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Zusammenfassung

Verfahrenstechnische Prozesse besitzen in der Regel eine große Anzahl an
Prozessgrößen. Bei der Detektion von abnormalem Prozessverhalten, beispiel-
sweise durch Überschreiten eines zuvor definierten Schwellwertes oder durch
multivariate Fehlerdetektion, können diese Prozessgrößen einen Alarm gener-
ieren. Tritt eine Störung in einem zentralen Anlagenteil auf, kann dies zu einer
Alarmflut führen, da die einzelnen Prozessgrößen miteinander verbundenen
sind und die Störung durch die Anlage propagiert. Anlagenführer müssen
dann unter Zeitdruck die wichtigsten Alarme selektieren, um die tatsächliche
Fehlerursache detektieren zu können und wichtige Entscheidungen müssen
möglicherweise unter einem erhöhten Stresslevel getroffen werden. Daher ist
es nützlich, automatisiert die Prozessgrößen zu detektieren, welche sich am
nächsten an der Ursache der Störung befinden.

Der in dieser Arbeit untersuchte Ansatz zur Fehlerlokalisierung sich anlagen-
weit auswirkender Fehler besteht darin, statistische Relationen und Zeitver-
schiebungen in den Messdaten der Prozessgrößen zu nutzen (bspw. durch
Dynamiken in Übertragungssystemen oder Totzeiten), um die Ursache der
Störung ausfindig zu machen und den Störungspropagationspfad rückzurech-
nen. Methodisch bedeutet dies, dass zwischen Prozessgrößen Ursache/Wirk-
zusammenhänge berechnet werden müssen. Prozessgrößen, welche einen
großen kausalen Einfluss auf weitere Größen haben, kommen hierbei als Ur-
sache der Störung in Betracht.

Für das automatisierte Erkennen kausaler Abhängigkeiten wurden dazu Ver-
fahren entwickelt, welche auf Kreuzkorrelation, Granger-Kausalität, Transfer
Entropie und Support Vector Machines basieren. Speziell für Support Vec-
tor Machines wurde ein neuer Ansatz aufbauend auf einer Variablenselektion
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zeitverschobener Eingangssignale entwickelt, um kausale Abhängigkeiten in
Messdaten zu erkennen. Bei allen Methoden wurde darauf geachtet, dass
sie zum Erkennen der Zusammenhänge aus einem qualitativ statistischen
Teil und einem quantitativen Teil bestehen. Dies bedeutet, dass zunächst
ein Signifikanztest durchgeführt wird, welcher überprüft, ob eine kausale Ab-
hängigkeit zwischen den Prozessvariablen vorliegt.
Für den quantitativen Teil wurde in dieser Arbeit das Konzept der kausalen
Stärke entwickelt, um den resultierenden Einfluss der Prozessgrößen aufeinan-
der zu berechnen. Bei der kausalen Stärke handelt es sich um ein Maß, welches
die Ursache/Wirkungsbeziehungen zwischen verschiedenen Prozessgrößen
quantifiziert. Die Grundidee hierbei ist, dass bei einem statistisch signifikan-
ten Zusammenhang zwischen zwei Prozessgrößen die Stärke des kausalen
Zusammenhangs bei allen Verfahren durch einen Wert zwischen 0 (keine Ur-
sache/Wirkung) und 1 (sicher erkannte Ursache/Wirkung) beschrieben wird.
Die Auswertung jeder Methode resultiert schließlich in einer Kausalmatrix,
welche die Zusammenhänge der gesamten verwendeten Prozessgrößen be-
schreibt und den resultierenden Fehlerpropagationspfad beinhaltet. Durch
die Normierung auf Werte zwischen 0 und 1 ist es möglich, die resultierenden
Matrizen eines jeden Verfahrens zu fusionieren und so robustere Ergebnisse
bezüglich der Fehlerlokalisierung zu erzielen.
Da jede Methode ihre speziellen Eigenschaften besitzt, wurden zunächst Bench-
mark-Datensätze erstellt und die entwickelten Methoden getestet, um eine
Bewertung der Vor- und Nachteile vorzunehmen. Die Benchmark-Datensätze
beinhalten hierbei zum Beispiel lange Totzeiten, Nichtlinearitäten, Wechsel
im Stationärwert oder Datensätze, in denen mehr als eine Störung auftritt. Als
Praxistest wurden die entwickelten Methoden sowohl an einem Laborprozess
als auch an einem industriellen Glasziehprozess untersucht. Beim Labor-
prozess handelt es sich um einen Aufbau, bei dem Wasser in zwei Behältern
umgepumpt wird. Zum Testen von Fehlern wurden hierbei mehrere Versuche
durchgeführt. Hierzu zählt beispielsweise eine Störung der Stromzuführung
der Pumpe, ein Klemmen des Ventils und als externe Störung das Verstopfen
eines Zuleitungsrohres. In allen Fällen war es möglich, durch die Fusion der
Methoden die Fehlerursache zu lokalisieren. Beim Glasziehprozess wurden
die Methoden dazu verwendet, den Fehlerpropagationspfad eines Defektes im
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Glaszylinder, welcher in der Produktion von Glasstäben auftritt, zurückzuver-
folgen.
Des Weiteren wurden verschiedene Methoden zur Visualisierung der Kausalma-
trizen entwickelt, um eine einfache Analyse der Ergebnisse zu ermöglichen.
Hierzu zählt der Vergleich der Methoden am gleichen Datensatz in Form eines
Bar-Charts, die resultierenden Fehlerpropagationspfade durch einen partiell
gerichteten Graphen sowie das Erzeugen einer Fehlerhitliste zur Auswahl der
Prozessgröße, welche am wahrscheinlichsten die Fehlerursache ist.





Abstract

Process control systems at production plants usually contain a large number of
process variables. When detecting an abnormal process behavior, e. g. when
passing a prior defined threshold or through multivariate fault detection, those
process variables can generate an alarm. If the disturbance affects a major part
of the plant this can lead to an alarm flood, as the process variables are inter-
connected to each other and a disturbance tends to propagate itself throughout
the entire process. Operators need to select the most important alarms and
need to make important decisions possibly under increasing stress, as well as
time pressure in order to detect the root cause of the fault. To this end, it is of
great benefit to automatically detect those process variables which are closest
to the source of the disturbance and discriminate against those caused from a
propagation of the original disturbance.

The proposed approach for the localization of plant-wide disturbances explored
in this thesis is one that uses statistical relationships and time-shifts in the
measurement data from the process variables, e. g. through dynamics in transfer
functions or dead times, to track the disturbance propagation path and to
detect the root cause of the fault. Methodologically, this means that cause-
effect dependencies among process variables need to be detected. Process
variables that show a strong causal impact on other variables in the process at
a plant come into consideration as being the root cause.

For the automatic detection of causal dependencies in this thesis, several meth-
ods are proposed, which are based on cross-correlation, Granger causality,
transfer entropy and support vector machines. Especially for support vector
machines, a new approach has been developed. This new approach uses a
variable selection that is based on time-shifted input signals to detect causal
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dependencies in measurement data. The detection of causal dependencies con-
sists of a qualitative statistic and a quantitative part, that all developed methods
have in common. This means that a significance test is initially performed
to determine if a causal dependency exists among the investigated process
variables.
Regarding the quantitative part in this work, the concept of causal strength
has been developed to calculate the causal impact of one process variable on
another. The causal strength is in that case a measure which quantifies the
cause-effect dependency between two process variables. The main purpose is
to describe the relationship for all methods between a value of 0 (no cause/ef-
fect) and 1 (sure cause/effect), whenever a significant causal dependency has
been detected between two variables. The use of these quantitative methods
results in a causal matrix, which describes the relationships for all used process
variables and produces the resulting disturbance propagation path. Through a
standardization between 0 and 1 it is possible to combine the resulting matrices
of the different methods through averaging and to generate more robust results
with respect to the localization of the root cause.
As each method has its specific assets and drawbacks, benchmark data sets
were developed to perform an evaluation of the characteristics. These bench-
mark data sets cover aspects such as large dead times, nonlinearities, set-point
changes, or data sets that consist of more than one root cause. To proof the
concept, the proposed methods are tested on a laboratory plant as well as
on an industrial glass forming process. The laboratory plant consists of an
installation in which water is recirculated in two tanks. To test the methods,
several experiments were performed. These experiments test the proposed
methods against failures such as a loose electricity connection of the pump, an
air pressure leak of the valve, and as an external fault the clogging of an inlet
pipe. Through the averaging of the causal matrices it was possible to localize
the root cause of the fault in all cases. Regarding the glass forming process, the
methods were used to reconstruct the disturbance propagation path of a defect
contained in the glass cylinder, which occurs during production.
In addition, several procedures have been developed for the visualization of the
causal matrices to achieve a better analysis of the results. These visualizations
express a comparison of the different methods on the same data set in the form
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of a bar chart, representing the disturbance propagation path as a partially
directed graph and the generation of a root cause priority list to describe the
process variable that has been identified as being the possible root cause.





Notations

A Simplex
AdjX i

Adjacent nodes of variable Xi

C Cause
C CCF

thresh Significance threshold for CCF
D l Glass forming process lower diameter
Du Glass forming process upper diameter
Di Partitioning size of a random variable
E Set of edges in a graph
E Effect
E1,E2 Activation energy for chemical reaction
EU i Y Prediction error restricted model
Etest Residual sum of squares test data
Etraining Residual sum of squares training data
EUi Y Prediction error unrestricted model
F Fault, volume flow rate
F (x) Strong classifier
Φuy Set of variables used as input for SVM
Φranked

uy Set of ranked variables fromΦuy

G Graph
G2 Test statistic for conditionally independency
H(s) Transfer function
Hu Entropy
Hu,y Joint entropy
Hy |u Conditional entropy
K Length of time series
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Ka Amplification factor
Kstep Amplitude of step function
L(·) Lagrangian function
N Number of performed runs, number of classifiers
Nr Samples per rise time
P Symptom pattern
P (·) Probability distribution
Pn Process pattern
QCCF,QTE,QGC,QSVM Causal matrix for proposed method
Qfus Combined causal matrix
Qpk

fus Combined causal matrix with a priori knowledge
RC Weight of being the root cause
S Subset of AdjX i

T Time constant
Td Signal dead time
Tsn Nyquist frequency
Ts Sample period
Tsn Noise sample time
TEuy Maximum amplitude of TE?uy [λ]
TEthresh

uy Threshold for causal significance
TE?uy Amplitude of the transfer entropy
V Set of nodes in a graph
R Universal gas constant
V Volume of cstr
V0.632 Loss function from 0.632 bootstrap algorithm
X Feature space
Xi Random variable, process variable
αi ,α̂i Support vectors
αn Weight of classifier
α Threshold for statistical significance
βCCF,βTE,βGC,βSVM Causal matrix fitting parameter
c Compression rate, tuning parameter for notch filter
cin,cA,cB,cC Measured chemical concentrations in cstr
ĉuy Amplitude of CCF
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d Durbin-Watson test statistic, Tuning parameter for
notch filter

ε,C ,σ SVM fitting parameters
εopt,Copt,σopt Optimized SVM fitting parameters
ε Residuals for Durbin-Watson statistic
φ Size of subset for selected variables fromΦranked

uy

f Frequency
hn(x) Weak classifier
k(·,·) Kernel function
k1,k2,k3 Chemical reaction speed
λ Time delay between two time series
λmax Indice for CCF algorithm
µ Linear mean
n Model order, lag vector, selected classifier
ωn Notch frequency
ωo Natural frequency
p Probability
qXi→X j Causal strength
ρ̂uyλ Time shifted correlation coefficient
ρ̂uy Pearson correlation coefficient
r Set of process variables, residuals
σ Standard deviation
σ2 Variance
ϑb Glass temperature
ϑc Cylinder temperature
ϑfl Temperature of fluid flow
tscore Test statistic for t-test
u Input time series
uλ Shifted input time series
uπ Permutated input time series
vs Pulling speed
y Output time series
ζ Damper constant
AIC Akaike information criterion
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ARMA Autoregressive moving average
BIC Bayesian information criterion
CCF Cross-correlation function
CRISP-DM Cross industry standard process for data mining
GC Granger causality
KDD Knowledge discovery in databases
LOO Leave-one-out error
MIMO Multiple input multiple output
MPC Model predictive control
LTI Linear-time-invariant system
PC Peter and Clark algorithm
PCA Principal component analysis
PDAG Partially directed acyclic graph
PICA Piecewise constant approximation
ROC Receiver operating characteristic
RSS Residual sum of squares
SVM Support vector machines
TE Transfer entropy
VAR Vector autoregression
cstr Continuous stirred tank reactor
do do-operator
d f Degree of freedom
pdf Probability density function
psd Power spectral density
sgn Sign function
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1
Introduction

This chapter gives a short introduction into the subject of data-driven fault
localization and states the main aspects which motivate this work. The chap-
ter closes by outlining the main contributions as well as explaining the orga-
nization of the thesis.

1.1 Motivation
Modern industrial plants are complex systems that need to run over several
weeks or in some cases even months. During a production run, operating con-
ditions can change which then can lead to unwanted abnormal behavior of the
process. Hence, counteractions need to be undertaken to attain an efficient
production. Changes in process conditions, such as wearing or clogging of the
equipment or a change of some external condition like outside temperature
can cause disturbances in the process. These disturbances have the potential
to lead to faults. To resume production a fast elimination and restoration of the
original process conditions is one of the highest priorities. Because modern
plants’ control and measurement devices are cross-linked with each other, a
failure in major equipment can potentially lead to plant-wide disturbances re-
sulting in a flood of alarms, which makes it difficult to find the root disturbance.
An illustrative example is given in figure 1.1 which shows the scheme of a chemi-
cal plant where a fault in a valve, marked with a red flash, becomes a plant-wide
disturbance and generates the previously mentioned flood of alarms. As not
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2 1 Introduction

all relations of the different process parameters are well known, the detection
of the source of a fault and the reconstruction of the corresponding distur-
bance propagation path is not an easy task. Often, a correct fault diagnosis
mainly depends on the experience and the expert knowledge of the process
operator. Besides being complex, modern processes have the advantage that
they are highly automated and are largely equipped with measurement devices.
Therefore, by using process data containing the disturbed measurements, it is
possible to localize or at least to narrow down on the cause of a disturbance.

Because of its importance and benefit, performing a data-driven detection of
faults in process data is the main topic of the thesis. As it takes some time for
the disturbance to propagate through the process, the idea is to use temporal
information as well as the calculation of statistical relations among the different
process variables to reconstruct the disturbance propagation path. The node
representing the root of the calculated path then represents the process variable
which is the source of the fault or the process variable that detected the fault
first. There are two points of view on how to motivate the development of these
methods, namely in terms of process supervision and in terms of data mining.
This is explained below.

View-point of process supervision Following the study of the NAMUR con-
sortium presented by Hagemeyer [HP09] in 2009, 78% of the process engineers
are not satisfied with the alarm management of their processes and wish to
have further research in this direction. The concept of state-of-the-art alarm
management for process supervision is to give an alert to the operator if one or
several process devices deviate from their normal conditions. As a process con-
sists of a large number of different process devices that provide an alert when
the process shows an abnormal operating situation most of the alarms are not
meaningful and can be ignored by the operators. Despite this, when an alarm
flood is generated through a fault in a piece of major equipment, operators
need to analyze the situation quickly and need to make important decisions to
prevent damage to the plant. Therefore, a more intelligent alarm management
is necessary that selects the most meaningful alarms and is capable of bringing
an operator’s attention to the source of the fault. Regarding the chemical plant
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Figure (1.1) A fault in one major process equipment, marked in red, generates distur-
bances that propagate through the process generating various alarms. Localizing the
root cause and the disturbance propagation path helps resolving the problem.

in figure 1.1 insufficient alarm management means that six alarms alert while
only the alarm of one valve is meaningful. Therefore, data-driven methods
for the detection of cause-effect dependencies can help to improve the alarm
management by giving the five meaningless alarms a low priority.

View-point of data mining Having almost unlimited storage space and a
high level of computational power, engineers have begun to think about how to
analyze process data further. One of the first concepts was defined by Fayyad
[UGP96] in 1996 named Knowledge Discovery in Databases (KDD), wherein
an iterative procedure is suggested on how to extract new knowledge out of
available data sets. Later, in the year 2000 several industrial companies formed
the Cross Industry Standard Process for Data Mining (CRISP-DM) [She00b]
which describes not only the analysis, but the complete life cycle of a data
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mining project. In both cases, the essential part is to use statistical methods to
find patterns in data. Regarding industrial processes these methods are mainly
used for fault detection tasks but not for diagnosis. The main reason is that the
learned patterns usually correspond to black-box models, meaning that the
internal operation of the model corresponds to some mathematical function
but does not necessarily have a physical relation to the process. Developing
methods that detect cause-effect relationships in process data can give further
insights into the physics and the interconnection of the plant. Therefore, the
main motivation from the point of view of a data miner is to develop meth-
ods that do not only represent some statistical relations but describe causal
dependencies to generate new knowledge by analyzing the process data.

1.2 Related work

This section gives a brief review to the field of data-driven fault analysis which
is most relevant for this thesis. Localizing faults in a process can be seen as
a part of fault diagnosis performed in process supervision. A more detailed
introduction to process supervision with a thorough literature review will be
given in chapter 2.

In general, approaches for root cause localization can be separated into two
parts, namely analytic and data-driven methods. The difference of both ap-
proaches is that analytic methods consist of a mathematical process model and
compare model parameters against measurements, while data-driven methods
are based on recent process data. As introduced in section 1.1 only a small
amount of real plants is modeled analytically, which gives the motivation for
this thesis to explore data-driven methods for the localization of faults. These
methods are based on the calculation of statistical relationships and time-shifts
in the measurement data from process variables. Methodologically, this means
that cause-effect dependencies among process variables are calculated and
variables that show a strong causal impact on other variables come into consid-
eration as being the root cause of the disturbance.

Several methods have been already developed to test for causal dependencies
in data. One of the first approaches was made by Granger [Gra69] who com-
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pares two autoregressive models to each other. In so doing, the first model
contains only lagged values of itself and the second model is augmented with
lagged values of another variable. If the augmentation helps to increase the
regression, it is assumed that this variable is the cause of the other. As another
approach, Horch [Hor00] proposes an algorithm based on the cross-correlation
function for causal analysis. In that case, the absolute maximum value of the
cross-correlation function and the corresponding time shift are used for the
description of causal dependencies in the data. Schreiber [Sch00] presents a
concept to interpret causal dependencies as the information flow from one
variable to another. Therefore, he defines the concept of transfer entropy, which
measures the reduction of uncertainty when assuming that one variable pre-
dicts future values of the other. There are further methods existing to detect
causal dependencies. Bayesian networks [EM07] have been extended to de-
tect dynamic behavior in data, which again can be used to calculate causal
dependencies. Bauer [Bau05] proposes several algorithms which use a nearest
neighbor approach as a causal measure by predicting the value of one variable
by another.
This shows that already various methods exist to detect causal dependencies
in a data set while each of the introduced methods has its own characteristics
and one method can complement another. Hence, it can be concluded that
the performance of the methods depends on the occurred disturbances and
the characteristics of the underlying process. Therefore, Yang [YX12] proposes
always to try different methods on the same data set to obtain reasonable
results.
The localization of faults and disturbances builds the application of the data-
driven methods in this thesis. A fault is commonly understood as a malfunc-
tioning of one or several process devices. This fault leads to disturbances in
the process which affects other process devices and reduces the overall perfor-
mance of the plant. There exists an almost unlimited variety of possible faults
and disturbances occurring in a process. Since there exists this large variety,
recent research focuses on the development and analysis of disturbances in
industrial case studies. In that area recent research has been made by Bauer
[Bau05] who describes common faults in chemical plants, Singhal [SS05] who
describes disturbances occurring from valve stiction and Horch [Hor00] who
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focuses on disturbances occurring from dead-zones and friction.

In a plant with a large number of process variables, the disturbance that occurs
at a certain position in the process, eventually becomes a plant-wide distur-
bance. In this work, the localization of the origin of the plant wide disturbances
and the reconstruction of the disturbance propagation path is a central part for
the analysis of the data-driven methods. If the path can be reconstructed, the
source of the disturbance can be found, which again helps to identify the cause
of the occurred fault. Hence, the relevance of the disturbance in this thesis is
to test if the data-driven methods will be able to track back how it propagates
through the process.

1.3 Contributions

The introduction showed that various methods already exist to detect causal
dependencies in a data set while each of these methods has its own characteris-
tics. In the course of this, important aims of this thesis are a concept that makes
these methods comparable to each other and the development of a design
approach which combines them to one causal matrix. Another important goal
is the proposal of a new method for the detection of cause-effect relationships
based on support vector machines. Furthermore, benchmark data sets are de-
veloped, which identify the advantages and drawbacks of the methods. These
benchmarks cover artificial data sets as well as real process data. In detail, the
main contributions of this thesis are:

• A method which uses support vector machines for the calculation of
causal dependencies. The novelty of this method is a recursive variable
selection and model reduction approach (section 3.7);

• Improvement of a method based on the cross-correlation function by
using permutation tests for the detection of significant causal dependen-
cies (section 3.4). Transfer entropy and Granger causality are extended
by calculating a quantitative value which makes all proposed methods
comparable (section 3.5 and section 3.6);
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• Development of a design approach which combines all proposed meth-
ods to one resulting causal matrix. This is presented without a priori
knowledge and when including a priori knowledge in terms of known
causal dependencies (chapter 4);

• Development of an artificial benchmark data set for a detailed evaluation
of the characteristics of the proposed data-driven methods (section 3.2);

• Application of the developed design approach on an experimental labora-
tory plant while introducing different faults (chapter 5) and introduction
of a new industrial case study. The functionality of the methods is verified
on an industrial glass forming process when analyzing the disturbance
propagation path of a weld (chapter 6);

• Study on the setup of the data acquisition system. Guidelines are estab-
lished for the selection of the sampling period, data compression and
the filtering of oscillatory data when calculating causal dependencies
(chapter 7);

• Development of a visualization method for the causal matrices. This
visualization includes a comparison of the methods, the combined causal
matrix and the detected disturbance propagation path (section 3.3.1);

Publications The work presented in this thesis resulted in several publica-
tions. A summary is given in chronological order. How to use data-driven
methods for process supervision is explained in [KMB09]. The methodology
how variable selection and model reduction can be performed using support
vector machines is presented in [KB09a] and [KB09b]. Using support vector
machines with a focus on process supervision is presented in [KBF10] and
[KB10a]. An overview how to use probabilistic causal methods for the detection
of the causal structures in production data is given in [KB10b]. Using these
methods with a focus on the detection of the reaction scheme of the chemical
stirred tank reactor is given in [KBF11]. A survey of the suggested methods
in this thesis is given in [KGHM11] and with a larger focus on visualization in
[KGHM12].
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1.4 Thesis Organization
The thesis includes eight chapters which are all based onto each other. Chapter
2 starts with initially reviewing the main aspects of process supervision and de-
scribes potential disturbances that can occur in a plant. Next the fundamental
difference of correlation vs. causality and two different perspectives of causality
are explained. Finally, it is illustrated how probabilistic causal methods can
be used to analyze production data. Chapter 3 begins with classifying causal
discovery methods using temporal information depending on their algorithmic
framework. Next, several benchmarks and visualization methods for the repre-
sentation of causal dependencies are proposed. The core of the chapter covers
the explanation of the proposed methods, namely cross-correlation, transfer
entropy, Granger causality and support vector machines. All methods are thor-
oughly tested on benchmark data sets. Chapter 4 summarizes the results from
the benchmark data sets by suggesting a sunburst graph for the selection of
the correct method depending on the underlying process. Next it is proposed
to combine all methods into one resulting causal matrix by assuming that all
methods work equally well on a data set. Finally it is shown how the disturbance
propagation path of a continuous stirred tank reactor can be calculated with
and without including a priori knowledge. Chapter 5 shows the results of the
suggested methods when being tested on a laboratory plant in which water is
pumped around in cycles. In total six different faults are investigated, namely
a loose electricity connection in the pump, a valve air pressure leak, faults in
pump and valve, tube clogging, a loose electricity connection in an oscillating
pump and a faulty level sensor. Chapter 6 investigates the methods on a known
disturbance of an industrial glass forming process. The process characteris-
tics are explained and the disturbance propagation path is calculated using
productions containing this disturbance. Chapter 7 investigates the impact of
the sampling period, data compression and oscillations when having measure-
ment data available. Furthermore, the impact of filtering is investigated when
removing oscillations in signals by using notch filters. Chapter 8 summarizes
the results containing a critical discussion and describes open issues for further
research.



2
Disturbances in Process Data

This chapter gives a thorough introduction how causes of faults can be local-
ized when having disturbed process data at hand. Therefore, in this chapter
the state-of-the-art of process supervision is reviewed and different types
of faults and disturbances that can possibly occur in a plant are explained.
Thereafter, the fundamental differences of causality and correlation are ex-
plained and the different possibilities on how to detect causal dependencies
in acquired measurement data are demonstrated. The chapter closes by il-
lustrating how the concept of probabilistic causality can be used to detect
the cause of a varying product quality in a continuous stirred tank reactor.

2.1 Process Supervision
As processes become more and more complex monitoring the performance of
a process is of crucial importance to attain an efficient production. Conditions
during a production can change which can lead to unwanted behavior of the
process and counteractions need to be undertaken. Hence supervising (or
monitoring) a process needs to fulfill several tasks. In first place this means that
the present state of the process is indicated to the operator and that undesired
or unexpected behavior is reported to him. Still supervision is related to more
than only performing a condition-monitoring of the process behavior as su-
pervision addresses all aspects needed to take appropriate actions to prevent
the process from damage or failure. There are several books about process

9
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supervision available while one of the first ones was written by Himmelblau
[Him78] who focusses on chemical plants and Pau [Pau81] who gives a more
general introduction. More recent literature was written by Chiang [CRB01]
which focusses mainly on statistical process analysis and Gertler [Ger98] which
gives a more general view about the topic. In the present work the review given
for process supervision mainly focusses on the framework developed by Is-
ermann [Ise06]. He separates supervision into three different levels, namely
monitoring, automatic protection and supervision with fault diagnosis. All
three levels are sketched out in figure 2.1 and are explained below.

Signal
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Alarm

Automatic
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detection

Fault
diagnosis

Evaluation,
Decision

Fault
Management

Supervisory level

Process
level

Fault

Process + Control

C P
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Figure (2.1) Illustration of the different levels of process supervision as explained in the
framework of Isermann [Ise06].

• Monitoring: Monitoring the condition of a process means that it is
checked if the values of the process variables stay inside some prede-
fined range of tolerance. If a measurement leaves its tolerance, e. g. by
passing a threshold, an alarm is generated and displayed to the opera-
tor. In a next step the operator has to decide which action needs to be
undertaken to avoid a possible damage to the process.

• Automatic protection: Depending on the occurred fault the supervisory
system automatically performs some counteraction and does not wait
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for an input coming from the operator. In most cases an automatic
counteraction means that the process is automatically shut down or set
into a fail-safe mode. The advantage when setting the process into a
fail-safe mode is that production is still sustained by taking into account
the cost of low efficiency.

• Supervision with fault diagnosis: Performing a process supervision with
fault diagnosis covers three steps. In the first place, the fault needs to be
detected and symptoms that detail the influence of the fault in the process
need to be specified. Next, a fault diagnosis is undertaken that describes
the kind, size and location of the fault [Ise06]. Finally, the diagnostic
needs to be evaluated and appropriate decisions have to be done either by
the operator or automatically. The concept of fault diagnosis is reviewed
in further detail in section 2.1.2.

All levels of supervision can be conducted locally, meaning that faults are de-
tected by monitoring process variables on a one-by-one basis or more globally
by combining several variables into one value which is then used for supervis-
ing. Independent of the selection of the supervision level, if a fault is detected,
some counteraction needs to be conducted. As illustrated in figure 2.1 this
is covered under the synonym fault management. Faults in the process can
potentially lead to a failure or damage. Hence a fast detection and the selection
of the correct counteraction is unconditionally necessary. Therefore, Isermann
[Ise06] defines several actions that need to be accomplished depending on the
hazard class of the fault. In detail these are safe operation (e. g. a shutdown),
reliable operation (e. g. switching to a safe production mode), reconfiguration
(e. g. switching to another sensor system), inspection (e. g. detailed diagnosis
of the fault), maintenance (e. g. exchange of fault producing process compo-
nents) and repair (e. g. revision of process components). Process supervision
is performed in a wide area of industries. Ragot [RM06] proposes methods for
process supervision for urban water supply, Kano [Man08] for applications in
steel industry, Geng [GZ05] in chemical engineering and Pinder [PG93] for food
industry.
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2.1.1 Fault Detection

Prior to performing a diagnosis of a fault, the abnormal process behavior needs
to be detected. According to Isermann fault detection can be separated into
three different categories, namely knowledge-based, signal-based and process-
model-based.

• Knowledge-based: A knowledge-based fault detection means that ana-
lytic and heuristic symptoms are generated and used to detect abnormal
behavior in the process. Analytic process information addresses all quan-
tifiable symptoms resulting from signal analysis by using characteristic
values such as frequencies, amplitudes or variances. Heuristic symptoms
cover all information that can be generated through operator knowledge.
Information coming from operators includes geometry, noise, special
colors of a product or concerning process history for example the last revi-
sion, wear or the knowledge of former faults. Both heuristic and analytic
symptoms can be summarized to generate one unified representation
of symptoms and this representation can be transformed into linguistic
terms to monitor the process and to detect faults.

• Signal-based: Detecting faults based on analyzing a single signal can
be done in its basic form by performing limit checking, trend checking
or change detection. Limit checking means that a threshold is defined
and if the measured variable crosses this value a fault is detected. Trend
checking works in the same form with the difference that not the signal,
but the derivative is calculated to detect a fault. The concept of change
detection is to calculate the mean and variance of a signal over a cer-
tain time frame. If mean and/or variance differ significantly from an
expected value a fault is detected in the process. Furthermore, recently
machine learning methods and multivariate statistics found their ways
into plant-wide monitoring, which is of special importance when super-
vising large-scale processes. In detail the concept is to project the original
process data onto a lower dimension and thus to reduce the number of
variables to monitor. Of particular importance is in that case the principal
component analysis (PCA), which makes an axis transformation of the
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original data to keep as much variation as possible in the data set when
the dimension is reduced. In terms of machine learning a promising
approach is established by using self-organizing maps which are a special
type of neural networks (see e. g. [Fre08]).

• Process-model-based: The concept of a process-model-based fault de-
tection means to use a mathematical process model for monitoring. This
model comprises the main parameters of the process and describes its es-
sential physical relations. Having the measured input and output signals
at hand the process-model-based fault detection can be made by cal-
culating either parameter estimates or residuals. The idea of parameter
estimates for fault detection is to monitor the deviation of one or several
estimated process parameters while the process is running. A significant
difference from the original estimates indicates a fault in the process.
The approach based on parameter estimates has the advantage that the
determination of the variation of process parameters already gives an
insight of the type of the fault and makes a localization and diagnosis
easier (e. g. when monitoring the stiffness of a spring). Another concept, if
the process parameters are known, is based on developed state observers
which describe the process. In this approach the residuals of process and
those from the observer are compared and if the residuals increase while
the process is running, a fault is indicated.

Figure 2.2 gives a survey of some of the most used methods applied for fault-
detection in processes, while distinguishing them into data-driven and analytic
approaches. There are several other ways on how to organize the methods.
Chiang [CRB01] classifies the methods concerning data-driven, analytical and
knowledge-based, Isermann classifies the methods besides the classification
used above into single signal and multiple signal methods. A priori knowledge
can be incorporated into all methods, e. g. through the definition of thresholds
when a fault is detected.

Process modeling in practice As the present work is devoted to data-driven
methods for fault localization, which do not need a process model of the plant,
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Figure (2.2) Survey of possible fault-detection methods classified in data-driven and
analytic approaches. In this thesis the focus is on data-driven approaches.

it is important to know how many processes are modeled in practice to check if
the methods in this thesis are needed in industry. In this case, studies inves-
tigating how often model predictive control (MPC) is performed in practice
can be used as a source of information. An investigative study of about 10.000
plants made by Dittmar [RP06] in 2006 revealed that in most industrial sectors
less than 10 percent of the processes use MPC. Thereby refineries with 49.2%
are in the majority, in chemical industry it is 15.6% and in the other industrial
sectors e. g. paper industry, power plants or coal mining less than 5% use MPC.
From this it can be concluded that still the majority of industrial processes
is not physically modeled meaning that process-model-based observers for
process supervision cannot be used without a large amount of work. Another
market study made in 2009 by the NAMUR consortium [HP09] analyzing the
expectations of future development in process engineering gave similar results.
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Having a continuous process, the wish to use MPC in the future was around
25%, having a batch process the wish to use MPC was 15%. To summarize, all
surveys show that still the majority of the plants is not modeled and that there
is a need to use data-driven methods for fault detection and localization.

2.1.2 Fault Diagnosis

As outlined in figure 2.1 fault diagnosis is done after a fault has been detected
in the process. Following the definition of Isermann [Ise06] a fault diagnosis
means the

’Determination of kind, size, location and time of detection of a fault
by evaluating symptoms.’

As in this work the main focus is on fault localization and the calculation of
the disturbance propagation path the suggested methods in chapter 3 can be
seen as part of the diagnosis of a fault. Performing the complete diagnosis of a
fault can be done either through classification or inference methods. Both are
illustrated in figure 2.3 and summarized for completeness.

• Classification: The concept when using classification methods for fault
diagnosis is to use an experimentally generated knowledge base. In that
case a process pattern Pn is determined when having normal process
behavior and several faults are applied experimentally to generate a set of
symptom patterns P , resulting from the fault detection method. When a
possibly new fault F is detected, by comparing P and Pn a fault diagnosis
can be concluded by using the generated knowledge base.

• Inference: If there are some basic relations known, this a priori knowl-
edge can be used for the generation of rules and then used for diagnosis.
These rules can be described through simple if-else relationships in the
form of if <cause> then <effect> or constructed in terms of a decision
tree. As another approach it is possible to construct Bayesian Networks
and to interpret the edges as being causal (see[Mur02]). The advantage
by following this approach is that one deals with a probabilistic graphical
model and therefore, probability theory can be applied for fault diagnosis.
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Figure (2.3) Methods used for fault diagnosis based on pattern recognition (classification
methods) and process knowledge (inference methods).

2.2 Disturbances and Faults in Process Data

Following the definition of Isermann [Ise06] a fault is defined as an

’Unpermitted deviation of at least one characteristic property of the system.’

In other words, this means that at least one process component differs signifi-
cantly from its expected behavior. By definition process components cover the
whole range of devices (e. g. valve, pumps, pipes) that are used in process tech-
nology. Additionally, Isermann [Ise06] distinguishes faults from disturbances
and therefore defines a disturbance as

’An unknown (and uncontrolled) input acting on a system.’

Based on this definition, it can be concluded that when having a fault in the
system, disturbances will occur due to the deviation of the faulty process com-
ponent from its normal behavior. These disturbances can then be measured
by acquiring the process variables. To put it in another way, disturbances are
the symptoms of faults in a process and a fault can be detected and located by
recognizing abnormal system behavior generated through the disturbances.
As mentioned, in the present work the main focus is on the localization of the
source of the fault. Therefore, the main idea is to perform a backpropagation
of the disturbances that have an effect on the different process variables and
finally to find the underlying cause of the event that generated the measured
disturbances. The cause of this event is commonly called the root cause and the
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way the disturbance travels from one process variable to the next one is called
the disturbance (or fault) propagation path. Finally, by finding the root cause,
this means that the faulty process component that generated the disturbances
is localized.

2.2.1 Disturbance Propagation Path

The disturbance propagation path describes the way a disturbance travels
through the process. In that case the knowledge of the propagation path can
significantly improve the fault localization as the path gives information about
how the fault affects the behavior of the process. For the reconstruction of
disturbance propagation paths two sources of information, namely temporal
information and attenuation can be used. Additionally, in some cases it is
possible to reconstruct the disturbance propagation path using probabilistic
calculations. In the temporal case time delays are used as causal information
for reconstruction. An example is given by a water tank which can be described
as a 1st-order system or as another example a measurable dead time between
two process devices. How to use temporal information in connection with the
statistical methods for the calculation of a disturbance propagation path will
be explained in section 2.3.2. Another possibility to calculate the disturbance
propagation path is to analyze production data using probabilistic methods.
The leading thought in this approach is to calculate conditional dependencies
among process variables and to interpret the found dependencies as being
cause-effect relationships. Interpreting the dependencies as being causal can
be used when analyzing a set of production data for example when analyzing
the impact of high temperature combined with a weak fluid concentration on
the resulting product quality. This approach is explained and investigated in
further detail in section 2.3.1.

Another way to calculate the disturbance propagation path can be done by
comparing the magnitude of the disturbance in each measurement device. The
main idea is that the magnitude of a disturbance usually decreases further
away from the root cause while the frequency spectrum is not affected. Using
attenuation for the calculation of the propagation path is explained in further
detail in [Bau05] and will not be investigated in this work.
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When calculating a disturbance propagation path, it is important to notice that
a disturbance does not necessarily travel into the direction of the gas or fluid
flow. A basic example is given in terms of a faulty valve that closes unexpectedly
while having a sensor that measures the pressure of the fluid before passing the
valve. As the valve closes, the pressure in front of the valve increases as the fluid
cannot flow through the process meaning that the disturbance propagation
points into reverse direction.

2.2.2 Possible Faults in a Process

There is an almost unlimited variety of possible faults that lead to disturbances
in measurement data. Common faults in chemical plants have been inves-
tigated by Bauer [Bau05], who bases her analysis on an earlier one made by
Desborough and Hill [DM98]. She divided the types of causes into three differ-
ent groups, namely process problems, controller tuning problems and valve
problems. Process problems cover the impact of the process configuration,
controller tuning problems address inappropriately tuned control modules and
valve problems deal with the problem of wearing in valves. There are further
studies available that deal with the problem of how faults occur in systems.
Singhal [SS05] analysis the causes of oscillations coming from valve stiction
and describes a possibility to detect it. Horch [Hor00] analysis the impact of
static friction, dead-zones and further nonlinearities as possible root causes
of faults in a process. In the present work a distinction of different faults is
made concerning physical constraint problems, external disturbances acting
on the system, actuator problems and sensor problems. Each type of fault is
determined either in simulation, on the laboratory plant explained in chapter 5
or on the industrial glass forming process in chapter 6. In detail these types of
faults can be described as follows:

• Physical constraint problems These are caused due to the nonlinear be-
havior of physical reaction schemes. Chemical or biological reactions are
often nonlinear or discontinous. An example is that in some cases only a
small change in some fluid concentration can have a large impact on the
quality of the resulting product. Another example is the large impact of
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temperature. In some reactions a small temperature change can lead to
large variations in the final product. As these problems can be caused by
various process devices, knowing the root cause device and the underly-
ing disturbance propagation path is extremely useful. The analysis of this
kind of problems is investigated on a simulated continuous stirred tank
reactor.

• External problems This type of faults is not caused through a malfunc-
tioning of a process device. Typical examples are leakage or deposit in
pipes that lead to a measurable flow or pressure reduction. Another
example of external problems are faults that are already present in a pre-
product of the process. In this case it is reasonable to perform a fault
localization to detect the first process device that is influenced by the
disturbance. As in some cases the fault is already known, it is extremely
helpful to be aware of the disturbance propagation path to understand
the impact of the fault on the plant. This type of problems is analyzed on
the laboratory plant and on the industrial glass forming process.

• Actuator problems This type of problems addresses disturbances com-
ing from the malfunctioning of an actuator. There is a wide variety of
possible actuator faults occurring while a system is running. Examples
are electricity drop-outs in pumps or other electric drives. In terms of
valves examples are stick-slip, clogging, leakage or evaporation. Problems
like these are excessively investigated on the laboratory plant.

• Sensor problems These faults are caused due to a malfunctioning of
some measurement device. Faults like this can only become plant-wide if
the measurement value of the sensor has an impact on the behavior of an
actuator. In this thesis sensor problems are investigated on the laboratory
plant.

2.2.3 Analyzed Disturbances

Disturbances in process data can have different forms. Obviously not all dis-
turbances can be detected as easily as others. Therefore, four common dis-
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turbances are selected for investigation in the benchmark data which are all
outlined in figure 2.4. In detail this is white noise, colored noise generated using
a 1st-order system, a step function and a sinusoidal oscillation. The impacts of
white noise, colored noise and the step function are evaluated on the bench-
mark data sets presented in section 3.2. As the sinusoid is a cyclic signal that
doesn’t carry causal information it is investigated how filtering the signal affects
the resulting cause-effect dependencies. The impacts of oscillations and filter-
ing them when calculating the disturbance propagation path are determined
in chapter 7.
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Figure (2.4) Characteristic disturbances occurring in a process that are investigated in
the present work. Different data-driven methods are tested for the reconstruction of the
disturbance propagation path using these signals as root cause.

• White noise A time series that consists of white noise means to have a
sequence of uncorrelated random variables having constant mean and
variance. In system identification this signal is often used as it has equal
power over a fixed bandwidth. White noise is used in the benchmark data
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sets to investigate the behavior of the methods when having different sys-
tem configurations (e. g. nonlinearities or higher-order systems). Having
white noise is the idealized form of a disturbance and is especially used
to compare the behavior of the different proposed data-driven methods
on the system configurations. On real plants disturbances are always
autocorrelated up to a certain point.

• Colored noise Compared to white noise colored noise has a limited band-
width over its frequency spectrum. Having a colored disturbance means
that the disturbance contains information about itself in past values and
future values can be predicted from it up to a certain point. This can lead
to difficulties when calculating the disturbance propagation path as the
suggested methods need to subtract the information the signal contains
about itself to detect causal dependencies.

• Step function with superposed white noise Having a step function means
that the mean value of the signal changes abruptly and the methods
have to calculate the disturbance propagation path while dealing with
a non-stationary disturbance. As all methods assume stationarity, the
robustness of the methods when violating this assumption is investigated.
The impact of a step function is tested on the benchmark data sets and on
the laboratory plant. In detail, on the laboratory plant the step function
is used to generate an external disturbance and a joined error in pump
and valve.

• Sinusoid with superposed white noise A sinusoid is the prototype of a
periodic disturbance. As it represents a completely cyclic oscillation no
causal information can be drawn from it and all the causal information is
hidden in the superposed noise. In other words, having a sinusoidal oscil-
lation the frequency of the sinusoid can be suppressed for reconstructing
the fault propagation path. This is analyzed in further detail in chapter 7.
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2.3 Measuring Causal Dependencies in Data

The core of the reconstruction of disturbance propagation paths is to detect
cause-effect relationships in a data set. In general terms causality is described
as the relationship between a cause and an effect, while the effect is always the
consequence of the cause. To give a short historical review, the debate about
causal reasoning starts in Western philosophical tradition with Aristotle [Lea88]
and rests until today. Aristotle argued that to understand an object completely,
one has to understand its ’why’ meaning to understand the cause why the
object exists. Later on in the eighteenth century the philosopher David Hume
[May70] came up with a new definition of causality where he defined that it
is not possible to distinguish between cause and effect except one develops
a habit in mind that associates two events with each other that are always
occurring one after another [Hum96]. Therefore, Hume describes a list of eight
numbers with which it is possible to decide which one of two events is the
cause of the other. One of the main points is that cause and effect need to be
interconnected in space and time, the cause must be prior to the effect and
that the same cause always leads to the same effect. In modern times several
fields reaching from economics, psychology, history, religion or law deal with
the notion of causality while all fields have a different view on the definition of
causality.

View-point of engineering Seeing causality from an engineering point of
view is very precise. Engineers want to change something on a system which
will result in a desired outcome. Applying a causal analysis in terms of fault
localization means that engineers want to find the root cause of a disturbance,
while applying a causal analysis regarding process optimization means that
engineers want to find the optimal operating points of a system, which e. g.
will result in a better product quality. In both cases a data analysis based on
the detection of causal dependencies in the process is indispensable as an
analysis finding only correlations in the data does not describe cause-effect
relationships. In other words, for the engineer without having a thorough expert
knowledge and being only aware of correlations among the process variables, it
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is not possible to tell how the results of a correlation analysis will have an effect
when modifying the process (e. g. when changing the process control). The
following section is devoted to the explanation on how to gain causal knowledge
from an acquired data set, separated into probabilistic causality and causality
with time dependency.

• Probabilistic causality When the acquired data set consists of measured
values over several productions each production can be described as
the result of an independent experiment. In that case methods can be
applied that find cause-effect relationships based on the calculation of
conditional dependencies in the data. There are essentially two different
approaches which can possibly be used, namely one that uses statisti-
cal tests [Pea00] and one that performs a search-and-score approach
[Mur02]. Since the search-and-score approach only uses some quality
function to weight the found relationships between the variables, it does
not ensure that those are in terms of the causal direction correct. There-
fore, the approach using statistical tests will be explained and investigated
in further detail in the following section.

• Causality and time If the acquired data consists of different time series,
temporal information in terms of system dynamics and dead times can be
exploited for analysis. These approaches are all based on the calculation
of statistical dependencies among the measured time series while per-
forming time shifts in the data. In total there are four methods, namely
the cross-correlation function, transfer entropy, Granger causality and
support vector machines investigated in this work.

2.3.1 Probabilistic Causality

Compared to the philosophical definition, which says that the same cause
always leads to the same effect, probability theory can be used to weaken this
definition. In detail the central idea is that a cause C defined as C :Ω→ {0,1}
increases the probability that an effect E defined as E : Ω→ {0,1} occurs. In
that case the value 1 means the event has happened and 0 that it did not occur.
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An illustrative example in process engineering is that high temperature in a
plant increases the probability to have a product with low quality, but not all
low quality products are the outcome of high temperature. Writing this in a
probabilistic way means, that C can only be a cause of E , if P (E = 1|C = 1) >
P (E = 1|C = 0). Still Pearl [Pea00] points out that an increase of probability
cannot be described purely from observational data, but through an external
intervention. This means that if one wants to be sure if C has an effect E one
has to conduct experiments on the process. Therefore, Pearl introduces the do-
operator, that forces to fix the cause C on 1. In probabilistic notation this means
that C has a causal influence on E , if P (E = 1|do(C = 1)) > P (E = 1|do(C = 0)).
If only P (E = 1|C = 1) > P (E = 1|C = 0) counts, this means that there is a
statistical dependency, but not implicitly a causal relationship. In literature this
distinction is often referred to as correlation vs. causation [GAE06]. Besides the
definitive book from Pearl there is some other literature about the detection of
cause and effect relationships using probabilistic methods. A good introduction
regarding probabilistic causal methods is given e. g. by Neapolitan [Nea09] or
Guyon [GAE06].
In terms of process engineering the definition of the do-operator means that a
system identification needs to be performed for the detection of causal depen-
dencies. Still when testing for cause-effect relationships in data they usually
need to be found based on observational data which is in conflict with the
definition of the do-operator. Therefore, Pearl describes that under certain
assumptions it is possible to detect cause-effect structures in data without
intervening in the process. These assumptions are mainly based on the infor-
mation coming from three random variables Xi , X j , Xk :Ω→R. The basic idea
is based on the calculation of conditional independencies as possible types of
causal structures described by three variables. Hence, table 2.1 describes all
possible combinations of a graph while Xi ⊥ X j |Xk defines Xi being condition-
ally independent of X j under the knowledge of Xk . The direction of the arrow
describes the causal dependency, while Xi → X j means that Xi has a causal
influence on X j .
Of main importance when analyzing causal structures are the three structures
chain, fork and v-structure. All three consist of the same (non-causal) depen-
dencies but in terms of cause and effect point into different directions. The
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Structure Illustration Conditional independencies

complete connected
Xi ↔ X j , Xi ↔ Xk ,

none
X j ↔ Xk

complete unconnected Xi , X j , Xk Xi ⊥ X j , Xi ⊥ Xk , Xk ⊥ X j

single arrow chain Xi ↔ X j , Xk Xi ⊥ Xk , X j ⊥ Xk

chain Xi → Xk → X j Xi ⊥ X j | Xk , X j ⊥ Xi | Xk

fork Xi ← Xk → X j Xi ⊥ X j | Xk , X j ⊥ Xi | Xk

v-structure Xi → Xk ← X j Xi ⊥ X j but Xi 6⊥ X j |Xk

Table (2.1) Possible representation of a causal graph having three variables and their cor-
responding conditional independencies. The double arrow ↔ describes an undirected
edge.

chain and the fork cover the same conditional independencies meaning that un-
der the knowledge of Xk , X j has no information about Xi . Having a v-structure
the conditional independencies are different as without knowing Xk , Xi and X j

are independent of each other, but when knowing Xk they are not (indicated
through 6⊥ in table 2.1).
As chain and fork have the same conditional independencies, this means that
these two cannot be distinguished having observational data available and
interventions need to be made. Therefore, the approach when testing for
causal structures in data sets that do not contain any temporal information,
the aim is primarily to find v-structures in the data. Figure 2.5 gives a closer
insight by illustrating all possible graphs which can be generated for three
variables and up to two edges. Structures that cover the same set of conditional
independencies are also called Markov equivalent classes [Pea00], [May09].
To distinguish among Markov equivalent models, interventions need to be
performed in the process [EM07] [MGS05].

Causal Markov assumption When constructing a causal graph based on
probabilistic methods Neapolitan [Nea09] describes three assumptions of the
underlying data set that are implicitly made. In detail these are defined as
follows:

• No hidden variables All variables are represented in the graph. That
means, all possible causes are represented as variables in the network.



26 2 Disturbances in Process Data

Unconnected
graph

Chain with
one edge Fork Chain V-structure

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1x1

x1x1

x1x1x1

x2

x2

x2

x2

x2

x2

x2

x2

x2

x2

x2

x2

x2x2

x2x2

x2x2x2

x3

x3

x3

x3

x3

x3

x3

x3

x3

x3

x3

x3

x3x3

x3x3

x3x3x3

Figure (2.5) All possible causal structures for three nodes and two edges. The dotted line
marks the Markov-equivalent class; the shaded gray area marks the same topology.

Especially, there is no hidden common cause which has an influence on
several or even all variables.

• No causal feedback loops If there is a path from Xi to X j there is no path
back from X j to Xi .

• No selection bias The probability distribution is obtained from a random
sample of the population.

Clearly in practice all conditions can be violated. It is possible that the process
consists of several control loops which cannot be detected using probabilistic
measures. Furthermore, hidden variables e. g. in terms of a common distur-
bance that affects all process variables can have a significant impact when
calculating cause-effect relationships. Therefore, it always has to be taken into
account to investigate the data quality beforehand when generating a causal
graph from observational data.
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2.3.2 Causality and Time

In contrast to the theory of probabilistic causality the every-day life impression
of causality is more connected towards time dependency. Writing this in a sci-
entific way means that a time scale is fixed on an available data set and an event
that happens at time t can only have an impact on another event that happens
at time t +d t but not vice versa. This concept corresponds to the definition of a
causal system based on system theory which can be found e. g. in [Lun10, Föl08].
In that case, the definition says that a time-invariant system is causal if for all in-
put signals u1(t ) ∈R and u2(t ) ∈R with the property u1(t ) = u2(t ) for 0 ≤ t ≤ t1

the output signals have the property y1{u1(t)} = y2{u2(t)} for 0 ≤ t ≤ t1 under
the assumption that they have the same initial condition. In terms of causality
as an additional definition it is said that in a causal system the input values for
t > t1 do not have an influence on output signals at time t1 and furthermore
the impulse response for t < 0 is zero. Additionally, following these definitions
shows that for all systems for which the input is directly connected to the out-
put, causality is given whether u(t) or y(t) is viewed as input, as both signals
depend on each other only on the current value. To find causal dependencies in
these systems probabilistic measures need to be used as temporal information
is not available.

If a system has some dependency on input values from the future it is termed
an acausal system [Lun10]. A possible application of an acausal filter is in terms
of a postprocessing filter, as in that case the filter can extract future values from
a memory buffer. Another application of these filters is in terms of image data
processing as in that case data is not dependent on time but on the location,
which means that in that case causality does not exist.

In the following, the two possibilities to detect cause-effect relationships in
dynamic systems using time dependencies, namely delay times and dead times,
are explained in detail.

Signal delay time Delay times exist when systems react delayed on an exter-
nal excitation e. g. due to their mass inertia. Systems behaving like this belong
to the class of dynamic systems. This characteristic can be exploited for the
detection of causal dependencies in the acquired measurement data. How



28 2 Disturbances in Process Data

these systems can be used for the detection of causal dependencies becomes
obvious when writing them in form of differential equations. For example a
linear-time-invariant 1st-order system with input u(t ) and output y(t ) is given
as [Lun10]

ẏ(t ) = Ka

T
u(t )− 1

T
y(t ), (2.1)

with Ka > 0 being the amplification factor and T > 0 being the time constant.
When having a step change in u(t) the time constant describes the time the
process needs to set y(t ) on 1− 1

e ≈ 63.2% of its final value. The information in
the differential equation can be exploited for the detection of causal dependen-
cies. This becomes clear when transforming equation 2.1 into its discretized
form. How to perform a sampling of a signal is e. g. described in further detail
in Åström [AW97]. The discretized system results in

y[kTs +Ts] = e−Ts
T y[k]−Ka(e−Ts

T −1)u[kTs], (2.2)

with k = 1, . . . ,K samples for the time series u[k] and y[k] and Ts being the
sampling period. As in terms of causality no information can flow from a
sample point [kTs +Ts] to [kTs], equation 2.2 shows that u[kTs] and y[kTs]
have a causal influence on y[kTs +Ts]. In anticipation of the proposed methods
in chapter 3, when investigating if u causes y , it has to be taken into account
that y itself consists of causal information about its future values. Therefore, the
proposed methods that use temporal information for the detection of causal
influences need to calculate the information each signal has about itself before
testing if a second signal has a causal influence on it.

If the system has no dynamics, meaning that y(t) = g (u(t)), it is not possible
to detect causal behavior based on time dependency as these equations only
capture instantaneous behavior. In process engineering examples of 1st-order
systems are distillation columns [AMM90] or fluid tanks, in signal processing
1st-order systems describe a class of low-pass filters. Therefore, when using
measurements for the calculation of the disturbance propagation path, filtering
a signal in a preprocessing step has to be handled with care. This topic will
be investigated in further detail in chapter 7. As benchmarks 1st-order and
2nd-order systems are used in combination with the explained disturbances



2.3 Measuring Causal Dependencies in Data 29

defined in section 2.2.3 to test the proposed data-driven methods in chapter 3.

Signal dead time The signal dead time describes the interval a change in
the input signal needs to become visible on the output of the system [Lun10].
Compared to a signal delay time this is in difference, as for the delay time
changes in the input signal become visible on the output directly at the next
sample. Only the characteristics of the resulting output depend on the system
order, the selected sample time of the data acquisition system and the time
constant of the process.

The dependency between input and output signal in the time domain for a
system with dead time is therefore written as

y(t ) = u(t −Td), (2.3)

where Td describes the dead time of the system. In other words, if the system
consists only of a dead time element this means that u(t ) appears on the output
y(t) after Td. Following the definition of temporal causality given in section
2.3.2 the information gained from the dead time can be used directly for the
detection of causal dependencies. In process engineering dead times can occur
in various ways.

A classic example is a fluid in a tube that passes the equipment while having a
certain velocity. If a measurement device detects e. g. a disturbance at a certain
point in time, this means that a similar disturbance will occur some time later
in the equipment at a second device. Another example is given in chapter 6 in
terms of an industrial glass forming process. As the glass flow in this plant is
slow this results in large dead times for the different measurement devices.

The influence of signal dead time is given exemplarily on a tube having a certain
diameter A and length ld between two measurement devices. This is illustrated
in figure 2.6. Assuming that the flow has a constant velocity v the dead time
between the two measurement devices is calculated by dividing the volume V
of the tube through its volume flow rate V̇ [Bau05]

Td =
V

V̇
= Ald

Av
= ld

v
. (2.4)
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If the resulting value of Td is larger than the sampling period of the data ac-
quisition system the dead time between the two measurement devices can be
used to reconstruct the fault propagation path of a disturbance. Compared to
the previously explained signal delay time an important difference is that it is
possible that no dynamics is contained between u(t) and y(t), which means
that the found cause-effect relationship can also be the result from two shifted
time series.

ld

A
u(t )

y(t ) = u(t −Td)
v

Figure (2.6) Example of how the dead time in a tube can be used for the reconstruction
of the fault propagation path. A disturbance u(t), measured by a process device at the
entry point of the tube becomes visible at the disturbance y(t) measured by a second
device at the end of the tube after the dead time Td.

2.4 Constraint-Based Learning of Causal
Dependencies in Production Data

As explained in section 2.3.1 probability theory can be used to find causal struc-
tures in data when no temporal information is available. In process engineering
this is the case when having for example a data set which contains quality data
over several productions. Sometimes the root cause of the varying product
quality is not obvious. In that case data-driven methods can be used for the
detection of the main influencing parameters. In literature usually all machine
learning methods that exploit statistical properties in data for the calculation
of cause-effect relationships are summarized under the synonym of Bayesian
Networks. There are essentially two different approaches that can be used for
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the detection of causal structures in a data set. These are summarized in the
following, for more details it is referred to [Nea09] or [Mur02].

• Search-and-score approach Using this approach means that after defin-
ing some scoring function a greedy-search algorithm is used to find the
graph with the maximum score. The scoring function is designed to give
high scores to graphs that fit the data well which means that those algo-
rithms do not test for the underlying causal relationships. In other words,
this means that the resulting graph of the algorithm does not necessarily
need to describe the causal structure of the system. Furthermore, there
can be several different but highly probable structures especially when
the sample size is small [Fri00], which can lead to falsely detected causal
dependencies.

• Constraint-based approach This approach tries to find a graph which
satisfies all the statistical constraints implied by the conditional inde-
pendencies in the data. Theoretically this leads to a subset of directed
acyclic graphs all sharing the same set of probabilistic dependency re-
lations. Theoretically, these methods result in a partially directed graph
which is in terms of the found cause-effect dependencies correct. Tests
on real data sets showed that these methods can lead to problems when
the sample size is small [TBA06] as lots of data is needed for the correct
calculation of the statistical tests. When the number of variables in the
data set is large these methods can lead to longer computational times
compared to the scoring-based approaches [Mar03].

Both approaches are covered under the synonym of structure learning, which
described in further detail in [Pea00] or [Nea09]). In general structure learning
means to learn the structure of a process out of statistical data. These methods
are already applied in various fields like system biology [Fri04, EM07, SPP+05],
bioinformatics [Nea09] or psychology [Med06, Gly01]. In process engineering
examples that use Bayesian Networks can be found in condition monitoring
tasks [LFR06] or as decision support systems [WMD02]. In the present work
it is demonstrated how structure-learning can be used for the detection of
the root cause of a disturbance using the constraint-based structure learning
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approach. Therefore, an algorithm originally proposed by Peter Glymour and
Clark Spirtes [SGS00], called the PC-algorithm (named after the forenames
Peter and Clark), is applied. This method is used to analyze production data
coming from a simulated continuous stirred tank reactor. The method is chosen
as it theoretically detects all possible causal dependencies in a data set that can
be found with a purely data-driven approach. Nevertheless, for this approach
the focus is less on the method, as possibly other methods can be used as well.
The used concept for the detection of causal structures is more important when
having production data at hand.

2.4.1 PC-Algorithm

As mentioned, the PC-algorithm exploits constraints in the data in terms of
conditional independency statements to find cause-effect relationships. In
practice this means that the conditional independencies are found by perform-
ing statistical tests on the available data set. In so doing the algorithm works in
two stages.

First it starts with a completely connected graph and calculates the undirected
graph structure by removing edges between (conditionally) independent vari-
ables. The resulting graph is called the skeleton.

In a second step the algorithm orients edges by first searching for possible
v-structures in the data and afterwards by following some logic rules to direct
chains and forks. By definition, it is assumed that the Causal Markov Assump-
tions as explained in section 2.3.1 hold for the data set. For the explanation of
the algorithm some notifications need to be made.

Formally a graph G= (V ,E ) consists of a set of nodes V = {X1, X2, . . . , Xk} and
a set of edges E ⊆V ×V . In common terminology Xi → X j means that Xi is a
parent of X j and X j is a child of Xi . Following the definition of Pearl this also
describes a causal dependency. An existing edge Xi ↔ X j means that Xi and
X j are adjacent and the set being adjacent to Xi is described as AdjX i

. |AdjX i
|

is defined as the number of nodes of all variables being adjacent to Xi . If G
contains only directed edges and no cycles it is called a directed acyclic graph
(DAG). A partially directed acyclic graph (PDAG), which is the result of the PC-
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algorithm, contains directed and undirected edges and represents the Markov
equivalence class of a DAG.

In terms of causality it is defined that Xi is a direct cause of X j if Xi → X j exists
and an indirect cause if Xi has an influence on X j over some other variable
e. g. through Xi → Xk → X j . Furthermore, it is said that X j is conditionally
independent of Xi if it has only an indirect causal dependency.

Formally the variables Xi with p ∈ {1, . . . ,Dp} and X j with q ∈ {1, . . . ,Dq } are
defined to be conditionally independent given a third variable Xk with r ∈
{1, . . . ,Dr } if

P (Xi = p|X j = q, Xk = r ) = P (Xi = p|Xk = r ). (2.5)

Testing the variables Xi and X j for conditional independency against the re-
maining variables V \{Xi , X j } in the graph is the core of the PC-algorithm and
the detection of v-structures. For the test the G2 statistic is used which is de-
scribed in section 2.4.2.

Detecting the skeleton The algorithm starts with a completely connected
undirected graph G= (V ,E ) and iteratively removes edges by performing (con-
ditional) independency tests. For each variable Xi ∈V an independency test
against any other variable X j ∈V \Xi is made. If they are independent, the edge
between Xi and X j is removed and a variable m which counts the size of the
subset of variables is set to 1.

For each variable Xi ∈V the adjacent nodes AdjX i
are selected. Next it is tested,

if Xi is conditionally independent of X j given any subset S of AdjX i
\X j of

size m. If Xi ⊥ X j |S counts, the link between Xi and X j is removed and the
separating set S is stored. Next the set S is added to the variable set S Xi X j as
this is needed for the orientation of the edges. Finally m is increased by one
and the algorithms stops as m reaches |AdjX i

|.

Directing the edges As a next step the v-structures are directed and there-
fore the uncoupled combinations Xi −Xk −X j need to be tested for conditional
independency. This is done by checking if the variable Xk is in the set S Xi X j as
for a v-structure Xi ⊥ X j and Xi 6⊥ X j |Xk counts (see section 2.3.1). This means
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if Xk is not in the set S Xi X j , a v-structure is detected and the edges are oriented
as Xi → Xk ← X j .

Additional edges can be directed based on further rules e. g. that no cycles are
allowed and that no further v-structures are possible in the final graph. For a
detailed explanation on how to direct these edges it is referred to [Pea00] or
[Nea09]. In detail these are: Orient X j → Xk if Xi → X j exists and no connection
from Xi → Xk ; orient Xi → X j if Xi → Xk → X j exists; orient Xi → X j if Xi −
Xk → X j and Xi − X l → X j exist while Xk , X l are not connected; orient Xi →
X j if Xi − Xk → X l and Xk → X l → X j exist while Xk , X j are not connected.
Further information about the algorithm can be found e. g. in Pearl [Pea00] or
Neapolitan [Nea09].

2.4.2 Test Statistics

To test a pair of variables Xi , X j for conditional independency against a subset
of variables X k = {X1, . . . , Xk}, described as Xi ⊥ X j |X k the G2 test proposed
by Tsamardinos [TBA06] is used. This is a hypothesis test which has the null
hypothesis that the two variables Xi , X j are conditional independent from each
other. The test operates with quantified data and the G2 statistic is in that case
calculated as

G2 = 2
Dr∑

r=1

Dq∑
q=1

Dp∑
p=1

Spqr
Xi X j X k

ln
Spqr

Xi X j X k
Sr

X k

Spr
Xi X k

Sqr
X j X k

. (2.6)

In that case Spqr
Xi X j X k

describes the number of times in which the variable Xi has
the value p, the variable X j has the value q and the variable Xk has the value
r . The variables are defined the same way for Sr

X k
,Spr

Xi X k
,Sqr

X j X k
. The resulting

value for G2 can be transformed into a p-value from the χ2 distribution with
appropriate degrees of freedom. If the p-value is below a defined significance
level α, which is set to 0.05, the null hypothesis holds meaning that Xi and X j

are defined conditionally independent. According to [TBA06] the degrees of
freedom d f can be calculated as

d f = (Dp −1)(Dq −1)
X k∏

l :Xl∈X k

D l , (2.7)
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where Dp ,Dq and D l define the binning size of each variable.

In addition there exist several other tests for the detection of conditional
independencies. The most common ones are the Pearson’s X 2 test and an
information-theoretic distance measure based on mutual information. A good
overview is given in [Mar03] and [SB11]. In the present work these two tests
will not be considered in further detail.

2.4.3 Continuous Stirred Tank Reactor

This section illustrates how the concept of probabilistic causality can be used
for process optimization and the detection of the root cause of a disturbance
in production data. This is done by using the introduced PC-algorithm, but
could also be performed by other structure learning algorithms. The data set is
generated from a continuous stirred tank reactor (cstr) running in feed-forward
control. The cstr model is derived from a real plant and has been presented by
Rawling [TR02] in 2002. The underlying chemical reaction scheme consists of
two irreversible follow-up reactions where an educt A reacts to an intermediate
product B and this again reacts to the resulting product C . The reactants are
dissolved in the fluid and can be measured in terms of the three concentrations
cA,cB,cC at the outlet of the cstr. During a run, the cstr model is continuously
filled with the reactant which is dissolved in the concentration cin having the
temperature ϑfl. Depending on ϑfl a larger or lower quantity of the products
B and C are produced as it has an exponential impact on the reaction. A
schematic drawing of the process is given in figure 2.7 on the left hand side.
The underlying differential equations of the cstr are described as

ċA(t ) = F

V
(cin(t )− cA(t ))−k1cA(t )e−E1/(Rϑfl), (2.8)

ċB(t ) = k1cC(t )e−E1/(Rϑfl) −k2cB(t )e−E2/(Rϑfl) − F

V
cB(t ), (2.9)

ċC(t ) = k2cB(t )e−E2/(Rϑfl) − F

V
cC(t ). (2.10)

The parameter V describes the volume of the cstr and F is the volume flow
rate which is kept constant during the production. The parameters k1 and k2
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are empirical parameters which are pre-exponential factors and describe the
relationship between the temperature and the speed of the chemical reaction.
E1 and E2 describe the activation energy of the reactants and R describes the
universal gas constant. The resulting causal relationships can be deduced from
the differential equations and are shown in figure 2.7 on the right hand side in
terms of a directed graph. The values of the cstr model are shown in Table 2.2
and are equivalent to those presented by Rawling.

cin,ϑfl

cA,cB,cC

ϑfl cin

cA

cB

cC

Figure (2.7) Illustration of used continuous stirred tank reactor. The left plot sketches the
plant, the right plot illustrates the ground truth of the causal structure derived from the
differential equations.

Parameter Value Unit

F 100 L/min

V 100 L
k1 7.2×1010 1/min

k2 5.2×1010 1/min

E1/R 8750 K
E2/R 9750 K

Table (2.2) Selected model parameters for the continuous stirred tank reactor taken from
[TR02].

The set-points of the two input variables are chosen as ϑfl,OP = 350K and cin,OP =
1 mol/L. If there is no additive noise superposed on the measurements the other
process variables adopt in stationary phase the values cA,OP = 0.5 mol/L, cB,OP =
0.48 mol/L and cC,OP = 0.025 mol/L. For further information how to model chemical



2.4 Constraint-Based Learning of Causal Dependencies in Production Data 37

reactions it is referred to [Ari99] or [Ing07].

Generation of the data set For the generation of the data set the set-point
ϑfl,OP is superposed with the noise variable vϑ ∼N (0,7K2) and cin,OP is super-
posed with the noise variable vcin ∼N (0,0.15(mol/L)2) meaning that concen-
tration and temperature differ on a run to run basis. Due to the fact that the
process runs in feed-forward control each concentration finishes on a different
stationary value after start-up. The resulting stationary values are stored in a
database on a run-by-run basis and are used for the detection of causal depen-
dencies. To avoid numerical issues K = 10000 start-up runs are simulated. To
get a better view of the system dynamics, figure 2.8 shows the resulting mean
value µ and the standard deviation σ for the simulated start-up runs of the cstr
for each process variable. The purpose is to reconstruct the causal structure
as shown in figure 2.7 and to detect the process variables being on top of the
causal chain as they have the main influence on the varying concentration of
the resulting products. Regarding industrial practice this means that one wants
to find process parameters that have an early impact on the later resulting
product quality and the plant can be optimized by intervening in an early stage
of the chemical reaction. The variations of ϑfl and cin can also be interpreted as
disturbances acting on the system.

Results For the calculation of the G2 test, the data of each process variable is
divided into D = 10 equally sized intervals with the condition that the number
of data points in each interval is constant. Afterwards, every data point is
replaced by the label of its interval.

The resulting graphs are outlined in figure 2.9 in terms of the initial complete
graph, the detected skeleton and the final PDAG. Comparing the skeleton with
the complete graph indicates that it only differs in the missing link between
ϑfl and cin. When analyzing the resulting PDAG the two input variables ϑfl and
cin are correctly detected as root cause of the disturbance meaning that for
process optimization these variables are the first to be changed if one wants to
increase the resulting concentrations cB and cC of the products. Furthermore,
the algorithm finds the causal dependency cA → cB and cA → cC which reveals
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Figure (2.8) Start-up behavior of the simulated cstr. As the process runs in feed-forward
control with variations in ϑfl and cin the resulting stationary values of the products differ.
This information can be used to detect causal dependencies in the data and identify ϑfl

and cin as root causes.

details of the elementary chemical reaction. The second follow-up reaction
cB → cC could not be detected as the graph indicates an intercausal relationship
meaning that according to the PC-algorithm cB has a causal influence on cC

and cC back on cB . The reason why the reaction could not be detected is
that the disturbance implied in cin is already filtered two times through the
other reaction schemes which reduces the variance in the data set for the
detection of cB → cC . Using the G2 test the results indicate that the v-structures
can be detected in the data set, but it is not possible to distinguish between
direct and indirect causal dependencies. This becomes obvious as the edges
cin → cB ,cin → cC and cA → cC were all selected by the algorithm. Still, this can
be tolerated as they all point into the direction of the causal flow meaning that
ϑfl and cin are correctly found as root causes.
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To summarize the results, the generated data set from the cstr shows that it is
possible to detect causal structures in production data and to gain new process
knowledge for process optimization by localizing the root cause of the varying
product quality. In the present work, the PC-algorithm, which theoretically
detects all causal dependencies up to its Markov equivalent class, was used to
determine if causal structures can be found in production data based on the
concept of probabilistic causality. There is a large variety of further scoring-
and constraint-based structure learning algorithms available which all have
their benefits and drawbacks. Since the main focus in this work is on fault
localization implying temporal information in data the discussion about the
detection of causal structures using probabilistic methods is carried out in
chapter 8 as a possible future research.

Complete graph Skeleton Resulting PDAG

ϑflϑfl ϑfl

cincin cin

cAcA cA

cBcB cB

cCcC cC

Figure (2.9) Results of the PC-algorithm for the detection of causal structures using
data from the continuous stirred tank reactor. Edges with two arrowheads indicate an
intercausal dependency meaning that both variables have a causal influence onto each
other. ϑfl and cin are correctly set on top of the reaction chain.





3
Data-Driven Methods for Fault

Localization

This chapter starts by classifying the suggested methods regarding their the-
oretical framework and introduces several benchmark data sets for testing
them. Thereafter several visualization techniques for the representation of
the found causal dependencies are reviewed and those used in this thesis are
explained in further detail. The main part of this chapter explains the algo-
rithmic details of the proposed methods. Finally, each method is tested on
the proposed benchmark data sets.

3.1 Method Classification

The possible methods used for fault localization and the calculation of the
disturbance propagation paths can be separated into three different classes
represented in figure 3.1, namely machine learning, time-frequency analysis
and statistical signal processing. In this case the classification is not distinctive,
meaning that some of the methods could be allocated into several classes. The
methods marked in bold are investigated in further detail in this thesis, while
as illustrated in figure 3.1, there are other methods possible for the detection of
cause-effect relationships and the reconstruction of disturbance propagation
paths. An explanation of the characteristics of these classes is given below.

41
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Suggested methods used
for fault localization

Machine
learning

Statistical signal
processing

Time-frequency
analysis

• Neural
networks

• Support
vector
machines

• Dynamic
Bayesian
networks

• Fourier
transform

• Cross-
correlation
function

• ARMA

• Transfer
entropy

• Granger
causality

Figure (3.1) Survey of possible methods used for the detection of causal dependencies
in process data. The methods marked in bold are used in the present work for fault
localization.

• Machine learning Machine learning is most often used when performing
pattern recognition in data sets and can be seen as a part of artificial
intelligence. The concept of these methods is that computers can learn
a certain behavior by using empirical data. After having a certain data
set used for training the machine learning algorithm can be utilized
for classification or regression tasks of new input data. There exists a
wide variety of different machine learning algorithms used for pattern
recognition. A good overview is given e. g. in [WF05] or [WKRQ+07] but
there is also lots of other additional recent literature available. In the
present work Support vector machines (SVM), described in further detail
in section 3.7, are used for detecting cause-effect relationships in the
data.

• Time-frequency analysis In the field of electrical engineering time-fre-
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quency analysis combines classical methods that are used for analyzing
continuous or discrete time signals. The concept when using these meth-
ods is that signals in their time and frequency representation are tightly
connected and can be understood better when being analyzed in dif-
ferent domains. The most common method used when performing a
time-frequency analysis is the calculation of its Fourier transform. The
Fourier transform transfers a signal which is dependent of time into a
new function which then uses as argument the frequency in hertz (or
radians per second). In the present work, from this area of data analysis,
the cross-correlation function is applied (section 3.4) as a causal measure.
The concept of this method is to calculate the linear similarity of two
signals while delaying one signal against the other. The time lag and the
amplitude of the resulting cross-correlation coefficient is then used to
give indications of possible causal dependencies in the data. According to
the Wiener-Khinchin theorem [Joh93], the cross-correlation function of
two signals in the Fourier transform results in the cross power spectrum.
Using the cross power spectrum for causal analysis will not be regarded
in further detail in this thesis. More explanations about time-frequency
analysis is given e. g. in [Joh93] or [Ise06].

• Statistical signal processing Statistical signal processing treats signals
as stochastic processes and uses their statistical properties for analysis.
Classical methods are autoregressive moving average models (ARMA) or
the calculation of entropic measures in information theory. Examples of
processes that are modeled as a stochastic time series are the stock market
[KV11] or the Brownian motion of molecules [DOT03]. In the present
work transfer entropy (section 3.5) and Granger causality (section 3.6) are
used to detect causal dependencies in data. The main concept of Granger
causality is grounded on the estimation of vector auutoregressive models
and their application as a one-step-ahead predictor; the idea of transfer
entropy is based on the comparison of transition probabilities calculated
from the investigated time sequences. An introduction towards statistical
signal processing is given e. g. in [Gra10], an overview of classic methods
mainly used for system identification can be found in [Joh93].
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3.2 Benchmark Data Sets for Fault Localization

After introducing the concept of using statistical relations and temporal infor-
mation for the detection of cause-effect dependencies in data several bench-
marks need to be defined to evaluate the characteristics of the methods. In that
case the aim is two-folded. First it has to be checked which method reliably
detects the underlying causal structure and second how the method will be-
have if the dependency is not correctly found. Hence, the benchmarks mainly
consist of 1st-order systems that differ concerning their structural character-
istics in terms of time delays, nonlinearities, feed-through or feedback loops.
Additionally, the behavior of the methods using the explained disturbances in
section 2.2.3 is investigated. In detail the disturbances are white noise, colored
noise and a step function with superposed white noise. The sinusoidal input
signal will be investigated separately in chapter 7. To study the characteristics of
these methods on a higher order process the benchmarks comprises a vibratory
2nd-order system as well. As an example of a MIMO system the behavior of
the methods is investigated on the model of a continuous stirred tank reactor
which was already introduced in section 2.4.3.

Except the MIMO system, all benchmarks use an amplification factor Ka = 1
and a time constant T = 0.5s. The input signal u(t ) ∈R consists of zero mean
white noise with unit variance N (0,1). The sample time is selected as Ts = 0.1s.

In addition, a separate signal z(t ) ∈R, consisting of colored noise, is generated
from another source v(t) ∈R having white noise with N (0,1) and a 1st-order
system. This is illustrated in figure 3.3. This variable has no influence on the
other variables in the benchmark data set but used for the calculation of the
causal matrix and needs to be sorted out by the methods.

To avoid numerical issues each data set consists of K = 10000 samples. The
used benchmarks are illustrated in figure 3.2 and are explained below:

• Base configuration This is the most basic configuration, containing a
standard 1st-order system.

• Squaring device The output signal y(t ) is squared. The main purpose is
to determine which methods can detect nonlinear causal relationships
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Figure (3.2) Utilized benchmarks for the detection of causal relationships in dynamic
systems. The benchmarks consist of different noise scenarios as well as different process
characteristics. In all benchmarks the s represents the Laplace transformation of the
impulse responses from LTI systems.

in the data set. A squaring device is used since this describes an even
function. This prevents that the causal relationships can be estimated
by using a linear approach, which would be the case when using uneven
functions.

• Feedback loop This benchmark consists of a negative feedback loop. In
that case, the output signal y(t ) is substracted from the input signal u(t ).
The amplification of the feedback loop is set to one.

• Colored noise The signal u(t ) is low-pass filtered to generate an input sig-
nal ũ(t ) with a limited bandwidth as input for the 1st-order system. This
signal is subsequently used for the detection of the causal dependency
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1
1+1s

v(t ) z(t )

Signal from separate process

Figure (3.3) Generated signal z(t) coming from a second process. The proposed meth-
ods need to sort out this signal in the benchmark data set, as otherwise a wrong causal
dependency would be detected.

of the 1st-order system. The outcome of this benchmark is of special
importance as usually disturbances in a plant are narrowbanded.

• Step function After half the simulation time a step with the amplitude
Kstep = 10 is superposed on the input signal u(t). This benchmark is
used to determine how the different methods behave when having a
non-stationarity in the disturbance.

• Feed through The 1st-order system is changed as an additional lead el-
ement is used to generate a system with a feed-through. This means
that the output signal y(t ) consists of a direct and a time delayed impact
from u(t ). As the direct part does not contain any information useful to
detect causality the methods need to filter it out to detect the underlying
cause-effect relationship.

• Dead time The system consists of a dead time which is set to Td = 2s. As
the sampling time is set to Ts = 0.1s this means that a change on u(t ) has
an impact on the output after 21 samples.

• 2nd-order system In this benchmark the behavior of the different meth-
ods is tested on a mass-spring-damper system. As for the 1st-order system
the time constant is set to T = 0.5, the dimensionless damping ratio is
selected to be ζ= 0.7.
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3.3 Calculation of the Causal Matrix

When calculating causal dependencies in data an interpretable representation
of the resulting cause-effect relationships is of crucial importance. Therefore, to
represent the complete causal interaction of all investigated process variables
a matrix Q, as shown in equation 3.1, is generated. This matrix consists of
the r investigated process variables Xi = {X1...Xr } and has as values the causal
strengths qXi→X j ∈ {0, . . . ,1}. The variable qXi→X j is a continuous heuristic mea-
sure which describes the causal impact one variable has onto another and
increases monotholically with an increasing causal strength. For all methods
investigated in this thesis values close to 0 describe weak causal strengths, val-
ues close to 1 describe strong ones. Furthermore, the values on the diagonal
axis are not calculated. To get the full information of all causal dependencies
from the process, r (r −1) values need to be calculated.

Q :=




− qX2→X1 . . . qXr→X1

qX1→X2 − . . . qXr→X2

...
...

. . .
...

qX1→Xr qX2→Xr . . . −




. (3.1)

Besides the suggested data-driven approaches in this work, there are several
other ways to generate causal matrices. If the physical model of the process
is known the underlying differential equations can be used for the generation
of the causal matrix as briefly described in section 2.3.2. Another way for
constructing these matrices is to use expert knowledge, coming from a process
engineer or the plant schematic. Since in this work, there are several data-
driven methods used on one data set and as each method will have as outcome
one causal matrix, the resulting matrices need to be represented appropriately.
The following section illustrates how this can be done in a suitable manner.
Combining these matrices to one resulting causal matrix will be explained in
detail in section 4.2.
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Root cause priority list This list contains a ranking of the analyzed process
variables with regard of their possibility of being the actual root cause. As a
consequence a value, defined as RC, is given to each variable which is calculated
from the causal matrix Q. This is done for all process variables n = 1...r by
summing up the causal influence from one variable onto the other variables
defined as

RCn :=
r∑

i=1,i 6=n

qXn→Xi . (3.2)

The resulting variable having the maximum value of RC is ranked first, meaning
that this variable is most possible to be the root cause, followed by the other
variables ranked in descending order. Table 3.1 outlines the representation
of the root cause priority list as used in the thesis. In section 3.3.2 it is de-
scribed how this hit list can be used for the generation of a receiver operating
characteristic to evaluate the outcome of the methods.

Rank Process variable RC

1 Xn
∑r

i=1,i 6=n qXn→Xi
...

...
...

r Xk
∑r

i=1,i 6=k qXk→Xi

Table (3.1) Root cause priority list generated from the causal matrix. The variable ranked
first is selected as being most probable the root cause of the disturbance.

3.3.1 Visualization

For the visualization of the causal matrices several representations are used in
this thesis as each type of visualization needs to fulfill several tasks. Of main
importance is that the representation needs to give a qualitative impression
which can be quickly understood by a process engineer, especially the root
cause has to be clear as this localizes the position of the fault that leads to the
disturbances. Furthermore, the disturbance propagation path has to become
obvious out of the visualization. To have a quantitative measure, the causal
strength of each relationship needs to be illustrated and if several methods are
used on the same data set an appropriate representation for the results of the
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different methods needs to be found. Several techniques have been already
developed which deal with this problem.

Seth [Set10] suggests using circular directional charts. In that case all process
variables are arranged in a circle while being separated by an angle. A threshold
is defined and all values above it are represented as a directed edge from one
variable to another. For the representation of a disturbance propagation path
this method can become ambiguous when a large number of variables is used,
as edges can cross each other.

As another visualization technique Bauer [Bau05] proposes to use bubble
charts, where strong causal dependencies are represented as large bubbles
and weak dependencies as small bubbles. The concept of using bubble charts
has been transferred from economics where those charts are used to represent a
function of two inputs and one output. In her work she uses this representation
in addition to directed graphs which will be explained at the end of this section.

Eaton [EM07] suggests using heat maps in which values between zero and
one are translated into different colors. He uses the representation for the
illustration of causal dependencies for microcellular data. Still heat maps are
hard to be understood intuitively and it is complicated to detect directly the
root cause in this type of representation. For illustration, figure 3.4 shows all
three types of visualization on an arbitrary causal matrix. One drawback of all
these types of representation is that only one causal matrix yielding from one
method can be represented at a time. This makes a comparison of the resulting
causal matrices from more than one method infeasible.

As in this work several methods are developed and compared to each other,
different types of visualization are needed. These types of visualization are
represented in this chapter in terms of a partially directed graph, doughnut
chart and as a bar chart. Each causal matrix can be represented in these three
different ways explained below.

Partially directed graph Partially directed graphs, which are also called flow
charts, are intuitively understood when used for representing the information
of the calculated causal matrix. In these graphs, each process variable is repre-
sented by a node and each edge represents the causal dependency from one
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a) Circular directional chart b) Bubble chart c) Heat map
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Figure (3.4) Survey of several possibilities on how to visualize a causal matrix Q. a) shows
the causal matrix in terms of a circular directional chart, b) as a bubble chart and c) in
terms of a heat map, while all three representations show the same causal matrix. With
the circular directional chart it is not possible to visualize the causal strength, the bubble
chart shows it in form of the size of its circles, the heat map in form of the selected color.

variable on another. In partially directed graphs it is possible that several edges
point onto one node or that several edges leave one node. The most basic
case in terms of the 1st-order system (see equation 2.4) is illustrated in figure
3.5 in the lower plot. In that case the underlying causal structure is a directed
edge from u(t) to y(t). The main purpose of this representation is to give the
process engineer a fast overview of the disturbance propagation path, while the
root cause is the first variable of the chain. Since, except the cross-correlation
function, all proposed methods can detect intercausal dependencies, which
means that two variables can have a causal influence onto each other, edges in
the graph can consist of two arrowheads pointing on the two different process
variables. As all developed methods calculate a causal impact yielding a value
from zero to one, the size of the arrowhead is used to indicate the strength
of the causal dependency. Hence, the main found causal dependencies are
illustrated with large arrowheads and weak causal dependencies with small
ones. The main drawback of the representation is that only one matrix, e. g. the
resulting combined causal matrix using all methods can be represented which
makes this type of representation not usable for a comparison of the methods.
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Doughnut chart These graphs are circular charts which are divided into
several sectors, while having a blank center. The arc length of each sector is in
that case proportional to the quantity each sector represents in the doughnut
chart. To represent the causal matrices, the quantity of each sector results from
the calculated entries in Q of the tested methods plus one blank sector. The
blank sector is needed, as the calculated causal strengths are usually smaller
than one, which means that the circular chart is not completely filled. The value
written in the middle of the doughnut represents the calculated combined value
of all used methods. The values passing the defined threshold are visualized in
the partially directed graph as well.

As an example, figure 3.5 represents the 1st-order system in which two arbitrary
methods are tested on the data set while the first method detects a causal
strength with value of one and a second method detectes a causal strength
with a value of 0.5. Doughnut charts are used in section 2.4 when testing the
methods on the benchmark data sets, on the laboratory plant in chapter 5 and
the industrial glass forming process in chapter 6.

Bar chart Bar charts represent values in form of rectangular bars while having
their length proportional to the represented value. In this thesis bar charts are
especially used for a better comparison of the different methods used on the
same data set. Compared to the doughnut charts where the sum of the causal
strengths of all methods for one process pair needs to be normalized to fit
360◦, this is not needed for the bar chart, which makes the comparison of the
methods easier. Furthermore, this visualization avoids a further drawback of
a doughnut chart as the different sections are hard to compare because they
are bent. Figure 3.5 shows a bar chart on the right hand side for the 1st-order
system. This type of visualization is used when the different methods are tested
on the laboratory plant in chapter 5, on the industrial glass forming process in
chapter 6 and when investigating the impact of sample time, compression and
oscillations in chapter 7.
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Figure (3.5) Exemplary visualizations of the causal dependency of the 1st-order system
from equation 3.2 for two arbitrary methods. The dependency is given in three shapes,
namely as a doughnut chart (left), a bar chart (right) and as a partially directed graph
(bottom). The red square illustrates the expected dependency.

3.3.2 Receiver Operating Characteristic

The receiver operating characteristic (ROC) in its original form is used to illus-
trate the performance of a binary classifier while varying one parameter. Each
time the parameter is varied the true positive rate of the classifier is calculated
and plotted against the false negative rate. When plotting the ROC of a classifier
the curve gives advices how to select the varied parameter to give the intended
classification results and illustrates the overall performance of the classifier.
ROC analysis was first used for the analysis of radar signals and is explained in
many statistical textbooks, e. g. [Hal08] or [PB03].

In the present work, an adaptation of the original ROC curve is used to evaluate
the performance of the proposed methods. Therefore, the root cause priority
list as described in section 3.3 is calculated several times while using each
time a different disturbed data set coming from the same fault. From this set
of priority lists, the probability of the detection of the root cause variable is
calculated by checking if the corresponding variable is in the first n ranked
variables. The result is compared to a random selection of the variables. An
example plot of a ROC is given in figure 3.6. The diagonal line in blue represents
the results for the detection of the fault performing a random selection of the
process variables. Hence, the line is defined as f (i ) = i

r where i is the number of
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selected variables. The curves in yellow, red and green show possible outcomes
when calculating the probabilities of detecting the root cause. The boundary
values of the curve correspond to those of the random selection. Selecting zero
variables leads to the trivial result that the probability of finding the root cause
is zero. Investigating all variables, the detection probability corresponds to
one. The theoretical optimum is achieved, when the probability is one for the
detection of the root cause, when investigating only the first variable. If the
curve is close to the diagonal line the found causal matrix is no better than
performing a random selection of the process variables. A ROC analysis is
performed in chapter 4.3 on the continuous stirred tank reactor and in chapter
5 on the laboratory plant.
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Figure (3.6) Illustration of the ROC. The different curves in the plot represent the prob-
ability of the detection of the root cause variable depending on the number of investi-
gated variables. Therefore, the major goal is to have a ROC which is as close as possible
to the upper left corner.

3.4 Cross-Correlation Function

The cross-correlation function (CCF), which is e. g. introduced in detail by
[Joh93], measures the linear similarity of two equidistant sampled time series
u[k] ∈R and y[k] ∈R with k = 1, . . . ,K samples that are delayed from each other
in time by a constant delay λ. By selecting the point of maximum correlation of
the two time series, the corresponding value of λ is used to indicate a causal
dependency in terms of a time-shifted correlation of the two signals and is
finally applied to calculate the causal matrix.
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Since the CCF is based on correlation it is restricted to linear systems, but it has
the advantage that its outcome is easily understood and, as outlined in [Bau05],
the CCF is quite tolerant to additive noise in the data. The CCF is therefore
estimated as

ĉuy [λ] = 1

K

K−λ∑
k=1

(u[k]− µ̂u)(y[k +λ]− µ̂y )

√
K−λ∑
k=1

(u[k]− µ̂u)2
K−λ∑
k=1

(y[k]− µ̂y )2

, (3.3)

with λ ∈ {1−K ,2−K , . . . ,K −2,K −1} and

µ̂u = 1

K

K∑
k=1

u[k], µ̂y =
1

K

K∑
k=1

y[k]. (3.4)

As the denominator describes the standard deviations of u[k] and y[k] the
resulting CCF is standardized on ĉuy [λ] ∈ [−1,1]. If max |ĉuy [λ]| = 1 this means
that u[k] and y[k] are perfectly correlated at a shift λ, while values close to zero
indicate that no correlation exists between the signals. Formally it is stated
that under the assumption that u[k] is a realization of a stationary white noise
process and that the connecting system of u[k] and y[k] is linear and stable, it
is possible to draw conclusions of the causal structure of a system from the CCF.
In other words, if u[k] and y[k] have an excitation with the same frequencies
but are time delayed, the CCF will reflect this in form of its amplitude and the
time delay.

CCF of a 1st-order system To illustrate the calculation of a CCF, figure 3.7
shows the 1st-order system introduced as a benchmark in section 3.2 while
having u[k] selected as white noise and y[k] being the output time series. As
for the benchmarks the sample rate is set to Ts = 0.1s. For λ> 0 the CCF shows
a maximum at λ = 1 followed by a decaying exponential function, while for
λ≤ 0 the CCF has values close to zero. This leads to the conclusion that there is
a causal dependency pointing from u → y and not from y → u.

The algorithm using the maximum amplitude of the cross-correlation function
and the corresponding λ as a causal measure is explained in the next section. It
is based on the concept to check if the found causal dependency is statistically
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significant and calculates at the same time the value of the causal strength of
the dependency.

Using the cross-correlation function as a causal measure found already entry
in some algorithms while one of the first ones was presented by Horch [Hor00]
in 2000. The main purpose of this algorithm is to test if the maximum ampli-
tude of the CCF calculated on the analyzed data set differs significantly from
the maximum amplitude of the CCF resulting from two independent random
variables.

This approach has been further refined by Bauer [Bau05] in 2005. In that case a
compound parameter containing the maximum amplitudes of the CCF forλ> 0
and λ< 0 is calculated and tested in terms of a 3σ-test against the probability
distribution of the compound parameter calculated from two independent
random variables. The idea of the 3σ-test is to check if the value of the com-
pound parameter for the non-permuted signal passes three times the value of
the standard deviation generated from the compound parameter from random
permutations of the input signal. In addition, in that algorithm a second test
is performed, which checks if the resulting time shift for the two series differs
significantly from zero.

In the following an algorithm is proposed which uses permutations of the
original time series instead of random variables. Compared to the generation
of random signals using permutations of the original series has the advantage
that the characteristics of the amplitudes are kept for analysis while possible
causal dependencies pointing from one time series to the other are destroyed.

-10 -5 0 5 10
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λTs
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Figure (3.7) CCF of a 1st-order system. The decaying e-function for λ > 0 indicates a
causal dependency from u → y while having the maximum amplitude at λTs = 0.1s.
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3.4.1 Detection of Significant Causal Dependencies

When using the CCF for the detection of a cause-effect relationship u → y one
of the main drawbacks is that it always detects a maximum. Therefore, it is
important to establish two tests. The first test checks if the found absolute max-
imum or minimum value of the cross-correlation function differs significantly
from zero or if this could also be the result from two uncorrelated time series.

In the second test it is checked if the found causal strength from u → y differs
significantly from y → u to have a clear indication of the causal flow. Further-
more, the value of the second test is used to describe the strength of the found
cause-effect relationship.

1st test: Significant correlation of time delayed signals To test if the ab-
solute maximum amplitude of the CCF differs significantly from zero and is
not generated through two uncorrelated signals, a hypothesis test which is
based on the Pearson correlation coefficient [Joh93] is performed. The Pearson
correlation coefficient is a traditional measure for the linear dependency of
two different discrete time series and in that case is equal to the values of the
cross-correlation function.

To perform the test, initially the maximum amplitude of the CCF needs to be
selected. As it is possible that one of the signals is inverted, the absolute value
of the CCF is used meaning that the position of the largest amplitude λmax is
defined as

λmax := argmax
λ

|ĉuy [λ]| with λ= 1−K , . . . ,−1,1, . . . ,K −1. (3.5)

If λmax > 0 counts, this implies as there is a possible causal relation from u → y
and the hypothesis test can be performed. Therefore, in a next step the value of
the correlation coefficient ρ̂uy needs to be selected, which is defined as

ρ̂uy := ĉuy [λmax]. (3.6)

This value will be used for the test. Due to the fact that the sample sizes of
the time series are limited, equation 3.4 gives as a result only an estimate of
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the cross-correlation function. This means that ρ̂uy will always differ slightly
from zero when calculating it for two uncorrelated time series. Hence, the test
is needed to check if a significant connection between the signals is present.
According to [Hei10] the estimate of ρ̂uy from two uncorrelated signals follows
a Student’s t-distribution with N −2 degrees of freedom, meaning that a classic
t-test defined as

tscore = ρ̂uy

√
N −2

1− ρ̂2
uy

(3.7)

can be performed to check for a significant correlation. For this test, the null
hypothesis H0 is defined that there is no correlation between the two time
series, meaning that if tscore > t(N−2;1−α/2) counts, it can be assumed that the two
signals are correlated.

The underscore of the t-distribution means that it has N −2 degrees of freedom
and a probability of error of 1−α/2. In that case α is defined as threshold for
statistical significance and throughout the thesis it is set to 0.05.

If the test indicates that at λmax the null hypothesis can be rejected, which
means that a significant correlation exists, a second test based on the maximum
amplitudes forλ< 0 andλ> 0 is performed. If this test fails orλmax < 0 counts, it
is assumed that no cause-effect relationship exists from u → y and the direction
y → u can be tested.

2nd test: Significant causal direction The aim of the first test was to check if
the two signals are correlating with each other by selection the maximum value
of the CCF. This test doesn’t cover the possibility that the resulting CCF can
have a global maximum for λ> 0 and a slightly lower local maximum for λ< 0
meaning that the underlying causal direction of the two signals is not obvious.
When determining the outcome of the benchmark data sets (see section 3.4.2),
this is for example the case when having data with a very narrow bandwidth or
an instationarity in the data set.

Therefore, a second significance test is necessary which checks if the found
maximum for λ> 0 is significantly different from the found maximum for λ< 0.
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To perform the test, the compound parameter C CCF defined as

C CCF := maxλ>0 |ĉuy [λ]|−maxλ<0 |ĉuy [λ]|
maxλ>0 |ĉuy [λ]|+maxλ<0 |ĉuy [λ]| , (3.8)

with −1 ≤C CCF ≤ 1 is calculated.

A value C CCF > 0 indicates a causal dependency from u → y . As the result-
ing C CCF strongly depends on the characteristics of u[k] and y[k], a dynamic
threshold depending on u[k] and y[k] needs to be determined. This threshold
is derived through a 3σ permutation test.

As a complete permutation of u[k] destroys all causal information, the resulting
value of C CCF should be close to zero. This idea can be exploited by calculating
random permutations of the input time series u[k] and from this generate
several values for the compound parameter, named C CCF

π . In that case the index
π indicates that permutations of the input time series have been used. Finally,
the threshold C CCF

thresh for each data set is calculated as

C CCF
thresh :=µC CCF

π
+3σC CCF

π
, (3.9)

with,

µC CCF
π

= 1

N

N∑
n=1

C CCF
π [n], σC CCF

π
=

√
1

N

N∑
n=1

(C CCF
π [n]−µC CCF

π
)2. (3.10)

In that case µC CCF
π

describes the empirical mean value and σC CCF
π

is the empirical
standard deviation of C CCF

π .

If the outcome indicates that C CCF > C CCF
thresh the found causal dependency is

defined as being significant.

For the estimation of the pdf each time a total number of N = 1000 random per-
mutations is used. Figure 3.8 shows the resulting pdfs using a kernel estimate
for the 1st-order system in the benchmark data sets using once white noise
and once white noise with superposed step function as input signal. The pdfs
are generated for K ∈ {100,1000,10000} samples. Comparing the two plots for
white noise and the step function as input signals to each other, shows that the
pdfs differ considerably. Furthermore, the impact of the sample size becomes
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obvious for the resulting pdf which shows again the need to generate a new
threshold C CCF

thresh for each tested cause-effect relationship.

The resulting C CCF
thresh are given for white noise in order of the sample sizes as

0.35,0.25,0.18 and for the step function as 0.46,0.41,0.37. This again shows that
the threshold needs to be adapted for each investigated pair u[k],y[k].
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Figure (3.8) Resulting estimated pdfs of C CCF
π for different signal lengths K . The left plot

shows the pdfs for the 1st-order system using white noise, the right plot shows the pdfs
for the step function as input signal.

Strength of causal dependency The two defined tests check if there exists a
significant causal dependency u → y but give no information about its strength.
The causal strength of u → y can be constructed directly from C CCF, defined as

QCCF := max(0,C CCF)βCCF, (3.11)

resulting in a value 0 ≤QCCF ≤ 1.

The parameter βCCF is used as a tuning parameter and is set to one when testing
the method on the benchmark data sets. As the selection of βCCF depends on
the behavior of other methods, a proper analysis on how to set βCCF is given in
chapter 4 after the other methods have been introduced.

As the CCF is a bivariate measure, for the generation of the causal matrix each
variable is tested against any other. The proposed algorithm for the detection
of cause-effect relationships for two time series u[k] and y[k] is summarized as
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algorithm 1.

Algorithm 1: Summary of the proposed algorithm based on the cross-
correlation function

1. Compute ĉuy of the two time series u[k] and y[k] and select λmax;

2. If λmax < 0 then u 9 y , else test if tscore > t(N−2;1−α/2) counts;

3. Calculate C CCF and the corresponding threshold C CCF
thresh;

4. Check if C CCF >C CCF
thresh; set QCCF as resulting value of the causal strength

u → y

3.4.2 Tests with the Benchmarks

The proposed algorithm has been tested against the benchmarks introduced
in section 3.2. For the calculation of the causal matrices the significance level
α of the t-test is set to 0.05. The resulting cause-effect dependencies for each
benchmark are given in figure 3.9 in terms of a doughnut chart where the
expected causal dependency u → y is marked with a red square.
Figure 3.10 illustrates the generated cross-correlation function. This illustration
is given to have further insights why causal dependencies could or could not be
detected using the suggested approach.
The result of the base configuration shows that the causal dependency u → y is
detected correctly. As explained in section 3.4 for a 1st-order system with white
noise as input the resulting CCF consists of a decaying exponential function
with its maximum amplitude at λ= 1. For negative λ the CCF consists of values
close to zero. This leads to a large value of C CCF and the causal dependency is
correctly detected.
The cause-effect dependency using the squaring device cannot be found as
the CCF is a linear measure. Hence, the plot of the CCF results over the whole
range of λ in values close to zero.
The benchmark using the feedback loop is correctly detected while the max-
imum of the CCF is at λ= 1 and the causal strength leads to a slightly higher
value than the one of the base configuration.
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Figure (3.9) Visualization of the causal matrices in terms of doughnut charts for the
developed algorithm tested on the benchmarks. The red square represents the expected
causal dependency.

The CCF fails to detect the causal dependency of the benchmarks with colored
noise and the step function. The reason is that in both cases the second signif-
icance test, which is based on the calculation of the significant causal direction,
failed. This becomes obvious when regarding the plotted CCFs, as in both cases
maxλ<0 |ĉuy [λ]| and maxλ>0 |ĉuy [λ]| are almost equal.

The feed through could not be detected as the cross-correlation has its maxi-
mum at λ= 0 and all other values of the function are around close to zero. In
that case both significance tests fail.

The benchmark including a dead time doesn’t affect the result of the CCF as
this only leads to a difference at the position of λmax. Compared to the base
configuration this means that the decaying e-function is delayed by 2 seconds
which is the selected value of the dead time. The resulting causal strength is
the same as for the base configuration.

Regarding the 2nd-order system the plotted CCF shows a different shape com-
pared to the benchmarks based on 1st-order systems, but there exists a distinct
difference between maxλ<0 |ĉuy [λ]| and maxλ>0 |ĉuy [λ]| resulting in the correct
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causal dependency u → y . The causal strength has a slightly lower value com-
pared to the base configuration.
Finally, the causal matrices show that the additionally added time series z[k]
from another process was in all cases correctly detected as a noise variable, as
the algorithm did not find any cause-effect dependency pointing to or from it.
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ĉ u
y
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Figure (3.10) Visualization of the cross-correlation functions resulting from the bench-
mark data sets. This representation gives further insights in the used algorithm concern-
ing its ability to detect causal dependencies in a data set.
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3.5 Transfer Entropy

The concept of transfer entropy (TE) was first introduced by Schreiber [Sch00]
in the year 2000 to describe the flow of information between two time series.
From its definition it is a non-symmetric measure and can be used to detect
causal dependencies in data by testing how much information is transferred
from a time series u[k] to a second series y[k] and how much information is
transferred back from y[k] to u[k]. In difference to the CCF, which calculates
correlations in data by time-shifting one of the series u[k] or y[k], the trans-
fer entropy evaluates dependencies in terms of transition probabilities. This
approach has the advantage that the TE can also be used to detect nonlin-
ear cause-effect relationships in a data set. Applications of the TE are already
found in various areas. There has been lots of work in the field of neuroscience
[CMLVQ03],[SL09],[SGT+09] but also in financial data analysis [MK02]. In the
field of process engineering research has been made by Bauer [Bau05] who
uses TE for the causal analysis on measurement data of chemical processes.

3.5.1 Entropic Measures for Static Probability Distributions

Entropic measures are used to calculate the information that is included in a
data stream and were first introduced by Shannon [Sha48] in 1948 in statistical
communication theory. Similar to its counterpart in thermodynamics, entropy
in information theory can be understood as the amount of randomness or
uncertainty in a data set. The main advantage when using these measures is that
a signal is treated as the result of a random process where only the probabilities
are evaluated. There is lots of recent literature and good introductions about
entropic measures can be found e. g. in [CT06], [Pyl99] or [Mik09] which can
give further insights regarding its application for data analysis. In the following
the main concept is stated and it is explained why these entropic measures for
static probability distributions cannot be used for causal analysis.

Entropy For the calculation of entropy it is assumed that the time series
u[k] ∈R with k = 1, . . . ,K has been quantized having Du discretization steps
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and values i ∈ {1, . . . ,Du}. According to Shannon’s definition the amount of
information encoded in u[k] is then written as

Hu =−
Du∑
i=1

P (u = i ) logP (u = i ), (3.12)

which leads to values between 0 ≤ Hu ≤ logDu. For the calculation of the
logarithm usually the base 2 is used. If the base is set to 2, the unit in which the
entropy is measured is then called bits. Regarding u[k] there are two possible
time series being on the boundaries.
An entropy of Hu = 0 is achieved by having a constant signal as in that case
no information is encoded in the signal. In equation 3.12 this implies P (u =
i ) logP (u = i ) which results in 1log(1) = 0.
On the contrary, the signal with the highest entropy is uniform random noise.
In that case every outcome is equally likely to occur. This can be explained by
setting P (u = i ) = 1

Du
into equation 3.12 which gives Hu = logDu meaning that

the time series has the highest uncertainty.

Joint entropy The joint entropy is an entropic measure which calculates the
uncertainty contained in a set of variables. Taking into account a second time
series y[k] with quantified values j ∈ {1, . . . ,D y } and D y describing the number
of discretization steps, the joint entropy is given as

Hu,y =−
Du∑
i=1

D y∑
j=1

P (u = i , y = j ) logP (u = i , y = j ). (3.13)

with the properties of the joint entropy given as Hu,y ≥ max[Hu,Hy ] and Hu,y ≤
Hu +Hy .

Conditional entropy Conditional entropy is defined as the uncertainty left
in a random variable when the outcome of another random variable is known.
Calculating the uncertainty of y[k], when knowing the outcome of u[k], is given
as

Hy |u =
Du∑
i=1

D y∑
j=1

P (u = i , y = j ) log
P (u = i )

P (u = i , y = j )
, (3.14)
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after quantification of the two series. The conditional entropy takes values in
the interval 0 ≤ Hy |u ≤ Hy and Hu|y is defined analogous. Hy |u = 0 means that
the information in y[k] is completely incorporated in u[k], while Hy |u = Hy

means that u[k] has no information about y[k].

Conditional entropy is an asymmetric measure, meaning that Hy |u 6= Hu|y . This
could lead to the delusive conclusion that it can be used as a causal measure.
Still, as e. g. shown in [CT06], the equations 3.12, 3.13 and 3.14 are linked
together as

Hy |u = Hu,y −Hu, (3.15)

Hu|y = Hu,y −Hy . (3.16)

These equations can then again be transformed into

Hu −Hy = Hu|y −Hy |u. (3.17)

The resulting equation 3.17 reveals that the difference of the two conditional
entropies is the same as the difference of two entropies. In other words, no
causal information can be drawn from the calculation of conditional entropies
even if it is an asymmetric measure.

For this reason the concept of transfer entropy is needed which is based on the
calculation of transition probabilities. The concept and its application for the
detection of cause-effect relationships is explained in the following section.

3.5.2 Transfer Entropy as a Causal Measure

As stated, entropic measures based on static probability distributions cannot
be used to reconstruct the propagation path of a plant-wide disturbance. The
reason is that these measures do not take dynamical information of the ana-
lyzed time series into account. In contrary to these traditional measures, the
transfer entropy uses transition probabilities and thus dynamical information,
to figure out to which extend two signals exchange information. For y[k], the
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transition probability is defined as P (yn+1|y). This is used as short notation of

P (yn+1 = jn+1|yn = jn,...,y1 = j1), (3.18)

with n defining the time horizon (which is equivalent to the model order), used
for the calculation of the transition probability. Since the transfer entropy deals
with the calculation of probabilities it has to be noticed that yn+1 should not be
confounded with y[k+1]. The variable j describes again the quantization levels
of y[k]. In addition to P (yn+1|y), for the calculation of the TE, the transition
probability P (yn+1|y ,u) needs to be calculated. This is again the short notation
of

P (yn+1 = jn+1|yn = jn,...,y1 = j1,un = in,...,y1 = i1). (3.19)

The transfer entropy describing the information flow from the time series u[k]
to y[k] is then defined as the information y and u contain about future values
of y , subtracted by the information y has about itself for prediction. Writing
this in a probabilistic manner, the transfer entropy is then given as

TE?uy (λ) :=
D y∑

j1=1
...

jn+1=1

Du∑
i1=1...
in=1

P (yn+1,y ,u) log
P (yn+1|y ,u)

P (yn+1|y)
. (3.20)

According to Marschinski [MK02], the range of the transfer entropy is the inter-
val 0 ≤ TE?uy ≤ Hy .

To capture dead times in the data, the parameter λ is introduced to perform
a backward-shifting of u[k]. Hence, equation 3.20 is calculated for different
u[k −λ]. Capturing dead times through an increase of the time horizon is not
appropriate as this can lead to numerical problems for large values of n. In
the following as a short-hand definition TEuy := maxλ(TE?uy (λ)) is used, which
means that the maximum value of the transfer entropy as a function of λ is
taken.

E�ective transfer entropy The effective transfer entropy (ETE) has been
introduced by Marschinski [MK02] and deals with the problem of artifacts
resulting from the calculation of the TE. In detail, these originate from the finite
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sample size of the investigated time series and the estimation of the probability
distributions. Both effects have a negative impact on the resulting transfer
entropy, as even for two independent series the TE results in values larger zero.
Compared to the calculation of the transfer entropy the ETE takes this into
account and is given as

ETE?uy (λ) = TE?uy (λ)−TE?uπy (λ). (3.21)

In this equation TE?uπy (λ) is the TE calculated from a permutation of the time
series u[k]. Like for the CCF, this means that all causal dependencies u → y are
broken and resulting values different from zero in TE?uπy (λ) are the outcome
of numerical issues. Similar to the definition of a threshold for the CCF, this
approach is used to calculate a threshold based on TE?uπy (λ) to detect only
significant causal dependencies in a data set. This is explained in the next
section.

3.5.3 Detection of Significant Causal Dependencies

Using transfer entropy for the detection of causal dependencies requires several
user-selected parameters. The data quantization method of the signals used
for analysis has to be selected and the parameter n for the size of the time
horizon needs to be set. Furthermore, a significance test has to be defined and
finally the strength of the found cause-effect relationship needs to be calculated.
Performing an appropriate selection of these parameters is explained in this
section.

Data quantization As stated, in the previous sections as a first step for the
calculation of the transfer entropy the time series u[k], y[k] need to be quan-
tized to calculate the probability distributions. In the proposed algorithm this
is done by using an approach suggested by [MK02]. In so doing, the range of
values of the time series u[k] is divided into Du intervals, with the condition,
that in each interval the number of data points is equal. As a next step the value
of every data point is replaced by the label of its interval.
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In terms of an entropic measure this means that P (u = i ) = 1
Du

counts which
leads to the entropy Hu =−Du

1
Du

log 1
Du

= logDu of the quantized time series.
In other words quantization of the data in this way leads to maximum entropy.
The output series y[k] is quantized analogously. One further advantage using
this approach is that effects coming from skewed data are corrected as the
resulting histogram of the series is uniform.

Selection of the time horizon To select the time horizon (or the model
order) used for calculating the transition probabilities, the parameter n needs
to be set accordingly. In order to do this, two requirements need to be taken
into account. Setting the parameter n too small means that possibly not the
complete system dynamics are covered by the time horizon which can lead to
the detection of false causal dependencies.

Selecting n too large can lead to problems as the calculation of the transition
probabilities becomes computationally more expensive as more combinations
in P (yn+1|y) and P (yn+1|y ,u) need to be evaluated. Additionally, it has to be
taken into account when having only short time series, a time horizon n > 1
means a sub-sampling of the data which reduces the data set size further.
Hence, the value of n should be as large as needed to cover all the system
dynamics and as small as possible to reduce the computational burden.

As the system dynamics are captured through the output series y[k], the model
order n is estimated by analyzing this series. Therefore, the residual sum of
squares (RSS) of several vector autoregressive (VAR) models are calculated,
where the RSS vor a specific model order n results in

σ̂2
y =

K∑
k=n+1

(
y[k]− â0 −

n∑
j=1

â j y[k − j ]
)2

. (3.22)

The values of the parameters â j result from a least square estimation. Each VAR
model is calculated using n = 1, . . . ,nmax as model order with nmax being set as
the maximum model order. The finally used order nTE for the transfer entropy
is chosen as the minimum of the Akaike information criterion (AIC) [Aka74].
This is calculated as

AIC(n) = log σ̂2
y +

2n

K
. (3.23)
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For illustration, figure 3.11 shows the resulting TEuy for the 1st-order system
with squaring device and the 2nd-order system for K ∈ {200,500,1000} samples
depending on the model order n. The outcome shows that smaller sample
sizes also lead to lower values for the transfer entropy. When increasing the
time horizon n this leads to a similar result. The reason is, that more data is
needed to estimate the transition probabilities P (yn+1|y ,u) and P (yn+1|y) in
equation 3.20 if the time horizon is set on a large value. As expected from
system dynamics, the 1st-order system has its maximum at n = 1, the 2nd-order
system at n = 2. Using the AIC criterion, the model order nTE for the 1st-order
system with squaring device results for all sample sizes as nTE = 2 and for the
2nd-order system as nTE = 4. This reveals that the AIC slightly overestimates the
correct model order as it doesn’t find the maximum position of the TE but still
selects model orders resulting in large values of the transfer entropy.
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Figure (3.11) TEuy for different sample sizes K plotted over the model order n. An in-
crease in n or a small sample size results in low values of TEuy . The selected order nTE

through the AIC criterion is marked with a cross in the plots.

Calculating the significance threshold Having a low value of the transfer
entropy indicates that no causal dependency exists between two time series,
while large values indicate a strong relationship. To put this into a statistical
measure, when testing for a significant cause-effect dependency, a significance
test similar to the test used for the cross-correlation function in section 3.4 is
performed. Regarding the transfer entropy this test has been originally sug-
gested by Schreiber [Sch00] and Bauer [Bau05]. The key idea is to generate
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a threshold TEthresh
uy based on the permutated input time series uπ[k]. As ex-

plained when introducing the ETE a permutation of u[k] destroys all causal
dependencies u → y and hence TEuπy should result in 0 but due to numerical
artifacts this is not the case. This characteristic is exploited by permuting u[k]
N times while each time TEuπy is calculated. The resulting values of TEuπy

are used as an estimate of a probability density function and to calculate the
threshold TEthresh

uy in terms of a 3σ-test. This is defined as

TEthresh
uy :=µTEuπy +3σTEuπy . (3.24)

If TEuy > TEthresh
uy holds, the significance test has passed and it is assumed that a

cause-effect relationship exists and pointing from u → y . For the estimation of
the probability distribution each time N = 1000 random permutations are used.
Exemplarily figure 3.12 illustrates the estimated pdfs for TEuπy for different
samples sizes K when having white noise and colored noise as input signal.
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Figure (3.12) Resulting pdfs of TEuπy for different signal lengths K . The left plot shows
the pdfs for the 1st-order system using white noise, the right plot shows the pdfs when
having colored noise as input signal.

Calculation of causal strength Besides having the information if a causal
dependency is significant, the causal strength needs to be calculated. As ex-
plained in section 3.5.2 the transfer entropy has values in 0 ≤ TEuy ≤ Hy , thus
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the causal strength of the transfer entropy can be normalized as

QTE :=
(

TEuy

Hy

)βTE

, (3.25)

resulting in a value between 0 ≤QTE ≤ 1.

As for the cross-correlation function the parameter βTE is a tuning parameter
which needs to be set when combining the different methods to one causal
matrix. Regarding the benchmarks presented in the next section, βTE is set
to one. A proper analysis on how to fit βTE will be given in chapter 4 after all
methods have been introduced.

As the transfer entropy is a bivariate measure each process variable needs to be
tested against each other for the generation of the causal matrix. Finally, the
suggested algorithm for the detection of cause-effect relationships is given in
algorithm 2.

Algorithm 2: Summary of the proposed algorithm based on transfer entropy

1. Compute model order nTE of the transfer entropy using VAR models and
AIC;

2. Compute TE?uy (λ) of the time series u[k] and y[k] and set
TEuy = max(TE?uy (λ));

3. Calculate TEthresh
uy ;

4. Check if TEuy > TEthresh
uy ; set QTE as the resulting value of the causal

strength u → y

3.5.4 Tests with the Benchmarks

In this section the proposed approach to use transfer entropy for fault localiza-
tion and the calculation of the disturbance propagation path is tested on the
benchmarks introduced in section 3.2. The resulting causal dependencies for
each benchmark are presented in terms of a doughnut chart in figure 3.13. In
addition, like for the CCF, figure 3.14 illustrates the transfer entropy over several
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Figure (3.13) Causal matrices from the developed algorithm for the detection of the
causal dependency for the tested benchmarks. The red squares indicate the expected
causal dependency.

values of λTs. Showing the TE over λTs has the aim to give further insights
why some cause-effect relationships could or could not be detected using the
proposed algorithm. Therefore, the transfer entropy for λ < 0 indicates the
causal dependency from y → u, while for λ> 0 the causal dependency pointing
from u → y is shown.

Reviewing the output of the benchmarks indicates that the causal dependency
using the base configuration has been correctly detected where max(TE?uy (λ))
has its position at λ= 1. Calculating the causal dependency from y → u yields
values close to zero with a maximum value of the transfer entropy below the
threshold.

The squaring device has no negative impact regarding the detection of the
cause-effect relationships. This follows from the definition of the TE as it
detects causal dependencies by calculating transition probabilities. Hence,
it does not rely on linear dependencies and the correct causal relationship is
found for this benchmark. Furthermore, the causal strength is larger compared
to the base configuration due to a higher magnitude of max(TE?uy (λ)).



74 3 Data-Driven Methods for Fault Localization

The benchmark, using the data from the feedback loop shows the same results
as the base configuration with a maximum value of the transfer entropy at λ= 1
and values close to zero for λ< 0. Therefore, the implied causal dependencies
are correctly found as u → y and y 9 u.
The TE failed to detect a causal dependency u → y when testing it with the
colored noise. Compared to the other benchmarks the maximum transfer
entropy for the cause-effect relationship u → y is much lower resulting in
TEuy < TEthresh

uy . Additionally, it has to be mentioned that the colored noise has
no impact on the transfer entropy for λ< 0 which means that no false causal
direction y → u is found.
The data set containing white noise with a superposed step function is correctly
found as the causal dependency u → y has been detected with a significant
peak at λ= 1.
Regarding the feed through the algorithm could not find the cause-effect rela-
tionship u → y since the values of the TE stayed close to zero for all λ.
A dead time does not have an effect on the resulting transfer entropy as only
max(TE?uy (λ)) is shifted by 2s compared to the base configuration but stays on
the same value.
Regarding the data set from the 2nd-order system, the TE plotted over λTs

shows a different shape compared to the base configuration as it has a maxi-
mum value at λ= 2. Hence, the causal dependency u → y is correctly found.
Finally, the resulting causal matrices show that the additionally added time
series z[k] coming from another process was in all cases correctly detected as
noise variable. In all benchmarks the proposed algorithm did not indicate any
cause-effect relationships pointing towards or from z[k] meaning that in this
case the resulting transfer entropy was always below the calculated threshold.
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Figure (3.14) Visualization of the transfer entropy using the benchmark data sets. This
representation gives further insights in the proposed algorithm regarding its ability to
detect causal dependencies in a data set and in order to use it for fault localization.
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3.6 Granger Causality

The concept of Granger causality (GC) has been originally introduced in the
field of economics by Clive Granger in 1969 [Gra69] who used it to determine the
relationships of different econometric models. Granger causality is based on a
multivariate causality test and therefore the time series u[k] is extended for this
causality measure to a set of input variables which consists of ui [k], i = 1, . . . ,r
time series. The basic concept of GC can be explained by assuming that initially
only the two time series ui [k] ∈R and y[k] ∈R with K samples are available. In
that case, the causal influence ui → y is assumed to exist if past values from
ui [k] and y[k] result in a higher accuracy in forecasting y[k] than using only
past values from y[k]. Figure 3.15 sketches the approach. This is evaluated
mathematically by generating and comparing two linear vector autoregressive
models, while the one containing only y[k] is called the restricted and the one
containing ui [k], y[k] is called the unrestricted model.

Traditionally, GC is used in the field of economics e. g. when analyzing con-
sumer and business confidence [GC10] or when analyzing the relation between
dividend yields and interest rates [Sau79]. Still, in recent time the application of
GC is of growing interest especially in the field of neuroscience, where it is used
to extract the directed functional connectivity from neural signals. An overview
about how GC is used in this field is given in [DCB06]. Further interesting appli-
cations are the calculation of the causal influence of two neural system on each
another [XKR+10] and the calculation of the causal flow of protein-signaling
networks [YL10]. In process technology, Yang [YX12] proposes in a review ar-
ticle to use Granger causality among other methods for a causal analysis of
large-scale processes.

One-step-ahead prediction As previously mentioned, Granger causality is
a multivariate measure. This means, when testing for a causal dependency
ui → y the series y[k] can also causally depend on other time series ul [k]; l 6= i
in the data set. GC takes this into account when designing the restricted and
the unrestricted model.
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ui [k −n] ui [k −3]ui [k −2]ui [k −1]

y[k −n] y[k −3] y[k −2] y[k −1] y[k]model

Figure (3.15) Illustration of the basic concept of Granger causality based on model
comparison. If a time series ui [k] increases the prediction accuracy of y[k] compared to
using only past values of y[k], it is said that ui [k] has a causal impact on y[k].

A comparison of the models is done in terms of a one-step-ahead prediction.
The concept is to predict the value of y[k] for the next sample point exclusively
by knowing previous observations. If the squared sum of the prediction error
using the unrestricted model, including all time series {u1[k], . . . ,ur [k]}, is sub-
stantially smaller than the prediction error of the restricted model, taking into
account only the time series {u1[k], . . . ,ur [k]}\ui [k], it can be concluded that
the unrestricted model has a significant better forecasting performance. This
means that there exists a causal dependency ui → y .

For the proposed algorithm each time series is once selected as being the output
y := um, while the left r −1 time series are used as input. The calculation of
the residual sum of squares can be formulated with n defining the order of the
vector autoregressive model and K the sample size as

EU i Y =
K∑

k=n+1

(
y[k]− â0 −

n∑
j=1

â j y[k − j ]−
r∑

l=1,
l 6=i ,m

n∑
j=1

b̂l j ul [k − j ]
)2

, (3.26)

EUi Y =
K∑

k=n+1

(
y[k]− â0 −

n∑
j=1

â j y[k − j ]−
r∑

l=1,
l 6=m

n∑
j=1

b̂l j ul [k − j ]
)2

, (3.27)

with
y[k] := um[k]. (3.28)
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By definition, the parameters â j , b̂l j in (3.26) and (3.27) result from separate
estimations. As shown, the impact of the i -th input signal on the m-th output
signal is measured in terms of the sum of the squares of residuals without ui as
EU i Y and with ui as EUi Y . The values of EU i Y and EUi Y are used to test for causal
significance and calculating the causal strength. The selection of the correct
model order n and the validation of the model consistency are described below.

3.6.1 Model Order Estimation and Consistency

As already shown for the transfer entropy, the performance of a model strongly
depends on the selected model order. Regarding Granger causality, when
estimating an autoregressive model, the time horizon n represents the model
order which needs to be chosen appropriately. Selecting a too small n leads
to a poor model with a large prediction error, setting n too large results in an
overfitted model which works well on the trained data but not on a new data
set.

To solve this problem, commonly two approaches are used to define n, namely
the Akaike information criterion (AIC) [Set10] and the Bayesian information
criterion (BIC) [Ris78]. The AIC has already been introduced in its basic form
in section 3.5.3 for the estimation of the time horizon of the transfer entropy. In
that case only the output time series was used for the selection of the model
order. This is in difference to Granger causality as in that case the autoregressive
model can be used directly for evaluation. AIC and BIC penalize the model
complexity while taking into account the resulting prediction errors EUi Y or
EU i Y , the sample size K , the number of variables r and the selected model order
n. For model order estimation the loss function V is calculated by using the
residual sum of squares of one of the two autoregressive models. Hence, the loss
function is set to V = EUi Y for the unrestricted and to V = EU i Y for the restricted
model. Finally, the information criteria AIC and BIC for one autoregressive
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model is calculated as

AIC(n) = log(V )+ 2np2

K
, (3.29)

BIC(n) = log(V )+ log(N )np2

K
. (3.30)

There has been lots of research about comparing these two criteria for model
averaging. For an overview it is referred to Burnham and Anderson [BA02].
Used in practice, both criteria show similar results. In this work AIC is used
when selecting the order n while the maximum model order is set to nmax = 20.
The resulting model order from the AIC criterion for Granger causality is named
nGC.

Figure 3.16 shows the impact when varying n on the residual sum of squares
of the prediction error for the 1st-order system with colored noise as input
signal and for the 2nd-order system. For simulation K = 1000 samples are
used. The outcome shows that in both cases it is possible to detect the correct
underlying cause-effect relationship using GC (see section 3.6.3 for a thorough
explanation). Selecting a larger n reduces in both cases the residual sum of
squares for the restricted and for the unrestricted model. For the 1st-order
system with colored noise as input the AIC believes a model order of 2, for the
second-order system AIC leads to a model order of 12. In the first case the
selected model order has no impact because the offset of the prediction error
between the restricted and the unrestricted error stays almost constant. In
case of the second-order model a too small model order would have resulted
in an insignificant difference in the prediction error meaning that no causal
dependency would have been detected.

Durbin-Watson statistic In a next step all estimated models need to be
validated if they fit the underlying data set sufficiently. Therefore, a Durbin-
Watson statistic [DW50] is applied which tests if the residuals, named as ε[k], of
the estimated model are all uncorrelated. This should be the case for a correctly
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Figure (3.16) Impact of the selected model order on the residual sum of squares (RSS)
when using Granger causality as causal measure. The selected model order nGC through
the AIC criterion is marked with a cross in the plots.

estimated model. The test statistics are calculated as

d =
∑K

k=2(ε[k]−ε[k −1])2

∑K
k=2(ε[k])2

, (3.31)

with d ∈ [0,4]. The limits of the measure describe for d = 0 a perfect positive
autocorrelation and for d = 4 perfect negative autocorrelation. As a rule of

thumb Seth [Set10] suggests that d
!∈ [2,3] should be fulfilled to consider the

model as consistent. For each estimated model a Durbin-Watson statistic is
performed and models that do not fulfill this criterion are not considered for
causal analysis and the causal dependency is set to non-existing.

3.6.2 Significance and Causal Strength

A significance test needs to be performed by testing if EU i Y and EUi Y differ
significantly. Following [SH06] and [Set10], under the assumption that EU i Y

and EUi Y follow χ2 distributions, an F -test can be performed to verify if the
time series ui [k] has a causal influence on y[k]. The test is performed on the
restricted and unrestricted model under the hypothesis that EUi Y < EU i Y . For
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this case, the F -test is calculated as

F (n,K −n −p) =
EU i Y −EUi Y

n
· K −n −pn

EUi Y
. (3.32)

When performing the F -test, the significance level α needs to be defined which
is set throughout the thesis to α= 0.05.

Causal strength The causal strength QGC is defined through a comparison
of the two different squared sums of residuals EU i Y and EUi Y . Again a tuning
parameter βGC is used and regarding the benchmark data sets, it is set to one.
The setting of the parameter is postponed to section 4.2. The resulting value
QGC is defined as

QGC :=
(

1− EUi Y

EU i Y

)βGC

, (3.33)

with 0 ≤QGC ≤ 1, where 0 indicates no causal dependency and 1 stands for a re-
liably detected causal relationship. The suggested algorithm for using Granger
causality to detect cause-effect relationships is summarized as algorithm num-
ber 3 .

Algorithm 3: Summary of the proposed algorithm based on Granger causality

1. Compute EU i Y and EUi Y using the model order estimated through AIC or
BIC;

2. Test for model consistency for both models using Durbin-Watson
statistic;

3. Perform a significance test based on an F -test for EUi Y < EU i Y ;

4. If causal dependency is significant, set QGC as the resulting value of the
causal strength ui → y ;
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Figure (3.17) Causal matrices represented as doughnut charts when using Granger
causality for the detection of the causal direction of the tested benchmark data sets. The
red squares indicate the known causal dependency in the data set.

3.6.3 Tests with the Benchmarks

In the following, the behavior of Granger causality is investigated on the bench-
mark data sets presented in chapter 3.2. The resulting cause-effect dependen-
cies are outlined in figure 3.17 in terms of a doughnut chart for each benchmark.

Reviewing the performance, starting with the base configuration the results
show that the causal dependency u → y has been correctly detected. All signifi-
cance tests are passed and QGC yields a value of 0.49.

The nonlinear benchmark containing the squaring device cannot be detected
when applying the algorithm. The reason is that the used vector autoregressive
models from equations 3.26 and 3.27 assume a linear process structure.

The feedback loop has no negative impact on the found causal dependencies
of the benchmark using this method. Furthermore, the causal strength results
in a slightly larger value than the base configuration.

In contrast to the cross-correlation function and the transfer entropy, when
having the benchmark with the colored noise, using GC it is possible to detect
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the causal dependency u → y . In that case the causal strength u → y is lower
than for the base configuration but still significant.

The causal dependency u → y in the benchmark containing white noise with a
superposed step function can also be detected. Comparing this result to the
one of the base configuration yields a much higher causal strength. Further-
more, a weak false causal relationship y → u has been found. This shows the
advantage of using the causal strength as a quantitative measure since the value
is close to zero. Detecting causal dependencies only based on significance tests
would result in an equal intercausal relationship meaning that the two variables
would have the same causal influence onto each other.

For the benchmark containing the feed through, GC detects a significant cause-
effect relationship with a low causal strength. Compared to the other proposed
algorithms, GC is the only method which detects a significant causal depen-
dency u → y for this benchmark.

The cause-effect relationship in the benchmark containing a large dead time
could not be found. This follows from the definition of GC in equations 3.26
and 3.27. Granger causality is not suited for the detection of causal depen-
dencies containing large dead times as it can compensate them only through
an increase of the model order n. As nmax is set to 10 but at least a model of
order n = 21 (Td = 2s, Ts = 0.1s) is needed, the causal dependency is not found.
Setting the value of nmax too large is inappropriate since this can lead to compu-
tational problems when estimating the vector autoregressive models, especially
when there is a large number of process variables.

Regarding the 2nd-order system the causal dependency u → y is found correctly
and QGC devotes nearly the same causal strength as in the base configuration.

The causal matrices for all benchmarks show that the additionally added time
series z[k] coming from another process was correctly detected as noise vari-
able. In all benchmarks the Granger causality did not indicate any cause-effect
relationships pointing towards or from z[k] meaning that in these cases the
hypothesis tests failed.
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3.7 Support Vector Machines

Support vector machines (SVM) are learning methods that are used for su-
pervised learning and can be applied for classification and regression tasks.
Originally they were developed by Vapnik [Vap82, Vap98] at the AT&T Bell Lab-
oratories. In the beginning, the main interest was to use SVMs as classifiers for
optical character recognition and object detection but later on where extended
towards regression and time series prediction [SS04]. For both, classification
and regression, SVMs proved to be competitive with other state-of-the-art ma-
chine learning methods which is outlined e. g. in [OD08, CST00, BFSS03], and
were identified in 2007 [WKRQ+07] as one of the 10 most influential data mining
algorithms. Good tutorials about support vector machines used for classifi-
cation can be found in [CST00, SS01], for regression tasks in [Vog08, SS04]. In
recent times SVMs are also used in process technology where their main task is
the condition monitoring of plants [TS09].

In this thesis a concept which uses SVMs for regression tasks in combination
with variable selection and model reduction is proposed for the detection of
cause-effect relationships and the reconstruction of the disturbance propaga-
tion path of a fault. Like for Granger causality, to test if a time series u[k] causes
y[k], both series are used to predict future values of y[k]. Therefore, from both
series the last n past values are selected to generate an input data set consisting
of {u[k −1],...,u[k −n],y[k −1],...,y[k −n]} while setting y[k] as output for the
SVM. In the next step, a variable elimination for the SVM is performed with
regard to the prediction accuracy of y[k]. The variable elimination removes
irrelevant or redundant data and finally results in a subset of relevant input
variables for predicting y[k]. This increases the performance of the SVM and
deals as a test of significance. If this subset still contains one or several past
values of u[k], it is assumed that u causes y . Like for the autoregressive models
when testing for Granger causality a Durbin-Watson statistic is performed to
validate if the resulting SVM fits the data sufficiently.

As the performance of the SVM depends on several user-selected parameters
the advantage of this approach is that only one SVM is needed for the detection
of a significant causal dependency (for the calculation of the causal strength
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two SVMs with the same parameter settings are used). Comparing two SVMs
with different user-selected parameters, e. g. the first SVM only with past values
of y[k] as input and the second SVM with past values of u[k] and y[k] as input,
can lead to misleading results due to possibly bad fitted parameters for one of
the SVMs.

u[k −n] u[k −3]u[k −2]u[k −1]

y[k −n] y[k −3]y[k −2]y[k −1] y[k]model

Figure (3.18) Illustration of the basic concept when using SVMs with variable elimina-
tion for the detection of causal dependencies. The SVM, containing as input variables
past values of u[k] and y[k], eliminates iteratively irrelevant variables based on the pre-
diction accuracy of y[k]. This increases the performance of the SVM and deals as test of
significance if u causes y . If the found variable subset still contains past values of u[k] it
is said that u causes y .

Figure 3.18 sketches the explained basic concept when using SVMs for the
detection of causal dependencies. In the following the theoretical foundations
of SVMs for regression tasks are reviewed.

Support vector regression Performing a linear regression, given a training
set with {xi ,zi }K

i=1 with xi ∈Rn and zi ∈R, means to estimate a function f that
fits the training data by minimizing the mean squared error, containing as
parameters the normal vector w and the bias b. The regression function is then
given by

f (x) = 〈w, x〉+b, (3.34)

while in that case 〈·, ·〉 denotes the scalar product in Rn. For the calculation
of f (x), support vectors machines for regression have the objective to find
the flattest function of f (x) that has at most a deviation ε (also known as
insensitivity zone) from the values zi for the whole training data set. Flatness in
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this case means to find a normal vector w which is as small as possible. Taking
into account ε, the objective function is written as

min
w

1

2
||w ||2 (3.35)

with f (xi )− zi ≤ ε
and zi − f (xi ) ≤ ε.

As the selection of a too small insensitivity zone ε would lead to equations with
infeasible constraints, equation 3.35 is extended by so-called slack variables
ξ, ξ̂ ∈R≥0 and an additional weighting parameter C ∈R>0 [Vap95] defined as

min
w,ξ,ξ̂

1

2
||w ||2 +C

K∑
i=1

(ξi + ξ̂i ) (3.36)

with f (xi )− zi ≤ ε+ξi

and zi − f (xi ) ≤ ε+ ξ̂i .

For the slack variables ξ, ξ̂ commonly a quadratic or a linear loss function is
selected, while throughout this thesis the linear loss function will be used.
Further details on the selection of loss functions for support vectors machines
and their characteristics is given e. g. in [CST00] or [Vog08].

To solve the optimization problem a transformation into its dual form is per-
formed and a Lagrange function is constructed. For further explanations on
how to construct this function it is referred to [Van97] and [CST00]. The final
result is given as

L(w,b,ξ,ξ̂,α,α̂,β,β̂) = 1

2
||w ||2 +C

K∑
i=1

(ξi + ξ̂i )−
N∑

i=1

(βiξi + β̂i ξ̂i )

−
N∑

i=1

αi (ε+ξi − zi +〈w,xi 〉+b)

−
K∑

i=1

α̂i (ε+ x̂i + zi −〈w,xi 〉−b),

(3.37)

while L is the Lagrangian function with βi ,β̂i ,αi ,α̂i ∈Rn
≥0 being the Lagrange
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multipliers. In [Van97, CST00] it is stated, that L has a saddle point at the solu-
tion, meaning that the partial derivatives with respect to the primal parameters
(w,b,ξi ,ξ̂i ) have to be zero. Therefore, the following four conditions can be
calculated as

∂L

∂b
=

K∑
i=1

(α̂i −αi ) = 0, (3.38)

∂L

∂w
= w −

K∑
i=1

(αi − α̂i )xi = 0, (3.39)

∂L

∂ξ
=C −αi −βi = 0, (3.40)

∂L

∂ξ̂
=C − α̂i − β̂i = 0. (3.41)

Finally, equation 3.39 can be used to calculate the vector w . Setting the result
into equation 3.34 leads to the regression function including the Lagrange
multipliers α, α̂ which are given as

f (x) =
K∑

i=1

(αi − α̂i )〈xi ,x〉+b. (3.42)

Discussion of α, α̂ The prefactors of the support vectors have some impor-
tant properties depending on the pair (xi ,zi ) of the training data set and the
selected parameters ε and C . The derivation of these properties is explained in
further detail in [SS04] and [Vog08] and is summarized below.

• |zi − f (xi )| < ε: Sample (xi ,zi ) lies inside the insensitivity zone.
Lagrange multipliers: αi = 0, α̂i = 0
Slack variables: ξ= 0, ξ̂= 0

• zi − f (xi )−ε= 0: Sample (xi ,zi ) lies on the upper edge of the insensitivity
zone.
Lagrange multipliers: 0 <αi <C ,α̂i = 0
Slack variables: ξi = 0, ξ̂i = 0
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• f (xi )− zi −ε= 0: Sample (xi ,zi ) lies on the lower edge of the insensitivity
zone.
Lagrange multipliers: αi = 0,0 < α̂i <C
Slack variables: ξi = 0, ξ̂i = 0

• zi − f (xi )−ε> 0: Sample (xi ,zi ) lies above the insensitivity zone.
Lagrange multipliers: αi =C , α̂i = 0
Slack variables: ξi = zi − f (xi )−ε, ξ̂i = 0

• f (xi )− zi −ε> 0: Sample (xi ,zi ) lies below the insensitivity zone.
Lagrange multipliers: αi = 0, α̂i =C
Slack variables: ξi = 0, ξ̂i = f (xi )− zi −ε

The list shows some interesting characteristics. As the Lagrange multipliers
α, α̂ which correspond to the data points lying inside the insensitivity zone all
have a value of zero, those data points are not needed for the calculation of the
regression function.

Kernels One of the main reasons why SVMs are employed is that they have
the ability to detect nonlinear dependencies in data. To achieve this, so-called
kernel functions are used which are explained in detail e. g. in [CST00, SS01,
STC04, Vog08]. The main idea is to map the space of input data Rn into some
feature space F with a possibly higher dimension by using a nonlinear trans-
formation functionΦ. Formally this can be written as

Φ :Rn 7→F with x 7→Φ(x). (3.43)

The major problem when mapping data into the feature space is, that this
approach can become computationally infeasible [SS04]. In that case, the
advantage of SVMs is that they solely depend on the calculation of dot products
which can be used to reduce the computational complexity significantly. This
means that a kernel function, defined as k(x,x ′) := 〈

Φ(x),Φ(x ′)
〉

can be set into
equation 3.42 resulting in the final regression function

f (x) =
N∑

i=1

(αi − α̂i )k(xi ,x)+b. (3.44)
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Compared to the case without kernel function this means that the SVM now
searches for the flattest function in feature space and no longer in input space
[Vog08].

Kernel examples Only functions can be used as kernels that correspond to a
dot product in a feature space [SS01]. In the following, some examples of kernel
functions are given, while in this thesis solely the Gaussian kernel is used for
the detection of causal dependencies. This decision is based on an investigative
study made by Rakotomamonjy [Rak07] on using SVMs for variable ranking.
He showed that Gaussian kernel work best on most of his proposed benchmark
data. Further details about kernels can be found e. g. in [SS01, Vog08, SS04].

• Inhomogeneous polynominal kernel: k(x,x ′) = (
〈

x, x ′〉+ c)p with p ∈
N,c ≥ 0
In [VC00, BGV92] it is shown that the mapping into a polynominal feature
space can be performed using this kernel. When selecting p = 1 and c = 0
this corresponds to a linear kernel.

• Sigmoid kernel: k(x,x ′) = tanh
(〈x,x′〉+c

p

)
with a,r ∈R

This kernel corresponds to the activation function of neural networks
[DHS01b].

• Gaussian kernel: k(x,x ′) = e− ||x−x′||
2σ2 with σ ∈R>0

This kernel was first introduced in [ABR64] and is the most widely used
kernel for SVMs. It is used throughout this thesis for the reconstruction of
the disturbance propagation path and the localization of the root cause
of a fault.

3.7.1 Optimizing SVM Parameters

The general behavior of the SVM is strongly dependent on the selected values
of the two parameters C and ε for the SVM and σ for the Gaussian kernel.
For fitting the parameters to the data set an optimizing technique as well as
a loss function need to be defined. In that case, a greedy search algorithm,
namely the downhill simplex algorithm, originally developed by Nelder & Mead
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[NM65] and as a loss function the squared sum of residuals in combination
with the 0.632 bootstrap algorithm [WF05, Efr79] are used. The methods are
summarized in the following.

0.632 bootstrap To evaluate the performance based on the selected SVM
parameters, the 0.632 bootstrap algorithm is used which generates a training
and a test data set by performing sampling with replacement.
Having a data set with a sample size K , exactly K times instances are taken
for training the SVM. As some instances are taken more than one time, other
instances are not used for the training set. These samples are later utilized for
testing the trained SVM. Having a sufficiently large data set, this means that the
possibility for a particular instance of not being picked for training is calculated
as lim

K→∞
(1− 1

K )K = e−1 ≈ 0.368 meaning that 63.2% of the original data set are

used for training in which some of the instances occur double and 36.8% are
used for testing. By using the residual sum of squares as loss function, the
resulting error for the training set Etraining and for the test set Etest are combined
into one loss function V0.632 given as

V0.632 = 0.632 ·Etest +0.368 ·Etraining . (3.45)

Downhill simplex Fitting the tuning parameters of the SVM is done by min-
imizing V0.632. The downhill simplex search algorithm used in the present work
is one of the most widely used algorithms for optimization. Good descriptions
of the algorithm can be found e. g. in [NM65, JRWW98] or [McK98] and are
summarized here to give the main points.
The concept is to initialize a simplex in the search space, while a simplex for A
parameters is defined as having A+1 elements. For initialization of the SVM
the parameters ε,C and σ are chosen. In the next step the selected parameters
are used for one element of the simplex and the other A elements are calculated
through offsetting always one of the parameters. For each parameter set, the
loss function V0.632 is calculated and the element with the worst performance is
selected. This element is removed and replaced through its reflection on the
centroid of the remaining elements. In this way the simplex moves through
the search space towards a parameter set representing the minimum of V0.632.
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Additionally the simplex has the possibility to perform as move reduction,
contraction or expansion to find the minimum.

For optimization there are also other methods for support vector machines
available, which are e. g. grid-search [HCL03] or gradient-based methods [Gla08].
All of these methods have their assets and drawbacks. Since the suggested
method for the detection of causal dependencies only needs to fit the pa-
rameters once, the used optimization algorithm is not of crucial importance.
Furthermore, as only one SVM is used, even badly fitted parameters, e. g. if
the simplex algorithm reaches a local minimum, can be tolerated. This would
not be possible when comparing several SVMs. The optimized parameters are
denoted as εopt,Copt and σopt.

3.7.2 Variable Selection Methods

Variable selection means to find a subset of relevant variables usually with the
aim to have a less complex and more robust model to predict a target variable.
Useless noise variables are eliminated and the risk of generating an overfitted
model is reduced. Furthermore, lower computational power is needed when
the model learning is performed on the reduced variable set. There exists a
wide variety of variable selection algorithms, see e. g. [LM98, GE03, KG97], and
they can mainly be divided into filter and wrapper methods.

Filter methods are usually computationally cheap as these methods do not nec-
essarily need a learning machine. In that area popular metrics are correlation
[DP05] and entropic measures [HFC05] to perform variable selection.

When performing variable selection using a wrapper approach, which is the
case when using the SVM, a learning machine has to be trained. Wrappers
usually outperform filter methods compared to the prediction error, but are
computationally more intensive [ZYSM07]. In that case, the learning machine
itself describes a black-box where the prediction performance is used to select
the variables. According to Guyon [GE03], when using a wrapper approach
besides the learning machine three things need to be defined. They are the
strategy on how to search the space of all possible variable subsets, the objective
function for the evaluation of the prediction performance and finally which
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stopping criterion should be used. All three objectives will be explained in the
following section.

Detection of causal dependencies The first step of the proposed algorithm
when using variable selection for the detection of cause-effect relationships is to
generate a data set containing past sequences of the possible input series u[k]
and output series y[k]. For both signals the last n values are used to generate
an input data setΦuy = {u[k−1],...,u[k−n],y[k−1],...,y[k−n]} for the SVM and
setting y[k] as output value. The SVM is once trained and optimized regarding
ε,C and σ on the complete data set. In the next step the variables in Φuy are
ranked in terms of their prediction performance for y[k] using a backward
variable elimination method which is explained in the section below. Finally a
reduced SVM, containing only a relevant subset variables, is calculated. If the
resulting subset contains one or several past values of u[k], a significant causal
dependency is found, meaning that u causes y . The time horizon n is estimated
as described in section 3.5.2 for the method based on transfer entropy by using
a VAR model and the AIC criterion on the output series y[k]. In the following,
the resulting model order for the SVM is named nSVM and the maximum model
order to be estimated is set to nmax = 10.

3.7.3 Using Support Vectors for Variable Selection

There has already been several works on how to use SVMs for variable selection.
Vapnik [VC00] and Joachims [Joa00] showed that SVMs can be used for variable
selection in classification tasks and Chang [CL05] extended this work to use
variable selection as well for regression tasks. In both approaches the idea for
feature selection is to minimize the Leave-One-Out (LOO) error of the SVM. On
a data set with the sample size K the LOO is calculated by using always K −1
samples for training the SVM and the remaining data point as a test sample.
This all is repeated exactly K times meaning that each sample is used exactly
one time for testing. Therefore, the Leave-One-Out error is given as

LOO = 1

K

K∑
i=1

| f (xi |{x1, . . . ,xk}\xi )− zi |. (3.46)
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Calculating the LOO has two advantages. First it can be used on small data sets,
as always the maximal possible number of training data is used; secondly it is a
deterministic method which gives reproducible outcomes.

A disadvantage when calculating the LOO on a large data set, is that it can
become computationally expensive.

To overcome this problem Chang [CL05] suggests two methods for the estima-
tion of LOO error bounds for the SVM. One method still contains a quadratic
programming problem and the other one contains the inversion of a matrix,
which again makes the calculation computationally expensive. As both meth-
ods contain the sum of the Lagrange multipliersαi , α̂i , Rakotomamonjy [Rak07]
proposes to use the multipliers directly for variable selection and defines its
ranking criterion as

Gα(α, α̂) :=
K∑

i=1

(αi + α̂i ) ∝ LOO. (3.47)

In [Rak07] it is demonstrated that for the variable selection this criterion gives
similar results as the computationally more expensive methods suggested by
Chang. Hence, the approach suggested by Rakotomamonjy will be used for the
estimation of the LOO error and consequently for ranking the selected input
variables.

Recursive variable elimination A heuristic algorithm for variable selection
is needed as testing all possible variable sets would be computationally infea-
sible. Therefore, an algorithm originally proposed by Couvreur [CB00] and
investigated in further detail by Rakotomamonjy is used. In this approach at
first all variables are considered and recursively eliminated by removing the
variable which increases the LOO error the least. The concept is to remove
temporarily one variable at a time and to calculate Gα(α, α̂) using the remaining
variables. By comparing the different results, the variable which minimizes
Gα(α, α̂) is removed. This is done until all variables are ranked. The first re-
moved variable is ranked last and the last removed variable is ranked first. This
algorithm is summarized as algorithm 4, when using as input the data setΦuy .
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As result the ranked set of variables stored inΦranked
uy is obtained.

Algorithm 4: Recursive variable ranking, originally proposed by [CB00]

Initialize: SELECTED = ; and VAR =Φuy ;
while VAR is not empty do

for all variables in VAR do
Remove temporarily variable i in V AR ;
Calculate Gα(α, α̂) ;

end
SELECTEDVAR = argmini Gα(α, α̂) ;
Rank variable: SELECTED = [ SELECTEDVAR SELECTED ] ;
Remove variable SELECTEDVAR from VAR ;

end

3.7.4 Significant Subset and Causal Strength

The conducted variable ranking already gives hints for causal dependencies.
If past values of u[k] are ranked in high positions this indicates a causal de-
pendency pointing from u → y . This needs to be covered into a statistical
test. Therefore, a relevant subset of the ranked variables Φranked

uy is calculated by
means of the prediction performance of y[k]. This is done by comparing two
SVMs, each containing a different set of variables. The first SVM uses the first φ
variables inΦranked

uy and the second SVM the first φ+1 variables for predicting
y[k] where φ ∈ {1, . . . ,2n −1}. In both cases the parameters are kept to εopt,Copt

and σopt, which means that SVMs with identical parameters are used.

For the selection of the subset size an F -test is performed on the resulting
residual sum of squares of the two SVMs. According to [Joh93] the F -test is in
that case calculated as

F (K −1,K −1) = (E1 −E2) · K −φ+1

E2
, (3.48)

where E1 is the residual sum of squares of the first SVM with φ variables and E2

is the residual sum of squares of the second SVM with φ+1 variables.
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The null hypothesis is defined as H0 : E1 = E2, meaning that if the null hypothe-
sis cannot be rejected the residual sum of squares do not change significantly
and the found subset of variables is set to size φ. In other words, the subset of
variables, starting with a subset which contains only one variable, is increased
in each step by one, until the first time the null hypothesis cannot be rejected. If
the found variable subset includes at least one sequence of past values of u[k]
it is assumed that u causes y . When performing the F -test, the significance
level is set to α= 0.05.

Algorithm 5: Summary of the proposed algorithm based on support vector
machines

1. Estimate the time horizon nSVM using a VAR model and AIC to generate
Φuy ;

2. Train SVM and fit user selected parameters ε,C ,σ using downhill simplex
algorithm and check consistency of the SVM using Durbin-Watson
statistic;

3. Perform variable selection with Gα(α, α̂) and calculate subset;

4. If u is in the subset, set QSVM as the resulting value of the causal strength
u → y ;

Causal strength Similar to Granger causality the resulting causal strength
is calculated based on the comparison of the squared sum of residuals. The
causal strength QSVM is calculated through a comparison of the two different
squared sums of residuals named Euy and Ey . In detail, Euy is calculated using
the above explained SVM with the subset of input variables resulting from
the initial set Φuy . For prediction of y[k], the residual sum of squares Ey is
calculated by performing the same algorithm only starting with the reduced set
Φy = {y[k −1],...,y[k −n]} which does not contain the time series u[k] and by
using the same parameters εopt,Copt and σopt.

Again a tuning parameter βSVM is defined and set to one for the benchmark
data. Tuning the parameter is postponed to section 4.2. The resulting value
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QSVM is therefore defined as

QSVM :=
(
1− Euy

Ey

)βSVM

, (3.49)

with 0 ≤ QSVM ≤ 1, where 0 equals no causal dependency and 1 means maxi-
mum causal strength. The complete algorithm using support vector machines
for the detection of causal dependencies is summarized as algorithm 5, while
for the generation of the causal matrix each variable is tested against each other.
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Figure (3.19) Causal matrices represented as doughnut charts when using support
vector machines for the detection of the causal direction of the tested benchmark data
sets. The red squares represent the a priori known causal dependencies.

3.7.5 Tests with the Benchmarks

In this section the proposed algorithm is tested on the benchmark data sets pre-
sented in chapter 3.2. The resulting causal dependencies are outlined in figure
3.19 for each benchmark in terms of a doughnut chart. The initial parameters
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for the SVM for all benchmarks were set to C = 100,ε= 1 and for the Gaussian
kernel σ= 1. The order of the maximum of the model order is set to nmax = 10.
Reviewing the results, starting with the base configuration, the causal depen-
dency u → y is correctly found for this benchmark. In that case, the dependency
yields a causal strength of QSVM = 0.32.
The causal dependency u → y in the nonlinear benchmark data set consisting
of the squaring device is correctly detected as well. This reveals the difference
of the SVM compared to Granger causality, as due to the fact that a Gaussian
kernel is used, even nonlinear causal dependencies in the data can be found.
The feedback loop has no negative impact on the SVM and the causal depen-
dency in the benchmark is correctly detected.
Having the benchmark with colored noise, no causal dependencies are found
in the data set. The reason is that the output series y[k] contains already
too much information about itself. As a consequence the feature selection
algorithm removes the possible input variable u from the subset.
The benchmark consisting of white noise with a superposed step function as
input implies a significant cause-effect relationship u → y and y → u while
u → y results in a larger causal strength than u → y . Like for GC, this shows
again the advantage when using the causal strength as a quantitave measure.
Detecting causal dependencies depending only on significant tests would result
in this case in an equal intercausal relationship, meaning that the two variables
would have the same causal influence onto each other.
No causal dependency could be detected regarding the benchmarks containing
the feed through and the dead time. Like the Granger causality the SVM can
only cover dead times through its model order n. Since for the dead time a
model order of n = 21 (Td = 2s, Ts = 0.1s) is needed, but as shown in figure 3.20
the model order of the VAR model is estimated to 4, no cause-effect relationship
is found. The reason is that the model order is entirely estimated through the
output signal y(t ) which does not contain any information about the dead time
of the system.
In terms of the feed through too little causal information is contained in u, so
that the delayed vectors of u are not in the estimated subset.
For the last benchmark data, which contains the 2nd-order system, the SVM
finds the correct causal dependency resulting in a slightly lower causal strength
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compared to the base configuration.
Furthermore, the causal matrices for all benchmarks show that the added time
series z[k] from another process is always correctly detected as noise variable.
This means that in all cases the variable selection algorithm correctly sorted
out this variable from the subset.
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Figure (3.20) Resulting values of the AIC for the SVM when having a large dead time in
the system. The star marks the estimated model order of the SVM.



4
Method Selection

The last chapter has illustrated that each method has its typical character-
istics when calculating causal dependencies. Hence, this chapter starts by
summarizing the outcome from the benchmark data and by giving advice
which methods to use depending on the system dynamics and the expected
disturbances. Thereafter, it is explained how the methods can be combined
to one resulting causal matrix and how a priori knowledge in terms of known
cause-effect dependencies can be used. The chapter finishes by testing the
methods on generated data from a simulated continuous stirred tank reac-
tor.

4.1 Selection depending on Process
Characteristics

In chapter 3 several methods have been proposed and tested on eight dif-
ferent benchmark data sets. The results illustrated that each method has its
advantages and drawbacks depending on the type of the disturbance and the
process characteristics. This means that if there is a priori information about
the underlying system available, certain methods can be selected or eliminated
beforehand.

Table 4.1 summarizes the results from the benchmark data sets. The check-
marks describe if it is possible for a method to find the causal dependency in

99
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the benchmark. Checkmarks being set in brackets indicate that the method
needs to be applied with attention, as causal dependencies were not doubtlessly
detected.

CCF TE GC SVM

Base configuration
p p p p

Squaring device –
p

–
p

Feedback loop
p p p p

Colored noise – –
p

–
Step function –

p
(
p

) (
p

)
Feed through – – (

p
) –

Dead time
p p

– –
2nd-order system

p p p p

Table (4.1) Summary of the results from the investigated benchmark data sets. A check-
mark describes that the proposed method is able to detect the causal dependency cor-
rectly. Checkmarks being set in brackets indicate that the method needs to be applied
with attention as causal dependencies were not doubtlessly detected.

Under the assumption that the results of the benchmarks can be generalized it
is possible to use this table to generate a sunburst graph for the selection of the
best method(s) corresponding to an underlying system. The graph is illustrated
in figure 4.1.

In the case of having a linear system or a system structure that can be linearized
adequately while having no or only short dead times, all methods can be used
for the detection of causal dependencies. As Granger causality and support
vector machines can only cover delay times up to the selected internal model
order n, for large dead times, the cross-correlation function or transfer entropy
should be selected as they cover dead times through a time-shifting parameter
λ. If the process is nonlinear, the support vector machine or transfer entropy
need to be used as cross-correlation and Granger causality need linear simi-
larities in the process signals. When dealing with large dead times and having
additionally a nonlinear behavior only the transfer entropy can be applied for
the detection of causal dependencies.

When selecting methods based on the sunburst graph it has to be taken into
account that this selection approach does not cover the disturbance charac-
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teristics. In terms of the benchmark data, narrow-banded disturbances and
the impact of a set-point change have been investigated. From table 4.1 it
can be concluded not to use the CCF if it is expected that the disturbance im-
plies a change of the stationary value. Having a narrow-banded disturbance,
Granger causality should be selected as it is the only method that could detect
this cause-effect relationship in the benchmark data set. Still, all methods are
negatively affected in their performance by narrow-banded signals. This is
illustrated at the end of the chapter using data from the continuous stirred
tank reactor. In addition, it is always possible to combine several methods, e. g.
using the cross-correlation for the estimation of the dead time and afterwards
the SVM for the detection of the essential cause-effect relationships. This is not
represented in the graph but becomes obvious from the results presented in
table 4.1.
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Figure (4.1) Sunburst graph summarizing which method should be selected for fault
localization depending on the characteristics of the available process structure.
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4.2 Combining the Methods

As mentioned, the results of the benchmark data sets have shown that each
method has its advantages and disadvantages. If the process characteristics
or the expected type of disturbance are well known the appropriate method(s)
can be select. When there is no or only little knowledge of the system at hand,
the approach proposed in the following is to combine the methods by merging
them into one resulting causal matrix. Possible drawbacks of one method can
then be covered through the advantages from other methods and more robust
results regarding the found disturbance propagation path can be obtained.
Nevertheless, the outcome of the benchmark data indicates that the mean
value of the causal strengths for the significant causal dependencies for each
method differs. Hence, in section 4.2.1 a design concept is proposed which
shows how the methods can be combined. This is necessary to avoid that one
method dominates the resulting combined causal matrix. If some cause-effect
relationships are already known beforehand an approach for weighting the
methods can be used. This is explained in section 4.2.2.

CCF TE GC SVM
βCCF = 1 βTE = 1 βGC = 1 βSVM = 1

u → y y → u u → y y → u u → y y → u u → y y → u

1st-order system 0.86 – 0.04 – 0.49 – 0.32 –
Feedback loop 0.91 – 0.11 – 0.56 – 0.60 –
2nd-order system 0.85 – 0.04 – 0.50 – 0.26 –
Q 0.87 0.06 0.52 0.34

Table (4.2) Resulting causal strengths for the three benchmarks that were detected
correctly by all methods while keeping β for all methods at the value of one. QCCF leads
to the highest and QTE to the lowest mean value Q for the causal strength.

4.2.1 Balancing Causal Matrices

Each method leads to a causal matrix Q ∈Rr×r with r process variables and the
causal strength qXi→X j ∈ [0,1]. For all methods, qXi→X j is defined as a contin-
uous heuristic measure which describes the causal impact one process vari-
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able has onto another and increases monotholically with an increasing causal
strength. In the following Q denotes the short-term for any of the resulting
matrices QCCF,QTE,QGC or QSVM. As one of the main results from chapter 3 it
is stated that each method yields a different mean of the causal strengths for
the benchmark data sets. This becomes obvious when comparing the three
benchmarks which could be found by using any of the proposed methods,
namely the 1st-order system, the feedback loop and the 2nd-order system. The
resulting causal strengths are summarized in table 4.2. In that case the CCF
implies the highest and the TE the lowest values.

To balance the methods to each other, the introduced exponential fitting pa-
rameters βCCF,βTE,βGC,βSVM ∈ [0,∞) are used. In the following, as a short-term
β is applied to describe the set of fitting parameters. As mentioned, the absolute
values of the causal matrices of the four methods are not comparable directly,
since each method uses a different mathematical approach to calculate the
cause-effect dependencies. Still, each found causal relationship for itself is rele-
vant as all methods work with statistical significance tests. Hence, by selecting
appropriate values for the different fitting parameters β, this means that also
the resulting causal strengths from the different methods can be compared up
to a certain point.

As shown in chapter 3, for balancing the methods an exponential fitting is
selected. This assures that all causal strengths of the balanced matrices result
in values between zero and one. For the investigation of the methods on the
benchmark data, β was set in all cases to one.

Balancing matrices depending on the data set When balancing the ma-
trices of the different methods to each other, one has to deal with the problem
that there exists an almost unlimited variety of disturbances. This means that it
is not possible to calculate a fixed β for the methods for all possible disturbance
that can possibly occur in a process. In other words, the tuning parameter β
needs to be adapted for each method depending on the analyzed data set.

Therefore, if no a priori knowledge is available, the proposed design approach is
based on the assumption that on the average all methods will work equally well
on the data set. In that case, equally well implies that for the found significant
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causal dependencies all methods give the same mean value. Hence, the value
of the parameter β is fitted for the different methods in a way that the causal
matrices QCCF, QTE, QGC and QSVM give the same mean values defined as Q for
the detected cause-effect relationships. Throughout this thesis the value for Q
is set to 0.5.

Under the assumption that all data from the benchmarks is generated from
one data set, table 4.3 gives the results of the balanced causal matrices. The
resultingβ for each method is given in table 4.3 as well. For a better comparison
of the methods, figure 4.2 illustrates the results from table 4.3 for the benchmark
data in terms of bar charts.
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Figure (4.2) Resulting bar charts of the balanced causal matrices for the benchmark
data sets. The red squares represent the known causal dependency in the data. The
illustration shows that each method has its assets and drawbacks depending on the
process characteristics and the type of disturbances.

Calculating combined causal matrix When having no a priori knowledge
in terms of process knowledge at hand it has to be assumed that the causal
matrix from each method contains the correct disturbance propagation path.
Hence, the calculation of the combined causal matrix Qfus (fus = fused) is
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performed by taking the mean over all four balanced causal matrices defined as

Qfus := QCCF +QTE +QGC +QSVM

4
. (4.1)

Regarding the laboratory plant presented in chapter 5, for all generated faults,
the matrices of the different methods are balanced to each other and equation
4.1 is used to calculate the resulting causal matrix for the root cause priority list.

CCF TE GC SVM
βCCF = 5 βTE = 0.29 βGC = 0.7 βSVM = 0.62

u → y y → u u → y y → u u → y y → u u → y y → u

1st-order system 0.47 – 0.39 – 0.61 – 0.50 –
Squaring device – – 0.61 – – – 0.47 –
Feedback loop 0.62 – 0.53 – 0.67 – 0.73 –
Colored noise – – – – 0.25 – – –
Step function – – 0.57 – 0.91 0.09 0.58 0.19
Feed through – – – – 0.04 – – –
Time delay 0.47 – 0.39 – – – – –
2nd-order system 0.45 – 0.39 – 0.61 – 0.44 –
Q 0.5 0.5 0.5 0.5

Table (4.3) Causal strengths for the benchmark data sets after balancing the causal
matrices. It is assumed that each method works equally well on the benchmark data sets
and Q is set to 0.5. The resulting β for each method is given as well.

4.2.2 Including knowledge in terms of known cause-e�ect
dependencies

In section 4.1 it was shown how the different methods can be selected depend-
ing on known process and disturbance characteristics. Another way to include
knowledge when calculating the combined causal matrix is if some causal
dependencies are already known beforehand.

In that case, the main approach is to change equation 4.1 under the assumption
that methods giving good results on the known causal dependencies also yield
good results on the whole data set. Therefore, the methods working well on
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these dependencies are weighted stronger in Qfus than methods not detecting
the known cause-effect relationships. The approach uses some ideas which
are also used for boosting in classification tasks which will not be explained in
further detail. For further literature about boosting it is referred to [MR03] or
[SF12].

To explain the approach, the proposed methods CCF, TE, GC and SVM, are
defined as being a set of four weak classifiers h1(x), . . . ,h4(x), which can be
combined to result into one strong classifier. The classifiers depend on a given
data set {xi ,zi }K

i=1 with x ∈ X being some feature space and z ∈ {−1,1} defining
two classes. The value of K describes the available sample size. In the case
of causal discovery the two classes are used to define if a causal dependency
is existent or not. In general, the constructed strong classifier leads to better
results than using the different weak classifiers separately on the same data set.

In principle all methods are unsupervised learners, meaning that no training set
is available for testing if the methods work well on a data set or not. Still, if some
process knowledge in terms known cause-effect relationships is available, the
information can be used to generate a supervised training data set to weight the
methods. In that case, it is defined that zi = 1 if an existing causal dependency
is known a priori and zi =−1 if a priori it is known that no causal dependency
exists between the two variables. Therefore, regarding the used methods the
resulting causal strengths qXi→X j need to be transformed into binary values
meaning that

hn(xi ) = 1 if qXi→X j is significant, (4.2)

hn(xi ) =−1 if qXi→X j is not significant, (4.3)

where the index n describes the applied method. In other words, the generated
causal matrices are used to indicate if the significance tests have succeeded or
failed. For each method the error rate wn is then defined as

wn :=
K∑

i :hn(xi ) 6=zi

1

K
, (4.4)
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with wn ∈ [0,1]. In a next step, the weight αn ∈R for each method (or classifier)
can be calculated. In the following, the weight is defined as

αn := 0.5log
1−wn

wn
. (4.5)

By calculating αn for each method and including this into equation 4.1, the
causal matrix Qpk

fus (pk = process knowledge) can finally be written as

Qpk
fus := α1QCCF +α2QTE +α3QGC +α4QSVM

∑N
n=1αn

. (4.6)

How the proposed approach can help to increase the probability for the detec-
tion of the root cause of a disturbance is demonstrated below by using data
from a simulation of the continuous stirred tank reactor.

4.3 Continuous Stirred Tank Reactor

The continuous stirred tank reactor (cstr) was introduced in section 2.4 for
the detection of causal structures when using probabilistic measures. In the
following, a model of this plant is used for fault localization and the calculation
of the disturbance propagation path using the suggested methods with and
without a priori knowledge. In total, four different scenarios are investigated
while in all scenarios the fluid temperature ϑfl and the educt concentration
cin are both superposed with noise to simulate the disturbance. For the first
scenario ϑfl is superposed with zero-mean white noise having N (0,3K2) and
cin is superposed with white noise having N (0,0.1(mol/L)2). In the other three
scenarios colored noise is used to superpose ϑfl and cin. Therefore, the white
noise is filtered beforehand using a 1st-order low-pass filter.

For the second scenario the time constant is set to T = 1s, for the third scenario
to T = 5s and for the last scenario to T = 10s to generate the disturbance. In
terms of the low-pass filter this means, that the higher the time constant is
selected, the more narrow-banded is the signal.
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Referring to the benchmarks (see e. g. figure 4.2) the results indicate that all
methods face problems when trying to detect causal dependencies when having
disturbances with a limited bandwidth.

In the following, the impact of disturbances with limited bandwidth are investi-
gated with and without a priori knowledge using receiver operating characteris-
tics.

Compared to the benchmark data another difference is that there are now
two causes, namely ϑfl and cin, having an impact on the resulting measured
concentrations cA,cB,cC. For data acquisition, each scenario is simulated with
a sample time of Ts = 0.1s and to avoid numerical issues K = 10000 samples are
used. An extract of the data set used in the first scenario is illustrated in figure
4.3.

4.3.1 Causal Matrix Using White Noise as Disturbance

The resulting causal matrix for the scenario with superposed white noise is
illustrated in figure 4.4 while the red squares indicate the expected causal
dependencies. For all methods the mean causal matrix Q is set to 0.5, which
results for the fitting parameters in βCCF = 0.51, βTE = 0.11, βGC = 0.59 and
βSVM = 0.28. Compared to the values of β for the benchmark data in table 4.3,
this gives different estimations. This again illustrates, that the different β need
to be estimated each time depending on the underlying data set.

The causal matrix in figure 4.4 indicates that all cause-effect dependencies are
correctly detected. Additionally, the SVM detects a false causal dependency
pointing from cC to cB. The disturbance propagation graph visualizes the re-
sulting causal dependencies. Since the suggested methods do not differentiate
between direct and indirect causal dependencies this corresponds to the real
causal structure from the differential equations given in equation 2.10 with
a wrong weak causal dependency pointing from cC to cB. cin and ϑfl have an
impact on all three concentrations cA,cB and cC, the concentration cA has an
impact on cB and the concentration cB has an impact on cC. Transforming Qfus

into a root cause priority list, which was introduced in section 3.3, is given in
table 4.4.
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Figure (4.3) Measurement data acquired from a simulation of the continuous stirred
tank reactor used for fault localization and the calculation of the disturbance propaga-
tion paths. ϑfl and cin are superposed with noisy data to generate disturbances which
propagate through the process.

Rank Process variable RC

1 ϑfl 2.05
2 cin 1.20
3 cA 0.48
4 cB 0.20
5 cC 0.12

Table (4.4) Root cause priority list calculated from the causal matrix in figure 4.4. The
two first ranked variables, namely ϑfl and cin are the root causes of the disturbance. Ad-
ditionally, position three to five represent the reaction chain cA,cB,cC of the continuous
stirred tank reactor.



110 4 Method Selection

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0.60 0.69

0.73 0.27 0.24 0.12

0.72 0.24 0.24 0.20

1

0

CCF TE GC SVM

ϑfl

ϑfl

ϑfl

ϑfl

ϑfl

cin

cin

cin

cin

cin

cA

cA

cA

cA

cA

cB

cBcB

cB cB

cC

cC

cC

cC

cC

Figure (4.4) Causal matrices when combing all methods while having white noise as
disturbance. The left plot shows the combined causal matrix, the right plot illustrates
for comparison each method in terms of a bar chart, where the red squares indicate the
known causal dependencies. The resulting disturbance propagation paths are visualized
in the lower plot.

This shows that the list follows exactly the propagation of the disturbance in
the continuous stirred tank reactor. Most importantly ϑfl has been correctly
detected as being the root cause and cin is ranked on position two. Analyzing
the bar chart in figure 4.4 illustrates that all methods detect a large causal
strength of ϑfl pointing towards the other process variables. This becomes
obvious when taking into account the underlying differential equations of the
cstr (see equation 2.10) as the temperature has a direct impact on all three
concentrations. Furthermore, the result indicates that the nonlinearity implied
in the exponential function has been correctly fitted by GC and CCF as they
need linear similarities in the process signals.
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Another high causal strength has been found from cin → cA. This can also be
explained through the differential equations as cin has a direct impact on cA.
The relationship cin → cB is the only indirect causal dependency detected by all
methods, cA → cB and cB → cC are detected by GC, TE and the SVM. The cause-
effect dependency cin → cC and cA → cC has been found by TE and the SVM.
As the disturbance travels through the process this means that it is low-pass
filtered. Therefore, the causal relations detected later in the causal chain result
in lower causal strengths and significant dependencies are detected with fewer
methods.

As mentioned, in the other three investigated scenarios the disturbance is al-
ready low-pass filtered beforehand meaning that the disturbance propagation
paths will be less obvious. A large time constant, which defines the bandwidth
of the disturbance, makes it more difficult for the methods to detect the distur-
bance propagation paths and the root cause. The results of all four scenarios
are represented in terms of receiver operating characteristics (ROC).

4.3.2 ROC for the Di�erent Noise Scenarios

To calculate the probability for the correct detection of the root cause for each
of the four noise scenarios the mean is taken over N = 200 runs and K = 10000
samples are used for simulation. The mean causal matrix Q is set to 0.5 for all
methods. As the system contains two root causes, two receiver operating char-
acteristics are generated for each scenario. Therefore, the first ROC represents
the input variable ϑfl and the second one the input variable cin. To investigate
the advantage when having additional a priori knowledge about the known
cause-effect dependencies at hand and by following the approach presented in
section 4.2.2 it is assumed that it is known that cC is the resulting product of the
otherwise not known chemical reaction. Regarding the approach when having
a priori knowledge in terms of cause-effect dependencies at hand this means
that it is known that the two dependencies cA → cC and cB → cC exist and that
there is no causal dependency pointing from cC to cA and from cC to cB.

The resulting ROCs for all four scenarios are illustrated in figure 4.5. The receiver
operating characteristic without process knowledge is described through Qfus

and the one with process knowledge is given through Qpk
fus. The scenario with
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white noise as a disturbance leads to the theoretical optimum for both root
causes. The root cause priority list gives in all simulated runs the correctly
ranked variables with ϑfl on the first position and cin being ranked second. Qfus

and Qpk
fus both result in the same ROC and the two functions superpose.

The negative impact of colored noise becomes already visible in the ROC when
filtering with a time constant of T = 1s. In nearly 80% of the runs ϑfl has been
set correctly on the first position in the root cause priority list and in 20% it has
been set on position two. When investigating the first two variables in the list,
ϑfl and cin are detected in 100% of the cases which means that in this scenario
in some runs ϑfl was ranked second and cin first. A priori knowledge about the
reaction scheme has in this case almost no impact as the functions resulting
from Qfus and Qpk

fus differ only slightly.
Having colored noise with a time constant T = 5s illustrates the positive effect
when including a priori knowledge in terms of known cause-effect depen-
dencies. The function regarding ϑfl generated from Qpk

fus results in a higher
probability of detecting the root cause when selecting the first ranked variable.
Regarding cin, when investigating the second variable, the resulting function
from Qpk

fus is also above Qfus.
The last scenario with a time constant T = 10s illustrates the negative impact
of narrow-banded noise and again the positive effect when having a priori
knowledge at hand. For ϑfl the ROC generated from Qpk

fus is significantly higher
than Qfus when selecting the first two ranked variables. When selecting the
first three ranked variables ϑfl is detected in around 80% of the cases without
and in nearly 90% with process knowledge. The generated receiver operating
characteristic for cin from Qfus and Qpk

fus is in both cases close to a random
selection of the variables. In other words, having this narrow-banded noise as
input signal cin can no longer be detected as being one of the root causes of the
disturbance.
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Figure (4.5) Receiver operating characteristics for the continuous stirred tank reactor.
The graphics show the impact of the different types of noise with limited bandwidth in
the data and when having the advantage of process knowledge compared to an averag-
ing of the methods.





5
Fault propagation on Laboratory

Plant

In chapter 4 the methods have been only tested on simulated data. There-
fore, this chapter is dedicated to investigate the behavior of the proposed
methods on generated faults on a laboratory plant. In the first sections the
characteristics of the plant are described and the conducted faults are ex-
plained in detail. The other sections are used to investigate the behavior of
each method depending on the respective fault and illustrate the advantages
when combining the different methods into one resulting causal matrix for
the calculation of the disturbance propagation path.

5.1 Setup of the Laboratory Plant

In this chapter the methods developed in chapter 3 are tested for the detection
of different disturbance propagation paths using the setup of an experimental
laboratory plant. A photo of the plant is given in figure 5.1 and a schematic
drawing containing the pertaining process variables is illustrated in figure 5.2.

To activate the process, a pump, which is positioned on the lower side of the
plant, is set into feed-forward control to transfer water into the ball-shaped
upper tank. From the upper tank the water passes several measurement devices
before flowing into a lower cylindrical tank. Finally, the water flows from the

115
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lower tank back to the pump and closes the water cycle. As process variables
between the two tanks the pressure in mbar and the flow in m3/min are measured.
The pressure sensor is positioned directly below the upper tank meaning that it
measures the hydrodynamic and hydrostatic pressure of the water in the tank.
The flow meter is positioned below the upper tank and behind the pressure
sensor. A valve is placed between flow meter and lower tank which can be
set into a specific position to control the water flow to the lower tank. The
position of the valve is measured in percent while 0% means that it is closed
and 100% that it is completely open. In addition, in the lower tank the filling
level is measured by a level sensor. Like for the valve, the feeding rate of the
pump is provided in percent, while 0% means that the pump is off and 100%
means that it runs in full power. The data is sampled with Ts = 2s.

Figure (5.1) Experimental setup for analyzing the disturbance propagation on a labora-
tory plant. Water is pumped into an upper tank and flows back to a lower tank passing
several process devices. Figure 5.2 gives a schematic drawing of the setup.
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Pressure (x2) Flow (x3) Valve (x4)

Level (x5)

Pump (x1)

Figure (5.2) Schematic drawing of the laboratory plant with utilized process equipment
for analysis. The setup is used to test the suggested methods for the detection of several
different root causes applied to the plant.

As stated in chapter 2, cause-effect dependencies in data can only be detected
if there is a time delay or a dead time between two process variables. Regarding
the laboratory plant, both water tanks represent 1st-order systems (for further
description see e. g. [Lun10]) meaning that there is a time delay and that causal
dependencies between the pump and the pressure sensor respectively the flow
meter can be detected. Furthermore, the tube between the two tanks has a
length of approximately one meter meaning that there is a significant dead
time between the pump, pressure sensor and flow meter.

To increase the readability for the generated causal matrices a coding is used
which follows the water flow in feed-forward control. In detail, the feeding rate
of the pump is represented as x1, the pressure as x2, the flow as x3 the valve
opening as x4 and the filling level as x5. The acquired measurement data when
the process is running in normal mode is illustrated in figure 5.3. In normal
mode the power of the pump is set to 50% and the valve is opened by 50%. The
acquired data shows that flow, pressure and level sensors measure only small
fluctuations.
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5.2 Applied Faults

In total, there are six faults applied to the process to investigate the performance
of the proposed methods. The first three experiments are related to real faults
on a plant, the fourth and the fifth experiment are more of academic interest.
The last experiment covers the trivial case where a fault doesn’t lead to a plant-
wide disturbance. All experiments have in common that they aim to investigate
if it is possible to localize the root cause of the fault correctly and how many
samples are needed to give reliable results.

Investigating how many samples are needed is important, as this indicates
how much time is needed to detect the fault reliably using the proposed meth-
ods. This is represented in terms of receiver operating characteristics (see
section 3.3.2) for each experiment, while each function is calculated for differ-
ent lengths of the acquired measurement data.

Besides finding the root cause of the disturbance, the methods are used to
reconstruct the disturbance propagation path. The experiments are described
in detail below.

• Experiment 1: Pump with loose electricity connection The first experi-
ment addresses the impact of a loose electricity connection in the pump.
To generate the fault during data acquisition the pump is randomly
switched on and off. When the pump stops, no water flows in the up-
per tank meaning that the hydraulic pressure is reduced. Switching the
pump on means that water is transferred again into the upper tank re-
establishing the stationary process behavior. While performing the ex-
periment the valve is kept half-opened.

• Experiment 2: Valve air pressure leak The valve in the laboratory plant
uses pressurized air for positioning. In this experiment it is assumed that
the connection cable from the compressor is not correctly attached to
the valve and the valve sometimes closes due to a pressure leak. While
the experiment is performed, the pump is set to 50% of its maximum
feeding rate to provide a constant flow from the pump to the upper tank.
When the valve closes, the pump still transfers water into the upper tank,
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Figure (5.3) Process data from the laboratory plant when running in normal mode
without faults. The process variables measure only small fluctuations, pump and valve
are set to 50%.

meaning that the hydraulic pressure increases. At the same time no water
flows into the lower tank, meaning that the water level in the lower tank
is reduced.

• Experiment 3: Fault in pump and consecutive fault in the valve This
experiment is a combination of the first two applied faults in the process.
In that case the pump and the valve are opened and closed to simulate a
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fault, while the valve follows the behavior of the pump with a 15s delay.
As there are now two faults acting on the plant, the calculation of the root
cause priority list should result in ranking the pump on position 1. The
pump should be the root cause, as the valve follows the behavior of the
pump. Furthermore, the suggested methods should detect a cause-effect
relationship pointing from the pump to the valve.

• Experiment 4: Oscillating pump with loose electricity connection In
this experiment it is assumed that the flow rate of the pump follows an
oscillating waveform as normal behavior. During the data acquisition the
pump is stopped twice for a short time and afterwards retakes its oscil-
lating behavior. As the oscillation is cyclic, no cause-effect dependency
can be drawn from it. In other words the methods can detect the pump
as the root cause only by analyzing the information conducted from the
stopping of the pump.

• Experiment 5: Tube clogging In this experiment it is assumed that dirt
in the tube reduces the water flow from the upper to the lower tank. To
simulate this fault, a stop cock, which is positioned between the flow
meter and the valve, is partially closed. After approximately six minutes
it is reopened. The pressure and the flow meter should detect the dis-
turbance first, as they are located next to it. It is expected that the level
meter detects the fault later, as the lower tank acts like a low-pass filter.
The valve and pump are both set on 50% during the experiment.

• Experiment 6: Broken level sensor In this experiment it is assumed that
the level sensor, positioned on the lower tank, is broken. To generate this
fault, the measurement device is moved up and down randomly. Since
the sensor is only used for measuring the filling level and is not an acting
variable, this fault addresses the trivial case that it does not lead to a
plant-wide disturbance. The main purpose of this experiment is to test if
the methods will detect false causal dependencies in the generated data
set.
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5.2.1 Experiment 1: Pump with Loose Electricity
Connection

In the first experiment the pump is set to 50% of the maximum feeding rate and
is randomly activated and deactivated to simulate a loose electricity connection.
To generate the data set, the minimum time the pump is turned off is set to
20s and the maximum time to 100s. The valve is kept open to 50% during
the complete data acquisition. In total, a data set containing K = 928 samples
is generated. The acquired measurements are shown in figure 5.4. Since the
pump is a major process device in the system, all devices measure strong
perturbations compared to the run without faults. The pressure is reduced to a
minimum of nearly 5mbar and the flow is reduced to 0 m3/min. In other words
the loose electricity connection causes that after some seconds no water is left
in the upper tank. The level sensor, positioned on the lower tank measures
a minimum value of approximately 0.35 m and a maximum value of around
0.7m. It is expected that the proposed methods detect the pump as the root
cause in the resulting causal matrix. As the valve is kept on a constant value no
causal dependencies should point towards or from it.

Causal matrix To calculate the causal matrix for the reconstruction of the
disturbance propagation path, all methods are used on the data set and merged
to the final causal matrix Qfus. For all methods the mean causal matrix Q is set
to 0.5, which results in βCCF = 0.32, βTE = 0.25, βGC = 0.29 and βSVM = 0.96 for
the fitting parameters.
The results are outlined in figure 5.5. Additionally, red squares are drawn
which indicate the expected causal dependencies from process knowledge.
The doughnut chart and the partially directed graph indicate that the flow
rate of the pump has a strong causal influence on the remaining three process
variables pressure, flow and filling level. Furthermore, the methods detect for
the pressure a strong causal impact on level and flow and a weak false impact
on the pump. Regarding the flow, the methods detect an impact on the pressure
and the filling level and a wrong weak influence on the pump. Concerning the
level, a causal influence pointing to the flow and a weak influence arising on
the pump and the pressure are detected.
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Figure (5.4) Measurement data of the laboratory plant when generating a loose electric-
ity connection in the pump. The fault in the pump leads to disturbances in all process
variables.

To compare the performance of the different methods against each other the
bar chart is visualized on the right hand side. This depicts that the expected
causal dependencies are all detected by several methods with a similar causal
strength.

Starting with the CCF the results illustrate that it does not detect all expected
cause-effect relationships but is also the only method that does not find false
causal dependencies.
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Using the TE three wrong causal dependencies, namely pressure → pump, flow
→ pump and level → flow are detected.

The GC detects a wrong causal dependency from level → flow but finds all other
expected relationships.

All expected causal dependencies are detected using the SVM. Furthermore, it
detects wrong causal influences pointing to the pump, to the pressure and to
the flow.

To summarize, the results of this experiment indicate that when merging the
methods into one resulting causal matrix the correct causal dependencies yield
stronger weights and the wrongly detected causal dependencies are weighted
lower and become less relevant. The transformation of Qfus into the root cause
priority list is shown in table 5.1. It reveals that the pump is correctly detected
as being the root cause of the fault.

Rank Process variable RC

1 Pump feeding rate (x1) 1.45
2 Pressure (x2) 1.02
3 Flow (x3) 0.75
4 Filling level (x5) 0.43
5 Valve opening (x4) 0

Table (5.1) Root cause priority list of the first experiment calculated from the causal
matrix with the complete data set. The pump is correctly detected as being most possibly
the root cause.

Receiver operating characteristic The ROC illustrated in figure 5.6 shows
the impact of the sample size when using the proposed methods. Therefore,
the ROC can be interpreted as a way to investigate the time that is needed until
the methods deliver a reliable outcome. To generate the functions, for each
sample size the root cause priority list is calculated N = 200 times while using a
random sample as starting point. Having K = 50 samples the ROC shows that
using the methods gives already better results than doing a random selection of
the process variables to find the root cause of a fault. While the sample size in-
creases (K ∈ {75,100,200}) the quality of the methods when calculating the ROC
increases as well, meaning that the results of the methods become more and
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Figure (5.5) Causal matrices when having a loose electricity connection (experiment 1).
The left plot shows the combined causal matrix, the plot on the right hand side compares
each method in terms of a bar chart. The resulting disturbance propagation paths are
visualized in the lower plot. Red squares represent the expected causal dependencies
in the measurement data. (x1 = pump feeding rate, x2 = pressure, x3 = flow, x4 = valve
opening, x5 = filling level)

more reliable. Having K = 500 samples available, the pump is always detected
as the root cause of the disturbance resulting in the theoretical maximum of the
ROC. In that case the outcome mainly corresponds to the root cause priority
list outlined in table 5.1 where the complete data set was used.

5.2.2 Experiment 2: Valve Air Pressure Leak

In this experiment the air pressure hose between valve and compressor is re-
moved and reattached randomly to simulate an air pressure leak. The minimum
time the connection cable is removed is set to 20s and the maximum time is
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Figure (5.6) Calculated ROC for the first experiment having a loose electricity connec-
tion. The functions illustrate the impact when having different lengths of data for the
root cause detection at hand.

set to 60s. While the experiment is performed, the pump is set on 50% of its
maximum feeding rate. The resulting measurement data is illustrated in figure
5.7. In total, 800 samples are generated. Compared to the first experiment, the
disturbances in the measurements of the process variables show a much more
random behavior.

When the valve closes, the water is blocked from flowing from the upper to the
lower tank. Since the pump runs with a constant feeding rate, the hydraulic
pressure increases as more water enters the upper tank. When the valve re-
opens, the water stored in the upper tank can flow to the lower tank and the
process goes back into the stationary phase without a fault. This behavior be-
comes obvious in further detail by analyzing the measurements of the process
variables. After the valve closes, the flow reduces to 0 m3/min while the level meter
measures a continuous reduction of the water in the lower tank. The hydraulic
pressure increases until the pump stops delivering water from the lower to the
upper tank. At the moment the pump stops, the level sensor measures about
0.15m. The expected disturbance propagation path should detect the valve as
root cause as it has an effect on all process variables. Compared to flow and
pressure meter the level sensor should detect the closing of the valve later. The
reasons are that the tube between valve and lower tank needs to be emptied
before the disturbance can be measured and therefore has an effect like a dead
time and that the lower tank acts as a low-pass filter.



126 5 Fault propagation on Laboratory Plant

Pump feeding rate (x1)

Flow (x3)

Pressure (x2)

Valve opening (x4)

Filling level (x5)

%

time [s]

m
b

ar
m

3 /m
in

%
m

0 200 400 600 800 1000 1200 1400

45
50

55

0

0.5
1

0
50

100

0
0.15

0.3

0
25
50

0

Figure (5.7) Data of the laboratory plant when simulation a faulty valve (experiment 2).
Compared to the first experiment the fault leads to much more random disturbances.

Causal matrix The generated causal matrix Qfus of the experiment using all
suggested methods is visualized in figure 5.8. Like for the first experiment, for
all methods the mean causal matrix Q is set to 0.5. This results in βCCF = 0.33,
βTE = 0.26, βGC = 0.31 and βSVM = 0.82 for the fitting parameters.

The results show a strong causal impact from the valve pointing towards the
remaining process variables. Furthermore, all process variables show a strong
causal dependency pointing towards the filling level. The filling level again is
considered as having a weak cause-effect relationships pointing towards the
other process variables. As in the first experiment the pressure is evaluated to
have a stronger impact on the flow than vice versa.
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The bar chart, used to compare the performance of the different methods
against each other, is visualized on the right hand side in figure 5.8. All known
causal dependencies, marked as red squares, were detected by more than one
method.

Regarding the methods this shows that the CCF detects all three causal depen-
dencies pointing from the valve to the other process variables and in addition
finds the two causal dependencies pressure → level and pressure → flow. Fur-
thermore, a false causal dependency level → flow is indicated by the CCF.

Except for the cause-effect relationship pressure → level, the TE finds only
intercausal dependencies in the data meaning that the variables all have a
causal influence onto each other.

The GC detects all expected causal dependencies except the dependency in
which flow and valve opening point towards the filling level. In addition, it
detects a wrong weak causal dependency pointing from level → valve.

Except for the cause-effect relationship flow → pressure, the SVM finds all ex-
pected dependencies. False causal dependencies are the level pointing towards
the pressure and the flow.

The outcome shows again that when merging the methods into one resulting
causal matrix the correct causal dependencies obtain in a stronger weighting
meaning that the wrongly detected causal dependencies from some methods
become less relevant.

Finally, Qfus is transformed into the root cause priority list outlined in table 5.2.
The valve is correctly detected as the root cause of the fault.

Rank Process variable RC

1 Valve opening (x4) 1.61
2 Pressure (x2) 1.04
3 Flow (x3) 0.69
4 Filling level (x5) 0.61
5 Pump feeding rate (x1) 0

Table (5.2) Root cause priority list for the second experiment calculated from the causal
matrix using the whole data set. The valve is correctly found as being most probably the
root cause.
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Figure (5.8) Causal matrices when simulating an air pressure leak (experiment 2). The
left plot shows the combined causal matrix, the plot on the right hand side each method
in terms of a bar chart. The resulting disturbance propagation paths are illustrated in the
lower plot. Red squares represent the expected causal dependencies for this experiment.
(x1 = pump feeding rate, x2 = pressure, x3 = flow, x4 = valve opening, x5 = filling level)

Receiver operating characteristic Like in the first experiment, the ROC
is used to show the impact of the sample size on the detection of the valve
as root cause. The resulting ROC for the sample sizes K ∈ {50,75,100,200} is
given in figure 5.9. The result can be interpreted as the time that is needed
until the methods deliver reliable results when a fault occurs in the plant. For
each sample size the root cause priority list is calculated N = 200 times while
using a random sample as starting point. Having K = 50 samples at hand the
ROC shows already good results as a selection according to the function is
significantly better than a random selection of the process variables. While the
sample size increases (K ∈ {75,100}) the quality of the methods when calculat-
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ing the ROC increases as well, resulting for K = 200 samples in the theoretical
maximum of the ROC. For this sample size the valve is detected in all data sets
as the root cause which corresponds to the root cause priority list outlined in
table 5.2. Compared to the first experiment this illustrates that less samples are
needed to detect the fault reliably.
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Figure (5.9) ROC for the second experiment when having as fault an air pressure leak.
The functions show the impact when having different lengths of data available for analy-
sis. For K = 200 samples this results in the theoretical maximum of the ROC.

5.2.3 Experiment 3: Fault in Pump and Consecutive Fault
in the Valve

In this experiment it is assumed that pump has a fault and the valve results
in a consequential fault. The main aim of this experiment is to investigate if
the methods can still detect the pump as root cause even if the valve is acting
as a second actuator on the system. To generate this kind of fault the flow
rate of the pump is reduced to 30% and set back to its normal set-point, while
the valve closes down to 50% and reopens to 70% each time with a 15s delay
regarding the pump. This procedure is repeated once. Compared to the first two
experiments two causes are now acting on the system while the pump should
be detected as root cause and the valve ranked in second place in the root cause
priority list. The measurement data acquired from the experiment is given in
figure 5.10 and can be explained the following way. Since the flow rate of the
pump is reduced, less water is delivered into the upper tank, while a partial
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closing of the valve leads to a lower outflow. This results in fluctuations which
are detected by all three sensors. The flow meter measures a reduced water
flow when the pump reduces its flow rate and the valve closes. The pressure
sensor measures a slight drift but has less fluctuation compared to the first
two experiments. The filling level in the lower tank slightly increases as the
pump delivers less water to the upper tank. At the moment, the pump and
valve are set back to their original values, this causes that the level in the lower
tank decreases again.
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Figure (5.10) Data of the laboratory plant when generating a combined fault in the
pump and the valve (experiment 3). The valve follows the behavior of the pump with a
15s delay. Therefore, the pump should be detected as root cause.
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Causal matrix The resulting causal matrices are outlined in figure 5.11. Like
in the other experiments, for all methods the mean causal matrix Q is set to 0.5.
For the fitting parameters this results in βCCF = 0.24, βTE = 0.48, βGC = 0.56 and
βSVM = 0.78.
Compared to the first two experiments the causal dependencies are less clear.
The combined causal matrix shows that the pump feeding rate has a strong
causal impact on the valve, which is reasonable as the valve follows the move-
ment of the pump with 15s delay. Another strong causal impact from the pump
is detected pointing towards the pressure and a weak one towards the flow. Like
in the other experiments, the pressure has a stronger causal impact on the flow
than vice versa. Furthermore, in terms of the pressure two weak false causal
dependencies are detected pointing towards pump and valve. Regarding the
valve, the combined causal matrix indicates a strong causal impact on the flow
and weak causal dependencies for pressure and level sensor. Finally, the filling
level can be interpreted as an output variable, as the methods detect only weak
cause-effect relationships pointing towards the pressure and the valve.
The bar chart used to compare the methods is outlined on the right hand side
in figure 5.11. Since there are now two process variables acting as a fault on the
plant, this leads to more detected intercausal dependencies compared to the
first two experiments. The expected dependencies from process knowledge are
marked as red squares in the causal matrix.
Passing the methods one-by-one, the CCF detects two false causal dependen-
cies pointing from pressure to valve and from level to pump. Furthermore, it
detects six times the causal dependencies expected from process knowledge.
Therefore, the outcome shows that especially the pump is detected as input
and the level meter as output variable.
The TE yields one false causal dependency pointing from the pressure to the
pump. The other five found cause-effect relationships are all expected.
Regarding GC, four different causal dependencies are detected which are all
expected.
Finally, the SVM finds three causal dependencies, among which the causal
dependency pointing from level to pressure is wrong.
The transferred causal matrix in terms of the root cause priority list is given
in table 5.3. It reveals, that as expected the pump is ranked at position one,
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Figure (5.11) Causal matrices for a combined fault in the pump and the valve (experi-
ment 3). The left plot illustrates the combined causal matrix, the plot on the right hand
side compares each method in terms of a bar chart. The resulting disturbance propa-
gation paths are outlined in the lower plot. Red squares represent the expected causal
dependencies. (x1 = pump feeding rate, x2 = pressure, x3 = flow, x4 = valve opening, x5 =
filling level)

meaning that the correct root cause has been found. Still, comparing this list
with the resulting priority list from the first experiment (table 5.1) indicates that
the pump being the root cause of the fault is not as obvious as in the former
experiment.

The valve, being the second variable acting on the system is ranked on position
three. The reason is, that regarding the pressure two false causal dependencies
have been found which give this sensor a higher weight compared to the valve.
In terms of the expected fault propagation path, this is not correct.
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Rank Process variable RC

1 Pump feeding rate (x1) 0.90
2 Pressure (x2) 0.75
3 Valve opening (x4) 0.50
4 Filling level (x5) 0.27
5 Flow (x3) 0.10

Table (5.3) Root cause priority list for the third experiment calculated from the causal
matrix using the complete acquired measurement data. The pump is correctly detected
of being most possibly the root cause.

Receiver operating characteristic The ROC is illustrated in figure 5.12 and
shows the impact of the sample size on the detection of the pump as root
cause. For each sample size the root cause priority list is calculated N = 200
times while using a random sample as starting point. Compared to the first
two experiments more samples are needed for the correct detection of the
pump as root cause. The functions generated from K = 75 and 100 samples
do not significantly differ from a random selection of the process variables.
For this experiment at least K = 150 samples are needed so that the function
starts to differ from a random selection. Increasing the sample size further
(K ∈ {200,500}) shows that the function of the ROC leads to much better results
compared to a random selection. Still the theoretical optimum cannot be
reached even when having K = 500 samples available.
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Figure (5.12) ROC for the third experiment when generating a fault in the pump followed
by a fault in the valve. The functions illustrate the impact for the detection of the pump
as root cause when having different lengths of disturbed measurement data for analysis.
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5.2.4 Experiment 4: Oscillating Pump with Loose
Electricity Connection

In this experiment the pump follows an oscillating waveform while applying
as a fault two times a loose electricity connection. Due to the fact that the
waveform is cyclic, no causal information can be drawn from it and all cause-
effect relationships need to be detected through the fault in the pump. One
sinusoidal oscillation takes around 700s. After the engine drop-out, the pump
retakes again its oscillating waveform. During the whole run the valve is kept
50% open. The measurement data is displayed in figure 5.13. Each of the two
drop-outs has a measurable impact on the other process variables. In detail the
pressure meter stays on a value of approximately 60mbar while the pump runs
in its oscillating mode. The moment the fault occurs, the hydraulic pressure
shows a sharp peak before settling back to 60 mbar. The flow shows a similar
behavior as the acquired measurements with sharp peaks. Furthermore, the
flow meter slightly changes its set-point after the first fault. In detail the flow
changes from around 0.17 m3/min down to 0.15 m3/min. Like the other process
variables the level meter measures a peak as the fault in the pump occurs. In
that case the level increases from 0.25m to nearly 0.4m the moment the fault
occurs.

Causal matrix The resulting causal matrices are shown in figure 5.14. The
expected causal dependencies are all marked as red squares. The mean causal
matrix Q is set to 0.5 for all methods, which results for the fitting parameters in
βCCF = 0.34, βTE = 0.47, βGC = 0.22 and βSVM = 0.21.
Compared to the first experiment, which has the pump as root cause as well, the
merged causal matrix should give the same disturbance propagation path. Still,
the results show that due to the oscillations the found cause-effect relationships
are less obvious. Regarding the pump, causal dependencies pointing towards
pressure and flow are detected, but the causal dependency towards the filling
level of the lower tank are not found. In terms of the pressure, the methods
detect the two expected causal dependencies pointing towards filling level and
flow. The flow shows the expected causal dependencies that point towards the
pressure sensor and the filling level. Furthermore, a wrong causal dependency
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Figure (5.13) Data of the laboratory plant when having a fault in the flow rate of the
pump while the pump performs a sinusoidal waveform (experiment 4).

pointing from flow to pump has been found. Finally, the proposed methods
find causal dependencies pointing from the filling level towards pump, flow
and pressure. These are all not correct as the filling level is the variable of the
process that notices the disturbance last.

Passing the methods one-by-one, the CCF detects four of the expected causal
dependencies. Furthermore, a false dependency is found pointing from flow to
pump.

The TE finds an intercausal dependency between the pressure and the flow and
a false causal dependency pointing from the level to the pump.

Similar to the CCF the GC detects the same four correct causal dependencies.
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Figure (5.14) Causal matrices when having an oscillating pump with a loose electric-
ity connection as root cause (experiment 4). The left plot shows the combined causal
matrix, the plot on the right hand side shows each method in terms of a bar chart. The
resulting disturbance propagation paths are given in the lower plot. (x1 = pump feeding
rate, x2 = pressure, x3 = flow, x4 = valve opening, x5 = filling level)

Still, it detects false causal dependencies pointing from the filling level towards
pump and pressure.

Finally the SVM gives similar results as CCF and GC. It detects four times correct
causal dependencies and two times a wrong cause-effect relationship which is
in detail level → flow and flow → pump.

Table 5.4 outlines the root cause priority list generated from the causal matrix.
The pressure is detected as root cause which is mainly due to the fact that a
strong causal dependency is detected by all methods pointing from pressure
to level meter. The pump, which is the real root cause of the fault is ranked on
position two. Compared to the first experiment this illustrates the detrimental
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influence of oscillations when performing a root cause analysis.

Rank Process variable RC

1 Pressure (x2) 0.96
2 Pump feeding rate (x1) 0.62
3 Flow (x3) 0.5
4 Filling level (x5) 0.38
5 Valve opening (x4) 0

Table (5.4) Root cause priority list of the fourth experiment calculated from the causal
matrix using the whole data set. The pressure is most probable being the root cause, the
pump which is the real root cause of the fault is ranked second.

Receiver operating characteristic The ROC, illustrated in figure 5.15, shows
the impact of the sample size for the detection of the pump as root cause. For
each sample size the root cause priority list is calculated N = 200 times while us-
ing a random sample as starting point from the available data set. The starting
point of the first sample is set to 400 to assure that the selected samples contain
at least once the fault. The pump is ranked on position two when analyzing the
whole data set which means that the theoretical maximum cannot be achieved.
The result shows that the functions for the low sample sizes K ∈ {100,150} do
not significantly differ from a random selection. Starting with K = 200 samples
the ROC yields a relevant difference compared to a random selection of the
process variables. When the sample size is increased further to K = 500 sam-
ples, the function of the ROC delivers the best results as with a probability of
approximately 60% the pump is detected as root cause when selecting the first
ranked variable.

5.2.5 Experiment 5: Tube Clogging

In this experiment a stop cock, which is situated between the flow sensor and
the valve, is once partially closed and reopened to have for some time a water
flow reduction in the plant. The pump is kept on 50% of its maximum feeding
rate and the valve is kept 50% open. In other words, no fault occurs in an
active plant component and the measured disturbances are generated from an
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Figure (5.15) ROC for the fourth experiment when having a loose electricity connection
in an oscillating pump as root cause. The functions show the impact of different lengths
of data for analysis.

external fault. The measured data is illustrated in figure 5.16. In total, K = 450
samples are available for analysis.

The moment the stop cock is partially closed, less water flows from the upper
tank to the lower tank. Since the pump delivers water with a constant flow rate
into the upper tank, the pressure sensor measures an increase of the hydraulic
pressure and the flow meter a reduced water flow. The lower tank is partially
emptied and the plant changes to another stationary phase. When the stop
cock is reopened the plant switches back to the stationary phase it had before
closing the stop cock.

The behavior of the disturbance is similar to the one in experiment 3, in which
an air pressure leak in the valve was simulated. But in contrast, in this case
there is no measurement data available from the valve which acts as the root
cause of the fault. In addition, the disturbance is affecting the process only
in terms of two step changes and not like the air pressure leak in steps with
random length. As the tube clogging can be seen as an external fault and since
the stop cock is situated directly behind the flow meter, the pressure sensor and
the flow meter should detect this disturbance first.

Causal matrix The resulting causal matrix is outlined in figure 5.17. The red
squares in the doughnut and the bar chart mark the expected causal dependen-
cies from process knowledge. Again, the mean causal matrix Q is set to 0.5 and
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Figure (5.16) Data of the laboratory plant when simulating tube clogging (experiment
5). In detail, a stop cock which is situated between the flow meter and the valve is once
partially closed and reopened to simulate a reduced water flow in the plant.

the fitting parameters for the different methods result in βCCF = 0.23, βTE = 0.21,
βGC = 0.29 and βSVM = 1.02.

Pump and valve are kept on a constant value during the experiment, which
means that there are no causal dependencies to be detected from their part.
Regarding the pressure, causal dependencies pointing towards the flow and the
filling level are found. For the flow, causal impacts are found pointing towards
the pressure and the filling level. Finally, the developed methods detect a false
causal dependency pointing from the filling level to the flow.

The bar chart on the right hand side shows the outcome of the different meth-
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Figure (5.17) Causal matrices when simulating tube clogging (experiment 5). The left
plot represents the combined causal matrix, the plot on the right hand side compares
each method in terms of a bar chart. The found disturbance propagation paths are
given in the lower plot. Red squares represent the expected causal dependencies for this
experiment. (x1 = pump feeding rate, x2 = pressure, x3 = flow, x4 = valve opening, x5 =
filling level)

ods. In case of the CCF three causal dependencies are detected which are
all expected ones and it misses only the dependency pointing from flow to
pressure.

The TE is the only method that detects the wrong cause-effect relationship
from filling level to flow but finds also the correct direction flow → level.

Similar to the CCF the GC detects three causal dependencies, which are all
correct. It misses only the dependency pressure → level.

Finally, the SVM finds the cause-effect relationship pressure → flow.

The generated root cause priority list is given in table 5.5. This reveals that the
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pressure has been detected as being the root cause, as it has a slightly stronger
weight compared to the flow. The filling level shows the lowest weighting,
as valve and pump were set on constant values during the experiment. This
outcome is reasonable, as the stop cock is situated in the tube behind the flow
meter and in front of the valve. Therefore, the pressure sensor as well as the
flow meter should react at the same time on the disturbance.

Since the root cause comes from an external disturbance, this experiment can
be interpreted as a test which sensor detects the disturbance first but does
not represent the actual cause of the fault. Therefore, no receiver operating
characteristic is calculated.

Rank Process variable RC

1 Pressure (x1) 0.51
2 Flow (x2) 0.48
3 Filling level (x4) 0.12
4 Valve opening (x3) 0
5 Pump feeding rate (x5) 0

Table (5.5) Root cause priority list of the fifth experiment calculated from the causal
matrix when simulating tube clogging. The pressure sensor is the first process variable
detecting the fault as it results in a slightly higher value than the flow. It was expected
that both process variables result in similar values.

5.2.6 Experiment 6: Faulty Level Sensor

In this experiment the level sensor is moved up and down to simulate an error
in the measurement device. The pump is set to 50% of its maximal feeding
rate during the whole run and the valve is kept open 50%. The measurement
data is displayed in figure 5.18. Since the level meter measures the height of
the water in the lower tank and as there is no feedback to an actuating variable,
the disturbance does not propagate through the plant. For that reason, the
other process variables yield similar measurements as illustrated in figure 5.3
where the process runs without faults. Since this fault does not lead to a plant-
wide disturbance, it is expected that the methods do not detect any causal
dependency in the data.
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Figure (5.18) Data of the laboratory plant when having a faulty level sensor (experiment
6). Since a faulty level sensor does not lead to a plant-wide disturbance, no causal depen-
dencies are to be found using the proposed methods.

Causal matrix None of the methods detected any causal relationship be-
tween the process variables when using the measurement data from this exper-
iment. This means, that for each method all significance tests for the causal
dependencies failed. Therefore, the combined causal matrix Qfus leads to a
matrix which contains only zeros, which confirms the expected result from the
fault. This result shows that the application of significance tests is reasonable,
as otherwise all methods would return values with low causal strengths. These
values could then be falsely interpreted as the disturbance propagation path of
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the fault which is not existing in this experiment.

5.3 Summary
In this chapter the developed methods were tested by generating faults on a
laboratory plant. The plant is characterized by five different process variables
and is used to pump water around in cycles. At all, six distinct experiments
were performed to investigate the behavior of the developed algorithms. In
summary, the results showed that, except for one case, the process variable
being the root cause of the disturbance could be correctly detected.
Due to the combination of the methods, more robust results are achieved than
using only one single method at a time. The reason is, that causal dependencies
wrongly detected by one method, result in low weights and therefore have
only a small impact on the calculated root cause priority list. Furthermore,
the results showed that the best working method is strongly dependent on
the disturbances within the measurement data. In other words, none of the
suggested methods could outperform the others when using data coming from
this plant. This again clarifies the advantage of the combination of the methods
to one resulting causal matrix.
A receiver operating characteristic was used to check the number of samples
that is needed to reliably detect the faulty process variable. In that case, the
results revealed that the sample size needed for the root cause detection is
strongly dependent on the complexity of the occurred fault. If there is only one
faulty process variable acting on the process and in addition the plant is in a
stationary phase, less data is needed in comparison to having oscillations or
more than one faulty variable acting on the plant.





6
Industrial Glass Forming Process

In this chapter the proposed methods are used to reconstruct the propaga-
tion path of a known disturbance which occurs during glass rod production
in an industrial process. The chapter starts with a detailed explanation of
the process characteristics and the expected disturbance propagation path
on the basis of process knowledge. Thereafter, the methods are tested on two
exemplary production runs containing disturbances. The chapter closes by
summarizing the obtained results.

6.1 Process Characteristics
The main objective of this process is to pull thin glass rods out of thick glass
cylinders, which are manufactured in a preprocessing step. This rod is used in a
subsequent step for the fabrication of glass fibers and therefore its production
needs to fulfill high quality standards. Figure 6.1 sketches on the left hand side
the plant as well as the position of the used process equipment. The process
is controlled by several process variables which are of different importance
depending on the process phase of the production. Their characteristics can
be explained the following way. When the cylinder enters the oven, initially the
temperature ϑc (c = cylinder) above the oven is measured. The other process
variables used for analysis are all measured below the oven. As the hot beam
leaves the oven on the downside, the glass temperature ϑb (b = beam) and the
upper diameter Du (u = up) are measured. The pulling speed vs is used as an
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actuating variable to keep Du on its set-point. Finally, the lower diameter D l (l
= low) of the solidified glass is measured in some further distance below the
measurement device acquiring Du. Table 6.1 summarizes the process variables.
Further information about the process with a special focus on the underlying
control concept can be found e. g. in [SK97].

Variable Description

ϑc Cylinder temperature
Du Beam upper diameter
D l Beam lower diameter
ϑb Beam temperature
vs Pulling speed

Table (6.1) Process variables for the calculation of the disturbance propagation path in
the investigated industrial glass forming process.

ϑcϑc

ϑbϑb

D lD l

DuDu

vsvs

Figure (6.1) Industrial glass forming plant used for the calculation of the disturbance
propagation path resulting from a weld distortion in the glass cylinder. The left plot
sketches the plant and the used process variables, the right plot illustrates the distur-
bance propagation path originating from process knowledge in terms of a partially
directed graph.

Disturbance propagation path To attain an efficient production in some
cases two cylinders are welded together and used for the production of the glass
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rod. As the cylinder weld shows a different thermal behavior compared to the
rest of the glass, this leads to a distortion which propagates through the process.
The characteristics of the disturbance propagation path and its impact on the
different process variables is understood in general and therefore the process
is suited to test the developed methods on this industrial plant. In detail it is
checked if the proposed methods can be used to reconstruct the disturbance
propagation path when the weld distortion propagates through the different
process variables.

The expected propagation path from process knowledge is illustrated in figure
6.1 on the right hand side in terms of a directed graph. The explanation of the
dependencies is done by taking into account the data of the two investigated
production runs displayed in figure 6.2 and 6.4. These productions illustrate
the impact of the weld disturbance connecting the two cylinders as all process
variables show distortions while it propagates through the process. The first
variable which detects the disturbance is the cylinder temperature ϑc as it is
measured above the oven. It is the first variable that starts fluctuating which
means that it should result as being the root cause variable and have a causal
impact on all other process variables. The moment the weld approaches the
lower end of the oven, the temperature of the glass ϑb and the measurement
device of the upper diameter Du measure the distortions coming from the weld.
Furthermore, as the underlying control system uses the upper diameter as
controlled value, the pulling speed vs starts acting against the disturbances to
stabilize Du. This is the reason why all three variables measure the disturbance
closely together in time and it is expected that the methods detect an intercausal
connectivity among ϑb,Du and vs. The lower diameter D l is used to measure
the diameter of the beam after the glass has already partially cooled down,
meaning that it is the last variable detecting the disturbance. This becomes
obvious by looking at figure 6.2 and 6.4. The data of the productions illustrates
that D l follows the behavior of Du with some delay in time. Therefore, it is
expected that ϑc, vs, Du and ϑb all have a causal dependency pointing towards
D l.
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6.2 Propagation Analysis of Weld Disturbance
The proposed methods in chapter 3 are used to reconstruct the disturbance
propagation path coming from the weld disturbance explained in the section
above. As the weld passes the plant, the process variables detect the disturbance
at different points in time and therefore it is possible to calculate the cause-
effect relationships. From this, it is possible to reconstruct the disturbance
propagation path.
Two productions were used to test the methods. In the first run, the weld only
leads to small distortions in the data. This has the advantage that the measured
disturbances are more distinct in time compared to the second run. In the
second run, the distortions are much stronger, meaning that the differences are
less distinct in time and it is expected that the methods will face more problems
to reconstruct the disturbance propagation path.

6.2.1 Analysis of the First Production

The first measurement data set used for the reconstruction of the disturbance
propagation path is displayed in figure 6.2. All proposed methods are used to
analyze the data set and to calculate the causal matrices. The resulting com-
bined causal matrix is illustrated in figure 6.3. In the doughnut and the bar
chart red squares are sketched which represent the causal dependencies com-
ing from the process knowledge displayed in figure 6.1. For the reconstruction
of the disturbance propagation path, all methods are used and merged to the
final causal matrix Qfus. The mean causal matrix Q is set to 0.5 for all methods,
which results in βCCF = 0.59, βTE = 0.24, βGC = 0.2 and βSVM = 0.68 for the fitting
parameters.
Evaluating the outcome of the first production shows that most of the expected
causal dependencies for the reconstruction of the disturbance propagation
path could be found. The bar chart outlined on the right hand side of figure 6.3
is used to analyze and compare the methods in further detail.
Starting with the CCF the results show that it correctly detects ϑc as input
and D l as output variables. Furthermore, it does not detect any wrong causal
dependency.
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Figure (6.2) Data of the industrial glass forming process containing a weld disturbance.
This data set is used as the first test for the reconstruction of the disturbance propaga-
tion path.

The TE does not give good results on the data set as except the not existing
causal dependencies Du → ϑc and D l → ϑc the method detects intercausal
relationships among all other process variables. A possible explanation is
that the transfer entropy faces problems with narrow-banded disturbances (as
shown in section 3.5.2) which is the case for the weld disturbance.

The GC detects the two causal dependencies Du → D l and vs → D l. Both de-
pendencies were expected from the process knowledge. Causal dependencies
containing the cylinder temperature ϑc could not be found using the Granger
causality. This complies the outcome explained in section 3.6 as only causal
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Figure (6.3) Causal matrices of the first production. The left plot shows the combined
causal matrix, the plot on the right hand side displays each method in terms of a bar
chart. The resulting disturbance propagation path is illustrated in the lower plot.

dependencies containing short dead times can be found because time delays
need to be covered by the selected internal order n of the autoregressive model.
As explained in section 3.6.1 the maximum model order nmax is set to 10 samples
which does not cover the dead time from ϑc to the other process variables.

The same counts for the SVM as in that case the maximum model order is
set to 10 samples (see section 3.7.2). In that case no causal dependency from
ϑc pointing towards the other process variables could be found as the dead
time of a system also needs to be covered through the order of n. Additionally,
the SVM detects the correct causal dependencies Du → vs, Du → ϑb, ϑb → vs,
ϑb → Du and vs → ϑb. Furthermore, the false causal dependency D l → ϑb is
found. Finally the result of the first production shows that the CCF works best
on the data set. The main reason is that this method is especially suited to deal
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with large dead times in a data set.

Table 6.2 outlines the root cause priority list which is calculated from the com-
bined causal matrix. The cylinder temperature ϑc is correctly detected as vari-
able which detects the disturbance first as it is ranked on first position. The
lower diameter D l is ranked last which marks it as the variable detecting the
disturbance last.

Rank Process variable RC

1 Cylinder temperature ϑc 1.02
2 Pulling speed vs 0.92
3 Beam temperature ϑb 0.9
4 Upper diameter Du 0.86
5 Lower diameter D l 0.41

Table (6.2) Root cause priority list of the first production. The cylinder temperature ϑc

is correctly detected as root cause, the lower diameter is declared as being the output
variable detecting the disturbance last.

The same results can be confounded from figure 6.3 when looking at the di-
rected graph. Only two weak causal dependencies point towards ϑc which
mark this variable as input. In addition, ϑc shows a strong causal impact
on all the other variables which is due to the fact that transfer entropy and
cross-correlation found causal dependencies pointing from this variable. From
the graph, the process variable D l can be interpreted as output variable since
ϑc,ϑb,Du and vs have a causal impact on it and only weak causal dependen-
cies point from D l to the other variables. In addition, the graph illustrates the
expected intercausal dependencies of the three process variables ϑb, vs and Du.

6.2.2 Analysis of the Second Production

The measurement data set of the second production, given in figure 6.4, is
used for the calculation of the disturbance propagation path. The results are
illustrated in figure 6.5. In the doughnut and the bar chart the sketched red
squares are used to represent the known causal dependencies from the process
knowledge (see figure 6.1). The disturbance propagation path is reconstructed
by using all methods and merged to the final causal matrix Qfus. For all methods,
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Figure (6.4) Data of the industrial glass forming process containing a weld disturbance.
The data is used as the second test for the reconstruction of the disturbance propagation
path. In this production the weld disturbance is less distinct in time compared to the
first production.

the mean causal matrix Q is set to 0.5 and the fitting parameters result in
βCCF = 0.77, βTE = 0.24, βGC = 0.19 and βSVM = 0.6.

Comparing the methods by using the generated bar chart, the results show,
like for the first production, that the CCF leads to the best outcome. No false
causal dependencies are found when using this method and only the causal
dependencies ϑb → Du, vs → ϑb, ϑb → vs and vs → Du are not detected. The
explanation is like for the first production that the CCF works well on systems
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with large dead times which is the case for this system.
Compared to the first run, the TE shows much better results as only the causal
dependency ϑb → ϑc has been detected wrong. Furthermore, seven out of
thirteen expected causal dependencies are found correctly when applying this
method.
Using GC yields also more causal dependencies compared to the first run. In
addition, it is the only method that detects the causal dependencies ϑb → Du

and vs → Du. Still no cause-effect relationship regarding ϑc can be found, which
can again be explained due to the limited ability when using Granger causality
on systems with a large dead time.
Like Granger causality the suggested method based on the SVM detects more
causal dependencies compared to the first run. As a drawback it needs to be
said that both, SVM and GC detect the false cause-effect relationship D l → vs,
which results in a strong wrong causal dependency in Qfus.
Compared to the first production, the resulting combined causal matrix of the
second run gives a similar picture of the disturbance propagation path. This
shows that the results are better than initially expected. As a drawback, the
false causal dependency D l → vs can lead to a wrong interpretation of the path.
Since the distortion through the weld is stronger, the time differences are less
distinct, which should have resulted in less found causal dependencies. Still,
even that vs is still fluctuating while the weld distortion is already measured at
the lower diameter, D l is correctly detected as output variable. Additionally, it
can be concluded that the cylinder temperature ϑc is correctly detected as an
input variable as there are no strong causal dependencies pointing towards it.
Table 6.5 outlines the root cause priority list which is calculated from the com-
bined causal matrix. Like for the first production the cylinder temperature ϑc

is correctly detected as being the root cause variable meaning that it detects
the disturbance first. Still, for this production the resulting value of the root
caus priority list for ϑc is almost equal to the value for the upper diameter Du.
Hence, the cylinder temperature is not detected as root cause variable without
any doubt. Regarding the lower diameter D l, the results are much clearer. In
that case it can doubtlessly concluded, that D l acts as output variable of the
investigated process devices.
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Figure (6.5) Calculated causal matrices of the second production. The left plot shows the
combined causal matrix, the plot on the right hand side displays each method in terms
of a bar chart. The resulting disturbance propagation path is given in the lower plot.

Rank Process variable RC

1 Cylinder temperature ϑc 1.08
2 Upper diameter Du 1.06
3 Pulling speed vs 0.95
4 Beam temperature ϑb 0.79
5 Lower diameter D l 0.21

Table (6.3) Root cause priority list of the second production. Like in the first production,
the cylinder temperature ϑc is correctly detected as root cause, the lower diameter is
detected as being the output variable.
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6.3 Summary
The aim of this chapter was to investigate the behavior of the proposed methods
on a data set coming from an industrial plant. To this aim, exemplarily two
measurement data sets of known disturbances from a glass forming process
were used. The outcome shows that it is possible to use the methods for the
reconstruction of the disturbance propagation path as in both productions the
causal matrices showed the expected cause-effect relationships known from
process knowledge in principle. In detail, ϑc was in both productions correctly
identified as being the input variable and D l as output variable.
As the process contains a large dead time for the cylinder temperature ϑc

and the other process variables, especially the CCF works well on the data
sets. The TE faces problems in the first run as it detects many wrong causal
dependencies due to the narrow bandwidth in the data, but yields good result in
the second run. GC and SVM detect less causal dependencies as both methods
face problems if the process contains large dead times, which is the case for this
system. In this case both methods cannot cover the dead times in the system
due to the choice of a too low model order. Therefore, in the first run neither GC
nor the SVM can detect the underlying cause-effect dependencies containing
the cylinder temperature ϑc.
Another difficulty of the investigated glass forming process is that the process
is not running in feed-forward control. Therefore, the ground truth of the dis-
turbance propagation path is in fact a partially directed graph as the system
contains a feedback loop. This leads to intercausal dependencies in the mea-
surement data. The feedback loop was correctly detected when combining the
methods to one causal matrix.
To summarize, the results show that for the special case of the industrial glass
forming process, the suggested methods can reconstruct the fault propagation
path of a weld disturbance which again shows that the methods can be applied
to on industrial process data.





7
Setup of Data Acquisition System

Usually the ability to reconstruct the disturbance propagation path does not
only depend on the occurred fault and the characteristics of the underlying
plant but also on the setup of the control and measurement system. Hence,
the purpose of this chapter is to check how the suggested methods behave
depending on the configuration of the underlying data acquisition. In de-
tail, the detection of cause-effect dependencies depending on the selected
sampling period and the data compression rate for the raw signal is inves-
tigated. In the last section, the effect of filtering in terms of removing a si-
nusoidal oscillation in the measurement data is analyzed. As sinusoids are
cyclic they do not contain any causal information and only the superposed
noise can be used for analysis. Therefore, it is investigated if a suppression
of sinusoids increases the ability to detect causal dependencies.

7.1 Sampling Period
The acquired signals used for the reconstruction of the disturbance propagation
path are sampled beforehand through the data acquisition system. Here, it
is very important to select a proper sampling rate to be able to use the data
for causal analysis. If the sampling frequency is set too low it is not possible
to reconstruct the continuous-time signal and to cover the dynamics of the
system (e. g. if the Nyquist theorem is violated [Joh93]). This can lead to false
causal dependencies in the reconstruction of the disturbance propagation
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path and possibly the wrong root cause is detected. Setting the sampling rate
too high leads to an increased load on the data acquisition network and the
measurement data possibly needs to be compressed which can have again
an impact on the detection of causal dependencies. This will be outlined in
section 7.2. Nevertheless, even if the data is not compressed, a chosen sampling
frequency that is inappropriate can have a negative impact on the detection of
causal dependencies.

In order to determine the impact of different sample periods, the methods are
tested on the 1st-order system and the 2nd-order system described in section 3.2
as part of the benchmark data set. The measurements from the two scenarios
are acquired using the sampling periods Ts ∈ {0.005s,0.01s,0.025s,0.05s,0.1s,
0.15s,0.2s,0.25s} and white noise with N (0,1) is used as input signal. Since the
time constant for both system is set to T = 0.5s, for both system Tsn = 0.25s
defines the limit of the Nyquist sampling theorem.

Initially, this leads to the question which sample rate should be selected for the
investigated scenarios.

Åström [AW97] suggests to set the sampling rate in terms of the number of
samples per rise time. Therefore, he defines the samples per rise time Nr as

Nr := Tr

Ts
, (7.1)

with Tr being the rise time of the system. As a rule of thumb he proposes to set
Nr between 4 and 10. For the 1st-order system Tr is equal to the time constant
of T = 0.5s which implies that sampling periods of 0.05s ≤ Ts ≤ 0.125s should
give the best results for the detection of causal dependencies.

According to [AW97], for a 2nd-order system, the rise time is calculated as

Tr =
T

2π
eφ/tanφ, (7.2)

with the damping ζ= cosφ. For the investigated 2nd-order system (ζ= 0.7,T =
0.5s) this results in the sampling periods of 0.017s ≤ Ts ≤ 0.043s. For both
scenarios, it is expected that the methods will give reasonable results in the
defined ranges. To test the methods, in each case K = 10000 samples are
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generated and since each method is tested for itself, the fitting parameters
βCCF,βTE,βGC and βSVM are all set to 1.

Ts in s QCCF QTE QGC QSVM

u → y y → u u → y y → u u → y y → u u → y y → u
0.005 0.86 – 0.036 – 0.49 – 0.27 –
0.01 0.86 – 0.036 – 0.49 – 0.28 –
0.025 0.86 – 0.038 – 0.49 – 0.30 –
0.05 0.86 – 0.038 – 0.49 – 0.28 –
0.1 0.86 – 0.040 – 0.49 – 0.32 –
0.15 0.69 – 0.025 – 0.13 – 0.14 –
0.2 0.79 – 0.030 0.041 0.18 0.01 0.12 –
0.25 0.52 – 0.035 0.031 0.06 0.01 0.16 –

Table (7.1) Causal strengths for the 1st-order system with white noise as input signal and
different sampling periods.

Ts in s QCCF QTE QGC QSVM

u → y y → u u → y y → u u → y y → u u → y y → u
0.005 0.83 – 0.019 – 0.48 – 0.26 –
0.01 0.84 – 0.020 – 0.49 – 0.33 –
0.025 0.84 – 0.023 – 0.49 – 0.33 –
0.05 0.84 – 0.025 – 0.49 – 0.23 –
0.1 0.85 – 0.041 – 0.50 – 0.26 –
0.15 0.78 – 0.034 – 0.18 – 0.27 –
0.2 0.73 – 0.042 0.052 0.21 0.02 0.21 –
0.25 0.75 – 0.035 0.051 0.13 0.01 0.22 –

Table (7.2) Calculated causal strengths for the 2nd-order system with white noise as input
signal and different sampling periods.

Impact of sampling period on test scenarios The results are outlined in
table 7.1 for the 1st-order system and in table 7.2 for the 2nd-order system. In
both scenarios the sampling period has an impact on the resulting causal de-
pendencies for all methods. Therefore, the results with short sampling periods
show a much lower impact on the causal strengths of the dependency u → y as
the causal strengths only change moderately.
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If the sampling period is increased, the impact is stronger, as the causal depen-
dencies result in weak causal strengths and for some methods wrong causal
dependencies pointing from y → u are detected. All methods yield reason-
able values for the proposed intervals from Åström, which is fulfilled for the
1st-order system for the investigated sampling periods Ts ∈ {0.05s,0.1s} and for
the 2nd-order system for Ts = 0.025s .
Comparing the methods regarding the impact of the different selected sample
periods yields as one of the most robust methods the CCF. For both scenarios
and all sampling periods the causal dependencies are correctly detected. Still,
if the sampling period approaches the limit of the Nyquist sampling theorem,
which is for both systems Tsn = 0.25s, the strengths of the causal dependencies
are weakened.
The TE faces difficulties if the sampling period is set too large as for both scenar-
ios for Ts ∈ {0.2s,0.25s} a false causal dependency y → u is found. Selecting a
short sampling period has no impact for the 1st-order system , for the 2nd-order
system the causal strength of the dependency u → y weakens.
In both scenarios the GC correctly detects for all cases the cause-effect relation-
ship u → y . Still, if the sampling period approaches the limit of the Nyquist
sampling theorem (Tsn = 0.25s), the calculated causal strengths for u → y
weaken and additionally a weak causal dependency pointing from y → u is
detected.
Like the CCF, the SVM is robust against the selected sampling period as in none
of the cases a cause-effect relationship y → u has been found. If the sampling
period is long, significant causal dependencies can be found with a weak causal
strength. The short sampling periods have no impact on the causal strength as
the values stay almost constant for all selected values of Ts.
In summary, if the sampling period for the analyzed system is set to a short
value, some methods yield lower causals strength but the correct causal direc-
tion is found. Selecting a too large sampling period can result in significant
wrong causal dependencies. In that case, the reconstructed disturbance propa-
gation path of the fault can be incorrect due to the false causal dependencies.
Finally, it can be concluded that if the sampling period is selected reasonably
the methods give meaningful results. Selecting a reasonable sampling period
can be achieved by following the recommendations from Åström which are
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given in equation 7.1 for 1st-order and in equation 7.2 for 2nd-order systems.
Both recommendations take into account the time constant of the underlying
system which is analyzed.

7.2 Impact of Lossy Data Compression

In some cases, long time series need to be compressed from the data acquisi-
tion system to reduce the data storage space. Generally, lossy data compression
means that not the complete data set but only fractions of it are kept in the
database. Since some of the data is discarded, this has an impact on the de-
tection of causal dependencies. In recent literature there are several possible
ways described on how to compress time series and a good overview is given
e. g. in [LKB04]. Since the details of the different types of data compression are
out of scope they are not discussed. In order to determine the impact of lossy
data compression for the detection of causal dependencies an approach called
piecewise constant approximation (PICA) is used. The concept of the PICA is
that each measured time series is divided into equal segments and the mean
value of each segment is then used to reconstruct the compressed time series
used for analysis. In recent literature there exist several investigations on the
compression rate using this method while e. g. Chakrabarti [KESM02] shows
that rates between 10 to 60 times of the original length of the time series can be
reached with this method while still having a reasonable loss of information.
Figure 7.1 gives an illustration of the described method.

In that case the compression rate was set to c = 5, which means that the original
time series is compressed by a factor five. The original signal is displayed in the
upper plot and the resulting compressed time series is given in the lower plot.

In order to test the effect of data compression on the methods, the 1st-order
system, which was used as the base configuration described in section 3.2, is
again utilized. In the first case white noise with N (0,1) is selected as input
signal. For the data acquisition a sample period of Ts = 0.1s is selected. In the
second case the white noise is filtered beforehand using a low-pass filter with a
time constant of T = 5s to generate an input signal with a limited bandwidth. In
total, four different compressions rates, namely c ∈ {2,5,10,15} are used while
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having K = 10000 samples in the uncompressed case. As each method is tested
separately, the fitting parameters βCCF, βTE, βGC and βSVM are all set to 1.
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Figure (7.1) Illustration of a compressed time series. The upper plot shows acquired
measurement data from the control system, the lower plot shows the compressed signal
while using a compression rate of c = 5.

Results using white noise as input signal Table 7.3 shows the calculated
causal strengths for diverse compression rates in the presence of white noise as
input signal. As the 1st-order system is the base configuration from the bench-
mark data, in the uncompressed case the causal strengths are the same as in
chapter 3. The results indicate that all methods are affected by the compression
of the time series since on average the causal strengths get lower with an in-
creasing compression or the causal dependency is no longer detected as being
significant.

The results for all investigated methods show that the CCF is strongly affected
by compression as it can only detect cause-effect relationships up to a rate of
c = 2 which makes this method the least robust one. In the other cases, the
causal dependency detected by the CCF is considered as being not significant.

Compared to the CCF, the TE yields more robust values when having com-
pressed data at hand as up to a compression rate of c = 10 the causal depen-
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dencies are found correctly. Furthermore, the calculated causal strength does
not change relevantly with regard to the different compression rates.

The outcome of the GC shows that it is the most robust method since it is
the only method which detects the cause-effect relationships up to a rate of
c = 15. In all cases, the causal dependencies are found while the values show a
reduction of the causal strength with an increasing compression rate.

The SVM detects causal dependencies up to a rate of c = 5, but the causal
strength is close to zero. In other words, like the CCF, the SVM is strongly
influenced by data compression when it is used for the calculation of the fault
propagation path.

QCCF QTE QGC QSVM

u → y y → u u → y y → u u → y y → u u → y y → u

Uncompressed 0.86 – 0.04 – 0.49 – 0.32 –
c = 2 0.52 – 0.06 – 0.45 – 0.49 –
c = 5 – – 0.03 – 0.42 – 0.05 –
c = 10 – – 0.03 – 0.27 – – –
c = 15 – – – – 0.12 – – –

Table (7.3) Causal strengths for the base configuration of the benchmarks depending on
the selected compression rate while having white noise as input signal.

Results using colored noise as input signal The results when using noise
with a limited bandwidth as input data is given in table 7.4. In this case, the
white noise is filtered beforehand using a low-pass filter with a time constant of
T = 5s. As explained in chapter 3 all methods face problems with the reduction
of the bandwidth for the input signal. Therefore, it is expected that the proposed
methods will have more difficulties to detect the causal dependency. Compared
to table 7.3 in which white noise was used for compression, the results show
that the found causal dependencies in this case are less clear. In addition, false
causal dependencies pointing from y → u have been found for some methods.

Analyzing the results of the methods in further detail, starting with the CCF,
this reveals that no causal dependency could be found even when the data set
is left uncompressed. This is due to the fact that the CCF is the one of the less
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robust analyzed methods regarding autocorrelation in the input signal for this
1st-order system.

The TE shows similar results for the data with limited bandwidth as if white
noise was used as input signal. In this case, up to a compression rate of c = 10
the cause-effect relationship is detected as being significant. Additionally, no
trend in the causal strengths can be found with regard to the selected c.

The GC detects for all compression rates the causal dependency u → y with a
weaker value for the causal strength with an increasing compression rate. In
addition, for the high compression rates c ∈ {10,15} a false causal dependency
pointing from y → u with a low causal strength is found.

A similar result counts for the SVM. Up to a compression rate of c = 10 the
cause-effect relationship u → y is found, but for c ∈ {5,10} the method also
detects the false causal dependency y → u with a weak causal strength.

QCCF QTE QGC QSVM

u → y y → u u → y y → u u → y y → u u → y y → u

Uncompressed – – 0.04 – 0.40 – 0.28 –
c = 2 – – 0.04 – 0.50 – 0.33 –
c = 5 – – 0.06 – 0.48 – 0.02 0.03
c = 10 – – 0.06 – 0.27 0.02 0.10 0.01
c = 15 – – – – 0.15 0.04 – –

Table (7.4) Causal strengths for the 1st-order system depending on the selected compres-
sion rate when having colored noise as input signal.

Summary of the results In this section, exemplarily the impact of a lossy
data compression for data acquisition was checked. In detail, the impact when
having white and colored noise on a 1st-order system was investigated. The
results illustrate that already compression rates with a small loss of data have
an impact on the detection of causal dependencies in a data set. In the case of
white noise the causal dependencies for high compression rates, which means
a high loss of information, are not found as being significant or they result in
low causal strengths. Regarding the data with colored noise, the outcome gives
similar results. Furthermore, in the case of colored noise, a high compression
rate can lead to the detection of false causal dependencies. Hence, it can be
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concluded that if the proposed methods for the calculation of the disturbance
propagation path are used, a lossy compression of the data should be avoided
since this can have a strong impact on the reconstruction of the disturbance
propagation path and finally the detection of the root cause of a fault.

7.3 Filtering Oscillations

This section deals with the problem of oscillations and the impact of filtering
these oscillations as a preprocessing step when calculating causal dependencies.
In this context, exemplarily sinusoidal oscillations are selected. As sinusoidal
oscillations are deterministic they do not incorporate causal information. This
becomes obvious if two signals u(t) and y(t) are observed which are of oscil-
latory nature with the same periodicity but at a different phase. In that case
both signals could be seen as being the cause of the other. Therefore, the only
way to detect cause-effect relationships among these variables is included in
the information contained in the noise superposed to the oscillation. Hence,
it is expected that if in a preprocessing step the main oscillations in the data
are removed, hidden causal information can be better revealed. In this section
the impact on the proposed methods when having the special case of removing
the main oscillation by using a notch filter is analyzed. In a similar case this
has been tested for Granger causality by Florin [FGP+10] who added a sinusoid
with a negative sign on a signal to remove the 50 Hz current in a Magnetoen-
cephalographic signal. He showed that using this approach gives better results
than keeping the oscillation in the acquired measurements. A similar result for
Granger causality is given by Barnett [BS11] who also removed electrical line
noise from the acquired data set.

Notch filter as a band-stop Notch filters are filters that are used to remove
a particular frequency component while not affecting significantly nearby fre-
quencies. Hence, they can be considered as a special type of a band-stop filter.
There are several ways of how to design notch filters and for an overview it is
referred to [Sch10]. In the present work a standard notch filter is used which
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Figure (7.2) Resulting Bode plots showing the phase and the magnitude of the transfer
function of the notch filter with differently selected values for the parameters c and d .
The notch frequency ωn has been set to 10−2 Hz.

has three parameters, namely the selection of the notch frequency ωn and two
tuning parameters d and c. This results for the transfer function H(s) in

H(s) =
s2 +2d

c ωn +ω2
n

s2 + 2
cωn +ω2

n

. (7.3)

The parameter d is used to define the damping of the notch frequency and the
parameter c can be considered as the sharpening parameter in terms of the
nearby frequencies.

Figure 7.2 shows Bode plots for different selections of the filter parameters d
and c which will be used for analysis.

Filtering oscillatory data using a notch filter can be seen as a trade-off. If the
oscillations are not completely suppressed there can still be some information
hidden in the signal which cannot be detected by the proposed methods. On
the other hand, if the filtering is set to sharp, Barnett [BS11] shows that artifacts
can occur in the data that possibly lead to false cause-effect relationships.
In order to test the influence of the detection of causal dependencies when
having oscillations in data and when filtering them, the base configuration
from the benchmarks (section 3.2) is used. As input a sinusoidal signal with the
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frequency f = 10−2 Hz and an amplitude û = 1 is used while being superposed
with white noise consisting of N (0,1). The data is sampled with Ts = 0.1s. The
investigated values of the different filter parameters c and d correspond to
the ones shown in figure 7.2 and are used to remove the oscillations from the
input and the output signal. Since each method is tested for itself all fitting
parameters βCCF, βTE, βGC and βSVM are set to a value of 1.

QCCF QTE QGC QSVM

u → y y → u u → y y → u u → y y → u u → y y → u

No oscillations 0.86 – 0.04 – 0.49 – 0.32 –
Non-filtered – – – – 0.95 0.18 – 0.03
c = 0.1,d = 0.1 – – 0.03 0.12 0.95 0.21 0.26 0.14
c = 0.1,d = 0.01 0.57 – 0.24 – 1.00 0.03 0.91 –
c = 0.1,d = 0.001 0.51 – 0.25 – 1.00 0.01 0.17 –
c = 0.5,d = 0.01 0.83 – 0.23 – 0.51 – 0.16 –
c = 0.05,d = 0.01 0.39 – 0.26 – 1.00 0.06 – –
c = 0.01,d = 0.01 0.26 – 0.14 – 1.00 0.19 – –

Table (7.5) Causal strengths from the suggested methods when having a sinusoidal oscil-
lating input data on the base configuration from the benchmark data. The parameters c
and d are used to tune the notch-filter.

Results of oscillation filtering Table 7.5 shows the outcome of the differ-
ent methods if a notch filter is applied with varying parameter values for c
and d . In addition, the calculated causal strengths for the methods without
performing any filtering and if there would be no oscillations in the data are
given for comparison. The results reveal that all methods are affected when
having oscillations in the data. If the sinusoid is not suppressed, no method
detects the correct causal dependency u → y reliably. As expected, suppressing
the sinusoid increases for all methods the probability of detecting the correct
causal dependency. But the outcome also shows that filtering needs to be done
carefully since only for the parameter setting c = 0.5 and d = 0.01 all methods
work correctly. Intuitively, the results indicate increasing the value of c further.
Still, as illustrated in the Bode plot in figure 7.2, setting c = 0.5 generates already
a sharp notch in the frequency spectrum, which means that the frequency of
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Figure (7.3) Illustration of behavior of the CCF when filtering oscillations in measure-
ment data on a 1st-order system. Several different parameter values c and d are used
for tuning the notch-filter. The upper plots represent the non-filtered case and the case
without oscillations in the signal.

the sinusoid needs to be known exactly. As a possibility, the detection of the
frequency of the sinusoid can be done by performing a spectral analysis of
the signal. If the frequency of sinus is shifting it is also possible to adapt the
selected notch frequency.

Analyzing the results of each method, the CCF shows a much better perfor-
mance if the notch filter is used. Except for the parameter combination c =
0.1,d = 0.1 the causal dependency u → y is always detected correctly. If the
data is not filtered, the causal dependency u → y is found as being not signifi-
cant. In order to go further into detail, the impact of filtering is illustrated for
the cross-correlation function in figure 7.3. If the data is not filtered, the CCF
results in a curve with a flat maximum and no causal information can be drawn
from it. If a soft filtering is performed, by setting c = 0.1 and d = 0.1, only a
small peak is present in the CCF which is not detected as being significant by
the proposed algorithm. Increasing the sharpening effect by setting the filter
parameters to c = 0.01,d = 0.01 or c = 0.05,d = 0.01 shows the other extreme
as an artifact in terms of an inversed peak results when calculating the cross-
correlation function. In these two cases the cause-effect relationship is still
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detected correctly as being significant but gives a lower causal strength due to
the occurred inverse peak.

The TE implies almost the same performance as the CCF, except for the filter pa-
rameters c = 0.1,d = 0.1. In that case the transfer entropy detects an intercausal
dependency u ↔ y .

The GC detects in all cases a strong causal dependency u → y , but except for
c = 0.5,d = 0.01, also a weak causal dependency pointing from y → u is found.
Nevertheless, in all cases the causal strength u → y is larger than y → u which
shows the advantage when calculating the causal strength and not solely relying
on significance tests. Additionally, from all proposed methods the GC is the
only method detecting u → y in the non-filtered case.

The SVM does not detect u → y if the filter parameters are set to c = 0.05,d =
0.01 or c = 0.01,d = 0.01. Furthermore, for the parameter setting c = 0.1,d = 0.1
a weak false causal dependency y → u is found. This underlines that the SVM is
the most sensitive method with respect to filtering oscillations in measurement
data.

The results show, if the parameters are set appropriately, filtering is a suitable
preprocessing step for the detection of causal dependencies. But an incorrect
setting of the filter parameters can lead to delusive results since some of the
methods detect false causal dependencies. This is the reason, why filtering
should only be done, if the oscillation is well known beforehand or if an adative
notch filter can be applied.

7.4 Summary

This chapter illustrated that both, the selection of the sampling period and
when applying a data compression prior to performing a causal analysis, have
an impact on the ability to detect causal dependencies in measurement data. As
test process the base configuration and the 2nd-order system of the benchmark
data were used.

In terms of the sample time, the results show, that when selecting a too long
sampling period, no causal dependencies are found or the detection of false
causal dependencies can be the result when applying the proposed methods.
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Still, when setting the sampling period of a system to a reasonable value, e. g. by
following the recommendation proposed by Åström [AW97], the impact of the
sampling period when calculating cause-effect relationships can be neglected.
Performing a lossy data compressing means that parts of the information con-
tained in the data is lost when storing it in a data base. As shown, all methods
are affected by lossy data compression and even small compression rates can
have an impact on the result of the causal analysis. In that case, the main
advice when performing a causal analysis is that the compression rate should
be reduced to a minimum when performing a lossy data compression.
Finally, this chapter illustrated that filtering oscillations, e. g. by removing 50 Hz
supply noise, can help to increase the detection rate of causal dependencies in
data. Still, filtering should be handled with care, as this can lead to artifacts in
the preprocessed measurement data. This again can lead to the detection of
false causal dependencies when using the proposed methods. In that case the
advice is that filtering should be done if a spectral analysis can be performed
and an adaptive notch filtering is used. If oscillations exist in the data set, but
the frequencies cannot be clearly detected using the spectral analysis, filtering
should be avoided as this can lead to delusive results when performing a causal
analysis.



8
Conclusion

A fault, e. g. generated through an error in a major process device, leads to
disturbances in a process. These disturbances can have an effect on the per-
formance of the process, put the safety in the plant on risk or can reduce the
overall product quality. Since modern control systems comprise of a large num-
ber of process variables, which are interconnected to each other, eventually, a
fault generates plant-wide disturbances. Since not all relations of the different
process variables are well known, the detection of the source of a fault and the
reconstruction of the corresponding disturbance propagation path is not an
easy task and often a correct fault diagnosis mainly depends on the experience
and knowledge of the process operator. To this end, it is of great benefit to
automatically localize the source of a disturbance, commonly called the root
cause, and to track back the disturbance propagation path.

A literature review on process supervision was given in chapter 2 which showed
that only a small amount of plants is modeled in an analytical way. This means
that a fault localization based on physical models of the process is usually
not possible and data-driven methods can bring a great benefit. The main
idea, when using these methods is to exploit statistical dependencies and time-
shifts in the measurement data to reconstruct the disturbance propagation
path. Methodologically, this means that cause-effect dependencies among the
process variables need to be detected. Process variables that show a strong
causal impact on other variables come into consideration as being the root
cause.

171
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In chapter 3 four different methods were proposed which can be used to detect
cause-effect dependencies in process data. Among them, a new method based
on support vector machines with variable selection and model reduction and
a considerable improvement of a method which uses the cross-correlation
function with permutation tests were presented. Additionally, transfer entropy
and Granger causality have been extended by calculating a quantitative value,
called causal strength, to make all four methods comparable to each other. In
detail, all methods result in a value between 0 (= no cause/effect) and 1 (= sure
cause/effect) for each calculated causal dependency.
To evaluate the characteristics of each method, in section 3.2 several bench-
mark data sets were developed. These benchmarks cover aspects such as large
dead times, nonlinearities, feed-through or a set-point change. The results
indicate that each method has its advantages and drawbacks depending on the
characteristics of the underlying data set.
Hence, to cover the drawbacks of one method, a novel approach to combine all
methods to one causal matrix has been proposed in chapter 4. This approach
works in two stages. First, performing a parameter fitting, the causal matrices
are balanced to each other; second, assuming that each method works equally
well on the data set, the mean over all causal matrices is taken to calculate the
combined causal matrix. Additionally, in section 4.2.2 an approach is presented
which adapts the weight of each method when calculating the combined causal
matrix, if some a priori knowledge in terms of known causal dependencies is
available.
To proof the concept, in chapter 5 the methods were tested on a laboratory plant
that consists of an installation in which water is recirculated in two tanks. The
conducted experiments consist of failures, such as a loose electricity connection
of the pump, an air pressure leak of the valve and the clogging of an inlet pipe.
The outcome revealed that more robust results for the root cause detection can
be achieved when following the proposed combination of the methods.
Chapter 6 introduced a new industrial case study. In detail, the functionality
of the methods has been verified on an industrial glass forming process when
reconstructing the disturbance propagation path of a defect contained in the
glass cylinder. The results indicate that it is possible to reconstruct the dis-
turbance propagation path when calculating the combined causal matrix in
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principle.

The impact of the setup of the data acquisition system for the detection of
causal dependencies was studied in chapter 7. The results of this study are
established in terms of guidelines for the correct selection of the sampling
period, the data compression rate and the filtering of oscillatory data.

To represent the causal matrices in a suitable manner, a new visualization
method for the causal matrices was needed and has been developed in section
3.3. The visualization contains the combined causal matrix, a comparison of the
causal matrices from every method and the detected disturbance propagation
path in terms of a directed graph.

8.1 Investigated Methods for Fault Localization

As previously mentioned, in this work four different methods were presented
for the detection of the root cause and the reconstruction of the disturbance
propagation path. All methods are based on the calculation of statistical de-
pendencies considering temporal information for the detection of cause-effect
relationships. In detail, the used methods were the cross-correlation function,
Granger causality, transfer entropy and support vector machines.

Cross-correlation function The CCF is a linear measure which calculates
the correlation of two signals that are time delayed against each other. In order
to transform the CCF into a causal measure the calculation of a compound
parameter is proposed. This parameter tests if there is a significant difference
between the absolute maximum value for a negative time-lag and the absolute
maximum value for a positive time-lag. In order to find significant causal de-
pendencies a 3σ-test based on a permutation test is suggested. The outcome
for the benchmark data sets reveals that the CCF is especially suited for linear
systems with large dead times. However, the method faces problems if the dis-
turbances are narrow-banded, non-steady or the investigated system contains
nonlinearities.



174 8 Conclusion

Transfer entropy The concept of the TE is based on the calculation of tran-
sition probabilities. In order to detect causal dependencies, the TE tests if the
probability of a future value of one variable is increased by having the knowl-
edge of past values of a second variable compared to having the knowledge
if only the first variable would be present. Similar to the CCF a 3σ-test on
permutated data is used to check if there is a significant cause-effect relation-
ship. Using the benchmark data sets the results show that the TE is suited to
detect disturbances when having large dead times and nonlinearities in the
underlying process. However, as drawback, the TE has problems if the input
signal is narrow-banded.

Granger causality The GC is based on the comparison of residuals coming
from two models, namely an autoregressive model that contains only past
values of the first signal, called the restricted model, and an augmented au-
toregressive model containing past values of the first and second signal, called
the unrestricted model. The detection of the causal dependencies was per-
formed by comparing the residuals of the two models. If the residuals of the
second model are significantly lower than the residuals of the first model, it
is concluded that a causal dependency exists. In the benchmark data sets,
the results illustrate that this method can be used when having non-steady or
narrow-banded input signals. Since the underlying autoregressive model is
linear, nonlinear causal dependencies cannot be detected reliably. In addition,
the method faces problems if the dead time among the investigated signals is
too large since the GC performs dead time estimation internally.

Support vector machine The SVM is proposed as a machine learning method
for the calculation of cause-effect relationships in the data. Therefore, the main
concept is to train and fit the parameters of the SVM based on a one-step-ahead
prediction of the first signal using past values of the first and the second signal.
As a next step, a dimensionality reduction of the SVM input variables is per-
formed by selecting only input data that has the most relevant information for
predicting future values of the first signal. If past values of the second signal are
kept in the reduced model, this means that a cause-effect relationship from the
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second signal to the first one is detected. The benchmark data sets indicate that
the SVM is especially suited when the underlying process contains nonlinear
dependencies or if the disturbance is non-steady. However, the SVM shows
problems if the disturbance is narrow-banded or if the dead time among the
investigated signals is too large as the dead time is estimated internally.

8.2 Combination of the Methods

As all methods show benefits and drawbacks on the benchmark data sets, the
causal matrices of the methods are combined into one resulting causal matrix to
achieve a more robust outcome. Hence, the causal matrices from each method
are balanced by following the assumption that all methods work equally well
on the investigated data set for the found causal dependencies.

This approach was tested on a continuous stirred tank reactor, on a labora-
tory plant as well as on an industrial glass forming process. The results give
evidence that the combination of the methods brings a large benefit as causal
dependencies falsely detected by one method can be compensated through
the other methods. Furthermore, the causal matrix is transformed into a root
cause priority list, containing a ranking of the process variables being most
probable the root cause of the disturbance. With the exception of the experi-
ment that contains an oscillating pump, in all conducted experiments on the
laboratory plant the variable responsible for the root cause was ranked first.
In the experiment with the oscillating pump the actual root cause was ranked
second. Regarding the continuous stirred tank reactor, where two causes are
acting on the system, the variables causing the disturbances were ranked first
and second. In order to gain further insights into the resulting combined causal
matrix, several visualization techniques are proposed.

Visualization of the causal matrices When calculating cause-effect rela-
tionships, all methods return their own detected disturbance propagation path
in form of a causal matrix. For the visualization of the different matrices, several
aspects have to be considered. In detail, an easily understandable representa-
tion of the fault propagation path, a comparison of the methods used on the
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same data set and an appropriate representation of the combined causal matrix
are required. In this thesis a method has been developed which addresses all
of these aspects. Therefore, each causal matrix is represented in terms of a bar
chart, a doughnut chart and the combined causal matrix as a partially direct
graph. The bar chart is used to give a comparison of the different methods
wherein 0 (= no cause/effect) is defined as the minimum value of the bar chart
and 1 (= certain cause/effect) is defined as the maximum. The doughnut chart
is used to aggregate the outcome of the different methods to the combined
causal matrix wherein the arc length of the doughnut represents the resulting
causal strengths of each method. Finally, the partially directed graph is used to
represent the disturbance propagation path, wherein the nodes represent the
process variables and the edges the cause-effect relationships. The developed
visualization method leads to a fast comprehension of the causal dependencies
contained in the data set of the investigated processes. Still, for larger data sets
an interactive visual interface is desirable for analysis.

8.3 Future Work

Although this work has opened a way to perform a data analysis for the de-
tection of causal dependencies in time series data sets, many open issues for
future research remain. Several of which that arose during the work on this
thesis are discussed below.

Concerning the acquired data, a set of questions addresses the behavior of
the methods depending on the data quality. The performance of the methods
to calculate the disturbance propagation path has not been investigated with
respect to long-term trends, time-variant system behavior or unknown aliasing
effects in the data. Furthermore, preprocessing the data set seems to play a
crucial role when detecting causal dependencies.

Another open issue is integrating a priori knowledge adequately in the methods
since operators usually have a thorough understanding of the plant behavior.
Incorporating this a priori knowledge was outlined as an approach in section
4.2.2. In that case a method selection was performed depending on the known
causal dependencies. However a priori knowledge can also be applied to tune a
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method itself and does not necessarily need to be used only when combining
the methods. In this context appropriate concepts could be developed to make
more use of the available process knowledge.
The application of the presented methods can be expanded. There are other
domains imaginable in which the suggested algorithms can be applied. A first
domain is biosignal analysis. Massive amounts of data are acquired by mea-
suring biological activities in terms of electric signals and the knowledge of the
causal flow is not always obvious. The proposed methods can be used for the
analysis of brain signals or muscle activity. Another possible application is the
propagation analysis of a contamination in water distribution networks. By
knowing the cause-effect relationships among the different process variables
in the network, the distribution of the contamination can be analyzed and
possible counteractions can be undertaken (e. g. by closing sliders to stop the
contamination). Using the proposed methods is also possible in the area of
video analysis as the proposed algorithms can be used to identify temporal
interaction patterns occurring in a video (e. g. analyzing behavior of offense/de-
fense in team sport). Additionally, there are many other domains imaginable.
Further examples are traffic analysis (e. g. detecting the cause of a traffic jam),
security monitoring of major events (e. g. analysis of the cause of a panic),
risk analysis for insurances or the analysis of economic data.
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