposition 6.1 (Bertrand’s postulate – see the note to Theorem 418 on page 373
in [HW79]). For all natural numbers 𝑛 > 3 there exists a prime number 𝑝 such that
𝑛 < 𝑝 < 2𝑛− 2.

Remember that a transitive permutation group in 𝑆𝑑 is called primitive, if it does not
respect a nontrivial partition of {1, . . . , 𝑑}. A good reference for permutation groups and
their properties is e.g. [DM96].

Proposition 6.2 (Markgraf, 1892 – see Theorem 13.8 in [Wie64]). A primitive per-
mutation group of degree 𝑑, which contains a cycle of degree 𝑚 with 1 < 𝑚 < 𝑑 is
(𝑑−𝑚+ 1)-fold transitive.

The outline of the proof of the following lemma was suggested to me by Jan-Christoph
Schlage-Puchta. From Gareth Jones I learned that its result for 𝑛 > 4 can be found in
[GK00] Section 8 and that the following Lemma 6.5 for 𝑛 > 4 is a special case of the
corollary in Section 1 in [GK00].

Lemma 6.3. Let 𝑑 ̸= 4 and 𝜎 ∈ 𝑆𝑑 ∖ {id}, then there exists a �̂� ∈ 𝑆𝑑 such that 𝜎 and �̂�
generate the whole symmetric group 𝑆𝑑.

Proof. If 𝜎 is a transposition, then �̂� can be chosen as 𝑑-cycle, because (1 2 3 . . . 𝑑) and
(1 2) generate 𝑆𝑑. Otherwise we distinguish two cases. If 𝑑 ∈ {2, 3, 5, 6, 7} the claim can
be checked “by hand” which is done in Appendix B.1. For 𝑑 > 7, we use Proposition 6.1.
If 𝑑 is even, we apply the proposition to 𝑑

2 > 3 and obtain a prime number 𝑝 with
𝑑
2 < 𝑝 < 2𝑑

2 − 2 = 𝑑 − 2. For odd 𝑑 we apply it to 𝑑−1
2 > 3 and get a prime number
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𝑝 with 𝑑−1
2 < 𝑝 < 2𝑑−1

2 − 2 = 𝑑 − 3. In both cases 𝑑 − 𝑝 > 2, thus we can write 𝑑 as
𝑑 = 𝑝+ 2𝑘 +𝑚 where 𝑘 ≥ 1 and 𝑚 ∈ {0, 1}, depending on the parity of 𝑑. Observe that
if 𝑑 is odd, 𝑝 > 𝑑−1

2 , thus 𝑝 ≥ 𝑑+1
2 > 𝑑

2 . Consequently, in both cases 𝑝 > 𝑑
2 , so 2𝑘 < 𝑝.

This implies that 2𝑘 is coprime to 𝑝.
Now we choose �̂� as permutation with cycle lengths 𝑝, 2𝑘 and 𝑚. Since 𝜎 is not a
transposition, it shifts at least three elements, and we can choose �̂� in a way that makes
𝐺 := ⟨𝜎, �̂�⟩ a transitive permutation group.
The permutation �̂�2𝑘 is a 𝑝-cycle, because 2𝑘 is coprime to 𝑝. Together with the fact that
𝑝 > 𝑑

2 we see that 𝐺 is primitive: suppose that 𝐵 = {𝑏1, . . . , 𝑏𝑟} is a partition of {1, . . . , 𝑑}
that is respected by the action of 𝐺. If 𝑔 · 𝑏𝑖 = 𝑏𝑗 for 𝑔 ∈ 𝐺, then 𝑔 induces a bijection
between 𝑏𝑖 and 𝑏𝑗 . The group 𝐺 acts transitively, thus all 𝑏𝑗 have the same cardinality.
The orbit of an element under the 𝑝-cycle �̂�2𝑘 either lies in one 𝑏𝑗 or in 𝑝 different partition
sets. Consequently either 𝑟 ≥ 𝑝 or |𝑏𝑗 | ≥ 𝑝. But then 𝑑 = 𝑟 · |𝑏𝑗 | ≥ 𝑝 · 𝑙 > 𝑑

2 · 𝑙. Thus
𝑙 = 1, which means that either 𝑟 = 1 or |𝑏𝑗 | = 1. In both cases the resulting partition is
trivial, hence 𝐺 is primitive.
Now Proposition 6.2 implies that 𝐺 is (𝑑 − 𝑝+ 1)-fold transitive. Since 𝑝 < 𝑑− 2 and
𝑑− (𝑑− 3) + 1 = 4, 𝐺 is at least 4-fold transitive.
Nagao proved in 1965 that under the Schreier conjecture for simple finite groups, every
6-fold transitive permutation group in 𝑆𝑑 contains the alternating group 𝐴𝑑 (see [Nag66]).
The Schreier conjecture was proven, using the classification of finite simple groups (see
e.g. page 133 and Appendix A in [DM96]).
As 𝑝 > 3, 𝑝− 1 is always even. On the contrary 2𝑘− 1 is always odd. Thus 𝑝− 1 + 2𝑘− 1
is odd and �̂� /∈ 𝐴𝑑. So if 𝐺 is at least 6-fold transitive, we conclude that 𝐺 = 𝑆𝑑.
The only 4-fold or 5-fold transitive permutation groups are the Mathieu groups 𝑀11,
𝑀12, 𝑀23 and 𝑀24 (see [DM96] Chapter 7.3). If we find a prime number 𝑝 as above with
𝑝 - |𝑀𝑑| for every 𝑑 ∈ {11, 12, 23, 24}, then 𝐺 can not be 𝑀𝑑, because 𝑝 = |⟨�̂�⟩| divides
|𝐺|. The order of 𝑀11 is 24 ·32 ·5 ·11, so 𝑝 = 7 (112 < 7 < 9) has the desired property. The
orders of 𝑀12, 𝑀23 and 𝑀24 are 26 · 33 · 5 · 11, 27 · 32 · 5 · 7 · 11 · 23 and 210 · 33 · 5 · 7 · 11 · 23
so that 7, 13 and 13, respectively, is a possible choice for 𝑝 (see [DM96] Appendix A).

Remark 6.4. The permutation 𝜎 = (1 2)(3 4) can not be completed to a generating set
of 𝑆4 with one other element, thus the statement of Lemma 6.3 is false for 𝑑 = 4: the
permutation 𝜎 is even, so if 𝜎 and �̂� generated 𝑆4, the permutation �̂� would be odd, i.e. a
4-cycle or a 2-cycle. If �̂� is a 4-cycle, then 𝜎�̂�𝜎−1 either equals �̂� or �̂�−1. Thus together
with a 4-cycle 𝜎 either generates the cyclic group with four elements or the dihedral group
𝐷4 with eight elements. If �̂� is a 2-cycle, it is without loss of generality (1 3) because the
resulting group has to be transitive. Then �̂�𝜎 = (1 2 3 4) is of order 4 and again we get
the dihedral group 𝐷4.
As ⟨(1 2), (1 2 3 4)⟩ = 𝑆4 and ⟨(1 2 3), (1 2 3 4)⟩ = 𝑆4, (1 2)(3 4) is (up to renaming) the
only reason why Lemma 6.3 does not hold for 𝑑 = 4.

The proof of Lemma 6.3 can be easily adapted in order to prove a similar lemma for the
alternating group 𝐴𝑑.
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Lemma 6.5. Let 𝑑 ≥ 2 and 𝜎 ∈ 𝐴𝑑 ∖ {id}. Then there exists a �̂� ∈ 𝐴𝑑 such that 𝜎 and
�̂� generate the whole alternating group 𝐴𝑑.

Proof. The group 𝐴𝑑 does not contain any 2-cycles, thus 𝜎 shifts at least three elements.
As before we check the lemma for small 𝑑 ∈ {2, . . . , 7} by hand (see Appendix B.2). For
𝑑 > 7 we find a prime number 𝑝 with 𝑑

2 < 𝑝 < 𝑑− 2 as in the proof of Lemma 6.3. Here
we write 𝑑 = 𝑝+ (2𝑘 + 1) +𝑚 with 𝑚 ∈ {0, 1} and 𝑘 ≥ 0. A permutation �̂� with cycle
lengths 𝑝, 2𝑘 + 1 and 𝑚 is even because 𝑝− 1 is even, 2𝑘 is even and max(𝑚− 1, 0) = 0.
The number (2𝑘 + 1) is coprime to 𝑝 thus �̂�2𝑘+1 is a 𝑝-cycle.
As before �̂� may be chosen in a way that makes 𝐺 := ⟨𝜎, �̂�⟩ ⊆ 𝐴𝑑 a transitive permutation
group, which is at least 4-fold transitive. If it is at least 6-fold transitive, then Nagaos
theorem implies 𝐺 = 𝐴𝑑. As �̂�2𝑘+1 is a 𝑝-cycle in 𝐺, the 4- and 5-fold transitive
permutation groups can be avoided as before by choosing an appropriate prime number
𝑝.

6.2. 𝑆𝑑- and 𝐴𝑑-orbits

With the help of the results on generating sets of cardinality 2 from the last section, we
can now prove our theorem.
The ramification behaviour of a translation covering 𝑝 : 𝑌 → �̄� can be described in
the following way: let Σ(�̄�) = {𝑠1, . . . , 𝑠𝜈} and {𝑦𝑖,1, . . . , 𝑦𝑖,𝑘𝑖} be the preimages of the
singularity 𝑠𝑖. If the ramification index of 𝑦𝑖,𝑗 is 𝑙𝑖,𝑗 then

∑︀𝑘𝑖
𝑗=1 𝑙𝑖,𝑗 = 𝑑, where 𝑑 is the

degree of the covering. Thus for fixed 𝑖 the 𝑙𝑖,𝑗 form a partition of 𝑑. We store the
ramification indices in the form (𝑝1, . . . , 𝑝𝜈), where 𝑝𝑖 = (𝑙𝑖,1, . . . , 𝑙𝑖,𝑘𝑖) is the partition of
𝑑, encoding the ramification above the singularity 𝑠𝑖.
The total ramification index of 𝑝 is defined as

∑︀𝜈
𝑖=1

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗−1). As the Euler character-

istic of an orientable surface is 2− 2𝑔, the Riemann-Hurwitz formula (see Proposition 1.3)
implies that the total ramification index is even.

Theorem 8. Let �̄� be a primitive translation surface of genus 𝑔 ≥ 2 with 𝜈 ≥ 1 singular-
ities. In addition let (𝑝1, . . . , 𝑝𝜈) be a tuple of partitions of 𝑑 with 𝑝𝑖 = (𝑙𝑖,1, . . . , 𝑙𝑖,𝑘𝑖) and∑︀𝜈

𝑖=1

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1) even. Then there exists a translation covering 𝑝 : 𝑌 → �̄� of degree 𝑑

with this ramification behaviour and monodromy group 𝑆𝑑.
If 𝑑 ≥ 5 and

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1) is even for every 𝑖 ∈ {1, . . . , 𝜈}, then there also exists a

covering with monodromy group 𝐴𝑑 and ramification (𝑝1, . . . , 𝑝𝜈).

Remark 6.6. If �̄� has exactly one singularity, then
∑︀𝑘1

𝑗=1(𝑙1,𝑗 − 1) is even, thus the
condition on the ramification for the monodromy group 𝐴𝑑 in Theorem 8 is satisfied.

Remark 6.7. The multiplicities 𝑚1, . . . ,𝑚𝜈 of the singularities of a translation surface
�̄� of genus 𝑔 satisfy

𝜈∑︁
𝑖=1

(𝑚𝑖 − 1) = 2𝑔 − 2 .
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This can be seen e.g. by considering a triangulation of �̄� that uses each of the singular
points as vertex (i.e. one with flat triangles). If 𝑣, 𝑒, and 𝑓 are the numbers of vertices,
edges, and faces of the triangulation then 𝑣 − 𝑒+ 𝑓 = 𝜒(�̄�) = 2 − 2𝑔, where 𝜒(�̄�) is the
Euler characteristic of �̄�.
We define ℋ(𝑑1, . . . , 𝑑𝜈) as the set of all translation surfaces of genus 𝑔 = 1 + 1

2

∑︀𝜈
𝑖=1 𝑑𝑖

with 𝜈 singular points with multiplicities 𝑑1 + 1, . . . , 𝑑𝜈 + 1, i.e. with angles (𝑑1 + 1) ·
2𝜋, . . . , (𝑑𝜈 + 1) · 2𝜋. The set ℋ(𝑑1, . . . , 𝑑𝜈) is called stratum (see e.g. [Zor06] for an
explanation of this name).
Back in the covering situation, let 𝑚1, . . . ,𝑚𝜈 be the multiplicities of the singularities
of �̄� and 𝑙𝑖,𝑗 ∈ N for 𝑖 ∈ {1, . . . , 𝜈}, 𝑗 ∈ {1, . . . , 𝑘𝑖} such that

∑︀𝑘𝑖
𝑗=1 𝑙𝑖,𝑗 = 𝑑 and∑︀𝜈

𝑖=1

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1) is even. Then Theorem 8 implies that there exists a covering of �̄�

with monodromy group 𝑆𝑑 in the stratum

ℋ(𝑙1,1 ·𝑚1 − 1, . . . , 𝑙1,𝑘1 ·𝑚1 − 1, . . . , 𝑙𝜈,1 ·𝑚𝜈 − 1, . . . , 𝑙𝜈,𝑘𝜈 ·𝑚𝜈 − 1) .

Thus a stratum ℋ(𝑑1, . . . , 𝑑𝑚) contains a covering surface of �̄� with monodromy group 𝑆𝑑
iff (𝑑1, . . . , 𝑑𝑚) can be written as (𝑙1,1 ·𝑚1−1, . . . , 𝑙1,𝑘1 ·𝑚1−1, . . . , 𝑙𝑟,1 ·𝑚𝜈−1, . . . , 𝑙𝜈,𝑘𝜈 ·
𝑚𝜈 − 1) for suitable 𝑙𝑖,𝑗 as defined above. In particular, this implies that such a stratum
that contains a �̄� covering, also contains a �̄� covering with monodromy group 𝑆𝑑.
For 𝑑 ≥ 5 and even

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1) for every 𝑖 ∈ {1, . . . , 𝜈}, the theorem additionally

assures the existence of a translation covering of �̄� in the stratum ℋ(𝑙1,1 ·𝑚1−1, . . . , 𝑙1,𝑘1 ·
𝑚1 − 1, . . . , 𝑙𝜈,1 ·𝑚𝜈 − 1, . . . , 𝑙𝜈,𝑘𝜈 ·𝑚𝜈 − 1) with monodromy group 𝐴𝑑.

Proof of Theorem 8. First suppose that �̄� has exactly one singularity and that we want to
realise a covering of degree 𝑑 with ramification indices (𝑙1, . . . , 𝑙𝑘). The fundamental group
𝐹2𝑔 of 𝑋 is generated by 𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔 where 𝑎𝑖 and 𝑏𝑖 belong to the 𝑖-th handle. A
simple closed path around the singularity is given by 𝑐 = 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 . The
translation coverings of �̄� of degree 𝑑 are in one-to-one correspondence to the conjugacy
classes of index 𝑑 subgroups of 𝐹2𝑔. A covering may be defined by choosing an element 𝜎𝑖
and 𝜏𝑖 of 𝑆𝑑 for each generator 𝑎𝑖 and 𝑏𝑖 of the fundamental group 𝐹2𝑔 (see Section 1.2).
Its monodromy map is the anti-homomorphism given by

𝑚 : 𝐹2𝑔 → 𝑆𝑑, 𝑎𝑖 ↦→ 𝜎𝑖, 𝑏𝑖 ↦→ 𝜏𝑖 .

Translation surfaces are by definition connected, thus the monodromy group 𝑚(𝐹2𝑔) has
to be transitive. But as we are looking for coverings of degree 𝑑 with monodromy group
𝑆𝑑 or 𝐴𝑑, this will automatically be the case.
The ramification behaviour of the covering is encoded in the cycle structure of 𝑚(𝑐). So
we have to find permutations 𝜎1, . . . , 𝜎𝑔, 𝜏1, . . . , 𝜏𝑔 ∈ 𝑆𝑑 that generate 𝑆𝑑 respectively
𝐴𝑑, such that 𝑚(𝑐) = 𝜏−1

𝑔 𝜎−1
𝑔 𝜏𝑔𝜎𝑔 · · · 𝜏−1

1 𝜎−1
1 𝜏1𝜎1 has cycle structure (𝑙1, . . . , 𝑙𝑘). As∑︀𝑘

𝑗=1(𝑙𝑗 − 1) is even, this is an even permutation.

We start to construct the covering of �̄� by choosing 𝜎2 = 𝜏2 and 𝜎3 = 𝜏3 = · · · = 𝜎𝑔 =
𝜏𝑔 = id. Then we have 𝑚(𝑐) = 𝜏−1

1 𝜎−1
1 𝜏1𝜎1. It is well known that the commutator
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subgroup of 𝑆𝑑 is the alternating group 𝐴𝑑. Also long known is the even stronger result
of Ore, stating that every element in 𝐴𝑑 can be written as commutator of two elements
in 𝑆𝑑 and even of two elements in 𝐴𝑑 if 𝑑 ≥ 5 (see [Ore51]). Consequently we can choose
𝜎1, 𝜏1 such that 𝑚(𝑐) is any given element in 𝐴𝑑.
If the covering is unramified, i.e. 𝑚(𝑐) = id, then we choose any generating set {𝜎, �̂�} of 𝑆𝑑
respectively 𝐴𝑑 and set 𝜎1 = 𝜏1 = 𝜎 and 𝜎2 = 𝜏2 = �̂� to obtain 𝑆𝑑 or 𝐴𝑑 as monodromy
group. Otherwise we use Lemma 6.3 (for 𝑑 ≠ 4) or Lemma 6.5 and complete 𝑚(𝑐) with
�̂� ∈ 𝑆𝑑 or �̂� ∈ 𝐴𝑑 to a generating set of 𝑆𝑑 or 𝐴𝑑. Then 𝜎2 = 𝜏2 = �̂� defines a covering
with monodromy group 𝑆𝑑 respectively 𝐴𝑑 and the desired ramification behaviour. For
the existence of a covering of degree 4 with monodromy group 𝑆4, see Lemma 6.8.
Now we consider a primitive translation surface with 𝜈 singularities. Here the fundamental
group of 𝑋 is the free group 𝐹2𝑔+𝜈−1. It is generated by 𝑎1, . . . , 𝑎𝑔, 𝑏1, . . . , 𝑏𝑔, 𝑐2, . . . , 𝑐𝜈
where 𝑎𝑖 and 𝑏𝑖 belong to the 𝑖-th handle and 𝑐𝑖 is a simple closed path around the
𝑖-th singularity. Here 𝑐1 = 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 · 𝑐−1
𝜈 𝑐−1

𝜈−1 · · · 𝑐
−1
2 . Again we have

to choose permutations 𝜎𝑖, 𝜏𝑖 and 𝜌𝑖 in 𝑆𝑑 or 𝐴𝑑 for each generator 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 of the
fundamental group 𝐹2𝑔+𝜈−1.

For the monodromy group 𝐴𝑑, we assumed that
∑︀𝑘𝑖

𝑗=1(𝑙𝑖,𝑗 − 1) is even for every 𝑖 ∈
{1, . . . , 𝜈}. Thus we can choose even permutations 𝜌2, . . . , 𝜌𝜈 with cycle structure
𝑝2, . . . , 𝑝𝜈 . To obtain 𝑆𝑑 as monodromy group, we choose the permutations 𝜌2, . . . , 𝜌𝜈
arbitrarily in 𝑆𝑑 such that 𝜌𝑖 has cycle structure 𝑝𝑖. We also choose a permutation 𝜌1
with cycle structure 𝑝1 in 𝑆𝑑 or 𝐴𝑑, respectively. The parity of 𝜌𝑖 equals

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1)

mod 2, thus sgn(𝑚(𝑐1 · · · 𝑐𝜈)) =
∑︀𝜈

𝑖=1 sgn(𝜌𝑖) =
∑︀𝜈

𝑖=1

∑︀𝑘𝑖
𝑗=1(𝑙𝑖,𝑗 − 1) = 0 mod 2. Thus

𝑚(𝑐1 · · · 𝑐𝜈) = 𝜌𝜈 · · · 𝜌1 belongs to the alternating group 𝐴𝑑 and, as above, we choose
𝜎2 = 𝜏2 and 𝜎3 = 𝜏3 = · · · = 𝜎𝑔 = 𝜏𝑔 = id. Furthermore, we choose 𝜎1 and 𝜏1 such that

𝜌𝜈 · · · 𝜌1 = 𝜏−1
𝑔 𝜎−1

𝑔 𝜏𝑔𝜎𝑔 · · · 𝜏−1
1 𝜎−1

1 𝜏1𝜎1 = 𝜏−1
1 𝜎−1

1 𝜏1𝜎1 .

Then 𝑚(𝑐1) = 𝜌1. If the covering is ramified then without loss of generality 𝑚(𝑐1) ̸= id
and we use Lemma 6.3 or Lemma 6.5 to choose 𝜎2 = 𝜏2 such that ⟨𝜎2,𝑚(𝑐1)⟩ = 𝑆𝑑 or
𝐴𝑑. If 𝑚(𝑐𝑖) = id for all 𝑖, we choose an arbitrary generating set {𝜎, �̂�} of 𝑆𝑑 or 𝐴𝑑,
respectively, and set 𝜎1 = 𝜏1 = 𝜎 and 𝜎2 = 𝜏2 = �̂� to obtain 𝑆𝑑 or 𝐴𝑑 as monodromy
group of an unramified translation covering.

Lemma 6.8. Let �̄� be a primitive translation surface of genus 𝑔 ≥ 2 with 𝜈 ≥ 1
singularities. Furthermore, let 𝑝1, . . . , 𝑝𝜈 be partitions of 4 such that

∑︀𝜈
𝑖=1

∑︀
𝑙∈𝑝𝑖(𝑙− 1) is

even. Then there exists a covering 𝑝 : 𝑌 → �̄� of degree 4 with monodromy group 𝑆4 and
ramification (𝑝1, . . . , 𝑝𝜈).

Proof. As shown in Remark 6.4, the statement of Lemma 6.3 also holds for 𝑑 = 4 if
𝜎 ̸= (1 2)(3 4). Consequently, the proof of Theorem 8 also applies for 𝑆4 if there exists an
𝑖 ∈ {1, . . . , 𝜈} such that 𝑝𝑖 ̸= (2, 2).
So let 𝑝1 = · · · = 𝑝𝜈 = (2, 2). Define 𝜌2 = · · · = 𝜌𝜈 = (1 2)(3 4), 𝜎1 = (1 3)(2 4), 𝜏1 = (1 2),
𝜎2 = 𝜏2 = (2 3) and 𝜎𝑖 = 𝜏𝑖 = id for all 𝑖 ≥ 3. As ⟨(1 3)(2 4), (1 2), (2 3)⟩ = 𝑆4 and

𝜏−1
𝑔 𝜎−1

𝑔 𝜏𝑔𝜎𝑔 · · · 𝜏−1
1 𝜎−1

1 𝜏1𝜎1 = 𝜏−1
1 𝜎−1

1 𝜏1𝜎1 = (1 2)(1 3)(2 4)(1 2)(1 3)(2 4) = (1 2)(3 4) ,
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these permutations define a covering as desired.

Remark 6.9. For the monodromy group 𝐴𝑑 the bound 𝑑 ≥ 5 is strict, because there is no
covering surface of the regular double-5-gon 𝑋5 with ramification (3, 1) and monodromy
group 𝐴4 in degree 4. This can be seen in the list of all Γ(𝑋𝑛)-orbits of coverings of 𝑋5

of degree ≤ 5 in Appendix C.
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Appendix A.

Stabilising groups in Γ(𝑋𝑛)

For every odd 𝑛 ≥ 5, we determined the principal congruence group of level 2 in the Veech
group of the regular double-𝑛-gon �̄�𝑛 in Section 3.4. For level 𝑎 > 2 we do not know the
general structure of the principal congruence groups. To give a little impression on how
the indices of Γ(𝑎) in Γ(𝑋𝑛) behave, we present the following table. As the indices grow
fast both in 𝑛 and 𝑎, the table shows fewer indices for 𝑛 = 9.

𝑎 [Γ(𝑋5) : Γ(𝑎)] [Γ(𝑋7) : Γ(𝑎)] [Γ(𝑋9) : Γ(𝑎)]

2 10 14 18
3 120 19656 472392
4 320 1792 9216
5 15000 1953000 234360000
6 1200 275184 8503056
7 117600 39530064 13558696704
8 20480 917504 37748736
9 87480 386889048
10 150000 27342000
11 1742400 2357946360
12 38400 35223552
13 4826640 10417365504
14 1176000 553420896
15 1800000 38388168000
16 1310720 469762048

In Chapter 2 we proved that each congruence group of level 𝑎 in Γ(𝑋𝑛) that is the
stabiliser of its orbit space in (Z/𝑎Z)𝑛−1 can be realised as Veech group of a translation
covering surface of �̄�𝑛. Whether a group is the stabiliser of its orbit space or not does
not change inside a conjugacy class. The next table presents a list (for small 𝑎) of the
number of conjugacy classes of congruence subgroups of level 𝑎 in Γ(𝑋5) consisting of
subgroups with that stabiliser property.
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a # stabiliser groups # not stabiliser groups
2 3 1
3 12 0
4 107 4
5 81 19
6 49 19
7 61 0
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Appendix B.

Generating sets for small alternating and
symmetric groups

B.1. Proof of Lemma 6.3 for 𝑑 ∈ {2, . . . , 7}, 𝑑 ̸= 4

First recall the statement of Lemma 6.3: let 𝑑 ̸= 4 and 𝜎 ∈ 𝑆𝑑 ∖ {id}, then there exists a
�̂� ∈ 𝑆𝑑 such that 𝜎 and �̂� generate the whole symmetric group 𝑆𝑑.
For 𝑑 > 7 this was proven in Chapter 6. For 𝑑 ∈ {2, 3, 5, 6, 7} the general proof does not
apply, thus we check these cases by hand, using magma. If we know that ⟨𝜎, �̂�⟩ = 𝑆𝑑 then
of course ⟨𝜙(𝜎), 𝜙(�̂�)⟩ = 𝑆𝑑 for every automorphism 𝜙 of 𝑆𝑑, so we only have to check
the statement for every possible cycle structure of 𝜎.
As |𝑆2| = 2, the statement is trivial for 𝑑 = 2. The following table gives pairs of generators
for 𝑆𝑑 such that every possible cycle structure in 𝑆3, 𝑆5, 𝑆6 and 𝑆7 appears at least once
as 𝜎 or �̂�. That 𝜎 and �̂� indeed generate the whole 𝑆𝑑 can be checked for the first pair in
𝑑 = 5 with the magma instructions

S5:= SymmetricGroup(5);
sigma := S5 ! [2,1,3,4,5];
sigmahat := S5 ! [2,3,4,5,1];
#PermutationGroup< 5 | sigma , sigmahat > eq Factorial(5);

and analogously for all others.

𝑑 𝜎 �̂�

3 (1 2) (1 2 3)

5 (1 2) (1 2 3 4 5)
(1 2 3) (1 2 4 5)
(1 2)(3 4) (1 3 2 5)
(1 2 3)(4 5) (1 2 3 4 5)

6 (1 2) (1 2 3 4 5 6)
(1 2 3) (3 4 5 6)
(1 2 3 4 5) (1 2 3 4 5 6)
(1 2)(3 4) (1 3)(4 5 6)
(1 2)(3 4 5 6) (1 3)(4 5 6)
(1 2 3)(4 5 6) (1 2 4)(3 5)
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𝑑 𝜎 �̂�

(1 2)(3 4)(5 6) (1 3 2 5 6)

7 (1 2) (1 2 3 4 5 6 7)
(1 2 3) (2 3 4 5 6 7)
(1 2 3 4) (3 4 5 6 7)
(1 2)(3 4) (1 3 4)(2 5 6 7)
(1 2)(3 4 5) (1 4)(2 5 6 7)
(1 2)(3 4 5 6 7) (1 2 3)(4 5 6)
(1 2)(3 4)(5 6) (1 3 5)(2 4)(6 7)

B.2. Proof of Lemma 6.5 for 𝑑 ∈ {2, . . . , 7}

Recall the statement of Lemma 6.5: let 𝑑 ≥ 2 and 𝜎 ∈ 𝐴𝑑 ∖ {id}, then there exists a
�̂� ∈ 𝐴𝑑 such that 𝜎 and �̂� generate the whole alternating group 𝐴𝑑.
The claim is trivial for 𝑑 = 2 and for 𝑑 = 3 because |𝐴2| = 1 and |𝐴3| = 3. For
𝑑 ∈ {4, 5, 6, 7} the following table lists generating pairs of 𝐴𝑑, containing every possible
cycle structure at least once.

𝑑 𝜎 �̂�

4 (1 2)(3 4) (1 2 3)

5 (1 2)(3 4) (1 2 3 4 5)
(1 2 3) (1 2 3 4 5)

6 (1 2)(3 4) (1 2 3 5 6)
(1 2 3) (1 2)(3 4 5 6)
(1 2 3)(4 5 6) (1 2)(3 4 5 6)

7 (1 2)(3 4) (1 2 3 4 5 6 7)
(1 2 3) (3 4 5 6 7)
(1 2)(3 4 5 6) (1 3 7)
(1 2 3)(4 5 6) (1 4 7)
(1 2 3)(4 5)(6 7) (1 4 7)
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SL2(R)-orbits over �̄�5

The tables in this chapter show all SL2(R)-orbits of coverings 𝑝 : 𝑌 → �̄�5 of degree 2 up
to degree 5. The column contents are as follows:
𝑑: The degree of the covering.
𝑔: The genus of 𝑌 .
ram: The ramification indices of the singularities in 𝑌 .
ind: The index of the Veech group Γ(𝑌 ) in Γ(𝑋5).
mon gr: The monodromy group, identified by the pair (𝑎, 𝑏) such that the magma

database of small groups gives back the group with the command SmallGroup(a,b).
Here 𝑎 is the size of the monodromy group. The parameter 𝑏 corresponds to the
internal order of the groups in the magma database.

mon map: The monodromy map 𝑚 : 𝐹4 → 𝑆𝑑 given by (𝜎0, 𝜎1, 𝜎2, 𝜎3) where 𝜎𝑖 :=
𝑚(𝑥𝑖) and {𝑥0, 𝑥1, 𝑥2, 𝑥3} is the standard generating set of 𝜋1(𝑋5) as described in
Section 3.1.

As there occur only few monodromy groups, we give a list of them:

(𝑎, 𝑏) group number 𝑏 with 𝑎 elements
(2, 1) Z/2Z = 𝑆2
(3, 1) Z/3Z = 𝐴3

(4, 1) Z/4Z
(4, 2) Z/2Z× Z/2Z
(5, 1) Z/5Z
(6, 1) 𝑆3
(8, 3) 𝐷4, the dihedral group of order 8
(10, 1) 𝐷5, the dihedral group of order 10
(12, 3) 𝐴4

(20, 3) ⟨𝑥, 𝑦 | 𝑥4, 𝑦5, 𝑥−1𝑦𝑥 = 𝑦2⟩
(24, 12) 𝑆4
(60, 5) 𝐴5

(120, 34) 𝑆5

The orbits where computed using the fact that the Veech group of the covering surface of
a translation covering 𝑌 → �̄�5 is the stabiliser of 𝑌 in SL2(R) and that the Veech group
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of Γ(𝑌 ) is a subgroup of Γ(𝑋5). Hence one has to sort all coverings of �̄�5 (of fixed degree
𝑑) into Γ(𝑋5)-orbits to obtain a representative in each SL2(R)-orbit.

C.1. SL2(R)-orbits of degree 2 over �̄�5

𝑑 𝑔 ram ind mon gr mon map
2 3 (1, 1) 5 (2, 1) id, id, id, (1 2)
2 3 (1, 1) 5 (2, 1) id, id, (1 2), (1 2)
2 3 (1, 1) 5 (2, 1) id, (1 2), id, (1 2)

C.2. SL2(R)-orbits of degree 3 over �̄�5

𝑑 𝑔 ram ind mon gr mon map
3 4 (1, 1, 1) 20 (3, 1) id, id, id, (1 2 3)
3 4 (1, 1, 1) 20 (3, 1) id, id, (1 2 3), (1 2 3)
3 4 (1, 1, 1) 20 (6, 1) id, (2 3), (2 3), (1 2)
3 4 (1, 1, 1) 20 (6, 1) id, (2 3), (1 2 3), (2 3)
3 4 (1, 1, 1) 20 (6, 1) id, (2 3), (1 2 3), (1 2 3)
3 5 (3) 5 (6, 1) id, id, (2 3), (1 2)
3 5 (3) 5 (6, 1) id, (2 3), id, (1 2)
3 5 (3) 40 (6, 1) id, (2 3), (1 2), (1 2 3)
3 5 (3) 40 (6, 1) id, (2 3), (1 2 3), (1 2)
3 5 (3) 45 (6, 1) id, id, (2 3), (1 2 3)

C.3. SL2(R)-orbits of degree 4 over �̄�5

𝑑 𝑔 ram ind mon gr mon map
4 5 (1, 1, 1, 1) 5 (4, 2) id, id, (1 2)(3 4), (1 3)(2 4)
4 5 (1, 1, 1, 1) 5 (4, 2) id, (1 2)(3 4), id, (1 3)(2 4)
4 5 (1, 1, 1, 1) 5 (4, 2) id, (1 2)(3 4), (1 2)(3 4), (1 3)(2 4)
4 5 (1, 1, 1, 1) 5 (4, 2) id, (1 2)(3 4), (1 3)(2 4), (1 2)(3 4)
4 5 (1, 1, 1, 1) 5 (4, 2) id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
4 5 (1, 1, 1, 1) 5 (4, 2) (1 2)(3 4), id, (1 2)(3 4), (1 3)(2 4)
4 5 (1, 1, 1, 1) 5 (4, 2) (1 2)(3 4), id, (1 3)(2 4), (1 4)(2 3)
4 5 (1, 1, 1, 1) 40 (4, 1) id, id, id, (1 2 3 4)
4 5 (1, 1, 1, 1) 40 (4, 1) id, id, (1 2 3 4), (1 2 3 4)
4 5 (1, 1, 1, 1) 40 (4, 1) id, (1 2 3 4), id, (1 2 3 4)
4 5 (1, 1, 1, 1) 10 (8, 3) (3 4), (1 2), id, (1 3 2 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (2 3), (1 2)(3 4), (2 3)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (2 3), (1 2 4 3), (2 3)

90



Appendix C. SL2(R)-orbits over �̄�5

𝑑 𝑔 ram ind mon gr mon map
4 5 (1, 1, 1, 1) 10 (8, 3) id, (2 4), (1 2 3 4), (1 3)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2)(3 4), (2 3), (1 2)(3 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2)(3 4), (1 2 3 4), (1 2)(3 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2)(3 4), (1 2 4 3), (1 3)(2 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2 3 4), (2 4), (1 2 3 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2 3 4), (1 2)(3 4), (1 2 3 4)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2 3 4), (1 3), (1 4 3 2)
4 5 (1, 1, 1, 1) 10 (8, 3) id, (1 2 4 3), (1 2)(3 4), (1 3 4 2)
4 5 (1, 1, 1, 1) 10 (8, 3) (1 2)(3 4), (2 3), (1 3)(2 4), (1 4)(2 3)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (2 3), (1 2)(3 4), (1 2)(3 4)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (2 3), (1 2 4 3), (1 2 4 3)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (2 3), (1 2 4 3), (1 3 4 2)
4 5 (1, 1, 1, 1) 20 (8, 3) (2 3), (1 2)(3 4), id, (1 2)(3 4)
4 5 (1, 1, 1, 1) 20 (8, 3) (2 3), (1 2)(3 4), (2 3), (1 2)(3 4)
4 5 (1, 1, 1, 1) 20 (8, 3) (2 3), (1 2)(3 4), (2 3), (1 3)(2 4)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (1 2)(3 4), (1 3)(2 4), (1 2 4 3)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (3 4), (1 2), (1 3)(2 4)
4 5 (1, 1, 1, 1) 20 (8, 3) id, (3 4), (1 2), (1 3 2 4)
4 5 (1, 1, 1, 1) 20 (8, 3) (3 4), id, (1 2), (1 3)(2 4)
4 5 (1, 1, 1, 1) 20 (8, 3) (3 4), id, (1 2), (1 3 2 4)
4 5 (1, 1, 1, 1) 20 (8, 3) (2 4), (1 2)(3 4), (1 3)(2 4), (1 2)(3 4)
4 5 (1, 1, 1, 1) 40 (12, 3) id, (2 3 4), (1 2 4), (1 3 2)
4 5 (1, 1, 1, 1) 40 (12, 3) (2 3 4), id, (1 2 3), (1 3 4)
4 5 (1, 1, 1, 1) 60 (12, 3) id, (2 3 4), (2 3 4), (1 2)(3 4)
4 5 (1, 1, 1, 1) 60 (12, 3) id, (2 3 4), (2 3 4), (1 2 3)
4 5 (1, 1, 1, 1) 60 (24, 12) id, (2 3), (2 4 3), (1 2 3)
4 5 (1, 1, 1, 1) 60 (24, 12) id, (2 3 4), (1 2 3 4), (1 2 4)
4 5 (1, 1, 1, 1) 120 (24, 12) id, (2 3), (2 4 3), (1 2 4 3)
4 5 (1, 1, 1, 1) 120 (24, 12) id, (2 3), (1 2 4 3), (2 4 3)
4 5 (1, 1, 1, 1) 180 (24, 12) id, (3 4), (3 4), (1 2 3)
4 5 (1, 1, 1, 1) 180 (24, 12) id, (3 4), (1 2 3), (3 4)
4 5 (1, 1, 1, 1) 180 (24, 12) id, (3 4), (1 2 3), (1 2 3)
4 6 (2, 2) 10 (8, 3) id, (2 3), id, (1 2)(3 4)
4 6 (2, 2) 10 (8, 3) (3 4), (1 2), (3 4), (1 3 2 4)
4 6 (2, 2) 10 (8, 3) (3 4), (1 2), (1 3 2 4), (1 2)
4 6 (2, 2) 10 (8, 3) id, (2 4), (1 2)(3 4), (1 3)(2 4)
4 6 (2, 2) 10 (8, 3) id, (1 2)(3 4), (3 4), (1 3)(2 4)
4 6 (2, 2) 10 (8, 3) id, id, (2 3), (1 2)(3 4)
4 6 (2, 2) 10 (8, 3) id, (3 4), (1 2)(3 4), (1 3)(2 4)
4 6 (2, 2) 10 (8, 3) (3 4), id, (1 2)(3 4), (1 3)(2 4)
4 6 (2, 2) 40 (8, 3) id, (2 3), (1 2)(3 4), (1 2 4 3)
4 6 (2, 2) 40 (8, 3) (3 4), (1 2)(3 4), (1 3)(2 4), (1 3 2 4)
4 6 (2, 2) 40 (8, 3) id, id, (1 2)(3 4), (1 2 3 4)

91



Appendix C. SL2(R)-orbits over �̄�5

𝑑 𝑔 ram ind mon gr mon map
4 6 (2, 2) 40 (8, 3) id, (2 3), (1 2 4 3), (1 2)(3 4)
4 6 (2, 2) 40 (8, 3) (2 3), (1 2)(3 4), id, (1 2 4 3)
4 6 (2, 2) 40 (8, 3) id, (1 2)(3 4), id, (1 2 3 4)
4 6 (2, 2) 40 (8, 3) (2 3), (1 2 4 3), id, (1 2)(3 4)
4 6 (2, 2) 40 (8, 3) id, (1 2)(3 4), (2 3), (1 2 4 3)
4 6 (2, 2) 40 (8, 3) id, (3 4), (1 2)(3 4), (1 3 2 4)
4 6 (2, 2) 40 (8, 3) id, id, (2 3), (1 2 4 3)
4 6 (2, 2) 80 (12, 3) id, id, (2 3 4), (1 2 4)
4 6 (2, 2) 80 (12, 3) id, id, (2 3 4), (1 2)(3 4)
4 6 (2, 2) 240 (12, 3) id, (2 3 4), (1 2)(3 4), (1 2 3)
4 6 (2, 2) 240 (12, 3) id, (2 3 4), (1 2)(3 4), (1 3)(2 4)
4 6 (2, 2) 20 (24, 12) id, (3 4), (2 3), (1 2)
4 6 (2, 2) 20 (24, 12) (3 4), id, (2 3), (1 2)
4 6 (2, 2) 120 (24, 12) id, (3 4), (2 3 4), (1 2)
4 6 (2, 2) 120 (24, 12) id, (3 4), (1 2), (2 3 4)
4 6 (2, 2) 180 (24, 12) id, (3 4), (1 2 4), (1 3 2 4)
4 6 (2, 2) 180 (24, 12) id, (3 4), (1 2), (1 2 3 4)
4 6 (2, 2) 640 (24, 12) id, (3 4), (2 3), (1 2 3 4)
4 6 (2, 2) 640 (24, 12) (3 4), id, (2 3), (1 2 3 4)
4 6 (2, 2) 960 (24, 12) id, (3 4), (2 3 4), (1 2 4)
4 6 (3, 1) 15 (24, 12) id, (3 4), (1 2)(3 4), (2 3)
4 6 (3, 1) 15 (24, 12) (3 4), (2 3), id, (1 2)(3 4)
4 6 (3, 1) 30 (24, 12) id, (3 4), (2 3), (1 2)(3 4)
4 6 (3, 1) 30 (24, 12) (3 4), id, (2 3), (1 2)(3 4)
4 6 (3, 1) 45 (24, 12) (3 4), (1 2), (3 4), (1 2 3)
4 6 (3, 1) 45 (24, 12) id, (3 4), (1 2)(3 4), (1 2 3 4)
4 6 (3, 1) 90 (24, 12) (3 4), id, (1 2)(3 4), (1 2 3 4)
4 6 (3, 1) 90 (24, 12) id, (3 4), (1 2 3 4), (1 2)(3 4)
4 6 (3, 1) 135 (24, 12) id, (3 4), id, (1 2 3 4)
4 6 (3, 1) 135 (24, 12) id, id, (3 4), (1 2 3 4)
4 6 (3, 1) 135 (24, 12) id, (3 4), (2 3 4), (1 2)(3 4)
4 6 (3, 1) 540 (24, 12) id, id, (3 4), (1 2 3)
4 6 (1, 3) 1080 (24, 12) id, (3 4), (2 3 4), (1 2 3)
4 6 (3, 1) 1080 (24, 12) id, (2 3 4), (1 2)(3 4), (1 2 3 4)
4 6 (3, 1) 1080 (24, 12) id, (3 4), (2 3 4), (1 2 3 4)
4 6 (3, 1) 1080 (24, 12) id, (3 4), (1 2 3 4), (2 3 4)
4 6 (1, 3) 1440 (24, 12) id, (3 4), (2 3 4), (1 2 4 3)
4 6 (3, 1) 1440 (24, 12) id, (3 4), (2 3), (1 2 3)
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C.4. SL2(R)-orbits of degree 5 over �̄�5

𝑑 𝑔 ram ind mon gr mon map
5 6 (1, 1, 1, 1, 1) 6 (5, 1) id, (1 2 4 3 5), (1 3 2 5 4), (1 2 4 3 5)
5 6 (1, 1, 1, 1, 1) 150 (5, 1) id, id, id, (1 2 3 4 5)
5 6 (1, 1, 1, 1, 1) 30 (10, 1) id, (2 3)(4 5), (2 3)(4 5), (1 2)(3 4)
5 6 (1, 1, 1, 1, 1) 30 (10, 1) id, (2 3)(4 5), (1 2 4 5 3), (2 3)(4 5)
5 6 (1, 1, 1, 1, 1) 30 (10, 1) id, (2 3)(4 5), (1 2 4 5 3), (1 2 4 5 3)
5 6 (1, 1, 1, 1, 1) 480 (20, 3) id, (2 3)(4 5), (2 3)(4 5), (1 2 3 4)
5 6 (1, 1, 1, 1, 1) 480 (20, 3) id, (2 3)(4 5), (1 2 3 4), (1 2 3 4)
5 6 (1, 1, 1, 1, 1) 480 (20, 3) id, (2 3 4 5), (1 2)(4 5), (2 3 4 5)
5 6 (1, 1, 1, 1, 1) 96 (60, 5) id, (2 3 5), (1 2 4 3 5), (1 3 5 4 2)
5 6 (1, 1, 1, 1, 1) 480 (60, 5) id, (3 4 5), (1 2)(4 5), (1 3 2 4 5)
5 6 (1, 1, 1, 1, 1) 1440 (60, 5) id, (3 4 5), (3 4 5), (1 2 3)
5 6 (1, 1, 1, 1, 1) 200 (120, 34) id, (2 3 5 4), (2 4)(3 5), (1 2 4)(3 5)
5 6 (1, 1, 1, 1, 1) 200 (120, 34) id, (2 3 5 4), (1 2 3 5 4), (1 2 4)(3 5)
5 6 (1, 1, 1, 1, 1) 200 (120, 34) id, (2 3 5 4), (1 2 4)(3 5), (1 2 3 5 4)
5 6 (1, 1, 1, 1, 1) 200 (120, 34) id, (1 2)(3 4 5), (4 5), (1 3)(2 4 5)
5 6 (1, 1, 1, 1, 1) 400 (120, 34) (4 5), (2 3), (2 3)(4 5), (1 2)(3 4 5)
5 6 (1, 1, 1, 1, 1) 400 (120, 34) id, (4 5), (1 2)(3 4 5), (1 3)(2 4 5)
5 6 (1, 1, 1, 1, 1) 400 (120, 34) id, (2 3)(4 5), (2 4 5 3), (1 2 4 5 3)
5 6 (1, 1, 1, 1, 1) 400 (120, 34) id, (2 3)(4 5), (1 2 4 5 3), (2 4 5 3)
5 6 (1, 1, 1, 1, 1) 1200 (120, 34) id, (3 4 5), (1 2)(4 5), (1 3)(2 4 5)
5 6 (1, 1, 1, 1, 1) 1200 (120, 34) id, (2 3)(4 5), (1 2)(3 4 5), (1 2)(3 4 5)
5 6 (1, 1, 1, 1, 1) 1200 (120, 34) id, (2 3 4 5), (2 3 5), (1 2)(3 4 5)
5 6 (1, 1, 1, 1, 1) 3360 (120, 34) id, (4 5), (4 5), (1 2 3 4)
5 6 (1, 1, 1, 1, 1) 3360 (120, 34) id, (4 5), (1 2 3 4 5), (4 5)
5 6 (1, 1, 1, 1, 1) 3360 (120, 34) id, (4 5), (1 2 3 4 5), (1 2 3 4 5)
5 6 (1, 1, 1, 1, 1) 3520 (120, 34) id, (2 3 4), (2 3 5 4), (1 2 3 4)
5 6 (1, 1, 1, 1, 1) 3520 (120, 34) id, (2 3 4), (2 3 5 4), (1 2 3 5 4)
5 6 (1, 1, 1, 1, 1) 3520 (120, 34) id, (2 3 4 5), (2 3 5), (1 2 3 5)
5 7 (3, 1, 1) 45 (60, 5) (3 4 5), (1 2)(4 5), (1 2 3), (1 2)(4 5)
5 7 (3, 1, 1) 45 (60, 5) id, (2 3)(4 5), (2 4)(3 5), (1 2)(3 4)
5 7 (3, 1, 1) 216 (60, 5) id, (3 4 5), (2 3 5), (1 2)(3 5)
5 7 (3, 1, 1) 675 (60, 5) id, (3 4 5), (1 2)(3 5), (1 2 3 4 5)
5 7 (3, 1, 1) 2106 (60, 5) id, id, (3 4 5), (1 2 3)
5 7 (1, 3, 1) 20160 (60, 5) id, (3 4 5), (2 3)(4 5), (1 2 3 5 4)
5 7 (3, 1, 1) 12960 (60, 5) id, (3 4 5), (2 3 5), (1 2 3 4 5)
5 7 (3, 1, 1) 30 (120, 34) (4 5), id, (1 2)(3 4), (1 3)(2 4)
5 7 (3, 1, 1) 30 (120, 34) id, (2 3)(4 5), (3 4), (1 2)(3 4)
5 7 (3, 1, 1) 60 (120, 34) id, (4 5), (1 2)(3 4), (1 3)(2 4)
5 7 (1, 1, 3) 60 (120, 34) (4 5), (2 3), (1 2 4 3), (2 3)
5 7 (3, 1, 1) 240 (120, 34) id, (2 3 4 5), (3 5), (1 2)(3 4 5)
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𝑑 𝑔 ram ind mon gr mon map
5 7 (3, 1, 1) 240 (120, 34) id, (2 3 4 5), (2 3)(4 5), (1 2 3)(4 5)
5 7 (3, 1, 1) 360 (120, 34) id, (3 4), (2 3 4), (1 2)(3 5 4)
5 7 (3, 1, 1) 360 (120, 34) id, (3 4), (2 3 5 4), (1 2)(3 4)
5 7 (3, 1, 1) 480 (120, 34) (4 5), (2 3), (3 4 5), (1 2)(3 4 5)
5 7 (3, 1, 1) 480 (120, 34) id, (3 4), (2 3 5 4), (1 2)(3 5 4)
5 7 (3, 1, 1) 900 (120, 34) id, (3 4), (1 2)(3 4), (1 2 3 5 4)
5 7 (3, 1, 1) 900 (120, 34) id, (3 4), (1 2 3 5 4), (1 2)(3 4)
5 7 (3, 1, 1) 1440 (120, 34) id, (3 4 5), (2 3)(4 5), (1 2)(3 4 5)
5 7 (3, 1, 1) 3060 (120, 34) id, id, (4 5), (1 2 3 4)
5 7 (3, 1, 1) 3060 (120, 34) id, (4 5), id, (1 2 3 4)
5 7 (3, 1, 1) 4500 (120, 34) id, (4 5), (3 4), (1 2 3)(4 5)
5 7 (3, 1, 1) 4500 (120, 34) id, (4 5), (3 4 5), (1 2 3)(4 5)
5 7 (3, 1, 1) 7020 (120, 34) id, id, (4 5), (1 2 3 4 5)
5 7 (3, 1, 1) 82620 (120, 34) id, (4 5), (3 4), (1 2 3 4)
5 7 (1, 3, 1) 82620 (120, 34) id, (4 5), (2 3)(4 5), (1 2 4 5)
5 7 (1, 1, 3) 83520 (120, 34) id, (4 5), (3 4 5), (1 2 3 5 4)
5 7 (3, 1, 1) 84240 (120, 34) id, (4 5), (3 4 5), (1 2 3 4 5)
5 7 (3, 1, 1) 86940 (120, 34) id, (4 5), (2 3), (1 2 4 3 5)
5 7 (1, 1, 3) 86940 (120, 34) id, (4 5), (3 4 5), (1 2 3 4)
5 7 (2, 2, 1) 256 (60, 5) id, (3 4 5), (2 3)(4 5), (1 2)(4 5)
5 7 (2, 2, 1) 24320 (60, 5) id, (3 4 5), (2 3)(4 5), (1 2 3 4 5)
5 7 (2, 2, 1) 40 (120, 34) (4 5), id, (2 3)(4 5), (1 2)(3 4)
5 7 (2, 2, 1) 40 (120, 34) id, (2 3)(4 5), (4 5), (1 2)(3 4)
5 7 (2, 2, 1) 80 (120, 34) id, (4 5), (2 3)(4 5), (1 2)(3 4)
5 7 (2, 2, 1) 80 (120, 34) (4 5), (2 3), (4 5), (1 2)(3 4 5)
5 7 (2, 2, 1) 480 (120, 34) id, (4 5), (2 3)(4 5), (1 2)(3 4 5)
5 7 (2, 2, 1) 480 (120, 34) id, (4 5), (1 2)(3 4 5), (2 3)(4 5)
5 7 (2, 2, 1) 1360 (120, 34) id, (4 5), (2 3)(4 5), (1 2 4 5 3)
5 7 (2, 2, 1) 1360 (120, 34) id, (4 5), (1 2 3 4 5), (1 3)(4 5)
5 7 (2, 1, 2) 4480 (120, 34) id, id, (3 4), (1 2 3)(4 5)
5 7 (2, 2, 1) 4480 (120, 34) id, (4 5), (2 3)(4 5), (1 2 4 3)
5 7 (2, 1, 2) 10480 (120, 34) id, id, (3 4), (1 2 3 5 4)
5 7 (1, 2, 2) 121600 (120, 34) id, (4 5), (2 3)(4 5), (1 2 4 3 5)
5 7 (2, 1, 2) 130080 (120, 34) id, (4 5), (3 4), (1 2 3 4 5)
5 7 (2, 1, 2) 130080 (120, 34) id, (4 5), (3 4 5), (1 2 3 5)
5 8 (5) 5 (10, 1) id, id, (2 3)(4 5), (1 2)(3 4)
5 8 (5) 5 (10, 1) id, (2 3)(4 5), id, (1 2)(3 4)
5 8 (5) 120 (10, 1) id, (2 3)(4 5), (1 2)(3 4), (1 2 4 5 3)
5 8 (5) 120 (10, 1) id, (2 3)(4 5), (1 2 4 5 3), (1 2)(3 4)
5 8 (5) 125 (10, 1) id, id, (2 3)(4 5), (1 2 4 5 3)
5 8 (5) 2000 (20, 3) id, id, (2 3)(4 5), (1 2 3 4)
5 8 (5) 2000 (20, 3) id, id, (2 3 4 5), (1 2 3 5)
5 8 (5) 2000 (20, 3) id, (2 3 4 5), id, (1 2 3 5)
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Appendix C. SL2(R)-orbits over �̄�5

𝑑 𝑔 ram ind mon gr mon map
5 8 (5) 50 (60, 5) (3 4 5), (1 2)(4 5), (1 3 2 4 5), (1 2)(4 5)
5 8 (5) 50 (60, 5) id, (2 3)(4 5), (2 4)(3 5), (1 2)(4 5)
5 8 (5) 750 (60, 5) id, (3 4 5), (1 2)(4 5), (1 2 3)
5 8 (5) 2500 (60, 5) id, id, (2 3)(4 5), (1 2 3 4 5)
5 8 (5) 18000 (60, 5) id, (3 4 5), (2 3 5), (1 2)(4 5)
5 8 (5) 22400 (60, 5) id, (3 4 5), (2 3)(4 5), (1 2)(3 4)
5 8 (5) 25 (120, 34) (4 5), (2 3), id, (1 2)(3 4)
5 8 (5) 25 (120, 34) id, (4 5), (1 2)(3 4), (2 3)
5 8 (5) 50 (120, 34) id, (4 5), (2 3), (1 2)(3 4)
5 8 (5) 50 (120, 34) (4 5), id, (2 3), (1 2)(3 4)
5 8 (5) 125 (120, 34) (4 5), (3 4), (2 3), (1 2)
5 8 (5) 375 (120, 34) id, (4 5), (2 3), (1 2 4 3)
5 8 (5) 375 (120, 34) (4 5), id, (2 3), (1 2)(3 4 5)
5 8 (5) 750 (120, 34) id, (4 5), (2 3), (1 2)(3 4 5)
5 8 (5) 750 (120, 34) (4 5), id, (2 3), (1 2 4 3)
5 8 (5) 2500 (120, 34) id, id, (2 3)(4 5), (1 2)(3 4 5)
5 8 (5) 5625 (120, 34) id, (4 5), (1 2 3), (2 3 4 5)
5 8 (5) 5625 (120, 34) id, id, (2 3 4 5), (1 2 3)(4 5)
5 8 (5) 101800 (120, 34) id, (4 5), (2 3), (1 2 3 4)
5 8 (5) 101800 (120, 34) id, (4 5), (2 3 4), (1 2)(3 5 4)
5 8 (5) 102000 (120, 34) id, (4 5), (2 3), (1 2 3 4 5)
5 8 (5) 102000 (120, 34) id, (4 5), (2 3 4), (1 2)
5 8 (5) 103000 (120, 34) id, (4 5), (2 3 4), (1 2 3 5 4)
5 8 (5) 105000 (120, 34) id, (4 5), (2 3 5), (1 2 4 3 5)
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Aut𝑋(𝐹𝑛), 5, 11
Aut𝑌 (𝐹𝑛), 7

affine group, 4
affine map, ii, 4

derivative, ii, 4
lift to Aut(𝐹𝑛), 5, 36
pure, 4

alternating group, 81
anti-homomorphism, 3
atlas, 1

base surface, 2
billiard, i
branch point, 2

chart, 1, 4, 7, 52
congruence group, 9, 10, 12, 29, 49, 59,

64
congruence level, 51
core curve, 45, 52
coset graph, 72, 73
covering surface, ii, iii, 2, 64
cylinder, 5

direction, 5
inverse modulus, 5, 52

cylinder decomposition, 5, 35, 44, 69

Dehn twist, 6, 52, 57
dihedral group, 46, 80, 89

Euler characteristic, 13, 26, 33, 81

freely homotopic to a singularity, 13, 36
fundamental group, 2, 9, 31, 33

genus, 2, 31, 33, 67, 89

group action
free, 15
orbit, 47, 72, 89
orbit space, 30, 47, 49
transitive, 15

homology, 9, 10, 36, 44, 52, 65

mapping class group, 4, 57
minimal congruence level, 51, 55, 58
monodromy group, ii, 3, 26, 66, 81, 89

cyclic, 63, 71
monodromy map, ii, 3, 12, 63, 65, 89

equivalent, 8

outer automorphism group, 4

parabolic element, 5, 52, 54
associated to cylinder decomposition,

6, 52
maximal, 6, 55
width, 55, 56, 57

permutation
cycle structure, 4, 82

permutation group
primitive, 79
transitive, 3, 79

primitive in 𝐻1(𝑆𝑔,Z), 54
principal congruence group, 10, 12, 30,

46, 52, 61
projective Veech group, 4, 57
property (⋆), 27, 28, 40
pure affine group, 4
pure congruence group, 14, 29
pure principal congruence group, 14
pure Veech group, ii, 4, 17
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Index

ramification, 9
ramification behaviour, 25, 81
ramification index, 2, 25, 81
ramification point, 2, 26
regular 2𝑛-gon, 27, 31, 33
regular double-𝑛-gon, 31, 51, 54, 58, 67,

84, 85
Riemann surface, 1
Riemann-Hurwitz formula, 2, 26, 81

saddle connection, 5
singular point, 1
singularity, 1

conical, 1, 31
finite angle, 18
multiplicity, 1, 18, 81
removable, 1

stabilising group, 24
stratum, 13, 67, 82
symmetric group, 79

torus, 1, 5, 9, 10, 14, 52, 58, 68
total ramification index, 2, 81
transition map, 4
translation, 4
translation covering, ii, 2, 63

balanced, 2
characteristic, 12
cyclic, 66
degree, ii, 2, 89
equivalent, 66
normal, 2
unramified, 12, 63

translation structure, 2
lift, 26
pullback, 3

translation surface, i, 1
finite, 1
from polygons, 1, 31, 33
primitive, ii, 6

unfolding construction, i, 31

Veech alternative, ii, 5
Veech group, ii, 4, 32, 34, 72, 89

Veech surface, 5, 32, 34

Wohlfahrt level, 55, 56, 57, 58
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