
Coulomb Interaction and Transport in Graphene Structures

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der Fakultät für Physik des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl. Phys. Michael Schütt
aus Offenburg

Tag der mündlichen Prüfung: 25.01.2013
Referent: Prof. Dr. A. D. Mirlin

Korreferent: Prof. Dr. J. Schmalian





To my wife

For giving me a haven in troubling times,
for her endless support and for keeping my
feet on the ground when physics pulls to
hard.

To my parents

For the unconditioned trust I received, for
stimulating my curiosity and for everything
else.





Contents

1 Introduction 1

2 Basics 5
2.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Tight-Binding Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 The Dirac Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Differences Between Graphene and Fermi-Liquid . . . . . . . . . . . . . . . . . . 9

2.2 Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Interaction Effects in a 2D Electron Gas in Contrast to Graphene . . . . . . . . 12

2.3 Field Theoretical Formulation and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Keldysh Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Keldysh Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The Kinetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Derivation of the Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 The Hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Coulomb Interaction in Graphene: Previous Analysis 27
3.1 Coulomb Interaction in Graphene at Zero Temperature . . . . . . . . . . . . . . . . . . 27

3.1.1 Renormalization Group Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 The Polarization-Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 The Scattering Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Coulomb Interaction in Graphene: Finite Temperature Analysis 35
4.1 The Polarization Operator at Finite Temperature . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 The RPA Screened Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 The Rates at Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Quantum Scattering Rate in Graphene . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Dephasing Rate at High Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Energy Relaxation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Transport 49
5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Drude Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Transport in Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 The Kinetic Equation for Graphene . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



Contents

5.2.2 The Functional Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 The Conductivity in Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.4 Non Analytic Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Hydrodynamics for Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 The local Hydrodynamic picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Derivation of the non-local Hydrodynamics . . . . . . . . . . . . . . . . . . . . . 64

5.4 Diagrammatic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Transport Scattering Rate due to Inelastic Collisions . . . . . . . . . . . . . . . . 66
5.4.2 Transport Scattering Rate: Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Collision-Limited Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.4 Qualitative Discussion of the Effect of Disorder and Comparison with Experiments 72

6 Coulomb Drag in Graphene: Basics and Previous Work 75
6.1 Definition of Coulomb Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Classical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Coulomb Drag in 2DEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Coulomb Drag in Graphene in Contrast to Coulomb Drag in 2DEG . . . . . . . 77
6.3 Coulomb Drag in Graphene: a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 The Perturbative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Coulomb Drag in Graphene: The Kinetic Equation Approach 81
7.1 The Two Layer Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.1 Formulation of the Two Layer Kinetic Equation . . . . . . . . . . . . . . . . . . . 81
7.1.2 The Ansatz for the Two Layer System . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.3 The Effective Kinetic Equations and Thermalization . . . . . . . . . . . . . . . . 84

7.2 The Coulomb Drag Resistivity in Graphene . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.1 Asymptotics of the Resistivity and its Numerical Evaluation . . . . . . . . . . . 88
7.2.2 Discussion of the Results and Their Validity . . . . . . . . . . . . . . . . . . . . . 92
7.2.3 Comparison to Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Coulomb Drag in Graphene: Generalizations and Further Developments 97
8.1 Multilayer Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 The Hall Drag and Magnetodrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.1 Applicability of the Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.2 The Kinetic Equation in the Presence of a Magnetic Field . . . . . . . . . . . . . 100
8.2.3 Asymptotics of the Hall Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2.4 Properties and Analysis of the Hall Drag . . . . . . . . . . . . . . . . . . . . . . 105
8.2.5 Magnetic Field Induced Drag at the Dirac Point . . . . . . . . . . . . . . . . . . 107
8.2.6 Comparison to Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Higher-Order Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.1 The Vanishing of the Leading Order . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.2 The Changes Due to Higher Order-Drag . . . . . . . . . . . . . . . . . . . . . . . 111

8.4 Drude-Like Picture for Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9 Conclusion 119

vi



Contents

A Keldysh Objects and the Kinetic Equation 123
A.1 Keldysh Self-energy and Keldysh Polarization Operator . . . . . . . . . . . . . . . . . . 123

A.1.1 The Kedlysh Self-energy in Lowest Order . . . . . . . . . . . . . . . . . . . . . . 123
A.1.2 The Keldysh Polarization Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 The Collision Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.2.1 Coulomb interaction: Lowest Order . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2.2 Coulomb Interaction: Sub-leading Contributions . . . . . . . . . . . . . . . . . . 127

A.3 The Linearized Collision Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Polarization and Rates 133
B.1 Polarization Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Calculating the Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.2.1 Definitions of the Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.2.2 Simplifying the Integrand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2.3 Results for the Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.3 Scattering Rates from the Generalized Golden Rule . . . . . . . . . . . . . . . . . . . . . 142

C Effective Kinetic Equations and Collision Integrals 145
C.1 Solution of the Effective Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.1.1 The Functional Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.1.2 Derivation of the Effective Kinetic Equation for Coulomb Drag of Two Layers . . 146
C.1.3 The Effective Kinetic Equation for Three Layers . . . . . . . . . . . . . . . . . . 148
C.1.4 The Effective Kinetic Equation in Presence of a Magnetic Field . . . . . . . . . . 149

C.2 The Integrals Appearing within the Effective Kinetic Equation . . . . . . . . . . . . . . 150
C.2.1 Simplification of the Generalized Vertex Functions (GVF) . . . . . . . . . . . . . 151
C.2.2 Insights to the Collision Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.2.3 The Collision Kernels Involving the Imbalance Mode . . . . . . . . . . . . . . . . 153

C.3 The Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.3.1 The Limit of Small Chemical Potential . . . . . . . . . . . . . . . . . . . . . . . . 155
C.3.2 The Limit of Large Chemical Potential . . . . . . . . . . . . . . . . . . . . . . . . 157

D Correlated Disorder and Diffusive Corrections to the Higher-Order Drag 163
D.1 Estimation of Diffusive Higher Order-drag . . . . . . . . . . . . . . . . . . . . . . . . . . 163
D.2 Estimation of Correlated Disorder Contributions . . . . . . . . . . . . . . . . . . . . . . 165

D.2.1 A. Short-Range Correlations: Correlated Impurity Scattering . . . . . . . . . . . 165
D.2.2 B. Long-Range Correlations: Correlated Macroscopic Inhomogeneities . . . . . . 167

Bibliography 183

vii





1 Chapter 1

Introduction

It was less than a decade ago that in Manchester a material was synthesized for the first time in a
controlled way [1] whose properties at first sight seem implausible. What Andre Geim and Konstantin
Novoselov managed to fabricate is graphene [2], a mono-layer of carbon atoms forming a planar (2D)
honeycomb structure. Since it is only one atom thick, graphene is a truly two-dimensional crystal,
something that for thermodynamic reasons was thought not to exist [3, 4]. The way they managed
to isolate graphene is legendary; which amongst several other steps, scotch tape to peel the layers
off prepared graphite samples is involved. The material they managed to identify afterwards on their
substrate has since then written superlatives with its unique properties. From the mechanical point
of view, experiments showed that graphene is the strongest material ever measured [5]. It appears to
be essentially impermeable to any gases [6], and graphene based membranes turn out to be Helium-
Leak-Tight but allow water to permeate [7]. Graphene has a remarkably high thermal mobility [8]
and even its optical properties are fascinating, since this one atom thick layer of carbon atoms absorbs
almost exactly πα ≈ 2.3% (α being the fine structure constant) of white light [9], quite an amount for
a one atom thick material. On the other hand 97.7% is transmitted making it essentially transpar-
ent. Nonetheless graphene layers exhibit very good electronic properties with mobilities that exceed
100, 000cm2V −1s−1 [10]. Due to this high mobility graphene exhibits the quantum Hall effect already
at room temperature [11]. It is in this context not at all surprising that Andre Geim and Konstantin
Novoselov got the Nobel Prize of Physics in 2010, only a few years after their discovery of graphene.
Since 2004 the number of graphene related works has grown tremendously (from 155 in 2004 to 9,878

in 2012 for graphene related topics in the web of science). The discovery of graphene essentially created
a complete field within physics dealing with the properties of graphene and possible applications. But
on top of all this, the most astonishing fact is that graphene has developed within a few years from a
subject of basic research towards a material that is heading towards its first commercial applications.
Current road-maps suggest the development of graphene based touch screens and rollable E-paper
within a few years from now [12]. In slightly longer terms there are many other applications suggested.
As examples we may name terahertz detectors or high frequency transistors, which rely on the unique
electronic properties of graphene.
In view of the seemingly well planned and focused road-map of applications one might get the

impression that graphene is a material that is already fully understood and the only task left is to
harvest possible applications. The surprising and wonderful fact, instead, is that graphene has still
many mysteries and there seems so far no end in the unveiling of astonishing properties.
Looking at the electronic structure, there are several approaches to graphene: coming from semi-
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1 Introduction

conductor physics graphene may be viewed as a semiconductor with zero bandgap whereas scientists
working with metallic systems may refer to graphene as a semimetal. From the pure fact that both
terms are used, one can already conclude that graphene somehow “sits between the chairs”. It is indeed
possible to tune, by gating, the charge carrier concentration from hole like carriers through a charge
neutral point, the so-called Dirac point, towards electron like carriers and reach there, if sufficiently
many carriers are present, metallic behavior. At the Dirac point, however, graphene is not insulating,
as one may expect due to the absence of charge carriers. There is a minimal conductivity left of the
order of e2/h [13]. Whichever classification is favored, the key point of graphene’s electronic struc-
ture is the peculiar behavior of its charge carriers. The compelling fact1 about the quasi-particles in
graphene is that they obey the equations of motion of massless relativistic particles [14], i.e., the Dirac
equation. The resulting consequences are observable in experiments and even allow for verification of
some phenomena, like the “zitterbewegung” [13, 15] responsible for the minimal conductivity, which
instead of a large particle collider usually required for ultra-relativistic phenomena, is seen within a
table top experiment. The need to deal with relativistic particles is a rather uncommon feature in
condensed matter systems since the focus in these systems is on low energies. Particles with low ener-
gies usually do not reach relativistic velocities which forces us to look for a different reason to explain
the relativistic behavior. It is known that symmetry can provide us with such a mechanism [14]. In
graphene the lattice itself provides us with the symmetry needed to gain massless quasi-particles. It is
very important to stress that the particles velocity is way smaller than the speed of light; the crucial
point is, that due to the lattice symmetry this smaller velocity appears to them as if they move with
the speed of light. We may avoid confusion by calling the true speed of light c and the fake speed
of light the particles in graphene exhibit vF . Whereas free particles obey the Lorentz symmetry with
respect to c, the quasi-particles in graphene do so with vF . The ultra-relativistic physics that is gained
by this symmetry unveils itself in phenomena usually only discussed in high energy physics. These
phenomena are now experimentally verified in condensed matter systems like the Klein tunneling [16]
through potential barriers.
The question that we dedicate our attention to in this thesis is: what is the influence of Coulomb

interaction on the electronic properties of graphene?
The motivation to study interaction effects is the observation, that due to the higher and higher

quality of the samples available these days [10], interaction effects should become more and more
relevant and more easily measurable. A classical experimental setting in this regard is the Coulomb
drag [17, 18] that relies on the interaction between two electronically separated layers. But mani-
festations of the Coulomb interaction appear already in much simpler setups. The electrical current
in graphene for example, is affected by Coulomb interaction. If one ignores the lattice, this sounds
unlikely since current is protected by momentum conservation due to Galilean invariance. In real sys-
tems, a lattice affects this naive picture allowing for umklapp scattering, which is responsible for the
T 2-dependence of conductivity in Fermi-liquids. In graphene the electronic properties are governed by
the boundary of the Brillouin zone, which via umklapp scattering processes forms effectively graphene’s
Lorentz symmetry and thus leads to relaxation of the current due to the Coulomb interaction.
We will in this work consider both conductivity of clean graphene and Coulomb drag in double layer

graphene. But first, we must determine the effective strength of the Coulomb interaction.
The effective coupling strength αg in free graphene (a counterpart of the fine structure constant of

1From the Big Bang Theory: “The Einstein Approximation”, (Season 3, Episode 14), (2009-2010 Premiered on CBS)
Howard: Sheldon, what the hell are you doing?
Sheldon: Same thing I’ve been doing for three days. Trying to figure out why electrons behave as if they have no
mass when traveling through a graphene sheet.

2



quantum electrodynamics) is of order unity. This might raise the question whether interaction can
induce gaps in the system. However, experiments on free-standing graphene show no indication of
a gap down to very low temperatures [19]. To be able to proceed analytically, we will assume that
αg is small. This is the case for the majority of experiments where graphene on insulating dielectric
substrates is studied.
However, when interaction is perturbative one might wonder what discriminates the setup from

the well-known high energy picture of quantum electrodynamics (QED). In QED, ultra-relativistic
particles move nearly as fast as the interaction between them, making them essentially non-interacting.
In graphene it is the fact that, although its quasi-particles behave ultra-relativistically, they appear, in
contrast to the electrodynamics obeying the Lorentz symmetry with respect to c, as completely non-
relativistic. From the point of view of the quasi-particles in graphene we are in an ultra-relativistic
(with respect to vF ) setup that interacts faster than “light” (the maximal speed of graphene quasi-
particles vF ). It is this delicate but crucial point of explicit and strong Lorentz symmetry breaking that
forms the heart of the phenomenon we will refer to as forward scattering resonance — a resonance that
creates interesting changes in the electronic behavior of the system. Within this work we will consider
scattering rates that posses non-trivial structure due to this phenomenon. Furthermore, we will see
how this forward scattering resonance condenses into a direction dependent equilibrium ansatz, that
allows us to solve analytically the kinetic equation. In this regard, this resonance guides us throughout
this work and will provide us with rich physics and interesting effects to deal with.
This thesis is organized as follows:
In Chapter 2, we establish the basic language and provide the elementary concepts, like the forward

scattering resonance, needed to understand the peculiarity of graphene.
With Chapter 3 an overview is given on the phenomena related to the interplay of the Coulomb

interaction and graphene. We will show that in some respect, the problem is ill-defined at the Dirac
point.
The resolution to this obstacle is given in Chapter 4, where we focus on the electronic structure

at the Dirac point. In this chapter we will determine the quasi-particle lifetime, dephasing rate and
energy relaxation rate within the random phase approximation, which turns out to be a suitable way
at finite temperature.
Starting with Chapter 5, we will consider transport phenomena in graphene. We will present the

method of previous works and explain the underlying connection to the foregone chapter. For clarity,
we will cover two different approaches to transport, the kinetic equation used by previous works and
a diagrammatic calculation of the conductivity within the random phase approximation. We will see
that both methods complement each other. Further we will present the hydrodynamic formulation of
the transport in graphene.
Subsequently we, will introduce the effect of Coulomb drag in Chapter 6 and briefly describe the

activities that have been performed in the field.
Chapter 7 is dedicated to the studies of the physics governing the Coulomb drag in graphene. In

this chapter we will employ the kinetic equation approach to the Coulomb drag and will introduce the
phenomenon of thermalization that appears between the layers.
In the following Chapter 8, we extend the formulation of the Coulomb drag towards multi-layer

drag and Hall drag. We will present a possible extension towards higher order drag and we will present
a Drude-like formulation, which allows for a more intuitive approach to the problem.
Finally, we finish in Chapter 9 with a conclusion and a summary of the obtained results.
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2 Chapter 2

Basics

To those who do not know mathematics it is difficult to get across a real feeling as to the
beauty, the deepest beauty, of nature ...

R. Feynman, The Character of Physical Law (1965) Ch. 2

For any serious discussion of a problem one needs to fix some basic language. This chapter is
dedicated to provide briefly the basics of graphene, the Coulomb interaction and the formalism we are
going to use throughout this work. Each of the topics deserves a far more complete discussion, which
we cannot provide within this work but for which we will refer to literature within the corresponding
sections.

2.1 Graphene

2.1.1 Definition

What is graphene [2, 20]?

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D)
honeycomb lattice, and is a basic building block for graphitic materials of all other dimen-
sionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked
into 3D graphite.

A.K. Geim and K.S. Novoselov The rise of graphene [2]

Its diversity has made graphene a promising material with a plethora of ideas for possible applica-
tions. Since graphene is a fairly good conductor [13, 21], considering its one atom thickness, a valid
question is why it conducts, or — to rephrase that — how the process of transport works in graphene.
Of course, there are several known phenomena that affect transport, such as disorder or phonons, but,
as will be shown, even the Coulomb interaction will affect transport in graphene. At this point we
wish to remind the reader that the Coulomb interaction conserves the total momentum of the system.
Thus, in systems where transport is affected by the Coulomb interaction it is clear that additional in-
gredients have to be taken into account. In condensed matter systems this is the lattice, which breaks
the translation symmetry and turns momentum into quasi-momentum. When including the lattice,
the Coulomb interaction can relax the current, since the quasi-momentum is still conserved but not
the original kinetic momentum. The process allowing for relaxation is the umklapp scattering [22].

5



2 Basics

Figure 2.1: The lattice of graphene with a colored emphasis on the sublattice separation.

However, if one considers an effective field theory the lattice disappears, hence the Coulomb interaction
seemingly can not relax the current due to Galilean invariance. In this work we will argue in terms
of symmetries, rather than lattice properties, although these symmetries arise from the lattice. We
will see that in graphene a Lorentz symmetry emerges allowing for relaxation of the current by the
Coulomb interaction. Thus, the focus of our attention in this work is on the phenomena related to the
electronic structure and the transport properties of graphene in presence of the Coulomb interaction.

2.1.2 The Tight-Binding Approach

Graphene owes his lattice structure to the sp2-bonding of the carbon atoms. Without going into the
details of the chemistry of the bonds the crucial input we need to describe its electronic structure is
the fact that it forms a honeycomb lattice. This is not part of the regular two dimensional Bravais
lattices, since translation of single atom positions will not form periodically the hexagonal structure.
To overcome this problem one chooses a basis containing two neighboring carbon atoms gaining a
Bravais lattice that has triangular structure. One should note that since we need to have two identical
atoms within the basis, we have explicitly created a symmetry that will manifest itself in a touching
of the bands as shown in Fig. 2.2. But let us proceed step by step and define now a proper structure
to describe graphene.
Let us designate the two different atoms of the basis A and B and the two vectors spanning the

lattice

~a1 = a

2(3,
√

3)T and ~a2 = a

2(3,−
√

3)T . (2.1)

This is the nomenclature that is illustrated in Fig. 2.1.
Within the tight-binding approach we now assume that due to the overlap of atomic orbitals there

is a finite probability for an electron to hop to one of its nearest neighboring atoms. Within this
simplified model we can therefore think about hopping of electrons from one atom to its neighboring

6



2.1 Graphene

ones with an amplitude of t:

H = −t
∑

<i,j>,σ

(
a†σ,ibσ,j + h.c.

)
=

∑
<i,j>,σ

(
a†σ,i b†σ,i

)
·
(

0 −t
−t 0

)
·
(
aσ,j
bσ,j

)
.

The notation < i, j > indicates the nearest neighbors of the Bravais lattice, where a and b distinguish
the sublattices (atoms A and B) on the operator level. Further we take into account electrons with
different spins σ. If we proceed by transforming into momentum space we obtain

H =
∑
k,σ

(
a†σ,k b†σ,k

)
·
(

0 −t
∑
j e

ikδj

−t
∑
j e
−ikδj 0

)
·
(
aσ,k
bσ,k

)
.

The dispersion of the electronic system is now given by the eigenvalues of this Hamiltonian. The δs
that appear here are the vectors connecting the nearest neighbors as shown in Fig. 2.1 and read:

δ1 = a

2(1,−
√

3)T δ2 = a

2(1,
√

3)T δ3 = a (2.2)

The Dispersion of Graphene

The dispersion of graphene was calculated more than half a century before its discovery [23]. Within
the above nearest-neighbor calculation the dispersion is given by

ε
(
k
)

= ±t|
∑
j

eikδj | = ±t

√√√√√3 + 2 cos
(√

3kya
)

+ 4 cos

√3
2 kya

 cos
(

3
2kxa

)
. (2.3)

A graphical illustration of this dispersion can be seen by Fig. 2.2. The bandwidth is of the order
of eV , which is determined by the scale of the parameter t (a microscopic property). Since we are
interested in macroscopic properties we need to know the low energy behavior of electronic excitations
in graphene, which means that the physics we are mainly interested in will be around the K-points1,
where the energy is zero,

K =
(

2π
3a ,

2π
3
√

3a

)
and K ′ =

(
2π
3a , −

2π
3
√

3a

)
.

These are the points where the dispersion is exactly zero. One should note that these points are not
an artefact of the nearest-neighbor calculation. The existence of the K-points and the dispersion close
to it follows from symmetry considerations [14, 24, 25]. If we expand the surrounding dispersion we
arrive at a dispersion of the form

ε
(
p
)
≈ ± 3

2 ta︸︷︷︸
vF

|p|+O
(
(p/K)2

)
. (2.4)

Subsequently, we will derive an effective Hamiltonian that will describe the physics around those
K-points.

1It is worth to note that the K-point is at the boundary of the Brillouin zone. This means that a symmetry that arises
from the K-point can have non-Galilean contributions, which correspond to umklapp scattering processes.
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2 Basics

Figure 2.2: The dispersion of graphene in the reciprocal lattice. The figure shows three Brillouin
zones to demonstrate the formation of the two inequivalent K points in graphene.

2.1.3 The Dirac Hamiltonian

The Hamiltonian around the K-points can be derived if one expands the previous form of the Hamil-
tonian in small momenta around the momentum K or similarly K ′:

− t
∑
j

e±i(K+p)δj = −ti(e±iKδ1pδ1 + e±iKδ2pδ2 + e±iKδ3pδ3) =

− ta3
2
i+
√

3
2 (ipx ± py) = vF

(
px ∓ ipy

)
eiϕ

up to a phase= vF σ · ~p. (2.5)

Thus the low energy physics of the electronic system in graphene appears to follow the Dirac-Hamiltonian.
By simple replacement of vF with c one obtains the ultra-relativistic Hamiltonian describing for exam-
ple massless neutrinos in particle physics. Although this means that the behavior of our excitations
is ultra relativistic one should note that there is no true speed of light involved. In graphene the
Fermi velocity is vF ≈ c0

300 , which definitely allows for a non-relativistic treatment. It is a property of
the lattice that creates, due to interference, electronic excitations that behave in an ultra-relativistic
manner without actually reaching the true speed of light. This is what we refer to when speaking
about ultra-relativistic physics in graphene.
We see in the Hamiltonian above Eq. (2.5) that, since we neglect spin orbit-coupling, there is no

signature of spin left, which means we can treat spin as a mere degeneracy. Furthermore we have the
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2.1 Graphene

freedom to choose the point to expand around for the low energy model, namely K or K ′. In both
cases, we arrive at the same Hamiltonian (up to a phase), which means that we have an additional
degeneracy due to the valley we expand around, the so-called valley degree of freedom. In total we
therefore have a degeneracy N = 4 in graphene.

2.1.4 Differences Between Graphene and Fermi-Liquid

Having derived the basics of graphene it is worth looking back and recapitulating what distinguishes
it from the usual Fermi liquid (FL) systems. We will concentrate on properties that will be important
for our purpose. From the perspective of electronic properties one of the most crucial differences is the
group velocity. For this reason we compare (for simplicity) a Fermi liquid, in systems with a parabolic
dispersion2, with graphene:

Graphene ε = vF |~p|

~v = ∂ε(~p)
∂p

= v2
F

~p

ε
, (2.6)

Parabolic FL ε = ~p2/(2m)

~v = ∂ε(~p)
∂p

= ~p

m
. (2.7)

It is essential to notice, that the absolute value of the velocity in graphene is constant. With higher
momentum a parabolic spectrum has a higher velocity but in graphene that is not the case. The reason
is the ultra-relativistic physics we are dealing with. In this sense, the velocity and the momentum in
graphene are two essentially different quantities. This distinguishes graphene from a parabolic Fermi-
liquid where momentum and velocity differ only by a constant. As we will see below, the impact of
this difference becomes particularly dramatic in the vicinity of the Dirac point.
When treating FL systems one linearizes around the Fermi energy and argues that within this

approximation the electronic excitations have constant velocity. To compare the two systems within
the linearized FL approximation we will look at the energy conservation represented in terms of delta-
distribution constraints for the situation of a small transfered momentum ~q = ~p2− ~p1 = ~p1′ − ~p2′ . The
general form of the constraint is given by

δ

~q(∂ε(~p1)
∂~p1

− ∂ε(~p1′)
∂~p1′

)
+ 1

2~q
(
∂2ε(~p1)
∂~p1∂~p1

+ ∂2ε(~p1′)
∂~p1′∂~p1′

)
~q

 . (2.8)

Further we assume that we are in a close vicinity of the Fermi-surface (|~p1| ≈ p ≈ |~p1′ |). In the
next step we will focus on the angular dependency between the momenta and consider therefore the
difference up to π (γq1′ − γq1 = δγmodπ).
The expansion around small δγ (δγ � 1) helps to gain insight into the difference between the

parabolic Fermi liquid and graphene:
Graphene

δ

[
vF q

(
sin(γq1)δγ)

)
+ vF q

2

pF
sin2(γq1)+O(δγ2)

]
, (2.9)

Parabolic FL

δ

[
vF q

(
sin(γq1)δγ)

)
+ vF q

2

pF
+O(δγ2)

]
. (2.10)

2Parabolic Fermi liquid in this context requires on top of the Fermi liquid configuration that the dispersion is close to
free particles. Since Fermi liquid usually implies a linearization of the dispersion, parabolic Fermi liquid may sounds
strange. The crucial point to make is that already the quantity of the total number of particles needs to specify the
dispersion beyond the linearized dispersion. Instead of having some mixed picture of Fermi liquid and semi-classical
model we will consider a parabolic dispersion for the situations the non-linearized dispersion affects the system.
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~p1

~p1′
~q

Figure 2.3: Illustration of the position of momenta ~p1 and ~p1′ to each other as well of the angles
~q~p1 = qp1 cos(γq1) and ~q~p1′ = qp1′ cos(γq1′ ) .

A consequence of this analysis is that in graphene it is more likely that forward scattering occurs, as
compared to a parabolic FL, this is known as the (FSR). This is seen by the appearance of sin γq1 in
the second order contribution in Eq. (2.9) as compared to Eq. (2.10). In Fig. 2.3 the correspondence
of angles of with γq1 ≈ 0 or γq1 ≈ π to forward scattering is shown. This statement is not restricted to
small momenta only, the curvature argument is only particularly transparent. The possibility of forward
scattering is already obvious when writing down the energy and the momentum conservation with the
constraint of collinear momenta. In such a situation the two conservation laws are simultaneously
fulfilled. The above estimation gives us some insight as to how the singularity in this case looks like
and how it is may be cut off by curvature. On those general terms it becomes clear that only few
dispersions, namely the truly linear ones, will exhibit the sensitivity to forward scattering processes.
One should mention that within the control parameter vF q2/pF the regime where this difference

appears can be formally reduced until it vanishes when the Fermi momentum reaches infinity. This
means that graphene will indeed show behavior of a Fermi liquid if the chemical potential is high
enough (vF q2/(pF ) ≪ 1). Still, the forward scattering resonance will be a feature present in graphene
and dominating its physics.
Another quite relevant point distinguishing graphene from a parabolic FL is the density of states

(DOS). This quantity reflects the properties of the spectra in a peculiar way such that the constant
DOS of a two dimensional parabolic FL has to be contrasted with

ν(ε) =
∫ d2p

(2π)2 δ(ε− vF |~p|) = |ε|
2πv2

F

. (2.11)

So in graphene the DOS per spin and valley is vanishing at the Dirac point.
The three effects we have discussed here (forward scattering resonance, vanishing DOS and difference

of velocity and momentum) are the ones to which we will trace back almost all the peculiarities of
graphene discussed in this work.

2.2 Coulomb Interaction

We may find illustrations of the highest doctrines of science in games and gymnastics, in
traveling by land and by water, in storms of the air and of the sea, and wherever there is
matter in motion.

J. Maxwell, Introductory Lecture on Experimental Physics held at Cambridge

One of the most basic forces relevant to our everyday life is the force that comes with electromagnetic
charges. It appears in astonishing many ways in our daily routine and belongs to the basic things even
pupils learn at school. The electrostatic interaction between charges, the Coulomb interaction, is
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2.2 Coulomb Interaction

not only a well-studied force, it is also always present in a system with charged particles. The non-
interacting description of graphene already shows physical properties unusual enough in condensed
matter physics to warrant looking more closely at the effects the Coulomb interaction can induce.
Nevertheless, the emphasis we put on Coulomb interaction in graphene might confuse the reader,

since it is clear that by its nature the Coulomb interaction is always present and involved in the
dynamics of charged particles. So one should make it clear as to why in the field of condensed matter
one often discards the Coulomb interaction entirely or treats it like a short-range interaction instead,
which the bare Coulomb interaction is clearly not. The main reason for this is screening.
The electrostatic interaction between particles can be strongly reduced by inducing charge separation

between different charge carriers. For example, if one puts a charged particle into a fluid of charge
carriers it will repel equally charged particles in its surrounding, creating a region that appears to be
slightly charged with opposite charge when compared to the mean charge density of the fluid. This
process, called Thomas–Fermi screening, can reduce the relevance of interaction enormously. This does
not necessarily mean that particles stop interacting at all but that the nature of interaction between
two particles becomes more local, maybe even short-range due to screening3.
At the same time one knows that, for example in Luttinger liquids [27–33], reduced dimensionality

can enhance the effects of interaction strongly, which may even change the nature of the quasi-particles
in the system.
Due to its two-dimensional structure and, even more, due to its vanishing density of states (DOS)

at the Dirac (K or K ′) point, screening is very weak or even absent in graphene, demanding that we
really need to consider the proper long-range Coulomb interaction. So the question is: How important
is the Coulomb interaction for the electronic properties of graphene?
If one looks up the basic properties of matter-light interaction one comes across the coupling strength

of the electromagnetic interaction, the fine structure constant

α = e2

4πε0~c0

~=1= e2

4πε0c0
≈ 1

137 . (2.12)

Its low value implies that the interaction of light and matter is rather weak in vacuum. But in graphene
it turns out that c0 is replaced by vF , enhancing the coupling strength by a factor 300,

αg = e2

4πε0εrvF
≈ 2.2

εr
, (2.13)

where εr is the dielectric constant4. One can interpret this as a consequence of the slower velocity vF
for the Dirac fermions which causes an enhanced interaction since the effective time particles interact
is increased.
Due to the possibility of strong coupling in the system there have been several attempts to find

signatures like exciton condensation or a Stoner instability [36–38], which would create a gap in the
3There is an important difference between screening in 3D and 2D. Whereas screening in 3D yields exponential sup-
pression of the interaction for distances larger than the screening length, forming effectively point like interaction
if screening length is comparable with Fermi-length. The 2D case is different. There screening appears to form a
power law dependence similar to a quadrupole for large distances [26]. The Coulomb interaction is thus screened
algebraically.

4In three dimensions the coupling constant of the coulomb interaction, that enters an effective model, is itself effective
since high energy processes allow modifications of the coupling constant [34]. Nevertheless is the coupling constant for
graphene the bare coulomb interaction (up to screening by the substrate). This is due to the inability of high energy
excitations to screen the coulomb interaction in two dimensions [35].
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spectrum. Since this has not yet been observed and since graphene on substrates gains an additional
reduction of the Coulomb interaction strength by screening (εr) our approach to the problem will be
perturbative in αg while keeping the Coulomb interaction as a long-range interaction.
Treating the long-range Coulomb interaction perturbatively and considering the fact that we have

ultra-relativistic particles, one could think that we are dealing with QED, the theory of interactions
between light and matter. Obviously, nearly every condensed matter system may ultimately be reduced
to the non-relativistic limit of the “real” QED. This way, we end up with effective theories describing
the low energy behavior of our system. In graphene the low energy model is described by Eq. (2.5),
which corresponds to an ultra-relativistic theory. This means that although the particles behave like
massless Dirac fermions moving at the Fermi velocity vF , their “speed of light” is not the speed the
Coulomb interaction propagates with, which is c. From the viewpoint of the Coulomb interaction we
are still in a non-relativistic theory. Thus the quasi particles in graphene interact instantaneously,
although the theory that describes them without interactions is Lorentz-invariant. From the point of
view of a Dirac fermion (vF ) we have a “faster than light” interaction (c) in graphene. This makes the
treatment of the Coulomb interaction in graphene quite different from the treatment within QED.

2.2.1 Interaction Effects in a 2D Electron Gas in Contrast to Graphene

The Fermi liquid theory is based upon Landau’s quasi-particle picture, which requires that small
excitations with an energy close to the Fermi energy (ε/εF � 1) need to have a much smaller energy
broadening (decay rate Γ) to be well-defined quasi-particles [39, 40]. This statement appears to hold
as long as there is no symmetry breaking induced by the interaction. In 2d electron gases (2DEG) it
can happen that even with screening the character of the interaction may remain long-range, which
may lead to singularities that change the thermodynamic quantities of the system. Still those systems
appear to be Fermi liquids in the sense that the quasi-particle picture stays largely intact [41].
Graphene at the Dirac point behaves differently since screening is less effective. This leads to

consequences in the quasi-particle picture, causing it to show marginal Fermi-liquid behavior [42]. In
this sense graphene is more sensitive to Coulomb interaction than usual 2DEGs.
In disordered 2DEGs the situation becomes more complicated since one needs to consider the inter-

play of Coulomb interaction and disorder effects [43, 44]. Since our particular interest is in the effects
induced by Coulomb interaction we will not consider the interplay of interactions and disorder that
appears in the diffusive limit, like the Altshuler-Aronov type contributions.

2.3 Field Theoretical Formulation and Notation

It seems that if one is working from the point of view of getting beauty in one’s equations,
and if one has really a sound insight, one is on a sure line of progress

P. Dirac, The Evolution of the Physicist’s Picture of Nature

The field theoretical formulation, especially in quantum mechanics, is a very elegant, intuitive de-
scription, since the complexity that appears in the presence of many particles is completely absorbed
into the usage of fields. The basic idea of this is of course very old, since hydrodynamics basically al-
ready builds upon such an interpretation. The usage of this formulation will allow us to define a proper
language to express the physics we will discuss within this work. For details we refer to the literature
[39, 40, 45–47] on this subject for details. In this section we will only briefly sketch the formalism
prerequisite for our further discussion. It will not be the only method to describe our system but it
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is a particularly beautiful one, bringing to the surface a lot of fundamental and interesting insights of
the physics governing the phenomena we are looking for.
The Hamiltonian describing the physics of our model at energies that are small enough to keep the

approximation of a conic spectrum (ε . 1eV ) is given by

Ĥ = Ĥ0 + V̂

=
∑
ν

∫
d2r Ψ̂†ν

(
~r
)(
−ivFσ ·~∇

)
Ψ̂ν

(
~r
)

+ 1
2
∑
ν,ν′

∫
d2r1d2r2 Ψ̂†ν

(
~r1
)

Ψ̂†ν′
(
~r2
) e2

ε|~r1 − ~r2|
Ψ̂ν′

(
~r2
)

Ψ̂ν

(
~r1
)
.

(2.14)

The spinors Ψ̂ have two components in the sublattice space, σi are Pauli matrices operating in this
space. The index ν labels N independent degrees of freedom (in graphene N = 4 accounts for the spin
and valleys degeneracies). We set ~ = 1. First we will focus on the case of undoped graphene and set
the chemical potential (relative to the Dirac point) to zero, µ = 0. It will be no problem to restore the
chemical potential later, but the way to do so will be explained when needed.
The retarded (advanced) Green’s function of the noninteracting Hamiltonian Ĥ0 (the bare Green’s

function) in the energy-momentum space has the form

GR,A0

(
ε, ~p
)

= ε1+ vFσ · ~p
(ε± i0)2 − v2

F p
2 . (2.15)

The Green’s functions have a matrix structure inherited from the Hamilton operator. An appropriate
way to deal with the system is to rotate it into its eigenbasis. The two eigenstates one obtains this
way correspond to the two chiral states of the system. If the direction of the momentum is fixed
the two chiralities correspond to the lower or upper branch of the conic spectrum (particle and hole).
Alternatively one can introduce the projection operators that distinguish between the two chiral states:

P±(~p) = 1± σ · ~n
2 , (2.16)

where ~np = ~p/p is the unit vector in the direction of momentum. With the help of Eq. (2.16) the
matrix Green’s function, Eq. (2.15), can be decomposed into the superposition of the two Green’s
functions corresponding to the states with + and − chiralities

GR,A0

(
ε, ~p
)

= P+(~p)GR,A0+

(
ε, ~p
)

+ P−(~p)GR,A0−

(
ε, ~p
)
, (2.17)

where
GR0±

(
ε, ~p
)

= 1
ε+ i0∓ vF p

(2.18)

and GA0±
(
ε, ~p
)

=
[
GR0±

(
ε, ~p
)]∗

. For later purposes we will need the quasi-particle spectral weight

A0(ε, ~p) = 1
2i

[
GR0

(
ε, ~p
)
−GA0

(
ε, ~p
)]

= − π2ε
(
ε1+ vFσ · ~p

)[
δ
(
ε− vF p

)
+ δ

(
ε+ vF p

)]
. (2.19)

Using the projection operators, we decompose the spectral weight as follows:

A0(ε, ~p) = P+(~p)A0+(ε, ~p) + P−(~p)A0−(ε, ~p), (2.20)
A0±(ε, ~p) = −πδ(ε∓ vF p). (2.21)
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It is worth noting that for Dirac particles, the spectral weight A0(ε, ~p) is not given by the imaginary
part of the Green’s function GR0

(
ε, ~p
)
, because the latter contains the Pauli matrix σy. However,

within each chirality the conventional relation holds: A0±(ε, ~p) = Im GR0±

(
ε, ~p
)
.

The interaction is treated by performing a Hubbard-Stratonovich transformation. After this the
Hamiltonian reads:

Ĥ =
∑
ν

∫
d2r Ψ̂†ν

(
~r
)(
−ivFσ ·~∇+ φ(~r)

)
Ψ̂ν

(
~r
)

+
∫

d2r φ(~r)D−1
0 (~r)φ(~r) (2.22)

The momentum space representation of the propagator of the Hubbard-Stratonovich field is given by:

D0
(
~q
)

= 2παgvF
|~q|

, (2.23)

which is of course just the Fourier-transformed Coulomb interaction (the 2d Fourier transformation of
the 3d interaction αgvF /r).

2.4 The Keldysh Formulation

... non-equilibrium may be a source of order. Irreversible processes may lead to a new type
of dynamic states of matter which I have called “dissipative structures”

Prigogine, Nobel Lecture

Non-equilibrium setups turn out to extend the richness of physical systems enormously, which itself
makes it worth being able to describe them. At first glance it may seem unnecessary for our purpose
to make the effort of dealing with a more complicated formalism since for Chap. 3 and 4 we deal only
with equilibrium setups. But as we will see later in this work, when we start investigating transport
phenomena in graphene, having a theory capable of dealing with non-equilibrium setups is quite useful.
The QFT we have introduced so far is a zero temperature QFT since we were operating on pure

ground states without taking any thermodynamics into account. The way we will incorporate ther-
modynamics is general enough to account for non-equilibrium situations as well as equilibrium and is
usually referred to as Keldysh formalism [48]. While there are easier ways to take thermodynamics
into account as long as one limits oneself to equilibrium physics, and while that is what we will mainly
consider, there is a big advantage in choosing the more powerful but slightly complicated Keldysh
formalism, namely the natural extension of the latter towards quantum kinetic equations. Even within
the diagrammatic equilibrium calculations we will hence use the Keldysh formalism. This will allow
us to compare the diagrammatic and the quantum kinetic equation points of view in a particularly
transparent way.
The complexity that appears when dealing with the more general non-equilibrium case is well covered

in the corresponding literature [49, 50] and will not be explained within this work. We will only briefly
sketch some of the details, mainly to provide the notation, since a more profound explanation is beyond
the scope of this work. Still we will try to briefly motivate the appearance of the additional complexity
when possible.

2.4.1 Keldysh Objects

A very intuitive way to gain some insights into the Keldysh formalism is to use the field integral
representation of the QFT. Within this representation we consider the following:
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The action involves an integration over time. So one considers the time evolution of the model from
a thermodynamic state at t−∞ = −∞ up to the state at t∞ = ∞ in the distant future. Since we do
not know about the state in the distant future, unless we have a constraint like the system being in
equilibrium or the adiabatic limit, we will subsequently evolve the system back to t−∞. Thus, the total
time evolution operator from t−∞ to t−∞ via t∞ is the unity operator. Nevertheless by causing artificial
changes in this time evolution (source fields) one captures the physics that governs even non-equilibrium
setups. By referring to the field evolving from t−∞ to t∞ as ψ1-field and respectively ψ2-field for the
opposite case, we explicitly see the connection to the previously introduced field theory and gaining
the perception that the price of dealing with non-equilibrium setups is paid by an additional structure
in the fields. The dynamics will involve both of the fields, which is a consequence of not specifying the
state we are evolving to.
Using the idea of two fields living on different time branches we can write the partition sum as

Z =
∫
D[ψ̄, ψ]eiS(ψ̄,ψ), (2.24)

where the action is given by

S(ψ̄, ψ) =
∫

dxdx′
∑

i∈{1,2}
j∈{1,2}

ψ̄i(x)Ǧ−1
ij (x, x′)ψj(x′) +

∫
dx
(
V1ψ̄1(x)ψ1(x)− V2ψ̄2(x)ψ2(x)

)
(2.25)

In comparison to the previously introduced field theory the fields now have an additional Keldysh
structure, since we have to differentiate between the forward and backward time evolution. Therefore
the Green’s functions now gain an additional matrix structure due to the Keldysh formalism. That
said, the separation in ψ1 and ψ2 according to the parts of the time contour turns out not to be the
most convenient form.

The Keldysh Rotation

A proper analysis of the causal structure of the formalism unveils[49, 50] that the condition Ǧ++ +
Ǧ−− − Ǧ+− − Ǧ−+ = 0 is fulfilled as long as we are not dealing with an acausal operator like in full
counting statistics. Since for Fermions the field operators ψ̄ and ψ are two independent fields we can
transform them individually following the transformation rules of Larkin and Ovchinnikov [51]. Within
this transformation the correlators read

− i 〈ψi(t)ψ̄j(t′)〉 = Ǧij(t, t′) =
(
GR(t, t′) GK(t, t′)

0 GA(t, t′)

)
ab

. (2.26)

This rotation induces a rotation for the source field as well. It transforms such that Vcl(q) = 1
2
(
V1 ± V2

)
and as a consequence V̌ = 1Vcl+σK1 Vq holds. The Coulomb interaction that is decoupled into Hubbard-
Stratonovich fields acquires in the very same way its Keldysh structure one obtains,

φ̌ =
(
ϕc ϕq
ϕq ϕc

)
= 1

2

(
ϕ1 + ϕ2 ϕ1 − ϕ2
ϕ1 − ϕ2 ϕ1 + ϕ2

)
. (2.27)

Within these rotated forms we gain the propagators by〈
ϕcϕq

〉
= i

2D
R,

〈
ϕqϕc

〉
= i

2D
A, (2.28)〈

ϕcϕc
〉

= i

2D
K ,

〈
ϕqϕq

〉
= 0. (2.29)
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With these objects we are now well equipped to perform diagrammatics.

The Keldysh Formalism in Equilibrium

If one approaches the equilibrium state there is a crucial simplification of the formalism since the
Keldysh Green’s function is known due to the fluctuation dissipation theorem and given by

GK0

(
ε, ~p
)

= f(ε)
[
GR0

(
ε, ~p
)
−GA0

(
ε, ~p
)]

= 2if(ε)A0(ε, ~p), (2.30)

where the fermionic thermal factor is given by f(ε) = tanh
(
ε/2T

)
. In the equilibrium situation the

Keldysh component DK of the interaction propagator satisfies

DK
(
ω, ~q

)
= 2ig(ω)AD

(
ω, ~q

)
, (2.31)

with g(ω) = coth(ω/2T ).

The Self-energy and Polarization in Keldysh Formalism

Within the first part of this work we will mainly use the quantum field theoretical description. Two
objects will be dominating the discussions. The first of these objects is the self-energy, which is
physically related to the interaction induced reaction of the particles’ propagation properties. Self-
energy can renormalize the velocity and can create a finite lifetime in the sense that interaction induced
scattering processes are likely enough to allow the particle to escape its (almost eigen-) state. To
investigate the influence of Coulomb interaction on electronic transport in graphene it is crucial to
calculate the self-energy. Again we will keep the discussion brief since the self-energy is a common
object in QFT and its general properties and definitions are well explained in literature [39, 45–47, 50].
The full Keldysh Green’s function for Eq. (2.14) is, due to the Dyson series, expressed through Ǧ0

Ǧ =
(
Ǧ0 − Σ̌

)−1
(2.32)

where Σ is the full self-energy. In the lowest order in the fully dressed propagator of Coulomb interaction
Ď the retarded self-energy is given by

ΣR
0 = i

2
(
DK ◦GR0 +DR ◦GK0

)
, (2.33)

where the symbol ◦ denotes the operator product which within the integral representation translates
into integration over all internal energies and momenta (see Eq. (A.2) for details of its derivation). In
equilibrium this equation will be simplified due to equations (2.30) and (2.31) such that the spectral
weight of the self-energy is given by

ΣR
0 − ΣA

0 = −
[(
f + g

)
Im DR

]
◦ (GR −GA) . (2.34)

Splitting the self-energy into the chiral basis we obtain,

Im ΣR
± = Im ΣR

ε ± Im ΣR
v = − ImDR(f + g) ◦ Tr

[
AP±

]
, (2.35)
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Figure 2.4: Left: is the diagram we refer to as the Golden Rule level diagram. In App. A.2.1
it is explicitly shown how this diagram relates to the Golden Rule process illustrated
on the right side of this figure. Alternatively one can consider the imaginary part
of this diagram, which via the optical theorem relates the right panel. Right: The
illustration of the Golden Rule process. This corresponds to the matrix element |M0|2
of collisions.

with

Im ΣR
ε = −1

2 ImDR(f + g) ◦ TrA, (2.36)

Im ΣR
v = −1

2 ImDR(f + g) ◦ TrAσ · ~np. (2.37)

Clearly, the bare Coulomb interaction (whose propagator is purely real) does not yield an imaginary
part of the self-energy, so that one has to take into account retardation effects. Hence the analo-
gous procedure of defining the self-energy should be applied to take into account the response of the
electronic system onto the interaction. The lowest order response is the polarization operator. If one
continues to resum the interaction contributions using only the polarization operator contributions one
obtains the random phase approximation (RPA). The screened Coulomb interaction in RPA takes the
form

DR
RPA

(
ω, ~q

)
= D0

(
q
)

1 +D0
(
q
)
NΠR

(
ω, ~q

) (2.38)

where N is the number of flavors. Below we will also consider the interaction propagator at the Golden
Rule (GR) level (see Fig. 2.4) which corresponds to expanding Eq. (2.38) to the second order in D0
(including only a single polarization operator),

DR
GR

(
ω, ~q

)
= −D2

0
(
q
)
NΠR

(
ω, ~q

)
. (2.39)

The lowest order of interaction (D0 purely) does not affect the system except due to a RG contribution
(see Sec. 3.1.1). The dynamical screening in Eq. (2.38) is expressed through the bare polarization
operator (see Eq. (A.4))

ΠR = i

2Tr
(
GR0 ◦GK0 +GK0 ◦GA0

)
. (2.40)

2.5 The Kinetic Equations

Until now we have used the very elegant formulation in terms of a quantum field theory, where we have
quoted Dirac as one of the founders. The technique we will focus on in the following section seems to
be as different as the views of its founders seem to be:
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Elegance should be left to shoemakers and tailors
L. Boltzmann, reported by Arnold Berliner. Die Naturwissenschaften

The Boltzmann equation is a quite pragmatic way to deal with a many-particle system, since its
properties are basically completely absorbed into a probability distribution in an effectively single-
particle phase space. The system’s dynamics are completely governed by operators acting on the
Boltzmann distribution.
The Keldysh formalism from the previous Sec. 2.4 enables us to connect the field theoretical de-

scription with the rather old technique of the Boltzmann equation. Since the Boltzmann equation is
a purely classical theory without the knowledge of quantum uncertainty there must be a deep sepa-
ration we have to overcome. The Keldysh objects like the electronic propagators follow the rule of
quantum mechanics to have a real space representation and a momentum space representation. They
cannot have both (as long as coordinate and momenta are conjugated variables). A way to achieve a
compromise is the Wigner transformation.
The prerequisite is to introduce relative and center of mass coordinates:

~R = 1
2
(
~x1 + ~x2

)
~r = ~x1 − ~x2 (2.41)

T = 1
2(t1 + t2) t = t1 − t2 (2.42)

X =
(
~R, T

)
x =

(
~r, t
)
. (2.43)

Now the idea is that, since the relevant scale for quantum mechanics is usually the small scale on
which the quantum fluctuations live on, we will use the relative coordinates as “quantum coordinates”
whereas the center of mass coordinates take on the role of classical coordinates. If so, momentum and
energy p =

(
E, ~p

)
are well defined even in the presence of the real space coordinates X. So in principle

one can handle functions h(X, p) but it is quite important to remember that (X, p) is not an element
of the classical phase-space! We proceed by defining the Wigner transformed Greens function:

G
(
X, p

)
=
∫

dxe−ixpG
(
X + x/2, X − x/2

)
. (2.44)

With the help of this representation we manage now to have a language to draw the connection between
the Keldysh formalism and the Boltzmann equation.

2.5.1 Derivation of the Kinetic Equation

The derivation of the kinetic equation can be found in the literature [49, 50, 52]. Since it is an involved
derivation with critical assumptions made and since we are using both techniques to gain insights into
the model, we will briefly sketch the derivation following the notation of Rammer and Smith [49].
The starting point to do so is the Dyson series, which, within a general operator formulation, can

be expressed as

Ǧ = Ǧ0 + Ǧ0 ◦ Σ̌ ◦ Ǧ ⇒ (Ǧ−1
0 − Σ̌) ◦ Ǧ = 1 ⇒

[
Ǧ−1

0 − Σ̌ ◦, Ǧ
]

= 0 (2.45)
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The kinetic equation we are going to formulate is one for fermions, which means we will use the
fermionic Keldysh structure. Then the Keldysh component of the Dyson series forms:

(G−1
0 − ΣR) ◦GK −GK ◦ (G−1

0 − ΣA)︸ ︷︷ ︸[
(G−1

0 −RΣ)◦,GK
]
−i
{
AΣ
◦,GK

} +GR ◦ ΣK − ΣK ◦GA︸ ︷︷ ︸
i
{

ΣK◦,AG
}
−
[
ΣK◦,RG

] = 0 (2.46)

Using the short notation of Rammer and Smith [49], namely 2RO = OR + OA and 2iAO = OR − OA
(O is any operator). We further use the convention

[
,
]
for the commutator and

{
,
}
for the anti-

commutator. In these terms the last equation reads:

[(G−1
0 −RΣ)︸ ︷︷ ︸
G̃−1

0

◦,GK ]− i
{
AΣ◦,G

K
}

+ i
{

ΣK◦,AG
}
−
[
ΣK◦,RG

]
= 0. (2.47)

The operator G̃−1
0 here is the renormalized operator we will use for brevity from now on.

We consider all appearing Greens functions to be Wigner transformed, which is why the convolution
of operators is more complicated than it looks at first glance. For any operators A,B the convolution
can be rewritten as: (

A ◦B
)(
X, p

)
= e

i
2

(
∂AX∂

B
p −∂Ap ∂BX

)
A
(
X, p

)
B
(
X, p

)
(2.48)

the notation for derivatives acting on A is given by ∂AX =
(
−∂T ,∇~R

)
for real space and analog

∂Ap =
(
−∂E ,∇~p

)
for the momentum space, whereas the product is given with an additional sign

∂AX∂
A
p = −∂T∂E + ∇~R∇~p. The complexity of Eq. (2.48) is due to the strong non-locality generally

generated by integrating over internal variables. If the spacial and temporal length scales (∂XO) the
operators come with are much larger than the scale of the quantum effects (∂pO), one can do a “local
approximation” (i.e. ∂XO∂pO � 1) which reduces Eq. (2.48) to{

A◦,B
}
≈ AB +BA+ i

2

([
∂AXA, ∂

B
p B

]
−
[
∂Ap A, ∂

B
XB

])
, (2.49)[

A◦,B
]
≈ AB −BA+ i

2

({
∂AXA, ∂

B
p B

}
−
{
∂Ap A, ∂

B
XB

})
. (2.50)

Considering the first commutator in Eq. (2.47) and doing the local approximation we obtain:[
G̃−1

0
◦,GK

]
≈ G̃−1

0 GK −GKG̃−1
0 + i

2

({
∂XG̃

−1
0 , ∂pG

K
}
−
{
∂pG̃

−1
0 , ∂XG

K
})

. (2.51)

The last equation unveils a problem that can appear when the Green’s functions have additional matrix
structure, namely that the leading contribution in the expansion of Eq. (2.51) does not vanish. At this
point we have to put some details about graphene into the derivation since otherwise we would need
to deal with Wigner lines, some more complicated objects that appear in the presence of non-Abelian
gauge fields [53], for example. It is the fact that within the chiral basis the Hamiltonian becomes
diagonal that will help us to treat this problem.

The Chiral Basis

In Sec. 2.3 we showed the simplification of the formalism by using a chiral basis. This means that
since we can write our objects as:

G = P+G+ + P−G− and Σ = P+Σ+ + P−Σ−, (2.52)
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we have already a clear splitting into the chiral objects. To establish a complete chiral structure we
explicitly rotate into the chiral basis by usage of: (~np = ~p/p):

Up = 1√
2

eiθ/2+iπ/4 e−iθ/2+iπ/4

eiθ/2−iπ/4 −e−iθ/2−iπ/4

 with eiθ = (~np)x + i(~np)y. (2.53)

The rotation U can be understood more easily by looking at the way they act on the Pauli matrices

Uσ~aU † = σz~np~a− σx(~np × ~a) UσzU
† = −σy. (2.54)

Applying the rotation now yields:

UGU † =
(
G+ 0
0 G−

)
and UΣU † =

(
Σ+ 0
0 Σ−

)
. (2.55)

The Kinetic Equation in the Chiral Basis

Eq. (2.51) considerably simplifies after the rotation with U given in Eq. (2.53), indicating that the
chiral basis is the natural basis to treat this problem.

U
[
G̃−1

0
◦,GK

]
U † ≈ UG̃−1

0 U †UGKU †− UGKU †UG̃−1
0 U †︸ ︷︷ ︸

=0·1

+ i

2U
({
∂XG̃

−1
0︸ ︷︷ ︸

≈0

, ∂pG
K
}
−
{
∂pG̃

−1
0 , ∂XG

K
})

U †

= − i2
{
U∂pG̃

−1
0 , ∂XU

†UGKU †
}

= i

2
{
U(∂T + ṽFσ∇R), U †UGKU †

}
= i

[
∂T + ṽFσz~np∇R + ṽFσx(~np ×∇R)

]
UGKU † (2.56)

Here ṽF is the renormalized velocity that originates from G̃−1
0 . The most significant changes are due

to the cancellation that becomes transparent within the diagonal basis, another simplification is that
we assume that the inverse bare Green’s function does not depend on the spatial coordinates X and
hence its derivative disappears. The full kinetic equation now appears as a matrix equation of the
following form:(

∂T + ṽF~np∇R −ṽF~np ×∇R
−ṽF~np ×∇R ∂T − ṽF~np∇R

)(
GK+ 0
0 GK−

)
= 2

(
AΣ+G

K
+ 0

0 AΣ−G
K
−

)
− 2

(
ΣK

+AG+ 0
0 ΣK

−AG−

)
.

(2.57)
Focusing on the diagonal parts only and using the notation γ ∈ {+1,−1} for the chirality, one obtains:(

∂T + γṽF~np∇R
)
GKγ = 2

(
AΣγG

K
γ − ΣK

γ AGγ
)
. (2.58)

A form more closely resembling the Boltzmann equation can be obtained by assuming Aγ to be a
peaked function, which close to equilibrium gives rise to GKγ = 2ifγAγ . From a conceptual level
this is a crucial step since with this assumption one deals with well defined quasi-particles. These
quasi-particles are fully described by a distribution function that solves a equation like the Boltzmann
equation. By integration over ε Eq. (2.58) reduces to

LfOS
γ ≡

(
∂T + γṽF~np∇R

)
fOS
γ = i

(
ΣK
γ − 2ifOS

γ AΣγ
)
≡ −St[f ], (2.59)
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where fOS
γ is the distribution function taken on the mass shell (On Shell). In this fashion the equation is

very close to the Boltzmann equation [54] Lf = −St[f ] but one should note that although f is a function
of ~r and ~p simultaneously it is not quite a Boltzmann function since f is not a probability measure
of the phase space. The distribution function f is called a Wigner quasi-probability distribution. We
therefore use the term kinetic equation instead of Boltzmann equation.
Since in equilibrium the distribution function used within the Keldysh formalism is the symmetrised

Fermi distribution we may as well write the equation in the unsymmetriesed form. This is not only for
transparency reasons but also serves to make the connection to the Boltzmann equation more explicit.
Hence we use f(ε) = 1− 2n(ε) where in equilibrium we recover the Fermi distribution nF . The kinetic
equation reads in the abstract manner introduced above:

Ln = −IColl[n]. (2.60)

We use for brevity Ln = LfOS
γ and IColl[n] = St[f ]. In Appendix A it is explicitly shown how to obtain

the collision kernel Eq. (A.17) from the formulation in terms of Green’s functions Eq.(A.7). Thus, this
appendix provides valuable insights into the connection of quantum field theory and kinetic equation.

The Berry Phase and Coupling to External Fields

We assumed in the previous section that the bare Green’s function does not contain external fields,
which involve center of mass coordinates. Hence we used ∂XG

−1
0 = 0 for a good reason. But let us

now assume to have an external electric field in a gauge invariant form ~E = −∇φ − ∂t ~A. So using
Eq. (2.56) we can follow each step as before except for the one previously mentioned, where we used
∂XG

−1
0 = 0. For this part we need to be more careful, so that when using the Green’s function

G−1
0 =

(
ε− φ

)
1− ~σ

(
~p− ~A

)
one reads

U∂XG
−1
0 ∂pG

KU † = U
(
−∇Rφ∇pGK − ~σ∂T ~A∂εGK

)
U †. (2.61)

Now we need to remind ourselves that the rotation U is momentum dependent. The contribution
coming with the vector potential does not involve derivatives with respect to ~p and is therefore relatively
straightforward. The contribution involving the scalar potential is more complicated since it leads to
additional terms that involve the rotation U (since UGKU † = GKdiag, see Eq. (2.55)):

U
(
∇pGK

)
U † = U

(
∇pU †GKdiagU

)
U † = ∇pGKdiag + U

(
∇pU †

)
GKdiag +GKdiag

(
∇pU

)
U †︸ ︷︷ ︸

Berry phase contribution

. (2.62)

With the help of Eq. (2.53) we see that ∇pUp = i/2Upσz∇pθ, which simplifies the above expression to:

U
(
∇pGK

)
U † = ∇pGKdiag + 1

2∇pθ
[
iσy, G

K
diag

]
= ∇pGKdiag −

1
2∇pθσx

(
GK+ −GK−

)
, (2.63)

where ∇pθ =
(
nz × np

)
1/p comes with the part we refer to as the Berry phase contribution (adiabatic

change of the rotation U).
We see that as in the previous case we get contributions to the Liouvillian that are off-diagonal. But

since the collision kernel is purely diagonal there will be no relaxation of those processes meaning that
they correspond to constraints the system obeys.
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Another interesting point one should mention follows from Eq. (2.59), which is the observation that
γṽF~np = ~v, which suggests one, to consider n as a function of ε and ~v obtaining:

Ln =
(
∂T + ~v∇R + e ~E~v∂ε

)
n = −IColl[n]. (2.64)

It is worth noting that in the case of allowing a local equilibrium µ(~r) = µ+~r ~Oµ and T (~r) = T+~r ~OT ,
whereupon the corresponding gradients have to be smooth on the scale of the collision integrals, one
can deal with temperature gradients as well. In cases where this holds not true one has to be more
careful taking the temperature gradients into account. A Possible way of doing so is with the help of
an artificial local gravitational field as initially introduced by Luttinger in Ref. [55]. Further details
on the effects on the kinetic equation can be found in Ref. [56].

2.5.2 The Hydrodynamic Equations

Starting from the kinetic equation which resides in the quasi-classical world we might consider going
one step further towards a purely classical description of the system. Such a description is given by
the hydrodynamic equations which will serve us by expressing the phenomena of transport in simple
physical terms. Within this section we will consider the example of the parabolic Fermi liquid case to
express the basic ideas and to get familiar with the concept. A more detailed discussion on the subject
can be found in Ref. [57, 58].

The Conserved Fields

Using the kinetic equation of a system we can, given that the scattering length of the collision integral
is short enough, derive the hydrodynamic equation. This means that we started with a non-equilibrium
field theory to derive the distribution function of quasi-classical quasi-particles to regain a classical
field theory describing a liquid of those quasi-particles. There is one crucial precondition that has to
be fulfilled, namely that the system of quasi-particles has to be dominated by interactions between
the quasi-particles in order to resemble the characteristics of a liquid and not of a gas. This is exactly
translated into the condition that the scattering length of the collision integral is short enough, since
it provides the ultraviolet cutoff of a corresponding classical field theory.
The way to proceed towards the hydrodynamic equation is by defining the hydrodynamic objects

which in general read:

Ψ(~R, T ) = 〈ψ(~R, T )〉 = 1
ρ

∫ dnp
(2π)nψ(~R, T, ~p)n(~R, T, ~p). (2.65)

In such an abstract formulation, the density ρ, for example, is given by:

ρ(~R, T ) =
∫ dnp

(2π)nn(~R, T, ~p). (2.66)

Surely this seems to be very general but one easily recognizes that the velocity field ~u for a parabolic
Fermi liquid is for example given by the replacement ψ(~R, T, ~p) → ~p/m. By this construction the
current is given by ~j(~R, T ) = eρ(~R, T )~u(~R, T ).
To gain the hydrodynamic equations we have to integrate out the quantum variables we constructed

originally as relative coordinates for the Wigner transformation.
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For example:

∫ dnp
(2π)n

(
∂T + ~v(~p)∇R + e ~E∇p

)
n(~R, T, ~p) = ∂Tρ(~R, T ) +∇R

(
ρ(~R, T )~v(~R, T )

)
= 0

=
∫ dnp

(2π)nSt[n], (2.67)

where we have used that the boundary term coming from ∇pn(~R, T, ~p) disappears at infinity as well as
the fact that the integration over the collision integral vanishes, due to a symmetry all collision kernels
have provided they conserve the particle number.
This way we managed to obtain the continuity equation, one of the fundamental equations of hy-

drodynamics. To derive the equation of motion we need to introduce the pressure tensor measuring
the velocity variation locally.

Pαβ =
∫ dnp

(2π)n
(
~v(~p)− ~u(~R, T )

)
α

(
~v(~p)− ~u(~R, T )

)
β
n(~R, T, ~p)

= −ρ~uα~uβ +
∫ dnp

(2π)n~v(~p)α~v(~p)βn(~R, T, ~p) (2.68)

The next step is to multiply the kinetic equation by ~p, leading to:

∫ dnp
(2π)n ~p

(
∂T + ~v(~p)∇R + e ~E∇p

)
n(~R, T, ~p)

= m∂T
(
ρ(~R, T )~u(~R, T )

)
+ e ~Eρ(~R, T ) +m

∂

∂ ~Rα

∫ dnp
(2π)n~v(~p)α~v(~p)βn(~R, T, ~p)

= m∂T
(
ρ(~R, T )~u(~R, T )

)
+ e ~Eρ(~R, T ) +m

∂

∂ ~Rα

(
ρ~uα~uβ

)
+m

∂

∂ ~Rα
Pαβ = 0. (2.69)

The integral over the collision kernel gives zero again, since the total conservation of momentum
requires it. The above equation can be simplified by usage of the continuity equation to obtain:

ρ

(
∂T~u+ e

m
~E + (~u∇R)~u

)
+∇RP = 0. (2.70)

We have used particle and momentum conservation to gain hydrodynamic equations that avoid in-
volving the collision integral. In fact there is one more fundamental conservation law calling for yet
another hydrodynamic equation. Multiplying the equation with p2/(2m) one easily recognizes that
the collision kernel disappears due to energy conservation. Including the liquid’s temperature as

m/2 〈
[
~v(~p)− ~u(~R, T )

]2
〉 = m/2Tr(P ) = n/2ρ(~R, T )T (~R, T ) (2.71)

(to reduce confusion we distinguish the center of mass time T and the temperature T in this chapter)
and introducing the heat current given by

~q(~R, T ) = m/2 〈
[
~v(~p)− ~u(~R, T )

]2 [
~v(~p)− ~u(~R, T )

]
〉 , (2.72)
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one reads:∫ dnp
(2π)n

~p2

2m
(
∂T + ~v(~p)∇R + e ~E∇p

)
n(~R, T, ~p)

= ∂T

[
n

2 ρT + 1
2mρ~u

2
]

+∇R
[
~q +mP~u+ n

2 ρT ~u−
m

2 ρ~u
2~u

]
−~j ~E = 0 (2.73)

with the current as defined in the beginning of this section.
The hydrodynamic equations we derived here are those related to conservation laws. In fact, it is also

possible to define hydrodynamic equations for non-conserved quantities at the cost that the collision
integral does not vanish, making the situation more complicated. In principle the collision kernel could
create interactions with other hydrodynamic fields and, in the worst case that the quantity cannot be
described by hydrodynamic equations, it would call for an infinite hierarchy of equations. This point
is relevant as momentum conservation does not lead to current conservation in graphene, putting us
in the position where we must necessarily deal with the collision kernel.

The Navier Stokes Equation

Having derived the hydrodynamic equations for the conserved quantities like density, momentum (ve-
locity) and energy it appears that the objects we have needed to do so have not yet yielded a defining
hydrodynamic equation. Hence we need to gain equations for the stress tensor (2.68) and the heat
current (2.72). If one uses the Fermi liquid distribution in local equilibrium it turns out that Eq. (2.68)
becomes Pαβ = δαβρT /m in the same way Eq. (2.72) becomes ~q = 0. Additionally, the temperature
field T (~R, T ) is constant since we are in equilibrium. The equations we arrive at using these constraints
on the hydrodynamic equations ((2.67), (2.70) and (2.73)) are the Euler equations,

∂Tρ+∇R
(
ρ~v
)

= 0, ρ

(
∂T~u+ e

m
~E + (~u∇R)~u

)
+ 1
m
∇R

(
ρT
)

= 0, (2.74)

∂T

[
n

2 ρT + 1
2mρ~u

2
]

+∇R

[
n+ 2

2 ρT ~u− m

2 ρ~u
2~u

]
−~j ~E = 0. (2.75)

Still we want to do better and allow for non-equilibrium contributions within the stress tensor
and the heat current. We therefore expand the distribution function in small variations around the
local equilibrium (n = nF − ∂n

∂ε h) obtaining a linearized kinetic equation. We will assume to have
solved the linearized kinetic equation. This means that we have a set of functions h corresponding to
different modes solving the kinetic equation. The pressure tensor and heat current then gain corrections
(Pαβ = P 0

αβ + δPαβ and ~q = ~q0 + δ~q) due to:

δPαβ =
∫ dnp

(2π)n
(
~v − ~u

)
α

(
~v − ~u

)
β

∂nF
∂ε

h δ~q =
∫ dnp

(2π)n
(
~v − ~u

)3 ∂nF
∂ε

h (2.76)

In Fermi liquid systems it turns out that the pressure tensor and the heat current can be, up to some
constants, mapped back to the hydrodynamic fields determined by the Euler equations. One then gets
(see Ref. [57, 58] for further details):

Pαβ = δαβρT /m− η
[

1
2

(
∇αR~uβ +∇βR~u

α
)
−∇R~uδαβ

]
~q = κ∇T , (2.77)
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where η is the viscosity of the system. With these additional equations one obtains the Navier-Stokes
equation (see [57, 58]). Calling p = ρT /m the local pressure we can rewrite the equation of motion,
arriving at:

ρ

(
∂T~u+ e

m
~E + (~u∇R)~u

)
+∇Rp = η

2
[
∆R~u−∇R(∇R~u)

]
, (2.78)

with the viscosity η appearing as the part responsible for the non-local contributions (higher order
derivatives). Since solving the kinetic equation is usually a rather difficult task, there are several
ways to perform a controlled expansion such as the Chapman-Enskog expansion (development) that
corresponds to a systematic expansion in the distribution function in such a way that the number of
modes one needs to solve the linearized kinetic equation for is reduced. This way one can also go
beyond the Navier-Stokes-equation towards Burnett equations and further. Since we will solve the
kinetic equation for graphene anyway, a detailed discussion of the Chapman-Enskog expansion is not
necessary. We refer to the literature [52, 57] for further details.
One might get an impression that in the equations above we have never used the constraint that the

length scale the hydrodynamic fields live on need to be much larger than the scattering length defined
by the collision kernel. Of course this impression would be wrong, since the constraint has been used.
The pressure tensor and the heat current will call for an infinite hierarchy of hydrodynamic equations
if one tries to approach the ultra violet cut-off. This is because the distribution function depends
on momentum in contrast to the hydrodynamic fields, to overcome the problem of fewer degrees of
freedom the hydrodynamic formulation needs more (infinity many) fields. The scattering length comes
into play since pressure tensor and the heat current know about this length scale. The exact details
may differ strongly with the system one considers, which is why we refer again to Ref. [57].
Having introduced all the necessary methods and having introduced the system we are going to look

at, we will now proceed with the discussion of the previous work on Coulomb interaction in graphene.
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3 Chapter 3

Coulomb Interaction in Graphene:
Previous Analysis

How quick are we to learn, that is, to imitate what others have done or thought before. And
how slow to understand, that is, to see the deeper connections. Slowest of all, however, are
we in inventing new connections or even applying old ideas in a new field.

Frits Zernike, Nobel lecture

Now that the basics of the system we are dealing with and our formulation of it have been introduced
we will try to gain some basic insights into the problem itself. To do so we will follow some of the
calculations that have been done previously and will try to conclude on how to best deal with the
problem.

3.1 Coulomb Interaction in Graphene at Zero Temperature

Most previous studies of the Coulomb interaction have, for simplicity, been done at zero temperature.
Following their line of arguments, within the established formulation for this work, we will investigate
the system and discuss the problems that have arisen in previous considerations, and towards the end
of this chapter we will argue why the problem in general is so tough.

3.1.1 Renormalization Group Analysis

The first insights into the system will be gained by a renormalization group analysis. The main
purpose here is to understand how the system behaves on different scales. There have been more
involved studies [42, 59] about the RG flow behaves in graphene but for the physics we want to discuss
it is enough to look only at the leading order. In previous studies [60] it has been shown that in the
leading order the theory is renormalizable and that the electrical charge is not at all renormalized for
which reason we will look at the velocity renormalization only.

The Objects to Renormalize

We start by defining the objects we will renormalize by decomposing the retarded self-energy into two
terms:

ΣR = ΣR
ε 1+ ΣR

v σ · ~np. (3.1)
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3 Coulomb Interaction in Graphene: Previous Analysis

The real parts of ΣR
ε and ΣR

v give rise to the corrections to the energy and Fermi velocity, respectively:

δε = −Re ΣR
ε (ε, ~p), (3.2)

δvF = Re ΣR
v (ε, ~p)/p. (3.3)

In order to fix the unrenormalized energy, we introduced the Z factor

Z(ε, ~p) = 1− Re ΣR
ε (ε, ~p)
ε

, (3.4)

so that ε− Re ΣR
ε (ε, ~p) = Z(ε, ~p)ε. The renormalized Fermi velocity then takes the form

v∗F = vFZ(ε, ~p)

1 + Re ΣR
v (ε, ~p)
vF p

 . (3.5)

Using Eqs. (3.4) and (3.5), we write the retarded Green’s function as

GR
(
ε, ~p
)

= Z

(ε− iZ Im ΣR
ε )1−

v∗F + iZ Im ΣR
v

p

σ · ~p


−1

, (3.6)

where the imaginary parts are given by Eq. (2.37).
Note that in this representation the velocity acquires a non-zero imaginary part. This is a manifes-

tation of the fact that within the chiral basis the self-energy is diagonal, as the Green’s function, which
therefore induces the usual imaginary part that can be interpreted as the lifetime of the chiral states.
The most singular terms in the renormalized velocity v∗F , coupling constant α∗g = e2/εv∗F , and the

Z-factor can be summed up by means of the renormalization group approach [60].

The Renormalization Group Approach

The lowest order of relevant contributions to the self-energy is the Fock diagram or exchange term. The
self-energy, as given by Eq. (2.33), can be simplified for the case of a bare interaction (DR = D0 = DA

hence DK = 0), zero temperature and considering energies close to the Dirac point (f T→0→ sign(ε))
such that we obtain:

Σ0
(
ε1, ~p1

)
= −i

∫ d2~p1
(2π)2

∫ dε2
2π D0

(
~p1 − ~p2

)
G0
(
ε2, ~p2

)
. (3.7)

In RG terms we are now in the situation that ~p2 and ε2 are the corresponding ”fast“ fields whereas
~p1 and ε1 are the ”slow“ ones. The object we are particularly interested in is δvF given in Eq. (3.3).
Hence we project onto the part that is proportional to σ~p, which yields:

δvF
(
ε1, ~p1

)
= 1

2p2
1
Tr
[
σ~pΣ0

]
= −αgvFπ

p1

∫
Λ1<vF p2<Λ2

d2~p2
(2π)2

∫ dε2
2π

~p1 ~p2
p1p2|~p1 − ~p2|

(−π)
(
δ(ε2 − vF p2) + δ(ε2 + vF p2)

)
p1�p2≈ αgvF

4

∫
Λ1<vF p2<Λ2

dp2
p2

= αgvF
4 ln

(
Λ2
Λ1

)
(3.8)
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3.1 Coulomb Interaction in Graphene at Zero Temperature

Since this was a perturbative calculation it is of course only valid as long as the coupling strength
is small enough, αg � 1. For the renormalized quantities at the energy scale Λ1 = ε we get (Λ2 = Λ):

v∗F (ε) = vF

(
1 + αg

4 ln Λ
ε

)
, (3.9)

α∗g(ε) = αg

1 + αg
4 ln Λ

ε

, (3.10)

Here Λ is the ultraviolet energy cutoff (bandwidth) and the on-shell relation between ε and p is
assumed. At finite temperature T the renormalization stops at max[ε, T ]. In lowest order the RG flow
equation from Ref. [42] appears to read:

d ln(Z)
d ln(Ec)

=
α2
g

6 ,
dαg

d ln(Ec)
=
α2
g

2 . (3.11)

Hence we can determine the flow of the quasi-particle weight as a function of the coupling strength,
which yields:

Z(ε) = exp
{
−1

3
[
αg − α∗g(ε)

]}
= exp

− 1
12

α2
g ln Λ

ε

1 + αg
4 ln Λ

ε

 ≥ 1− αg
12 +O(α2

g) ' 1.

For energies below T (which we will focus on below) the renormalized velocity and the Z-factor are
independent of energy. Since for αg � 1 the corrections to unity in the renormalized Z-factor are
parametrically small, in what follows we set Z = 1.
As an important consequence we see from Eq. (3.9) that for small energies close to the Dirac point the

correction to the velocity is such that it increases. Of course it cannot increase arbitrarily since at some
point our approximation that the Coulomb interaction is much faster than the Fermi velocity breaks
down. At that point we would need to consider a proper QED treatment, where we can already a priori
say that the particle velocity is not renormalized towards faster velocities forever. This consideration
is of course purely academic, but emphasizes that the theory itself is not contradictory. The most
important point in this observation is that for low enough energies the coupling strength αg decreases.
So if a perturbative treatment is possible in the very beginning its applicability can only become better
when approaching lower energies.
Further detail about where the model can flow towards and what the relevant scales would be can

be found within the Ref. [59].
Knowing the rough behavior of the model under the changing of scales we will now try to gain

insights into the processes that happens in graphene in the presence of Coulomb interaction. To do so
we will analyze graphene’s ability to polarize.

3.1.2 The Polarization-Operator

The polarization operator contains the information of the system’s response to interaction. We defined
the polarization operator in Eq. (2.40). Transforming it into the energy and momentum basis one
finds:

ΠR
(
ω, ~q

)
= −

∫ d2p

(2π)2

∫ dε
2πf(ε) Tr

{
A0
(
ε, ~p
)
×
[
GR0

(
ε+ ω, ~p+ ~q

)
+GA0

(
ε− ω, ~p− ~q

)]}
, (3.12)
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3 Coulomb Interaction in Graphene: Previous Analysis

where GR,A0 are bare Green’s functions, Eq. (2.15). The momentum integrals that appear in this
expression can be conveniently evaluated using elliptic coordinates as described in Appendix B.1.
In the zero temperature limit, Eq. (B.1) simplifies and leads to

ΠR(ω, q) = 1
16

q2√
v2
F q

2 − (ω + i0)2
. (3.13)

Taking the imaginary part of the polarization operator, Eq. (3.13), yields the well-known expression:[60]

Im ΠR
(
ω, ~q

)
= 1

16 Re q2signω√
ω2 − v2

F q
2
. (3.14)

One can see that the imaginary part of the polarization operator is non-vanishing only if ω > vF q and
shows a divergence at the “light cone” ω = vF q.
To understand the vanishing of the imaginary part of the polarization operator at ω < vF q, it is

instructive to analyze [61, 62] the kinematic restrictions for elementary processes. It is easy to see that
an on-shell electron-hole pair can be created if (left panel of Fig. 3.1)

ω ≥ vF q . (3.15)

To see this more properly one should look at the kinematics, meaning that we consider a real process
(on the mass-shell) with a transferred energy ω such that ε1 − ε2 = ω and momentum transfer ~q such
that ~p1 − ~p2 = ~q. When using these constrains one needs to remember, that for electron-hole creation
the signs of the energies need to be different (sign (ε1) + sign (ε2) = 0), one obtains:

2v2
F p1p2

(
1 + cos

(
^
[
~p1, ~p2

]))
= ω2 − v2

F q
2 , (3.16)

which clearly shows the condition from Eq. (3.15).
This should be contrasted to the energy and momentum conservation of on-shell electron-electron

scattering processes, whose kinematics unveil (right panel of Fig. 3.1)

2v2
F p1p2

(
1− cos

(
^
[
~p1, ~p2

]))
= v2

F q
2 − ω2 , (3.17)

which implies the condition
ω ≤ vF q. (3.18)

Thus, if we restrict our consideration to on-shell particles, electron-electron scattering processes only
create electron-hole pairs under the condition ω = vF q, when Im Π diverges. As follows from Eq. (3.17),
scattering processes that satisfy ω = vF q correspond to forward scattering with ^

[
p1, p2

]
= 0.

From Eqs. (2.39) and (3.13) we obtain the golden rule (GR) (see Fig. 2.4) interaction propagator at
zero T :

DR
GR
(
ω, q

)
= −N16

(2παgvF )2√
v2
F q

2 − (ω + i0)2
,

ImDR
GR
(
ω, q

)
= −

α2
gNv

2
Fπ

2

4 Re signω√
ω2 − v2

F q
2
.

(3.19)
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3.1 Coulomb Interaction in Graphene at Zero Temperature

ω= a+b
q= a+b
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Figure 3.1: Schematics of electron-hole (e-h) creation (left panel) vs electron-electron (e-e) scat-
tering (right panel) near the Dirac point for µ = 0. The hole-hole scattering processes
are analogous to those shown in the right panel. We set vF = 1 for brevity. In both
panels the possible transferred momenta satisfy |a− b| ≤ |~q| ≤ a+ b (only the extreme
cases of minimal and maximal q are shown). For e-h creation ω = a + b, so that
ω ≥ qvF , whereas for e-e scattering the kinematic restrictions yield ω = a− b ≤ qvF .

After the RPA resummation [plugging in Eq. (3.13) into Eq. (2.38)], the imaginary part of the zero-T
interaction propagator takes the form

ImDR
RPA

(
ω, q

)
= −

α2
gNv

2
Fπ

2

4
signωRe

√
ω2 − v2

F q
2

ω2 − v2
F q

2
(
1− π2

32α
2
gN

2
) . (3.20)

It is seen that the divergence at ω = vF q that occurred in the golden rule interaction propagator,
Eq. (3.19), is now eliminated. Moreover, the imaginary part of the propagator is zero at the light cone
ω = vF q. Therefore, the forward scattering divergence that arises on the golden rule level disappears
within RPA, yielding a zero scattering rate on the RPA level. This is a manifestation of a highly
singular character of the zero-temperature problem. We will show that the singular behavior can be
controlled by considering a finite temperature allowing for an unambiguous treatment of the system
even at zero temperature by considering the limit T → 0. Otherwise RPA is only justified within a
large N treatment.

General Kinematic Details

One might think that if one considers the relaxation of particles by excitation of more particles the
constraints given by Eq. (3.15) and (3.18) may wash out. This is not the case. To understand this
more properly we consider an arbitrary transferred momentum that similarly to Eq. (3.16) and (3.17)
fulfills:

~q2 =
(
~pi − ~pf

)2
= v2

F

(
ε2i + ε2f − 2sign(εiεf )εiεf cos(φif )

)
= v2

Fω
2 + 2v2

F εiεf
(
1− sign(εiεf ) cos(φif )

)
(3.21)
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3 Coulomb Interaction in Graphene: Previous Analysis

The relation between ω and ~q in general reads:

q2 − ω2

2εiεf
≤ 0, (3.22)

incorporating both of above discussed limits into one equation.

Figure 3.2: Illustration of relaxation of a hot electron via excitation of many electron hole pairs.

Now if we consider a particle with ε > 0 and want it to relax into several electron-hole pairs we can
define several transfered momenta ~q1, ~q2, ~q3, ... and energies ω1, ω2, .... Due to energy and momentum
conservation we have: ∑

n

~qn = 0,
∑
n

ωn = 0. (3.23)

Since we are interested in a particle relaxing by creation of electron-hole pairs we consider ~q1 and ω1
to be the energy and momentum the initial particle lost. Further we want the state the particle relax
to, to be on the same side of the Dirac cone (see Fig. 3.2) which implies ~q2

1 ≥ ω2
1. Since at the Dirac

point we assume to be able to relax only via creation of electron-hole pairs, all other momenta satisfy
~q2
n>1 ≤ ω2

n>1. With help of the conservation laws we obtain:

|~q1| = | −
∑
n>1

~qn| ≤
∑
n>1
|~qn| ≤

∑
n>1
|ωn|. (3.24)

If we consider relaxation we want to deposit energy in the creation of the electrons and holes implying
that all ωn>1 have the same sign and the right hand side of Eq. (3.24) equals |ω1|. This means again
that the only processes possible in such a situation, are exactly collinear and thus having only a zero
measure. The RPA kills contributions that exist only and singular the single line ω = |~q| as in the
previous case explicitly shown in Eq. (3.20).

3.1.3 The Scattering Rate

Taking into account RPA makes the interaction disappear at the single line ω = |~q|, where kinematically
interaction could affect the particles. Nonetheless have previous works [61, 63] approached this problem
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3.1 Coulomb Interaction in Graphene at Zero Temperature

and obtained a quasi-particle lifetime. Within the introduced formulation we will sketch a way to obtain
a similar result. It is important to note though, that the calculation one needs to perform to obtain
the previous lifetime is ill defined.
To do so we will use the GR interaction defined in Eq. (3.19), instead of the RPA screened interaction.

We will use the imaginary part of the self-energy (Eq. (2.35)) and its zero temperature limit (see RG
3.1.1). But the focus this time is on including the effects that come from the polarizability of graphene
by using the GR interaction (see Eq. (3.19)). So we are dealing with (on shell):

Im Σλ(ε = vF ~p, ~p)
vF=1= −2

∑
λ′

∫ d2~q

(2π)2

ε∫
−ε

dω
2π ImDR

GR
(
ω, q

)
A0λ′Tr

[
PλPλ′

]
(?). (3.25)

Doing the ω integration with the constraint |ω| < |ε| one recognizes that this constraint transforms
into |p − λλ′|~p − ~q|| < p which is only fulfilled for λλ′ = 1. This states that at zero temperature and
the corresponding lowest order in polarization corrections a particle will never turn into a hole due
to electron-electron interaction. Using again the elliptical coordinates (see App. B.1) we manage to
obtain:

Im Σλ(ε = vF ~p, ~p) = −
α2
gN

128

∫ ∞
p

dξ
∫ p

−p
dη
(
ξ + η

)√
ξ + p

p
√
p+ η

Re 1√(
ξ − p

) (
p− ξ

) (?). (3.26)

At this step one pretty well recognizes the trouble one has at the single line ω = q which in aboves
formula translates into ξ = p. The expression as it is given above is strictly speaking zero since the
electrons can not create electron-hole pairs (see the previous section) except for the one singular line
where the integrand appears to be divergent. One can assume the following relation to be true:

Re 1√(
ξ − p

) (
p− ξ

) ∼ δ(ξ − p) (?). (3.27)

If so, we gain for the quasi-particle lifetime, as was previously seen in the literature [61]:

Im Σλ(ε = vF ~p, ~p) ∼ −
α2
gN

48 p (?). (3.28)

This calculation shows how the above (see Sec. 3.1.2) discussion manifests itself in quantities like the
quasi-particle lifetime, making the calculation rather difficult. Furthermore, the lifetime obtained in
Eq. (3.28) does not appreciate the complexity of the problem. We will present in Sec. 4.2.1 a way
to unambiguously define a proper quasi-particle lifetime at the Dirac point which significantly differs
from Eq. (3.28).

3.1.4 Discussion

In view of the singular character of the problem, at zero temperature the imaginary part of the
self-energy is highly sensitive to changes of the electron dispersion [62]. The Fermi velocity depends
logarithmically on the momentum or energy [60], Eq. (3.9), due to the renormalization by the Coulomb
interaction.
In Eq. (3.14) we have neglected the momentum dependence of vF which leads to a separation of the

two regions defined by Eqs. (3.15) and (3.18), see the left-hand side of Fig. 3.3. The electron-hole
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vF(

=ω

F )q=ω
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Figure 3.3: Left: Interaction-induced dispersion correction near the Dirac cone. The electron-
hole creation (ω ≥ vF

(
q
)
q) and electron-electron scattering (ω ≤ vF

(
p
)
q) regions do

not overlap, so that the zero-temperature inelastic scattering rate is zero. Middle:
Illustration of the only relaxation process at zero temperature. Right: Illustration of
the relaxation process possible at finite temperature.

creation [ω ≥ vF
(
q
)
q] and electron-electron scattering [ω ≤ vF

(
p
)
q] regions are then separated due

to the renormalization-induced nonlinearity of the electron dispersion, which leads to the vanishing of
the zero-T scattering rate already at the golden rule level. This supports our statement that in the
strict zero-temperature case the question of the influence of Coulomb interaction on graphene is an ill
defined problem.
Nevertheless, at finite temperature the situation is essentially different. First, the conditions (3.15)

and (3.18) will be smeared by temperature, since not only relaxation processes of the type shown
in the middle part of Fig. 3.3 take place but as well processes of the type shown in the right-hand
side of Fig. 3.3. Second, for energy scales smaller than T the renormalization of the Fermi velocity is
cut off by temperature and hence, the linearity of the dispersion relations is restored: renormalization
reduces merely to a T -dependence of the Fermi velocity. Therefore, when discussing the finite-T physics
of inelastic scattering on scales . T we will disregard the renormalization-induced nonlinearity of the
dispersion. Furthermore whenever we will use the notation vF for ε . T we will mean the renormalized
value of the velocity v∗F (T ) and omit the asterisk for brevity.
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4 Chapter 4

Coulomb Interaction in Graphene: Finite
Temperature Analysis

Heat, like gravity, penetrates every substance of the universe, its rays occupy all parts of
space.

J. Fourier, The Analytical Theory of Heat

One of the main purposes of this work is to get insights into the electronic processes that take place
in graphene in the presence of Coulomb interaction. We discussed the problems that arise in case of
zero temperature in the previous chapter. Our attempt to resolve these problems is to introduce finite
temperature to the system. The reason to do so is rather simple. It is not only experimental fact
to have finite temperature it creates as well a broadening in the distribution function reflecting the
overall presence of electron-hole pairs at the Dirac point. The point of those pairs is that they might
screen Coulomb interaction and help to resolve the forward scattering resonance. Hence we look first
at the polarizablility of graphene at finite temperature and afterwards investigate its consequences for
the scattering processes.

4.1 The Polarization Operator at Finite Temperature

The natural starting point is again Eq. (3.12) which contains at finite temperature a broadened distri-
bution function allowing now not only for electron-hole creation but as well electron-electron scattering
with thermally activated electrons. So one of the problems discussed in the previous Chap. 3, namely
the fact that electron-electron scattering and electron-hole creation have only a subspace of measure
zero in common is overcome by the presence of thermally activated electrons. Gaining the polarization
operator for the finite temperature case will hence allow us to do a well defined RPA approximation of
the interaction. The actual calculation of the polarization operator is rather long which is the reason
why the details can be found in the appendix B.1.
It turns out that the effect of finite temperature on the screening in graphene is much more pro-

nounced than in conventional metals with finite Fermi-surface and quadratic electronic dispersion. In-
deed, the linearity of the spectrum of Dirac fermions gives rise to a strong (linear) energy dependence
of the density of states in two dimensions, whereas for the parabolic spectrum the density of states is
constant. In the latter case, the polarization operator is essentially independent of temperature. This
is not the case for Dirac particles.
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4 Coulomb Interaction in Graphene: Finite Temperature Analysis

Let us consider the undoped graphene first, i.e. the chemical potential lies at the Dirac point (µ =
0). The typical electron-hole pairs that participate in the screening of Coulomb interaction at finite
temperature live within the energy window of order T . This strongly changes the polarization operator
at qvF , ω . T . To simplify the notations at non-zero temperature, we introduce the dimensionless
variables according to

Q = vF q

2T , Ω = ω

2T . (4.1)

We use the general expression for the polarization operator, Eqs. (B.1) and (B.2) from Appendix B.1.
Considering four different regions shown in Fig. 4.1, we simplify these equations in each of the cases,
which allows us to treat the problem analytically.
The four regions are defined by the conditions:

• Region 1: Q� 1 and Q < |Ω|

• Region 2: 1� Q and Q < |Ω|

• Region 3: Q� 1 and |Ω| < Q

• Region 4: 1� Q and |Ω| < Q

The need to deal with those four regions is due to the non-analyticity of the polarization operator for
forward scattering Q = Ω and due to the additional length scale we got from temperature. The forward
scattering creates naturally a division of the Ω-Q-plane, whereas the comparison with the temperature
is ad-hoc introduced to explore the different regimes we cannot properly explore for momenta of order
temperature (Q ∼ 1).
The regimes 2 and 4 correspond to situations where the presence of the thermal broadening becomes

less effective, hence the leading terms should correspond to the zero temperature result. The regions
1 and 3 are the ones dominated by thermal broadening and are therefore most relevant to understand
the way the formally ill-defined problem can be resolved. In region 3 we deal with the polarization
effects caused by thermally activated electrons whereas region 1 corresponds to electron-hole processes
within the thermally broadened window around the Dirac point.
As shown in Appendix B.1, the leading-order terms with non-vanishing imaginary part form the

following simplified polarization operator:

ΠR(Ω, Q) = T

v2
F



ln 2
π

[
1−

∣∣Ω∣∣√
Ω2 −Q2

]
+ i

8
Q2 tanh

(
Ω/2

)
√

Ω2 −Q2 , (region 1) |Ω| > Q

ln 2
π

+ Q2

8π

Ω arcsin
(

Ω
Q

)
√

Ω2 −Q2 + i ln 2
π

Ω√
Q2 − Ω2 , (region 3) |Ω| < Q

Q� 1

−
ζ(3

2)(2−
√

2)
8
√
π
√

Ω2 −Q2

√
Q+ i sign Ω

8
Q2√

Ω2 −Q2 , (region 2) |Ω| > Q

1
8

Q2√
Q2 − Ω2 + i√

2π

√
Qe−Q sinh Ω√
Q2 − Ω2 , (region 4) |Ω| < Q

Q� 1

(4.2)
In the case of large momenta, Q � 1, we recover the zero-temperature result as we should. For

Q � 1, the polarization operator substantially differs from the zero-temperature expression. We will
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4.1 The Polarization Operator at Finite Temperature

Figure 4.1: Imaginary part of the polarization operator in the frequency-momentum plane. Four
regions of dimensionless variables Ω and Q (see text) are indicated. The magnitude
of ImΠR(Ω, Q) is encoded by the logarithmic color-scale.

discuss this case in more detail in Sec. 4.1.1. The separation between Ω < Q and Ω > Q is dictated by
the non-analytical structure of the polarization operator, see Eq. (4.2), which origins from the forward
scattering resonance discussed in Sec. 2.1.4.
In the regimes 1 and 3 in which the thermal screening is important it is possible to extend the

above discussion towards finite chemical potential by including a chemical potential within the thermal
factors. This way Eq. (3.12) stays unchanged except of the distribution function that changes according
to f(ε)→ f

(
ε− µ

)
. Adapting the calculations one finds (for µ̂ = µ/2T )

ΠR(Ω, Q) = T

v2
F



ln
(
2 cosh(µ̂)

)
π

[
1−

∣∣Ω∣∣√
Ω2 −Q2

]
+ i

8
Q2√

Ω2 −Q2
sinh(Ω)

cosh(2µ̂) + cosh(Ω) , (region 1)

ln
(
2 cosh(µ̂)

)
π

+ Q2

8π

Ω arcsin
(

Ω
Q

)
√

Ω2 −Q2 cosh2(µ̂)
+
i ln

(
2 cosh(µ̂)

)
π

Ω√
Q2 − Ω2 , (region 3)

(4.3)
The contributions we have considered here describe the interplay of temperature induced screening
and chemical potential screening. As clearly visible when comparing Eq. (4.3) with Eq. (4.2) is the
ability of dynamical screening unchanged.
The original question we have focused on is the system’s behavior due to Coulomb interaction which

is shown in Ch. 3 to be most severe at the Dirac-point for which reason we keep within this chapter
the finite chemical potential most of the time out of business.
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4 Coulomb Interaction in Graphene: Finite Temperature Analysis

4.1.1 The RPA Screened Interaction

The real part of the polarization operator, Eq. (4.2), for Q � 1 is determined by temperature and
leads therefore to the screening of Coulomb interaction according to

lim
Ω→0

DR
RPA

(
Ω, Q

)
= D0

(
Q
)

1 +D0
(
Q
)
NΠR

(
0, Q

) = v2
Fπ

NT ln 2

(
αgN ln 2

Q+ αgN ln 2

)
, (4.4)

which yields the screening length
lscr = vF

2αgNT ln 2 . (4.5)

Thus at finite temperature the system does screen the long range Coulomb interaction. Note that for
Q� αgN , the RPA propagator becomes independent of the interaction constant αg,

DR
RPA(Ω, Q)

∣∣∣
Q�αgN

' 1
ΠR(Ω, Q) , (4.6)

as in conventional systems with Coulomb interaction. We will see, however, that the dominant con-
tributions to relaxation rates are determined by higher transferred momenta Q & αgN , where the
peculiarities of the finite-T screening in graphene are crucially important.

4.1.2 Plasmons

In Region 1, the real part of the polarization operator in Eq. (4.2) may become negative, leading to
emergence of plasmon excitations. The plasmon dispersion Ωp(Q) is determined by the zero of

1 +D0N Re ΠR= αgNQ ln 2(
Ω2 −Q2

)3/2

Ω−
(
αgN ln 2+Q

)√
Q√

Q+ αgN2 ln 2

 , (4.7)

yielding

Ωp
(
Q
)

=

(
αgN ln 2 +Q

)√
Q√

Q+ 2αgN ln 2
. (4.8)

For Q→ 0, this simplifies to Ωp(Q) ∝
√
αgNQ. A non-zero imaginary part of the polarization operator

Eq. (4.2) in the corresponding region implies that these plasmons have a finite lifetime. The decay
rate of plasmon excitations is given by

Γp
(
Ω, Q

)
=

(
Ω2 −Q2

)3/2

αgNQ ln 2 D0
(
Q
)

Im ΠR(Ω, Q) , (4.9)

which yields

Γp
(
Ω, Q

)∣∣∣
Ω=Ωp(Q) = πΩ

16 ln 2
(
Ω2 −Q2

)∣∣∣∣∣
Ω=Ωp(Q)

≤ πΩ3

16 ln 2

∣∣∣∣∣
Ω=Ωp(Q)

. (4.10)

Remarkably, Eq. (4.10) indicates a good quasi-particle behavior for plasmons which is, as we will
see in Sec. 4.2.1, not true for electronic excitations. The situation is somewhat similar to Luttinger
liquid where plasmons are almost perfect quasi-particles, whereas, from the point of view of fermionic
excitations, the Luttinger liquid represents a paradigmatic example of a non-Fermi-liquid.
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The discussion of the plasmons is one of the few situations where we should really consider to
check their appearance in the presence of finite chemical potential. Taking a look at Eq. (4.3) and
reminding the definition of the plasmon resonance (4.7) it becomes clear that by simply replacing
ln 2 → ln(2 cosh µ̂) we got the dispersion of the plasmons for arbitrary chemical potential as long as
the momentum stays small Q � 1. We identify two different asymptotics of the dispersion and the
plasmon broadening (in dimension full units q∗(µ) = αgNT ln[2 cosh(µ/(2T ))]):

ωp =


√
q∗(µ)vF q vF q � 2q∗(µ)

vF q + (q∗)2

2vF q
2q∗(µ)� vF q

, Γp =



π

16
αgNvF q

2T cosh2
(
µ

2T

)√q∗vF q vF q � 2q∗(µ)

π

32
αgNq

∗vF q

2T cosh2
(
µ

2T

) 2q∗(µ)� vF q
, (4.11)

which support earlier statements of the good quasi-particle picture for plasmons in the case of larger
chemical potential (note that vF q � T is always assumed).

Figure 4.2: Imaginary part of RPA interaction. Left: using an analytic approximation, right:
by numerical evaluation of Eqs. (B.1) and (B.2). Dashed lines indicate the plasmon
dispersion (see Eq. (4.7)).

Fig. 4.2 and Fig. 4.3 demonstrates that Eq. (4.2) for the polarization operator yields a remarkably
good approximation for evaluation of the imaginary part of the RPA-interaction,

ImDRPA = − ND2
0 Im ΠR(

1 +ND0 Re ΠR
)2

+
(
ND0 Im ΠR

)2 . (4.12)
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[see also Eq. (B.12) in Appendix B.2]. In Fig. 4.2b we see the plasmon peak in the RPA interaction
propagator, which is strongly asymmetric and is suppressed around the light cone, so that ImDRPA = 0
exactly at Ω = Q.

Figure 4.3: Cross-sections through the plots of Fig. 4.2 from (Ω, Q) = (1, 0) to (Ω, Q) = (0, 1) (1)
from (Ω, Q) = (0.2, 0) to (Ω, Q) = (0, 0.2) (2). Solid curves: analytic approximation;
dashed curves: numerical integration. For all plots the interaction strength is αgN =
1/3.

Further one recognizes in Fig. 4.2 that on the right hand side of the plasmon peak where interac-
tions with the electronic continuum are possible a feature is present that can be interpreted as strongly
broadened plasmon peak as it is known from plasmons entering the electronic continuum in conven-
tional 3 dimensional metals. The notion plasmon is of course misleading for this object since due to
interactions it is not a well defined excitation. When talking about plasmons we will therefore always
refer to the well defined peaked structure whose dispersion is given by Eq. (4.7).

Validity of RPA

Let us now discuss the status of the RPA in graphene. In the previous Chap. 3 we have argued that
at zero temperature the only way of controlling RPA is via the large N treatment. Meaning that we
assume to have numerous independent flavors in the system making the leading density response the
dominant contribution. If N is not assumed to be large and in view of the absence of the screening,
the non-RPA diagrams are parametrically the same as those included in the RPA. Furthermore, as
discussed in the end of Sec. 3.1.2, the renormalization-induced curvature of the spectrum (which is
also beyond the RPA) may dramatically affect the results obtained within the RPA.
Nevertheless at finite T , the T -induced screening of the interaction, Eq. (4.4), restores the validity of

the RPA for q � T/vF (Q� 1) even for N ∼ 1. Indeed, the 1/q-singularity of the long-range Coulomb
interaction is not compensated in the denominator of Eq. (4.12) because the polarization operator at
finite T is no longer linear-in-q. The situation becomes similar to that in conventional metals with a
finite Fermi-surface, where the RPA is justified for q � kF (and αg � 1). In undoped graphene the
role of kF is played by T/vF , which in effect establishes an analog of a finite Fermi-surface. Therefore,
for q � T/vF the RPA does sum up the most singular interaction-induced terms. All other terms are
non-singular because of the screening. This means that all the observables that are dominated by the
collisions with the momentum transfer smaller than T/vF can be calculated (even with the correct
numerical prefactors) within the RPA. The RPA result for those observables that are dominated by
qvF ∼ T is parametrically correct, but the value of the prefactor cannot be found using the RPA.
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Below we employ the finite-T RPA for calculation of various scattering rates in graphene. For the
sake of generality, we keep N as a large parameter. In what follows we focus on the case αgN � 1,
but whenever the rate under consideration is dominated by qvF . T , the condition N � 1 can be
removed so that we are allowed to use the RPA for N ∼ 1.

4.2 The Rates at Finite Temperature

We figured out that RPA is controllable within the finite temperature calculation. Further we briefly
discussed the screening properties and plasmonic properties of graphene. With this knowledge at hand
we will try now to understand the consequences for the electronic system. For this reason we calculate
various inelastic scattering rates in clean graphene at finite temperature. More specifically, we focus
on the quantum scattering rate (and dephasing) and the energy relaxation rate induced by the RPA-
screened Coulomb interaction. The quantum scattering rate determines the lifetime of quantum states
(plane waves) and is related to the dephasing rate. The energy relaxation rate governs the relaxation
of the quasi-particle distribution function.
Although the origin of all these rates is the same, the inelastic electron-electron collisions, these rates

may strongly differ from each other. For instance, this is exactly what happens in diffusive metals
[43, 64] because of the infrared-singular collision kernel. Another prominent example of a non-trivial
behavior of relaxation rates related to the infrared singularities is a Luttinger liquid (disordered or
clean) [27–33]. On the other hand, within the Fermi-liquid theory of clean metals all the inelastic
scattering rates behave in the same way, since the characteristic frequency and momentum transfer in
the course of electron-electron collisions is determined by temperature. The goal of this section is to
understand whether the situation in clean graphene is similar to the Fermi-liquid or not.
As we have already seen in Sec. 4.1, the behavior of the polarization operator at finite temperature

is highly non-trivial. This leads to a rather rich behavior of the scattering rates.
It turns out that, in addition to the temperature scale, two more characteristic scales appear which

are relevant for relaxation rates: α2
gN

2T and αgNT . In this section we will distinguish between the
four regimes (I-IV) as shown in Fig. 4.4. The contributions to each of the scattering rates from different

T

I IIIII IV

0

ε

α TN2
TN

2
g αg

Figure 4.4: Characteristic energy scales separating domains of distinct behavior of the rates.

regions (1-4, see Fig. 4.1) of the momentum-frequency plane are calculated separately.

4.2.1 Quantum Scattering Rate in Graphene

One of the main manifestations of the inelastic scattering in electronic systems is the interaction-
induced dephasing. In order to analyze the effects of dephasing in graphene, we will follow the route
suggested by earlier works on 2D (in particular, diffusive) systems [43]. A natural first step is to
calculate the quantum scattering rate τ−1

q which is given by the imaginary part of the quasi-particle
self-energy taken on the mass-shell. Indeed, for conventional metals with parabolic dispersion, in the
high-temperature (ballistic since not diffusive: Tτ � 1) regime, the dephasing rate τ−1

φ to leading
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order is given by τ−1
q (see Ref. [65]). In the diffusive regime, the scattering kernel acquires an infrared

singularity leading to a divergent τ−1
q at finite T . This is a manifestation of the fact that the single-

particle self-energy is not a gauge-invariant object; no divergencies occur in observable (gauge-invariant)
quantities, such as, e.g., dephasing rate. However, even when the quantum scattering rate diverges,
the calculation of it turns out to be instructive: a parametrically correct result for the dephasing rate
can be obtained from the expression for τ−1

q supplemented with an appropriate infrared cutoff. It is
thus useful to begin with analyzing τ−1

q .

Quantum Scattering Rate: Definitions

The peculiarity of graphene is that the self-energy is a matrix in the sublattice space, which has a
non-zero imaginary part, Im Σv [Eq. (2.37)], in the off-diagonal components. Therefore, the definition
of the quantum scattering time in graphene is actually not unique. Indeed, one can associate with the
quantum scattering rate the on-shell value of the imaginary correction to the energy in the full Green’s
function, Im Σε [Eq. (2.36)], similarly to the conventional Fermi-liquid theory:

1
2τq(ε) = −θ(ε) Im Σε(vF p, ~p)

∣∣∣
p=ε/vF

− θ(−ε) Im Σε(−vF p, ~p)
∣∣∣
p=−ε/vF

. (4.13)

Here we have taken the self-energy at the “+” mass-shell for ε > 0 corresponding to the positive
energies, ε = vF p, and at ε < 0 on the “−” mass-shell. For undoped graphene we clearly have

1
τq(ε) = 1

τq(−ε) , (4.14)

due to particle hole symmetry (µ = 0). Within the RPA the explicit expression for the imaginary part
of the total self-energy Σε taken at ε = vF p reads:

Im Σε(vF p, ~p) = −π2

∫
dω

2π
[
g(ω) + f(vF p− ω)

] ∫ d2q

(2π)2 ImDR(ω, ~q)

×
[
δ
(
vF p− ω − vF |~p− ~q|

)
+ δ

(
vF p− ω + vF |~p− ~q|

)]
. (4.15)

Alternatively, one can introduce the lifetime of the “+” and “−” chiral states through the corre-
sponding self-energies, from Eq. (2.35)

1
2τ±(ε) = − Im Σ±(ε, ~p)

∣∣∣
p=|ε|/vF

, (4.16)

which yields
1

τ+(ε) = 1
τ−(−ε) . (4.17)

Using Eqs. (2.35) and (2.19), we get for the self-energy of electrons (+ chirality)

Im Σ+(vF p, ~p) = −π2

∫
dω

2π
[
g(ω) + f(vF p− ω)

] ∫ d2q

(2π)2 ImDR(ω, ~q)

×

(1 + ~p(~p− ~q)
p|~p− ~q|

)
δ
(
vF p− ω − vF |~p− ~q|

)
+
(

1− ~p(~p− ~q)
p|~p− ~q|

)
δ
(
vF p− ω + vF |~p− ~q|

) . (4.18)
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for the “own” mass-shell (ε = +vF p), and

Im Σ+(−vF p, ~p) = −π2

∫
dω

2π
[
g(ω) + f(−vF p− ω)

] ∫ d2q

(2π)2 ImDR(ω, ~q)

×

(1− ~p(~p− ~q)
p|~p− ~q|

)
δ
(
−vF p− ω − vF |~p− ~q|

)
+
(

1 + ~p(~p− ~q)
p|~p− ~q|

)
δ
(
−vF p− ω + vF |~p− ~q|

) . (4.19)

for the “wrong” (hole) mass-shell (ε = −vF p).
The main formal difference between the two relaxation rates, Eqs. (4.13) and (4.16), which are

related by
1

τq(ε) = 1
2τ+(ε) + 1

2τ−(ε) , (4.20)

is in the appearance of Dirac factors 1 ± cos θ in Eqs. (4.18) and (4.19) where θ = arccos(~p~p′/pp′)
is the scattering angle between the incoming momentum ~p and the momentum ~p′ = ~p − ~q after
scattering. These factor is related to the additional Berry phase in the problem of Dirac particles,
which arises due to the overlap of Bloch functions and, in particular, forbids the backscattering within
the same chirality and valley (see Eq. (A.20)). Note that for well-defined quasi-particles (i.e., in a
Fermi-liquid situation) the self-energy at a “wrong” mass-shell would never be relevant. However, if
the quasi-particle broadening is larger than the characteristic energy, this is no longer the case, so that
Eq. (4.19) may then contribute to the observables.
In Eq. (4.18), the term with 1 + cos θ corresponds to the electron-electron scattering (right panel of

Fig. 3.1) which is determined by the contribution of region 3 in Fig. 4.1. The term with 1−cos θ is due
to electron-hole scattering (electron-hole pairs, left panel of Fig. 3.1) accompanied by the excitation
of plasmons and is determined by the contribution of region 1 in Fig. 4.1. The latter contribution
is suppressed for the forward scattering θ = 0 because of the Dirac factor. Furthermore, at zero
temperature only the electron-electron processes are allowed by the kinematic restrictions.
At finite T , however, the situation is different for the low-energy domains I and II (ε < αgNT ),

where the contributions of the electron-electron and electron-hole scattering to the inelastic quantum
scattering rates are of the same order. This means that the low-energy electron-type and hole-type
quasi-particles are strongly correlated by the mutual inelastic scattering, whereas at higher energies
(ε > αgNT , corresponding to domains III and IV) the electronic and hole subsystems are only weakly
coupled with each other, in agreement with Ref. [62].
As we will see below, depending on the energy range, Fig. 4.4, both τ−1

q and τ−1
± may be larger or

smaller than the quasi-particle’s energy. When the quasi-particle’s broadening is small, the two rates
coincide since the inelastic scattering is dominated by small scattering angles θ and the Dirac factors
reduce to 0 and 1. At the lowest energies (domains I and II), both τ−1

q and τ−1
± exceed the energy which

makes the notion of mass-shell not well-defined. In particular, due to the inelastic broadening, the
electronic excitation (+ chirality) has tails at negative energies which overlap with the hole mass-shell.
Furthermore, as shown in Sec. 4.2.3, the characteristic rate of the energy relaxation (energy mixing

due to the diffusion over energy) at low energies is of the same order as the quantum scattering rate, so
that the electronic excitations constantly explore the hole mass-shell and vice versa. In this situation,
the broadening of quasi-particles of a given chirality is an effect described by the total scattering rate
τ−1

q , according to Eq. (4.20), rather than Eq. (4.16). Therefore, in what follows, we will mostly focus
on the Fermi-liquid-type total rate τ−1

q , formally defined in Eq. (4.13).
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τq I II III IV
qvF ∼ ω T (αgNT )2/ε αgNT αgNT

Regions 1,2,3,4 1,3 3 3

Table 4.1: Momentum/frequency scales and regions of the Q-Ω plane that dominate the quantum
scattering rate τ−1

q in different domains (I,II,III, and IV) of energy ε.

Quantum Scattering Rates: Results and Discussion

The evaluation of integrals involved in the calculation of the total quantum scattering rate τ−1
q is

outlined in Appendix B.2. The result depends on the energy range (see Fig. 4.4)

1
2τq(ε) ≈



c1
T

N

√
ε

T
, ε � α2

gN
2T, I

c2αgT, α2
gN

2T � ε � αgNT, II

c3αgT, αgNT � ε. III, IV

(4.21)

Here c1 ∼ 1, c2 = 3π/2, and c3 = 2β(2)/π are numerical coefficients of order unity, β(x) is the
Dirichlet beta function and β(2) is the Catalan constant. Note that for energies in regimes II, III, and
IV, the number of independent flavors N drops out from the expression for τq. The comparison of the
asymptotic expressions (4.21) with the exact numerical evaluations is shown in Fig. 4.5).

Ε

Τq
-1

Α
g
T

TΑgN TΑg
2N2T

I II III IV

Figure 4.5: Quantum scattering rate for αgN = 4 × 10−3 (double logarithmic scale). Dots:
exact values obtained by numerical evaluation; solid lines: analytical asymptotics,
Eq. (4.21).

As we will explain within the next few lines the obtained rates are dominated by different values
of momenta transferred during the collision. Furthermore, depending on the energy range the main
contribution may come from different regions of the Q vs. Ω plane (Fig. 4.1) as shown in Table 4.1.
In regime I the result is determined by momenta of order temperature and therefore all four regions

contribute in the same way: τ−1
q ∼ (εT )1/2/N . All scattering angles θ contribute to the result in

regime I. In order to evaluate the numerical prefactor cI one needs the knowledge of the screened
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interaction in the crossover around qvF ∼ T , which is beyond the analytic approximations for the
polarization operator used above. For energies in regime II the dominant contributions come from
regions 3 (electron-electron scattering) and 1 (electron-hole scattering); in both of them all scattering
angles θ contribute. In regimes III and IV the main contribution to the quantum scattering rate
stems from the region 3 (electron-electron scattering) and is dominated by the forward scattering
(θ . αgNT/ε� 1).
An important feature of the quantum scattering rate is its non-monotonic energy dependence, see

Eq. (4.21) and Fig. 4.5: with increasing energy the quasi-particle broadening first grows in regime I,
has a maximum at ε ∼ α2

gN
2T , then decreases in regime II, and finally becomes energy-independent.

The maximum of τ−1
q occurs due to the resonant emission/absorption of plasmonic excitations. We

will see below that the non-monotonicity of the energy dependence is related to the peculiar properties
of the dynamical screening in graphene and is a characteristic feature of all inelastic scattering rates
in graphene.

Ε

Τ
+

-1

Α
g
T

TΑgN TΑg
2N2T-ΑgN T -Αg

2N2T

I II III IV

Figure 4.6: Quantum scattering rate τ−1
+ for the + chirality (electrons) for αgN = 4 × 10−3

(double logarithmic scale). Dots: exact values obtained by numerical evaluation; solid
lines: analytical asymptotics (see Appendix B.2).

In Fig. 4.6 we show the results for the quantum scattering rate of electrons, τ−1
+ , defined in Eq. (4.16).

One sees that Fig. 4.6 represents an “unfolding” of Fig. 4.5 into the contributions of “own” (ε > 0)
and “wrong” (ε < 0) mass-shells, according to Eq. (4.20). The hole mass-shell with ε < 0 is probed by
electrons due to the strong quasi-particle broadening. At positive energies in the regimes III and IV
(ε > αgNT ), the total scattering rate τ−1

q is dominated by the electronic scattering rate τ−1
+ .

In contrast to the naive expectation (τ−1
q ∼ α2

gNT ) based on the Fermi golden rule result, the
quantum scattering rate calculated within the RPA is proportional to αg (and does not depend on N)
for ε � α2

gN
2T and is independent of αg at the lowest energies. This enhancement of the inelastic

scattering for αgN � 1 is a result of peculiar screening properties of graphene at finite T which leads
to a non-analytic behavior of the rate as a function of the natural four-fermion coupling constant α2

g.
This behavior bears a certain similarity to the behavior of the quantum scattering rate in a spinful
Luttinger liquid [27, 28].
Since the RPA quasi-particle broadening in domain I may overlap with the higher-energy domains,

where the quantum scattering rate is of the order of αgT , one can speculate that the characteristic
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strength of inelastic scattering is given by τ−1
q (ε) ∼ αgT also at low energies. Of course, the calculation

based on the lowest-order RPA diagrams for the self-energy is then insufficient. Moreover, the typical
observables at finite temperatures are dominated by ε ∼ T (the border between domains III and IV),
where the quasi classical broadening is smaller than energy and the above calculation is justified. The
low-energy inelastic relaxation may become relevant in the context of spectroscopy under strongly
non-equilibrium conditions, for example, in problems related to tunneling into a non-equilibrium state
(cf. Ref. [32, 33]). In this situation the inelastic effects can be treated within the quantum-kinetic
approach including non-RPA contributions, similarly to one-dimensional problems [32, 33].
It is crucial to notice, that the quasi-particle lifetime we obtain in this section differs strongly from

the naive calculation performed in Sec. 3.1.3. The lifetime we obtained becomes infinite if we approach
the zero temperature case τq ∝ (αgT )−1 T→0−→ ∞ and is not determined by the quasi-particle energy as
Eq. (3.28) suggests.

4.2.2 Dephasing Rate at High Temperatures

Let us now discuss the dephasing rate. The result for the quantum scattering rate obtained for the clean
graphene allows us to evaluate the dephasing rate relevant to weak (anti)localization in the ballistic
regime [66] of high temperatures Tτdis � 1, where τdis is the elastic mean free time due to scattering
off impurities. It is worth noting that this condition may coexist with the condition τφ � τdis which
allows long interfering paths in the weak-localization experiment. Indeed, the inelastic scattering is
suppressed with decreasing αg (even though in a non-trivial way) so that one expects that τφ can be
made arbitrary long.
The result for the quantum scattering rate, Eq. (4.21), remains intact (up to the change of the

prefactor) when we calculate it in a self consistent way an appropriate estimation for the dephasing
rate is:

τ−1
φ ∝

∞∫
(Tτφ)−1

dQ . . . (4.22)

This happens due to the fact that the characteristic momenta dominating the integrals for the quantum
scattering rate in regimes II,III, and IV is of the same order as the resulting rate [see Table 4.1 and
Eq. (4.21)], both are ∼ αgT for N ∼ 1 (for N � 1, the characteristic momenta are much higher
than 1/τq). In regime I of lowest energies, the characteristic momentum transfer is much higher than
the rate. Therefore, in all these regimes the infrared cutoff is redundant and the dephasing rate is
given by the quantum scattering rate, Eq. (4.21), similarly to the case of conventional metals in the
ballistic regime [65]. Although, in contrast to the conventional case, the characteristic transferred
frequencies are much smaller than temperature. Since the characteristic energies involved in the
transport coefficients are of order of T , we conclude that in the ballistic regime the interference effects
are governed by

1
τφ
∼ αgT. (4.23)

4.2.3 Energy Relaxation Rate

Let us now discuss the energy relaxation time in clean graphene. In Sec. 4.2.1 we have seen that
the typical momentum or energy transfer during the electron-electron collision is much smaller than
temperature. In this situation, the energy relaxation occurs through multiple scattering processes
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which can be viewed as diffusion in energy space (see, e.g., Ref. [67]). The characteristic energy
relaxation rate is given by the diffusion coefficient of this problem, which amounts to introducing the
factor KE = ω2/T 2, see Appendix B.2.1, into the collision kernel. More rigorous calculation of the
energy relaxation or equilibration rates can be done using the language of kinetic equation; here we
only estimate the typical rate τ−1

E within the energy diffusion picture.
Once the quantum scattering rate is obtained, the calculation of the energy relaxation rate can be

done using the same steps as described in the previous section. Technically, the integrals in Eq. (4.15)
are only slightly changed, which leads, however, to a substantial difference between the two rates. The
detailed calculation can be found in appendix B.2. The result is:

1
τE(ε) ∼



T

N

√
ε

T
, I

α2
gNT√
ε/T

ln

 ε/T

α2
gN

2

 , II, III

α2
gNT

(
ε

T

)3/2
ln
(

1
αgN

)
, IV

. (4.24)

In particular, we have the following estimates for the energy relaxation rate at characteristic energies
separating the regimes:

1
τE(ε) ∼



αgT, ε ∼ α2
gN

2T,

α3/2
g N1/2T ln

(
1

αgN

)
, ε ∼ αgNT,

α2
gNT ln

(
1

αgN

)
, ε ∼ T.

. (4.25)

Again the obtained rates are dominated by different momentum scales and by contributions of
different regions as shown in Tab. 4.2. Due to the factor KE all contributions except in regime IV
are now determined by momenta of order temperature, which does not allow us to find the numerical
value of the prefactors analytically.
Furthermore, in fact, the above calculation based on the energy diffusion is not justified for “hot

electrons” with high energies, ε > T . Indeed, within our consideration, the characteristic energy
transfer dominating the energy relaxation in regime IV turns out to be much higher than T , in contrast
to the original assumption. Therefore, the estimate, Eq. (4.24) for regime IV cannot be trusted and
another approach is needed for this regime.

τE I II III IV
qvF ∼ ω T T T ε

Regions 1,2,3,4 1,2,3,4 1,2,3,4 4

Table 4.2: Momentum/frequency scales and regions of the Q-Ω plane that dominate the energy
relaxation rate τ−1

E in different domains (I,II,III, and IV) of energy ε.
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Figure 4.7: Energy relaxation rate for αgN = 4× 10−3 (double logarithmic scale), obtained from
the energy-diffusion consideration. Dots: exact values obtained by numerical eval-
uation; solid lines: analytical asymptotics, Eq. (4.24). Since the energy-diffusion
approximation employed in the calculation is not justified in regime IV, we do not
present the results in this regime for ε� T .

The numerical results for the energy relaxation rate are shown in Fig. 4.7 together with the analytical
asymptotics, Eq. (4.24). One sees that the energy relaxation has a minimum at ε ∼ T , where we recover,
up to the logarithmic factor | lnαg|, the golden rule result τ−1

E ∼ α2
gNT . At lower energies the inelastic

scattering is enhanced due to the resonance in the RPA interaction propagator (the resonant condition
correspond to ε ∼ α2

gN
2T ), whereas at high energies the energy relaxation is stronger because of the

large phase space available for inelastic processes. We remind the reader, however, that at ε > T the
above calculation based on the energy-diffusion approximation is not justified. In order to find the
correct relaxation of the distribution functions in this regime of hot electrons, one should solve the
corresponding kinetic equation (see Sec. 5.2.1).
Experiments, able to observe the consequences we discussed in this Chapter are very non-trivial.

This is because the graphene samples need to be clean enough, that Coulomb interaction induced
scattering can overcome the disorder induced scattering. Further the temperature has to stay below
the threshold, where phonons become important and several other constraints, e.g. large enough
samples to observe electron-electron interaction, have to be fulfilled as well. Nonetheless in the recent
years experiments made huge progress in getting closer to the regime described here.
Although the experimental status of the quasi-particle lifetime in graphene is not yet clarified,

there are experimental attempts to measure the quasi-particle lifetime in graphene [68, 69] evidently
demonstrating the relevance of this work.
A recent experiment [70] measured the relaxation process of hot electrons at finite chemical potential,

which is not yet what we described in this Chapter but clearly shows that the experiments are on their
way towards the relaxation processes we discussed here.

48



5 Chapter 5

Transport

.... Und andererseits zeigen die glänzenden Erfolge der drahtlosen Telegraphie so deutlich,
wie wohl fast nie zuvor in der Physik, dass auch die subtilste, aus rein wissenschaftlichen
Zwecken und nur mit den feinsten Hilfsmitteln unternommene Untersuchung sich in un-
serem Zeitalter der Technik und Naturwissenschaft zu einer außerordentlich wichtigen und
praktischen Bedeutung entwickeln kann.

P. Drude, Antrittsrede 1906

Transport is one of the most fascinating parts in condensed matter physics. It not only involves
the knowledge of the electronic structure of the system but as well how this structure changes, how
external forces change the occupation of the states. Transport measurements have a long history in
physics, they have been studied for quite some time and have become one of the standard techniques
for experimentalists. Thus the phenomenon of transport has become a cornerstone of todays scientific
community. The purpose of this chapter is to present some introductory views on transport before
considering the special situation of graphene. The transport phenomena in graphene are described in
a twofold way since it allows deeper insights to have more than one perspective. There is no way the
introductory part about transport could be complete since the topic is far too rich. We will instead
provide an intuitive picture which will serve us as comparison throughout this work.

5.1 Basics

We will start the introductory part, considering the parabolic spectra of non-relativistic particles which
we will compare the relativistic transport in graphene.

5.1.1 Drude Theory

The very basic idea leading to the Drude theory is to think about the material, the transport is observed
in, as consisting of ions at rest and electrons scattering between them. In this situation a force like the
electric field will accelerate the electrons in the direction of the external field. Essential for the Drude
theory is the idea that with increasing velocity of the electrons their scattering probability increases
as well. This is in e.g. if the distribution of ions define a mean scattering length. Formally we may
write:

d
dt~v(t) = q

m
~E − 1

τ
~v(t), (5.1)

49



5 Transport

as a differential equation for a single particle’s averaged velocity. The driving force is given by the
electric field ~E acting on the electric charge q and τ is the average time between two scattering
processes. The stationary solution of the Drude equation is ~v0 = τq/m~E which implies within the
Drude picture the current:

~J = nq~v0 = τq2n

m
~E = σ ~E. (5.2)

Where n is the density of electrons participating in this picture.
Surely the Drude picture is simplistic but still it describes pretty well a lot of phenomena, e.g.

the conductivity of electrons, which is a Quantity that will be essential within this work. Still, the
picture of transport introduced so far is very phenomenological and to gain additional understanding
on how the friction in the Drude picture appears we will try to derive a very similar formula from the
Boltzmann equation.

Drude Theory within kinetic equation approach

We will reformulate the above simple picture into the language we have derived in Sec. 2.5. The
benefit of this reformulation is not only to have proper many-body language. It will also allow us to
gain some more insights into the origin of the scattering rate. The central equation we deal with is

e ~E∇pn(~p) = −IColl[n] = −
∫ d2p′

(2π)2Wpp′

[
n(~p)− n(~p′)

]
, (5.3)

where the collision integral measures the probability of scattering into and out of the state with
momentum ~p. To proceed, we look for the linear response of the system. We perform an expansion
around the equilibrium distribution function nF . To do so we will first try to understand the deviations
of an equilibrium system as a response to a small electric field.
A fermionic system in equilibrium is described by the Fermi distribution function nF (ε). If we switch

on the electric field there will appear a growing shift in the momentum distribution of the system. If we
take into account relaxation processes the complete Fermi-ball will change its location in momentum
space. Thus we read in terms of the dispersion ε(~p+τpe ~E) where τ−1

p is the momentum relaxation rate.
If the electric field is weak enough we can expand the equilibrium distribution function around this
perturbation having n(ε(~p+ τpe ~E)) ≈ nF (ε(~p))− ∂εnF (ε(~p))τpe ~E~v with ~v = ∇pε(~p). A consequence of
this parametrization is that the current reads

~j = e

∫ d2p

(2π)2~vn
(
~p
)

= −e2
∫ d2p

(2π)2~v∂εnF (ε(~p))τp ~E~v ≈
1
2e

2v2
F τpF νF

~E. (5.4)

In the last step of this equation we used the approximation that the Fermi energy is much larger
than the considered temperature. This approximation that is fairly good for most metals. The latter
approximation allowed us to evaluate everything at the Fermi energy including the density of states
νF .
Going back to the Boltzmann equation, Eq. (5.3), we will use the fact that the equilibrium distri-

bution function, per definition, annihilates the collision kernel IColl[nF ] = 0. Thus we end up with an
equation specifying the transport scattering rate, which for simplicity is projected on the direction of
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~E:

v2
F∂εnF (~p) =

∫ d2p′

(2π)2Wpp′

[
∂εnF (ε(~p))τpv2

F − ∂εnF (ε(~p′))τp′~vp~vp′
]

|~p|≈pF≈|~p′|≈
∫ d2p′

(2π)2Wpp′∂εnF (ε(~p))τpF
[
v2
F − ~vp~vp′

]
. (5.5)

So in the very end we will have the scattering rate

τ−1
pF

=
∫ dϕ

2πWϕ
(
1− cosϕ

)
, (5.6)

traced back to some effective scattering kernel Wϕ with the transport factor (1− cosϕ) involving the
angle ϕ between ~p and ~p′. Due to this appearance the scattering rate that comes with transport related
quantities like current is usually referred to as transport rate since it has an intrinsic suppression of
scattering processes that do not change the direction (ϕ = 0). The Boltzmann equation then reads:

e ~E∇pnF (~p) = −
n(~p)− 〈n(~p)〉ϕ

τpF
, (5.7)

where 〈n(~p)〉ϕ is the direction average that reflects the isotropy of the impurity scattering. The deeper
reason for the direction average is hidden in between Eqs. (5.5) and (5.6) and comes from the fact that
isotropic variations of the distribution function like density variation or energy density variation are
not affected by impurity scattering.

5.1.2 Transport in Graphene

When it comes to transport the first thing to mention is that graphene is a fairly good conductor
[13, 21]. It is of prime importance to understand which scattering mechanism finally determine the
conductivity of graphene. The usual suspects responsible for current limiting scattering processes are
disorder scattering or, if temperature is high enough, phonon scattering. In this work we focus on the
Coulomb interaction which apparently is not a member of the usual suspects. In Galilean invariant
systems the Coulomb interaction with exception of the umklapp scattering does not affect current. We
thus take a closer look at the current operator of both systems.

The Dirac Current

With the ultra-relativistic Dirac Hamilton operator the system inherited the Dirac current operator
as well. The definition of the Dirac current operator apparently differs from the conventional current
used in standard condensed matter systems. Let us take a closer look at those differences. If one starts
with the Dirac-Equation: −ivF ~σ ·~∇ψ = i ∂∂tψ, one obtains the continuity equation

∂

∂t
|ψ|2 = −~∇

(
vFψ

†~σψ
)
, (5.8)

which implies the Dirac-current

~j = evFψ
†
(
~r, t
)
~σψ
(
~r, t
)

= evFTr
(
~σψ
(
~r, t
)
ψ†
(
~r, t
)

︸ ︷︷ ︸
iG2,1(0,0)

)
. (5.9)
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The Green’s function G−+ is a Keldysh Green’s function as defined in Sec. 2.4. This structure of the
current is significantly different from

~j = 1
2m

(
ψ†~̂pψ − (~̂pψ†)ψ

)
, (5.10)

obtained from the non-relativistic Schrödinger equation. Still both currents unveil that current is
proportional to velocity (~j ∝ ~v). However, in graphene |~v| = vF which is completely constant for
arbitrary energies (within the Dirac cone).

Comparison

The main difference between the two systems is the form of the velocity, Eqs. (2.6) and (2.7)) as
explained in Sec. 2.1.4. When it comes to transport the main point in graphene is that the current can
be relaxed by processes that do conserve momentum. Such a scattering process is illustrated in Fig. 5.1.
One recognizes that the presence of both bands simultaneously is needed since otherwise momentum
conservation protects the current. Therefore, it is expected that for large chemical potential graphene
exhibits the usual Fermi liquid behavior.

Figure 5.1: A sketch of graphene’s dispersion with a process that annihilates the current. Elec-
tron (red) hole (gray) pair annihilates by creating another electron hole pair. The
process chosen is suppressed by Dirac factors but sketches more intuitively the kind
of processes that lead to current relaxation.

Scattering processes involving phonons or impurities allow momentum transfer out of the electronic
system. Therefore both mechanisms do not conserve momentum from the point of view of the electronic
system. Hence, those processes relax current in both systems in graphene and in usual Fermi liquids.
The Coulomb interaction is always fulfilling the momentum conservation. In a Galilean invariant
system, current is always proportional to momentum and therefore conserved. This is not true in an
ultra relativistic system where conservation of momentum does not imply the conservation of current.
In graphene the Coulomb interaction, although conserving momentum, will relax the current leading
to a scattering process that should be taken into account when describing transport.
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5.2 Previous Works

In previous works by Fritz et al. [71] and Kashuba [72], it has been shown that within the formalism
of the Boltzmann equation one can access the problem of Coulomb interaction dominated transport in
graphene. The path they suggest will be sketched and explained in the following sections. However, we
will use one simplification, namely the large N approximation. The large N approximation basically
discards the right diagram in Fig. 5.2. This choice is in so far controllable that in the limit many
flavors it becomes exact. We know by comparison with the previous works [71, 72] that for the case
N = 4, corresponding to real graphene, the difference in the numerical prefactor for the conductivity as
compared to the N =∞ approximation is ≈ 8%. As will be discussed in Chaps. 6 and 7, the diagram
on the left-hand side of Fig. 5.2 is the only one in this order allowing for Coulomb drag between two
layers.

Figure 5.2: The two possible second order self-energy diagrams leading to a two particle scattering
process on collision kernel level.

We will see that by choosing only the diagram involving a polarization operator (left-hand side of
Fig. 5.2) we will catch all the relevant physics in the system as we will discuss later in Sec. 5.4.

5.2.1 The Kinetic Equation for Graphene

We have derived the kinetic equation for graphene in Sec. 2.5. What is left to show is the form of
the collision kernel for the Coulomb interaction in graphene and on which scale the kinetic equation is
valid. In Chap. 4 we discussed the energy relaxation rate in graphene determining the relevant scale
for the rate to be temperature (see appendix B.2.3). Deriving the kinetic equation we need to keep
in mind that due to the gradient expansion (see Sec. 2.5) the temporal and spatial variations of the
distribution function need to be small on the scale of temperature. With this in mind we continue
with the collision kernel. But first we will introduce a more transparent basis we will perform our
calculation in.
The velocity in graphene is fixed via ~v(ε, ~p) = v2

F ~p/ε and the kinetic equation is taken on the mass
shell. We change the usual notation in terms of momentum and chirality according to

∑
λ

∫ d2p

(2π)2 g(vFλ|~p|, ~p) =
∫

dε
∫

dv̂ ν(ε)g(ε, ε~v). (5.11)

The system is now described by the particle’s energy and its direction encoded in ~v. The measure
of the angular integral (direction weight) is given by 2πdv̂ = dφ (from d2p = pdpdφ) and we used
2πv2

F ν(ε) = |ε| for further simplification. The advantage of this formulation is that for a given velocity
the chiral symmetry has been absorbed into the particle’s energy making it an explicit symmetry of
the corresponding integrals. Collecting the degrees of freedom dxi = dεidv̂ and subsequently using
the notation {xi} = {x1, x2, x1′ , x2′} and d{xi} = dx1dx2dx1′dx2′ we found a very short and elegant
formulation for the problems allowing to keep the focus on the physics.
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The way we discussed the Drude theory via Boltzmann equation it is natural to build up the collision
integral:

IColl[n] = − 1
ν(ε1)

∫
d{xi}i∈{2,1′,2′}K({xi})

{
n(t, x1)[1− n(t, x2)]n(t, x1′)[1− n(t, x2′)]−

[1− n(t, x1)]n(t, x2)[1− n(t, x1′)]n(t, x2′)
}
, (5.12)

where the collision integral kernel is

K({xi})=(2π)3δ(ε1−ε2 +ε1′−ε2′)δ(ε1~v1−ε2~v2 +ε1′~v1′−ε2′~v2′)|〈x1, x2|U |x1′ , x2′〉|2ν(ε1)ν(ε2)ν(ε1′)ν(ε2′).
(5.13)

The matrix element of the Coulomb interaction reads:

| 〈x1, x2|U |x1′ , x2′〉 |2 = N
∣∣∣D(q)

∣∣∣2 θ1,2θ1′,2′ . (5.14)

Here D(q) is the interaction propagator usually chosen to be the bare Coulomb propagator Eq. (2.23)
but here it can as well be replaced by the RPA screened interaction propagator Eq. (2.38). The chiral
overlap of an incoming particle with the outgoing one is defined by

θγ1,γ2 = Tr
[
Pγ1(~p1)Pγ2(~p2)

]
= 1

2
[
1 + γ1γ2p̂1p̂2

]
= 1

2
[
1 + ~v1~v2

]
. (5.15)

It is the same object that determined the difference between the quantum scattering rate and the chiral
scattering rate in Sec. 4.2.1. Its appearance is special for Dirac fermions, which is why we will term
them Dirac factors.
The derivation of the general form of the kinetic equation for graphene has been presented in Sec.

2.5. A detailed calculation on determining the collision integral from the field theoretical formulation
is given in appendix A.2.1.
The next step in gaining transport properties is to linearize the collision kernel (see App. A.3).

Therefore we expand the distribution function around equilibrium,

n(t, x) = nF (ε)− T ∂nF (ε)
∂ε

h(t, x), (5.16)

gaining the linearized collision integral,

δIcoll = 1
ν(ε1)

∫
d{xi}i∈{2,1′,1′}W ({xi})

{
h(t, x1)− h(t, x2) + h(t, x1′)− h(t, x2′)

}
, with the kernel

(5.17)

W ({xi})= (2π)3δ(ε1−ε2+ε1′−ε2′)δ(ε1~v1−ε2~v2+ε1′~v1′−ε2′~v2′)|〈x1, x2|U |x1′ , x2′〉|2ν(ε1)ν(ε2)ν(ε1′)ν(ε2′)
16 cosh( ε1−µ2T ) cosh( ε2−µ2T ) cosh( ε1′−µ2T ) cosh( ε2′−µ2T )

.

(5.18)

Still, even for the linearized collision integral it is far from trivial to solve the kinetic equation at this
stage. Following the previous literature we will find a powerful method to do so.

5.2.2 The Functional Approach

We will now introduce the method that has been used by Fritz et al. [71] and Kashuba [72] to solve
the Boltzmann equation. The method we are going to introduce is the reformulation of the kinetic
equation into a functional. This is very similar to the formulation of the equations of motion in terms
of the Langrange function which by functional variation allows to reobtain the equations of motion.
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Reformulation of the kinetic equation

If we use the linearized collision kernel Eq. (5.17) and applying it to Eq. (5.12) we gainiΩh(x) + e
~E~v

T

T ∂nF (ε)
∂ε

= −δIcoll[h]. (5.19)

Where we assumed a homogeneous sample but a very slowly oscillating external field E = E(t) causing
the additional iΩ term. Our aim is to reformulate this equation in a language that allows an easy
treatment of approximate solutions of the Eq. (5.19). Suppose we have a solution hs that solves the
kinetic equation. Then a reformulation of the problem to a nonlinear functional F (h) is done by the
demand that F (h) is minimized for the solution hs only. This is exactly what is done within the
Lagrange formalism, where the solution of the equations of motions minimizes the Lagrangian. Thus
via functional variation we should regain the kinetic equation. The constraint

δF (h)
δh

= 0 (5.20)

needs to be equivalent to Eq. (5.19). One can verify that

F (h) =
∫

dx1ν(ε1)∂nF
∂ε1

[
e ~E~v1h1 + i

TΩ
2 h2

1

]
+ 1

8

∫
d{xi}W ({xi})[h1 − h2 + h1′ − h2′ ]2 (5.21)

indeed yields Eq. (5.19) by functional variation of Eq. (5.21) (for brevity hi = h(xi)). The only
additional input needed is about the symmetry properties of the integral kernel. The symmetries of
Eq. (5.18) are due to the invariance under simultaneous exchange of 1 and 1’ as well as 2 and 2’ and
additionally the invariance by simultaneously exchanging 1 and 2 as well as 1’ and 2’. Note that the
second symmetry is essential, it corresponds to the hermiticity of δI[h]− iΩh which will become clear
later.
One should note that these symmetries are also responsible when one is trying to derive the hy-

drodynamic equations from the kinetic equation (see Sec. 2.5.2). This is because the equations that
correspond to conserved quantities, like particle number (density) or energy (energy density) do not
involve the collision integral, since they are conserved. Thus there needs to be a symmetry within the
collision kernel responsible for this conservation.
We have now reformulated the problem of solving the kinetic equation into the problem of minimizing

the functional F . Assuming h to be an analytic function linear in ~E allows one to write its series
expansion in terms of (see Sec. 5.2.4 for non-analytic contributions)

h(x) =
∞∑
i=0

κiε
i +

∞∑
i=0

χiε
i ~E~v. (5.22)

This reformulation corresponds then to the task of solving a linear equation by inverting an infinite
dimensional matrix.
Still one can ask why to bother inventing a functional F (h) instead of putting the series expansion

(5.22) into the linearized kinetic Eq. (5.19). The answer is quite simple, the reason to proceed this
way is that we would like to have an algebraic equation where the κi and χi are constants, which does
not follow straightforwardly by plugging in the series expansion (5.22) into the linearized kinetic Eq.
(5.19). To transform the integro-differential equation properly into an algebraic one we need to have
a well defined integral measure that tells us how to deal with the free parameters within the linear
kinetic Eq. (5.19). This is the reason to choose the apparent detour of defining the functional (5.21).
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General considerations about the approximation scheme

We will now provide a general discussion of the method we are going to use as it has been done in
the previous articles [71, 72]. Instead of thinking about the reformulation in terms of a functional,
we will for pedagogical reasons think about the reformulation in terms of a linear equation in the
spirit of the linear algebra A |h〉 = |b〉 with A being a linear operator acting on |h〉. In this language
one recognizes that the hermeticity of A provides us with the possibility to solve formally the linear
equation by rotating into the basis A is diagonal in. In this rotated basis A, which is now diagonal
can be represented as

∑
n |h′n〉 an 〈h′n| with the eigenvector |h′〉 and the corresponding eigenvalue an.

The equation then reads
∑
an |h′n〉 − |b′n〉 = 0 and is uniquely solvable if none of the eigenvalues an

vanishes. It can happen that some an are zero but the corresponding bn are zero as well, the system
remains solvable but is no longer uniquely solvable. In such a situation we can still restrict our space
of solutions to the eigenmodes that are not zero modes (modes that have a vanishing eigenvalue). We
then, can formally write the solution as |h′〉 =

∑
a−1
m |b′m〉 (with m counting only non-zero eigenvalues).

This way one might recognize that the best approximations are done by keeping those eigenstates that
have a “small” eigenvalue am (if non-vanishing states |b′m〉 do not vary too much). This is the basic
idea we want to follow in our attempt to find an approximation. A slightly different view on this can
be gained by thinking about the introduced procedure in terms of the image B and the kernel of the
operator A. Then, restricting our space to deal only with the image we can formally define the inverse
of A. A further restriction onto a small subspace X ⊂ B of the image B can be sufficient for the solution
of the linear equation if this subspace X is chosen such that it covers the most important parts of A.
A clever way to do so is to choose the subspace in such a way that the target space A−1X contains the
essential properties of the operator A−1. Therefore small eigenvalues of A are the selection criteria.
It will turn out later that for our purpose the eigenvalues are parametrically controllable making the
approximation scheme exact in certain limits.
The functional comes into play when we have identified the modes we have chosen to use as the

approximated subspace. Then those modes provide use with an ansatz |hAnsatz〉 =
∑
χn |hn〉 that

plugged into the functional f(h) = 〈h|A|h〉 − 2 〈h|b〉 and performing a differentiation with respect to
the χn gives us an algebraic linear equation for the χn namely

∑
m χm 〈hn|A|hm〉−〈hn|b〉 = 0 due to the

hermiticity of A. To provide a simple picture of the abstract discussion we dealt with, we have chosen

Figure 5.3: Illustration of a function sub-manifold (black line) passing by the minima of a func-
tional (orange plane) in function space.

to use Fig. 5.3 as a sketch on how the choice of the sub-manifold due to selection of the eigenvalues
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substantially influences the quality of the solution. In this sketch the purpose of the functional is to
provide us with an easy way of gaining a new minimum inside the sub-manifold whose distance (hence
quality) is minimized but restricted to the choice of the manifold.
The plan is, now to find a proper ansatz by studying the integral kernel of δI[h] given by Eq. (5.17)

and using this ansatz together with the functional F (h) Eq. (5.21) to gain an algebraic equation for
the coefficients that parametrize our solution.

Discussion of the ansatz

The general considerations from above have unveiled that for our case of a fixed driving term e ~E~v
that plays the role of |b〉 we have to look for modes minimizing the collision kernel Eq. (5.18). Note
that we skip the part of the kernel that is related to iΩ which in this discussion will be only used
as regularization for cases the kinetic equation is not solvable otherwise. This limit corresponds to
Coulomb interaction dominating other scattering mechanism like iΩ and τ−1

dis . One recognizes at first
that there are two zero modes due to the delta functions in W ({xi}) namely hec ∝ ε and hmc ∝ ε ~E~v.
These zero modes are due to particle, energy and momentum conservation (see 2.5.2). The fact that
the zero mode corresponding to particle and energy conservation does not couple to the driving term is,
in aboves terms, reflected by the statement that 〈hec|b〉 = 0, hence we can further on ignore those two
zero modes (as long as dealing with pure transport). This is not true for the momentum conserving
mode hmc. Without regularization iΩ this one can make the problem unsolvable, since without any
scattering the momentum mode will accelerate uncontrollably not allowing us to consider a stationary
case.
Finding more relevant modes requires the knowledge of different energy scales in the integral kernel

Eq. (5.18). Detailed calculations supplement this discussion and can be found App. C.2.2. As explained
in Secs. 3.1.2 and 4.1 and Refs. [71, 72], on a golden rule level of interaction the collision kernelW ({xi})
has a singularity that is due to forward scattering. In Eq. (5.17) one can identify some traces of this
forward scattering resonance by setting all velocities in the collision kernel the same. This way one
obtains a kind of three dimensional energy conservation constraint, indicating a divergent structure
and leaves only the question of the relevant phase space for that to happen. Again, an investigation
of this divergence can be found in more general terms in the App. C.2.2. With this forward scattering
divergence all modes that do not efficiently suppress forward scattering relax quickly meaning that
the collision kernel provides zero weight to the solution of the kinetic equation (if T 6= 0 [61]). There
is exactly one mode that is not affected by this fast relaxation namely the velocity mode hv ∝ ~E~v.
This mode annihilates efficiently the collision kernel for the processes that are resonant in forward
scattering. From these considerations it seems that taking only the momentum conserving and the
velocity mode will provide us with the exact solution to the problem. Surely this is not correct since
the divergence in the kernel is regularized, at finite T , by taking into account the RPA screening.
Again, more details are provided in App. C.2.2. In total it turns out that the collision kernel itself for
µ� T provides us with the scale αgT as it is shown in Sec. 4.2.1. This is by a factor α−1

g larger than
the averaged transport related quantities given in Sec. 5.4.2. Hence the quality of the aforementioned
approximation with only two modes is well-founded as long as Coulomb interaction dominates the
structure of the kinetic equation Ω � α2

gT . One should mention that the ansatz discussed so far
corresponds to direction dependent equilibration, which we will discuss in more detail in Sec. 7.1.2.
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Assuming Coulomb interaction being the most relevant interaction we formulate the ansatz1:

hAnsatz(x) = χ0
e ~E~v

T 2 + χ1
ε

T

e ~E~v

T 2 , (5.23)

for the distribution function. An extensive analysis on the precision of the ansatz Eq. (5.23) compared
to contributions that relax parametrically fast is performed in Ref. [73]. With the ansatz at hand we
will now proceed solving the kinetic equation.

5.2.3 The Conductivity in Graphene

Following the ideas sketched in the previous sections we are left with the functional Eq. (5.21) altered
by the ansatz Eq. (5.23):

F (χ0, χ1) =
∫

dx1ν(ε1)∂nF
∂ε1

[(
χ0 + ε1

T
χ1

)
+ i

Ω
2T

(
χ0 + ε1

T
χ1

)2
]

+ χ2
0

8T 2

∫
d{xi}W ({xi})[~v1 − ~v2 + ~v3 − ~v4]2. (5.24)

As we discussed above within the lines of Eq. (5.22) the χ1-mode, the zero mode, disappeared within
the integral kernel due to momentum conservation. The only thing that is left to do now is the actual
calculation which is done by minimizing F (hAnsatz) with respect to χ0 and χ1. While doing so it turns
out that the following useful short forms will help compactifying the result:

ITr = 1
4T 3

∫
d{xi}W ({xi})

(
~v1 − ~v2 + ~v3 − ~v4

)2
, (5.25)

An(µ) = − 1
T

∫
dx ν(ε)∂n

α
F (ε)
∂ε

(
ε

T

)n
. (5.26)

We finally end up with a set of algebraic linear equations

∂F (hAnsatz)
∂χ0

= A0 + i
Ω
T

(A0χ0 +A1χ1)− χ0NITr = 0,

∂F (hAnsatz)
∂χ1

= A1 + i
Ω
T

(A1χ0 +A2χ1) = 0. (5.27)

where we are using the short-hand notation introduced in App. C.1 in Eq. (7.13). The solution to the
kinetic equation in the aboves approximation is

χ0 = A0A2 −A2
1

A2(NITr −A0x) +A2
1i

Ω
T

,

χ1 = A1NITr

iΩ
T

[(
A0A2 −A2

1

)
iΩ
T −A2NITr

] . (5.28)

1For quantities, governed by energies of order temperature (like the conductivity), this ansatz is controllable in powers
of ln(1/αg). If, e.g., observables are governed by energies of order αgT the situation changes. In Chap. 4, we found,
that plasmons lead to a quantum scattering rate and energy relaxation rate of the same order (analogous behaves the
transport scattering rate 5.4), which provides no selection of modes.
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From Eq. (5.4) and the ansatz Eq. (5.23) follows the current

~j = eN

∫ d2p

(2π)2 ~vn(x) = e2

2 N
(
A0χ0 +A1χ1

)
~E. (5.29)

Hence the conductivity reads:

σ = e2N

2
(
A0χ0 +A1χ1

)
. (5.30)

We see that for finite chemical potential (A1 6= 0) the DC conductivity (Ω → 0) diverges since χ1
diverges. This limit reflects the case that the kinetic equation has no solution since there is no steady
state to relax to.
At the Dirac point (µ = 0→ A1 = 0) the conductivity is

σ = e2N

2 A0χ0 = e2

2
A2

0
NITr − iΩ

TA0

Ω=0= e2

2
A2

0
ITr

µ=0= e2

h

0.7
α2
g

. (5.31)

This result has been obtained in previous Refs. [71, 72] and the DC limit will be determined in Sec.
5.4 within a diagrammatic analysis. It is worth noting that the ITr appears as scattering rate of the
system (ITr = (Tτtr)−1), a fact which motivates some of the later notations (e.g. Eq. (7.13)).
If we consider the resistivity the full result reads (Tz = −iΩ or Tτz = 1)

ρ = e2

2

 Itr
B2

0
+ z

B0
− B2

1I
2
tr

B0
(
B2

1Itr +B2z
)
 , (5.32)

where we introduced an additional short-hand notation, which is particular useful for resistivities,
namely

A0 = B0, B1 = N
A1
A0
, B2 = NA2 −A1B1. (5.33)

There is a deeper reason in the fact that at the Dirac point conductivity is definable even in the
clean case. The reason for this becomes more clear when we take a look at Fig. 5.3. The reason for
creating the functional was to provide a systematic way to find the best approximation for the solution
of Eq. (5.19). The functional defines a measure within this abstract language. It hence, tells us how
to weight the modes, which finally leads to the measure ν(ε)∂nF (ε)

∂ε . This way the functional approach
defines a scalar product

〈
(
ε

T

)n
|
(
ε

T

)m
〉 = − 1

T

∫
dxν(ε)∂nF (ε)

∂ε

(
ε

T

)n+m
= An+m. (5.34)

on the space of all possible modes (see Eq. (5.22)). If we use χn and κn as a short form for the
corresponding mode we have 〈χn|χm〉 = An+me

2 ~E2/2, 〈χn|κm〉 = 0 and 〈κn|κm〉 = An+m. For the
description of graphene only χ0 and χ1 have been needed. The scalar product of their modes is A1
which is an odd function of the chemical potential (see Eq. (C.18)) and disappears at the Dirac point.
Hence, at the charge neutral point, where µ = 0, the zero mode due to momentum conservation does
not couple to an external electric field. As discussed in Sec. 5.2.2 this implies that at the Dirac point
only the velocity mode is needed to take into account (see references [71, 72]). The limit of large
chemical potential is not less interesting. Within the scalar product of the modes we can as well talk
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about angles in the sense of |χn||χm| cos θn,m = 〈χn|χm〉 (we use as a norm |χn|2 = 〈χn|χn〉). This way,
in the limit of large chemical potential, one gains cos θ0,1 ≈ 1− π2/(24µ̂2) (see Eq. (C.37)) indicating
that the modes χ0 and χ1 become the same up to algebraically small contributions. The fact that the
two modes become the same is somewhat natural since within the usual Fermi-liquid picture there is
no deeper separation between velocity and momentum.

5.2.4 Non Analytic Corrections

The analysis performed previously so far is in fact not fully complete as long as we stay to the two
mode description only. The basis we founded our expansion of possible modes on is given in Eq. (5.22).
We could show (see App. C.2.2) that within this basis only two modes are relevant. In the notation of ε
and ~v we used explicitly the symmetry between particles and holes making the treatment significantly
more easy. Unfortunately this basis masks a peculiarity we first observed in Sec. 3.1.2. In this specific
section we explained that relaxation of particles by creation of holes is an inefficient process since it
takes place only within a measure of zero in the phase space (due to kinematic reasons). This implies
that the total number of excitations is a conserved quantity separately for particles and holes. A
perturbation of the system could therefore create an asymmetry between particles and holes we have
not included so far within our two mode ansatz. The authors of Ref. [74] noticed this curious fact and
found a related slow mode similar to χ0 we have not yet included.
Within our language, incorporating this particular mode alters the two mode ansatz towards a three

mode ansatz:

h =
(
κ0 + κ1

ε

T
+ κssign(ε)

)
+ e ~E~v

T 2

(
χ0 + χ1

ε

T
+ χssign(ε)

)
. (5.35)

A natural question that appears now is: do we really have all needed modes now?
The only problem with the previous discussion of the two mode ansatz is that we limited ourselves to

analytic forms only. This means that the χs-mode has to be taken into account since χs is essentially
constant and therefore similar to χ0. There is no counterpart to χ1, since the zero mode is actually not
stable against the forward scattering resonance but is “accidentally” annihilated by the momentum
conservation (see thermalization in the later Sec. 7.1.3). Thus changing signs will no longer allow
this mode to be annihilated by momentum conservation. Hence, the only additional mode able to
annihilate the forward scattering resonance is χs.
The purpose of this section is now to analyze the influence of this particular mode in contrast to the

two mode case introduced previously.

The effective three mode kinetic equation

We discussed in Sec. 5.2.2 the method using a functional to determine the effective kinetic equation and
in this context learned that only the choice of the ansatz matters for the quality of the approximated
effective kinetic equation. By using the three mode ansatz Eq. (5.35) together with the functional
given in Eq. (5.21) we gain an algebraic equation that reads (z = −iΩ/T or z = 1/(Tτdis)):A0

A1
As0

 =

 Itr +A0z A1z Istr +As0z
A1z A2z As1z

Istr +As0z As1z Is +A0z


χ0
χ1
χs

 (5.36)
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where the new appearing objects have been straightforwardly adapted to the previous notation using:

Is = 1
4T 3

∫
d{xi}W ({xi})

(
sign(ε1)~v1 − sign(ε2)~v2 + sign(ε3)~v3 − sign(ε4)~v4

)2
(5.37)

Istr = 1
4T 3

∫
d{xi}W ({xi})

(
~v1 − ~v2 + ~v3 − ~v4

) (
sign(ε1)~v1 − sign(ε2)~v2 + sign(ε3)~v3 − sign(ε4)~v4

)
(5.38)

and

Asn(µ) = − 1
T

∫
dx ν(ε)∂n

α
F (ε)
∂ε

sign(ε)
(
ε

T

)n
. (5.39)

Before continuing to solve the effective kinetic equation we need to understand how it differs from Eq.
(5.27). It is therefore convenient to analyze the kind of additional contributions we gained. The Asn
although appearing similar to the An have a shifted symmetry caused by the χs mode to appear with
a term odd in energy. In this view χs behaves like χ1. A prior classification of χs is done by thinking
about it as a velocity (χ0) like mode with the symmetry of the zero mode (χ1).
Let us now discuss the rate Is by confirming first that indeed it is not divergent which would

cause a fast relaxation of the mode. As already mentioned both layers have a conserved number
of excitations which means that inter band collisions and intra band collisions happen separately
forcing sign(ε1ε2ε3ε4) = 1. This means that the integral kernel of Is can look like the one of Itr, like(
~v1 − ~v2 − ~v3 + ~v4

)
or like

(
~v1 + ~v2 − ~v3 − ~v4

)
. These possibilities are all annihilated by the forward

scattering constraint ~v1 = ~v2 = ~v3 = ~v4. An explicit calculation of this cancellation can be found in
App. C.2.3.

Discussion of the significance of the third mode

We are now interested in the relevance of this third mode. The first observation we did is that the
symmetry of the χs mode is odd which immediately implies that close to the Dirac point the interplay
of χ0and χs disappears. Further we notice, that having two odd modes their interplay should be
governed by the vicinity to the clean limit, in which the third mode, again is irrelevant. Thus a
possible expansion may look:

ρ
e2

2 ≈
Itr
B2

0
+ z

B0
− B2

1I
2
tr

B0
(
B2

1Itr +B2z
) −

[
B0B2Istr +

(
B0B1As1 −B0B

2
1As0 −As0B2

)
Itr

]2
z

B4
0B2Is

(
2B2

1Itr +B2z
) (5.40)

Here we kept in the denominator only the leading contributions of z and B1, which is proportional to
µ. Hence we assume z � 1 and µ� 1. For this discussion we need to know some of the asymptotics of
the short-hand notations introduced. The calculation of those can be found in App. C.2.3 and states,
that except of B1 ∝ As0 ∝ Istr ∝ µ, everything is constant up to quadratic contributions, close to the
Dirac point. Then we have two distinct limits to deal with. If we assume z � µ2 we recognize that
the additional contribution coming from the third mode disappears completely compared to the first
three terms, which correspond to the two mode calculation Eq. (5.32). Thus the corrections appear as
O(z). In the regime of z � µ2 the last two contributions are proportional to µ2. But one of the terms
coming from the two mode calculation has an additional z−1 enhancement which again allows us to
skip the three mode contribution since it appears as O(µ2) (instead of O(µ2z−1)). In the vicinity of
the Dirac point and of the clean case we re-obtain the two mode calculation.
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Let us focus now on the situation of large chemical potential. In this situation Istr, Is and Itr are
up to exponential small corrections the same. The same is true for the Asns, that are now up to
exponentially small corrections appear to be the same as the Ans (see App. C.2.3). Thus, we define
Is − Itr = δs � 1, Istr − Itr = δstr � 1, A0 −As0 = −δAs0 � 1 and As1 −A1 = δAs1 � 1 to obtain the
leading order in for large chemical potential. Again we only keep the leading orders of nominator and
denominator and obtain

ρ
e2

2 ≈
Itr
B2

0
+ z

B0
− B2

1I
2
tr

B0
(
B2

1Itr +B2z
) − 2Itrz

2B1
B2

1ItrδAs1δAs0 +B2B1δAs0δstr +B2δstrδAs1

B2
0

(
B2

1Itr +B2z
)2 (

2zδAs0 − 2δstr
) (5.41)

The deviations δAs0 and δAs1 are just exponentially small in µ/T with some prefactor of order 1.
However the deviations δstr and δs have additionally to the same exponential suppression a prefactor of
order α2

g. Therefore as long as we are close to the clean limit where the Coulomb interaction determines
the modes the denominator of the last term in Eq. (5.41) can not become zero. The corrections we
gain then by the three mode calculation are exponentially small.
Concluding we can say that for large chemical potential and close to the Dirac point the two mode

calculation is sufficient. Already within the choice of the collision kernel we considered large N contri-
butions only which means that we will not gain more precision by including the third mode. On the
other hand the concepts and ideas we managed to learn from the two mode calculation seem to allow
us a conceptual and qualitative understanding of the physics governing the transport in graphene.
Therefore although the two mode calculation gains additional corrections at µ ∼ T we will continue
performing only the two mode calculation to keep the discussion more clear allowing us to stay focused
on the phenomena of transport in graphene.

5.3 Hydrodynamics for Graphene

In our pursuit of understanding the transport in graphene, there is one more step left to go. We have
seen how the kinetic equation approach becomes very powerful using the ansatz based on the graphene
intrinsic forward scattering resonance. The next setup to go is to extend the formulation towards a
true hydrodynamic picture. We have seen in Sec. 5.2.2 that already the ansatz (5.23) is based on the
assumptions that interactions dominate the system. Thus, a hydrodynamic formulation (see Sec. 2.5.2)
is the next logical step [62, 73–76].
A hydrodynamic formulation implies to have local fields determining the macroscopic state of our

system on top of the microscopic details. In Sec. 2.5.2 we sketched how the hydrodynamic equations
appear from the kinetic equation almost without involving any microscopic details. This section is
dedicated to the derivation and analysis of the hydrodynamic equations in graphene.

5.3.1 The local Hydrodynamic picture

The purpose of writing down the hydrodynamic equations is to add another perspective on the trans-
port properties in graphene. Writing down the hydrodynamic equation as we did in Sec. 2.5.2, it turns
out that we gain three equations but none for the current. The reason for this is of course that current
itself is not conserved by the Coulomb collision term. We spend quite some effort on solving the kinetic
equation. This allows us to write down the local hydrodynamic equations easily. In contrast to the
discussion we had so far, the hydrodynamic equations involve the densities implying that the ansatz
needs to have a non-directional component.
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Figure 5.4: Illustration of the concept of local direction dependent equilibrium (see Sec. 7.1.2).
The distance between the spatial separated direction dependent equilibria needs to be
at least the thermal length.

In the spirit of Eq. (5.22) we will consider the two modes for transport. Which modes we discussed
within this chapter, and add to this the two zero modes κ0 and κ1 (see Sec.5.22) responsible for the
densities. The hydrodynamic fields we want to use to describe the system should be local quantities
on the scale of temperature. The origin of this limitation is the kinetic equation itself which originated
from the local approximation performed in Sec. 2.5. The conclusion there was that all real-space
gradients and time derivatives need to be smaller than the relevant quantum scale. In Sec. 4.2 and
Sec. 5.4.2 we showed that at the Dirac point, where the chemical potential will not serve us as a large
energy scale, temperature comes into play and will be the most relevant scale for transport and energy
relaxation rates. Thus, the real-space ultraviolet cut-off for the kinetic equation is given by the thermal
length lT ∝ T−1. On length scales larger than the thermal length we may as well allow local variation
of the external fields. Further, since the collision kernel is a purely local object (see App. A) we might
allow all the coefficient’s that parametrize the modes κ and χ to vary in real-space coordinates. This
yields the desired local ansatz. This implies a local direction dependent equilibrium sketched in Fig.
5.4. The hydrodynamic fields obtained within the approximation of the ansatz (5.23) read:

ρ = eN

∫
dxν(ε)n = eNT 2 (A0κ0 +A1κ1

)
, (5.42)

ρE = N

∫
dxν(ε)εn = NT 3 (A1κ0 +A2κ1

)
, (5.43)

~j = eN

∫
dxν(ε)~vn = 1

2e
2N ~E

(
A0χ0 +A1χ1

)
, (5.44)

~jE = N

∫
dxν(ε)ε~vn = 1

2eTN
~E
(
A1χ0 +A2χ1

)
, (5.45)

where we are using the abbreviation A introduced in Eq. (5.25) for brevity. With these fields the local
hydrodynamic equations can be expressed as:

∂tρ+∇r~j = 0, ∂tρE +∇r~jE = 0,

(5.46)

∂t~j +∇rρ− e2N ~EA0 = −
~j

Tτdis
− Itr

A2~j −A1~jET/e

A2A0 −A2
1

, ∂t~jE +∇rρE − eN ~ETA1 = −
~jE
Tτdis

.

(5.47)
Remarkably these equations generalize in a very intuitive way the results obtained for conductiv-
ity (5.31) previously. Further these equations highlight the interplay of electric current and energy
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current with an easiness and intuition we have not seen in the matrix formulation. Assuming the fields
to be static and homogeneous Eq. (5.46) appears to correspond to the some graphene-based Drude-like
equations (see for comparison Eq.(5.1)).

5.3.2 Derivation of the non-local Hydrodynamics

The kinetic equation (5.12), we used so far lack one crucial ingredient that is needed to describe the
non-local hydrodynamics, namely the viscosity. In Sec. 2.5 we derived the kinetic equation using the
local approximation which essentially made the collision kernel a local object. To go beyond this
approximation we need to understand the effects of the higher order terms in the gradient expansion
as well as their origin. Tracing back the derivation of the kinetic equation (see App. A) we will end
up with the self-energy as given in Eq. (A.2).

~r1′ ~r2′

~r2~r1

Figure 5.5: The self-energy diagram involving the spatial coordinates

If we just disregard any Keldysh structure, for now, we obtain from the diagram in Fig. 5.5:

Σ(~r1, ~r2) =
∫

d~r1′
∫

d~r2′D0(~r1 − ~r1′)D0(~r2′ − ~r2)G(~r1, ~r2)Tr
[
G(~r1′ , ~r2′)G(~r2′ , ~r1′)

]
. (5.48)

Performing the Wigner-transformation for each propagator and making use of the delta constraints
that appear we can rewrite the equation, using 2~q = ~q1 + ~q2 and δ~q = ~q1 − ~q2 as total and relative
transfered momentum, and obtain

Σ(~R12, ~p) =
∫

d~R1′2′
dδq

(2π)2 e
−i
(
~R12−~R1′2′

)
δ~q
∫ dq

(2π)2
dp′

(2π)2D0(~q + δ~q

2 )D0(~q − δ~q

2 )

×G(~R12, ~p− ~q)Tr
[
G(~R1′2′ , ~p

′)G(~R1′2′ , ~p
′ + ~q)

]
. (5.49)

This self-energy appears finally in the kinetic equation (see Eq. A.7) together with an additional
convolution between different center of mass coordinates of the electronic propagator and the self-
energy. Since Coulomb interaction is a long-range interaction we assume the non local structure of the
self-energy to be more relevant than non-local contributions between electronic propagators. Assuming
further that the center of mass dependence of G(~R, ~p) is not only very weak but exclusively present
in the distribution function f we observe that the complete calculation that has been performed in
App. A.2.1 can be done without any further restrictions. Even more we can as well linearize the
collision kernel arriving at:

δIcoll = 1
ν(ε1)

∫
d{xi}i∈{2,1′,2′}W̃ ({xi})

∫
d~R1′2′

dδq
(2π)2 e

−i
(
~R12−~R1′2′

)
δ~q
D0(~q + δ~q

2 )D0(~q − δ~q

2 )

×
{
h(~R12, x1)− h(~R12, x2) + h(~R1′2′ , x1′)− h(~R1′2′ , x2′)

}
, (5.50)
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W̃ ({xi}) = 2πδ(ε1−ε2+ε1′−ε2′)(2π)2δ(ε1~v1−ε2~v2+ε1′~v1′−ε2′~v2′)×

×
θ1,2θ1′,2′ν(ε1)ν(ε2)ν(ε1′)ν(ε2′)

16 cosh( ε1−µα2T ) cosh( ε2−µα2T ) cosh( ε1′−µβ2T ) cosh( ε2′−µβ2T )
. (5.51)

This equation is particular useful. Assuming the distribution functions to be independent on the center
of mass coordinates we recover the collision kernel (5.18) from the previous sections. Expanding the
interaction propagator in δ~q we will be able to go beyond the local approximation. Since an expansion
of the interaction propagator reads:

D0(~q + δ~q

2 ) ≈ D0(~q)− δ~q

2
~q

q2D
2
0(q) + δ~q

2

(
~q ⊗ ~q − q21

2q4

)
δ~q

2 D
2
0(q), (5.52)

it follows that the combinations of the propagators inside the non local collision integral read:

D0(~q + δ~q

2 )D0(~q − δ~q

2 ) ≈ D2
0(~q)− D2

0(q)
q2

(
δ~q

2

)2

. (5.53)

It is clear that the first term in this expansion creates naturally the local collision integral we took into
account so far. Within the integration over ~R1′2′ the parameter δ~q can be understood as an operator
acting on ~R1′2′ . Thus we may write the symmetrised transformation explicit as:(

δ~q
)2
→ 1

4
(
∆R12 + ∆R1′2′ − 2∇R12∇R1′2′

)
, (5.54)

where ∆R is the Laplace operator with respect to ~R. The leading non-local correction to the collision
integral reads:

δIcoll = − 1
8ν(ε1)

∫
d{xi}i∈{2,1′,2′}W̃ ({xi})

(
D0(~q)
q

)2

×
{

∆R12

[
h(~R12, x1)− h(~R12, x2)

]
+ ∆R1′2′

[
h(~R1′2′ , x1′)− h(~R1′2′ , x2′)

]}
~R1′2′→~R12

. (5.55)

We need to remember, that after applying the operator, the different coordinates ~R12 and ~R1′2′ have to
be evaluated at the same point. This way we defined how to extend the here presented theory towards
viscosity contributions as shown in Eq. (2.78). With help of the viscosity we can understand the
equilibration of non-local setups that e.g. appear when considering clean finite systems with different
chemical potentials applied to. Thus, the here performed analysis provides an excellent starting point
for the analysis of finite setups (see Sec. 9).

5.4 Diagrammatic Analysis

We have seen the description of transport in terms of the kinetic equation. Within the next section we
will look at the transport properties at the Dirac point of clean graphene but using the diagrammatic
approach known from chapters 3 and 4. We therefore continue the calculation of Chap. 4 but with an
emphasis on transport.
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5.4.1 Transport Scattering Rate due to Inelastic Collisions

In this section we calculate the transport relaxation rate due to inelastic collisions. The expression for
the corresponding kernel Eq. (B.11) of the self-energy can be deduced from the interaction-induced
correction to the conductivity, as described below. We are interested in the linear-response dc con-
ductivity. The leading order perturbative correction to the conductivity due to Coulomb interaction
is given by the two diagrams shown in Fig. 5.6.

Figure 5.6: Diagrams describing the first-order interaction correction to the conductivity

In the absence of interaction, the conductivity of a clean graphene diverges at finite temperature.
Therefore, we have regularized the diagrams by introducing a small broadening (δ) which mimics the
finite lifetime due to weak disorder. The general analytic expression of the lowest-order interaction
correction to the conductivity within the Keldysh formalism can be found in Ref. [44]. This correction
can be split into two parts (Figs. 5.6a and 5.6b): δσ = δσs + δσv, where

δσsββ = − 1
4i

∫ d2p1
(2π)2

∫ dε1
2π

∫ d2p2
(2π)2

∫ dε2
2π

∂f1
∂ε

Tr
{
jβ
[
GR(1)−GA(1)

]
jβ

×
[(
f2 + g

)[
DR −DA

][
GR(1)GR(2)GR(1)−GA(1)GA(2)GA(1)

]

+ f2

[
GR(1)

[
GR(2)DR −GA(2)DA

]
GR(1)−GA(1)

[
GR(2)DR −GA(2)DA

]
GA(1)

] ] (5.56)

is the self-energy contribution and

δσvββ = − 1
4i

∫ d2p1
(2π)2

∫ dε1
2π

∫ d2p2
(2π)2

∫ dε2
2π

∂f1
∂ε

Tr
{
jβ
(
f2 + g

)[
DR −DA

]
×
[
GR(1)GR(2)−GA(1)GA(2)

]
jβ
[
GR(2)GR(1)−GA(2)GA(1)

]
+ 2jβf2

[
GR(1)−GA(1)

][
DAGR(2) jβGR(2)−DRGA(2) jβGA(2)

]
jβ
[
GR(1)−GA(1)

]}
(5.57)

is due to the vertex correction. Here jβ = evFσβ is the current operator in graphene and we used
the short-hand notations for the arguments of Green’s functions: 1 = ~p1, ε1 and 2 = ~p2, ε2. We first
trace out the sublattice structure and then regularize the divergent integrals by δ using essentially
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GRλG
A
λ = 1

2iδ

(
GRλ −GAλ

)
. The most divergent interaction-induced correction to the dc conductivity

δσ = −e
2v2
F

4δ2

∫ dε1
2π

∂f

∂ε1

∫ dε2
2π

∫ d2p1
(2π)2

∫ d2p2
(2π)2 π

[
δ
(
ε1 − vF p1

)
+ δ

(
ε1 + vF p1

)]
signε1

×

1−
(
~p1 · ~p2
p1p2

)
︸ ︷︷ ︸

Transport factor

1 +
(
~p1 · ~p2
p1p2

)
︸ ︷︷ ︸

Dirac factor

KΣ(ε1, ε1 − ε2, ~p1, ~p1 − ~p2). (5.58)

is then proportional to δ−2. Here KΣ is the integral kernel of the self-energy:

Im ΣR
0

(
ε, ~p
)

=
∫ d2q

(2π)2

∫ dω
2πKΣ

(
ε, ω, ~p, ~q

)
(5.59)

The correction, Eq. (5.58), is determined by the inelastic electron-electron scattering. In the dia-
grams of the leading order in bare interaction shown in Fig. 5.6, we have KΣ ∝ ImD0 = 0, so that the
inelastic corrections are zero. What remains in the first-order conductivity correction, Fig. 5.6, are
the contributions responsible for the renormalization of the Fermi velocity in graphene coming from
the real part of the self-energy; note that these contributions are less singular in δ−1.
Thus, we have to consider higher order corrections. In Fig. 5.7 one can see all classes of second order

skeleton diagrams. There are also the second-order diagrams of the ladder type, see Fig. 5.8. Such
diagrams contribute only to the renormalization of vF , similarly to the diagrams in Fig. 5.6, and their
contribution has been already included into the calculation simply by the replacement vF → vF (T ).
In the large N approximation, diagrams in Figs. 5.7d, 5.7e, and 5.7f dominate. Diagram 5.7f is

the Coulomb drag diagram and yields a zero contribution at the Dirac point due to electron-hole
symmetry (in later chapter we will investigate the drag contribution more carefully see chapters 6 and
7 and references [77, 78]). We are left with the diagrams 5.7d and 5.7e which correspond to the two
diagrams shown in Fig. 5.6 with the second-order correction to the interaction instead of the bare
one. For these two diagrams, Eq. (5.58) still holds with KΣ ∝ ImD1. This suggests to replace the
bare interaction lines shown in Fig. 5.6 by the RPA interaction lines, which would correspond to Eq.
(5.58) with KΣ ∝ ImDRPA. Note that even with the RPA-dressed interaction, Eq. (5.58) still yields
a divergent contribution which we have regularized with δ.
Considering the two independent scattering processes with the transport scattering rates δ and τ−1

tr
such that we find the Drude conductivity in the form

σ = e2
∫
dε ρ(ε)

(
−∂nF

∂ε

)
v2
F τtr(ε)

2[1 + τtr(ε)δ]
, (5.60)

where nF (ε) = [1− f(ε)]/2 is the thermal Fermi distribution function and ρ(ε) is the thermodynamic
density of states. Expanding this formula in (δτtr)−1, we get the “interaction-induced” correction:

δσ = e2v2
F

4δ2

∫
dε ∂f

∂ε

ρ(ε)
τtr(ε)

. (5.61)

Comparing Eq. (5.61) with Eq. (5.58) we can identify the interaction-induced transport scattering
rate in graphene. The transport scattering rate obtained from the conductivity correction corresponds
to the kernel Ktr defined in Appendix B.2.1.
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Figure 5.7: Second-order skeleton diagrams for the conductivity

Figure 5.8: Examples of second-order diagrams for the conductivity that contribute to the renor-
malization of velocity.

Furthermore, the connection between the kernels in the transport scattering rate and the quantum
scattering rate also follows from Eqs. (5.58), (5.59), and (5.61). One can see from Eq. (5.58) that in
the transport scattering rate not only the contribution of forward scattering processes is suppressed as
in conventional systems but also the contribution of the backward scattering. The latter suppression
is due to the Berry phase of π in graphene.
In the above derivation we have assumed δ � τ−1

tr which allowed us to extract τ−1
tr from the expansion

of the conductivity in τ−1
tr . Using the generalized GR approach, we show in Appendix B.3 that the

expression for the transport scattering rate obtained in this way remains valid also for δ → 0.

5.4.2 Transport Scattering Rate: Results

Similarly to the quantum scattering rate, the transport rate is dominated by region 3 (see Fig. 4.1) in
the regimes II, III, and IV. Again, this is not so for energies that are in the regime II. In this case, we
have an additional contribution from region 1 (see Fig. 4.1), like in Sec. 4.2.1. The calculation outlined
in App. B.2 yields

1
τtr(ε)

∼



T

N

√
ε

T
, I

αgT, II

α2
gNT

(
T

ε

)
, III

α2
gNT

(
T

ε

)2

, IV

(5.62)
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The characteristic momenta dominating the transport scattering rate as well as the relevant regions
in Q-Ω plane are shown in Table 5.1. The transport scattering rate in Regimes II and III are dominated
by momenta much smaller than temperature, which allows us to find the numerical prefactors (given in
Appendix B). Regimes I and IV is determined by momenta of order temperature, which does not allow
us to find the numerical coefficient in these regimes. The analytical asymptotics are plotted alongside
with the exact numerical result in Fig. 5.9.

τtr I II III IV
qvF ∼ ω T α2

gN
2T/ε ε T

Regions 1,2,3,4 1,3 3 3

Table 5.1: Momentum/frequency scales and regions of the Q-Ω plane that dominate the transport
scattering rate τ−1

tr in different domains (I,II,III, and IV) of energy ε.

Similarly to Sec. 4.2.3, we see a strong enhancement of the transport scattering rate in region II.
When the energy approaches the temperature, the GR result

τ−1
tr (ε ∼ T ) ∼ α2

gNT (5.63)

is reproduced.

Ε

Τtr
-1

Α
g
T

Α
g2 N

T

TΑgN TΑg
2N2T

I II III IV

Figure 5.9: Transport scattering rate for αgN = 4 × 10−3 (double logarithmic scale). Dots:
exact values obtained by numerical evaluation; solid lines: analytical asymptotics,
Eq. (5.62).

Comparing the transport scattering rate with the energy relaxation rate,

τtr
τE
∝ ln 1

αgN
, (5.64)

we observe that in the limit of small αg the relaxation of energy due to the inelastic collisions occurs
much faster than the velocity relaxation, τtr � τE. The difference between the two rates comes from
the fact that the forward scattering in graphene is strongly enhanced. The RPA screening suppresses
the contribution of scattering angles smaller than αg thus regularizing the logarithmically divergent
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contribution to the energy relaxation rate. On the other hand, the transport factor in Ktr, see Eq.
(5.58), kills the contribution of the forward scattering to the transport scattering rate much more
efficiently than the RPA screening (this is the reason why the GR result for τtr is parametrically
correct), so that no logarithmic factor arises in τtr.
The relation Eq. (5.64) justifies the hydrodynamic approach [62, 73, 74, 76]: the distribution func-

tions of electrons and holes equilibrate within each type of carriers much faster than the direction of
the velocity is changed. As a result, the distribution functions effectively depend only on the velocity
direction. This means that the interaction-induced transport scattering rate entering the observables
should be averaged over the temperature window:

〈τ−1
tr 〉 =

∞∫
0

dε ρ(ε) ∂f
∂ε

1
τtr(ε)

∞∫
0

dε ρ(ε) ∂f
∂ε

. (5.65)

This energy-averaging procedure exactly corresponds to the solution of kinetic equation as we explained
it in the previous Sec. 5.2 following the line of arguments given by Refs. [72] and [71].
Evaluating the integral in Eq. (5.65) numerically with the exact expression for the RPA propagators,

we find
〈τ−1

tr 〉 ' 0.989α2
gNT. (5.66)

The numerical prefactor in this result is the same one obtains by dividing IGtr(µ = 0) (see Eq. (C.3.1))
by A0(µ = 0) (see Eq. (C.37)) and thus agrees with that found in Ref. [72] for the direct interaction
term. As we will see below, this averaged value of the transport scattering rate can be substituted
into the Drude expression for the conductivity, which yields the parametrically correct result for the
collision-dominated conductivity of clean graphene.

5.4.3 Collision-Limited Conductivity

Above, when calculating the conductivity, we have assumed that the finite lifetime of quasi-particles
is provided by some artificially introduced broadening δ which mimics disorder. The introduction of
the artificial lifetime allowed us to identify the contribution of the inelastic collisions to the transport
scattering rate by considering the perturbative-in-interaction contributions to the conductivity. Let us
now discuss the conductivity of clean graphene, or, more precisely, the conductivity of graphene in the
regime when the inelastic collisions dominate over disorder scattering.
The conductivity of graphene at the Dirac point is a rather intricate quantity. In the absence

of interaction, transport in the ballistic limit shows remarkable peculiarities in graphene.[20] The
interplay between vanishing density of states and vanishing scattering rate leads to the non-universal
conductivity that depends on the measurement details. In particular, finite size clean graphene sample
of the “short-and-wide” geometry shows a behavior analogous to that of a normal diffusive metal. The
zero-T conductivity of such a setup is σ = 4 × e2/πh. The same value of conductivity was predicted
for an infinite sample with a large but finite electron lifetime. A different result, σ = e2/2h, was
found in the undoped graphene at a large frequency. At any non-zero value of the chemical potential,
the conductivity of clean graphene is infinite. At finite temperature, energies within the temperature
window contribute to the conductivity. This implies that the Dirac-point conductivity becomes infinite
in the noninteracting case at any non-zero T .
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5.4 Diagrammatic Analysis

As has been shown the previous Sec. 5.2 and in Refs. [62, 71, 72], the conductivity of clean undoped
graphene becomes finite due to the inelastic electron-electron collisions. The estimate for the collision-
limited conductivity can be obtained by substituting the typical value of interaction-induced transport
scattering time, Eq. (5.63), and the typical density of thermally populated states, ρ(T ) ∼ NT/v2

F , into
the Drude formula, which yields

σ = e2

h
ρ(T )v2

F τtr(T ) ∼ e2

h

NT

v2
F

v2
F

1
α2
gNT

∼ e2

h

1
α2
g

. (5.67)

Note that the explicit dependence on T , N , and vF drops out from this formula; however, the temper-
ature dependence appears in Eq. (5.67) implicitly through the renormalization of αg. A more rigorous
calculation of the collision-limited conductivity requires the analysis of the kinetic equation (see Sec. 5.2
and Refs. [71, 72]). The fast energy relaxation discussed above not only simplifies such an analysis,
but also reduces the kinetic equation to the hydrodynamic model [62, 73–76].
The consideration of Sec. 5.4.1, which allowed us to find the transport scattering rate from the

expression for the conductivity, relied on the perturbative treatment of the interaction. This assumes
the following hierarchy of the energy scales:

τ−1
tr � δ � T. (5.68)

The first inequality implies that the broadening of the Green’s functions is due to the artificial “dis-
order” rate δ, whereas the second inequality establishes the ballistic regime which allows us to neglect
the dressing of interaction by disorder. Since the characteristic frequency transfer in the transport
scattering rate is of the order of the temperature, the resulting τ−1

tr does not depend on δ as long as
δ � T . Furthermore, in App. B.3 we have calculated τ−1

tr from the generalized GR approach for δ = 0
and reproduced the transport kernel Ktr from Appendix B.2. Therefore, we expect that the Drude
formula, yielding Eq. (5.67), is applicable also for τ−1

tr � δ, i.e. in the collision-dominated transport
regime. This expectation is supported by the kinetic equation approach shown in Sec. 5.2 and the
results of Refs. [62, 71, 72].
Assuming the validity of the Drude formula for δ � τ−1

tr , we evaluate the conductivity using the
energy-averaged transport scattering rate given by Eq. (5.66):

σ = e2

h

Nπ

〈τ−1
tr 〉

∞∫
0

dερ(ε) ∂f
∂ε
≈ e2

h

0.7
α2
g

(5.69)

This result is exactly the same obtained previously in Eq. 5.31 within the kinetic equation approach.
It is worth noting here that the kinetic equation approach (see Sec. 5.2.1) performed in analogy to

Refs. [71, 72] was based on the GR calculation of the self-energies. As we have seen in Sec. 5.4.1, the
RPA result for the transport scattering rate at relevant energies ε ∼ T [as well as the energy-averaged
characteristic rate, Eq. (5.65)] has the same form as given by the GR. Moreover, the averaging of
the energy-dependent transport scattering rate using Eq. (5.65) yield the same numerical prefactor as
follows from the kinetic equation with the GR collision integral [71, 72], see Eq. (5.66). Therefore, we
conclude that the RPA resummation does not change the numerical prefactor of conductivity in the
leading order in α2

g. In other words, unlike the quantum scattering (or dephasing) rate considered in
Secs. 4.2.1 and 4.2.2, the calculation of the conductivity can be done within the Golden-Rule approach.
The RPA resummation yields only sub-leading-in-αg corrections to the conductivity. A treatment of
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the Coulomb interaction like in the beginning of Sec. 5.2 is therefore accurate if the quantities one is
looking for are transport related.
We want to emphasis that in case αgN � 1 and N � 1 the calculation can become controllable again

since the biggest contributions to the interaction are due to the polarization operator, however the
resummation (RPA) yields effective small interaction (small mean-field). Thus the above consideration
remain, except that the regime 0 ≤ ε ≤ α2NT crosses the temperature. Therefore in Eq. (5.62) only
regime I is relevant. Averaged over temperature one yields for the conductivity:

σ ∝ e2

h
N2, (5.70)

which together with the conductivity from Eq.(5.69) matches perfectly with the large N analysis
performed in Ref. [59]

5.4.4 Qualitative Discussion of the Effect of Disorder and Comparison with
Experiments

In this Drude like picture we can discuss on the qualitative level the effect of disorder on the Dirac-
point conductivity in graphene. For simplicity we set N = 1 below. In the absence of interaction,
effect of disorder on transport in the ballistic regime is highly unconventional and strongly depends
on the type of randomness [79–82]. On the other hand, as we have seen above, the interaction effects
are crucially important for the transport already in a clean system. It is thus important to explore
transport in realistic graphene structures, with both the electron-electron interaction and disorder
taken into account.

Figure 5.10: Schematic plot (only parametrical scales are given) of the temperature dependence
of the Drude conductivity (in units of e2/h; solid line) αg � 1/ ln(Λτdis), where Λ is
the bandwidth. For simplicity, the logarithmic temperature corrections to αg which
comes from the renormalization is not shown. Dashed lines: low-T behavior of the
conductivity governed by quantum interference effects; depending on the character
of disorder, the localization, antilocalization, or criticality (coincides with the solid
line) may occur. Dash-dotted line: expected high-T behavior governed by electron-
phonon scattering.
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Figure 5.11: Schematic plot of the temperature dependence of the Drude conductivity (in units of
e2/h) for strong interaction, αg � 1/ ln(Λτdis). The characteristic scale T0 is given
by T0 ∼ τ−1

dis ln2(Λ/T0) ∼ τ−1
dis ln2(Λτdis). For possible deviations at low and high T

(interference and phonon contributions, respectively), see Fig. 5.10

The role of disorder here is twofold: (i) potential disorder introduces velocity relaxation, thus con-
tributing to the transport scattering rate:

1
τtr
∼ α2

gT + 1
τdis

, (5.71)

and (ii) establishes a finite density of states already in the Dirac point:

ρ ∝ T + 1
τdis

. (5.72)

Substituting these formulas into the Drude conductivity, we obtain the following result describing the
crossover between the collision-dominated and disorder-dominated regimes:

σ ∼ e2

h

T + 1
τdis

α2
gT + 1

τdis

. (5.73)

This expected temperature dependence of the Drude conductivity is shown in Fig. 5.10 for the case
weak interaction (or strong disorder), αg � 1/ ln(Λτdis) when the renormalization of αg gives only
small logarithmic corrections. For stronger interaction (or weaker disorder), αg � 1/ ln(Λτdis), the
renormalization of

αg(T ) = αg

1 + αg
4 ln Λ

T

,

becomes strong [so that the renormalized coupling “forgets” about its bare value, αg(T )→ 4/ ln(Λ/T )]
already in the collision-dominated regime, see Fig. 5.11. One sees that, since the interaction-induced
transport rate contains α2

g whereas the density of states of thermally excited quasi-particles does not,
the two crossover T -scales appear, which establishes an intermediate regime of the ballistic transport,

1
τdis
� T � 1

α2
gτdis

.

73



5 Transport

Note that we neglected the phonon contribution to the relaxation rates (for estimate of their contri-
bution, see, e.g. Ref. [66]) which becomes relevant at sufficiently high temperatures.
At T ∼ 1/τdis the Drude conductivity becomes of the order of conductance quantum and the de-

phasing rate becomes of the order of T . At lower temperatures, the T dependence of the conductivity
is governed by interference effects: localization, antilocalization, or critical behavior may occur, de-
pending on the symmetry of disorder.[83–85] The crossover scale 1/τdis in typical experiments on
high-quality graphene is in the range T ∼ 1− 100K.
Transport measurements performed on suspended graphene [86] show significant changes in the

conductivity as a function of temperature, as depicted in Fig. 5.12. The case of suspended graphene
is more complicated since the appearance of flexural phonons dramatically influences the transport
properties of graphene [87]. Nonetheless, depending on the specific details of the setup the system
shows at low temperatures T ∝ τ−1

dis a disorder dominated conductivity and at very high temperatures
Tph a conductivity governed by flexural phonons. However, in between the conductivity is determined
by Coulomb interaction if the temperature the phonons become relevant obeys Tph � (α2

gτdis)−1 (see
Fig. 5.10).

Figure 5.12: Conductivity measurement performed on suspended graphene from Ref. [86].

In the experimental data shown in Fig. 5.12 the rise of the conductivity is maybe due to the initiation
of the Coulomb interaction dominated regime as indicated by Fig. 5.10.
Although experiments can not yet measure the regime described above they seem to have reached

the threshold, which so far agrees very well with our theory. Thus we are quite optimistic to see
experimental data measuring Coulomb dominated conductivity in the next few years.
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6 Chapter 6

Coulomb Drag in Graphene: Basics and
Previous Work

An alleged scientific discovery has no merit unless it can be explained to a barmaid.
Ernest Rutherford, As quoted in Einstein: The Man and His Achievement

This chapter is dedicated to a phenomenon that may look very simple at first sight but despite
its apparent simplicity allows deep insights into the interplay of transport phenomena and Coulomb
interaction. We will first define Coulomb drag, then continue with a simple Drude picture for the
description of the effect and finally recapitulate previous work on this subject in 2DEG and in graphene.

6.1 Definition of Coulomb Drag

The concept of Coulomb drag is rather old [17, 18] but still attracts attention. One of the reasons is
that experimental settings have become more controllable and more complex in the phenomena they
manage to combine. Another facet of this attention is that Coulomb drag is, because its nature relies
on the long-range character of the interaction and because of its delicate effects on the system, not as
well studied as other effects of this age may be [88–91].

a

b

Figure 6.1: A sketch of the setting the Coulomb drag will be described in.
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Still, the very basic idea of Coulomb drag is rather simple. Let us imagine we have two-layers of
a two-dimensional conducting material, say a 2DEG or graphene, like it is shown in Fig. 6.1, but
electronically decoupled. We refer to the two-layers as layer a and layer b. We need conducting
materials since we will now consider two pass a current through one of them, for example layer a.
A current in layer a means that we have an imbalance in the velocity (in a 2DEG also momentum)
distribution of the system. The key to understand the phenomenon is that the Coulomb interaction
in such a setup couples the layers and therefore transmits traces of the non-equilibrium configuration
of layer a to layer b. If layer b is not attached to any conducting contact the transmitting traces will
build up a charge imbalance that can be measured as a voltage. Altogether this means that Coulomb
drag refers to the ability of such a system to show a transresistivity also referred to as drag resistivity,

~jaρD ∝ ~Eb. (6.1)

If one compares it with the full resistivity tensor one can define in the situation of two interacting
layers, ~ja

~jb

 =
(
ρaa −ρD
−ρD ρbb

)
=

 ~Ea
~Eb

 , (6.2)

one recognizes that the drag resistivity, as explained, connects the layers.
To establish an intuitive picture of Coulomb drag we will first discuss it within a Drude picture.

6.1.1 Classical Description

As in the previous Chap. 5 we will start by considering non-relativistic parabolic particles first, making
the picture as transparent as possible. In its core Coulomb drag is simple enough to describe it within
the previously introduced Drude picture Sec. 5.1.1. We therefore begin with two equations that each
have a Drude-like structure:

d
dt~va(t) = q

m
~Ea −

1
τ
~va(t) + ~vb(t)− ~va(t)

τD
, (6.3)

d
dt~vb(t) = q

m
~Eb −

1
τ
~vb(t) + ~va(t)− ~vb(t)

τD
. (6.4)

These two equations differ from Eq. (5.1) by an additional contribution proportional to τ−1
D . This

additional contribution accounts for differences in the velocity distribution of the two-layers and cre-
ates a phenomenological exchange between the layers. At this point we will not specify how such a
contribution can arise since this will be part of later discussions (see Chap. 7). Instead we will show
how such a phenomenological exchange contribution creates a transresistivity like the Coulomb drag
resistivity (see Eq. (6.1)).
To do so, we apply the appropriate conditions to measure the drag. Layer b is assumed to be

disconnected which results in a vanishing velocity distribution. in the stationary case this leads to:

0 = q

m
~Eb + ~va(t)

τD
. (6.5)

In layer a, the driving layer, we pass a current, which, as discussed in Sec. 5.1.1, leads to a velocity
distribution for layer a due to Eq. (5.4). Hence we end up with an equation connecting the electrical
field in layer b with the current in layer a:

~ja = −nq
2τD
m

~Eb. (6.6)
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What we see in this simplified picture is that the drag is fully determined by the phenomenologically
introduced inter-layer scattering rate τD. We will show later (see Chap. 7) how such a rate appears
from microscopic considerations, but for now we will continue to discuss the Coulomb interaction in
two-dimensional electron gases.

6.2 Coulomb Drag in 2DEG

Although from a theoretical point of view Coulomb drag is a rather simple gedanken experiment, the
proper experimental realization is far from trivial. The first setting that has been realized was able
to see a current to current coupling between a two-dimensional and a three dimensional system [92].
Only a few years later a coupling of two-dimensional systems was achieved [93] for which semiconductor
based GaAs heterostructures were used to prepare the experimental setup.
Coulomb drag itself is quite an interesting experiment, since it allows to measure the strength of

the Coulomb interaction in a given system, which can become quite crucial in a lot of low dimensional
systems (see Sec. 2.2). Of course this is only true if a similar coupling is not created due an effective
interaction between the layers caused by phonons [94]. Further some phenomena may alter the Coulomb
interaction’s influence on the Coulomb drag, such as interlayer condensates [95], or correlated disorder
configurations [96].
For Coulomb drag to appear the interlayer scattering rate τ−1

D is crucial. Within the Fermi liquid
theory such a scattering rate should have a temperature dependence of T 2 due to the phase space
of the electrons. The theories describing Coulomb drag of 2DEGs have become more complicated,
e.g. including disorder corrections as well (see Ref. [89, 90]), so that Coulomb drag has become a well-
established effect not only in the experimental but also in the theory community. Still, the calculations
that have been done for 2DEGs rely on the assumption of a Fermi liquid. As we have seen in Chap. 4
this might not be an appropriate assumption for graphene-based Coulomb drag.

6.2.1 Coulomb Drag in Graphene in Contrast to Coulomb Drag in 2DEG

From an experimental point of view a big advantage of measuring Coulomb drag in graphene is the
easily controllable charge carrier concentration that can be tuned from positive charge carriers to
negative ones [97, 98]. Further, due to graphene’s thickness of only a single atom, it is possible to
reach very short distances between the two-layers which allows to explore regimes that could not have
been studied before (dT � 1). So already from an experimental point of view it seems promising to
investigate Coulomb drag in graphene.
As we have discussed in Sec. 2.1.4 graphene is quite different when compared to 2DEGs and further-

more we have shown in Chap. 4 that the Coulomb interaction has a quite important effect on graphene.
In the previous chapter we have seen in Sec. 5.1.2 that in graphene even the Coulomb interaction can
relax a current, creating additional meanderings to the situation of a 2DEG. Nevertheless, if we push
the chemical potential high enough, we have seen that it acquires the characteristics of a traditional
2DEG.
We therefore expect Coulomb drag in graphene extends the richness of the Coulomb drag features

known in 2DEGs.
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6.3 Coulomb Drag in Graphene: a Brief History

Since graphene has been discovered [1, 99] there have been an overwhelming number of publications
related to graphene. In this flourishing field many ideas have already been covered, including Coulomb
drag [77, 78, 100–104]. But except for one of those works [103], only the rather conventional limit of
high doping µ � T has been considered, where graphene starts to obey Fermi liquid behavior. So
only the authors of Ref. [103] took interest in the chance, graphene offers to explore also the regime
of low doping. Furthermore, all the previous authors have treated Coulomb interaction as a weak
perturbation on top of a sufficiently dirty system α2

gTτdis � 1. In many cases this might be the
appropriate way to describe the experiments but graphene on boron nitrid offers the chance to explore
the ballistic transport regime and beyond as well (see Ref. [10]). This means that within the previous
studies in the field of Coulomb drag in graphene there has been a blind spot on the map when it comes
to ballistic and hydrodynamic drag in graphene.
The purpose of the next Chap. 7 will be to investigate this blind spot and to, as far as possible,

draw the connections to the previous works. Additionally we will in Chap. 8 consider Hall drag,
Magnetodrag and further extensions to the Coulomb drag. Before doing so we will summarize some
of the previous results and their technique.

6.4 The Perturbative Approach

One of the most complete previous approaches has been published in Ref. [103]. Hence we will take a
closer look at their work.

~jα ~jβ ~jα ~jβ

Figure 6.2: The leading order diagrams causing the Coulomb drag. (Aslamazov Larkin)

The authors of Ref. [103] have used a perturbative approach. To do so they calculate the conductivity
diagrams shown in Fig. 6.2.
The conductivity and the resistivity are related by:

ρ̂ =
(
σ11 σD
σD σ22

)−1

= 1
σ11σ22 − σ2

D

(
σ22 −σD
−σD σ11

)
. (6.7)

The authors of Ref. [103] assumed further that σii is given by Drude conductivity and that the
transconductivity σD is a small parameter, in particular that it is smaller than the Drude conductivity
(σD � σii). The drag resistivity in their case is therefore given by:

ρD ≈
σD

σ11σ22
, (6.8)

by omitting the sign due to the definition of the drag resistivity. The drag diagrams (see Fig. 6.2) can
now be treated similarly to the perturbative calculation done in Sec. 5.4, except that one needs to do
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the calculations away from the Dirac point since at the charge neutral point the diagrams yield zero
drag (see the discussion in Secs. 5.4.1 and 8.3.2). Following their calculation the drag conductivity is
given by:

σD = 1
16πT

∑
~q

∫ dω
sinh2 ω

2T
Γa(ω, ~q)Γb(ω, ~q)|Dab|2, (6.9)

with the inter-layer interaction Dab and Γ(ω, ~q) being the nonlinear susceptibility. The nonlinear
susceptibility is an object we will discover later as well but using a completely different path to obtain
it (see App. C.2). The interaction between the layers, when including screening via RPA, is given by:

DRPA= D0
(1+D0NaΠa)(1+D0NbΠb)−e−2qdD2

0NaNbΠaΠb

(
1+D0NbΠb(1−e−2qd) e−qd

e−qd 1+D0NaΠa(1−e−2qd)

)
,

(6.10)
where Πα is the polarization operator of layer α. The results that have been found by the authors of
Ref. [103] are summarized in the Tabs. 6.1 and 6.2.

Parameter region Drag coefficient
µ� T ρD ∼ µ2T−2

T � µ� vF
d ρD ∼ ρD ∼ µ−2T 2

vF
d � µ ρD ∼ µ−6d−4T 2

Table 6.1: The asymptotic expressions for the drag coefficient as obtained by the authors of
Ref. [103] in the limit of equal layers and varying the chemical potential throughout
different regimes.

Parameter region Drag coefficient

µ1, µ2 � T ρD ≈ 1.41α2
g

~
e2
µ1µ2
T 2

µ1 � T � µ2 ρD ≈ 5.8α2
g

~
e2
µ1
µ2

T � µ1 < µ2 ρD ≈ 8π2

3 α2
g

~
e2

T 2

µ1µ2
lnµ1
T

Table 6.2: The asymptotic expressions for the drag coefficient as obtained by the authors of
Ref. [103] in the limit of weak interlayer interaction and small interlayer spacing.

Already in the variations of the results and the different parameter regimes it becomes clear that
the Coulomb drag in graphene is a rich quantity exhibiting unusual behavior when compared to the
Coulomb drag of Fermi liquid systems like 2DEGs. Even so, the calculations done by the authors of
Ref. [103] rely on the possibility, that sufficient dirty samples of graphene offer to treat the Coulomb
interaction perturbatively. In the next Chap. 7 we will develop a way to access the regime of ultra
clean graphene and to investigate the parameter regimes that arise there. It is crucial to notice, that
ultra clean in the context of Coulomb drag setups is not at all academic but experimentally real (see
Sec. 7.2.3).
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7 Chapter 7

Coulomb Drag in Graphene: The Kinetic
Equation Approach

The design of this Memoir is to deduce strictly from a few principles, obtained chiefly by
experiment, the rationale of those electrical phenomena which are produced by the mutual
contact of two or more bodies, and which have been termed galvanic; its aim is attained if
by means of it the variety of facts be presented as unity to the mind.

Georg Simon Ohm, The Galvanic Circuit Investigated Mathematically

In this chapter we will apply the single layer kinetic equation approach introduced in Sec. 5.2 to
gain a better comprehension of Coulomb drag in graphene. We will focus on the clean limit, in which
the Coulomb interaction is the dominant contribution for the inter-layer scattering rate. We will start
with the kinetic equation for two-layers and build up the machinery to treat Coulomb drag [105]. We
will then proceed to extend the machinery towards multilayer drag and Hall drag. Finally we are going
to expand the ideas to incorporate a hydrodynamic description and higher-order corrections to drag.
For simplicity we will, whenever we are dealing with exactly two-layers, use the convention −α to

indicate the corresponding other layer, in the sense that −a = b and vice versa.

7.1 The Two Layer Kinetic Equation

For clarity we will not begin with the most general case and calculate all the relevant quantities at
once. Instead we start with the most simple case and go through the calculation explicitly to gain the
greatest possible insight into the technique before extending it towards multiple layers and magnetic
fields.

7.1.1 Formulation of the Two Layer Kinetic Equation

In the previous Chap. 6 we have considered a simple Drude picture based description of Coulomb
drag. In analogy to Eq. (6.3) we write the kinetic equation, we introduced in Sec. 2.5, for the static
homogeneous case with an external force and a small amount of disorder scattering within the relaxation
time ansatz introduced in Sec. 5.1.1. Graphene’s intrinsic back scattering suppression, changes the
impurity scattering rate of isotropic scatterers as shown by the authors of Ref. [106] (the difference
is a factor of 2). But considering the relaxation time as the effective transport related relaxation we
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arrive at:

e ~Ea
∂ε(~p)
∂~p

∂

∂ε
na(ε, ~p) = −

na(ε, ~p)− 〈na(ε, ~p)〉ϕ
τadis

−NaI
aa
coll[na]−NbI

ab
coll[na, nb]

e ~Eb
∂ε(~p)
∂~p

∂

∂ε
nb(ε, ~p) = −

nb(ε, ~p)− 〈nb(ε, ~p)〉ϕ
τ bdis

−NaI
ba
coll[na, nb]−NbI

bb
coll[nb]. (7.1)

Here each layer has its distribution function nα(t, ε, ~p) and its external fields ~Eα. The collisions between
the particles take place within the same layer, referred to as intra layer scattering, and between different
layers, denoted inter-layer processes. The collision kernel involving intra-layer and inter-layer processes
is given by:

Iαβcoll[n
α, nβ] = 1

ν(ε1)

∫
d{xi}i∈{2,1′,2′}Kαβ({xi})×

×
{
nα(x1)[1− nα(x2)]nβ(x1′)[1− nβ(x2′)]− [1− nα(x1)]nα(x2)[1− nβ(x1′)]nβ(x2′)

}
, (7.2)

using the notation of ε and ~v introduced in Sec. 5.2 (see Eq. (5.11)) for brevity. The integral kernel
for the collision integral reads similar to Eq. (5.13):

Kαβ({xi}) = 2πδ(ε1 − ε2 + ε1′ − ε2′)(2π)2δ(ε1~v1 − ε2~v2 + ε1′~v1′ − ε2′~v2′)×
× | 〈x1, x2|Uαβ|x1′ , x2′〉 |2ν(ε1)ν(ε2)ν(ε1′)ν(ε2′). (7.3)

The matrix element is, analogous to Eq. (5.14), given by:

| 〈x1, x2|Uαβ|x1′ , x2′〉 |2 =
∣∣∣Dαβ(q)

∣∣∣2 θ1,2θ1′,2′ . (7.4)

The RPA screened interaction propagator for two-layers has been derived previously and is given by
Eq. (6.10). Except for the discussions on the regularization of divergent integrals (see App. C.2.2) and
the asymptotics of integrals (see App. C.3.2) we will consider the interaction to be in its bare form,
reading:

Dαβ
bare(q, d) = D0(q)e−qd δα,−β = 2παg

q
e−qd δα,−β , (7.5)

Since Coulomb drag is, as is the conductivity, a linear response function, we will linearize the kinetic
equation according to

nα(x) = nαF (ε)− T ∂n
α
F (ε)
∂ε

ha(x). (7.6)

The linearized collision kernel reads:

δIαβcoll = 1
ν(ε1)

∫
d{xi}i∈{2,1′,2′}Wαβ({xi})

{
hα(x1)− hα(x2) + hβ(x1′)− hβ(x2′)

}
with (7.7)

Wαβ({xi}) = 2πδ(ε1−ε2+ε1′−ε2′)(2π)2δ(ε1~v1−ε2~v2+ε1′~v1′−ε2′~v2′)×

× |〈x1, x2|Uαβ|x1′ , x2′〉|2ν(ε1)ν(ε2)ν(ε1′)ν(ε2′)
16 cosh( ε1−µα2T ) cosh( ε2−µα2T ) cosh( ε1′−µβ2T ) cosh( ε2′−µβ2T )

, (7.8)
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which forms the linearized kinetic equation in analogy to 5.2:

e ~Eα~v
∂nαF (ε)
∂ε

= T
∂nαF (ε)
∂ε

hα(x)− 〈hα(x)〉ϕ
ταdis

−
∑
β

NβδI
αβ
coll. (7.9)

When one compares the linearized collision kernel from Eq. (7.8) with the one from Eq. (7.7) one will
notice that in comparison to the symmetries discussed in Sec. 5.2.2 the collision kernel in presence of
the additional layer index only obeys the hermeticity relation. The simultaneous exchange of 1 with
1′ and 2 with 2′ corresponds to an interchanging of the layers. This is an useful observation we will
make use of later.
We have now the kinetic equation we will deal with to determine the Coulomb drag. Using the

functional approach introduced in Sec. 5.2.2 we can rewrite the kinetic equation into a functional of
the form:

F (ha, hb) = Na

∫
dx ν(ε)∂n

a
F (ε)
∂ε

ha(x)

e ~Ea~v
T 2 −

ha(x)
2Tτadis

+Nb

∫
dx ν(ε)∂n

b
F (ε)
∂ε

hb(x)

e ~Eb~v
T 2 −

hb(x)
2Tτ bdis


+ N2

a

8T 2

∫
d{xi}W a,a({xi})

[
ha(x1)− ha(x2) + ha(x3)− ha(x4)

]2
+ N2

b

8T 2

∫
d{xi}W b,b({xi})

[
hb(x1)− hb(x2) + hb(x3)− hb(x4)

]2
+ NaNb

4T 2

∫
d{xi}W a,b({xi})

[
ha(x1)− ha(x2) + hb(x3)− hb(x4)

]2
. (7.10)

7.1.2 The Ansatz for the Two Layer System

In Sec. 5.2 we have discussed the analytic structure of the kernel and as a consequence what kind of
appropriate ansatz could solve the equation. The changes within the integral kernel do not affect the
conclusion we have drawn in Sec. 5.2. We therefore need to use the very same ansatz to continue. Still,
we would like to emphasis that there is a different possible point of view regarding the ansatz given
by Eq. (5.23). To gain a better understanding of the phenomena related to the ansatz (5.23), which
has been used for the integral kernel chosen in Sec. 5.2, we will try to argue more physically about the
system’s behavior.
Let us regard this from a different perspective by thinking about the changes that can appear in

our system by switching on a weak homogeneous external electrical field. We first recall very briefly
how one would think about this situation in an usual Fermi liquid. An attempt there would be to
assume that an external field accelerates the total momentum of the Fermi ball. Taking into account
a relaxation mechanism this means that there is a relaxation rate such that in the stationary case
the overall shift of the Fermi ball is given by ~p → ~p + e ~Eτ . If the shift is small enough this changes
the equilibrium distribution only by a little so that we can describe the situation by changing the
distribution using the simple transformation nF (ε)→ nF (ε+ e~v ~Eτ).
For graphene it is still a reasonable assumption that an external electrical field will create a direction

dependent shift of the chemical potential µα(~v) = µα+δµα(~v) similar to Fermi liquid case. Additionally
we have seen in the discussion of the kinetic equation for a single layer in Sec. 5.2.2 that the Coulomb
interaction leads to the specific choice of two relevant modes that do not relax quickly. This means that
maybe not only the chemical potential, respectively the particle relaxation, can depend on the direction
but also the temperature, corresponding to energy relaxation, can depend on direction, T → T+δT (~v),
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7 Coulomb Drag in Graphene: The Kinetic Equation Approach

which constitutes the argument given in Ref. [73]. For small deviations from equilibrium we will
formulate these ideas as:

nα(x) ≈ nαF (ε)− ∂nαF (ε)
∂ε

(
δµα(~v) + ε− µα

T
δTα(~v)

)
. (7.11)

Since we are only interested in the linear response to the external field the structure of the scalar
functions δT (~v) and δµ(~x) is fixed to be proportional to ~v ~E (they need to vanish in the absence of the
external field). Our ansatz for the two-layer system in the presence of two electrical fields yields

hα(xi) =
∑
γ

(
χα,γv + χα,γp

εi
T

)
e
~Eγ~vi
T 2 , (7.12)

where χα,γv and χα,γp are constants. If one compares the two modes entering this ansatz with the
previous discussion in Sec. 5.1.1 one recognizes that the part coming with χα,γp has the form of the
momentum conserving zero mode and the one coming with χα,γv corresponds to the velocity mode. In
this notation one can see that δT leads to contributions to χα,γp and χα,γv indicating that temperature
variations belong to both classes of variations. The Mode that does not at all relax due to Coulomb
interaction (the momentum conserving mode) and the one that does slowly relax like variations of the
chemical potential do (the velocity mode). In this sense the ansatz (7.12) provides us with an useful
interpretation of the physics that governs transport in graphene.
This ansatz is a direct consequence of the forward scattering resonance first introduced in Sec. 2.1.4

and 3.1.2. We have recognized already earlier (see Sec. 4.2) that this resonance created traces of
the physics related to Luttinger liquids which is based on a dimensional enforced forward scattering
resonance. Already in Sec. 2.1.4 we have interpreted this as a direct consequence of the relativistic
spectrum, which not only distinguishes between velocity and momentum but also keeps the absolute
value of the velocity constant. In this view it is not very surprising that the proper ansatz for this
system is not given by a local equilibrium approximation as it is done in most text books for usual
Fermi-liquids (like [52]) but by a direction dependent equilibrium as sketched in Fig. 7.1.

Extensibility of Applicability

In Sec. 5.1.1 we have argued that the selected ansatz is a proper description of the system as long
as Ω (now τ−1

dis , which appears equivalently) is much smaller than α2
gT , which is the very same for

the two-layer system. However, there is a very curious point to make: the opposite case of negligible
Coulomb interaction compared to τ−1

dis specifically τ−1
dis � αgT is given by a kinetic equation of the

form of a relaxation time approach as seen in Eq. (5.7). This implies that the most relevant mode for
the opposite situation has been taken into account already namely the velocity mode (applying aboves
ansatz one obtains χαv = Tταdis at the Dirac point). So as a conclusion it turns out that within the chosen
ansatz we should be able to describe the Coulomb dominated regime as well as the disorder dominated
regime (in the relaxation time approximation). A more detailed discussion on the applicability will be
provided in Sec. 7.2.2, when we have a more thorough view on the problem.

7.1.3 The Effective Kinetic Equations and Thermalization

Since the equations we are dealing with are linear, we can treat the two cases ~Ea 6= 0 but ~Eb = 0
and ~Ea = 0 but ~Eb 6= 0 separately, while still gaining the full solution. Applying the ansatz with
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Figure 7.1: A sketch of the direction dependent equilibrium in graphene. The temperature of the
particle changes as it changes the direction it looks in (illustrated by the hot color
yellow and cooler color red). The kinetic equation involving the direction dependent
thermalization approach describes scattering between different equilibria (directions).

the functional we gain the effective kinetic equation for our system (see Sec. 5.2.2 for details on this
calculation). One ends up with a functional F (χav, χbv, χap, χbp) as given in Eq. (C.4) (see App. C.1),
from which we obtain the effective kinetic equation. Using the following short forms

IαIntra = 1
4T 3

∫
d{xi}Wα,α({xi})

(
~v1 − ~v2 + ~v3 − ~v4

)2
, IαβInter

α 6=β= 1
2T 3

∫
d{xi}Wα,β({xi})

(
~v1 − ~v2

)2
,

ID = − 1
2T 3

∫
d{xi}W a,b({xi})

(
~v1 − ~v2

) (
~v3 − ~v4

)
, IαβTh

α 6=β= 1
2T 4

∫
d{xi}Wα,β({xi})

(
~v1 − ~v2

)
~q ,

IαTr = IαIntra +
∑
β 6=a

Nβ

Na
IaβInter, IE = 1

2T 5

∫
d{xi}W ab({xi})~q2 and Aan = −

∫
dx ν(ε)

T

∂nαF (ε)
∂ε

(
ε

T

)n
,

(7.13)

for integrals that naturally appear while finding the new saddle point, this allows us to write the kinetic
equation as done in Eq. (C.5).
When one glances at the short forms given in Eq. (7.13) one may recognize a peculiarity of the

energy relaxation related integral IE. As explained in Sec. 5.2.2 all modes are quickly relaxed except
for the zero mode and the velocity mode. That is the reason for the appearance of the ~vi − ~vj-terms
in all the integrals except for one. Within App. C.2.2 we explain in more detail that this causes a
divergence, formally sending IE to infinity if no regularization via RPA or a logarithmically curved
spectrum is taken into account. But even within RPA or the logarithmically curved spectrum the
energy relaxation rate is parametrically enhanced as is explained in Chap. 4. In App. C.3 we estimate
the energy relaxation rate for each regime assuming that the energy relaxation is larger than the
thermal rates IαTh.
By rotating within the two-dimensional subspace of χap and χbp one manages to reach one equation

where only in the diagonal element the energy relaxation rate appears. We arrive at (zαTταdis = 1,
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Na = Nb = 1 for simplicity):
Aa0
0
Aa1
Aa1

 =


IaTr + zaA

a
0 −ID zaA

a
1 IaTh + zaA

a
1

−ID IbTr + zbA
b
0 zbA

b
1 −2IbTh − zbAb1

zaA
a
1 zbA

b
1 zaA

a
2 + zbA

b
2 zaA

a
2 − zbAb2

2IaTh + zaA
a
1 −2IbTh − zbAb1 zaA

a
2 − zbAb2 4IE + zaA

a
2 + zbA

b
2



χaµ
χbµ
χsT
χdT

 . (7.14)

Since this means, that the mode corresponding to IE becomes irrelevant as long as the off diagonal
elements within the same row or column stay much smaller (for example in the clean limit), we can
reduce the number of modes to deal with down to three modes only. Formally this parametrically
enhanced energy relaxation leads to inter-layer thermalization enforcing χap = χbp. Introducing χp =
χap = χbp we are able to simplify Eq. (7.14) even more (zαTταdis = 1):

~c =

 Aa0 0
0 Ab0

NaA
a
1 NbA

b
1

 =

NaI
a
Tr +Aa0za −NbID Aa1za
−NaID NbI

b
Tr +Ab0zb Ab1zb

NaA
a
1za NbA

b
1zb NaA

a
2za +NbA

b
2zb


χ

a,I
v χa,IIv

χb,Iv χb,IIv

χI
p χII

p

 = M~χ.

(7.15)
The distinction I and II is introduced to allow more compact notation and refers to the two situations
of only an electric field in layer a or in layer b, respectively.

7.2 The Coulomb Drag Resistivity in Graphene

With Eq. (7.15) we now have the possibility to solve the kinetic equation and hence to calculate the
conductivity in close analogy to Eq. (5.29), where the current is given by:

~jα = eNα

∫ d2p

(2π)2 ~vn
α
F (x) = e2

2 Nα

∑
γ∈{I,II}

(
Aα0χ

α,γ
v +Aα1χ

γ
p

)
~Eγ , (7.16)

and the definition of a vector (generalized vector involving both cases I and II)

~dT =
(
NaA

a
0 0 NaA

a
1

0 NbA
b
0 NbA

b
1

)
(7.17)

enables us to write the conductivity of the two-layer system as:

σ̂ = e2

2
~dT ~χ = e2

2
~dTM−1~c. (7.18)

To convince oneself of the proper symmetry σ̂ needs to obey, one can consider a rescaling of the form
Nαχ

α
v → χ̃αv which makes M̃ explicitly symmetric and transforms ~̃c such that it equals the definition

of ~d.
A proper evaluation of the conductivity can be found in App. C.1.2. The inverse of this tensor is

the resistivity tensor defined in Eq. (6.2). Inverting σ̂ one will observe reoccurring patterns motivating
the following choice of short forms that significantly enhance the readability (see Eq. (C.10)):

Aα0 = Bα
0 , Bα

1 = Nα
Aα1
Aα0

, Bα
2 = NαA

α
2 −Aα1Bα

1 and (7.19)
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(Tτ0)−1 = 1
Ba

2 +Bb
2

[(
Ba

1

)2
IaTr +

(
Bb

1

)2
IbTr − 2Ba

1B
b
1ID

]
= Ba

1I
a
G +Bb

1I
b
G

Ba
2 +Bb

2
. (7.20)

The last equation appears to be a combination of interaction induced scattering rates that form to-
gether an effective rate measuring the relevance of Coulomb interaction in the system. Furthermore a
generalized scattering rate of the form:

IαG = Bα
1 I

α
Tr −B−α1 ID, (7.21)

as well as an effective averaged scattering rate defined as

Ba
2 +Bb

2
Tτad

= Ba
2

Tτadis
+ Bb

2
Tτ bdis

(7.22)

will turn out to be quite useful in determining a closed form of the drag resistivity:

ρD = 2
e2

ID
Ba

0B
b
0

1 + IaGI
b
G

ID
(
Ba

2 +Bb
2

)
[(Tτ0)−1 + (Tτad)−1]

 , (7.23)

ραα = 2
e2

1
NαBα

0

 1
Tταdis

+ NαI
α
Tr

Bα
0
−

Nα

(
IαG

)2

Bα
0

(
Ba

2 +Bb
2

)
[(Tτ0)−1 + (Tτad)−1]

 . (7.24)

It is worth to notice, that the effective Coulomb interaction rate Eq. (7.20) appears as a competing
rate to the averaged disorder scattering rate Eq. (7.22), a fact, which supports the relevance of these
rates for the purpose of understanding the physics governing the Coulomb drag.
The Bα

n s we have introduced obey an interesting relation that may help to make their appearance
more transparent. Interpreting the definitions of the Aαns in Eq. (7.13) in a slightly different way we
can use:

Zα = − 1
T

∫
dεν(ε)∂nF

∂ε
, 〈f(ε)〉α = − 1

TZα

∫
dεν(ε)∂nF

∂ε
f(ε), to write (7.25)

Aα0 = Zα, Aαn = Zα

〈(
ε

T

)n〉
α

. (7.26)

In this language the introduced short form Bα
n appears to read:

Bα
0 = Zα Bα

1 = Nα

〈
ε

T

〉
α

Bα
2 = NαZα

〈
(∆ε)2

T 2

〉
α

= NαB
α
0

〈
ε2

T 2 −
〈
ε

T

〉2

α

〉
α

. (7.27)

If one compares Zα with the total particle number one recognizes that there is only the additional
derivative acting on the distribution function that differs. Hence Zα is a dimensionless quantity related
to the number of states that can scatter. In these terms the Bα

n s represent moments of the scattering
phase-space distribution. This interpretation is related to the measure the functional provides us with,
which we have discussed in the end of Sec. 5.2.3.
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7.2.1 Asymptotics of the Resistivity and its Numerical Evaluation

We will now investigate the different limits our approach allows for, starting with the known result
available by perturbation theory as has been done in Ref. [103] (see Sec. 6.4) and then continue with
the lesser known regimes. We hereby use the following convention:

• T � τ−1
dis is the diffusive limit were one needs to incorporate the diffusive

modes due to coherent impurity scattering. In this regime the result (7.23)
is not applicable.

• α2
gT

2 � τ−1
dis � T corresponds to the ballistic regime since scattering with

impurities causes particles to lose their quantum nature (coherence) but the
length scale, in which the interaction is relevant is still much longer than the
mean free path of the quasi-particles.

• τ−1
dis � α2

gT
2 is the ultra-ballistic or hydrodynamic phase, where the inter-

action between the particles take place on a shorter length scale than the
mean free path induced by impurities.

We will explain in Sec. 7.2.2 why we are able to consider not only the hydrodynamic regime, which
the formalism was developed for, but do also the ballistic regime, where a comparison to former work
is possible (see Sec. 6.4).

Ballistic Regime

In Sec. 7.1.2 we have first discussed the applicability of our Coulomb drag result (7.23) and have
concluded that we should be able to describe the ballistic regime. In Sec. 7.2.2 a detailed discussion is
given. Either way we can always try to do the calculation for the ballistic limit and compare them to
previous results. In the ballistic regime (Tτad)−1 is not only by far bigger than (Tτ0)−1, it also wins
out compared to the Coulomb induced scattering rates of the individual layers. Therefore we may
rewrite Eq. (7.23): the contribution in the big brackets disappears except for unity. Hence the drag
resistivity reads:

ρD = 2
e2

ID
Ba

0B
b
0

(7.28)

The determination of ID for different regimes can be found in App. C.3 from Eq. (C.47) (large
distance (C.51) and (C.52)) we can reach the µ � T limit whereas the intermediate scale T �
µ � (2dαgN)−1 can be found from Eq. (C.63) (large distance (C.65)), and finally the large scale
(2dαgN)−1 � µ can be found by Eq. (C.73) (large distance (C.75)). The mixed situation µa � T �
µb � 1

2dTαgN follows from Eq. (C.80). This way we obtain Tab. 7.1, which shows perfect agreement
with Tab. 6.2. These results again support the statement that the calculation we have done, although
focused on the clean case, is applicable to the ballistic regime as well.
To obtain the asymptotics discussed in App. C.3 we used some generalized integrals (IGD and IGtr)

defined in App. C.2. These generalized integrals allow us to consider a numerical treatment as well
as the asymptotics discussed in Tab. 7.1. In the case of effectively zero distance d · T ≈ 0 the drag
resistivity is completely determined by µ/T , which allows us to give the full dependency as shown on
the left hand side of Fig. 7.2.
Further we can consider a comparison to the asymptotics discussed for the case of the disordered

regime. To do so we consider a cross section of the left hand side of Fig. 7.2 in such away that the
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Parameter region Drag resistivity for dT � 1 Drag resistivity for dT � 1

µa, µb � T ρD ≈ 1.41α2
g

~
e2
µaµb
T 2 ρD ∼ α2

g

~
e2
µaµb
T 2 (dT )−η

µa � T � µb �
1

2dTαgN
ρD ≈ 5.8α2

g

~
e2
µa
µb

T � µa < µb �
1

2dTαgN
ρD ≈

8π2

3 α2
g

~
e2
T 2 lnΛab

λab

µaµb
ρD ≈ 4α2

g

~
e2

T

µaµbd

1
2dTαgN

� µa, µb ρD ≈
(4π)2ζ(3)

(αgNaNb)2
~
e2

T 2

µ3
aµ

3
bd

4 ρD ≈
(4π)2

15(αgNaNb)2
~
e2

T

µ3
aµ

3
bd

5

Table 7.1: The asymptotic expressions for the drag coefficient obtained in App. C.3.
The cutoffs are given by Λαβ = min(|µα|, |µβ|, 1/(2d δα,−β)) and λαβ =
max(αgNα|µα|, αgNβ|µβ|, T ). The coefficient η is one for αgNdT � 1 to be one
and three for αgNdT � 1.

chemical potential of both layers is the same everywhere (µa = µb). Such a cross section is shown in
the right hand side of Fig. 7.2, supporting the consistency of the asymptotics with the numerics.
Now that we have verified the known results within the kinetic equation approach we can proceed

to determine the behavior of the drag resistivity in the clean situation.

The hydrodynamic phase (approaching the clean limit)

The case that the Coulomb interaction governs transport phenomena is a somewhat unknown limit. In
graphene, as explained earlier in Sec. 6.2.1, we are fortunately in the position that a system governed
by the Coulomb interaction is not only thinkable but it might as well be within range of experimental
realization, as explained in Chap. 6. In the pure Coulomb interaction limit we treat the disorder
induced rate (Tτad)−1 as the smallest scale in the system or put it even to zero.
In contrast to the disordered regime it may happen that in the equation for the resistivity Eq. (7.23)

the 1 within the big brackets becomes negligible. Such a situation is given if, for example, the relation
ID � Itr for the dimensionless scattering rates holds true. In such a situation the drag rate ID may
disappear completely from our expressions which indicates that our simple Drude picture of drag (see
Sec. 6.1.1) is no longer applicable. In such a situation the drag rate resistivity reads:

ρD = 2
e2
Ba

1B
b
1

Ba
0B

b
0

IaTrI
b
Tr(

Ba
1

)2
IaTr +

(
Bb

1

)2
IbTr + Ba

2
Tτadis

+ Bb
2

Tτ bdis

. (7.29)

The reason for a drag resistivity in such a situation is purely due to the inter-layer thermalization
which leads to the three modes approximation (see for comparison Ref. [105]). We then have transfer
between the layers only due to the thermalization constraint χap = χbp as introduced in Sec. 7.1.3.
Further details on this thermalization are found in Sec. 7.2.2.
For a small chemical potential µ� T we have exactly the situation described above, which leads to
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Figure 7.2: Left: The drag resistivity in units of α2
g
~
e2 plotted over µα

2T of the two-layers for
disorder scattering rate of order τ−1

dis ∼ 100α2
gT and with zero distance (N = 1).

Right: A cross section of the drag resistivity in units of α2
g
~
e2 plotted over µα

2T of the
two equal layers for disorder scattering rate of order τ−1

dis ∼ 100α2
gT and with zero

distance. In orange dashed lines the asymptotics given in Tab. 7.1 for the case of
µa = µb � T and in red dotted lines from the same table the regime T � µa = µb �

1
2dTαgN (N = 1).

a drag resistivity given by:

ρD(µ̂a, µ̂b) ≈ 9.01 1
e2α

2
g

µ̂aµ̂b(Na +Nb)
Naµ̂2

a +Nbµ̂
2
b + z

Na=Nb
z=0≈ 18 1

e2α
2
g

µaµb
µ2
a + µ2

b

. (7.30)

with z = 9ζ(3)
32π

(Tτad)−1

α2
gCTr

(see Eq. (C.49) for details). The remarkable clean limit of this equation unveils,
that depending on the way one approaches the Dirac point of both layers, the necessity to vanish
at the Dirac point disappears (see discussion in Sec. 8.3). As shown in Eqs. (C.51) and (C.52) this
behavior is kept even when considering larger distances 1 � dT although we have no control of the
prefactors. This unintuitive statement will be explained in more detail in Sec. 7.2.2 and is shown in
terms of numerical data in Fig. 7.5.
In the intermediate case T � µ � (2dαgN)−1 a cancellation between contributions, the intra-

layer scattering integrals consist of, happens to appear. This causes the drag rate ID to be bigger
than the interaction induced transport scattering rate Itr. There the clean limit causes no additional
contribution since the perturbative obtained drag resistivity stays unchanged.
When we come to the case of a very large chemical potential (2dαgN)−1 � µ we have additional

static screening for the interlayer rates in contrast to the previous case, which causes the drag rate to
be again much smaller than the intra-layer scattering rates ID � Itr. We also have a cancellation of
the drag rate and we obtain the following drag resistivity from Eq. (C.73):

ρD(µ̂a, µ̂b) ≈ 0.211
α2
g

e2
sign(µaµb)NaNbT

2

(µaµb)2

ln
(
|µa|

2Tλa

)
ln
(
|µb|

2Tλb

)
N2
a ln

(
|µa|

2Tλa

)
+N2

b ln
(
|µb|

2Tλb

) (7.31)

with λα = max(αgNα|µα|, αgNβ|µβ|, T ) as in App. C.3. For the case of large distances small deviations
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7.2 The Coulomb Drag Resistivity in Graphene

Figure 7.3: The drag resistivity in units of α2
g
~
e2 plotted over µα

2T of the two-layers for the clean
case and with zero distance (N = 1). The emphasis is on the non analytic feature
at the Dirac point where the exact value is determined by the way one approaches it,
see Eq. (7.30) and Fig. 7.4 for further details.

appear due to a slightly changed appearance of the cut-off. The resulting resistivity can be determined
from Eq. (C.65). Still one has to be careful, since the three-mode calculation breaks down as soon as
the disorder strength becomes big enough to fulfill µ2/τdis ∼ IE. This does not endanger the clean
limit result but tells us that an experimental setting, designed for clean limit measurements in the
large µ limit, is harder to achieve than in the small µ limit since disorder is weighted with the chemical
potential by the A1 contributions (see the matrix elements in Eq. (7.14)). Again a more detailed
discussion about the validity of the Eq. (7.31) can be found in Sec. 7.2.2
In analogy to the ballistic regime we can use the integrals defined in App. C.2 to obtain numerical

values for the generalized integrals at zero distance, which allows us to obtain the full dependency of
the drag resistivity for the clean case. This way one obtains Fig. 7.3, in which one can recognize the
nontrivial behavior at the Dirac point that is described by Eq. (7.30).
The approximated result is separately shown on the right hand side of Fig. 7.4, illustrating further

the non-analytic behavior at the origin by emphasizing two different paths passing through the origin
which are parametrized by the corresponding approximation (7.30). The paths are given by:

Γγ(t) = (t sin γ, t cos γ, 18 sin γ cos γ). (7.32)

One finds on the left hand side of Fig. 7.4 a cross section at small but non-vanishing disorder
scattering rate illustrating the applicability of Eq. (7.30) even for small disorder scattering rates.
A very interesting fact is observable when considering equal layers in the clean case. The drag

resistivity Eq. (7.23) in this case simplifies (b→ a) and we arrive at:

ρD = 2
e2

 ID(
Ba

0

)2 + IaG

2Ba
1

(
Ba

0

)2

 = 1
e2

 ID(
Ba

0

)2 + Iatr(
Ba

0

)2

 . (7.33)
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Figure 7.4: Left: A cross section of the drag resistivity in units of α2
g
~
e2 plotted over µα

2T of the two-
layers for the case very weak disorder τ−1

dis ∼ 0.02α2
gT and with zero distance (N = 1).

Right: Eq. (7.30) plotted in units of α2
g
~
e2 plotted over µα

2T (N = 1). The emphasis
of this figure is in the fact that all equiresistivity (“equipotential-like”) lines pass
straight through the Dirac point of both layers, indicating the non-analytic behavior
there. These equiresistivity lines are parametrized by Eq. (7.32) and correspond to
different cross sections of Eq. (7.30).

This equation suggests that in analogy to the simple Drude consideration of Sec. 6.3 we have a resistiv-
ity determined by a drag rate τ−1

D ∼ ID/B
2
0 and a transport scattering rate induced by electron-electron

interaction τ−1
ee ∼ Itr/B

2
0 . For different layers such a simple analogy is much harder and the unam-

biguous definition of scattering rates becomes less clear. This is the reason for us to work with the
integrals ID and Itr, which correspond, as seen in Eq. (7.33), to interaction induced scattering rates
but appear to be not equivalent to the conventional definitions for equal layers.

7.2.2 Discussion of the Results and Their Validity

We now have reached a point were we have seen sufficient effects and physical consequences to stop
for a moment to try to more thoroughly understand their meaning and implications. We start by
questioning the thermalization approximation and continue with discussing the applicability in the
ballistic regime and an overview of all possible regimes.
One of the main reasons for the particular simple form of Eq. (7.23) is that we could reduce the

effective four-mode kinetic Eq. (7.14) (or Eq. (C.5)) down to an effective three-mode kinetic Eq. (7.15).
This way we managed to get rid of the energy relaxation rate IE, which drove the inter-layer thermal-
ization, but we also managed to avoid the need to deal with the thermalization rates IαβTh . The deeper
reason for the inter-layer thermalization is in its foundation, the same one we discussed in Sec. 7.1.2
when we argued for the ansatz and even earlier when we were discussing the structure of the collision
kernel in the single layer case (see Sec. 5.2.2): it is the fast forward scattering resonance we came
across in Sec. 2.1.4; this time, however it appears as a resonance between the layers. This way the
observation in App. C.3, that the energy relaxation is always larger than the thermalization rates, is
none other than the statement that in clean graphene we gain a thermalization between the two-layers
due to the forward scattering resonance. Thermalization in this context means that their scattering
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7.2 The Coulomb Drag Resistivity in Graphene

Figure 7.5: Plot of drag resistivity (7.23) with numerical evaluation of the corresponding integrals.
The emphasis is in the way the system approaches the clean limit.

rates will be strongly correlated, χap = χbp. The remarkable thing here is that this happens for arbi-
trary distances as long as the graphene sheets do not have any scattering rate except for the Coulomb
interaction induced ones (not even the inverse Thouless time). Of course, this may at first sight seem
quite counter-intuitive but the explanation is rather simple. Coulomb interaction is a long-range inter-
action, meaning that the low energy modes, given enough time, will always feel the other layer as long
as system size (via Thouless time) or impurities (via scattering rates) do not prevent them from feeling
the forward scattering resonance in the system. This is the statement that has already been discussed
along the lines of Eq. (7.14). The criterion for thermalization was that the diagonal entry containing
the energy relaxation rate in Eq. (7.14) was larger than any off-diagonal one within the same column
or row. Since the thermalization rates IαβTh are always smaller than the energy relaxation rate IE (see
App. C.3) the inter-layer thermalization is effective as long as the off diagonal contributions of the type
Aαn/(Tταdis) stay small. Close to the Dirac point this is basically always true (if the disorder scattering
rates do not differ too much) since all Aαns with odd n disappear, a manifestation of the fact that the
two modes χv and χp are orthogonal at the Dirac point, as explained in the end of Sec. 5.2.3.
When it comes to the applicability of the kinetic equation approach used in Eq. (7.1) with respect

to the ballistic regime we need to question the effectiveness of the forward scattering resonance in
general. In Sec. 5.2.2 and Sec. 7.1.2 we have argued via the forward scattering resonance that the
ansatz (7.12) is the right choice to treat the problem. This way the ansatz is the approximation
separating relevant (slow) from irrelevant (fast) modes which has been studied by Ref. [73]. On the
other hand we have noticed a curiosity in Sec. 7.1.2, allowing us to go beyond the ultra-ballistic limit.
The reason for this extensibility is that the ansatz (7.12) turns out to include the mode governing
the solution of the relaxation time ansatz (5.7), namely the velocity mode. This way we manage to
use the results obtained by a direction-dependent ansatz for the ballistic regime as well. This is fully
supported by the perfect agreements between the results of Tab. 7.1 and those of Tab. 6.2, which
have been obtained earlier via a perturbative approach [103]. For the regime τ−1

dis � α2
gT and for the

regime α2
gT � τ−1

dis � T Eq. (7.23), which is derived from the thermalized effective kinetic Eq. (7.15),
is therefore a suited description of Coulomb drag in graphene. In between the two regimes, for disorder
strength of order τ−1

dis ∼ α2
gT , the thermalization arguments and the pure relaxation time descriptions
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Figure 7.6: The drag coefficients in the case of identical layers in different parameter regimes for
µ � min(T/αg, 1/d). The orange part (τ−1

dis � T ) is the regime the kinetic equation
is applicable. The regime α2

gT � τ−1
dis � T is where perturbative (see Ref. [103])

and kinetic equation approach coincide, whereas the regime τ−1
dis � α2

gT is obtained
by kinetic equation only. The upper regime T � τ−1

dis corresponds to the diffusive
regime, where the relaxation time ansatz fails to describe the disorder contributions;
this is the regime that has been studied by previous authors [77, 78, 100–104], see
Sec. 6.3 for details.

are not well founded. Still, we claim, since above and below the theory applies properly, that the
relevant physics for the intermediate case is taken into account and therefore making Eq. (7.23) a well
founded approximation.
To gain an overview of the possible regimes including the regimes the previous works have considered,

(see Sec. 6.3), Fig. 7.6 provides a collection of the results for the case of equal layers. The orange part
of Fig. 7.6 is the regime where Eq. (7.23) is applicable. This part corresponds to the ballistic limit
Tτdis � 1� α2

gTτdis whereas Tτdis � 1 (the upper part) corresponds to the diffusive limit. Due to the
nature of the collision kernels we take into account (the relaxation time ansatz as well as the Coulomb
kernel), diffusive modes like diffusons and cooperons have not been considered, which prohibits us to
discuss the diffusive limit properly within the kinetic equation of the two-layer system we started from
(Eq. (7.1)). The regime we are actually focused on, the hydrodynamic regime, αgTτdis � 1, shows
several interesting features. For small chemical potentials around the line 1 we have the situation
described by Eq. (7.30) the impurity scattering rate distinguishes the two asymptotics. For large
chemical potentials the behavior seems to be quite universal, only the sub-leading correction separates
the results there, shown by line 2.
For small chemical potentials there are several highlighted contributions ρ(3)

D in Fig. 7.6. Except
for the diffusive regime they are unknown. These contributions correspond to higher-order corrections
within the drag rate ID. Due to symmetry reasons the leading order drag disappears at the Dirac
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point, paving the way for possible sub-leading corrections to govern the behavior at charge neutrality
(see Sec. 8.3). It is known [91] that this can happen in the diffusive limit. Further details on the higher
order contributions can be found in Sec. 8.3.
A discussion of the obvious odd symmetry with respect to the axes is provided later in Sec. 8.3.1,

since this symmetry will be crucial there. There is one additional point to make about the symmetries,
namely that for all kind of transresistivities it has to be irrelevant if we exchange µa with µb (if we do
the same with ταdis). This implies that the transresistivities must behave as even functions with respect
to the line µa = µb.

7.2.3 Comparison to Experiment

Within the last year the experimental techniques to deal with graphene have developed enormously.
Thus, we are in the fortunate position to compare our theoretical considerations with experiments.
So far, two experimental groups managed to measure the Coulomb drag resistivity of graphene-based
two-layer setups [107, 108]. The two experimental realizations differ in the substrate, the graphene
sample is deposited on, and in the material they use to separate the two graphene layers.

Figure 7.7: Comparison of our data for the drag resistivity (below) with the experimental data
(above) from the authors of Ref. [108]. The deviation in the total scale comes from
different parameter regimes. Our data is plotted for temperatures T = 200K, coupling
strength αg = 0.08 and layer distance d = 11nm the left figure shows the data for
impurity strength τ−1

dis = 5K whereas the right shows it for τ−1
dis = 25K

The experimental data for the resistivity is in both cases given as a function of the charge carrier
concentration of each layer. We use a simple relation interpolating the two different regimes introduced
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by Ref. [103] to express the resistivity in terms of concentration nc,
µ

2T = πnc√
π|nc|+ (Tτdis)−2 . (7.34)

We further note that the layer distance within our considerations appear as an exponential suppression
restricting the momentum, able to contribute to drag. Therefore when considering dimensionless units
the quantity d ·T determines the value of the integrals. Thus, in our data a change in the temperature
always comes along with a change of the distance. This is not a problem a priory but relies on the
fact that more numerical data from the evaluation of the integrals would be needed to compensate this
taint.

Figure 7.8: Comparison of the cross-section of equal layers of our data (right) for the drag resis-
tivity with the experimental data (left) from the authors of Ref. [107].

The experimental data of Ref. [107] contain drag resistivity measurements varying the concentrations
of both layers. They see the symmetry arising from the sign change of a single layer and a peaked
structure along lines of equal chemical potential (or equal up to a sign). Thus the qualitative agreement
with our theory is quite good as one can determine from Fig.7.7.
One recognizes that the shape of the high resistive pockets (in absolute values) differs slightly

but yields better agreement for higher impurity strength. Thus the different shape may arises from
contributions coming from the diffusive regime.
A comparison with the data provided by the authors of Ref. [108] can be performed by means

of cross-section through the previous data. The experimental data provided allows to compare the
temperature trends as well. Since so far temperature variation correspond to distance variations we
need to be careful in the comparison with the experiment shown in Fig. 7.8.
The tendencies as a function of temperature are rather good. We see the translation of the peak

towards the origin as well as the hight change caused by temperature. The latter is not as pronounced
as in the experiment since in our case the distance varies as well.
In total the qualitative agreement with the experiments is surprisingly good and supports the general

picture we have presented so far. In the experiments one recognizes a feature at the Dirac point which
is not present in our data. An explanation for this and possible phenomena related to this are given
in Sec. 8.3
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8 Chapter 8

Coulomb Drag in Graphene:
Generalizations and Further Developments

To explain all nature is too difficult a task for any one man or even for any one age. ’Tis
much better to do a little with certainty, & leave the rest for others that come after you,
than to explain all things by conjecture without making sure of any thing.

Isaac Newton, quoted in Never at Rest: A Biography of Isaac Newton

This chapter is dedicated to further extensions of the approach introduced in the previous Chap. 7
for Coulomb drag. We will show how to generalize the formulation to cover multi-layer systems and
how to include a magnetic field yielding Hall drag and magneto drag. We then, proceed by extending
the formalism itself to describe higher-order drag and to gain Drude-like equations for the drag setup
in graphene.

8.1 Multilayer Drag

When we started to derive the Coulomb drag of two-layers in Sec. 7.1.1 we were focused on the Coulomb
drag of a two-layer system. We did not bother thinking about the extensibility of the treatment but
focused on making the derivation as clear as possible. Now we can consider possible extensions. The
simplest one seems to be adding a layer. Glancing at Eq. (7.1) we see that the consequences of adding a
layer would be an additional equation on the one hand and two additional collision integrals connecting
all of them on the other hand. Following the logic of our calculation for two-layers we gain a three-layer
functional similar to Eq. (7.10):

F3L(ha, hb, hc) = F (ha, hb) +Nc

∫
dx ν(ε)∂n

c
F (ε)
∂ε

hc(x)

e ~Ec~v
T 2 −

hc(x)
2Tτ cdis


+ N2

c

8T 2

∫
d{xi}W c,c({xi})

[
hc(x1)− hc(x2) + hc(x3)− hc(x4)

]2
+ NbNc

4T 2

∫
d{xi}W b,c({xi})

[
hb(x1)− hb(x2) + hc(x3)− hc(x4)

]2
+ NaNc

4T 2

∫
d{xi}W a,c({xi})

[
ha(x1)− ha(x2) + hc(x3)− hc(x4)

]2
. (8.1)
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Along the lines of the arguments for the ansatz (7.12) we see no need to restrict them to two-layers
only. This way we can derive very analogous an effective three-layer kinetic equation including six
modes as it is shown in App. C.1.3. The main difference is in the more lengthy expressions that appear
during the calculation.
In Sec. 7.1.3 we noticed a correlation appearing between the two-layers which we referred to as

thermalization (see Sec. 7.2.2). In App. C.1.3 we show that the same arguments apply for the three-
layer case leading to an effective three-layer thermalization. The detailed calculation is only sketched
in App. C.1.3, since it turns out to be too lengthy. Nonetheless it is a straight-forward calculation
following the steps in the spirit of the two-layer case.
By solving the thermalized kinetic Eq. (C.11) analogous to Sec. 7.1 we obtain the drag resistivity

for the three-layer case to be:

ραβD = 2
e2

IαβD
Bα

0B
β
0

1− IαGI
β
G

IαβD

(∑
γ B

γ
2

) (
1
Tτ0

+ 1
Tτad

)
 , (8.2)

ραα = 2
e2

1
NαBα

0

 1
Tταdis

+ NαI
α
Tr

Bα
0
−

Nα

(
IαG

)2

Bα
0

(∑
γ B

γ
2

)
[(Tτ0)−1 + (Tτad)−1]

 . (8.3)

with the short forms, as previously, given by Eq. (7.13). The generalized rate is given by:

IαG = Bα
1 I

α
tr −

∑
γ 6=α

Bγ
1 I

αγ
D (8.4)

and the characteristic scattering rate for the Coulomb drag is of the form:

1
Tτ0

=
∑
γ B

γ
1 I

γ
G∑

γ B
γ
2

= 1∑
γ B

γ
2


∑
γ

(
Bγ

1

)2
Iγtr −

∑
γ,δ
γ 6=δ

Bγ
1B

δ
1I
γδ
D

 . (8.5)

The averaged disorder scattering rate reads:∑
γ B

γ
2

Tτad
=
∑
γ

Bγ
2

Tτγdis
. (8.6)

Eq. (8.2) is fully downward compatible since reducing the number of flavors Nγ → 0 of the corre-
sponding layers gets rid of the corresponding Bγ

1 s and B
γ
2 s and therefore effectively reduces the possible

summations. On the other hand setting the chemical potential of some layers to zero is different from
this procedure. It only sets the corresponding IαγD s and Bγ

1 s to zero which leaves traces within the
equation in form of the averaged disorder scattering rate and the characteristic scattering rate for the
Coulomb drag. These two multilayer quantities know about the additional layers even if they are at
the Dirac point.
Since the Eq. (8.2) reflects the physical properties of a multi-layer system very well, it is expected

that this result holds for more than three layers.
The multi-layer setup becomes naturally important if the layer degeneracy is lifted. This is the case

if we apply an in-plane magnetic field to the Coulomb drag setup. The electronic spins, so far treated
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as degeneracy, will become spin polarized. Furthermore via the Zeeman splitting two different chemical
potentials arise, one for each species of spin polarized electrons. Thus, a two layer setup transforms into
a four layer setup, since each of the physical layers of graphene counts now as effectively two layers
of spin polarized graphene. Coulomb drag in such a setup will cause drag between spin polarized
electrons, which via their effective chemical potentials can be controlled. Similar setups are known
for conventional systems [109, 110] and 1D setups [111]. A detailed analysis of the Spin drag in
graphene-based setups remains as a future work (see outlook Sec. 9).

8.2 The Hall Drag and Magnetodrag

We will return now to the case of two-layers. We now alter the system by including a magnetic field.
Before we can continue to modify our machinery to the new setup we need to understand how the
system will change due to the changed circumstances.

8.2.1 Applicability of the Kinetic Equation

One of the most studied phenomena in condensed matter physics is the quantum Hall effect (QHE).
The quantum Hall effect is observable at very low temperatures in very strong magnetic fields and is
based on the change of the electronic structure of the material under these circumstances. The electrons
in the quantum Hall phase appear to occupy degenerated quantized energy levels, so-called Landau
levels. The formulation we have used so far has depended on the electronic structure in graphene in
absence of a magnetic field. Our purpose now is to investigate whether or not we can keep this picture
in the presence of a magnetic field. For details of the quantum Hall effect in graphene we refer to the
general overview given in Ref. [20].
The question we face in our attempt to deal with Hall drag is: what are the limitations when we

want to describe the system with help of the unchanged electronic structure. In case of disordered
graphene it is known that there is an interplay of mean free path ldis and magnetic length lB (see for
example Ref. [112]). But how is the situation for clean graphene? In Sec. 4.2 we have shown that even
for clean graphene at the Dirac point there is an interaction induced lifetime for finite temperatures.
Hence we need to determine in a self-consistent manner if such a finite lifetime, which broadens the
energy levels, can compete with the tendency of a magnetic field to quantize the electronic structure.
The energy levels in graphene that are induced by a magnetic field behave as εn = ωc

√
n, where the

cyclotron frequency is given by ωc = vF
√

2eB (see Ref. [20]). We look now for the condition:

εn+1 − εn = ω2
c

εn + εn+1
<

1
τq
. (8.7)

One important observation is that with higher energies the condition (8.7) becomes more likely to be
fulfilled, since the energy appears in the denominator. Following this logic there is an energy ε∗ at
which the broadening is bigger than the distance between the Landau levels hence restoring the linear
spectrum of graphene as illustrated in Fig. 8.1.
The quasi-particle broadening is induced due to Coulomb interaction and disorder scattering:

1
τq

= 1
τdis
q

+ 1
τ ee
q

, (8.8)

for the following considerations we will assume the clean setup, where impurity scattering is absent.
Let us now assume that the energy scale at which the broadening is bigger than the distance between
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Ωc Ε
*

Ε

DOS

Figure 8.1: Sketch of the density of states (DOS) in the cross over between the regime of Landau
level quantization and the recovery of the electronic structure of graphene. The dotted
gray line corresponds to the DOS of the system without magnetic field.

the Landau levels fulfills ε∗ � ωc, then the condition (8.7) reduces to

ω2
c

2ε <
1
τq
∼

 T
N

√
ε
T ε < α2

gNT

αgT ε > α2
gNT

, (8.9)

using the result from Eq. (4.21). We see that for large energies ε > α2
gNT we need to have ε > ε∗ =

ω2
c/(αgT ). Since ωc =

√
2vF /lB defines the magnetic length we can, with the help of the definition of

the screening length (4.5), reformulate this to gain ε > ε∗ = 4 ln(2)NvF lscr/l
2
B.

There is also the situation that the magnetic field is so weak that the critical energy becomes smaller
than the energy scale defined by the magnetic field ε∗ � ωc. In such a situation the energy difference
changes towards ε1−ε0 = ωc, which implies that if the condition ωc < αgT holds the complete electronic
structure appears to be unchanged by the magnetic field. This condition corresponds to the case that
the length scales obey lscr < lB, it is therefore a natural limit in switching off the magnetic field.
We see that one can easily find situations in which one can deal with the linear electronic structure

of graphene in the presence of a weak magnetic field. In all of aboves discussion we need to remember
that ωc � T must hold for us to be able to treat the system within the kinetic equation approach.

8.2.2 The Kinetic Equation in the Presence of a Magnetic Field

In order to deal with the two-layer system in the presence of a magnetic field we still need to discuss
how a weak magnetic field manifests itself in the language of the kinetic equation. A reasonable way to
proceed is to look back at the derivation of the electric field in the Liouvillian as done in Sec. 2.5.1 and
follow the analogous route with a magnetic field instead. For simplicity we will argue more physically
by the usage of the Boltzmann equation. In the Boltzmann theory (see [49, 50, 52]) the way the
electric field appears is generalized as a force acting on the distribution function ~F∇~p. In presence
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of a magnetic field ( ~B = B~ez) we will consider the Lorentz force ~F = e( ~E + ~v × ~B) which alters the
Liouville operator [73–75] towards (∇~p = ~v∂ε + ∂~v with ∂~v = v−1

F ~eφ∂φ):

Ln =
(
∂T + ~v∇R + e ~E~v∂ε + ω2

c

2vF ε
∂φ

)
n, (8.10)

using ~v(~ez × ∂~v) = ε−1vF∂φ. Hence we obtain now a mixing of directions caused by the magnetic field.
Since we have this mixing we need to be more careful with the ansatz (7.12). We will still keep the
form of the ansatz but we replace the directions the ansatz can point to by ~eα. The modified ansatz
reads:

hα(xi) =
∑
µ

(
χαµv + ε

T
χαµp

)
~v~eµ. (8.11)

The changed Liouvillian induces alterations in the functional (7.10), which read:

Fmod(ha, hb) = F (ha, hb)−
∫

dxν(ε)∂n
a
F

∂ε

(
ωc
2T

)2 2T
ε
∂φ
(
ha(x)

)2
−
∫

dxν(ε)∂n
b
F

∂ε

(
ωc
2T

)2 2T
ε
∂φ
(
hb(x)

)2
.

(8.12)
Using the ansatz we arrive at the effective kinetic equation for the case of a weak applied magnetic
field. The details of the functional variation can be found in App. C.1.4. The effective kinetic equation
is expressed in Eq. (C.17). As for the case of no magnetic field a thermalization between the layers
appears again (see Sec. 7.1.3), which for each direction separately reduces the modes needed to deal
with the system. With the help of the definition from the rotated effective kinetic Eq. (7.15) for M
we can write:

Aa0 0
0 Ab0

NaA
a
1 NbA

b
1

0 0
0 0
0 0


=
(
M yL
yL M

)


χax,Iv χax,IIv

χbx,Iv χbx,IIv

χx,Ip χx,IIp

χay,Iv χay,IIv

χby,Iv χby,IIv

χy,Ip χy,IIp


with L =

 Aa−1 0 Aa0
0 Ab−1 Ab0

NaA
a
0 NbA

b
0 NaA

a
1 +NbA

b
1

 (8.13)

for the rotated system ((2T )2y = 2ω2
c ). We have used here that the ansatz is again oriented in such a

way that the χ•y• parts do not see the electric field (b•y = 0), for further details we refer to App. C.1.4.
The current in the additional directions is given by:

~jαµ = eNα

∫ d2p

(2π)2 ~vn
α
F (x) = e2

2 Nα

∑
µ∈{x,y}
γ∈{I,II}

~eγµ

(
Aα0χ

αµγ
v +Aα1χ

µγ
p

)
. (8.14)

These equations create an explicit anisotropy, meaning that the conductivity has the structure σ̂ =
1σxx + εσxy (ε being the completely antisymmetric tensor of rank two) which allows us to write:

~jax
~jbx
~jay
~jby

 =
(
σ̂xx −σ̂xy
σ̂xy σ̂xx

)
~Eax
~Ebx
~Eay
~Eby

 =


σxxaa σxxab −σxyaa −σxyab
σxxab σxxbb −σxyab −σxybb
σxyaa σxyab σxxaa σxxab
σxyab σxybb σxxab σxxbb



~Eax
~Ebx
~Eay
~Eby

 (8.15)
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Again we use vectors to project the solution of the effective kinetic equation

~dT =
(
NaA

a
0 0 NaA

a
1

0 NbA
b
0 NbA

b
1

)
and ~b =

 Aa0 0
0 Ab0

NaA
a
1 NbA

b
1

 , (8.16)

to write the conductivity in the presence of a magnetic field as:

σ̂xx = e2

2
~dT

( M yL
yL M

)−1


11

~b = e2

2
~dT
(
M − y2LM−1L

)−1
~b ≈ e2

2
~dTM−1~b, (8.17)

σ̂xy = e2

2
~dT

( M yL
yL M

)−1


21

~b = y
e2

2
~dT
(
M − y2LM−1L

)−1
LM−1~b ≈ y e

2

2
~dTM−1LM−1~b.

(8.18)

One clearly sees that in the limit of weak magnetic fields σ̂xx equals Eq. (7.18) and we hence recover
the results obtained in the beginning of Sec. 7.2. In the very same way we see that σ̂xy for weak
magnetic field is proportional to y (which itself is proportional to ~B). The resistivity for this case
involves the inversion of the conductivity matrix introduced in Eq. (8.15). The complete discussion is
only valid for weak magnetic fields (see Sec. 8.2.1), which is why the expansion of Eq. (8.17) is valid
in the regime we are looking for Hall physics. The resistivity reads:

ρ̂xx =
(
σ̂xx + σ̂xyσ̂

−1
xx σ̂xy

)−1
≈ σ̂−1

xx (8.19)

ρ̂xy =
(
σ̂xx + σ̂xyσ̂

−1
xx σ̂xy

)−1
σ̂xyσ̂

−1
xx ≈ σ̂−1

xx σxyσ̂
−1
xx (8.20)

where the expansion for small y again corresponds to the regime where we can describe the magnetic
field in the kinetic equation approach. Doing the matrix multiplications straightforwardly the familiar
short forms (7.19) and (7.20) reappear together with

Cα = Bα
0 −Aα−1B

α
1 /Nα, (8.21)

which allows us to express the Hall resistivity and the Hall drag as:

ρD
xy = 2

e2
y

Ba
0B

b
0

 CaIbG + CbIaG
(Ba

2 +Bb
2)[(Tτ0)−1 + (Tτad)−1]

− (Ba
1C

a +Bb
1C

b)IaGIbG
(Ba

2 +Bb
2)2[(Tτ0)−1 + (Tτad)−1]2

 , (8.22)

ρααxy = 2
e2

y

(Bα
0 )2

Bα
0 − Cα

Bα
1

+ 2CαIαG
(Ba

2 +Bb
2)[(Tτ0)−1 + (Tτad)−1]

− (Bα
1C

α +B−α1 C−α)(IαG)2

(Ba
2 +Bb

2)2[(Tτ0)−1 + (Tτad)−1]2

 ,
(8.23)

also using the generalized rate we have introduced in Eq. (7.21) defined as IαG = Bα
1 I

α
Tr − B

−α
1 ID, the

effective Coulomb interaction rate:

(Tτ0)−1 = 1
Ba

2 +Bb
2

[(
Ba

1

)2
IaTr +

(
Bb

1

)2
IbTr − 2Ba

1B
b
1ID

]
= Ba

1I
a
G +Bb

1I
b
G

Ba
2 +Bb

2
, (8.24)

and the averaged disorder scattering rate:

Ba
2 +Bb

2
Tτad

= Ba
2

Tτadis
+ Bb

2
Tτ bdis

. (8.25)
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8.2.3 Asymptotics of the Hall Drag

In analogy to Sec. 7.2.1 we consider the asymptotic behavior of the Hall drag in several regimes. To
do so we follow the same notation of ballistic and ultra-ballistic/hydrodynamic we have defined and
used in the case of the Coulomb drag resistivity.

The ballistic regime

When the Coulomb interaction can be considered to be much smaller than the relaxation rate the
discussion in Sec. 7.2.1 unveiled that (Tτ0)−1 + (Tτad)−1 ≈ (Tτad)−1 is the factor suppressing the
results that go beyond the perturbative calculation of Ref. [103]. If we do the very same for the Hall
drag (8.22) we obtain:

ρD
xy = 0 +O(α2

gTτdis), (8.26)

where the coefficient of the leading non-vanishing contribution is not accessible, since in the ballistic
regime the magnetic field requires additional modes that have not taken into account. This result is
not too surprising since a glance at the Drude picture already gives us this result.
We start with a modification of the two-layer Drude Eq. (6.3) taken in the stationary case:

0 = q

m
~Ea −

1
τ
~va + ~vb − ~va

τD
+ q

m
~va × ~B, (8.27)

0 = q

m
~Eb −

1
τ
~vb + ~va − ~vb

τD
+ q

m
~vb × ~B. (8.28)

Driving a current in layer a (~ja = nq~va) and keeping the second layer untouched, i.e. not connected
to leads to prevent the second layer from developing a current (~vb), we see that the magnetic field
drops from the equation since no current appears in layer b. Hence the equation for layer b reduces
to the Drude drag Eq. (6.5) showing no Hall drag features. In this view the result of Eq. (8.26)
comes at no surprise. Nevertheless even in this Drude-like picture one may obtain a Hall drag at
the cost of incorporating the magnetic field’s influence into the quasi-particle kinetics in the collision
kernel [113, 114].
From the modified two-layer Drude Eq. (8.27) we gain the Hall resistivity by disregarding the second

layer and sending the current in ~ex direction through the layer a. Having the magnetic field in ~ez
direction one reads for the ~ey part of the equation:

0 = q

m
~E~ey +

~j~exB

n

(
~ex × ~ez

)
~y. (8.29)

The drag resistivity appears as
ρH = B/(qn) (8.30)

in these terms.
Within the kinetic equation approach we obtained the Hall resistivity in Eq. (8.23), which in the

ballistic limit reduces to:

ρααxy = y
2
e2

Aα−1
Nα(Bα

0 )2 = y
π

e2
tanh µ̂α

Nα ln2(2 cosh µ̂α)
= 1
e2
eB

T 2

π tanh
(
µα
2T

)
Nα ln2

[
2 cosh

(
µα
2T

)] . (8.31)
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In the limit of large chemical potentials this result agrees with the Drude picture Eq. (8.30) since the
concentration for this case is given by n = Nµ2/(4π). For small chemical potentials the resistivity
deviates from Eq. (8.30), implying that using the Hall resistivity to get the concentration in graphene
becomes unsuitable for small chemical potentials.

The hydrodynamic phase (the clean case)

When the Coulomb interaction dominates the processes within graphene we see quite unusual physics
appear in the kinetic equation. In this situation it is worth rewriting Eq. (8.22) into the following
form, getting rid of some cancellations explicitly:

ρD
xy = 2

e2
y

Ba
0B

b
0

x
(
CaIbG + CbIaG

)
+ CaBb

1

(
IbG

)2
+ CbBa

1

(
IaG

)2

(
Ba

1I
a
G +Bb

1I
b
G + x

)2 with x = Ba
2 +Bb

2
Tτad

. (8.32)
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Figure 8.2: Left: The Hall drag resistivity in units of ~
e2
eB
T 2 plotted over µα

2T of the two-layers
for disorder scattering rate of order τ−1

dis ∼ 0.1α2
gT with d · T � 1 and for simplicity

Na = Nb = 1. Right: A cross section of the drag resistivity in units of ~
e2
eB
T 2 plotted

over µα
2T for disorder scattering rate of order τ−1

dis ∼ 0.02α2
gT and with d · T � 1.

Note the sign change of the resistivity for µ/(2T ) ∼ 1 see Sec. 8.2.6 for more details.
Further in orange dashed the small µ-asymptotics for the hydrodynamic regime is
given in Eq. (8.33) for simplicity again with Na = Nb = 1.

In the case of a small chemical potential we can again use the asymptotics of the involved integrals
derived in App. C.3 to arrive at a particularly simple equation for the Hall drag resistivity:

ρD
xy = 2π

e2
y

ln2
Naµ̂a +Nbµ̂b

8
[(
Naµ̂a

)2 +
(
Nbµ̂b

)2]+ z
with z = x

4α2
gCTr(dT )

dT=0≈ 7.85
α2
g

 Na

Tτadis
+ Nb

Tτ bdis

 . (8.33)

The Hall drag of the clean case has a divergence at the Dirac point of both layers that disappears for
any small disorder scattering in the system. The comparison of this approximation to the numerically
evaluated integrals is given on the right hand side of Fig. 8.2. The overall shape of the Hall drag is
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given on the left hand side of Fig. 8.2, which unveils a dramatic change of the symmetry the Hall
drag (8.22) obeys in contrast to the symmetry of the Coulomb drag (7.23). The Coulomb drag behaves
as an odd function for each of the axes defined by one chemical potential. The Hall drag in contrast
is an odd function with respect to the line µa + µb = 0, at which the Hall drag disappears. Therefore
the difference is that the Coulomb drag is sensitive to the charge-carrier concentration of each layer,
whereas the Hall drag seems to be susceptible to the total concentration of charge carriers. An attempt
to arrive at a deeper understanding of this change can be found in Sec. 8.2.4.

8.2.4 Properties and Analysis of the Hall Drag

To understand the qualitative change in the Hall drag as compared to the Coulomb drag we first need
to take a look at the influence of the magnetic field in graphene. In Eq. (8.10) we have included
the Lorentz force into the kinetic equation. In conventional non-relativistic systems the Lorentz force
appears to be “charge over mass” selective. In graphene however, due to massless charge carriers,
the Lorentz force becomes energy-selective. This is an important difference since the magnetic field
in Eq. (8.13) not only mixes the directions but also the symmetry of the modes. To understand this
statement we should again remember the interpretation of the coefficients An as scalar products of
our modes (see Eq. (5.34)). In this language the influence disorder has on the system is contained in
the As. The entry A0 suggests a mixing of a velocity mode with another velocity mode whereas A2
refers to a mixing of a momentum mode with another momentum mode. The contribution A1 appears
in disorder scattering as a mixing of a velocity with a momentum mode instead. At the Dirac point
A1 vanishes (see the discussion after Eq. (5.34)) which is the reason we could define a conductivity in
absence of impurities there (see Sec. 5.2.3). The magnetic field now manifests as an energy weighted
mixing of directions that causes a change in this viewpoint by exchanging coefficients An to An−1, seen
explicitly in Eq. (C.15). The reduction of the n dramatically changes the symmetry properties of the
coefficients An in such way that at the Dirac point the magnetic field scatters only between a velocity
and a momentum mode not between a momentum and another momentum or respectively a velocity
and another velocity mode. To understand this more easily it is helpful to imagine a sketch as it is
given in Fig. 8.3. Let us consider the following scenario to gain a clearer picture. We assume that

χax
v

χax
p

χay
v χay

p

a

χbx
v

χbx
p

χby
v χby

p

b

Figure 8.3: A sketch of the possible modes appearing in a magnetic field. The gray region sym-
bolizes the region the magnetic field causes possible mixing of the modes pointing in
x direction with those pointing in y direction.

layer b is at the Dirac point. In Fig. 8.3 this implies that the magnetic field allows only for scattering
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between χbxv and χbyp and respectively χbxp and χbyv . Also, since layer b resides at the Dirac point the
velocity mode does not communicate with the momentum mode. This creates an interesting situation
when we consider the electric current Eq. (5.29) and the energy current analogous defined as:

~jE = N

∫ d2p

(2π)2 ε~vn(x) = e

2N
(
A1χ0 +A2χ1

)
~E, (8.34)

~j = e2

2 N
(
A0χ0 +A1χ1

)
~E. (8.35)

At the Dirac point χv is exclusively responsible for the electrical current whereas χp exclusively covers
the energy current. An electric field in x direction will create a pure electrical current in x direction.
In presence of a magnetic field the electrical current will be scattered into a pure energy current in
y direction as one can easily derive from Eq. (C.15). This means that at the Dirac point Eq. (8.23)
yields zero since no electrical current is transfered between the directions.
Since the Dirac point apparently provides us with the possibility to more easily understand what

processes are going on in the system we will now consider the Hall drag from layer a to layer b in the
case that layer b stays at the Dirac point whereas layer a does not. We will consider a current in layer
a in x direction which leaves us with seemingly two scenarios to gain an electric field in layer b in y
direction:

• The electric current in layer a consisting of χaxv and χaxp is scattered via the
magnetic field to the modes χayv and χayp . Here now the usual Coulomb drag
could provide us with a possibility affect layer b, but since layer b is at the
Dirac point this is not possible. Note: it would be possible for an energy
current but not for an electric current.

• Again we start with the electric current in layer a consisting of χaxv and χaxp .
To directly affect layer b seems impossible since layer b resides at the Dirac
point. But we have learned that there is the phenomenon of thermalization
(see Sec. 7.1.3), which means that although there will be no current in layer
b in x direction there might be an energy current instead. In exactly the
way we have previously discussed the single layer case at the Dirac point
this energy current will now scatter the χbyv mode.

After this simple picture it is worth to actually look at the Hall drag result simplified for the case of
µb = 0:

ρD
xy = 2

e2
y

Ba
0B

b
0

CbIaG
(Ba

2 +Bb
2)[(Ba

1I
a
G + (Tτad)−1]

with IaG = Ba
1I

a
tr and Cb = Bb

0. (8.36)

In this expression the nominator corresponds exactly our second pathway since the magnetic field
appears via Cb, which knows about the magnetic field of layer b only, Ba

1 corresponds to the χaxp
component of the driving current and Iatr knows about the collision kernel creating the thermalization.
The symmetry of the drag resistivity (7.23) (see Sec. 7.2.1) looks completely different from that of

the Hall drag. But since the Hall drag is a transresistivity it has to obey the even symmetry with
respect to the axes µa = µb physically reflecting that the layers can be distinguished only by the layer-
dependent parameters we included, µα and ταdis. To analyze further properties we utilize the following
replacement rules:

IαG
µα→−µα−→ −IαG, IαG

µ−α→−µ−α−→ IαG, Bα
n
µα→−µα−→ (−1)nBα

n , Cα
µα→−µα−→ Cα, (8.37)
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In contrast to the Coulomb drag resistivity (7.23) The Hall drag does not obey any symmetry with
respect to the axes, instead it appears to be an odd function under simultaneous sign change of the
chemical potential of both layers. Therefore, due to the even symmetry with respect to the axes
µa = µb, the Hall drag has an odd symmetry with respect to the axes µa + µb = 0. The fact that
the Hall drag has a different symmetry as compared to the Coulomb drag is somewhat clear, since the
magnetic field appears in linear response, causing one single distinct change in the symmetry properties
when changing the direction the modes point to. If we focus on the symmetry axis µa+µb = 0, around
which the Hall drag behaves as an odd function, we might think about the vanishing of the Hall
drag as a cancellation of the two pathways we have described earlier. In Fig. 8.3 this vanishing can
be understood when we remind ourselves again of the overall symmetry properties of the ingredients.
Each layer and collision kernel stays invariant if all energies, momenta and their corresponding chemical
potential change sign. This is a manifestation of the fact that the system does not distinguish between
hole-like particles and electron-like particles (see the symmetry discussion in Sec. 8.3.1). The magnetic
field’s influence being energy sensitive forces us to change its direction in this conceptual electron-hole
symmetry to keep the invariance. In this sense we can think about the cancellation of the two pathways
(via χay or via χby in Fig. 8.3) as a cancellation that comes due to opposite signs of the magnetic field,
in an otherwise perfectly symmetric setup.

8.2.5 Magnetic Field Induced Drag at the Dirac Point

A quite beautiful observation can be made in Eq. (8.13), namely the change in the matrices at the Dirac
point of both layers. In this situation M becomes diagonal and the only entries left in L are the those
that contain Aα0 . Thus the matrices that appear are simple enough to write down in Eq. (8.17), and
although the ID is zero the combination −y2LM−1L generates an entry that serves us as an effective
drag rate. From these considerations we obtain, using the usual drag resistivity for the ballistic case
Eq. (7.28) a magneto drag resistivity at the Dirac point of both layers that reads:

ρD = − 2
e2

y2

Ba
2za +Bb

2zb
= − 2

T 2
B2

Ba2
Tτadis

+ Bb2
Tτbdis

, (8.38)

with B being the magnetic field. A peculiarity of this feature is its appearance with a negative sign
independent of the sign of the magnetic field or the chemical potentials.
In the discussion of the previous Sec. 8.2.4 this feature is easily understood. To do so we will consider

both layers at the Dirac point. Driving an electric current in x direction in layer a then corresponds
only to the χv mode being driven (see Fig. 8.3), in analogy to the previous section the magnetic field
scatters this mode into a pure energy current. This energy current going in y direction thermalizes
with the second layer, inducing the same energy current their. Subsequently this energy current in y
direction in layer b scatters again with the magnetic field into an electric current pointing in x direction.
In this scenario a thermalization like mechanism is crucial, and a suited test to verify this can be found
by using the non-thermalized equations given in Eq. (C.16). Performing the calculation we obtain a
magneto drag resistivity, that reads:

ρD = − 2
e2

y2IE

IE(Ba
2za +Bb

2zb) + Ba2B
b
2zazb

NaNb

∝ −B
2τdis
T 2

α2
g ln(1/αg)

α2
gNT ln(1/αg) + τ−1

dis
. (8.39)

One sees that depending on the strength of thermalization the result varies. In this regard this result
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provides an excellent litmus test for the thermalization hypothesis of an experimental setup. The
comparison with experiment given in Fig. 8.4 shows a very good agreement.

Figure 8.4: Left: The magnetodrag resistivity for equal concentration varying the strength of
the magnetic field. Right: The magneto drag resistivity measured by the authors of
Ref. [108]

The peak at the Dirac point is very well described within our theory as one can see in Fig. 8.4. It is
worth to note that the experimental data suggests that their measurements are slightly above the field
strength we can describe without the need to deal with Landau-levels, since the peak shows already
saturation effects. Further the side peaks in the experiment increase in contrast to our estimation. We
assume, that this discrepancy arises from the experimental setting being rather in the ballistic than
hydrodynamic regime. Thus, the magnetodrag in the hydrodynamic regime seems to differ from the
ballistic regime. Further investigation of the interplay of different regimes and comparison with the
experiment is needed, which is work in progress (see Chap. 9).

8.2.6 Comparison to Experiment

From private communications with the group of Andre Geim [115] we know that Hall drag measure-
ments are currently in progress which is why we will give here some more detailed data to compare
with.
Again we use the relation given in Eq. (7.34) to transform the chemical potential into concentra-

tion. For the same reasons, that have been explained in Sec. 7.2.3 we vary distance and temperature
simultaneously. The Hall drag resistivity is plotted in the left of Fig. 8.5.
One of the most interesting features shown in our data in the left-hand side of Fig. 8.5 is the sign

change that occurs away from the Dirac point. The unpublished data kindly provided by the group
of Andre Geim [115] right-hand side of Fig. 8.5 exhibits exactly such a sign change, a strong support
of the theory presented here. Furthermore the experiment shows the disappearance of the Hall drag
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Figure 8.5: Left: The Hall drag resistivity for equal concentration varying temperature and dis-
tance. Right: Unpublished data, a courtesy of the group of Andre Geim, showing
measurements of the Hall drag [115].

along the line na +nb = 0, when the concentrations equal up to the sign. Thus, the experimental data
matches very well with the theory we presented in this work. Nonetheless, further experimental data is
needed to perform a complete comparison of theory and experiment, which is left as an ongoing work
(see Chap. 9).

8.3 Higher-Order Drag

In the previous Secs. 7.2.3 and 8.2.6 we introduced the first experimental observations on Coulomb
drag in graphene. These first experimental measurements have been performed by the authors of Refs.
[107, 108]. The overall behavior of the drag is in qualitative agreement with the here presented theory
(see Chap. 7.2.3) except of one detail. The authors of Ref. [107] found that at low temperature a
non-vanishing, even peaked, Coulomb drag appears at the Dirac point of both layers (see left hand
side of Fig. 7.8). This section is devoted to the question of the possible origin of this Coulomb drag at
the Dirac point. First we will investigate why the theory presented so far fails to describe the feature
at the charge neutrality point. Subsequently we will explain how to overcome this problem.

8.3.1 The Vanishing of the Leading Order

The investigation of the symmetry of the Coulomb drag resistivity is performed using the objects we
have derived so far. There are several ways to discuss the symmetries of the leading order Coulomb
drag. One example is the diagrammatic language [91, 103]. For consistency we rather study the
kinetic equation, in particular the collision kernel. The collision kernel for two-layers Eq. (7.8) has
been derived in App. A.2.

109



8 Coulomb Drag in Graphene: Generalizations and Further Developments

We write again the collision kernel from Eq. (7.8):

Wαβ({xi}) = 2πδ(ε1−ε2+ε1′−ε2′)(2π)2δ(ε1~v1−ε2~v2+ε1′~v1′−ε2′~v2′)×

× |〈x1, x2|Uαβ|x1′ , x2′〉|2ν(ε1)ν(ε2)ν(ε1′)ν(ε2′)
16 cosh( ε1−µα2T ) cosh( ε2−µα2T ) cosh( ε1′−µβ2T ) cosh( ε2′−µβ2T )

, (8.40)

The basic symmetry we need to consider within the collision kernel is seen by interchanging ε1 →
−ε2, ε2 → −ε1 and ~v1 ↔ ~v2. The energy and momentum conservation, via the delta constraints,
and the density of states stay unchanged. The matrix element Eq. (A.19) contains the Berry phase
and the interaction propagator. The Berry phase (see Eq. (5.15) for the representation in terms
of ~v1 and ~v2) stays as well unchanged and since the interaction is a function of ~q = ε1~v1 − ε2~v2
and ω = ε1 − ε2 the propagator is also unchanged. The only place in the collision integral where
something changes is within the hyperbolic cosines that originate from the Fermi distribution function
(see App. A.3). Since the hyperbolic cosine is an even function, the interchanges result in the mapping
µα → −µα. The transformation behavior of the collision kernel could have been guessed since the
symmetry operation corresponds to an inversion of the spectrum. Which due to electron-hole symmetry
of the spectrum leaves naturally the collision kernel invariant except for the distribution functions.
The crucial observation is now that the collision kernel is invariant with respect of the transformation
ε1 → −ε2, ε2 → −ε1 and ~v1 ↔ ~v2 if the chemical potential is zero, µα = 0. The analog argument
can be performed using the primed coordinates in all symmetry operations. This way the discussion
affects µβ instead of µα.
So far we identified a possible symmetry of the integral kernel if one layer is tuned to the Dirac point.

What needs to be resolved is how this symmetry effects the drag resistivity if one of the layers reaches
the Dirac point. The drag resistivity (7.23) simplifies substantially in the ballistic case, Eq. (7.28). In
this limit the resistivity is determined by the coefficients B0 given in Eq. (7.19) and ID. The coefficients
B0 have neither zeros nor singularities. Hence, we have to analyze the drag rate related integral ID
which is defined in Eq. (7.13) but for convenience given again:

ID = − 1
2T 3

∫
d{xi}W a,b({xi})

(
~v1 − ~v2

) (
~v1′ − ~v2′

)
. (8.41)

Within this integral again we encounter the integral kernel (7.8). However, ID involves additionally
~v1 − ~v2 (and the primed version) that describes the velocity transfer between the layers. In case that
one of the layers e.g. layer a, is at the Dirac point the replacements ε1 → −ε2, ε2 → −ε1 and ~v1 ↔ ~v2
keep the integral kernel Wαβ({xi}) invariant but it interchanges the velocities ~v2 − ~v1, which creates
a sign change indicating that the integral in its entirety is zero. The vanishing of the velocity transfer
rate is due to the electron hole symmetry at the Dirac point [91, 103].
Alternatively one may study the diagrams that are related to the Coulomb drag. In App. A.2 we

derive the collision integral from Keldysh diagrammatics which allows us to identify the these related
diagrams. It turns out that the ansatz (7.12) leads to vertices within the diagrammatic formulation.
With these vertices we can rewrite ID into the expressions given in Eq. (C.24) where the appearing Γs
correspond to the triangles shown in Fig. 8.6. The reason for this diagram to vanish is the same as for
the collision kernel but can be applied for each vertex Γ separately (see Eq. (C.22)). Still it is worth
having the analogy to the diagrammatic language in mind since we will use it in the next section.
When we consider the hydrodynamic limit we get an additional contribution, which led to the drag
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~jα ~jβ

Figure 8.6: The lowest order drag diagram also known as Aslamazov Larkin diagram.

resistivity (7.29) that does not necessary involve ID:

ρD = 2
e2

Ba
1I

a
TrB

b
1I
b
Tr

Ba
0B

b
0

[(
Ba

1

)2
IaTr +

(
Bb

1

)2
IbTr + Ba2 +Bb2

Tτad

] . (8.42)

The crucial point here is that at the Dirac point the coefficients B1 vanish as well. The reason
for this is rather simple and lies in the fact that firstly the coefficients B1 ∼ A1 and secondly as we
showed in Eq. (5.34) the coefficients A1 describes to the overlap of the velocity mode with the zero
mode. However, at the Dirac point the two modes are orthogonal (see Sec. 5.2.3) which means that
the additional contribution disappears as long as some impurity scattering is present.
In total this means that at the Dirac point of either one of the layers the Coulomb drag is zero due

to the inability of the system to transfer velocity between the layers (electron hole symmetry) and due
to the fact that velocity and zero mode are orthogonal to each other (see Sec. 7.2.1 for the exception
to this in the clean case). The latter means that the electrical current is then purely given by the
velocity mode and although we have thermalization, meaning that the zero modes of the layers stay
connected, they do not influence the electronic properties.
With this understanding of the symmetry of the Coulomb drag resistivity we will now continue to

investigate higher-order corrections.

8.3.2 The Changes Due to Higher Order-Drag

In Sec. 8.3.1 we discussed why we are not able to see anything but zero transresistivity at the Dirac
point of both layers in absence of the magnetic field (except for the clean limit discussed in Sec. 7.2.1).
In the experiment reported in Ref. [107], this feature appeared for small temperatures which, before we
even start to speculate about its origin, means that, if we can describe this feature within the developed
technique, it is more likely to be described in the ballistic regime then inside the hydrodynamic one. So
utilizing the discussion of the previous Sec. 8.3.1, we know that in the ballistic limit the Coulomb drag
resistivity gains its sign changes from the drag rate related integral ID. For this integral we showed
explicitly that the particle hole symmetry causes it to vanish at the Dirac point. Hence sub-leading
terms become important, which is why we need to consider corrections to the drag related integral
that break this particle hole symmetry.
The most straightforward approach to this problem is to look for higher order corrections in the

Coulomb interaction. For this purpose we consider a higher order self-energy that is able to provide
a contribution to the drag rate related integral i.e. to have a closed bubble that could belong to a
different layer see Fig. A.4. In App. A.2.2 we determine the Keldysh self-energy of such a diagram
and show how to form a collision kernel out of it. The calculations for this are straightforward but
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lengthy and therefore performed completely in the appendix. The main result of these considerations
are found in Eq. (A.41) which explains how the previous matrix element within the collision kernel
changes by adding higher order contributions.
The collision integral we discussed previously is altered now compared to the higher-order collision

kernel in the matrix element |M0|2 → |M0|2 +M0M∗1 +M∗0M1 implying that we can adapt the
complete discussion from the previous section except that we need to test the matrix element for
particle hole symmetry. For this reason we write explicitly the matrix element from Eq. (A.41)

M0M∗1 +M∗0M1

= −π42 D0(~q1)
∑
λ3λ3′

∫ d2q2
(2π)2

dω2
2π

[
1 + ~v1~v2 +

(
~v1 + ~v2

)
λ3

~p3
|~p3|

] [
1 + ~v1′~v2′ +

(
~v1′ + ~v2′

)
λ3′

~p3′

|~p3′ |

]
×

×D0(~q2 − ~q1)D0(−~q2)

δ(ε3 − λ3|~p3|)P
tanh

(
ε3−µα

2T

)
ε3′ − λ3′ |~p3′ |

+ δ(ε3′ − λ3′ |~p3′ |)P
tanh

(
ε3′−µβ

2T

)
ε3 − λ3|~p3|

 (8.43)

where the energies obey ε3 = ε1 − ω2 and ε3′ = ε1′ + ω2 and the momenta ~p3 = ε1~v1 − ~q2 and ~p3′ =
ε1′~v1′ + ~q2 and for brevity λα = sign(εα). Further P indicates the principal value integral. A detailed
analysis of this matrix element has not yet been done but is not necessary for investigating its particle
hole symmetry properties. Again we consider the exchange ε1 → −ε2, ε2 → −ε1 and ~v1 ↔ ~v2 as before.
The transfered momentum ~q1 stays invariant but the energies change like ε3 = −ε2−ω2 = −ε1 +ω1−ω2
and ε3′ = −ε1′−ω1 +ω2 and the momenta transform correspondingly. Each try to avoid the additional
contributions fails due to the total energy ε1 + ε1′ or the corresponding total momentum ~p1 + ~p1′ that
enters the process. The total energy flowing through the matrix element can be understood more easily
by means of the diagrammatic language in the right hand side of Fig. 8.7. If the total momentum and

ǫ1~p1 ǫ1′~p1′
ǫ2~p2 ǫ2′~p2′

ǫ3′~p3′ǫ3~p3

ǫ2′~p2′ ǫ3′~p3′ ǫ1′~p1′

ǫ2~p2 ǫ3~p3 ǫ1~p1
M1

Figure 8.7: Left: Higher order Coulomb drag diagram with the corresponding energy and mo-
menta labeling. Right: The matrix element that appears within the higher order
kinetic equation.

energy is zero, we have ε3 = −ε3′ and ~p3 = −~p3′ . If we perform the integral substitution in the latter
case we in dead see that the matrix element stays invariant. On the other hand, in this situation the
matrix element can diverge, a possible indication of an exciton condensation. Nevertheless the matrix
element from Eq. (A.41) allows contributions to ID that do not vanish at the Dirac point. If we assume
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to be close to the Dirac point we read

ID = CDα
2
g

µaµb
(2T )2 + ChoDα

3
g (8.44)

which affects the drag resistivity (see Eq. (7.23)) such that for µ� α
1/2
g T and 1� Tτdis we read:

ρD ∝
1
e2
C̃hoDα

3
gT + C̃1α

4
gµaµbτdisN

T + C̃2α2
gµaµbτdisN

. (8.45)

Exactly at the Dirac point this yields:

ρD ∝
α3
g

e2 (8.46)

This changes the phase diagram we introduced previously as shown in Fig. 8.8. Thus, the higher order
contribution allows for a drag resistivity at the Dirac point. Away from the Dirac point one notes, that
as shown in Fig. 8.8 approaching the clean limit thermalization takes over and overcomes completely
the contributions from ID and therefore replacing the α3

g contribution by α2
g.

ΡD~ Αg
3

ΡD~ Αg
3

ΡD~ Αg
2
Μ

2

T 2

ΡD~ Αg
2

ΡD~ Αg
4
Μ
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Τdis

T

Αg
1�2T T

Μ

Αg
2 T

T

Τdis
-1

Figure 8.8: The drag coefficients in case of identical layers considering the higher order drag
contribution from Coulomb interaction. The dash-dotted line separates the previous
results (see Fig. 7.6) from the higher order drag.

Diffusive Regime

Throughout this work we focused on the limit Tτdis � 1 and even more α2
gTτdis � 1 where we found the

thermalization between the layers. Since the resistivity peak at the Dirac point is seen experimentaly
we will qualitatively discuss the consequence for the peak expected from the diffusive regime.
For stronger disorder or at low temperatures Tτdis � 1, the electron motion becomes diffusive. In

this regime, the standard perturbative approach is applicable. The lowest-order perturbative calcu-
lation [89] amounts to evaluation of the Aslamasov-Larkin-type diagram (see Fig. 8.6) for the drag
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conductivity given by

σαβD = 1
16πT

∑
~q

∫
dω

sinh2 ω
2T

Γβ1 (ω, ~q)Γα2 (ω, ~q)|DR|2, (8.47)

where DR is the retarded propagator of the inter-layer interaction Eq. (6.10) (not necessarily screened)
and Γαa (ω, ~q) is the non-linear susceptibility (similar to Eq. (C.22)) [in fact, all previous studies of the
Coulomb drag in graphene [63, 101, 103, 104, 116, 117] focused on Eq. (8.47)]. In the diffusive regime,
Γαa (ω, ~q) can be found using the Ohm’s law and the continuity equation [118] ~Γ = e~q(∂σ/∂n)ImΠR.
All microscopic details are now encoded in the diffusion coefficient and the density dependence of the
single-layer conductivity σ. Close to the Dirac point µ � T � τ−1

dis the derivative ∂σ/∂n ∼ nv4
F τ

4
dis

(independently of the precise nature of impurities). After this the evaluation of Eq. (8.47) is rather
standard (except that, in contrast to Ref. [89], the Thomas-Fermi screening length is much longer than
the inter-layer spacing κd� 1) and yields

ρ
(2)
D

(
µi � T � τ−1

dis

)
∼ (h/e2)α2µ1µ2Tτ

3
dis, (8.48)

vanishing at µi = 0 due to the electron-hole symmetry.
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Figure 8.9: Schematic view of the drag coefficient at low temperatures. Left: ρ(2)
D (µ) (solid line)

and ρ(3)
D (µ) (blue dashed line). The arrows indicate the tendency of the two terms

with the decrease of temperature T → 0. Right: ρ(3)
D (µ = 0) and ρcorr

D (µ = 0) (solid
line) as functions of T .

The importance of the electron-hole asymmetry for ρ(2)
D follows from Eq. (8.47): the non-linear

susceptibility can be thought of as a measure of the asymmetry. But ρ(2)
D dominates the observable

effect only under standard assumptions of the Fermi-liquid behavior in the two layers (µ� vF /d� T ,
µτ � 1). On the contrary, in the vicinity of the Dirac point in graphene, the next-order contribution
ρ

(3)
D [91] as well as disorder correlations [96] (see App. D) become important and yield non-zero drag

at µi = 0.
The explicit results of Ref. [91] were obtained in the usual limit κd� 1. Extending these calculations

to the opposite case κd� 1 we find close to the Dirac point

ρ
(3)
D

(
µi � T � τ−1

dis � α−2T
)
∼ (h/e2)α3(Tτdis)−3/2, (8.49)
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and ρ(3)
D ∼ h/e2 for τ−1

dis � α−2T . Away from the Dirac point this contribution decays as a function
of the chemical potential ρ(3)

D (µτdis � max[1, α−1(Tτdis)1/2]) ∼ (h/e2)(µτdis)−3 and rapidly becomes
subleading. As a result, ρ(3)

D is only detectable at low T and µ, see Fig. 8.9.
While estimating ρ(3)

D (µi = 0), we assume the single-layer conductivity σ ∼ e2/h discarding localiza-
tion effects. Indeed, experiments on high-quality samples show T -independent σ down to T = 30 mK
[119], that can be explained by the specific character of disorder in graphene [84, 120, 121].
Although this estimation unveiled interesting and experimentally relevant dependencies the consid-

erations done here are not complete. A detailed analysis of the interplay of the effects governing the
resistivity at the Dirac point remain to be performed and promises rich physics to investigate (see
outlook Sec. 9).

8.4 Drude-Like Picture for Drag

We have seen the kinetic equation as an effective approach to graphene-based drag setups. Using the
modes, the ansatz (7.12) provided us with, we have written the effective kinetic equations in a compact
and elegant way (see Eqs. (7.15) and (8.13)). Nonetheless with help of the currents Eq. (5.42) we might
rotate our equations, written in terms of χ modes towards an equation involving only currents. In the
thermalized case we can use:

~jaβ

~jbβ

~jβE

 =


e2

2 NaA
a
0 0 e2

2 NaA
a
1

0 e2

2 NbA
b
0

e2

2 NbA
b
1

eT
2 NaA

a
1

eT
2 NbA

b
1

eT
2

(
NaA

a
2 +NbA

b
2

)

χ

aβ
v

χbβv
χβp

 . (8.50)

Performing the rotation does not affect the physics we described. It also will not help in calculating the
drag resistivity or Hall drag resistivity. What it will allow us though, is to express the effective kinetic
equations in terms of currents. On the level of an effective equation such a formulation is clearly more
natural and fits nicely into the Drude picture introduced in Sec. 6.1.1, although it is equivalent to the
compact equations we introduced in Eqs. (7.15) and (8.13).

The Drude-like Drag

The rotation introduced in Eq. (8.50) will provide us a formulation in terms of constant currents.
From the point of view of hydrodynamic fields (5.42) we consider the current to constant effectively
decoupling current from the continuity equations. Performing the Rotation one obtains:

e2

2 B
a
0 ~Ea + e

T
~jE

IaG
Ba

2 +Bb
2

= ~ja
(
Iatr
Ba

0
+ Ba

1I
a
G

Na(Ba
2 +Bb

2)
+ za
Na

)
+~jb

 ID
Bb

0
+ Bb

1I
a
G

Nb(Ba
2 +Bb

2)

 (8.51)

e2

2 B
b
0 ~Eb + e

T
~jE

IbG
Ba

2 +Bb
2

= ~ja

 ID
Ba

0
+ Ba

1I
b
G

Na(Ba
2 +Bb

2)

+~jb

 Ibtr
Bb

0
+ Bb

1I
b
G

Nb(Ba
2 +Bb

2)
+ zb
Nb

 (8.52)

eT

2 Ba
0B

a
1 ~Ea + eT

2 Bb
0B

b
1 ~Eb = T

e

Ba
1B

b
2(za − zb)

Ba
2 +Bb

2

 ~ja
Na
−
~jb

Nb

+~jE
Ba

2za +Bb
2zb

Ba
2 +Bb

2
. (8.53)
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Where we used the short-hand notation introduced for the drag resistivity in Eq. (7.13), further we
use Eqs. (7.19), (7.21) and zαTταdis = 1 for further simplifications. For orientation we will repeat the
short-hand notations starting with the integrals:

IαIntra = 1
4T 3

∫
d{xi}Wα,α({xi})

(
~v1 − ~v2 + ~v3 − ~v4

)2
, IαβInter

α 6=β= 1
2T 3

∫
d{xi}Wα,β({xi})

(
~v1 − ~v2

)2
,

ID = − 1
2T 3

∫
d{xi}W a,b({xi})

(
~v1 − ~v2

) (
~v3 − ~v4

)
, IαβTh

α 6=β= 1
2T 4

∫
d{xi}Wα,β({xi})

(
~v1 − ~v2

)
~q ,

IαTr = IαIntra +
∑
β 6=a

Nβ

Na
IaβInter, IE = 1

2T 5

∫
d{xi}W ab({xi})~q2 and Aan = −

∫
dx ν(ε)

T

∂nαF (ε)
∂ε

(
ε

T

)n
,

(8.54)

the scattering phase-space moments (see end of Sec. 7.2)

Aα0 = Bα
0 , Bα

1 = Nα
Aα1
Aα0

, Bα
2 = NαA

α
2 −Aα1Bα

1 and (8.55)

the averaged impurity scattering rate

Ba
2 +Bb

2
Tτad

= Ba
2

Tτadis
+ Bb

2
Tτ bdis

(8.56)

and the effective Coulomb scattering rate

(Tτ0)−1 = 1
Ba

2 +Bb
2

[(
Ba

1

)2
IaTr +

(
Bb

1

)2
IbTr − 2Ba

1B
b
1ID

]
= Ba

1I
a
G +Bb

1I
b
G

Ba
2 +Bb

2
. (8.57)

Finally the generalized rate, which is given by

IαG = Bα
1 I

α
Tr −B−α1 ID. (8.58)

A comparison with Eq. (6.3) unveils that the main difference arises from the total energy current
that corresponds to an independent degree of freedom mixing the currents and creates contributions
beyond ID. In this sense this Drude-like equation for the two-layer system summarizes in a very
compact way the complete physical picture that governs transport in two graphene layers. Further we
see on the level of the Drude-like equation (8.51) already that, in comparison to usual Drude picture,
the thermalization creates additional contributions to the drag, since ID appears not exclusively as
interlayer coupling.

The Drude-like Hall Drag

Analogous to the previous section we can perform the same rotation for the x and the y direction in
presence of a magnetic field. Thus collecting all the ingredients we arrive at:
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8.4 Drude-Like Picture for Drag
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In addition to the short-hand notations Eqs. (7.13), (7.19) and (7.21), which have been used in the
previous section we employ further the relation (8.21) which reads

Cα = Bα
0 −Aα−1B

α
1 /Nα. (8.62)

Again the benefit of these equations is their simple Drude-like form. We observe in Eq. (8.61) that
at the Dirac point the energy current and the electric current are orthogonal. This underlines again
the independence of the two currents in graphene and the need to deal with both when investigating
transport properties in graphene.
With these equations we managed now to regain equations in the spirit of Eqs. (6.3) and (5.1) with

which we started the transport journey.
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9 Chapter 9

Conclusion

In this thesis we have performed an analysis of the interplay of the Coulomb interaction with the
electronic structure in graphene and its consequences for the transport properties. This chapter will
summarize the results and add conclusions to this work.
Although the Coulomb interaction might be strong in graphene, we assumed that screening, e.g.

due to the substrate, allows for a perturbative treatment. Furthermore, finite temperature allowed
us to deal with the Coulomb interaction properly, a fact we used to investigate graphene’s electronic
properties at the Dirac point. Finally the kinetic equation approach enabled us to describe transport
in graphene and double layer structures of graphene, which we studied towards the end.
In Chapter 4, we tamed the Coulomb interaction, i.e. we reformulated the problem by introducing

finite temperature, which made the calculation controllable. This allowed us to treat the Coulomb
interaction properly at finite temperature within the random phase approximation (RPA). We found
that RPA provides an excellent way to deal with the forward scattering resonance (FSR), which at finite
temperature is even more pronounced. We found the dispersion relation of plasmons, which turn out to
be rather good quasi-particles, and we found that the temperature itself gives rise to static screening
with a screening length of order lscr ∝ (αgNT )−1. We found that due to the forward scattering
resonance (FSR) the quasi-particle lifetime is substantially reduced, classifying graphene effectively
as a marginal Fermi-liquid. As a consequence, close to the Dirac point (for energies ε � α2

gNT ) the
conceptual separation between electron-like and hole-like particles fails. On this basis, we determined
the energy relaxation rate, which is logarithmically enhanced by the FSR, similarly to the quasi-particle
lifetime. The quasi-particle scattering rate, the dephasing rate and the energy relaxation rate obey a
non-trivial, non-monotonous behavior as a function of energy.
In Chapter 5, we carried out calculations for transport in graphene within the language of the

kinetic equation including only the bare Coulomb interaction. We emphasized the importance of the
choice of ansatz, which, based on the forward scattering resonance (FSR), corresponds to a direction
dependent equilibrium, and showed how this ansatz allows for an analytic solution of the kinetic
equation. We then, in the case that the chemical potential is at the Dirac point, treat the transport
within the RPA in clean graphene without utilizing the ansatz. We obtained the transport scattering
rate, which shows a non-monotonous energy behavior, but turned out to be smaller than the energy
relaxation rate. This made it necessary to perform a thermal average of the transport scattering rate,
which agreed with the previously obtained rate and conductivity obtained via the kinetic equation
approach including only the bare Coulomb interaction. We finished this chapter by introducing the
hydrodynamic formulation of transport in graphene and possible extensions of it.
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9 Conclusion

In Chapter 7, we started to use the kinetic equation approach to describe Coulomb drag in a two
layer graphene setup. We found the phenomenon of directional thermalization between the layers,
which simplifies the direction dependent equilibria ansatz of a two layer setup. We solved the kinetic
equation analytically and obtained the Coulomb drag for the hydrodynamic (ultra-ballistic) as well as
for the ballistic regime, where we have a perfect agreement with previous works. We found in these
equations a non-trivial interplay of velocity and momentum transfer between the layers, which led in
the ultra clean limit to a non-analytic expression for the drag resistivity at the Dirac point.
Finally, in Chapter 8, we extended the description of the Coulomb drag in graphene. We determined

the multilayer drag and the Hall drag. In the latter, the magnetic field acts as an energy selective
scatterer. It thus led to interesting phenomena in the Hall resistivity, the Hall drag and even to a
non-vanishing magneto-drag at the Dirac point. Towards the end of this chapter, we showed how to
extend the formulation towards higher order drag and its close connection to a Drude-like formulation,
which allows for a more intuitive understanding of the phenomena presented in this chapter.
The experimental developments of the last years are astonishing and support the relevance of our

calculations. These include the measurements performed to determine the relaxation of hot elec-
trons [70], which is closely related to the calculations performed in Sec. 4.2.3, as well as conductivity
measurements performed on suspended graphene [86] (see Sec. 5.4.4). Furthermore, we have been very
fortunate that within the last year Coulomb drag measurements with graphene have become experi-
mentally accesible [107, 108]. In Sec. 7.2.3 we presented a comparison of our theory with experiments
showing a very good agreement. A Short time after the first Coulomb drag experiments, the interplay
with a magnetic field was also studied [107]. In Sec. 8.2.5, we showed that our theory is capable of
explaining one of the open questions of the experimental data [107], namely the strong magnetodrag
at the Dirac point. Finally in Sec. 8.2.6, we compared our result with unpublished data, courtesy of
the group of Andre Geim [115], supporting very well our theory of the Hall drag.
The work that has been presented here allows for many further directions of research, of which some

are already underway and publications are planned. Publication is planned for:

• the Hall drag, that has been introduced in Sec. 8.2. Since in recent times experiments started
to measure the Hall drag (see Sec. 8.2.6) we aspire towards a publication with experimentalists,
allowing for a detailed comparison of theory and experiment.

• the magnetodrag presented in Sec. 8.2.5 was puzzling experimentalists since their observation
of the effect. A joint publication with experimentalists would again allow for a more detailed
comparison of theory and experiment.

• the spin drag explained in the context of the multi-layer drag in Sec. 8.1, which promises to
provide additional utilizations for graphene in the field of spintronics.

This list involves only the most advanced projects we wish to complete soon. But there are many more
promising extensions we wish to study, this includes, e.g.:

• the Navier Stokes equations of graphene, which is sketched in Sec. 5.3. It will provide us with
many further follow-ups. Particular interesting examples are: the possibility to analytically
investigate finite system setups and to study consequences of applying non-equilibrium conditions
to the system.

• a detailed investigation of the different mechanisms that govern drag at the Dirac point and the
regimes they apply to (see Sec. 8.3). This is very important to understand the experimental
observation at the Dirac point [108].
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• the magnetodrag drag in the regime of Landau-level quantization.

• drag setups involving the Dirac Fermions of 3D topological insulators.

This is of course an incomplete list of possible projects including only those we are particular interested
in. The formulation presented in this work is powerful enough that we expect many more projects to
arise, which crucially depend on the insights provided by this work.
In conclusion, we found that the Coulomb interaction, although treatable perturbatively, affects

graphene substantially. We have seen the appearance of the forward scattering resonance (FSR),
which leads to rich behavior at the Dirac point and moreover creates the direction dependent equi-
librium as a general equilibration scheme to external directed perturbations of the system. In the
drag setup this direction dependent equilibration caused an interplay between the layers leading to an
effective thermalization of two parallel layers of graphene. Because of this direction dependent equili-
bration, the description of the system simplified enormously, resembling graphene specific Drude-like
equations. In this sense, the FSR led to a particular elegant and simple formulation allowing us to ac-
cess even rather complex graphene-based setups like the drag resistivity and the Hall drag in graphene.
Already the mere fact that experiments have been performed, measuring Coulomb drag in graphene,
strongly supports the relevance of this theoretical work to the field of transport in graphene. With our
contribution, we have proven that complex setups can appear to be controllable and even more can be
treated relatively simple by employing particular effects unique to graphene. The dynamics and the
speed of the current developments in graphene suggest that the theoretical considerations we presented
in this work could become relevant in multi-layered clean graphene-based applications. Furthermore,
graphene’s intrinsic properties that are both discovered or not yet discovered, promise that graphene
research will remain an exciting and fascinating field.
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A Appendix A

Keldysh Objects and the Kinetic Equation

A.1 Keldysh Self-energy and Keldysh Polarization Operator

In this section we provide the structural details of the Keldysh objects we us within the diagrammatic
calculation. Most of the details and techniques are useful as well for the kinetic equation we consider
later.

A.1.1 The Kedlysh Self-energy in Lowest Order

In the beginning in Sec. 2.4.1 we faced first time the self-energy. In lowest order it appears in two
possibilities namely the Hartree (left in Fig. A.1) and the Fock diagram (right in Fig. A.1). Since
Hartree is usually considered to be canceled out by the ionic background of the system the contribution
we will look for is the Fock diagram.

Figure A.1: The Feynman diagram for the Hartree (left) and the Fock (right) contribution to
self-energy

The Self-energy reads in lowest order reads:

Σ̌ = 〈φ̌1Ǧ2φ̌2〉φ (A.1)

with the Greens function as defined in Eq. (2.26) and the Hubbardt Stratonovich field as given in Eq.
(2.27). Using the correlation as they are given by Eq. (2.28) we gain:

Σ̌ = i

2

 DKGR +DRGK DRGR +DKGK +DAGA

DAGR +DRGA
!= 0 DAGK +DKGA

 (A.2)

The interaction here has been kept quit general but since we want to deal with the Coulomb inter-
action we need the polarization operator or a related object to gain a less singular structure of the
interaction.
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A Keldysh Objects and the Kinetic Equation

A.1.2 The Keldysh Polarization Operator

In analogy to the self-energy the first time the polarization operator is presented is in Sec. 2.4.1. Its
appearance corresponds to the interaction propagator in the very same way the self-energy corresponds
to the Green’s function. Its Feynman graph can be seen in Fig. A.2. The main difference is that, the

Figure A.2: The Feynman diagram of the polarization operator

interactions we deal with have no sublattice or valley structure. Thus these degrees of freedom will be
traced out. We read:

Tr
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Ǧ1φ̌1Ǧ2φ̌2
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, (A.3)

which then forms the corresponding bosonic Keldysh polarization operator:

Π̌ = i

2

 GA1 G
A
2 +GR1 G

R
2

!= 0 GA1 G
K
2 +GK1 G

R
2 = ΠA

GK1 G
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A
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R
2 +GK1 G

K
2 = ΠK

 . (A.4)

Within this definition of the polarization operator we gain now

Ď = Ď0 − Ď0Π̌Ď, (A.5)

analogous to the Dyson equation of the self-energy given in Eq. (2.32). But with the Keldysh structure
of the interaction following the bosonic structure:

Ď =
(
DK DR

DA 0

)
(A.6)

A.2 The Collision Integral

We introduced in Sec. 2.5 the formalism of the kinetic equation. We will now report on the details
needed to match the kinetic equation approach with the field theoretical description. In Sec. 2.5 we
derived the Liouvillian and introduced formally the collision kernel as a abstract object that reads

LGK = i

((
GR −GA

)
ΣK −GK

(
ΣR − ΣA

))
. (A.7)

In Sec. 2.5 we showed how integration over either momentum or energy gives the Eilenberger or
Boltzmann equation. But for the purpose of studying the integral kernel it is more useful to consider
the general object on the right hand side of Eq. (A.7).
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A.2 The Collision Integral

A.2.1 Coulomb interaction: Lowest Order

In equation(A.7) the appearing Greens functions are of fermionic type and have the Keldysh rotation
following Larkin and Ovchinnikov (see Eq. (2.26)). The first thing to do, is therefore to find the
self-energy of the system we are looking for. Within the notation φ̌ = φcl1 + φqσ1 for the Hubbardt
Stratonovich field the lowest oder diagram able to create a four particle scattering process between the
layers is the one forming the following self-energy illustrated in Fig. A.3:

Ǧ2

Ǧ1′

Ǧ2′

φ̌1 φ̌2

φ̌2′φ̌1′

Figure A.3: Coulomb interaction correction we take into account for the drag.

Σ̌ = −〈φ̌1Ǧ2φ̌2Tr
[
Ǧ1′ φ̌1′Ǧ2′ φ̌2′

]
〉
φ

(A.8)

with a minus sign due to the fermionic loop.
Since we need some details on the Keldysh structure we do some straightforward matrix multiplica-

tions that will be instructive for the further treatment (see Eq. (A.3) as well).
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In lowest order of the interaction the Hubbardt-Stratonovich fields obey 〈φα1φ
β
1′〉φ = D0(~p1 −

~p1′)δα,−βi/2. We obtain therefore:
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A Keldysh Objects and the Kinetic Equation

The contraction between φα1 and φα2′ is due to symmetry reasons given by the same expressions and
is topological not distinguishable which means that already the integration over the internal variables
will take into account other contractions.
We can now express the collision kernel in terms of Green’s functions to gain the following kinetic

equation:
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Note that still everything is convoluted although not explicitly written. An interesting observation
is that we can reduce the complexity of the equations to deal with by introducing 2Tαi = GKi +
α
(
GRi −GAi

)
. A vigilant observer may notice the construction of the Ti as a rotation in Keldysh

space. Thus the collision kernel simplifies to:
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(A.14)
In equilibrium we can rewrite GKi = fi

(
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)
= 2ifiAi with the spectral weight Ai =
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)
. Further due to its form the Tαi is always on mass shell and in equilibrium we
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(A.16)

where we used fi = 1− 2ni, n−i = 1− ni and ni being the Fermi distribution of particle i. One can
make use of the relation (fi + α)/2 = αn−αi. We see that Eq. (A.15) has already the proper form of
distribution functions to gain the usual collision integral. To make this more manifest we reintroduce
the needed integrations and write explicitly
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A.2 The Collision Integral
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∂T + γṽF~np1∇R

)
n
(
ε1 = γ1vF p1

)
= 8N

∫
d2q

(2π)2
d2p3
(2π)2

dω

2π
dε3
2π D

2
0(q)(−π)3δ

(
ε2 − γ2vF p2

)
δ
(
ε3 − γ3vF p3

)
δ
(
ε4 − γ4vF p4

)
× θγ1,γ2θγ3,γ4

[
n(ε1)n(−ε2)n(ε3)n(−ε4)− n(−ε1)n(ε2)n(−ε3)n(ε4)

]
= −N

∫
d2p2
(2π)2

d2p3
(2π)2

d2p4
(2π)2 (2π)δ(ε1 − ε2 + ε3 − ε4) (2π)2δ

(
~p1 − ~p2 + ~p3 − ~p4

)
D2

0(q)

× θγ1,γ2θγ3,γ4

[
n(ε1)n(−ε2)n(ε3)n(−ε4)− n(−ε1)n(ε2)n(−ε3)n(ε4)

]
= −

∫
d2p2
(2π)2

d2p3
(2π)2

d2p4
(2π)2KB

(
~p1, ~p2, ~p3, ~p4

)[
n(ε1)n(−ε2)n(ε3)n(−ε4)

−n(−ε1)n(ε2)n(−ε3)n(ε4)
]

(A.17)

With the collision integral kernel KB in Boltzmann-form given by
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|M0|2, (A.18)

With the leading order matrix element of the collision kernel to be:

|M0|2 = Nθγ1,γ2θγ3,γ4D
2
0(q). (A.19)

Hereby the object θγ1,γ2 is defined as:

θγ1,γ2 = Tr
[
Pγ1(~p1)Pγ2(~p2)

]
= 1

2
[
1 + γ1γ2p̂1p̂2

]
, (A.20)

which is the Dirac factor that appears when projecting on the chiral basis. (see Sec. 5.15)

A.2.2 Coulomb Interaction: Sub-leading Contributions

We will follow the very same line as in the leading order order case except that we will start with a
diagram of higher order shown in Fig. A.4. Since the contributions that appear in higher order tend
to be more complex some needed details will appear slightly smaller than others.

Figure A.4: Coulomb interaction correction we take into account for the higher order drag.

We start with the self-energy given by:

Σ̌ = −〈φ̌1Ǧ2φ̌2Ǧ3φ̌3Tr
[
Ǧ1′ φ̌1′Ǧ2′ φ̌2′Ǧ3′ φ̌3′

]
〉
φ
. (A.21)
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A Keldysh Objects and the Kinetic Equation

As done previously we look for the combinations we will need for the collision integral.
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]A
=
(
φc1φ

c
2φ
c
3 − φ

q
1φ
c
2φ
q
3

)(
GR2 G

R
3 −GA2 GA3

)
+
(
φc1φ

c
2φ
q
3 − φ

q
1φ
c
2φ
c
3

)(
GK2 G

A
3 +GR2 G

K
3

)
+
(
φc1φ

q
2φ
q
3 − φ

q
1φ
q
2φ
c
3

)(
GK2 G

K
3 +GR2 G

A
3 −GA2 GR3

)
+
(
φc1φ

q
2φ
c
3 − φ

q
1φ
q
2φ
q
3

)(
GK2 G

R
3 −GA2 GK3

)
(A.22)

[
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In the very same way we gain the higher order polarization operator:
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)
+ φc1′φq2′φ

c
3′

(
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)
+ φq1′φ

q
2′φ

c
3′

(
GA1′GR2′GA3′ +GR1′GA2′GR3′ +GA1′GK2′GK3′ +GK1′GK2′GR3′

)
+ φc1′φc2′φq3′

(
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)
+ φq1′φ

c
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(
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(
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q
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q
3′

(
GR1′GA2′GK3′ +GK1′GR2′GA3′ +GA1′GK2′GR3′ +GK1′GK2′GK3′

)
(A.24)

It helps to look at certain combinations for which it appears to be helpful to use the short-hand notation
ΠΠ = Tr

[
Ǧ1′ φ̌1′Ǧ2′ φ̌2′Ǧ3′ φ̌3′

]
as a generalization of the polarization operator from the previous section.

We then read:

〈
(
φc1φ

c
2φ
c
3 − φ

q
1φ
c
2φ
q
3

)
ΠΠ〉

φ
=
(
i

2

)3
D3

0Tr
[
GK1′

(
GK2′GK3′ +GR2′GA3′ −GA2′GR3′

)
−
(
GR1′ −GA1′

)(
GK2′GR3′ −GA2′GK3′

)]
〈
(
φc1φ

c
2φ
q
3 − φ

q
1φ
c
2φ
c
3

)
ΠΠ〉

φ
=
(
i

2

)3
D3

0Tr
[
GK1′

(
GK2′GR3′ −GA2′GK3′

)
−
(
GR1′ −GA1′

)(
GK2′GK3′ +GR2′GA3′ −GA2′GR3′

)]
〈
(
φc1φ

q
2φ
q
3 − φ

q
1φ
q
2φ
c
3

)
ΠΠ〉

φ
=
(
i

2

)3
D3

0Tr
[
GK1′

(
GR2′GR3′ −GA2′GA3′

)
−
(
GR1′ −GA1′

)(
GR2′GK3′ +GK2′GA3′

)]
〈
(
φc1φ

q
2φ
c
3 − φ

q
1φ
q
2φ
q
3

)
ΠΠ〉

φ
=
(
i

2

)3
D3

0Tr
[
GK1′

(
GK2′GA3′ +GR2′GK3′

)
−
(
GR1′ −GA1′

)(
GR2′GR3′ −GA2′GA3′

)]
(A.25)

where for simplicity we use D3
0 although the momenta of the interaction propagator differs.

The polarization operator is per construction cyclic which means that taking into account all possible
contractions we can differ between the cyclic ones and the ones odd in total number of transpositions.
So we gain finally a degeneracy of three by connecting only 1 → 1′, 2 → 2′ and 3 → 3′ setting the
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self-energy to be:

ΣR − ΣA =
(
i

2

)3
D3

0 (A.26)

×

{(
GR2 G

R
3 −GA2 GA3

)
Tr
[
GK1′

(
GK2′GK3′ +GR2′GA3′ −GA2′GR3′

)
−
(
GR1′ −GA1′

)(
GK2′GR3′ −GA2′GK3′

)]
+
(
GK2 G

A
3 +GR2 G

K
3

)
Tr
[
GK1′

(
GK2′GR3′ −GA2′GK3′

)
−
(
GR1′ −GA1′

)(
GK2′GK3′ +GR2′GA3′ −GA2′GR3′

)]
+
(
GK2 G

K
3 +GR2 G

A
3 −GA2 GR3

)
Tr
[
GK1′

(
GR2′GR3′ −GA2′GA3′

)
−
(
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)(
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+
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GK2 G

R
3 −GA2 GK3

)
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[
GK1′

(
GK2′GA3′ +GR2′GK3′

)
−
(
GR1′ −GA1′

)(
GR2′GR3′ −GA2′GA3′

)]}
(A.27)

ΣK =
(
i

2

)3
D3

0 (A.28)

×

{(
GK2 G

A
3 +GR2 G

K
3

)
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[
GK1′

(
GK2′GK3′ +GR2′GA3′ −GA2′GR3′

)
−
(
GR1′ −GA1′

)(
GK2′GR3′ −GA2′GK3′

)]
+
(
GR2 G
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)
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[
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(
GK2′GR3′ −GA2′GK3′

)
−
(
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)(
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R
3 −GA2 GK3

)
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[
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(
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)
−
(
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)(
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K
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A
3 −GA2 GR3

)
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[
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(
GK2′GA3′ +GR2′GK3′

)
−
(
GR1′ −GA1′

)(
GR2′GR3′ −GA2′GA3′

)]}
(A.29)

The kinetic equation looks for the higher order collision kernel as follows:

LGK = −i
(
i

2

)3
D3

0

{[(
GR1 −GA1

)(
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K
3 +GK2 G

A
3

)
−GK1
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R
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)]
×
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)
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)(
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−
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)(
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R
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×
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)(
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A
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×

×Tr
[
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GR2′GR3′ −GA2′GA3′

)
−
(
GR1′ −GA1′

)(
GR2′GK3′ +GK2′GA3′

)]
+
[(
GR1 −GA1

)(
GK2 G

K
3 +GR2 G

A
3 −GA2 GR3

)
−GK1

(
GK2 G

R
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×

×Tr
[
GK1′

(
GK2′GA3′ +GR2′GK3′

)
−
(
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)(
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)]}
(A.30)

So far only one class of diagrams is included. Gaining the other diagrams one needs to exchange e.g.
1 and 3, which is only a sign change for 〈

(
φc1φ

q
2φ

q
3 − φ

q
1φ

q
2φ

c
3

)
ΠΠ〉

φ
and 〈

(
φc1φ

c
2φ

q
3 − φ

q
1φ

c
2φ

c
3

)
ΠΠ〉

φ
.
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Further we will introduce again Tαi that led to a compactified notation in the previous section.
Additionally to the Tαi we need as well the 2Mα

i = GKi + α
(
GRi +GAi

)
which yields:

GK2 G
K
3 +GR2 G

A
3 −GA2 GR3 =

(
T+

2 M
+
3 + T−2 M

−
3 +M−2 T

+
3 +M+

2 T
−
3

)
(A.31)

GR2 G
R
3 −GA2 GA3 =

(
T+

2 M
+
3 + T−2 M

−
3 −M

−
2 T

+
3 −M

+
2 T
−
3

)
(A.32)

GR2 G
K
3 +GK2 G

A
3 =

(
T+

2 M
+
3 − T

−
2 M

−
3 −M

−
2 T

+
3 +M+

2 T
−
3

)
(A.33)

GK2 G
R
3 −GA2 GK3 =

(
T+

2 M
+
3 − T

−
2 M

−
3 +M−2 T

+
3 −M

+
2 T
−
3

)
. (A.34)

We simplify the collision kernel towards:

LGK = −i
(
i

2

)3
D3

0×

×
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+
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(A.35)

and the diagram with crossed lines forms:
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1′

(
M+

2′T
−
3′ + T−2′M

−
3′

)
+ T−1′

(
M−2′T

+
3′ + T+
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(
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(A.36)
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One recognizes within this notation that each term has four Green’s functions on mass shell which
means that we deal, as it should be, with a two particle scattering process.
To identify the proper matrix element we will continue exploring the structure of the collision kernel

in the vicinity of equilibrium where we can make again use of Tαi = iAi
(
fi + α

)
= iAi2n−αi gaining:

LGK = −2i
(
i

2

)3

D3
0(2i)4

×
{
A1M

+
2 A3Tr

[
A1′M

+
2′A3′

]
n1n−3n1′n−3′ +A1M

−
2 A3Tr
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A1′M

−
2′A3′

]
n−1n3n−1′n3′
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+
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A1′A2′M

+
3′
]
n−1n2n−1′n2′ −A1A2M

−
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[
A1′A2′M

−
3′
]
n1n−2n1′n−2′

}
(A.37)

Still we need to work a bit to gain the proper form of Fermi distributions. To do so one needs to
make use of the symmetries of the Kernel. We need to map partially 2 to 3 and respectively 2′ to 3′.
Note that this is only a renaming since there is always a integration over all primed, 2 and 3. To make
the next step very clear one should look for the projected states meaning that the collision kernel will
be projected on the chiral basis of the incoming particle. With the projection Pλ we read:

Tr
[
A1′A2′M

+
3′
]

= A1′λ′1A2′λ′2M
+
3′λ′3

Tr
[
Pλ′1

Pλ′2
Pλ′3

]
= A1′λ′1A2′λ′2M

+
3′λ′3

Θλ′1λ
′
2λ
′
3

(A.38)

where
Θλ′1λ

′
2λ
′
3

= 1
4
(
1 + λ′1λ

′
2p̂1′ p̂2′ + λ′1λ

′
3p̂1′ p̂3′ + λ′2λ

′
3p̂2′ p̂3′

)
(A.39)

is responsible for the Dirac factors within the three leg polarization. Projecting the kinetic equation
and exchanging the energies as discussed we gain:

LGK1λ1 = 8i
(
i

2

)2

(2i)4A1λ1A2λ2A1′λ1′
A2′λ2′

(
n1n−2n1′n−2′ − n−1n2n−1′n2′

)
×

× −i4 D3
0Θλ1λ2λ3Θλ1′λ2′λ3′

[
M+

3λ3
M+

3′λ3′
−M−3λ3

M−3′λ3′

]
(A.40)

The matrix element reads now:

M∗0M1 +M0M∗1 = 1
4D

3
0Θλ1λ2λ3Θλ1′λ2′λ3′

[
1
i
GK3λ3

(
GR3′λ3′

+GA3′λ3′

)
+
(
GR3λ3 +GA3λ3

) 1
i
GK3′λ3′

]
.

(A.41)
Some of the properties of this matrix element will be discussed in Sec. 8.3.2

A.3 The Linearized Collision Kernel

In this section we will derive the the linearized collision kernel for the case of small deviations from
equilibrium that will be parametrized by n(ε, t) = nF (ε) + (4T cosh2 ε/(2T ))−1h(ε, t). We will start
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with the quantum kinetic equation written in Eq. (A.17) Hence we have the following collision integral:

IColl =
∑

γ2,γ3,γ4

∫
d2p2
(2π)2

d2p3
(2π)2

d2p4
(2π)2KB

(
~p1, ~p2, ~p3, ~p4

)[
n(ε1)n(−ε2)n(ε3)n(−ε4)

−n(−ε1)n(ε2)n(−ε3)n(ε4)
]

(A.42)

with (εi = γivF |~pi|)

KB
(
~p1, ~p2, ~p3, ~p4

)
= (2π)δ(ε1 − ε2 + ε3 − ε4) (2π)2δ

(
~p1 − ~p2 + ~p3 − ~p4

)
|M|2 (A.43)

as already defined before. By plugging in the parametrization for n(ε, t) and throwing away all non-
linear contributions in hF we will end up with combinations of distribution functions given by:

hF (ε1)
4T cosh2 ε1

2t

[
nF (−ε2)nF (ε3)nF (−ε4) + nF (ε2)nF (−ε3)nF (ε4)

]
+ hF (ε2)

4T cosh2 ε2
2t

[
nF (ε1)nF (ε3)nF (−ε4) + nF (−ε1)nF (−ε3)nF (ε4)

]
+ hF (ε3)

4T cosh2 ε3
2t

[
nF (ε1)nF (−ε2)nF (−ε4) + nF (−ε1)nF (ε2)nF (ε4)

]
+ hF (ε4)

4T cosh2 ε4
2t

[
nF (ε1)nF (−ε2)nF (ε3) + nF (−ε1)nF (ε2)nF (−ε3)

]
(A.44)

We used the relation [4T cosh(x/2T )]−1 = T−1nF (x)nF (−x) and nF (1)nF (2)
nF (−1)nF (−2) = nF (3)nF (4)

nF (−3)nF (−4) to get
for the distribution functions:

1
T
nF (ε1)nF (−ε2)nF (ε3)nF (−ε4)︸ ︷︷ ︸[

16T cosh
(
ε1
2T

)
cosh

(
ε2
2T

)
cosh

(
ε3
2T

)
cosh

(
ε4
2T

)]−1

[
h(ε1)− h(ε2) + h(ε3)− h(ε4)

]
(A.45)

With the following integral weight

WB

(
~p1, ~p2, ~p3, ~p4

)
= KB

(
~p1, ~p2, ~p3, ~p4

)
=

(2π)δ(ε1 − ε2 + ε3 − ε4) (2π)2δ
(
~p1 − ~p2 + ~p3 − ~p4

)
|M|2

16T cosh
(
ε1
2T

)
cosh

(
ε2
2T

)
cosh

(
ε3
2T

)
cosh

(
ε4
2T

) (A.46)

the linearized collision integral is writable as

δI =
∑

γ2,γ3,γ4

∫
d2p2
(2π)2

d2p3
(2π)2

d2p4
(2π)2WB

(
~p1, ~p2, ~p3, ~p4

) [
hF (ε1)− hF (ε2) + hF (ε3)− hF (ε4)

]
(A.47)
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B Appendix B

Polarization and Rates

B.1 Polarization Operator

In this Appendix we evaluate the polarization operator, Eq. (3.12), at finite temperature. In a scatter-
ing process with emitting a photon, three different momenta are involved which form in two dimensions
triangles as shown in Fig. B.1. Specifically, if an electron before scattering has the momentum ~p and
the emitted photon carries momentum ~q, the electron that is left over has to carry ~p− ~q. The angular
integration over the transferred momentum ~q becomes complicated. To proceed further it is convenient
to choose elliptic coordinates defined by ξ = p+

∣∣∣~p− ~q∣∣∣ and η = p−
∣∣∣~p− ~q∣∣∣. The corresponding coor-

dinate system is shown in Fig. B.1. Using the elliptic coordinates, the expressions for the imaginary
and real parts of the polarization bubble take the form

Im ΠR = sinh(Qβ)
2π Re

 Q√
β2 − 1

1∫
0

dη
√

1− η2

cosh(Qβ) + cosh(ηQ) + Q√
1− β2

∞∫
1

dξ
√
ξ2 − 1

cosh(Qβ) + cosh(ξQ)

 ,
(B.1)

Re ΠR = −Q
π2

∞∫
1

dξ
1∫

0

dη
sinh

(
ξQ
)√1− η2

ξ2 − 1
ξ

β2 − ξ2 + sinh
(
ηQ
)√ ξ2 − 1

1− η2
η

β2 − η2

cosh
(
ξQ
)

+ cosh
(
ηQ
) . (B.2)

Here and below we introduce the notation β = Ω/Q to decouple expansions in small or large Q from
the behavior at the singularity Q = Ω. For simplicity we set vF = 1 and T = 1. The integrals in Eqs.
(B.1) and (B.2) are evaluated separately in the four regions shown in Fig. 4.1.

Region 1

In region 1 the condition Q � 1 and β > 1 hold, which means that in Eq. (B.1) only the part with
the η-integral is left. Expanding the integrands in small ηQ� 1, we get

Im ΠR ' Q sinh(Qβ)
2π
√
β2 − 1

1∫
0

dη
√

1− η2

cosh(Qβ) + 1 = Q

8
tanh

(
Qβ/2

)
√
β2 − 1

(B.3)
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Figure B.1: Sketch of elliptic coordinates
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)

(B.4)

for the real part of ΠR. The term ∝ sinh
(
ξQ
)
in Eq. (B.2) yields a contribution of the order of ∼ Q2.

The second term ∝ sinh
(
ηQ
)
results in Eq. (B.4).

Region 2

In region 2, we have Q� 1 and β > 1. In Eq. (B.1) again only the η-integral is left and by neglecting
cosh

(
ηQ
)
and expanding in large Q we get

Im ΠR ' 1
2π

sinh
(
Qβ
)√

β2 − 1

1∫
0

dη
√

1− η2

cosh(Qβ) = 1
8
Q sign β√
β2 − 1

. (B.5)

By expanding Eq. (B.2) in large Q and resolving exponentials in the denominator by a geometric
series, we see that the leading contribution comes from η ' 1 (y = ξ − 1 ' 0). A competition of Q
and Ω2 − Q2 arises and the limit Ω2 − Q2 � Q gives the relevant contribution. The corresponding
principal value integral reads:

Re ΠR ' −Q−1/2
∞∑
n=1

(−1)n

(nπ)3/2

∫ ∞
0

d
√

2y
√

2y2
e−Qn

√
2y2

/2

(β2 − 1)2 −
√

2y4︸ ︷︷ ︸
'−π4

1√
β2−1

' − 1
4
√
π

1√
Q(β2 − 1)

∞∑
n=1

(−1)n+1

n3/2 (B.6)
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Region 3

Region 3 is characterized by the conditions Q � 1 and β < 1. In this region, only the ξ-integral
contributes to Eq. (B.1). By expanding the integrand in small Qβ we get

Im ΠR ' Qβ

2π
Q√

1− β2

' 2 ln 2
Q2︷ ︸︸ ︷

∞∫
1

dξ
√
ξ2 − 1

1 +cosh(ξQ) '
ln 2
π

Re β√
1− β2 . (B.7)

The simplification of Eq. (B.2) in region 3 is similar to that leading to Eq. (B.4). The contribution
of the first term in Eq. (B.2) is of order Q lnQ, yielding

Re ΠR ' −Q
π2

=−πQ2︷ ︸︸ ︷∫ 1

0

dη√
1− η2

Qη2

β2 − η2

' 2 ln 2
Q2︷ ︸︸ ︷

∞∫
1

dξ
√
ξ2 − 1

cosh
(
ξQ
)

+ 1 '
ln 2
π
. (B.8)

Region 4

Finally, in region 4 the conditions Q � 1 and β < 1 are fulfilled. In Eq. (B.1) only the ξ-integral
contributes and by neglecting cosh

(
Qβ
)
and expanding the integrand in large Qξ we get

Im ΠR ' sinh(Qβ)
π

Q√
1− β2

∞∫
1

dξ
√
ξ2 − 1 e−Qξ

︸ ︷︷ ︸
'e−Q 1

Q3/2
√

π
2

' sinh
(
Qβ
)√

β2 − 1
e−Q√
2πQ

. (B.9)

In region 4 the simplification of Eq. (B.2) differs from that in region 2 in one important point. By
neglecting cosh

(
Qη
)
in comparison to cosh

(
Qξ
)
, the first term [∝ sinh

(
Qξ
)
] yields no principle value

integral, while β is smaller 1. This results in

Re ΠR ' −Q
π2

∞∫
1

dξ ξ√
ξ2 − 1

(
β2 − ξ2

) 1∫
0

dη
√

1− η2 = 1
8

Q√
1− β2 . (B.10)

B.2 Calculating the Rates

In this Appendix we calculate the integrals for inelastic scattering rates.

B.2.1 Definitions of the Rates

The rates we are interested in are defined by inserting the kernel Kj into the integrand for the imaginary
part of the total self-energy, Eq. (4.15) (j = q,+,E, tr):

• Total quantum scattering-rate (j = q):
Kq = 1;
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• Energy relaxation-rate (j = E):

KE = ω2

T 2 ;

• Transport scattering-rate (j = tr):

Ktr = 1
2 sin2 θ = 1

2
q2 sin2 γ

ε2 + q2 − 2εq cos γ .

Here θ is the angle between incoming particle and outgoing particle and γ is the angle between ~q and
~p. The origin of Ktr is explained in Sec. 5.4.1. The kernel for the chiral scattering rate τ−1

± depends
on the scattering channel. In particular, for + chirality at ε > 0 the electron-electron scattering kernel
contains cos2(θ/2) and the electron-hole scattering kernel contains sin2(θ/2) due to Dirac factors.
It is convenient to introduce the dimensionless energy y = ε/2T . The integrals we have to handle

are of the following form:

τ−1
j
(
y
)

= −2T 2

v2
F

∞∫
0

dQ
2π Q

2π∫
0

dγ
2π

∑
Ω=y±

√
y2+Q2−2Qy cos γ

[
Kj
(
Ω, Q, y

)
ImDR

RPA
(
Ω, Q

)[
coth

(
Ω
)

+ tanh
(
y − Ω

)]]
.

(B.11)
Since the combinations y±

√
y2 +Q2 − 2Qy cos γ lead to complicated integrands, we split the integrals

into the parts corresponding to Q � y and y � Q. Here γ is the angle between the transferred
momentum ~q and the initial momentum ~p.

B.2.2 Simplifying the Integrand

The imaginary part of the interaction propagator is given by

ImDR
RPA

(
Ω, Q

)
= − D2

0
(
Q
)
N Im Π

(
Ω, Q

)[
1 +D0

(
Q
)
N Re Π

(
Ω, Q

)]2
+
[
D0
(
Q
)
N Im Π

(
Ω, Q

)]2 , (B.12)

where
D0
(
Q
)

= v2
F

T

αgπ

Q
(B.13)

is the bare Coulomb interaction.
The splitting of the Q integral leads to the following simplification:

Ω ' y ±
{
y −Q cos γ Q� y
Q− y cos γ y � Q

,

√∣∣∣Q2 − Ω2
∣∣∣ '


2y +
Q
∣∣sin γ∣∣ − Q� y

2
√
yQ

∣∣∣sin γ
2

∣∣∣ +
2
√
yQ

∣∣∣cos γ2
∣∣∣ −

y � Q
(B.14)

Here +,− correspond to the two possible values for Ω that appear in Eq. (B.11). These signs reflect
the separation of integration domains into the parts above and below the mass-shell line Q = Ω:
+ corresponds to Ω > Q and − corresponds to Ω < Q. Below we simplify the integrands I =[
g + f

]
Kj ImDR

RPA separately in each to the region in the Q vs Ω plane.
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Region 1

In region 1, the dominant contribution to all the rates comes from the domain y � Q. Using the
simplified polarization operator, Eq. (4.2), we obtain

I j
1,2
(
y,Q, γ

)
' v2

F

T

1
N

π2

8

√
yQ

∣∣∣sin γ
2

∣∣∣2√y
√
Q

αgN

∣∣∣∣sin γ2
∣∣∣∣− ln 2

2

+
(
π

16Q
2
)2
×


1, j = q
2 cos2 γ

2 , j = +
4Q2, j = E
1
2 sin2 γ, j = tr

. (B.15)

Here and below the first digit in the subscript of the function I denotes the region in the Q vs Ω plane,
while the second digit is 1 for Q� y and 2 for Q� y.

Region 2

The contribution to all the rates coming from the region 2 is exponentially small in Regime IV. In
other Regimes, it contains at least an extra αg as compared to the contributions of region 3, except for
the situations when results for the rate are determined by momenta q of order T/vF . In this situations,
it turns out that the asymptotics produced by region 2 is the same as the asymptotics of region 3. We
remind the reader that finding the numerical value of the prefactor is beyond our analytical approach
when integrals are dominated by q ∼ T/vF . Therefore, there is no case where we need to calculate the
contribution of region 2.

Region 3

Region 3 appears to be the most important region because most of the final results for the rates are
determined by this region. In this region both small and large y compared to Q are important:

• y � Q :

I j
3,1
(
y,Q, γ

)
' v2

F

NT

π

ln 2

∣∣sin γ∣∣Q−1( Q

αgN ln 2 + 1
)2

− 1

 sin2 γ + 1

×


1, j = q
2, j = +

4Q2 cos2 γ, j = E
1
2
Q2

y2 sin2 γ, j = tr

; (B.16)

• y � Q :

I j
3,2
(
y,Q, γ

)
' v2

F

T

1
N

2π
ln 2
√
y

Q−3/2 cos γ2
4y
Q

(
Q

αgN ln 2 + 1
)2

cos2 γ

2 + 1
×


1, j = q

2 sin2 γ
2 , j = +

4Q2, j = E
1
2 sin2 γ, j = tr

. (B.17)
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Region 4

This region is only important for the energy relaxation rate (j = E). The corresponding contribution
is governed by Q� y, so that only the energy range y � 1 is of interest, where

IE
4,1
(
y,Q, γ

)
' v2

F

T

α2
gπ

24N
√

2πQ
sin γ cos2 γ(

sin γ + αgπN

8

)2 (B.18)

B.2.3 Results for the Rates

Finally we estimate the rates in the Regimes I, II, III, and IV as defined in Fig. 4.4, using the simplified
integrands of the previous part.

Region 1

The contributions of Region 1 to the quantum and transport scattering rates are only relevant for
energies in Regime II for y � Q, where we have:

τ−1
j
(
y
)

= 2T 2

v2
F

1∫
min(y,1)

dQ
2π Q

2π∫
0

dγ
2πI

j
1,2
(
y,Q, γ

)
. (B.19)

Performing first the angular integration over γ, we obtain the quantum scattering rate:

τ−1
q
(
y
)
' 4αgT

1∫
0

da 1√
1− a2

' 2παgT, (B.20)

the chiral scattering rate:

τ−1
+
(
y
)
' 4αgT

1∫
0

da
√

1− a2 ' παgT, (B.21)

and the transport scattering rate:

τ−1
tr
(
y
)
' 8αgT

1∫
0

da a2
√

1− a2 ' π

2αgT. (B.22)

Here the integrals over the variable a = αgN ln 2/
√

4yQ correspond to the Q integration.

Regime τ−1
q
(
y
)

Q Ω γ θ

II ' 2παgT α2
gN

2/y Q 0 ≤ γ ≤ π 0 ≤ θ ≤ π

Table B.1: Contribution of region 1 to the total quantum scattering rate τ−1
q in Regime II and

the characteristic values of the transferred momentum Q, transferred frequency Ω, the
angle γ between momenta ~p and ~q, and the scattering angle θ (the results here and in
tables below are symmetric with respect to γ → −γ and θ → −θ).
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Regime τ−1
+
(
y
)

Q Ω γ θ

II ' 2παgT α2
gN

2/y Q 0 < γ < π 0 < θ < π

Table B.2: Contribution of region 1 to the chiral quantum scattering rate τ−1
+ in Regime II and

the characteristic values of Q,Ω, γ, and θ dominating this contribution.

Regime τ−1
tr
(
y
)

Q Ω γ θ

II ' π αgT/2 α2
gN

2/y Q 0 < γ < π 0 < θ < π

Table B.3: Contribution of region 1 to the transport scattering rate τ−1
tr in Regime II and the

characteristic values of Q,Ω, γ, and θ dominating this contribution.

In all the regimes, the contribution of region 1 to the energy relaxation rate is parametrically the
same as that of other regions. Since the numerical prefactor is not accessible within our calculation
(the integrals are dominated by qvF ∼ T ), we have chosen to present only the calculation of the
contribution of region 3.

Region 2

There is no important contribution from region 2 (see Sec. B.2.2 above).

Region 3

This is the most important region for all the rates in most of the Regimes. The corresponding integrals
are expressed through the kernels I j

3,i introduced in Sec. B.2.2 as follows:

τ−1
j
(
y
)

= 2T 2

v2
F

min(y,1)∫
0

dQ
2π Q

2π∫
0

dγ
2πI

j
3,1
(
y,Q, γ

)
+ 2T 2

v2
F

1∫
min(y,1)

dQ
2π Q

2π∫
0

dγ
2πI

j
3,2
(
y,Q, γ

)
(B.23)

Using the short-hand notations

x′ = 1
αgN ln 2 , y′ = y

αgN ln 2 ,

we obtain the following result for the contribution of region 3 to the quantum scattering rate:

τ−1
q
(
y
)
' αg

π
T


min(x′,y′)∫

0

dx
arsinh

[√
x(x+ 2)

]
√
x(x+ 2)(x+ 1)

+
x′∫

min(x′,y′)
dx

arsinh
[
√

4y′
(√

x+ 1√
x

)]

(1 + x)
√

1 + 4y′
(√

x+ 1√
x

)2


. (B.24)
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Regime τ−1
q
(
y
)

Q Ω γ θ

I ∼
√
y
N T 1 −Q 0 < γ < π 0 < θ < π

II ' παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III ' 4β(2)
π αgT αgNT Q cos γ 0 < γ < π θ . αgN

y � 1

IV ' 4β(2)
π αgT αgNT Q cos γ 0 < γ < π θ . αgN

y � 1

Table B.4: Contribution of region 3 to the total quantum scattering rate τ−1
q in all energy do-

mains and the corresponding characteristic values of the transferred momentum Q,
transferred frequency Ω, the angle γ between momenta ~p and ~q, and the scattering
angle θ.

For the contribution of region 3 to the chiral scattering rate we get:

τ−1
+
(
y
)
' αg

π
T


min(x′,y′)∫

0

dx
arsinh

[√
x(x+ 2)

]
√
x(x+ 2)(x+ 1)

+
x′∫

min(x′,y′)
dx

√
1 + 4y′

(√
x+ 1√

x

)2
arsinh

[
√

4y′
(√

x+ 1√
x

)]
−
√

4y′
(√

x+ 1√
x

)
(1 + x)2 4y′

x


(B.25)

Regime τ−1
+
(
y
)

Q Ω γ θ

I ∼
√
y
N T 1 −Q 0 < γ < π 0 < θ < π

II ' παgT α2
gN

2/y −Q 0 < γ < π 0 < θ < π

III ' 8β(2)
π αgT αgNT Q cos γ 0 < γ < π θ . αgN

y � 1

IV ' 8β(2)
π αgT αgNT Q cos γ 0 < γ < π θ . αgN

y � 1

Table B.5: Contribution of region 3 to the chiral quantum scattering rate τ−1
+ in all energy do-

mains and the corresponding characteristic values of Q, Ω, γ, and θ.
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The contribution of region 3 to the energy relaxation rate reads:

τ−1
E
(
y
)
' αg
π(x′)2T


min(x′,y′)∫

0

dx x

x+ 2

 arsinh
(√

x(x+ 2)
)

(x+ 1)−1
√
x(x+ 2)

− 1

+
x′∫

min(x′,y′)
dx

x2arsinh
[
√

4y′
(√

x+ 1√
x

)]

(1 + x)
√

1 + 4y′
(√

x+ 1√
x

)2


.

(B.26)

Regime τ−1
E
(
y
)

Q Ω γ θ

I ∼
√
y
N T 1 −Q 0 < γ < π 0 < θ < π

II ∼ α2
gT

N√
y ln

(
y

α2
gN

2

)
1 −Q π − αgN√

y
αgN√
y � 1

III ∼ α2
gT

N√
y ln

(
y

α2
gN

2

)
1 −Q π − αgN√

y
αgN√
y � 1

IV ∼ α2
gNT ln

(
1

α2
gN

2

)
1 −Q π − αgN√

y θ . αgN
y � 1

Table B.6: Contribution of region 3 to the energy relaxation rate τ−1
E obtained in all energy do-

mains within the energy-diffusion approximation and the corresponding characteristic
values of Q, Ω, γ, and θ. Since in all energy domains the result is dominated by
Q ∼ 1, the numerical prefactors can not be obtained from the asymptotics at Q � 1
and Q� 1.

Finally, region 3 yields the following result for τ−1
tr :

τ−1
tr
(
y
)
' αg

2πy′2T
min(x′,y′)∫

0

dx x

x+ 2

1−
arsinh

(√
x(x+ 2)

)
(x+ 1)

√
x(x+ 2)



+ 4
π
αgT

x′∫
min(x′,y′)

dx

√
y′

x

z2 + 3
3z4 − arsinhz

z5
(
1 + z2

)−1/2


z=
√

4y′
(√

x+ 1√
x

) . (B.27)
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Regime τ−1
tr
(
y
)

Q Ω γ θ

I ∼
√
y
N T 1 −Q 0 < γ < π 0 < θ < π

II ' π
4αgT

α2
gN

2

y −Q π − αgN√
y

αgN√
y � 1

III ∼ N
y α

2
gT y y(1− 2| sin γ

2 |)
αgN
y & π − αgN

y θ . αgN
y � 1

IV ∼ N
y2α

2
gT 1 Q cos γ αgN

y θ . αgN
y � 1

Table B.7: Contribution of region 3 to the transport scattering rate τ−1
tr in all energy domains and

the corresponding characteristic values of Q, Ω, γ, and θ. Since in energy domains I
and IV the result is dominated by Q ∼ 1, the numerical prefactors in these domains
are beyond the accuracy of our approximations. Furthermore, since in Regime III the
integral is dominated by Q ∼ y, the splitting of the integrand according Eqs. (B.16)
and (B.17) does not reproduce the correct prefactor.

Region 4

This region is only relevant for the energy relaxation rate in Regime IV, where the main contribution
comes from Q� y, yielding

τ−1
E
(
y
)

= 8T 2

v2
F

max(y,1)∫
1

dQ
2π Q

π
2−

1
Q∫

0

dγ
2πI

E, γ � π
2 −

1
Q

4,1
(
y,Q, γ

)
≈ 12N√

2π
α2
gTy

3/2 ln
(

16
Nπαg

√
y

)
. (B.28)

Since the result is determined by Q ∼ Ω ∼ y � 1, the energy-diffusion model is, in fact, not applicable
in this Regime.

B.3 Scattering Rates from the Generalized Golden Rule

In this Appendix we analyze the Golden Rule (GR) approach to calculating quantum and transport
scattering rates. The quantum scattering rate for electrons was introduced in Eq. (4.16). Using the
imaginary part of the self energy Eq. (24), we obtain

τ−1
+ (ε) ∝

∫
d~q

∫
dω

∣∣∣DRPA
(
q, ω

)∣∣∣2 [1− nF (ε− ω)]
∫
d~pTr

[
P+
(
~p
)
δ
(
ε− vF p

)
A0(ε− ω, ~p− ~q)

]
×
∫
dE

[
nF
(
E − ω/2

)
− nF

(
E + ω/2

)] ∫
d~kTr

[
A0(E − ω/2,~k − ~q/2)A0(E + ω/2,~k + ~q/2)

]
.

(B.29)

The spectral weights A0 are defined in Eq. (2.19). Equation (B.29) is completely equivalent to Eq.
(46) of the main text.
We can regard the quantum scattering rate as the probability (per unit time) of the electron decay

with emitting an electron-hole pair. The amplitude of this decay process is given by the “half” of
the self-energy diagram shown in Fig. B.2. The incoming and outgoing particles in this diagram are
taken at the mass shell. Equation (B.29) has the form of the Fermi golden rule with the amplitude
determined by the RPA-screened interaction.
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2

E − ω/2

E + ω/2

ǫ− ω
ǫ

Figure B.2: Diagram for the “elementary” inelastic scattering amplitude.

We now apply the GR to calculate the transport scattering rate. This amounts to including an extra
transport factor [~vi · (~vi − ~vf )]/v2

F accounting for the change of the current due to scattering, in the
integrand of Eq. (B.29). Here ~vi and ~vf are total velocities of incoming and outgoing particles. For the
linear electronic dispersion the velocities of individual quasi-particles are determined by the relation

~v = ∂ε

∂~p
= v2

F ~p

ε
(B.30)

This results in the following transport factor:

~vi ·
(
~vi − ~vf

)
v2
F

= v2
F

~p

ε

~p
ε
− ~p− ~q
ε− ω

−
~k + ~q/2
E + ω/2 +

~k − ~q/2
E − ω/2

 , (B.31)

Note that in the conventional case of massive particles with the quadratic electronic dispersion, ~v = ~p/m
and hence ~vi − ~vf ∝ ~p − (~p − ~q) − (~k + ~q/2) + (~k − ~q/2) = 0, which reflects the fact that because of
the total momentum conservation there is no current relaxation in conventional metals due to the
electron-electron interaction.
We now make use of the particle-hole symmetry of the graphene spectrum in order to simplify the

expression for transport scattering rate. Let us reverse the integration variables in the second line of
Eq. (B.29):

(
E,~k

)
7→
(
−E,−~k

)
. Using the symmetry A0(ε, ~p) = A0(−ε,−~p), we see that the trace in

the integrand is not changed. The difference of two equilibrium distribution functions in the second
line of Eq. (B.29) is also independent of the sign of E. Thus the contribution of particle-hole pair into
the current relaxation vanishes, which corresponds to the absence of the Coulomb-drag contribution to
the conductivity in undoped graphene (Fig. 5.7f). This allows us to keep only the part of the transport
factor Eq. (B.31) which is even under reversing E and ~k,

v2
F

~p

ε

(
~p

ε
− ~p− ~q
ε− ω

)
= 1− sign(ε− ω) cos θ, (B.32)

where θ is the scattering angle. Inserting this reduced transport factor into the first line of Eq. (B.29)
and calculating the trace of projection operators, we obtain

[1− sign(ε− ω) cos θ] Tr
[
P+(~p)A0(ε− ω, ~p− ~q)

]
= −π2

[
1− sign(ε− ω) cos θ

][
(1 + cos θ)δ(ε− ω − vF |~p− ~q|) + (1− cos θ)δ(ε− ω + vF |~p− ~q|)

]
= 1

2(1− cos2 θ)
[
A0,+(ε− ω, ~p− ~q) +A0,−(ε− ω, ~p− ~q)

]
. (B.33)
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This way the transport factor 1− cos2 θ appears for Dirac fermions.
The GR calculation of the transport scattering rate reproduces the result obtained from the Drude

conductivity Eq. (5.58). Note that an additional broadening δ was not used in this calculation. This
shows that our result for τ−1

tr can be actually applied in the limit τ−1
tr � δ as we argued in Sec. 5.4.3.
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C Appendix C

Effective Kinetic Equations and Collision
Integrals

C.1 Solution of the Effective Kinetic Equation

In this appendix we will provide additional details to follow more easily the calculation and the argu-
ments drawn in Sec. 5.2 and 7.1. Although we provide details for Chap. 5 we keep for generality the
labels of the layers as they are used starting with Chap. 6.

C.1.1 The Functional Approach

In Sec. 5.2.2 we introduced the functional technique to find the proper effective kinetic equations.
As discussed in Sec. 5.2.2 the crucial part of this technique is the ansatz (7.12). To discuss some
kind of general treatment we will consider an easy case with several directions given. We consider two
orthogonal directions to begin with. Note that if only one direction is relevant the discussion simplifies
a lot by choosing this direction as the one the ansatz points to.
To do so we will consider the functional that corresponds to the relaxation time ansatz. Proceeding

with linearization we might write down a functional in analogy to Eq. (5.21):

F (h) =
∫

dx1ν(ε1)∂nF
∂ε1

e ~E~v1
T 2 h1 −

1
2Tτdis

h2
1

 . (C.1)

If we plug in an ansatz of the type h =
∑
β χ

β
v~v~eβ where ~eβ corresponds to a unity vector, β ∈ {x, y}

and ~ex~ey = 0.
To continue let us firstly consider the situation of having two physical directions ~A and ~B. If we

assume that the absolute orientation in space does not matter and only the relative orientation of ~A
and ~B affects the system we can rewrite expressions of the type

〈
(
~A~v
) (

~B~v
)
〉
ϕ

= ABv2
∫ 2π

0

dϕ
2π cos(ϕA − ϕ) cos(ϕB − ϕ)

= ABv2
∫ 2π−ϕA

0−ϕA

dϕ̄
2π cos(ϕ̄)

[
cos(ϕ̄) cos(ϕA − ϕB)− sin(ϕ̄) sin(ϕA − ϕB)

]
= 1

2ABv
2 cos(ϕA − ϕB) = v2

2
~A~B (C.2)
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Using this observation we can rewrite Eq. (C.1) within the assumption ~ex~ey = 0 to gain:

F (χβv , χβp ) =
∑
β

∫
dε1ν(ε1)∂nF

∂ε1

[
1

2T 2 e
~E~eβχ

β
v −

1
4Tτdis

(
χβv

)2
]

=
∑
β

1
2

e ~E~eβ
T 2 A0χ

β
v −

1
2Tτdis

(
A0(χβv )2

) , (C.3)

where we used the As according to definition (5.25). We see that within this schematics we gain
χβv = eτdis ~E~eβ/T which gives the proper direction ~E far the current, since

∑
β( ~E~eβ)(~v~eβ) =

∑
β
~E(~eβ⊗

~eβ)~v = ~v ~E if used in Eq. (5.29).

C.1.2 Derivation of the Effective Kinetic Equation for Coulomb Drag of Two Layers

With help of the functional method introduced in Sec. 5.2.2 we will calculate the effective kinetic
equation for the two layer case following the one layer calculation given in Sec. 5.2.2. To do so we use
the two layer functional (7.10) derived in Sec. 7.1.1 We therefore use the functional obtained in Eq.
(7.10) to proceed as in Sec. 7.1 and apply the ansatz (7.12) to it. Since in each layer, the direction is
given by the external electric field we skip the direction splitting introduced in Sec. C.1.1. We gain
four kinetic equations of an algebraic structure by taking the derivative of F [ha(χaav , χaap ), hb(χbav , χbap )]
with respect to χaav , χbav , χaap and χbap . For brevity we use zαTταdis = 1 and get the conditions:

0= δF

δχaav
=
∫

dx ν(ε)∂n
a
F (ε)
∂ε

(
e
~Ea
T 2 ~v

)2[
1−za

(
χaav + χaap

ε

T

)]
+Naχ

aa
v

4T 2

∫
d{xi}W aa({xi})

[(
~v1 − ~v2 + ~v3 − ~v4

)e ~Ea
T 2

]2

+ Nb
2T 2

∫
d{xi}W ab({xi})


[
χaav

(
~v1 − ~v2

)
+ χbav

(
~v3 − ~v4

)
+ ~q

T
(χaap − χbap )

]
e
~Ea
T 2

(~v1 − ~v2
)
e
~Ea
T 2 ,

0= δF

δχaap
=
∫

dx ν(ε)∂n
a
F (ε)
∂ε

(
e
~Ea
T 2 ~v

)2
ε

T

[
1− za

(
χaav + χaap

ε

T

)]

+ Nb
2T 2

∫
d{xi}W ab({xi})


[
χaav

(
~v1 − ~v2

)
+ χbav

(
~v3 − ~v4

)
+ ~q

T
(χaap − χbap )

]
e
~Ea
T 2

 ~q

T
e
~Ea
T 2 ,

0= δF

δχbap
= −

∫
dx ν(ε)∂n

b
F (ε)
∂ε

(
e
~Ea
T 2 ~v

)2
ε

T
zb

(
χbav + χbap

ε

T

)

+ Na
2T 2

∫
d{xi}W ab({xi})


[
χaav

(
~v1 − ~v2

)
+ χbav

(
~v3 − ~v4

)
+ ~q

T
(χaap − χbap )

]
e
~Ea
T 2

 ~q

T
e
~Ea
T 2 ,

0= δF

δχbav
=−
∫

dx ν(ε)∂n
b
F (ε)
∂ε

(
e
~Ea
T 2 ~v

)2

zb

(
χbav + χbap

ε

T

)
+ Nbχ

ba
v

4T 2

∫
d{xi}W bb({xi})

[(
~v1 − ~v2 + ~v3 − ~v4

) e ~Ea
T 2

]2

+ Na
2T 2

∫
d{xi}W ab({xi})


[
χaav

(
~v1 − ~v2

)
+ χbav

(
~v3 − ~v4

)
+ ~q

T
(χaap − χbap )

]
e
~Ea
T 2

(~v3 − ~v4
)
e
~Ea
T 2 .

(C.4)
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we also used the fact that the system obeys no anisotropy meaning that as explained in Eq. (C.2) we
can use the following identity 2(~vi ~E)(~vj ~E) = ~vi~vj ~E

2. For simplicity we drop the indices that indicate
the electric field the modes are directed to. Further more we replaced ε1~v1 − ε2~v2 with ~q for brevity.
Doing so one gets:

Aa0 0
0 Ab0
Aa1 0
0 Ab1

 =


NaI

a
Tr + zaA

a
0 −NbID NbI

ab
Th + zaA

a
1 −NbI

ab
Th

−NaID NbI
b
Tr + zbA

b
0 −NaI

ba
Th NaI

ba
Th + zbA

b
1

NbI
ab
Th + zaA

a
1 −NbI

ba
Th NbIE + zaA

a
2 −NbIE

−NaI
ab
Th NaI

ba
Th + zbA

b
1 −NaIE NaIE + zbA

b
2



χav
χbv
χap
χbp

 . (C.5)

with the usage of the short-hand notation defined in Eq. (7.13).

Conductivity and Resistivity for Three Modes

By inverting M (see Eq. (7.15)) it is a straight forward task to obtain the conductivity σ with the
entries (for even more brevity An(µα) = Aαn further Na = Nb = N and za = zb = z later restored for
resistivity):

σaa = e2N2v2
F

2
1

Det(M)

{
2zAa0Aa1Ab1ID + z

(
Aa0

)2
[(
Aa2 +Ab2

) (
IbTr + zAb0

)
− z

(
Ab1

)2
]

−
(
Aa1

)2
[(
IaTr + zAa0

) (
IbTr + zAb0

)
+ I2

D

]}
, (C.6)

σbb = e2N2v2
F

2
1

Det(M)

{
2zAb0Aa1Ab1ID + z

(
Ab0

)2
[(
Aa2 +Ab2

) (
IaTr + zAa0

)
− z

(
Aa1

)2
]

−
(
Ab1

)2
[(
IaTr + zAa0

) (
IbTr + zAb0

)
+ I2

D

]}
, (C.7)

σD = σba = σab = e2N2v2
F

2
−1

Det(M)

{
Aa1A

b
1

(
IaTrI

b
Tr − I2

D

)
+zID

[
Aa0

(
Ab1

)2
+Ab0

(
Aa1

)2
−Aa0Ab0

(
Aa2 +Ab2

)]}
, (C.8)

where the determinant of the matrix M is given by

Det(M) = z

{
2zAa1Ab1ID +

(
Aa2 +Ab2

) [(
IaTr + zAa0

) (
IbTr + zAb0

)
− I2

D

]

−z
[(
Ab1

)2 (
IaTr + zAa0

)
+
(
Aa1

)2 (
IbTr + zAb0

)]}
. (C.9)
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If one applies the relation of drag resistivity with conductivity given in Eq. (6.7) (the non-approximated
version) one ends up with

ρD = −2
e2Nv2

F

Aa1A
b
1

Aa0A
b
0

(
I2

D − IaTrI
b
Tr

)
+ zID

Aa2 +Ab2 −Aa1
Aa1
Aa0
−Ab1

Ab1
Ab0


Ab0

(Aa1)2

Aa0
IaTr +Aa0

(Ab1)2

Ab0
IbTr + 2Aa1Ab1ID + zAa0A

b
0

Aa2 +Ab2 −Aa1
Aa1
Aa0
−Ab1

Ab1
Ab0

 (C.10)

where one recognizes repetitive patterns that indicate a simplification by introducing new shortening
objects as they are given in equations (7.19) and (7.20)

C.1.3 The Effective Kinetic Equation for Three Layers

In Sec. C.1.2 we showed how to get the effective kinetic equation out of the functional (7.10) with help
of the ansatz (7.12). In this ansatz we did not need to limit ourselves to two layers only as explained
in Sec. 8.1. Hence we can consider the the more complicated case of three layers. The functional
for three layers involves additional distribution functions and collision integrals which surely make the
derivation of the effective kinetic equation for three layers more lengthy. For this reason we will not
give all the details but refer to the essential steps. Writing down the functional and determining the
new saddle point equations (see the discussion in Sec. 5.2.2) is a lengthy but straight forward task.
The result needs to be of the following form:



Aa0 0 0
0 Ab0 0
0 0 Ac0
Aa1 0 0
0 Ab1 0
0 0 Ac1


=
(
Î + Â

)


χaI
v χaII

v χaIII
v

χbIv χbIIv χbIIIv

χcIv χcIIv χcIIIv

χaI
p χaII

p χaIII
p

χbIp χbIIp χbIIIp

χcIp χcIIp χcIIIp


. (C.11)

Since the three layer situation involves bigger matrices we separated the matrix that comes from the
relaxation time collision kernel

Â =



xaA
a
0 0 0 xaA

a
1 0 0

0 xbA
b
0 0 0 xbA

b
1 0

0 0 xcA
c
0 0 0 xcA

c
1

xaA
a
1 0 0 xaA

a
2 0 0

0 xbA
b
1 0 0 xbA

b
2 0

0 0 xcA
c
1 0 0 xcA

c
2


, (C.12)
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from the matrix that is determined by the coulomb collision kernel.

Î =



NaI
a
Tr −NbI

ab
D −NcI

ac
D

∑
α 6=a

NαI
aα
Th −NbI

ab
Th −NcI

ac
Th

−NaI
ba
D NbI

b
Tr −NcI

bc
D −NaI

ba
Th

∑
α 6=b

NαI
bα
Th −NcI

bc
Th

−NaI
ca
D −NbI

cb
D NcI

c
Tr −NaI

ca
Th −NbI

cb
Th

∑
α6=c

NαI
cα
Th∑

α6=a
NαI

aα
Th −NbI

ba
Th −NcI

ca
Th

∑
α 6=a

NαI
aα
E −NbI

ab
E −NcI

ac
E

−NaI
ab
Th

∑
α 6=b

NαI
bα
Th −NcI

cb
Th −NaI

ab
E

∑
α 6=b

NαI
cα
E −NcI

cb
E

−NaI
ac
Th −NbI

bc
Th

∑
α 6=c

NαI
cα
Th −NaI

ac
E −NbI

bc
E

∑
α 6=c

NαI
cα
E


. (C.13)

In the right bottom three by three block of the definition (C.13) we see, similar to Eq. (C.5), the
appearance of the energy relaxation rates IαβE which are in the same way divergent as we discussed
it in Sec. 7.1 for the two layer case. The idea is again to diagonalize this block which again has one
obvious eigenvalue 0 by adding up the rows or columns (the columns need some ratio of Nαs involved).
The mode that turns out to be unaffected by the interlayer thermalization is χp(Na + Nb + Nc) =
Naχ

a
p +Nbχ

b
p +Ncχ

c
p and again all orthogonal modes get suppressed leading to an effective three layer

thermalization. Although the calculation is more involved this time one can explicitly show that except
for the case of switching of one layer Nα → 0 the diagonal element after rotation is always proportional
to the energy relaxation rate IE.

To think, that the same idea works in case of a multilayer setup has not been proven strictly so
far since the analytic diagonalization becomes quite complicated which means that the multilayer
thermalization is the weak point to argue about. Still per construction it is clear that χp

∑
β Nβ =∑

β Nβχ
β
p is the mode with zero eigenvalue for arbitrary layers.

What is left to do is the procedure, that as has been done in the previous Sec. C.1.2 namely solving
the matrix equation and find the the conductivity tensor whose inverse leads to the resistivity tensor.
Again this calculation is lengthy but not very complicated and its result can be found in Eq. (8.2).

C.1.4 The Effective Kinetic Equation in Presence of a Magnetic Field

The magnetic field mixes different directions requesting us to do a proper multi-direction treatment
as exemplary introduced in Sec. C.1.1. In the Liouville operator defined in Eq. (8.10) we see the way
the magnetic field comes into play. An important observation is to understand the action of ∂φ more
properly. Which is why we consider:

〈( ~A~v)∂ϕ( ~B~v)〉~v = ABv2
∫ 2π

0

dϕ
2π cos(ϕA − ϕ) sin(ϕB − ϕ) = v2

2 |
~A× ~B|. (C.14)
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This way we gain with the modified ansatz (8.11), the altered functional (8.12) and the short forms
introduced in Eq. (7.13) the following modified functional:

Fmod(χαµv , χαµp ) = T

2
∑

γ∈{a,b}

Nγ

 1
2Tτγdis

∑
µ∈{x,y}

(
Aγ0
(
χγµv

)2+ 2Aγ1χγµv χγµp +Aγ2

(
χγµp

)2
)

+NγI
γ
Intra

1
2
∑

µ∈{x,y}

(χγµv )2

−
∑

µ∈{x,y}

(
Aγ0χ

γµ
v +Aγ1χ

γµ
p

) e

T 2
~Eγ~eµ + 2

(
ωc
2T

)2(
Aγ−1χ

γx
v χγyv +Aγ0(χγxv χγyp + χγxp χγyv ) +Aγ1χ

γx
p χγyp

)
+T

2NaNb
∑

µ∈{x,y}

[
1
2I

ab
Inter(χaµv )2+ 1

2I
ba
Inter(χbµv )2−IDχ

aµ
v χbµv +

(
IabThχ

aµ
v +IbaThχ

bµ
v

)(
χaµp −χbµp

)
+ 1

2IE

(
χaµp −χbµp

)2
]
.

(C.15)

Already in this form we recognize that the second direction we took into account does not mix and
behaves as in the case without magnetic field except for the magnetic field, which couples the two
directions. With bγµ = e ~Eγ~eµ/T

2, (2T )2y = 2ω2
c and as previously Tταdiszα = 1 we define the following

short forms for the effective kinetic equation:

N̂=


NaI

a
Tr + zaA

a
0 −NbID NbI

ab
Th + zaA

a
1 −NbI

ab
Th

−NaID NbI
b
Tr + zbA

b
0 −NaI

ba
Th NaI

ba
Th + zbA

b
1

NbI
ab
Th + zaA

a
1 −NbI

ba
Th NbIE + zaA

a
2 −NbIE

−NaI
ab
Th NaI

ba
Th + zbA

b
1 −NaIE NaIE + zbA

b
2

 , K̂=


Aa−1 0 Aa0 0

0 Ab−1 0 Ab0
Aa0 0 Aa1 0
0 Ab0 0 Ab1

 ,
(C.16)

which allows us to write: 

Aa0bax 0
0 Ab0bbx

Aa1bax 0
0 Ab1bbx

Aa0bay 0
0 Ab0bby

Aa1bay 0
0 Ab1bby


=

 N̂ yK̂

yK̂ N̂





χaxI
v χaxII

v

χbxI
v χbxII

v

χaxI
p χaxII

p

χbxI
p χbxII

p

χayI
v χayII

v

χbyI
v χbyII

v

χayI
p χayII

p

χbyI
p χbyII

p


(C.17)

Hereby the matrix N̂ has been introduced in Eq. (C.5) and we see that without the magnetic field
y → 0 the directions decouple and by choosing the ansatz to point in the direction of the electric
field we further gain bαy = 0 which was exactly the system of equation we treated in Sec. 7.1.3. To
proceed with Eq. (C.17) we need to consider the thermalization which is explained in Sec. 8.2.2 and
is performed in Eq. (8.13).

C.2 The Integrals Appearing within the Effective Kinetic Equation

In this section we want to investigate the integrals that appear within the derivation of the kinetic
equation. Their structure not only unveils the forward scattering resonance but shows close connections
to the diagrammatic analysis we have performed in Chap. 4.
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The Aαn are exactly solvable by using the polylogarithm Li. The thermal factors read then:

Aαn = An(µα = 2Tx) = − 1
2π (n+ 1)!

[
Lin+1(−e2x) + (−1)nLin+1(−e−2x)

]
. (C.18)

The asymptotics of the polylogarithm will be discussed in the later Sec. C.3.
The integrals specified by IαIntra, IαInter and ID as defined in Eq. (7.13) need a more involved treatment

to gain insights. One realizes that all these integrals can by described by two kinds of generalized
integrals namely an integral related to the drag rate IGD(µα, µβ) and one related to transport rate
IGtr(µα, µβ).

IGD(µα, µβ) = − 1
2T 3

∫
d{xi}Wαβ({xi})

(
~v1 − ~v2

) (
~v3 − ~v4

)
(C.19)

IGtr(µα, µβ) = 1
2T 3

∫
d{xi}Wαβ({xi})

(
~v1 − ~v2

)2
(C.20)

Gaining the following connections to the integrals given in Eq. (7.13)

IαIntra = IGtr(µα, µα)− IGD(µα, µα) IαInter = IGtr(µα, µ−α) ID = IGD(µa, µb) (C.21)

To handle these generalized rates in a more reasonable way and to draw the connection to a pertur-
bative approach we will introduce the generalized vertex functions (GVF):

Γ̃ni,j(ω, ~q, µ) =
∫

dεidεj 2π
ν(εi)ν(εj)δ

(
εi − εj − ω

)
4 cosh

(
εi−µ
2T

)
cosh

(
εj−µ
2T

)∫ dv̂idv̂j θγi,γj
(
~vi − ~vj

)n
(2π)2δ

(
εi~vi − εj~vj − ~q

)
(C.22)

with 2θγi,γj = 1+~vi~vj being the Dirac factor as introduced in Eq. (A.20) (And discussed in Sec. 4.2.1).
One recognizes the different symmetries that arise by varying n from even to odd. To compensate this
symmetry change we project the odd case onto ~q which is the only direction Γ̃ni,j can point to.

Γni,j(ω, ~q, µ) =

 Γ̃ni,j(ω, ~q, µ) n = 0 mod 2
q̂Γ̃ni,j(ω, ~q, µ) n = 1 mod 2 (C.23)

The generalized rates read

IGD(µα, µβ) = 1
2T 3

∫ d2q

(2π)2

∫ dω
2π

∣∣∣Dαβ

∣∣∣2 Γ1
1,2(ω, ~q, µα)Γ1

3,4(ω, ~q, µβ), (C.24)

IGtr(µα, µβ) = 1
2T 3

∫ d2q

(2π)2

∫ dω
2π

∣∣∣Dαβ

∣∣∣2 Γ2
1,2(ω, ~q, µα)Γ0

3,4(ω, ~q, µβ), (C.25)

with help of the generalized vertex functions. Note that the sign change of IGD comes due to the fact
that the Γ̃1

i,j for the two cases have to point in opposite directions.

C.2.1 Simplification of the Generalized Vertex Functions (GVF)

The generalized vertex functions can be simplified by decomposing the delta distribution that provides
the momentum conservation. The GVFs that have an odd power of

(
~vi − ~vj

)n
would be vectorial but
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have been projected to q̂ since there is no other direction they can point to (see Eq. (C.23)). We
continue considering only the angle dependent part:∫

dv̂idv̂j θγi,γj
(
~vi − ~vj

)n
(2π)2δ

(
εi~vi − εj~vj − ~q

)
=
∫

dv̂idv̂j
1
2
(
1 + ~vi~vj

) [
2
(
1− ~vi~vj

)]bn2 c [
q̂
(
~vi − ~vj

)]nmod 2
×

× (2π)2

q
δ
(
|εi~vi − εj~vj | − |~q|

)
δ

(
εi~vi − εj~vj
|εi~vi − εj~vj |

− q̂
)

(C.26)

averaging over the directions of ~q shows that only ~vi~vj = cos(φ) will be relevant for further calculation
implying that the velocity integral reduces to:∫

dv̂idv̂j
1
2
(
1 + ~vi~vj

) (
~vi − ~vj

)n
(2π)2δ

(
εi~vi − εj~vj − ~q

)
= 2
q

∫ π

0
dφ sin2 φ

[
2
(
1− cosφ

)]dn2 e−1
(
εi + εj

2q

)nmod 2

δ
(
|εi~vi − εj~vj | − |~q|

)

= Re
√(

q2 − (εi − εj)2
) (

(εi + εj)2 − q2
) 1
ε2i ε

2
j

(
q2 − (εi − εj)2

εiεj

)dn2 e−1(
εi + εj

2q

)nmod 2

. (C.27)

The GVF can now be written by introducing the coordinate E = εi + εj , decomposing the cosine
hyperbolic in the denominator and symmetrizing the E-integral allowing to write:

Γn(ω, ~q, µ) = 1
4π

∫ ∞
0

dE
Re
√(

q2 − ω2
) (
E2 − q2

)
|E2 − ω2| sinh

(
ω

2T

) (
4 q

2 − ω2

E2 − ω2

)dn2 e−1(
E

2q

)nmod 2

×

×

tanh
(
E + ω − 2µ

4T

)
−tanh

(
E − ω − 2µ

4T

)
+(−1)nmod 2

tanh
(
E + ω + 2µ

4T

)
−tanh

(
E − ω + 2µ

4T

)
 ,

(C.28)

which has the advantage that one can easily recognize the confinement ω . T . This notation is a good
starting point to gain deeper insights into the structure of the collision kernel.

C.2.2 Insights to the Collision Kernel

We will now look more closely at the analytic structure of the collision kernel to legitimate the ansatz
we have chosen in sections 5.2.2 and 7.1.2. The language developed so far allows us to rewrite the
collision kernel reading:∫

d{xi}Wα,β({xi}) =
∫ d2q

(2π)2

∫ dω
2π

∣∣∣Dαβ

∣∣∣2 Γ0
1,2(−ω,−~q, µα)Γ0

3,4(ω, ~q, µβ). (C.29)

Taking a look at Eq. (C.28) one realizes that since every Γ0 comes with (q2 − ω2)−1/2 the collision
kernel will diverge if considered Dαβ as bare Coulomb interaction as defined in Eq. (2.23). As explained
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in Chap. 4 the divergence at q2 = ω2 corresponds to forward scattering. We also showed that a RPA
screened interaction will compensate this even at the Dirac point as long as the temperature stays
finite. The bigness of the above divergence is then to be seen as enhancement (∼ αgT ) compared to a
usual golden rule calculation (∼ α2

gT ).
To convince one self that we need no other modes to take into account we will briefly look at more

general GVF taking into account arbitrary modes of the form: (ε/T )n~v ~E. Considering the same kind
of decoupling we will get modified Γn,m reading:

Γn,mi,j (ω, ~q, µ) = 1
Tm

∫
dεidεj 2π

ν(εi)ν(εj)δ
(
εi − εj + ω

)
4 cosh

(
εi−µ
2T

)
cosh

(
εj−µ
2T

)×
×
∫

dv̂idv̂j θγi,γj
(
εmi ~vi − εmj ~vj

)n
(2π)2δ

(
εi~vi − εj~vj + ~q

)
. (C.30)

In an similar way as shown in appendix C.2.1 we integrate out the angle degree of freedom gaining
(q2 − (εi − εj)2)−1/2 and a term of the type:(

εmi ~vi − εmj ~vj
)n

=
(
ε2mi + ε2mj − 2(εiεj)m~vi~vj

)n/2
=
(
ε2mi + ε2mj − (εiεj)m−1(ε2i + ε2j − q2)

)n/2
.

(C.31)
This term is not able to cancel (q2− (εi− εj)2)−1/2 which will cause the forward scattering divergence.
Even if one considers large chemical potential (εi ≈ µ + δi) aboves equation changes to µ2m−2(q2 +
(m2 − 1)(δi − δj)2) indicating that only the velocity modes are resistant to fast relaxation (except
non-analytic modes see Secs. 5.2.4 and C.2.3). So again one has to take into account the RPA screened
interaction to regularize the corresponding integral hence enhancing the resulting scattering weight.
Note changes in the interaction due to the second layer (see Eq. (6.10)) does not change this discussion

since dynamic screening is responsible for these effects.

C.2.3 The Collision Kernels Involving the Imbalance Mode

In Sec. 5.2.4 we have seen that there is one additional mode, which avoided the discussion above by
being non-analytic. In analogy to Eqs. (C.19) and (C.20) we can define rates involving the third mode
χs. Which means that we need to consider as well some GVFs related to the third mode

Γ̃ns;i,j(ω, ~q, µ) =
∫

dεidεj 2π
ν(εi)ν(εj)δ

(
εi − εj − ω

)
4 cosh

(
εi−µ
2T

)
cosh

(
εj−µ
2T

)
∫

dv̂idv̂j θγi,γj
(
sign(εi)~vi − sign(εj)~vj

)n
(2π)2δ

(
εi~vi − εj~vj − ~q

)
(C.32)

which can be similarly analyzed and simplified as the Γs of the previous sections. Simplification leads
to:

Γns (ω, ~q, µ) = 1
4π

∫ ∞
|ω|

dE
Re
√(

q2 − ω2
) (
E2 − q2

)
|E2 − ω2| sinh

(
ω

2T

) (
4 q

2 − ω2

E2 − ω2

)dn2 e−1(
E

2q

)nmod 2

Fn(ω, µ,E)

− 1
16π

∫ |ω|
0

dEF0(ω, µ,E)
sinh

(
ω

2T

) Re
√
E2 − q2

q2 − ω2

(
4E

2 − q2

E2 − ω2

)dn2 e( ω
2q

)nmod2

(C.33)
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with

Fn(ω, µ,E) =tanh
(
E + ω − 2µ

4T

)
−tanh

(
E − ω − 2µ

4T

)
+(−1)nmod 2

tanh
(
E + ω + 2µ

4T

)
−tanh

(
E − ω + 2µ

4T

)


(C.34)

Although it looks like Γns could be divergent it turns out that this part cancels when putting everything
together. But within this representation the appearance of being divergent is somewhat natural since
the decomposition has performed in such a way that that the cancellation is not yet apparent. Still
this form is useful to understand that if one would perform the calculation for two or more layers there
would appear a thermalization of the third mode between the layers.
To see the cancellation more clearly we put together the ingredients needed for Is (see Sec. 5.2.4)

and obtain for the critical part only:

Is;crit = 1
4T 3

∫ dq
(2π)2

∫ dω
2πD

2
0

1
(16π)2

∫ |ω|
0

dE
∫ |ω|

0
dE′F0(ω, µ,E)F0(ω, µ,E′)

sinh2
(
ω

2T

)
Re
√

(E2 − q2)(E′2 − q2)
q2 − ω2

(
4q

2 − ω2

q2
E2(E′2 − q2) + E′2(E2 − q2)

(E2 − ω2)(E′2 − ω2)

)
(C.35)

where one clearly sees the cancellation of q2 − ω2 verifying the third mode to be not quickly relaxed
by forward scattering.
The peculiar Asns that appear within the third mode calculation can be explicitly evaluated and

yield:

Asn(x) = 1
2π


2x n = 0

π2

3 + (2x)2 n = 1
π2(2x) + (2x)3 n = 2

(C.36)

C.3 The Asymptotics

The final purpose of this section is to provide all ingredients needed to discuss the asymptotics of the
drag resistivity. We will, therefore start with objects that appear most often namely the coefficients
An. Their asymptotics is given by:

An(x� 1) = 1
π


ln(2) n = 0

4x ln(2) n = 1
9
2ζ(3) n = 2

An(|x| � 1) = sign(x)
2π


2x+ 2e−2x n = 0

(2x)2 + π2

3 − 4e−2x n = 1
(2x)3 + 2xπ2 + 12e−2x n = 2

,

(C.37)

and the coefficient appearing in magnetic field reads A−1(x) = tanh(x)/(2π). Immediately we gain the
asymptotics of the Bn by:

Bn(x� 1) =


ln(2)/π n = 0
4Nx n = 1

9N
2π ζ(3) n = 2

Bn(x� 1) =


|x|/π n = 0

2Nx+ Nπ2

6x n = 1
πN |x|/3 n = 2

. (C.38)
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And hence the objects needed for Hall drag (see Eq. (8.21)):

Cα(x� 1) ≈ ln2
π

Cα(x� 1) ≈ − π2

12x (C.39)

The next step will be to simplify the GVFs to obtain the asymptotics of the rates.

C.3.1 The Limit of Small Chemical Potential

When we are in the situation that µα � T for both layers this means that screening is done by
temperature only. Since we consider to have the same temperature in our layers this means basically
that Πa ≈ Πb. The RPA screened interaction as it is given in Eq. (6.10) simplifies then and for
the purpose of gaining only parametrics can be thought of being the one layer interaction with an
additional degeneracy. This is surely only appropriate if q < d−1 hence not allowing to gain any
numerical prefactors.
This strong assumption allows us to use a powerful mapping to the rates we have obtained in Secs. 4

and B.2.3. As one has seen in appendix C.2.2 the bare interaction kernel is given as Γ0Γ0 combination.
For the single layer case we provided in App. B.2.3 closed expressions for the corresponding rates. The
bare kernel in this sense corresponds to the rate τ±(ε) of Sec. 4.
Our aim is therefore to express the integral kernels of the GVFs in terms of the one of Γ0. It turns

out that only ω < q (region 3) is relevant. By comparison we identify:

Γn ≈ ω

sinh( ω
2T ) Re 1√

q2 − ω2

∫ ∞
q

dE
√
E2 − q2

cosh2( E4T )
×

× 1
2

(
1 + (−1)n + µ

T

E

4T (1− (−1)n)
)(

4 q
2 − ω2

E2 − ω2

)dn2 e(E
2q

)nmod 2

︸ ︷︷ ︸
Kn

. (C.40)

The kernels we will actually need are Ktr = K0K2, KD = K1K1, KTh = K0K1q and KE = K0K0q
2.

In our Sec. 4.2.1 (especially appendix B.2) we described everything using momentum q and angle γ
between ~q and ~p1. In the case of ω < q we read then:

Ktr = q2

ε2
sin2(γ) KD = µaµb

T 2
q2

T 2 sin4(γ)

KThα = µα
T

q2

T 2 sin2(γ) KE = q2 (C.41)

with the equations given in appendix B.2 we can estimate the behavior of the rates.

Small Distance

The first thing we learn already from the mapping is that. For dT � 1 there will be no change to the
system parametrically speaking. This is due to the fact that especially after energy averaging aboves
rates will be determined by q ∼ T . The dependence of the chemical potential can be seen already by
expanding the definition of the GVFs. One reads:

Γ0
µ�T (ω, ~q, µ) ≈ 1

4π

∫ ∞
0

dE

√(
q2− ω2

)(
E2− q2

)
|E2 − ω2| sinh

(
ω

2T

)(4 q
2 − ω2

E2 − ω2

)−1

2

tanh
(
E + ω

4T

)
− tanh

(
E − ω

4T

) ,
(C.42)
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Γ1
µ�T (ω, ~q, µ) ≈ µ

4πT

∫ ∞
0

dE

√(
q2 − ω2

) (
E2 − q2

)
|E2 − ω2| sinh

(
ω

2T

) (
E

2q

) 1
cosh2

(
E−ω
4T

) − 1
cosh2

(
E+ω
4T

)
 , (C.43)

Γ2
µ�T (ω, ~q, µ) ≈ 1

4π

∫ ∞
0

dE

√(
q2 − ω2

) (
E2 − q2

)
|E2 − ω2| sinh

(
ω

2T

) 2

tanh
(
E + ω

4T

)
− tanh

(
E − ω

4T

) . (C.44)

The rates can be obtained numerically with coefficients CD(dT ) and Ctr(dT ) that are slowly varying:

IGD(µα � T, µβ � T ) = 1
2T 3

∫ d2q

(2π)2

∫ dω
2π
(
Dbare
αβ

)2
Γ1
µ�T (−ω,−~q, µα)Γ1

µ�T (ω, ~q, µβ)

≈ α2
gCD(dT ) µαµβ(2T )2 (C.45)

IGtr(µα � T, µβ � T ) = 1
2T 3

∫ d2q

(2π)2

∫ dω
2π
(
Dbare
αβ

)2
Γ2
µ�T (−ω,−~q, µα)Γ0

µ�T (ω, ~q, µβ)

≈ α2
gCTr(dT ) (C.46)

For zero distance those coefficients are given by CD(dT = 0) ≈ 0.1374 and CTr(dT = 0) ≈ 0.2193. In
Sec. 5.4 it is shown that energy relaxation is logarithmically larger than transport related quantities
like IThα . Therefore energy relaxation is fast enough to treat only the kinetic equation with three
modes. We have now everything one needs to get the drag resistivity for small chemical potential:

ρD(µ̂a, µ̂b) ≈
1
e2
α2
g2π2

ln22
CD(dT )µ̂aµ̂b

1 + 32π
9ζ(3)

α2
gC

2
Tr(dT )

CD(dT )
Na +Nb

(Tτ0)−1 + (Tτad)−1

 . (C.47)

Where the effective drag rate is given by:

(Tτ0)−1 = 32π
9ζ(3)α

2
gCTr

(
Naµ̂

2
a +Nbµ̂

2
b

)
(C.48)

If now τ−1
ad is of order of α2

gT we can define τ̃−1
ad = τ−1

ad
9ζ(3)
32π

1
α2
gCTr

which leads to a simplification if
Naµ̂

2
a +Nbµ̂

2
b + 1

T τ̃ad
� (Na +Nb)2CTr(dT )/CD(dT ) holds. We obtain:

ρD(µ̂a, µ̂b) ≈
1
e2α

2
g

(2π)2

2 ln22
CTr(dT ) µ̂aµ̂b(Na +Nb)

Naµ̂2
a +Nbµ̂

2
b + 1

T τ̃ad

. (C.49)

The prefactor is approximately (2π/ ln2)2CTr(dT )/2 ≈ 9.01.

Large Distance

In the case that the distance is large dT � 1 it turns out that we actually need to use the kernels
given in Eq. (C.41). By usage of the appendix of our previous article we recognize a additional scale
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and get the following behavior for the inter layer rates:

Ij ∝



α2
gNT

dT


ln
(

1
αgNdT

)
j = E

µ̂α j = Thα
µ̂aµ̂b j = D

αgNdT � 1

T
N(dT )3


1 j = E
µ̂α j = Thα
µ̂aµ̂b j = D

αgNdT � 1

. (C.50)

The intra layer rates are of course not changed. The interesting fact one can see here is that energy
relaxation is always faster than thermalization. So in both situations we are allowed to use the kinetic
equation for three modes only. Since the inter layer rates are suppressed by distance compared to the
intra layer rates we need only to adept the inter layer rates compared to the zero distance calculation.
For αgNdT � 1 we gain the following parametrically behavior for the drag resistivity:

ρD ∝
α2
gµ̂aµ̂b

e2(dT )

1 + C1
α2
gN(dT )

(Tτ0)−1 +
(
Tτdis

)−1

 , (C.51)

with an unknown constant C1. For this regime we have (Tτ0)−1 ∝ α2
gN(µ̂2

a + µ̂2
b). As in the previous

case of small distances we see that if (Tτ0)−1 + z � α2
gN(dT ) is fulfilled we will enter a regime that is

up to numbers identical to the one discussed in Eq. (C.49).
For αgNdT � 1 we follow the very same logic ending up with:

ρD ∝
µ̂aµ̂b

e2N2(dT )3

1 + C2
αg(αgNdT )3

(Tτ0)−1 +
(
Tτdis

)−1

 , (C.52)

and again we do not know C2. In this regime (Tτ0)−1 behaves in the very same way as in the previous
one leading again to the unusual behavior as given in Eq. (C.49).

C.3.2 The Limit of Large Chemical Potential

We consider now the situation of large chemical potentials namely µ � T . In this limit we will
choose a different path to gain the rates. Since kinematically suppressed the most important regime is
ω < q � µ. In this regime we can actually gain information from the GVFs directly by the treatment
showed below:

Γ0
µ�T (ω, ~q, µ) ≈ −1

16π
√
q2 − ω2 sinh

(
ω

2T

) ∫ ∞
q

dE
(
E
√
E2 − q2 − q2 ln(E +

√
E2 − q2)

)
×

× 1
8T

 1

cosh2
(
E+ω−2|µ|

4T

) − 1

cosh2
(
E−ω−2|µ|

4T

)
 ≈ |µ|ω

2π
√
q2 − ω2 sinh

(
ω

2T

) (1− q2

8µ2

)
, (C.53)
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Γ1
µ�T (ω, ~q, µ) ≈

√
q2 − ω2

4πq sinh
(
ω

2T

) ∫ ∞
q

dE

√E2 − q2 −
√
q2 − ω2arctan

√E2 − q2√
q2 − ω2


×

× sign(µ)
8T

 1

cosh2
(
E+ω−2|µ|

4T

) − 1

cosh2
(
E−ω−2|µ|

4T

)
 ≈ −sign(µ)ω

√
q2 − ω2

2πq sinh
(
ω

2T

) (
1− q2

8µ2 + ω2

4µ2

)
,

(C.54)

Γ2
µ�T (ω, ~q, µ) ≈ −

√
q2 − ω2

2π sinh
(
ω

2T

)∫ ∞
q

dE

 ln(E +
√
E2 − q2) +

√
q2 − ω2

ω
arctanh

E
ω

√
q2 − ω2√
E2 − q2


×

× 1
8T

 1

cosh2
(
E+ω−2|µ|

4T

) − 1

cosh2
(
E−ω−2|µ|

4T

)
 ≈ ω

√
q2 − ω2

2π|µ| sinh
(
ω

2T

) (1− q2

8µ2 + ω2

3µ2 + π2(2T )2

12µ2

)
.

(C.55)

We used in these relation that for small T we can use (8T )−1sech(x/(4T )) ≈ δ(x)+π2(4!)−1(4T )2δ
′′(x)

where the last term of this relation is relevant for Γ2
µ�T .

With these powerful approximations we will continue getting the rates. Note that the definition of
transport rate and thermalization rate are very close in this limit since Γ0Γ2 differs from Γ0qΓ1 by a
factor of µ.

Intermediate Chemical Potential for Small and Large Distances

The chemical potential will now be assumed to obey the condition αgNµ � 1/(2d) additionally to
T � µ. We will consider two cases: the first one dT � 1 in which we will consider the frequency
cut-off to be Λω =∞ since it is restricted by temperature and the second one dT � 1 where the cut-off
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is chosen to be Λω = q. We get the following generalized rates for the regime T � |µα| � 1
αgd

:

IαβGD ≈
1

2T 3

min(|µα|,|µβ |)∫
λαβ

dq
2πq

Λω∫
−Λω

dω
2π

(2π)2α2
g

q2 e−2qd δα,−β sign(µαµβ)ω2

4π2q2
q2 − ω2

sinh2
(
ω

2T

)
1 +

(
ω2

4 −
q2

8

) 1
µ2
α

+ 1
µ2
β




≈
α2
g

3 sign(µαµβ)


ln(Λαβ

λαβ
) +

(
(2T )2

µ2
α

+ (2T )2

µ2
β

)[
π2

20 ln(Λαβ
λαβ

)− 1
16

Λ2
αβ

(2T )2

]
dT � 1

6
π2

Λαβ
2T + 1

π2

(
(2T )2

µ2
α

+ (2T )2

µ2
β

)[
1
6

Λ3
αβ

(2T )3 − 1
4

Λ3
αβ

(2T )3

]
dT � 1

, (C.56)

IαβGtr ≈
1

2T 3

min(µα,µβ)∫
λαβ

dq
2πq

Λω∫
−Λω

dω
2π

(2π)2α2
g
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2T + 2(2T )2

9π2µ2
α

Λ3
αβ

(2T )3 − 1
4π2

(
(2T )2

µ2
α

+ (2T )2
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β
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Λ3
αβ

(2T )3 dT � 1
(C.57)

where for brevity we used Λαβ = min(|µα|, |µβ|, 1/(2d δα,−β)) and λαβ = max(αgNα|µα|, αgNβ|µβ|, T ).
One recognizes the similarity of the expressions which is why we will look carefully at the following
combination that is strongly related to the generalized rate defined in Eq. (7.21):

IαβGI = |µα|
|µβ|

IαβGtr −
IαβGD

sign(µαµβ) =
α2
g

3


π2

20 (2T )2 2µ2
β−µ

2
α

µ2
αµ

2
β

ln(Λαβ
λαβ

) dT � 1
1
2

(2T )2

µ2
α

Λαβ
2T + 1

18π2 (2T )2 µ
2
β−3µ2

α

µ2
αµ

2
β

Λ3
αβ

(2T )3 dT � 1
(C.58)

Where IαβGI is a generalized scattering rate we introduce due to its useful properties, like IααGI = IαIntra
and:

IαG = Bα
1 I

α
Tr −B−α1 ID ≈

2
µ̂α

(
µ̂2
αNαI

αα
GI + |µ̂−αµ̂α|N−αIα,−αGI

)
. (C.59)

One should remember that the intra layer quantities will be never affected by the large distance case
dT � 1 which means that in the large distance case the cut off is always given by: Λab2d = 1.
To proceed we need to check the energy relaxation to be still enhanced. The energy relaxation reads:

IE ∝
Nµaµb
T 5

∫ min(|µα|,|µβ |)

0
dqq3

∫ Λω

−Λω

ω2

sinh2( ω
2T )
|DRPA

ab |2

q2 − ω2 . (C.60)

For the case of large chemical potential the polarization operator and therefore the screened interaction
reads:

Πµ�T (ω, q) = |µ|2π

(
1 + iω√

q2 − ω2

)
|DRPA

ab |2

q2 − ω2 ≈
(2π)2α2

ge
−2qd

q[q(q + αg(|µa|+ |µb|))2 − ω2(q + 2αg(|µa|+ |µb|))]
(C.61)
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Finally we obtain the energy relaxation rate to be enhanced by an factor (µ/T ) compared to thermal-
ization rate:

IE ∝
α2
gNµaµb

T 2

 ln
(

Λαβ
max(T,αg(|µa|+|µb|))

)
dT � 1

Λαβ
T dT � 1

, (C.62)

justifying the usage of the thermalized kinetic equation involving three modes only. The resistivity
forms therefore for dT � 1:

ρD(µ̂a, µ̂b) ≈
α2
g

e2
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3
ln
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Λab
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)
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×
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)(
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)
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(
Tτdis
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 , (C.63)

with the characteristic rate given by:

(Tτ0)−1 = π

5
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)
+NaNb

µ̂2
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(
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) . (C.64)

For large distances we gain:

ρD(µ̂a, µ̂b)

≈
α2
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e2
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(
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2T ((Tτ0)−1 +
(
Tτdis

)−1)

 , (C.65)

with the altered characteristic rate:

(Tτ0)−1 = 2
π

α2
g

Na|µ̂a|+Nb|µ̂b|

N2
a
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10 ln
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Λaa
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+NaNb
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|µ̂aµ̂b|
Λab
2T

 . (C.66)

Where one should remember that Λab2d = 1.

Large Chemical Potential for Small and Large Distances

This time we assume the chemical potential to be that large (1/(2d) � αgNµ) that static screening
comes into play. For this limit we are using

Π(ω = 0, q � 1
2d) ≈ µ

2π (C.67)

which gains
Dαβ = 2παg

q
δαβ + 4πq

αgNaNbµaµb sinh(qd)δα−β (C.68)

as screened interaction to proceed with. Since the only change that appears in this regime is within
the intra layer rates we focus on them. Again we consider the two cases of distance namely dT � 1
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C.3 The Asymptotics

and dT � 1. The generalized rates for the regime 1
αgd
� µα taken within the same notation as for

Eq. (C.56) forms:

IαβGD = 1
2T 2
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(C.69)

IαβGtr = N
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(C.70)

We see immediately that as in the µ � T case the inter layer rates are strongly suppressed with
large distance. Again we take a look at the following combination:

IαβGI = |µα|
|µβ|

IαβGtr −
IαβGD

sign(µαµβ)
α 6=β= π2
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2
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(C.71)
To proceed we need to know again what the energy relaxation does for that large chemical potential.

Again we start with Eq. (C.60) but using this time a stronger screened interaction we will gain the
energy relaxation with an enhancement to the thermalization rate by a factor of (µ/T ):

|DRPA
ab |2

q2 − ω2 ≈
(2π)2e−2qd

d|µaµb|q(qdα2
g|µaµb| − 2ω2) IE ∝

1
α2
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{
(dT )−4 dT � 1
(dT )−5 dT � 1 . (C.72)

Using the three modes involving drag resistivity we obtain for dT � 1:
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 . (C.73)

where the characteristic Coulomb drag rate is given by:

(Tτ0)−1 = π
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And similar the drag resistivity for dT � 1:

ρD(µ̂a, µ̂b) ≈
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where the characteristic Coulomb drag rate is given by:

(Tτ0)−1 = 2
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. (C.76)

Large and Small Chemical Potential for Small Distances

We introduced in the beginning of this section (see C.3.2) approximations of the GVFs allowing for an
analytic treatment of the rates for a large chemical potential. If we like to combine the limit of small
chemical potential with the limit of large chemical potential we need to integrate again as it has been
done in Sec. C.3.1. For Simplicity we will choose µa � T � µb. Since the intra layer contributions
stay unchanged we will focus at the inter layer rates gaining:

IGD(µa � T � µb) = 1
2T 3

∫ d2q

(2π)2
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µ�T (−ω,−~q, µα)Γ1

µ�T (ω, ~q, µβ)
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IGtr(µa � T, µb � T ) = 1
2T 3
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IGtr(µb � T, µa � T ) = 1
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(C.79)

where the Cs zero distance limit is CD2(dT = 0) ≈ 0.2035, CTr(ab)(dT = 0) ≈ 0.3384 and CTr(ba)(dT =
0) ≈ 0.2271. Due to this artificial asymmetry the transport rate for the layers obeys an interesting
behavior. The transport rate of layer b reads: IbTr ≈ α2

gCTr(ba)|µ̂−1
b | whereas the transport rate of layer

a reads: IaTr ≈ α2
gCTr(ab)|µ̂b| and is strongly enhanced by the presence of layer b. Hence we are gaining

for the drag resistivity:
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ln2
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 (C.80)

With the characteristic rate for the Coulomb drag given by:

(Tτ0)−1 ≈ 6
π
α2
gNCTr(ba) (C.81)
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D Appendix D

Correlated Disorder and Diffusive
Corrections to the Higher-Order Drag

Following the notation introduced by Ref. [91] we will briefly sketch the estimation of drag contributions
at the Dirac point. This estimation is of experimaental relevance, which is why we exceptionally
consider the diffusive regime. We will start with higher-order Coulomb interaction contributions in
the diffusive regime and proceed then with correlated disorder contributions.

D.1 Estimation of Diffusive Higher Order-drag

In this section we follow the calculation that has been performed in Ref. [91] but will adept it towards
our situation. The relevant regime for the experimental setup is Nκd � 1, in which we will now use
the terminology in analogy to Ref. [91]. Thus, the propagator for the longitudinal vector potential
reads:

V12(q, ω) ' 1
ν

κq

[Dq(q + 2Nκ)− iω] [Dq2 − iω] . (D.1)

Substituting this into the third order drag equation given by Ref. [91] we obtain:

ρ
(3)
D = ~

e2 32T g
2

ν5

∞∫
0

dωdΩF1(ω,Ω)F2(ω,Ω)

×
∫
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]2 κq

[Dq(q + 2Nκ)− iω][Dq2 − iω]

× κ|q/2−Q|
[D(q/2−Q)2 + 2D|q/2−Q|Nκ− i(ω/2− Ω)] [D(q/2−Q)2 − i(ω/2− Ω)]

× κ|q/2−Q|
[D(q/2 + Q)2 + 2D|q/2 + Q|Nκ− i(ω/2 + Ω)] [D(q/2 + Q)2 − i(ω/2 + Ω)]

}
. (D.2)
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D Correlated Disorder and Diffusive Corrections to the Higher-Order Drag

The frequency integrals are dominated by ω ∼ Ω ∼ T , whereas the momentum integrals are dominated
by q ∼ Q ∼ qT =

√
T/D. Therefore, the drag conductivity given by Ref. [91] can be estimated as

ρ
(3)
D ∼ ~

e2
Tg2

ν5 T 2︸︷︷︸
dωdΩ

q4
T︸︷︷︸
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(Dq2
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∼ ~
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1
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κ
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√
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)3

. (D.3)

Therefore, for Nκ�
√
T/D we get

ρ
(3)
D ∼

~
e2

1
N3g3 , (D.4)

while for Nκ�
√
T/D we find

ρ
(3)
D ∼

~
e2

1
g3

(
Dκ2

T

)3/2

. (D.5)

In the first case the expression for the third-order drag coefficient is given by

ρ
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2
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1
D(q/2 + Q)2 − i(ω/2 + Ω)

 . (D.6)

The integrals here are now dimensionless [one measures momenta in units of (T/D)1/2 and frequencies
in units of T ]. In the second case the prefactor is again determined by a dimensionless integral:

ρ
(3)
D = ~

e2 32T g
2

ν5

∞∫
0

dωdΩF1(ω,Ω)F2(ω,Ω)
∫
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∫
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Dq2 − iω
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[D(q/2 + Q)2 − i(ω/2 + Ω)]2

}
. (D.7)

For Tτ � 1 and µτ � 1, we have
κ ∼ αµ/v, (D.8)

which implies

Nκ =

√
T

D
↔ 1

τ
= α2N2µ2

T
. (D.9)

For µτ � 1, we have
κ ∼ α/vτ, (D.10)

and hence

Nκ =

√
T

D
↔ 1

τ
= T

α2N2 . (D.11)
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D.2 Estimation of Correlated Disorder Contributions

Thus, for
max{T, α2N2µ2/T} � 1/τ � T/α2N2

the third-order drag resistivity reads:

ρ
(3)
D ∼

α3

(Tτ)3/2 . (D.12)

At Tτ ∼ 1 this result matches the ballistic third-order drag resistivity, Eq. (8.46).
For yet lower T � α2N2/τ and µτ � 1 the third-order drag saturates at

ρ
(3)
D ∼

~
e2

1
N3 . (D.13)

Finally, for µτ � max{1, (Tτ)1/2/αN}, the third-order drag behaves as

ρ
(3)
D ∼

~
e2

1
(Nµτ)3 . (D.14)

D.2 Estimation of Correlated Disorder Contributions

As emphasized in Ref. [122], the correlations between the disorder potentials of the two layers might
be especially important in drag experiments on graphene near the Dirac point for the two reasons:
(i) similarly to the third-order drag, it does not require [96] the particle-hole symmetry and hence
provides finite drag at the charge neutrality point [122]; (ii) in contrast to experiments on conventional
semiconducting double wells, the interlayer distance in graphene experiments is rather small, which
enhances the disorder correlations between the layers. In what follows, we analyze the two models of
correlations: (A) Correlated scattering off common short-range impurities [96] and (B) correlations of
large-scale inhomogeneities of the chemical potentials in the layers [122].

D.2.1 A. Short-Range Correlations: Correlated Impurity Scattering

Following Ref. [96], we introduce the matrix of disorder correlators w(ij)
v̂v̂′ = 〈u(i)u(j)〉imp. The values

of w(ij) at i 6= j differ from zero due to correlations between the impurity potentials u(i) in different
layers. The total scattering rates are defined by

1
τij

=
〈
wijv̂v̂′

1 + v̂v̂′

2

〉
, (D.15)

where the symbol 〈...〉 stands for the angular average. The disorder correlations between the layers are
described by the characteristic rate

1
τg

= τ12 − τ
τ2 , (D.16)

where 1/τ = [1/τ11 + 1/τ22]/2. The time scale τg is a characteristic scale on which carriers in the two
layers start “feeling” the difference between the impurity potentials u(1) and u(2). The potentials in
the two layers are strongly correlated when τg � τ . One might expect that for realistic systems the
situation of moderately correlated potentials, τg ∼ τ ∼ τ12, is typically realized. Weakly correlated
potentials (τ12 � τ) yield τg � τ . Below we assume that disorder is sufficiently short-ranged and do
not distinguish between the total and transport scattering rates for the estimates.
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D Correlated Disorder and Diffusive Corrections to the Higher-Order Drag

We start from the ballistic regime Tτ � 1. The correlated disorder affects the drag in a way similar to
the third-order drag. With correlated disorder, one can include an interlayer disorder line w12 into the
inelastic scattering amplitude. In the ballistic ρ(3)

D drag we had one amplitudeM2 with two interaction
lines and one with a single wave line (M1). The corresponding drag rate contains 2Re[M1(M2)∗] ∝ α3.
Now one can form the second-order scattering amplitude M2 using one interaction line (α) and one
interlayer-disorder line, which introduces a factor (Tτ12)−1. This gives

1
τ corr
D

∼ α2T (Tτ12)−1 = α2/τ12, (D.17)

and
ρcorr
D ∼ α2

Tτ12
, (D.18)

which overcomes the third-order drag ρ(3)
D ∼ α3 for 1/τ12 > αT . This happens in the perturbative

regime (1/τ > α2T , assuming correlated disorder, τ12 ∼ τ), where the correlated-disorder contribution
can be calculated diagrammatically. Similarly to σ(3)

D , the corresponding diagram involves two four-leg
vertices (hence finite drag at the Dirac point µ = 0), but now connected in all possible ways by two
interaction lines and one disorder line w12.
The general expression for the drag resistivity in the ballistic regime, including both third-order and

correlated-disorder drag rates for equal layers has the form:

ρD ∼
~
e2

1
NT

N

τ

(
α2µ

2

T
+ α3T + α2

τ12

)
+ µ2N2

T 2

α4T 2 −
(
α2µ

2

T
+ α3T + α2

τ12

)2


1
τ

+ µ2N

T 2

α2T +
(
α2µ

2

T
+ α3T + α2

τ12

) (D.19)

Exactly at the Dirac point it reduces to:

ρD(µ = 0) ∼ ~
e2α

2
(

1
Tτ12

+ α

)
. (D.20)

Let us now analyze the role of correlated disorder in the diffusive regime Tτ � 1. Again, we assume
the absence of localization at the Dirac point (see Section 3). The drag resistivity for the case of
correlated disorder was calculated in the diffusive regime in Ref. [96]. It is dominated by the Maki-
Thompson diagram with an interlayer Cooper propagator. It is worth noting that any difference in
the disorder potentials (as well as in chemical potentials of the layers) leads to a finite gap in these
propagators given by 1/τg. The main result of Ref. [96] is as follows:

ρcorr
D ∼ ~

e2
1

g2[λ−1
21 + ln(ε0/T )]2

ln Tτϕτg
τϕ + τg

(D.21)

at τ−1
g � T � τ−1, and

ρcorr
D ∼ ~

e2
(Tτg)2

g2[λ−1
21 + ln(ε0τg)]2

. (D.22)

at lower temperatures T � τ−1
g .
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D.2 Estimation of Correlated Disorder Contributions

In graphene near the Dirac point, for small interlayer distance κd � 1 the interlayer interaction
constant in the Cooper channel is λ12 ∼ α. The Cooper channel cutoff energy is ε0 = 1/τ (the
logarithm in the Cooper channel appears only for a constant density of states; in graphene in the
diffusive regime this happens only for energies below 1/τ), the dimensionless conductance g ∼ 1, and
τφ ∼ 1/T . Substituting these values to Eqs. (D.21) and (D.22), we arrive at

ρcorr
D ∼ ~

e2
α2

[1− α ln(Tτ)]2 , τ−1
g � T � τ−1, (D.23)

ρcorr
D ∼ ~

e2
α2(Tτg)2

[1− α ln(Tτ)]2 , T � τ−1
g . (D.24)

These results are ∝ α2 for realistic temperatures, Tτ � exp(−1/α). For a moderately correlated
disorder τg ∼ τ , Eqs. (D.18) and (D.24) then lead to

ρcorr
D ∼ ~

e2α
2

(Tτ)−1, T τ � 1
(Tτ)2, T τ � 1

, (D.25)

which yields a maximum at T ∼ 1/τ in the temperature dependence of the drag resistivity at the
charge neutrality point. For strongly correlated disorder potentials (τg � τ), this maximum develops
into a plateau between τ−1

g � T � τ−1.

D.2.2 B. Long-Range Correlations: Correlated Macroscopic Inhomogeneities

Let us now analyze within our kinetic-equation framework the model of correlated macroscopic spatial
fluctuations δµi in chemical potentials of the two layers [122], characterized by the correlation function

F
(µ)
ij (~r − ~r′) = 〈δµi(~r)δµj(~r′)〉 6= 0. (D.26)

We restrict ourselves to the ballistic regime Tτ � 1. Assuming the spatial scale of the fluctuations
to be much larger than all characteristic scales related to the particle scattering, vτee, vτD, and vτ ,
we solve the hydrodynamic equations locally, yielding Eq. (7.23) with local values of the chemical
potentials encoded in functions Ba(b)

1 ∼ µa(b)/T , as well as in the local drag rate

1
τD(~r) ∼ α

2N
µ1(~r)µ2(~r)

T
.

On the other hand, since the coefficients B0 ∼ 1 and B2 ∼ 1, as well as the transport electron-electron
scattering rate τ−1

ee ∼ α2T are finite at the neutrality point, we can neglect the fluctuations of µi
in these quantities. Exactly at the Dirac point µ1,2 = 0, assuming that the fluctuations of chemical
potentials are weak (the precise condition is established below), we can further neglect the B1-terms
in the denominator of Eq. (7.23), yielding for the “local resistivity”

ρD(~r) ' ~
e2

2B2τ

NBa
0B

b
0T

 1
ττD(~r) + Ba

1 (~r)Bb
1(~r)

τaeeτ
b
ee


∼ ~
e2

τ

NT
δµ1(~r)δµ2(~r)

(
α2N

Tτ
+ α4N2

)
. (D.27)
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D Correlated Disorder and Diffusive Corrections to the Higher-Order Drag

Averaging this expression over the small fluctuations of the correlated chemical potentials [122], we
arrive at the correction to the universal third-order result, ρ(3)

D (µ = 0) ∼ (~/e2)α3,

∆ρD(µ = 0) ∼ ~
e2
α2 F

(µ)
12 (0)
T 2

(
1 + α2NTτ

)
∼ ~
e2
F

(µ)
12 (0)
T 2


α4NTτ

1
τ
� α2NT,

α2 α2NT � 1
τ
� T.

(D.28)

We see that in the Coulomb-dominated transport regime, this correction is dominated by the fluctu-
ations in B1, whereas in the disorder-dominated (perturbative) regime, the main role is played by a
locally finite drag rate.
Finally, in the ultraclean limit

1
τ
� α2NF

(0)
ii /T, (D.29)

we can neglect 1/τ in the denominator of the local drag resistivity given by Eq. (7.23), yielding a
natural analog of Eq. (7.29):

∆ρD(µ = 0)(r) ∼ ~
e2α

2 δµ1δµ2
δµ1δµ1 + δµ2δµ2

. (D.30)

In particular, for perfectly correlated chemical potentials, δµ1(r) = δµ2(r), the fluctuations drops out
from Eq. (D.30) and the local resistivity turns out to be independent of r. In a more general case,
the averaging over fluctuations becomes nontrivial, but this can only affect the numerical prefactor in
the final result. Thus, the correlated large-scale fluctuations of the chemical potentials in the layers in
effect shift the curve 1 in Fig. 7.6 upwards, extending the validity of the fully equilibrated result,

ρD ∼
~
e2α

2, (D.31)

to the case of finite disorder, Eq. (D.29), at the Dirac point. This implies that in the case of correlated
inhomogeneities the disorder-induced dip in the lower left panel of Fig. 1 develops only for sufficiently
strong disorder.
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in Chap. 9). In this chapter we want to provide the references to these works.

M. Schütt, P. M. and Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Coulomb interaction in graphene:
Relaxation rates and transport. Phys. Rev. B, 83 155441 pages 25, (2011)
We analyze the inelastic electron-electron scattering in undoped graphene within the Keldysh dia-

grammatic approach. We demonstrate that finite temperature strongly affects the screening properties
of graphene, which, in turn, influences the inelastic-scattering rates as compared to the zero-temperature
case. Focusing on the clean regime, we calculate the quantum scattering rate which is relevant for de-
phasing interference processes. We identify a hierarchy of regimes arising due to the interplay of a
plasmon enhancement of the scattering and finite-temperature screening of the interaction. We further
address the energy relaxation and transport scattering rates in graphene. We find a nonmonotonic
energy dependence of the inelastic relaxation rates in clean graphene, which is attributed to the res-
onant excitation of plasmons. Finally, we discuss the temperature dependence of the conductivity at
the Dirac point in the presence of both interaction and disorder. Our results complement the kinetic
equation and hydrodynamic approaches for the collision-limited conductivity of clean graphene and can
be generalized to the treatment of physics of inelastic processes in strongly nonequilibrium setups.

M. Schütt, P. M. Ostrovsky, M. Titov, I. V. Gornyi, B. N. Narozhny, A. D. Mirlin, Coulomb drag in
graphene near the Dirac point. Accepted for publication as a Letter in Physical Review Letters (2012)
We study Coulomb drag in double-layer graphene near the Dirac point. A particular emphasis is put

on the case of clean graphene, with transport properties dominated by the electron-electron interaction.
Using the quantum kinetic equation framework, we show that the drag becomes T -independent in the
clean limit, Tτ →∞, where T is temperature and 1/τ impurity scattering rate. For stronger disorder
(or lower temperature), Tτ � 1/α2, where α is the interaction strength, the kinetic equation agrees
with the leading-order (α2) perturbative result. At still lower temperatures, Tτ � 1 (diffusive regime)
this contribution gets suppressed, while the next-order (α3) contribution becomes important; it yields a
peak centered at the Dirac point with a magnitude that grows with lowering Tτ .
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