MONITORING OF RIVERS AND CATCHMENTS USING REMOTE SENSING TECHNIQUES

Stefan Hinz

No extended abstract available.

<u>Contact:</u> Stefan Hinz Karlsruhe Institute of Technology (KIT) Institute of Photogrammetry and Remote Sensing (IPF)

Englerstr. 7 76131 Karlsruhe, Germany

Monitoring of Rivers and Catchments using Remote Sensing Techniques

Stefan Hinz

Institute for Photogrammetry and Remote Sensing KIT, Karlsruhe, Germany

Institut für Photogrammetrie und Fernerkundung (IPF)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification
... 3D data: Roughness classification and derivation of catchments
... Interferometric SAR Data: Water flow and water level

• Final remarks

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification... 3D data: Roughness classification and derivation of catchments... Interferometric SAR Data: Water flow and water level

• Final remarks

Examples of Remote Sensing and Photogrammetry

DEM – Products of Remote Sensing and Photogrammetry

Another Remote Sensing Platform: Quadcopter

Quadkopter

3D Reconstruction from UAV

Airborne Laserscanning

Point Cloud from Airborne Laserscanning

Hyperspectral Remote Sensing Datasets

C1:Forest C2:Meadow 1 C3:Meadow 2 C4:Lawn C5:Alley

C7:Sandstone

- Hyperspectral Data produce a "data cube" due to the high number of channels. Data can be viewed in various spaces
- **Image Space** Spectral Space **R** = f (λ ,....) X: image height Y: image width Z: spectral channels Reflectance
 - Channel of HyMap

Hyperspectral Remote Sensing Datasets

Hyperspectral Data

- High number of spectral channels (per def. > 60, Hyperion/EnMAP ~ 250)
- Narrow bandwidth channels (bandwidth ~10-15nm)
- Broad spectral range (typically 450 2500nm)
- Continuous channels (i.e. no "gaps" within the sampled spectrum)
- Platforms: Spaceborne, Airborne, mounted to Eddy-Covariance Towers, mounted to agricultural machinery, handheld, mounted on UAV

SAR Imaging Geometry

Synthetic Aperture Radar - SAR

- active \Rightarrow independent of sun illumination
- microwave \Rightarrow penetrates clouds and (partially) canopy, soil, snow

wavelengths:	X-band:	3 cm
	C-band:	6 cm
	L-band:	24 cm

coherent \Rightarrow interferometry, speckle

polarization can be exploited

spatial resolution: space-borne: 1 m - 100 m air-borne: > 0.1 m

Pixel brightness depends on **physical** properties (roughness, electrical properties), while optical (multi-/hyperspectral) images reflect **chemical** properties.

Remote Sensing Systems – Summary

Panchromatic and Multispectral Remote Sensing

- High geometric accuracy, high spatial resolution
- \Rightarrow Good for 3D reconstruction and navigation purposes (but lower spectral resolution)

Laserscanning

- Direct 3D data acquisition, good reflection required

Hyperspectral Remote Sensing

- High spectral resolution
- => Good for thematic classification, identification of materials (but low spatial resolution)

SAR Remote Sensing

- Independent of weather and daylight (active system)
- Interferometry and Polarimetry
- $\Rightarrow\,$ Good for analysis and monitoring of rough materials (but monochromatic)

All systems can be operated from ground, air and space

All systems can be influenced by atmosphere

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification

... 3D data: Roughness classification and derivation of catchments ... Interferometric SAR Data: Water flow and water level

• Final remarks

Hyperspectral Remote Sensing Datasets

C1:Forest C2:Meadow 1 C3:Meadow 2 C4:Lawn C5:Alley

C7:Sandstone

- Hyperspectral Data produce a "data cube" due to the high number of channels. Data can be viewed in various spaces
- **Image Space** Spectral Space **R** = f (λ ,....) X: image height Y: image width Z: spectral channels Reflectance

Channel of HyMap

Environ. Modification: quantification of N, H₂O

- Continuous representation:
- Left: NDWI: Normalized Difference WATER Index: H₂O Content of Veg.
- Right: NDNI: Normalized Difference NITROGEN Index: N Content
- Example: European "Heat Summer" of 2003: water-stressed vegetation

NDWI: blue, high H₂O content

NDNI: purple: high N content

Land cover classification

Classification in order to detect vegetation classes

Legend

- Meadow watered
- Meadow dry
- Trees deciduous
- Trees riparian/alley (i.e. watered)
- No vegetation

Fusion of results: Estimation of N, H₂O contents for each vegetation class

Nitrogen Mean(NDNI) - Nitrogen Content 0.25 0.4 0.3 0.2 0.05 0.1 Meadow.watered Meadow.dry Trees.regular Trees.shore/vatered 2 Class 3 4

Water

- 1: Meadow watered
- 2: Meadow dry
- 3: Trees (deciduous forest)
- 4: Trees riparian/alley (i.e. watered)

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification
... 3D data: Roughness classification and derivation of catchments
... Interferometric SAR Data: Water flow and water level

• Final remarks

Sensororientierung:

- GPS
- INS
- Kalibrierung des Lasers
- Passflächen

Pulse modelling ("Waveform")

Surface characteristics and time-dependent waveform

Feature extraction (I)

Simultaneous filtering and parameter estimation

➡ "Multiple Gaussians"

Here: iterative parameter estimation by Levenberg-Marquardt method

$$g(t) = a \exp(-4 \cdot \ln(2) \cdot \frac{(t-\tau)^2}{w^2})$$

Measured and estimated waveform

Feature extraction (I)

Simultaneous filtering and parameter estimation

➡ "Multiple Gaussians"

Here: iterative parameter estimation by Levenberg-Marquardt method

$$g(t) = a \exp(-4 \cdot \ln(2) \cdot \frac{(t-\tau)^2}{w^2})$$

Pulse properties	Feature			
Time $ au$	Range			
Width w	Range variation			
Amplitude a	Reflectivity			

Measured and estimated waveform

Feature extraction (I)

Simultaneous filtering and parameter estimation

➡ "Multiple Gaussians"

Here: iterative parameter estimation by Levenberg-Marquardt method

$$g(t) = a \exp(-4 \cdot \ln(2) \cdot \frac{(t-\tau)^2}{w^2})$$

Pulse properties	Feature			
Time $ au$	Range			
Width w	Range variation			
Amplitude a	Reflectivity			

Measured and estimated waveform

Advantage

- No limitation for number of measured pulses (echoes) per emitted pulse
- Various feature extraction possibilities
- Adaptive threshold for pulse detection

Feature extraction (II)

Institut für Photogrammetrie und Fernerkundung

Test data

2TB raw data

3 test areas of full waveform Laser data

5 billion points in total with following attributes:

- 3 full waveform features (xyz Position, Amplitude, Pulse width)
- 3 derived features (normalized intensity, number of echos, (ordered) echo number)

Test data

Land cover classes

Bundesamt für Kartographie			Rauheitsklasifizierung (BAW)			Rauheitsklasifizierung (BfG)			
DLM-DE 2009			Erstellung von Rauheitsflächen Version 1.0 02/2009		Leistungsbeschreibung V1.0 24.11.2011				
	_Code		Klasse RKG	Bezeichnung	Kla	sse Bezeichnung			
112	Nicht durchgängig städtische Prägung		500	Vorland - Ortschaft	k.A	. Bebauung (Wohn-, Industrie-, Gewerbe)			
121	Industrie- und Gewerbeflächen		510	Vorland - Industrie	k.A	Bebauung (Wohn-, Industrie-, Gewerbe)			
			520	Vorland - Sonderfläche	k.A	Bebauung (Wohn-, Industrie-, Gewerbe)			
			530	Vorland - Sonderfläche nicht erodierbar	k.A	. Verkehrsflächen			
			60	Technik - Pflaster	k.A	. Bauwerke am Gewässer "glatt"			
			80	Technik - Steinschüttung	k.A	. Bauwerke am Gewässer "rauh"			
			81	Technik - Steinschüttung Buhne					
122	Straßen, Eisenbahn]							
123	Hafengebiete	T	900	Hafen	k.A	. Bebauung			
141	Städtische Grünflächen	1							
142	Sport- und Freizeitanlagen	1							
211	Nicht bewässertes Ackerland		220	Ackerland					
231	Wiesen und Weiden	$\left\langle \cdot \right\rangle$	210	Vorland - Grünland	k.A	. Grün-, Grasland			
311	Laubwälder		420	Vorland - Laubwald	k.A	. Wald* **			
312	Nadelwälder				k.A	. Wald* **			
313	Mischwälder		400	Vorland - Wald	k.A	. Wald* **			
322	Heiden und Moorheiden		230	Vorland - Heide	k.A	. Hecken, Buschwerk, Gestrüpp**			
324	Wald-Strauch-Übergangsstadien		260	Vorland - Wildwuchs	k.A	. Hecken, Buschwerk, Gestrüpp**			
			310	Vorland - geschlossenes Buschwerk	k.A	. Hecken, Buschwerk, Gestrüpp**			
331	Strände, Dünen und Sandflächen		101	Gewässerbett - schlammig-sandig					
			102	Gewässerbett - sandig-kiesig					
411	Sümpfe		270	Nasser Boden	k.A	Moor, Sumpf, Ried			
511	Gewässerläufe		0	Fluss	k.A	. Offene Wasserflächen			
			910	Nebengewässer - seitlicher Zufluss / Kanal	k.A	. Offene Wasserflächen			
512	Wasserflächen	<u> </u>	930	Nebengewässer - Sonstiges Gewässer	k.A	. Offene Wasserflächen			
					+ \ \ \ - \ - \ - \ \ \				
					** mit Spezifizierung Höhe und Dichte des Rewuchses				
					* Wald (H ** mit Spe	artholz, Weichholz, mit/ohne Unterholz) ezifizierung Höhe und Dichte des Bewuchses			

point cloud 2012-06-18 reg data small 01ss3.ply point cloud 2012-06-18 reg data small 01sss5.ply

Supervised classsification by Support Vector Machines

- For inseparable classes the convex hulls intersect
- Solutions:
 - "Kernel trick" (higher dimensionality)
 - "Generalization" by slack-variable(s)

=> Kernel trick and slack-variable can be combined

Classification results

Comparision of classification with reference data (derived from ortho photos)

DOP-NW 09/2009

- 210 Vorland- Grünland
- 220 Ackerland
- 230 Vorland Heide
- 260 Vorland Wildwuchs
- 310 Vorland geschlossenes Buschwerk
- 400 Vorland Wald
- 420 Vorland Laubwald
- 500 Vorland Ortschaft
- 520 Vorland Sonderfläche
- 530 Vorland Sonderfläche nicht erodierbar

classification result (without neighborhood)

Confusion matrix (results for 5x5 neighborhood)

	vorgegebene Klassen																	
	0	60	\$ 0	81	101	102	210	220	230	260	270	310	400	420	500	510	520	530
	60	0,6881	0,0191	0,0777	0,0000	0,0650	0,0825	0,0615	0,1080	0,0275	0,0162	0,0072	0,0014	0,0055	0,0074	0,0000	0,0292	0,0164
	80	0,0207	0,6237	0,1268	0,0455	0,0702	0,0041	0,0019	0,0379	0,0548	0,0240	0,0388	0,0283	0,0527	0,0074	0,0001	0,0059	0,0008
	81	0,0757	0,1331	0,5762	0,1263	0,1922	0,0032	0,0004	0,0387	0,0134	0,0215	0,0018	0,0012	0,0079	0,0002	0,0000	0,0013	0,0009
	101	0,0000	0,0115	0,0102	0,6818	0,0086	0,0002	0,0001	0,0016	0,0001	0,0086	0,0003	0,0001	0,0008	0,0000	0,0000	0,0000	0,0000
	102	0,0535	0,0640	0,1648	0.0404	0,5404	0,0290	0,0073	0,0421	0,0348	0,0141	0,0111	0,0105	0,0223	0,0013	0,0000	0,0098	0,0079
	210	0,0443	0,0025	0,0012	0,0000	0,0154	0,3565	0,1394	0,0800	0,0384	0,0017	0,0275	0,0067	0,0155	0,0286	0,0029	0,0693	0,0704
sen	220	0,0493	0,0020	0,0002	0,0000	0,0028	0,2308	0,5867	0,0554	0,0177	0,0000	0,0384	0,0037	0,0060	0,0556	0,0037	0,1359	0,0859
teKlar	230	0,0200	0,0217	0,0088	0,0253	0,0389	0,1296	0.0714	0,4988	0.0741	0,0048	0,0368	0,0073	0,0283	0,0330	0,0003	0,0661	0,0156
sffizier	260	0,0064	0,0315	0,0071	0,0000	0,0159	0,0189	0,0098	0,0415	0,4011	0,0069	0,1195	0,0756	0,1483	0,0297	0,0112	0,0433	0,0228
klas	270	0,0278	0,0161	0,0216	0,0808	0,0257	0,0017	0,0002	0,0184	0,0064	0,8847	0,0011	0,0012	0,0241	0,0002	0,0002	0,0001	0,0000
	310	0,0007	0,0250	0,0014	0,0000	0,0056	0,0167	0,0106	0,0227	0,0889	0,0012	0,4445	0,0922	0,1654	0,0488	0,0037	0,0367	0,0171
	400	0,0000	0,0135	0,0004	0,0000	0,0042	0,0052	0,0044	0,0042	0,0577	0,0008	0,0669	0,5349	0,1772	0,0229	0,0300	0,0199	0,0308
	420	0,0014	0,0302	0,0034	0,0000	0,0121	0,0061	0,0032	0,0135	0,1038	0,0151	0,1290	0,1647	0,2961	0,0203	0,0134	0,0173	0,0137
	500	0,0014	0,0034	0,0001	0,0000	0,0004	0,0119	0,0125	0,0163	0,0186	0,0004	0,0367	0,0138	0,0150	0,5441	0,0497	0,0801	0,0612
	510	0,0000	0,0003	0,0000	0,0000	0,0000	0,0047	0,0047	0,0004	0,0069	0,0000	0,0009	0,0219	0,0128	0.0404	0,7846	0,0129	0,0866
	520	0,0071	0,0025	0,0001	0,0000	0,0023	0,0350	0.0426	0,0149	0,0326	0,0001	0,0297	0,0095	0,0108	0,0718	0,0069	0,3765	0,0825
	530	0,0036	0,0001	0,0001	0,0000	0,0003	0,0639	0,0434	0,0057	0,0232	0,0000	0,0099	0,0270	0,0112	0,0884	0,0934	0,0957	0,4873

Overall accuracies for different neighborhoods

	natah	Without	3x3	5x5		
	patch	neighborhood	neighborhood	neighborhood		
60	0,0000	0,4276	0,6504	0,6881		
80	0,0954	0,4557	0,4673	0,6237		
81	-	0,4590	0,5353	0,5762		
101	-	0,0606	0,5244	0,6818		
102	0,0430	0,4452	0,4158	0,5404		
210	0,6772	0,2171	0,2689	0,3565		
220	0,1065	0,5699	0,6153	0,5867		
230	0,0495	0,3822	0,4686	0,4988		
260	0,0182	0,3279	0,3860	0,4011		
270	-	0,6415	0,6735	0,8847		
310	0,0148	0,2741	0,4210	0,4445		
400	0,3306	0,4346	0,5320	0,5349		
420	0,2118	0,2181	0,2956	0,2961		
500	0,3077	0,2907	0,5100	0,5441		
510	-	0,7403	0,7755	0,7846		
520	0,0065	0,2785	0,3522	0,3765		
530	0,3529	0,3373	0,4664	0,4873		

Assessment

- Data load of Laserscanning data requires automated processing
- Significantly faster processing
- Mainly geometric features considered (up to now)
- Moderate completeness:
 - Some classes are not seperable
 - Yet, definition of some classes can be modified for hydrodynamic modelling

Outlook:

- Integration of context (relation between objects)
 - => "Conditional Random Fields"

Extraction of Watersheds and Catchments

- Watersheds and watercourses
 - are important features in hydrological GIS applications
 - play an important role for the segmentation of images
- Extracted watersheds often are incomplete and inaccurate (especially when ridge detectors are used)

© C.Steger

Theory (I)

- Regard the surface (terrain) as a function f(x) ($x \in \mathbb{R}^2$)
- Critical points of the surface: $\nabla f = 0$ (minima, maxima, saddle points)
- Every non-critical point p lies on exactly one slope line
- The point p divides the corresponding slope line into an ascending and a descending part
- The two parts of the slope line are the solutions of the ODE $\dot{x}(t) = \pm \nabla f(x(t))$ with the initial condition x(0) = p

© C.Steger

Theory (II)

- From every saddle point, exactly two ascending and two descending slope lines "emanate" in the principal directions
- The two ascending slope lines are the ridge lines; they reach a maximum or saddle point
- The two descending slope lines are the valley lines; they reach a minimum or saddle point

Every maximum is surrounded by a ring of valley lines, on which only minima and saddle points occur as critical points

Every minimum is surrounded by a ring of ridge lines, on which only maxima and saddle points occur as critical points

Extraction of Critical Points

- Critical points, especially saddle points, are essential for the construction of the ridge and valley lines
- Smoothing of the DTM or image with the derivatives of Gaussian masks leads to a second-order Taylor polynomial in each pixel
- Subpixel-precise extrapolation of the critical points from the Taylor polynomial $(\mathbf{H}f \cdot x = -\nabla f)$
- Eigenvalues λ₁, λ₂ of the Hessian matrix give the classification into maxima (λ₁, λ₂ < 0), minima (λ₁, λ₂ > 0), and saddle points (λ₁ < 0, λ₂ > 0)
- Eigenvectors e₁, e₂ of the Hessian matrix give the starting directions of the four special slope lines in each saddle point

Extraction of ridge lines and valley lines and valley lines

- · Construction of the separatrices starting from the saddle points
- Solve the defining ODE $\dot{x}(t) = \nabla f(x(t))$ for ridge lines and $\dot{x}(t) = -\nabla f(x(t))$ for valley lines
- Initial condition x(0) = p given by a small step in the direction $\pm e_1$ ($\lambda_1 < 0$) for valley lines and $\pm e_2$ ($\lambda_2 > 0$) for ridge lines

© C.Steger

Examples

Extracted Catchments/Basins: complete solution

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification
... 3D data: Roughness classification and derivation of catchments
... Interferometric SAR Data: Water flow and water level

• Final remarks

Reflection properties

Coastline Detection from SAR Images

Puppling Test Site I

SAR Amplitude Image of the Puppling Site

Result from ATI Analysis

k Isar / Puppling 1, 13.05.2005, DT_204, look 2, PBW=200Hz

Result for ATI current velocity:

Pixel analyzed: 61

Min/Max: 2.27 / 0.56 m/s

Mean: 1.22 m/s

Result from in-situ measurement:

Mean: 1,70 m/s

© DLR

Isar 12/05/06 - Ground Truth Measurements

Amplitude image of DT0210x1

1st fly over: Surface velocity from displacement

2nd fly over: Surface velocity from displacement

© DLR

© DLR

Contents

- Some Remote Sensing Systems
- Automated Analysis of...

... Hyperspectral images: Land cover classification
... 3D data: Roughness classification and derivation of catchments
... Interferometric SAR Data: Water flow and water level

• Final remarks

Final remarks:

3 Examples:

- Water analysis based on hyperspectral data:
 - Expensive sensors, currently only one satellite available (Hyperion)
 - Complex methods: balance of data-driven and model-based methods
 - Much room for research, only first steps towards operational systems
- Automatic roughness classification and derivation of catchments from 3D data:
 - High geometric accuracy
 - Operational methods, yet more context knowledge necessary
 - Data-driven method: results depend heavily on quality of input data
- Interferometric SAR for assessing water dynamics
 - Expensive technology, complex data acquisition and processing
 - Much room for research, esp. model-based approaches
 - Large-scale research, joint projects necessary (DLR, GFZ, industry, etc.)

Thank you very much for your attention!