

 Karlsruhe Reports in Informatics 2013,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Secure Information Flow for Java
A Dynamic Logic Approach

– Extended Version –

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben,

Peter H. Schmitt, and Mattias Ulbrich

 2013

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Secure Information Flow for Java
A Dynamic Logic Approach

– Extended Version –

Bernhard Beckert, Daniel Bruns, Vladimir Klebanov, Christoph Scheben,
Peter H. Schmitt, and Mattias Ulbrich?

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract This is the full version of the paper submitted to FM 2012.
In this paper we discuss and define an information flow property for se-
quential Java that takes into account information leakage through objects
(as opposed to primitive values).
We present proof rules for compositional reasoning over information-flow
in Java programs. Our calculus rules apply at Java code-level (not at an
abstraction), and they tie in with rules for functional verification. The
new proof rules can be added to a Dynamic Logic calculus, as used in the
KeY program verification system. The expressiveness of Dynamic Logic
allows to specify and verify complex properties with high precision.
The main novelty of our approach is that it uses efficient compositional
information-flow reasoning wherever possible, but can resort to precise
functional reasoning whenever necessary. In case none of the composi-
tional rules apply, the information-flow property to be verified as for-
malised in Dynamic Logic using a variation of self-composition. Proof
search then proceeds without sacrifice in precision.

1 Introduction

As distributed software systems are about to become ubiquitous in everyday
life, there is more and more information that becomes electronically available.
This raises the demand for confidentiality and integrity – and for the precise
specification and verification of these security properties. In this paper, we target
information-flow properties of Java programs. That is, we want to verify that an
attacker who can observe “low” (or public) locations cannot deduce knowledge
about the values of “high” (or secret) locations.

There have been static security-enforcing techniques based on syntax or
types for a long time. While static checking of security type systems provides
an attractive and efficient means to enforce non-interference, it is often overly
conservative in practice. The reason is that type-based techniques are non-
functional, i.e., they do not (and cannot) take functional properties into ac-
count. For example, a program like “low = high * 0” is secure, but to verify
this one needs to reason about the functionality of *. Similarly, to verify that
“if (high) {low = f1(low)} else {low = f2(low)}” is secure, one has to
verify that f1 and f2 compute the same.

In contrast, functional program verification techniques tend to be very pre-
cise; they can handle the above examples. But the topic of information flow has
reached the program verification world only recently. Joshi and Leino [13] and
? This work was supported by the German National Science Foundation (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties” within priority programme 1496 “Reliably Secure Software Systems – RS3”.

Amtoft and Banerjee [2] were the first to give semantical definitions of informa-
tion flow. Their approaches are based on a comparison of two runs of the same
program, which is sometimes known as relational verification. Many security
properties can be defined in this way; the most widely used is non-interference:
If any two runs start with the same public inputs, they must agree on the public
outputs. In other words, the secret inputs must not influence public outputs.

An easy way to encode relational properties in program logics – so that
they can be verified using program verification calculi – is self-composition of
programs (as proposed, e.g., in [5,7]): Through simple renaming one can make
two copies of a program operate on disjoint variable sets. These copies can then
be sequentially composed and their inputs and outputs compared to each other.
In an earlier paper, we have presented a program-level specification language for
information-flow properties (an extension of the Java Modeling Language) and
a formalisation of self-composition in Dynamic Logic for Java [18].

It is a great advantage of the self-composition methodology that existing
(functional) program verification systems and theorem provers can be used to
verify information-flow properties – with very high precision.

However, the self-composition approach was – so far – not compositional in
the sense that it did not allow reasoning of the form “If m1() and m2() both
do not have an information flow, then m1();m2() does not have an information
flow.” Moreover, self-composition can be “overkill”; the program “low = 0”, e.g.,
does not need to be self-composed to verify that it has no information flow.

In this paper, we present compositional proof rules which allow the prop-
agation of information-flow properties from component programs to composite
programs. They tie in with rules for functional verification. And they can be
added to a Dynamic Logic calculus, as used in the KeY program verification
system. In situations where none of these rules is applicable, we are still able
to resort to self-composition. Thus, precision is not sacrificed for compositional
reasoning.

A further main contribution of this paper is to discuss and define information-
flow properties for sequential Java that take into account information leakage
through objects and heap structures (as opposed to primitive values).

Further, we introduce a rule to use information-flow contracts within func-
tional proofs, such that it becomes possible to use the results of compositional
information-flow reasoning within functional reasoning.

Plan The plan of this extended technical report is as follows. In section 2 we
present an almost complete introduction into the syntax and semantics of the
Java Dynamic Logic, JavaDL as it is used in the KeY system. An extensive
account of the semantics of the data type Seq of finite sequences is delegated to
Appendix A. This material is completely independent of applications of KeY to
information flow problems and may be used in other contexts as well. Section 3
describes the observation of objects as opposed to the observation of primitive
values in Java programs. It also contains an informal summary of the attacker
model we have in mind. This report considers two ways to formalise the nota-
tion of an observation in JavaDL. The first possibility of the representation of
observations by what is called observation sequences is studied in Subsections
5.1 and 5.2. The second possibility using what we call reference set expressions
is covered in Subsections B and B.1. The presentation is deliberately redundant.
The observation sequences approach (Subsections 5.1 and 5.2) can be read in-
dependently from the reference set approach (Subsections 5.1 and 5.2) and vice
versa. The necessary prerequisites on isomorphisms needed in both cases are
collected in Subsection 4. Proof rules for the information flow predicate are not
covered here, but can be found in the thesis [17] extending this report. Section

2

6 discusses issues of the implementation of self-composition with particular em-
phasis on information flow contracts. Related work is cited in Section 7 while
the notorious round-up, conclusions and future work, is given in Section 8.

2 Dynamic Logic for Java

In this section, we introduce syntax and semantics of a Dynamic Logic for Java,
JavaDL as far as it is needed in this paper. An in-depth account can be found
in [6,22]. JavaDL is an extension of classical typed first-order logic, with which
we assume the reader is familiar. The following explanations only address par-
ticularities and the modal extension.

The type hierarchy for JavaDL is shown in Figure 1. Between Object and
Null the class types from the Java code to be investigated will appear. There
might also be additional data types at the level immediately below Any except
Boolean, Int, LocSet and Seq.

Any Heap Field

Boolean Int Object LocSet Seq

.

Null

Figure 1. The JavaDL Type Hierarchy

The vocabulary ΣDL of JavaDL is made up of two parts ΣDL = Σr ∪Σnr.
The symbols in Σr are called rigid symbols, their interpretation does not depend
of the program state. The remaining part Σnr are the non-rigid symbols. Figure
2 shows a summary of all rigid function and predicate symbols. Besides the
the symbol names Figure 2 also contains the typing information. For function
symbols F : T1 × T2 → T means that f has two arguments required to be of
type T1 and T2 respectively, and the return type of f is T . For predicate symbols
p(T1, T2) indicates the p is a binary predicate with argument types T1 and T2.
For the typing of the equality symbol .= we have used the universal type > not
shown in Figure 1. In many cases the name of a function or predicate symbol
suggests its meaning. A precise definition, however, has to wait till we give the
semantics of Σr.

The only state-dependent symbols in JavaDL i.e., the only symbols in Σnr,
are program variables summarized in Figure 3.

The only other category of term-forming symbols we have not mentioned so
far are logical variables. We thus arrive at the usual definition of terms t and
their (static) type type(t):

Definition 1.

1. A logical variable x, a program variable v, or a rigid constant symbol c are
terms.
type(x), type(v), type(c) are the types declared of these symbols.

2. If f : T1 × . . . × Tn → T is an n-place function symbols and t1, . . . , tn such
that type(ti) v Ti are terms so is f(t1, . . . , tn) with type(f(t1, . . . , tn)) = T .

3

all function and predicate symbols for Int, e.g., +,∗,<. . .
Boolean constants TRUE, FALSE
Heap modeling selectA : Heap×Object× Field→ A for any type A v Any

store : Heap×Object× Field×Any → Heap
created : Field
create : Heap×Object→ Heap
anon : Heap× LocSet ×Heap→ Heap
arr : Int→ Field
f : Field for all Java fields

LocSet ∅, allLoc : LocSet
singleton : Object× Field→ LocSet
∪, ∩ : LocSet × LocSet → LocSet
allF ields : Object→ LocSet
arrayRange : Object× Int× Int→ LocSet
unusedLocs : Heap→ LocSet
∈ (Object, F ield,LocSet)
⊆ (LocSet ,LocSet), disjoint(LocSet ,LocSet)

Seq seqEmpty : Seq
seqSingleton : Any → Seq
seqConcat : Seq × Seq → Seq
seqSub : Seq × Int× Int→ Seq
seqReverse : Seq → Seq
seqGetA : Seq × Int→ A for any type A v Any
seqLen : Seq → Int

Java null : Null
length : Object→ Int
castA : Any → A for any type A v Any
instanceA(Any) for any type A v Any
exactInstanceA(Any) for any type A v Any

Miscellaneous .
= (>,>)

Figure 2. Σr the heap-independent symbols of JavaDL

3. If φ is a first-order formula, and t1, t2 are terms with type(t1) = type(t2) = T
then if φ then t1 else t2 is a term of type T .

Java program variables
this denoting the current object
method parameters
local variables these are e.g., needed in the investigations of loop bodies
modeling program variables
heap modeling the current heap
result modeling the return value of a method

Figure 3. Σnr, Program Variables in JavaDL

JavaDL formulas and terms are inductively built up from atomic formulas
using propositional operators and quantifiers, as usual, except for the clauses
in the following definition. The operators in items 1 and 2 are modal operators.
The constructs in items 3 and 4 are usually referred to as generalized quantifiers.
They share with the usual existential and universal quantifiers the fact that they
bind variables.

Definition 2. This definition lists clauses for constructing terms and formulas
that are not present in textbook versions of first-order logic.

4

1. {a := t}φ is a JavaDL formula, where a refers to a location (a program
variable, a static or dynamic field, or an array entry), t is a JavaDL term
t, and φ is a formula. The construct {a := t} is called an update,

2. 〈α〉φ, [α]φ are JavaDL formulas for any JavaDL formula φ and any se-
quential Java program α.1

3. For every integer variable iv, JavaDL terms t1, t2 with type Int, not con-
taining iv and JavaDL expression e

seq_def{iv}(t1, t2, e)

is a term of type Seq.
4. For every integer variable iv and JavaDL expression e of type LocSet

infiniteUnion{iv}(e)

is a term of type LocSet .
The KeY system is more general and also allows the infinite union construc-
tion with iv a variable of arbitrary type. The case included here, with iv an
integer variable is strong enough for all puposes we need to consider here.

The basis for the semantics of JavaDL is provided by a structure D for typed
first-order logic, called the computation domain.

Definition 3. The universe D of D is divided into the interpretations TD for
the types T occurring in the language. This definition will be extended by the
description of SeqD in Definition 19 on page 31. For now we have:

– IntD = Z,
– BooleanD = {tt ,ff },
– ObjectD = the set of all Java objects,
– LocSetD = P({(o, f) | o ∈ ObjectD, f ∈ FieldD}),
– AnyD = IntD ∪ BooleanD ∪ObjectD,
– NullD = {null},
– HeapD = the set of all functions h : ObjectD × FieldD → AnyD,
– FieldD contains for every field f occuring in the Java program under in-

verstigation its interpretation fD. There might, however be other element in
FieldD.

We have used the notation P(S) to denote the set of subsets of S. Thus LocSetD

consists of all sets of pairs (o, f) with o ∈ ObjectD and f ∈ FieldD. Restriction
to finite sets would probably not hurt, but we do not require this.

The subset inclusion relations among TD follow from the hierarchy shown
in Figure 1. In particular, Heap, Field , and Any are pairwise disjoint. For any
Java class T its interpretation TD is infinite. It comprises all potential objects
of type T . Below we will define the notation of a state s that covers the intuitive
understanding of a program state. Even without a formal definition of a state, we
can at this point already explain to the reader that the objects already created in
state s will be those for which the implicit Boolean field created evaluates to true
in s, i.e., createds(o) = tt . Having said this, we will deliver the whole truth. For
every Java class T we require that there are infinitely many elements of exact
type T . That is to say there are infinitely many objects in TD that are not in TD0
for any subtype T0 v T . For any class C that occurs in a program to be analysed
1 The definition is in fact more liberal in that α need not be a compilable program.
Precisely, which program sequences are allowed is explained in [6, Section 3.2.4]. We
will nevertheless use the term ‘program’ synonymously.

5

C will be available as a type in JavaDL, and also all associated array types C[],
C[][], etc. In the JavaDL semantics model we furthermore assume that the type
universe C[]D is partitioned into infinite subsets Cn[] for n ≥ 1. The intention
is that Cn[] contains the array object of length n. Corresponding provisions are
made for arrays of higher dimensions.

The inclusion of the type Field in the syntax provides a weak reflection
facility. It is possible to quantify in JavaDL over syntactic elements, in this case
fields, themselves.

To complete the definition of the semantic domain D we need to give the
definition of all rigid symbols in Σr. The integer operations are defined as usual.
We postpone the explanation how we treat undefined values, e.g., division by 0
after first presenting the semantics of all symbols in Σr.

Definition 4. The semantics of the data type Seq of finite sequences will be
presented in Appendix A. The interpretations of the other symbols are as follows:

1. For the Boolean constants we have TRUED = tt and FALSED = ff .
2. selectDA(h, o, f) = castDA(h(o, f))
3. For arguments h, o, f, x of appropriate types the function value h∗ =

storeD(h, o, f, x), which is itself a function, is given by

h∗(o′, f ′) =

{
x if o′ = o, f = f ′ and f 6= createdD

h(o′, f ′) otherwise
4. For arguments h, o of appropriate types the function value h∗ = createD(h, o)

is given by

h∗(o′, f) =

{
tt if o′ = o, o 6= null and f = createdD

h(o′, f) otherwise
5. For arguments h, s, h′ of the appropriate types the function value h∗ =

anonD(h, s, h′) is given by

h∗(o, f) =

h′(o, f) if ((o, f) ∈ s and f 6= createdD))
or (o, f) ∈ unusedLocsD(h)

h(o, f) otherwise
6. arrD is an injective function from Z into FieldD,

createdD and fD for each Java field are pairwise different elements in
FieldD and also not in the range of arrD.

7. ∅D = ∅, allLocsD = ObjectD × FieldD
8. singletonD(o, f) = {(o, f)}
9. ∪D and ∩D are the set theoretical union and intersection of sets of locations.
10. allF ieldsD(o) = {(o, f) | f ∈ FieldD}
11. arrayRangeD(o, i, j) = {(o, arrD(x)) | x ∈ Z, i ≤ x, x ≤ j}
12. unusedLocsD(h) = {(o, f) ∈ allLocsD | o 6= null, h(o, createdD) = ff }
13. The usual set theoretic definitions:
∈D= {(o, f, s) ∈ ObjectD × FieldD × LocSetD | (o, f) ∈ s}
⊆D= {(s, s′) | ∀o, f((o, f) ∈ s→ (o, f) ∈ s′}
disjointD = {(s, s′) | s ∩ s′ = ∅}

14. nullD = null.

15. castDA(o) =

{
o if o ∈ AD
defaultA otherwise

The default element defaultA for type A is as follows:

defaultA =

null if A v Object
∅ if A = LocSet
seqEmpty if A = Seq
ff if A = Boolean

16. instanceDA = AD

17. exactInstanceDA = AD \
⋃
{BD | B @ A}

6

18. lengthD(o) =

{
n if o ∈ Cn[] for some C
0 otherwise

We now come back to the issue of undefinedness. In our semantics all function
symbols are interpreted by total functions, total with respect to their typing.
Thus division is a total function Z × Z → Z, and e.g., (5/0)D is a number in
Z. The trick is that we do not know which value this is. Thus nothing can be
logically derived, except that there is a value. This way to deal with undefindness
is called underspecification and we illustrate its technical workings be giving the
semantics of integer division:

n/Dm =

the uniquely defined k such that
|m| ∗ |k| ≤ |n| and |m| ∗ (|k|+ 1) > |n| and
k ≥ 0 if m,n are both positive or both negative and
k ≤ 0 otherwise if m 6= 0
undefined otherwise

Instead of one computation domain D we consider all computation domains D′
covering all possible assignments of values to n/D

′
0. The prover will use the

axiom

∀x∀y(y 6= 0→ |y| ∗ |x/y| ≤ |x| ∧ |y| ∗ (|x/y|+ 1) > |x|∧
((x/y ≥ 0 ∧ x ≥ 0 ∧ y ≥ 0) ∨ (x/y ≥ 0 ∧ x ≤ 0 ∧ y ≤ 0)∨
(x/y ≤ 0 ∧ x ≤ 0 ∧ y ≥ 0) ∨ (x/y ≤ 0 ∧ x ≥ 0 ∧ y ≤ 0)))

Then a formula φ can be derived using this axiom iff it is true in all computation
domains. Thus ∃z(5/0 .

= z) can be derived but 5/0
.
= 7/0 cannot. For ease

of presentation we will in the following nevertheless speak of the computation
domain D and take care not to make use in any proof of the particular value
assigned to undefined expressions.

The second way to deal with undefined values is to define them. For the cast
function e.g., we have castDA(o) = null if o 6∈ AD. Of course, when working with
the cast function, specifying or reasoning, you have to remember this definition.

In clause 15 of Definition 4 special values for default elements defaultA for
some types A have been fixed. Notice that defaultint does not occur in this list.
It remains an underspecified constant symbol.

Definition 5.

1. A state is a function mapping all program variables to properly typed values
in D.

2. A computation domain D and a state s together yield a ΣDL structure for
first order logic, denoted by D + s.
D+ s has the same domain as D and the interpretation of the rigid symbols
is in D + s the same as in D. The interpretation of the program variables v
in Σnr is fixed as vD+s = s(v).

For any state s and term t without logical variables the evaluation ts is as
usual. We trust that the reader is familiar with the semantics of conditional
terms if φ then t1 else t2. If t contains logical variables a variable assignment β is
needed to evaluate the term to ts,β . In the following, we will omit β whenever it
is not essential.

The recursive definition of when a formula φ is true in state s with assignment
β for free (logical) variables, in symbols (s, β) |= φ, follows the usual pattern.
We again omit β whenever it is not essential. To be really precise we should
even write (D + s, β) |= φ to document that truth of φ also depends on the

7

computation domain. But, since D is understood to be there and leaving aside
undefined values is uniquely determined, we do not mention it.

Only the additional semantic definitions from Definition 2 need explanation.
First, we define updates {a := t}φ in which the left-hand-side is a location to be
syntactic sugar for updates assigning to the program variable heap:

{o.f := t} := {heap := store(heap, o, f, t)}
{a[i] := t} := {heap := store(heap, a, arr(i), t)}
{sf := t} := {heap := store(heap, null, sf , t)}

With this we define for a JavaDL formula φ and state s:

1. s |= {a := t}φ iff s′ |= φ, where s′ coincides with s except for s′(a) = ts.
2. s |= 〈α〉φ iff s′ |= φ for some s′ such that α started in s terminates in s′.
3. s |= [α]φ iff s′ |= φ for all s′ such that α started in s terminates in s′.
4. (seq_def{iv}(t1, t2, e))(s,β) is the sequence of the elements e(s,β[n/iv]) for all
n with ts1 ≤ n < ts2 in this order. If ts1 ≥ ts2 then seq_def{iv}(t1, t2, e))s = 〈〉.

5. (infiniteUnion{iv}(e))(s,β) = {e(s,β[n/iv]) | i ∈ Z }

Note that, if program α does not terminate when started in state s, then
s |= [α]φ is trivially true for all formulas φ, including φ ≡ false.

Digression In Figure 2 that lists the rigid symbols Σr of JavaDL for every
Java field f in class C1 of type C2 a constant f of type Field is included. In
other approaches one would instead (or in addition) have a non-rigid function
symbol f : C1 → C2 in Σnr. In that approach a state is a Σnr structure S (with
universe D), which is certainly a more complicated concept than our simple
mapping from program variables to values in D. The non-rigid function symbol
f : C1 → C2 would in S be interpreted as a function fS : CD1 → CD2 . There is
an easy correspondence between these two approaches. A state s in our sense
defines a corresponding Σnr structure S via the definition

fS(o) = selectDC2
(heaps, o, fD)

for all o ∈ CD1 .
When we want to refer to the value of the field f for an argument given by

the expression t we need to write in JavaDL selectC2
(heap, t, f). This is the

price to be paid for the simplicity of our states. We will, nevertheless, sometimes
write f(t) or more Java-like t.f as a shorthand for selectC2

(heap, t, f). Note,
that the (current) heap in a state s is implicitely understood in this shorthand.
Also on the semantic side we will write fs(o) for the value of field f for object
o in state s instead of selectDC (heaps, o, fD), with C the type of f .

A decision had to be taken, how to treat static fields. In order to keep imple-
mentation efforts low the same mechanism selectC(heap, t, f) is used to access
values of a static field f . Since the value of a static field does not depend on any
object the expression t is taken to be null. For static fields f we thus use f as a
shorthand for selectC(heap,null, f) and on the semantic side fs for the value
selectDC (heaps, null, fD), with C the type of f . This conforms with [22, page
102]

Example 1. Let us look at two examples of JavaDL formulas:

∀Int i((0 ≤ i ∧ i < MAX_VALUE) →
{a := i}〈α〉(0 ≤ r ∧ r ∗ r ≤ i ∧ (r + 1) ∗ (r + 1) > i))

(1)

∀Heap h, h′ ∀Int i, i′((selectAny(h, this, f)
.
= selectAny(h′, this, f) ∧

{heap := h}〈m()〉i .= r ∧ {heap := h′}〈m()〉i′ .= r)→ i
.
= i′)

(2)

8

Formula (1) expresses that program α with input variable a computes the pos-
itive integer square root for any positive Java integer (for ease of readability
we have abbreviated result by r). Formula (2) states that the return value of
method m only depends on the field this.f .

Logical variables cannot occur in programs and program variables may not be
quantified. As the above examples demonstrate, updates can be used as an in-
terface between both types of variables.

We adopt the constant domain approach, i.e., all computation domains share
the same universeD. All potential objects are contained in D from the start. The
generation of a new object o is effected by changing the value of o.created from
ff to tt . The objects for this change are chosen depending on the computation
domain D. If D1, D2 are computations domains, and s a state, then the next new
object created in D1 + s may differ from the next new object created in D2 + s.
On the semantic level we have for each type T an (underspecified) function
nextToCreateT

D which determines for each interpretation D + s the the value
nextToCreateT

D(s) of the next object to be created of type T . We consider only
functions nextToCreateT

D where exactInstanceT
D+s(nextToCreateT

D(s)) = tt
and createdD+s(nextToCreateT

D(s)) = ff holds.

Definition 6. The predicate wellformed(h) for a variable h of type Heap is an
abbreviation of the formula

1 {o | selectBoolean(h, o, created)
.
= TRUE} is finite ∧

2 ∀Field f ∀Object o(selectObject(h, o, f)
.
= null ∨

selectBoolean(h, selectObject(h, o, f), created)
.
= TRUE) ∧

3 ∀Field f, f ′ ∀Object o, o′(
(o′, f ′) ∈ selectLocSet(h, o, f)→ selectBoolean(h, o′, created)

.
= TRUE) ∧

4
∧

Java field f ∀Object o(instancetype(f)(selectAny(h, o, f))) ∧
5
∧

Java type AvAny ∀Int i ∀Object o(
(i ≥ 0 ∧ instanceA[](o) ∧ o 6= null)

→ (instanceA(selectAny(h, o, arr(i)))))

Some comments on Definition 6 are in order. Property 1 is obviously true for any
state that can be reached via a Java program. Our experiments with program
verification showed, surprisingly, that it is rarely ever used.

The value of an expression e.f in a Java program, where f is a fields of object
type, always is an object, either the null object or a real object. By the language
design of Java there are no dangling references. Property 2 formalizes this fact.
Indeed, property 2 is much more general. It says that there are no dangling
references for all fields in the model (not only those arising from a Java program),
even for fields that are not of object type and for all objects, not only those that
can be reached by the evaluation of Java expressions. Note, that for fields f with
type(f) 6v Object the semantics definition yields selectDObject(h, o, f) = null

Property 3 requires that only those location sets L can be values of fields
of type LocSet that do not contain not-created objects o. Of course objects do
not occur directly as elements of L, but only as the first component of a pair
(o, f ′). Note as above, that for fields f that are not of type LocSet the semantics
definition yields selectDLocSet(h, o, f) = ∅ and property 3 is trivially true.

Property 4 depends on the Java program α under verification. The initial
conjunction ranges of all fields occuring in α and is thus finite. This conjunction
cannot be replaced by a universal quantifier since the type function is not part
of the JavaDL vocabulary. Property 4 is the substitute for depending types.

Also property 5 depends on the Java program α under verification. The
leading conjunction is finite, since α contains only finite many types. As with

9

property 4 this property is needed since JavaDL does not use dependent types.
It says: all entries in an array of type A[] are of type A.

3 Information Flow in Java

Information leakage through object references is more involved than leakage
through primitive data values. We will argue by way of examples that it is
too strict to require different program runs to lead to identical behaviour. We
pursue a language-based approach, this means that an attacker is only able to
employ means provided by the Java language itself, i.e., they are able to evaluate
expressions. They are not able to observe changes in the memory directly.

final class C {
static C x, y, z; // low variables
static boolean h; // high variable

static void m1() { x = new C(); }
static void m2() { if (h) { x = new C(); } }
static void m3() {

if (h) { x = new C(); y = new C();}
else { y = new C(); x = new C();} }

static void m4() {
if (h) { x = y; } else { x = z; }}}

}

Figure 4. Information leaks through objects

We start with an informal discussion of the examples in Fig. 4 which will even-
tually lead us to a formal definition of information flow. In these examples x, y,
and z are the low locations and h is the only high location. The non-interference
property for any of the four methods would require that two independent ex-
ecutions of the method in two low-equivalent states result in states which are
again low-equivalent. Let s0 and s′0 be low-equivalent states and si and s′i the
respective post-states for each mi.

If equivalence means identity, method m1 would not be deemed secure. The
reason is that the values of xs1 and xs

′
1 depend on the behaviour of the virtual

machine which chooses the freshly created objects. The Java Virtual Machine
Specification [14] does not impose any restrictions on the choice of new object
references apart from the fact that they are not already in use. Therefore, we
cannot ensure that the values xs1 and xs

′
1 are identical (nor that they are differ-

ent). On the other hand, method m1 obviously does not leak information. Thus,
a simple non-interference condition based on object identity is too strict for an
object-sensitive setting.

For method m2 of Figure 4, the observation of an attacker depends on the
value of the secret variable h. The attacker can deduce that hs0 is true if and
only if the value of x changes. Information is leaked here. In contrast, method
m3 does not leak any information. Here, although the concrete values of x and y
depend the value of h, an attacker is not able to distinguish them.

In method m4, it is important to notice that the attacker does not only observe
the values of expressions, but knows the evaluation (i.e., the mapping from
expressions to values) itself. The sets of values {xs4 , ys4 , zs4} and {xs′4 , ys′4 , zs′4}
are equal in any case. However, the change made to x is observable.

10

We adopt the following passive attacker model: An attacker can evaluate a
specified set of simple Java expressions in the pre- and post-state of a method.
They see the expression and the corresponding evaluation as if they were printed
on a screen. Further, we assume that the attacker knows the program-code. This
allows them to trace back the observed differences in low values in the post-state
to high values in the pre-state. In summary, an attacker

– can compare observed values that are of a primitive type to each other and
to literals (of that type) as by using ==;

– can compare observed values of object reference type to each other and to
null as by using the == predicate and observe their (runtime) type;

– cannot learn more than object identity from object references (e.g., the order
in which objects have been generated cannot be learned).

Since an attacker sees the evaluations as if they were printed on a screen, they
explicitly have not the power to dereference high fields, i.e., they cannot observe
the value of o.f even if o is observable. An attacker that can dereference fields,
can be modelled in this setting by declaring all locations o.f as low for which o
may be an observable value of some other low expression. We will elaborate on
this issue after the following clarifications:

Definition 7 (JavaDL Expressions). An expression e in JavaDL can be:

1. A program variable, most commonly the variable self.
2. Method parameters are also considered to be program variables.
3. e0.f if e0 is an expression of type C and f is a field declared in C (static or

not).
4. ea[t] if ea is an expression of array type, and t is an expression of integer

type.
5. op(e1, . . . , ek) where op is a data type operation and ei expressions of match-

ing type. Most frequently arithmetic operations will occur.
6. b?e1 : e2 the usual conditional operator. We (still) assume that e1, e2 are of

the same type.
7. Auxiliary ghost variables, for the purpose of exposition only.

Expressions q(p1, . . . , pn) for queries q are not included. For uniformity of
notation we will frequently write f(e0) instead of e0.f and assume that ea[t] is
presented as at(ea, t).

Definition 8 (Observation Expressions). Observation expressions are re-
cursively defined using generalized expressions as an auxiliary concept.

1. Any JavaDL expression is a generalized expression.
2. If e is a generalized expression of type T , f is an attribute defined in class

T and also of type T , i an expression of type integer then it(f, i)(e) is a
generalized expression.

1. A generalized expression e is an observation expression.
2. If R1 and R2 are observation expressions, so is R = R1;R2.
3. If e is a generalized expression, i a variable and from, to expressions of type

integer then R = seq{i}(from, to, e) is an observation expression.

Definition 9 (Semantics of Observations Expressions). Let s be a state.
The semantics of generalized expressions e and observation expressions R in
state s is a kind of lazy evaluation, denoted by [e]s, [R]s, defined as

1. [e]s = e if e does not contain the construct it.

11

2. [it(f, i)(e)]s = f.f([e]s) (k times) with k = is.

1. [e]s = 〈[e]s〉 for a generalized expression e, i.e., the singleton sequence of the
expression [e]s

2. [(R1;R2)]s = [R1]s; [R2]s, i.e. the concatenation of the sequences [R1]s and
[R2]s.

3. [seq{i}(from, to, e)]s =
〈([e[i→n]]s)), ([e[i→n+1]]s), . . . , ([e[i→m−1]]s)〉,
if froms = n < m = tos.
Here e[i→n] is the expression obtained from e by replacing all occurrences of
the variable i by the literal n.

Example 2. Let R = seq{i}(2, to, a.it(next, i).val and assume s to be a state
with tos = 4 then
[R]s = 〈a.next.next.val, a.next.next.next.val〉.

Definition 10. By RsObj we denote the subset of the expressions in the sequence
[R]s that are of object type. On the other hand Obj(Rs) = {es | e in RsObj}.

Given an observation expression R and a state s, an attacker is able to see
the tuple ([R]s, Rs), where Rs = 〈es1, . . . , esk〉 if [R]s = 〈e1, . . . , ek〉. Hence he is
able to deduce for any 0 ≤ i < length([R]s) that esi is the value of the expression
ei.

An attacker that can dereference fields, can be modelled in this setting by
using only observations subject to the following closure property: Whenever
e ∈ [R]s with es = o for an object o, then also expression e.f is in [R1]s for all
fields f . We model the assumption that an attacker can observe the runtime
type of an object similarly: Whenever e ∈ [R]s with es = o for an object o, then
the observation expression R implicitly contains the expression e.getClass().

As the examples of Figure 4 show, information may flow through references,
but non-identical behaviour is not a sufficient indication of a leak. Executions
need not behave identically for different high inputs, but they must behave con-
gruently with respect to reference comparison. This means that the post-states
may be different as long as there is a kind of one-to-one correspondence between
their references that is compatible with the identity comparison operation. In
particular, the values of two locations storing references need to coincide in one
post-state exactly if they do in the other.

In Java, object references are treated as opaque values. In a programming
language where references have more structure (e.g., numeric pointers in C),
attackers might be able to deduce more from the comparison of observations. If
a particular memory manager happens to allocate memory in ascending order,
an attacker of a C program analogous to m3 could deduce that hs0 is true if and
only if the numerical value of x is less than the value of y. Such inference is
not possible in the Java language. Implementations of native methods, however,
may provide some loopholes which leak structural information on references.
Most notably, the native method Object::hashCode() returns the (encoded)
memory address of a reference. This leakage potential can be dealt with by
assigning a high security level to the output of native methods.

4 Isomorphisms

In the following we will repeatedly need the notion of an isomorphism of the
computational domain D and of isomorphic states. This section provides the
necessary definitions.

12

We assume that the reader is familiar with the mathematical concept of
isomorphism. We will consider isomorphisms only on the computational domain
D, and the structures D + s for different states s.

We stipulate the following terminology.

Definition 11. If π is an isomorphism from D + s1 onto D + s2 we will say
that s2 is isomorphic to s1 and write s2 = π(s1).

We will need the following - folklore - results:

Lemma 1. Let ρ be an automorphism of D, s a state, φ a formula, e an ex-
pression, and β a variable assignment into D.
Then

1. (s, β) |= φ⇔ (ρ(s), ρ(β)) |= φ
which reduces to s |= φ⇔ ρ(s) |= φ if φ contains no free variables.

2. ρ(e(s,β)) = e(ρ(s),ρ(β))

which reduces to eρ(s) = ρ(es) if e contains no variables.

Since lazy evaluation only depends on the value of integer expressions and
any automorphism is the identity on integers, we obtain:

Lemma 2. Let ρ be an automorphism of D, s a state, e a generalized expression
and R an observation expression, both without variables.

1. [e]ρ(s) = [e]s

2. [R]ρ(s) = [R]s

The lemma can obviously be extended to allow variables.

Lemma 3. Any permutation π0 of ObjD satisfying

1. π0(null) = null
2. π0 preserves the exact types of its arguments.
3. π0 preserves the length of array objects.

can be extended to an automorphism π of D.

Proof We first describe how to extend π0 to a bijection on D. For the following
the reader might want to have again a look at the type hierarchy in Figure 1.
On ObjD we let π necessarily coincide with π0 We set π equal to the identity
function on the type universes BooleanD, IntD, FieldD.

The action of the bijection π on LocSetD is obtained by extending the
definition given sofar on ObjectD and FieldD to a mapping on sets of pairs:
π(LS) = {(π1(o), f) | (o, f) ∈ LS}. Since π : ObjectD → ObjectD and π :
FieldD → FieldD are bijections also π : LocSetD → LocSetD is a bijection.

Next we describe the action of the bijection π on SeqD. By Definition 19 on
page 31 SeqD =

⋃
n≥0D

n
Seq.1 By construction Di

Seq ∩ D0
Seq = ∅ for i > 0 and

Di
Seq ∩D

j
Seq = {〈〉} for i > 0, j > 0, i 6= j. We inductively define permuations

πnseq of
⋃

0≤i≤nD
i
Seq. We start with π0

seq equal to the mapping π defined so far
for

D0
Seq = BooleanD ∪ IntD ∪ ObjectD ∪ LocSetD. πn+1

seq (〈o0, . . . , on−1〉) =

〈πnseq(o0), . . . , πnseq(on−1)〉 for oi ∈
⋃

0≤i≤nD
i
Seq. It is easily checked that πseq =⋃

n≥0 π
n
seq is a permutation of SeqD.

The most involved case remains, to define π on HeapD. Every h ∈ HeapD
is a mapping h : ObjectD × FieldD → AnyD. The mapping π(h) : ObjectD ×
FieldD → AnyD is defined by π(h)(o′, f) = π(h(π−1(o′), f)). As a consequence

13

of this definition we note π(h(o, f)) = π(h)(π(o), f). It is easily seen that π :
HeapD → HeapD thus defined is a bijection.

This completes the definition of the bijection π : D → D. We now embark
on the lengthy verification that π is an Σr isomorphism. Consideration of the
symbols in Σnr has to wait. We run through the list in Figure 2 from top to
bottom; with the exception of the first item, making use of Definition 4 in each
case.

1.
π(castDA(o)) = π(o) if o ∈ AD

= π(o) if π(o) ∈ AD
= castDA(π(o))

The other three cases in the semantic definition of castA follow
along the same line.

2.
π(selectDA(h, o, f)) = π(castDA(h(o, f))) semantics of selectA

= castDA(π(h(o, f))) see first item
= castDA(π(h)(π(o), f)) def. of π(h)

= selectDA(π(h), π(o), f) semantics of selectA
In this argument we used π(f) = f for all fields. In the following we will
throughout tacitly apply this equality.

3. We want to show that π(storeD(h, o, f, x)) = storeD(π(h), π(o), f, π(x)).
To this end we show for any argument pair (o′, f ′)

π(storeD(h, o, f, x))(o′, f ′) = storeD(π(h), π(o), f, π(x))(o′, f ′). (3)

By definition of π the lefthand side equals π(storeD(h, o, f, x)(π−1(o′), f ′)).
In case, π−1(o′) 6= o or f 6= f ′ or f = createdD the semantics of store yields
the further rewriting: π(h(π−1(o′), f ′)). Which again be the definition of π
is equal to π(h)(o′, f ′).
The case assumption implies o′ 6= π(o) or f 6= f ′ or f = createdD. By the
semantics of store this leads to following rewritting of the righhand side of
the equation (3)
storeD(π(h), π(o), f, π(x)) = π(h)(o′, f ′) and we are done for the first case.
In case π−1(o′) = o and f = f ′ and f 6= createdD the semantics definition
yields: π(storeD(h, o, f, x)) = π(x).
Since the case condition implies o′ = π(o) and f = f ′ and f 6= createdD the
righthand side of (3) evaluates to π(x), as desired.

4. Since created is a constant of type Field the definition of π yields
π(created) = created.

5. We need to show for all pairs (o′, f):

π(createD(h, o))(o′, f) = createD(π(h), π(o))(o′, f) (4)

By definition of π the left side can be rewritten to

π(createD(h, o)(π−1(o′), f)).

In case π−1(o′) 6= o or o = null or f 6= createdD the semantics of create
yields
π(createD(h, o)(π−1(o′), f)) = π(h(π−1)o′), f)). Again using the definition
of π ge get π(h(π−1)o′), f)) = π(h)(o′, f).
The case assumption implies o′ 6= π(o) or π(o) = null or f 6= createdD. The
semantics of create for the righthand side in equation (4) yields
createD(π(h))π(o))(o′, f) = π(h)(o′, f) as desired.
In case π−1(o′) = o and o 6= null and f = createdD the semantics of create

14

yields π(createD(h, o)(π−1(o′), f)) = tt .
The current case assumption implies o′ = π(o) and π(o) 6= null and f 6=
createdD. Thus, according to the semantics of create the righthand side of
(4) evaluates also to true.

6. We want to show π(anonD(h, s, h′)) = anonD(π(h), π(s), π(h′)).
The proof follows the pattern already seen in items 3 and 5 . For the conve-
nience of the reader we again give the details. To proof the goal just stated
we show for all o and f

π(anonD(h, s, h′))(o, f) = anonD(π(h), π(s), π(h′))(o, f) (5)

By definition of π the lefthand side of equation (5) can be rewritten as

π(anonD(h, s, h′))(o, f) = π(anonD(h, s, h′)(π−1(o), f))

In case (π−1(o), f) ∈ s and f 6= createdD or (π−1(o), f) ∈ unusedLocsD(h)
this further evaluates to π(h′(π−1(o), f)). Again by the definition of π this
can be further rewritten to yield the equation

π(anonD(h, s, h′))(o, f) = π(h′)(o, f)

By definition of π on the type universe LocSetD we see that (π−1(o), f) ∈ s
is equivalent to (o, f) ∈ π(s) and (π−1(o), f) ∈ unusedLocsD(h) is equiv-
alent to (o, f) ∈ π(unusedLocsD(h)). The case assumption thus implies
(o, f) ∈ π(s) and f 6= createdD or (o, f) ∈ π(unusedLocsD(h)). We will
see below that furthermore π(unusedLocsD(h)) = unusedLocsD(π(h)) Thus
the righthand side of equation (5) evaluates to π(h′)(o, f) as desired.
If the case assumption does not hold we obtain by the semantics of anon

π(anonD(h, s, h′)(π−1(o), f)) = π(h(π−1(o), f)) = π(h)(o, f)

In this case the the righthand side of equation (5) also evaluates to
anonD(π(h), π(s), π(h′))(o, f) = π(h)(o, f) and we are done.

7. Since arrD(n) ∈ FieldsD we have π(arrD(n)) = arrD(n). On the other hand
arrD(π(n)) = arrD(n) which in total gives π(arrD(n)) = arrD(π(n)).

We continue to run through the list in Figure 2 and now turn to the symbols
under the heading LocSet .

8. π(∅) = ∅ by the definition of π on the type universe LocSetD.
9. π(allLocsD) = π(ObjectD × FieldD) semantics of allLocs

= π(ObjectD)× π(FieldD) def of π on pairs
= ObjectD × FieldD surjectivity of π
= allLocsD semantics of allLocs

10. π(singletonD(o, f) = π({(o, f)}) semantics of singleton
= {(π(o), π(f))} def of π
= singletonD(π(o), π(f)) semantics of singleton

11. π(LS1 ∩ LS2) = {(π(o), π(f)) | (o, f) ∈ LS1 ∩ LS2} def. of π
= {(π(o), π(f)) | (o, f) ∈ LS1}∩

{(π(o), π(f)) | (o, f) ∈ LS2} set theory
= π(LS1) ∩ π(LS2) def. of π

Similarly we can show π(LS1 ∪ LS2) = π(LS1) ∪ π(LS2).
12. π(allF ieldsD(o)) = π({(o, f) | f ∈ FieldsD}) semantics of allF ields

= {(π(o), f) | f ∈ FieldsD} def. of π
= allF ieldsD(π(o)) semantics of allF ields

15

13. π(arrayRangeD(o, i, j)) = π({(o, arrD(x)) | z ∈ Z, i ≤ x, x ≤ j})
semantics of arrayRange

= {(π(o), π(arrD(x))) | z ∈ Z, i ≤ x, x ≤ j}
def of π

= {(π(o), arrD(π(x))) | z ∈ Z, i ≤ x, x ≤ j}
item 7

= {(π(o), arrD(x)) | z ∈ Z, i ≤ x, x ≤ j}
π is identity on Z

= arrayRangeD(π(o), i, j)
semantics of arrayRange

14. π(unusedLocsD(h)) =
π({(o, f) ∈ allLocsD | o 6= null, h(o, createdD) = ff })

semantics of unusedLocs
= {(π(o), f) ∈ allLocsD | o 6= null, h(o, createdD) = ff }

def of π on LocSetD
= {(o′, f) ∈ allLocsD | o′ 6= null, π(h)(o′, createdD) = ff }

def of π(h)
= unusedLocsD(π(h))) semantics of unusedLocs

15. We need to show (o, f) ∈ LS ⇔ (π(o), f) ∈ π(LS). But, this is the very
definition of π(LS).

16. LS1 ⊆ LS2 ⇔ π(LS1) ⊆ π(LS2)
and disjoint(LS1, LS2)⇔ disjoint(π(LS1), π(LS2))
follow easily from the definition of π(LSi).

Next in the list in Figure 2 would be the symbols under the heading Seq.

17. π(seqEmptyD) = π(〈〉) = 〈〉 = seqEmptyD.
18. π(seqSingletonD(o)) = π(〈o〉) = π(o) = seqSingletonD(π(o)).
19. Having seen the previous two examples we trust that the reader can do the

remaining cases by himself.
20. π(nullD) = nullD = null, π(lengthD(o)) = lengthD(π(o)) and the equiv-

alence π(exactInstanceDA(o)) ⇔ exactInstanceDA(π(o)) follow directly from
the definition of the bijection π.

This completes the proof that π is an automorphism of D. ut

Lemma 4. Let π′ be a bijection from X onto Y for finite subsets X,Y ⊆ ObjD
with

1. If null ∈ X then π′(null) = null and null ∈ Y implies null ∈ X.
2. π′ preserves the exact types of its arguments.
3. π′ preserves the length of array objects.

Then there is an automorphism π on D extending π′.

Proof To define an extension π0 of π′ on ObjD it suffices to explain what π0
does on the sets TDe of objects of exact type T for every Java class T . First, we
set π0(null) = null. By assumption this is compatible with π′. By the assumed
preservation of exact types and finiteness of X and Y we know that TDe ∩X and
TDe ∩ Y have the same finite number of elements. Since TDe is infinite we find a
bijection π′0 from TDe \ X onto TDe \ Y . The bijection π0 on TDe is the disjoint
union of π′ and π′0. This, of course, also applies to array types T = C[]. In this
case π0 is constructed in such a way that Cn[], is bijectively mapped onto itself
for all n ≥ 1. Again, by assumption this is compatible with π′.

By Lemma 3 there is an isomorphism π of D extending π0 and thus π′. ut

16

Definition 12 (Partial Isomorphism). Let R be a observation expression
and s1, s2 be two states such that [R]s1 = [R]s2 . A partial isomorphism with
respect to R from s1 to s2 is a bijection π : Obj(Rs1)→ Obj(Rs2) such that the
requirements of Lemma 4 hold.

Additionally π(es1) = es2 must hold for all e ∈ [R]s1 .
It will greatly simplify notation in the following if we assume that every partial

isomorphism π is also defined on all primitive values w with π(w) = w.

In particular, if p ∈ [R]s1 for all program variables p, every automorphism ex-
tending a partial isomorphism π according to Lemma 4 is a (total) isomorphism
from D + s1 onto D + s2 since π(ps1) = ps2 by the last requirement.

Not every partial isomorphism can be extended to a total isomophism, on the
other hand. If q is a program variable such that q does not appear as a subterm
in [R]s1 , then π(qs1) = qs2 is not required.

Example 3. To clarify the role of the additional condition in Definition 12 let x
be a program variable of type C and f a field in C, say of type integer such that
[R]s1 = [R]s2 = 〈x, f(x)〉 for states s1, s2. In this case the condition implies

π((f(x))s1) = (f(x))s2 = fs2(xs2) = fs2(π(xs1))

This amount to the usual requirements of isomorphisms on mathematical struc-
tures.

For later reference we state;

Lemma 5. Let s1, s2 be states and ρ an isomorphism on D.
Let α be a program which started in s1 terminates in s2.
Then α started in ρ(s1) terminates in ρ′(s2),

where ρ′ is an isomorphism on D that coincides with ρ on all objects existing in
state s1, i.e. for all o ∈ ObjectD with createds1 = tt we know ρ(o) = ρ′(o).

(See Definition 11 for the definition of ρ(si))

Proof. The reason why we cannot assume ρ = ρ′, is that α may generate new
objects and there is no reason why a new element o′ generated in the run starting
in state ρ(s1) should be the ρ-image of the new element o generated in the run
of α starting in state s1.

Let Ns1
T be the set of new elements of exact type T generated in the run

starting in state s1 and N
ρ(s1)
T be the set of new elements of exact type T

generated in the run starting in state ρ(s1). For the proof we need that both
runs show the same termination behaviour and that Ns1

T and N
ρ(s1)
T have the

same number of elements for each T .
A strict proof of these statements would require a formal definition of Java

semantics. We take them as postulates, and a very plausible postulates, how
Java programs work.

Let G = {d ∈ D | createds1 = tt} be the finite set of elements that exist in
state s1 and π0 the injective mapping defined on G∪

⋃
T N

s1
T such that π0(o) =

ρ(o) for o ∈ G and the restrictions of π0 map Ns1
T bijectively on N

ρ(s1)
T . By

Lemma 4 there is an automorphism ρ′ of D extending π0. This ρ′ serves our
purpose. ut

5 Formalizing Information Flow Properties

5.1 First Definition

Definition 13 (Agreement of states).
Let R be an observation expression.

17

We say that two states s, s′ agree on R, abbreviated by agree(R, s, s′),
iff

1. Rs = Rs
′

= {e1, . . . , ek}
2. The mapping π defined by π((ei)

s) = (ei)
s′ for ei ∈ Obj(Rs) is a partial

isomorphism

The partial mapping π is uniquely determined by Rs, s and s′. We use the nota-
tion agree(R, s, s′, π) to indicate that agree(R, s, s′) is true and π is the mapping
thus defined.

Notice, that because of our tacit agreement on the values of partial iso-
morphisms on primitive values agree(R, s, s′) entails (ei)

s = (ei)
s′ if ei is an

expression of primitive type.
We now define what it means for a program α (when started in a state s) to

allow information flow only from R1 to R2, which we denote by flow(s, α,R1, R2).
The intuition is that R1 describes the low location in the pre-state and R2

describes the low locations in the post-state. Thus, the values of the variables
and locations in R2 in the post-state must at most depend – up to isomorphism
of states – on the values of the variables and locations in R1 in the pre-state and
on nothing else.

The definition of flow is an extension of the one given by Amtoft and Baner-
jee [1], where a similar relation is defined using a different semantics formalism.

We consider here the termination insensitive case. Extensions taking termi-
nation into account, and also differentiate between normal and abnormal termi-
nation, are possible.

Definition 14 (Information flow of a program).
Let α be a program and R1 and R2 be two observation expressions (of type Seq)

Program α allows information to flow only from R1 to R2 when started in s1,
denoted by flow(s1, α,R1, R2)

iff
for all states s′1, s2, s′2 such that

α started in s1 terminates in s2 and
α started in s′1 terminates in s′2,
we have

if agree(R1, s1, s
′
1, π

1)
then agree(R2, s2, s

′
2, π

2) and π2 is compatible with π1

where π2 is said to be compatible with π1 if
π2(o) = π1(o) for all o ∈ Obj(Rs11) ∩Obj(Rs22) with createds1(o) = tt .

We extend JavaDL by a new three-place modal operator flow(·, ·, ·)) that
expects a program as its first and reference set expressions as its second and
third arguments. Its semantics is defined, for all states s, by

s |= flow(α,R1, R2) iff flow(s, α,R1, R2) holds .

We think of R1, R2 as the publicly available information of a state of the
system. In the simplest case what goes into Ri is determined by explicit decla-
rations which program variables, and which fields are considered low. In more
sophisticated scenarios views on the system for different users might be defined
from which the Ri can then be inferred. In the most common case the low lo-
cations before program execution will be the same as the low locations after
program execution. But, that might not be true in all cases. Thus we cover the
more general case from the start.

18

Example 4.
The definition of information flow from Definition 14 is rather strict. Consider
the following program:
class C {
Int x, y, z;
static boolean h;

static void m(){
if (h) {x = y} else {x = z}

}
}
Let x be the only observable value, i.e., Rs = {self.x} for all states s; then
flow(m(), R,R) is not satisfied. The attacker can only learn that the value of x
he observes in the poststate is either the value of y or of z in the prestate. This
is already treated as information leakage.

Example 5.
This is a slight variation of the previous Example 4. The only difference is that
fields x, y, z now refer to objects rather than primitive values.
class C {
C x, y, z;
static boolean h;

static void m(){
if (h) {x = y} else {x = z}

}
}
Let again x be the only observable expression, i.e., Rs = {self.x} for all states s;
then flow(m(), R,R) is again not satisfied. The mapping π2 defined by π2(xs2) =
xs
′
2 with s2, s′2 the poststates of m() when started in s1, respectively s′1, is

certainly a partial isomorphism. But, π2 is not in the cases compatible with the
isomorphims π1 given by π1(xs1) = xs

′
1 , e.g., not in the case hs1 = hs2 = tt ,

xs1 = ys1 , and xs
′
1 6= ys

′
1

The attacker can only see the object referred to by x in the poststate. Since
he knows that this equals either the object refered to by y or by z in the prestate,
this is considered an information leakage.

An often useful notion is subsumption of one observation by another. Here
is the most general definition.

Definition 15. Let R1, R2 be two observations.
R1 subsumes R2, in symbols R2 ⊆ R1, if for any two states s, s′

agree(R1, s, s
′, π1) implies agree(R2, s, s

′, π2)

Lemma 6. Let R1, R2 be two observations such that R2 ⊆ R1. then for all
states s

Obj(Rs2) ⊆ Obj(Rs1)

Proof This proof will make use of concepts and results from Subsection 4.
Assume, that there is a state s such that Rs1 = {e1, . . . en}, Rs2 = {d1, . . . dm},

and Obj(Rs2) 6⊆ Obj(Rs1), i.e., there is an object o1, say o1 = ds1, with o1 ∈
Obj(Rs2) but o1 6∈ Obj(Rs1).

By Lemma 4 there is an automorphism ρ of the computation structure D
such that for all o ∈ Obj(Rs1) it is the identity, ρ(o) = o, but ρ(o1) 6= o1. As
for any automorphism we have ρ(`) = ` for any primitive value `. In particular,

19

ρ(n) = n for all n ∈ N. Only object may be moved by ρ. It is thus safe to as-
sume ρ(Rsi) = Rsi . We cannot prove this here, since we have not fixed a syntax
for observations expressions. Alltogether, we get eρ(s)i = ρ(esi) = esi (See Defini-
tion 11 for the definition of ρ(s) and Lemma 1 for the equation.) This entails
agree(R1, s, ρ(s), ρ).

On the other hand because of dρ(s)1 = ρ(ds1) = ρ(o1) 6= o1 = ds1 we cannot
have agree(R2, s, ρ(s). ut

If for observation expressions R2, R1 we have Rs2 ⊆ Rs1 for all states s then
certainly R2 ⊆ R1. But for integer fields x, y we also have R2 = {x, y, x+ y} ⊆
{x, y} = R1. Note, that in this example we have Obj(Rs2) = Obj(Rs1) = ∅ for all
s.

The following lemma has been used to prove soundness of the rules of the
caclucus not included in this report, but is interesting in itself. The transitivity
property, item 3 of Lemma 7, is the basis for compositional reasoning over the
flow modality. It implies soundness of the rule FlowSplit in our calculus.

Lemma 7. The flow predicate satisfies the following properties:

1. flow(ε, R1, R2) if R2 ⊆ R1.
2. flow(α,R1, R2) implies flow(α,R1, R

′
2) if R′2 ⊆ R2.

3. if flow(α1, R1, R2), flow(α2, R2, R3) and Obj(Rs1) ∩ Obj(Rs3) ⊆ Obj(Rs2) for
all s then flow(α1;α2, R1, R3). Here, α1;α2 is the concatenation of α1 and α2.

Proofs
ad(1) By Definition 14 we need to show for any states s1, s′1, s2 ,s′2 such
that ε started in s1 terminates in s2 and started in s′1 terminates in s′2 that
agree(R1, s1, s

′
1, π1) implies agree(R2, s2, s

′
2, π2) and π1, π2 are compatible For

the empty program ε we have s1 = s2 and s′1 = s′2. The claim thus reduces to
showing that agree(R1, s1, s

′
1, π1) implies agree(R2, s1, s

′
1, π2) and the compati-

bility of π1, π2. But, this follows from the definition of R2 ⊆ R1 and Lemma 6.
ad(2) To prove flow(α,R1, R

′
2) we need to show

for any states s1, s′1, s2 ,s′2 such that
α started in s1 terminates in s2 and
α started in s′1 terminates in s′2 that
agree(R1, s1, s

′
1, π1) implies agree(R′2, s2, s′2, π′2) and the compatibility of π1 and

π′2.
By the assumption flow(α,R1, R2) we know agree(R2, s2, s

′
2, π2) plus compat-

ibility of π1 and π2. The claim follows from R′2 ⊆ R2. In particular compatibility
of π1 and π′2 follows from the compatibility of π1 and π2 since Obj((R′2)s2) ⊆
Obj(Rs22) by Lemma 6.
ad(3) We are given states s1, s′1, s2, s′2, s3, s′3 such that s1

α1 s2, s2
α2 s3,

s′1
α1 s′2, s′2

α2 s′3, and we know from flow(α1, R1, R2), flow(α2, R2, R3) that
agree(R1, s1, s

′
1, π1) implies agree(R2, s2, s

′
2, π2) and

agree(R2, s2, s
′
2, π2) implies agree(R3, s3, s

′
3, π3).

Thus agree(R1, s1, s
′
1, π1) certainly implies agree(R3, s3, s

′
3, π3) and it remains

only to show compatibility of π1 and π3. We may make use of teh facts that
π1 and π2 on one hand and π2 and π3 on the other are compatible. So we fix
o ∈ Obj(Rs11) ∩Obj(Rs13) and want to show π1(o) = π3(o). Since by assumption
o ∈ Obj(Rs12) we get π1(o) = π2(o) from the compatibility of π1 and π2 and
π2(o) = π3(o) from the compatibility of π2 and π3. ut

Example 6. It might be tempting to conjecture that flow(α,R1, R2) implies
flow(α,R′1, R2) if R1 ⊆ R′1. Here comes a counterexample.
class C {
C x, y;

20

static boolean h;

static void ce(){
if (h) {x = new C()} else {x = y}

}
}
We argue that flow(ce(), ∅, {x}) is true. Thus consider states s1, s′1, s2, s′2 with

s1
ce()
 s2, s′1

ce()
 s′2, and agree(∅, s1, s′1). We omit π1 here since it is the empty

function. We need to convince ourselves that agree({x}, s2, s′2, π2). But, this is
easy since π2 is the mapping from the singleton {xs2} onto the singleton {xs′2}.

On the other hand flow(ce(), {y}, {x}) is not true. In this case we start from
agree({y}, s1, s′1, π1) and get agree({x}, s1, s′1, π2) as before. But, now π2 and π1
may not be compatible in some case, e.g., if hs1 = ff , hs

′
1 = tt then π2 maps ys1

onto a new element, while π1(ys1) = ys
′
1 is an existing element.

Example 7. The following example illustrates why condition

Obj(Rs1) ∩Obj(Rs3) ⊆ Obj(Rs2)

for part 3 of Lemma 7 is needed. Let

α1 = if (h != null) {h = l;}

α2 = if (h != null) {l = h;} else {l = new C();}

The program α1 satisfies flow(α1, {l}, ∅). This is because an attacker cannot
learn anything from running α1 if he cannot observe anything in the post-state
(this statement is true for all programs). But that is not the whole story: The
attacker knows that the object he observed in l in the pre-state is stored in h if
h was not null (as the attacker knows the program).

Considering (only) α2, an attacker who observes the (low) output variable l
does not learn anything, as he only sees an object different from null and there
is nothing it could be compared to. Correspondingly, we have flow(α2, ∅, {l}).

Ignoring the extra condition Obj(Rs1) ∩Obj(Rs3) ⊆ Obj(Rs2) in Lemma 7(3),
we could conclude flow(α1;α2, {l}, {l}). But that is not correct. By observing
a run of the concatenation α1;α2, an attacker can learn something about h by
comparing the value of l in the pre-state to its value in the post-state: If l is
unchanged, then h was not null in the pre-state.

By demanding that all objects that an attacker knows from the pre-state
and that are observable in the post-state must be observable in the intermediate
state, this problem is avoided.

Definition 16. An observation expression R is of the form

R = seq_def{iv}(t1, t2, e)

where ti are expression of type integer with no occurence of iv, and e is a ex-
pression of arbitrary type. Thus R is of type Seq.

For an explanation of the generalized quantifier seq_def{iv}(t1, t2, e) see Defi-
nition 2 (3) on page 4.

We can talk and reason abstractly about observations by letting R just be a
variable of type Seq. Thus satisfying the second requirement discussed above.

The example mentioned at the end of Section 3 can be handled as follows. We
first introduce a new binary function next(n, x), that we may also need for other
purposes as well, by the recursive definition next(0, x)

.
= x and next(n+ 1, x)

.
=

y ↔ ∃z(next(n, x)
.
= z ∧ next(z) .

= y). Then we may write

R = seq_def{i}(0, this.len, next(i, this).v)

21

with len axiomatized by next(len, this) = null and ∀j(0 ≤ j ∧ j < len →
next(j, this) 6= null)

If Rs = 〈a1, . . . , an−1〉 is the interpretation of observation R in state s the
type of ai will usually by a Java class or Java data type. But, the given definition
does not impose this restriction.

In examples we will sometimes use a comma separated list of observations
instead of one observation sequence. Without loss of generality, we will in this
text only consider a single observation expression. The findings from the previous
section on information-flow in Java lead to the following formal definition of
object-sensitive non-interference.

Theorem 1. Let α be a program, and let R1, R2 be observation expressions.
There is a formula φα,R1,R2

in JavaDL making use of self-composition such
that: s1 |= φα,R1,R2 iff flow(s1, α,R1, R2).

Proof. The proof consists of a constructive definition of the formula φα,R1,R2

such that s1 |= φα,R1,R2
iff flow(s1, α,R1, R2).

We will explain the construction of φα,R1,R2
top down. The property to be

formalized requires quantification over states. According to Definition 5 a state
s is determined by the value of the heap hs in s and the values of the (finitely
many) program variables as in s. We can directly quantify over heaps h and
refer to the value of a field f of type C for object o referenced by expression e as
selectC(h, e, f). We cannot directly quantify over program variables, as opposed
to quantifying over the values of program variables, which is perfectly possible.
Thus we use quantifiers ∀x, ∃x over the type domain of the variable and assign x
to a via an update a := x. There are four states involved, the two pre-states s1,
s′1 and the post-states s2, s′2. Correspondingly, there will be, for every program
variable v, four universally quantifier variables v, v′, v2, (v2)′ of appropriate
type representing the values of v in states s1, s′1, s2, s′2. There are some program
variables that make only sense in pre-states, e.g., this, and variables that make
only sense in post-state, e.g., result. There will be only two logical variables
that supply values to them instead of four. This leads to the following schematic
form of φα,R1,R2 :

φα,R1,R2 ≡ ∀Heap h′1, h2, h′2∀To′∀Trr, r′∀ . . . v′, v2, (v2)′ . . .
(Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
→ (Agreepost ∧ Ext))

To maintain readability we have used suggestive abbreviations:

1. {in s′1}〈α〉 signals that an update {heap := h′1 || this := o′ || . . . ai := v′ . . .}
is placed before the modal operator. The ai cover all relevant parameters and
local variables.

2. The construct save{s2} abbreviates a conjunction of equations h2 = heap,
r = result, . . . , v2 = ai,

3. Analogously, save{s′2} stands for the primed version h′2 = heap, r′ = result,
. . . , (v2)′ = ai,

4. The shorthand {in s2}{in s′2}E in front of a formula is resolved by (a) pre-
fixing every occurence of a heap dependent expression e with the update
{heap := h2} and (b) every primed expression e′ with {heap := h′2}.

5. The same applies to {in s′1}E. Note, there is no {in s1}, and nor quantified
variables o, v1 since the whole formula φα,R1,R2

is evaluated in state s1.

In the following we will also use the notation R′i, R2
i , (R2

i)
′ for the terms

obtained from Ri by replacing each state dependend designator v by v′, v2, (v2)′

respectively. Technically, these substitutions are effected by prefixing Ri with an
appropriate update.

22

For conciseness we use R[i] instead of seqGetAny(r, i) and also t @− A for
instanceA(t).

We now supply the definitions of the abbreviations used above:

Agreepre ≡ R1.length
.
= R′1.length

∧
∀i(0 ≤ i < R1.length→∧

A in α(exactInstanceA(R1[i])↔ exactInstanceA(R′1[i])))
∧
∀i((0 ≤ i < R1.length ∧R1[i] 6 @−Object→ R1[i]

.
= R′1[i])

∧
∀i, j(0 ≤ i < j < R1.length ∧R1[i]@−Object ∧R1[j]@−Object
→ (R1[i]

.
= R1[j]↔ R′1[i]

.
= R′1[j]))

Agreepost ≡ R2
2.length

.
= (R2

2)′.length
∧
∀i(0 ≤ i < R2

2.length→∧
A in α(exactInstanceA(R2

1[i])↔ exactInstanceA((R2
1)′[i])))

∧
∀i((0 ≤ i < R2

2.length ∧R2
2[i] 6 @−Object→ R2

2[i]
.
= (R2

2)′[i])
∧
∀i, j(0 ≤ i < j < R2

2.length ∧R2
2[i]@−Object ∧R2

2[j]@−Object
→ (R2

2[i]
.
= R2

2[j]↔ (R2
2)′[i]

.
= (R2

2)′[j]))

Ext ≡ ∀i∀j(0 ≤ i < R1.length ∧ 0 ≤ j < R2
2.length∧

R1[i]@−Object ∧R2
2[j]@−Object ∧R1[i]

.
= R2

2[j]
→ R′1[i]

.
= (R2

2)′[j])

In many cases these definitions are much simpler. Frequently it is the case
that Ri.length is not state dependend, then quantification over index i reduces
to a disjunction of fixed length. Also the exact type of an expression can often
be checked syntactically and need not be part of the formula. In other cases
however, e.g., if Ri is a variable of type Seq, the full definition is necessary.

It remains to show that this definition does the job. There are two implica-
tions to be proved.

Let us first assume s1 |= φα,R1,R2
. To prove flow(s1, α,R1, R2) fix states

s′1, s2, s
′
2 such that α started in s1 terminates in s2, α started in s′1 terminates

in s′2, and agree(R1, s1, s
′
1, π

1). We need to show that agree(R2, s2, s
′
2, π

2) and
π2 is compatible with π1.

The universally quantified variables of φα,R1,R2
will be instantiated by the

variable assignment β as follows β(h′1) = s′1(heap), β(o′) = s′1(this), and
β(v′) = s′1(v) for all other v . From agree(R1, s1, s

′
1, π

1) we see that (s1, β) |=
Agreepre is true. Extending β by β(v2) = s2(v) for all v we obtain (s1, β) |=
〈α〉save{s2} and, finally setting β((v2)′) = s′2(v) we also have

(s1, β) |= in{s′1}〈α〉save{s′2}.

Thus, our assumption s1 |= φα,R1,R2 implies (s1, β) |= {in s2}{in s′2}(Agreepost∧
Ext). The part (s1, β) |= {in s2}{in s′2}Agreepost implies agree(R2, s2, s

′
2, π

2)
while (s1, β) |= {in s2}{in s′2}Ext guarantees that π2 is compatible with π1. In
total flow(s1, α,R1, R2) has been shown.

For the reverse implication assume flow(s1, α,R1, R2). We set out to prove
s1 |= φα,R1,R2 . Let β be an arbitrary assignment for the universally quantified
variables of this formula. Our task is reduced to showing

(s1, β) |= Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
→ {in s2}{in s′2}(Agreepost ∧ Ext)

23

φm5(),R,R ≡ ∀Heap h′
1, h2, h

′
2∀C o′∀x′, x2, (x2)′, y′, y2, (y2)′(

(x
.
= y ↔ x′

.
= y′ ∧

〈m5()〉(x2
.
= x ∧ y2 .

= y) ∧
{this := o′, x := x′, y := y′}〈m5()〉((x2)′

.
= x ∧ (y2)′

.
= y))

→
(x2

.
= y2 ↔ (x2)′

.
= (y2)′ ∧

x
.
= x2 → x′

.
= (x2)′ ∧ y .

= x2 → y′
.
= (x2)′ ∧

x
.
= y2 → x′

.
= (y2)′ ∧ y .

= y2 → y′
.
= (y2)′))

Figure 5. Formula φm5(),R,R for method m5() from Figure 4 and R = 〈x, y〉.

We may assume (s1, β) |= Agreepre∧〈α〉save{s2}∧ in{s′1}〈α〉save{s′2} since oth-
erwise the implication is trivially true.
Let s′1 be the state that differs from s1 by s′1(v) = β(v′) or all variables v in the
universal quantifier prefix of φα,R1,R2

. It is easy to see that (s1, β) |= Agreepre
implies agree(R1, s1, s

′
1, π

1). Now, (s1, β) |= 〈α〉save{s2} implies in particular
that α started in s1 terminates. Let us call the final state s2. Likewise, (s1, β) |=
in{s′1}〈α〉save{s′2} implies first (s′1, β) |= 〈α〉save{s′2} and then that α started in
s′1 terminates. Let us call this final state s′2. We are now in a position to make use
of our assumption flow(s1, α,R1, R2) and conclude agree(R2, s2, s

′
2, π

2) and π2

is compatible with π1. Except termination we obtain from (s1, β) |= 〈α〉save{s2}
also β(h2) = s2(heap), β(r) = s2(result), and β(v2) = s2(v) for all other rele-
vant program variables. From (s′1, β) |= 〈α〉save{s′2} we obtain likewise β(h′2) =
s′2(heap), β(r′) = s′2(result), and β((v2)′) = s′2(v) for all other relevant pro-
gram variables. From agree(R2, s2, s

′
2, π

2) we thus can conclude

(s1, β) |= {in s2}{in s′2}Agreepost

and from the fact that π2 is compatible with π1 we get

(s1, β) |= {in s2}{in s′2}Ext.

In total we have shown s1 |= φα,R1,R2 , as desired. ut

Example 8. To illustrate the construction used in the proof of Theorem 1 by an
example. We reconsider method m5() from Figure 4 on page 10 and R = 〈x, y〉,
which is shorthand for
seqConcat(seqSingleton(selectC(heap,null, x)),

seqSingleton(selectC(heap,null, y)))
.

Note, that we have (R.length)s = 2 for all states s and the exact type of both
fields x, y is always C. Thus Agreepre equals x

.
= y ↔ x′

.
= y′. Agreepost equals

x2
.
= y2 ↔ (x2)′

.
= (y2)′ and Ext is the conjunction x .

= x2 → x′
.
= (x2)′ ∧ y .

=
x2 → y′

.
= (x2)′ ∧ x .

= y2 → x′
.
= (y2)′ ∧ y .

= y2 → y′
.
= (y2)′. Figure 5 shows

the complete formula φm5(),R,R.

Another concept we need is modifies sets, wich are reference set expressions
describing which variables and locations a program modifies (at most).

Definition 17 (Modifies set). Let α be a program and M = (V,L) a reference
set expression.

We say that M is a modifies set for α, denoted by mod(α,M), iff for all
states s the following holds: if there is a state s′ such that α started in s termi-
nates in s′, then (a) for all locations (o, f) 6∈ Ls we obtain fs(o) = fs

′
(o) and

(b) for all variables v 6∈ V we obtain vs = vs
′
.

24

5.2 A Simplified Version

Lemma 8. If agree(R, s, s′, π) and ρ is an automorphism on D
then also agree(R, s, ρ(s′), ρ ◦ π).

Proof. From the assumption agree(R, s, s′, π) we get by definition:

1. Rs = 〈a0, . . . an−1〉, Rs
′

= 〈a′0, . . . a′n−1〉,
2. for all 0 ≤ i < n : type(ai) = type(a′i),
3. for all 0 ≤ i < n such that type(ai) 6v Object : ai = a′i,
4. for all 0 ≤ i < n such that type(ai) v Object : ai = null⇔ a′i = null,
5. for all 0 ≤ i < n such that type(ai) v Object and ai is an object of array

type : ai.lengths = a′i.length
s′ ,

6. for all 0 ≤ i < j < n such that type(ai) v Object and type(aj) v Object :
ai = aj ⇔ a′i = a′j

7. π(ai) = a′i

By the basic properties of isomorphism, see Lemma 1, we obtain using notation
from Definition 11:

1. Rs
′

= 〈a′0, . . . a′n−1〉, Rρ(s
′) = 〈ρ(a′0), . . . ρ(a′n−1)〉,

2. for all 0 ≤ i < n : type(a′i) = type(ρ(a′i)),
3. for all 0 ≤ i < n such that type(ai) 6v Object : ρ(a′i) = a′i since isomorphisms

are the identity outside ObjectD,
4. for all 0 ≤ i < n such that type(ai) v Object : a′i = null⇔ ρ(a′i) = null,
5. for all 0 ≤ i < n such that type(ai) v Object and ai is an object of array

type : a′i.length
s′ = ρ(a′i).length

ρ(s′),
6. for all 0 ≤ i < j < n such that type(ai) v Object and type(aj) v Object :
a′i = a′j ⇔ ρ(a′i) = ρ(a′j)

7. ρ ◦ π(ai) = ρ(a′i)

This is, precisely, the definition of agree(R, s, ρ(s′), ρ ◦ π). ut

The information flow property in Definition 14 follows a pattern widely ac-
cepted in the research community, which in a nutshell can be phrased as: If
program α is run in two states that agree on the low values then the states
that are reached by executing α also agree on the the low values. Agreement
for low values of non-object type means equality. The novelty in Definition 14 is
that when low values of object type are involved we replace the requirement of
equality by the relaxed requirement of the existence of a partial isomorphism.
But, maybe we have gone too far. What would be lost if we insist that the bi-
jection between objects in the prestates is the identity and only the bijection in
the poststates may be arbitrary? To investigate this question rigorously we first
introduce the following variation of Definition 14.

Definition 18 (Simple Information flow of a program).
Let α be a program and R1 and R2 be two observation expressions (of type Seq)

We say that α allows simple information flow only from R1 to R2 when
started in s1, denoted by flow∗(s1, α,R1, R2), iff, for all states s′1, s2, s′2 such
that α started in s1 terminates in s2 and α started in s′1 terminates in s′2, we
have

if agree(R1, s1, s
′
1, id)

then agree(R2, s2, s
′
2, π

2) and
π2(o) = o for all o ∈ objs2(R2) ∩ objs1(R1) with createds1(o) = tt .

Note, that agree(R1, s1, s
′
1, id) implies in particular objs1(R1) = objs

′
1(R1) since

π1 = id is a bijection from objs1(R1) onto objs
′
1(R1).

25

Lemma 9. For all programs α, any two observation expressions R1 and R2 ,
and any state s1

flow∗(s1, α,R1, R2) ⇒ flow(s1, α,R1, R2)

Since the reverse implication is obviously true Lemma 9 entails that flow and
flow∗ are equivalent.

Proof. To prove flow(s1, α,R1, R2) we fix, in addition to s1, states s′1, s2, s′2 such
that α started in s1 terminates in s2 and α started in s′1 terminates in s′2,
and assume agree(R1, s1, s

′
1, π

1). We need to show agree(R2, s2, s
′
2, π

2) with π2

extending π1.
By Lemma 4 there is an automorphism ρ on D extending (π1)−1.
From agree(R1, s1, s

′
1, π

1) we conclude agree(R1, s1, ρ(s′1), ρ ◦ π1) by Lemma
8. Since ρ extends (π1)−1 we have agree(R1, s1, ρ(s′1), id). As noted in Lemma 5
there is a state s′3 such that α started in ρ(s′1) terminates in s′3. This enables us to
make use of the assumption flow∗(s1, α,R1, R2) and conclude agree(R2, s2, s

′
3, π

3).
Furthermore π3(o) = o for all o ∈ objs1(R1) ∩ objs2(R2).

Applying Lemma 5 to the inverse isomorphism ρ−1 to the situation that α
started in ρ(s′1) terminates in s′3, we obtain an automorphism ρ′ such that α
started in ρ−1(ρ(s′1)) = s′1 terminates in ρ′(s′3) and ρ′ coincides with ρ−1 on all
objects in E = {o ∈ ObjectD | createdρ(s′1)(o) = tt}.

Again using Lemma 8, this time for the isomorphism ρ′, we obtain from
agree(R2, s2, s

′
3, π

3) also agree(R2, s2, ρ
′(s′3), ρ′ ◦ π3). Since α is a deterministic

program and we have already defined s′2 to be the final state of α when started
in s2 we get s′2 = ρ′(s′3) and thus agree(R2, s2, s

′
2, ρ
′ ◦ π3).

It remains to convince ourselves that ρ′ ◦ π3 = π2 and that ρ′ ◦ π3 extends
π1, i.e., for every o ∈ objs1(R1) ∩ objs2(R2) with createds1(o) = tt we need to
show ρ′ ◦ π3(o) = π1(o).

By the definition of isomorphic states we obtain from createds1(o) = tt also
createdρ(s1)(o) = tt . Thus we can infer ρ′(o) = ρ−1(o) and by choice of ρ further
ρ−1(o) = π1(o), as desired.

The proof of the equality ρ′ ◦ π3 = π2 is still open. By Definition 13 we have
π2(Rs2 [i]) = Rs

′
2 [i] for all i such that 0 ≤ i < Rs2 .length = Rs

′
2 .length. On

the other hand π3 is defined by π3(Rs2 [i]) = Rs
′
3 [i] for all i such that 0 ≤ i <

Rs2 .length = Rs
′
3 .length. Thus ρ′ ◦ π3(Rs2 [i]) = ρ′(Rs

′
3 [i]) = Rρ

′(s′3)[i]). Since,
as noted above, ρ′(s′3) = s′2 we have arrived at ρ′ ◦ π3(Rs2 [i]) = Rs

′
2 [i]. ut

Lemma 9 leads to the following corollary to Theorem 1.

Corollary 1. Let α be a program, and let R1, R2 be observation expressions.
There is a formula φα,R1,R2

in JavaDL making use of self-composition such
that: s1 |= φα,R1,R2 iff flow(s1, α,R1, R2)
with

φα,R1,R2
≡ ∀Heap h′1, h2, h′2∀To′∀Trr, r′∀ . . . v′, v2, (v2)′ . . .

(Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
→ (Agreepost ∧ Ext))

Agreepost and Ext remain as in the proof of Theorem 1 but Agreepre simplifies
to

Agreepre ≡ R1.length
.
= R′1.length

∧
∀i((0 ≤ i < R1.length→ R1[i]

.
= R′1[i])

Proof. Immediate from Theorem 1 and Lemma 9. ut

26

5.3 Subsumption

We come back to the notion of subsumption defined in Definition 15.
In many cases subsumption may be established immediately by observing

that any expression in R2 also occurs literally in R1.

Lemma 10. We assume that observations R1, R2 are represented as sequences
(Definition 16).
If

seqLen(R1) ≥ seqLen(R2) ∧
∀i(0 ≤ i ∧ i < seqLen(R2)→ seqGet(R2, i)

.
= seqGet(R1, i)))

is universally valid then R1 ⊇ R2.

Proof Obvious. ut

Lemma 11. We assume again that R1, R2 are observations represented as se-
quences according to Definition 16.
Then R1 ⊇ R2 is equivalent to the validity of the formula

∀i(0 ≤ i ∧ i < seqLen(R1)→ R1[i]
.
= R′1[i])

→
∀j(0 ≤ j ∧ j < seqLen(R2)→ R2[j]

.
= R′2[j])

The use of primed symbols is explained at the beginning of the proof of Theorem
1 on page 22.

Proof Again obvious. ut
Lemma 11 is of limited use in case Ri are e.g., variables of type Seq. An

interesting instantiation is given in the next simple lemma.

Lemma 12. Let R1 = seq_def{u}(t11, t12, e1) and R2 = seq_def{w}(t21, t22, e2)
Then R1 ⊇ R2 is equivalent to the validity of the formula

∀u(t11 ≤ u ∧ u < t12)→ e1[u]
.
= (e1)′[u])

→
∀w(t21 ≤ u ∧ u < t22)→ e2[w]

.
= (e2)′[w])

Proof Instance of Lemma 11 ut

6 Modular Self-composition with Contracts

In the context of functional verification, modularity is achieved through method
contracts: If it is proven that an implementation of a method m adheres to its
contract, then we can replace calls to m in proofs by this contract without look-
ing at the implementation code. We want to carry this approach over to the
verification of information flow properties. In previous work [18], we have in-
troduced information flow contracts: An information flow contract (in short:
flow contract) Cm::T for method m declared in type T is satisfied if in any state
the formula flow(this.m(ā), R1, R2) from Definition 14 is true, where program
α has been instantiated to method m and quantification over parameters and
return value are included. In [18] flow contracts may include preconditions and
declassifications. For the sake of readability we exclude those features in this

27

presentation. Including them is straightforward. From the example of the for-
mula φthis.m(ā),R1,R2

presented after Theorem 1 we can read off the structure of
the formalisation of flow(this.m(ā), R1, R2) in the general case:

ψCm::T
≡ ∀Heap h1 ∀T o ∀Ā ā ∀An+1 r {in s1}φthis.m(ā),R1,R2

≡ ∀Heap h1, h
′
1, h2, h

′
2 ∀T o, o′ ∀Ā ā, ā′ ∀An+1 r, r

′

{in s1}[this.m(ā)](save s2) ∧ {in s′1}[this.m(ā)](save s′2)

∧ {in s1}{in s′1}(EDR1 ∧ EOR1)

→ {in s2}{in s′2}(EDR2 ∧ EOR2 ∧OldR1,R2)

Here we use the following suggestive abbreviations: (1) The shorthand {in s′1}ϕ
signals that an update {heap := h′1 || this := o′ || . . . ai := x′1 . . .} is placed be-
fore ϕ. The ai cover all other relevant parameters and local variables. (2) The con-
struct (save s2) abbreviates a conjunction of equations h2 = heap, r = result,
. . . , x2 = ai, Analogously, (save s′2) stands for the primed version h′2 = heap,
r′ = result, . . . , x′2 = ai, (3) The shorthand EDR1 ∧ EOR1 abbreviates a
formula which is valid iff s1 and s2 agree on R1 in the sense of Definition 13. Anal-
ogously, EDR2∧EOR2 abbreviates a formula which is valid iff s2 and s′2 agree on
R2. (4) OldR1,R2 abbreviates a formula which guaranties that the isomorphism
defined by EDR2 ∧ EOR2 is an extension of the one defined by EDR1 ∧ EOR1 .

The difficulty in the application of method contracts for information flow
arises from the fact that ψCm::T

refers to two invocations of a method m in different
contexts. Therefore a flow contract cannot be used directly if the first symbolic
execution in a self-composition proof reaches a method invocation: the second
execution might not yet have reached such an invocation. This is in particular a
problem if the first program has to be executed completely before the execution of
the second starts. The remainder of this section explains how flow contracts can
be integrated into the calculus in order to achieve modular and feasible proofs.
The main idea of the integration is to delay the application of flow contracts.

If ψCm::T
has been proven valid for some method m, then it can be used as a

lemma in the proof of ψCm2::T
for another method m2. We extend the standard

functional method contract rule by adding the predicate MC T ::m(o, ā, h1, res, h2)
to the antecedent of each premiss. The predicate intuitively states that the
method contract rule for m applied on the object o with parameters ā in state h1
results in state h2 and result value res. The reason to introduce the predicate
and not the equivalent formula {in s1}[this.m(ā)]{save s2} is that MC T ::m is
not decomposed by the proof search strategy. We introduce the following rule
schema to make use of ψCm::T

as a lemma:

FlowContract

MC T ::m(o, ā, h1, res, h2),MC T ::m(o′, ā′, h′1, res ′, h′2),

{in s1}{in s′1}(ED1 ∧ EO1)→ {in s2}{in s′2}(ED2 ∧ EO2 ∧Old)
=⇒

MC T ::m(o, ā, h1, res, h2),MC T ::m(o′, ā′, h′1, res ′, h′2) =⇒

The rule matches two instances of MC T ::m and introduces an implication to the
antecedent: the implication resulting from ψCm::T

through instantiation of the
quantifiers with the heaps and actual parameters of the two instances of MC T ::m.
The condition {in s1}[this.m(ā)]{save s2} of ψCm::T

and its primed counterpart
are valid by construction since MC T ::m(o, ā, h1, res, h2) and its primed coun-
terpart hold. Intuitively the rule is sound, because it is a combination of two
intuitively obviously sound rules: first ψCm::T

is introduced as an axiom to the
sequent and afterwards the quantifiers of ψCm::T

are instantiated in such a way
that the condition {in s1}[this.m(ā)]{save s2} and its primed counterpart are
valid by construction.

28

7 Related Work

Techniques for Enforcing Secure Information Flow. The most widely used ap-
proach to secure information flow is type systems as introduced by Volpano and
Smith [21]. This was done for a small while language. Later contributions ex-
tended this approach to sequential Java [3,16,20]. Hunt and Sands introduce
floating types [12] that may change throughout a program execution. In this
approach, the security levels are not assigned a-priori. Instead, through a Hoare-
style calculus, the program gives rise to a mapping from variables to sets of
variables on which they depend at most.

In [9], dynamic logic is used to encode the Hunt/Sands type system. This
approach is similar to ours in that it combines an abstract view of programs
(type system) with the power of a theorem prover. However, information-flow
policies are still imposed through typing (as opposed to a proof obligation in
dynamic logic).

Another approach extracts a dependence graph from programs, which is in
turn analysed for graph-theoretical reachability properties. This has been done
for a significant subset of Java [10]. However this technique suffers from a similar
precision issue as type systems.

Self-composition has been proposed [5,7] as a technique to introduce non-
interference properties into program logics. While it avoids false-positives, this
technique suffers – as we have explained above – from a lack of scalability. One
way to improve this method is to replace sequential composition of two programs
by a single product program that partially parallelizes the two executions [4].

Information Flow in Object-oriented Languages. Most approaches to secure in-
formation flow either apply only to a simple while language without taking
object-orientation into account or implicitly assign the lowest security level to
object references. One of the first works to mention the restrictions w.r.t. object-
orientation of static methods like type systems is [1]. There, the authors propose
region logic, a kind of Hoare logic with concepts from separation logic in order
to deal with aliasing of object references.

Hansen et al. [11] were the first to relax the definition of low-equivalence in
non-interference for object identity. In their formalization, two heaps are low-
equivalent up to a partial isomorphism (similar to our Def. 13).

8 Conclusions and Future Work

We have introduced an approach to verify Java programs w.r.t. information-
flow properties in a compositional manner. We have defined a notion of low-
equivalence between heaps modulo isomorphism. Although we have introduced
a new modality to reason about information flow on a higher level of abstraction,
the flow modality can be expressed in dynamic logic.

Proof obligations for non-interference using self-composition have already
been implemented in the KeY tool. We have recently added a prototype imple-
mentation of the flow operator.

A first extension of the work presented here will be to take termination into
consideration. Also, while throughout this paper, we have always defined secrecy
in terms of a two-element security lattice, the approach will be extended to work
with any lattice.

The concept of declassification can be easily added to the flow modality and
and the calculus. This can be done by adding a formula as an extra parameter
to flow that describes what the attacker is allowed to learn (i.e., what flow is
permissible).

29

We also plan to investigate whether it is useful to add the set of objects that
an attacker knows as an explicit parameter to the flow modality, so as to avoid
the problem discussed in Example 7 and simplify the flowSplit rule. And one
may add a parameter restricting over what values the high locations range.

To further explore the applicability of our approach beyond simple textbook
examples, we are currently applying it to an e-voting case study.

A Appendix: Finite Sequences

The goal of this appendix is to present the data type Seq. More precisely, we will
run through the file seq.key that contains the axioms (taclets) for Seq providing
arguments for their consistency. At the time of this writing seq.key was not yet
on the main branch of the KeY system.

Core axioms

Extension by Definitions
resulting in the theory corePIX

Derived Taclets

Extension by Definitions
introducing two kinds of permutations

Derived Taclets

Figure 6. Structure of the file seq.key

A.1 The Core Theory seqCore

The core consists of four axioms altogether using the following function symbols:

any any::seqGet(Seq, int)
any seqGetOutside
int seqLen(Seq)

and the generalized quantifier seq_def{}(, ,). Figure A.1 shows the axioms in
mathematical notation in a typed first-order logic. Variables s, s1, s2 are of type
Seq, variables i, j, k, ri, le are of type int, variable a is of type any. Furthermore
φ{t/u} denotes the formula obtained from φ by replacing all free occurences of
the variable u by the term t. The taclets version of the seqCore are reproduced
in lines 41 – 89 in the listing in Subsection A.7.

We use s[i] as a short-hand for any :: seqGet(s, i).
A finite sequence s is represented as a function i s[i] from int into any

plus a length seqLen(s). Axiom 1 says that the length of a sequence is a positive
integer, in particular this says that it is finite. Axioms 2 characterizes equality

30

1. ∀s(0 ≤ seqLen(s))
2. ∀s1∀s2(s1

.
= s2 ↔

seqLen(s1)
.
= seqLen(s2) ∧ ∀i(0 ≤ i < seqLen(s1)→ s1[i]

.
= s2[i]))

3. ∀i∀ri∀le(
((0 ≤ i ∧ i < ri− le)→ seq_def{u}(le, ri, t)[i] .= t{(le+ i)/u})
∧
(¬(0 ≤ i ∧ i < ri− le)→ seq_def{u}(le, ri, t)[i] .= seqGetOutside))

4. ∀ri∀le(
(le < ri→ seqLen((seq_def{u}(le, ri, t)) .= ri− li)
∧
(ri ≤ le→ seqLen(seq_def{u}(le, ri, t)) .= 0))

Figure 7. Core axioms in mathematical notation

of finite sequences. Thus, the values s[i] for i < 0 or seqLen(s) ≤ i are irrelevant
in this respect. In particular, there is at most one empty sequence.

The main difference of our axiomatization of Seq over the traditional abstract
datatype approach is the use of the generalized quantifier seq_def{u}(le, ri, t)
with the intented meaning formalized in axioms 3 and 4: it defines a sequence of
length ri− le whose entry at position i is obtained by evaluating the expression
t with the variable u replaced by i. If ri ≤ le the empty sequence is defined.

A.2 Consistency of the Core Theory

To prove consistency of the theory seqCore we will construct a non-empty set
MSeq of models M such that M |= φ for every axiom φ in the list of Figure
A.1. Of course, one modelM with this property would be enough to ascertain
consistency, but it just so turns out that there is a natural class of them. Fur-
thermore, it raises the interesting question whether seqCore is complete with
respect to the class of structures MSeq, i.e., for every formula ψ withM |= ψ
for everyM∈MSeq we ask if seqCore ` ψ?.

We turn to the construction of the modelsM in MSeq. Let D be a structure
satisfying the stipulations from Definition 3. The universe ofM will depend on
the choice of D. To avoid unwieldy notation we will not show D as an explicit
parameter. We will remember the dependance on D when needed.

Definition 19 (The type domain SeqD). The type domain SeqD is defined
via the following induction.
UD = BooleanD ∪ IntD ∪ObjectD ∪ LocSetD

D0
Seq = {〈〉}

Dn+1
Seq = {〈a1, . . . , ak〉 | k ∈ N and ai ∈ Dn

Seq ∪ UD, 1 ≤ i ≤ k}, n ≥ 0

SeqD := DSeq :=
⋃
n≥1

Dn
Seq

In this definition we use the notion of a finite sequence 〈a0, . . . , an−1〉 as a prim-
itive concept. Those that want a more foundational approach may think of a
finite sequences as equivalence classes of functions from Z into values, or as sets
of pairs {(i, a) | 0 ≤ i < n and a a value}.

We point out that the definition of DSeq is very liberal we allow unrestricted
nesting, i.e. there can be sequences of sequences of sequences etc. and the entries
in a sequence need not be of the same type. Thus 〈0, 〈∅, seqEmpty, null〉, tt〉 is
a perfect element in DSeq.

31

Definition 20 (MSeq). A structureM with universe DSeq ∪D0
Seq belongs to

the set MSeq if it satiesfies the following restrictions, where i, ri, le are integers,
ak, a elements of D0

Seq and s ∈ SSeq and e a term of type Any:

1. seq_def{iv}(le, ri, e)M,β =

〈a0, . . . ak−1〉 if ri− le = k > 0

and ai = eM,βi

with βi = β[i/iv]
seqGetOutsideM otherwise

2. seqGetMany(〈a0, . . . , an−1〉, i) =

{
ai if 0 ≤ i < n
seqGetOutsideM otherwise

3. seqLenM(〈a0, . . . , an−1〉) = n
4. seqGetOutsideM ∈ DSeq arbitrary.

As an example of item 1 we present

seq_def{iv}(−15,−10, 20 + iv)D = 〈5, 6, 7, 8, 9〉.

Because there is no restriction on the interpretation of the constant
seqGetOutside this definition defines not just one model but a whole class of
them.

Note, in clause 1 that the meaning of seq_def{iv}(t1, t2, e) is not determined
by the structure M alone, the variable assignment β needs to be taken into
account.

Lemma 13. For every structureM in MSeq we have

M |= φ

for all axioms of seqCore (see Figure A.1).

Proofs M |= φ for the first two axioms 1 and 2 are obvious properties of finite
sequences. It uses the technical lemma that t{(le + i)/u})M,βi evaluates to the
same value as tM,β′i with
β′(v) =

{
β(v) if v is different from u
(le+ i)M,βi if v ≡ u

Axioms 3 and 4 follow directly from the definitions of seq_def in (1) and
seqGetany in (2) of Definition 20. ut

Definition 21 (seqCoreDepth). The theory seqCoreDepth is the extension of
seqCore by adding a now function symbol

Int seqDepth(Any)

and the axioms

5. ∀x(¬instanceSeq(x)→ seqDepth(x)
.
= 0)

6. ∀s(seqDepth(s)
.
= max{seqDepth(s[i]) | 0 ≤ i < seqLen(s)}+ 1)

Here x is a variable of type Any and s a variable of type Seq.

First we need to convince ourselves that the extended theory seqCoreDepth is
consistent. To this end we extend definition 13.

Definition 22 (MSeqD). The set MSeqD consists exactly of those structures
MD that arise fromM in MSeq by defining the new function symbol seqDepth
by

seqDepthMD (a) = the unique n with a ∈ Dn
Seq

for all a in the universe ofM.

Lemma 14. The theory seqCoreDepth is consistent.

32

Proof For every structure N in MSeqD it is easily checked that N |= φ for the
two axioms (5) and (6) from Definition 21. ut

Lemma 15 (Relative Completeness). Assume that D only consists of the
type Int with its usual functions and predicates and there is a theory Tint such
that for any model D of Tint we have D0

Seq = Z.
The theory Tint∪ seqCoreDepth is complete with respect to MSeqD.
In detail this means:
Let φ be a formula in the signature of seqCoreDepth such that M |= φ for all
M in MSeqD then

Tint ∪ seqCoreDepth ` φ

Proof The proof proceeds by contradiction. We assume N |= φ for all N in
MSeqD, but Tint ∪ seqCoreD 6` φ. Thus there is a structure N0 with N0 |=
Tint∪ seqCoreD but N0 |= ¬φ. We define a mapping F : N0 → Dseq ∪ Z,
i.e., from the universe N0 of N0 into the common universe of all structures in
MSeqD. F (a) is defined by induction on seqDepth(a). By assumption {a ∈
N | seqDepthN0(a) = 0} = IntN0 = Z and we let F be the identity on these
elements. For a with seqDepthN0(a) = n+ 1 we define inductively

F (a) = 〈F (a[0]), . . . , F (a[k − 1])〉

with k = seqLenN0(a), a[i] again shorthand for any :: seqGetN0(a, i). Since N0

satisfies axiom 6 from Definition 21 we know seqDepthN0(a[i]) ≤ n.
From axiom (2) in Definition A.1 we get immediately that F thus defined is

an injective function. We want to argue that F is also surjective. We will exhibit
for every a ∈ Dn

Seq, by induction on n, a term t such that F (tN0) = a. For n = 0,
we know that a has to be an integer and F (a) = a. We did not specifically fix
the signature of TInt, but we may fairly assume that there is a term tn with
F (tN0

n) = n, e.g. tn = 1 + . . .+ 1︸ ︷︷ ︸
n times

, t0 = 0 or tn = −1− . . .− 1︸ ︷︷ ︸
n times

. In the inductive

step of the argument we assume that the claim is true for all a ∈ Dn
Seq and fix

s = 〈s0, . . . sk−1〉 ∈ Dn+1
Seq . Since si ∈ Dn

Seq for all 0 ≤ i < k there are terms ti
with F (tN0

i) = si. Now, F ((seq_def{u}(0, k, t))N0) = s with

t = if u = 0 then t0 else
(if u = 1 then t1 else
. . .
(if u = k − 1 then tk−1) . . .)

Since N0 satisfies axiom 3 from Definition A.1 we have N0 |= t[i] = ti and thus
by induction hypothesis and definition of F

F (tN0) = 〈F (tN0
0), . . . F (tN0

k−1)〉 = 〈s0, . . . sk−1〉 = s

In total he have verified

F : N →M is a bijection (6)

We define a structureM with universe D0
Seq ∪DSeq by isomorphic transfer

via F , i.e.,

seq_def{u}(i, j, e)M,F (β) = F (seq_def{u}(i, j, e)N0,β)
seqGetM(F (s), i) = F (seqGetN0(s, i))
seqGetOutsideM = F (seqGetOutsideN0)
seqLenM(F (s)) = F (seqLenN0(s))
seqDepthM(F (a)) = F (seqDepthN0(a))

33

By construction F is an isomorphims from N0 ontoM. Thus N0 |= ¬φ implies
M |= ¬φ.

The proof plan is to show that M is in MSeqD. This will contradict the
assumption that φ be true in all structures in MSeqD.

We will make use of the following two fundamental properties of F , in fact
of any isomorphism

For all terms e and variable assignments β
F (eN0,β) = eM,F (β) (7)

For any formula φ and variable assignments β
(N0, β) |= φ⇔ (M, F (β)) |= φ

(8)

Here F (β) stands for the variable assignment defined by F (β)(x) = F (β(x)). As
an instance of (7) think of the term e = seqLen(x) that leads to the equality
F (seqLenN0(s)) = seqLenM(F (s)).

Both (7) and (8) are routinely proved by induction on the complexity of e
and φ.

To showM∈MSeqD we have to check Definitions 20 and 22 item by item.

1.

seq_def{u}(i, j, e)M,F (β) = F (seq_def{u}(i, j, e)N0,β) iso transfer
= 〈a0, . . . ak−1〉 def F
ar=F (seq_def{u}(i, j, e)N0,β [r])
ar = F (eN0,βr) axiom 3,

in Fig. A.1
case j > i

ar = eM,F (β)r eqn (7)

ar = F (seqGetOutsideN0) axiom 3,
in Fig. A.1
case j ≤ i

ar = seqGetOutsideM iso transfer

2.

seqGetMany(〈a0, . . . an−1〉, i) = F (seqGetN0
any(s, i)) iso transfer

with F (s) = 〈a0, . . . an−1〉
seqLenN0 = n and 0 ≤ r
ar = F (seqGetN0

any(s, r)) r < n

For 0 ≤ i < n this gives the desired result seqGetMany(〈a0, . . . an−1〉, i) = ai.
For i < 0 or n ≤ i we argue that ∀s∀i((i < 0 ∨ seqLen(s) ≤ i) → s[i] =
seqGetOutside) is a logical consequence of seqCore and thus true in N0. In
this case we get the following chain of reasoning

seqGetMany(〈a0, . . . an−1〉, i) = F (seqGetN0
any(s, i)) iso transfer

= F (seqGetOutsideN0)
= seqGetOutsideM iso transfer

3.
seqLenM(〈a0, . . . an−1〉) = seqLenN0(s) iso transfer

with F (s) = 〈a0, . . . an−1〉

Now, we get from the definition of F and F (s) = 〈a0, . . . an−1〉 immediately
seqLenN0(s) = n.

34

4. Nothing to show here.
5. By isomorphic transfer we defined seqDepthM(F (a)) = seqDepthN0(a). By

definition of F we know F (a) ∈ D
seqDepthN0 (a)
Seq . Thus, the restriction on

seqDepthM in Definition 22 is satisfied.
ut

We did not add the depth function and the accompanying axioms from Definition
21 to the core theory, since we anticipated that it will rarely be used in program
verification. If that proves wrong we at least know what to do.

A.3 First Extension by Definition

The following functions will be indroduced by defining axioms.

alpha alpha::seqGet(Seq, int) Seq seqEmpty
Seq seqSingleton(any) Seq seqConcat(Seq, Seq)
Seq seqSub(Seq, int, int) Seq seqReverse(Seq)
int seqIndexOf(Seq, any)

The defining axioms are shown in Figure 8 in mathematical notation. The cor-
responding taclets may be found on lines 98 – 190 in the listing in Subsection
A.7.

1. ∀s∀i(alpha :: seqGet(s, i)
.
= (alpha)any :: seqGet(s, i))

or in shorthand
∀s∀i(alpha :: seqGet(s, i)

.
= (alpha)s[i])

2. seqEmpty .
= seq_def{u}(0, 0, 1)

3. ∀x(seqSingleton(x) .= seq_def{u}(0, 1, x)
4. ∀s1, s2(seqConcat(s1, s2)

.
= seq_def{u}(0, seqLen(s1) + seqLen(s2),

if u < seqLen(s1)
then s1[u] else s2[u− seqLen(s1)]))

5. ∀s∀re, le(seqSub(s, le, ri) .= seq_def{u}(le, ri, s[u]))
6. ∀s(seqReverse(s) .= seq_def{u}(0, seqLen(s), s[seqLen(s)− u]))
7. ∀s∀a∀j(

(0 ≤ j ∧ j < seqLen(s) ∧ s[j] .= a ∧ ∀k(0 ≤ k ∧ k < j → s[k] 6= a))
→ seqIndexOf(s, a)

.
= j)

Variables s, s1, s2 are of type Seq, variable x of type Any and i, ri, le are of type Int.

Figure 8. First Set of Extentions by Definition

The family of function symbols alpha alpha::seqGet(Seq, int) defined in
axiom 1 is nessecary since the type system of the first-order language of the KeY
system has deliberately been kept simple. In particular there are no parametrized
types. All we know is that the entries s[i] of every sequence s are of type Any.
If we know for sure that the entries in s are more specific, e.g., we know they
are all integers, we can use the cast function, (int)s[i] = (int)any :: seqGet(s, i).
For ease of use function symbols alpha alpha::seqGet(Seq, int) were added
for every type alpha.

Sometimes it is useful to have a function seqIndexOf that is inverse to
sequence access. More precisely, we want seqIndexOf(s, a) to be the least index
i with s[i] = a if it exists and undefined otherwise. Definition 7 definies the
partial function seqIndexOf .

Let us call the new theory seqCore1. At this point it is important to know,
whether seqCore1 is still consistent. An inconsistent theory is for our purposes

35

totally useless. We will show a bit more: the new theory is even a conservative
extenstion of seqCore. We need some terminology first.

Definition 23 (Conservative Extension). Let Σ0 ⊆ Σ1 be signatures, and
Ti set of sentences in FmlΣi

.
T1 is called a conservative extension of T0 if for all sentences φ ∈ FmlΣ0

:

T0 ` φ⇔ T1 ` φ

Note, if T0 is consistent and T1 is a conservative extension of T0 then T1 is
also consistent.

Conservative extension is a well-known property in mathematical logic, see
e.g., [15, pp. 208 – 210], [19, Section 4.1], [8, Kapitel VIII §1]

Definition 24 (Semantic Conservative Extension). Let Σ0 ⊆ Σ1 be sig-
natures, and Ti sets of sentences in FmlΣi

.
T1 is called a semantic conservative extension of T0 if

1. for all Σ1-structuresM1 withM1 |= T1 the restrictionM0 ofM1 to Σ0 is
a model of T0, in symbols

M1 |= T1 ⇒ (M1 � Σ0) |= T0

2. for every Σ0-structure M0 with M0 |= T0 there is a Σ1-expansion M1 of
M0 withM1 |= T1.

Note, in case T0 ⊆ T1 is true, which is the most typical case, but not required in
Definitions 23 and 24, then item 1 of the preceeding definition is automatically
true.

Lemma 16. Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi .
If T1 is a semantic conservative extension of T0
then T1 is also a conservative extension of T0

Proof Let φ be a sentence in FmlΣ0 with T0 ` φ. LetM1 be an arbitrary Σ1-
structure. By assumption (M1 � Σ0) |= T0. Thus we also have (M1 � Σ0) |= φ.
By the coincidence lemma we also haveM1 |= φ. In total we have shown T1 ` φ.
Now, assume T1 ` φ. If M0 is an arbitrary Σ0-structure there is by the as-
sumption an expansion ofM0 to a Σ1-structureM1. From T1 ` φ we thus get
M1 |= φ. The coincidence lemma tells us again that also M0 |= φ. In total we
arrive at To ` φ. ut

Lemma 17 (Extension by Definition). Let Σ0 ⊆ Σ1 be signatures, T0 ⊆
T1 sets of sentences in FmlΣ0

respectively in FmlΣ1
. Further assume that all

sentences in T1 \ T0 are of the form

∀x̄(f(x̄)
.
= t) f ∈ Σ1 ⊆ Σ0 t a term in Σ0

∀x̄(p(x̄)↔ φ(x̄) p ∈ Σ1 ⊆ Σ0 φ a formula in Σ0

Then T1 is a semantic conservative extension of T0.

Proof If M0 is a Σ0-model of T0 we obtain an Σ1-expansion M1 by simply
setting

fM1(ā) = tM0(ā)

and
pM1(ā)⇔M0 |= φ[ā]

ut
In the situation of Lemma 17 T1 is called an extension by definitions of T0.

We tacitly assume – of course – that T1 contains only one definition for each
new function or relation symbol.

36

Lemma 18 (Unique Conditional Extension by Definition). Let Σ0 ⊆ Σ1

be signatures, T0 ⊆ T1 sets of sentences in FmlΣ0 respectively in FmlΣ1 . Further
assume that all sentences in T1 \ T0 are of the form

∀x̄∀y(ψ → f(x̄)
.
= y) f ∈ Σ1 ⊆ Σ0

ψ a formla in Σ0

such that
T0 ` ∀x̄∀y, y′(ψ ∧ ψ{y′/y} → y

.
= y′)

Then T1 is a semantic conservative extension of T0.

Proof We obtain a Σ1 extensionM1 of a Σ0 modelM0 of T0 by defining

fM1(ā) =

{
b ifM0 |= ψ[ā, b]
arbitrary otherwise

Since for any ā there can be at most one b satisfying M0 |= ψ[ā, b] this is a
sound definition. ut

Lemma 19. seqCore1 is a conservative extension of seqCore, and thus in par-
ticular consistent.

Proof Inspection of the axioms shows that they are all of the syntactic form
required by Lemma 17, except for the definition of seqIndexOf which follows
that pattern offered in Lemma 18. The formula to be proved in seqCore is in
this case

∀s∀a∀j, j′(
(0 ≤ j ∧ j < seqLen(s) ∧ s[j] .= a ∧ ∀k(0 ≤ k ∧ k < j → s[k] 6= a))∧
(0 ≤ j′ ∧ j′ < seqLen(s) ∧ s[j′] .= a ∧ ∀k(0 ≤ k ∧ k < j′ → s[k] 6= a))
→ j′

.
= j)

This can easily seen to be true. ut
A further criterion for conservative extensions will be needed and presented

in Subsection A.5

Digression

In some cases the reverse implication of Lemma 16 is also true. We proceed
towards this result by some preleminary observations.

Definition 25 (Expansion). Let Σ0 ⊆ Σ1 be signatures, a Σ1-structureM1 =
(M1, I1) is called an expansion of a Σ0-structure M0 = (M0, I0) if M0 = M1

and for all f, p ∈ Σ0 I1(f) = I0(f) and I1(p) = I0(p).

Lemma 20 (Coincidence Lemma). Let Σ0 ⊆ Σ1 be signatures, and φ ∈
FmlΣ0

. Furthermore let M0 be a Σ0-structure and M1 an Σ1-expansion of
M0. Then

M0 |= φ ⇔ M1 |= φ

Proof Obvious. ut
This lemma says that the truth or falisity of a sentence φ in a given structure

only depends on the symbols actually occuring in φ. It is hard to imagine a logic
where this would not hold true. There are in fact, rare cases, e.g., a typed first-
order logic with a type hierachy containing subtypes and abstract types, where
the coincidence lemma does not apply.

37

Definition 26 (Substructure). Let M = (M, I) and M0 = (M0, I0) be Σ-
structures.
M0 is called a substructure ofM iff

1. Mo ⊆M
2. for every n-ary function symbol f ∈ Σ and any n of elements a1, . . . , an ∈

M0

I(f)(a1, . . . , an) = I0(f)(a1, . . . , an)

3. for every n-ary relation symbol p ∈ Σ and any n of elements a1, . . . , an ∈M0

(a1, . . . , an) ∈ I(p) = (a1, . . . , an) ∈ I0(p)

Lemma 21. Let M0 be a substructure of M and φ logically equivalent to a
universal sentence. Then

M |= φ⇒M0 |= φ

Proof Easy induction on the complexity of φ. ut

Definition 27. LetM be a Σ-structure.
The signature ΣM is obtained from Σ by adding new constant symbols ca for
every element a ∈M .

The expansion of M to a ΣM -structure M∗ = (M, I∗) is effected by the
obvious I∗(ca) = a.

Definition 28 (Diagram of a structure). Let M be a Σ-structure. The di-
agram ofM, in symbols Diag(M), is defined by

Diag(M) = {φ ∈ FmlΣM
| M∗ |= φ and φ is quantierfree}

Lemma 22. LetM be a Σ-structure.
If N |= Diag(M) thenM is (isomorphic to) a substructure of N .

Proof Easy. ut

Lemma 23. Let Σ0 ⊆ Σ1 be signatures, and Ti sets of sentences in FmlΣi
and

assume that

1. T1 contains only universal sentences and
2. Σ1 \Σ0 contains only relation symbols.

If T1 is a conservative extension of T0
then T1 is also a semantic conservative extension of T0

Proof We need to show the two clauses in Definition 24.
(1): LetM1 be a Σ1-structure withM1 |= T1 andM0 its restriction to Σ0,
i.e., M0 = M1 � Σ0. For all φ ∈ T0 obviously T0 ` φ. Thus also T1 ` φ and
thereforeM1 |= φ. By the coincidence lemma this givesM0 |= φ. Thus, we get
M0 |= T0 as desired.
(2): Here we look at a Σ0-structureM0 withM0 |= T0. We set out to find an
expansion M1 of M0 with M1 |= T1. To this end we consider the theory T1 ∪
Diag(M0). If this theory were inconistent than already T1∪F for a finite subset
F ⊆ Diag(M0) would be inconsistent. This is the same as saying T1 ` ¬F . Since
the constants ca do not occur in T1 we get furthermore T1 ` ∀x1, . . . , xn¬F ′,
where F ′ is obtained from F be replacing all occurences of constants ca by
the same variable xi. This is equivalent to T1 ` ¬∃x1, . . . , xnF ′. Since T1 was
assume to be a conservative extension of T0 we also get T0 ` ¬∃x1, . . . , xnF ′ and

38

thus M0 |= ¬∃x1, . . . , xnF ′. This is a contradiction since by the definition of
Diag(M0) we haveM0 |= ∃x1, . . . , xnF ′ by instantiating the quantified variable
xi that replaces the constant ca by the element a. This contradiction shows that
T1∪Diag(M0) is consistent. Let N be a model of this theory. By Lemma 22 we
may assume that M0 is a substructure of (N � Σ0). Since by assumption only
new relation symbols are added when passing from Σ0 to Σ1 also (N � Σ1) is a
substructure of N . By Lemma 21 we get (N � Σ1) |= T1. Obviously, (N � Σ1) is
an expansion of (N � Σ0) =M0 and we are finished. ut

A.4 Derived Theorem

The KeY system offers boot-strapping verification of the correctness of taclets. On
selecting in the main menue file -> prove -> KeY’s taclets the user may
select a taclet, he wants to verify in an interaction window showing all loaded
taclets. Taclets are loaded from diferent files. A proof obligation is generated that
shows the correctness of the selected taclet on the basis of all taclets contained
in different files and all taclets occuring in the same file but textually before the
selected taclet. The order of taclets in the file Seq.key has been carefully chosen
such that all taclets shown on lines 198 – 758 in Section A.7 can be proved.

We point out that

∀s∀i(seqIndexOf(int :: seqGet(s, i)) = i)

is not derivable from seqCore, but

∀s∀i (seqNPerm(s) ∧ 0 ≤ i ∧ i < seqLen(s)
→ seqIndexOf(int :: seqGet(s, i)) = i)

is.

A.5 A Second Set of Extensions by Definition

The following predicates and functions will be indroduced by defining axioms.

seqNPerm(Seq) seqPerm(Seq,Seq)
Seq seqSwap(Seq,int,int) Seq seqRemove(Seq,int)
seqNPermInv(Seq)

Let seqCore2 be the theory obtained form seqCore1 by adding the axioms
from Figure 9. The corresponding taclets are to be found in Section A.7 on lines
776 to 893. Again we are concerned with proving the consistency of seqCore2.
We will eventually show that seqCore2 is a conservative extension of seqCore1
and thus also of seqCore. That addition of the axioms 1 to 4 in the list of
Figure 9 lead to conservative extensions directly follows from Lemma 17, these
are direct definitions. But, axioms 5 and6 confront us with another situation.
IT will turn out that the extension by these two axioms can be reduced to
a Skolem extension. For the reader’s convenience we repeat here the classical
Skolem extension lemma.

Lemma 24. Let T0 be a Σ0-theory, Σ1 = Σ0 ∪ {f} where f is a new n-place
function symbol and let T1 be obtained from T0 by adding an axiom of the fol-
lowing form

∀x̄(∃y(φ)→ φ{f(x̄)/y})
then T1 is a conservative extension of T0.
Here x̄ is a tupel of variables of the same length n as the argument tupel of f
and, as before φ{f(x̄)/y} denotes the formula arising from φ by replacing all free
occurrences of y by f(x̄).

39

1. ∀s(seqNPerm(s) ↔ ∀ i(0 ≤ i < seqLen(s)→
∃j(0 ≤ j < seqLen(s) ∧ s[j] .= i)))

2. ∀s1, s2(seqPerm(s1, s2) ↔ seqLen(s1)
.
= seqLen(s2) ∧

∃s(seqNPerm(s)∧
∀i(0 ≤ i < seqLen(s1)→ s1[i]

.
= s2[s[i]])))

3. ∀s∀i, j(seqSwap(s, i, j) .
= seq_def{u}(0, seqLen(s),

if ¬(0 ≤ i ∧ 0 ≤ j ∧ i < seqLen(s) ∧ j < seqLen(s))
then s[u]
else if u

.
= i

then s[j]
else if u

.
= j

then s[i]
else s[u]

))

4. ∀s(∀i(seqRemove(s, i) .
= if (i < 0 ∨ seqLen(s) ≤ i)

then s
else seq_def{u}(0, seqLen(s), if u < i

then s[u]
else s[u+ 1]))

5. ∀s(seqLen(seqNPermInv(s)) .= seqLen(s))
6. ∀s∀i∀j(

(0 ≤ i ∧ i < seqLen(s) ∧ s[j] .= i ∧ 0 ≤ j ∧ j < seqLen(s) ∧ seqNPerm(s))
→ seqNPermInv(s)[i]

.
= j)

Variables s, s1, s2 are of type Seq, i, j are of type Int.

Figure 9. Second Set of Extentions by Definition

Proof We show that T1 is a semantic conservative extension of T0. LetM0 be a
model of T0. The structureM1 coincides withM0 for all Σ0-sybols. We define
an interpretation of the symbol f as follows

fM1(ā) =

 b ifM0 |= ∃y(φ)[ā]
then pick b withM0 |= φ[ā, b]

arbitrary otherwise

Technical note, we use M0 |= φ[ā, b] as a shorthand for (M0, β) |= φ with the
variable assignment defined by β(xi) = ai for 0 ≤ i < n and β(y) = b.

Obviously,M1 |= ∀x̄(∃y(φ)→ φ[f(x̄)/y]) ut

Lemma 25. seqCore2 is a conservative extension of seqCore, and thus in par-
ticular consistent.

Proof The theory T0 that is obtain by adding axioms 1 to 4 from the list of Figure
9 to seqCore1 is, as observed above, a conservative extension of seqCore. Let
T1 be the theory obtained from T0 by adding the following formula

∀s∃t(φ)→ φ{seqNPermInv(s)/t}
with
φ = seqLen(t)

.
= seqLen(s)∧

∀i, j((seqNPerm(s) ∧ s[j] .= i∧
0 ≤ i < seqLen(s) ∧ 0 ≤ j < seqLen(s))
→ t[i]

.
= j)

By Lemma 25 T1 is a conservative extension of T0.
We can easily prove T0 ` ∀s∃t(φ). Thus we know T1 ` ∀sφ{seqNPermInv(s)/t},

40

i.e.

∀s(seqLen(seqNPermInv(s))
.
= seqLen(s)) and

∀s∀i, j
((seqNPerm(s) ∧ s[j] .= i ∧ 0 ≤ i < seqLen(s) ∧ 0 ≤ j < seqLen(s))
→ seqNPermInv(s)[i]

.
= j)

Since T1 is a conservative extension of seqCore, its subtheory seqCore2 also is.
We can infact show that T1 is equivalent to seqCore2. ut

A.6 Derived Theorem

See the first paragraph of Section A.4 for general comments.
All taclets in Section A.7 lines 902 to 1121 have been proved using the KeY

system. All proofs have been saved and can be replayed.

A.7 Taclets

1 \sorts {
2 Seq;
3 }
4

5 \predicates {
6 seqPerm(Seq ,Seq);
7 seqNPerm(Seq);
8 }
9

10 \functions {
11 // getters
12 alpha alpha :: seqGet(Seq , int);
13 int seqLen(Seq);
14 int seqIndexOf(Seq , any);
15 any seqGetOutside;
16

17 // constructors
18 Seq seqEmpty;
19 Seq seqSingleton(any);
20 Seq seqConcat(Seq , Seq);
21 Seq seqSub(Seq , int , int);
22 Seq seqReverse(Seq);
23 Seq seqDef{false ,false ,true}(int , int , any);
24

25 Seq seqSwap(Seq ,int ,int);
26 Seq seqRemove(Seq ,int);
27 Seq seqNPermInv(Seq);
28

29

30 // placeholder for values in enhanced for loop
31 Seq values;
32 }
33

34

35 \rules {
36

37 // --
38 // Core axioms
39 // --

41

40

41 lenNonNegative {
42 \schemaVar \term Seq seq;
43

44 \find(seqLen(seq)) \sameUpdateLevel
45

46 \add(0 <= seqLen(seq) ==>)
47

48 \heuristics(inReachableStateImplication)
49 };
50

51 equalityToSeqGetAndSeqLen {
52 \schemaVar \term Seq s, s2;
53 \schemaVar \variables int iv;
54

55 \find(s = s2)
56 \varcond (\ notFreeIn(iv, s, s2))
57

58 \replacewith(seqLen(s) = seqLen(s2)
59 & \forall iv; (0 <= iv & iv < seqLen(s)
60 -> any:: seqGet(s, iv) = any:: seqGet(s2, iv)))
61 };
62

63 getOfSeqDef {
64 \schemaVar \term int idx , from , to;
65 \schemaVar \term any t;
66 \schemaVar \variables int uSub , uSub1 , uSub2;
67

68 \find(alpha:: seqGet(seqDef{uSub ;}(from ,to,t),idx))
69 \varcond (\notFreeIn(uSub , from),
70 \notFreeIn(uSub , to))
71 \replacewith (\if(0 <= idx & idx < (to - from))
72 \then({\subst uSub; (idx + from)}t)
73 \else(seqGetOutside))
74

75 \heuristics(simplify)
76 };
77

78 lenOfSeqDef {
79 \schemaVar \term int from , to;
80 \schemaVar \term any t;
81 \schemaVar \variables int uSub , uSub1 , uSub2;
82

83

84 \find(seqLen(seqDef{uSub;} (from , to, t)))
85

86 \replacewith (\if(from <to)\then((to-from))\ else (0))
87

88 \heuristics(simplify_enlarging)
89 };
90

91

92 // --
93 //
94 // Extensions by Definitions
95 //
96 // --
97

98 castedGetAny {

42

99 \schemaVar \term Seq seq;
100 \schemaVar \term int idx;
101

102 \find((beta)any:: seqGet(seq , idx))
103

104 \replacewith(beta:: seqGet(seq , idx))
105

106 \heuristics(simplify)
107 };
108

109 seqGetAlphaCast {
110 \schemaVar \term Seq seq;
111 \schemaVar \term int at;
112

113 \find(alpha :: seqGet(seq ,at))
114 \add((alpha)any:: seqGet(seq ,at)=alpha :: seqGet(seq ,at) ==>)
115 };
116

117 defOfEmpty {
118 \schemaVar \term any te;
119 \schemaVar \variables int uSub;
120

121 \find(seqEmpty)
122

123 \varcond (\notFreeIn(uSub , te))
124 \replacewith(seqDef{uSub ;}(0, 0, te))
125 };
126

127 defOfSeqSingleton {
128 \schemaVar \term any x;
129 \schemaVar \variables int uSub;
130

131 \find(seqSingleton(x))
132

133 \varcond (\notFreeIn(uSub , x))
134 \replacewith(seqDef{uSub ;}(0,1,x))
135

136 };
137

138

139 defOfSeqConcat {
140 \schemaVar \term Seq seq1 , seq2;
141 \schemaVar \variables int uSub;
142

143 \find(seqConcat(seq1 , seq2))
144 \varcond (\ notFreeIn(uSub , seq1),
145 \notFreeIn(uSub , seq2))
146 \replacewith(seqDef{uSub ;}(0, seqLen(seq1)+ seqLen(seq2),
147 \if (uSub < seqLen(seq1))
148 \then (any:: seqGet(seq1 ,uSub))
149 \else (any:: seqGet(seq2 , uSub - seqLen(seq1)))))
150

151 };
152

153 defOfSeqSub {
154 \schemaVar \term Seq seq;
155 \schemaVar \term int from , to;
156 \schemaVar \variables int uSub;
157

43

158 \find(seqSub(seq , from , to))
159 \varcond (\ notFreeIn(uSub , seq),
160 \notFreeIn(uSub , from), \notFreeIn(uSub , to))
161 \replacewith(seqDef{uSub ;}(from ,to,any:: seqGet(seq ,uSub)))
162 };
163

164 defOfSeqReverse {
165 \schemaVar \term Seq seq;
166 \schemaVar \variables int uSub;
167

168 \find(seqReverse(seq))
169 \varcond (\ notFreeIn(uSub , seq))
170 \replacewith(seqDef{uSub ;}(0, seqLen(seq),
171 any:: seqGet(seq ,seqLen(seq)-uSub -1)))
172 };
173

174

175 seqIndexOf {
176 \schemaVar \term Seq s;
177 \schemaVar \term any t;
178 \schemaVar \skolemTerm int jsk;
179 \schemaVar \variables int n, m;
180

181 \find(seqIndexOf(s,t))
182 \varcond (\new(jsk , \dependingOn(t)),
183 \notFreeIn(n, s), \notFreeIn(n, t),
184 \notFreeIn(m, s), \notFreeIn(m, t))
185 \replacewith(jsk)
186 \add(0 <= jsk & jsk < seqLen(s) & any:: seqGet(s,jsk)=t &
187 \forall m;((0<=m&m<jsk) -> any:: seqGet(s,m)!=t)== >);
188 \add(==> \exists n;(0 <= n & n < seqLen(s)
189 & any:: seqGet(s,n) = t))
190 };
191

192 // --
193 //
194 // Derived taclets
195 //
196 // --
197

198 seqSelfDefinition {
199 \schemaVar \term Seq seq;
200 \schemaVar \variables Seq s;
201 \schemaVar \variables int u;
202 \find(seq)
203 \add(\ forall s;(
204 s = seqDef{u;}(0, seqLen(s),any:: seqGet(s,u))) ==>)
205 };
206

207 seqOutsideValue {
208 \schemaVar \variables Seq s;
209 \schemaVar \variables int iv;
210 \find(seqGetOutside)
211 \add(\forall s;(\ forall iv;((iv < 0 | seqLen(s)<= iv)
212 -> any:: seqGet(s,iv) = seqGetOutside)) ==>)
213

214 };
215

216

44

217

218 getOfSeqSingleton {
219 \schemaVar \term any x;
220 \schemaVar \term int idx;
221

222 \find(any:: seqGet(seqSingleton(x), idx))
223

224 \replacewith (\if(idx = 0)
225 \then(x)
226 \else(seqGetOutside))
227

228 \heuristics(simplify)
229 };
230

231 getOfSeqConcat {
232 \schemaVar \term Seq seq , seq2;
233 \schemaVar \term int idx;
234

235 \find(any:: seqGet(seqConcat(seq , seq2), idx))
236 \replacewith (\if(idx < seqLen(seq))
237 \then(any:: seqGet(seq , idx))
238 \else(any:: seqGet(seq2 ,idx -seqLen(seq))))
239

240 \heuristics(simplify_enlarging)
241 };
242

243 etOfSeqSub {
244 \schemaVar \term Seq seq;
245 \schemaVar \term int idx , from , to;
246

247 \find(any:: seqGet(seqSub(seq , from , to), idx))
248

249 \replacewith (\if(0 <= idx & idx < (to - from))
250 \then(any:: seqGet(seq , idx + from))
251 \else(seqGetOutside))
252

253 \heuristics(simplify)
254 };
255

256 getOfSeqReverse {
257 \schemaVar \term Seq seq;
258 \schemaVar \term int idx;
259

260 \find(any:: seqGet(seqReverse(seq), idx))
261

262 \replacewith(any:: seqGet(seq , seqLen(seq) - 1 - idx))
263

264 \heuristics(simplify_enlarging)
265 };
266

267 lenOfSeqEmpty {
268 \find(seqLen(seqEmpty))
269

270 \replacewith (0)
271

272 \heuristics(concrete)
273 };
274

275

45

276 lenOfSeqSingleton {
277 \schemaVar \term alpha x;
278

279 \find(seqLen(seqSingleton(x)))
280

281 \replacewith (1)
282

283 \heuristics(concrete)
284 };
285

286

287 lenOfSeqConcat {
288 \schemaVar \term Seq seq , seq2;
289

290 \find(seqLen(seqConcat(seq , seq2)))
291

292 \replacewith(seqLen(seq) + seqLen(seq2))
293

294 \heuristics(simplify)
295 };
296

297 lenOfSeqSub {
298 \schemaVar \term Seq seq;
299 \schemaVar \term int from , to;
300

301 \find(seqLen(seqSub(seq , from , to)))
302

303 \replacewith (\if(from < to)\then(to - from)\else (0))
304

305 \heuristics(simplify_enlarging)
306 };
307

308

309 lenOfSeqReverse {
310 \schemaVar \term Seq seq;
311

312 \find(seqLen(seqReverse(seq)))
313

314 \replacewith(seqLen(seq))
315

316 \heuristics(simplify)
317 };
318

319 equalityToSeqGetAndSeqLenLeft {
320 \schemaVar \term Seq s, s2;
321 \schemaVar \variables int iv;
322

323 \find(s = s2 ==>)
324 \varcond (\ notFreeIn(iv , s, s2))
325

326 \add(seqLen(s) = seqLen(s2)
327 & \forall iv; (0 <= iv & iv < seqLen(s)
328 -> any:: seqGet(s, iv) = any:: seqGet(s2, iv)) ==>)
329

330 \heuristics(inReachableStateImplication)
331 };
332

333

334 equalityToSeqGetAndSeqLenRight {

46

335 \schemaVar \term Seq s, s2;
336 \schemaVar \variables int iv;
337

338 \find(==> s = s2)
339 \varcond (\ notFreeIn(iv, s, s2))
340

341 \replacewith (==> seqLen(s) = seqLen(s2)
342 & \forall iv; (0 <= iv & iv < seqLen(s)
343 -> any:: seqGet(s, iv) = any:: seqGet(s2, iv)))
344

345 \heuristics(simplify_enlarging)
346 };
347

348 getOfSeqSingletonEQ {
349 \schemaVar \term any x;
350 \schemaVar \term int idx;
351 \schemaVar \term Seq EQ;
352

353 \assumes(seqSingleton(x) = EQ ==>)
354 \find(any:: seqGet(EQ, idx))
355 \sameUpdateLevel
356

357 \replacewith (\if(idx = 0)
358 \then(x)
359 \else(seqGetOutside))
360

361 \heuristics(simplify)
362 };
363

364 getOfSeqConcatEQ {
365 \schemaVar \term Seq seq , seq2;
366 \schemaVar \term int idx;
367 \schemaVar \term Seq EQ;
368

369 \assumes(seqConcat(seq , seq2) = EQ ==>)
370 \find(any:: seqGet(EQ, idx))
371 \sameUpdateLevel
372 \replacewith (\if(idx < seqLen(seq))
373 \then(any:: seqGet(seq , idx))
374 \else(any:: seqGet(seq2 ,idx -seqLen(seq))))
375

376 \heuristics(simplify_enlarging)
377 };
378

379 getOfSeqSubEQ {
380 \schemaVar \term Seq seq;
381 \schemaVar \term int idx , from , to;
382 \schemaVar \term Seq EQ;
383

384 \assumes(seqSub(seq , from , to) = EQ ==>)
385 \find(any:: seqGet(EQ, idx))
386 \sameUpdateLevel
387

388 \replacewith (\if(0 <= idx & idx < (to - from))
389 \then(any:: seqGet(seq , idx + from))
390 \else(seqGetOutside))
391

392 \heuristics(simplify)
393 };

47

394

395 getOfSeqReverseEQ {
396 \schemaVar \term Seq seq;
397 \schemaVar \term int idx;
398 \schemaVar \term Seq EQ;
399

400 \assumes(seqReverse(seq) = EQ ==>)
401 \find(any:: seqGet(EQ, idx))
402 \sameUpdateLevel
403

404 \replacewith(any:: seqGet(seq , seqLen(seq) - 1 - idx))
405

406 \heuristics(simplify_enlarging)
407 };
408

409 lenOfSeqEmptyEQ {
410 \schemaVar \term alpha x;
411 \schemaVar \term Seq EQ;
412

413 \assumes(seqEmpty = EQ ==>)
414 \find(seqLen(EQ))
415 \sameUpdateLevel
416 \replacewith (0)
417

418 \heuristics(concrete)
419 };
420

421

422 lenOfSeqSingletonEQ {
423 \schemaVar \term alpha x;
424 \schemaVar \term Seq EQ;
425

426 \assumes(seqSingleton(x) = EQ ==>)
427 \find(seqLen(EQ))
428 \sameUpdateLevel
429 \replacewith (1)
430

431 \heuristics(concrete)
432 };
433

434

435 lenOfSeqConcatEQ {
436 \schemaVar \term Seq seq , seq2;
437 \schemaVar \term Seq EQ;
438

439 \assumes(seqConcat(seq , seq2) = EQ ==>)
440 \find(seqLen(EQ))
441 \sameUpdateLevel
442

443 \replacewith(seqLen(seq) + seqLen(seq2))
444

445 \heuristics(simplify)
446 };
447

448 lenOfSeqSubEQ {
449 \schemaVar \term Seq seq;
450 \schemaVar \term int from , to;
451 \schemaVar \term Seq EQ;
452

48

453 \assumes(seqSub(seq , from , to) = EQ ==>)
454 \find(seqLen(EQ))
455 \sameUpdateLevel
456

457 \replacewith (\if(from < to)\then(to - from)\else (0))
458

459 \heuristics(simplify_enlarging)
460 };
461

462 lenOfSeqReverseEQ {
463 \schemaVar \term Seq seq;
464 \schemaVar \term Seq EQ;
465

466 \assumes(seqReverse(seq) = EQ ==>)
467 \find(seqLen(EQ))
468 \sameUpdateLevel
469

470 \replacewith(seqLen(seq))
471

472 \heuristics(simplify)
473 };
474

475 getOfSeqDefEQ {
476 \schemaVar \term int idx , from , to;
477 \schemaVar \term Seq EQ;
478 \schemaVar \term any t;
479 \schemaVar \variables int uSub , uSub1 , uSub2;
480

481

482 \assumes(seqDef{uSub;} (from , to, t) = EQ ==>)
483 \find(any:: seqGet(EQ, idx))
484 \varcond (\notFreeIn(uSub , from),
485 \notFreeIn(uSub , to))
486 \replacewith (\if(0 <= idx & idx < (to - from))
487 \then ({\ subst uSub; (idx + from)}t)
488 \else (seqGetOutside))
489

490 \heuristics(simplify)
491 };
492

493 lenOfSeqDefEQ {
494 \schemaVar \term int from , to;
495 \schemaVar \term Seq EQ;
496 \schemaVar \term any t;
497 \schemaVar \variables int uSub , uSub1 , uSub2;
498

499 \assumes(seqDef{uSub;} (from , to, t) = EQ ==>)
500 \find(seqLen(EQ))
501 \replacewith (\if(from <=to)\then((to-from))\ else (0))
502

503 \heuristics(simplify_enlarging)
504 };
505

506 seqConcatWithSeqEmpty1 {
507 \schemaVar \term Seq seq;
508

509 \find(seqConcat(seq , seqEmpty))
510

511 \replacewith(seq)

49

512

513 \heuristics(concrete)
514 };
515

516

517 seqConcatWithSeqEmpty2 {
518 \schemaVar \term Seq seq;
519

520 \find(seqConcat(seqEmpty , seq))
521

522 \replacewith(seq)
523

524 \heuristics(concrete)
525 };
526

527 seqReverseOfSeqEmpty {
528 \find(seqReverse(seqEmpty))
529

530 \replacewith(seqEmpty)
531

532 \heuristics(concrete)
533 };
534

535 subSeqComplete {
536 \schemaVar \term Seq seq;
537

538 \find(seqSub(seq , 0, seqLen(seq)))
539

540 \replacewith(seq)
541

542 \heuristics(concrete)
543 };
544

545 subSeqTail {
546 \schemaVar \term Seq seq;
547 \schemaVar \term any x;
548

549 \find(seqSub(seqConcat(seqSingleton(x),seq),
550 1,seqLen(seq)+1))
551 \replacewith(seq)
552

553 \heuristics(concrete)
554 };
555

556 subSeqTailEQ {
557 \schemaVar \term Seq seq;
558 \schemaVar \term any x;
559 \schemaVar \term int EQ;
560

561 \assumes(seqLen(seq) = EQ ==>)
562 \find(seqSub(seqConcat(seqSingleton(x),seq),1,EQ+1))
563 \sameUpdateLevel
564 \replacewith(seq)
565

566 \heuristics(concrete)
567 };
568

569 seqDef_split {
570 \schemaVar \term int idx , from , to;

50

571 \schemaVar \term any t;
572 \schemaVar \variables int uSub , uSub1 , uSub2;
573

574 \find(seqDef{uSub;} (from , to, t))
575 \varcond (\notFreeIn(uSub1 , from),
576 \notFreeIn(uSub1 , idx),
577 \notFreeIn(uSub1 , to),
578 \notFreeIn(uSub , from),
579 \notFreeIn(uSub , idx),
580 \notFreeIn(uSub , to),
581 \notFreeIn(uSub1 , t))
582 \replacewith (\if(from <=idx & idx < to)
583 \then(seqConcat(
584 seqDef{uSub ;}(from , idx , t),
585 seqDef{uSub1 ;}(idx ,to ,{\ subst uSub;uSub1}t)))
586 \else(seqDef{uSub ;}(from , to , t)))
587 };
588

589 seqDef_induction_upper {
590 \schemaVar \term int idx , from , to;
591 \schemaVar \term any t;
592 \schemaVar \variables int uSub , uSub1 , uSub2;
593

594 \find(seqDef{uSub;} (from , to, t))
595 \varcond (\notFreeIn(uSub , from),
596 \notFreeIn(uSub , to))
597 \replacewith(seqConcat(
598 seqDef{uSub;} (from , to -1, t),
599 \if(from <to)
600 \then(seqSingleton ({\ subst uSub; (to -1)}t))
601 \else(seqEmpty)))
602 };
603

604 seqDef_induction_upper_concrete {
605 \schemaVar \term int idx , from , to;
606 \schemaVar \term any t;
607 \schemaVar \variables int uSub , uSub1 , uSub2;
608

609 \find(seqDef{uSub;} (from , 1+to, t))
610 \varcond (\notFreeIn(uSub , from),
611 \notFreeIn(uSub , to))
612 \replacewith(seqConcat(
613 seqDef{uSub;} (from , to, t),
614 \if(from <=to)
615 \then(seqSingleton ({\ subst uSub; (to)}t))
616 \else(seqEmpty)))
617 \heuristics(simplify)
618 };
619

620 seqDef_induction_lower {
621 \schemaVar \term int idx , from , to;
622 \schemaVar \term any t;
623 \schemaVar \variables int uSub , uSub1 , uSub2;
624

625 \find(seqDef{uSub;} (from , to, t))
626 \varcond (\notFreeIn(uSub , from),
627 \notFreeIn(uSub , to))
628 \replacewith(seqConcat(
629 \if(from <to)

51

630 \then(seqSingleton ({\ subst uSub; (from)}t))
631 \else(seqEmpty),
632 seqDef{uSub;} (from+1, to, t)))
633 };
634

635 seqDef_induction_lower_concrete {
636 \schemaVar \term int idx , from , to;
637 \schemaVar \term any t;
638 \schemaVar \variables int uSub , uSub1 , uSub2;
639

640 \find(seqDef{uSub;} (-1+from , to, t))
641 \varcond (\notFreeIn(uSub , from),
642 \notFreeIn(uSub , to))
643 \replacewith(seqConcat(
644 \if(-1+from <to)
645 \then(seqSingleton ({\ subst uSub; (-1+from)}t))
646 \else(seqEmpty),
647 seqDef{uSub;} (from , to, t)))
648 \heuristics(simplify)
649 };
650

651 seqDef_split_in_three {
652 \schemaVar \term int idx , from , to;
653 \schemaVar \term any t;
654 \schemaVar \variables int uSub , uSub1 , uSub2;
655

656 \find(seqDef{uSub;} (from , to, t)) \sameUpdateLevel
657 \varcond (\ notFreeIn(uSub , idx),
658 \notFreeIn(uSub1 , t),
659 \notFreeIn(uSub1 , idx),
660 \notFreeIn(uSub , from),
661 \notFreeIn(uSub1 , to))
662 "Precondition": \add(==> (from <=idx & idx <to));
663 "Splitted␣SeqDef": \replacewith(
664 seqConcat(seqDef{uSub;} (from , idx , t),
665 seqConcat(seqSingleton ({\ subst uSub; idx}t),
666 seqDef{uSub1 ;}(idx+1,to ,{\ subst uSub;uSub1}t))))
667 };
668

669 seqDef_empty {
670 \schemaVar \term int idx , from , to;
671 \schemaVar \term any t;
672 \schemaVar \variables int uSub , uSub1 , uSub2;
673

674 \find(seqDef{uSub;} (from , idx , t))\ sameUpdateLevel
675 \varcond (\ notFreeIn(uSub , from),
676 \notFreeIn(uSub , idx))
677 "Precondition": \add(==> idx <=from);
678 "Empty␣SeqDef": \replacewith(seqEmpty)
679 };
680

681 seqDef_one_summand {
682 \schemaVar \term int idx , from , to;
683 \schemaVar \term any t;
684 \schemaVar \variables int uSub , uSub1 , uSub2;
685

686 \find(seqDef{uSub;} (from , idx , t))\ sameUpdateLevel
687 \varcond (\ notFreeIn(uSub , from),
688 \notFreeIn(uSub , idx))

52

689 \replacewith (\if(from +1=idx)
690 \then(seqSingleton ({\ subst uSub; from}t))
691 \else(seqDef{uSub;} (from , idx , t)))
692 };
693

694 seqDef_lower_equals_upper {
695 \schemaVar \term int idx , from , to;
696 \schemaVar \term any t;
697 \schemaVar \variables int uSub , uSub1 , uSub2;
698

699 \find(seqDef{uSub;} (idx , idx , t))\ sameUpdateLevel
700 \varcond (\ notFreeIn(uSub , idx))
701 \replacewith(seqEmpty)
702 \heuristics(simplify)
703 };
704

705 indexOfSeqSingleton {
706 \schemaVar \term any x;
707 \find(seqIndexOf(seqSingleton(x),x))
708 \sameUpdateLevel
709 \replacewith (0)
710 \heuristics(concrete)
711 };
712

713 indexOfSeqConcatFirst {
714 \schemaVar \term Seq s1 , s2;
715 \schemaVar \term any x;
716 \schemaVar \variables int idx;
717 \find(seqIndexOf(seqConcat(s1 ,s2),x))
718 \sameUpdateLevel
719 \varcond (\ notFreeIn(idx ,s1 ,s2 ,x))
720 \replacewith(seqIndexOf(s1 ,x));
721 \add(==> \exists idx; (0 <= idx & idx < seqLen(s1) &
722 any:: seqGet(s1,idx) = x))
723 };
724

725 indexOfSeqConcatSecond {
726 \schemaVar \term Seq s1 , s2;
727 \schemaVar \term any x;
728 \schemaVar \variables int idx;
729 \find(seqIndexOf(seqConcat(s1 ,s2),x))
730 \sameUpdateLevel
731 \varcond (\ notFreeIn(idx ,s1 ,s2 ,x))
732 \replacewith(add(seqIndexOf(s2 ,x),seqLen(s1))) ;
733 \add(==> (
734 !\ exists idx;
735 (0<=idx & idx <seqLen(s1) & any:: seqGet(s1,idx)=x)
736 & \exists idx;
737 (0<=idx & idx <seqLen(s2) & any:: seqGet(s2,idx)=x)))
738 };
739

740 indexOfSeqSub {
741 \schemaVar \term Seq s;
742 \schemaVar \term int from , to, n;
743 \schemaVar \term any x;
744 \schemaVar \variables int nx;
745

746 \find(seqIndexOf(seqSub(s,from ,to),x))
747 \sameUpdateLevel

53

748 \varcond (\ notFreeIn(nx , s), \notFreeIn(nx, x),
749 \notFreeIn(nx, from),\ notFreeIn(nx, to))
750 \replacewith(sub(seqIndexOf(s,x),from));
751 \add(==>
752 from <= seqIndexOf(s,x) & seqIndexOf(s,x)<to & <=from &
753 \exists nx;((0<=nx&nx <seqLen(s) & any:: seqGet(s,nx)=x)))
754 };
755

756 // --
757 //
758 // Extensions by Definitions
759 //
760 // These taclets extend the signature of corePIX by
761 // the relation symbols
762 // seqPerm(Seq ,Seq), seqNPerm(Seq)
763 // and the function symbols
764 // Seq seqSwap(Seq ,int ,int)
765 // Seq seqRemove(Seq ,int)
766 // by direct definitions.
767 //
768 // --
769

770 seqNPermDefLeft{
771 \schemaVar \term Seq s1;
772 \schemaVar \variables int iv,jv;
773

774 \find(seqNPerm(s1) ==>)
775 \varcond (\ notFreeIn (iv ,s1), \notFreeIn (jv,s1))
776

777 \add(
778 (\ forall iv;(0 <= iv & iv <seqLen(s1) ->
779 \exists jv;(0<=jv & jv <seqLen(s1) &
780 int:: seqGet(s1,jv) = iv))) ==>)
781 };
782

783 seqNPermDefReplace{
784 \schemaVar \term Seq s1;
785 \schemaVar \variables int iv,jv;
786

787 \find(seqNPerm(s1))
788 \varcond (\ notFreeIn (iv ,s1), \notFreeIn (jv,s1))
789

790 \replacewith(
791 (\ forall iv;(0 <= iv & iv <seqLen(s1) ->
792 \exists jv;(0<=jv & jv<seqLen(s1)
793 & int:: seqGet(s1,jv)=iv))))
794 };
795

796 seqPermDefLeft{
797 \schemaVar \term Seq s1 , s2, s3;
798 \schemaVar \variables int iv;
799 \schemaVar \variables Seq s;
800

801 \find(seqPerm(s1,s2) ==>)
802 \varcond (\ notFreeIn (iv ,s1,s2),
803 \notFreeIn (s,s1,s2))
804 \add(seqLen(s1) = seqLen(s2) &
805 (\ exists s; (seqLen(s) = seqLen(s1) & seqNPerm(s) &
806 (\ forall iv; (0 <= iv & iv < seqLen(s) ->

54

807 any:: seqGet(s1,iv)=any:: seqGet(s2,int:: seqGet(s,iv))))))
808 ==>)
809 };
810

811 seqPermDef{
812 \schemaVar \term Seq s1 , s2, s3;
813 \schemaVar \variables int iv;
814 \schemaVar \variables Seq s;
815

816 \find(seqPerm(s1,s2))
817 \varcond (\ notFreeIn (iv ,s1,s2),
818 \notFreeIn (s,s1,s2))
819 \replacewith(seqLen(s1) = seqLen(s2) &
820 (\ exists s; (seqLen(s) = seqLen(s1) & seqNPerm(s) &
821 (\ forall iv; (0 <= iv & iv < seqLen(s) ->
822 any:: seqGet(s1,iv)=any:: seqGet(s2,int:: seqGet(s,iv))))))
823 };
824

825 defOfSeqSwap {
826 \schemaVar \term Seq s;
827 \schemaVar \term int iv ,jv;
828 \schemaVar \variables int uSub;
829

830 \find(seqSwap(s,iv,jv))
831 \varcond (\notFreeIn(uSub , s),
832 \notFreeIn(uSub , iv),
833 \notFreeIn(uSub , jv))
834 \replacewith(seqDef{uSub ;}(0, seqLen(s),
835 \if (!(0<=iv & 0<=jv & iv<seqLen(s) & jv<seqLen(s)))
836 \then (any:: seqGet(s,uSub))
837 \else (\if(uSub = iv)
838 \then(any:: seqGet(s,jv))
839 \else(\if(uSub = jv)
840 \then(any:: seqGet(s,iv))
841 \else(any:: seqGet(s,uSub))))))
842

843 };
844

845 defOfSeqRemove {
846 \schemaVar \term Seq s;
847 \schemaVar \term int iv;
848 \schemaVar \variables int uSub;
849

850 \find(seqRemove(s,iv))
851 \varcond (\notFreeIn(uSub , s),
852 \notFreeIn(uSub , iv))
853

854 \replacewith(
855 \if (iv < 0 | seqLen(s) <= iv)
856 \then (s)
857 \else (seqDef{uSub ;}(0, seqLen(s)-1,
858 \if (uSub < iv)
859 \then (any:: seqGet(s,uSub))
860 \else (any:: seqGet(s,uSub +1)))))
861 };
862

863 lenOfNPermInv {
864 \schemaVar \term Seq s1;
865 \find(seqLen(seqNPermInv(s1)))

55

866 \replacewith(seqLen(s1))
867

868 \heuristics(simplify)
869 };
870

871 getOfNPermInv {
872 \schemaVar \term Seq s1;
873 \schemaVar \term int i3;
874 \schemaVar \skolemTerm int jsk;
875

876 \find(int:: seqGet(seqNPermInv(s1), i3))
877 \varcond (\new(jsk , \dependingOn(i3)))
878 \replacewith(jsk)
879 \add (int:: seqGet(s1 ,jsk)=i3 & 0<=jsk&jsk <seqLen(s1)==>);
880 \add (==> 0<= i3 & i3 < seqLen(s1))
881

882 \heuristics(simplify)
883 };
884

885 // --
886 //
887 // Second set of derived taclets
888 //
889 // --
890

891 lenOfSwap {
892 \schemaVar \term Seq s1;
893 \schemaVar \term int iv1 , iv2;
894 \find(seqLen(seqSwap(s1 , iv1 , iv2)))
895 \replacewith(seqLen(s1))
896

897 \heuristics(simplify)
898 };
899

900 getOfSwap {
901 \schemaVar \term Object o;
902 \schemaVar \term Seq s1;
903 \schemaVar \term int iv , jv, idx;
904 \schemaVar \term Heap h;
905

906 \find(any:: seqGet(seqSwap(s1 ,iv,jv), idx))
907 \replacewith(
908 \if (!(0 <=iv & 0<=jv & iv<seqLen(s1) & jv<seqLen(s1)))
909 \then (any:: seqGet(s1 ,idx))
910 \else (\if(idx = iv)
911 \then(any:: seqGet(s1,jv))
912 \else(\if(idx = jv)
913 \then(any:: seqGet(s1,iv))
914 \else(any:: seqGet(s1,idx)))))
915

916 \heuristics(simplify)
917 };
918

919 lenOfRemove {
920 \schemaVar \term Seq s1;
921 \schemaVar \term int iv1;
922

923 \find(seqLen(seqRemove(s1 ,iv1)))
924 \replacewith(

56

925 \if (0<= iv1 & iv1 < seqLen(s1))
926 \then (seqLen(s1)-1)
927 \else (seqLen(s1)))
928

929 \heuristics(simplify)
930 };
931

932 getOfRemoveAny {
933 \schemaVar \term Seq s1;
934 \schemaVar \term int i3 ,i2;
935

936 \find(any:: seqGet(seqRemove(s1 ,i2), i3))
937 \replacewith (\if (i2 < 0 | seqLen(s1) <= i2)
938 \then(any:: seqGet(s1,i3))
939 \else(\if(i3 < i2)
940 \then (any:: seqGet(s1 ,i3))
941 \else(\if (i2 <=i3 & i3 <seqLen(s1)-1)
942 \then (any:: seqGet(s1 ,i3+1))
943 \else (seqGetOutside))))
944

945 \heuristics(simplify)
946 };
947

948 getOfRemoveInt {
949 \schemaVar \term Seq s1;
950 \schemaVar \term int i3 ,i2;
951

952 \find(int:: seqGet(seqRemove(s1,i2), i3))
953 \replacewith (\if (i2 < 0 | seqLen(s1) <= i2)
954 \then(int:: seqGet(s1,i3))
955 \else(\if(i3 < i2)
956 \then(int:: seqGet(s1,i3))
957 \else(\if(i2 <=i3 & i3 <seqLen(s1)-1)
958 \then(int:: seqGet(s1,i3+1))
959 \else((int)seqGetOutside))))
960

961 \heuristics(simplify)
962 };
963

964 lenOfRemoveConcrete1 {
965 \schemaVar \term Seq s1;
966

967 \assumes(seqLen(s1)>= 1 ==>)
968 \find(seqLen(seqRemove(s1 ,seqLen(s1)-1)))
969 \replacewith(seqLen(s1)-1)
970

971 \heuristics(simplify)
972 };
973

974 lenOfRemoveConcrete2 {
975 \schemaVar \term Seq s1;
976

977 \assumes(seqLen(s1)>= 1 ==>)
978 \find(seqLen(seqRemove(s1 ,0)))
979 \replacewith(seqLen(s1)-1)
980

981 \heuristics(simplify)
982 };
983

57

984 getOfRemoveAnyConcrete1 {
985 \schemaVar \term Seq s1;
986 \schemaVar \term int i3 ,i2;
987 \assumes(seqLen(s1)>= 1 ==>)
988 \find(any:: seqGet(seqRemove(s1 ,seqLen(s1)-1), i3))
989 \replacewith (\if (i3 < seqLen(s1)-1)
990 \then (any:: seqGet(s1 ,i3))
991 \else (seqGetOutside))
992

993 \heuristics(simplify)
994 };
995 getOfRemoveAnyConcrete2 {
996 \schemaVar \term Seq s1;
997 \schemaVar \term int i3 ,i2;
998 \assumes(seqLen(s1) >= 1 ==>)
999 \find(any:: seqGet(seqRemove(s1 ,0), i3))

1000 \replacewith (\if (0 <= i3 & i3 < seqLen(s1)-1)
1001 \then (any:: seqGet(s1 ,i3+1))
1002 \else (seqGetOutside))
1003

1004 \heuristics(simplify)
1005 };
1006

1007 seqNPermRange {
1008 \schemaVar \term Seq s;
1009 \schemaVar \variables int iv;
1010

1011 \find(seqNPerm(s) ==>)
1012 \varcond(\notFreeIn (iv ,s))
1013 \add(\ forall iv;((0 <= iv & iv < seqLen(s)) ->
1014 (0<=int:: seqGet(s,iv)&int:: seqGet(s,iv)<seqLen(s)))== >)
1015 };
1016

1017 seqNPermInjective {
1018 \schemaVar \term Seq s;
1019 \schemaVar \variables int iv,jv;
1020

1021 \find(seqNPerm(s) ==>)
1022 \varcond(\notFreeIn (iv ,s), \notFreeIn (jv,s))
1023 \add(\ forall iv;(\ forall jv;(
1024 (0 <= iv & iv < seqLen(s) & 0 <= jv & jv < seqLen(s)
1025 & int:: seqGet(s,iv) = int:: seqGet(s,jv))
1026 -> iv = jv)) ==>)
1027 };
1028

1029 seqPermTrans{
1030 \schemaVar \term Seq s1 , s2, s3;
1031

1032 \assumes(seqPerm(s2 ,s3) ==>)
1033 \find(seqPerm(s1,s2) ==>)
1034 \add(seqPerm(s1,s3) ==>)
1035 };
1036

1037 seqPermRefl{
1038 \schemaVar \term Seq s1;
1039 \add(seqPerm(s1,s1) ==>)
1040 };
1041

1042 seqNPermSwapNPerm {

58

1043 \schemaVar \term Seq s1;
1044 \schemaVar \variables int iv,jv;
1045

1046 \find(seqNPerm(s1) ==>)
1047 \varcond(\notFreeIn(iv , s1), \notFreeIn(jv , s1))
1048

1049 \add(\ forall iv;(\ forall jv;(
1050 (0<=iv & 0<=jv & iv<seqLen(s1) & jv<seqLen(s1))
1051 -> seqNPerm(seqSwap(s1,iv,jv)))) ==>)
1052 };
1053

1054 seqNPermComp {
1055 \schemaVar \term Seq s1 ,s2;
1056 \schemaVar \variables int u;
1057

1058 \assumes(seqNPerm(s2) & seqLen(s1) = seqLen(s2) ==>)
1059 \find(seqNPerm(s1) ==>)
1060 \varcond(\notFreeIn(u, s1), \notFreeIn(u, s2))
1061 \add(seqNPerm(seqDef{u;}(0, seqLen(s1),
1062 int:: seqGet(s1,int:: seqGet(s2,u)))) ==>)
1063 };
1064

1065 seqGetSInvS {
1066 \schemaVar \term Seq s;
1067 \schemaVar \term int t;
1068

1069 \find(int:: seqGet(s,int:: seqGet(seqNPermInv(s),t)))
1070 \replacewith (t);
1071 \add(==> seqNPerm(s) & 0 <= t & t < seqLen(s))
1072

1073 \heuristics(simplify)
1074 };
1075

1076 seqNPermInvNPermLeft{
1077 \schemaVar \term Seq s1;
1078

1079 \find(seqNPerm(s1) ==>)
1080 \add(seqNPerm(seqNPermInv(s1)) ==>)
1081 };
1082

1083 seqPermSym{
1084 \schemaVar \term Seq s1 ,s2;
1085

1086 \find(seqPerm(s1,s2) ==>)
1087 \add(seqPerm(s2,s1) ==>)
1088 };
1089

1090 seqNPermInvNPermReplace{
1091 \schemaVar \term Seq s1;
1092

1093 \find(seqNPerm(seqNPermInv(s1)))
1094 \replacewith(seqNPerm(s1))
1095 };
1096

1097 seqnormalizeDef{
1098 \schemaVar \term Seq s1;
1099 \schemaVar \term int le ,ri;
1100 \schemaVar \term any t;
1101 \schemaVar \variables int u;

59

1102

1103 \find(seqDef{u;}(le,ri,t))
1104 \varcond(\notFreeIn(u, le), \notFreeIn(u, ri))
1105 \replacewith(
1106 \if(le < ri)
1107 \then (seqDef{u;}(0,(ri -le),({\ subst u; (u + le)}t)))
1108 \else (seqEmpty))
1109 };
1110 }

60

B Appendix: Observations using Reference Sets

comment PHS: I have finally put this approach in the appendix.
I think definition 30 below is flawed, see Example 9

In the verification of functional properties or separation properties of pro-
grams location sets play a dominant role. So it is tempting to formulate infor-
mation flow properties also in termini of location sets. This is the topic of this
section.

In addition to the type LocSet , see Figures 1 and 2 we need another type refSet .
An expression of type refSet is a pair consisting of a set of program variables
and static fields besides and a location set expression:

Definition 29 (Reference set expression). If v1, . . . , vk (k ≥ 0) are local
variables and static fields, and L is an expression of type LocSet , then R =
({v1, . . . , vk}, L) is an expression of type refSet .

For a state s, the semantics of R is defined by Rs = ({v1, . . . , vk}, Ls). To
simplify notation, we write v ∈ R if v ∈ {v1, . . . , vk} and (o, f) ∈ Rs if (o, f) ∈
Ls. Moreover, we write just V instead of (V, ∅) and L instead of (∅, L).

The set of objects referenced by R is defined by

objs(R) ={vis | type(vi) ⊆ Object, 1 ≤ i ≤ k} ∪
{o | (o, f) ∈ Rs} ∪ {fs(o) | (o, f) ∈ Rs, type(f) ⊆ Object}

Note that objs(V, e.f) contains both the object es and the object (e.f)s.

Definition 30. Let R = Rv1,...,vk(L) be an expression of type refSet . We say
that two states s, s′ agree on R, abbreviated by agreers(R, s, s′)
iff
there is a partial isomorphism π with respect to R from s to s′,
that is π is a bijective mapping from objs(R) onto objs

′
(R) satisfying:

1. π is type preserving,
i.e. o ∈ TD ⇔ π(o) ∈ TD for all o ∈ objs(R) and all types T .
For objects o ∈ objs(R) of array type o.lengths = π0(o).lengths

′
is required

in addition.
2. s(v) = s′(v) for all v ∈ V with type(vi) = Boolean or type(vi) = Int;
3. π(s(v)) = s′(v) for all v ∈ V with type(vi) v Object;
4. fs(o) = fs

′
(π(o)) for all (o, f) ∈ Ls where the type(f) 6v Object;

5. π(fs(o)) = fs
′
(π(o))) for all (o, f) ∈ Ls with type(f) v Object;

6. {(π(o), f) | (o, f) ∈ Ls} = Ls
′
.

Using the intuitive notation π(Ls) = {(π(o), f) | (o, f) ∈ Ls} we may also
write this requirement as π(Ls) = Ls

′
.

Example 9.
class C {
static C x, y;
public v;
static boolean h;

static void m(){
x = new C(); y = new C(); x.v = 0, y.v = 0;
if (h) { x.v = 1; y.v = 0 ;}

}
Let R = Rε({x.v, y.v}). Intuitively, method m() leaks information about h. The
attacker can observe whether the values of x.v and y.v coincide or not. But,
according to Definition 30 we would have agree(R, s, s′) for the end states s, s′

61

reached by m() regardless of the value of h in the prestates. If in one prestate h =
false and in the other h = true, then we are allowed to chose an isomorphism
π such that the conditions of Definition 30 are satisfied. This is actually possible
by chosing π(xs) = ys

′
and π(ys) = xs

′
. Note, that with R∗ = Rx,y({x.v, y.v})

there is no problem.

The definition of type LocSet is very liberal. We did not exclude (o, f) ∈ Ls with
o = null or createds(o) = ff . For this reason we need to include the following
two clauses in this definition.

7. If null ∈ objs(R) then π(null) = null
8. For all o ∈ objs(R): createds(o) = tt ⇔ createds

′
(π(o)) = tt .

We will sometimes also use the phrase “partial R-isomorphism” in place of
“partial isomorphism with respect to R”. Notice, that we have used the short-
hand notation for semantics as explained in the paragraph above Example 1
on page 8. Unfolding the shorthand, e.g., item 4 reads selectDC (heaps, o, fD) =

selectDC (heaps
′
, π(o), fD)

We use the notation agreers(R, s, s′, π) to state that s, s′ agree on R via the
partial isomorphism π.

We could have used overloading in the designation of agree since the type of the
first argument determines whether Definition 13 or Definition 30 applies. For
ease of reading we chose to make the difference explicit, agree vs agreers.

For later reference we we write down the requirements from Definition 30 for
the special case π = id.

Lemma 26. Let R = Rv1,...,vk(L) be an expression of type refSet .
Then agreers(R, s, s′, id) is true iff

1. s(v) = s′(v) for all v ∈ V
2. fs(o) = fs

′
(o) for all (o, f) ∈ Ls

3. Ls = Ls
′
.

Note, that objs(R) = objs
′
(R) is also a consequence of agreers(R, s, s′, id).

Proof. Easy inspection. ut

The following criterion will be essential in the following.

Lemma 27. Let R = Rv0,...,vk−1
(L) be a reference set expression, s, s′ be states,

and S, S′ be sequences and n ∈ N such that

1. For all i, 0 ≤ i < k: S[i] = vsi = vs
′

i = S′[i].
2. For all j with k ≤ 2j < n− 1: S[2j] ∈ Object and S′[2j] ∈ Object and there

is a field f such that S[2j + 1] = fs(S[2j]) and S′[2j + 1] = fs
′
(S′[2j]).

3. for all objects o and all fields f
(o, f) ∈ Ls ⇔ S[2j] = o ∧ S[2j + 1] = fs(o) for some j with k ≤ 2j < n− 1.

4. for all objects o and all fields f
(o, f) ∈ Ls′ ⇔ S′[2j] = o∧S′[2j+1] = fs

′
(o) for some j with k ≤ 2j < n−1.

5. For all integers i with k ≤ i < n and type(S[i]) = type(S′[i]) and if S[i] 6∈
Object then S[i] = S′[i].

6. For all integers i, j with k ≤ i < j < n and S[i] ∈ Object and S[j] ∈ Object:
S[i]

.
= S[j]⇔ S′[i]

.
= S′[j].

7. For all integers i with 0 ≤ i < n S[i] = null⇔ S′[i] = null
8. For all integers i with 0 ≤ i < n createds(S[i]) = createds

′
(S′[i])

Then agree(R, s, s′).

62

Proof. We need to exhibit a bijection π from objs(R) onto objs
′
(R) such that

agree(R, s, s′, π).
In keeping with Definition 16 we use the notation obj(S) = {S[i] | S[i] ∈

Object, 0 ≤ i < n}
We first observe that

objs(R) = obj(S) (9)

and

objs
′
(R) = obj(S′) (10)

If o ∈ objs(R) then we distinguish three possibilities:

o = vsi for some 0 ≤ i < k
By assumption 1 we have o = S[i] and thus o ∈ obj(S).

(o, f) ∈ Ls for some f
By assumption 3 there is i with S[2i] = o and thus o ∈ obj(S).

o = fs(o′) for some (o′, f) ∈ Ls
Again by assumption 3 there is i with S[2i] = o′ and S[2i+1] = fs(o′). Thus
again o ∈ obj(S).

This establishes objs(R) ⊆ obj(S). If o ∈ obj(S) then there is by definition an
index i such that o = S[i]. If 0 ≤ i < k then S[i] = vsi and thus o ∈ objs(R). If
k ≤ i < n then there is j such that i = 2j or i = 2j + 1. By assumption 2 there
is a field f such that S[2j + 1] = fs(S[2j]) and S[2j] ∈ Object. By assumption
3 this implies (S[2j], f) ∈ Ls and thus o ∈ objs(R) in any case.
This complete the proof of 9. Claim 10 is proved along the same lines using
assumptions 1, 2, 4.

The mapping π is defined for o = S[i] ∈ obj(S) by π(o) = S′[i]. Item 6
guarantees that π is well defined and bijective.

It is easily checked that the requirement of Definition 30 are satisfied. We
present here the arguments for items 5 and 6.

For item 5 consider (o, f) ∈ Ls with type(f) v Object. By assumption 3 of
the present lemma there is an index i, with S[2i] = o and S[2i + 1] = fs(o).
Thus by definition of π and assumption 2 we have π(fs(o)) = π(S[2i + 1]) =
S′[2i+ 1] = fs

′
(S′[2i]) = fs

′
(π(S[2i]) = fs

′
(π(o).

For item 6 we argue as follows.
{(π(o), f) | (o, f) ∈ Ls})

= {(π(o), f) | o = S[2i], fs(o) = S[2i+ 1] for some i, k ≤ i < n})
by assumption 3

= {(o′, f) | o′ = S′[2i], fs
′
(o) = S′[2i+ 1] for some i, k ≤ i < n})

by definition of π
= Ls

′

by assumption 4
ut

The following converse of Lemma 27 is also true.

Lemma 28. Let R = Rv0,...,vk−1
(L) be a reference set expression, s, s′ be states,

and π a partial isomorphism from objs(R) onto objs
′
(R) such that agree(R, s, s′, π)

then there are sequences S, S′ and n ∈ N such that item 1 to 8 of Lemma 27
are satisfied.

Proof. Let Ls = {(oj , fj) | 0 ≤ j < m}. We set n = k + 2m define the sequence
S by S[i] = vsi for 0 ≤ i < k and S[k + 2j] = oj , S[k + 2j + 1] = fs(oj) for

63

0 ≤ j < m. The sequence S′ is defined by S′[i] = S[i] if type(S[i]) 6v Object and
S′[i] = π(S[i]) otherwise.

It is easily checked that the properties of the partial isomorphism π from
Definition 30 imply items 1 to 8 of Lemma 27, as desired. ut

The next definition is the variation of Definition 14 now using reference set ex-
pressions in place of observation expressions. When using observation expressions
the isomorphisms π1, π2 are uniquely determined, if they exists. When using ref-
erence set expressions this is not the case. This explains the quantifications for
any partial isomorphisms π1 there is a partial isomorphism π2 in the following
definition.

Definition 31 (Information flow using reference sets).
Let α be a program and R1 = Rv11 ,...,v1k(L1) , R2 = Rv21 ,...,v2k(L2) expressions of
type refSet

Program α allows information to flow only from R1 to R2 when started in s1,
denoted by flowrs(s1, α,R1, R2)

iff
for all states s′1, s2, s′2 such that

α started in s1 terminates in s2 and
α started in s′1 terminates in s′2,
we have

for any partial isomorphism π1 with agreers(R1, s1, s
′
1, π

1)
there is a partial isomorphism π2 with agreers(R2, s2, s

′
2, π

2)
and π2 extends π1

where π2 is said to extend π1 if
π2(o) = π1(o) for all o ∈ objs1(R1) ∩ objs2(R2) with createds1(o) = tt .

We extend JavaDL by a new three-place modal operator flowrs(·, ·, ·)) that
expects a program as its first and reference set expressions as its second and third
arguments. Its semantics is defined, for all states s, by

s |= flowrs(α,R1, R2) iff flowrs(s, α,R1, R2) holds .

Let us look at a few simple examples of expressions of type refSet .

Example 10.
In the following expressions v is a local variable, e1, e2 are expresions of type
C1, C2, f, f1, f2 are fields defined in the class of this, C1 and C2 respectively.
Furthermore, a is an expression of array type, and i1 < i2 are integers.
R1
ex = ({v}, singleton(this, f))

R2
ex = ({}, singleton(e1, f1) ∪ singleton(e2, f2)

R3
ex = ({}, arrayRange(a, i1, i2))

Related observation expressions could be: (To reduce the length of expres-
sions we will write sC for seqConcat and sqt for seqSingleton)
R1
ex = sC(sC(sqt(v), sqt(this)), sqt(this.f))

or short 〈v, this, this.f〉
R2
ex = sC(sC(sC(sqst(e1), sqst(e1.f1)), sqt(e2)), sqt(e2.f2))

or 〈e1, e1.f1, e2, e2.f2〉
R3
ex = seq_def{iv}(i1, i2, a[iv])

or 〈a[i1], . . . a[i2 − 1]〉
We observe that agreers(R1

ex, s1, s
′
1) iff agree(R1−ex, s1, s

′
1). For the other two

example expressions this is not the case.

64

Theorem 2. Let α be a program, and R1 = Rv11 ,...,v1k1
(L1), R2 = Rv21 ,...,v2k2

(L2)

arbitrary reference set expressions.
There is a formula φrsα,R1,R2

in JavaDL making use of self-composition such
that:

s1 |= φrsα,R1,R2
⇔ flowrs(s1, α,R1, R2).

Proof. The proof greatly parallels the proof of Theorems 1 and 3. Nevertheless,
we will repeat here the whole argument. Thus, this proof is selfcontained, the
reader is not required to have read the proof of Theorem 1 or 3 before.

The proof consists of a constructive definition of the formula φrsα,R1,R2
.

We will explain the construction of φrsα,R1,R2
top down. The property to be

formalized requires quantification over states. According to Definition 5 a state
s is determined by the value of the heap hs in s and the values of the (finitely
many) program variables as in s. We can directly quantify over heaps h and
refer to the value of a field f of type C for object o referenced by expression e as
selectC(h, e, f). We cannot directly quantify over program variables, as opposed
to quantifying over the values of program variables, which is perfectly possible.
Thus we use quantifiers ∀x, ∃x over the type domain of the variable and assign x
to a via an update a := x. There are four states involved, the two pre-states s1,
s′1 and the post-states s2, s′2. Correspondingly, there will be, for every program
variable v, four universally quantifier variables v, v′, v2, (v2)′ of appropriate
type representing the values of v in states s1, s′1, s2, s′2. There are some program
variables that make only sense in pre-states, e.g., this, and variables that make
only sense in post-state, e.g., result. There will be only two logical variables
that supply values to them instead of four.

The main challenge in the definition of φrsα,R1,R2
is that we need to express

the existence of a partial isomorphims. On the face of it this is a second order
property. One could hope that the higher order aspects of dynamic logic could
be harnessed for this purpose. After a short period of preliminary exploration
we decided not to persue this avenue since the outcome would be - we feared -
rather circuitous and cumbersome to deal with. So, we are left with the resources
of typed first-order logic. The existence of a bijective mapping between two se-
quences of objects, where the i-th element of the source sequence is mapped to
the i-th element of the target sequence can easily be formulated: the sequences
should be of equal length and if the objects at two positions in the source se-
quence coincide the objects at the corresponding positions in the target sequence
also coincide. It remains to code the objects in objs(R) by appropriate sequences.
Groundwork for this has already be laid by Lemmas 27 and 28. This idea can be
made to work since JavaDL provides the data type Seq. In particular, quantifi-
cation over sequences is possible. This motivates for the moment the occurence
of the variables S, S′, S2, and S′2 of type sequence in the formula to follow.

This leads to the following schematic form of φrsα,R1,R2
:

φrsα,R1,R2
≡ ∀Heap h′1, h2, h′2∀To′∀Trr, r′∀ . . . v′, v2, (v2)′ . . .

∀Seq S, S′∀Int n∃Seq S2, S
′
2∃Int n2(. . . (

(Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
→ (Agreepost ∧ Ext) . . .)

To maintain readability we have used suggestive abbreviations:

1. {in s′1}〈α〉 signals that an update {heap := h′1 || this := o′ || . . . ai := v′ . . .}
is placed before the modal operator. The ai cover all relevant parameters and
local variables.

2. The construct save{s2} abbreviates a conjunction of equations h2 = heap,
r = result, . . . , v2 = ai,

65

3. Analogously, save{s′2} stands for the primed version h′2 = heap, r′ = result,
. . . , (v2)′ = ai,

4. The shorthand {in s2}{in s′2}E in front of a formula is resolved by (a) pre-
fixing every occurence of a heap dependent expression e with the update
{heap := h2} and (b) every primed expression e′ with {heap := h′2}.

5. The same applies to {in s′1}E. Note, there is no {in s1}, and nor quantified
variables o, v1 since the whole formula φrsα,R1,R2

is evaluated in state s1.

In the following we will also use the notation R′i, R2
i , (R2

i)
′ for the terms ob-

tained from Ri by replacing each state dependend designator v by v′, v2, (v2)′

respectively. Technically, these substitutions are effected by prefixing Ri with an
appropriate update.

We now supply the definitions of the abbreviations used above. In the follow-
ing formulas T denotes the set of all types occuring in program α. We assume
that T is finite. We point out that the formulas Agreepre and Agreepost formal-
ize the 8 requirements of Lemma 27. In fact, when writing Lemma 27 we had
already taken care, that only requirements be imposed that can be formalized
in JavaDL.

Agreepre ≡ ∀Int i(0 ≤ i < k1 → (S[i]
.
= vi ∧ S′[i]

.
= v′i ∧ S[i]

.
= S′[i]))∧

∀Int j(k2 ≤ 2j < (n− 1)→
instanceObject(S2[2j]) ∧ instanceObject(S′2[2j])∧
∃Field f(S2[2j + 1]

.
= selectAny(h− 2, S2[2j], f)∧

S′2[2j + 1]
.
= selectAny(h′2, S

′
2[2j], f))) ∧

∀Object o∀Field f(∈ (o, f, L2)↔ ∃Int j(k2 ≤ 2j < n− 1∧
S2[2j]

.
= o ∧ S2[2j + 1]

.
= selectAny(h2, o, f))) ∧

∀Object o∀Field f(∈ (o, f, L′2)↔ ∃Int j(k2 ≤ 2j < n− 1∧
S′2[2j]

.
= o ∧ S′2[2j + 1]

.
= selectAny(h′2, o, f))) ∧

∀Int i(0 ≤ i < n→∧
T∈T(exactInstanceT (S2[i])↔ exactInstanceT (S′2[i]))] ∧

∀Int i(0 ≤ i < n ∧ ¬instanceObject(S2[i])→ S2[i]
.
= S′2[i]) ∧

∀Int i, j(0 ≤ i < j < n ∧ instObj(S2[i]) ∧ instObj(S2[j])→
S2[i]

.
= S2[j]↔ S′2[i]

.
= S′2[j]) ∧

∀Int i(0 ≤ i < n→ S2[i]
.
= null↔ S′2[i]

.
= null) ∧

∀Int i(0 ≤ i < n→ created(S2[i])
.
= created(S′2[i]))

Agreepost is - roughly speaking - the same as Agreepre with S, S′ replaced
by S2, S′2:

Agreepost ≡ ∀Int i(0 ≤ i < k2 → (S2[i]
.
= v2i ∧ S′2[i]

.
= (v2i)′ ∧ S2[i]

.
= S′2[i]))∧

∀Int j(k1 ≤ 2j < (n2 − 1)→
instanceObject(S[2j]) ∧ instanceObject(S′[2j])∧
∃Field f(S[2j + 1]

.
= selectAny(heap, S[2j], f)∧

S′[2j + 1]
.
= selectAny(h′1, S

′[2j], f))) ∧
∀Object o∀Field f(∈ (o, f, L1)↔ ∃Int j(k1 ≤ 2j < n2 − 1∧

S[2j]
.
= o ∧ S[2j + 1]

.
= selectAny(heap, o, f))) ∧

∀Object o∀Field f(∈ (o, f, L′1)↔ ∃Int j(k1 ≤ 2j < n2 − 1∧
S′[2j]

.
= o ∧ S′[2j + 1]

.
= selectAny(h′1, o, f))) ∧

∀Int i(0 ≤ i < n2 →∧
T∈T(exactInstanceT (S[i])↔ exactInstanceT (S′[i]))] ∧

∀Int i(0 ≤ i < n2 ∧ ¬instanceObject(S[i])→ S[i]
.
= S′[i]) ∧

∀Int i, j(0 ≤ i < j < n2 ∧ instObj(S[i]) ∧ instObj(S[j])→
S[i]

.
= S[j]↔ S′[i]

.
= S′[j]) ∧

∀Int i(0 ≤ i < n2 → S[i]
.
= null↔ S′[i]

.
= null) ∧

∀Int i(0 ≤ i < n2 → created(S[i])
.
= created(S′[i]))

66

Ext ≡ ∀Int i∀Int j(0 ≤ i < n ∧ 0 ≤ j < n2 →
S[i]

.
= S2[j]→ S′[i]

.
= S′2[j])

It remains to show that this definition does the job.
The first part proves s1 |= φα,R1,R2

⇒ flowrs(s1, α,R1, R2).
So let us assume s1 |= φα,R1,R2

. To prove flowrs(s1, α,R1, R2) fix states
s′1, s2, s

′
2 such that α started in s1 terminates in s2, α started in s′1 terminates

in s′2, and agree(R1, s1, s
′
1, π

1). We need to show that there exists a mapping π2

such that agree(R2, s2, s
′
2, π

2) and π2 extends π1.
We instantiate the universally quantified variables by their evaluations in

state s′1, s2, s′2 respectively, i.e., β(v′i) = (v1i)s
′
1 , β(v2i) = (v2i)s2 , β((v2i)′) = (v2i)s

′
2 ,

β(h′1) = heaps
′
1 , etc.

By Lemma 28 and agree(R1, s1, s
′
1, π

1) there is an instantiation β(n) und
there are sequences β(S), β(S′) such that (s1, β) |= Agreepre.

By definition of β we also have (s1, β) |= 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
Thus s1 |= φα,R1,R2 implies that there are instantiations β(S2) and β(S′2)

such that (s1, β) |= Agreepost ∧ Ext.
(s1, β) |= Agreepost yields by Lemma 27 an isomorphism π2 such that agree(R2, s2, s

′
2, π

2).
Finally, (s1, β) |= Ext implies that π2 is an extention of π1. This, depends on
the specific way the isomorphisms are defined.

We now turn to the second part flowrs(s1, α,R1, R2)⇒ s1 |= φα,R1,R2
. Let β

be an arbitrary instantiation of the universally quantified variables in the prefix
of φα,R1,R2

and assume (s1, β) |= Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}.
Otherwise, (s1, β) |= φα,R1,R2 is vacuously true. (s1, β) |= Agreepre and Lemma
27 imply the existence of a partial isomorphism π1 such that agree(R1, s1, s

′
1, π

1).
Now, flowrs(s1, α,R1, R2) says that there is an isomorphims π2 extending π1

such that agree(R2, s2, s
′
2, π

2). Lemma 28 provides instantiations of the existen-
tially quantified variables β(S2) and β(S′2) such that (s1, β) |= Agreepost. Since
π2 extends π1 we also get (s1, β) |= Ext. ut

B.1 A Simplified Version using Reference Sets

The definition of φrsα,R1,R2
in the proof of Theorem 2 uses quantifications over

location sets. This complicates the derivation of this formula. In this subsection
we establish Theorem 3 which is weaker than Theorem 2 in that it only applies for
constructive reference set expressions R2 and provides only a sufficient condition
φ∗α,R1,R2

for flowrs(s1, α,R1, R2). But, φ∗α,R1,R2
does not involve quantification

over location sets.

Lemma 29. Let R be a reference set expression.
If agreers(R, s, s′, π) and ρ is an automorphism on D
then also agreers(R, s, ρ(s′), ρ ◦ π).

Proof. From the assumption agreers(R, s, s′, π) we get by Definition 30 that π
is a bijective mapping from objs(R) onto objs

′
(R) satisfying:

1. π is type preserving,
i.e. o ∈ TD ⇔ π(o) ∈ TD for all o ∈ objs(R) and all types T .
For objects o ∈ objs(R) of array type o.lengths = π0(o).lengths

′
is required

in addition.
2. s(v) = s′(v) for all v ∈ V with type(vi) = Boolean or type(vi) = Int;
3. π(s(v)) = s′(v) for all v ∈ V with type(vi) v Object;
4. fs(o) = fs

′
(π(o)) for all (o, f) ∈ Ls where the type(f) 6v Object;

5. π(fs(o)) = fs
′
(π(o))) for all (o, f) ∈ Ls with type(f) v Object;

67

6. π(Ls) = {(π(o), f) | (o, f) ∈ Ls} = Ls
′
.

7. If null ∈ objs(R) then π(null) = null
8. For all o ∈ objs(R): createds(o) = tt ⇔ createds

′
(π(o)) = tt .

Then

1. ρ ◦ π is type preserving since ρ is an isomorphism.
2. s(v) = ρ(s′(v)) = ρ(s′)(v) for all v ∈ V with type(vi) = Boolean or
type(vi) = Int, since ρ is the identity on basic data types. Furthermore,
we have used the terminology ρ(s′) from Definition 11.

3. (ρ ◦ π)(s(v)) = ρ(s′)(v) for all v ∈ V with type(vi) v Object by tghe laws of
equality.

4. fs(o) = ρ(fs(o)) = fρ(s
′)(ρ ◦ π(o)) for all (o, f) ∈ Ls where the type(f) 6v

Object since ρ is the identity on basic data types and Lemma 1.
5. ρ ◦ π(fs(o)) = fρ(s

′)(ρ ◦ π(o))) for all (o, f) ∈ Ls with type(f) v Object by
tzhe laws of equality and again Lemma 1.

6. ρ ◦ π(Ls) = {(ρ ◦ π(o), f) | (o, f) ∈ Ls} = Lρ(s
′).

To see this we first note that ρ ◦ π(Ls) = {(ρ ◦ π(o), f) | (o, f) ∈ Ls} is true
by the way ρ is defined in type LocSet . ρ ◦ π(Ls) = ρ(Ls

′
) follows from the

assumption and ρ(Ls
′
) = Lρ(s

′) from Lemma 1.
7. If null ∈ objs(R) then ρ ◦ π(null) = null , since ρ(null) = null for any

isomorphism
8. For all o ∈ objs(R): createds(o) = tt ⇔ createdρ(s

′)(ρ ◦ π(o)) = tt follows
from Lemma 1.

This is exactly the definition of agreers(R, s, ρ(s′), ρ ◦ π). ut

Definition 32 (Simple Information flow using reference sets).
Let α be a program and R1 = Rv11 ,...,v1k(L1) , R2 = Rv21 ,...,v2k(L2) expressions of
type refSet

Program α allows simple information flow only from R1 to R2 when started
in s1, denoted by flow∗rs(s1, α,R1, R2)

iff
for all states s′1, s2, s′2 such that

α started in s1 terminates in s2 and
α started in s′1 terminates in s′2,
we have

if agreers(R1, s1, s
′
1, id)

then there is a partial isomorphism π2 with agreers(R2, s2, s
′
2, π

2)
and π2 extends id

The statement of the following lemma parallels that of Lemma 9.

Lemma 30. For all programs α, any two reference expressions R1 and R2 , and
any state s1

flow∗rs(s1, α,R1, R2) ⇒ flowrs(s1, α,R1, R2)

Since the reverse implication is obviously true Lemma 30 entails that flowrs and
flow∗rs are equivalent.

Proof. The proof follows very closely the proof of Lemma 9 with the minor
difference that it suffices to show the existence of isomorphism π2.

To prove flowrs(s1, α,R1, R2) we fix, in addition to s1, states s′1, s2, s′2 such
that α started in s1 terminates in s2 and α started in s′1 terminates in s′2,
and assume agreers(R1, s1, s

′
1, π

1). We need to show that there exists π2 with
agreers(R2, s2, s

′
2, π

2) and π2 extends π1.

68

By Lemma 4 there is an automorphism ρ on D extending (π1)−1, i.e. the
inverse of π1. From agreers(R1, s1, s

′
1, π

1) we conclude agreers(R1, s1, ρ(s′1), ρ ◦
π1) using Lemma 29. Since ρ extends (π1)−1 we have agreers(R1, s1, ρ(s′1), id).
By Lemma 5 there is a state s′3 such that α started in ρ(s′1) terminates in s′3.
This enables us to make use of the assumption flow∗rs(s1, α,R1, R2) and conclude
that there exists a partial isomorphism π3 satisfying agreers(R2, s2, s

′
3, π

3) and
extending the identity, i.e., π3(o) = o for all o ∈ objs1(R1) ∩ objs2(R2).

Applying Lemma 5 to the inverse isomorphism ρ−1 and the situation that
α started in ρ(s′1) terminates in s′3, we obtain an automorphism ρ′ such that α
started in ρ−1(ρ(s′1)) = s′1 terminates in ρ′(s′3) and ρ′ coincides with ρ−1 on all
objects in E = {o ∈ ObjectD | createdρ(s′1)(o) = tt}.

Again using Lemma 29, this time for the isomorphism ρ′, we obtain from
agreers(R2, s2, s

′
3, π

3) also agreers(R2, s2, ρ
′(s′3), ρ′ ◦ π3). Since α is a determin-

istic program and we have already defined s′2 to be the final state of α when
started in s2 we get s′2 = ρ′(s′3) and thus agreers(R2, s2, s

′
2, ρ
′ ◦ π3).

It remains to convince ourselves that ρ′ ◦ π3 extends π1, i.e., for every o ∈
objs1(R1)∩objs2(R2) with createds1(o) = tt we need to show ρ′ ◦π3(o) = π1(o).
By the definition of isomorphic states we obtain from createds1(o) = tt also
createdρ(s1)(o) = tt . Thus we can infer ρ′(o) = ρ−1(o) and by choice of ρ further
ρ−1(o) = π1(o), as desired. ut

Definition 33. The set CLE of constructive location set expressions is a subset
of all expressions of type LocSetdefinied by the following inductive definition.

1. ∅ is in CLE.
2. If e is an expression of type C and f is a field in C with type(f), type(e) 6=

LocSet then singleton(e, f) is in CLE.
3. If a is an expression of array type, and t1, t2 are integer expressions then

arrayRange(a, t1, t2) is in CLE.
4. For e1, e2 in CLE also e1 ∪ e2 is in CLE.
5. For e ∈ CLE also infiniteUnion{iv}(e) is in CLE

provided that there is an integer expression t not containing iv such that
infiniteUnion{iv}(e) .

= infiniteUnion{iv}(if iv < t then e else ∅) is uni-
versally valid. We will write infiniteUnion{iv < t}(e) in this case.

Lemma 31. For every CLE expression e there is an expression sqe and an
expression te of type Int such that for all states s, objects o and fields f

(o, f) ∈ es iff there is i, 0 ≤ i < tse such that sqe[i] = o and sqe[i+ 1] = fs(o).

Here sqe[i] abbreviates seqGetAny(sqe, i).

Proof. We set t∅ = 0, while sq∅ is arbitrary, e.g., sq∅ = null. The claimed
correspondence between ∅ and sq∅ and t∅ is trivially satisfied.

Also for sqsingleton(e0,f) = 〈e0, e0.f〉 and tsingleton(e0,f) = 2 the claim of the
lemma is obviously true.
The shorthand notation 〈. . .〉 has been introduced in the paragraph following
Definition 16 on page 21.

For e = arrayRange(a, b1, b2) we set te = 2 ∗ (b2 − b1) and
sqe = seq_def{iv}(0, te, if even(iv) then a else a[b0 + (iv/2)]). Remembering the
semantics of arrayRange (Item 11 of Definition 4 on page 6) it is again easily
seen that the claim of the lemma is satisfied.

Now assume that for e1, e2 expressions sqe1 , te1 , qe2 , and te2 satisfying the
claim of the lemma have already been found. We set te = te1∪e2 = te1 + te2 and
sqe1∪e2 = seq_def{iv}(0, te, if iv < te1 then sqe1 [iv] else sqe1 [te1 + iv]).

69

The last case in the inductive definition is e = infiniteUnion{iv < t}(e0).
We assume that sqe0 and te0 for e0 have been found satisfying the claim of the
lemma. Typically, both expressions contain iv as a free variable. For different
assigments of iv the expressions sqe0 will evaluate to sequences of differing length.
Let tm = max0≤iv<tte0 and
sq = if 0 ≤ iv < te0 then sqe0 else if even(iv) then sqe0 [0] else sqe0 [1]. Thus if in
state s with variable assignment β we have sq(s,β)e0 = 〈a0, a1 . . . ak〉 for k = t

(s,β)
e0

then sq(s,β) is the sequence 〈a1, . . . ak, a0, a1, . . . , a0, a1〉 of length tsm. Since iv
does no longer occur free in tm the evaluation tsm is independent of β(iv). Also
e0, sq, tm still satisfy the claim of the lemma, since repetition in sq do not hurt.

We set te = t ∗ tm and sqe = seq_def{iv}(0, te, sq(iv/tm/iv)[mod(tm, iv)])
Here sq(x/iv) is the term arising from sq by replacing every occurence of the
variable iv by x. In the present case x is the integer division term iv/tm.
Furthermore, mod(tm, iv) is the remainder of iv in the division by tm. Thus
iv = (iv/tm) +mod(tm, iv). It is now not hard to see that e, sqe, and te satisfy
the claim of the lemma. ut

Let R = ({v1, . . . , vk}, L) be a reference set expression. We establish the
following notation to be used in the next lemma:

objs(v) = {vis | type(vi) ⊆ Object, 1 ≤ i ≤ k} ∪
objs(L) ={o | (o, f) ∈ Rs} ∪ {fs(o) | (o, f) ∈ Rs, type(f) ⊆ Object}
Thus
objs(R) =objs(v) ∪ objs(L)

Lemma 32. Let e be a CLE expression and sqe, te as provided by Lemma 31
and s, s′ some states

If the mapping π defined by π(sqse [i]) = sqs
′

e [i] for 0 ≤ i < tse is bijective then
it as a partial isomorphism from objs(L2) onto objs

′
(L2).

Proof. By definition of objs(L2), objs
′
(L2) and definition of π and the corre-

spondence between L2 and sqe, te from Lemma 31 we see that π is a bijection
from objs(L2) onto objs

′
(L2). To see that also the isomorphism property is sat-

isfied consider (o, f) ∈ Ls2. By Lemma 31 there is i such that (sqe[i])
s = o and

(sqe[i + 1])s = fs(o). By definition of π we have π(fs(o)) = π(sqe[i + 1])s) =
sqe[i+ 1])s

′
= fs

′
(sqe[i])

s′) = fs
′
(π(sqe[i])

s) = fs
′
(π(o). ut

Theorem 3. Let α be a program, and let R1 = Rv11 ,...,v1k1
(L1) be an arbitrary

reference set expression and R2 = Rv21 ,...,v2k2
(L2) a reference set expression with

L2 in CLE.
There is a formula φrsα,R1,R2

in JavaDL making use of self-composition such
that:

s1 |= φrsα,R1,R2
⇒ flowrs(s1, α,R1, R2).

Proof. By Lemma 30 it suffices to find φrsα,R1,R2
such that

s1 |= φrsα,R1,R2
⇒ flow∗rs(s1, α,R1, R2).

The proof greatly parallels the proof of Theorem 1. Nevertheless, we will repeat
here the whole argument. Thus, this proof is selfcontained, the reader is not
required to have read the proof of Theorem 1 before.

The proof consists of a constructive definition of the formula φrsα,R1,R2
.

We will explain the construction of φrsα,R1,R2
top down. The property to be

formalized requires quantification over states. According to Definition 5 a state
s is determined by the value of the heap hs in s and the values of the (finitely

70

many) program variables as in s. We can directly quantify over heaps h and
refer to the value of a field f of type C for object o referenced by expression e as
selectC(h, e, f). We cannot directly quantify over program variables, as opposed
to quantifying over the values of program variables, which is perfectly possible.
Thus we use quantifiers ∀x, ∃x over the type domain of the variable and assign x
to a via an update a := x. There are four states involved, the two pre-states s1,
s′1 and the post-states s2, s′2. Correspondingly, there will be, for every program
variable v, four universally quantifier variables v, v′, v2, (v2)′ of appropriate
type representing the values of v in states s1, s′1, s2, s′2. There are some program
variables that make only sense in pre-states, e.g., this, and variables that make
only sense in post-state, e.g., result. There will be only two logical variables
that supply values to them instead of four. This leads to the following schematic
form of φrsα,R1,R2

:

φrsα,R1,R2
≡ ∀Heap h′1, h2, h′2∀To′∀Trr, r′∀ . . . v′, v2, (v2)′ . . .

(Agreepre ∧ 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
→ (Agreepost ∧ Ext))

To maintain readability we have used suggestive abbreviations:

1. {in s′1}〈α〉 signals that an update {heap := h′1 || this := o′ || . . . ai := v′ . . .}
is placed before the modal operator. The ai cover all relevant parameters and
local variables.

2. The construct save{s2} abbreviates a conjunction of equations h2 = heap,
r = result, . . . , v2 = ai,

3. Analogously, save{s′2} stands for the primed version h′2 = heap, r′ = result,
. . . , (v2)′ = ai,

4. The shorthand {in s2}{in s′2}E in front of a formula is resolved by (a) pre-
fixing every occurence of a heap dependent expression e with the update
{heap := h2} and (b) every primed expression e′ with {heap := h′2}.

5. The same applies to {in s′1}E. Note, there is no {in s1}, and nor quantified
variables o, v1 since the whole formula φrsα,R1,R2

is evaluated in state s1.

In the following we will also use the notation R′i, R2
i , (R2

i)
′ for the terms ob-

tained from Ri by replacing each state dependend designator v by v′, v2, (v2)′

respectively. Technically, these substitutions are effected by prefixing Ri with an
appropriate update.

We now supply the definitions of the abbreviations used above:

Agreepre ≡
∧

1≤i≤k1 v
1
i
.
= (v1i)′ ∧

∀o∀f((o, f) ∈ L1 → selectAny(hi, o, f)
.
= selectAny(h′i, o, f))∧

∀o∀f((o, f) ∈ L1 ↔ (o, f) ∈ L′1

For the next definition we denote by sq2, t2 the expressions of type Seq and
Ind respectively that exists by Lemma 31 for L2.

Agreepost ≡ t2
.
= t′2∧
1≤i≤k2,type(v2i)6vObject

(v2i
.
= (v2i)′) ∧∧

1≤i<j≤k2,type(v2i),type(v2j)vObject
((v2i

.
= v2j)↔ ((v2i)′

.
= (v2j))′)∧

∀i, j(0 ≤ i < j < t2 → (sq2[i]
.
= sq2[j]↔ sq′2[i]

.
= sq′2[j])) ∧∧

1≤i≤k2,type(v2i)vObject
∀j(0 ≤ j < t2 →

(v2i
.
= sq2[j]↔ (v2i)′

.
= (sq2[j])′))

Ext ≡
∧

1≤i≤k2 ∀j(0 ≤ j < t2 ∧ v2i
.
= sq2[j]→ (v2i)′

.
= (sq2[j])′)

71

It remains to show that this definition does the job.
So let us assume s1 |= φα,R1,R2 . To prove flow∗(s1, α,R1, R2) fix states s′1, s2, s′2
such that α started in s1 terminates in s2, α started in s′1 terminates in s′2, and
agree(R1, s1, s

′
1, id). We need to show that there exists a mapping π2 such that

agree(R2, s2, s
′
2, π

2) and π2 extends id.
We instantiate the universally quantified variables by their evaluations in

state s′1, s2, s′2 respectively, i.e., β(v′i) = (v1i)s
′
1 , β(v2i) = (v2i)s2 , β((v2i)′) = (v2i)s

′
2 ,

β(h′1) = heaps
′
1 , etc.

Now agree(R1, s1, s
′
1, id) implies (s1, β) |= Agreepre, as can be easily seen

using Lemma 26.
By definition of β we also have (s1, β) |= 〈α〉save{s2} ∧ in{s′1}〈α〉save{s′2}
Thus s1 |= φα,R1,R2

implies (s1, β) |= Agreepost ∧ Ext.
We define π2 by π2((sq2[j])s2) = (sq2[j])s

′
2 for 0 ≤ j < ts22 . Now, (s1, β) |=

Agreepost (due to line 1 and line 4 in the definition of Agreepost) implies that
π2 thus definied is a bijection. Lemma 32 says that π2 is a partial isomorphism
from objs(L2) onto objs

′
(L2). We extend π2 to a mapping from objs(R2) onto

objs
′
(R2) by π2((v2i)s2) = v2i)s

′
2 . Line 2 and 3 in the definition of Agreepost

guarantee that this is a bijection and line 5 makes sure that this definition is
compatible with π2 defined on objs(L2). Altogether, we see that π2 is a partial
isomorphism from objs(R2) onto objs

′
(R2) and agree(R2, s2, s

′
2, π

2) is true.
Finally, (s1, β) |= Ext implies that π2 is an extention of the identity. We may

thus conclude flow∗(s1, α,R1, R2) as desired. ut

References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-
oriented programs. In J. G. Morrisett and S. Peyton Jones, editors, Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, pages 91–102. ACM, 2006.

2. T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Gia-
cobazzi, editor, Static Analysis, 11th International Symposium, SAS 2004, Verona,
Italy, August 26-28, 2004, Proceedings, LNCS 3148, pages 100–115. Springer, 2004.

3. A. Banerjee and D. A. Naumann. Stack-based access control and secure information
flow. J. Funct. Program., 15(2):131–177, 2005.

4. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In M. Butler and W. Schulte, editors, FM 2011: Formal Methods -
17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24,
2011. Proceedings, LNCS 6664, pages 200–214. Springer, 2011.

5. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA. IEEE Computer Society, 2004.

6. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer, 2007.

7. Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In D. Hutter and M. Ullmann, editors, Proceedings,
Security in Pervasive Computing, LNCS 3450. Springer, 2005.

8. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische
Logik (5. Aufl.). Spektrum Akademischer Verlag, 2007.

9. R. Hähnle, J. Pan, P. Rümmer, and D. Walter. Integration of a security type
system into a program logic. In U. Montanari, D. Sanella, and R. Bruni, editors,
Proc. Trustworthy Global Computing, Lucca, Italy, LNCS 4661. Springer, 2007.

10. C. Hammer, J. Krinke, and G. Snelting. Information flow control for Java based
on path conditions in dependence graphs. In IEEE International Symposium on
Secure Software Engineering (ISSSE 2006), pages 87–96. IEEE, March 2006.

11. R. R. Hansen and C. W. Probst. Non-interference and erasure policies for Java
Card bytecode. In 6th International Workshop on Issues in the Theory of Security
(WITS ’06), 2006.

72

12. S. Hunt and D. Sands. On flow-sensitive security types. In J. G. Morrisett and
S. Peyton Jones, editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, pages 79–90. ACM,
2006.

13. R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Sci.
Comput. Program., 37(1-3):113–138, 2000.

14. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

15. J. Monk. Mathematical Logic, volume 37 of Graduate Texts in Mathematics.
Springer, 1976.

16. A. C. Myers. JFlow: Practical mostly-static information flow control. In POPL,
pages 228–241, 1999.

17. F. Ruch. Efficient logic-based information flow analysis of object-oriented pro-
grams. Bachelor thesis, Karlsruhe Institute of Technology, 2013.

18. C. Scheben and P. H. Schmitt. Verification of information flow properties
of Java programs without approximations. In Formal Verification of Object-
Oriented Software International Conference, FoVeOOS 2011, Revised Selected Pa-
pers, LNCS. Springer, 2012. To appear. Earlier version in Technical Report
2011-26, KIT, Department of Informatics. Available at http://digbib.ubka.uni-
karlsruhe.de/volltexte/documents/1977984.

19. J. R. Shoenfield. Mathematical Logic. Addison–Wesley Publ. Comp., Reading,
Massachusetts, 1967.

20. M. Strecker. Formal analysis of an information flow type system for MicroJava
(extended version). Technical report, Technische Universität München, July 2003.

21. D. M. Volpano and G. Smith. Eliminating covert flows with minimum typings. In
10th Computer Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA, pages 156–169, 1997.

22. B. Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Tech-
nology, 2011.

73

	2013,10_Titelbl.pdf
	FMTR2012.pdf

