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1 Introduction

The opinion seems to have got abroad, that in a few years all the

great physical constants will have been approximately estimated,

and that the only occupation which will then be left to men of

science will be to carry on these measurements to another place of

decimals.

James C. Maxwell

Introductory Lecture on Experimental Physics,

held at Cambridge in 1871 [NM65]

In this thesis, experimentalworkonone-dimensional small capacitance

Josephson junction arrays (1D SCJJAs) is presented. The results help gain

a quantitative understanding of the charge transport properties of these

1D SCJJAs, paving the way for applications in quantummetrology and the

study of quantum phase transitions.

In this case, the Josephson junctions are superconductor-insulator-

superconductor tunnel junctions. The capacitances 𝐶 of the junctions are

small in the sense that the quantized character of the charging energy

𝑞􀇇/2𝐶, 𝑞 ∈ {0, ±𝑒, ±2𝑒,…} becomes relevant (see e.g. Ref. [Bou+98]). A

Josephson junctionmuch smaller than a square micrometer might have a

capacitance of 1 fF, leading to a single electron charging energy of 80 𝜇eV,

which corresponds to a temperature of about 1 Kelvin.

If several small superconducting electrodes, often referred to as islands,

are connected in series, each island is a site for charge localization, and

Cooper pairs can tunnel from one to the other. It has been predicted

that in a certain parameter range, a single Cooper pair can extend over

several such islands [HBJS96]. A serial connection of several islands is

called a chain or a (one dimensional) array. If the size of a charge object,

determined by the electrostatic screening length Λ, is smaller than the

length of the array, it is called a long array. Both Λ and the array length

are usually expressed in the number of islands.
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1 Introduction

The dynamics of this charge object can be modeled by non-linear

equations of the sine-Gordon type, similar to the vortex motion in long

Josephson junctions, where moving flux solitons can be observed (see

e.g. Ref. [Ust98]). Therefore, in long SCJJAs, charge solitons are ex-

pected ([HBJS96]; [HD96]).

From the duality to the experimentally well known fluxon systems,

a degree of control of the charge soliton movement is expected that

enables Cooper pair counting with metrological precision. This would

open the possibility to close the quantum metrological triangle (see e.g.

Ref. [Piq+04]).

In this work, the islands are connected in two separate places, form-

ing nano-scale superconducting quantum interference devices (nano-

SQUIDs). This means that the tunneling probability of the Cooper pairs

can be controlled by a weak external magnetic field. A scanning electron

micrograph of a section of such a nano-SQUID chain is shown in Fig. 1.1.

500 nm

SQUID loop

Josephson 
junctions

superconducting
islands

Figure 1.1: Section of a long nano-SQUID chain. The bright oval objects are

Josephson junctions, connecting the Aluminum islands, which are superconduct-

ing below 1.2 Kelvin. Each pair of parallel Josephson junctions forms a SQUID.

The circuit diagram of such a section is shown on the right.
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1 Introduction

By tuning the tunnel coupling between the islands, the transport prop-

erties canbe changed fromentirely superconducting to entirely insulating

behavior. This makes the 1D SCJJA an in situ tuneable model system for a

quantum phase transition [Hav+01].

The insulating behavior is expressed in the current-voltage character-

istics as a Coulomb blockade. Transport through Coulomb blockaded

arrays can be activated e.g. by voltage, or by thermal energy. The ther-

mally activated transport is the main subject of this thesis.

1D SCJJAs have been studied for two decades now. Aspects of the

current-voltage characteristics can be explained, but quantitative under-

standing is still limited. A major advantage of measuring and analyzing

the thermally activated conductance at zero bias is the accessability to

theoretical modeling. This may lead to a level of understanding sufficient

to build devices for application.

Contents of this work

First, the properties of 1D SCJJA are examined theoretically, by analytical

and numerical modeling (Chapter 2). The electrostatic limit of the arrays

is described in section 2.1. In section 2.2, consequences of the super-

conducting nature of the sample, and the quantum mechanical nature

in general, are discussed. A hopping model for charges in 1D SCJJAs is

derived in section 2.3.

Then, the methods to fabricate these structures are described (Chap-

ter 3). That chapter includes a brief report about an experiment on the

special propertiesofAluminum, the superconductorused for the reported

experiments.

The setup, the characterization and measurement methods and all

charge transport measurement results are included in Chapter 4.

Finally, an outlook (Chapter 5) and a conclusion (Chapter 6) are pre-

sented. In the appendix, details on calculations and on aspects of experi-

mental realizations are included.
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2 Chargetransport throughSQUID

chains

Today's scientists have substituted mathematics for experiments,

and they wander off through equation after equation, and

eventually build a structure which has no relation to reality.

Nikola Tesla

Radio Power Will Revolutionize the World

in: Modern Mechanics and Inventions (July 1934)[Tes34]

2.1 Electrostaticmodeling

Before considering themore realistic quantummechanical description of

the Josephson junction chains, it is useful to describe the system in the

classic electrostatic limit. The tunnel effect is neglected, and the system

is described as a network of capacitors (subsection 2.1.1).

The actual capacitance of some of the capacitors is very hard to de-

termine experimentally, and the geometry is too complex for simplified

analytic calculations. The capacitances are therefore calculated by nu-

merically solving the electric field distribution for realistic geometries, as

presented in subsection 2.1.2.

During the first part, it will become apparent that in the case of no

transport, the bias voltage does not penetrate far into long chains. A

modified environment geometry, a bias comb (2.1.3), will be presented to

tackle that problem.
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2 Charge transport through SQUID chains

2.1.1 Basic electrostatic model

The basic model of an array of tunnel junctions is an infinite chain

of capacitors of capacitance 𝐶, with each island having an additional

capacitance 𝐶􀇅 to ground
1.

C0 C0 C0

CC C C

...

C0

C

C*

...

...

Figure 2.1: Infinitely long half-array. The addition of another island at the front

does not change the capacitance.

The fact that the model array is infinitely long can be exploited analyti-

cally.

Effective capacitance within the array

Suppose an effective capacitance 𝐶∗ that captures the ray of capacitance

unit cells, infinite in one direction. The addition of an extra island at the

front should not change the effective capacitance (see Fig. 2.1). So the

effective capacitance fulfills

𝐶∗ = (
1

𝐶
+

1

𝐶􀇅 + 𝐶
∗
)

􀇐􀇆

(2.1)

1A similar description can be found in Ref. [Del91]. Ref. [Mel+97] describes a more

general method that includes arbitrary capacitances and background charges.
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2.1 Electrostatic modeling

Rewriting and solving for 𝐶∗, one arrives at:

𝐶∗ =
𝐶􀇅

2
(√1 + 4 ⋅

𝐶

𝐶􀇅
− 1) (2.2)

In the described systems, the island to island capacitance 𝐶 is much

larger than the capacitance to ground. That means
􀉍

􀉍􀊽
=∶ Λ􀇇 is large, and

it can be approximated:

𝐶∗ ≈ Λ ⋅ 𝐶􀇅 (2.3)

Λ is the electrostatic screening length.

Static single charge excitation

Consider a single cooper pair charge of2𝑒, sitting on an island somewhere

in the infinite array. The neighboring islands are connected to ground by

a capacitor 𝐶􀇅 and by the rest of the half-infinite chain. See figure 2.2 for

visualization.

C0 C0 C0

C C

C*C*

2e
q

q*q0q*

q

q'q0 q'q0

Figure 2.2: Environment of a localized charge on an island in the infinite array.

The equations for charge conservation are:

2 ⋅ 𝑞 + 𝑞􀇅 = 2𝑒

𝑞∗ + 𝑞􀒮􀇅 = 𝑞

7



2 Charge transport through SQUID chains

The Kirchhoff loop rule for the voltages gives

𝑞

𝐶
+
𝑞􀒮􀇅

𝐶􀇅
=

𝑞􀇅

𝐶􀇅
𝑞∗

𝐶∗
=

𝑞􀒮􀇅

𝐶􀇅

The screening charges at the central island are:

𝑞 = 2𝑒/(
1

Λ􀇇
+

1

1 +
􀉍∗

􀉍􀊽

+ 2)

𝑞􀇅 = 2𝑒 − 2𝑞

The screening continues in both directions. Using very similar equa-

tions, extra islands can be inserted, shifting 𝐶∗ outwards. The charge on

N-th capacitor in each direction, 𝑞(𝑁) and 𝑞􀇅(𝑁), can be calculated. One

arrives at:

𝑞(𝑁) = 𝑞(𝑁 − 1)/(
1

Λ􀇇
+

1

1 +
􀉍∗

􀉍􀊽

+ 1) (2.4)

𝑞􀇅(𝑁) = 𝑞(𝑁) ⋅ (
1

Λ􀇇
+

1

1 +
􀉍∗

􀉍􀊽

) (2.5)

In the case of Λ ≫ 1, Eq. can be iterated to 𝑞􀇅(𝑁 + 𝑛) = 𝑞􀇅(𝑁) ⋅ (1 +

1/(1 + Λ))􀇐􀉲. It drops to 𝑞􀇅(𝑁)/𝑒 after 𝑛 = Λ + 1 islands.

As an example, the case of 𝐶/𝐶􀇅 = 100 has been chosen, because it is

a good approximation of the typical experimental case. The screening

charges on different islands are shown in Fig. 2.3(a). In the chosen

example, the electrostatic screening length Λ = 10 gives a reasonable

estimate of the size of the screening.

For islands that are much futher than Λ islands away, the screening

charge vanishes. The total screening of the excess charge is distributed

over the ground capacitances, as one can see by summing up the 𝑞􀇅(𝑛):

∑
􀉘
􀉲􀇑􀇐􀇆􀇅􀇅 𝑞􀇅(𝑛), as is shown in Fig. 2.3(b).
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2.1 Electrostatic modeling

−100 0 100

island number N

0

0.025

0.05

ch
ar
ge

to
gr
ou

n
d
(2
e)

C/C0 = 100

(a) Partial charge on GND capacitors

−100 0 100

island number N

0

0.5

1

in
te
gr
al

ch
ar
ge

to
gr
ou

n
d
(2
e) C/C0 = 100

(b) Summed screening charge

Figure 2.3: Evaluation of the analytic solution for an infinitely long array. a)

Charges on the ground capacitors. FWHM is ≈ 15. b) Integral charge

(∑
􀉘
􀉲􀇑􀇐􀇆􀇅􀇅 𝑞􀇅(𝑛)) changes by 2e when passing the charged island.

The total effective capacitance of a single island is:

𝐶eff = 𝐶􀇅 + 2 ⋅ 𝐶
∗ (2.6)
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2 Charge transport through SQUID chains

The total energy of a single excess cooper pair is 𝐸tot = (2𝑒)
􀇇/(2𝐶eff).

In the limit of 𝐶 ≫ 𝐶􀇅, it will be useful to rewrite this in terms of the single

junction cooper pair charging energy 𝐸􀉍 = (2𝑒)
􀇇/(2𝐶):

𝐸tot =
(2𝑒)􀇇

2𝐶eff
≈

(2𝑒)􀇇

2 ⋅ (2𝐶/Λ)
=
Λ

2
𝐸􀉍 (2.7)

Bias voltage penetration

Suppose now the half-infinite array is connected to a voltage source.

The charge on the first capacitor will be determined by the bias voltage.

Beginning with the next island, the screening charges will follow equa-

tions 2.4 and 2.1.1. That means that the screening length Λ also applies

to an electrostatic bias voltage penetrating the array.

In the following, an array will be considered long if the inner islands

can be treated as parts of an infinite array, which means 𝑁 ≫ Λ. In the

electrostatic limit picture, it is impossible to apply an electric force to a

charge situated deep inside a long array – by definition.

Boundary effects

In reality, the limit of the infinite array is not be the best description.

Even if one fabricates arrays with 𝑁 ≫ Λ, the islands close to the leads

feel a different total screening. Consider a finite array. The first and last

island are coupled to the leads in the sameway as all the islands amongst

each other, by capacitance 𝐶. Since for 𝐶/𝐶􀇅 ≫ 1, 𝐶 is much bigger than

the effective capacitance 𝐶∗ ≈ 𝐶/Λ, the total charging energy near the

boundary is smaller thandeep inside the array. The exact charging energy

of each island is shown in Fig. 2.4.

The energy of an excess charge carrier rises to approach the infinite

chain limit (Eq. 2.7). Λ islands in, the limit is already almost reached. In

a transport model in the following section, this rise will be approximated

by a linear rise over Λ islands.

10



2.1 Electrostatic modeling

50 100 150 200

island number N

0

Λ

4
EC

Λ

2
EC

electrostatic
transport model

Figure 2.4: Total energy of an extra charge carrier, depending on its position, in

the case of 𝐶/𝐶􀇅 = 100. In the center, the energy is exactly the same as in the

infinite chain limit (Eq. 2.7). Near the borders, the energy is lowered. A simple

approximation is a linear change over Λ islands, shown in red.

2.1.2 Experimental realization details: finite element calculation of

the capacitance to ground

A simple way to include ground capacitances into the electrostatic model

is to assume a uniform ground capacitance, as discussed in the previous

subsection.

Consider a uniform chain of strongly capacitively coupled islands,

placed on an insulating surface in an experimental setup. The chain

is connected to leads on both sides. For an island somewhere in the

middle of the chain, the closest counter-electrode to define a ground

capacitance might be the backside plane of the insulating substrate. An

island on one of the sides will additionally form a capacitor with the

lead electrode. This results in a very non-uniform ground capacitance

profile. In order to produce uniform capacitances and thereby a uniform

screening length, the distance to the ground electrode should be identical

for all islands.

Our designs always feature ground electrodes in the same plane as the

islands (see Fig. 2.5). In this subsection, capacitance calculations for that

kind of geometry are presented.

11



2 Charge transport through SQUID chains

Geometry of the model

The geometry we chose for the calculations is shown in Fig. 2.5.

w
d

GND

GND

dx

d
Silicon Oxide

Silicon

Vacuum

hO

hE

wd d

Figure 2.5: Geometry for the numerical simulation of the capacitance. Left: top

view onto the substrate. A slice of infinitesimal thickness 𝑑𝑥 will be used for

the 2D calculations. Right: Geometry of the slice. Hight and width of the slice

were chosen large enough that the electric field lines could run undisturbed.

The figures are not to scale.

For simplicity and to economically use computation time, a two-

dimensional slice model was used. It calculates a capacitance per unit

length, which by multiplication with a typical island length gives an esti-

mate of the island's ground capacitance.

The island size is 𝑤 = 1 𝜇m times ℎ􀉏 = 50 nm, the gap 𝑑 is varied

between𝑑 = 0.25 𝜇m and𝑑 = 2 𝜇m. The tophalf is just vacuum(𝜖􀉶 = 1).

Below the structures is a ℎ􀉙 = 400 nm layer of silicon oxide (𝜖􀉶 = 4.5),

and below that is the silicon wafer (𝜖􀉶 = 11.7).

Computation

The capacitance was computed using the finite elements method (FEM,

see e.g. ref [BBO04]) to solve Poisson's equation.

12



2.1 Electrostatic modeling

The geometry was defined in a parametrized form using the open

software Salome2, which was also used to generate the mesh, i.e. the

discretization of the defined geometry.

The mesh was then imported to the open FEM solver software Elmer3,

which numerically solved Poisson's equation. Von Neumann boundary

conditions were applied.

The energy density of the electric field, as calculated by Elmer, is shown

in Fig. 2.6.

Figure 2.6: Energy density (arbitrary units) for a given charge on the island. Most

of the electric field is concentated in the Silicon Oxide layer.

Results

The resulting ground capacitance per nanometer is shown in Fig. 2.7.

The distance dependent data can be extrapolated with a power law,

𝐶􀇅(𝑑) ∝ 𝑥
􀇐􀇆/􀇉. A typical island length of 200 nm and a ground electrode

distance of 1 𝜇m result in a 𝐶􀇅 of 13.4 aF. This agrees with the order of

magnitude estimated for similar geometries4, and together with a typical

2Salome - Open Source Integation Platform for Numerical Simulation, Version 5.1.3,

http://www.salome-platform.org
3ELMER - Open Source Finite Element Software for Multiphysical Problems,

Version 5.5.0, http://www.csc.fi/english/pages/elmer
4Ref. [AAH01] estimates 9 aF, ref. [RS09] quotes 5-20 aF.

13
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2 Charge transport through SQUID chains

500 1000 1500 2000

d (nm)

0.05

0.075

0.1

0.125

C
0
(a
F
/
n
m
)

Figure 2.7: Simulated linear capacitance density depending on the distance be-

tween islands and electrodes. The data can be extrapolated with a power law,

𝐶􀇅(𝑑) ∝ 𝑥
􀇐􀇆/􀇉 (red line).

junction capacitance of 1 fF, the screening length would indeed be on the

order of 10.
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2.1 Electrostatic modeling

2.1.3 Bias comb design calculations

In subsection 2.1.1, it has been shown that in the case of a continuous

ground electrode, a bias voltage penetrates only on the scale of the elec-

trostatic screening length Λ. For transport experiments, it is interesting

to separate the charge screening length from the bias voltage screening

length.

CC C C
......

CgCg Cg Cg

C0

Cg,0

C0 C0

Cg,0 Cg,0

Cg,iCg,i Cg,i

Figure 2.8: A simple capacitance model to illustrate the the gate electrode

concept. At the bottom, the usual infinite chain of islands is drawn. At the top, a

similar chain of gate electrodes has been added, which is coupled to the islands

in a simple one-to-one correspondence.

One possibility to separate the two screening lengths is sketched in

Fig. 2.8: in addition to the islands with inter-island capacitances 𝐶 and

capacitances to ground 𝐶􀇅, a set of gate electrodes has been placed on the

substrate. The gates are coupled to each other by 𝐶􀉫 and to ground by

𝐶􀉫,􀇅, and each island is coupled to a corresponding gate electrode via 𝐶􀉫,􀉭 .

Suppose now that 𝐶􀇅 ≪ 𝐶􀉫,􀉭 , 𝐶􀉫,􀇅. Then 𝐶􀇅 can be neglected, and the

ground capacitance is dominated by the gate electrodes. Suppose further

𝐶􀉫,􀉭 ≪ 𝐶􀉫, 𝐶􀉫,􀇅. If now a voltage is applied to the gate electrodes, the

voltage distribution will be dominated by 𝐶􀉫 and 𝐶􀉫,􀇅, and the chain of

islands can be ignored.

15



2 Charge transport through SQUID chains

The screening of charge carriers on the islands is governed by𝐶/𝐶􀉫,􀉭 =∶

Λ, while the screening of a bias voltage depends on 𝐶􀉫/𝐶􀉫,􀇅 =∶ Λ􀉫. As

long as the limits 𝐶􀇅 ≪ 𝐶􀉫,􀉭 , 𝐶􀉫,􀇅 and 𝐶􀉫,􀉭 ≪ 𝐶􀉫, 𝐶􀉫,􀇅 are obeyed, Λ and Λ􀉫
can be chosen independently.

Figure 2.9: A Josephson junction array with voltage bias gates close by.

For the sake of simplicity, one gate electrode per island was discussed

first. However, it is much easier to fabricate fewer, larger gate electrodes,

as shown in Fig. 2.9. It is plausible that one benefits further from such a

decision. The screening properties of the islands are not strongly affected

by this design change, while immediately a longer bias voltage screening

length is gained, which is understood as follows:

The voltage drops along the gate electrodes on the length of Λ􀉫. If there

are 𝑛􀉭 islands per gate, the effective voltage screening length is 𝑛􀉭Λ􀉫 in

the island chain.

In order to test the approach, the capacitances between the islands and

electrodes need to be calculated in a plausible geometry.

Finite element calculations

The capacitances between islands and gates were computed using the

same software as in subsection 2.1.2, but now in a three-dimensional

(3D) geometry. The model geometry is shown in Fig. 2.10.

The 3D geometry is chosen because unlike in the case of a continuous

ground electrode, the electric field lines are not perpendicular to the
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2.1 Electrostatic modeling

Figure 2.10: 3D Model and mesh of a simplified gate geometry. Two different

distances 𝑑 were simulated.

array. Instead, depending on the relative position of each island to the

gate electrodes, the polarization of the dielectric has a different direction.

The oxide layer thickness is 400 nm. The islands are (220 nm)􀇇, with

a distance of 5 nm between the islands. The islands' thickness in this

model is 25 nm. The gates electrodes have a thickness of 50 nm, their

size is (900 nm)􀇇. The distance between the gates is 225 nm.

The dimensions result in 𝑛􀉭 = 5 islands per gate. Results are calculated

using a distance between islands and gates 𝑑 of 280 nm and 500 nm.

They are shown in Fig. 2.11.

Algebraic calculations

In order to calculate voltage distributions in systems of electrodes, the

best way to solve the system of linear equations is to find and invert the

capacitance matrix (see e.g. ref [Max73]).

The capacitance matrix for a finite array of the type shown in Fig. 2.1

is:

𝐂 =
⎛
⎜⎜

⎝

𝐶 −𝐶 0 … 0

−𝐶 2𝐶 + 𝐶􀇅 ⋱ ⋱ ⋮

0 ⋱ ⋱ −𝐶 0

⋮ ⋱ −𝐶 2𝐶 + 𝐶􀇅 −𝐶

0 0 0 −𝐶 𝐶

⎞
⎟⎟

⎠

(2.8)
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2 Charge transport through SQUID chains
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Figure 2.11: Resulting capacitances from the 3D FEM calculations. The blue dots

show the capacitances used for the matrix calculations.

The diagonal contains the sum of all capacitances connected to a given

electrode, while the coupling between individual electrodes is covered by

entries of unequal indices.

At this point, the gate electrodes are included. For the calculation, the

numerically backed up estimate of island-to-gate capacitances shown in

Fig. 2.11 are used. The capacitances are chosen to resemble the numeric

values, and to produce the same screening properties inside the array as

in the continuous ground electrode case.

Every fifth island only couples to the electrode nearest to it (Fig. 2.12),

withacapacitance𝐶􀉫,􀉭 = 10𝑎𝐹. The four following islandshave (5/6)𝐶􀉫,􀉭 ,

(4/6)𝐶􀉫,􀉭 , (2/6)𝐶􀉫,􀉭 and (1/6)𝐶􀉫,􀉭 . They also couple to the following

electrode, so that the total capacitance of one island to all gate electrodes

is always (6/6)𝐶􀉫,􀉭 . This scheme is illustrated in Fig. 2.12.

If we neglect the ground capacitance and couple the islands only to gate

electrodes in thisway, the part corresponding to the island chainwill look

very similar to Eq. 2.8:

18



2.1 Electrostatic modeling

0 1-1-2 2

previous
gate
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Figure 2.12: Each gate couples to nine islands in total. Every fifth island couples

only to one gate, all the other islands couple to two.

𝐂𝐚 =
⎛
⎜⎜

⎝

𝐶 + 𝐶􀉫,􀉭 −𝐶 0 … 0

−𝐶 2𝐶 + 𝐶􀉫,􀉭 ⋱ ⋱ ⋮

0 ⋱ ⋱ −𝐶 0

⋮ ⋱ −𝐶 2𝐶 + 𝐶􀉫,􀉭 −𝐶

0 0 0 −𝐶 𝐶 + 𝐶􀉫,􀉭

⎞
⎟⎟

⎠

The total capacitancematrix takes the shape of a blockmatrix, with the

uncoupled island chain 𝐂𝐚 and the uncoupled gates 𝐂𝐠 on the diagonal,

and an interaction matrix 𝐂𝐢 on the off-diagonal.

𝐂 = (
𝐂𝐚 𝐂𝐓𝐢
𝐂𝐢 𝐂𝐠

)

Each gate electrode is connected to nine islandswith a total capacitance

of 5𝐶􀉫,􀉭 . That part therefore becomes:

𝐂𝐠 =
⎛
⎜⎜

⎝

𝐶􀉫 + 3𝐶􀉫,􀉭 −𝐶􀉫 0 … 0

−𝐶􀉫 2𝐶􀉫 + 5𝐶􀉫,􀉭 + 𝐶􀉫,􀇅 ⋱ ⋱ ⋮

0 ⋱ ⋱ −𝐶􀉫 0

⋮ ⋱ −𝐶􀉫 2𝐶􀉫 + 5𝐶􀉫,􀉭 + 𝐶􀉫,􀇅 −𝐶􀉫
0 0 0 −𝐶􀉫 𝐶􀉫 + 3𝐶􀉫,􀉭

⎞
⎟⎟

⎠
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2 Charge transport through SQUID chains

The interaction block is:

𝐂𝐢 =
⎛
⎜

⎝

𝐶􀉫,􀉭
􀇊

􀇋
𝐶􀉫,􀉭

􀇉

􀇋
𝐶􀉫,􀉭

􀇇

􀇋
𝐶􀉫,􀉭

􀇆

􀇋
𝐶􀉫,􀉭 0 0 …

0
􀇆

􀇋
𝐶􀉫,􀉭

􀇇

􀇋
𝐶􀉫,􀉭

􀇉

􀇋
𝐶􀉫,􀉭

􀇊

􀇋
𝐶􀉫,􀉭 𝐶􀉫,􀉭

􀇊

􀇋
𝐶􀉫,􀉭

0 0 0 0 0 0
􀇆

􀇋
𝐶􀉫,􀉭

⋮ ⋱

⎞
⎟

⎠

For the capacitance matrix calculations, GNU Octave5, is used.

The inter-islandcapacitancewasset tobe𝐶 = 1 fF, the inter-gatecapac-

itancewas 𝐶􀉫 = 50 fF. The gates-to-ground capacitancewas 𝐶􀉫,􀇅 = 1 fF.

The results are shown in Fig. 2.13. They are compared to calculations

of screening in an array with normal ground electrode 𝐶􀇅 = 𝐶􀉫,􀉭 = 10 aF.

The screening of a charge on one of the islands remains the same in both

cases, while a bias voltage applied from one of the sides penetrates much

further in the bias comb gated case.

5GNU Octave - A high-level interactive language for numerical computations,

Version 3.2, http://www.gnu.org/software/octave/
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Figure 2.13: Results of the capacitancematrix calculations. The charge screening

within the array remains unchanged, while the bias voltage penetrates much

further into the array.
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2 Charge transport through SQUID chains

2.2 Coherent properties

Now that the electrostatics of our system are understood, tunneling can

be introduced. Since the islands are superconducting, some properties of

superconductorsneedtoberecalled. The islandsarecoupledat twopoints

by Josephson junctions, forming SQUIDs. Both concepts will be described

in subsection 2.2.1. Transport through Josephson junctions is often

accompanied by quasiparticle transport, discussed in subsection 2.2.2.

The basics of a quantum mechanical description of an ideal circuit are

introduced (2.2.3), before showing the well-known RCSJ model of a real

junction (2.2.4).

Charge and phase difference across a Josephson junction are conjugate

variables. Thesmall capacitances involved in the systemsexamined in this

work shift the uncertainty towards the phase. The resulting equations

are inmany cases dual to the usual, large capacitance case (2.2.5). Chains

of these small junctions show properties dual to those of long Josephson

junctions, including the appearance of soliton-like excitations (2.2.6).

The extent of the coherent properties in the small capacitance regime is

limited by random background charges (2.2.7).

2.2.1 Superconductivity, Josephson junctions and SQUIDs

The subject of superconductity and tunnel junctions has been exhausively

described in various textbooks6. Therefore, only a quick review of the

properties necessary for this work will be provided.

Bardeen, Cooper and Schrieffer theory

Although superconductivitywas known sinceKamerlinghOnnes [Onn11]

discovered it in 1911, the first successful microscopic theory was pub-

lished 1957 by Bardeen, Cooper and Schrieffer ([BCS57], BCS theory).

In many solids, at sufficiently low temperatures, the electrons can

develop a weak, long range attraction that is mediated by exchange of

virtual phonons. In superconductors, the attraction is stronger than the

Coulomb repulsion, which is screened by the surrounding charges. The

6The author used References [Lik86], [Sch97], [Tin04] and [IL08].
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2.2 Coherent properties

occupied fermionic electron states can bond to cooper pairs. Cooper pairs

are bosonic particles and condense into a macroscopic quantum state.

For anexcitationof an electronic degreeof freedom ina superconductor

in its ground state, a cooper pair must be broken up. The energy required

for this is 2Δ, or Δ per electron. Δ is called the superconducting gap. The

electronic excitation is a collective excitation of the solid that can have

electron-like ore hole-like properties. In this context, these excitaions

will be called quasiparticles.

As temperature is increased, cooper pairs break up by thermal excita-

tion, and the size of the gap is reduced. If all cooper pairs are broken up,

the gap is zero, and the superconductor changes to the normal state. The

temperature at which this occures is called critical temperature 𝑇􀉍 , and

according to BCS theory, it is related to the zero-temperature gap:

2Δ􀇅 ≈ 3.52 ⋅ 𝑘􀉌𝑇􀉍 (2.9)

All cooper pairs in a superconductor occupy the samemacroscopic quan-

tum state. Its wavefunction Ψ(𝑟) can be normalized such that gives the

density of cooper pairs, |Ψ(𝑟)|􀇇 = 𝑛􀇘􀇥, which means:

Ψ(𝑟) = √𝑛􀇘􀇥 exp (𝑖𝜃(𝑟)) (2.10)

Near the phase transition of the superconductor, |Ψ(𝑟)|􀇇 can be used

in an expansion of the free energy. This is the basis of Ginzburg-Landau

theory. Ψ(𝑟) is therefore often called the Ginzburg-Landau order param-

eter.

Flux quantization

Consider a superconducting loop in amagnetic fieldwith vector potential

𝐴. The current density inside the superconductor is

𝑗(𝑟) = 𝑞 < 𝑣⃗ >􀈠= 𝑞 Ψ
∗𝑣⃗Ψ

Using the canonical momentum 𝑚𝑣⃗ = ( ⃗̂𝑝 − 𝑞𝐴) of a charged particle in

an electromagnetic field and Eq. 2.10, one obtains

𝑗 =
𝑛􀇘􀇥𝑞

𝑚
(ℏ∇𝜃 − 𝑞𝐴)
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2 Charge transport through SQUID chains

Deep inside the superconductor, there is nomagnetic field andno current,

which means ℏ∇𝜃 = 𝑞𝐴.

The phase change of the order parametermust be single-valued, mean-

ing that if we follow a closed path around the loop on the inside of the

superconductor, the phase change acquired must be multiples of 2𝜋:

𝛿 = ∮ ∇𝜃 ⋅ 𝑑𝑙 = 2𝜋𝑛

The magnetic flux through the loop is:

∫ 𝐵⃗ ⋅ 𝑑𝑓 = ∫ (∇ × 𝐴) ⋅ 𝑑𝑓 = ∮ 𝐴 ⋅ 𝑑𝑙 =
ℏ

𝑞
∮ ∇𝜃 ⋅ 𝑑𝑙

Therefore, the flux through the loop must be quantized:

∫ 𝐵⃗ ⋅ 𝑑𝑓 =
2𝜋ℏ

𝑞
𝑛

Since 𝑞 = 2𝑒, the flux is an integer multiple of

Φ􀇅 =
ℎ

2𝑒
= 2.068 ⋅ 10􀇐􀇆􀇊 Vs (2.11)

Φ􀇅 is called themagnetic flux quantum.

Josephson junction

If two electrodes of an identical superconductor are brought into close

proximity, e.g. separated only by a nm-thick dielectric, thewave functions

can overlap, coupling the two. This was first calculated by Josephson in

1962 [Jos62].

Let Ψ􀇆, Ψ􀇇 be the wave functions of the cooper pairs in the supercon-

ductors, and 𝐻􀇆, 𝐻􀇇 the corresponding Hamiltonians. In a perturbative

approach, the coupling can be described by a small coupling constant 𝑇,

and writing by the perturbed Schrödinger equations as:

𝑖ℏ
𝜕Ψ􀇆,􀇇

𝜕𝑡
= 𝐻􀇆,􀇇Ψ􀇆,􀇇 + 𝑇Ψ􀇇,􀇆
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2.2 Coherent properties

Suppose a voltage 𝑈 drops across the junction, and one can substitute

the Hamiltonians by the corresponding energies:

𝑖ℏΨ̇􀇆,􀇇 =
±𝑞𝑈

2
Ψ􀇆,􀇇 + 𝑇Ψ􀇇,􀇆

Inserting Eq. 2.10, one can derive equations for the cooper pair density

and the phase of each superconductor:

𝑛̇􀇘􀇥􀇆,􀇇 = ±
2𝑇

ℏ
√𝑛􀇘􀇥􀇆𝑛􀇘􀇥􀇇 sin(𝜃􀇇 − 𝜃􀇆)

𝜃􀇆,􀇇 =
𝑇

ℏ
√
𝑛􀇘􀇥􀇇,􀇆

𝑛􀇘􀇥􀇆,􀇇
cos(𝜃􀇇 − 𝜃􀇆) ∓

𝑞𝑈

2ℏ

If one defines a phase difference across the junction 𝜃 = 𝜃􀇇 − 𝜃􀇆, it is

easy to derive the Josephson equations:

𝐼 = 𝐼􀉍 sin(𝜃) (2.12)

𝑈 =
ℏ

2𝑒
𝜃̇ (2.13)

In1963AmbegaokarandBaratoff[AB63]publishedcalculations linking

the critical current with the gap Δ and the normal state resistance 𝑅􀉲 of

the tunnel junction:

𝐼􀉍(𝑇) =
𝜋

2𝑒

Δ(𝑇)

𝑅􀉲
tanh (

Δ(𝑇)

2 ⋅ 𝑘􀉌𝑇
) (2.14)

Josephson energy and Josephson inductance

While the junction does not dissipate energy as long as the current stays

below 𝐼􀉍 , energy can be stored in it, as can be understood by the following

calculation.

The work associated with changing the phase difference is (directly

using Eq. 2.12, 2.13):

𝑊 = ∫
􀉸􀊿

􀉸􀊾

𝐼 ⋅ 𝑈d𝑡 =
ℏ𝐼􀉍

2𝑒
∫
􀉸􀊿

􀉸􀊾

𝜃̇ sin 𝜃d𝑡
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2 Charge transport through SQUID chains

Substituting 𝜃 for 𝑡, one gets

𝑊 =
ℏ𝐼􀉍

2𝑒
(cos 𝜃􀇆 − cos 𝜃􀇇)

This can be seen as the result of the existence of a potential energy:

𝐸(𝜃) = 𝐸􀉔(1 − cos 𝜃) (2.15)

Here a characteristic energy scale of a Josephson junction was defined,

the Josephson energy:

𝐸􀉔 =
ℏ𝐼􀉍

2𝑒
=
Φ􀇅𝐼􀉍

2𝜋
(2.16)

Briefly look at the reaction of the Junction to an infinitesimal change in

phase, 𝜃 → 𝜃 + 𝛿𝜃. The current will change by 𝛿𝐼, resulting in:

𝐼 + 𝛿𝐼 = 𝐼􀉍 sin(𝜃 + 𝛿𝜃)

Since 𝛿𝜃 is infinitesimal, sin(𝜃 + 𝛿𝜃) = sin 𝜃 + cos(𝜃)𝛿𝜃, and 𝛿𝐼 =

𝐼􀉍 cos(𝜃)𝛿𝜃. Using Eq. 2.13 and 𝜃̇ = 0, one gets:

𝑈 =
Φ􀇅

2𝜋
(𝜃̇ + ̇𝛿𝜃) =

Φ􀇅

2𝜋

𝛿̇𝐼

𝐼􀉍 cos 𝜃

By analogy to geometric inductances, a Josephson inductance is defined:

𝐿􀉔(𝜃) =
𝐿􀉔

cos 𝜃
=

Φ􀇅

2𝜋𝐼􀉍

1

cos 𝜃
(2.17)

DC SQUIDs

Consider two parallel identical Josephson junctions. First no magnetic

flux penetrating the loop they form is assumed (see Fig. 2.14).

The phase difference across both branches, i.e. across both junctions,

needs to be equal to the phase difference between the two conductors.

𝛿
􀉔􀉔
􀉥 = 𝛿

􀉔􀉔
􀉦 = 𝜙􀇇 − 𝜙􀇆
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2.2 Coherent properties

Φ1

δa

δb

Φ2

Figure 2.14: Phase differences in a DC SQUID.

If magnetic flux enters the ring, the phase difference across both junc-

tions can no longer be equal. Instead, a phase difference of

𝛿
􀉔􀉔
􀉦 − 𝛿

􀉔􀉔
􀉥 =

2𝑒

ℏ
𝜙 = 2𝜋

𝜙

Φ􀇅

is acquired when going around the ring.

The total phase difference along one of the branches is a sum of the

continuous phase change caused by the vector potential and the instan-

taneous jump across a Josephson junction:

𝛿􀉥,􀉦 = 𝛿
􀉔􀉔
􀉥,􀉦 ± 𝜋

𝜙

Φ􀇅

The boundary condition of the phase in the conducting leads still

applies. That means

𝛿􀉥 = 𝛿􀉦 = 𝜙􀇇 − 𝜙􀇆

and therefore

𝛿
􀉔􀉔
􀉥 = (𝜙􀇇 − 𝜙􀇆) − 𝜋

𝜙

Φ􀇅

𝛿
􀉔􀉔
􀉦 = (𝜙􀇇 − 𝜙􀇆) + 𝜋

𝜙

Φ􀇅

The total current through the SQUID is a sum of the currents through

the branches:

𝐽 = 𝐽􀇅 [sin ((𝜙􀇇 − 𝜙􀇆) + 𝜋
𝜙

Φ􀇅

) + sin ((𝜙􀇇 − 𝜙􀇆) − 𝜋
𝜙

Φ􀇅

)]
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2 Charge transport through SQUID chains

With the mathematical identity

sin(𝛼 + 𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽

one can write the current as:

𝐽 = (2𝐽􀇅 cos
𝜋𝜙

Φ􀇅

) sin(𝜙􀇇 − 𝜙􀇆) = 𝐽􀇅(𝜙) sin(𝜙􀇇 − 𝜙􀇆) (2.18)

A flux dependent critical current 𝐽􀇅(𝜙)was defined. The device can be

seen as a single Josephson junction with a tuneable critical current.

This device is an interferometer in the sense that it measures the

phase difference acquired along the different branches. It is therefore

called two-junction interferometer or, more catchy, a superconducting

quantum interference device (SQUID). If one uses radio frequency (RF)

techniques, a single junction loop is sufficient formeasurements. Since the

one-junction interferometer is called RF SQUID, the two-junction device

is a DC SQUID.

Throughout this work, it will be assumed that the flux penetrating the

loop is identical to the external flux, meaning the critical current can be

tuned directly by the external flux. This approximation is only valid if the

geometric inductance of the SQUID is much smaller than the Josephson

inductance, usually measured as

𝛽􀉖 =
𝐿

𝐿􀉔
=
2𝜋𝐼􀉍𝐿

Φ􀇅

(2.19)

As will be shown in section 4.2, this is the case for the SQUIDs in the

examined arrays.

2.2.2 Quasiparticles

Excitations in a superconductor of single electronic character are called

quasiparticles (QP). They can play an important role in single cooper pair

devices.
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2.2 Coherent properties

Thermal equilibrium

According toBCStheory, a singleelectronexcitation in thesuperconductor

has the energy (see e.g. Ref. [Tin04]):

𝐸􀉯 = √Δ
􀇇 + 𝜉􀇇􀉯 (2.20)

𝜉􀉯 is the energy of the one-electron state 𝑘. If the superconductor is in

thermal equilibrium, the occupation probability of the state 𝑘 is the fermi

function:

𝑓􀇅(𝐸􀉯/𝑘􀉌𝑇) =
1

1 + exp(𝐸􀉯/𝑘􀉌𝑇)
(2.21)

Non-equilibrium quasiparticles

At low temperatures, when the thermal QP density is negligible, QP are

often still observed. Since the low temperature setup is always connected

to the high temperature lab, energy leakage creates QP that can take a

considerable timetorecombine, producingasteadystatenon-equilibrium

QP density. Saira et al. [Sai+12] have strongly reduced the amount of QP

in their system by taking very careful measures to shield their setup from

stray microwave photons.

Trapping quasiparticles

In single cooper pair devices, the presence of a single quasiparticle can

spoil the coherent properties of the single cooper pair tunneling. This is

known as quasiparticle poisoning.

It has been shown by Court et al. [Cou+08] that it is possible to reduce

the local quasiparticle density by attaching a normal metal to the super-

conductor. The metal is made weakly superconducting, this is known as

the proximity effect. The gap Δ is smaller in the proximitized metal than

in the superconductor. Quasiparticles can gradually relax to the gap edge

and recombine, emitting an energy insufficient to break cooper pairs in

the superconductor.
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2 Charge transport through SQUID chains

2.2.3 Quantummechanics of an LC-circuit

For the following section it will be useful to know the Hamiltonian of an

LC-circuit (see Ref. [IN91]), biased by a voltage source to voltage 𝑉. Let

𝑈 = 𝑄/𝐶 be the voltage across the capacitor, e.g. the junction. One can

define:

𝜑(𝑡) =
𝑞

ℏ
∫
􀉸

􀇐􀉇

𝑑𝑡􀒮𝑈(𝑡􀒮) (2.22)

𝜑 is the phase difference across the junction. 𝑞 can be 𝑒 or2𝑒, depending

on the character of the conductor. The charging energy then becomes

𝐸􀉍 =
𝑄􀇇

2𝐶
=
𝐶

2
(
ℏ

𝑞
𝜑̇)

􀇇

(2.23)

The totalphasedifference𝜙 is fixedby theexternal voltage𝑉 = ℏ𝜙̇/𝑞. It

is divided between capacitor and inductor, meaning the phase difference

at the inductor is 𝜑 −
􀉵

ℏ
𝑉𝑡. Up to a factor of ℏ/𝑞, this is the magnetic flux

through the inductor, giving an inductive energy of:

𝐸􀉓 =
1

2𝐿
(
ℏ

𝑞
)

􀇇

(𝜑 −
𝑞

ℏ
𝑉𝑡)

􀇇

The Lagrangian of this circuit is therefore:

ℒ =
𝐶

2
(
ℏ

𝑞
𝜑̇)

􀇇

−
1

2𝐿
(
ℏ

𝑞
)

􀇇

(𝜑 −
𝑞

ℏ
𝑉𝑡)

􀇇

Transforming to Hamiltonian formalism, one finds that the charge on

the junction and the phase are conjugate variables:

[𝜑, 𝑄] = 𝑖𝑞 (2.24)

The Hamiltonian is:

𝐻 =
𝐶

2
(
ℏ

𝑞
𝜑̇)

􀇇

+
1

2𝐿
(
ℏ

𝑞
)

􀇇

(𝜑 −
𝑞

ℏ
𝑉𝑡)

􀇇

(2.25)
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2.2 Coherent properties

It will be convenient to go to a rotating reference frame, with shifted

variables 𝜑̃(𝑡) = 𝜑(𝑡) −
􀉵

ℏ
𝑉𝑡 and 𝑄̃ = 𝑄 − 𝐶𝑉. The commutator remains

[𝜑̃, 𝑄̃] = 𝑖𝑞, and the Hamiltonian becomes:

𝐻 =
𝑄̃􀇇

2𝐶
+
1

2𝐿
(
ℏ

𝑞
𝜑̃)

􀇇

(2.26)

Quantum mechanics of a Josephson junction

If instead of a classical inductor and a classical capacitor, one takes a

Josephson junction (𝑄 = 2𝑒), one has to replace the inductive energy by

the Josephson energy.

𝐻 =
𝐶

2
(
ℏ

𝑞
𝜑̇)

􀇇

− 𝐸􀉔 cos(𝜑)

Because charge and phase are conjugate, 𝑄 can be replaced by−𝑖2𝑒𝜕􀊮.

The Hamiltonian becomes:

𝐻 = −(𝐸􀉍
𝜕􀇇

𝜕𝜑􀇇
+ 𝐸􀉔 cos𝜑) (2.27)

2.2.4 The RCSJ model

InordertodescribeaJosephsonjunctioninthefinitevoltagestate, theRCSJ

model (resistively and capacitively shunted model, see e.g. ref [Tin04])

will be employed. An ideal Josephson junction, obeying equations 2.12

and 2.13, is shunted by a capacitor 𝐶, and a resistor 𝑅 (see Fig. 2.15).

The capacitor captures the capacitance between the superconducting

electrodes, and the resistor models finite resistance, dissipation and

voltage drop in case of a quasiparticle current.

If the junction is connected to a current source, the bias current is

divided amongst the three parallel elements:

𝐼􀉦 = 𝐼􀉍 sin𝜙 +
𝑉

𝑅
+ 𝐶

𝑑𝑉

𝑑𝑡
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2 Charge transport through SQUID chains

Figure 2.15: RCSJmodel: An ideal junction is shuntedbya resistor anda capacitor.

From [GH10].

Applying the second Josephson equation, Eq. 2.13, the voltage can be

eliminated:

𝐼􀉦 = 𝐼􀉍 sin𝜙 +
ℏ

2𝑒

1

𝑅
𝜙̇ +

ℏ

2𝑒
𝐶𝜙̈ (2.28)

The tilted washboard potential

Suppose a potential 𝑈 of a one-dimensional movement in coordinate 𝜙,

of the form:

𝑈(𝜙) = −𝐸􀉔 cos𝜙 −
𝐼􀉦ℏ

2𝑒
𝜙 (2.29)

Deriving a force from this acting a particle of mass (ℏ/2𝑒)􀇇𝐶, the

equation of motion is Eq. 2.28; the missing term (ℏ/2𝑒)􀇇(1/𝑅)𝜙̇ can be

interpreted as a drag force. The potential is shown in Fig. 2.16.

Depending on the bias current and the damping, the tilt of the potential

can become so steep that the phase particle just slides down the wash-

board. The change in potential energy can bemeasured as a finite voltage

drop.

Shapiro steps

If a Josephson junction is irradiated with microwave (MW) radiation of

frequency 𝑓 in a suitable frequency range, it is possible to phase-lock the

junction: during each MW cycle, the phase particle changes its position
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2.2 Coherent properties

Figure 2.16: Tilted washboard potential: A phase particle of mass 𝐶 / a quasi-

chargeparticleofmass𝐿move in a cosinepotential, tiltedbybias current/voltage.

From [GH10], modified.

by the same integer number 𝑛 of potential minima. The average voltage

drop is then:

⟨𝑉􀉲⟩ = 𝑛
ℎ

2𝑒
𝑓

In a DC current-voltage measurement, the phase-locking takes the

form of steps of constant voltage, known as Shapiro steps[Sha63]. In

combination with a well defined frequency generator, this effect can

serve to define a voltage standard independent of material parameters

(see e.g. Ref. [Kau96]).

2.2.5 Phase-charge duality

As could be seen in the derivation of Eq. 2.24, phase and charge are

conjugate variables. So far, the phase was treated as a well-defined,

almost classical variable. This is a good description for relatively large

junctions with small charging energies 𝐸􀉍 . For smaller junctions, a full

quantum mechanical description is necessary.
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2 Charge transport through SQUID chains

Bloch limit

Consider for a moment the case of 𝐸􀉔 ≪ 𝐸􀉍 . The Josephson junction

Hamiltonian (Eq. 2.27) looks like the Hamiltonian of a particle in free

space, and the solutions are plane waves. In analogy to electrons in a

metal, the 𝐸􀉔-part gives a periodic potential, and the eigenfunctions are

Bloch states:

𝜓􀉲􀉵(𝜑 + 2𝜋) = exp(𝑖𝑞𝜑/2𝑒) ⋅ 𝜓􀉲􀉵(𝜑)

A quasi-charge 𝑞 was defined in analogy to the quasi-momentum in a

crystal. A Brillouin zone is formed with −𝑒 ≤ 𝑞 ≤ 𝑒 (see Fig. 2.17). The

energy is proportional to 𝑞􀇇 except for the edges of the Brillouin zone,

where degeneracy is lifted, and a gap on the order of𝐸􀉔 is opened [Agr02].

Figure 2.17: The Bloch limit. Quasi-charge bands are formed. For sufficiently

large 𝐸􀉔, the lowest band can be approximated by a shifted, negative cosine.

From Ref. [Agr02], modified.

Suppose the quasi-charge is changed slowly enough that the system

always stays in the lowest band. The voltage drop across the junction

can be calculated by the derivative of the energy of the lowest band,

𝐸􀇅, with regard to quasi-charge. In the limit of negligible 𝐸􀉔, one gets a

34



2.2 Coherent properties

sawtooth-function; for larger 𝐸􀉔, the voltage approaches a sine function.

The exact shape can be found in Ref. [Agr02]. It will be written

𝑉 = 𝑉􀉍saw(𝑞) or 𝑉 = 𝑉􀉍sin(𝑞) (2.30)

depending on the context. If the rather obvious equation is added:

𝐼 = 𝑞̇ (2.31)

a set of equations dual to equations 2.12 and 2.13 is constructed.

The CJRL model

A junction in the Bloch limit can be described by a model dual to the RCSJ

model: the capacitively shunted junction with a resistor and an inductor

in series, in a voltage bias (see Fig. 2.18).

Figure 2.18: CJRL model: An ideal junction with its junction capacitance in series

with a resistor and an inductor. From Ref. [GH10].

The voltage drop is divided amongst the components, leading to

𝑉􀉦 = 𝑉􀉍 sin
𝜋𝑞

𝑒
+ 𝑅𝑞̇ + 𝐿𝑞̈ (2.32)

This gives rise to a dual washboard potential (see Fig. 2.16), with

the particle mass determined by 𝐿, and the quasi-charge as the spacial

coordinate.
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2 Charge transport through SQUID chains

Guichard andHekking [GH10] have predicted the emergence of current

Shapiro steps, dual to the normal voltage Shapiro steps, in this regime.

The experimental realization of this could be very useful for defining a

quantum mechanical current standard in metrology.

2.2.6 Junction chains in the Bloch limit

So far, the equations governing a single junction in the bloch limit were

shown. In this subsection, an equation will be presented to describe a

chain of such junctions, which will help to merge the electrostatic picture

with the Josephson junction description. The equation is called sine-

Gordon equation, because it is structurally similar to the Klein-Gordon

equation7.

The sine-Gordon equation

Considerthemodelofa losslesselectrodynamic transmission line (Fig.2.19).

L

C

Figure 2.19: Transmission line element for deriving the simplified Telegrapher's

equation.

Kirchhoff's law is applied to calculate currents and voltage drops in an

infinitesimal part of the ideal line. This yields the Telegrapher's equation:

7The classical relativistic energy-momentum relation is 􀉏􀊿 􀇑 􀉴􀊿􀉧􀊿 􀇏􀉱􀊿􀉧􀋁. In the

non-relativistic limit, the correspondence transformation (􀉏̂ 􀇑 􀉭ℏ􀊲􀍰, 􀉴̂ 􀇑 􀇐􀉭ℏ∇) yields

the Schrödinger equation. Transforming the equation directly gives the Klein-Gordon

equation:
􀇆

􀉧􀊿
􀊲􀍰􀊮 􀇐 ∇􀊿􀊮 􀇏

􀉱􀊿􀉧􀊿

ℏ􀊿
􀊮 􀇑 􀇅
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2.2 Coherent properties

𝜕􀉼𝑉 = −𝑙􀇅𝜕􀉸𝐼

𝜕􀉼𝐼 = −𝑐􀇅𝜕􀉸𝑉

𝑙􀇅 and𝑐􀇅 are lineardensitiesof inductanceandcapacitance, respectively.

From this, a wave equation for the voltage can easily be derived:

(𝑙􀇅𝑐􀇅)𝜕
􀇇
􀉸 𝑉 − 𝜕

􀇇
􀉼𝑉 = 0

Assume a single Josephson junction (or a SQUID) obeys equations 2.30

and 2.31. A long array of these junctions can then be modeled similarly

(see Ref. [HD96]). For this, an ideal Josephson junction is added in series

with the inductor (Fig. 2.20).

L

C0

E , EJ C

Figure 2.20: Josephson junction array element for deriving the charge sine-

gordon equation.

The Telegrapher's equation has to be changed to:

𝜕􀉼𝑉 = −𝑙􀇅𝜕􀉸𝐼 − 𝑉􀉧 sin 𝑞

𝜕􀉼𝐼 = −𝑐􀇅𝜕􀉸𝑉

Calculate the derivative:

𝜕􀇇􀉼 𝐼 = −𝑐􀇅𝜕􀉸𝜕􀉼𝑉

𝜕􀉸𝜕
􀇇
􀉼𝑞 = 𝜕􀉸(−𝑐􀇅𝜕􀉼𝑉)

= 𝜕􀉸(𝑐􀇅𝑙􀇅𝜕
􀇇
􀉸 𝑞 + 𝑐􀇅𝑉􀉧 sin 𝑞)

One arrives at a sine-Gordon equation with regard to the charge distri-

bution:

𝑐􀇅𝑙􀇅𝜕
􀇇
􀉸 𝑞 − 𝜕􀇇􀉼𝑞 + 𝑐􀇅𝑉􀉧 sin 𝑞 = 0 (2.33)
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2 Charge transport through SQUID chains

Soliton solution of the Sine-Gordon equation

The simplified sine-Gordon equation is

𝜕􀇇􀉸 𝜑 − 𝜕
􀇇
􀉼𝜑 + sin𝜑 = 0

Claim: The soliton function

𝜑(𝑥, 𝑡) = 4 arctan (exp (
𝑥 − 𝑣𝑡 − 𝑥􀇅

√1 − 𝑣􀇇
)) (2.34)

solves the sine-Gordon equation.

Proof: First, substitute𝛽 = exp (
􀉼􀇐􀉺􀉸􀇐􀉼􀊽

√􀇆􀇐􀉺􀊿
)anduse theangular relations

sin 4𝛼 = 8 cos􀇈 𝛼 sin 𝛼 − 4 cos 𝛼 sin 𝛼

sin 𝛼 =
tan𝛼

√1 + tan􀇇 𝛼

cos 𝛼 =
1

√1 + tan􀇇 𝛼

Thus, it follows that:

sin𝜑 = sin 4 arctan 𝛽 =
4𝛽(1 − 𝛽􀇇)

(1 + 𝛽􀇇)􀇇

Then replace
􀉼􀇐􀉺􀉸􀇐􀉼􀊽

√􀇆􀇐􀉺􀊿
=∶ 𝛼𝑦 and exp(𝛼𝑦) =∶ 𝑥. The second derivative

of a function of x with regard to y is then

(
𝑑

𝑑𝑦
)

􀇇

𝑓 (𝑥(𝑦)) =
𝑑􀇇𝑓

𝑑𝑥􀇇
(
𝑑𝑥

𝑑𝑦
)

􀇇

+
𝑑𝑓

𝑑𝑥

𝑑􀇇𝑥

𝑑𝑦􀇇

Now, calculate the derivative of 𝜑(𝑥(𝑦)) = 4 arctan 𝑥, which yields
􀉨􀊿

􀉨􀉽􀊿
𝜑 = 𝛼􀇇

􀇉􀉼(􀇆􀇐􀉼􀊿)

(􀇆􀇏􀉼􀊿)􀊿

Theexponential functionexp(𝛼𝑦)actsunderderivationlikeexp (
􀉼􀇐􀉺􀉸􀇐􀉼􀊽

√􀇆􀇐􀉺􀊿
)

if you replace 𝛼 with
􀇆

√􀇆􀇐􀉺􀊿
(with 𝜕􀉼) or

􀇐􀉺

√􀇆􀇐􀉺􀊿
(with 𝜕􀉸).

Therefore 𝜑 solves the sine-Gordon equation.
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2.2 Coherent properties

Small soliton limit

In section 2.1, the tunneling of chargeswas neglected. As long as𝐸􀉍 ≫ 𝐸􀉔,

the priciple picture remains valid. The soliton is the excess charge carrier

together with the polarization of the neighboring islands. 𝐸􀉔 can be

treated as a pertubation. This regime has been discussed theoretically in

Ref. [SEA09].

An intermediate regimewas discussed by Rachel and Shnirman [RS09].

If 𝐸􀉍 > 𝐸􀉔 > 𝐸􀉍/Λ, the tunnel coupling between the islands is strong

enough that cooper pair/ hole dipolesmay temporarily form in proximity

to an excess cooper pair. The charge is thus smeared over several islands.

Experimental evidence for charge solitons

In 1996, Haviland and Delsing [HD96] showed that the threshold voltage

observed in their measurements, the voltage until which no transport

was observed, could be predicted using the steady state solution of a

sine-Gordon equation calculated for their array, indicating the existence

of cooper pair charge solitons.

2.2.7 Random background charges

While the observation of the threshold voltage is consistent with the ex-

istence of charge solitons, the quantitative properties and reproducibility

are severely influenced by randomly distributed background charges.

These background charges can be observed by the static imposition of

static charge offset, and by the dynamic properties, creating noise [JH00].

Single islands

It is generally believed that the origin of the background charges are traps

for single electrons in the dielectric close to the small islands [Zor+96].

Zorin et al. measured the correlationof chargenoise on twosmallmetallic

islands, 600 nm x 100 nm, in close proximity, 100 nm apart. The results

are consistent with a model that locates the charge noise sources in the

oxide layer covering their substrate.
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2 Charge transport through SQUID chains

Maisi et al. [Mai+09]measured the change of the offset charge of several

single islands and found a drift by more than one elementary charge on

the course of several days.

Arrays

A chain of islands is subject to a random distribution of background

charges in the substate. If the offset induced on a single island is larger

than one elementary charge, it is compensated by the tunneling of one

electron or hole, which means one can immediately assume that each

offset charge falls into the interval [−𝑒/2 ∶ 𝑒/2] [JH00]. In an array, each

charge is screened on the scale of Λ. Johansson and Haviland show that

the free energy of an array can be minimized by additional tunneling of

electrons, redistributing the charge. Depending on the screening length,

this can have a considerable smoothing effect on the potential landscape.
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2.3 Hopping transport

2.3 Hopping transport

In this section, an incoherent tunnelingmodel is introduced to predict the

temperature- and coupling energy dependence of transport experiments

reported in chapter 4, especially the zero bias conductance.

100 2000
island

0

Γ+ Γ-2
ΛEC

Figure 2.21: Energy scheme for the array model. The energy increases on a

length scale of Λ islands to a total of Λ𝐸􀉍/2. One can expect that the transport

is limited by the rate of charges entering the array from either side, Γ􀇏 and Γ􀇐.

As a simplified picture, one might consider the following model. In

subsection 2.1.1, it was shown that the total energy of an excess charge

in a long array is Λ𝐸􀉍/2 in the middle, but falls of exponentially at the

sides (see Fig.2.21). One might therefore estimate the charge transport

behavior by considering the limiting rates of charges entering the array

from either side, for which thermal energy is required to overcome

𝐸􀉋 = Λ𝐸􀉍/2. The rates are Γ􀇏 and Γ􀇐. They are identical, except for an

infinitesimal voltage 𝑉 between the electrodes on the sides. The rates

are:

Γ􀇏 ∝ exp(−
(𝐸􀉋 − 𝑒𝑉)

𝑘􀉌𝑇
) Γ􀇐 ∝ exp(−

𝐸􀉋

𝑘􀉌𝑇
)

41



2 Charge transport through SQUID chains

The current is proportional to the difference of the rates:

Γ􀇏 − Γ􀇐 = ΔΓ ∝ [exp (
𝑒𝑉

𝑘􀉌𝑇
) − 1] exp (−

𝐸􀉋

𝑘􀉌𝑇
)

Thismeans that the zero bias differential conductance has this temper-

ature dependence:

𝜕 ΔΓ

𝜕𝑉
|
􀉠􀇑􀇅

∝
1

𝑘􀉌𝑇
exp (−

𝐸􀉋

𝑘􀉌𝑇
)

This expression exhibits one maximum at 𝐸􀉋 = 𝑘􀉌𝑇. The temperature

dependence of the conductance is shown in Fig. 2.22.
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Figure 2.22: According to this simplified model, the zero bias differential con-

ductance has one maximum at 𝐸􀉋 = 𝑘􀉌𝑇.

In the following subsections, these calculations are done more care-

fully. Subsection 2.3.1 derives a general hopping model for arbitrary site

energies and general rates. Then, in subsection 2.3.2, a theory for charge

tunneling through small junctions is reviewed. In subsection 2.3.3, that

theory and a model for the site energies are used to build a specialized

model of a small capacitance SQUID chain.
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2.3 Hopping transport

2.3.1 General hopping model of a long array

ThemodeldescribedherehasbeendevelopedbyN.Vogt andM.Marthaler

in cooperation with the author. Details on the derivation can be found in

the appendix A.

Assuming detailed balance for all carrier hopping rates between the

islands, and that atmost one extra carrier is in the array at any given time,

a general description of the equilibrium transport can be formulated. In

such a model, the net current through the array can be calculated by

𝐼 = −𝑍𝑒(Γ􀉲→􀉲􀇏􀇆𝑝􀉲 − Γ􀉲􀇏􀇆→􀉲𝑝􀉲􀇏􀇆) (2.35)

between any two islands, where 𝑍 is the carrier charge, the 𝑝 are occupa-

tion probabilities, and Γ are the hopping rates.

The occupation probabilities and rates of neighboring sites are linked

by the assumptions, leading to the following zero bias differential con-

ductance:

𝑔􀇅 =
𝑍􀇇𝑒􀇇

𝑘􀉌𝑇

1

∑
􀉘􀇏􀇆
􀉲􀇑􀇆 exp [−

􀉏􀍪

􀉯􀍄􀉞
]

(

􀉘􀇏􀇆

∑

􀉱􀇑􀇆

1

Γ􀉱􀇐􀇆,􀉱

)

􀇐􀇆

(2.36)

𝐸􀉲 are the corresponding site energies.

In the first term in the conductivityweapproximate∑
􀉘􀇏􀇆
􀉲􀇑􀇆 exp [−

􀉏􀍪

􀉯􀍄􀉞
] ≈

1, which means that the empty state 𝐸􀉲 = 0 is the one which is

mostly occupied. The second term is mostly dominated by the rate

Γ􀉲,􀉲􀇏􀇆 = exp(−𝐸􀉲/𝑘􀉌𝑇)Γ􀉲→􀉲􀇏􀇆 with the maximal energy 𝐸􀉱􀉥􀉼 of the

array. Therefore we can write the conductivity in the form,

𝑔􀇅 =
𝑍􀇇𝑒􀇇𝛾

(𝑘􀉌𝑇)
􀇆􀇏􀊙

𝑒􀇐􀉏􀍩􀍝􀍴/􀉯􀍄􀉞 . (2.37)

Since the rates themselves can have an explicit temperature dependence

we allow for an additional exponent 𝛼 in the temperature dependence of

the prefactor.

As a first approximation, one would expect the thermally activated

hopping conductance to exhibit 𝐸􀉱􀉥􀉼 ≈ Λ𝐸􀉍/2.
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2 Charge transport through SQUID chains

2.3.2 Charge tunneling in ultrasmall junctions and P(E)

This section follows closely the publication by Ingold andNazarov [IN91].

It will be reviewed for completeness.

A junction will be called ultrasmall in this context if its capacitance is

in the order of femtofarads or below. For these junctions, the regime of

𝑘􀉌𝑇 < 𝐸􀉍 = 𝑞
􀇇/2𝐶 becomes experimentally accessable.

Ideal voltage bias

What is the current through a tunnel junction that is connected to an

ideal voltage source? Each charge tunneling will either gain or loose 𝑞𝑉,

depending on direction. For now, 𝑞 = 𝑒 is taken. The total current is the

difference of the currents passing through the junction from left to right

and vice versa. Let 𝑓(𝐸) be the Fermi function of the left electrode:

𝐼→(𝑉) ∝ ∫ 𝑑𝐸 (𝑓(𝐸) (1 − 𝑓(𝐸 + 𝑒𝑉)))

𝐼←(𝑉) ∝ ∫ 𝑑𝐸 ((1 − 𝑓(𝐸)) 𝑓(𝐸 + 𝑒𝑉))

This means one sums up all the probabilities to find an occupied state

on one electrode and a corresponding free state on the other. Properly

calculating the rates, the constants can be collected into a tunneling

resistance 𝑅􀉞:

𝐼(𝑉) =
1

𝑒𝑅􀉞
∫ 𝑑𝐸 [(𝑓(𝐸) (1 − 𝑓(𝐸 + 𝑒𝑉))) − ((1 − 𝑓(𝐸)) 𝑓(𝐸 + 𝑒𝑉))]

Ideal current bias

Instead, consider an ideal current sourcepushing chargeonto the junction

at a steady, continuous rate. Tunneling, however, can only happen in

quantized steps. A tunneling process is energetically favoured as soon

as Δ𝐸􀉍 = 𝑄
􀇇/2𝐶 − (𝑄 − 𝑒)􀇇/2𝐶 > 0. If one defines a voltage across the

junction as 𝑈 = 𝑄/𝐶, that means a charge can only tunnel if 𝑈 > 𝑒/2𝐶.

Note how this differs from the ideal voltage bias case.
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2.3 Hopping transport

Voltage bias with finite circuit resistance -

the Coulomb blockade

In order to arrive at a more realistic model, an ideal voltage source is

taken, and a large resistor is put in series with the junction (see Fig. 2.23).

Switching on the voltage source, the junction is charged by a constant

current which is determined by the serial resistor. If the voltage across

the junction remains smaller than 𝑒/2, there will be no transport. Only

external voltages above 𝑒/2𝐶 will cause a current to flow, which will then

be limited by the tunneling resistance as in the voltage biased case.

− e
2C 0 e

2C
Voltage

C
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Figure 2.23: A voltage biased junction with a resistor in series to prevent instant

recharging exhibits a coulomb blockade at zero temperature.

This absense of current below a threshold voltage is referred to as

Coulomb blockade.

The fact that whether or not a Coulomb blockade is predicted depends

on the environment considered shows that a generalized description of

the environment is necessary for proper theoretical predictions.
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2 Charge transport through SQUID chains

Classic charge relaxation

Without tunneling, the junction can be described classically as a capacitor

in series with its environment, which will be described by its impedance

𝑍(𝜔). The equilibriumstate in caseof a voltagebias is a chargeof𝑄􀉩 = 𝐶𝑉

on the capacitor. Suppose the capacitor is excited to a charge 𝑄􀇅 at 𝑡 = 0.

It can be shown (e.g. in Laplace space) that the charge relaxation is

described by

𝑄(𝑡) = 𝑄􀉩 + (𝑄􀇅 − 𝑄􀉩)𝑅(𝑡)

with a charge relaxation function 𝑅(𝑡) such that:

∫
􀉇

􀇅

𝑑𝑡𝑒􀇐􀉭􀊱􀉸𝑅(𝑡) =
𝐶

𝑖𝜔𝐶 + 𝑍􀇐􀇆(𝜔)
=∶ 𝐶 ⋅ 𝑍􀉸(𝜔) (2.38)

It can be shown that the 𝑍􀉸(𝜔) defined here is the effective impedance

as seen from the tunnel junction.

System Hamiltonian - quasiparticles

An arbitrary environment with impedance 𝑍(𝜔) will cause dissipation.

The usual way of describing a dissipative quantum system is to include

extra degrees of freedom into the Hamiltonian, a set of harmonic oscilla-

tors. Recall the Hamiltonian of an LC resonator, defined in Eq. 2.26. It can

be modified to include environmental LC degrees of freedom, coupled to

the junction phase:

𝐻􀇴􀇽􀈅 =
𝑄̃􀇇

2𝐶
+

􀉘

∑

􀉲􀇑􀇆

[
𝑞􀇇􀉲

2𝐶􀉲
+ (

ℏ

𝑒
)

􀇇
1

2𝐿􀉲
(𝜑̃ − 𝜑􀉲)

􀇇]

For a complete description, the quasiparticles on both electrodes need

to be included:

𝐻􀈀􀇿 =∑

􀉯􀊪

𝜖􀉯𝑐
􀉂
􀉯􀊪𝑐􀉯􀊪 +∑

􀉵􀊪

𝜖􀉵𝑐
􀉂
􀉵􀊪𝑐􀉵􀊪

𝑘 and 𝑞 are wave vectors on the left and right electrodes, 𝜖 are the

energies, 𝜎 denotes the spin. The 𝑐, 𝑐􀉂 are fermionic ladder operators.
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2.3 Hopping transport

Tunneling is described by the tunneling Hamiltonian, coupling both

electrodes:

𝐻􀉞 = ∑

􀉯􀉵􀊪

𝑇􀉯􀉵𝑐
􀉂
􀉵􀊪𝑐􀉯􀊪 + ℎ.𝑐.

The total Hamiltonian becomes8:

𝐻 = 𝐻̃􀈀􀇿 + 𝐻􀇴􀇽􀈅 + 𝐻̃􀉞

Tunneling rates and environment

The tunneling rates can be calculated using the golden rule:

Γ􀉭→􀉪 =
2𝜋

ℏ
| ⟨𝑓|𝐻̃􀉞|𝑖⟩ |

􀇇𝛿(𝐸􀉭 − 𝐸􀉪)

To calculate the total rate Γ̄(𝑉), all the ratesweighted by the occupation

probabilities have to be summed. The subspace of environmental states

is traced out, giving a rate of:

Γ⃗(𝑉) =
1

𝑒􀇇𝑅􀉞
∫
􀉇

􀇐􀉇

𝑑𝐸𝑑𝐸􀒮𝑓(𝐸)[1 − 𝑓(𝐸􀒮)] (2.39)

⋅ ∫
􀉇

􀇐􀉇

𝑑𝑡

2𝜋ℏ
exp (

𝑖

ℏ
(𝐸 − 𝐸􀒮 + 𝑒𝑉)𝑡) ⟨𝑒􀉭􀊮̃(􀉸)𝑒􀇐􀉭􀊮̃(􀇅)⟩

𝑅􀉞 is a constant to collect all constant terms.

It is possible to rewrite the fourier transform part into:

Γ⃗(𝑉) =
1

𝑒􀇇𝑅􀉞
∫
􀉇

􀇐􀉇

𝑑𝐸𝑑𝐸􀒮𝑓(𝐸)[1 − 𝑓(𝐸􀒮)]𝑃(𝐸 − 𝐸􀒮) (2.40)

The influence of the environment is enclosed into 𝑃(𝐸), defined as:

𝑃(𝐸) =
1

2𝜋ℏ
∫
􀉇

􀇐􀉇

𝑑𝑡 exp (𝐽(𝑡) +
𝑖

ℏ
𝐸𝑡) (2.41)

with the correlation function 𝐽(𝑡) = ⟨[𝜑̃(𝑡) − 𝜑̃(0)]𝜑̃(0)⟩.

8The tilde denotes the fact that the influence of the voltage has to be taken care of,

similar to the transition from Eq. 2.25 to 2.26.
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2 Charge transport through SQUID chains

The correlation function can be related to the temperature, written as

𝛽 = 1/𝑘􀉌𝑇, and the effective impedance 𝑍􀉸:

𝐽(𝑡) = 2∫
􀉇

􀇅

𝑑𝜔

𝜔

Re𝑍􀉸(𝜔)

𝑅􀉕
{coth (

1

2
𝛽ℏ𝜔) [cos(𝜔𝑡) − 1] − 𝑖 sin(𝜔𝑡)}

High impedance environment

In the case of very high ohmic damping, 𝑍(𝜔) = 𝑅, 𝑅 ≫ 𝑅􀉕 , the effective

impedance becomes

Re𝑍􀉸(𝜔) =
𝑅

1 + (𝜔𝑅𝐶)􀇇
⟶

𝜋

𝐶
𝛿(𝜔)

From this, the following expression for 𝑃(𝐸) can be derived:

𝑃(𝐸) =
1

√4𝜋𝐸􀉍𝑘􀉌𝑇
exp [−

(𝐸 − 𝐸􀉍)
􀇇

4𝐸􀉍𝑘􀉌𝑇
] (2.42)

System Hamiltonian - cooper pairs

Instead of the quasiparticle excitations and the tunnel hamiltonian, the

total Hamiltonian now consists of the environment and the Josephson

energy:

𝐻 = 𝐻􀇴􀇽􀈅 + 𝐸􀉔 cos(2𝜑) = 𝐻􀇴􀇽􀈅 + (
𝐸􀉔

2
𝑒􀇐􀇇􀉭􀊮 + 𝐻.𝑐.)

The Josephson termdescribes the tunneling of cooperpairs, since 𝑒􀇐􀇇􀉭􀊮

is a propagator for the charge.

Cooper pair tunneling rates

Performing similar steps to trace out the environment, Eq. 2.39 has to be

changed into:

Γ⃗(𝑉) =
𝐸􀇇􀉔

ℏ􀇇
∫
􀉇

􀇐􀉇

d𝑡 exp (
2𝑖

ℏ
𝑒𝑉𝑡) ⟨𝑒􀇇􀉭􀊮̃(􀉸)𝑒􀇐􀇇􀉭􀊮̃(􀇅)⟩
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2.3 Hopping transport

The rate is rewritten as

Γ⃗(𝑉) =
𝜋

2ℏ
𝐸􀇇􀉔 𝑃(2𝑒𝑉) (2.43)

with a modified 𝑃(𝐸):

𝑃(𝐸) =
1

2𝜋ℏ
∫
􀉇

􀇐􀉇

d𝑡 exp [4𝐽(𝑡) +
𝑖

ℏ
𝐸𝑡] (2.44)

2.3.3 Incoherent tunneling model of a long array

This subsection describes the application of P(E) theory to the general

hopping model of subsection 2.3.1, and the application of quasiparticle

rates. For a more detailed derivation, see appendix A.

The site energies and the rates of the model are depicted in Fig. 2.24.

0

2
ΛEC

...

Λ

Γ(0)

Γ(E /2)  C

V

Figure 2.24: Level scheme for the array model. The energy increases linearly on

a length of Λ islands. Γ(𝛿𝐸) are the hopping rates, depending on the site energy

difference.
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2 Charge transport through SQUID chains

The zero bias conductance then takes the form:

𝑔􀇅 =
𝑍􀇇𝑒􀇇

𝑘􀉌𝑇
[1 + 𝑁􀒮𝑒

􀇐􀈔
􀍇􀍟

􀊿􀍧􀍄􀍖 + 2

􀈔􀇐􀇆

∑

􀉱􀇑􀇆

(𝑒
􀇐􀉱

􀍇􀍟

􀊿􀍧􀍄􀍖)]

􀇐􀇆

×
Γ(0)Γ(

􀉏􀍟

􀇇
)

(Λ + 𝑒
􀍇􀍟

􀍧􀍄􀍖Λ)Γ(0) + (𝑁 − 2Λ)Γ(
􀉏􀍟

􀇇
)

(2.45)

𝑁􀒮 = (𝑁 − 2Λ − 1) (2.46)

where 𝑁􀒮 is the number of sites with the energy 𝐸 = Λ𝐸􀉧/2 in the bulk

and Γ(0) and Γ(𝐸􀉧/2) are the rates corresponding two the hopping rates

betweenneighbouringsites that correspondto the twoEnergydifferences

𝛿𝐸 = 𝐸􀉲􀇏􀇆 − 𝐸􀉲 between neighbouring sites that occur in this model:

𝛿𝐸 = 0 and 𝛿𝐸 = 𝐸􀉧/2.

Cooper pair tunneling

C0

Z*

C

R

C

Figure 2.25: Impedance model. The junction is shown on the left. On both

sides, it sees an effective impedance 𝑍∗. An analytic expression can be found for

𝑍∗.

If one wants to apply P(E) theory for the array transport, the environ-

ment impedance of a junction within the array needs to be estimated.
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2.3 Hopping transport

The circuit environment is shown in Fig. 2.25. Similar to the effective

capacitance of section 2.1.1, an analytic expression can be found for 𝑍∗:

1

𝑍∗(𝜔)
= 𝑖𝜔𝐶􀇅 + (

𝑅

1 + 𝑖𝜔𝑅𝐶
+ 𝑍∗(𝜔))

􀇐􀇆

This is solved by:

𝑍∗(𝜔) =
𝑅

2(1 + 𝑖𝜔𝐶𝑅)
(√1 + 4 ⋅

1 + 𝑖𝜔𝐶𝑅

𝑖𝜔𝐶􀇅𝑅
− 1)

For small 1/𝜔𝑅, the factor on the right can be approximated as 2Λ.

1

𝑍∗(𝜔)
≈
1

Λ𝑅
+
𝑖𝜔𝐶

Λ

The effective impedance 𝑍􀉸(𝜔) from the Junction's perspective, as de-

fined in Eq. 2.38, is then

𝑍􀉸(𝜔) =
1

𝑖𝜔𝐶 + 1/(Λ𝑅) + 𝑖𝜔𝐶/Λ

which is taken as motivation to assume the high impedance Gaussian

form of P(E) from Eq. 2.42.

Then, for the Cooper-pair tunnelling, one can assume:

Γ􀉲→􀉲􀇏􀇆 =
𝐸􀇇􀉔 𝜋

ℏ
𝑃(𝛿𝐸) =

𝐸􀇇􀉔 𝜋

ℏ√4𝜋𝐸􀉍𝑘􀉌𝑇
exp [−

(𝛿𝐸 − 𝐸􀉍)
􀇇

4𝐸􀉍𝑘􀉌𝑇
] (2.47)

Equilibrium quasiparticles

Suppose the above mechanism of Cooper pair transport is not the only

charge transport mechanism. A likely candidate for a mechanism inde-

pendent of the Josephson coupling is the charge transport by equilibrium

quasiparticles.

Fromthesemiconductormodelofquasiparticle tunneling, the following

tunneling rate through a single junction is derived (see e.g. Ref. [Tin04]):
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2 Charge transport through SQUID chains

Γ(𝛿𝐸) =
1

𝑒􀇇𝑅􀉞
∫
􀉇

􀇐􀉇

𝑁􀇆(𝐸)𝑓(𝐸)𝑁􀇇(𝐸 + 𝛿𝐸)[1 − 𝑓(𝐸 + 𝛿𝐸)]𝑑𝐸

For a BCS density of states and 𝛿𝐸 ≪ Δ, the quasiparticle rate can be

approximated as:

Γ(𝛿𝐸) ≈
Δ

𝑒􀇇𝑅􀉞
exp (−

Δ

𝑘􀉌𝑇
) (2.48)
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3 Fabricationmethods

Est autem Alchimia (ut more loquamur humano) casta meretrix,

quae amatores plures habet, sed delusis omnibus in nullis unquam

pervenit amplexus. Ex stulris facit insanos, ex divitibus pauperes,

ex philosophis fatuos, ex deceptis logquacissimos deceptores.a

aAlchemy, however, is a chaste prostitute, who has many lovers but

disappoints all and grants her favors to none. She transforms the haughty

into fools, the rich into paupers, the philosophers into dolts, and the

deceived into loquacious deceivers.

Johannes Trithemius

Annalium Hirsaugensium Tomi II, first printed 1690

This chapter describes the steps that were necessary to fabricate the

nanostructures for the experiments presented in chapter 4.

The connection from the macroscopic world, with its soldered cables

andwires that the experimentalist can still handle manually, to the truely

nanoscopic world that even a good microscope can not properly resolve,

is usually produced with optical tools. Those steps will be described in

section 3.1.

In order to observe single charge effects, 𝐸􀉍 = 𝑞
􀇇/2𝐶 > 𝑘􀉌𝑇 must be

achieved. Under typical experimental conditions, thismeanscapacitances

on the order of a femtofarad are needed. Since the typical capacitance

of a Aluminum/Aluminum oxide/Aluminum capacitor is 45 fF/𝜇m􀇇 (see

e.g. Ref. [HD96]), the resolution needs to be considerably better than a

micron.

True sub-micron resolution is hard to achieve by optical means, simply

because of the natural limitation by the wavelength of the photon, which
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3 Fabrication methods

is quite tricky to overcome1. The nanostructuring is therefore done with

high energy electrons in the kilovolt range. A method to fabricate small

tunnel junctions of Aluminum and Aluminum Oxide using electron-beam

lithography is presented in section 3.2. That section also contains a short

review of an experiment that has been performed during the time of this

work. It examines the dependence of the superconducting critical tem-

perature, and therefore of the superconducting gap, on the film thickness

of thin Aluminum films.

1Using ultraviolet light and special techniques to increase numerical aperture,

the wavelength limitation can be stretched, as modern semiconductor technology

demonstrates.
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3.1 Optical lithography

3.1 Optical lithography

In this section, the methods that were used to fabricate the leads to the

nanostructures will be described. A photomask was produced by laser

lithography (subsection 3.1.1). The pattern on the mask was transfered

(subsection 3.1.2) to a substrate, where metal was selectively deposited

(subsection 3.1.3).

The more technical process step descriptions and parameters have

been put into the appendix C.

3.1.1 Photolithography mask fabrication

For photomask fabrication, commercial photomask blanks were used.

The mask blanks were sheets of quartz, covered with a thin layer of

chromium2.

Resists and developers

A photoresists is a material that is sensitive to exposure to certain types

of light. After exposure, a selective solvent, the developer for a given

resist, can be used to dissolve parts of the resist. A positive resist becomes

soluble during exposure, while the unexposed resist is left unchanged

during development. For a negative resist, it is the opposite.

Resists can be applied to a substrate in a process called spin coat-

ing[Law88]. The substrate is rotated at several thousand rounds per

minute, and a resist solution is put onto its surface. The centrifugal force

of the rotation distributes the resist casting solution, until a thin film re-

mains. The film thickness is uniform over most of the substrate's surface,

and it can be controlled by choosing the spinning speed:

ℎ = 𝑘/√𝜔

ℎ is the layer thickness, 𝜔 the angular velocity, and 𝑘 is a constant

depending on solid concentration and solution viscosity.

2Mask dimensions: 4 inch x 4 inch with a thickness of 0.09 inch

from MBWhitaker & Associates
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3 Fabrication methods

The substrate is dried, removing the remaining casting solvent, and the

resist is ready for exposure.

For all experiments in direct writing of microstructures, the commer-

cially available resist S 18053 was used. The mask blanks (see below)

came precoated with 530 nm of AZ 15184, which was used in that case.

Both are positive resists, and we used MF-3195 photoresist developer for

both.

Direct Laser lithography

A Heidelberg Instruments DWL66 laser writer was used to pattern the

photomask blanks. We chose a configuration that combined high resolu-

tion with high writing speed, fabricating masks with large working areas

with a resolution of 2 micron within reasonable times.

The direct laser writing process is depicted in Fig. 3.1.

AZ1518

Quarz

Chromium

AZ1518

Quarz

Chromium

AZ1518

Quarz

Chromium

Quarz

Chromium

(a) Laser writer exposure

(c) Chrome wet etching

(b) Development

(d) Removal
Figure 3.1: Photomask fabrication process steps: a) A mask blank is exposed to

the DWL66 laser. b) Since AZ 1518 is a positive resist, the photoresist developer

removes the resist from the exposed areas. c) The chromium layer is etched

away in a wet chemical process. d) The remaining AZ 1518 is removed using

Piranha solution.

3Shipley MICROPOSIT S1805 PHOTO RESIST
4AZ Electronic Materials AZ1518
5Shipley MICROPOSIT MF-319 DEVELOPER
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3.1 Optical lithography

Post-development

After development, the masks were exposed to a wet chemical etchant to

remove the chromium in the exposed areas.

Before the masks could be used for pattern transfering, the remaining

resist had to be stripped off. We found that the best way to do this is with

Piranha solution, a mixture of sulfuric acid and hydrogen peroxide (see

Fig. 3.1).

3.1.2 Pattern transfer

Substrates and chips

As a substrate we used p-doped 2 inch silicon wafers. The silicon was

covered with an oxide layer of 400 nm by thermal oxidation. We divided

each wafer into chips, normally square pieces of substrate in sizes of (8

mm)􀇇 to (1 cm)􀇇. If (8 mm)􀇇 are chosen, 21 chips fit onto one 2 inch

wafer and may be processed in parallel.

Lift-off optimized resist stack

The process of depositing material on a prepatterned substrate and re-

moving the parts that were deposited onto the resist covered areas is

called a lift-off. For the lift-off fabrication of the leads for this work, a

special resist stack process was developed.

The substrate is first covered with a Copolymer resist (see section 3.2),

and then with the S 1805 photoresist.

The device for aligning amask to a substrate and for exposing it to light

is called amask aligner. In our case, a SUSS Mask Aligner MA6 containing

an intensity controlled mercury lamp was used. The mask is brought in

contact with the top resist layer, which is then exposed to a fixed amount

of light in the areas of mask transparency.

After exposure and development of S 1805, the Copolymer layer is

etched with an oxygen plasma, turning the photoresist into an offset

evaporation mask (Fig. 3.2).
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Si - Substrate

Oxide
Copolymer

S1805 (positive)

Quarz

Chromium

Si - Substrate

Oxide
Copolymer

S1805 (positive)

Si - Substrate

Oxide
Copolymer

S1805 (positive)

Si - Substrate

Oxide

Si - Substrate

Oxide
Copolymer

S1805 (positive)

(a) Pattern transfer (b) Development

(c) Undercut generation (d) Deposition

(e) Lift-off
Figure 3.2: a) Themask is pressed (soft contact) against the substrate the pattern

is transfered to. The whole area is illuminated. Note that the mask is flipped,

which means that the pattern written to the mask has to be the mirror image of

the desired result pattern. b) The exposed areas are dissolved by the developer,

since S 1805 is a positive resist. c) For a good lift-off, an undercut under the

patterened evaporation mask is vital. The underlying Copolymer is etched away

in an oxygen plasma. d) The desired metal is evaporated, here: a thin Titanium

film as a sticking layer, then 20 nm of AuPd alloy. e) The resist stack and the

unwanted metal are removed using heated acetone.
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3.1 Optical lithography

3.1.3 Thin filmmetal deposition

Evaporation

For material deposition, we used physical vapor deposition (PVD). Details

can be found in Ref. [Mat98].

The bond pads and leads were fabricated in a Lesker PVD 75 electron

beam PVD machine. In electron beam PVD, the target material is heated

locally by a beam of kiloelectronvolt electrons.

ThePVD75offers the advantage of having several different evaporation

targets that can be changed without breaking the chamber's vacuum.

Lift-off

The resist is removed with a suitable solvent. This is facilitated by the

under-etched bottom layer of the resist stack, avoiding complications

from metal-covered resist flanks.

3.1.4 Bond pads and leads design

The actual leads design for contacting our Aluminum nanostructures had

to meet several conditions:

1. Bond pads are necessary to connect the leads to the macroscopic

world. Theyneed tobe thick enough to survive thebondingprocess,

and are preferably made of a noble metal not to oxidize when

exposed to air.

2. The leads must be suitable to allow a thin layer of Aluminum to

contact them. That means they also need to be unoxidized and not

tending to form unwanted alloys when in contact with Aluminum.

They must be thin enough so that the thin Aluminum layers can

overcome the flanks and form a continuous film from the top of the

leads to the surface of the substrate.

3. The material must form a detectable contrast when looked at with

a scanning electron microscope (SEM), in order to allow alignment

in the nanostructuring steps.
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3 Fabrication methods

Material choice

Most of thematerial conditions aremet by Gold. It is noble, and has heavy

nuclei that are easily distinguished from Silicon (substrate) and Carbon

(e-beam resist) in the SEM. The leads, however, can not be made of pure

Gold, since it tends to form islands instead of continuous films. It is also

known to form a highly resistive Aluminum-Gold alloy locally.

Both limitations can be overcome if the Gold is alloyed with Palladium.

We chose to make our leads of 90% Gold and 10% Palladium (weight)

(AuPd).

To enhance surface adhesion of the deposited gold or alloy, a thin

Titanium sticking layer (a few nanometers) is evaporated as an in-situ

first step, using the multi-target capabilities of the PVD 75.

Layers design

The requirements on the thickness remain incompatible. We chose to

solve this by making the leads and the bond pads in subsequent litho-

graphy steps. The bond pads and alignment marks are present in both

layers, while the leads near the nanostructure sights exist only in the first

layer and can be made thin enough.

Figure 3.3: Bond pads and leads after lift-off. Grey: uncovered substrate. Dark

yellow: thin Gold-Palladium layer with ground plane, DC leads (right) and

microwave lead (bottom). Bright yellow: thick Gold bond pads.
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3.2 Junction lithography

3.2 Junction lithography

In this section, the methods we used to produce small (in the sense

of subsection 2.3.2 and Ref. [IN91]) Josephson junctions (JJ) will be

described. The last section presents an experiment on the dependence

of the superconducting critical temperature of Aluminum on the film

thickness.

Details of the processes can be found in the appendix D.

3.2.1 Electron beam lithography

In electron beam (e-beam) lithography, free electrons are created, ac-

celerated and guided by electric and magnetic fields, very similar to the

working priciple of a scanning electron microscope (SEM). In fact, it is

possible to turn an SEM into a lithography machine with a few modifica-

tions. The lithographymachineweusedwas aZeiss Supra55VP, equipped

with a Raith ELPHY pattern generator.

Details about electron beam lithography can be found in Ref. [MR97].

The de Broglie wavelength of a non-relativistic electron with kinetic

energy 𝑒𝑈 is

𝜆 =
ℎ𝑐

√2𝑒𝑈 ⋅ 𝑚􀇅𝑐
􀇇

An acceleration voltage 𝑈 of 1 kV already produces electrons of 𝜆 ≈

40 pm, which is by far small enough to produce submicron structures. In

reality, the beam diameter is usually limited by properties of the electron

opticsof theusedSEM:electronsof slightlydifferentvelocityarediffracted

differently (chromatic aberration), and the magnetic lenses are far from

perfect (spherical aberrations) [MR97].

Similar to optical lithography, resists have beendeveloped and are com-

mercially available. A very common example is Polymethyl methacrylate

(PMMA), which is used in bulk as acrylic glass. It is a positive resist for

e-beam lithography.

Matters are turned more complicated compared to optical lithogra-

phy by the fact that the high energy electrons create a large amount of

secondary electrons in the substrate material. In addition to the dose
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3 Fabrication methods

of high energy electrons exposing an area about the size of the electron

beam itself, amicrometer-size area recieves an exposure to the secondary

electrons.

Resist system

We used the resist system described in Ref. [HHJ81]: a bilayer of

1. Polymethyl methacrylate (PMMA) and

2. a copolymer of methyl methacrylate and methacrylic acid

(P(MMA- MAA), Copolymer).

The resist stack and the principle behind it are shown in figures 3.4 and

3.5. The Copolymer has a higher sensitivity, so the area made soluble by

exposure to secondary electrons is higher than the area made soluble in

the PMMA layer.

Figure 3.4: Multilayer stack, from Ref. [HHJ81]. Some secondary electrons are

scattered back and expose the bottom layer, which is more sensitive than the

top layer.

The developer chosen was a commercially available mixture of methyl

isobutyl ketone (MIBK) and isopropanol 1:3, Allresist AR 600-56 (E 56

for short). It develops both layers in one development step.
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PMMA
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Silicon Oxide

1. Coat and bake Copolymer
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Silicon Oxide

3. Expose to electron beam

e-beam
V
V

e-beam
V
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Figure 3.5: Bilayer resist application: Each layer is spin-coated on, and dried on

a hotplate separately. Exposure and development: While only small structures

in the top layer recieve critical dose, much larger parts in the bottom layer do.

After development, a Dolan bridge (picture 4, top center) is left. It is, of course,

connected to resist parts in the back and the front of this segment.

A considerable undercut is created. It can be used for a single layer

lift-off deposition, and we did for the Aluminum films we made for the

experiments reported in subsection 3.2.4. However, if the undercut is

large enough, it can be used for a process called shadow evaporation, as

described in subsection 3.2.2.

Single layer Aluminum deposition

The Aluminum nanostructures were fabricated by thermal evaporation

in a modified Oelikon Leybold Univex 300. A tungsten boat source is

filled with Aluminum pieces and heated by a current. The deposition rate

is measured by monitoring the resonance frequency change of a quartz

crystal mounted in close proximity to the samples. Parts of a chip can

selectively be shielded from deposition.
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3 Fabrication methods

3.2.2 Shadow evaporation of Al/AlOx/Al junctions

If the undercut generated by the patterning process is large enough, it is

possible to tilt the sample for evaporation, as opposed to depositing the

evaporated material perpendicularly to the substrate surface. By tilting,

one shifts the position of the directly exposed areas on the surface. This

is illustrated in Fig. 3.6.

The undercut of neighboring exposed top parts can overlap. Free-

hanging parts of the top resist layer are created. They are called Dolan

bridges, named after the author of references [Dol77] and [DD88].

The additional degree of freedom, i.e. the tilting angle, becomes inter-

esting if one chooses to depositmaterial several times, at different angles.

It is then possible to create quite complicated structures in a single pat-

terning step. By overlapping parts of the deposited areas, nanoscale

contacts can be created, e.g. superconductor- normal metal junctions.

If a layer of Aluminum is deposited, and then oxidized by exposure to

gaseousOxygen, it canbepartially coveredbya second layerofAluminum,

thus forming a Josephson junction. This is illustrated in 3.6.

The thickness of the oxide layer can be controlled by chosing the

Oxygen pressure and the duration of the oxidation. Since the critical

current density depends exponentially on the thickness of the insulator,

the properties of the junctions can be tuned over a considerable range.

The full shadow evaporation process is shown in figures 3.5 and 3.6.

Most shadow evaporated nanostructures are designed such that only

one of the shadows of a top layer structure is used. The other either ends

up as a large overlapping second layer, or unused finger electrodes or

islands. The former usually creates junctions so large they can be treated

as giant electric shorts, while the latter do nothing except introducing

small extra capacitances to the structures.

Some designs, however, manage to use both shadows. One example

will be described in the following subsection. It is the design that has

been used to create the periodic SQUID chains that were the subject of

the experiments reported in chapter 4.
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5. Deposit aluminum, first angle 6. Expose to oxygen

7. Deposit aluminum, second angle

Silicon Oxide

8. Strip resist stack
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Silicon Oxide
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Al Al
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Silicon Oxide
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Figure 3.6: Shadowevaporation: the top layer structures serve as an evaporation

mask. The sample is tilted , so the material (Al) is partially deposited underneath

the resist. The resulting structures are oxidized. The sample is tilted to a

different angle, so the evaporation mask is projected to a different location on

the sample. The second layer of material may overlap with the oxidized surface

of the first layer, forming tunnel contacts / Josephson junctions. The resist and

all the material deposited on top of it is removed (lift-off).

3.2.3 Fabrication of periodic SQUID chains

To fabricate aperiodic chainofAluminum islands connectedby Josephson

junctions, one can use shadow evaporation in the following way: pattern

a periodic chain of identical rectangles in the bilayer resist, such that the

rectangles are longer than the distance between them, and the distance is

shortenoughtoresult inoverlappingundercuts. Theresult isacontinuous

line of uncovered substrate at the bottom, and a periodic chain of bridges

crossing it.

Using this chain of Dolan bridges, one can deposit a chain of Aluminum

islands along the line of uncovered substrate. If one chooses the angles

correctly, it is possible to deposit the second layer such that the second set

of islands is created in the gaps between the first set of islands. Because
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3 Fabrication methods

the rectangles are longer than the distance between them, the second set

of islands will overlap with the first set.

If instead of rectangles, a pattern shaped like a chain of Is (also called

dog bones) is used, the islands can be made to overlap at two positions

with uncovered substrate in the middle, creating a SQUID loop. This is

made clear by Fig. 3.8.

The choice of the correct angle is crucial to achieving a truly symmetric

chain of SQUID loops. For that, the thickness of the bottom resist layer

has to be known precisely. If there is either an uncertainty in controlling

the angle, or an uncertainty of the resist thickness, an asymmetry may

result, which is be examined in the following.

Asymmetry considerations

As it is easy to derive from Eq. 2.18, the external flux 𝜑 modulates

the effective coupling energy from island to island, according to 𝐸􀉔(𝜑) =

2𝐸􀇅􀉔 |cos (
􀊨􀊮

􀈞􀊽

)|, where𝐸􀇅􀉔 is the Josephsonenergyofan individual junction

and Φ􀇅 is the magnetic flux quantum. The asymmetry affects this in two

ways: it changes the SQUID loop size 𝐴􀉖 and thereby the amount of flux

for a given magnetic field (𝜑 → 𝜑􀇆,􀇇), and it changes the junction size 𝐴􀉔
and thereby the single junction coupling energy (𝐸􀇅􀉔 → 𝐸

􀇅
􀉔􀇆,􀇇):

𝐸􀉔􀇆,􀇇(𝜑􀇆,􀇇) = 2𝐸
􀇅
􀉔􀇆,􀇇 |cos (

𝜋𝜑􀇆,􀇇

Φ􀇅

)|

We will describe the asymmetry by a dimensionless parameter 𝑎, such

that if 𝐴􀉖 is the average loop size, the actual loop sizes are

𝐴􀉖􀇆,􀇇 = (1 ± 𝑎)𝐴􀉖

For each nanometer of loop length increase, the junctions of the SQUID

become shorter by a nanometer. That means the junction area is

𝐴􀉔􀇆,􀇇 = (1 ∓ 𝑎)𝐴􀉔

The magnetic flux through a loop is

𝜑􀇆,􀇇 = 𝐵 ⋅ 𝐴􀉖􀇆,􀇇 = 𝐵 ⋅ (1 ± 𝑎)𝐴􀉖 = (1 ± 𝑎)𝜑̄
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Figure 3.7: The SQUID chain in case of a slight asymmetry. The exemplary SQUID

on the left has a smaller loop and bigger junctions. It is the other way round for

the SQUID on the right.

where the magnetic flux density 𝐵 is controlled by our coil. We have

defined an average flux per loop 𝜑̄. The Josephson energy of a single

junction is

𝐸􀇅􀉔􀇆,􀇇 =
Φ􀇅𝐼􀉍􀇆,􀇇

2𝜋
=
Φ􀇅𝐴􀉔􀇆,􀇇𝑖􀉍

2𝜋
=
Φ􀇅(1 ∓ 𝑎)𝐴􀉔𝑖􀉍

2𝜋
= (1 ∓ 𝑎)𝐸􀇅􀉔

with critical current density 𝑖􀉍 , critical currents 𝐼􀉍􀇆,􀇇, and a newly defined

average Josephson energy 𝐸􀇅􀉔 .

Now we can write the Josephson energy of a SQUID as

𝐸􀉔􀇆,􀇇(𝜑̄) = 2(1 ∓ 𝑎)𝐸
􀇅
􀉔 |cos (

𝜋(1 ± 𝑎)𝜑̄

Φ􀇅

)| (3.1)
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(a) The evaporation mask is suspended

above the substrate by the undercut second

layer (not shown).

(b) If the correct angles are chosen, the junc-

tions and loops are of equal size.

(c) Colored electron micrograph of a periodic

nano-SQUID chain, fabricated as a test structure.

Figure 3.8: Shadow evaporation of periodic SQUID chains.
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3.2.4 Aluminum 𝑇􀉍 dependence on the film thickness

It has been known for some time (seeRef. [MT71]) that the superconduct-

ing gap of thin Aluminum films depends on the thickness in an unusual

way: the gap increases as film thickness decreases. This seems to be due

to the increasing influence of surface superconductivity [SGW74].

The fact that the gap can be tuned by film thickness can be used to trap

quasiparticles [Fer+06], similar to the normal metal QP traps described

in subsection 2.2.2.

Since the exact size of the gap depends on the circumstances of film

deposition, an experiment was carried out to determine the thickness

dependence in our case6.

Fabrication

The Aluminum structures were designed to utilize the AuPd leads chips

that had been designed with Josephson junction arrays in mind. All leads

to a given site on the chip were used to ensure the possibility of 4-point

measurements. Per site, four Aluminum stripes were made.

Thewidth of the Aluminum stripes is 300 nm. We fabricatedAluminum

stripes of 20 nm and 40 nm thickness on the same chip. The stripes were

defined by e-beam lithography during the same writing step, as reported

in theprevioussubsectionsandappendicesCandD.Toproducestructures

of different thickness, each sitewas exposed to the evaporated Aluminum

separately while the other was covered by a shadow mask.

A picture of the finished structures can be seen in Fig. 3.9.

Measurement

The sample chipwas cooled down in a 􀇈He refrigerator. Temperaturewas

controlled by electric heating. The control loop produced fluctuations of

about 25 mK.

A four-pointmeasurement setupwas chosen. A Keithley 2636A Source

Meterwasused to supplya current through the thinAluminumstripe. The

6The experiment has been reported as part of the Bachelor thesis of H. Zwickel, see

Ref. [Zwi12].
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Figure 3.9: Aluminum nanostructures for the 𝑇􀉍 experiment. The darkest areas

are uncovered substrate, dark yellow are the AuPd contact lines, bright grey

is Aluminum. Per writefield four 300 nm wide Aluminum strips were created.

In the corners, the resist was developed because it was viewed with the SEM

during alignment.

voltage drop was measured with a HP 34401A multimeter. The voltage

resolution of the setup was 1 𝜇V.

For each layer thickness sample, two stripes were selected, contacted

and measured. The maximum current the stripe could carry before

a voltage drop was detected was determined at various temperatures

between 300 mK and 1.4 K. The maximum current approaches zero as

the temperature approaches 𝑇􀉍 .

Result

The results of the measurement are shown in Fig. 3.10(a).
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3.2 Junction lithography

The transition temperature of the structures of the same size is very

similar, while the film thickness clearly influences the transition. The

thinner film has a measurably higher critical temperature.

For both thicknesses, a critical temperature has been extrapolated from

the data. Based on different electron-phonon interactions at the surface

and in the bulk, Sixl et al. [SGW74] have used the following equation for

𝑇􀉍(𝑑):

𝑇􀉍(𝑑) = 𝑇􀉍,􀇅 exp (
𝑘

𝑑
) (3.2)

With 𝑇􀉍,􀇅 = 1.2 𝐾 and 𝑘 = 2 𝑛𝑚, our results are well described. Using

the BCS relation (Eq. 2.9) between 𝑇􀉍 and Δ and Eq. 3.2, we can estimate

the gap of an Aluminum film of a given thickness prepared under similar

conditions (see Fig. 3.10(b)).
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(a) Normalized maximum supercurrent through the

Aluminum stripes at different temperatures. The max-

imum current through the 40 nm stripes drops at sig-

nificantly lower temperatures. From Ref. [Zwi12].
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(b) Superconducting gap depending on the Aluminum thickness. In

addition to the two resulting points, the prediction by Sixl et al. is

shown for a characteristic length 􀉯 = 2 nm.

Figure 3.10: Results of the thickness dependent 𝑇􀉍 experiment
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Remember kids, the only difference between Science and screwing

around is writing it down.

Adam Savage, MythBusters

In thischapter, thechargetransportmeasurements thatwereconducted

during this work are presented.

Inorder toobserve chargingeffects in superconductingnanostructures,

the energy fluctuations in the electric and thermal environment must be

smaller than the charging energy. In section 4.1, our low temperature

setup and the low-noise electrical measurement instrumentation are

described.

The current-voltage characteristics of the examined samples differ in

some details, but they share some general properties which are shown

in section 4.2. Some of these properties - namely, the behavior at large

voltages - is used to estimate the charging energy of the islands and the

Josephson energy of the SQUIDs.

This work focuses on the conductance of Josephson junction chains in

the Coulomb blockade regime. Applying a voltage in the millivolt range

to the chains activates a charge transport mechanism that is shown to be

the result of incoherent tunneling. Section 4.3 reviews previous results

on this, and shows this regime to exist in the sample that is examined in

section 4.5.

Insubsection3.2.4, asignificantdependenceof thesuperconductinggap

ofAluminumon the film thickness is shown. In section4.4,measurements

of an array that employs this property are presented.

Charge transport in a Coulomb blockaded array can be activated by

thermal fluctuations. Section 4.5 deals with the length-, temperature-

and coupling strength dependence of the thermally activated zero bias.

The model presented in section 2.3 is used to interpret the results.
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Some of the results presented in section 4.3 and section 4.5 have been

published elsewhere [Zim+13].

Section 4.6 presents a set of measurements exploring the dependence

of the zero bias conductance on flux noise. External flux noise is applied,

and the change in conductance analyzed.
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4.1 Experimental setup

4.1.1 Low temperature environment

Allexperiments tookplace insideanantiqueKelvinoxdilutionrefrigerator.

In several steps, the temperature is lowered first from room temperature

to the temperature of liquid Nitrogen and liquid Helium at ambient

pressure (77 K and 4.2 K). Then it is lowered further to the temperature

of liquid Helium at low pressure – by evaporating 􀇉He from the so-called

1 K pot – to around 1.5 K. Finally, a dilution refrigeration unit lowers

the temperature to the minimum temperature the cryostat can reach,

typically between 15 to 20 mK. A review of the working principle of a

dilution refrigerator can be found in [Lou79].

For the measurements reported in section 4.5, the temperature of the

dilution stage has to be controlled. This is achieved by heating the stage

by sending a current through a resistor that is thermally coupled to the

mixing chamber of the refrigerator. The dilution unit is kept running

normally.

The temperature of the mixing chamber is continously measured by

monitoring the calibrated resistance of a Ruthenium Oxide thermometer

installed there. The resistance is measured using a Picowatt AVS47 AC

resistance bridge. The heating power dissipated at this stage is controlled

by a voltage applied from a NI USB 6259 digital-to-analoge converter

(DAC), through low pass filters.

The temperature is controlled by a computer programm that reads out

the AVS bridge and controlls the DAC. It implements the well established

method of proportional-integral-derivative (PID) controlling1. Temper-

ature stabilization was better than Δ𝑇􀇧􀇢􀇨/𝑇 = 0.1% for all reported

measurements.

The temperature control for this setup was implemented and tested

during the time of this work. Some technical notes on the details can be

found in the appendix B.

1For a review of the method, see e.g. Ref. [Ast95].
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4.1.2 Wires and filters

To contact the samples, preexisting DC lines to the mixing chamber stage

wereused. These linesare low-pass filteredbothat roomtemperatureand

at the 1K stage. At the room temperature stage, commercially available

𝜋-filters2 are installed on the measurement lines. These filters reduce

electromagnetic noise from the room temperature environment.

At the 1K stage, T-type RC low-pass filters with a bandwidth of 40 kHz

are inserted into all the lines. The resistors add up to a total resistance

of about 500 Ω per line. At this point, the charge carrier temperature is

reduced to the temperature of the 1K stage, and thermal noise from the

room temperature cable is filtered.

At the mixing chamber stage, additional custom low-pass metal pow-

der filters[LU08] are installed. The powder filters have a -3 dB cutoff

frequency of 1 MHz. They prevent high frequency noise, that may have

passed through the lumped element filters, from influencing the sample.

To estimate the Nyquist noise (see Ref. [Nyq28]) at the sample, it

is assumed each line has a resistance of 50 Ω at 300 K. That noise

is filtered by the T-type RC filter at 1.5 Kelvin. The noise voltage is

𝑈􀇈􀇅􀇅 􀇠
􀇽􀇾􀇸􀈂􀇴 = √4𝑘􀉌𝑇 𝑅 Δ𝑓 ≈ 0.2 𝜇V.

Neglecting the capacitance of the T filter, a worst case estimate of the

thermal noise from the 500 Ω at 1.5 K is to assume that it is only limited

by the powder filters. Then, the noise voltage is 𝑈􀇆.􀇊 􀇠
􀇽􀇾􀇸􀈂􀇴 ≈ 10 nV. This

much lower than the room temperature noise, and it is neglected.

The resistance of a typical array is 1 MΩ or more, so the thermal noise

current is on the order of 0.2 pA.

Between the filters and connection points, associated line pairs are

realized as twisted pairs, to reduce electromagnetic interference. An

overview over the wiring and filtering can be seen in Fig. 4.1.

4.1.3 Instruments

All measurements reported in sections 4.2 through 4.5 were performed

with the setup shown in Fig. 4.1. The bias voltage is controlled by

2Type SCI 52-970-209-TB0 9724, 3 dB cut-off at 700 kHz
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Figure 4.1: Experimental setup: A source-measurement unit is used to supply

the voltage bias to the sample and simultaneously measure the current. The

signal is low-pass filtered symmetrically at different stages. A magnetic flux bias

is supplied to the SQUIDs from a separate current source.

a source-measurement unit (SMU)3 which also measures the resulting

current. The second channel of the SMU is used to control the flux bias

coil. The setup is capable of measuring currents up to a resolution of

𝐼􀇧􀇢􀇨 ≈ 200 fA.

3Keithley Model 2636A Dual-channel System SourceMeter
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4.2 Sample characterization

In this section, typical charge transport properties of SCJJAs are de-

scribed4. A method to estimate microscopic properties from the large

bias current-voltage characteristics is described, and the samples are

introduced.

4.2.1 Typical current-voltage characteristics

Depending on the number of SQUIDs and the ratio of Josephson energy𝐸􀉔
to charging energy𝐸􀉍 , the arrays typically exhibit amacroscopic Coulomb

blockade (CB), see Fig. 4.2 and e.g. Ref [HD96]. The longer the array and

the lower the 𝐸􀉔/𝐸􀉍 ratio, the more pronounced this feature becomes.

Under favorable conditions, the voltage range in which no measureable

current flows reaches several millivolts. Transport can be activated by

thermal fluctuations (𝐺􀉞), as is discussed in detail in section 4.5.

Above a switching voltage 𝑉􀈂􀈆, the arrays switch from the CB state to a

branch of finite conductance [HD96]. At low temperatures and very low

external voltage noise, a hysteresis can be observed: once on the branch

of finite conductance, the array will remain conducting even at voltages

below 𝑉􀈂􀈆, and return to the CB state only if the voltage is lowered below

a retrapping voltage 𝑉􀈁􀇴. The hysteresis in the samples IFP11-N has been

analyzed in Ref. [Fie11].

In some arrays, the branch of finite conductance above 𝑉􀈂􀈆 exhibits a

constant differential conductance (𝐺􀉠) over a considerable voltage range.

The dependence of this conductance on the external flux has been ob-

servedbyR. Schäferet al. [Sch11]and ithasbeenshowntobeproportional

to 𝐸􀇇􀉔 . Section 4.3 reports measurements that confirm those findings.

As the voltage is increased further, the differential conductance de-

creases, and the absolute conductance rises very slowly. At sufficiently

low effective 𝐸􀉔 (approaching a flux bias of Φ􀇅/2), a sudden increase in

conductance can be seen at a voltage of about 2𝑁Δ/𝑒 = 𝑉􀇶􀇰􀇿. It is asso-

ciated with a voltage drop across each junction large enough to generate

4An overview can be found e.g. in Ref. [Fie11].
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Figure 4.2: IV of IFP11-255 at an external flux of about Φ􀇅/2 per SQUID,

measured at base temperature. The regions of voltage-activated conductance

𝐺􀉠 and of thermally activated conductance 𝐺􀉞 are marked.

quasiparticles. In the case of significantly different Δ in the two shadow

evaporation layers, this property ismodified, as is reported in section 4.4.

Above the gap voltage, one always finds a flux-independent branch of

constant differential conductance 𝑅􀈃,􀇣. It appears to be the high-voltage

limit, as it always continues up to the highest voltages applied. A least

square fit of this region is shown in Fig. 4.3. The curve differs from

classical ohmic behavior by a small offset voltage 𝑉􀇾􀇵􀇵. It is this behavior

at high voltages that is used to estimate the microscopic properties of

each sample, as is described in the following subsection.

4.2.2 Charging energy and tunneling resistance estimation

Estimation from the high voltage properties

In the limit of high voltages and (relatively) high currents, all junctions

are in the resistive state, and the voltage drop is uniformly distributed

along the array. Since the voltage is larger than the gap voltage on each
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Figure 4.3: Large voltage bias behavior of sample IFP11-255. Characteristics

were measured at base temperature. Inset: the linear fit of the high voltage

conductance reveals an offset voltage 𝑉􀇾􀇵􀇵.

junction, transport is governed by quasiparticles. This is in agreement

with the fact that no flux dependence can be observed at these voltages.

For this estimation, the transport of quasiparticles across a series

of uniformly biased small capacitance tunnel junctions is assumed to

follow the model described in subsection 2.3.2. That means that one can

interpret the observed resistance𝑅􀈃,􀇣 as the sumof the individual normal

tunneling resistances, 𝑅􀈃,􀇣 = 𝑁 ⋅ 𝑅􀉸. The offset voltage 𝑉􀇾􀇵􀇵 is the sum of

the individual charging voltages, 𝑉􀇾􀇵􀇵 = 𝑁 ⋅ 𝑒/2𝐶, necessary to charge the

individual junction capacitance 𝐶.

Now it is straightforward to derive the quasiparticle charging energy

𝐸
􀈀􀇿
􀉍 and the initial Josephson energy 𝐸􀇅􀉔 . The charging energy is simply

𝐸
􀈀􀇿
􀉍 =

𝑒􀇇

2𝐶
=
𝑒 ⋅ 𝑉􀇾􀇵􀇵

𝑁
(4.1)

To estimate the initial Josephson energy, Eq. 2.14 is employed, connect-

ing the normal tunnel resistance with the junction's critical current:
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4.2 Sample characterization

𝐼􀉧(𝑇) =
𝜋

2𝑒

Δ(𝑇)

𝑅􀉲
tanh(

Δ(𝑇)

2 ⋅ 𝑘􀉌𝑇
)

At low temperatures (𝑇 ≪ 𝑇􀉧) one can approximateΔ(𝑇) ≈ Δ(0), which

allows:

tanh(
Δ(𝑇)

2 ⋅ 𝑘􀉌𝑇
) ≈ tanh(

Δ(0)

2 ⋅ 𝑘􀉌𝑇
) ≈ tanh(

𝑇􀉧

𝑇
) ≈ 1

⇒ 𝐼􀉧(𝑇) ≈ 𝐼􀉧(0) =
𝜋

𝑅􀉲

Δ(0)

2𝑒

The Josephson energy is then:

𝐸􀇅􀉔 =
Φ􀇅

2𝜋
𝐼􀉍 ≈

Φ􀇅

2𝜋
𝐼􀉍(0) =

𝑅􀉛

2

Δ(0)

𝑅􀉲
(4.2)

𝑅􀉛 =
􀉬

􀇉􀉩􀊿
= 6.45 𝑘Ω is the resistance quantum.

Charging energy estimation by junction size

An alternative method to estimate the SQUID charging energy is by mea-

suring the junction size, and multiplying it by a specific capacitance from

literature. The junction size can be determined from SEM pictures of

control structures with a reasonable accuracy. For junctions tens of 𝜇m􀇇

big, a specific capacitance of 𝑐􀉷 = (45 ± 5) fF/𝜇m is reported. However,

for ultrasmall junctions on the order of 0.01 𝜇m,

𝑐􀉷 ≈ 200 fF/𝜇m

seems to be a much better approximation [WH01]. Since the junctions

examined in this work are of that size, that value will be used for the

estimation.

4.2.3 Overview of samples

The array parameters, estimated as described above, are shown in ta-

ble 4.1.
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Soli06a and b

Four arrays were fabricated on one chip with N=255 SQUIDs each. Two

were measured in the course of this work. The coulomb blockade is

pronounced without the application of magnetic flux.

The junction area is estimated as 0.01 𝜇m􀇇.

KTH2011chip1

The sample KTH2011chip1 has a total of 2888 SQUIDs. During shadow

evaporation, the thickness of the Aluminum layers was chosen to be

different, 12 nm and 24 nm. According to Fig. 3.10(b), this corresponds

to gaps of 215 𝜇eV and 195 𝜇eV, a noteable difference.

The junctions have an area of 0.1 𝜇m ⋅ 0.2 𝜇m.

Figure 4.4: SEM micrograph of sample KTH2011chip1. A bias comb was placed

next to the array.

KTH2011chip1 was fabricated with a bias comb. A micrograph of it is

shown in Fig. 4.4. The distance between gates and array is 1120 nm, the

distance between the gates is 900 nm. Each gate is 𝑤 = 700 nmwide.

From the numerical simulations of the capacitances in subsection 2.1.2,

one can estimate the inter-gate capacitance per unit length as

𝐶􀉫/𝑙 ≈ 35 aF/𝜇m
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4.2 Sample characterization

If the capacitance of the gate electrodes to ground is estimated as the

capacitance of a plate capacitor, 𝐶􀉫,􀇅 per unit length is

𝐶􀉫,􀇅/𝑙 ≈ 𝜖􀇅𝜖􀉶𝑤/𝑑 = 0.15 aF/𝜇m

since the chip is 500 𝜇m thick.

The capacitance between the gate electrode and the center island is,

from the calculations in subsection 2.1.3, estimated to be

𝐶􀉫,􀉭 ≈ 1.5 − 3 aF

With a ratio of islands to gate electrodes of 𝑛􀉭 = 8, the effective bias

voltage screening length is:

𝑛􀉭Λ􀉫 = 𝑛􀉭√𝐶􀉫/𝐶􀉫,􀇅 ≈ 120

Since it is much smaller than the total array length, no significant effect

can be expected.

IFP11-N

A set of arrays has been fabricated on the same chipwith the same design

parameters, only differing in the number of junctions. The longest two

exhibit a Coulomb blockade at sufficient magnetic flux. The lengths are

N=59andN=255. Twoadditional arrays ofN=39andN=19have alsobeen

fabricated on that chip, but are not subject of this work. The junction area

is estimated to be 𝐴􀉔 = 0.018 𝜇m
􀇇. The fabrication and characterization

of this sample has been described in Ref. [Fie11].
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4.2 Sample characterization

4.2.4 Estimation of the SQUID inductance

In section 2.2.1, it was shown that the DC SQUIDs can be regarded as

tuneable single Josephson junctions, with a critical current tuneable from

twice the single juntion's 𝐼􀉍 to zero. This approximation only holds if

the geometric inductance of the loop is much smaller than the Josephson

inductance, or 𝛽􀉖 ≪ 1 (see Eq. 2.19).

As anexample,𝛽􀉖 is estimated for the sample IFP11-255. Thegeometric

inductance is estimated to be 𝐿 = 23 pH5.

Since𝐸􀉔 = 117 𝜇eV, the total critical current is 𝐼􀉍 = 2𝜋𝐸􀉔/Φ􀇅 = 58 nA.

This means:

𝛽􀉖 =
2𝜋𝐼􀉍𝐿

Φ􀇅

= 4 ⋅ 10􀇐􀇈 ≪ 1

The kinetic inductance per square (see e.g. Ref. [Sch97]) of a thin film is

𝐿􀉕􀈂􀈀 = 4𝜋𝜆
􀇇/𝑑. 𝜆 = 50 nm is the London penetration depth of Aluminum,

and 𝑑 is the film thickness, 30 nm in this case. This means 𝐿􀉕􀈂􀈀 = 105 fH,

so with a an estimated number of 32 squares, one arrives at

𝐿􀉕 = 3.4 pH

which is an order of magnitude lower than the geometric inductance, and

can safely be ignored.

5S. Butz used FastHenry, a free inductance calculation tool from MIT. The SQUID

geometry was estimated from SEM images to be 320 nm x 1700 nm outer size, 80 nm x

1360 nm inner size, layer thickness 30 nm.
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4 Measurements

4.3 Voltage-activated conductance

Above a flux-dependent switching voltage, the SQUID arrays exhibit a

regime of constant differential conductance 𝐺􀉠 (see Fig. 4.2). Schäfer

et al. [Sch11] have investigated the dependence of 𝐺􀉠 on the external

flux, fromwhich the dependence on the effective Josephson energy of the

SQUIDs can be calculated. 𝐺􀉠 has been determined for various external

flux values, spanning more than 3Φ􀇅.

As shown in Fig. 4.5, the conductance has a cos􀇇 flux dependence:

𝐺􀉠 ∝ cos
􀇇(𝜋𝜙/Φ􀇅) (4.3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 4.5: Flux dependence of the voltage-activated conductance, courtesy of

R. Schäfer [Sch11].

It follows directly from Eq. 2.18 that:

𝐺􀉠 ∝ 𝐸
􀇇
􀉔 (4.4)

In the spirit of Eq. 2.43, this can be interpreted as a signature of incoher-

ent tunneling of Cooper pairs in the array. Since the voltage distribution
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4.3 Voltage-activated conductance

in the case of finite voltage and finite current is non-trivial, detailed cal-

culations are challenging. This can be taken as further motivation for

zero bias voltage conductancemeasurements, which aremore accessable

theoretically.

4.3.1 Sample IFP11-255

The regime of constant differential conductance 𝐺􀉠 was measured in

sample IFP11-255. For all values of external flux, the sample exhibits a

constant differential conductance in the bias voltage range of 1.3 - 1.7mV

(Fig. 4.6). 𝐺􀉠 was calculated by a least square fit of the IV in that range.

The amount of flux penetrating each SQUID for a given magnetic field

can be estimated by the loop area. Once the flux dependence of 𝐺􀉠 is

established, the more precise way to determine the amount of flux per

SQUID is to find the minimum of 𝐺􀉠 . In this and the following chapters,

all flux values have been calculated in this fashion.
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Figure 4.6: In the bias voltage range of 1.3 - 1.7 mV, sample IFP11-255 exhibits

a constant differential conductance. This range is used to determine 𝐺􀉠.
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4 Measurements

Theresulting flux-dependent conductance𝐺􀉠(𝜙) is shown inFig. 4.7(a).

𝐺􀉠 clearly follows Eq. 4.4. A closer look at the minimum reveals a

double-minimum structure (Fig. 4.7(b)). The double-minimum can be

reproduced qualitatively by assuming an asymmetry 𝑎 = 0.06 according

to Eq. 3.1. However, since the quantitative agreement of the assymmetric

fit is not better than the symmetric one, all further analysis will assume

the symmetric case.

4.3.2 Sample KTH2011chip1

The KTH2011chip1 sample exhibits a Coulomb blockade for flux biases

larger than 0.44Φ􀇅. As is shown in Fig. 4.8, the voltage atwhich a constant

differential 𝐺􀉠 can be observed is higher than in the previously discussed

samples. The voltage range of 3mV to 5mVwas taken for the least square

fit of 𝐺􀉠 . One might speculate that this effect is connected to the larger

effective bias voltage screening length (see subsection 4.2).

At external fluxes of less than 0.4Φ􀇅 per SQUID, the conductance is

larger than estimated by the cos􀇇-fit of the Coulomb blockaded regime

(see Fig. 4.8). This indicates that the coupling between the islands is

approaching a regime of coherent transport, as might be expected for the

quite large 𝐸􀉔(𝜑 = 0)/𝐸􀉍 ratio.
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Figure 4.7: Voltage-activated conductance 𝐺􀉠 of sample IFP11-255. A least-

square fit with an odd/even asymmetry (𝑎 = 0.06, red) and without an asym-

metry (blue) are shown.
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Figure 4.8: At sufficiently large external flux, the sample KTH2011 is Coulomb

blockaded. Near Φ􀇅/2, 𝐺􀉠 follows the cos􀇇 dependence. With increasing 𝐸􀉔,

the conductance is larger.
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4.4 Dual gap feature

4.4 Dual gap feature

The sample KTH2011 has been designed with very different supercon-

ducting gaps in the two Aluminum layers, using the dependence of the

gap on the film thickness.

In a voltage-biased bulk SIS contact, a quasiparticle current is created

once the bias voltage reaches (Δ􀇆+Δ􀇇). Then, the energy is large enough

to produce a hole-like quasiparticle in one electrode and an electron-like

in the other. Therefore one expects to see a gap feature at:

𝑉􀇶􀇰􀇿 = 𝑁 ⋅ (Δ􀇆 + Δ􀇇)/𝑒 = 2𝑁 ⋅ (Δ̄)/𝑒 (4.5)

Suppose Δ􀇆 < Δ􀇇. Ramping up the voltage, the voltage 𝑉􀇆 = 2𝑁Δ􀇆/𝑒

is reached before 𝑉􀇶􀇰􀇿. At that voltage, every other island is supplied

enough energy to break cooper pairs. The quasiparticles generated by

this would preferably tunnel in the direction of the voltage drop, giving

rise to a quasiparticle current. A quasiparticle current can be expected to

be independent of the external flux.

Current-voltage curves were measured at bias voltages in the range

600 to 1000 mV, variing the external flux.

Results

Fig. 4.9(a) shows the high bias voltage characteristics of the sample.

Above 860 mV, the transport is completely independent of the external

flux. The linear branch is switched to at a flux-dependent voltage.

Depending on the flux bias, a second flux-independent branch can

be reached. Switching occurs at 720 mV for all 𝜙􀇴􀈇􀈃 < 0.2Φ􀇅. The

lower voltage flux-independent branch changes into the high voltage

limit branch at 775 mV.

The lower voltage branch has a total differential resistance of 2.0 MΩ,

and an offset voltage of 478 mV. For the higher voltage branch, one finds

a resistance of 4.78 MΩ and an offset voltage of 31 mV.

Thegapvoltage is taken tobe theΦ􀇅/2-limitof thegap featureswitching

(see Fig. 4.9(b)), which is 855mV. The average gap is, according to Eq. 4.5:

Δ̄ = 148𝜇eV
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4 Measurements

Assuming that the first switching voltage, 720 mV, corresponds to

𝑉􀇆 = 2𝑁Δ􀇆/𝑒, onearrivesatΔ􀇆 = 125𝜇eV, and immediatelyΔ􀇇 = 171𝜇eV.

Discussion

From thehigh voltage limit branch, a tunneling resistance of𝑅􀉸 = 1.66 kΩ

and a quasiparticle charging energy of 𝐸
􀈀􀇿
􀉍 = 11𝜇eV had already been

extracted. This charging energy agrees with the estimate extracted from

the junction area.

The second branch shows a differential resistance that is roughly half

of that of the high voltage limit. Its offset voltage, 𝑉􀇾􀇵 = 165.5 𝜇V ⋅ 𝑁, is

much larger than even the Cooper pair charging energy of each junction.

It coincides with about once the gap energy per island.

All the observations agree with the assumption that the feature is the

result of the dual gap.
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Figure 4.9: Large bias properties of the very long bias comb sample; Gap feature

switching voltage of the very long bias comb sample
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4.5 Thermally activated conductance

In section 2.3 a model is derived to predict the zero bias conductance of

chains of small SQUIDs. This subsection presents the results of a series

of experiments measuring that zero bias conductance, variing both the

conductance and the external flux, i.e. the effective Josephson energy.

4.5.1 Method for nonlinear conductances

In order to measure the zero bias conductance, a linear fit of the conduc-

tance around zero bias is computed:

𝐼(𝑉) ≈ 𝐺􀉞 ⋅ 𝑉 (4.6)

At higher temperatures – above 300 mK – this method produces good

results (see Fig. 4.10(a)). As the temperature is lowered, the current

detection limit of the setup makes it more and more challenging to

determine the conductance.

The detection sensitivity can be increased by including a wider voltage

range into the fit. Since the conductance is not strictly linear over the full

base temperature Coulomb blockade voltage range, the increase of the fit

range could potentially lead to impaired results.

To circumvent the nonlinearity, a minimally nonlinear term is added

to the fitting function. The current response to the voltage has to be

symmetric with respect to the origin, so the smallest order polynomial

nonlinearity is cubic:

𝐼(𝑉) ≈ 𝐺􀉞 ⋅ 𝑉 + 𝛼 ⋅ 𝑉
􀇈 (4.7)

As an example, the IV of Soli06A at 300 mK and the fit according to

Eq. 4.7 are shown in Fig. 4.10(b).
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Figure 4.10: a) Thermally activated conductance 𝐺􀉞 of sample IFP11-255 near

full suppression (0.475Φ􀇅). In this voltage range and this noise ratio, the zero

bias voltage can be determined accurately by a linear fit (Eq. 4.6). b) Cubic fitting

of 𝐺􀉞 (see Eq. 4.7). The IV was measured on Soli06a at 300 mK.
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4.5.2 Measurement results

In sample IFP11-N, 𝐺􀉞 is measured in both arrays at varied external flux.

A good way to visualize the results of the 𝐺􀉞 measurements is to show

them in an Arrhenius plot (Fig. 4.12).

In an Arrhenius plot, the Arrhenius-like temperature dependence

𝐺 ∝ exp(−𝐸􀉋/𝑘􀉌𝑇) takes the shape of a straight line. It is possible

to characterize the temperature dependence of a given process by com-

paring itwith theArrhenius-likeactivationbehavior. Any temperaturede-

pendence stronger than Arrhenius is called super-Arrhenius, any weaker

dependence is called sub-Arrhenius, as is illustrated in Fig. 4.11.

Figure 4.11: Terminology. Any temperature dependence stronger thanArrhenius

is called super-Arrhenius, any weaker dependence is called sub-Arrhenius. From

Ref. [Nis+09].

Temperature-independent plateau

At low temperatures, the conductance of both arrays saturates to a con-

stant. The flux-dependent low temperature conductance is shown in

Fig. 4.13. It is much more pronounced in the case N=59, but also clearly

visible in the N=255 sample. The constant conductance depends strongly

on the effective Josephson energy. For the longer array, the effect gets

suppressed below our detection capabilities at lower Josephson energies.
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Figure 4.12: Arrhenius plot of 𝐺􀉞 of both IFP11 samples, selected flux values. At

low temperatures, a flux-dependent plateau forms. The N=255 data shows a

clear super-Arrhenius curvature.

This process might be attributed to a remanent superconducting cou-

pling over the full length of the array. This hypothesis is consistent

with both the length dependence and the strong E􀉔 dependence of this

phenomenon.

Another possible explanation is low frequency noise coupling in from

thecontact electrodes. Suchaneffect couldbe strongerwithbetter carrier

mobility, and much more pronounced if the array is only several Λ long.

Temperature dependent part

At sufficiently high temperatures (between 200 and 300 mK) another

mechanism begins to dominate transport. Since the low-temperature

plateau conductance is two orders of magnitude smaller in IFP11-255,

this mechanism is much better observed there.
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Figure 4.13: Temperature-independent conductance plateau. In the longer array,

it is exponentially suppressed.

Close to full suppression, 𝐺􀉞 shows a clear super-Arrhenius curva-

ture. At higher temperatures, the relative dependence of 𝐺􀉞 on the flux

decreases.

Instead of analyzing this family of temperature dependence curves, it

is useful to plot the same data in a different way: the temperature is fixed,

and the flux dependence of 𝐺􀉞 at that temperature is analyzed.

4.5.3 Analysis by flux dependence

Fig. 4.14 shows 𝐺􀉞 measurements at different temperatures, varying the

magnetic flux. Asa first approximation, onewouldexpect theconductance

toapproachzerowhen the fluxbias in theSQUIDs reachesΦ􀇅/2. However,

at finite temperatures, the conductance is not fully suppressed, and there

remains a residual conductance 𝐺􀇅(𝑇) at Φ􀇅/2, which increases with

increasing temperature.
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4.5 Thermally activated conductance

After subtracting𝐺􀇅(𝑇), the remaining flux-dependent conductance can

be described by using Eq. 4.3, revealing a quadratic dependence of 𝐺􀉞 on

𝐸􀉔. The flux-dependence of the conductance reduces to two functions,

separating a flux-independent contribution from the 𝐸􀇇􀉔 -dependent part:

𝐺􀉞(𝜑, 𝑇) = 𝐸
􀇇
􀉔,􀇅 cos

􀇇 (
𝜋𝜑

Φ􀇅

) 𝛾(𝑇) + 𝐺􀇅(𝑇) (4.8)

where 𝐺􀇅 is a conductance, and 𝛾 has the dimensions Ω􀇐􀇆⋅eV􀇐􀇇. 𝐸􀉔,􀇅 is

the Josephson energy at zero flux.
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Figure 4.14: Thermally activated conductance in the small voltage bias limit (𝐺􀉞,

N=255). The dependence on the external flux has been fit according to Eq. 4.8.

𝐺􀇅 is determined by the offset of the conductance at Φ􀇅/2, and 𝛾 captures the

magnitude of the 𝐸􀇇􀉔 -dependent contribution.

Results – 𝐸􀇇􀉔 -dependent

Fig.4.15 shows the data separated according to Eq. 4.8. Now, both the

general and the specialized theory can be applied to describe the data.
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A least square fit of 𝛾(𝑇) according to Eq. 2.37 reveals an energy of

𝐸􀇼􀇰􀈇 = 229 𝜇eV, and a prefactor temperature dependence of 𝛼 = 2.5.

The resulting energy agrees well with our estimate of the array charging

energy of Λ𝐸􀉍/2 = 220 𝜇eV.

Eq. 2.37 introduces two free fit parameters, the prefactor amplitude

and temperature dependence. With the additional assumptions of sub-

section 2.3.3, an analytic expression for the rates is found, and the con-

ductance can be fit with only the constrained parameters 𝐸􀉍 and 𝐸􀉔,􀇅.

Λ = 10 is assumed. The least square fit of the N=255 array data

results in a Cooper pair charging energy of 𝐸􀉍 = 41.5 𝜇eV, and a zero

flux Josephson energy of 𝐸􀉔 = 468 𝜇eV, which is both well within the

estimated array parameters.

Both fits are shown in Fig. 4.15.

Results – flux-independent

In the case of the flux-independent contribution 𝐺􀇅(𝑇), 𝛼 is zero. For the

N=59 array, we get 𝐸􀇼􀇰􀈇 = 180 𝜇eV. The N=255 array is best fit with

𝐸􀇼􀇰􀈇 = 210 𝜇eV. These energies are compareable to both the activation

energy in the flux-dependent contribution, and to the quasiparticle gap

of thin film Aluminum, Δ = 200 𝜇eV.

For the explicit rates model, Λ = 10 is maintained and the usual thin

film Aluminum gap of Δ = 200 𝜇eV is assumed. The charging energy is

set to 𝐸􀉍 = 10.4 𝜇eV, which is 1/4 of the Cooper pair charging energy.

The only free fit parameter is the tunnel resistance. It is fit as 𝑅􀉞,􀇇􀇊􀇊 =

14.81 Ω and 𝑅􀉞,􀇊􀇎 = 29.59 Ω, which is much lower than expected.
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Figure 4.15: Temperature dependence of the two components of 𝐺􀉞 of IFP11-N.

Continuous lines represent the general model, dashed lines represent the

P(E)-derived model.
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4.5.4 Additional data

Additionally, the thermally activatedzerobias conductance ismeasured in

the two IFP-Soli06 samples. Since the flux dependence of the conductance

is not tested, a separation according to Eq. 4.8 can not be applied. A fit

of the general model would have too many free fit parameters and is not

attempted.

With the application of the explicit rates, the number of parameters is

reduced. The data and the fit results are shown in Fig. 4.16. Λ = 10 and

Δ = 200 𝜇eV is assumed.

In sample IFP-Soli06a, which has a relatively low conductivity, the least

square fit gives 𝑅􀉸 = 356.6Ω, 𝐸􀇘􀇥􀉍 = 95.2 𝜇eV and 𝐸􀉔 = 303.3 𝜇eV.

For sample Soli06b, the results are 𝐸􀇘􀇥􀉍 = 68.1 𝜇eV, 𝑅􀉸 = 215.4Ω and

𝐸􀉔 = 658.6 𝜇eV.
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Figure 4.16: Thermally activated zero bias conductance (𝐺􀉞) of samples IFP-

Soli06a (magenta) and IFP-Soli06b (black). The conductance has been fit to

the P(E)-derived model, with an 𝐸􀇇􀉔 -dependent contribution (red) and with

equilibrium quasiparticles (blue).
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4.5 Thermally activated conductance

4.5.5 Discussion

The main motivation for measuring the thermally activated zero bias

conductance is to get a quantitative handle on the transport properties

of the arrays. Even with a very general approach to the hopping rates,

one gets good quantitative data on the average energy of a carrier within

the array. Good agreement with the area-based estimate of the single

junction charging energy is achieved.

Encouraged by the quadratic 𝐸􀉔 dependence of both 𝐺􀉠 and 𝐺􀉞 , the

P(E) theory can be used to quantitatively explain the transport data. It

then covers the dependence of the zero bias conductance on 𝐸􀉔, 𝑇 and 𝑁

– albeit, in the case of the number of SQUIDs, only for two array lengths.

In all four arrays examined, the Josephson energy is estimated higher

by the zero bias transport fit than by the normal state resistance. Both

methods agree in the order of magnitude. The method that was used

to determine 𝑅􀉘 might have oversimplified the physics of long array

conductance, or indeed the physics of Josephson junctions. The micro-

scopic properties of highly resistive Josephson junctions are discussed in

Ref. [Gre+11].

The tunneling resistance 𝑅􀉸 derived from the assumption that 𝐺􀇅 is

solely the result of equilibrium quasiparticles is much too low, meaning

the current is much larger than a more realistic estimate of 𝑅􀉸 would

predict. This can have several reasons:

• The equilibrium quasiparticle rate (Eq. 2.48) is only estimated

roughly, the actual semiconductor model contains a prefactor of

order unity that needs to be calculated more carefully.

• At higher temperatures the assumption of only one charge carrier

at any time may break down, rendering the calculation inaccurate.

• AnumberofreasonscouldcauseCooperpair transportatanaverage

flux per SQUID ofΦ􀇅/2, including local flux noise, global flux noise

and a spread in junction or loop size.

ThetwoIFP-Soli06samplesweredesignedtohave identicalparameters.

From the high bias behavior, some deviation were to be expected. The

observed behavior might be explained by a slightly thicker oxide barrier
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4 Measurements

in IFP-Soli06a. Then, 𝐸􀉍 would be a little higher than for the thinner

barrier. Since the critical current depends exponentially on the thickness,

a stronger variation in 𝐸􀉔 is not surprising.
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4.6 Analysis of flux noise influence

4.6 Analysis of flux noise influence

Trying to identify the flux dependence in sample IFP-Soli06b, it is found

that the conductance increases with increasing coil current. Strong heat-

ing of the cryostat can be excluded, since the temperature at the sensor

does not rise.

A possible explanation is that with increasing coil current, a local noise

sourcegets stronger, and that in this sample, the local noise ismore impor-

tant for the thermally activated conductance than the Josephson coupling.

Fluctuations in the coil current itself would cause a homogeneous flux

noise in each of the SQUIDs.

In order to investigate this effect, the setup is modified to intentionally

impose homogeneous flux noise to the array.

Instead of showing the flux, the x-axis remains in the experimental form

of coil current, since direct effects of the current in addition to the effects

of flux are considered. Φ􀇅/2 per SQUID is expected at around 100 mA of

coil current.

4.6.1 Setup modifications

The current for the coil is supplied by a custom current source, which is

voltage controlled via the SMU. A transformer is added in series to the

flux biasing circuit (see Fig. 4.17). The DC current flux bias properties are

left unchanged. However, an arbitrary RF-signal can now be added to the

coil, imposing a homogeneous flux noise on the array.

An arbitrary waveform generator6 (AWG) is used to generate white

noise. Since all circuit elements are linear, the added flux noise at the

array scales linearly with the noise amplitude of the AWG.

4.6.2 Results

Low temperature results

At 100 mK without external flux, the array is Coulomb blockaded, no

conductivity canbemeasuredat zerobias. As the coil current is increased,

6Agilent 33210A Function / Arbitrary Waveform Generator, 10 MHz
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Figure 4.17: Coil current noise setup: in order to test the influence of uniformflux

noise on charge transport, a simple modification of the setup was implemented.

The DC coil current could be controlled in the same way as before. Noise was

added to the coil current inductively.

adetectable zerobias conductance appears at high coil currents (Fig. 4.18,

no extra noise). With increasing extra noise, the conductance rises, and

becomes detectable at ever lower coil currents.

For a given level of added noise, the rise of the conductance with

temperature is exponential:

𝐺(𝐼􀇲􀇾􀇸􀇻) = 𝐺
(􀇅) ⋅ exp (𝜂 ⋅ 𝐼􀇲􀇾􀇸􀇻)

𝐺(􀇅) and 𝜂 depend on the amplitude of the additional noise, as shown

in Fig.4.19.

The effect of the added coil current noise is qualitatively the same as

the effect of the coil current itself. This can be taken as evidence of a

preexisting noise on the coil current with a significant influence on the

zero bias conductance.
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Figure 4.18: Flux noise response of the zero bias conductance at 100 mK.

Without flux noise, the conductance rises with increased coil current, whereas

from previous experiments, a drop in conductance is expected. Φ􀇅/2 per SQUID

is reached around 100 mA of coil current. Adding noise to the coil current

increases the conductance in qualitatively the same way.
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Figure 4.19: Low temperature (100mK) noise dependence. The conductance

depends exponentially on the coil current, 𝐺(𝐼􀇲􀇾􀇸􀇻) = 𝐺
(􀇅) ⋅ exp (𝜂 ⋅ 𝐼􀇲􀇾􀇸􀇻). 𝐺

(􀇅)

and 𝜂 change with the amplitude of the added noise. A saturation can be

observed, indicating preexisting coil current noise.
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Figure 4.20: Effect of added coil current noise on the conductance at 300mK. As

in the low temperature measurements, the conductance rises with coil current.

At elevated noise levels, a dip appears.

Results at elevated temperatures

The noise influence is measured at 300 and 400 mK to study the ef-

fect at elevated temperatures. At these temperatures, a conductance is

measureable for all coil currents. The results are shown in Figs. 4.20

and 4.21.

At300mKwithout extranoise, the currentqualitativelybehaves similar

to the low temperature behavior.

At 300 mK with added noise, as well as at 400 mK with and without

noise, a parabolic dip appears in the conductance, reminiscent of the

parabolic flux dependence in samples IFP11-255 and IFP11-59.

4.6.3 Discussion

At low temperatures, the effect of adding noise and of increasing the coil

current are qualitatively the same. Raising the temperature also increases
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Figure 4.21: Effect of added coil current noise on the conductance at 400mK.

Superimposed with the rise with coil current, a pronounced dip appears in the

conductance at Φ􀇅/2.
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4.6 Analysis of flux noise influence

the conductance in a similarway. In the low temperature regime, all three

seemtoaddupand increase theconductance. Withoutabetter theoretical

idea of the microscopic mechanism, the interplay of the three is hard to

interpret.

In the low temperature regime, the Josephson energy appears to have

no influence on transport. At elevated temperature and/or noise levels,

the expected quadratic dependence begins to show.

The individual charging energies of the junctions in this sample are

considerably larger than in IFP11-255and IFP11-59. Onemight speculate

that under the influence of disorder, the carriermobility is very lowat low

temperatures. Only by real or effective thermal activation do the carriers

move at all, and only at sufficiently high mobility does the Josephson

tunneling come into play.
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My mother made me a scientist without ever intending to. Every

other Jewish mother in Brooklyn would ask her child after school:

So? Did you learn anything today? But not my mother. ''Izzy'' she

would say, ''did you ask a good question today?'' That difference –

asking good questions – made me become a scientist.

Isidor Isaac Rabi

[She88]

Starting from the presented results, a number of paths may be taken to

improve the understanding of long 1D SCJJAs.

Clearly, further research is necessary to understand the interplay of

different sources of fluctuations in the activation of the zero bias conduc-

tance.

The P(E)-derived hopping model should bemodified to account for the

presence of offset charges. For this one needs to know the amplitude of

the offset charges. It could be estimated by calculating the equilibration

effects of charge redistribution, similar to the approach of Ref. [JH00]. The

model might be expanded to finite voltages, so that additional properies

of the current-voltage characteristics can be predicted.

To test the existing model experimentally, a set of experiments may

be conducted that varies the screening length Λ or the superconducting

gap Δwhile leaving the junction parameters identical. Following subsec-

tion 2.1.2, it can be estimated that the screening length can be changed

from Λ = 9 to Λ = 11 by variing the ground electrode distance from

𝑑 = 0.6 𝜇m to 𝑑 = 2.8 𝜇m. To vary the superconducting gap, the results

from subsection 3.2.4 predict a change of the gap from Δ = 190 𝜇eV to

Δ = 210 𝜇eVwhen the Aluminum layer thickness is lowered from 40 nm

to 15 nm. These changes do not seem very large, but the model predicts

a significant change in 𝐺􀉞 , as is shown in Fig. 5.1.
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Following subsection 2.1.3, one expects very interesting properties

from an array with a voltage bias comb such that 𝑛􀉭Λ􀉫 > 𝑁 > Λ. With

slight modifications, the existing hopping model may be used to predict

the current-voltage characteristics of such an array.
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Figure 5.1: Fabricating a set of arrays with identical junction parameters, but

with a different screening length Λ (top) or with different superconducting gaps

Δ (bottom), should – according to the P(E)-derived model – lead to detectable

changes of the thermally activated zero bias conductance 𝐺􀉞. This way, the

model can be tested.
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6 Conclusion

Nothing is so fatal to the progress of the human mind as to

suppose that our views of science are ultimate; that there are no

mysteries in nature; that our triumphs are complete, and that

there are no new worlds to conquer.

Humphry Davy

(as quoted by David Knight[Kni98])

In this thesis, the attempt is made to gain a quantitative understanding

of the charge transport through long one-dimensional arrays of small

capacitance Josephson junctions (long 1D SCJJAs). Calculations and ex-

perimental results are presented to close the gap between theory and

experiment.

It is shown that the current-voltage characteristics of long 1D SCJJAs

are the results of complex processes, and no consistent model exists to

fully explain the charge transport.

If a voltage is applied toaCoulomb-blockadedarray, thevoltagedrops to

ground on a length scale ofΛ. The non-uniform voltage distribution in the

static limitmightbeused todescribe charge injection into thearray, butno

force is applied to charges in themiddle of a long array. Increasing thebias

voltage, the gap voltage may be reached locally, leading to quasiparticle

transport in addition to or instead of Cooper pair transport. Additionally,

there is an unknown amount of offset charge on each island, inhibiting

charge transport in the case of small Josephson coupling.

This thesis presents several paths to improve upon the existing under-

standing of long 1D SCJJAs.

First, the physical foundations are discussed. Viewing the Josephson

coupling as a perturbation, the electrostatic properties are used to deter-

mine the charging energy scale. A scheme is presented and calculated to

separate the charge screening length Λ from the bias voltage penetration
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length. This could lead to a new mode of Cooper pair transport – with a

constant force acting on the Cooper pairs – that is much easier to model.

After the physics of superconductivity and tunneling are introduced,

a charge carrier hopping model is presented to describe the thermally

activated zero bias conductance. In a generalized form, it already grants

access to the array charging energy Λ𝐸􀉍/2, provided the rates do not

depend on the temperature too strongly.

Inspired by the P(E) theory of Ingold and Nazarov, explicit expressions

for thehoppingratesarepresented, assumingthat thearray itselfprovides

a high impedance environment for each small junction.

Then, an overview of the fabrication process of the long 1D SCJJAs

is given. An experiment is shown that confirms the dependence of the

superconducting gap of thin film Aluminum on the film thickness. The

parameters of the dependence for films fabricated with the presented

methods are estimated.

The setup for the charge transport experiments is presented. Amethod

to estimate the array properties from the high bias voltage features

in the current-voltage curve is shown. From – so far unpublished –

previousexperiments ithasalreadybeenknownthat thevoltage-activated

conductance𝐺􀉠 depends on𝐸􀉔 quadratically, which is confirmedandused

as a sensitive calibration method for the external flux. For large ratios

of 𝐸􀉔/𝐸􀉍 , the conductance is shown to deviate from the 𝐸􀇇􀉔 -dependence

towards higher values.

Then, a feature of the current-voltage curve of a sample with islands

of alternating thicknesses is analyzed. It is shown to be qualitatively

consistent with the assumption of alternating gaps in the islands, and the

occurence of two distinct switching events during a single voltage ramp.

Measurements of the thermal activationof the zerobias conductance𝐺􀉞
are shown. Amethod ispresented toextract𝐺􀉞 fromcurrent-voltagemea-

surements. In an experiment with varying external flux, it is shown that

𝐺􀉞 has a flux-independent part, and that the flux-dependent part depends

on 𝐸􀉔 quadratically. The two contributions have a different temperature

dependence. From the flux-dependent part, a value for Λ𝐸􀉍/2 is calcu-

lated that agrees well with previous estimates. With the P(E)-derived

hopping model, the flux-dependent transport can be fit quantitatively.

The flux-independent data can be fit qualitatively as quasiparticle trans-
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port, but the observed conductance is underestimated by the model. 𝐺􀉞
data from additional arrays is shown. The P(E)-derived hopping model

can be used to describe these measurements as well.

Then, the influence of external flux noise on the zero bias transport is

analyzed. It is shown that the existing coil current noise, the added flux

noise and the thermal fluctuations have the same type of influence on the

conductance. This means that parts of the flux-independent transport

shown in the previous section may be the result of flux noise.

Finally, possible steps to test and to proceed from the presented results

are shown.
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A Fullderivationof the incoherent

tunnelingmodel

The model described here has been developed by Vogt and Marthaler in

cooperation with the author.

General model

In the regime of very low transport currents we can assume that on

average there is less than one excess charge-carrier in the linear array.

In this case the array can be modelled by a master-equation for the

probability 𝑝􀉲 that the charge-carrier is on the n-th island or outside the

array (𝑝􀉘􀇏􀇆). The general form of the master-equation is given by:

𝑝̇􀉲 = −Γ􀉲→􀉲􀇏􀇆 𝑝􀉲 − Γ􀉲→􀉲􀇐􀇆 𝑝􀉲 (A.1)

+Γ􀉲􀇐􀇆→􀉲 𝑝􀉲􀇐􀇆 + Γ􀉲􀇏􀇆→􀉲 𝑝􀉲􀇏􀇆 (A.2)

𝑝̇􀇆 = −Γ􀇆→􀇇 𝑝􀇆 − Γ􀇆→􀉘􀇏􀇆 𝑝􀇆

+Γ􀉘􀇏􀇆→􀇆 𝑝􀉘􀇏􀇆 + Γ􀇇→􀇆 𝑝􀇇

𝑝̇􀉘􀇏􀇆 = −Γ􀉘􀇏􀇆→􀇆 𝑝􀉘􀇏􀇆 − Γ􀉘􀇏􀇆→􀉘 𝑝􀉘􀇏􀇆

+Γ􀉘→􀉘􀇏􀇆 𝑝􀉘 + Γ̃􀇆→􀉘􀇏􀇆 𝑝􀇆

The rate Γ􀉲→􀉱 is the rate of a charge carrier hopping from island 𝑛 to𝑚

(see Fig. 2.24). Assuming that detailed balance holds for all equilibrium

rates we can define,

Γ􀉲,􀉲􀇏􀇆 = 𝑒
􀇐

􀍇􀍪

􀍧􀍄􀍖Γ􀉲→􀉲􀇏􀇆 = 𝑒
􀇐
􀍇􀍪􀋇􀊾

􀍧􀍄􀍖 Γ􀉲􀇏􀇆→􀉲 (A.3)

𝑝̄􀉲 = 𝑒
􀍇􀍪

􀍧􀍄􀍖𝑝􀉲 , (A.4)
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A Incoherent tunneling model

with the on-site-energies of the charge-carriers 𝐸􀉲. The voltage-bias

driving the current is accounted for by modifying the equilibrium rate of

the charge-carriers leaving the array from the first island:

Γ̃􀇆→􀉘􀇏􀇆

Γ􀉘􀇏􀇆→􀇆
= 𝑒

􀇐
􀍜􀍡􀍘

􀍧􀍄􀍖
Γ􀇆→􀉘􀇏􀇆

Γ􀉘􀇏􀇆→􀇆
, (A.5)

where 𝑍 is the charge of the charge-carrier inmultiples of the elementary

charge. A charge-carrier entering the array on the voltage biased side

gains an energy of 𝑍𝑒𝑉. We assume that despite the non-equilibrium

situation the forward and backward rates between neighbouring sites

are in detailed balance. Consequential the ratio of the tunneling rates in

and out of the array has to bemodified by an exponential factor in Eq. A.5

that takes into account the energy the charge-carriers gain by entering

the array. A current is driven through the system because the energy of

the empty array is only elevated to 𝐸􀉲􀇏􀇆 = 𝑍𝑒𝑉 with respect to the first

site. With respect to the site 𝑁 the energy of the empty state is taken to

be 𝐸􀉘􀇏􀇆 = 0.

The condition for a steady-state-solution of Eq. A.3 is given by

0 = −Γ􀉲􀇐􀇆,􀉲 𝑝̄􀉲 − Γ􀉲,􀉲􀇏􀇆 𝑝̄􀉲 + Γ􀉲􀇐􀇆,􀉲 𝑝̄􀉲􀇐􀇆 + Γ􀉲,􀉲􀇏􀇆 𝑝̄􀉲􀇏􀇆

0 = −Γ􀉘􀇏􀇆,􀇆 𝑝̄􀇆 − Γ􀇆,􀇇 𝑝̄􀇆 + Γ􀉘􀇏􀇆,􀇆 𝑝̄􀉘􀇏􀇆 + Γ􀇆,􀇇 𝑝̄􀇇

0 = −𝑒
􀇐
􀍜􀍡􀍘

􀍧􀍄􀍖 Γ􀉘􀇏􀇆,􀇆 𝑝̄􀉘􀇏􀇆 − Γ􀉘,􀉘􀇏􀇆 𝑝̄􀉘􀇏􀇆

+Γ􀉘􀇏􀇆,􀇆 𝑝̄􀇆 + Γ􀉘,􀉘􀇏􀇆 𝑝̄􀉘 ,

This set of equations can be solved for arbitrary rates Γ and energy

levels 𝐸􀉲 as long as the detailed balance between the rates is valid.

𝑝􀉲 =
1

𝑁􀉲􀉳􀉶􀉱
𝑒
􀇐

􀍇􀍪

􀍧􀍄􀍖

× (

􀉲

∑

􀉱􀇑􀇆

1

Γ􀉱􀇐􀇆,􀉱

+𝑒
􀇐
􀊿􀍡􀍘

􀍧􀍄􀍖

􀉘􀇏􀇆

∑

􀉱􀇑􀉲􀇏􀇆

1

Γ􀉱􀇐􀇆,􀉱

)

𝑁􀉲􀉳􀉶􀉱 =

􀉘􀇏􀇆

∑

􀉲􀇑􀇆

𝑒
􀇐

􀍇􀍪

􀍧􀍄􀍖(

􀉲

∑

􀉱􀇑􀇆

1

Γ􀉱􀇐􀇆,􀉱

+ 𝑒
􀇐
􀊿􀍡􀍘

􀍧􀍄􀍖

􀉘􀇏􀇆

∑

􀉱􀇑􀉲􀇏􀇆

1

Γ􀉱􀇐􀇆,􀉱

)
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A Incoherent tunneling model

Since we are in the steady state the current can be calculated from any

two neighbouring islands

𝐼 = −𝑍𝑒 (Γ􀉲→􀉲􀇏􀇆𝑝􀉲 − Γ􀉲􀇏􀇆→􀉲𝑝􀉲􀇏􀇆) (A.6)

from which we obtain the zero bias differential conductance

𝑔􀇅 =
𝑍􀇇𝑒􀇇

𝑘􀉌𝑇
lim
􀉠→􀇅

1

𝑁􀉲􀉳􀉶􀉱

=
𝑍􀇇𝑒􀇇

𝑘􀉌𝑇

1

∑
􀉘􀇏􀇆
􀉲􀇑􀇆 exp [−

􀉏􀍪

􀉯􀍄􀉞
]

(

􀉘􀇏􀇆

∑

􀉱􀇑􀇆

1

Γ􀉱􀇐􀇆,􀉱

)

􀇐􀇆

. (A.7)

In the first term in the conductivity we approximate exp [−
􀉏􀍪

􀉯􀍄􀉞
] ≈ 1,

which means that the empty state 𝐸􀉲 = 0 is the one which is mostly

occupied. The second term is mostly dominated by the rate Γ􀉲,􀉲􀇏􀇆 =

exp(−𝐸􀉲/𝑘􀉌𝑇)Γ􀉲→􀉲􀇏􀇆with themaximal energy𝐸􀉱􀉥􀉼 of the array. There-

fore we can write the conductivity in the form,

𝑔􀇅 =
𝑍􀇇𝑒􀇇𝛾

(𝑘􀉌𝑇)
􀇆􀇏􀊙

𝑒􀇐􀉏􀍩􀍝􀍴/􀉯􀍄􀉞 . (A.8)

Since the rates themselves can have an explicit temperature dependence

we allow for an additional exponent 𝛼 in the temperature dependence of

the prefactor.

Special array model

To compare the differential conductance 𝑔􀇅 (Eq. A.7) with experiments

we have to specify the Energies 𝐸􀉲 and the rates Γ􀉲→􀉲􀇏􀇆 of the setup. In

an empty Josephson-junction-array the energy of an additional charge-

carrier increases from 𝐸 = 0 at the ends of the array to Λ
􀉏􀍟

􀇇
in the bulk

of the array on the lengthscale Λ, where 𝐸􀉧 is the charging energy of the

single charge carrier

𝐸􀉧 =
𝑍􀇇𝑒􀇇

2𝐶
. (A.9)
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A Incoherent tunneling model

We approximate this behaviour with a model where the energies 𝐸􀉲
increase linearly from the ends of the array on Λ sites to the bulk value

(see Fig. 2.24). In thismodel the zero bias differential conductance Eq. A.7

takes the form

𝑔􀇅 =
𝑍􀇇𝑒􀇇

𝑘􀉌𝑇
[1 + 𝑁􀒮𝑒

􀇐􀈔
􀍇􀍟

􀊿􀍧􀍄􀍖 + 2

􀈔􀇐􀇆

∑

􀉱􀇑􀇆

(𝑒
􀇐􀉱

􀍇􀍟

􀊿􀍧􀍄􀍖)]

􀇐􀇆

×
Γ(0)Γ(

􀉏􀍟

􀇇
)

2∑
􀈔􀇐􀇆
􀉱􀇑􀇅 𝑒

􀉱􀉏􀉧/􀇇􀉯􀍄􀉞Γ(0) + (𝑁􀒮 − 1)𝑒􀈔􀉏􀉧/􀇇􀉯􀍄􀉞Γ(
􀉏􀍟

􀇇
)

(A.10)

𝑁􀒮 = (𝑁 − 2Λ + 2) (A.11)

where 𝑁􀒮 is the number of sites with the energy 𝐸 =
􀈔

􀇇
𝐸􀉧 in the bulk

and Γ(0) and Γ(
􀉏􀍟

􀇇
) are the rates corresponding two the hopping rates

betweenneighbouringsites that correspondto the twoEnergydifferences

𝛿𝐸 = 𝐸􀉲􀇏􀇆 − 𝐸􀉲 between neighbouring sites that occur in this model:

𝛿𝐸 = 0 and 𝛿𝐸 =
􀉏􀍟

􀇇
.

In the first factor the bulk contributionproportional to𝑁􀒮 is suppressed

duetothethermalactivationfactorsexp (−𝐸􀉲/𝑘􀉌𝑇). Thebulkcontributes

significantly to this factorwhenwe reach the limits of the assumption of a

single charge carrier in the array we used to obtain the master equation.

When the thermal activation factors are comparable to
􀇆

􀉘
we start to see a

non-neglectabel probability of more than one charge-carrier in the array.
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B Technicalnotesontemperature

control

The PID control software was programmed by H. Rotzinger. Due to

hard- and software limitations, it was programmed to run on a computer

independent from the measurement setup. Communication with the

measuring computer is accomplished via network.

When using AVS47 or a similar device in combination with automated

temperature control, it is important to consider the fact that the resistance

of the measurement resistor changes over several orders of magnitude.

If this necessitates a change of the resistance bridge range, problems in

keeping the temperature stable often arise.

Good PID control parameters have to be determined experimentally

for a given temperature range. For the dilution refrigerator used for the

reported experiments, a set of good parameters is shown in Fig. B.1.
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B Temperature Control
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Figure B.1: Stable PID parameters: When using the TIP temperature control

script, finding optimal control parameters is a matter of trial and error. The

differential componentwasnot used, soD=0. A good set of parametersminimizes

control oszillations and settling time after a change in target temperature.

126



C Photolithographic fabrication

processdetails

These are the fabrication recipes as experimentally determined during

the course of thiswork. They have been used for the experiment reported

in Ref. [Zwi12].

An overview of the general procedure, as well as the full name of

substances and devices, can be found in section 3.1.

C.1 Mask fabrication

Pattern preprocessing

Our default design file format was GDS. It was loaded into the software

Genisys Layout Beamer (LB), and exported into the Autocad format DXF,

which the DWL 66 accepted for further processing. In case of multiple

layer design files, the LB software proved very useful for arranging,

marking and (if necessary) inverting the layer designs.

For our chain of lift-off processes, the design needs to be non-inverted,

butmirroredononeaxis, ascanbeeasilyunderstoodfollowingsection3.1.

Laser lithography

For the direct writing of patterns, we used a Heidelberg Instruments

DWL66 direct laser writer equipped with a HeCd-Laser (𝜆=442nm).

The mask blanks we bought came precoated with 530 nm of AZ1518

positive photoresist, which we used. Alternatively, masks can be covered

with the S1805 by ourselves, if special care is taken fixing the mask in

the spin coater (much higher mass than the usual wafers!). The S1805

process is described below.
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C Photolithography

We used the 10 mmwrite head in bidirectional mode. Optical filters of

30% and 10% (i.e. a total of 3%) were inserted into the laser beam line.

The energy setting can be adapted to account for photon proximity

effect in the case of a high percentage of exposed area. Development is

identical to the process described below, except for the time.

Head Filters Energy Defoc Develop

10 mm 3% 80-90% 3700 50 s

Chromium wet etching

The buffered etching solution Chrome Etch 18 was bought and used. The

properly developed and driedmask blank is put into Etch 18 and agitated

for 60 seconds. Stop etching with de-ionized water.

Post-etch mask cleaning

Theremainingphotoresisthas tobe removedbefore themaskcanbeused.

We tried less dangerous approaches, but the only process that succeeded

in removing thepost-etchAZ1518was this, usinghighly corrosivePiranha

solution:

• be sure to wear rubber gloves, a lab coat and a facial protection

• be sure to do this under a fume hood

• prepare a ceramic dish big enough for the mask

• prepare a water bath to cool the solution

• fill 50 ml of hydrogen peroxide into a 250 ml glass that is cooled in

the cooling water

• slowly (!) pour 150 ml of concentrated sulphuric acid into the

hydrogen peroxide

• you now have 200 ml of hot Piranha solution

• put the mask in the dish and pour the Piranha on it
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C.2 Pattern transfer

• after five minutes, take the mask out

• clean it in DI water, blow dry

• good cleaning results by rinsing with ethanol, blowing it off quickly

• leave the Piranha in the hood so that the peroxide can gass out

during the next days

• after that, dump the Piranha remains into the H2SO4 waste

C.2 Pattern transfer

Resist spin coating

This is the resist stack used for generating an undercut for otimal lift-off

behavior. Various spin coaters were used, depending on location and

availability. The resist was baked using a hot plate.

The bottom layer resist was borrowed from the e-beamprocess, details

can be found there.

Resist Pre-spin Main spin baking

Copolymer 300 rmp, 10 s 4000 rpm, 60 s 140 ∘C, 5 min

S1805 300 rmp, 10 s 4500 rpm, 90 s 115 ∘C, 1 min

The resulting thicknesses estimated from the resists' data sheets are:

250 nm of Copolymer, 500 nm of S1805.

Mask aligner step

The actual pattern transfer from photomask to the resist covered sub-

strate is done in the Suss MA 6 mask aligner. Good parameters are:

Resist Mode Intensity Duration

S1805 soft contact 10 mW/cm􀇇 5 s

129



C Photolithography

Development

If a high percentage of the surface was exposed, the developer tends to

saturate. It is important to use plenty of developer and agitate during

development. With our developerMF 319, development times of 60 to 80

seconds proved successful. The sample has to be bathed in and/or rinsed

with de-ionized water to remove remaining developer from the surface,

and blown dry with nitrogen.

Undercut etching

The second resist layer is etched away in an oxygen plasma. Etching was

done in a Sentech SI 220.

Gas Flow Set pressure Power Duration

O􀇇 15 (cm)􀇈/min 1 Pa 50 W 360 s

The setpressurewasnot reached,meaning thatduring theetchprocess,

gasses were pumped out at maximum pump rate while a constant stream

of oxygen was flowing in.

Evaporation

Evaporation of the leads and bond pads was done in a Lesker PVD 75.

A Titanium target and a Gold-Palladium alloy target were loaded to the

multi-target revolver.

Target Chamber pressure Thickness Rate

Ti 2E-6 Torr 3 nm 1.2 Å/s

AuPd 2E-6 Torr 20 nm 0.1-0.3 Å/s

Au 2E-6 Torr 50 nm 0.1-0.3 Å/s

The third layer required a second photolithography iteration, see sec-

tion 3.1.
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C.2 Pattern transfer

Lift-off

For the lift-off, a certain amount of ultrasound is helpful. Two hours ul-

trasonic bathing inwarmed (60∘C)N-Methyl-2-pyrrolidone (NMP)works

well, good ventilation is advised.
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D Electronbeamlithographyprocess

details

Resist application

It is crucial to avoid dust particles on the substrate during spin-on. Clean

the substrate with nitrogen flow directly before applying the resist for

best results.

The PMMA resist we used was Allresist AR-P 679.04, a 950k PMMA

solution, 4% in ethyl lactate. We diluted it to 2% in order to reduce film

thickness. The Copolymer was MicroChem Copolymer MMA(8.5)MAA,

7.5 % in ethyl lactate.

Resist Pre-spin Main spin baking

Copolymer 300 rmp, 10 s 4000 rpm, 60 s 140 ∘C, 5 min

PMMA 950k 300 rmp, 10 s 4000 rpm, 60 s 140 ∘C, 5 min

The resulting thicknesses estimated from the resists' data sheets are:

250 nm of Copolymer, 60 nm of PMMA.

Electron beam exposure

In order to find the alignment marks, the SEM has to be focused roughly

on the resist surface. This can be achieved easiest by creating a small

scratch in the resist in an uncritical position. Alignment marks in the

corners of the chip can be used to define a coordinate system to find the

write fields and their alignment marks.

The bond pads and leads were designed with the (300 𝜇m)􀇇 writing

field of the lithography system in mind. It allows for and was used with a

step size of 10 nm. Higher resolution can be achieved with a (100 𝜇m)􀇇

writing field and a step size of 4 nm.
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D E-beam lithography

Voltage Aperture Area dose

30 kV 7.5 𝜇m 250 𝜇C/cm􀇇

Thenumbers given are for a single unangled evaporation. The undercut

was enough for a good lift-off, butwewereunable to create enoughunder-

cut for proper shadowevaporation, even thoughvarious approacheswere

tried (different developer systems, thicker copolymer layer, a widespread

background exposure).

Development

Develop in E56 for 1 minute in slight agitation. Stop by bathing in pure

isopropanol for oneminute. Blowdrywithnitrogen, anddryonahotplate

at 95∘C for ten minutes, in order to remove remaining solvent to avoid

outgassing during deposition.

Evaporation

Most stable rates were achieved slowly heating the tungsten boat by

slowly increasing the heating current until a small rate (0.1 Å/s) appears.

As the Aluminum evaporates from the source, heating current has to be

adjusted to compensate for changing rates.

Parameters used for the thickness dependence experiment were

Target Chamber pressure Thickness Rate

Al 9 ⋅ 10􀇐􀇋 mbar 20 nm or 40 nm 0.2 Å/s

Lift-off

As in the photolithography lift-off, a certain amount of ultrasound is

helpful. Warm (60∘C) acetone was usually sufficient.

Oxidation considerations

Due to the deficiencies of the undercut, Junctions were never produced

by the author. We did, however, acquire some experience of a suitable

oxidation procedure in our type of machine.
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D E-beam lithography

Thegeneralprocedure is simple: after the first layerhasbeendeposited,

wait until the sample is back at room temperature. Then, flood the

chamber with the desired amount of oxygen, wait for a certain amount of

time (on the order of minutes), then remove the oxygen. The thickness

of the layer then depends on oxidation time and oxygen partial pressure.

The control of partial oxygen pressure can be improved if one has a

gas mixture with a defined Oxygen concentration, e.g. 10 %. In our case,

this shifted the total pressure during oxidation to a range that was better

accessable by our pressure gauges.

We installed a small buffer volume in the path of the oxidizing gas. It

could be filled with Oxygen or oxidizing gas mixture at around ambient

pressure, and then connected with the chamber volume. The result-

ing chamber pressure was very reproducible, inviting to keep this part

constant and vary the oxidation time only.

A vacuum lock was installed in the Univex machine, separating the

reaction chamber from the turbomolecular pump. This means that the

turbo pump can be kept running at full speed while the chamber is

filled with a thin gas, as opposed to shutting down the pump for the

oxidizing step, as was required in the original chamber design. It has

been experimentally tested that the chamber pressure can be reduced

very quickly if the lock is opened to reconnect the running pump with

the chamber once oxidation is completed, provided the total chamber

pressure does not exceed the 1 mbar range. The turbo pump is loaded

considerably, but only for a short time, andnotmore than in anemergency

shutdown.
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