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1 Chapter 1

Introduction

Significant technological advances in nanolithography and cryogenics since the 1960s have facilitated
the fabrication of novel, mesoscopic, structures in which quantum effects are prevalent and give rise to
remarkable phenomena[1]. While conventional macroscopic systems exceed in size by far the inelastic
mean free path and phase breaking length, i.e. the length scales at which their carries (such as electrons)
scatter inelastically and lose their quantummechanical phase information, dimensions of the mesoscopic
devices are of comparable order of magnitude. Consequently, both relaxation into thermal equilibrium
and decoherence can be significantly suppressed.
The quantum coherent movement of carriers comes along with non-local correlations, interference

and Aharonov-Bohm oscillations which become manifest in phenomena such as universal conductance
fluctuations, conductance quantization, and weak localization. At the same time mesoscopic devices
often are large enough to feature the onset of decoherence and thus represent an ideal laboratory to
study the crossover between quantum mechanical and classical behavior.
While most traditional experimental systems, such as bulk magnets and superconductors, can hardly

be driven significantly away from equilibrium, mesoscopic devices, metallic and superconducting, have
proven to be appropriate to establish and maintain nonequilibrium conditions and expose specifi-
cally nonequilibrium phenomena. Particularly the interplay with strong Coulomb interaction can lead
to sizable changes of the systems’ behavior, e.g. in the context of the Kondo[2–5] and Fermi-edge
singularity[6, 7] problem. And not least, nonequilibrium enlarges the phase space for inelastic scatter-
ing and thus is a prime source of dephasing.
The conceptually simplest device to expose decoherence is the interferometer. Different electronic

variants can be realized in mesoscopic systems. Of these the clearest interference patterns were obtained
in interferometers which are constructed with edge states in quantum Hall systems, e.g.[9]. The
quantum Hall effect arises in two-dimensional electron gases when a strong perpendicular magnetic
field is applied. The bulk conductance vanishes and dissipationless currents flow along the edges of
the sample. In quantum point contacts (QPCs) edges which are usually separated by large distances
are brought into close proximity e.g. by applying negative voltages on suitably shaped electrodes.
They allow for tunneling between different edges and thus serve as beamsplitters. By an appropriate
arrangement of such QPCs (see Fig. 1.1) electrons traveling from source to drain reservoirs along the
edges can be offered several different paths. Quantum mechanics tells us that the total current is given
by the interference of all possible paths and thus is an oscillatory function of the relative phase of these
trajectories. Due to the Aharonov-Bohm (AB) effect[10] the latter can be tuned via the magnetic
field. Indeed, in experiments device conductances show clear AB oscillations. The visibility of these
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1 Introduction

a) b)

Figure 1.1: a) Micrograph of a Mach-Zehnder interferometer realized in a quantum Hall
system[8]. In analogy to optical interferometers edge states, indicated by arrows, play
the role of light beams while quantum point contacts (QPCs) serve as beam-splitters.
b) Two-dimensional colour plot of current in a quantum Hall interferometer[9]. Os-
cillations arise upon varying magnetic field and gate voltages. Gate electrodes are
used to manipulate the potential landscape for the electron gas and thus its geometric
shape. Changing the size of the interference loop, varies the accumulated Aharonov-
Bohm phase.

interference patterns is suppressed upon increasing the source-drain voltage and hence the energy of the
injected electrons. While this is obviously a sign of nonequilibrium-induced decoherence and as such
little surprising, later measurements on similar samples have revealed quite unexpectedly additional
oscillatory features in the visibility, leading even to its complete vanishing at certain values of the
voltage (Fig. 1.2). It became quickly clear that this “lobe” structure is caused by Coulomb interaction
and considerable theoretical effort is being made to account for it.

Figure 1.2: Visibility and phase of Aharonov-Bohm conductance oscillations in the quantum Hall
Mach-Zehnder interferometer[8].

The quantum Hall edge currents are commonly viewed as being carried by one-dimensional fermions.
While this is an effective quantum mechanical description of drifting/skipping cyclotron orbits, arising
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from the interplay of strong magnetic field and a confining potential at the sample boundaries, a more
typical example of one-dimensional fermions is found in very thin nanostructures. Their small lateral
extent leads to a strong finite size quantization of the transverse propagation modes of the carriers.
At low temperature all modes, but the lowest, are frozen out and the carrier motion is effectively
one-dimensional. Examples for such quantum wires are semiconducting and metallic nanowires and
carbon nanotubes.
In one dimension the restricted phase space drastically enhances the effect of Coulomb interaction,

and the conventional Fermi liquid picture of weakly interacting fermionic quasiparticles breaks down.
For screened, short-range interaction its place is usually taken by the Luttinger liquid which exhibits
bosonic collective density modes (plasmons) and shows critical behavior with nonuniversal power-law
correlations. They are experimentally accessible e.g. via the algebraic suppression of tunneling density
of states (zero bias anomaly) and tunnel barrier transmission. The latter result was first found in the
seminal paper Ref. [11] which considered a Luttinger liquid with a single impurity. Since then this
system is subject of extensive ongoing research.
The quantum Hall interferometers considered above and quantum wires with single impurities are in

fact very similar when considered as networks of tunnel-coupled one-dimensional fermionic channels.
While in the quantum Hall interferometers QPCs couple unidirectional (chiral) channels at different
edges, backscattering at the impurities is a tunneling process beween right- and left-moving states.

s1 s2

f
+

f
-

Figure 1.3: Network model of the electronic Mach-Zehnder interferometer: Chiral wires (solid
lines), each connected to reservoirs (white boxes), are tunnel-coupled by two point
scatterers (white circles).

Fig. 1.3 shows a quantum wire network which corresponds to the electronic Mach-Zehnder interfe-
rometer. Chiral fermionic channels (the edge states) are coupled by two point scatterers (the QPCs)
with scattering matrices s1, s2. The channels are connected to reservoirs via incoming and outgo-
ing leads, which are usually assumed to be noninteracting. The reservoirs may be hold at different
chemical potentials and temperatures or in generic nonequilibrium states. Population of the wires is
determined by the incoming leads through which electrons with given distribution functions f+ and
f− are injected.
One of the main goals of this thesis is the development of a theoretical framework to treat such

nonequilibrium interacting quantum wire networks.
A powerful and elegant theoretical approach to one-dimensional interacting systems is bosonization

[12]. In its standard operator formulation all operators such as fermionic fields, the Hamiltonian and
thus the equilibrium density operator are expressed in terms of bosonic fields. In a clean metallic wire
the low energy physics is determined by free bosonic excitations. Out of equilibrium, however, the
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1 Introduction

density operator is not as straightforwardly bosonized.
Recently, a nonequilibrium generalization of the bosonization framework was formulated[13, 14] in

the functional integral language, within which instead of direct bosonization of the density operator,
the nonequilibrium many-body state is encoded in the “Keldysh action”. Its specific structure in the
case of clean wires allows for an exact evaluation of many-body averages.
The key requirement of the technique is that the electronic nonequilibrium states is established in

the noninteracting reservoirs and injected into the interacting wire. In this sense our interest lies
in a more complicated situation when tunneling/backscattering occurs in the interacting region, and
the state of the system is a nonequilibrium bath of plasmons populated through inelastic tunneling
processes of electrons. Such coupling terms represent in general a very serious complication for the full
bosonization approach. We choose instead an alternative route based on the functional bosonization
formalism[15] that retains both fermionic and bosonic degrees of freedom, and was used in the Keldysh
formulation by Ref. [16] to reconsider the problem of Luttinger liquid with impurity.
We find that under specific assumptions the problem of a network with two scatterers (the quantum

Hall Mach-Zehnder interferometer) can be solved exactly. In general, however, this is not the case
and we develop a saddle-point (real-time instanton) approximation scheme, which applies for weak
interchannel tunneling but goes beyond pure perturbation theory. This approach will enable us to
describe decoherence effects due to the noise induced by the nonequilibrium plasmon bath, which having
Poissonian, rather than Gaussian (like external or thermal noise) correlations cannot be captured
satisfactorily in usual perturbative treatments.
The structure of this thesis is as follows: In Chapter 2 we give a short overview over different bosoniza-

tion techniques, including the functional bosonization method for clean wires. Chapter 3 presents its
generalization to quantum wire networks and the real-time instanton approximation scheme. This
method is illustrated in Chapter 4 where the tunneling density of states of a nonequilibrium Luttinger
liquid containing a single impurity is calculated. The subsequent two chapters are devoted to the study
of interaction effects in quantum Hall interferometers: dephasing and oscillatory features of the visi-
bility. The Fabry-Pérot geometry is considered in Chapter 5. The Mach-Zehnder geometry, treated in
Chapter 6, is a notable example of quantum wire network which can be dealt with exactly. Chapter 7
is devoted to the time evolution of a clean nonequilibrium Luttinger liquid after an interaction quench.
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2 Chapter 2

Nonequilibrium Bosonization

Due to the constrained phase space in one-dimensional systems interaction leads to drastic effects.
Already for weak interaction and in close proximity to the Fermi energy the spectral function has no
sharp peaks, and Landau’s Fermi liquid picture of weakly interacting fermionic quasiparticles, which
proves so successful in describing higher-dimensional fermion systems, breaks down. The key step on
the route to an alternative description is the observation that for free fermions with linear spectrum
particle-hole pair excitations have a well-defined energy-momentum relation, and that the excitations
of the Fermi gas can be mapped onto excitations of a free boson gas. Hence, while a brute force
fermionic treatment is still possible, an alternative and very powerful approach is bosonization, in
which the theory is formulated in terms of bosonic degrees of freedom.
In this chapter we will quickly review the basic ideas. We adress the standard, operator bosonization

method (Sect. 2.1) and its nonequilibrium extension (Sect. 2.3). We will turn our attention to the func-
tional bosonization technique, which is more convenient when dealing with one-dimensional systems in
the presence of scatterers such as impurities or quantum point contacts. In fact, the generalization of
the functional bosonization approach to quantum wire networks is one of the main goals of this work,
and Chapter 3 will be devoted to this problem.

2.1 Standard Bosonization

We outline the standard bosonization technique for which a host of reviews and pedagogical introduc-
tions exists (e.g. [12]).
Usually bandwidth Λ and Fermi energy EF exceed by far the energy scales set by temperature and

voltage. The interest therefore lies in a model which captures the low energy physics and takes into
account excitations of electrons from states close to EF to other close states. In striking contrast to
their higher-dimensional counterparts, in 1D systems the Fermi surface is a disconnected set of points
which are separated by large momenta. When sufficiently long-range interaction or disorder scattering
is considered, transitions between these Fermi points are negligible. One can thus treat them separately,
pretending that states close to different Fermi points belong to different fermion species η. One then
forgets that species η was defined by the proximity of its momentum states p to a specific Fermi point,
and assumes that it has an unbounded range of momenta p ∈ (−∞,∞) at its disposal. The gain of
adding artifically these infinitely many states – which do not affect the low-energy physics – is that
they allow for an exact bosonization of the theory.
Our prime example are single-channel spinless electron, say with dispersion Ep = p2/(2m). The
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2 Nonequilibrium Bosonization

Fermi energy EF defines 2 Fermi points ±pF = ±
√

2mEF with velocities v± = ±vF = ±pF /m. One
linearizes the spectrum around ±pF and introduces two fermion species η = ±, commonly dubbed
“right- and left-movers”. Their dispersion is E − EF = vηk where the momentum k = p − ηpF is
measured relative to the respective Fermi momentum ηpF . In systems of finite size L momenta are
discretized, k = 2π

L nk, nk ∈ Z when periodic boundary conditions are assumed.
We introduce fermionic creation and annihilation operators for the corresponding single-particle

states which satisfy the canonical anticommutation relation
{
ckη, c

†
k′η′

}
= δkk′δηη′ . Fourier transfor-

mation yields the field operators ψη(x) = 1√
L

∑
k e

ikxckη.
The noninteracting ground state |0〉 is the Fermi sea with all negative-energy states filled. It is

annihilated by ck,+, c−k,− for k > 0 and c†k,+, c
†
−k,− for k ≤ 0. The existence of infinitely many

negative-energy single-particle states of which always infinitely many are occupied, or for short the
lack of a lower band edge, leads to ultraviolet (UV) divergencies. The simplest example is the total
kinetic energy

H̃0 =
∑
η

∑
k

vηk c
†
kηckη =

∑
η

∫ L/2

−L/2
dxψ†η(x)(−ivη∂x)ψη(x) (2.1)

the ground state expectation value of which is, of course, negative infinity. One way to deal with
these divergencies is normal-ordering. Normal-ordering of products of operators means interchanging
factor operators such that those which annihilate |0〉 stand right from all the others. Interchange of
two fermionic operators is to be accompanied by a global sign switch. Physically, one is interested
in observables such as energies and momenta relative to their groundstate values, and an equivalent
representation of normal-ordering is

: ABC . . . :≡ ABC . . .− 〈0|ABC . . . |0〉 .

The normal-ordered density operators %η(x) =: ψ†η(x)ψη(x) : measures density fluctuations on top
of the homogeneous ground state |0〉. Fourier transformation yields %†η(p) =:

∑
k c
†
k+p,ηckη : which, for

p 6= 0, create particle-hole pairs with momentum p or, for p = 0, measure the relative total particle
number N̂η ≡ %†η(p = 0). Let us consider their commutation relations. For different species η 6= η′ the
operators %η, %η′ obviously commute, in the other case (p 6= 0 6= p′)[

%†η(p), %†η(−p′)
]

=
∑
k

(
c†k+p,ηck+p′,η − c†k+p−p′,ηck,η

)
.

For p 6= p′ the expression can be split into a difference of two infinite sums each of which acts on
physical states (with arbitrary but finite numbers of particle and hole excitations) in a well-defined
way. By performing the index shift k 7→ k + p′ the second sum can be made manifestly equal to the
first one and the commutator vanishes. For p = p′ more care is needed since sums

∑
k c
†
k+p,ηck+p,η are

infinite and may only be treated separately after normal-ordering. After the split the above index shift
yields a vanishing difference and one is left with[

%†η(p), %†η(−p)
]

=
∑
k

(
: c†k+p,ηck+p,η : − : c†kηckη : + 〈0| c†k+p,ηck+p,η |0〉 − 〈0| c†kηckη |0〉

)
=
∑
k

(
〈0| c†k+p,ηck+p,η |0〉 − 〈0| c†kηckη |0〉

)
= −ηnp = −η L2πp. (2.2)
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2.1 Standard Bosonization

The appearance of this nonvanishing commutator is intimately related to the UV divergence and
usually referred to as “Schwinger anomaly”. Under the assumption of unbounded discrete momenta,
up to normalization the density operators satisfy bosonic commutations relation. This leads us to
define for p > 0 the bosonic creation and annihilation operators

b†p = 1
√
np
%†+(p), b†−p = 1

√
np
%†−(−p),

bp = 1
√
np
%+(p), b−p = 1

√
np
%−(−p)

which indeed satisfy the bosonic commutation relations [bp, b†q] = δpq and bp |0〉 = 0 = b−p |0〉. The
operators b†p generate particle-hole pairs and do not change the overall particle number. For the latter
purpose “ladder operators”, the Klein factors Fη, can be constructed such that they commute with all
bosonic operators bp, are unitary, F−1

η = F †η , and satisfy[
N̂η, F

†
η′

]
= δηη′F

†
η ,

[
N̂η, Fη′

]
= −δηη′Fη,{

F †η , Fη′
}

= 2δηη′ ,
{
F †η , F

†
η′

}
= 0 =

{
Fη, Fη′

}
for η 6= η′.

By careful counting of states, it can be proven that bosonic operators b†q together with Klein factors
generate a complete basis of the many-electron Hilbert space. Fig. 2.1 illustrates how the action of a
fermionic creation operator can be mimicked by a Klein factor and a bosonic creation operator.

pF k1 k2 pF k1 k2

pF k1 k2

ck2

†

F†

ck2

†

bk2-k1

†

Figure 2.1: Adding an electron in momentum state k2 can be accomplished by first increasing the
total ground state electron number by 1 (via F †) and subsequently creating an electron
hole pair (via b†k2−k1

)

This implies that any reasonable operator can be expressed in terms of these bosonic operators as
well. For the normal-ordered free Hamiltonian H0 =: H̃0 :, cf. (2.1), which has the commutators[
H0, b

†
p

]
= vF pb

†
p one can show

H0 =
∑
q

vF
∣∣q∣∣ b†qbq + vF

2π
L

1
2
∑
η

N̂η

(
N̂η + 1

)
.

Formally, one has mapped the original free fermion Hamiltonian with linear dispersion (which is bilinear
in fermionic operators) onto a free boson Hamiltonian which is bilinear in density operators (and thus
biquadratic in fermionic operators). Bosonization of H0 merely makes explicit that thanks to the linear
fermion dispersion, electron-hole pairs are stable excitations with well-defined linear energy-momentum
relation. Indeed by promoting, say, a right-moving electron from state p to p + q > p, i.e. creating

7



2 Nonequilibrium Bosonization

an electron-hole pair with momentum q > 0 one creates an excitation of energy vF q, regardless of the
initial electron momentum p. The situation changes when a finite curvature of the electronic band
structure is taken into account. Then for given momentum q corresponding electron-hole states cover
a continuous range of energies; H0 contains higher-order-in-bq terms, i.e. interaction of bosonic modes.
Similarly the field operators which satisfy e.g.[

ψ+(x), b†p
]

= 1
√
np

eipx ψ+(x),
[
ψ−(x), b†−p

]
= 1
√
np

e−ipx ψ−(x)

(for p > 0) can be expressed in terms of bosonic operators. To this end we define the fields

ϕ+(x) = −i
∑
q>0

1
√
nq
e−αq/2eiqxbq, ϕ−(x) = −i

∑
q>0

1
√
nq
e−αq/2e−iqxb−q.

The “effective band-width” α−1 is necessary to regularize ultraviolet divergent momentum sums which
appear in certain non-normal-ordered expressions. The fermionic operators are then

ψη(x) = 1√
L
Fηe

i 2π
L
N̂ηx eiϕ

†
η(x)eiϕη(x).

A more instructive representation works with the field

φη(x) ≡ ϕη(x) + ϕ†η(x)

which is related to density via

%η(x) = η

2π∂xφη(x) + 1
L
N̂η

and has the anomalous commutator[
φη(x), φη′(x′)

]
= iπηδηη′ sign (x− x′).

These unusual commutator relations — referred to as Kac-Moody algebra — imply[
η

2π∂xφη, φη
′(x′)

]
= iδ(x− x′),

i.e. the field conjugate to φη is the derivative of φη itself, or more precisely the density %η − N̂η/L. A
very common representation of the above bosonization identity is

ψη(x) = 1√
2πα

Fηe
i 2π
L
N̂ηxeiφη(x). (2.3)

It is not normal-ordered and therefore necessarily contains the cutoff α explicitly.
A representation of the bosonic fields which is also commonly found in the literature is

ϑ = 1
2
(
φ+ + φ−

)
, φ = −1

2
(
φ+ − φ−

)
.
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2.1 Standard Bosonization

The latter is a phonon-like displacement field, satisfying % = %+ + %− = −∂xφ/π, while the former is
related to current via j = %+ − %− = ∂xϑ/π. These fields have the commutator[

φ(x), ϑ(x′)
]

= i
π

2 sign (x− x′)

which makes Pφ ≡ ∂xϑ/π the momentum field conjugate to φ. With that we can understand the phase
operator in the bosonization identity (2.3) in the following way:

eiφη(x) = e−iηφ(x)eiϑ(x)=̂eiηπ
∫ x
−∞dx′ %(x′)eiπ

∫ x
−∞dx′ Pφ(x′).

The second factor acts as a translation operator for φ and produces a π-kink, φ(x′) 7→ φ(x′)−πθ(x−x′)
(here, θ denotes the Heaviside step function), which amounts to the charge dip, %(x′) 7→ %(x′)−δ(x−x′).
This charge extraction is exactly what one would expect from the field operator ψ(x). At the same
time it is a fermionic operator. Fermi statistics is endowed by the first factor, the “Jordan-Wigner
string”, which counts the number of electrons left from the position x, weighing each electron with the
phase π, i.e. a sign switch.
In terms of these bosonic fields the free Hamiltonian reads

H0 = v

2
∑
η

{
1

2π

∫
dx :

(
∂xφη

)2
: +2π

L
N̂η

(
N̂η + 1

)}

= vF
2π

∫
dx :

(
∂xφ

)2 +
(
∂xϑ

)2 : +vFπ

L

∑
η

N̂η

(
N̂η + 1

)
. (2.4)

In the following we focus on the thermodynamic limit L→∞ and neglect the charging terms N̂η.
Once the free Hamiltonian is cast into bosonized form, adding interaction does not represent a

major technical difficulty. Since interaction couples densities, the respective Hamiltonian is already
bosonized, and, further, also quadratic in bosonic fields. The free boson model, thus, stays free.
Let us consider a spinless Lutinger model with short-range interaction. The induced scattering pro-

cesses can involve either electrons of the same (“g4-processes”) or of different species (“g2-processes”).
The interaction Hamiltonian reads

Hint = g4
2

∫
dx : %+(x)2 + %−(x)2 : +g2

∫
dx : %+(x)%−(x) :

= g4
(2π)2

∫
dx :

(
∂xφ

)2 +
(
∂xϑ

)2 : + g2
(2π)2

∫
dx :

(
∂xφ

)2 − (∂xϑ)2 : .

Obviously the g4-processes only renormalize the Fermi velocity vF 7→ vF

(
1 + g4

2πvF

)
. Adding all terms

gives the full Hamiltonian

H = H0 +Hint = u

2π

∫
dx :

[
K−1 (∂xφ)2 +K

(
∂xϑ

)2] : (2.5)

with plasmon velocity and Luttinger constant

u = vF

√(
1 + g4

2πvF

)2
−
(

g2
2πvF

)2
, K =

√
2πvF + g4 − g2
2πvF + g4 + g2

. (2.6)
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2 Nonequilibrium Bosonization

By rescaling the fields φ 7→
√
Kφ, ϑ 7→ ϑ/

√
K the full Hamiltonian can be mapped to the free one

(2.4) with velocity vF replaced by u. That shows that interaction gives rise to new free bosonic modes,
plasmons, with a linear dispersion and velocity u.
Another way to see this and to construct the plasmonic creation and annihilation operators b̃q

explicitly is to diagonalize

H =
∑
q>0

vF q
(
bq, b

†
−q

)(1 + g4/(2πvF ) g2/(2πvF )
g2/(2πvF ) 1 + g4/(2πvF )

)(
b†q
b†−q

)
=
∑
q

u|q|b̃†q b̃q

by the Bogoliubov transformation(
b†q
b−q

)
=
(

cosh ζ sinh ζ
sinh ζ cosh ζ

)(
b̃†q
b̃−q

)
with cosh ζ = 1 +K

2
√
K
, sinh ζ = −1−K

2
√
K
. (2.7)

Having expressed the Hamiltonian completely in terms of bosonic fields we are also immediately able
to bosonize the equilibrium density operator % = Z−1e−βH with β = 1/T . Important quantities from
which various observables such as charge density, density of states, response functions etc. can be
derived are correlation functions such as the single-particle Green’s functions

iG>η (t1, x1, t2, x2) =
〈
ψη(t1, x1)ψ†η(t2, x2)

〉
, iG<η (t1, x1, t2, x2) = −

〈
ψ†η(t2, x2)ψη(t1, x1)

〉
.

The time-dependence is to be understood in the sense of the usual Heisenberg representation ψη(t, x) =
eiHtψη(x)e−iHt, such that in equilibrium

G<η (t1, x1, t2, x2) = Z−1 i

2πα Tr
[
e−βHeiHt2e−iφη(x2)e−iH(t2−t1)eiφη(x1)e−iHt1

]
All operators in the exponentials are quadratic in bosonic fields and the many-body trace amounts to
a Gaussian average. To tackle such problems a large effective toolbox exists in which important tools
are e.g. Wick’s theorem and the cumulant expansion method, and which is treated extensively in a
large range of textbooks. One finds

G≷
η (t = t1 − t2, x = x1 − x2) = ∓i

2πvFa

[
∓iaπT

sinh πT (t− ηx/u∓ ia)

]1+γ [
∓iaπT

sinh πT (t+ ηx/u∓ ia)

]γ
(2.8)

with γ = sinh2 ζ = (1−K)2/(4K). For future reference we chose to use a short-time cutoff a ∼ α/vF ∼
α/u rather than the short-distance cutoff α. It corresponds to a high-energy cutoff Λ ∼ a−1.
It may appear that the considered formalism is restricted to thermal equilibrium situations where

the density operator is a simple function of the Hamiltonian. In arbitrary nonequilibrium situations
the density operator cannot be as straightforwardly bosonized, and in fact a generalization to such
cases within the Keldysh formulation[17, 18] was developed very recently. This will be the subject
of Sect. 2.3. Let us consider an alternative approach first, also based on the Keldysh technique,
which is fully equivalent to standard bosonization when considering clean one-dimensional systems in
equilibrium, but is more convenient when dealing with more complicated situations, e.g. in the presence
of scatterers.
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2.2 Functional Bosonization

2.2 Functional Bosonization

The functional bosonization method[15] derives its name from the fact that it relies very heavily on the
functional integral formulation, where many-body traces are performed in the coherent-state basis, and
simple properties of functional (Gaussian) integrals.Its main conceptual difference from the standard
bosonization approaches is that it retains both fermionic and bosonic degrees of freedom.
Let us start by reviewing shortly the Keldysh technique: Arbitrary (nonequilibrium) many-body

states are dealt with by extending the real-time contour to the Keldysh contour C which consists of a
forward and a backward branch. Equivalently, this amounts to doubling the field degrees of freedom
ϕ by distinguishing between “forward” and “backward” components ϕf and ϕb respectively (which
reside on the corresponding branches of C). Correspondingly, Green’s functions obtain an additional
2× 2-matrix structure:

G(x1, t1;x2, t2) = −i
〈
TC

(
ϕf1ϕ

f†
2 ϕf1ϕ

b†
2

ϕb1ϕ
f†
2 ϕb1ϕ

b†
2

)〉
= −i

〈(
Tϕ1ϕ

†
2 ±ϕ†2ϕ1

ϕ1ϕ
†
2 T̃ϕ1ϕ

†
2

)〉

≡

(
GT (ξ1; ξ2) G>(ξ1; ξ2)
G<(ξ1; ξ2) GT̃ (ξ1; ξ2)

)

where we wrote ξj = (tj , xj), ϕj = ϕ(ξj). T and T̃ denote time-ordering and anti-time ordering along
the real time axis, TC denotes time-ordering along the Keldysh contour. Operators with later times
are to the left of those with earlier times. Interchanging fermionic operators induces a sign switch (the
signs “±” in the above equation hold for bosonic/fermionic fields ϕ). Backward times are later than
forward times. This implies

GT (T̃ )(ξ1; ξ2) = θ(t1 − t2)G>(<)(ξ1; ξ2) + θ(t2 − t1)G<(>)(ξ1; ξ2).

An alternative representation is obtained by the rotation

ϕc(ξ) = 1
2

(
ϕf (ξ) + ϕb(ξ)

)
, ϕq(ξ) = 1

2

(
ϕf (ξ)− ϕb(ξ)

)
in Keldysh space which yields the corresponding Green’s functions

Gr(ξ1, ξ2) = −i
〈
ϕc(ξ1)ϕq†(ξ2)

〉
= 1

2

(
GT −GT̃ +G> −G<

)
(ξ1, ξ2),

Ga(ξ1, ξ2) = −i
〈
ϕq(ξ1)ϕc†(ξ2)

〉
= 1

2

(
GT −GT̃ −G> +G<

)
(ξ1, ξ2),

Gk(ξ1, ξ2) = −i
〈
ϕc(ξ1)ϕc†(ξ2)

〉
= 1

2

(
GT +GT̃ +G> +G<

)
(ξ1, ξ2),

which we refer to as retarded, advanced, and Keldysh components.
As our key example we consider free 1D chiral fermions ψη with Hamiltonian (2.1) at temperatures

Tη and chemical potentials eVη, and hence distribution function fη(ε) =
[
e−(ε−eVη)/(kBT ) + 1

]−1
. The

Keldysh action of such electrons is

A0[ψ, ψ̄] =
∑
η

∫
C

dt dx ψ̄η(i∂t + ivη∂x)ψη. (2.9)

11



2 Nonequilibrium Bosonization

where integration along C is generally understood as the real-time integration∫
C
dt′A(t′) =

∫ ∞
−∞

dt′
[
Af (t′)−Ab(t′)

]
.

The free Green’s functions are

G≷
0η(x, t) = − 1

2π|vη|
πTe−ieV (t−x/vη)

sinh πT (t∓ ia− x/vη)
,

with short-time cutoff a.
Now let us include interaction, encoded in the action

Aint[ψ, ψ̄] = −1
2
∑
ην

∫
C

dt dx dx′ Uην(x, x′)%η(t, x)%ν(t′x′) (2.10)

with regularized density %η(x) ≡ ψ̄η(x + 0)ψη(x). We consider the thermodynamic limit and neglect
1/L-terms. Here we encounter yet another UV regularization procedure, “point-splitting”, which can
be shown to be equivalent to the normal-ordering regularization of the previous section.
In this work different interaction models Uην will be considered. In the spinless Luttinger model

with right- and left-moving fermions η = ±, which we concentrate on in this introduction,

U+−(x, x′) = U−+(x, x′) = g2(x)δ(x− x′), U++(x, x′) = U−−(x, x′) = g4(x)δ(x− x′). (2.11)

What makes interaction, in general, nontrivial is the fact that the corresponding action Aint is
not quadratic, but biquadratic in the fermionic fields. The key idea of functional bosonization is the
observation that this quartic terms can be decoupled at the expense of introducing a new bosonic field
ϕ. Physically very transparently, it can be viewed as the mediator of the interaction (comparable to
the photon field which mediates electromagnetic interaction). The process of two electrons interacting
with each other is split into two subprocesses each of which involves only one electron and the boson.
Firstly, one of the electrons generates a “potential” ϕ (or “emits a ϕ-quantum”), which, secondly, acts
on the other electron (the latter “absorbs a ϕ-quantum”).
Formally, the “Hubbard-Stratonovich” decoupling is based on the simple integral identity

1 =
∫
DϕeiAint[ϕ] =

∫
Dϕ exp

iAint[ϕ]− i
∑
η

∫
C
dtdxϕη(x)%η(x)− iAint[ψ, ψ̄]


with Aint[ϕ] ≡ 1

2
∑
ην

∫
C

dt dx dx′ U−1
ην (x, x′)ϕη(t, x)ϕν(t, x′). (2.12)

The first equality is based on the fact that time-evolution along the full Keldysh contour is trivial in
the absence of non-classical external fields and that the Keldysh partition sum is, thus, unity. The
second equality results from the shift

ϕµ(x′) 7→ ϕµ(x′)−
∑
η

∫
dx′′ Uµη(x′, x′′)ϕη(x′′)

of the integration variable. Making use of this “fat unity”, many-body averages can be written〈
O
〉
≡
∫
DψDψ̄ eiA0[ψ,ψ̄]O[ψ, ψ̄] =

∫
DψDψ̄DϕeiA0[ψ,ψ̄,ϕ]O[ψ, ψ̄] (2.13)

12



2.2 Functional Bosonization

with the new Keldysh action

A[ψ, ψ̄, ϕ] = Aint[ϕ] +
∑
η

∫
C

dt dx ψ̄η(i∂t + ivη∂x − ϕη)ψη. (2.14)

The applicability of the Hubbard-Stratonovich decoupling is not restricted to one dimension or fermionic
systems. However, 1D allows for a further decoupling by the gauge transformation

ψf/bη (t, x) 7→ eiΘ
f/b
η (t,x) ψf/bη (t, x), ψ̄f/bη (t, x) 7→ ψ̄f/bη (t, x) e−iΘ

f/b
η (t,x)

with the condition (∂t + vη∂x)Θf/b
η (t, x) = −ϕf/bη (t, x). (2.15)

One has to resolve this gauge condition properly taking the Keldysh structure into account, which
yields (

Θf
µ

Θb
µ

)
ξ

= −
∫

dξ′
(
DT

0µ D<
0µ

D>
0µ DT̃

0µ

)
ξ−ξ′

(
ϕfµ
−ϕbµ

)
ξ′

, (2.16)

with ξ = (x, t) and real time t, or symbolically Θµ = −D0µϕµ. Here the blocks of the particle-hole
propagator D0µ satisfy the relations

(∂t + vη∂x)DT/T̃
0η (ξ, ξ′) = ±δ(ξ − ξ′),

(∂t + vη∂x)D≷
0η(ξ, ξ

′) = 0. (2.17)

In the frequency-momentum representation the retarded/advanced bare particle-hole propagator D0η
in channel η is given by

D
r/a
0η (ω, q) = i

ω± − vηq
, ω± = ω ± i0, (2.18)

Dk
0η(ω, q) =

(
1 + 2Nη(ω)

) [
Dr

0η(ω, q)−Da
0η(ω, q)

]
(2.19)

with the particle-hole pair distribution function

Nη(ω) =
∫ dε
ω
fη(ε)

(
1− fη(ε− ω)

)
=
[
eε/(kBTη) − 1

]−1
. (2.20)

The Eq. (2.19) which relates the Keldysh component Dk
0η to the particle-hole pair spectral weight

Dr
0η−Da

0η and their distribution function Nη is another example of the fluctuation-dissipation theorem.
In many-body averages (2.13) the decoupling amounts to replacing A[ψ, ψ̄, ϕ] simply by A0[ψ, ψ̄].

In addition, being a (linear) transformation of the functional integration variables ψ, ψ̄ the gauge
transformation gives rise to a (ψ,ψ̄-independent) Jacobian Z[ϕ],〈

O
〉

=
∫
DϕeiAint[ϕ]Z[ϕ]

∫
DψDψ̄ eiA0[ψ,ψ̄] O

[
eiΘψ, ψ̄e−iΘ

]
.

That Jacobian,

Z[ϕ] ≡
∫
DψDψ̄ eiA0[ψ,ψ̄,ϕ]∫

DψDψ̄ eiA0[ψ,ψ̄]+iAint[ϕ]
= e

∑
η Tr Ln[1−iG0ηϕη ] = exp

−∑
η

∞∑
n=1

i

n
Tr
[
G0ηϕη

]n , (2.21)

13



2 Nonequilibrium Bosonization

is the sum over vacuum loops with external lines corresponding to the ϕs. Logarithms “Ln” and
traces “Tr” are to be taken with respect to Keldysh times and space coordinates, G0η are the free
Keldysh Green’s functions. For the partial equilibrium situation we described in the beginning of this
section, all loops with n > 3 vanish [16, 19]. The n = 1-term is the mean-field (Hartree) contribution.
The n = 2-term is nontrivial because of the Schwinger anomaly which we encountered already in the
previous section where it gave rise to the non-vanishing commutator (2.2) of density operators. We
obtain the Jacobian

Z[ϕ] = exp

−i∑
η

%0η

∫
C
dξ ϕη(ξ)− i

1
2
∑
η

∫
C
dξdξ′ ϕη(ξ)Πη(ξ, ξ′)ϕη(ξ′)

 (2.22)

with mean charge density %0η = eVη
2π|vη | and polarization operator Παβ

η (ξ) = −iGαβ0η (ξ)Gβα0η (−ξ), α, β =
f, b. After rotation in Keldysh space and transformation into frequency-momentum representation one
obtains

Πr/a
η (ω, q) = 1

2π|vη|
vηq

ω± − vηq
, (2.23)

Πk
η(ω, q) =

(
1 + 2Nη(ω)

) [
Πr
η(ω, q)−Πa

η(ω, q)
]

(2.24)

with bosonic distribution functions (2.20).
With that the fermionic and bosonic fields ψ, ψ̄ and ϕ are effectively decoupled with actions A0[ψ, ψ̄]

and A[ϕ] = ARPA[ϕ] +AMF[ϕ] with

ARPA[ϕ] =1
2
∑
ην

∫
C
dξdξ′ ϕη(ξ)V −1

ην (ξ, ξ′)ϕν(ξ′), AMF[ϕ] = −
∑
η

∫
C
dξ %0η ϕη(ξ) (2.25)

and effective interaction V −1
ην = U−1

ην − δηνΠη. Thus only the mean density %0η and the polarizability
∝ Πη of the electronic system remain perceptible to the Hubbard-Stratonovich field ϕ.
Before concluding this section, let us illustrate the equivalence between the two bosonization tech-

niques outlined here and in the previous section. To this end we recompute the fermionic Green’s
functions

iG≷
η (ξ1, ξ2) =

〈
ψb/fη (ξ1)ψ̄f/bη (ξ2)

〉
=
∫
DϕeiA[ϕ] eiΘ

b/f
η (ξ1)−iΘf/bη (ξ2)

∫
DψDψ̄ eiA0[ψ,ψ̄] ψf/bη (ξ1)ψ̄b/fη (ξ2)

in functional bosonization. For simplicity we focus on the zero temperature limit and eVη = 0.
Since A[ϕ] is Gaussian, the respective average value

〈
ϕµ(ξ)

〉
0
and the correlator of the fluc-

tuations δϕµ(ξ) ≡ ϕµ(ξ) −
〈
ϕ(ξ)

〉
0 are simply given by

〈
ϕµ(ξ)

〉
0

=
∑

ν

∫
C dξ′ Vµν(ξ, ξ′)%0ν(ξ′) =

0 and
〈
δϕµ(ξ)δϕν(ξ′)

〉
0

= iVµν(ξ, ξ′). Further, Gaussian cumulant expansion shows
〈
eiΦ[ϕ]

〉
0

=

e

〈
iΦ[ϕ]− 1

2 δΦ[ϕ]2
〉

0 for linear functions Φ[ϕ] of ϕ and, thus,

iG≷
η (ξ1, ξ2) = exp

{
−1

2

〈[
δΘb/f

η (ξ1)− δΘf/b
η (ξ2)

]2
〉

0

}
iG≷

0η(ξ1, ξ2),
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2.2 Functional Bosonization

i.e. we are left with evaluating the phase correlators iDΘ,µν(ξ, ξ′) =
〈
δΘµ(ξ)δΘν(ξ′)

〉
. From (2.16), or

symbolically Θµ = −D0µϕµ, one obtains the relation

DΘ,µν = −D0µVµνD0ν . (2.26)

Within the Luttinger model (2.11) the retarded and advanced components of the effective interaction
read in frequency-momentum representation

V r/a
ηη (ω, q) = g4

[
ω + ηvF (1 + κ)q

] [
ω − ηvF q

]
ω2
± − u2q2 , κ ≡ 1

2πvF
g2

4 − g2
2

g4
,

V
r/a

+− (ω, q) = V
r/a
−+ (ω, q) = g2

ω2 − v2
F q

2

ω2
± − u2q2

with ω± = ω ± i0. Plasmon velocity u and Luttinger parameter K were defined in (2.6).The relation
(2.26), combined with the bare particle-hole propagator (2.18), gives then the phase correlators

D
r/a
Θ,ηη(ω, q) =− η g4

2uω
ω + ηvF (1 + κ)q

ω

[
u

u− vF
1

q − ηω±/u
− u

u+ vF

1
q + ηω±/u

(2.27)

− 2uvF
u2 − vF 2

1
q − ηω±/vF

]
, (2.28)

D
r/a
Θ,−ηη(ω, q) = − g2

2uω

[
1

q − ω±/u
− 1
q + ω±/u

]
. (2.29)

Transforming the above relations into the mixed space-frequency representation one obtains

D
r/a
Θ,ην(ω, x) = ∓2πi

ω

{
θ(±ηx)

[
c+
ην e

iηωx/u − δην eiηω/vF
]

+ θ(∓ηx) c−ην e−iηωx/u
}

(2.30)

with c±ηη = (1±K)2/(4K), c±η,−η = (1−K2)/(4K). (2.31)

Note that the prefactors are intimately linked to the Bogoliubov transformation (2.7): c+
ηη = cosh2 ζ,

c−ηη
− = sinh2 ζ, and c±η,−η = − sinh ζ cosh ζ. The Keldysh component of the phase correlator is given

by the fluctuation-dissipation theorem

Dk
Θ,ην(ω, x) =

(
1 + 2N(ω)

) (
Dr

Θ,ην(ω, x)−Da
Θ,ην(ω, x)

)
(2.32)

with bosonic distribution function N(ω), see (2.20). For simplicity we concentrate on zero temperature
where 1 + 2N(ω) = signω. Keldysh rotation then yields

D≷
Θ,ην(ω, x) =± θ(±ω)

(
Dr

Θ,ην(ω, x)−Da
Θ,ην(ω, x)

)
,

D
T/T̃
Θ,ην(ω, x) =± θ(±ω)Dr

Θ,ην(ω, x)± θ(∓ω)Da
Θ,ην(ω, x)

(2.33)

In the real-time representation (x, t) these phase-phase correlation functions can be decomposed into
plasmon (moving with velocity u) and bare particle-hole pair (having velocity vF ) contributions

iDαβ
Θ,ην(t, x) = c+

ην Lαβηu (t, x)− c−ην L
αβ
−ηu(t, x)− δην LαβηvF (t, x) (2.34)
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2 Nonequilibrium Bosonization

where for given velocity v the functions Lαβv (t, x) satisfy the equations

∂tL≷v (t, x) = −(t∓ ia− x/v)−1, ∂tLT/T̃v (t, x) = −(t∓ ia sign x/v − x/v)−1.

This follows from Eq. (2.33) and Fourier transformation from ω to t, taking into account the high-
energy cutoff Λ ∼ a−1. We choose the solutions

L≷v (t, x) = ln ∓ia
t∓ ia− x/v

, LT/T̃v (t, x) = ln ∓ia sign x/v
t∓ ia sign x/v − x/v . (2.35)

It is worth mentioning that the appearance of both plasmon and bare particle-hole pair “light-cone” sin-
gularities in our phase-phase correlation function is a characteristic feature of the functional bosoniza-
tion approach. Here, the latter exactly cancels the free electron singularity from the noninteracting
Green’s function, yielding

iG≷
η (ξ = ξ1 − ξ2) = ∓i

2πvFa

(
∓ia

t− ηx/u∓ ia

)1+γ (
∓ia

t+ ηx/u∓ ia

)γ
, (2.36)

which is indeed the zero temperature limit of Eq. (2.8). Before turning to the generalization of the
presented approach to quantum wire networks in Chapter 3, we conclude the present chapter with the
nonequilibrium extension of the operator bosonization technique.

2.3 Nonequilibrium Bosonization

The conventional bosonization approach of Section 2.1 was extended within the Keldysh framework
in Refs. [13, 14] to arbitrary nonequilibrium situations in the absence of scattering between different
fermion species. The bosonization identities for field operators (2.3) and the Hamiltonian (2.5) are
exact operator identities and do not depend on the many-body state of the system, which is encoded
in the density operator ρ̂. In general nonequilibrium situations where it is not a simple function of
the Hamiltonian bosonization of ρ̂ is far from straightforward. Even a free nonequilibrium fermionic
system is in general not garanteed to be mapped to a Gaussian bosonic theory as we will see in this
section.
Rather than bosonizing the density operator explicity, one derives the bosonic Keldysh action which

likewise encodes the full many-body state. Knowing that the mapping to bosonic degrees of freedoms
(density %) is exact one finds the bosonic action by

eiA[%] =
∫
DψDψ̄ eiA[ψ,ψ̄]δ[ψ̄ψ − %]

=
∫
DV

∫
DψDψ̄ eiA[ψ,ψ̄]−iV

(
ψ̄ψ−%

)
.

We resort here on a formal notation where e.g. V % ≡
∫
Cdξ V (ξ)%(ξ). Note that in the thermodynamic

limit and in the absence of scattering between different fermion species, Klein factors in the action are
negligible. Bosonization is completed, once ψ, ψ̄-fields are integrated out. This is straightforwardly
achieved if interaction is absent, whence the action is Gaussian in fermionic fields. In the presence of
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2.3 Nonequilibrium Bosonization

interaction one can decouple quartic terms by a Hubbard-Stratonovich transformation as described in
the previous section. Let us consider this general situation:

eiA[%] =
∫
DV

∫
DψDψ̄DϕeiA0[ψ,ψ̄]+iAint[ϕ]−i(V+ϕ)ψ̄ψ+iV %

=
∫
DVDϕ

(∫
DψDψ̄ eiA0[ψ,ψ̄]−iV ψ̄ψ

)
eiAint[ϕ]+i(V−ϕ)%

=
∫
DVDϕZ[V ] ei(V−ϕ)% eiAint[ϕ]

=
∫
DV Z[V ] eiV %eiAint[%] (2.37)

where Aint[ϕ] is defined in (2.12) and

Aint[%] = −2
∑
ην

∫
dξdξ′ %cη(ξ)Uην(ξ, ξ′)%qν(ξ′).

Of course, A[%] is the bosonized version of Aint[ψ, ψ̄]. For what follows it is convenient to work in the
rotated Keldysh representation %c/qη ; time integration,

∫
dξ =

∫
dtdx is to be performed along the real

axis.
The partition sum Z[V ] quite obviously coincides with the Jacobian Z[ϕ] of the gauge transformation

in the previous section (with HS field ϕ replaced by the “source field” V ) ,(2.22), and is the sum of
vacuum loops with external field V . In the general nonequilibrium situation the Dzyaloshinskii-Larkin
theorem does not apply and higher-order loops contribute. It is then more convenient to represent
Z[V ] in a different form which exposes the dependence on the Keldysh field components of ϕ more
explicitly. To this end one makes use of an identity derived by [20] which relates many-body traces to
single-particle determinants. Since we will derive these results in a more general setup in Chapter 3
we skip the details here. The partition sum reads

Z[V ] =
∏
η

e−2iV cη ΠaηV
q
η Z̃[V q

η ], Z̃[V q
η ] = Det

[
1 +

(
eiδη − 1

)
fη

]
with the time-dependent phase

δη(t) = −2|vη|−1
∫ ∞
−∞

dxV q
η (x, t+ x/vη) (2.38)

and the distribution functions fη(ε) of fermion species η.
Remarkably, summing up all vacuum loops is thus equivalent to evaluating a 1D functional de-

terminant which purely depends on the quantum component V q
η . Solely the Schwinger anomalous

contributions to the 2nd-order loop which couple to V c
η are not captured by the determinant. With

V c
η appearing only linearly in the exponent, the V -integral (2.37) can be exactly calculated:

eiA0[%] = eiAint[%]
∏
η

e2i%cηΠa−1
η %qη Det

[
1 +

(
eiδη − 1

)
fη

] ∣∣∣∣∣∣
V qη =Πa−1

η %qη

.
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2 Nonequilibrium Bosonization

For a given density configuration %qη the counting phases δη are related via (2.38) to the source fields

V q
η (x, t) = −2π|vη|

[
%qη(x, t) +

∫ x/vη

t0

dt′ %̇qη(vηt′, t)
]

(2.39)

where t0 is an arbitrary integration constant, that will turn out to be unimportant. This completes
the bosonization of the Keldysh action. Very conveniently it has an especially simple dependence on
%cη that will enable us to perform %-integration exactly.
To illustrate this we consider the fermionic Green’s function G≷

η . Using that the relation %cη = η
2π∂xφ

c
η

implies a linear dependence of φcη on %cη, say,

φcη(x, t) = 2πη
∑
ν

∫
dt′dx′ δ(t− t′)θ(x− x′)δην%cν(x′, t′)

≡
∑
ν

∫
dt′dx′ Jη,x,t(x′, t′, ν)%cν(x′, t′), with η

2π∂x
′Jη,x,t(x′, t′, ν) = −δηνδ(t− t′)δ(x− x′)

the Green’s function can be written

G≷
η (ξ1, ξ2) = − i

2πa

〈
eiφ

b/f
η (ξ1)e−iφ

f/b
η (ξ2)

〉

= − i

2πa e
±i(Jηξ1+Jηξ2 )%q

∏
µ

Det
[
1 +

(
eiδµ − 1

)
fµ

] ∣∣∣∣∣∣
(U−Πa−1)%q= 1

2 (Jηξ1−Jηξ2 )

(2.40)

with counting phases δη related by (2.38) and (2.39) to the advanced solution %qµ of(
∂t + vµ∂x

)
%qµ(ξ) +

∑
ν

∫
dx′ µ2π∂xUµν(x, x′)%qν(x′, t) = 1

2δµη
[
δ(ξ2 − ξ)− δ(ξ1 − ξ)

]
.

Advancedness of the quantum density configuration, %q(x, t) = 0 for t → +∞ (in the above example
specifically t > t1, t2), is a general feature of the theory. Taking this into account (2.38), (2.39) can be
combined to

δη(t) = 4π|vη| lim
t̃→−∞

∫ t0

t̃−t
dτ %qη(vητ, t̃). (2.41)

The phase is thus sensitive to the asymptotic behavior of the charge density in the incoming leads.
The 1D fermionic field theories presented in this chapter are based on single-particle spectra with-

out lower band edges. While the infinitely many artificial negative-energy states do not contribute
to the low-energy physics, they lead to UV divergent Fredholm determinants in (2.40). A possible
regularization scheme is discretization of the time coordinate t in steps ∆t = π/Λ which amounts to
the introduction of the “hard” UV cutoff Λ and a restriction of energies to the range (−Λ,Λ]. The
discretization turns operators g(t, t′) into (possibly infinite) matrices

(
gjk

)
. The resulting observables,

in our example G>η (ξ1, ξ2), will have a slow dependence on positions and times ξj and other low-energy
parameters like temperatures and voltages which is independent of the regularization scheme. Fast
oscillations, set by the energy scale Λ, in contrast, are nonuniversal and sensitive to the regularization
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2.3 Nonequilibrium Bosonization

scheme, and usually not of interest. To be consistent with the previous sections where the equilibrium
Green’s functions G>0η were obtained with a “smooth” cutoff procedure, one can write

G≷
η (ξ1, ξ2) = G≷

0η(ξ1, ξ2)
∏
µ

∆̄µ. (2.42)

Here, the determinant is normalized with respect to equilibrium (with distribution function f0),

∆̄µ ≡
Det

[
1+

(
eiδµ − 1

)
fµ

]
Det

[
1+

(
eiδµ − 1

)
f0

] . (2.43)

Being UV convergent the ratio is insensitive to the regularization scheme. We will later apply the
“hard” cutoff regularization (time discretization) outlined above.
To be specific, let us turn to the spinless Luttinger model with U+−(x, x′) = U−+(x, x′) = g2(x)δ(x−

x′), U++(x, x′) = U−−(x, x′) = g4(x)δ(x − x′) and η = +. The equations of motion for the density
then read∂t + vF∂x

(
1 + g4(x)

2πvF

) %q+(x, t) + vF∂x
g2(x)
2πvF

%q−(x, t) = 1
2
[
δ(ξ2 − ξ)− δ(ξ1 − ξ)

]
∂t − vF∂x(1 + g4(x)

2πvF

) %q−(x, t)− vF∂x
g2(x)
2πvF

%q+(x, t) = 0.

(2.44)

In principle, the interaction parameters g2, g4 may have arbitrary time and position dependences. In
Ref. [14] e.g. the effect of sharp boundaries between the interacting wire and the noninteracting leads
was studied, at which plasmons are partially reflected. Let us focus here on a simpler situation. The
main purpose of this introductory treatment is to relate the presented approach to the previously
shown bosonization techniques with which we computed the Green’s functions of an infinitely long
wire. To this end we assume the wire to be adiabatically connected to the leads, such that ∂xgj(x) = 0
are negligible, the equations of motion can be decoupled by the Bogoliubov transformation (compare
with (2.7))(

%q+
%q−

)
=
(

cosh ζ sinh ζ
sinh ζ cosh ζ

)(
%̃q+
%̃q−

)
, with cosh ζ(x) = 1 +K(x)

2
√
K(x)

, sinh ζ(x) = −1−K(x)
2
√
K(x)

,

which yields the equations for the right- and left-moving plasmonic modes(
∂t + ∂xu(x)

)
%̃q+(ξ) = 1

2c
[
δ(ξ2 − ξ)− δ(ξ1 − ξ)

]
, c ≡ cosh ζ,(

∂t − ∂xu(x)
)
%̃q−(ξ) = −1

2s
[
δ(ξ2 − ξ)− δ(ξ1 − ξ)

]
, s ≡ sinh ζ.

(2.45)

Luttinger parameter and plasmon velocity are related to the coupling strengths via (2.6). The Green’s
function G+(ξ1, ξ2) measures the response of the interacting system to the injection of a right-moving
electron at ξ1 and its later extraction at ξ2. In the presence of interaction the corresponding charge
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2 Nonequilibrium Bosonization

excitation splits into a right-moving and a left-moving plasmonic excitation %̃+ and %̃− with relative
weights (1 +K)/2 and (1−K)/2, respectively.
Let us consider exemplarily the charge response to a single source,

(
∂t ± ∂xu(x)

)
%̃± = Q

2 δ(t− t̄)δ(x− x̄).

The advanced solution, which vanishes for t > t̄, is

%̃±(x, t) = −Q2
vF
u(x) δ

[∫ x

x̄
dx′ vF

u(x′) ∓ vF (t− t̄)
]
θ(t̄− t).

We are interested in the asymptotic behavior of %̃± for t→ −∞, i.e. in the incoming leads, ±x→ −∞,
where interaction is assumed to be absent and u(x → ±∞) = vF . Let u(x) interpolate adiabatically
between the free and the full value vF and ū = u(x̄), respectively, such that in a broad region which
contains x = x̄ (and all possibly relevant sources) and, say, x = 0, the function u(x) takes on the
constant value ū, and for very negative or positive coordinates, say, x ≤ x− and x ≥ x+, it is
constantly u(x) = vF (see Fig. 2.2). For ±x→ −∞ it is

%̃±(x, t) = −Q2 θ(t̄− t)δ
[
x− x̃± −

vF
ū
x̄∓ vF (t− t̄)

]
with x̃± ≡ x∓ −

∫ x∓

0
dx′ vF

u(x′) .

u

vF

x- x+x1 x2x
x

uHxL

Figure 2.2: Sketch of local plasmon velocity u(x) in a Luttinger liquid, adiabatically connected
to noninteracting leads. Regions where u(x) interpolates between ū and vF are gray
shaded

The corresponding counting phase (2.41) is

δ̃±(t) = −2πQ θ(t− t̄± x̄/ū± x̃±/vF ).

In our example of the Luttinger liquid model (2.44), (2.45) the phases read

δ+(t) = −2πc̄
[
θ(t− t2 + x2/ū+ x̃+/vF )− θ(t− t1 + x1/ū+ x̃+/vF )

]
,

δ−(t) = 2πs̄
[
θ(t− t2 − x2/ū− x̃−/vF )− θ(t− t1 − x1/ū− x̃−/vF )

] (2.46)

with c̄ = cosh ζ̄, s̄ = sinh ζ̄, and ζ̄ = ζ(x1) = ζ(x2). Fig. 2.3 shows the corresponding density
trajectories %q± in response to the sources at ξ2 and ξ1, and depicts pictorially how the phase (2.41)
“counts” the charge in the incoming leads.
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2.3 Nonequilibrium Bosonization
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∆+�2Π

vFt

∆-�2Π

c
-s

Figure 2.3: Sketch of the density trajectories %q±. Right-moving densities are depicted blue, left-
moving ones purple. Lines correspond to traces of peaks with different weights c̄, −s̄.
Solid lines correspond to positive, dashed ones to negative weights. In the gray shaded
region u(x) interpolates between ū and vF such that trajectories bend.

Evaluation of the Fredholm determinant

In the Luttinger liquid and some other interaction models, the phases δµ(t) are, quite generically,
piecewise constant functions. In the example of the Luttinger liquid Green’s function, which we
consider, they are constant on some interval Iµ = [t̄, t̄ + τ ] ⊂ R and vanish outside. If we denote by
1Iµ the characteristic function of Iµ, 1Iµ(t) = 1 if t ∈ Iµ and 1Iµ(t) = 0 otherwise, then the phases
are of the form δη(t) = δ̄µ1Iµ(t) with some constants δ̄µ. Introducing the projectors Pµ which acts on
functions φ(t) by multiplication with 1Iµ and thus satisfies P 2

µ = Pµ it is

Z̃µ[V q
µ ] = Det

[
1 + Pµ

(
eiδ̄µ − 1

)
fµ

]
= Det

[
1 + Pµ

(
eiδ̄µ − 1

)
fµPµ

]
. (2.47)

The operator g ≡ 1+ Pµ

(
eiδ̄µ − 1

)
fµPµ has a temporal “block structure” in the sense

g(t1, t2) =

 δ(t1 − t2) +
(
eiδ̄µ − 1

)
fµ(t1 − t2) ≡ g̃(t1 − t2), t1, t2 ∈ Iµ,

δ(t1 − t2), otherwise.
(2.48)

It is nontrivial only if both t1 and t2 lie in the interval Iµ, in which case it depends solely on the
difference t1 − t2. Its determinant will be given by the nontrivial block g̃(t1 − t2). When applying the
above mentioned hard cutoff procedure and discretizing times, tj = t̄ + (j − 1)π/Λ, the operator g̃ is
converted into a large (but finite) N×N -matrix

(
gjk

)
1≤j,k≤N

, N = τ/∆t = Λτ/π, which is of Toeplitz
form: Its elements depend on index differences, gjk = gj−k. Matrices of this form are ubiquitous in
mathematical physics where they appear e.g. in the context of magnetism, random matrix theory,
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2 Nonequilibrium Bosonization

and full counting statistics. Gutman et al.[21] showed that observables in a vast range of problems
of nonequilibrium interacting fermions (and bosons) in 1D can be expressed in terms of Toeplitz
determinants ∆N = det

(
gi−j

)
1≤i,j≤N

and computed their large-N asymptotic behavior. Generalizing
known mathematical results (Szegö theorem, Fisher-Hartwig conjecture) the authors were also able to
identify subleading contributions which are crucial to obtain an oscillatory dependence of ∆N on N
[21, 22]. The results are summarized in Appendix A.
They are applicable at zero temperature when distribution functions fµ(ε) are piecewise constant

and exhibit sharp jumps. In partial equilibrium each of them has one single-step, fµ(ε) = θ(eVµ − ε),
at corresponding chemical potentials eVµ. Using (A.9) and (2.46) the Luttinger liquid Green’s function
(2.40) is

G≷
+(ξ = ξ1 − ξ2) ∝ Λ−2γ e

−ic̄(Λ+eV+)(t−x/ū)[
t− x/ū

]1+γ
eis̄(Λ+eV−)(t+x/ū)[

t+ x/ū
]γ

with equilibrium exponents, γ ≡ (1 −K(0))2/(4K(0)) = s̄2. The results agrees with those obtained
in the previous sections, Eqs. 2.8 and 2.36, up to the fast oscillating terms eiΛt which stem from the
hard cutoff Λ. By making use of the normalization (2.43) instead we obtain

G≷
+(ξ = ξ1 − ξ2) = ∓ia

2πavF
e−ic̄eV+(t−x/ū)+is̄eV−(t+x/ū)

(
∓ia

t− x/ū∓ ia

)1+γ (
∓ia

t+ x/ū∓ ia

)γ
with short-time cutoff a ∼ Λ−1. Of course, the real power of the considered bosonization approach
is reveiled in true nonequilibrium situations, especially in combination with spatially or temporally
varying interacting strength where interaction gradients lead to backscattering of plasmons. In Chapter
7 we will apply the method to the problem of an interaction quench in a nonequilibrium Luttinger
liquid.

22



3 Chapter 3

Functional Bosonization of Quantum Wire
Networks

In this chapter we develop a general approach to nonequilibrium nanostructures formed by one-
dimensional channels which are coupled by tunnel junctions or impurity scattering. Possible one-
dimensional elements are semiconducting and metallic quantum wires, carbon nanotubes and quantum
Hall edge states.

The standard analytical approach to interacting one-dimensional systems (Luttinger liquids) is
bosonization. In Chapter 2 we presented the commonly used operator bosonization technique and
its recently developed nonequilibrium generalization. The latter provides an elegant technique to treat
setups where the fermionic nonequilibrium distribution function is created outside the interacting re-
gion and “injected” into the Luttinger liquid. We will focus on a more complicated situation when the
tunneling or the impurity backscattering takes place inside the interacting part of the system. Such
coupling terms represent in general a very serious complication for the standard bosonization, and we
are not aware of any way to solve the problem exactly. We choose instead an alternative route based on
the functional bosonization formalism (see Sect. 2.2) that retains both fermionic and bosonic degrees of
freedom. Combining the functional bosonization idea with the Keldysh nonequilibrium framework, we
derive the Keldysh action for the considered class of problems. This action has a structure reminiscent
of that of the generating function of the full counting statistics[23–25]. Our action generalizes that of
Ref. [20] where a local scatterer under nonequilibrium conditions was explored.

As we will illustrate in Chapter 6 the formalism can be used for an exact treatment of specific setups.
In general, this may not be possible and we present here an approximation scheme which applies for
weak tunneling. The developed real-time instanton (saddle-point) method will allow us to determine
Keldysh Green functions characterizing physical observables under interest (tunneling density of states,
distribution functions, current-voltage characteristics, etc.).

While this chapter concentrates on the formal aspects of the model, a number of important appli-
cations such as quantum Hall interferometers and quantum wires with impurities will be the subject
of the remainder of this thesis.

The results presented here have been published in Ref. [26].
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3 Functional Bosonization of Quantum Wire Networks

3.1 Model and Keldysh Action

Let us consider a general model of a ballistic conductor which can be represented as a network of one-
dimensional (1D) chiral channels and point scatterers, as shown in Fig. 3.1. It is assumed that electrons
propagate along the channels, denoted by lower Greek index µ, with constant velocity vµ from source
to drain reservoirs located at coordinates xSµ and xDµ , respectively. In the physical world such channels
are realized by quantum Hall (QH) edge states or right-/left-moving 1D states in quantum wires. At
point scatterers, denoted by Latin index j, instantaneous tunneling between different channels occurs,
which is described by the scattering matrix sj . Typical examples of scatterers are quantum point
contacts (QPCs) or impurities in nanowires. A somewhat less trivial type of scatterer is a multi-
terminal junction that can be realized by a quantum dot under assumption that its Thouless energy
is well above all typical energy scales of the problem such as the temperature and the voltage.
We also require that each chiral channel in the absence of tunneling is connected to one source and

one drain reservoir (rather than forms a loop).
Albeit quite simple, our quantum-wire network model covers a broad class of mesoscopic ballistic

devices, including QH interferometers and quantum wire junctions (See Fig. 3.1). We note also that
the importance of network models has been well appreciated in the context of the integer QH effect,
where the Chalker-Coddington network model [27] serves as a highly useful starting point for numerical
and analytical investigation of the QH transition.

s1 s2

a L

s

bL

Figure 3.1: Two possible realizations of our model: (a) Mach-Zehnder quantum Hall interfero-
meter and (b) junction of three quantum wires. Channels are represented by solid
lines, point scatterers by white circles, reservoirs by boxes. Arrows indicate directions
of motion.

In the absence of tunneling, i.e. when all scattering matrices are trivial, sj = 1, different chiral
channels are fully disconnected from each other. Unter the assumption that each channel is in a sepa-
rate equilibrium state, interaction can be taken into account by the functional bosonization approach
presented in Sect. 2.2.
Throughout this chapter we consider the zero temperature limit with different channels η having

possibly different chemical potentials eVη. In time representation the distribution functions of source
reservoirs η read

fη(t, t′) = fη(t− t′) = e−ieVη(t−t′)f0(t− t′)

with the equilibrium Fermi distribution function f0(ε) = θ(−ε). For future reference we also define the
“hole” distribution function f>0 (ε) = 1− f0(ε) and write also f<0 ≡ f0. In time representation we have

f≶0 (t) = ± i

2π
1

t± ia
(3.1)
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3.1 Model and Keldysh Action

with the short-time cutoff a ∼ Λ−1.
Recapitulating Sect. 2.2, we remind us that interaction is encoded in an action Aint[ψ, ψ̄], cf. (2.10),

which is biquadratic in fermionic fields ψ, ψ̄. It can be replaced by terms which are bilinear in ψ,ψ̄ via a
Hubbard-Stratonovich transformation at the expense of introducing a mediating (bosonic) field ϕ. The
latter can be further decoupled from the fermionic degrees of freedom by a gauge transformation (2.15).
The corresponding Jacobian (2.22) leads to corrections to the bosonic action which in the absence of
tunneling is quadratic in ϕ and takes into account screening in random-phase approximation (2.25),

A0[ϕ] = 1
2
∑
ην

∫
C
dξdξ′ ϕη(ξ)V −1

ην (ξ, ξ′)ϕν(ξ′)−
∑
η

∫
C
dξ %0η ϕη(ξ) (3.2)

with the effective interaction V −1
µν = U−1

µν − δµνΠµ, the polarization operators (2.23),(2.24), and the
mean charge density %0η = eVη/(2π|vη|).
In Sect. 2.3 we observed that the Jacobian can contain higher-order contributions, which are encoded

in a functonal determinant, if the 1D electrons are not in an equilibrium state. In this chapter we
find a similar behavior for the connected quantum network when at least one node is characterized
by a non-trivial scattering matrix sj 6= 1. For the case of a single compact scatterer such an action
has been constructed in Ref. [28] with the use of the nonequilibrium Green’s function method. The
result bears a strong resemblance with the solution of the problem of full counting statistics [20, 23].
In this chapter we generalize this approach to the situation with many scatterers. It turns out that the
Keldysh action in this case can be written in terms of a full time-dependent single-particle scattering
matrix (S-matrix) of the system in a given configuration of field ϕα, which we denote Sα = S[ϕα](t, t′),
where α = f/b is the Keldysh index. Let us emphasize that the S-matrix is nonlocal in time and takes
different values on the forward and backward branches of the Keldysh contour. Our result reads:

A[ϕ] = 1
2
∑
µν

∫
C

dξ dξ′ ϕµU−1
µν ϕν −

∑
µ

∫
dξ dξ′ (ϕcµ, ϕqµ)ξ

(
0 Πa

µ(ξ − ξ′)
Πr
µ(ξ − ξ′) 0

)(
ϕcµ
ϕqµ

)
ξ′

− i ln Det
[
1− f + S[ϕb]†S[ϕf ]f

]
. (3.3)

The last term in Eq. (3.3) is a functional determinant with respect to (real) time and channel indices.
It is understood that f in the expression for the corresponding operator has the structure fµν(t, t′) =
δµνfµ(t − t′), i.e., it is diagonal in channel representation, with fµ(t) being the Fourier transform
of the source distribution function connected to channel µ. While the Keldysh components Πk

µ of
the polarization operators are encoded in the functional determinant in (3.3), the anomalous terms
Πr/a
µ (related to the Schwinger anomaly) are represented by the second term. It is written in the rotated

Keldysh representation, ϕc(q) = (ϕf ± ϕb)/2, and integration is performed along the real time axis.
A detailed derivation of the result (3.3), which employs ideas of Ref. [20], is presented in Sect. 3.4.1.

In view of the importance of this result, we give also its alternative proof (Sect. 3.4.2), which follows
closely the method of Ref. [28].

Construction of Scattering Matrix

Let us now discuss how the S-matrix for the systems under consideration is constructed. The elements
of Sανµ(t, t′) give the amplitude that a wave packet incident from source µ at time t′ leaves the system
at time t through the drain ν. They are sums of amplitudes Sανµ(t, t′) =

∑
pA

(p)α
νµ (t, t′) over all possible

paths p formed by elements of the network.
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Figure 3.2: Network built out of four channels µ, κ, ν, λ and point scatterers 1, 2, 3, 4. Counting
fields measure outgoing currents. Along interior parts of channels classical phases
φµ/κ/ν , e.g. due to magnetic field, are accumulated. An exemplary path p is indicated
by a dashed line.

To see how the amplitudes A(p)α
νµ (t, t′) are constructed let us consider Fig. 3.2, which shows an

exemplary path p through a network of channels and point scatterers. It consists of an alternating
sequence of two types of processes:

a. Electron propagation in the potential ϕαµ between xi and xj , leading to the accumulated phase

ϑαµ(xj , xi; t)(t) ≡ −v−1
µ

∫ xj

xi
dxϕαµ(x, t− (xj − x)/vµ). (3.4)

In addition to the Hubbard-Stratonovich field ϕαµ, there may be other time-independent phases φαµ
(e.g., induced by a magnetic field) contributing to Eq. (3.4). Note that ϑαµ(x, xi) satisfies the same
differential equation (∂t + vµ∂x)ϑαµ(x, xi; t) = −ϕαµ(x, t) as Θα

µ(x, t), but has a simpler (“incomplete”)
Keldysh structure which involves only the retarded/advanced components of the bare particle-hole
propagator D0µ. To take a finite flight time of electron between xi and xj into account, we introduce
a “delay operator”

∆µ(xj , xi; t′, t) = δ(t′ − t− (xj − xi)/vµ).

Then the amplitude of this process reads

Mα
µ(xj , xi; t, t′) ≡ eiϑαµ(xj ,xi;t)∆µ(xj , xi; t, t′). (3.5)

Indeed, consider the 1D version of the Schrödinger equation on a directed link xi → xj ,

i∂tψµ = (−ivµ∂x + ϕαµ)ψµ.

Using the definition of the phase (3.4), this equation can be solved independently on each branch of
the Keldysh contour yielding the relation

ψµ(xj , t) = eiϑ
α
µ(xj ,xi; t)ψµ(xi, t− (xj − xi)/vµ), (3.6)

which implies that the scattering matrix is given by Eq. (3.5).
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3.2 Weak Tunneling Expansion

b. Scattering/tunneling at point scatterer j: The amplitude of instantaneous scattering from chan-
nel µ to ν is

sjνµ(t′, t) = sjνµδ(t′ − t).

Passing the charge detector at drain µ, which is described by the counting field χµ. As a
special variant of a., our formalism includes the theory of full counting statistics. A counting field
residing in the drain lead µ measures the current flowing into that drain. The corresponding amplitude
is

Xαµ (t′, t) = e−i
α
2 χµδ(t′ − t).

Then the action (3.3) enables us to express the cumulant generating function of the network as a
functional integral over ϕ,

Z(~χ) =
∫ ∏

µ

Dϕf/bµ (x, t) exp
{
iA(ϕ, ~χ)

}
, (3.7)

where the vector ~χ combines the counting fields χµ in all drains.
Finally, the amplitude A(p)α

νµ of a path p is the path-ordered (real) time convolution (“latest to the
left”) of the amplitudes of its constituent processes. As an example, the amplitude indicated by the
dashed line in Fig. 3.2 reads

A(p)α
νµ (t, t′) =

[
Xαν Mα

ν (xDν , x2
ν) s2

νκ Mα
κ(x2

κ, x
1
κ) s1

κµ Mα
µ(x1

µ, x
S
µ)
]

(t, t′)

= δ(t−t′−τ) e−i
α
2 χν+iφκ s2

νκs
1
κµ exp

{
iϑαν (xDν , x2

ν ; t) + iϑακ(x2
κ, x

1
κ; t− τ3) + iϑαµ(x1

µ, x
S
µ ; t− τ3 − τ2)

}
,

where τ1/2/3 denote the flight times of the subpaths xSµ → x1
µ, x1

κ → x2
κ, x2

ν → xDν , and τ = τ1 + τ2 + τ3
is the total flight time.

3.2 Weak Tunneling Expansion

Due to the complex temporal behavior of the scattering matrix analytical evaluation of the functional
determinant (3.3) is not feasible in general. (Chapter 6 deals with an example which can be treated
exactly.) An approximate treatment is possible if weak tunneling at the point scatterers is assumed
(i.e. the scattering matrix sjνµ close to δνµ), and the ultimate goal of this section is the expansion of
the action in the tunneling strength. Since in the absence of tunneling the network is described by the
Gaussian action (3.2), one can introduce the tunneling action At[ϕ], so that A[ϕ] = A0[ϕ] + At[ϕ],
where the expansion of At[ϕ] starts from second-order terms with respect to the tunneling amplitudes
at the point scatterers. In Sect. 3.4.3 we show that an exact representation of At[ϕ] is given in terms
of a modified (“regularized”) functional determinant

At[ϕ] = −i ln Det
[
1− f + S̃b†S̃ff

]
. (3.8)

The new, “regularized” scattering matrix S̃ here is constructed similarly to S. Each of its elements
S̃ανµ(t, t′) =

∑
p Ã

(p)α
νµ (t, t′) is a sum over the same paths p which contribute to Sανµ(t, t′) and connect

the source µ with the drain ν. Full and regularized amplitudes, A(p)
νµ and Ã

(p)
νµ respectively, differ in

the partial amplitudes assigned to the elementary processes a. and b. which constitute a path p:
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3 Functional Bosonization of Quantum Wire Networks

a. Propagation between xi and xj . Only the time delay is taken into account:

M̃α
µ(xj , xi) = ∆µ(xj , xi),

while phase accumulation is shifted to

b. Tunneling at point scatterers j. The off-diagonal tunneling amplitudes become “dressed” by
tunneling phases Φα

νµ(xj , t) ≡ Θα
µ(xjµ, t)−Θα

ν (xjν , t):

s̃jανµ(t, t′) = eiΦ
α
νµ(xj ,t)sjνµδ(t− t′).

The phases Θµ = −D0µϕµ are defined as in Sect. 2.2 and can be modified by additional time-
independent phase contributions due to e.g. magnetic or counting fields as follows. If the additional
phase accumulated by an electron which propagates along a channel µ from a position x to the drain
lead µ is denoted as φαµ.out(x), then the phase Θα

µ is modified according to

Θα
µ(x, t) 7→ Θα

µ(x, t)− φαµ.out(x).

In our previous example, Fig. 3.2, the regularized scattering amplitudes read

s̃1α
κµ(t, t′) = eiΦ

α
κµ(x1,t)−i(φµ−φκ)+iα2 (χµ−χκ)s2

κµδ(t− t′),

s̃1α
νκ(t, t′) = eiΦ

α
νκ(x2,t)+iα2 (χκ−χν)s2

νκδ(t− t′).

The regularized scattering matrix becomes trivial in the “clean” limit, S̃ = 1, since all effects of interac-
tion are now contained in the phases of the off-diagonal elements of the regularized scattering matrices
s̃jνµ of connectors. Thus Eq. (3.8) can be expanded in (even) powers of the tunneling amplitudes:

At[ϕ] = i

∞∑
n=1

1
n

Tr
[(
1− S̃b†S̃f

)
f

]n
.

We are now going to elaborate on the second-order terms in this series.

Second Order Expansion

Let us introduce the notation P ≡ S̃b†S̃f . Up to third order corrections in the tunneling amplitudes
[that we denote as O(tun3)] the tunneling action is

At[ϕ] =iTr
[
(1− P)f + 1

2(1− P)f(1− P)f
]

+O(tun3)

=iTr

(1− P)µµfµ + 1
2
∑
µ 6=ν
PµνfνAνµfµ

+O(tun3). (3.9)

In the last expression, the trace is only taken with respect to time. To reduce the tunneling action to
this form, we used (1− P)µµ = O(tun2) and Aνµ = O(tun).
It can be shown (see Sect. 3.4.4 for a detailed derivation) that At acquires contributions from paths

which start in a certain source reservoir, evolve forward and backward in time, undergoing in total
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3.3 Real-Time Instanton Method

exactly 2 tunneling events, and eventually return to the original source. Such paths involve exactly
2 different channels, µ and ν. Thus we can classify all paths according to the pair (µ, ν) of channels
µ 6= ν and the pair (i, j) of scatterers (possibly equal) at which the tunneling takes place: µ → ν at
i and ν → µ at j. Of course, the class (ij;µν) coincides with the class (ji; νµ). The second order
expansion of the tunneling action then is a sum over these classes:

At[ϕ] = −i
∑

(ij;µν)

∫
dt1dt2

(
e−iΦ

f
µν(xi,t1) e−iΦ

b
µν(xi,t1)

)( ΠT
ij;µν(t12) −Π<

ij;µν(t12)
−Π>

ij;µν(t12) ΠT̃
ij;µν(t12)

)eiΦfµν(xj ,t2)

eiΦ
b
µν(xj ,t2)

 ,

(3.10)

t12 ≡ t1 − t2, where the tunneling polarization operators are given by

Π≷
ij;µν(t) = −siνµs̄jνµ ei∆φ

ij
µνe±i(χµ−χν)f≷µ (t+ τ jµ.in − τ

i
µ.in)f≶ν (τ iν.in − τ

j
ν.in − t), (3.11)

ΠT/T̃
ij;µν(t) =

[
θ(±t)Π>

ij;µν(t) + θ(∓t)Π<
ij;µν(t)

]
χ≡0

, (3.12)

where τkλ.in is the flight time from the source to the scatterer k along a channel λ, τkλ.in = (xkλ−xSλ)/vλ.
We have also taken into account counting fields in the drain leads (which are not contained in ΠT/T̃

ij;µν)
and classical phases,

∆φijµν ≡ φν.out(xi)− φµ.out(xi)− φν.out(xj) + φµ.out(xj).

In the case i = j we will also use the convention

ΠT
ii;µν(t) = ΠT̃

ii;µν(t) = 1
2

[
Π>
ii;µν(t) + Π<

ii;µν(t)
]
. (3.13)

The comparison of this expression with the Eq. (3.12) shows that they differ from each other by
a singular term proportional to sign(t)h(t)δ(t) = πδ2(t), where we put h(t) = f>0 (t) − f<0 (t). It
gives some constant (albeit infinite) contribution to the tunneling action (3.10) and therefore both
representations for ΠT/T̃

ii;µν are equivalent.

3.3 Real-Time Instanton Method

On the level of the second order expansion, the action At[ϕ] is expressed in terms of the tunneling
phases Φ, which are linear functionals of ϕ:

Φµν(ξ) =
∑
λ

∫
C

dξ′Dµν;λ(ξ, ξ′)ϕλ(ξ′), Dµν;λ ≡ D0µδµλ −D0νδνλ. (3.14)

The action At[ϕ] is non-Gaussian in Φ and, in fact, is quite similar to the Ambegaokar-Eckern-Schön
(AES) action [29]. The difference is that the kernel appearing in Eq. (3.10) is not only non-local
in time (as in the case of AES) but in general is non-local in space as well. In view of the non-
Gaussian character of the action an exact evaluation of physical quantities does not seem feasible in
general. For this reason, we will use a saddle-point approximation that catches correctly the relevant
interaction-induced physics, including both the renormalization and the dephasing phenomena.
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3 Functional Bosonization of Quantum Wire Networks

To explain the idea of the method, let us consider some physical quantity O[ϕ] = O0e
iAJ [ϕ], where

AJ [ϕ] = −
∑

µ

∫
C dξ Jµ(ξ)ϕµ(ξ) is a linear functional of ϕ, and the prefactor O0 is independent on

ϕ. Important examples, which are treated in the subsequent chapters, include the electronic Green’s
function and the current. The quantum average value of O is given by the functional integral

〈
O[ϕ]

〉
=
∫
DϕeiA0[ϕ]+iAt[ϕ]+iAJ [ϕ]O0, (3.15)

which we estimate in the semiclassical approximation [30]. In this case the path integral is contributed
by the saddle-point trajectory ϕ∗∗ of the full action A0[ϕ] +At[ϕ] +AJ [ϕ] and quantum fluctuations
around it. Here free and tunneling actions A0[ϕ], At[ϕ] are given by Eqs. (3.2) and (3.10), respectively.
In the limit of weak tunneling between chiral channels the saddle-point trajectory (“instanton” )
can be found approximately by requiring that it minimizes the Gaussian contributions to the action
A0[ϕ] +AJ [ϕ], which gives

ϕ∗µ(ξ) =
∑
ν

∫
C

dξ′ Vµν(ξ, ξ′)(%0ν(ξ′) + Jν(ξ′)). (3.16)

As shown in Sect. 3.4.5, under such an approximation Eq. (3.15) simplifies to〈
O[ϕ]

〉
=
〈
eiAJ [ϕ]

〉
0
eiÃt[ϕ∗]O0 , (3.17)

with

〈
eiAJ [ϕ]

〉
0

= exp

i 〈AJ [ϕ]
〉

0 −
1
2

[〈(
AJ [ϕ]−

〈
AJ [ϕ]

〉
0

)2
〉

0

] , (3.18)

Ãt[ϕ∗] = −i
∑

{µ,ν},(i,j)

∫
dt1dt2

(
e−iΦ

f
∗µν(xi,t1) e−iΦ

b
∗µν(xi,t1)

)( Π̃T
ij;µν(t12) −Π̃<

ij;µν(t12)
−Π̃>

ij;µν(t12) Π̃T̃
ij;µν(t12)

)eiΦf∗µν(xj ,t2)

eiΦ
b
∗µν(xj ,t2)

 ,

(3.19)

where t12 ≡ t1 − t2 and 〈. . .〉0 denotes averaging with respect to A0[ϕ]. We have introduced the
instanton phases Φ∗µν = Dµνϕ∗ and the renormalized tunneling polarization operators

Π̃αβ
ij;µν(t1 − t2) = e

i
(
DαβΦµν(xi,xj ;t1−t2)−DααΦµν(0,0)

)
Παβ
ij;µν(t1 − t2), (3.20)

obtained by dressing of the bare tunneling polarization operators by phase-phase correlators

DΦµν(ξ1, ξ2) =
∑
κλ

∫
C

dξ′ dξ′′Dµν;κ(ξ1, ξ
′)Vκλ(ξ′, ξ′′)Dµν;λ(ξ′′, ξ2).

The meaning of Eq. (3.20) is that quantum fluctuations of tunneling phases renormalize the temporal
dependence of tunneling polarization operators which lead to non-trivial (usually power-law) energy-
dependence of tunneling coefficients.
Ttwo important applications of our general approach will be considered in Chapters 4 and 5.
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3.4 Calculations

3.4 Calculations

3.4.1 Derivation of Keldysh Action

This section and the following one are devoted to the proof of (3.3) and more specifically to the
calculation of the Jacobian J [ϕ,ψ, ψ̄] corresponding to the gauge transformation ψ

f/b
µ → eiΘ

f/b
µ ψ

f/b
µ

with (2.16). Since this is a linear transformation in ψ, ψ̄, its Jacobian is independent of ψ, ψ̄ and can
be therefore computed as

J [ϕ] ≡ eiAf [ϕ] ≡
∫
D(ψ, ψ̄) eiA[ϕ,ψ,ψ̄] = Tr

{
%̂0Û [ϕb]†Û [ϕf ]

}
(3.21)

with density operator %̂0 and the (many-particle) time evolution operators Û [ϕf/b]. The latter describes
any single-particle dynamics the electrons undergo in the system and the leads (see Fig. 3.3), say
scattering and propagation through time-dependent potentials ϕα(t). These potentials may have a
non-trivial Keldysh structure, thus the superindex α = f/b which refers to the forward/backward
branch of the Keldysh contour, respectively.

jΑ,ΧΑ

x Μ
S

xΝ
D

ΜΜ’’ Μ’

ΝΝ’’ Ν’

Figure 3.3: Sketch of the system (shaded blob) which is connected to reservoirs (rectangles) via
source (drain) leads, depicted by incoming (outgoing) lines. The leads µ (ν) enter
(leave) the systems at contact positions xSµ (xDν ).

Integrating out Fermions with Klich’s Formula

There are several ways to evaluate the many-particle trace (3.21). Here we employ an approach that
generalizes a derivation of the full counting statistics in Ref. [20]. In Sect. 3.4.2 we present an alternative
derivation which keeps closely to the spirit of Ref. [28] where an analogous action was derived for the
case of a single compact scatterer.
A central mathematical statement proven in Ref. [20] relates traces of certainmany-particle operators

with determinants of associated single-particle operators. We denote the (many-particle) Fock space
representation of single-particle operators C by Γ(C) ≡

∑
c†i
〈
i
∣∣C ∣∣j〉 cj . Here, {

∣∣i〉}i is some single-
particle basis, and ci (c†i ) annihilates (creates) an electron in state

∣∣i〉. Then, the following identity
holds:

Tr
(
eΓ(A1) · · · eΓ(An)

)
= det

(
1 + eA1 · · · eAn

)
. (3.22)

31



3 Functional Bosonization of Quantum Wire Networks

To proceed we write the density operator in the form

%̂0 = eΓ(F )

det
(
1 + eF

) (3.23)

where the single-particle operator F =
∑
αiNi is a suitable linear combination of (single-particle!)

“number operators” Ni =
∣∣i〉 〈i∣∣ in the reservoirs. E.g. in thermal equilibrium F = −βH0 with some

appropriate Hamiltonian H0 =
∑
εiNi. The many-particle time-evolution operator is canonically

discretized as

Û [ϕα] = Texp
[
−i
∫ ∞
−∞

dt Ĥ[ϕα(t)]
]

= lim
∆t→0
N→∞

N∏
i=1

e−i∆t Γ(H[ϕα(ti)]).

Hence, Eq. (3.21) is a trace over a (infinite) product of operator exponentials which, according to
(3.22), is

J [ϕ] =
Tr
[
eΓ(F )Û [ϕb]†Û [ϕf ]

]
det(1 + eF ) =

det
(
1 + eFU [ϕb]†U [ϕf ]

)
det(1+ eF )

= det
(
1 + f

(
U [ϕb]†U [ϕf ]− 1

))
(3.24)

with the single-particle time-evolution operator U [ϕα] (not to be confused with Û [ϕα]) and the occu-
pation number operator f =

[
1 + e−F

]−1
.

Wave packet representation

In a next step, we follow Landauer’s original idea[31, 32] and represent the time-evolution operators
with respect to the wave packet bases, relating them to the single-particle scattering matrices. Using
a more compact notation for the single-particle time-evolution operator

Uα(t1, t0) = Texp
[
−i
∫ t1

t0

dtH[ϕα(t)]
]
, t0 < t1,

(hence U [ϕα] = Uα(∞,−∞)), Eq. (3.24) can be brought into the form

J [ϕ] = lim
t±→±∞

det
{
1 + f

[
U b(t+, t−)†Uf (t+, t−)− 1

]}
. (3.25)

We fix some time-independent reference Hamiltonian, say H0 ≡ H[ϕ ≡ 0], which contains the lead
kinematics as well as scattering, but no interaction or current counting. Then the incoming/outgoing
scattering states with respect to H0 form two natural bases of the single-particle Hilbert space, see
Fig. 3.4. Each state is characterized by its energy ε and the lead µ through which it enters/leaves the
system: H0

∣∣εµ〉in/out = ε
∣∣εµ〉in/out. The two bases are hence

(∣∣εµ〉in
)
ε;µ

and (
∣∣εµ〉out)ε;µ.

For the sake of argument we will assume the lead channels µ to be one-dimensional (1D), semi-
infinite and non-dispersive with constant velocity vµ. We use the convention vµ > 0, i.e. for source
channels −∞ < x < xSλ and for drain channels xDλ < x < ∞, and choose the normalization such that
in/out

〈
ε′µ′|εµ

〉in/out
= δµµ′δ(ε− ε′) is satisfied.
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ΜΜ’’ Μ’

ΝΝ’’ Ν’

a L

ΜΜ’’ Μ’

ΝΝ’’ Ν’

bL

Figure 3.4: (a) Spatial distribution of incoming scattering state
∣∣εµ〉in (wavy lines). It extends

in source lead µ and arbitrary drain leads ν, but in no other source leads. (b) Spatial
distribution of outgoing scattering state |εν〉out (wavy lines). It extends in drain lead
ν and arbitrary source leads µ, but in no other drain leads.

The incoming state
∣∣εµ〉in is a plane wave in source lead µ and spreads into drain leads ν. It

vanishes in all other source leads µ′: in
〈
xµ′|εµ

〉in
= δµ′µ

1√
2πvµ

eiεx/vµ (where
∣∣xµ〉 is the eigenstate of

the position operator in channel µ). Analogous statements hold for the outgoing states.
Let us now construct the incoming (outgoing) wave packet basis at reference time t− (t+). For that

we define ∣∣tµ〉in ≡
∫ dε√

2π
eiε(t−t−−x

S
µ/vµ) ∣∣εµ〉 , ∣∣tλ〉out ≡

∫ dε√
2π

eiε(t−t+−x
D
λ /vλ) ∣∣ελ〉 .

Note that t is not a parameter which describes the time-evolution of a state “
∣∣µ〉” but labels the state∣∣tµ〉 similar to ε in

∣∣εµ〉. The two new bases are thus (
∣∣tµ〉in)t;µ and (

∣∣tµ〉out)t;µ.
To shed light on the meaning of label t, we study the time-evolution of the newly constructed states

with respect to the reference Hamiltonian H0. For time t′ one has
in〈

xµ′
∣∣∣e−iH0(t′−t−) ∣∣tµ〉in = δµ′µ

√
vµδ(x− xSµ + vµ(t− t′)).

x Μ
S

Μ

Èt-Μ\
inÈt1Μ\

inÈt2Μ\
in

Figure 3.5: Zoom into source lead µ: sketch of spatial distribution of wave packet states
∣∣t−µ〉in,∣∣t1µ〉in,

∣∣t2µ〉in with t2 > t1 > t−.

This is a wave packet in source channel µ which propagates toward contact xSµ , arriving there at time
t, see Fig. 3.5. After entering the system it may split and spread in some complicated way. Similarly,
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3 Functional Bosonization of Quantum Wire Networks

the outgoing state
∣∣tλ〉out may be distributed in some complicated manner inside the system, however

tuned such that at time t it arrives at drain contact xDλ and continues propagation as a single wave
packet in drain channel λ. Summarizing,

e−iH0(t−t−) ∣∣tµ〉in ≡ √vµ
∣∣∣xSµ〉 , e−iH0(t−t+) ∣∣tλ〉out ≡

√
vλ

∣∣∣xDλ 〉 (3.26)

are wave packets residing at contacts xSµ , xDλ , and thus being independent of t∓ and t.
Making the assumption that interaction, counting etc. is switched on and off adiabatically such that

H(t′) = H0 for t′ 6∈ [t−, t+], we now argue that the same simple relations hold when taking the full
Hamiltonian H(t) into account,

Uα(t, t−)
∣∣tµ〉in = √vµ

∣∣∣xSµ〉 , Uα(t, t+)
∣∣tλ〉out = √vλ

∣∣∣xDλ 〉 . (3.27)

These relations are a direct consequence of (3.26) and the fact that potential ϕα is restricted spatially
and temporally: For t > t′ > t− incoming wave packet U(t′, t−)

∣∣tµ〉 is completely contained in the
source lead where we assume ϕα to be absent. For t < t′ < t− potential ϕα(t′) is again ineffective since
not switched on yet. Therefore, U(t, t−)

∣∣tµ〉in = e−iH0(t−t−) ∣∣tµ〉 for all t. The reasoning is analogous
for outgoing states.
We are now able to give the operator fU b(t+, t−)†Uf (t+, t−) in the wave-packet representation. For

source channels µ, µ′ the matrix elements read

in〈
tµ
∣∣fU b(t+, t−)†Uf (t+, t−)

∣∣∣t′µ′〉in

=
∑
µ′′

∫
dt′′ fµµ′′(t, t′′)

∑
λ

∫
dt′′′

in〈
t′′µ′′

∣∣∣U b(t+, t−)†
∣∣∣t′′′λ〉out out〈

t′′′λ
∣∣∣Uf (t+, t−)

∣∣∣t′µ′〉in
. (3.28)

Since the leads are populated by the reservoirs such that the occupation number of the incoming states
is fixed, in〈

εµ
∣∣f ∣∣∣ε′µ′〉in

= δµµ′δ(ε− ε′)fµ(ε), the distribution function in time domain simplifies to

fµµ′(t, t′) ≡
〈
tµ
∣∣ f ∣∣∣t′µ′〉 = δµµ′

∫ dε
2π e

−iε(t−t′) fµ(ε).

The matrix elements of the time-evolution operator further reduce to

out〈
tλ
∣∣U(t+, t−)

∣∣∣t′µ〉in
= out〈

tλ
∣∣U(t+, t)U(t, t′)U(t′, t−)

∣∣∣t′µ〉in
= √vλvµ

〈
xDλ

∣∣∣U(t, t′)
∣∣∣xSµ〉 ≡ Sλµ(t, t′)

(3.29)
which defines the scattering matrix S = S[ϕ].
In the wave-packet representation Eq. (3.25) can be written

J [ϕ] = eiAf [ϕ] = det
[
1− f + Sb†Sff

]
where the determinant is to be taken with respect to source lead indices and arrival times. The log of
this determinant appears in our general result stated in Eq. (3.3). The retarded and advanced parts
of the polarization operator which are present in Eq. (3.3) are not reproduced within the method of
this section since they represent itself the quantum anomaly. Their structure does not depend on the
actual nonequilibrium state of the system and can be deduced from the analysis of the fermion action
in the absence of tunneling as it discussed in Section 2.2.
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xΜ xΝ xΛ
Τ

Figure 3.6: Sketch of the system: a block characterized by the dwell time τ is connected to some
part of the system (the shaded blob) via interface states |xν〉.

Construction of Scattering Matrix

According to (3.29) the scattering matrix element Sλµ(t, t′) is the transition amplitude for a peak
residing in the (incoming) lead µ at time t′ to a peak residing in the (outgoing) lead λ at time t.
One expects that it is the summed amplitude for all possible trajectories which connect µ with λ.
We will briefly demonstrate this assuming that the scatterer is a network of simple blocks which are
connected to each other via “interface channels” which may be “outgoing” with respect to one block
and “incoming” with respect to a neighboring one. The electronic state residing in the interface channel
λ is denoted by

∣∣xλ〉. It corresponds to a wave packet which is leaving one of the blocks and about
to enter another one. We further assume that the blocks be simple enough such that each of them
can be characterized by a unique dwell time τ (possibly different for each block), i.e. a wave packet
which enters the block at time t will definitely leave it at (exactly) t + τ , through whatever channel:
U(t + τ, t) |xi〉 =

∑
f ufi(t)

∣∣∣xf〉 where |xi〉 is an incoming interface state and the sum extends over

outgoing interface states
∣∣∣xf〉. This defines the functions ufi(t) and the scattering matrix elements

sfi(t′, t) ≡ δ(t′ − t− τ)
√
vi
vf
ufi(t) (3.30)

where we have assigned a characteristic velocity vλ to each interface channel λ. The full scattering
matrix Sλµ(t′, t) can be constructed out of elements sfi(t′, t) with the use of the following decomposition
property. Consider the situation sketched in Fig. 3.6. Because of the decomposition property U(t′, t) =
U(t′, t+ τ)U(t+ τ, t) of the time-evolution operator, the amplitude for the transition from a peak at t
in channel µ to one at t′ in λ is

√
vλvµ

〈
xλ
∣∣U(t′, t)

∣∣∣xµ〉 =
∑
ν

∫
dt′′√vλvµ

〈
xλ
∣∣U(t′, t′′) |xν〉 sνµ(t′′, t). (3.31)

Obviously, the inner transition amplitude can be decomposed further in the same manner, and the full
scattering matrix element Sλµ turns out to be the sum of amplitudes A(p)

λµ , each of them corresponding
to a possible path p connecting the incoming state µ with the outgoing one λ. As p passes through a
certain number of building blocks, A(p)

λµ is the product of the blocks’ scattering matrix elements. For
completeness we note that, since each trajectory will end in the outgoing leads, each decomposition
will end with √

vλ′vλ
〈
xλ′
∣∣U(t′, t)

∣∣xλ〉 = δ(t′ − t)δλ′λ (3.32)
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for λ, λ′ ∈ out.

Simple blocks

Having convinced ourselves of the usefulness of definition (3.30) we turn to simple two examples of
building blocks: wires with fluctuating potentials and point scatterers. Simple as they are, a broad
class of devices, including quantum wire junctions and electronic interferometers, can be modeled as a
network of these construction units, and in the following we will restrict ourselves to such systems.
The corresponding scattering matrices are found by considering the time-evolution of wave packets

ψ(t, x) ≡ 〈x|U(t, t0) |xi〉 which satisfy the Schrödinger equation

i∂tψ(t) = H(t)ψ(t), with initial condition ψ(t0, x) = δ(x− xi). (3.33)

We list the results here, giving all necessary definitions in the subsequent paragraphs:

Construction unit Scattering matrix
Chiral wire jx i x f Mα(t′, t) = eiϑ

α
fi(t
′)∆(t′, t)

Point scatterer s fii f sfi(t′, t) = sfi δ(t′ − t)

a. Chiral wire with fluctuating potential A possible block is a chiral non-dispersive wire where
fermions propagate with constant velocity v in a fluctuating potential ϕα(t, x). Similar to the leads
wires are described by a single coordinate x, extending from xi to xf , such that the dwell time is
τ = xf−xi

v . It is taken into account by the “delay operator” ∆(t′, t) ≡ δ(t′ − t − τ). The presence of
the potential leads to accumulation of phase

ϑfi(t) = −v−1
∫ xf

xi

dx′ ϕ(x′, t− (xf − x′)/v). (3.34)

The wire connects exactly one incoming to one outgoing channel and the scattering matrix has just
one entryM(t′, t) in channel space.

b. Point scatterer Another possible construction unit is the point scatterer which connects one-
dimensional incoming (index i) and outgoing (index f) channels such that scattering occurs instanta-
neously (dwell time τ = 0+). The scatterer is characterized by the unitary time-independent scattering
matrix sfi. If all channels λ have a linear dispersion with constant velocity vλ, then according to (3.33)
the wave packet incident from channel i (at time t0) is

ψ(t, x, λ) = δλi δ(xi + vi(t− t0)− x)) +
∑
f

δλf sfi

√
vf
vi

δ(xf + vf (t− t0)− x), t ≈ t0.

Since the state extends over several channels the wave function is a function of both channel index λ
and channel coordinate x, and the sum is to be taken over all outgoing channels f .

36
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Counting Fields Up to now we have not addressed the issue of counting fields, claiming that they can
be treated on the same footing as fluctuating potentials, a statement to be proven in this paragraph.
The number of electrons which flow through a certain point x̃ in the time interval t̃0 < t < t̃ is

described quantum-mechanically by the operator N =
∫ t̃
t̃0
dt I(t). The current operator I = vψ†(x̃)ψ(x)

becomes time-dependent in Heisenberg representation, I(t) = eiH(t−t−)Ie−iH(t−t−) (t− is some reference
time at which the initial state of the system is fixed), v is the fermion velocity in the considered channel.
According to Levitov and Lesovik [23] the correct generating functional of charge transfer through x̃ is

Z(χ) =
〈
U−χ(t̃, t̃0)†Uχ(t̃, t̃0)

〉
with Uχ(t̃, t̃0) = Texp

iχ2
∫ t̃

t̃0

dt I(t)

 .
From the properties Uχ(t̃0, t̃0) = 1 and i∂t̃Uχ(t̃, t̃0) = −χ

2 I(t̃)Uχ(t̃, t̃0) we conclude that

Uχ(t̃, t̃0) = eiH(t̃−t−)e−i(H−
χ
2 I)(t̃−t̃0)e−iH(t̃0−t−)

is a possible alternative representation. Thus,

Z(χ) =
〈
TC exp

[
−i
∫
C
dt′Hχ(t′)

]〉
is the Keldysh partition sum with respect to the Hamiltonian Hα

χ (t) ≡ H + v
∫
dxAαχ(x, t)ψ†(x)ψ(x)

where time integration and ordering are to be understood along the Keldysh contour C and we defined
the local vector potential Af/bχ (t, x) = ±χ(t)

2 δ(x− x̃) with the “time-dependent” counting field χ(t′) ≡
χθ(t̃− t)θ(t− t̃0).
The corresponding scattering matrix reads sf/b(t′, t) = δ(t′ − t) e±

i
2χ(t) and can be incorporated in

the total scattering matrix.

3.4.2 Alternative Derivation of the Keldysh Action for 1D Systems

In this appendix we sketch an alternative derivation of the actionAf [ϕ] which holds for one-dimensional
(1D) systems. As shown in Fig. 3.7 they may consist of several channels. Either direction of propagation
is the same in all of them (in case of which the setup is referred to as “chiral”) or there are two distinct
possible directions: “right” (+) and “left”(-). The derivation generalizes that of Ref. [28] and some of
the arguments given already there will be not reiterated here.

xL xR
+

-

Figure 3.7: Exemplary 1D system with 3 right-moving (+) and 1 left-moving (−) channels and
3 scatterers. The system extends xL < x < xR.

We use a single coordinate system xL < x < xR to describe all channels with left (right) contact
position xL(R), i.e. velocities in right-(left-)moving channels are positive (negative): vF (−vF ). The
fermionic action is

Af [ψ, ψ̄,V] =
∫

dx
∫
C
dtΨ†

(
i∂t + iτ3vF∂x − Σ− V

)
Ψ
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3 Functional Bosonization of Quantum Wire Networks

where Ψ = (ψαµ) are vectors of Grassmannian fields with Keldysh and channel/direction indices α and
µ, respectively, τ are Pauli matrices in direction space, vF is the Fermi velocity, Σ is the self-energy
correction due to the coupling to the reservoirs (see below), and V denotes the (temporally and spatially
local) potential under the influence of which the electrons traverse the system. The latter may be the
static scattering, Hubbard-Stratonovich or counting potential.
To obtain the integrated action A, first its variation with respect to V is considered,

iδA = −
∫

dx
∫

dtTrτ
[
δVf (t, x)GT (x, t− 0;x, t)− δVb(t, x)GT̃ (x, t+ 0;x, t)

]
≡ −

∫
dx Tr δV(x)σ3G(x, x)

(3.35)
where σ are Pauli matrices in Keldysh space, and the first trace Trτ is taken over Keldysh and channel
indices, while the “full” trace Tr is additionally taken over real time. The full fermionic Green’s function
G is needed at coinciding spatial coordinates, where it is discontinuous because of linear dispersion.
The above time shift regularization, which takes into account that fermion fields in the action are
normal-ordered, is equivalent to the identification

GT (T̃ )(x, t;x′, t′) x→x
′

−→ 1
2ivF

(
gT (T̃ )(x; t, t′)− δ

(
t− t′

))
(3.36)

with the quasiclassical Green’s function

gαβ(x, t, t′) = ivF

(
Gαβ(x+ 0, x; t, t′) +Gαβ(x− 0, x; t, t′)

)
.

Transfer matrices

The Green’s function G(x1, x2) is related to G(x′1, x′2) via the the single-particle transfer matrices
M(x, x′) for spatial evolution from x′ to x: Gαβ(x1, x2) = Mα(x1, x

′
1)Gαβ(x′1, x′2)Mβ(x′2, x2)† or,

for quasiclassical Green’s functions, gαβ(x) = Mα(x, x′)gαβ(x′)Mβ(x, x′)†. Defining Uα(x; t, t′) =
ivF
−1δ(t−t′)τ3(i∂t′−Vα(x, t′)) (or more clearly in energy representation Uα(x)(ε, ε′) = ivF

−1τ3(2πδ(ε−
ε′)ε− Vα(x, ε− ε′))), the transfer matrices are given by

Mα(x, x′) =

 Ox1 exp
[∫ x
x′ dx1 Uα(x1)

]
, x ≥′ x,

Õx1 exp
[∫ x
x′ dx1 Uα(x1)

]
, x ≤′ x,

where Ox (Õx) orders subsequent operators with respect to their space coordinate x, smaller (larger)
coordinates ordered to the right. Consequently, transfer matrices are diagonal in Keldysh space (with
Mα being only related to Vα) and satisfy

δMα(xR, xL) =
∫ xR

xL

dxMα(xR, x)
[
−ivF−1τ3δVα(x)

]
Mα(x, xL). (3.37)

For short, we will also write for the total transfer matrixM≡M(xR, xL). Note that in chiral systems
considered in Ref. [28] scattering matrices S can be used. While coinciding with the transfer matrices
in chiral systems, they differ in non-chiral ones, the two being related via

S = τ3
(
τ+ +Mτ−

)−1 (Mτ+ + τ−
)
τ3 (3.38)
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with the projectors τ± = (τ0 ± τ3)/2 in direction space. In chiral, say right-moving, systems τ3 =
τ+ = 1, τ− = 0 and indeed S = M. Generally, S is unitary, SS† = 1, M is pseudo-unitary,
M(x, x′)τ3M(x, x′)† = τ3. By defining ḡ ≡ σ3gτ3 spatial evolution amounts for the similarity trans-
formation

ḡ(x) =M(x, x′)ḡ(x′)M(x, x′)−1.

The factor σ3 ensures the normalization property ḡ(x)2 = 1.
Using (3.36), (3.37) and ḡ(x) = M(x, xL)ḡ(xL)M(xR, xL)−1M(xR, x) the variation of the action

(3.35) can be simplified to

iδA =−
∫

dx Tr τ3δV(x) 1
2ivF

(
ḡ(x)− σ3τ3

)
=− 1

2

∫
dx Tr

[
−ivF−1τ3δV(x)

]
M(x, xL)ḡ(xL)M(xR, xL)−1M(xR, xL) + const.

=− 1
2 Tr ḡ(xL)M−1δM+ const. (3.39)

where we absorb all contributions to the action which are independent of distribution functions in
“const.”. We will show later on that they vanish.

Reservoir Green’s Functions

In a next step, ḡ(xL) is expressed in terms of the quasiclassical Green’s function

gL(R)(t− t′) =

gTL(R) g<L(R)
g>L(R) gT̃L(R)


t−t′

=
(
1− 2fL(R) −2fL(R)

2(1− fL(R)) 1− 2fL(R)

)
t−t′

(3.40)

of the left (right) reservoirs (with distribution functions fL(R) which may have a non-trivial channel
structure fL(R)µ). The Green’s functions ḡi = σ3ḡiτ3, i = L,R, are related to each other via a similarity
transformation as follows: First, introducing the Keldysh matrices

L ≡ 1√
2

(
1 −1
1 1

)
, Ũi =

(
1 (1− 2fi)
0 −1

)
= Ũ−1

i (3.41)

one easily finds

LḡiL
−1 =

(
1 2(1− 2fi)
0 −1

)
τ3 = Ũ−1

i σ3τ3Ũi (3.42)

and hence

ḡi = U−1
i σ3τ3Ui with Ui = ŨiL = 1√

2

(
2f>i −2f<i
−1 −1

)
(3.43)

with f<i = fi, f>i = 1− fi. Thus we have proven

ḡR = U−1ḡLU with U = U−1
L UR. (3.44)
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3 Functional Bosonization of Quantum Wire Networks

To relate the Green’s function ḡ(xL) inside the system to its counterparts in the reservoirs one
assumes that the dynamics inside the leads is governed by some relaxation process, say isotropization
of momentum direction due to scattering off static white noise disorder. This is described by the
self-energy contribution

Σ(t1, x1; t2, x2) = δ(x1 − x2)
(
− i

2τrel

)
×

{
gL(t1, t2), x1, x2 < xL
gR(t1, t2), x1, x2 > xR

.

Here τrel denotes the relaxation time. The requirement that G(x+ ∆x, x) vanish for infinite distances
∆x yields the boundary conditions[28],

(1 + ḡL)(1− ḡ(x−)) = 0, (1− ḡR)(1− ḡ(x+)) = 0, (3.45)

again with ḡ ≡ σ3gτ3. Defining M̄ ≡ UM the second equation is equivalent to 0 =
(
1− M̄−1ḡLM̄

)
(1+

ḡ(xL)). Combining it with the first equation gives

0 =
(

21 + ḡL − M̄−1ḡLM̄
)
−
(
ḡL + M̄−1ḡLM̄

)
ḡ(xL) (3.46)

and by inversion

ḡ(xL) = 1+ 2(1− ḡL)
(
ḡLM̄+ M̄ḡL

)−1
M̄ (3.47)

where we have made use of ḡ2
L = 1.

To rewrite this expression we choose a specific basis representation. Since ḡ2
L = 1 there exists one

in which ḡL = diag (1,−1). In the very same representation we write

M̄ =
(
M̄11 M̄12
M̄21 M̄22

)
.

Then we have ḡLM̄ + M̄ḡL = 2 diag (M̄11,−M̄22), which is readily inverted, as well as 1 + ḡL =
2 diag (1, 0), 1− ḡL = 2 diag (0,1), and (3.47) gives

ḡ(xL) =
(

1 0
−2M̄−1

22M21 −1

)
. (3.48)

Defining
D ≡ (1+ ḡL)/2 + M̄(1− ḡL)/2 (3.49)

one may show that
ḡ(xL) = 1−

(
1− ḡL

)
D−1M̄ (3.50)

is equivalent to (3.48). We have thus expressed ḡ(xL) entirely in terms of ḡL(R) and the transfer matrix
M(xR, xL).
Substituting this result into (3.39) and usingM(xR, xL)−1δM(xR, xL) = M̄−1δM̄ yields

iδA = 1
2 Tr(1− ḡL)D−1δM̄+ const. = TrD−1δD + const.

⇒ iA = Tr LnD + const. = Tr Ln
[
1 + ḡL

2 + M̄1− ḡL
2

]
+ const. (3.51)
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Role of Drain Distribution Functions

So far we have not been concerned with the channel structure explicitly and merely stated that there
are 2 directions of motion, right(+) and left(−), each of which is realized by a certain (not necessarily
equal) number of channels (possibly even zero in chiral systems). In both left and right reservoirs to
each channel µ was assigned a distribution function fLµ and fRµ. For a right-(left-)moving channel
fRµ (fLµ) is the drain distribution function and one naturally wonders whether it should have an effect
on the chiral fermions as long as the latter have not entered the drain reservoirs. We show here that
this is not the case.
To this end we introduce the block decomposition with respect to channel indices, e.g.

M =
(
M++ M+−
M−+ M−−

)
, fi =

(
fi+

fi−

)
, i = L,R, (3.52)

where e.g.M+−, fi+, fi− still may have channel structure
(
M+−

)
µν
,
(
fi+
)
µ
,
(
fi−
)
ν
, however, with µ

(ν) extending exclusively over right-(left-)moving channels.
Introducing

Q ≡ URMU−1
L =

(
Q11 Q12
Q21 Q22

)
=
(
f>RMf + f<RMb −2f>RMff<L + 2f<RMbf>L
−1

2M
f + 1

2M
b Mff<L +Mbf>L

)
(3.53)

and the projectors

P+ = 1
2(1 + σ3τ3) =

(
τ+ 0
0 τ−

)
, P− = 1

2(1− σ3τ3) =
(
τ− 0
0 τ+

)
(3.54)

the action (3.51) reads

iA = ln Det
(
P+ +QP−

)
+ const. = ln Det

(
P+ + P−QP−

)
+ const.

where

P−QP− =
(
τ−Q11τ− τ−Q12τ+
τ+Q21τ− τ+Q22τ+

)
.

Writing out the direction structure explicitly yields

iA = ln Det
(
f>R−M

f
−− + f<R−Mb

−− −2f>R−M
f
−+f

<
L+ + 2f<R−Mb

−+f
>
L+

−1
2M

f
+− + 1

2M
b
+− Mf

++f
<
L+ +Mb

++f
>
L+

)
+ const.

This proves that the action depends only on fL+ and fR−, i.e. the source distribution functions.

Tracing out Keldysh Structure

We now return to the expression (3.51). Since we already know that the result does not depend
on fL,− and fR,+ we may make the choice fL,− = fR,− and fR,+ = fL,+. In other words, we put
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ḡL = ḡR = diag (ḡL+, ḡR−) ≡ ḡin ≡ σ3ginτ3. As suggested by the subindex gin contains the source (or
incoming) distribution functions. It can be parametrized analogously to (3.43),

σ3gin = U−1
in σ3Uin with Uin = 1√

2

(
2f> −2f<
−1 −1

)
(3.55)

with f being the matrix of source distribution functions. Since U is not needed anymore and hence
M̄ =M, we recall the definition of D given by Eq. (3.49) and of scattering matrix S (3.38) and obtain

D = 1 + σ3gτ3
2 +M1− σ3gτ3

2 =
(
τ+ +Mτ−

)
τ3U

−1
in

[
1 + σ3

2 + UinSU
−1
in

1− σ3
2

]
Uin. (3.56)

With

Q̃ ≡ UinS U−1
in =

(
Qff Qfb

Qbf Qbb

)
=
(
f>Sf + f<Sb −2f>Sff< + 2f<Sff>
−1

2S
f + 1

2S
b Sff< + Sbf>

)

the action (3.51) is

iA = ln DetD + const. = ln DetQbb + const. = Tr Ln
[
1− f + Sb†Sff

]
+ const. (3.57)

Up to anomalous terms, representing the r- and a-parts of the polarization operator, and contributions
which are independent of distribution functions f , this proves Eq. (3.3)

Constant contributions

What are the “const.”-contributions to the action we keep ignoring? All that we know so far about
them is their independence of distribution function f . According to (3.57) they can be recovered by
substituting f = 0 in the full action (where “const.” is not neglected). So let us put f ≡ 0 in the
rest of this section and recalculate the full action. Eq. (3.47) can be evaluated explicitly now, yielding
gT (xL) = g−0 (xL) and gT̃ (xL) = g+

0 (xL)† with

g0(xL) =
(

1 0
2S−+ 1

)
= 1 + 2

(
0 0

A−+(xL) 0

)

where Aνµ(x; t′, t) is defined as the amplitude for a µ-wave packet at position x and time t to end up as
a ν-wave packet at time t′ and the same position x (cf. Sect. 3.4.1). The above relation between gT/T̃
and g∓0 holds for all positions x with gα0 (x) ≡Mα(x, xL)gα0 (xL)Mα(x, xL)†. To calculate the latter we
define (for given x) the “scattering matrix”

s ≡ τ3
(
τ+ +M(x, xL)τ−

)−1 (M(x, xL)τ+ + τ−
)
τ3

of the region between xL and x which takes into account paths extending only within this region.
Using the recursion relations (see Fig. 3.8)

S−+ = s−+ + s−−A−+(x)s++,

A++(x) = s+−A−+(x), A+−(x) = s+− + s+−A−+(x)s+−, A−−(x) = A−+(x)s+−
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s

xL x xR

M Hx ,xLL M HxR,x L
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+
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A-+Hx L

Figure 3.8: Spatial evolution of g from xL to x withM(x, xL); s is the corresponding “scattering
matrix”; the shaded blob represents the rest of the system. In contrast to s, paths
contributing to A−+(x) may extend throughout the entire system.

one obtains

g0(x) = 1 + 2
(
A++(x) A+−(x)
A−+(x) A−−(x)

)
. (3.58)

For a smooth potential V(x) all paths contributing to Aνµ(x) have a non-vanishing flight time such
that Aνµ(x; t, t) = 0. At point scatterers, which are a mere idealization, the Green’s function g(x)
is not well-defined and we stay sufficiently far away from them. Concluding, for equal times the
Green’s function (3.36) vanishes. Substituting this result into Eq. (3.35) yields δA|f≡0 = 0, hence
const. = A|f≡0 is indeed a physically irrelevant constant.

3.4.3 Weak Tunneling Regularization

In general, the scattering matrix Sα = S[ϕα] depends on time in a complicated manner which makes
the exact evaluation of the functional determinant (3.3) unfeasible. In this section we present an
approximation scheme which applies for systems with weak tunneling. A tunneling action At is derived
by subtracting the clean action A0 from the full one A. By construction At is small and may be
therefore expanded. The crucial step, the separation of actions, can be performed at zero temperature
where reservoirs may have differing chemical potentials. As it will turn out, interaction effectively
leads to a dressing of the point scatterers by phases Φ.

Clean Limit

The clean limit was discussed in Sect. 2.2. The action A0 is obtained from (3.3) by replacing S by the
clean scattering matrix Sα∗ = diag

(
eiϑ

α
1 ∆1, . . . , e

iϑαN∆N

)
≡ eiϑ

α∆ with the delay operators ∆µ and
the phases ϑµ accumulated along the complete paths xSµ → xDµ .
The main step in the quest of the tunneling action

At = A−A0 = iTr Ln
[(
1− f + Sb†Sff

)(
1− f + Sb†∗ S

f
∗ f
)−1

]
is the inversion of the second bracket, a problem which was already dealt with in Ref. [33]. Since S∗
is diagonal in channel space, the operator can be inverted for each channel separately. So we consider(

1− f + Sb†∗ S
f
∗ f
)
µµ

= 1− fµ + ∆−1
µ e

i
(
ϑfµ−ϑbµ

)
∆µfµ
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where ∆µ(t′, t) = δ(t′− t− τµ) is an appropriate time delay operator. Note that it commutes with the
stationary distribution function fµ. For zero temperature we follow Ref.[33], according to which the
inversion problem can be reformulated in terms of a certain Riemann-Hilbert problem, which is solved
by defining the phases ϑ∧µ and ϑ∨µ by

ϑ∧∨µ (t) ≡ i

2π

∫
dt′

ϑfµ(t′)− ϑbµ(t′)
t± − t′

≡ −
∫

dt′
[
B(t− t′)∓ δ(t− t′)

] [
ϑfµ(t′)− ϑbµ(t′)

]
, (3.59)

with t± ≡ t± i0. They satisfy ϑ∧−ϑ∨ = ϑf −ϑb, hence ϑf −ϑ∧ = ϑb−ϑ∨ ≡ ϑ̄, and fµeiϑ
∧
µfµ = eiϑ

∧
µfµ,

fµe
iϑ∨µfµ = fµe

iϑ∨µ . Thus, one obtains(
1− fµ + ∆−1

µ e
i
(
ϑfµ−ϑbµ

)
∆µ fµ

)−1

= ∆−1
µ

[
e−iϑ

∨
µ

(
1− fµ

)
+ e−iϑ

∧
µfµ

]
eiϑ
∨
µ∆µ,

and, taking now the full channel structure into account,

At = −iTr Ln
[
1− f + S̃b†S̃ff

]
= i

∞∑
n=1

1
n

Tr
[(
1− S̃b†S̃f

)
f

]n
with the “regularized” scattering matrix

S̃f/b ≡ e−iϑ̄Sf/b∆−1e−iϑ
∧∨∆. (3.60)

Defining in energy representation N(ω) = −θ(−ω) as the zero temperature limit of the Bose dis-
tribution function, we note that the function B introduced in (3.59) is the “generalized” distribution
function B(ω) = 1+2N(ω) ubiquitous in the bosonic Keldysh formalism. This fact allows us to endow
the phases with a Keldysh structure. We address this issue in the next section before turning to the
computation of the regularized scattering matrix in the subsequent one.

Phases and Keldysh Structure

Before we turn to the computation of the regularized scattering matrix let us consider the Keldysh
structure of the phases ϑ. To this end we consider the clean path xSµ → xDµ containing the point x.
An electron propagating from the source reservoir xSµ to x (arrival time t) accumulates the phase

ϑαin.µ(t, x) ≡ −v−1
µ

∫ x

xSµ

dx′ ϕα(x′, t− (x− x′)/vµ) = −Dr
0µϕ

α
µ(x, t); (3.61)

likewise when traveling from x (departure time t) to the drain reservoir xDµ it accumulates

ϑαout.µ(t, x) ≡ −v−1
µ

∫ xDµ

x
dxϕα(x, t+ (x′ − x)/vµ) = Da

0µϕ
α
µ(x, t) (3.62)

where we introduced the retarded/advanced bare electron-hole pair propagators

D
r/a
0µ (t;x′, x) = ±θ(±t)δ(x′ − (x+ vµt))
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3.4 Calculations

along the the clean path. Quite obviously, the phase accumulated along the complete clean path
satisfies

ϑf/bµ (t) = ϑ∓µ.in(x, t−(xDµ −x)/vµ)+ϑ∓µ.out(x, t−(xDµ −x)/vµ) = −
(
Dr

0µ −Da
0µ

)
ϕ∓µ (x, t−(xDµ −x)/vµ).

(3.63)
The propagators Dr/a

0µ directly make reference to propagation velocity vµ and thus encode spectral
(kinematic) properties of the electron-hole pairs. As usual they lack information about the system’s
state which one expects to be contained in the missing Keldysh component Dk

0µ of the propagator. In
this sense the phases ϑ are related to the potential ϕ via the linear operator D0 which does not have
the full Keldysh structure.
To overcome this “deficiency” we recall the definition made in the previous section

ϑ̄µ = ϑ∓µ − ϑ∧∨µ = 1
2(B + 1)ϑfµ −

1
2(B − 1)ϑbµ. (3.64)

Combining now (3.63) and (3.64) and using the stationarity of B(t, t′) = B(t− t′) we obtain

ϑ̄µ(t+ (xDµ − x)/vµ) = −1
2(B + 1)

(
Dr

0µ −Da
0µ

)
ϕfµ(x, t) + 1

2(B − 1)
(
Dr

0µ −Da
0µ

)
ϕbµ(x, t) (3.65)

With that the phase that an electron, traveling along a piece of wire between x1 and x2, accumulates
is

ϑ∓µ21(t) =− ϑ∓µ.out(x2, t) + ϑ∓µ.out(x1, t− (x2 − x1)/vµ)
≡Θ∓µ (x2, t)−Θ∓µ (x1, t− (x2 − x1)/vµ)

with the phases

Θ∓µ (x, t) ≡ −ϑ∓µ.out(x, t) + ϑ̄µ(t+ (xDµ − x)/vµ) (3.66)

= −1
2

[
(B + 1)Dr

0µ − (B ∓ 1)Da
0µ

]
ϕfµ(x, t) + 1

2

[
(B − 1)Dr

0µ − (B ∓ 1)Da
0µ

]
ϕbµ(x, t)

= −
[
D
T/>
0µ ϕfµ(x, t)−D>/T̃

0µ ϕbµ(x, t)
]
.

We thus have managed to rewrite the scattering matrix of chiral wiresMα(x2, x1) = eiϑ
α
21∆(x2, x1) =

eiΘ
α(x2)∆(x2, x1)eiΘα(x1) in terms of phases with full Keldysh structure. Formally we started with

expressions which did not contain any distribution functions whatsoever and somewhat artificially
included them by redefining phases. The usefulness of such construction will become apparent in the
next section.

Construction of “Regularized” Scattering Matrix

We have previously shown that the full scattering matrix S can be constructed out of simpler units.
We prove in this subsection that the same statement holds for the regularized scattering matrix S̃.
Since the full scattering matrix elements are amplitude sums Sανµ =

∑
pA

(p)α
νµ over all paths p

connecting xSµ with xDν , definition (3.60) directly implies that S̃∓νµ =
∑

p Ã
(p)∓
νµ is the sum of the

regularized amplitudes

Ã(p)∓
νµ ≡ e−iϑ̄νA(p)∓

ν′µ ∆−1
µ e−iϑ

∧∨
µ ∆µ = e−iΘ

∓
ν (xDν )A(p)∓

νµ eiΘ
∓
µ (xSµ) (3.67)
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3 Functional Bosonization of Quantum Wire Networks

over the same paths p with phases Θµ(ν) along the clean paths xSµ → xDµ and xSν → xDν . Note
that ϑ∓ν.out(xDν , t) = 0 and ϑ∓µ.out(xSµ , t) = ϑ∓µ (t + (xDµ − xµ)/vµ), and thus definition (3.66) implies
Θ∓ν (xDν , t) = ϑ̄ν(t) and Θ∓µ (xSµ , t) = −ϑ∧∨µ (t+ (xDµ − xSµ)/vµ).
We now consider a generic path p which starts at incoming lead channel µ, winds through an

alternating sequence of wires and point scatterers (numbered 1, 2, . . . , N with positions x1, x2, . . . , xN ),
eventually ends in outgoing channel ν ′. The corresponding full amplitude is

A(p)∓
νµ =M∓µ (xDν , xN )sNνλ · · · s2

ρκM∓κ (x2, x1)s1
κµM∓µ (x1, xSµ)

= eiΘ
∓
ν (xDν )∆ν(xDν , xN )e−iΘ

∓
ν (xN )sNνλ · · · s2

ρκe
iΘ∓κ (x2)∆κ(x2, x1)eiΘ

∓
κ (x1)s1

κµe
iΘ∓µ (x1)∆µ(x1, xSµ)e−iΘ

∓
µ (xSµ)

and simply becomes

Ã(p)∓
νµ = ∆ν(xDν , xN )e−iΘ

∓
ν (xN )sNνλ · · · eiΘ

∓
κ (x2)∆κ(x2, x1)eiΘ

∓
κ (x1)s1

κµe
iΘ∓µ (x1)∆µ(x1, xSµ)

upon regularization. This implies that regularization of the amplitudes amounts to regularization of
the scattering matrices of the building blocks: The effect of fluctuating potentials (and counting fields)
is removed from all wires and incorporated in the tunneling phases

Φ∓νµ(xj , t) ≡ Θ∓µ (xj , t)−Θ∓ν (xj , t)

which dress the point scattering amplitudes sjνµ. This result is summarized in the table below:

Construction unit Regularized scattering matrix
Chiral wire ∆(t′, t)
Point scatterer s̃ανµ(t′, t) = sνµ e

iΦανµ(t,x̄) δ(t′ − t)

3.4.4 Second Order Expansion

We prove the second order expansion (3.10) in tunneling strength (“tun”) starting from (3.9). Obvi-
ously, Pνµ ≡

∑
λ(S̃+

λν)†S̃fλµ is the sum over all paths winding forward and along the forward Keldysh
branch (i.e. with potentials ϕf ) from source µ to some drain λ and then backwards along the backward
branch (with potentials ϕb) to source ν (for short: “source µ −→ drain λ

+→ source ν”). The backward
part p̄b is obtained by time-reversal of a physical, forward path pb (source ν +→ drain λ) with amplitude
Ã

(pb)
λµ and has amplitude Ãp̄

b

νλ ≡ Ã
(pb)†
λν (note that hermitian conjugation, †, reverses the order of partial

amplitudes in the product). Denoting with pf the forward part of p = pf ⊕ p̄b, the total amplitude is
Ã

(p)
νµ ≡ Ã(pb)†

λν Ã
(pf )
λµ .

In the chosen order of accuracy we only take paths with a total of 2 or less tunneling events into
account. The expanded tunneling action is At = A1 +A2 with

A1 ≡iTr
∑
µ

(1− P)µµfµ = i
∑
µ

Tr

fµ −∑
p1

Ã(p1)
µµ fµ

 , (3.68)

A2 ≡
i

2 Tr
∑
µ 6=ν
PµνfνPνµfµ = i

2
∑
µ 6=ν

∑
p2=p′2⊕p′′2

Tr Ã(p′′2 )
µν fνÃ

(p′2)
νµ fµ. (3.69)
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3.4 Calculations

The sum
∑

p in (3.68) extends over paths p1: “source µ −→ drain ν
+→ source µ” with 2 or less tunneling

events (obviously the number has to be even), while the sum in (3.69) extends over paths p2 = p′2⊕p′′2:

“ source µ −→ drain κ
+→ source︸ ︷︷ ︸

p′2

ν
−→ drain λ

+→ source µ︸ ︷︷ ︸
p′′2

”,

or equivalently, “ source ν −→ drain λ
+→ source︸ ︷︷ ︸

p′′2

µ
−→ drain κ

+→ source ν︸ ︷︷ ︸
p′2

”

where the equivalence is ensured by the cyclic invariance of the trace. Since µ 6= ν subpaths p′2 and p′′2
each contain at least one tunneling event, i.e. in our approximation exactly one. Depending on whether
tunneling occurs on the forward or backward Keldysh branch κ, λ = µ or ν. It is quite obvious that
no matter how often a path evolves in time forward and backward (once for A1, twice for A2), as long
as it starts and ends in the same reservoir and contains exactly 2 tunneling events, it exactly involves
2 different channels µ 6= ν. We will use this fact for a systematic classification of all paths.
To warm up we consider first the simplest (and least interesting) paths, which contribute to A1 and

are of the form “source µ −→ drain µ
+→ source µ” without any tunneling taking place. Time delay

operators are canceled exactly (since forward and backward paths coincide geometrically) and no
phases are accumulated (since after regularization they are carried only by the tunneling amplitudes).
The total amplitude is thus a product of forward scattering amplitudes sjµµ of scatterers j along the
clean path xSµ → xDµ :

∏
j

|sjµµ|2 =
∏
j

1−∑
ν 6=µ
|sjνµ|2

 = 1−
∑
j

∑
ν 6=µ
|sjνµ|2 +O(tun4). (3.70)

All other relevant paths contain exactly 2 tunneling events. Not surprisingly there is a whole plethora
of them and we are well advised to proceed systematically. To this end and according to the observation
made before we classify these paths with respect to the pair (µ, ν) of different channels µ 6= ν involved
and the two scatterers i and j (possibly i = j) at which tunneling µ → ν and ν → µ respectively
occurs. Note that in this classification classes (ij;µν) and (ji, νµ) are identical. What classes (ij;µν)
are possible, of course, depends on the topology of the considered network (since e.g. not all scatterers
are even connected to a given channel µ). But, as we will show, once a class is fixed, its contribution
to At is essentially independent of topology!

Μ

Ν

i jxΜ
S xΜ

D

xΝ
D xΝ

S

A

j ixΜ
S xΜ

D

xΝ
D xΝ

S

B

i jxΜ
S xΜ

D

xΝ
S xΝ

D

C

j ixΜ
S xΜ

D

xΝ
S xΝ

D

D

i=jxΜ
S xΜ

D

xΝ
S xΝ

D

E

Figure 3.9: The 5 topologically distinct configurations for class (ij;µν). All channels except for
µ,ν and all scatterers except for i,j (“distorted white circles”) are dropped. Scatterers
i 6= j are different in A-D which allows for 4 different orderings along channels µ
and ν. In E tunneling occurs twice at the same scatterer i = j.
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3 Functional Bosonization of Quantum Wire Networks

Fig. 3.9 shows the 5 topologically distinct configurations of channels µ, ν and scatterers i, j for given
class (ij;µν). Arrows at the scatterers indicate direction of tunneling. All scatterers except for i, j are
dropped. They are involved only in forward scattering events and thus lead to corrections O(tun3). In
this way propagation from source xSµ to scatterer i just leads to an amplitude ∆i.µ.in which accounts
for the finite flight time τ iµ.in. Analogously we define ∆j.µ.in and the same for ν, and further

X fi ≡ ∆−1
i.ν.ins̃

i−
νµ∆i.µ.in = ∆−1

i.ν.ine
−iΦfµν(xi)∆i.µ.in s

i
νµ,

X bi ≡ ∆−1
i.ν.in

(
si+µν

)†
∆i.µ.in = ∆−1

i.ν.ine
−iΦbµν(xi)∆i.µ.in s̄

i
µν ,

X fj ≡ ∆−1
j.µ.ins̃

j−
µν∆j.ν.in = ∆−1

i.ν.ine
iΦfµν(xj)∆j.ν.in s

j
µν ,

X bj ≡ ∆−1
j.µ.in

(
sj+νµ

)†
∆j.ν.in = ∆−1

j.µ.ine
iΦbµν(xj)∆j.ν.in s̄

j
νµ.

For paths of given type p1 or p2 fixing the Keldysh branches on which the 2 tunneling events µ→ ν
(at i), ν → µ (at j) take place characterizes the corresponding paths uniquely provided they exist.
Whether they exist or not depends on topology. Remarkably, they always do if the 2 tunneling events
are required to occur on different Keldysh branches. Fig. 3.10 shows the paths for i : µ→ ν occurring

Μ

Ν

i j

p1

Μ

Ν

i j

p2

Figure 3.10: Paths for topology A with i : µ → ν on the forward, j : ν → µ on the backward
branch. The forward parts are represented by solid thick lines; the backward parts
by dashed lines. The first path is of type p1, the second one of type p2.

on the forward, j : ν → µ on the backward branch for configuration A. Similar paths can be drawn for
all other configurations. As an example, we consider the first path in Fig. 3.10 which is of type p1. It
starts at source µ, tunnels at i on the forward branch, arrives at drain ν, evolves backwards, tunnels at
j on the backward branch and returns to source µ. Its amplitude is Ã(p1)

µµ = X bjX
f
i . The contribution

of both paths to At is

A<ij;µν = −iTr
[
X bjX

f
i fµ −X

b
j fνX

f
i fµ

]
= −iTr

[
e−iΦ

f
µν(xi)Π<

ij;µνe
iΦfµν(xj)

]

where tunneling polarization operators Πij;µν are defined in (3.11) and we have made use of sjµν =
−s̄jνµ +O(tun2). Similarly A>ij;µν with Π>

ij;µν is obtained by considering paths with tunneling at i on
the backward, at j on the forward branch. As mentioned previously the very same paths can be drawn
for all topologies and yield the same action.
The story is less neat if both tunneling events occur on the same Keldysh branch: While p2-type

contributions to ATij;µν and AT̃ij;µν are still independent from topology, p1-type contributions are not
as universal. Taking all paths carefully into account results in the table below
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ΠT
ij;µν(t)/

[
−siνµs̄

j
νµ

]
ΠT̃
ij;µν(t)/

[
−siνµs̄

j
νµ

]
A −f̃<µ (t)f̃<ν (−t) f̃>µ (t)f̃<ν (−t) + f̃<µ (t)f̃>ν (−t) + f̃<µ (t)f̃<ν (−t)
B f̃>µ (t)f̃<ν (−t) + f̃<µ (t)f̃>ν (−t) + f̃<µ (t)f̃<ν (−t) −f̃<µ (t)f̃<ν (−t)
C f̃<µ (t)f̃>ν (−t) f̃>µ (t)f̃<ν (−t)
D f̃>µ (t)f̃<ν (−t) f̃<µ (t)f̃>ν (−t)
E −f<µ (t)f<ν (−t) + 1

2(f<µ (t) + f<ν (−t))δ(t) −f>µ (t)f>ν (−t) + 1
2(f<µ (t) + f<ν (−t))δ(t)

with f̃≷µ (t) ≡ f≷µ (t+ τ iµ.in− τ
j
µ.in), f̃≷ν (t) ≡ f≷ν (t− τ jν.in + τ iν.in). We have incorporated the tunneling-free

contribution (3.70) into the case E which amounts to the δ(t)-terms.
Quite miraculously, using the symmetry relation f≷µ/ν(t) = −f≶µ/ν(t) for t 6= 0, one can show that

(3.12) holds, i.e. ΠT/T̃
ij;µ can be represented in a form which is independent of topology. We exemplify

the proof, which is a straightforward calculation, on configuration A. In this situation, τ jµ.in > τ iµ.in and
τ iν.in > τ jν.in and thus f̃>µ (t) = −f̃<µ (t) for t > 0 and f̃>ν (−t) = −f̃<ν (−t) for t < 0, hence,

−f̃<µ (t)f̃<ν (−t) = θ(t)f̃>µ (t)f̃<ν (−t) + θ(−t)f̃<µ (t)f̃>ν (−t),
f̃>µ (t)f̃<ν (−t) + f̃<µ (t)f̃>ν (−t) + f̃<µ (t)f̃<ν (−t) = θ(−t)f̃>µ (t)f̃<ν (−t) + θ(t)f̃<µ (t)f̃>ν (−t),

proving our statement. In the case E it is necessary to drop a constant (albeit infinite) and thus
physically irrelevant contribution to the action to obtain (3.12) or (3.13). (See similar discussion after
Eq. (3.13) )

3.4.5 Saddle-Point Approximation

We prove here the formulas of Sect. 3.3. To keep things readable we resort on a rather symbolic
notation, in which the contributions to the exponent in (3.15) read

A0[ϕ] = 1
2ϕV

−1ϕ− ϕ%0, At[ϕ] = −ie−iΦ(1)Π12e
iΦ(2), AJ [ϕ] = −Jϕ

with the tunneling phases Φ = Dϕ being linear functionals of ϕ. The saddle-points of A0 +At +AJ
and A0 +AJ are denoted ϕ∗∗ and ϕ∗. We show first that up to the chosen accuracy O(tun2) the former
is not needed and calculation of the latter is sufficient, using that ϕ∗ − ϕ∗∗ = O(tun2). A Gaussian
expansion of the full action around ϕ∗∗ reads(
A0 +At +AJ

)
[ϕ] ≈

(
A0 +At +AJ

)
[ϕ∗∗] + 1

2(ϕ− ϕ∗∗) δ2 (A0 +At +AJ
)

[ϕ∗∗] (ϕ− ϕ∗∗). (3.71)

Note that the first order term vanishes due to ϕ∗∗ being the full saddle-point. We now successively
replace ϕ∗∗ by ϕ∗ in the above expression. Expansion around ϕ∗∗ and using δ2(A0 +AJ)[ϕ∗∗] = V −1 =
δ2(A0 +AJ)[ϕ∗] yields(

A0 +At +AJ
)

[ϕ∗] =
(
A0 +At +AJ

)
[ϕ∗∗] +O(tun4),

δ2(A0 +At +AJ)[ϕ∗] = δ2(A0 +At +AJ)[ϕ∗∗] +O(tun4).

Writing ϕ−ϕ∗∗ = (ϕ−ϕ∗) + (ϕ∗−ϕ∗∗) and using again ϕ∗−ϕ∗∗ = O(tun2) Eq. (3.71) thus becomes

(A0 +At +AJ)[ϕ] ≈ (A0 +At +AJ)[ϕ∗] + 1
2(ϕ− ϕ∗) δ2 (A0 +At +AJ

)
[ϕ∗] (ϕ− ϕ∗)

+ (ϕ∗ − ϕ∗∗) δ2(A0 +At +AJ)[ϕ∗] (ϕ− ϕ∗∗). (3.72)
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Only the last term, which is linear in ϕ−ϕ∗, contains ϕ∗∗. To proceed, we define h ≡ (ϕ∗−ϕ∗∗) δ2(A0+
At + AJ)[ϕ∗] = O(tun2) and perform the functional integration (3.15) in Gaussian approximation
(3.72): ∫

Dϕei(A0+At+AJ )[ϕ] ≈ei(A0+At+AJ )[ϕ∗]
(

Det δ2(A0 +At +AJ)[ϕ∗]
)−1/2

× exp[− i2 h δ
2(A0 +At +AJ)[ϕ∗] h︸ ︷︷ ︸

=O(tun4)

]

=ei(A0+AJ )[ϕ∗] exp
[
iAt[ϕ∗]−

1
2 Tr Ln

(
1 + V δ2At[ϕ∗]

)]
. (3.73)

Hence, ϕ∗ dropped out completely. The first exponential satisfies ei(A0+AJ )[ϕ∗] =
〈
eiAJ [ϕ]

〉
0
where

〈. . .〉0 denotes the average with respect to the free action A0[ϕ]. This is shown using 〈ϕ〉0 = ϕ̄ ≡ V %0
and 〈(ϕ− ϕ̄)(ϕ− ϕ̄)〉0 = iV . Since A0[ϕ] is Gaussian we have the simple relation〈

eiAJ [ϕ]
〉

0
=
〈
e−iJϕ

〉
0

= exp
[
−iJϕ̄− 1

2

〈[
J(ϕ− ϕ̄)

]2)
〉]

= e−iJϕ̄−
i
2JV J .

On the other hand it is i(A0 +AJ)[ϕ∗] = − i
2(%0 + J)V (%0 + J) = − i

2JV J − iJϕ̄−
i
2%0V %0. I.e. up to

the last term − i
2%0V %0, which is canceled by normalization, we have

ei(A0+AJ )[ϕ∗] = e−iJϕ̄−
i
2JV J =

〈
eiAJ [ϕ]

〉
0

which proves (3.18).
To deal with the second exponential in (3.73) we expand the logarithm to leading order in V (again,

a Gaussian expansion),

iAt[ϕ∗]−
1
2 Tr Ln

(
1 + V δ2At[ϕ∗]

)
≈ iAt[ϕ∗]−

1
2 TrV δ2At[ϕ∗] = iAt[ϕ∗] + i

〈
δAt[ϕ∗](ϕ− ϕ̄)

〉
0︸ ︷︷ ︸

=0

+ i

2

〈
(ϕ− ϕ̄)δ2At[ϕ∗](ϕ− ϕ̄)

〉
0
≈ i
〈
At[ϕ− ϕ̄+ ϕ∗]

〉
0 .

Defining the phases Φ̄ = Dϕ̄, Φ∗ = Dϕ∗ it is〈
At[ϕ− ϕ̄+ ϕ∗]

〉
0 = −i

〈
e−i[Φ(1)−Φ̄(1)+Φ∗(1)] Π12 e

i[Φ(2)−Φ̄(2)+Φ∗(2)]
〉

0
= −ie−iΦ∗(1) Π̃12 e

iΦ∗(2),

i.e. Eq. (3.19), where Π̃12 ≡ ei(DΦ(1,2)−DΦ(0,0))Π12 are the renormalized tunneling polarization opera-
tors with the phase-phase correlator

DΦ(1, 2) = −i
〈

(Φ(1)− Φ̄(1))(Φ(2)− Φ̄(2))
〉

0
= −

(
DVD

)
(1, 2).

3.5 Conclusions

In this chapter we developed a framework to study nonequilibrium networks of quantum wires. We
combined the Keldysh and functional bosonization formalisms, the latter being more convenient to de-
scribe one-dimensional interacting systems than the commonly used standard (operator) bosonization
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approach. In this formalism quartic interaction terms are decoupled by a Hubbard-Stratonovich (HS)
transformation at the expense of introducing a bosonic field ϕ, which mediates the interaction. The
HS field ϕ and the fermionic fields can be decoupled by means of a gauge transformation which gives
rise to a nontrivial Jacobian. It is a Fredholm determinant and highly reminiscent of the full counting
statistics. The bosonic Keldysh action obtained in this way is given by Eq. (3.3).
The dynamics of the electron system, including propagation in external fields and scattering, is

encoded in the time-dependent scattering matrix S[ϕ] and we illustrated its construction for the con-
sidered network model.
For the limit of weak tunneling we performed the second order expansion of the action, Eq. (3.10),

in which every point of tunneling gives rise to contributions similar to the Ambegaokar-Eckern-Schön
action[29]. In terms of bosonic excitations they can be interpreted as sites of plasmon production (due
to inelastic electron tunneling), responsible for the population of a nonequilibrium plasmon bath in the
system. We further presented a saddle-point (real-time instanton) approximation scheme to evaluate
physical observables, such as Green’s functions and current.
In the following chapters we will apply this formalism to important examples. Chapters 4, 5 deal with

a Luttinger liquid and a quantum Hall Fabry-Pérot interferometer with weak backscattering/tunneling
and thus are amenable to the developed approximation method. Tunneling in quantum Hall Mach-
Zehnder interferometers, as considered in Chapter 6, is, in contrast, not weak. We will however see
that under certain assumptions the simpler, chiral structure of the setup allows for an exact treatment.
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4 Chapter 4

Tunneling Density of States of a Luttinger
Liquid with Single Impurity

Over the last few decades tunneling spectroscopy has become a powerful tool to study interaction
effects in mesoscopic systems. The zero bias anomaly, the suppression or enhancement of tunneling
conductance at low bias[34, 35], is a key signature of interaction and was observed in various systems
such as disordered metals[36, 37], high-mobility two-dimensional electron gases[38], quantum Hall
edges[39], and arrays of quantum wires[40].
In Refs. [41–43] tunneling spectroscopy for nonequilibrium nanostructures was developed. By using

a superconducting tunneling tip, with sharply peaked density of states, one cannot only measure the
tunneling density of states, but as well infer the quasiparticle distribution function. This enables one
to study energy relaxation and the underlying inelastic scattering processes.
Of particular interest in this context are one-dimensional systems where interaction leads to the

emergence of the strongly correlated Luttinger liquid state. The characteristic power-law suppression
of the tunneling conductance was the hallmark for the experimental confirmation of such a state in
quantum Hall edges[39] and carbon nanotubes[44–46].
The effects of nonequilibrium on the tunneling density of states have been studied in a range of the-

oretical works[47–51]. It is known that due to integrability relaxation is absent in a uniform Luttinger
liquid, and relaxation induced by inhomogenous interaction[52–57] or disorder[58, 59] was discussed in
the literature.
In contrast, a single impurity is not expected to give rise to a complete thermal relaxation. In this

chapter we will study the arising state by computing the tunneling density of states of a nonequilibrium
quantum wire with a single weak impurity (see Fig. 4.1). Previous studies of this model focused on
the nonlinear conductance and shot noise [60–63]. However, the tunnel spectroscopy of this problem,
which requires the analysis of the single-particle Green’s function, has never been addressed.

Figure 4.1: Tunneling experiment with a voltage-biased quantum wire.
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4 Tunneling Density of States of a Luttinger Liquid with Single Impurity

The results and details of the calculation presented here have been published in Refs. [26, 64].

4.1 Model and Results

We apply the formalism developed in Chapter 3. The wire is modeled as a network of two channels:
right-(left-) moving electrons, denoted by indices µ = +(−). Weak backscattering, i.e. tunneling
between the two channels, occurs at the impurity (at x = 0). It is therefore represented as a point
scatterer with reflection amplitude r0, assumed to be small, |r0|2 � 1. Nonequilibrium is established
by biasing the left and right reservoir by voltages eV+ = eV > 0, eV− = 0.
The interplay of interaction, nonequilibrium, and impurity scattering can be studied by placing a

conducting tip near position x̄ (say x̄ > 0) of the wire, held at a voltage Vtip, and measuring the
current Itun between tip and wire. Let us assume that the tip can be described in terms of fermionic
quasiparticles with density of states νtip(ε) and distribution function ftip(ε), as is the case e.g. in the
absence of interaction. If coupling |t|2 between tip and wire is weak, a simple perturbative expansion
yields the tunneling current

Itun ∝ |t|2
∑
µ=±

∫
dε
[
Γ>µ (ε)ftip(ε)− Γ<µ (ε)(1− ftip(ε))

]
νtip(ε).

The “rates” for tunneling into/out of the µ-channel of the wire are defined as

Γ≷
µ (ε) = ± i

2πG
≷
µ (x̄, x̄, ε). (4.1)

Using a metallic tip with constant density of states νtip, measurement of the differential tunneling
conductance in the limit of small temperature gives access to the tunneling density of states,

∂Itun
∂V

∣∣∣∣∣
Vtip=ε

∝ Γ>µ (ε) + Γ<µ (ε) = νµ(ε) ≡ − 1
π

ImGrµ(x̄, x̄, ε). (4.2)

If interaction is absent in the wire the rates simplify to Γ≷
µ (ε) = f≷µ (ε)νµ(ε) with distribution functions

fµ(ε) = f<µ (ε), f>µ (ε) ≡ 1− fµ(ε), and density of states νµ(ε) of the channel µ.
We devote this chapter to the calculation of the rates for tunneling into a spinless Luttinger liquid.

We consider point-like repulsive interaction, assuming for simplicity g2 = g4 = V0 such that the inter-
action potential Uµν(x, x′) = V0δ(x−x′) does not discriminate between different channels. Interaction
strength in the LL model is then characterized by the Luttinger constant K = (1 + V0/πvF )−1/2,
cf. (2.6). The free electron spectrum is linearized around the Fermi points, arising ultraviolet divergen-
cies require the introduction of a high-energy cutoff Λ ∼ EF , which mimicks a finite bandwidth in the
wire. In the absence of backscattering the tunneling rates exhibit the well-known zero bias anomaly,
i.e. a power-law suppression near the Fermi edges,

Γ≷
µ (ε) = ν0

π
Γ(1 + 2γ)−1 × θ(±(ε− eVµ))

∣∣∣∣∣ε− eVµΛ

∣∣∣∣∣
2γ

with exponent γ = (1−K)2

4K (4.3)

where we have introduced the noninteracting density of states ν0 = (2πvF )−1.

54



4.1 Model and Results

As is shown in this chapter the tunneling rates change considerably upon including the impurity.
For eV > 0 the rates are given by

Γ≷
µ (ε) = ±ν0

π

(
eV

Λ

)2γ

Γ(−2γ) Im
[
(∓zµ)2γ + CµR∗(eV )(±1)2γΨ(−2γ, 1− 2γ + 2 δµ,−zµ)

]
(4.4)

where we have used

C± = Γ(2K)
Γ
(
1/2±K/2

)2 , δ+ = (1−K)/2, δ− = 1/2−K, zµ = (ε− eVµ + i

2τ
−1
ϕ )/eV, (4.5)

and Ψ(a, b, c) is the confluent hypergeometric function[65]. We have also introduced the renormalized
reflection coefficient

R∗(eV ) = |r0|2

Γ(2K)

∣∣∣∣∣ Λ
eV

∣∣∣∣∣
2(1−K)

(4.6)

and the nonequilibrium dephasing rate

τ−1
ϕ ≡ R∗(eV )2 sin2 πδ+

π
|eV |. (4.7)

The energy dependence of the rates Γ≷
±(ε) is shown in Fig. 4.2. The main feature of these plots is that
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Figure 4.2: Tunneling rates for right- and left-movers with different interaction strengths: K =
0.4 (1), K = 0.4 (2), and K = 0.75 (3). The Fermi edge for right-(left-) movers is
at eV+ = eV (eV− = 0).

the tunneling rates have split power-law singularities which are characterized by different exponents and
are smeared by the nonequilibrium dephasing rate 1/τϕ. The main edges are located at corresponding
chemical potentials – at ε = eV± in the case of right-/left-moving states, respectively – having the
equilibrium exponents γ. The formation of the second (side) edge due to scattering off the impurity
occurs at ε = e(V± − V ). If the interaction is repulsive (K < 1) then the corresponding exponent
2(γ − δ−) for left-moving electrons is always positive, hence the correction at the side edge ε = −eV
is smooth. For right-movers in the case of not too strong interaction, K > 1/3, the nonequilibrium
exponent 2(γ − δ+) is negative, yielding a resonance in tunneling at the side edge ε = 0.
The presence of side edges in the tunneling rates can be understood in the following way. Inelastic

electron backscattering at the impurity at point x = 0 induces the emission of real nonequilibrium
plasmons with typical frequencies ω ≤ eV , which in the non-dissipative LL can propagate to the
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4 Tunneling Density of States of a Luttinger Liquid with Single Impurity

distant point of tunneling x̄. Consequently, inelastic tunneling with absorption or stimulated emission
of these real plasmons becomes possible. For example, an electron tunneling into a right-/left-moving
state of the LL with the energy ε < eV± can accommodate itself above the corresponding Fermi
energy (eV±) by picking up the energy ω > eV± − ε from the nonequilibrium plasmon bath. Since
the energy of out-of-equilibrium plasmons is limited by the applied voltage, we observe a threshold at
ε ∼ e(V±−V ), which exhibits a power-law singularity typical of the LL. The singularity at the side edge
of the out-tunneling rate describes the inverse process — inelastic tunneling from the LL accompanied
by the stimulated emission of nonequilibrium plasmons with typical energy ω . eV . This side edge is
pronounced in the case of right-moving states only, Γ<+(ε), and is not seen for the left-moving states,
Γ<−(ε), since the associated exponent 2(γ − δ−) is always positive in the latter case.

4.2 Calculations

4.2.1 Action

Since interaction does not discriminate between channels µ, ν = ± it can be decoupled by a Hubbard-
Stratonovich transformation introducing a single field ϕ, i.e. ϕ+ = ϕ− = ϕ. For weak backscattering,
i.e. weak tunneling between right- and left-moving states at the impurity, the action A[ϕ] = A0[ϕ] +
At[ϕ] is obtained according to Sect. 3.2. The free action (3.2) is

A0[ϕ] = 1
2

∫
C

dξ dξ′ ϕ(ξ)V −1(ξ − ξ′)ϕ(ξ′)−
∫
C

dξ
(
%0+ + %0−

)
ϕ(ξ)

with ξ = (x, t), non-local effective interaction V −1(ξ − ξ′) = V −1
0 δ(ξ − ξ′) − Π(ξ − ξ′), (summed)

polarization operator Π(ξ) = Π+(ξ) + Π−(ξ) and mean charge density %0η = eVη/(2π|vη|). Using
(2.23) we obtain for the retarded/advanced components of the effective interaction

V r/a(ω, p) = V0
ω2 − vF 2p2

ω2
± − u2p2 (4.8)

with the plasmon velocity u = vF /K > vF .
Since we are dealing with one scatterer, characterized by a scattering matrix s1 with r0 = s1

+−, the
tunneling or backscattering action At, as given by (3.10), consists of one term (corresponding to class
(11; +−)):

At[ϕ] = −i
∫

dt1dt2
(
e−iΦ

f (t1) e−iΦ
b(t1)

)( ΠT
+− −Π<

+−
−Π>

+− ΠT̃
+−

)
t1−t2

(
eiΦ

f (t2)

eiΦ
b(t2)

)
, (4.9)

where Φf/b(t) = Θf/b
− (0, t) − Θf/b

+ (0, t) is the tunneling phase evaluated at the impurity, x = 0. The
phases are related to the Hubbard-Stratonovich field ϕ according to (2.16). The tunneling polarization
operator Π+− = Π11;+− is given by (3.11), (3.13). Writing |r0|2 = |s1

+−|2 = |s1
−+|2, its components

read

Π≷
+−(t) = −|r0|2f≷+ (t)f≶− (−t) = −|r0|2e−ieV t

[
f≷0 (t)

]2
, (4.10)

ΠT/T̃
+− (t) = 1

2

[
Π>

+−(t) + Π<
+−(t)

]
. (4.11)
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4.2 Calculations

4.2.2 Green’s Functions in Instanton Approximation

To find the tunneling rates we represent the electron Green’s function at the point x̄ > 0 of tunneling
as a path integral over the field ϕ,

G≷
µ (x̄, x̄; t̄) =

∫
DϕeiA[ϕ]eiΘ

b/f
µ (x̄t̄)G≷

µ (x̄, x̄; t̄; [ϕ])e−iΘ
f/b
µ (x̄,0).

Here, Gµ(x̄, x̄; t̄, [ϕ]) denotes the Green’s function for a given configuration of ϕ. It satisfies the
Dyson equation with the spatially local self-energy

Σµ[ϕ](x, x′; t, t′) = iδ(x)δ(x′)(|r0|2vF /2)eiµΦ(t)g−µ(t− t′)e−iµΦ(t′)

where gµ are the source reservoirs’ quasiclassical Green’s functions.
We solve the Dyson equation in first order in |r0|2:

Gαβµ (x̄, x̄; t̄) = Gαβ0µ + Gαβ1µ with (4.12)

Gαβ0µ =
〈
eiΘ

α
µ(x̄,t̄)Gαβ0µ (x̄, x̄; t̄)e−iΘ

β
µ(x̄,0)

〉
,

Gαβ1µ =i |r0|2vF
2

∑
γ,δ=f,b

σγδ

∫
dt1 dt2

〈
eiΘ

α
µ(x̄,t̄)Gαγ0µ (x̄, 0; t̄− t1)

×eiµΦγ(t1)gγδ−µ(t1 − t2)e−iµΦδ(t2)Gδβ0µ(0, x̄; t2)e−iΘ
β
µ(x̄,0)

〉
where σff = σbb = 1, σfb = σbf = −1 and Gαβ0µ are the Green’s functions of free electrons, for instance

G≷
0µ(x, t) = ±f≷µ (t− µx/vF )/ivF . (4.13)

All averages 〈. . .〉 in Eq.(4.12) are taken with respect to the action A0[ϕ] +At[ϕ]. They are of the
form (3.15) and can be evaluated with the real-time instanton method described in Sect. 3.3. In this
approximation the first term reads

Gαβ0µ ≈ e
iÃt[ϕ∗0] ×

〈
eiΘ

b/f
µ (x̄,t̄)G≷

0µ(x̄, x̄; t̄)e−iΘ
f/b
µ (x̄,0)

〉
0
. (4.14)

The second factor here is the full Green’s function of a clean LL,

G̃≷
0µ(x̄, x̄; t̄) = e

− 1
2

〈[
Θb/fµ (x̄,t̄)−Θf/bµ (x̄,0)

]2
〉

0 G≷
0µ(x̄, x̄; t̄) = ± a2γ

2πivF
e−ieVµ t̄

1
(a± it̄)2γ+1 . (4.15)

The first factor in Eq. (4.14) gives dephasing corrections due to the interplay of tunneling and
interaction. The instanton action Ãt[ϕ∗0] is defined in (3.19) and obtained by substituting the
dressed polarization operators into (4.9). The instanton phase Φ∗ is generated by the source AJ [ϕ] =
iΘα

µ(x̄, t̄)− iΘβ
µ(x̄, 0),

Φγ
∗(t) =

〈
Φγ(t)

〉
0 −D

γα
ΦΘµ(t− t̄,−x̄) +Dγβ

ΦΘµ(t,−x̄), γ = f, b, (4.16)
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with iDγδ
ΦΘµ(t, x) ≡

〈
δΦγ(t, x)δΘδ

µ(0, 0)
〉

0
, and depends on Keldysh indices α, β, direction µ of the

tunneling electron, and time and position of tunneling t̄, x̄. Since the average value
〈
Φγ(t)

〉
0, generated

by the mean density %0η, does not depend on the Keldysh index γ and the time t it will drop out when
the instanton phase is substituted into (4.9). Therefore it will be omitted in what follows.
The correlators iDαβ

Θ,ην(t, x) =
〈
δΘα

η (t, x)δΘβ
ν (0, 0)

〉
have been calculated in the introductory Sec-

tion 2.2 on functional bosonization and the results are summarized in the Eqs. (2.34), (2.35) and (2.31).
For the mixed phase-phase correlators they imply

iDαβ
ΦΘµ(t, x) ≡

〈
Φα(t, x)Θβ

µ(0, 0)
〉

= i
[
Dαβ

Θ,−µ(t, x)−Dαβ
Θ,+µ(t, x)

]
(4.17)

= −µ
[
p Lαβµu(t, x)− q Lαβ−µu(t, x)− LαβµvF (t, x)

]
(4.18)

and for those of the tunneling phases

iDαβ
Φ (t) = i lim

x→0

[
Dαβ

Φ−(t, x)−Dαβ
Φ+(t, x)

]
= −2(1−K)LαβΦ (t)

with L≷Φ(t) = ln ∓ia
t∓ ia

, LT/T̃Φ (t) = 1
2

[
ln −ia
t− ia

+ ln ia

t+ ia

]
.

4.2.3 Instanton Action

With the above correlators we can evaluate the instanton action. First, we obtain for the “dressed”
tunneling polarization operators (3.20)

Π̃≷
+−(t) = −|r0|2

1
(2πa)2 e

−ieV t
(

a

a± it

)2K
, (4.19)

or in the frequency representation

Π̃≷
+−(ω) = −R∗(eV )

2π θ(±(ω − eV ))

∣∣∣∣∣ω − eVeV

∣∣∣∣∣
2K−1

|eV |

where we used definition (4.6) for the renormalized reflection coefficient R∗. With the mixed phase-
phase correlation function (4.17) at hand we are also in the position to write down the instanton
trajectories (4.16),

iΦf/b
∗ (t) =µ

p ln
[

t± ia+ µx̄/u

t± ia− t̄+ µx̄/u

]
− q ln

[
a− iβ(t− µx̄/u)

a− iα(t− t̄− µx̄/u)

]
− ln

[
t± ia+ µx̄/vF

t± ia− t̄+ µx̄/vF

]
for µx̄ > 0, and

iΦf/b
∗ (t) =µ

p ln
[

a− iβ(t+ µx̄/u)
a− iα(t− t̄+ µx̄/u)

]
− q ln

[
t± ia− µx̄/u

t± ia− t̄− µx̄/u

]
− ln

[
a− iβ(t+ µx̄/vF )

a− iα(t− t̄+ µx̄/vF )

]
for µx̄ < 0, where we have introduced p = (1 + K)/2 and q = (1 − K)/2. These instantons are
non-classical (or “quantum”) solutions in the sense of the Keldysh nonequilibrium theory – the phases
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Φ∗(t) are in fact different on the forward and backward branches of the Keldysh time contour, so that
the quantum component is Φq

∗(t) 6= 0. Because of that the corresponding tunneling action Ãt[ϕ∗],
which we are going to evaluate, is non-zero.
Let us consider the case of tunneling into/out of a right-moving state with the tip being placed on

the right from the impurity, µ = + and x̄ > 0, to exemplify how we evaluate the instanton action
Ãt[ϕ∗]. The phase factor is

eiΦ
f/b
∗ (t) = κ

f/b
+ (t)κf/b− (t)κf/b0 (t) (4.20)

with

κ
f/b
+ (t) =

(
t± ia+ x̄/u

t± ia− t̄+ x̄/u

)p
, κ

f/b
− (t) =

(
a− iα(t− t̄− x̄/u)
a− iβ(t− x̄/u)

)q
, κ

f/b
0 (t) =

(
t± ia− t̄+ x̄/vF
t± ia+ x̄/vF

)
.

(4.21)
The instanton action reads

iÃt[ϕ∗] =
∑

ζ,η=f,b
σζη

∫
dt3dt4 Π̃ζη

+−(t3 − t4) Kζη+ (t3, t4) Kζη− (t3, t4) Kζη0 (t3, t4) (4.22)

with Kζησ (t3, t4) = κζσ(t3)−1κησ(t4) for σ = +,−, 0.

Since the polarization factor Π̃+−(t3 − t4) comes with the factor e−ieV (t3−t4) the integral is dominated
by the region |t3 − t4| . |eV |−1. On the other hand, one may expect it to be dominated by the
singularities of the phase factors as well; i.e. t3, t4 ∼ −x̄/u, t̄ − x̄/u for K+, t3, t4 ∼ x̄/u, t̄ + x̄/u for
K−, and t3, t4 ∼ −x̄/vF , t̄− x̄/vF for K0. These regions in the t3 − t4-planes are sketched in Fig. 4.3.
To proceed we assume that they are well separated which imposes the condition

Figure 4.3: Regions of dominance in t3 − t4-plane.

|t̄|, |eV |−1 � (1−K)|x̄|/vF . (4.23)

As it turns out the dephasing time τϕ which defines the relevant times t̄ . τϕ is ∼ |eV |−1, so that the
above condition reduces to |eV |−1 � (1−K)|x̄|/vF which can be easily satisfied for sufficiently large
voltage and tip-to-impurity distance.
Far from their singularities the phase factors become trivial, Kσ(t3, t4)→ 1, and the integral (4.22)

59



4 Tunneling Density of States of a Luttinger Liquid with Single Impurity

approximately splits into

iÃt[ϕ∗] ≈ I[K+] + I[K−] + I[K0]

with I[Kσ] =
∑

ζ,η=f,b
σζη

∫
dt3dt4 Π̃ζη

+−(t3 − t4)
(
Kζησ (t3, t4)− 1

)
.

We added −1 to the phase factor Kσ to make the integral manifestly convergent. “Manifestly” because
convergence is already ensured by the relation

∑
ζη σζη Π̃ζη

+−(t) = 0. For the very same reason, the
independence of Kζη− (t3, t4) of the Keldysh indices ζ, η implies I[K−] = 0.
This is in contrast to K+, K0 which according to (4.21) have the form Kζη(t3, t4) ≡ κζ(t3)−1κη(t4)

with κf/b(t) =
(
t−ta±ia
t−tb±ia

)r
and some exponent r > 0. For such phase factors I[K] is dominated by

the 2 regions |t3 − t4| . |eV |−1 (singularity of Π̃+−) and |t3 − ta|, |t4 − tb| . |eV |−1 (singularity of K)
which determine the long-time asymptotics |eV t̄| � 1. Keeping this observation in mind, we proceed
by using the following approximation

I[K] ≈
∫

dt
∑
ζη

σζη Π̃+−(t)
∫

dT
(
κζ(T )−1κη(T )− 1

)
+
∑
ζη

ζη Π̃ζη
+−(ta − tb)

∣∣∣∣
eV=0

∫
dt3 e−ieV t3κζ(t3)−1

∫
dt4 eieV t4κη(t4)

≈−R∗(eV )
{
|eV (tb − ta)|

2π

(
1− e−2πir sign [eV (tb−ta)]

)
− Γ(2K)

Γ(r)2 e
ieV (tb−ta) [ieV (tb − ta)

]2(r−K)
}
.

(4.24)

Considering right-movers µ = + and x̄ > 0 we thus obtain for the instanton action iÃt[ϕ∗] = I[K+] +
I[K0]. The first term,

I[K+] = − |t̄|2τϕ
− iR∗(eV ) sin 2πp

2π eV t̄ + C+R∗(eV )eieV t̄[ieV t̄]2q, C+ = Γ(2K)/Γ(p)2, (4.25)

encodes effects of real plasmons on tunneling which are generated because of backscattering off the
impurity. One of these effects is shot noise, which is represented by the first term in (4.25). This
term is negative and linear in time t̄ and thus accounts for dephasing with rate (4.7). The second term
represents a perturbatively small renormalization of bias voltage and will be neglected in the following.
The third term in (4.25) is subleading as compared to the first one and we will treat it perturbatively in
R∗. It shows oscillatory behavior, accounting for the energy transfer ∼ eV between the nonequilibrium
bath of plasmons and the tunneling electron. This point becomes more transparent and we refer the
reader to the discussion of the tunneling rates Γ≷

µ (ε) in the end of Sect. 4.1.
We turn now to the contribution I[K0]. In this case r = 1, so that the first term in (4.24) vanishes.

Thus, the electron-hole pair contribution reads

I[K0] =
∑
ζη

ζη Π̃ζη
+−(t̄)

∣∣∣∣
eV=0

∫
dt3 e−ieV t3κζ0(t3)−1

∫
dt4 eieV t4κη0(t4) (4.26)

= R∗(eV )Γ(2K)e−ieV t̄
[
−ieV t̄

]2(1−K)
. (4.27)
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It is oscillatory and can be again treated perturbatively. In contrast to the plasmon contribution,
however, it seemingly suggests an energy content of ∼ −eV and does not have a clear physical in-
terpretation. We will see below that this term is an artefact of functional bosonization which will be
canceled by the Born correction Gαβ1µ . In total, we have

eiÃt[ϕ∗] ≈ e−|t̄|/2τϕ
(

1 + C+R∗(eV ) eieV t̄
[
ieV t̄

]2q
+ I[K0]

)
for x̄ > 0, µ = +. (4.28)

The same considerations can be applied to left-movers and one obtains

eiÃt[ϕ∗] ≈ e−|t̄|/2τϕ
(

1 + C−R∗(eV )eieV t̄[ieV t̄]1−2K
)
, C− = Γ(2K)/Γ(q)2, for x̄ > 0, µ = −.

(4.29)

4.2.4 Born Correction

We evaluate the Born correction Gαβ1µ to the Green’s function, (4.12), in leading order in |r0|2, which
amounts to taking averages with respect to the clean action A0[ϕ] only. Then Wick’s theorem yields

Gαβ1µ ≈ i
|r0|2vF

2
∑

γ,δ=f,b
σγδ

∫
dt1 dt2Gαγ0µ (x̄, 0; t̄− t1)gγδ−µ(t1 − t2)Gδβ0µ(0, x̄; t2) J αβγδµ (x̄, t̄; t1, t2) (4.30)

with

J αβγδµ (x̄, t̄; t1, t2) =
〈
eiΘ

α
µ(x̄,t̄)eiµΦγ(t1)e−iµΦδ(t2)e−iΘ

β
µ(x̄,0)

〉
0

= e
− 1

2

〈[
Θαµ(x̄,t̄)−Θβµ(x̄,0)

]2〉
0
− 1

2

〈[
Φγ(t1)−Φδ(t2)

]2〉
0 e

iµ
(

Φγ∗(t1)−Φδ∗(t2)
)

(4.31)

and the instanton (4.16). The appearence of the instanton makes the integral (4.30) quite similar to
the instanton action and we will use analogous approximations to deal with the time integrals.
We have already seen that the instanton phase factor factorizes into three contributions (4.20) –

two governed by plasmons and one by electron-hole pair – and one might expect the integral (4.30)
to split into three contributions in a way akin to the instanton action. However, it will turn out that
the presence of the bare Green’s functions Gαγ0µ (x̄, 0; t̄ − t1) and Gδβ0µ(0, x̄; t2) suppresses the plasmon
contributions. Focusing again on µ = +, x̄ > 0, we show that the remaining electron-hole pair term
cancels I[K0] in (4.28).
The t1, t2-dependent contributions to (4.30) are

Gαγ0+(x̄, 0; t̄− t1)gγδ− (t1 − t2)Gδβ0+(0, x̄; t2)e
− 1

2

〈[
Φγ(t1)−Φδ(t2)

]2〉
eiΦ

γ
∗(t1)−iΦδ∗(t2)

= e−ieV t̄eieV (t1−t2) × g̃γδ− (t1 − t2)× κ̃δ0(t2)−1κδ+(t2)−1κδ−(t2)−1 × κ̃γ0(t1)κγ+(t1)κγ−(t1).

We combined terms with similar pole structure, defining

g̃γδ− (t1 − t2) ≡ e
− 1

2

〈[
Φδ(t2)−Φγ(t1)

]2〉
0gγδ− (t1 − t2)

∣∣∣∣
eV=0

,

κ̃δ0(t2)−1 ≡ Gδβ0+(−x̄, t2)
∣∣∣∣
eV=0

κδ0(t2)−1,

κ̃γ0(t1) ≡ Gαγ0+(x̄, t̄− t1)
∣∣∣∣
eV=0

κγ0(t1).
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4 Tunneling Density of States of a Luttinger Liquid with Single Impurity

Any voltage-dependence has been singled out in the phase factors explicitly.
Let us examine the pole structure: g̃γδ− (t1 − t2) is divergent for t1 ≈ t2. This is reminiscent of

Π̃+−(t3−t4) in (4.22) which preferred t3 ≈ t4. The plasmon contributions κ+ and κ− have been studied
in the previous section where we already noted κ±(t)→ 1 for t far from their singularities. This is not
longer true for κ̃0: Leaving the Keldysh indices and the corresponding short-time regularizations aside
for a moment we have

G0+(x, t)
∣∣∣∣
eV=0

= − 1
2πvF

1
t− x/vF

and κ0(t) = t− t̄+ x̄/vF
t+ x̄/vF

,

hence,

κ̃δ0(t2)−1 ∼ − 1
2πvF

1
t2 − t̄+ x̄/vF

, κ̃γ0(t1) ∼ 1
2πvF

1
t1 + x̄/vF

.

Similarly to the original phase factors κδ0(t2)−1, κδ0(t1) these new ones have the poles t1 ∼ −x̄/vF ,
t2 ∼ t̄− x̄/vF ; however differently from κδ0(t2)−1, κδ0(t1), the phase factors κ̃δ0(t2)−1, κ̃δ0(t1) vanish far
from these poles instead of converging to 1! Their poles are hence dominating the integral (4.30), while
the plasmonic poles give subleading contributions (suppressed by the factor vF t̄/(1−K)x̄� 1). With
only leading terms taken into account the integrals simplifies to

Gαβ1+ ≈ i
|r0|2vF

2 e
− 1

2 〈
[
Θαµ(x̄,t̄)−Θβµ(x̄,0)

]2
〉

∑
γ,δ=f,b

σγδ e
− 1

2 〈
[
Φδ(t̄)−Φγ(0)

]2
〉
[
Gαγ0+(x̄, t̄+ x̄/vF )gγδ− (−t̄)Gδβ0+(−x̄, t̄− x̄/vF )

]
eV=0

e−ieV t̄∫
dt2 e−ieV t2 κδ0(t2)−1

∫
dt1 eieV t1 κγ0(t1) (4.32)

For large times |t̄| � |eV |−1 short-time regularizations and thus the distinction between different
Keldysh components becomes immaterial, e.g. Πγδ

+− = |r0|2e−ieV t̄/(2πt̄)2, Gαβ0+(0, t̄) = −1/(2πvF t̄),
and we can write

i
|r0|2vF

2

[
Gαγ0+(x̄, t̄+ x̄/vF )gγδ− (−t̄)Gδβ0+(−x̄, t̄− x̄/vF )

]
eV=0

e−ieV t̄

= i
|r0|2vF

2

(
1

2πvF
1
t̄

)2(
− i
π

1
t̄

)
e−ieV t̄ = −Gαβ0+(x̄, x̄; t̄)

[
Πδγ

+−(t̄)
]
eV=0

.

Substituting into (4.32), taking into account dressing of the Green’s functions (4.15) and polarization
operators by phase factors, and comparison with (4.26) yields

Gαβ1+ ≈ −G̃
αβ
0+(x̄, x̄; t̄)

∑
δγ

δγ Π̃δγ
+−(t̄)

∣∣∣∣
eV=0

∫
dt2 e−ieV t2 κδ0(t2)−1

∫
dt1 eieV t3 κγ0(t1)

≈ −G̃αβ0+(x̄, x̄; t̄) I[K0]. (4.33)

The very same analysis can be performed for µ = −. In this case, however, κ̃γ0 does not depend on
the Keldysh index γ. Because of

∑
γδ σγδ g

γδ
+ (t1 − t2) = 0 the contribution Gαβ1− is negligible.
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Concluding, we obtain

Gαβ0+ ≈ e
−|t̄|/2τϕ G̃αβ0+(x̄, x̄; t̄)

(
1 + C+R∗(eV )eieV t̄

[
ieV t̄

]2q
+ I[K0]

)
, (4.34)

Gαβ0− ≈ e
−|t̄|/2τϕ G̃αβ0−(x̄, x̄; t̄)

(
1 + C−R∗(eV ) eieV t̄[ieV t̄]1−2K

)
, (4.35)

Gαβ1+ ≈ −G̃
αβ
0+(x̄, x̄; t̄) I[K0]. (4.36)

In leading order in |r0|2, i.e. neglecting dephasing corrections, Gαβ1+ cancels the I[K0] term of Gαβ0+ , as
was stated in the end of Sect. 4.2.3.

4.2.5 Tunneling Rates

We conclude this section by evaluating the Keldysh Green’s function and the tunneling rates. Due
to the tunneling actions (4.28), (4.29) the full Green’s functions contain power-law terms [ieV t̄]r,
r > 0, which have apparent branchcut singularities near t̄ = 0. However, these are only asymptotic
expressions, valid in the long-time limit |eV t̄| � 1. A regularization which takes this into account and
does not violate the symmetry relation

[
iG≷

µ (x̄, x̄; t̄)
]∗

= iG≷
µ (x̄, x̄;−t̄)) is [1 + ieV t̄]r, which yields the

Green’s functions

Gαβµ (x̄, x̄; t̄) = G̃αβµ (x̄, x̄; t̄)e−|t̄|/2τϕ
(

1 + CµR∗(eV )eieV t̄[1 + ieV t̄]rµ
)

(4.37)

with C+ = Γ(2K)/Γ(p)2, C− = Γ(2K)/Γ(q)2, r+ = 2q, r− = 1− 2K. (4.38)

The tunneling rates are obtained by Fourier transformation to energy representation. Using the afore-
mentioned symmetry property of the Green’s function they read

Γ≷
µ (ε) = ± 1

2π

∫ ∞
0

dt̄
(
eiεt̄ iG≷

µ (x̄, x̄; t̄) + e−iεt̄ iG≷
µ (x̄, x̄;−t̄)

)
= ∓ 1

π
Im
∫ ∞

0
dt̄ eiεt̄G≷

µ (x̄, x̄; t̄)

= ±ν0
π

[
J ≷

0 (ε; eVµ) + CµR∗(eV ) J ≷
rµ(ε; eVµ − eV )

]
(4.39)

with

J ≷
r (ε;U) ≡ ±ia2γ

∫ ∞
0

dt̄ ei(ε−U+i/2τϕ)t̄ (1 + ieV t̄)r(a± it̄)−(2γ+1),

Since J ≷
r (ε;U) is an analytic function of all parameters ε, r, γ, U, eV ∈ C as long as Im (ε−U+i/2τϕ) > 0

and Im eV ≤ 0 we can consider here Re r > −1, Re (2γ+1) < 1, Im eV < 0 and Re [(ε−U+i/2τϕ)/eV ] <
0 and deduce all relevant cases by analytic continuation. Under these constraints we can evaluate the
integral by rotating the integration contour, t̄ = −is/eV , 0 < s <∞, into the complex plane, and put
a→ 0. Writing z = (ε− U + i/2τϕ)/eV we get

J ≷
r (ε;U) = ±a

2γ

eV

∫ ∞
0

ds ezs (1 + s)r(±s/eV )−(2γ+1)

=
(
±eVΛ

)2γ

Γ(−2γ)Ψ(−2γ, 1− 2γ + r,−z)
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4 Tunneling Density of States of a Luttinger Liquid with Single Impurity

with the confluent hypergeometric function Ψ(a, b, z). The result for physical (real) voltages eV ,
Eqn. (4.4), are obtained from (4.39) by substituting eV − i0. Close to the singularity z → 0 we
have Ψ(−2γ, 1 − 2γ + 2r, z) ∼ z2(γ−r). Thus, the term J ≷

0 in Eq. (4.39) yields the equilibrium zero-
bias anomaly. The impurity corrections ∆Γ≷

µ to the tunneling rates, given by J ≷
rµ , are singular at

ε = eV± − eV . Leaving dephasing smearing aside we have explicitly

∆Γ<µ (ε) ∝−R∗(eV )|ε− eVµ + eV |2(γ−rµ) sin
{

2πrµ, ε > eVµ − eV,
2πγ, ε < eVµ − eV,

in the case of tunneling from the wire into the tip, and

∆Γ>µ (ε) ∝R∗(eV )θ(ε− eVµ − eV )|ε− eVµ + eV |2(γ−rµ)

in the case of tunneling from the tip into the wire. The result for eV > 0, Eqn. (4.4) is obtained by
substituting eV − i0

4.3 Conclusions

In this chapter we studied tunneling into the nonequilibrium state of a biased Luttinger liquid with a
single impurity. The tunneling rates, Fig. 4.2, that we found, exhibit two edges which are split by the
bias voltage eV . Both support power-laws which are smeared by dephasing. The dephasing rate (4.7)
is proportional to the effective reflection coefficient, which is renormalized in agreement with [11], and
has thus a nontrivial power-law (not just linear) dependence on bias.
While the main edge at the Fermi energy is governed by the same power γ as the equilibrium density

of states (4.3), the shifted side edge exhibits a modified power law. In the case of tunneling into a
right-moving state (whose Fermi energy is increased by eV ) and moderate interaction strength the
exponent can be negative, thus yielding a resonance in tunneling.
In the physical picture, we suggested to understand the edge structure, inelastic scattering of elec-

trons off the impurity leads to the creation of a nonequilibrium plasmon bath in the wire. In the
tunneling experiment, through absorption of plasmons electrons can tunnel into the wire even if their
initial energy is below the Fermi energy. The characteristic energy that can be absorbed is set by
the bias voltage eV . Similarly, tunneling rates for the inverse process can be understood in terms of
stimulated emission.
Naturally, such a plasmonic bath gives rise to decoherence, and the applied theory allows us to quan-

titatively understand the effect of the intrinsic noise, arising from the interplay of nonequilibrium and
interaction. In the next chapters we will study systems in which coherence is of imminent importance,
namely quantum Hall interferometers.
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5 Chapter 5

Quantum Hall Fabry-Pérot Interferometers

In this chapter we study the role of Coulomb interaction in an electronic Fabry-Pérot interferometer
realized with chiral edge states in the integer QHE regime. Electronic Fabry-Pérot (FPI) [66–69] and
Mach-Zehnder (MZI) [8, 9, 70–81] interferometers are analogues of the optical interferometers, where
the chiral edge states play the role of light beams while quantum point contacts (QPCs) act as beam
splitters. Electron interferometry provides a powerful tool for studying the quantum interference and
dephasing in mesoscopic semiconductor devices. Another motivation behind these experimental efforts
stems from the recent interest in topological quantum computations, which propose to exploit the
non-Abelian anyons in the fractional QHE regime [82].
The Coulomb interaction is of paramount importance in fractional QHE systems, where it gives

rise to quasi-particles with fractional charge obeying anyonic statistics. It came as a surprise that e-e
interaction plays a prominent role in integer QHE interferometers as well, even when their conductance
is ∼ e2/h so that the Coulomb blockade physics seems to be inessential. For instance, visibility in
the MZIs and FPIs strongly depends on the source-drain voltage showing decaying oscillations, which
have been termed “lobes”. The search for a resolution of this puzzle in the case of MZI has triggered
a lot of attention [83–89]. On the contrary, the extent of theoretical works on FPIs operating in the
integer QHE regime is rather small [90–92].
In this chapter we develop a capacitance model of the e-e interaction in a FPI and apply it to study

the transport properties of the FPI in and out of equilibrium in the limit of weak backscattering. Our
approach is inspired by the previous theoretical work [91]. Its essential idea is that a compressible
Coulomb island can be formed in the center of the FPI between two constrictions (Fig. 1), which
strongly affects Aharonov-Bohm oscillations. Starting from this model, we demonstrate that depending
on the strength of the e-e interaction the FPI can fall into “Aharonov-Bohm” (AB) or “Coulomb-
dominated” (CD) regimes observed in the experiments [67, 69], see Fig. 5.1. We also analyze the
suppression of nonequilibrium AB oscillations with the increase of a source-drain voltage and find
regions of both power-law and exponential decays, which explains experiments of Refs. [66, 68].
The results and details of the calculation presented in this chapter have been published before in

Refs. [93] and [26].

5.1 Model

We consider an electronic FPI of size L formed by a Hall bar with ν edge channels and two constrictions
(QPCs) that allow for electron backscattering between the innermost right-/left-moving edge channels
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5 Quantum Hall Fabry-Pérot Interferometers

Figure 5.1: Aharonov-Bohm conductances as function of magnetic field and gate voltages found in
different experiments: (left) large device (area ∼ 18µm2) with top gate[67]; (middle)
smaller device (area ∼ 2.0µm2) without top gate[67]; (right) device with one fully
transmitted edge channel and four channels which are enclosed in the interferometer
cell[69] (area ∼ 4.4µm2 without top gate).

with amplitudes r1(2) as shown in Fig. 5.2 (a). Right- and left-moving channels are connected to leads
with different chemical potentials eV+ and eV−, respectively. In accordance with experimentalists’
customs we asymmetric bias, where one edge is biases, eV+ = eV , and the other one is grounded,
eV− = 0. In what follows, we take into account the backscattering in the lowest order, thus accounting
for interference of maximally two different paths. For simplicity we assume the flight times along
upper and lower arms (i.e. between two QPCs) to be the same, τ+ = τ− = τ = L/vF . We denote
the magnetic flux threading the interferometer cell by φ, i.e. an electron which encircles the cell once
accumulates the Aharonov-Bohm phase 2πφ/φ0, where φ0 = hc/|e| is the flux quantum[10].
The 2DEG in the QHE regime is divided into compressible and incompressible strips [94, 95]. The

filling factor in the n-th incompressible strip is integer. These strips are separated by much wider
regions of compressible Hall liquid with a non-integer filling factor (compressible strips). The corre-
sponding sketch the of electron density profile ρ(y) in the FPI along y-axis is shown in Fig. 5.3. Let us
denote by y±k the boundaries between compressible and incompressible regions. Then ak = y+

k − y
−
k is

the width of the k-th incompressible strip while bk = y−k−1 − y
+
k is the width of the k-th compressible

one. As it was shown in Ref. [94], in the situation of gate-induced confinement of the 2DEG in the
QHE regime the widths bk � λB, with λB being the magnetic length. At the same time ak scales as
ak ∼

(
bkλB

)1/2, so that in general the condition bk � ak � λB is satisfied. In this picture compressible
regions play the role of edge channels — the self-consistent electrostatic potential is constant through
the compressible strips and can be controlled by connecting them to external leads.
We also assume that the filling fraction ν0 in the center of the FPI exceeds ν, giving rise to a

compressible droplet (Coulomb island). The reason for that can be smooth (on a scale λB) disorder
potential fluctuations [96]. Let us denote by eNi the excess charge on the island (e < 0), with Ni

being integer. On the scheme in Fig. 5.3 the boundary of the island is given by y−ν . This value is
quantized and changes abruptly when an electron tunnels between innermost compressible strips and
the island through the incompressible strip. On the contrary, the boundaries of edge channels may
change continuously upon a variation in external parameters, such as eV± and Vg, or due to quantum
fluctuations of electrostatic potentials on these compressible regions (see also discussion later).
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Figure 5.2: (a) Fabry-Pérot interferometer with compressible island i. The innermost edge chan-
nels e are subject to backscattering at the QPCs; the remaining fT = ν − 1 right(r)-
and left(l)- moving channels are fully transmitted; their role is in screening of the
interaction between the electrons of the channel e. Right- and left-moving channels
are connected to reservoirs with different chemical potentials eVη, η = ±. Here, the
gate g is depicted as a “plunger” gate. (b) Simple capacitance model, which uses
geometry of the compressible regions. Full transmitted right(r)- and left(l)-moving
channels are each joined into one conductor with the widths br and bl, respectively.

Electrostatics of the FPI

In the framework of the above model, we treat the e-e interaction in the FPI by using the constant
interaction model (see e.g. Ref. [97]) with mutual capacitances Cαβ between four compressible regions
— the interfering channel (e); right- and left-moving fully transmitted channels (r, l); the compressible
island (i) — and the gate (g). These capacitances are denoted by Ceg, Cei etc. We assume a large
capacitance between counter-propagating innermost channels — thus they share the same electrostatic
potential ϕe — and also consider fT = ν − 1 right- and left-moving channels as joint conductors with
potentials ϕr (ϕl). Defining the capacitance matrix C̃ with elements C̃αα =

∑
γ Cαγ + Cαg, and

C̃αβ = −Cαβ (α 6= β), where Greek indices span the set {e, r, l, i} and qα = −CαgVg is an offset charge
on conductor α, the electrostatic energy reads

E = 1
2
∑
αβ

(
Qα − qα

) (
C̃−1

)
αβ

(
Qβ − qβ

)
. (5.1)

Total charge Qi = e
(
Ni + νφ/φ0

)
on the island is distributed on the highest partially filled Landau

level (LL) and on ν fully occupied underlying LLs (cf. Fig. 5.3). Single electron tunneling is possible
between interfering channels (e) and the island. We assume the rate Γ of such tunneling processes to
be much smaller than all other energy scales in the problem, Γ � vF /L . eV , hence Ni is quantized
and is fixed for given external parameters (φ, Vg, eV±).
The mutual capacitances Cαβ can be estimated from geometrical considerations [98]. We regard the

island as a disc of radius r and represent the compressible edge channels as concentric rings of the
width bα and diameter L (here α = e, r, l) as depicted in Fig. 5.2 (b). The edge channels are assumed
to be thin, bα � L. Therefore for the estimation of capacitances we can neglect the difference between
the radii of the island and those of edge channels, i.e. L ' πr ' πy±k . A top gate, if present, is modeled
by a plane situated at distance d from the 2DEG. Since the size of FPI cell is much larger than d, we
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Figure 5.3: The structure of the edge states in the FPI. Cut through the center of an interfe-
rometer cell: (a) Landau level energies as the function of vertical coordinate y and
(b) electron density ρ(y) (see also Fig. 5.2). Besides ν completely filled LLs, the
central region can sustain a partially filled Landau level whose occupation Ni changes
by tunneling. Here we denoted by ak = y+

k − y
−
k the width of the k-th incompress-

ible strip (shown in gray), which has the integer filling factor k. Compressible re-
gions (white) represent the regions with non-integer filling fraction and have the width
bk = y−k−1 − y

+
k . The picture above corresponds to the case ν = 2.

treat Cig, Ceg and Cr(l)g as parallel-plate capacitors and find the estimate

Cig ' ε
r2

4d, Ceg ' ε
Lbe
2πd, Crg ' ε

Lbr
4πd, (5.2)

where e.g. for GaAs the dielectric constant is ε = 12.6. For the estimate of edge-to-edge (Cer and Ce l)
and edge-to-island (Cei) capacitances we can use the mutual capacitance of two conducting rings. In
the limit b� a we obtain with logarithmic accuracy

Cer '
εL

2π2 ln
(
bebr
a2
er

)
, Cei '

εr

π
ln
(
rbe
a2
ei

)
. (5.3)

Here br(l) =
∑ν−1

k bk are the total widths of fully transmitted edge channels. Finding the mutual
capacitance between a plunger gate and the island or the interfering edge channel is in general more
difficult. Because of geometry, one can expect that Cig and Ceg in this case will be substantially smaller
than the above estimate (5.2) for the case of a top gate.
Let us now comment on the flux dependence of the electrostatic energy, Eq. (5.1). When the magnetic

flux through the island is increased, δφ = πr2δB , the LLs are squeezed and the charge on the island
(for a fixed boundary y−ν ) varies as δQi = eν δφ/φ0. A similar effect of magnetic field on charges Qe,r,l
distributed on compressible circular strips is negligibly small because of the condition b� r. Indeed,
for a typical variation δB, such that δφ/φ0 ∼ 1, the corresponding modulations of these charges are

δQe,r,l
e
∼ δφ

φ0

(
2b
r

)
� 1, (5.4)

and we do not include them into Eq. (5.1).
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5.2 Results

In this subsection we summarize our results and give their physical interpretation. The detailed
derivation is presented in the next subsection. The qualitative behavior of the FPI crucially depends
on the relative coupling strength of the interfering edge (e) to the fully transmitted channels (l, r), to
the island, and to the gate. The essential parameters are the number of transmitted channels ν∗ which
screen the bare e-e interaction in the interfering channel — as we demonstrate in the section 5.3, one
has ν∗ ' 1 in the case of strong and ν∗ ' ν in the case of weak inter-edge interaction — and the
effective edge capacitance C̄e as defined below by Eq. (5.11). There are also two characteristic energy
scales in our problem: (i) charging energy EC = e2/C̄e, or charge relaxation frequency ωC = (ν∗/π)EC ;
and (ii) the Thouless energy εth = τ−1 = vF /L. The relation between these two parameters depends
essentially on the geometry of the experiment (most importantly, on the geometry of the gates). We
will assume that the condition εth � ωC is always satisfied, which simplifies a lot our subsequent
calculations and enables us to get analytical results. This appears to be a proper assumption for most
of available experiments. In particular, the value of the Thouless energy that can be deduced from the
experiment of the Harvard group is εth ∼ 50 µV [66], whereas the charging energy is in the mV range
[67].

5.2.1 Visibility, dephasing and the “lobe” structure

In the limit of weak backscattering, Rj = |rj |2 � 1, the dimensionless differential conductance of the
FPI, g = ginc + gAB – normalized with respect to the conductance quantum G0 = e2/(2π) – is the sum
of incoherent and coherent contributions. The incoherent contribution is

ginc(V ) = ν −R1∗(eV )−R2∗(eV ), (5.5)

where Rj∗(eV ) are the renormalized reflection coefficients (see Eq. (5.9) below). The dependence of
the AB conductance on external parameters — the gate voltage Vg, the variation of the magnetic field
∆B and the bias V — factorizes into

gAB(eV+, eV−, φ, Vg) = g̃(V ) cos[ϕAB(Vg,∆B)]. (5.6)

The AB phase ϕAB will be discussed in detail shortly. The amplitude of the oscillations is

g̃(V ) = e−τ/τϕR12∗(eV ) 2

∣∣∣∣∣cos
(
|eV τ |+ π

4ν∗

)∣∣∣∣∣ (5.7)

with the nonequilibrium dephasing rate given by

τ−1
ϕ = |eV |

(
R1∗(eV ) +R2∗(eV )

) 2
π

sin2 π

2ν∗ . (5.8)

In Eqs. (5.5) and (5.7) we have introduced the renormalized reflection coefficients defined as

Rj∗(eV ) = Rj

∣∣∣∣ωCeV
∣∣∣∣1/ν∗ eγ/ν

∗

Γ(2− 1/ν∗) = Rj∗(εth)
∣∣∣∣ εtheV

∣∣∣∣1/ν∗ ,
R12∗(eV ) = |r1r2| |ωCτ |1/2ν

∗
∣∣∣∣ωCeV

∣∣∣∣1/2ν∗ 21/2ν∗eγ/ν

Γ(1− 1/2ν∗) = R12∗(εth)
∣∣∣∣ εtheV

∣∣∣∣1/2ν∗ .
(5.9)
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Remarkably, in the last equation the amplitudes r1, r2 do not renormalize separately, rather the renor-
malization operates non-locally. A similar result was found for FPIs in the fractional QHE regime in
Ref. [90]. The relations (5.9) are valid for bias in the range εth � eV � ωC . The above renormalization
comes from virtual electron-hole excitations (being a precursor of weak Coulomb blockade [99, 100])
and stops at eV ' εth. On the contrary, the dephasing rate τ−1

ϕ is caused by real e-h pairs excited by
backscattered electrons and is proportional to the shot noise of the QPCs. There a simple linear de-
pendence of the shot noise on voltage, which is valid in the absence of interaction, is modified because
of the renormalization of reflection coefficients.
An additional dependence of the conductance amplitude (5.7) on bias stems from an oscillatory

prefactor which has the characteristic scale πεth. As a consequence, the amplitude or, equivalently,
the visibility v(V ) = |g̃(V )|/ginc(V ) vanishes for certain equidistantly distributed values of bias. The
resulting characteristic “lobe” structure of visibility is shown in Fig. 5.4 and is in agreement with
experiments reported in Refs. [66, 68].

Figure 5.4: Total differential conductance g as a function of bias and magnetic flux (left panel),
and visibility (right panel). Parameters are: ν∗ = 2, ωCτ = 25, R1∗(εth) = R2∗(εth) =
0.2.

5.2.2 Aharonov-Bohm oscillations

In experiment one usually characterizes the FPI in terms of the pattern of its equilibrium conductance
in the (B, Vg) - plane, which is governed by the AB phase. We have identified four different regimes
where the behavior of AB oscillations is qualitatively different (see Table 5.1). In this table the pa-
rameter ν∗ — the effective number of transmitted channels which screen the Coulomb interaction in
the interfering channel — depends on the relative strength of the inter-edge e-e interaction. To distin-
guish between the limits of weak and strong e-e interaction we compare the inter-channel interaction
energy ∼ e2/Ceα (here α = r, l) with the screened-by-the-gate charging energy of the interfering edge
itself given by ∼ e2/C∗αg. Here the edge-to-gate capacitance is effectively increased by the so-called
“quantum capacitance”:

C∗αg = Cαg + (ν − 1)τe2/(~π). (5.10)

In the weak coupling limit one has Ceα � C∗αg. In this case the electrostatic potentials on all edge
channels (r, l, and e) are approximately equal to each other and ν∗ ' ν. In the opposite strong coupling
limit we have Ceα � C∗αg. The potential ϕe here fluctuates independently of potentials on other edge
channels (r and l), thus screening of e-e interaction by the latter channels is not effective and one gets
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ν∗ ' 1. To make a distinction between the “Aharonov-Bohm” (AB) and “Coulomb-dominated” (CD)

Table 5.1: “Phase diagram” of the FPI, which discriminates between two Aharonov-Bohm (AB
and AB*) and two Coulomb-dominated (CD I and CD II) regimes.

Ceα � C∗αg Ceα � C∗αg

ν∗ = ν ν∗ = 1
C̄ei = Cei + Cri + Cli C̄ei = Cei
C̄eg = Ceg + Crg + Clg C̄eg = Ceg

C̄ei � Cig AB AB*
C̄ei � Cig CD II CD I

regimes we now define an effective edge-to-island capacitance C̄ei by the relation C̄ei = Cei +Cri +Cli
in the weak coupling limit, i.e. at ν∗ ' ν, and set it to be C̄ei = Cei in the opposite case of strong
coupling. Then the FPI falls into AB or CD regimes depending on the ratio C̄ei/Cig, as it is shown in
the Table 5.1. As one can see from Eqs. (5.2) and (5.3), for the device with a top gate the capacitance
Cig scales like r2 when the FPI size grows, while C̄ei increases only as r ln r. This suggests a simple rule
of thumb: the AB regime occurs primarily in large FPIs with a top gate (in experiment “large” means
a cell area ∼20µm2). In this situation, i.e. at C̄ei/Cig � 1, fluctuations of charge on the island are
screened by the gate electrode and do not affect the AB conductance. In the opposite case of a large
ratio between the capacitances (C̄ei/Cig � 1), as one will see shortly, the AB conductance becomes
linked to the Coulomb blockade on the compressible island, hence the naming – “Coulomb-dominated”
– for this regime.
For a device without a top gate a bare edge-to-gate capacitance Ceg is only due to a plunger gate (see

Fig. 5.2). Such a gate is used to control the size of the interference loop and for geometrical reasons
Ceg is typically very small, so that one has C∗eg ' (ν − 1)τe2/(~π). In this case our first condition
of weak versus strong inter-edge e-e coupling can be simplified. Defining the dimensionless coupling
constant as

αν ≡
(ν − 1)e2

ε~vF

and using the estimate (5.3) for capacitances Cer and Cel one obtains the crossover value

α∗ ∼ 1
2π ln

(
bebr
a2
er

)
,

which sets the boundary between the weak and strong coupling regimes.
We name four regimes AB, AB*, CD I and CD II according to the Table 5.1 which lists the values of

parameters ν∗, C̄ei and C̄eg. The capacitance C̄eg here is defined in analogy to C̄ei. In addition to these
effective edge-to-island and edge-to-gate capacitances we now define full island and edge capacitances
as

C̄i = C̄ei + Cig, C̄e = C̄eg + C̄eiCig/C̄i. (5.11)
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Then the AB phase in Eq. (5.6) reads

ϕAB = 2πφ/φ0 −
2π
ν∗
C̄ei

C̄i
(Ni∗ + νφ/φ0) + |e|

ωC

(
2Vg − V+ − V−

)
(5.12)

with integer Ni∗ minimizing the charging energy of the Coulomb island

Ei = e2

2C̄i
(Ni∗ + νφ/φ0 − CigVg/|e|)2, (5.13)

and we have defined ωC = ν∗EC/π and EC = e2/C̄e.
In Fig. 5.5 we show the conductance gAB(φ, Vg) in the (B,Vg)–plane for three regimes: AB, CD I

and CD II. The plots display significant differences. In particular, the lines of constant phase have a
different slope in the AB and type-I CD regimes. The flux periodicity is also different in these two
cases. The AB conductance in the case of type-II CD regime shows a “rhomb-like” pattern. The
pattern of equilibrium conductance in the AB* case is the same as in the AB regime, provided one
sets ν∗ = 1.

Figure 5.5: Aharonov-Bohm conductance in different regimes. AB regime (left): ν∗ = ν = 2,
stripes of constant conductance have a negative slope, flux and gate voltage periods
are ∆φ = φ0 and ∆Vg = νEC/|e|. Type-I CD regime (middle): ν∗ = 1, ν = 3, stripes
of constant conductance have now a positive slope, flux and gate voltage periods are
∆φ = φ0/(1 − ν) and ∆Vg = EC/|e|. Type-II CD regime (right): ν∗ = ν = 2,
Cig/C̄e = 0.6, at fixed gate voltage Vg conductance depends discontinuously on flux –
phase jumps occur at every ∆φ = φ0/ν.

5.2.3 Discussion and Comparison with Experiment

Noninteracting interferometer

Let us now discuss the physics which underlies the rich phenomenology of our rather simple model. To
appreciate the role of interaction we consider first the noninteracting case, where the interfering channel
couples neither to the fully transmitted ones nor to the island. Consider an electron which contributes
to the tunneling current and which is, say, incident from the left source and leaks into the left drain.
It may tunnel either at the left or right QPC. The latter path is longer than the first by 2L = 2vF τ
and encircles a magnetic flux φ. Along this path the electron accumulates a dynamic (“Fabry-Pérot”)
phase 2ετ (ε is the energy of the electron) and a magnetic AB phase 2πφ/φ0. According to quantum
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mechanics, the current results from interference of both paths. Integration over all energies in the
range eV− < ε < eV+ gives the backscattering current

Ib = −e
∫ eV+

eV−

dε
2π

∣∣∣r1 + e2πiφ/φ0+2iετr2

∣∣∣2 = Iinc + IAB, (5.14)

that we split into incoherent and coherent contributions,

Iinc = − e
2

2πV (R1 +R2), IAB = − e

2πτ 2r1r2 cos[e(V+ + V−)τ + 2πφ/φ0] sin[eV τ ] (5.15)

where we assumed for simplicity that r1, r2 are real. While the incoherent part of the current Iinc
is expected already on the classical level, IAB stems from interference and is sensitive to magnetic
flux. The dynamic phase accumulated by an electron depends on its “absolute” energy ε, and hence
the current IAB depends on both chemical potentials eV+, eV− and not just on their difference eV =
eV+ − eV−. Clearly, the sum (V+ + V−) enters only the phase shift of the AB pattern, but not the
amplitude. However, this independence of the amplitude of oscillations on the bias does not in general
hold for the differential conductance gAB. Specifically, when the differential conductance is calculated
in the framework of the model of noninteracting electrons, the amplitude of the corresponding AB
oscillations g̃ does depend on the manner in which bias is applied.
Experimentally, the bias is applied asymmetrically: eV+ = eV , eV− = 0. The expected dimensionless

conductance then is

gAB = G−1
0 ∂V IAB = −2r1r2 cos[2eV τ + 2πφ/φ0],

i.e. bias merely controls the phase shift of the AB oscillation pattern. The amplitude g̃ = 2|r1r2|
is independent of bias. This clearly contradicts our results, presented above, as well as experimental
observations.
The situation would change essentially if the bias were applied symmetrically: eV+ = eV/2, eV− =
−eV/2. Then the conductance would be

gAB = −2r1r2 cos[eV τ ] cos[2πφ/φ0]. (5.16)

Now, the amplitude would oscillate with bias on the scale πεth, yielding a visibility with a “lobe”
structure. This result is apparently much more similar to our findings (albeit without dephasing and
renormalization of r1r2) as well as to the experimental observations. On the basis of the similarity
between Eq. (5.16) and the experimental observations it was conjectured in Ref. [67] that the electron-
electron interaction effectively symmetrizes the bias even if the latter is applied asymmetrically.

Mean field potential and contracting edge

To see how this works, assume that a charge within the interferometer cell produces a (for simplicity
constant) self-consistent potential ϕ0. An electron which propagates in this potential during a time
2τ accumulates the “electrostatic” AB phase −2ϕ0τ . Hence, the dynamic phase would be 2(ε− ϕ0)τ
and instead of the bare chemical potentials the relative potentials (eV± − ϕ0) enter the result (5.15).
Such a mean-field potential is indeed generated within our model. For instance, in the generic limit of
large charging energy EC � εth our calculations in the subsection 5.3 yield ϕ0 ' e(V+ + V−)/2 in the
case of AB regime. Therefore without any need of any fine tuning, the bias is effectively symmetrized,
which explains the appearance of the “lobe” structure.
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The mean-field potential ϕ0 on the compressible strip corresponding to the interfering edge channel
is in general a function of the applied chemical potentials eV±, the gate voltage Vg and the magnetic
flux φ. The most general expression found in subsection 5.3 reads

ϕ0(eV±, Vg, φ) = 1
1 + ωCτ

[
eVg + eV+ + eV−

2 ωCτ + EC
C̄ei

C̄i
(Ni∗ + νφ/φ0)

]
. (5.17)

Here Ni∗, as before, provides the minimum for the Coulomb energy Ei of the island given by Eq. (5.13).
If we introduce the “mean electrochemical potential”

− ϕ̃0 = (eV+ + eV−)/2− ϕ0, (5.18)

then the “total” AB phase is

ϕAB(eV±, Vg, φ) = 2πφ/φ0 − 2τϕ̃0(eV±, Vg, φ) (5.19)

and becomes (5.12) in the limit ωCτ � 1. The first contribution here is the magnetic AB phase
accumulated along a fixed reference loop with area A0, i.e. φ = A0δB, with δB � B being a weak
modulation of magnetic field on top of the high field B which drives the 2DEG into the QHE regime.
Because of the condition b � L (see Fig. 5.2 b) imposed in our model, and since a typical variation
δB is such that φ changes on a scale of a few flux quanta only, one can use any boundary y±k to
define A0. For example, one can set A0 = π(y+

ν )2. Let us further show that the second “electrostatic”
contribution (−2τ φ̃0) to the phase ϕAB can be interpreted in terms of the motion of edge states which
leads to a variation of the relevant FPI area when the magnetic field B or gate voltage Vg are varied.

Figure 5.6: When the boundaries of the compressible strip (white) separating incompressible re-
gions (gray) with filling factors ν and ν+ 1 move toward the (ν+ 1)-liquid (indicated
by arrows), the latter shrinks while the ν-liquid’s area grows: as the result the charge
on the incompressible strip, defined by the boundaries y−ν+1 and y+

ν , decreases (in this
figure hν < 0).

First, we note that in the stationary limit an imbalance of electron density on the interfering edge
channel δρe is related to the corresponding electrochemical potential (5.18) via the simple relation
δρe = −ϕ̃0/(2πvF ), since (2πvF )−1 is the 1D thermodynamic density of states in our model. As it
is always the case in QHE systems, this charge density can be translated into the variation hν of the
boundary between the compressible and incompressible strips (Fig. 5.6), δρe = nLhν , where nL =
B/φ0 = (2πλ2

B)−1 is the electron concentration of one completely filled LL, and we have assumed the
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fluctuations of inner and outer boundaries of the compressible strip to be the same, δy+
ν+1 = δy−ν = hν .

Therefore the “electrostatic” part of the AB phase reads

− 2τϕ̃0 = 4πLδρe = 4πnL(Lhν) = 2π(B/φ0)δA. (5.20)

Here δA = 2Lhν is the change in area enclosed by interfering edge state. To recapitulate the logic,
we have thus related the self-consistent electrostatic potential ϕ0 to a variation of the FPI area. With
these arguments at hand one can now rewrite Eqs. (5.17) and (5.19) in the equivalent form

φAB = 2π
(
A0δB +BδA

)
/φ0 + const , (5.21)

where the variation of area reads

δA = − 1
ν∗
C̄ei

C̄i

(
ν
A0
B
δB + φ0

B
∆Ni

)
+ |e|
ωC

φ0
πB

δVg. (5.22)

The integer ∆Ni denotes the deviation of the electron number on the Coulomb island from the initial
reference value. We have also taken into account that the source-drain bias is small on a scale of the
charging energy, |eV | � EC .

Regimes and experiments

Let us now discuss our theory of the FPI in relation to the recent experiments by considering separately
each of the four regimes in the Table 5.1. In the AB regime one has C̄ei/C̄i � 1, thus the coupling of
the interfering edge to the Coulomb island is negligible and the area A does not change with B. The
AB phase then simplifies to

ϕAB = 2πφ/φ0 + 2π
ν

|e|Vg
EC

, (5.23)

yielding the lines of constant phase with a negative slope (Fig. 5.5, left) and a magnetic field period
∆B = φ0/A0 which is independent of ν. The second term in the above equation describes the spatial
shift of the electron trajectory upon varying the gate voltage. If δVg > 0 then the interfering edge
state moves outwards and thus encloses a larger flux as it is seen from Eq. (5.22). The AB regime was
observed in large devices (cell area ∼18µm2) with a top gate [66, 67, 69], where the condition C̄ei � Cgi
is satisfied. In Ref. [67] it has been also found that the magnetic field period ∆B is independent of
B, while the gate voltage periodicities (both top- and plunger- ones) scale as ∆Vg ∝ 1/B ∝ ν. These
observation are consistent with our Eq. (5.23) if the charging energy EC = e2/C̄e is ν-independent.
This is the case provided the full edge capacitance C̄e ' C̄eg + C̄ei stays approximately the same at
each Hall plateau.
In the CD regime one has C̄ei/Ci ' 1 and the area of the interfering loop shrinks with increasing

magnetic field. This is because the interfering edge is now electrostatically coupled to the charge
Qi = e(Ni + νφ/φ0) on the Coulomb island, which depends explicitly on flux. The AB phase in this
regime reads

ϕAB = 2π(1− ν/ν∗)φ/φ0 −
2π
ν∗
Ni + 2π

ν∗
|e|Vg
EC

,

In the type-II CD regime ν∗ ' ν and at fixed Vg the AB phase stays piecewise constant when the
magnetic field is varied. Its dependence on B exclusively enters via Ni. Indeed, as it follows from
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Eq. (5.22) the shrinkage of the interfering loop in this case, δA = −(A0/B)δB, exactly compensates a
change in magnetic phase ϕ = A0δB. When the FPI is brought close to a charge degeneracy point of
the island by varying Vg or B, electron tunneling becomes possible between the droplet and interfering
channels (i.e. ∆Ni = ±1) resulting in abrupt change of A. This creates a phase lapse (or jump)
∆φAB = ±2π/ν giving rise to the “rhomb-like” pattern shown in Fig. 5.5 (right) at ν ≥ 2.
In the type-I CD regime ν∗ ' 1 and a change in AB phase caused by area shrinkage when rising B

overcompensates the growing of the magnetic part φ, since now δA = −ν(A0/B)δB. Counterintuitively,
the phase decreases when increasing the magnetic field. At the same time, whenever an electron tunnels
into the island from the interfering edge channel (e), the boundary of this edge state contracts so as
to expel exactly one flux quantum from the AB loop. The phase lapse, being equal to ∆φAB = −2π
in this tunneling process, is therefore invisible in the interference conductance. As a result, one has
the diagonal stripe pattern with lines of constant phase having positive slope (Fig. 5.5, middle). The
periods are ∆B = φ0/(fTA) and ∆Vg = e/(Ceg + Cgi), with fT = ν − 1 being the number of fully
transmitted edge channels (note, that at ν = 1 the lines of constant phase are vertical).
In the limit of weak backscattering at QPCs, the Coulomb-dominated regime has been observed in

Ref. [69]. In this work measurements were performed with a large range of edge state configurations
(including fractional fillings), classified by the bulk filling fb and the number fT of fully transmitted
edges. We focus on the results obtained with a 4.4µm2-device without a top (but with plunger-) gate.
They indicate that interaction plays a major role (i.e. CD I and CD II regimes). For integer fb and
fT = fb − 1 the results coincide with our Fig. 5.5 (middle), including a period in magnetic field which
scales as ∆B ∝ 1/fT .The gate period in Ref. [69] was found to be weakly increasing with fT . We can
explain this dependence if we assume that the full edge capacitance, which equals to C̄e = Cgi+Ceg in
the CD I regime, decreases with fT , because, for geometric reason, the mutual coupling of the plunger
gate and the inner interfering edge channel (Ceg) becomes less efficient at high ν. A quite “exotic”
behavior was observed, when more than one channel were trapped in the interferometer cell. In the
case of fb = 4 and fT = 1 experimental findings resemble very much Fig. 5.5 (middle) corresponding
to our CD II regime. In such a setting one fully transmitted and one partially reflected edge channel
can be described by our model with ν = 2 assuming that the other two trapped inner channels can be
treated as a compressible island, where the excess charge is quantized.
Nonequilibrium transport measurements in the FPIs in the AB regime have been performed in

Refs. [66, 68]. Their main findings can be summarized as follows: (i) the dependence of the AB
conductance on B and the bias V factorizes into a product of two terms yielding a “checkerboard"
pattern in the (B, V )-plane (cf. Fig. 5.4, left); (ii) the scale of the “lobe” structure is set by εTh ∼ vD/L;
(iii) the visibility decay with bias is stronger at higher magnetic fields. The results of our theory,
Eqs. (5.6) - (5.9), are in full accord with these observations. In particular, the suppression of visibility
in our model at |rj |2 � 1 is mainly due to a power-law decay with the negative exponent (−1/2ν∗).
Since in the AB regime ν∗ = ν ∝ 1/B, this decay is stronger in the case of a small number of edge
channels, i.e. at higher B, in agreement with Ref. [66].
It is interesting to note that our theory predicts a fourth regime (AB∗, see Table 5.1). It is charac-

terized by the same equilibrium conductance pattern as the AB regime (Fig. 5.5, left), but in contrast
to the latter, the power-law decay of the visibility oscillations corresponds to ν∗ = 1, and thus is
independent of B. Such a behavior of the FPI has not yet been observed in the experiment.
Closing this section we have to mention that a crossover from the AB to the type-I CD regime (in

our) terminology has been recently discussed in details in Ref. [92]. We note that our capacitance
model is very similar in spirit to the one used in that paper. However, the important difference is that
our approach takes explicitly into account quantum corrections to classical geometrical capacitances,
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given by Eq. (5.10). As a result we obtain the extra type-II CD regime which may arise because of
screening of Coulomb interaction by the fully transmitted edge channels.

5.3 Calculations

This section is devoted to the derivation of the above results using the formalism developed in Chap-
ter 3. For simplicity we assume all edge channels to have the same length L and same velocity |vµ| = vF
(with vµ > 0 in right-moving channels and vµ < 0 in left-moving ones). Consequently, all flight times
τ = L/vF are the same. Further, the scatterer 1 has the coordinate x1 and scatterer 2 has the
coordinate x2 = x1 + L for each of the edges, see Fig. 5.7.

s1 s2

x
x 1 x 2

+
r

l
-
<

8

Figure 5.7: Network model of the FPI.

We remind us that two characteristic energy scales play an important role in our analysis, namely,
Thouless energy εth = τ−1 and charging energy EC = e2/C̄e (or charge relaxation frequency ωC =
ν∗

π EC), see Sec. 5.2. As has been discussed there, we will assume that the charging energy is much
higher than the Thouless energy, and will consider voltages in the intermediate range between these
two scales, ωC � |eV | � εth.

5.3.1 Electrostatic Action

Our network consists of ν right-moving and ν left-moving chiral channels which we label with the
subindex µ, see Fig. 5.7. The innermost right-moving channel (µ = +) is coupled to the innermost
left-moving channel (µ = −) by two scatterers i = 1, 2 with 2×2-scattering matrices si. The remaining
chiral channels (right-moving ones labeled µ = r1, . . . , r(ν−1), left-moving ones by µ = l1, . . . , l(ν−1))
connect sources to drains without any possibility of tunneling.
Interaction is taken into account by the electrostatic model (5.1) described in the beginning. For

simplicity we assumed that electrostatic coupling between all fully transmitted right-moving channels
(µ = r1, . . . , r(ν−1)) is strong such that they share a common electrostatic potential Vr. This enables
us to merge them into one conductor (labeled α = r). We proceeded in the same way with the
fully transmitted left-moving channels (µ = l1, . . . , l(ν − 1) are now merged into α = l) and the two
innermost ones (µ = +,− are merged into α = e). This reduces the number of charge degrees of
freedom characterizing the edge channels down to three:

Qe =
∫

dx ψ̄+ψ+ +
∫

dx ψ̄−ψ−, Qr =
ν−1∑
κ=1

∫
dx ψ̄rκψrκ, Ql =

ν−1∑
κ=1

∫
dx ψ̄lκψlκ.

As a fourth conducting element, we introduce a central compressible island with total charge Qi =
e(Ni + νφ/φ0). While the second contribution, the charge in the ν fully occupied LLs of the central
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region, is fixed by external parameters, the occupation Ni of the partially filled LL of the island is an
(integer) degree of freedom to begin with. Since it is assumed to fluctuate via very slow tunneling,
Γ� εth, we will, however, treat it in a mean-field approximation.
The fermionic action we start with reads as follows

A0[ψ, ψ̄,Ni] =
∑
µ

∫
C

dtdx ψ̄µ
(
i∂t + ivµ∂x

)
ψµ −

1
2
∑
αβ

(
Qα − qα

) (
C̃−1

)
αβ

(
Qβ − qβ

)
,

where the first sum extends over the 2ν chiral channels µ = r1, . . . , r(ν − 1), l1, . . . , l(ν − 1),+,− and
the second one over the 4 conductors α, β = e, r, l, i. The electrostatic part of A0[ψ, ψ̄,Ni] is, of course,
a direct consequence of (5.1) and we refer to the corresponding section for definitions of qα and C̃.
Charges Qα are, of course, dynamic, i.e. time-dependent, quantities, but for the sake of readability we
leave time-dependence implicit (as we did with time integration in the above electrostatic action).
Our interest lies in interference effects which manifest themselves in tunneling corrections to current.

Tunneling phases respond only to the Hubbard-Stratonovich field ϕ = eVe on the interfering edges (note
that the electrostatic merging of channels µ = +,− allows us to use just one field ϕ = ϕ+ = ϕ−). The
short-term goal of the present section is to integrate out all other degrees of freedom.

Potentials Vc = (Ve, Vr, Vl)t: First, we decouple the quadratic charge terms via a (multidimensional)
Hubbard-Stratonovich transformation, thereby (re)introducing the potentials Vα on the conductors.
Since we do not need the potential Vi on the island, we single out the island degrees of freedom
beforehand, writing

C̃−1 =
(
pcc pci
pic pii

)
, Vci = pci(Qi − qi). (5.24)

The index c refers to the 3 indices e, r, l, that means pcc, pci = ptic, pii are 3 × 3-, 3 × 1-, and
1× 1-matrices. With that the electrostatic contribution to the action reads

Aint[ψ, ψ̄,Ni] = −1
2(Qi − qi)2pii −

1
2(Qc − qc)tpcc(Qc − qc)− V t

ci(Qc − qc)

and becomes upon Hubbard-Stratonovich decoupling:

Aint[ψ, ψ̄, Vc, Ni]−
1
2(Qi − qi)2pii + 1

2(Vc − Vci)tp−1
cc (Vc − Vci)− V t

c (Qc − qc)

with Vc = (Ve, Vr, Vl)t.

Integrating out Qe, Qr, Ql: Next, we integrate out the charges Qe, Qr, Ql. As explained in Sec-
tions 2.2 and 3.1 charges and potentials are decoupled by a gauge transformation (2.15) which generates
a tunneling term At (see below) and, according to the Dzyaloshinskii-Larkin theorem, quadratic and
linear (in voltages) terms V 2

αSα and Q̄αVα. The former is given by the polarization operators (2.23),
(2.24) and amounts for screening, thus an “enhancement” of the capacitances (in fact, the capacitances
become complex, “Keldysh”- and energy-dependent, but in the static limit the corrections are indeed
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positive). Then the retarded/advanced components of the “screening capacitances” read

Sr/aα (ω) = −e2
ν−1∑
κ=1

∫
dξ1dξ2 Πr/a

ακ (ω, ξ1, ξ2) = ±i(ν − 1)e2 1− e±iωτ

2πω , α = r, l,

Sr/ae (ω) = −e2
∑
µ=±

∫
dξ1dξ2 Πr/a

µ (ω, ξ1, ξ2) = ±i2e2 1− e±iωτ

2πω .

(5.25)

Charges injected from the reservoirs due to nonequilibrium boundary conditions (in excess of the
equilibrium charge which is canceled by the positive background charge) are

Q̄r = (ν − 1)eeV+τ

2π , Q̄l = (ν − 1)eeV−τ2π , Q̄e = e
(eV+ + eV−)τ

2π . (5.26)

We collect them in the diagonal matrix S = diag (Se, Sr, Sl) and the vector Q̄c = (Q̄e, Q̄r, Q̄l)t.
Subsequent elimination of charge degrees of freedom transforms Aint[ψ, ψ̄, Vc, Ni] into

A0[Vc, Ni] = −1
2 p̄ii(Qi − qi)

2 + 1
2V

t
c (p−1

cc + S)Vc − V t
c (Q̄c − qc + p−1

cc Vci)

with p̄ii = pii − picp−1
cc pci. (5.27)

Integrating out Vr, Vl: The final and somewhat cumbersome step is to integrate out the voltages
Vr, Vl. In order to do that we again split the degrees of freedom, writing

p−1
cc =

(
cee cet
cte ctt

)
, S =

(
Se

St

)
, (5.28)

where the index t refers to the 2 indices r, l, and cee, cet = ctte, ctt are corresponding 1× 1-, 1× 2-, and
2× 2-matrices. The action then reads

A0[Vc, Ni] =− 1
2 p̄ii(Qi − qi)

2 + 1
2(cee + Se)V 2

e − Ve(Q̄e − qe + ceeVei + cetVti)

+ 1
2V

t
t (ctt + St)Vt − V t

t (Q̄t − qt + cteVei + cttVti − cteVe).

Performing the Gaussian integration over Vr, Vl is a straightforward, albeit cumbersome calculation
which in the end yields,

A0[Ve, Ni] = − 1
2C̄i

(Qi−qi)2−(Q̄t−qt)tp̄ti(Qi−qi)+ 1
2 C̄
∗
eV

2
e −Ve(Q̄e−qe+xet(Q̄t−qt)+xei(Qi−qi))

(5.29)

where we have introduced the effective capacitances and coupling strengths

C̄−1
i ≡ pii − picp−1

cc pci + (piecet + pitctt)(ctt + St)−1(ctepei + cttpti),

C̄∗e ≡ cee + Se − cet(ctt + St)−1cte, C̄e ≡ C̄∗e
∣∣∣∣
Se=Sr=Sl=0

xet ≡ −cet(ctt + St)−1,

xei ≡ ceepei + cetpti − cet(ctt + St)−1(ctepei + cttpti),
p̄ti ≡ (ctt + St)−1(ctepei + cttpti).
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Regimes AB, CD I, CD II: In the limits of very strong, i.e. Cαe � Ceg + Se, and very weak, i.e.

Cαe �
(Cαg + Sα)2

Ceg + Crg + Clg + Se + Sr + Sl
,

coupling between fully transmitted edges α = r, l and interfering edge e the expressions simplify to

Strong coupling Weak coupling
C̄i Cei + Cig Cei + Cri + Cli + Cig
C̄∗e Ceg + Se + Cig − C2

ig/C̄i Ceg + Crg + Clg + Se + Sl + Sr + Cig − C2
ig/C̄i

xet

(
0 0

) (
1 1

)
xei Cei/C̄i (Cei + Cri + Cli)/C̄i
p̄ti 0 0,

and using Eqs. (5.24)-(5.28), the action becomes

A0[ϕ,Ni] = 1
2

∫
C

dt dt′ ϕ(t)V −1(t− t′)ϕ(t′)−
∫
C

dt ϕ(t)N0(t)− 1
2C̄i

(Qi − qi)2 (5.30)

with V r/a(ω) = EC
ω

ω ± iωC(1− e±iωτ ) ,

N0 ≡
ν∗

π

eV+ + eV−
2 τ − |e|Vg

EC
− C̄ei

C̄i
Qi/|e|

(5.31)

Here C̄i, C̄e, C̄eg, C̄ei, and ν∗ are given in Sect. 5.2.2 (Eq. (5.11) and Table 5.1).

5.3.2 Tunneling Action

To construct the tunneling action At[ϕ] in lowest order we use Eq. (3.10) which makes it necessary to
identify the paths (ij;µν). Only the innermost chiral channels µ, ν = ± allow for tunneling between
each other at scatterers i, j = 1, 2 which gives 4 classes: (11; +−), (22; +−), (12; +−), and (21; +−).
Classical phases are accumulated due to magnetic flux φ:

∆φ11
+− = ∆φ22

+− = 0, ∆φ12
+− = −∆φ21

+− = −2πφ/φ0.

At zero temperature the distribution functions read f≷± (t) = e−ieV±tf≷0 (t) with Fermi distribution
function f≷0 (t). Writing for short ri ≡ si−+, χ ≡ χ+ − χ−, εij = εij3 (the right-hand side being the
3-dimensional Levi-Civita symbol), and Πij ≡ Πij;+− we obtain the tunneling operators (3.11, 3.12)

Π≷
ij(t) = −rir̄j e±iχ e−iεij[2πφ/φ0+(eV++eV−)τ ] e−ieV tf≷0 (t+ εijτ)f≶0 (t− εijτ), (5.32)

ΠT/T̃
ij (t) =

[
θ(±t)Π>

ij(t) + θ(∓t)Π<
ij(t)

]
χ≡0

. (5.33)

Writing the tunneling phases Φ ≡ Φ+− the tunneling action reads

At[ϕ] = −i
∑
i,j=1,2

∫
dt1dt2

(
e−iΦ

f (xi,t1) e−iΦ
b(xi,t1)

)( ΠT
ij(t12) −Π<

ij(t12)
−Π>

ij(t12) ΠT̃
ij(t12)

)(
eiΦ

f (xj ,t2)

eiΦ
b(xj ,t2)

)
(5.34)

80



5.3 Calculations

with t12 ≡ t1 − t2. According to Sect. 3.2 and Eq. (2.16) the tunneling phases are related to the
potential ϕ via

Φ(xi, t) = Θ−(xi, t)−Θ+(xi, t) =
∫
C
dt′D+−(xi; t, t′)ϕ(t′) (5.35)

with D+−(x; t, t′) ≡ −
∫ x2

x1

dx′D0−(x− x′; t, t′) +
∫ x2

x1

dx′D0+(x− x′; t, t′)

with bare particle-hole propagator D0µ (Eq. (2.18)). Note that x′ is integrated over because the
potential ϕ(x′, t) = ϕ(t) in our model does not vary in space.
Defining εi = ± for i = 1, 2 retarded and advanced components of D+− read in energy representation

Dr/a+−(ω;xi) = ±iεi
e±iωτ − 1

ω
. (5.36)

5.3.3 Current in Instanton Approximation

Current is measured via the counting fields χ in the tunneling polarization operators (5.32). We use
the adiabatic approximation where measuring time t0 is much larger than all intrinsic time scales of
the system and transient effects due to switching of the counting fields are negligible. The tunneling
correction to current is the derivative

It = −i e
t0
∂χ lnZ

∣∣∣∣
χ=0

=
∑
i,j=1,2

(
I<ij − I

>
ij

)
(5.37)

with Iαβij = e

t0

∫
dt1dt2

∫
Dϕ

∑
{Ni}

eiA0[ϕ,Ni]+iAt[ϕ] e−iΦ
α(xi,t1)Παβ

ij (t12)eiΦβ(xj ,t2)
∣∣∣∣
χ=0

. (5.38)

The average
∫
Dϕ

∑
{Ni} is treated in real-time instanton approximation as outlined in Sect. 3.3:

Iαβij ≈
e

t0

∫
dt1dt2 eiÃt[ϕ∗]

〈
e−iΦ

α(xi,t1)Παβ
ij (t12)eiΦβ(xj ,t2)

〉
0

∣∣∣∣
χ=0, Ni=Ni∗

= e

t0

∫
dt1dt2 eiÃt[ϕ∗]e−iΦ0(xi)+iΦ0(xj) Π̃αβ

ij (t12)
∣∣∣∣
χ=0, Ni=Ni∗

(5.39)

As always 〈. . .〉0 denotes averaging with respect to A0[ϕ,Ni∗] given in (5.30). Because of the linear-
in-ϕ contribution potential ϕ and hence tunneling phase Φ have non-vanishing expectation values
ϕ0 = ϕ0[Ni], Φ0 = Φ0[Ni] which minimize A0[ϕ,Ni] for given Ni. At the saddle-point Ni∗ in turn
minimizes A0[ϕ0[Ni], Ni]. For strong coupling ωCτ � 1 the mean-field reads

ϕ0 = 1
1 + ωCτ

[
eVg + eV+ + eV−

2 ωCτ + EC
C̄ei

C̄i
(Ni∗ + νφ/φ0)

]
,

Φ0(x1/2) = ∓τϕ0 ⇒ −iΦ0(xk) + iΦ0(xl) = 2iεklτϕ0

(5.40)

with Ni∗ ∈ Z minimizing the electrostatic energy Ei, (5.13).
Due to the presence of the source term iAJ [ϕ] = −iΦα(xi, t1) + iΦβ(xj , t2) the instanton phase

Φ∗ = Φ0 + δΦ∗, (3.16), deviates from the mean-field by

δΦγ
∗(xk, t) = Dγα

Φ (t− t1, xk, xi)−Dγβ
Φ (t− t2, xk, xj). (5.41)
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The instanton action thus reads

iÃt[ϕ∗] =
∑
kl

∑
γδ

σγδ

∫
dt3dt4 e−iΦ0(xk)+iΦ0(xl)e−iδΦ

γ
∗(xk,t3)+iδΦδ∗(xl,t4)Π̃γδ

kl (t3 − t4) (5.42)

We will evaluate the time integrals in (5.39) and (5.42) approximately. They will be dominated by
the singularities of the instanton and the polarization operators. To identify and characterize them
more precisely it is indispensable to compute the phase correlator DΦ ≡ −i

〈
(Φ− Φ0)(Φ− Φ0)

〉
0. It

will turn out that the singularities (branchcuts) of Π̃kk(t) around t ∼ 0 and of Π̃kl(t), k 6= l, around
t ∼ ±τ dominate all integrals.

5.3.4 Correlation Functions

In this section we calculate the correlation function of the tunneling phases Φ(xi) which according to
(5.35) is DΦ = −D+−VD+−. Details of the calculation are not important for the rest of the paper and
may be safely skipped. The final results for zero temperature and the strong coupling limit, ωCτ � 1,
are

D≷
Φ(t = 0, xi, xj) = D

T/T̃
Φ (0, xi, xj) ≡ DΦ(0;xi, xj) = Aij

i

ν∗
(
γ + ln[ωCτ ]

)
(5.43)

and

D≷
Φ(t, xi, xj) = Aij

i

2ν∗

ln
[
a± i(t− τ)
a± it

]
+ ln

[
a± i(t+ τ)
a± it

] . (5.44)

for large times, |ωCt| � 1.
We start the computation by combining (5.31) and (5.36),

Dr
Φ(ω, xi, xj) = −Dr+−(ω;xi)V r(ω)Dr+−(ω;xj) = −iAij

π

ν∗

iωC

(
1− eiωτ

)
ω

[
ω + iωC

(
1− eiωτ

)] (eiωτ − 1
)

with Aij = εiεj . In time representation the relevant correlation functions are the ≷-components which,
at zero temperature, read

D≷
Φ(t) = ±

∫ dω
2π e

−iωt [Dr
Φ(ω)−Da

Φ(ω)
]
θ(±ω)

= −Aij
i

2ν∗

{
J≷(t− τ)− J≷(t) +

[
J≷(−t∗ − τ)

]∗
−
[
J≷(−t∗)

]∗} (5.45)

with J≷(t) ≡
∫

dω
[
±θ(±ω)

] iωC

(
1− eiωτ

)
ω

[
ω + iωC

(
1− eiωτ

)] (e−iωt − 1
)
. (5.46)
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Figure 5.8: Analytic structure of the integrand in (5.46): it is analytic in the upper half of the
ω-plane and possesses poles in the lower half. Contours of integration for J> and J<
are indicated by arrows.

The integral defining J> (J<) is perfectly convergent for all times with non-positive (non-negative)
imaginary part, Im t ≤ 0 (Im t ≥ 0), thus ensuring the analyticity of J≷ in this region. Apparently, we
have J≷(t)∗ = J≶(t∗).
First, we perform the integration for Re t < 0. Under this assumption the contour of integration can

be rotated into the upper half of the complex ω-plane where the integrand is analytic (see Fig. 5.8).
Defining dimensionless time and charging frequency, z ≡ −t/τ , and y ≡ ωCτ , respectively, and inte-
grating along the imaginary axis, one obtains for y � 1

J≷(t) =
∫ ∞

0
ds
(
e−zs − 1

) y
(

1− e−s
)

s
[
s+ y

(
1− e−s

)] ≈ ∫ ∞
0

ds
(
e−zs − 1

) y

s
(
s+ y

)
= −eyzΓ(0, yz)− γ − ln yz ≡ g(yz) (5.47)

with the incomplete Gamma function Γ(α, x) =
∫∞
x ds e−ssα−1, x ∈ R, and the Euler-Mascheroni

constant γ.
The asymptotic behavior of g is

g(yz) ≡→(−1 + γ + ln yz)yz, yz → 0+,

→− γ − ln yz − 1
yz
, yz →∞. (5.48)

We now proceed with the case Re t > 0 where the contour of integration can be rotated into the
lower half of the complex ω-plane. In contrast to the previous case the integrand does possess poles
in this region (see Fig. 5.8), around which, therefore, the integral has to be taken additionally. Since
both pole and imaginary axis contributions, J≷

0 and J≷
1 respectively, separately diverge for large ω we

have to introduce an auxiliary ultraviolet cutoff, e∓aω, a = ãτ . Then, defining z ≡ t/τ , the imaginary
axis contribution reads for y = ωCτ � 1

J≷
1 (t) =− y

∫ ∞
0

ds 1− es

s
[
s− y (1− es)

] (e−sz − 1
)
e±isã ≈

∫ ∞
0

ds e
−sz − 1
s

e±isã = − ln ã± iz
ã

.

The poles are defined as roots of equation ω + iωC

(
1− eiωτ

)
= 0, ω 6= 0, and writing x = iωτ ,

they are given by xn = y − W−n(yey), n ∈ Z\{0}, where the product log function is defined by
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Wn(x)eWn(x) = x. We choose the numbering such that Im xn+1 > Im xn, Im x1 > 0 > Im x−1. As can
be deduced already from the defining equation the roots satisfy Rexn ≥ 0. One may show that in two
limiting cases one has

xn →2πin y

1 + y
+ 2

(
nπ

y

)2

, |n| � y

2π , (5.49)

→2πin+ ln
[
−i2πn

y

]
, |n| � y

2π . (5.50)

To proceed further, we note that d
dω

[
ω + iωC

(
1− eiωτ

)]
ωn

= 1 + y−xn. Therefore the residues read

Resωn

 iωC

(
1− eiωτ

)
ω

[
ω + iωC

(
1− eiωτ

)] (e−iωτ − 1
)
e∓aω

 = − 1
1 + y − xn

(
e−zxn − 1

)
e±iãxn .

Taking into account that for J> (J<) only poles ωn with positive (negative) real part contribute, n ≥ 1
(n ≤ −1), we obtain for the pole contribution

J≷
0 (t) = −

∞∑
n=1

∓2πi
1 + y − xn

(
e−zx±n − 1

)
e±iãx±n .

This expression cannot be evaluated analytically further, but analytical approximations are possible
by substituting the poles xn by their asymptotic behavior, Eqs. (5.49), (5.50).
We convince ourselves that the short-time divergence, which forced us to introduce the ultraviolet

cutoff ã, is in fact merely an artifact of our method of calculation, and is cured by taking the sum
of J≷

1 + J≷
0 . In other words, J≷

0 has to diverge logarithmically for z → 0 as well. Of course, any
divergence originates from terms with large |n| → ∞, such that for our present purpose we may safely
use the approximation (5.50) which yields for z → 0

J≷
0 (t) ∼ −

∞∑
n=1

(±i2πn
y

)z
e−2πn(ã±iz) − e−2πnã

 1
n
≈ − ln 1− e−2πã

1− e−2π(ã±iz) ≈ ln ã± iz
ã

,

which is exactly what we expected to find. Although the approximation is good enough to estimate
the divergency, it is not reliable for obtaining finite offsets. Using ln ã = ln 1−e−2πã

2π we can single out
all ã-dependances,

J≷
0 (t) + J≷

1 (t) = − ln
[
±2πiz

]
−
∞∑
n=1

∓2πi
1 + y − x±n

e−zx±n

+
∞∑
n=1

[
∓2πi

1 + y − x±n

(
e±iã(x±n∓2πin) − 1

)
+ x±n ∓ 2πin− 1− y(

1 + y − x±n
)
n

]
e−2πãn.

The ã-contribution is just a constant about which we will not care too much presently. For the
moment we will fix it manually, by requiring a good agreement between J≷

0 (t)+J≷
1 (t) and the analytical
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Figure 5.9: J> (real (blue) and imaginary (yellow) part), numerically evaluated and manually
fixed, and analytical continuation ∼ g(−ωC(t−i0)) (real ( red) and imaginary (green)
part).

continuation g(−ωC(t∓i0)) of the result (5.47) obtained for Re t < 0. Fig. 5.9 shows the corresponding
plots for y = 5 and y = 25.
A numerical study shows that the oscillating contributions decrease in width for large y (while

their amplitude remains in the order of unity) and may be therefore neglected in the following. We
approximate J≷ by smooth functions g≷, required to be analytical for Im t ≤ 0 (Im t ≥ 0) and

g≷(t) =− e−ωCtΓ(0,−ωCt)− γ − ln [−ωCt] , Re t < 0.

Since the voltage is assumed to be low |eV | � ωC one needs correlation functions for long times
|ωCt| � 1 only and we can use the asymptotic expression (5.48) for g. Therefore introducing a short-
time cutoff a ∼ ω−1

C and writing t∓ ≡ t∓ia we use the following approximate relation in our subsequent
analysis

J≷(t) ≈ g≷(t) = −γ − ln[−ωCt∓],

which together with (5.45) and J≷(t = 0) = 0 gives Eqs. (5.44) and (5.43).

5.3.5 Renormalized Polarization Operators

In the real-time instanton approximation, Sect. 3.3, virtual fluctuations around the instanton are taken
into account by dressing the tunneling polarization operators, Eq. (3.20). The phase factor is

e
i

[
D

≷
Φ∞(t,xk,xl)−DΦ(0)

]
= e

γ
ν∗ (ωCτ)

1
ν∗

[
a± it

a± i(t− τ)

]Akl
2ν∗
[

a± it
a± i(t+ τ)

]Akl
2ν∗

.

and dressing of the bare polarization operators (5.32) yields (f0 can be found in (3.1); χ is put to 0)

Π̃≷
kl(t) = −rkr̄l

(ωCτ)
1
ν∗

(2π)2 e
γ
ν∗ e−iεkl[2πφ/φ0+(eV++eV−)τ ]e−ieV t

×


[
a± it

] 1
ν∗−2 [

a± i(t− τ)
]− 1

2ν∗
[
a± i(t+ τ)

]− 1
2ν∗ , k = l,[

a± it
]− 1

ν∗
[
a± i(t− τ)

] 1
2ν∗−1 [

a± i(t+ τ)
] 1

2ν∗−1
, k 6= l,
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-Τ Τ0 Re t

Im t

I+I0I-

Figure 5.10: Analytic structure of I in the complex t-plane: while the function is analytic in the
lower half, it has poles or branchcuts in the upper half, residing at t∗ = 0, τ,−τ .
Integrating Π̃≷

kl(t) “around” these, i.e. along drawn contours, gives P̃≷
kl(t∗).

The dressed polarization operators exhibit non-analytic behavior (poles or branchcuts) around t ≈
0,±τ . The double time-integrals (5.39) and (5.42) can be approximately expressed in terms of the
integrals P̃≷

kl ≡
∫
dt Π̃≷

kl(t). Before we demonstrate this statement in the next section, we will devote
the remainder of the current section to the evaluation of P̃≷

kl .
We focus first on P̃>kl . To deal with both k = l and k 6= l simultaneously we generically consider the

function

I(t, eV ) ≡ e−ieV t
[
a+ it

]η [
a+ i(t− τ)

]λ [
a+ i(t+ τ)

]λ
,

0 > η > −2, 0 > λ > −1, 2λ+ η = −2.

Apparently, I has branchcuts only in the upper half of the complex t-plane (Fig. 5.10), i.e. the integral∫
dt I(t, eV ) vanishes whenever the integration contour can be closed in the lower half. Therefore, we

assume the nontrivial case eV < 0. The real-time integrals
∫

dt I(t, eV ) = I− + I0 + I+ consist of
three contributions which correspond to integrals along closed contours in the complex t-plane. With
z ≡ |eV τ | � 1 the contour integral around −τ is

I− ≈− 2π 2λ

Γ(−λ)e
−izei

π
2 λ |eV |z−2−λ.

Similarly, one obtains the integral around +τ , I+ = I∗−.
The situation is slightly less trivial for the integral around t ≈ 0, since it may be that η = −1, i. e.

we have a first order pole, or η > −1, giving rise to a strong divergence. In the first case the integral
gives

I0 = 2π
[
a− iτ

]λ [
a+ iτ

]λ ≈ 2π
τ
.

In the second case we have to go around the singularity with care. We explicitly kept the distance
δ � a to the integration contour from the branchcut in the calculations. After weakening the degree
of divergence by partial integration we may safely put δ → 0 and obtain

I0 ≈2πΓ(−η)−1|eV |z2λ.

Note that in this approximation I0 is continuous in η = −1.
For the direct terms, k = l, we have η = 1

ν∗ − 2, λ = − 1
2ν∗ , i. e. η+λ = 1

2ν∗ − 2, 2λ = − 1
ν∗ , hence for

large voltages, z � 1, I0 is dominant. For the interference terms, k 6= l, we set η = − 1
ν∗ , λ = 1

2ν∗ − 1,
i. e. η+λ = − 1

2ν∗ − 1, 2λ = 1
ν∗ − 2, hence the contributions I± dominate over I0 if and only if ν∗ > 3

2 .
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As
∫
dt I(t, eV ) splits into three contributions, so do P̃≷

kl = P̃≷
kl(−τ) + P̃≷

kl(0) + P̃≷
kl(+τ). Note that

Π̃<(t) = Π̃>(−t)
∣∣∣∣
eV 7→−eV

implies P̃<kl (t∗) = P̃>kl (−t∗)
∣∣∣∣
eV 7→−eV

.

Summarizing, for z � 1 the dominant integrals of the dressed polarization operators are

P̃≷
kk(t

∗ = 0) =− θ(∓eV ) |eV |2π Rk∗(eV ), (5.51)

P̃≷
kl(t
∗ = κτ) =− θ(∓eV ) 1

2πτ R12∗(eV ) 1
2e

iκ

[
|eV τ |−π2

(
1+ 1

2ν∗
)]
e−iεkl[2πφ/φ0+(eV++eV−)τ ], (5.52)

P̃≷
kl(t
∗ = 0) =− θ(∓eV ) 1

2πτ rkr̄l |eV τ |
1
ν∗−1 (ωCτ)

1
ν∗ e

γ
ν∗

Γ( 1
ν∗ )

e−iεkl[2πφ/φ0+(eV++eV−)τ ] (5.53)

with k 6= l, κ = ±. In the case of ν∗ > 3
2 the contribution (5.52) is dominant, while in the case ν∗ < 3

2
it is (5.53). We have used definitions (5.9) of the renormalized reflection coefficients and assumed for
simplicity r1r̄2 to be real.

5.3.6 Instanton Action and Current

We have now everything in place to finalize the calculation of the instanton action (5.42) and the
current (5.39). The instanton phases δΦγ

∗(xk, t) = Dγα
Φ (t − t1, xk, xi) − Dγβ

Φ (t − t2, xk, xj) and thus
iÃt[ϕ∗] are functions of the times t1, t2 over which to integrate in (5.39). A shift of integration
variables t3/4 7→ t3/4 + t2 in (5.42) immediately shows that the action iÃt[ϕ∗] is a function of the
difference t ≡ t1 − t2. Hence, the whole integrand of (5.39) is purely a function of t = t1 − t2.
Performing a change of integration variables (t1, t2) 7→ (t = t1 − t2, T = (t1 + t2)/2), the integral over
the center-of-mass time T is seemingly divergent. This simply amounts to infinite transferred charge
Q =

∫ t0
0 dT I for a steady current I and an infinite measuring time t0 → ∞. Since our interest lies

in the steady current (not on transient effects due to switching of the measuring device) we identify∫
dt1dt2 =

∫
dT dt = t0

∫
dt upon which the current becomes

Iαβij = e

∫
dt eiÃt[ϕ∗]

∣∣∣∣
t1−t2=t

e2iεijτϕ0 Π̃αβ
ij (t)

∣∣∣∣
χ=0

. (5.54)

Given that iÃt[ϕ∗] is non-divergent, large contributions to this current stem from the singularities
of Π̃αβ

ij (t) which we identified in the previous section. The case ν∗ = 1, i.e. ν∗ < 3
2 , needs to be treated

more carefully and will be considered toward the end of this section. Focusing for now on ν∗ ≥ 2,
dominant contributions are then

e−1Iαβij ≈


eiÃt[ϕ∗]

∣∣∣∣
t1−t2≈0

P̃αβii (t∗ = 0), i = j,

eiÃt[ϕ∗]
∣∣∣∣
|t1−t2|≈τ

e2iεijτϕ0
(
P̃αβij (t∗ = +τ) + P̃αβij (t∗ = −τ)

)
, i 6= j.

(5.55)

We evaluate the t3, t4-integrals in (5.42) using a similar approximation scheme. Within the given
constraints t1 − t2 ≈ 0 for i = j and |t1 − t2| ≈ τ for i 6= j, the singularity of

Π̃kk(t3 − t4) ∼ 1
(t3 − t4)2−1/ν∗
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dominates over the ones of

Π̃kl(t3 − t4) ∼ 1[
(t3 − t4 − τ)(t3 − t4 + τ)

]1−1/2ν∗ , k 6= l,

and of the instantons

eiδΦ∗(x
k,t′+t2) = eiDΦ(t′−t1+t2,xk,xi)−iDΦ(t′,xk,xj)

∼

(
(t′ − t1 + t2)2

(t′ − t1 + t2 − τ)(t′ − t1 + t2 + τ)

)Aki/2ν∗ ((t′ − τ)(t′ + τ)
t′2

)Akj/2ν∗
.

Hence, again transforming to relative and center-of-mass times, t = t3 − t4, T = (t3 + t4)/2, the
dominant contribution to the instanton action stems from the t ≈ 0-singularity of Π̃kk(t):

iÃt[ϕ∗] ≈
∑
k=1,2

∑
γ,δ=∓

γδ

∫
dt Π̃γδ

kk(t)
∫

dT e−iδΦ
γ
∗(xk,T )+iδΦδ∗(xk,T )

= −
∑
k=1,2

∑
γ 6=δ

∫
dt Π̃γδ

kk(t)
∫

dT
(
eiJ

γδ(T ) − 1
)

with Jγδ(T ) = −δΦγ
∗(xk, T ) + δΦδ

∗(xk, T )

≈
∑
k=1,2

∑
γ 6=δ

P̃ γδkk (t∗ = 0)
∫

dT
(
eiJ

γδ(T ) − 1
)
.

The second equality follows from Π̃>
kl(t) + Π̃<

kl(t) = Π̃T
kl(t) + Π̃T̃

kl(t). The integrals P̃ γδkl =
∫

dt Π̃γδ
kl (t)

have been studied in the previous section.
Using the definition (5.41) of the instanton and the relation (DT

Φ−D
>
Φ)(t, xk, xl) = (D<

Φ−DT̃
Φ)(t, xk, xl) =

Akl
π
ν∗ θ(−t)θ(t+ τ) one obtains (independent of α and β!)

J≷(T ) = ± π

ν∗

[
Akiθ(t1 − T )θ(T − t1 + τ)−Akjθ(t2 − T )θ(T − t2 + τ)] (5.56)

With constraints |t1− t2| � τ for i = j and |t1− t2| = τ for i 6= j (cf. Eq. (5.55)), the instanton action
thus reads

iÃt[ϕ∗] =
{
−|t1 − t2|/τϕ, i = j
−τ/τϕ − ieV τεij(R1∗(eV )−R2∗(eV ))π−1 sin π

ν∗ , i 6= j
(5.57)

with dephasing rate

τ−1
ϕ = −4 sin2 π

2ν∗
∑
k=1,2

(
P̃>kk(0) + P̃<kk(0)

)
(5.58)

which due to (5.51) becomes the expression (5.8) in the limit |eV τ | � 1; see Fig. 5.11. The purely
imaginary contributions to (5.57) correspond to (perturbatively small) renormalization corrections to
bias voltage and will be neglected further on. We will also neglect the instanton action for i = j.
Combining these results with (5.55) we obtain for the incoherent and interference corrections to

current due to tunneling

∆Iinc = I11 + I22 = − e
2

2π
(
R1∗(eV ) +R2∗(eV )

)
V, (5.59)

IAB = − e

πτ
R12∗(eV ) signV e−τ/τϕ sin(|eV τ | − π/4ν∗) cosϕAB (5.60)
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Figure 5.11: The dephasing rate as a function of the source-drain voltage shown for ν∗ = 2,
ωCτ = 25 and R1∗(εth) = R2∗(εth) = 0.2. The solid line gives the numerical result
for (5.58). The dashed line is the power-law asymptotic given by Eq. (5.8).

with Aharonov-Bohm phase

ϕAB = 2πφ/φ0 + (eV+ + eV−)τ − 2τϕ0 (5.61)

which in the limit ωCτ � 1 gives (5.12). For large bias, ωC � |eV | � εth, this yields the dimensionless
conductances given in (5.5) and (5.6).
Concluding this section we turn to the case ν∗ = 1. According to Eq. (5.53) the dominant contribu-

tion to current is

e−1Iαβij ≈ e
iÃt[ϕ∗]

∣∣∣∣
t1−t2≈0

e2iεijτϕ0P̃αβij (t∗ = 0). (5.62)

The i 6= j-contribution of Eq. (5.55) is also present, but subleading. The instanton action iÃt[ϕ∗] can
be evaluated following the same line of reasoning as for ν∗ ≥ 2, yielding iÃt[ϕ∗] = −|t1 − t2|/τϕ which
can be neglected. The dominant contribution to current is thus

Iν
∗=1

AB = − e

πτ
r1r̄2 ωCτe

γ cosϕAB.

In the limit ωCτ � 1 its bias dependence is negligible, in contrast to the contribution IAB, Eq. (5.60).
Therefore, while the latter is subleading in current for ν∗ = 1, it yields the leading contribution to
conductance: gAB = ∂Iν

∗=1
AB /∂V + ∂IAB/∂V ≈ ∂IAB/∂V , i.e. giving the previous result (5.6).

5.4 Conclusions

In this chapter we provided a theory of a Fabry-Pérot interferometer (FPI) realized with the edge
states of a two-dimensional electron gas in the integer quantum Hall regime. We took into account a
compressible island in the center of the interferometer cell and described the Coulomb coupling with
the edge states by a simple capacitive interaction model.
This model accounts for the observed visibility of the Aharonov-Bohm conductance oscillations,

Fig. 5.4. The lobe structure appears to be a simple mean field effect, arising due to the effective sym-
metrization of the applied bias by interaction. As we argued, already in a noninteracting interferometer
a symmetrically applied bias would give rise to visibility lobes. Further, we calculated the dephasing
rate (5.8) which due to renormalization of the QPC tunneling coefficients, Eq. (5.9), has a power-law
dependence on bias.
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Depending on the relative strengths of the mutual capacitances between the Coulomb island, the
interfering edge states, the fully transmitted edge channels and the gates, the FPI falls into different
regimes which we listed in Table 5.1. Each regime is characterized by distinct Aharonov-Bohm conduc-
tance patterns as functions of gate voltages and magnetic field, Fig. 5.5. As we extensively discussed,
our results are in good agreement with experiments.
Quantum Hall interferometers are also realized in the Mach-Zehnder geometry. In contrast to the FPI

tunneling coefficients of the QPCs are close to 1/2, and a weak tunneling expansion is not justified.
However, as we demonstrate in the following chapter the chirality of the setup allows for an exact
treatment under the assumption that interaction is absent outside the interferometer cell.
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6 Chapter 6

Quantum Hall Mach-Zehnder
Interferometers

Electronic Mach-Zehnder interferometers (MZIs) realized with edge states in the integer quantum
Hall (QH) regime have attracted a lot of attention recently because of a striking interplay between
the quantum coherence and effects of electron-electron interaction observed in these mesoscopic de-
vices [8, 9, 70–81]. Similarly to the electronic Fabry-Pérot interferometers considered in the previous
chapter, the chiral edge states in the electronic MZI, are coupled by quantum point contacts (QPCs),
which act as electron beam-splitters (see Fig. 6.1). The differential conductance measured in the above
experiments shows strong Aharonov-Bohm (AB) oscillations. The most remarkable experimental ob-
servation is that the out-of-equilibrium visibility does not monotonically decreases with voltage but
rather exhibits decaying oscillations (“lobes”). Such a dependence cannot be explained under the as-
sumption of noninteracting electrons (which yields a constant visibility) and therefore is a hallmark of
Coulomb interaction.
This puzzling behavior has triggered a lot of theoretical works [83–85, 87–89, 101–103] . They can be

conventionally separated into approaches with contact [85, 101, 103] and long-range [83, 84, 88, 89, 102]
Coulomb interaction. Despite the fact that the model of contact e-e interaction may successfully
describe the related experiments on the energy relaxation in the quantum Hall edge states at filling
factor ν=2 [104–108] , results of Refs. [89, 103] indicate that the account of the long-range character
of Coulomb interaction is important to fully understand the nonequilibrium effects in MZIs.
The natural choice for a theoretical approach to one-dimensional interacting electrons in the QH

edge states is that of bosonization [109]. However, with this method one faces a serious obstacle when
describing electron scattering at QPCs. Namely, electron tunneling between two edge channels yields a
non-Gaussian cosine term in the Hamiltonian if the latter is translated into the bosonic representation,
impeding a solution of the problem. Therefore almost all recent theories of MZIs consider the limit of
weakly coupled edge states where a perturbative treatment of electron tunneling at QPCs is justified.
This is rather unfortunate since in the experiment transmission coefficients of both QPCs are close to
1/2.
In the case of a single QPC connecting two fractional QHE edge states at filling factor ν = 1/m

(with m being odd) the exact solution via the Bethe ansatz is available [60]. The latter method
can be generalized to the case of the fractional edge state MZI with equal arm lengths [110, 111].
However, quantum interference in such a setup has not been yet observed experimentally, and the
Bethe-ansatz solution cannot be directly extended to the case of integer filling factors, especially under
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6 Quantum Hall Mach-Zehnder Interferometers

the assumption of a long-range e-e interaction.

In this chapter we consider the model of the MZI operating at integer filling factor ν where electrons
interact only when they are inside the interferometer. The model is specified by two single-particle
scattering matrices of the QPCs defining the interferometer and the electrostatic charging energy Ec
which takes into account the Coulomb interaction. Thus within our model e-e interaction is taken to
be maximally long-ranged so that the interaction energy depends only on two total charges collected on
different arms of the MZI. We show that this model is exactly solvable at any value of charging energy
Ec and transmission coefficients of both QPCs. This simplified approach is much broader than the
one based on the Bethe-ansatz solution since it offers a possibility to combine the exact description of
electron scattering at QPCs with, in principle, an arbitrary form of e-e interaction within the interior
region of the MZI.

In the special case of filling factor ν=1 the numerically exact solution to the above model was obtained
in Refs. [102] using a combination of bosonization and refermionization techniques. Our way to solve the
same model is different in many aspects. We use the nonequilibrium functional bosonization approach
developed in Chapter 3. Within this framework we demonstrate that the interfering current can be
expressed in terms of a Fredholm functional determinant of the single-particle “counting” operator
which is highly reminiscent of the problem of electron full counting statistics (FCS) of mesoscopic
transport [24]. In the limit of strong interaction Ec � 1/τ , where τ is the electron flight time through
the MZI, the “counting” operator is reduced to the determinant of generalized Toeplitz form. Under
this condition a fully analytical treatment becomes possible. It rests upon the conjecture of Ref. [22],
which provides the asymptotic formula for such class of determinants. At moderate charging energy
Ec ∼ 1/τ we obtain the numerically exact solution.

We reveal that the “lobe” pattern in visibility is the many-body interference effect resulting from
the quantum superposition of (at least) two many-particle scattering amplitudes with a mutual phase
difference which is linear in voltage. In the limit of strong interaction we find the scaling exponents
which govern the power-law dependences of these amplitudes on voltage and obtain the nonequilibrium
dephasing rate governing the exponential suppression of visibility with bias (or the arms length of the
MZI). Both power-exponents and the dephasing rate depend on the transmission coefficient of the
first QPC and the filling factor ν. They happen to be intrinsically related to the cumulant generating
function of the FCS describing the charge transfer through the first QPC.

Our analytical findings are corroborated by exact numerical evaluations of the Fredholm determi-
nants. At Ec � 1/τ they provide further support to the aforementioned conjecture of Ref. [22]. At
moderate charging energy Ec & 1/τ and ν=2 the obtained results match experimental observations.
We also consider the role of external dephasing due to the quantum shot noise emitted from an extra
QPC0 placed outside the MZI (Fig. 6.1). This study supports the conclusion of Ref. [101] that non-
Gaussian shot noise leads to the disappearance of multiple side lobes in the visibility if the transmission
T0 of the QPC0 exceeds 1/2.

It is worth mentioning that the aforementioned simplification of the problem to a single-particle
one is a special feature of the MZI topology, where electrons are scattered at most twice between the
two quantum Hall edges. Thus, unfortunately the method developed in the present chapter is not
applicable to treat the non-chiral quantum Hall Fabry-Perot interferometers.
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Figure 6.1: Layout of an electronic Mach-Zehnder interferometer built on quantum Hall edge
states at filling factor ν = 2. Quantum point contact (QPC1 and QPC2) character-
ized by transparencies T1(2) are used to partially mix the outer edge channels. All
ohmic contacts are grounded, except for the source terminal S3 which is kept at volt-
age V . The current is measured in the drain terminal D1. The QPC0 can be used to
dilute the incoming current in the outer channel by changing the transparency T0.

s1 s2

f
+

f
-

Figure 6.2: Scheme of an MZI at filling factor ν. Two quantum point contacts are character-
ized by the scattering matrices s1 and s2, which connect the outer channels. Inner
channels are fully reflected.

6.1 Model

We consider a Mach-Zehnder interferometer (MZI) realized in a two-dimensional electron gas (2DEG)
in the quantum Hall regime with integer filling factor ν. Fig. 6.1 shows a sketch, while Fig. 6.2 shows an
even further simplified network model of the MZI. Each edge carries ν channels, modeled as chiral 1D
fermions with drift velocity vD, which serve as electron beams. Electrons are injected and detected via
ohmic contacts (“sources” Sj and “drains” Dj). The Mach-Zehnder geometry requires a topologically
nontrivially shaped 2DEG sample with contacts S1 and D1 placed between two edges. We refer to
them as “upper” (denoted by subindex +) and “lower” (subindex −) edges. The area enclosed by the
edges is threaded by a magnetic flux Φ which gives rise to a proportionate Aharonov-Bohm (AB) phase
φ = 2πΦ/Φ0 with flux quantum Φ0 = hc/|e|.
The interferometer is formed by two quantum point contacts QPC1 and QPC2 which tunnel-couple

the outer channels of the two edges, while the inner channels are fully reflected. The scattering can be
thus described by 2× 2-scattering matrices in the space of outer channels,

sj =
(
irj tj
tj irj

)
with r2

j + t2j = 1. (6.1)
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For simplicity we assume that the distance L between the two QPCs is the same along both edges, as
is predominantly the case in experiments.
The “upper” edge is biased by the voltage V applied to the source S3. All other contacts are

grounded. An additional QPC0 can be tuned such that it fully reflects all inner channels which
originate from S3, as is shown in Fig. 6.1, while the outer channel is fully transmitted, T0 = 0. This
situation, where all inner channels are unbiased (V0 = 0), exhibits the most interesting experimental
features and will be considered mainly in this work. By closing QPC0 further, T0 > 0, the outer
channel is diluted and brought into a nonequilibrium state. Alternatively, QPC0 can be completely
opened in which case the inner channels of the upper edge are biased, V0 = V .
In our work we consider the effects of long-range interaction in the edges on the one hand, and, in

view of large edge distances and strong screening by surrounding metallic gates on the other hand,
we neglect interaction between the edges. Further, exact solutions can be obtained, if we disregard
interaction of electrons outside the interferometer cell. Thus, if N± denotes the total electron number
in the outer and inner channels along the upper/lower edge between QPC1 and QPC2, then the
interaction Hamiltonian reads

Hint = 1
2EC

(
N2

+ +N2
−

)2
(6.2)

where EC = e2/C is the charging energy with electron charge e < 0 and edge capacitance C.
This model is exactly solvable for any value of the charging energy EC and transmission coefficients

t2j . In the limit ECτ � 1, where τ = L/vF is the electron dwell time in the MZI, a fully analytical
treatment is possible. For the more general case ECτ ∼ 1 we have developed a numerically exact
scheme to evaluate the visibility in the MZI as a function of voltage. Before going into the details of
the calculation in Sect. 6.3, we summarize first the results.

6.2 Results and Discussion

Within the described model we calculated the current I = Iinc + Icoh into the drain contact D2 as
function of bias V and AB phase φ. It consists of an incoherent, flux-independent contribution,

Iinc = e2V

2π

(
r2

1t
2
2 + t21r

2
2

)
which in our model is not affected by interaction. Interference of two trajectories, either along the
upper or lower edge, gives rise to the flux-dependent, coherent, contribution

Icoh = e

2πτ r1t1r2t2 2Re eiφI0. (6.3)

Here, the bias-dependent quantity I0 encodes interaction-induced effects such as charging, dephasing
and renormalization. It is sensitive to the nonequilibrium state in the interferometer cell, established
by scattering at QPC1, and in turn completely independent of QPC2. In the noninteracting case it is
simply I0 = eV τ . The corresponding differential conductances are

Ginc ≡∂V Iinc = e2

2π

(
r2

1t
2
2 + t21r

2
2

)
,

Gcoh ≡∂V Icoh = vGinc cos(φ+ αAB)
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where the differential visibility v and the phase αAB of the AB oscillations are

v = v0|∂eV τI0|, αAB = arg
(
∂eV τI0

)
. (6.4)

The noninteracting value of visibility is simply the constant v0 = 2r1t1r2t2/
(
r2

1t
2
2 + t21r

2
2

)
with Tj =

t2j = 1−Rj .
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6.2.1 Limit of strong interaction

Unbiased inner channels

First, we discuss the results in the limit Ecτ � 1 and with QPC0 tuned such that inner channels are
unbiased, V0 = 0.
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Figure 6.3: AB oscillations in the conductance of the quantum Hall Mach-Zehnder interferometer
with unbiased inner channels: visibility v and phase αAB. Solid lines show numeri-
cally exact curves, dashed lines are the result of the analytical asymptotic expansion.
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In the case of not too low voltages, namely at eV τ & 1, our model predicts the asymptotic expansion
for the current,

I0 = eieV τ(β1+1/ν)
(
C1(eV τ)λ1 + C2(eV τ)λ2e±ieV τ

)
. (6.5)

The different terms in this expression can be interpreted as follows. The coefficient

β1 = 1
2πi ln

(
R1e

−4πi/ν + T1

)
(6.6)

describes the nonequilibrium dephasing of the AB oscillations induced by a combined effect of inelastic
e-e scattering and the quantum shot noise generated at QPC1. If ν ≥ 3 then Imβ1 > 0 and, by defining
the out-of-equilibrium dephasing rate as 1/τϕ = eV Imβ1, we see that AB oscillations are suppressed
by the factor e−τ/τϕ in the high-bias limit eV � 1/τ .
It is worth stressing that the exponential suppression of the interference current is directly related

to the full counting statistics (FCS) of electrons passing through the QPC1 during the time interval
τ . Indeed, defining the FCS cumulant generating function (CGF) [24]

κτ (χ∗) =
[
1 + T1(eiχ∗ − 1)

]eV τ/2π
, (6.7)

where χ∗ is the so-called “counting field”, we see that the damping factor equals

eiβ1eV τ = κτ (−4π/ν). (6.8)

The exponents λ1,2, which determine the power-law dependence of the interference current on bias,
are due to the Anderson orthogonality catastrophe which happens each time when an electron enters or
leaves the interior part of the MZI where it strongly interacts with all other electrons. In our simplified
model, where e-e interaction is present only inside MZI, the orthogonality catastrophe is absent for the
incoherent contribution to the current, which stays linear in voltage as in the case of noninteracting
fermions.
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Figure 6.4: Power law exponents shown as a function of transmission coefficient T1. Solid line
shows Reλ1, dashed line shows Reλ2 in the case of ν = 3, and (−Reλ2) in the case
of ν = 4, 5.

The exponents λ1,2 are functions of both the filling factor ν and the transparency T1 of the first
QPC and are shown in Fig. 6.4. The explicit expressions read

λ1,2 = −2
(
ν − 2

2ν ∓ 1
2 − β1

)2
+ 1− 2

ν
+ 2
ν2 , 2 ≤ ν < 4, (6.9)
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for low filling factors and

λ1 = −2
(

1
ν

+ β1

)2
+ 1− 2

ν
+ 2
ν2 ,

λ2 = −2
(

1
ν

+ β1 ±
1
2

)2
− 1

2 + 2
ν2 , ν ≥ 4

(6.10)

in case of higher ν. In the case 2 ≤ ν < 4 the voltage dependent phase factor in Eq. (6.5) has to be taken
with the sign (−). For ν ≥ 4 the signs ± correspond to the cases T1 > 1/2 and T1 < 1/2, respectively.
The coefficients C1,2 in Eq. (6.5) are some bias independent complex numbers which depend solely on ν
and T1 and can be found from the fit of this asymptotic expansion to its numerically exact counterpart.
In the limit of strong interaction Ecτ � 1 the case ν = 1 is very special. One has I0 = (eV τ) and the
MZI behaves the same as in the absence of e-e interaction.
In Fig. 6.3 we show the lobe structure in the visibility and the phase of the AB oscillations as

a function of bias for different filling factors ν and transmission T1. For each plot we have fitted
the asymptotic visibility to its exact numerical dependence on the variable eV τ using the two free
parameters C1 and C2. Though Eq. (6.5) is strictly speaking valid in the high voltage limit eV τ � 1,
one sees from Fig. 6.3 that the obtained fit is almost perfect in the much broader region eV τ & 1. At
smaller voltages the visibility saturates to the noninteracting value v0.
At ν = 2 we have λ1 = λ2 = 0 and C1 = −C2 = i. This gives the oscillatory visibility v =

v0 cos(eV τ/2) which is independent of the transparency T1 and does not decay with bias. The behavior
of the MZI in this case is completely analogous to the one treated within the model of short-range
electron interaction. The latter model is also exactly solvable at ν = 2 by means of the method of
refermionization, as it has been recently shown in Ref. [103].
In the case ν = 3 an infinite number of lobes is present and at half transmission (T1 = 1/2) the

visibility reaches zeros — at this special point the two exponents coincide: λ1 = λ2. For ν ≥ 4 our model
predicts only one central and one side lobe. Note, that at ν = 4 the exponents λ1,2 logarithmically
diverge at T1 → 1/2. The asymptotic result (6.5) does not hold in this case anymore (the numerical
evaluation of v, however, is always possible). This is the reason why we plot v(V ) and αAB(V ) for
T1 = 0.45 in Fig. 6.3.
In agreement with experimental findings the appearence of zeros in the visibility in the cases ν = 2

and for ν ≥ 3 at half-transmission comes with a “stick-slip” behavior of the phase shift αAB: The latter
is constant as bias is varied within the lobes and jumps by π whenever the visibility dips to zero.
The “phase diagram” shown in Fig. 6.5 summarizes the obtained results. The main qualitative

features depend on the counting parameter χ∗ = −4π/ν and QPC1 transmission T1. For π < −χ < 3π
the exponents Reλ1 ≈ Reλ2 are close to each other with Reλ1 = Reλ2 at T1 = 1/2. The current I0 is
thus a superposition of two contributions with similar scaling behavior, which gives rise to pronounced
oscillations of visibility with an infinite number of zeros at T1 = 1/2 with the corresponding stick-slip
behavior of the phase shift αAB. For other values of χ∗ the λ1-term decreases for high bias significantly
more slowly than the λ2-term and oscillations in the visibility are weaker. A single zero appears at
most at T1 = 1/2.
The special feature of our model is the absence of dephasing at ν = 2 in the limit Ecτ � 1. On

the mathematical level it comes from the fact that the suppression factor given by the CGF κτ (χ∗)
is evaluated at the counting parameter χ∗ = −2π and thus it is equal to one. At moderate charging
energy Ecτ ∼ 1 the counting parameter becomes time-dependent and deviates from −2π at ν = 2 and
dephasing is restored (see the following subsection 6.2.2).
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Figure 6.5: “Phase diagram” of Mach-Zehnder interferometer with strong interaction. Pro-
nounced zeros appear for π < 4π/ν < 3π with an infinite number of zeros at T1 = 1/2.
Dephasing is absent for ν = 2.
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Figure 6.6: Dephasing of the visibility due to the quantum shot noise generated at the QPC0. The
curves from up to down were evaluated numerically for R0 = 0.9, 0.7, 0.5 and 0.3.

An alternative source of dephasing can be provided by the dilution of the impinging current due
to the electron scattering at the QPC0 which is put outside the interferometer. At R0 < 1 the
QPC0 generates the double-step distribution function f+(ε) = T0θ(−ε) + R0θ(eV − ε) for incoming
electrons. Visibility plots at half-transmission of the first QPC (T1 = 1/2) and different reflectivity R0
are shown in Fig. 6.6. In the case R0 > 1/2 the suppression of visibility with voltage can be roughly
characterized by the dephasing rate 1/τϕ = (eV/2π) ln(2R0 − 1), which diverges logarithmically at
R0 → 1/2. At this point the behavior of the MZI visibility changes from the regime with multiple side
lobes, characterized by periodic oscillations in v(V ) with a typical period ∼ 2π/τ , to the regime with
only one node. The same transition in the behavior of visibility under variation of R0 has been first
predicted in Ref. [101], albeit in the framework of the short-range e-e interaction model. Concerning
the experimental verification of such a transition, we refer to the recent work [81].
It is evident from the Eq. (6.5), which gives the interference current, that the appearance of the

visibility fringes in our model stems from the superposition of two multi-particle amplitudes having
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the relative phase shift eV τ . Based on our analytical calculations presented in Sect. 6.3, the following
quantitative picture underlying these two most probable many-body scattering processes can be drawn.
At ν ≥ 4 the amplitude with the exponent λ1 corresponds to the multi-particle process where an
electron enters the MZI through the QPC1 and another electron leaves the MZI shortly afterwards on
a time scale ∼ ~/eV via the QPC2. Such amplitude is non-zero solely due to the strongly non-local
character of Coulomb interaction in our model. The second amplitude with exponent λ2 is associated
with the more conventional process when the same electron enters and leaves the MZI. In this case the
interferometer is excited in a virtual charge state for a long time ' τ , which results in the appearance
of the phase factor ∝ eieV τ relative to the first amplitude. At ν = 2 and 3 both amplitudes (with
exponents λ1,2) describe the real process of the fast e-e collision between the two electrons entering
and leaving the MZI via different QPCs. The relative phase shift between the two amplitudes is
due to the fact that the e-e collision associated with the second amplitude is accompanied by the
creation/destruction of a real electron-hole pair with energy ±eV , which is subsequently recombined
on a larger time scale ' τ .

Biased inner channels: V0 = V

While the peculiar interaction effects in visibility arise in MZIs where an additional QPC0 fully reflects
all biased inner channels, some (including the earliest) experiments were performed on MZIs without
the QPC0 and show qualitatively different visibilities for ν = 1, 2, lacking the lobe structure [9, 79].
The visibility lobe structure and the stick-slip behavior of αAB are intimately linked to a phase

rigidity of I0 upon variation of bias. Biased inner channels V0 = V lead to additional charging
effects. Within our strong coupling assumption they give rise to a phase factor: I0 7→ e−i(1−1/ν)eV τI0.
Obviously, phase rigidity is broken and, as shown in Fig. 6.7, the lobe structure is destroyed.
The constant visibility in case of ν = 2 is an artifact of the strong coupling limit of our model and

corrected in more realistic interaction models. The qualitative features shown for ν ≤ 3, including the
increase of visibility with v/v0 > 1 for small bias voltages, are compatible with experimental findings
for ν = 2 [79].

6.2.2 The case of moderate strength of interaction

In this subsection we discuss the results for visibility in the case of not too strong e-e interaction, ECτ &
1. The majority of experimental data for MZIs was collected for filling factor ν = 2, which motivated
us to consider this case only. The numerically calculated plots of visibility for transparencies T1 = 0.5
and T1 = 0.2 are shown in Fig. 6.9. The finite charging energy EC gives rise to the decay of visibility
v(V ) with bias contrary to its behavior at ECτ →∞ discussed in the previous subsection 6.2.1. Note
also that nodes in v(V ) are generally present only in the case T1 = 1/2. At the transmission coefficient
close (but not equal) to one-half the nodes are superseded by deep minima. At the same time the
typical period of oscillations increases as long as EC decreases. However, the estimate e(∆V ) ∼ 2π/τ
for the scale of oscillations is valid up to the moderate charging energy EC ∼ 1/τ .
We do not know the analytical formula describing the AB conductance for the arbitrary dimensionless

parameter ECτ . Nevertheless, the dephasing rate 1/τϕ describing the exponential suppression (∝
e−τ/τϕ) of the visibility with bias can be found explicitly. As in the previous discussion, it is expressed
in terms of the cumulant generating function of the FCS,

τ−1
ϕ = −eV2π

∫ τ+t̄

−∞
Re
[
ln
(

1 +R1(e4iϑ+(t) − 1)
)]
dt (6.11)
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Figure 6.7: AB oscillations in the conductance of the quantum Hall Mach-Zehnder interferometer
with V0 = V : visibility v and phase αAB. Solid lines show numerically exact curves,
dashed lines are the result of the analytical asymptotic expansion.

through the time-dependent “counting” phase ϑ+(t) shown in Fig. 6.8. In the limit Ecτ � 1 the time
dependence of ϑ+(t) approaches the window function

ϑ+(t) =
{
−π/ν, t ∈ [t̄, t̄+ τ ]

0, t /∈ [t̄, t̄+ τ ], (6.12)

causing the dephasing rate to vanish at ν = 1, 2.
If we introduce the effective charge e∗(t)/e = ϑ+(t)/2π then it can be interpreted as the optimal

charge fluctuation on the MZI which promotes the scattering of the transport (“trial”) electron from
one arm of the interferometer into another.1
Loosely speaking, if such a scattering event happens to start at the time instant t̄, then it finishes

no later than t̄ + τ (cf. the upper bound of the time integral in Eq. (6.11)). It means that an
electron entering the MZI at time t̄ cannot be influenced by those electrons which enter behind at
times larger than t̄+ τ , since by the latter time the trial electron leaves the interior interacting region

1We note that in view of the specific chiral geometry of the MZI the charge from the internal interacting region of the
interferometer can always freely leak into the source or drain, and thus the issue of Coulomb blockade phenomenon
is not relevant here.
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Figure 6.8: Time-dependent “counting” phase shown for two strengths of Coulomb interaction.
It approaches the “window” function, Eq. (6.12), in the limit Ec → ∞. The charge
relaxation frequency is defined as ωc = νEc/π.
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Figure 6.9: Bias dependence of visibility for the moderate interaction strength (solid blue curve)
in comparison to the one in the limit of strong interaction (dashed red line). The
charge relaxation frequency ωc = νEc/π.

of the system through the second QPC. Counter-intuitively, typical arm-to-arm electron scattering is
generally preceded by a rearrangement of the charge e∗(t) on the MZI at all times t < t̄. We thus
see that the single electron transfer through the MZI in the presence of e-e interaction is a collective
many-body process involving many electrons.

6.3 Calculations

6.3.1 Keldysh Action

As depicted in Fig. 6.2 we model the MZI as a quantum wire network and treat it in functional
bosonization, cf. Chapter 3. Each of the two edges supports ν chiral channels – 1D fermions of velocity
v –, of which the outermost channels (labeled by + and −) are tunnel-coupled by two point-scatterers.
These are separated by a distance L and described by scattering matrices sj , cf. (6.1).
We consider zero temperature and assume the lower edge to be grounded, V− = 0, while along the

upper edge the outer channel is biased, V+ = V , and, depending on the tuning of QPC0, the inner ones
are either biased as well, V0 = V , or grounded, V0 = 0. In time representation the distribution functions
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of the outer channels are f±(t) = e−ieV±tf0(t) with equilibrium distribution function f0(t) = i
2π

1
t+ia ;

the inner channels are characterized by fλ(t) = e−ieV0tf0(t) along the upper edge, and fλ(t) = f0(t)
along the lower one.
In the functional bosonization approach we introduce the Hubbard-Stratonovich potential ϕf/b which

leads to the accumulation of the phase

ϑ
f/b
λ (t) = −v−1

D

∫ x2

x1
dx′ ϕf/bλ (t+ (x′ − x1)/vD) = −

∫ t+τ

t
dt′ ϕqλ(t′)

along the channel λ. An additional Aharonov-Bohm phase φ± is accumulated along the upper/lower
edges in the presence of the magnetic field.
The entire dynamics of an electron in the system is encoded in the time-dependent scattering or

transfer matrices Sf/b. For an electron in an inner channel λ of the upper/lower edge they are plainly

S
f/b
λ (t2, t1) = ∆21(t2, t1) eiφ±eiϑ

f/b
λ (t1)s1

with the time delay operator ∆21(t2, t1) = δ(t2 − t1 − τ). In contrast, the two outer channels are
tunnel-coupled, and hence simultaneously described by the 2× 2-matrix

Ŝf/b(t2, t1) = s2 ∆21(t2, t1) eiφ̂eiϑ̂f/bs1

where we combined the phases into matrices

φ̂ =
(
φ+

φ−

)
, ϑ̂f/b =

ϑf/b+
ϑ
f/b
−

 .

In order to compute the current into drain reservoir D1 (see Fig. 6.1), we include a time-dependent
counting field χ1(−t0/2,t0/2)(t) into the lower outer edge. We are not interested in transient effects of
switching on the measuring device and will subsequently work in the adiabatic limit t0 → ∞. Again
we define the 2× 2-matrix

χ̂(t) =
(

0
χ1(−t0/2,t0/2)

)
.

Let us turn to the interaction (6.2). In each of the two edges a quantum-dot-like interaction is effective
and thus all channels of one edge share the same Hubbard-Stratonovich potential ϕf/bη (t, x) = ϕ

f/b
η (t),

η = ±, which furthermore is constant in space. Its quadratic action (2.25) is determined by the
screened interaction V −1

µν (t, t′) =
∫ x2

x1 dxdx′ V −1
µν (t, t′;x, x′). In frequency representation its retarded

and advanced components are

V a
η (ε) = 2π

ν
ωC

ε

ε− iωC(1− e−iετ ) , V r
η (ε) = V a

η (ε)∗ (6.13)

with charge relaxation frequency ωC = ν
2πEC . Note that the filling factor ν enters due to the fact that

all ν channels along the edge η contribute to the screening.
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The full Keldysh action (3.3), including the counting field, thus reads A = Aint +Aferm with Aferm =
Ainner +Aouter, and

iAint =2i
∑
η=±

∫
dtdt′ ϕcη(t)V a−1

η (t, t′)ϕqη(t′),

iAinner =
∑

inner channels λ
Trt
[
Ln
[
1− fλ + Sb†λ S

f
λfλ

]
− 2iϑqλf0

]
,

iAouter = Tr
[
LnD − 2iϑ̂qηf0

]
with D ≡ 1− f̂ + Ŝb†eiχ̂Ŝf f̂ .

Here, the trace Trt is to be taken with respect to times while Tr also extends over channel indices.
Note that we also subtract singular terms of the form Trϑqf0 which cancel UV divergent contributions
in the Trt Ln arising due to the lack of a lower band edge in our theory.

6.3.2 Exact Current

The current is obtained by taking the derivative of the generating functional with respect to the
counting field. Assuming adiabatic measurement with long measurement time t0 we obtain

I = e

t0

〈
∂

i∂χ
iA
∣∣∣∣
χ=0

〉
= −i e

t0

〈
TrD−1∂χD

∣∣∣∣
χ=0

〉
.

The average 〈. . .〉 is to be taken with respect to the full action A with the counting field put to zero,
χ = 0. In this case iAouter = Tr

[
Ln D̃ − 2iϑ̂f0

]
with

D̃ ≡ s1Ds†1 = 1− f̃ + e2iϑ̂q f̃ with f̃ ≡ s1f̂ s
†
1 =

(
R1f+ + T1f− ir1t1(f+ − f−)
−ir1t1(f+ − f−) T1f+ +R1f−

)
, (6.14)

and the action only contains s1, not s2. This is due to the chirality of the system: the nonequilibrium
state is not affected by what happens with the electrons “downstream”. Using D̃ the current reads

I = e

t0

〈
Tr e−iϑ̂be−iφ̂∆21 −1s2† |−〉 〈−| s2∆21eiϑ̂

f
eiφ̂f̃D̃−1

〉
= e

t0

∑
µ,κ=+,−

Nµκ

with

Nµκ = 〈−| s2
∣∣µ〉 〈κ| s2† |−〉

〈∫
dt̄ eiϑ

f
µ(t̄)−iϑbκ(t̄) eiφµ−iφκ

〈
µ
∣∣ f̃D̃−1(t̄, t̄) |κ〉

〉
. (6.15)

What simplifies the many-body average considerably is the fact that the operator D̃ and hence
Aouter (like Ainner) is independent of ϑc and ϕc. These classical fields only appear linearly in Aint and
ϑ
f/b
% = ϑc% ± ϑ

q
%. Therefore ϕc can be exactly integrated over. To this end let us denote the “source

term”

iϑcµ(t̄)− iϑcκ(t̄) ≡ iAJ ;µκ ≡ i
∑
%

∫
dt′ Jq%;µκ(t̄; t′)ϕc%(t′). (6.16)
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The particle numbers (6.15) then read

Nµκ = 〈−| s2 ∣∣µ〉 〈κ| s2† |−〉
∫
DϕcDϕq

∫
dt̄ eiAint+iAJ;µκeiAferm Aµκ(t̄, t̄), (6.17)

with Aµκ(t1, t2) = eiϑ
q
µ(t1)+iϑqκ(t2) eiφµ−iφκ

〈
µ
∣∣ f̃D̃−1(t1, t2) |κ〉 . (6.18)

Functional integration over ϕc yields, in symbolic notation,∫
Dϕc exp

[
iAint + iAJ ;µκ

]
=
∫
Dϕc exp

[
2iϕcV a−1ϕq + iJqϕc

]
∝ δ

(
ϕq − ϕq∗

)
(6.19)

with ϕq∗%(t) = −1
2

∫
dt′ V a

% (t, t′)Jq%;µκ(t̄, t′) (6.20)

which renders the ϕq-integration trivial. Taking the average 〈. . .〉 therefore reduces to merely evaluating
the integrand eiAfermAµκ at ϕq = ϕq∗. In what follows we will therefore set ϕq = ϕq∗. The particle
numbers are then

Nµκ = 〈−| s2 ∣∣µ〉 〈κ| s2† |−〉
∫

dt̄ eiAferm Aµκ(t̄, t̄+ τµ − τκ)
∣∣∣∣
ϑq=ϑq∗

. (6.21)

In the following we will not distinguish ϑq% and

ϑq∗%(t) = −
∫ t+τ

t
dx′ ϕq∗%(t′) (6.22)

any longer.
Obviously, Nµκ ∝ eiφµ−iφκ are contributions to currents arising from interference of paths along the

edges µ and κ. For µ = κ we recover the classical, incoherent contributions: in this case Jqσ;µµ = 0,
hence ϑq∗ = 0, D̃ = 1, Aferm = 0, Aµµ = R1fµ + T1f−µ and thus

N++ = T2 Tr
[
R1f+ + T1f−

]
, N−− = R2 Tr

[
R1f− + T1f+

]
. (6.23)

Remarkably they are not sensitive to interaction (e.g. no renormalization). This statement is true for
any interaction (as long as absent outside the interferometer cell).
That is in contrast to the coherent contributions, κ = −µ, to current where interaction gives rise to

dephasing and an oscillatory dependence of conductance on bias. In this case the source terms are

Jqµ;µκ(t′) = −1[t̄,t̄+τ ](t′) = −Jq−µ;µκ(t′), (6.24)

giving rise to the instanton potential (6.20)

ϕqη(t) = −1
2ηκ

∫ t̄+τ

t̄
dt′ V a

η (t′).

Using (6.13) we obtain the instanton phase

ϑqη(t) = 1
2ηκ

∫ t+τ

t
dt′
∫ t̄+τ

t̄
dt′′ V a

η (t′ − t′′) (6.25)

= κη

ν
Im
[
J>(t̄− t)− J>(τ − t+ t̄)

]
. (6.26)
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The integral

J≶(t) =
∫ ∓∞

0
dε iωC(1− eiετ )
ε
[
ε+ iωC(1− eiετ )

] (e−iεt − 1
)

ωητ�1→ −γ − ln
[
− t± ia

a

]
, a ∼ ω−1

η ,

was already discussed at length in Sect. 5.3.4 in the context of the quantum Hall Fabry-Pérot interfe-
rometer. We found that

J≶(t) ωητ�1→ −γ − ln
[
− t± ia

a

]
, a ∼ ω−1

η ,

in the strong interaction limit and for long times ωη|t| � 1, such that for |t̄− t|, |t̄+ τ − t| � ω−1
C the

instanton phase simplifies to the window function

ϑqη(t) = −κη
ν

Im
[

ln t− t̄+ ia

a
− ln t− (t̄+ τ) + ia

a

]
= −κη

ν
π
[
θ(t̄− t)− θ(t̄+ τ − t)

]
(6.27)

= ϑ̄η1[t̄,t̄+τ ](t) (6.28)

with the κ(= −µ)-dependent constant ϑ̄η = κηπ/ν. In this limit we can proceed fully analytically.
Moderate interaction strength requires numerical evaluation.
Summarizing, the coherent contributions to currents are

N+− = −ir2t2 e
iφ

∫
dt̄ eiA

(0)
ferm

Det D̃
Det D̃(0) 〈+| f̃D̃

−1(t̄, t̄) |−〉 , (6.29)

evaluated at the phase ϑqη(t) = ϑ̄η1[t̄,t̄+τ ](t), ϑ̄η = −ηπ/ν, and N−+ = N∗+−. We further defined the
clean action A(0)

ferm = Aferm

∣∣∣
T1=0

and operator D̃(0) = D̃
∣∣∣
T1=0

.
The next two somewhat formal sections are devoted to the evaluation of the determinant and inverse

of D̃.

6.3.3 Reduction to single-channel problems

In addition to the double-time dependence, the operators D̃ and f̃ have a nontrivial channel structure:
for given times t1, t2 it is D̃(t1, t2), f̃(t1− t2) ∈ C2×2. The double index structure (times and channels)
complicates matters (the computation of the determinant and inverse of D̃) quite considerably.
In fact, inversion of similar operators without double-channel structure was achieved by solving an

appropriate Riemann-Hilbert (RH) problem in Refs. [33, 112]. In this section we will elaborate on this
technique and demonstrate its usefulness for our present problem. Specifically, we will rewrite our
problem in terms of determinants and inverses of single-channel operators. Their computation will be
the subject of the subsequent section.

The Riemann-Hilbert problem

Let us consider for the moment a simpler problem, namely the inversion of

D(0) = 1− f̂ + e−2iϑq+ f̂ .
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As well having a 2×2-channel structure, in contrast to D̃, this operator is diagonal and can be inverted
by means of a RH problem, as demonstrated in this subsection. For this purpose we write

f̂(t1 − t2) = Λ̂(t1)f0(t1 − t2)Λ̂(t2)−1, (̂t) ≡
(

Λ+(t)
1

)
≡

(
e−ieV t

1

)
. (6.30)

We further note that f<0 (ε) ≡ f0(ε) = θ(−ε), f>0 (ε) ≡ 1−f0(ε) = θ(ε) are projection operators in energy
domain. In time representation they project onto functions which are analytic in the upper/lower half
of the complex time plane: i.e. it is(

f≶0 g
)

(t) = ± i

2π

∫
dt′ g(t′)

t− t′ ± ia
for functions g which decay sufficiently fast as |t′| → ∞. By making use of this property we can invert
D0 = Λ̂

(
f>0 + e−2iϑq+f<0

)
Λ̂−1. To this end we decompose the kernel K(t) = e−2iϑq+(t) into positive and

negative energy contributions. More specifically, we solve the Riemann-Hilbert problem of finding a
complex matrix-valued function Y (t) ∈ C2×2 of complex time t which has the properties

1. Y (t) is analytic on C \ [t̄, t̄+ τ ];

2. Y (t) has a branchcut discontinuity along [t̄, t̄ + τ ] such that Y±(t) ≡ limδ→+0 Y (t ± iδ) satisfy
Y−(t)−1Y+(t) = K(t);

3. Y (t) has integrable singularities at t = t̄, t̄+ τ and lim|t|→∞ Y (t) = 1.

This function Y then has the projection properties

f<0 Y+f
<
0 = Y+f

<
0 , f>0 Y−f

>
0 = Y−f

>
0 , (6.31)

which, loosely speaking, allow to “commute” projectors and functions Y± and get rid of redundant
projectors. The same relations hold for the inverses Y −1

± , from which one can deduce that the inverse
of D0 = Λ̂Y −1

−

(
Y−f

>
0 + Y+f

<
0

)
Λ̂−1 is

D−1
0 = Λ̂

(
Y −1
− f>0 + Y −1

+ f<0

)
Y−Λ̂−1. (6.32)

In fact, for the diagonal kernel K(t) = e−2iϑq+(t) the solution to the RH problem is straightforwardly
given by

Y±(t) = exp
{
∓2i

∫
dt′ f≶0 (t− t′)ϑq+(t′)

}
= exp

{
ϑ̄+
π

ln t− t̄± i0
t− t̄− τ ± i0

}
. (6.33)

The same projection relations (6.31) also allow for a decomposition of D̃.

Removing the double-channel structure

First, let Y (t) = exp
[
ϑ̄+
π ln t−t̄

t−t̄−τ

]
be the above RH solution with branchcut behavior Y −1

− Y+ = e−2iϑq+

along the real time axis. With ϑq− = −ϑq+ and thus

Λ−1s†1

(
e2iϑq+ 0

0 e2iϑq−

)
s1Λ = Λ−1s†1

(
e4iϑq+ 0

0 1

)
s1Λ Y −1

− Y+ (6.34)
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we obtain

D̃ = s1ΛY −1
−

Y−f>0 + Λ−1s†1

(
e4iϑq+ 0

0 1

)
s1ΛY+f

<
0

Λ−1s†1 (6.35)

= Y −1
− s1Λ

f>0 + Λ−1s†1

(
e4iϑq+ 0

0 1

)
s1Λf<0

Λ−1Λ
[
Y−f

>
0 + Y+f

<
0

]
Λ−1s†1 (6.36)

= Y −1
− D∗s1Λ

[
Y−f

>
0 + Y+f

<
0

]
Λ−1s†1 (6.37)

= Y −1
− D∗s1Y−D0s

†
1 (6.38)

with

D∗ ≡ 1 +
(
e4iϑq+ − 1 0

0 0

)
f̃ =

D∗∗ (
e4iϑq+ − 1

)
f+−

0 1

 , D∗∗ ≡ 1 +
(
e4iϑq+ − 1

)
f++, (6.39)

D0 = 1 +
(
e−2iϑq+ − 1

)
f̂ =

1 +
(
e−2iϑq+ − 1

)
f+ 0

0 1 +
(
e2iϑq− − 1

)
f−

 . (6.40)

Determinant of D̃ The operators D0 and D∗ are diagonal and upper triangular matrices with respect
to channel indices which allows to represent Det D̃ in terms of single-channel operators. From (6.38)
follows:

Det D̃ = DetD∗ DetD0 = DetD∗∗ Det
[
1 + (e−2iϑq+ − 1)f+

]
Det

[
1 + (e2iϑq− − 1)f−

]
. (6.41)

The second of these determinants can be rewritten by solving a different Riemann-Hilbert problem
with branchcut behavior Ỹ −1

− Ỹ+ = e−4iϑq+ on the real time axis. Noting

Ỹ−f
>
0 + Ỹ+f

<
0 =

[
Ỹ −1
− f>0 + Ỹ −1

+ f<0

]−1
=
[
f>0 + e4iϑq+f<0

]−1
Ỹ− (6.42)

we obtain

1 + (e−2iϑq+ − 1)f+ = Λ+Ỹ
−1
−

[
Ỹ−f

>
0 + e2iϑq+ Ỹ+f

<
0

]
Λ−1

+ (6.43)

= Λ+Ỹ
−1
−

[
f>0 + e2iϑq+f<0

] [
Ỹ−f

>
0 + Ỹ+f

<
0

]
Λ−1

+ (6.44)

= Ỹ −1
−

[
1 +

(
e2iϑq+ − 1

)
f+

] [
D(0)
∗∗

]−1

T1→0
Ỹ− (6.45)

where the superindex (0) denotes the limit T1 → 0 and we used

Λ+

[
Ỹ−f

>
0 + Ỹ+f

<
0

]
Ỹ −1
− Λ−1

+ =
{

Λ+Ỹ−

[
Ỹ −1
− f>0 + Ỹ −1

+ f<0

]
Λ−1

+

}−1

=
[
1 +

(
e4iϑq+ − 1

)
f+

]−1
=
[
D(0)
∗∗

]−1
(6.46)
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since f++ → f+, f−− → f− for T1 → 0. This implies

Det
[
1+ (e−2iϑq+ − 1)f+

]
= Det

[
1+ (e2iϑq+ − 1)f+

]
/DetD(0)

∗∗ (6.47)

and
Det D̃

Det D̃(0) = DetD∗∗
[
Det D̃/DetD∗∗

]
T1→0

. (6.48)

Inversion of D̃ Returning to Eq. (6.37) with the Riemann-Hilbert problem Y −1
− Y+ = e−2iϑq+ the

inverse of D̃ is

D̃−1 = s1Λ̂
[
Y −1
− f>0 + Y −1

+ f<0

]
Λ̂−1s†1D

−1
∗ Y−. (6.49)

Convolution with the rotated distribution function f̃ yields

f̃D̃−1 = s1Λ̂f0Λ̂−1s†1D̃
−1 = Y −1

+ f̃D−1
∗ Y− (6.50)

the (+, t̄;−, t̄)-component of which is

〈+| f̃D̃−1(t̄, t̄) |−〉 =
(
Y −1

+ Y−

)
(t̄) 〈+| f̃D−1

∗ (t̄, t̄) |−〉 = e2iϑ̄+ 〈+| f̃D−1
∗ (t̄, t̄) |−〉 . (6.51)

Inversion of the operator D∗ is not exactly trivial, but simplified by its triangular structure in channel
space:

D−1
∗ =

D−1
∗∗ −D−1

∗∗

(
e4iϑq − 1

)
f+−

0 1

 . (6.52)

Note that the relation D∗∗(t1, t2) = δ(t1 − t2) for t1 /∈ [t̄, t̄ + τ ] implies the same for the inverse,
D−1
∗∗ (t1, t2) = δ(t1−t2) for t1 /∈ [t̄, t̄+τ ] (this can be seen by block matrix representation or reformulation

in terms of a Riemann-Hilbert problem). One therefore obtains

〈+| f̃D̃−1(t̄, t̄) |−〉 = e2iϑ̄+

[
−f++D−1

∗∗

(
e4iϑq+ − 1

)
f+− + f+−

]
(t̄, t̄)

= e2iϑ̄+

∫ t̄+τ

t̄
dt′D−1

∗∗ (t̄, t′)f+−(t′, t̄). (6.53)

In the previous subsection it was shown how the operator D∗∗ is inverted in the limit T1 → 0,
Eq. (6.46). With Ỹ (t) = ( t−t̄

t−t̄−τ )2ϑ̄+/π one obtains for t ∈ [t̄, t̄+ τ ], t− t̄, t̄+ τ − t� Λ−1 (Λ being the
UV cutoff)[
D(0)
∗∗

]−1
(t̄, t) = Ỹ−(t̄)

[
1 +

(
e−4iϑq+ − 1

)
f+

]
t̄,t

Ỹ −1
− (t) (6.54)

= −Λ
π
e−2iϑ̄+ sin(2ϑ̄+) e−ieV (t̄−t)

∣∣∣t− t̄∣∣∣−2ϑ̄+/π−1 ∣∣∣t̄+ τ − t
∣∣∣2ϑ̄+/π

τ−2ϑ̄+/πΛ−2ϑ̄+/π−1

(6.55)

where the regularization Ỹ−(t̄) = Ỹ−(t̄+ Λ−1) was chosen.
For arbitrary T1 > 0 the operator D∗∗, though scalar in channel space, contains a nontrivial nonequi-

librium distribution function f++ = R1f+ + T1f− (which has two discontinuities in energy representa-
tion) and thus cannot be easily inverted by means of the Riemann-Hilbert problem. In the next section
we will relate the inversion problem to determinants of operators of (generalized) Toeplitz form.
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6.3.4 Toeplitz matrices and generalizations

Fredholm determinants of the form

DetD∗∗ = Det
[
1 +

(
e4iϑq+ − 1

)
f++

]
with a window function ϑq+(t) = ϑ̄+1[t̄,t̄+τ ](t) and a stationary distribution function f++ were already
encountered in the context of nonequilibrium bosonization of Luttinger liquids, cf. e.g. end of Sect. 2.3.
Their asymptotic behavior for large times τ is the topic of Appendix A. The basic observation is that
due to the special form of ϑq+(t) the determinant DetD∗∗ can be related to a Toeplitz determinant.
Indeed, by introducing an UV cutoff Λ and discretizing times tj = t̄+ (j − 1)∆t into steps ∆t = π/Λ
the operator D∗∗(t1, t2) can be mapped onto a finite N × N -Toeplitz matrix (gj,k) = (gj−k) of size
N = Λτ/π. Most conveniently one starts with the “symbol”

g(ε) = e2iϑ̄+ε/Λ
[
1 +

(
e4iϑ̄+ − 1

)
f++(ε)

]
, −Λ < ε ≤ Λ,

essentially the energy representation of D∗∗. The slow prefactor e2iϑ̄+ε/Λ prevents the arising of artificial
Fermi edge singularity effects at ε = ±Λ due to the hard cutoff. The discretized version gj−k of
D∗∗(t1, t2) is then obtained by Fourier transformation

gj−k =
∫ Λ

−Λ

dε
2Λ e−iε(j−k)∆tg(ε) = i

2π
1

j − k − 2ϑ̄+/π

(
e4iϑ̄+ − 1

) [
R1e

−iπeV/Λ[j−k−2ϑ̄+/π] + T1

]
.

(6.56)

Using the results of Appendix A, Eq. (A.14), we obtain for eV τ � 1 the asymptotic expansion

DetD∗∗
DetD(0)

∗∗
=

∆
[
4ϑq+, f++

]
∆
[
4ϑq+, f+

] = exp
{
eV τ

2π

[
−i2ϑ̄+ + ln

[
R1e

4iϑ̄+ + T1

]]}

×
∞∑

n=−∞
e−ieV τn(eV τ)2(β0+n)(β1−n)G(1 + β0 + n)G(1− β0 − n)G(1 + β1 − n)G(1− β1 + n)

G(1 + 2ϑ̄+/π)G(1− 2ϑ̄+/π)
(6.57)

with β1 = − i
2π ln

[
R1e

4iϑ̄+ + T1

]
and β0 = −2ϑ̄+/π − β1 and the Barnes G-function G.

Inversion of D∗∗

Remarkably, the same relations are also useful to invert Toeplitz matrices. We show here how D−1
∗∗ (t̄, t)

can be related to a generalized Toeplitz determinant the asymptotic behavior of which can be estimated
by generalizing known results about Toeplitz determinants. We start with Laplacian expansion of
det(g) which shows that the inverse g−1 is

(
g−1
)
jk

= (−1)j+k det g](k, j)
det(g) , (6.58)
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where g](k, j) is a (N − 1)× (N − 1)-matrix derived from g by removing its k-th row and j-th column.
Specifically for j = 1 (corresponding to the continuous time t̄) its elements are

(
g](k, 1)

)
lm

=
{
gl,m+1, 1 ≤ l < k,
gl,m, k ≤ l ≤ N − 1 (6.59)

= i

2π
1

l −m− 2
πϑ+(tl; tk)

(
e4iϑ+(tl;tk) − 1

)[
R1e

−iπU/Λ[j−k− 2
π
ϑ+(tl;tk)] + T1

]
(6.60)

with the time-dependent phase (tl = t̄+ (l − 1)∆t)

ϑ+(tl; tk) =
{
ϑ̄+ + π/2, t̄ ≤ tl < tk,

ϑ̄+, tk ≤ tl < t̄+ τ.
(6.61)

Hence, g](k, j) differs from g in the time-dependence of the phase ϑ+(t; tk) (and the size) which
prevents it to be a Toeplitz matrix. Numerical studies however suggest, that known results about
Toeplitz determinants can be generalized to our case, see Appendix A. Then it is

(
g−1
)

1k
= (−1)1+k∆[4ϑ+(•; tk), f++]

∆[4ϑ̄+, f++]
, (6.62)

where the denominator, a Toeplitz determinant, can be evaluated with (A.14) and the numerator with
(A.21).
It is instructive to apply these relations to invert (6.56) and thus D∗∗ in the limit T1 → 0 for which

the computation can be done via the Riemann-Hilbert problem. For D−1
∗∗ (t̄, tk) and thus

(
g−1
)

1k
one

needs to consider the generalized Toeplitz problem with three jumps in time domain, τ1 = t̄, τ2 = tk,
τ3 = t̄+τ , and just 1 jump in in energy domain µ1 = eV . Further it is c10 = 2ϑ̄+/π+1 and c20 = 2ϑ̄+/π

and hence p12 = −2ϑ̄+/π−1, p13 = −
(

2ϑ̄+/π + 1
)

2ϑ̄+/π and p23 = 2ϑ̄+/π. The asymptotic behavior
of det(g) = ∆[4ϑq+, f+] is known and one obtains

[(
g−1
)

1k

]
T1→0

= Γe−ieV (t̄−tk)

∣∣∣∣∣Λ(tk − t̄)
π

∣∣∣∣∣
−2ϑ̄+/π−1 ∣∣∣∣∣Λ(t̄+ τ − tk)

π

∣∣∣∣∣
2ϑ̄+/π

∣∣∣∣∣Λτπ
∣∣∣∣∣
−2ϑ̄+/π

. (6.63)

Except for the dimensionless unknown factor Γ and the dimensionful prefactor Λ/π =
(
∆t
)−1 which

arises due to discretization, the above asymptotics agrees in all power-laws with the exact result (6.55).
Now we turn to the less trivial case of arbitrary 0 < T1 < 1. Now, the distribution function is f++

instead of f+ which adds a discontinuity at µ1 = 0 (the one at eV is now denoted µ2). The asymptotics
of ∆[4ϑ+(•; tk)] is determined by

c10 = α1 + 1, c20 = α1; α1 ≡ 2ϑ̄+/π, (6.64)

ck1 = β1 + nk (k = 1, 2); β1 ≡
1

2πi ln
[
R1e

4iϑ̄+ + T1

]
, (6.65)
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and the exponents
p12 =− (α1 + 1− β1) + n1(α1 − 2β1)− n2(α1 + 1− 2β1)− 2n1(n1 − n2 − 1),
p23 =α1 − β1 − n1(α1 − 2β1) + n2(α1 + 1− 2β1)− 2n2(n2 − n1 + 1),
p13 =− (α1 + 1− β1)(α1 − β1)− β2

1 + n1(α1 − 2β1) + n2(α1 + 1− 2β1)− 2n1n2,

q12 =(α1 + 1− β1)β1 + (α1 − β1)β1 + n1(α1 − 2β1) + n2(α1 + 1− 2β1)
+ 2(n1n2 + n1 − n2)− 2n2

1 − 2n2
2.

(6.66)

One then has

(−1)1+k∆[4ϑ+(•; tk), f++] =
∑
n1,n2

Γ(n1,n2)e
iα1Λτ+iβ1eV τeieV [n1(tk−t̄)+n2(t̄+τ−tk)]

×

∣∣∣∣∣Λ(tk − t̄)
π

∣∣∣∣∣
p12
∣∣∣∣∣Λ(t̄+ τ − tk)

π

∣∣∣∣∣
p23
∣∣∣∣∣Λτπ

∣∣∣∣∣
p13
∣∣∣∣∣πeVΛ

∣∣∣∣∣
q12

. (6.67)

This expression is valid when all time differences |tk − t̄|, τ , |t̄ + τ − tk| are large as compared to the
time scales defined by Λ and eV ; notably t̄+ (eV )−1 � tk � t̄+ τ − (eV )−1, which is the regime I in
Fig. 6.10. For intermediate times such as in the regime IIb, t̄+ Λ−1 . tk . t̄+ (eV )−1 the powers are
expected to cross over to different values. We study the modified powers in the next paragraph.

t t+Τ

tk

D

HeVL-1 HeVL-1

L
-1

L
-1

IIa

IIb

IIIa

IIIb

I

Figure 6.10: Sketch of the determinant ∆ as function of time tk. The asymptotic expansion
(6.67) is valid in region I. A crossover to different powers is expected in regions
IIa,. . . ,IIIb, defined by the time scales (eV )−1 and Λ−1.

Short-time crossover Let us consider the behavior for tk close to t̄. In the regime IIa, tk− t̄ . Λ−1,
the system is unable to resolve the phase jump at tk, hence ϑ+(•; tk)→ ϑ̄+, and we expect

(−1)1+k∆[4ϑ+(•; tk), f++]→
∑
n′

Γ′0(n′) eiα1Λτ+iβ1eV τ−ieV τn′

×

∣∣∣∣∣Λτπ
∣∣∣∣∣
−(α1−β1+n′)2−(β1−n′)2 ∣∣∣∣∣πeVΛ

∣∣∣∣∣
2(α1−β1+n′)(β1−n′)

(6.68)

with Γ′0(n′) = G(1 +α1− β1 +n′)G(1−α1 + β1−n′)G(1 + β1−n′)G(1− β1 +n′). In the intermediate
regime IIb, Λ−1 . tk − t̄ . |eV |−1, the powers can be modified,

(−1)1+k∆[4ϑ+(•; tk), f++] ∼
∑
K′
∣∣∣∣∣Λ(tk − t̄)

π

∣∣∣∣∣
p′12
∣∣∣∣∣Λτπ

∣∣∣∣∣
p′13
∣∣∣∣∣πeVΛ

∣∣∣∣∣
q′12

(6.69)
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Matching these asymptotics at tk ∼ t̄+ |eV |−1 and tk ∼ t̄+ Λ−1 requires

q′12 − p′12 = q12 − p12 = 2(α1 − β1 − n2)(β1 + n2) + 1 + α1, (6.70)
p′13 = p23 + p13 = −(α1 − β1 − n2)2 − (β1 + n2)2, (6.71)
q′12 = 2(α1 − β1 + n′)(β1 − n′), (6.72)
p′13 = −(α1 − β1 + n′)2 − (β1 − n′)2 (6.73)

which is satisfied by setting p′12 = −1−α1 and n2 = −n′. Similarly, in the regime IIIa, |t̄+τ−tk| . Λ−1

we expect

(−1)1+k∆[4ϑ+(•; tk), f++]→ e−iΛτ∆[4ϑ̄+ + 2π, f++]

=
∑
n′′

Γ′′0(n′′) eiα1Λτ+iβ1eV τ−ieV τn′′
∣∣∣∣∣Λτπ

∣∣∣∣∣
−(α1+1−β1+n′)2−(β1−n′)2 ∣∣∣∣∣πeVΛ

∣∣∣∣∣
2(α1+1−β1+n′)(β1−n′)

(6.74)

with Γ′′0(n′′) = G(2 + α1 − β1 + n′′)G(−α1 + β1 − n′′)G(1 + β1 − n′′)G(1 − β1 + n′′), while for the
intermediate range IIIb, |eV |−1 . t̄+ τ − tk . Λ−1, we make the ansatz

(−1)1+k∆[4ϑ+(•; tk), f++] ∼
∑
K′′
∣∣∣∣∣Λ(t̄+ τ − tk)

π

∣∣∣∣∣
p′′23
∣∣∣∣∣Λτπ

∣∣∣∣∣
p′′13
∣∣∣∣∣πeVΛ

∣∣∣∣∣
q′′12

. (6.75)

Matching at points tk ∼ t̄+ τ − |eV |−1 and tk ∼ t̄+ τ − Λ−1 requires

q′′12 − p′′23 = q12 − p23 = 2(α1 + 1− β1 − n1)(β1 + n1)− α1, (6.76)
p′′13 = p12 + p13 = −(α1 + 1− β1 − n1)2 − (β1 + n1)2, (6.77)
q′′12 = 2(α1 + 1− β1 + n′′)(β1 − n′′), (6.78)
p′′13 = −(α1 + 1− β1 + n′′)2 − (β1 − n′′)2 (6.79)

which are satisfied by setting n′′ = −n1 and p′′23 = α1. Then the summation in (6.75) extends over the
integer n1 = −n′′.

6.3.5 Strong Coupling Results

Combining Eqs. (6.29),(6.53),(6.57) we obtain for the interference contributions to current

N+− = N∗+− = −ir2t2

∫
dt̄ Det D̃

Det D̃(0) e
iA(0)

ferm eiφ+2iϑ̄+

∫ t̄+τ

t̄
dt′D−1

∗∗ (t̄, t′)f+−(t′ − t̄) (6.80)

= −ir2t2e
iφ+2iϑ̄+

∫
dt̄ eiA

(0)
ferm

∫ t̄+τ

t̄
dtk

D−1
∗∗ (t̄, tk)(
g−1
)

1k


T1→0

(−1)1+k∆[4ϑ+(•; tk), f++]
∆[4ϑ+, f+] f+−(tk − t̄)

(6.81)

with the phase ϑ̄η = −ηπ/ν. It turns out that the integrand is in fact independent of time t̄ and thus
the integral is formally divergent. This amounts to an infinite number of electrons counted during an
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6 Quantum Hall Mach-Zehnder Interferometers

infinite measuring time in a stationary situation. The stationary current is obtained by dropping the
t̄-integral and putting, say, t̄ = 0,

e−1I+− = r1t1r2t2 e
iφ+2iϑ̄+eiA

(0)
ferm

×
∫ τ

0
dtk

D−1
∗∗ (0, tk)(
g−1
)

1k


T1→0

(−1)1+k∆[4ϑ+(•; tk), f++]
∆[4ϑ+, f+] (f+(tk)− f−(tk)). (6.82)

The tk-integral

The nontrivial part

J ≡ (−1)1+k∆[4ϑ+(•; tk), f++](f+(tk)− f−(tk)) (6.83)

of the integrand has power-law singularities at tk ∼ 0 and tk ∼ τ which contribute dominantly to the
integral provided that the real part of the corresponding exponents are negative. For |eV t|, |eV (τ −
tk)| � 1 according to (6.67) the relevant powers are

J ∼ tp12−1
k (τ − tk)p23τp13(eV )q12 . (6.84)

Eq. (6.66) shows that by choosing |n1| and |n2| sufficiently large, Re p12 and Re p23, respectively, can
be easily made negative. Before proceeding we remind ourselves that power laws are modified as one
goes closer to the singularities. In general, in all regions of (0, τ) the integrand is a superposition of
powers,

J ∼ tp̃12
k (τ − tk)p̃23τ p̃13(eV )q̃12Λγ̃+1, (6.85)

where γ̃ ≡ p̃12 + p̃23 + p̃13− q̃12 ensures the correct dimensionality (which is inverse time). The powers
have been discussed in the previous section for different asymptotic regions, separated by the time
scales 0 < Λ−1 � (eV )−1 � τ − (eV )−1 � τ − Λ−1 < τ .
For instance, very close to the left singularity, 0 < tk . Λ−1, it is

f+(tk)− f−(tk) = i

2π
e−ieV tk − 1

tk
≈ eV

2π , (6.86)

and the powers are p̃12 = 0, p̃23 = 0, p̃13 = p′13, and q̃12 = q′12 + 1. Integration over these regimes will
lead to another superposition of powers∫

dtk J ∼ (eV τ)p̃(eV/Λ)r̃. (6.87)

The leading terms are those with large Re p̃ and small Re r̃. In our example∫ Λ−1

0
dtk J ∼ (eV τ)p′13(eV/Λ)q′12+1−p′13 ∼ (eV τ)p′13(eV/Λ)1+α2

1 . (6.88)

Due to α1 = −2/ν, the second exponent is constant (independent of any integer n1 or n2), thus it
suffices to minimize the real part of

p′13 = −2
(
n2 −

α1 − 2β1
2

)2

− α2
1

2 . (6.89)
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6.3 Calculations

The property that the exponent of (eV/Λ) and thus of Λ is constant is convenient and not a coincidence:
It encodes renormalization effects due to high-energy virtual excitations. In contrast, the arbitrary
integers which encode different branches of ln g̃ are relevant for intermediate energies 0 < ε < eV
only, and thus do not affect the high energy scale Λ. For Λ−1 . tk . (eV )−1 the approximation
f+(tk) − f−(tk) ≈ eV/(2π) is still reliable which gives the powers p̃12 = p′12, p̃23 = 0, p̃13 = p′13, and
q̃12 = q′12 + 1 and the integral∫ Λ−1

(eV )−1
dtk J ∼ (eV τ)p′13(eV/Λ)q′12+1−p′13(Λtk)p

′
12+1

∣∣∣∣Λ−1

(eV )−1
(6.90)

∼ (eV τ)p′13
[
(eV/Λ)1+α2

1 − (eV/Λ)1+α2
1−2/ν

]
(6.91)

∼ (eV τ)p′13(eV/Λ)1+α2
1−2/ν (6.92)

where we kept only the dominant contribution.
We study now the limit tk ↘ (eV )−1 where f+(tk) − f−(tk) ∼ 1/tk and powers are p̃12 = p12 − 1,

p̃23 = p23, p̃13 = p13, and q̃12 = q12. For some intermediate time (eV )−1 . t� τ the integral is∫ t

(eV )−1
dtk J ∼ (eV τ)p13+p23(eV/Λ)q12−p13−p23(Λtk)p12

∣∣∣∣t
(eV )−1

. (6.93)

Assuming Re p12 < 0 the upper boundary t is irrelevant and∫ t

(eV )−1
dtk J ∼ (eV τ)p′13(eV/Λ)1+α2

1−2/ν . (6.94)

Let us now turn to the singularity tk ∼ τ where f+(tk)− f−(tk) ∼ τ−1. The same line of reasoning
gives the integrals ∫ τ

τ−Λ−1
dtk J ∼ (eV τ)p′′13−1(eV/Λ)2+α2

1−4/ν , (6.95)∫ τ−Λ−1

τ−(eV )−1
dtk J ∼ (eV τ)p′′13(eV/Λ)2+α2

1−4/ν(Λ(τ − tk))1−2/ν
∣∣∣∣τ−Λ−1

τ−(eV )1
(6.96)

∼

{
(eV τ)p′′13−1(eV/Λ)2+α2

1−4/ν , ν < 2,
(eV τ)p′′13−1(eV/Λ)1+α2

1−2/ν , ν ≥ 2.
(6.97)

Introducing again some intermediate time (eV )−1 � t < τ − (eV )−1 (which for Re p23 < −1 will be
irrelevant as integral boundary) one obtains∫ τ−(eV )−1

t
dtk J ∼ (eV τ)p′′13−1(eV/Λ)1+α2

1−2/ν . (6.98)

Around tk ∼ τ , the exponent which is to be maximized in all subintegrals is

p′′13 − 1 = −2
(
n1 −

α1 + 1− 2β1
2

)2

− (α1 + 1)2

2 − 1. (6.99)
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6 Quantum Hall Mach-Zehnder Interferometers

In the following we are interested in the integers n2 and n1 which maximize Re p′13 and Re p′′13 − 1. To
this end we write α1 = M + m with M ∈ Z and |m| ≤ 1/2. Then for even M leading contributions
come from n2 = M/2 and n1 = (M + 1)/2± 1/2, and for odd M they come from n2 = M/2± 1/2 and
n1 = (M + 1)/2. For all integer ν in all these contributions Re p′13 ≥ Re p′′13 − 1.
These observations lead us to the conclusion that, with all oscillatory terms eieV τn2eiα1Λτ and tk-

independent contributions, D−1
∗∗ (0, tk)(
g−1
)

1k


T1→0

∝ Λ
π
, (6.100)

∆[4ϑ̄+, f+]−1 ∝ e−iα1(Λ+eV )τ

(
Λτ
π

)α2
1

, (6.101)

taken into account, the leading terms of the tk-integral for ν ≥ 2 are

∫
dtk . . . = Λ

π
e−iα1eV τ+iβ1eV τ

∑
n2

Γ′n2e
ieV τn2(eV τ)p′13+α2

1

+
∑
n1

Γ′′n1

(
e−ieV τ − 1

)
eieV τn1(eV τ)p′′13−1+α2

1

 (eV/Λ)1−2/ν (6.102)

where Γ′n2 and Γ′′n2 are some unknown dimensionless constants. This expansion contains all terms in
leading order of (eV/Λ) (also those subleading in (eV τ)).

Action A(0)
ferm in the absence of tunneling

We first calculate the clean action

iA(0)
ferm =

[
Tr Ln

[
1− f̌ + e2iϑ̌q f̌

]
− 2iTr ϑ̌qf0

]
(6.103)

Here the traces extend over all ν upper and ν lower inner channels. We combined all 2ν distribution
functions fλ and phases ϑqλ into 2 × 2-matrices f̌ and ϑ̌q. Due to the Dzyaloshinskii-Larkin theorem
we anticipate that only first-and-second-order-in-ϑ terms are non-vanishing and we expand

iA0 = Tr
[

Ln
[
1 +

(
2iϑq − 2ϑq2

)
f̂

]
− 2iϑqf0

]
(6.104)

= 2iTrϑq
(
f̂ − f0

)
− 2 Trϑq(1− f̂)ϑqf̂ . (6.105)

For local operators A, B, C, i.e. A(t1 − t2) = A(t1)δ(t1 − t2) etc., we use the relation

TrtA[B, f0]C =
∫

dt2 lim
t1→t2

A(t1) i2π
B(t1)−B(t2)
t1 − t2 + i0 C(t2) = i

2π

∫
dt A(t)Ḃ(t)C(t), (6.106)

116



6.3 Calculations

which implies for nonequilibrium distribution functions, f1(t) = e−ieV1tf0(t),

TrtA(f1 − f0)B = eV1
2π

∫
dt A(t)B(t). (6.107)

We assumed that along upper edge the outer channel is biased by V and the inner ones by V0 while
the lower edge is grounded. This gives for the first, zero mode, contribution

2iTr ϑ̌q
(
f̌ − f0

)
= i

e
[
V + (ν − 1)V0

]
τ

2π 2ϑ̄+. (6.108)

The quadratic contribution to iA(0)
ferm is UV divergent and needs to be cutoff by ωC . It is

−2 Trϑq
(
1− f̂

)
ϑqf̂ = − 1

2π2 ν 4ϑ̄2
+ lnωCτ = −2

ν
lnωCτ. (6.109)

Note that iA(0)
ferm is a purely Gaussian contribution,

eiA
(0)
ferm =

〈
eiϑ

f
+(0)−iϑb−(0)

〉
0

= exp
{
i
〈
ϑf+(0)− ϑb−(0)

〉
0
− 1

2

〈
δ
[
ϑf+(0)− ϑb−(0)

]2
〉

0

}
(6.110)

where averaging is performed with respect to the full action with T1 → 0.

Current, Conductivity and Visibility

Setting V+ = V x and V− = 0 and defining the exponents

p′(n2) ≡ −2
(
n2 −

α1 − 2β1
2

)2

+ 1 + 1
2

(
2
ν

)2
− 2
ν
, (6.111)

p′′(n1) ≡ −2
(
n1 −

α1 + 1− 2β1
2

)2

− 1
2 + 1

2

(
2
ν

)2
, (6.112)

the coherent current contribution Icoh = 2Re I+− is Icoh = e
2πτ r1t1r2t2 2Re eiφ I0 with

I0 = 2e−2πi/ν exp
{
i
eV τ [1− (ν − 1)x]

ν

}
eiβ1eV τ

×

∑
n2

Γ′n2e
in2eV τ

(
eV τ

)p′(n2) +
∑
n1

Γ′′n1e
in1eV τ

(
e−ieV τ − 1

) (
eV τ

)p′′(n1)

 . (6.113)

The following table shows the two dominant powers for each filling factor ν:

ν leading powers
2 p′(0) = p′(−1) = 0 = p′′(0)
3 p′(−1), p′(0)
≥ 4 p′(0); p′′(0) if T1 < 1/2, p′′(1) if T1 > 1/2

Taking these two leading terms into account we obtain the results presented in Sect. 6.2, namely
Eq. (6.5) with the exponents (6.9), (6.10).
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6 Quantum Hall Mach-Zehnder Interferometers

6.4 Conclusions

In this chapter we applied the functional bosonization framework of Chapter 3 to study the quan-
tum Hall Mach-Zehnder interferometer for arbitrary integer filling factors ν. Taking into account
only interaction inside the interferometer cell we found that the model is exactly solvable, and that
the current is related to the full counting statistics of the first quantum point contact (QPC) with
interaction-induced time-dependent nonvanishing “counting field” ϑ+(t). In other words, the interfe-
rometer couples strongly to the noise of the QPC.
We considered the effect of long-range (quantum-dot-like) interaction within each interferometer

arm. In the limit of large charging energy ECτ � 1 (with τ being the flight time along the arms)
the counting field is piecewise constant, being −π/ν during a time interval τ and 0 otherwise. In
this case current was expressed in terms of (block) Toeplitz determinants and amenable to an entirely
analytical evaluation. We found the asymptotic expansion (6.5) for high bias with the leading powers
shown in Fig. 6.4. The resulting visibility and phase of the Aharonov-Bohm conductance oscillations
are presented in Fig. 6.3.
For the experimentally most important situation of filling ν = 2, the strong coupling limit happens to

yield a counting phase of exactly −π/2 for which renormalization and dephasing are completely absent.
Dephasing is restored either when deviating from −π/2 by considering moderate interaction strength
or diluting the incident electron beam via an additional QPC and thus introducing a supplemental
source of noise. These cases can be dealt with numerically and yield Figs. 6.9 and 6.6.
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7 Chapter 7

Interaction Quench in Nonequilibrium
Luttinger Liquids

One of the central assumptions of statistical mechanics is the ergodicity hypothesis that closed systems
with a sufficiently high number of degrees of freedom sample the accessible microstates of their phase
space with equal probability. Generally, it is expected that such systems, prepared in some initial
state, relax due to inelastic processes to a thermal equilibrium state, which has little or no memory of
the initial state beyond the average energy (or a finite number of additional conserved quantities).
The Luttinger liquid is an integrable system with infinitely many integrals of motion, say the oc-

cupation numbers of the plasmonic modes. Thus, its dynamics is highly constrained. Starting from
a given initial state it cannot relax into the thermal equilibrium, if the integrals of motion are not
compatible in both states.
Indeed the nonequilibrium dynamics of the similar Lieb-Liniger model (a bosonic model with short-

range repulsive interaction which flows to the Luttinger model under renormalization) was studied
numerically by [113]. The steady state obtained was compatible with a generalized Gibbs ensemble,
which satisfies the maximum entropy principle under the constraints set by integrability.
Questions about the nonequilibrium dynamics of such integrable systems, whether they relax into

a steady state and how much memory they retain from the initial state, are of great theoretical
interest. Their study has become experimentally accessible with the recent advent of ultracold atom
systems in optical traps. They are highly controllable and very weakly coupled to the environment
and represent an ideal laboratory to realize models originally developed for solid state systems. A
prominent example is Ref. [114] where the dynamics of a trapped one-dimensional Bose gas (consisting
of 87Rb atoms), initially prepared out of equilibrium, and specifically the time-dependent momentum
distribution function n(k, t), was considered. Even after thousands of collisions no equilibration could
be observed, and integrability of the underlying Lieb-Liniger model was conjectured to be the cause.
In experiment, the nonequilibrium initial state is usually the stationary state of some Hamiltonian

H0. Relaxation is initiated by a quantum quench: H0 is suddenly switched to the Hamiltonian H which
drives the time-evolution of interest. A conceptually simple quench is considered by Ref. [115, 116]
where a Luttinger model with suddenly switched interaction was studied. As suggested by the authors
this model can be realized with dipolar fermionic atoms in one-dimensional traps. The effective dipolar
interaction is sensitive to the relative angle between the dipole moments and the direction of motion,
and its amplitude and sign can be tuned via an orienting external electric field. The authors found
that the Luttinger model retains Fermi-liquid-like correlations and quasiparticle-like discontinuities in
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the momentum distribution function at finite times t > 0 after the quench and relaxes to a steady
state with Luttinger-liquid-like power-law correlations. The latter are governed by different exponents
than in the equilibrium case.
In this chapter we use the nonequilibrium bosonization approach, presented in Sect. 2.3, to consider

the quench of a Luttinger liquid out of an nonequilibrium initial state with double-step distribution
functions. Similarly to the equilibrium quench case, we find that at finite times momentum distri-
bution functions exhibit discontinuities (here with two edges). Differently, the corresponding quasi-
particle weights are not merely suppressed algebraically, but also exponentially. The steady state as
well exhibits two edges, reminiscent of the original nonequilibrium state, which in analogy with the
equilibrium Luttinger liquid support power-laws, smeared by dephasing. We find that all exponents
are sensitive to the inital state. Let us go into the details after specifying the model and discussing
the nonequilibrium quench results.

7.1 Model and Equilibrium Results

We consider a spinless single-channel Luttinger liquid with right-moving (index η = +) and left-moving
(η = −) fermion species. Their respective velocities and distribution functions are vη = ηvF and fη(ε).
We focus on temperature T = 0; in a possible nonequilibrium setup distribution functions may be of
double-step form

fη(ε) = Rθ(U − ε) + (1−R) θ(−ε), 0 < R < 1, U > 0. (7.1)

In the equilibrium Luttinger liquid short-range interaction, giving rise to forward scattering between
fermions of the same (g4) and different (g2) species, is entirely characterized by 2 constants (2.6):
the Luttinger parameter K and the plasmon velocity u. At T = 0 the equal-time fermionic Green’s
functions, for instance, read

G≷
0η(t1 = t2, x = x1 − x2) = G≷

0η(0, x̄)
(

a√
x2/u2 + a2

)2γ

(7.2)

with non-interacting Green’s function G≷
0η(t1 − t2, x1 − x2), short-time cutoff a ∼ Λ−1 and exponent

γ = (1 − K)2/(4K). The instantaneous momentum distribution function, defined as the Fourier
transform

n±(p, t̄) ≡ −i
∫

dx̄ e−i(p±pF )x̄G<±(x̄, 0; t1 = t2 = t̄), (7.3)

is ∝ |p|2γ .
In this chapter we consider a nonequilibrium quantum quench, realized by suddenly switching on

interaction at time t = 0. Prior to the quench, t < 0, the fermionic system is assumed to be ideal
(g2(t) = 0 = g4(t), K(t) = 1) and set in the nonquilibrium state described by the distribution functions
(7.1). After the quench, t > 0, gj(t) = gj > 0, K(t) = K < 1.

Equilibrium Quench

To appreciate the importance of the initial state, starting from which the quench is performed, let
us review first the results of [115, 116] for the equilibrium quench at T = 0. Calculations there
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7.2 Nonequilibrium Results

were performed with a finite interaction range R0 ∼ vF /Λ as short-distance regularization. At long
distances x̄ � R0 results are insensitive to the regularization scheme, and momentum-dependent
coupling parameters (associated with finite interaction range) can be replaced by their zero momentum
values, gj(q) ≈ gj(q = 0). The equal-time correlation function then is

G<+(t̄; x̄, 0) = G<0+(0, x̄)

∣∣∣∣∣R0
x̄

∣∣∣∣∣
γ̃2 ∣∣∣∣∣(2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣∣
γ̃2/2

(7.4)

where the exponent is determined by γ̃ ≡ 1−K2

4K .
For short times such that 2ut̄� x̄ the correlation function G<+(t̄; x̄, 0) ≈ Z(t̄)G<0+(x̄; 0) can be inter-

preted as the Green’s function of an effective time-dependent Fermi liquid with “Landau quasiparticle
weight”

Z(t̄) =
(
R0
2ut̄

)γ̃2

(7.5)

which gives rise to a discontinuity in the momentum distribution function n+(p) at Fermi momentum
p = pF . According to (7.5) the jump decays algebraically with time t̄.
For large times t̄→∞ the system reaches a time-independent steady state with power-law correla-

tions

G<+(t̄→∞; x̄, 0) = G<0+(0, x̄)

∣∣∣∣∣R0
x̄

∣∣∣∣∣
γ̃2

.

The corresponding momentum distribution function no longer exhibits a discontinuity at p = pF , but
instead has a power-law singularity ∼ |p − pF |γ̃

2 . This behavior is very similar to that observed in
an equilibrium Luttinger liquid (cf. Eqn. (7.2)), however with different exponents γ̃2 6= 2γ. Hence,
while interactions drive relaxation processes, which destroy the Fermi-liquid-likeness of the system, its
integrability prevents it from relaxing into thermal equilibrium.

7.2 Nonequilibrium Results

It is then little surprising that the steady state differs significantly in nonequilibrium, 0 < R < 1. In
contrast to the equilibrium situation, the correlation function now is a linear combination of different
powers of |x̄|, |2ut̄+ x̄|, |2ut̄− x̄|, and 2ut̄. The powers are derived and presented in detail in Section
7.3. Here, let us focus on the long-distance behavior at finite times and the stationary limit.

Finite time quasiparticle weights

For finite times t̄ and long distances x̄� 2ut̄� vFU
−1, and for moderate interaction,

√
2−1 < K < 1,

the correlation function is

G<+(t̄; x̄, 0) = G<0+(0; x̄) e−t̄/(2τϕ)
∑

n1,n2,n4,n5

ei(n1+n2+n4+n5)2Ut̄u/vF

×

Γ̃′1(n1, n2, n4, n5)
(

2ut̄Λ
πvF

)T ′1 (
πU

Λ

)V ′1
+ Γ̃′2(n1, n2, n4, n5)

(
2ut̄Λ
πvF

)T ′2 (
πU

Λ

)V ′2
ei(x̄−2ut̄)U/vF


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Figure 7.1: Sketch of momentum distribution function for K = 0.8 and a = 0.8 at times
t̄/[vF /(2uU)] =0.001, 2, 20, 50, 100, and in the stationary limit t̄ → ∞; b) and
c) are zooms into a) around edges p = pF and p = pF +U/vF . Clear discountinuities
are visible which decrease with time t̄ and eventually vanish.

with some numerical prefactors Γ̃′j , decay rate

τ−1
ϕ = −2U

π

u

vF
ln
[(

1− 2(1− a)a
(

1− cos 2πc2
))(

1− 2(1− a)a (1− cos 2πcs)
)]

(7.6)

and exponents T ′1 = T ′+ +T ′−, V ′1 = V ′+ +V ′− (with T ′±, V ′± from Eqns. (7.8), (7.10)) and T ′2 = T ′+ +T ′−,
V ′2 = V ′+ + V ′− (with T±, V± from Eqns. (7.9), (7.10)).
For simplicity we focus only on the most dominant contributions which are, for moderate repulsive

interaction, 1 > K & 0.6, given by n1 = n4 = n5 = 0 and n2 = 0 for T ′1, V ′1 and n2 = 1 for T ′2, V ′2 :

T ′j(V ′j ) = −1
2

[(
3
2 − j + s2 + 2β1

)2
+
(

3
2 − j + s2 − 2β2

)2
+
(
cs+ 2β3

)2 +
(
cs− 2β4

)2 − 1
2 ± 4c2s2

]
Similar to the equilibrium quench, the entire x̄-dependence of the full Green’s function is given by

the noninteracting contribution, G>0+ ∝ x̄−1, and correlations drop off with distance in a Fermi liquid-
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7.2 Nonequilibrium Results
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Figure 7.2: Sketch of time evolving quasiparticle weights Z1 and Z2 for K = 0.8 and a = 0.8
around p = pF and p = pF + U/vF , respectively.

like manner. Correspondingly, the momentum distribution function has discontinuities at p = pF and
p = pF + U/vF , signaling the existence of Landau quasiparticle states (see Fig. 7.1 for K = 0.8 and
a = 0.8). In the nonequilibrium setup each of the two “Fermi edges” exhibits quasiparticles with
possibly different weights Z1 ∝ e−t̄/(2τϕ)t̄T

′
1UV

′
1 , Z2 ∝ e−t̄/(2τϕ)t̄T

′
2UV

′
2 . In striking contrast to the

equilibrium situation, the quasiparticle weights are not only algebraically suppressed, but dominantly
exponentially with decay time τϕ. Their time evolution is sketched in Fig. 7.2.

Stationary Limit

K=0.9

K=0.8

K=0.7

K=0.6

K=0.5

Dpq1

Dpq2

0 1
0

0.5

1

0 1

0

0.5

1

Hp-pFL�@U�vFD
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Hp
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Figure 7.3: Steady-state momentum distribution function for a = 0.8 and different K. At edges
p = pF and p = pF +U/vF the initial discontinuites are replaced by power laws ∆pq1/2

which are smeared by dephasing.

For long times, t̄→∞, the quenched system relaxes to a stationary state without the Fermi liquid
signatures, but with critical power-law correlations characteristic for Luttinger liquid. For x̄� vFU

−1
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Figure 7.4: Luttinger liquid exponents governing of power-law singularities of the momentum
distribution functions: q1 at p = pF and q2 at p = pF + U/vF for quenched nonequi-
librium, γ̃2 for quenched equilibrium, and 2γ for equilibrium for a = 0.8.
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Figure 7.5: Inverse decay length κ at a = 0.8 as function of K.

and moderate repulsive interaction
√

2− 1 ≤ K ≤ 1 the correlation function is in leading order

G<+(t̄; x̄, 0) = G<0+(0; x̄) e−κ|x̄|

Γ̃1

∣∣∣∣∣ Λx̄
πvF

∣∣∣∣∣
1+X1

∣∣∣∣∣πUΛ
∣∣∣∣∣
V1

+ Γ̃2 e
iUx̄/vF

∣∣∣∣∣ Λx̄
πvF

∣∣∣∣∣
1+X2

∣∣∣∣∣πUΛ
∣∣∣∣∣
V2

 (7.7)

with known numerical prefactors Γ̃j , exponents

Xj(Vj) =− 1
2

[(
s2 − 2β1

)2
−
(
s2 − 2 + j − 2β2

)2
−
(
cs− 2β3

)2 − (cs+ 2β4
)2 ± (c2 + s2)2

]
,

j = 1, 2, decay length κ−1 = 4uτϕ, and

β1 ≡
1

2πi ln
[
ae−2πis2 + 1− a

]
, β2 ≡

1
2πi ln

[
ae2πic2 + 1− a

]
= −β∗1 ,

β3 ≡
1

2πi ln
[
ae2πics + 1− a

]
, β4 ≡

1
2πi ln

[
ae−2πics + 1− a

]
= −β∗3 .

Like in quenched equilibrium the exponents differ from the equilibrium situation. The stationary state
retains information about the system’s prehistory, including the initial state prior to the quench: even
long after the quench the momentum distribution function exhibits a double-step structure reminiscent
of the original nonequilibrium state (cf. Fig. 7.3); similar to the equilibrium Luttinger liquid the sharp
discontinuities are replaced by power laws |p − pF |q1 and |p − pF − U/vF |q2 . Exponents differ both
from equilibrium and quenched equilibrium and are in general different at the two edges (cf. Fig. 7.4).
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7.3 Calculations

7.3 Calculations

We use the nonequilibrium version of canonical bosonization, which is presented in Section 2.3. In this
framework nonequilibrium corrections to the right-movers’ equal-time Green’s functionG≷

+(t̄; x̄, 0),(2.40),
(2.42) are expressed in terms of Fredholm determinants

∆µ ≡ Det
[
1 +

(
eiδµ − 1

)
fµ

]
.

Counting phases δµ (2.41) measure incoming charge in the leads for given trajectory %qµ(x, t). The
charge configuration %qµ(x, t) is the “advanced charge response” to the injection of a right-moving
fermion at ξ2 = (t̄, 0) and its removal at ξ1 = (t̄, x̄) and satisfies the equations of motion (2.44). The
sudden temporal switch-on of interaction at t = 0 does not make the equations singular in any way
(as sharp spatial changes would); time evolution of density is required to be continuous at t = 0. For
t > 0 interaction couples the bare right- and left-moving charge modes %q±. The eigenmodes of the
interacting systems, the plasmon modes %̃qη, are obtained by the Bogoliubov transformation(

%q+
%q−

)
=
(
c s
s c

)(
%̃q+
%̃q−

)
, with c = 1 +K

2
√
K
, s = −1−K

2
√
K
.

Their time evolution decouples,

%̃q+(x, t) = −1
2 c θ(t̄− t)

{
δ[x− u(t− t̄)]− δ[x− x̄− u(t− t̄)]

}
,

%̃q−(x, t) = 1
2 s θ(t̄− t)

{
δ[x+ u(t− t̄)]− δ[x− x̄+ u(t− t̄)]

}
.

Requiring continuity at t = 0 and inverting the Bogoliubov transformation we obtain the charge density
prior to the quench, t < 0,

%q+(x, t) = −1
2

{
c2
(
δ[x+ ut̄− vF t]− δ[x− x̄+ ut̄− vF t]

)
− s2

(
δ[x− ut̄− vF t]− δ[x− x̄− ut̄− vF t]

)}
,

%q−(x, t) = −1
2cs

{(
δ[x+ ut̄+ vF t]− δ[x− x̄+ ut̄+ vF t]

)
−
(
δ[x− ut̄+ vF t]− δ[x− x̄− ut̄+ vF t]

)}
.

which yields the counting phases

δ+(t) = 2π

c2

θ [t− −x̄+ ut̄

vF

]
− θ

[
t− ut̄

vF

]− s2

θ [t− −x̄− ut̄
vF

]
− θ

[
t− −ut̄

vF

]
 ,

δ−(t) = −2πcs


θ [t− −ut̄

vF

]
− θ

[
t− x̄− ut̄

vF

]−
θ [t− ut̄

vF

]
− θ

[
t− x̄+ ut̄

vF

]
 .

Fig. 7.6 depicts the density trajectories in the x− t-plane the accumulation of corresponding phases.
The phases are shown in Fig. 7.7: For |x̄| < 2ut̄ each phase δ± = δ1±+δ2± consists of two rectangular-

shaped pulses of width |x̄|/vF separated by the distance (2ut̄− |x̄|)/vF . The pulses overlap in the case
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7 Interaction Quench in Nonequilibrium Luttinger Liquids

|x̄| > 2ut̄. In the long-time limit 2ut̄� |x̄| the pulses are well separated and each of the two Fredholm
determinants in (2.40),

∆µ ≈ Det
[
1 +

(
eiδ1µ − 1

)
fµ

]
Det

[
1 +

(
eiδ2µ − 1

)
fµ

]
,

factorizes into two Toeplitz determinants which may be evaluated with (A.9) or more general forms
following from (A.4).
Let us consider first the equilibrium situation with distribution functions f+(ε) = f−(ε) = f0(ε) =

θ(−ε). Eqn. (A.21) yields

∆+ = G(1− s2)G(1 + s2)G(1− c2)G(1 + c2) eiΛx̄/vF
∣∣∣∣∣ Λx̄
πvF

∣∣∣∣∣
−c4−s4 ∣∣∣∣∣(2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣∣
s2c2

,

∆− = G(1− cs)2G(1 + cs)2

∣∣∣∣∣ Λx̄
πvF

∣∣∣∣∣
−2c2s2 ∣∣∣∣∣(2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣∣
s2c2

.

The prefactor, containing the Barnes G-functions G, do not follow from (A.21), but from the long-time
limit where the factorization into Toeplitz determinants makes (A.9) applicable.
The Green’s function following the equilibrium interaction quench is thus

G<+(t̄; x̄, 0) ∝ eiΛx̄/vF
∣∣∣∣∣ Λx̄
πvF

∣∣∣∣∣
−(c2+s2)2 ∣∣∣∣∣(2ut̄)2 − x̄2

(2ut̄)2

∣∣∣∣∣
2s2c2

.

Since 2cs = γ̃ and −(c2 + s2)2 = −1− γ̃2 the power laws are in perfect agreement with the exact result
(7.4) of Ref. [115]. In the following we will use the equilibrium quench as reference case to normalize
our Fredholm determinants.
The situation becomes more complicated when turning to nonequilibrium, (7.1). Using (A.21) we

obtain

G<+(t̄; x̄, 0) = G<0+(0, x̄) ∆̃+ ∆̃−

for |x̄|, |2ut̄− |x̄||, |2ut̄| � vF /U with equilibrium-normalized determinants

∆̃+ =
∑

n1,n2,n3

Γ̃+(n1, n2, n3) ei(β1+β2)U |x̄|/vF ei(n1+n2−n3)U |x̄|/vF ein32Ut̄ u/vF

×

∣∣∣∣∣ Λ
πvF

∣∣∣∣∣
1+γ++V+

|x̄|1+X+
(

2ut̄− |x̄|
)D+ (

2ut̄+ |x̄|
)S+

(2ut̄)T+

∣∣∣∣∣πUΛ
∣∣∣∣∣
V+

,

∆̃− =
∑

n4,n5,n6

Γ̃−(n4, n5, n6) ei(β3+β4)U |x̄|/vF ei(n4+n5−n6)U |x̄|/vF ein62Ut̄ u/vF

×

∣∣∣∣∣ Λ
πvF

∣∣∣∣∣
γ−+V−

|x̄|X−
(

2ut̄− |x̄|
)D− (

2ut̄+ |x̄|
)S−

(2ut̄)T−
∣∣∣∣∣πUΛ

∣∣∣∣∣
V−
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for 2ut̄ > x̄ > 0 and

∆̃+ =
∑

n1,n2,n3

Γ̃′+(n1, n2, n3) ei(β1+β2)2Ut̄u/vF ei(n1+n2−n3)U |x̄|/vF ein32Ut̄ u/vF

×

∣∣∣∣∣ Λ
πvF

∣∣∣∣∣
1+γ′++V ′+

|x̄|1+X′+
(
−2ut̄+ |x̄|

)D′+ (2ut̄+ |x̄|
)S′+ (2ut̄)T ′+

∣∣∣∣∣πUΛ
∣∣∣∣∣
V ′+

,

∆̃− =
∑

n4,n5,n6

Γ̃′−(n4, n5, n6) ei(β3+β4)2Ut̄u/vF ei(n4+n5−n6)U |x̄|/vF ein62Ut̄ u/vF

×

∣∣∣∣∣ Λ
πvF

∣∣∣∣∣
γ′−+V ′−

|x̄|X′−
(
−2ut̄+ |x̄|

)D′− (2ut̄+ |x̄|
)S′− (2ut̄)T ′−

∣∣∣∣∣πUΛ
∣∣∣∣∣
V ′−

for 0 < 2ut̄ < x̄. Here, we left the nj-dependence of the exponents X±, T±, . . . implicit. Γ̃±, Γ̃′± are
unknown numerical prefactors. The determinants for x̄ < 0 are obtained by complex conjugation.
The exponents differ in the two regimes 2ut̄ ≷ |x̄|.

Regime 2ut̄ > |x̄|

Here the exponents are

X+ =
(
−β2 + c2 − n2

)(
β2 − c2 + n2 − n3

)
+
(
−β1 − n1 + n3

) (
β1 + n1

)
+
(
−β2 − n2 + n3

) (
β2 + n2

)
+
(
−β1 − n1 − s2

)(
β1 + n1 − n3 + s2

)
,

T+ =
(
−n1 + n3 − s2 − β1

)(
c2 − n2 − β2

)
+
(
−n1 − s2 − β1

)(
c2 − n2 + n3 − β2

)
+
(
n1 − n3 + β1

) (
n2 + β2

)
+
(
n1 + β1

) (
n2 − n3 + β2

)
,

D+ =
(
n1 − n3 + β1

) (
−n2 + n3 − β2

)
+
(
−n1 + n3 − s2 − β1

)(
−c2 + n2 − n3 + β2

)
,

S+ =
(
β1 + n1

) (
c2 − 2

(
β2 + n2

))
− s2

(
β2 − c2 + n2

)
,

γ+ =− c4 − s4,

X− =
(
−n4 + n6 − β3

) (
n4 + β3

)
+
(
−n4 + cs− β3

) (
n4 − n6 − cs+ β3

)
+
(
−n5 + n6 − β4

) (
n5 + β4

)
+
(
−n5 − cs− β4

) (
n5 − n6 + cs+ β4

)
,

T− =
(
−n4 + n6 + cs− β3

) (
−n5 − cs− β4

)
+
(
−n4 + cs− β3

) (
−n5 + n6 − cs− β4

)
+
(
n4 − n6 + β3

) (
n5 + β4

)
+
(
n4 + β3

) (
n5 − n6 + β4

)
,

D− =
(
n4 − n6 + β3

) (
−n5 + n6 − β4

)
+
(
−n4 + n6 + cs− β3

) (
n5 − n6 + cs+ β4

)
,

S− =cs
(
n5 + cs+ β4

)
+
(
n4 + β3

) (
−cs− 2

(
n5 + β4

))
.γ− = −2c2s2.

In the long-time limit 2ut̄� |x̄|, the powers simplify to
(

2ut̄− |x̄|
)D± (

2ut̄+ |x̄|
)S±

(2ut̄)T± → (2ut̄)T̃±

with T̃+ = −2n2
3 ≤ 0 and T̃− = −2n2

6 ≤ 0. Thus the correlation function relaxes to a stationary solution

127



7 Interaction Quench in Nonequilibrium Luttinger Liquids

where solely terms with n3 = 0 = n6 contribute. The remaining powers simplify to

X+ =− 2
(
n1 −

−s2 − 2β1
2

)2

− 2
(
n2 −

c2 − 2β2
2

)2

− c4 + s4

2 ,

V+ =− 2
(
n1 −

−s2 − 2β1
2

)2

− 2
(
n2 −

c2 − 2β2
2

)2

+ c4 + s4

2 ,

X− =− 2
(
n4 −

cs− 2β3
2

)2

− 2
(
n5 −

−cs− 2β4
2

)2

− c2s2,

V− =− 2
(
n4 −

cs− 2β3
2

)2

− 2
(
n5 −

−cs− 2β4
2

)2

+ c2s2.

Since in the long-time limit the phases split into independent pulses, all Fredholm determinants fac-
torize into Toeplitz determinants and the prefactors can be obtained with (A.14):

Γ̃+(n1, n2, n3 = 0) =G(1− s2 − β1 − n1)G(1 + s2 + β1 + n1)G(1 + β1 + n1)G(1− β1 − n1)
G(1− s2)G(1 + s2)

× G(1 + c2 − β2 − n2)G(1− c2 + β2 + n2)G(1 + β2 + n2)G(1− β2 − n2)
G(1 + c2)G(1− c2) ,

Γ̃−(n4, n5, n6 = 0) =G(1 + cs− β3 − n4)G(1− cs+ β3 + n4)G(1 + β3 + n4)G(1− β3 − n4)
G(1 + cs)G(1− cs)

× G(1− cs− β4 − n5)G(1 + cs+ β4 + n5)G(1 + β4 + n5)G(1− β4 − n5)
G(1− cs)G(1 + cs) .

Formoderate repulsive interaction
√

2−1 ≤ K ≤ 1, the dominant powers ReX± are due to (n1, n2) =
(0, 1), (0, 0) and (n4, n5) = (0, 0). These contributions are taken into account in (7.7) with Γ̃1 ≡
Γ̃+(0, 0, 0)Γ̃−(0, 0, 0), Γ̃2 ≡ Γ̃+(0, 1, 0)Γ̃−(0, 0, 0).

In the equilibrium limit, a → 0, prefactors vanish for all nj but n1 = n2 = n4 = n5 = 0 for which
one recovers the equilibrium exponents.
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Regime 2ut̄ < |x̄|

Here the exponents are

X ′+ =
(
−c2 + n2 − n3 − β1

)(
c2 − n2 − β2

)
+
(
−n1 − s2 − β1

)(
n1 − n3 + s2 − β2

)
+
(
−n2 + n3 + β1

) (
n2 + β2

)
+
(
n1 + β1

) (
−n1 + n3 + β2

)
,

T ′+ =
(
n2 − n3 − β1

) (
n1 + β1

)
+
(
−n1 − s2 − β1

)(
c2 − n2 + n3 + β1

)
+
(
n1 − n3 − β2

) (
n2 + β2

)
+
(
c2 − n2 − β2

)(
−n1 + n3 − s2 + β2

)
,

D′+ =
(
−n2 + n3 + β1

) (
n1 − n3 − β2

)
+
(
−c2 + n2 − n3 − β1

)(
−n1 + n3 − s2 + β2

)
,

S′+ =− s2
(
−c2 + n2 + β2

)
+
(
n1 + β1

) (
c2 − 2

(
n2 + β2

))
,

X ′− =
(
n5 − n6 − cs− β3

) (
−n5 + cs− β4

)
+
(
−n4 − cs− β3

) (
n4 − n6 + cs− β4

)
+
(
−n5 + n6 + β3

) (
n5 + β4

)
+
(
n4 + β3

) (
−n4 + n6 + β4

)
,

T ′− =
(
n5 − n6 − β3

) (
n4 + β3

)
+
(
−n4 − cs− β3

) (
−n5 + n6 + cs+ β3

)
+
(
n4 − n6 − β4

) (
n5 + β4

)
+
(
−n5 + cs− β4

) (
−n4 + n6 − cs+ β4

)
,

D′− =
(
−n5 + n6 + β3

) (
n4 − n6 − β4

)
+
(
n5 − n6 − cs− β3

) (
−n4 + n6 − cs+ β4

)
,

S′− =− cs
(
n5 − cs+ β4

)
+
(
n4 + β3

) (
cs− 2

(
n5 + β4

))
.

For long distances |x̄| � 2ut̄ the power-law dependence on distance simplifies to

|x̄|X′±
(
−2ut̄+ |x̄|

)D′± (2ut̄+ |x̄|
)S′± → |x̄|X̃± with the exponents

X̃+ = −2(n3 + 1/2− n1 − n2)2 − 1
2 , X̃− = −2(n6 − n4 − n5)2.

For |x̄| → ∞ all terms vanish except for n3 = n1 + n2 or n3 = n1 + n2 − 1, and n6 = n4 + n5. Then
1 + X̃+ = 0 = X̃−, i.e. the normalized determinants ∆̃± are independent of x̄, and correlations drop
off like G<+(t̄; x̄, 0) ∼ G<0+(t̄; x̄, 0) ∼ x̄−1.
The remaining exponents are

T ′+(V ′+) = −2
(
n1 −

−1/2− s2 − 2β1
2

)2

− 2
(
n2 −

−1/2 + c2 − 2β2
2

)2

+ 1
4 ∓ c

2s2 (7.8)

for n3 = n1 + n2,

T ′+(V ′+) = −2
(
n1 −

1/2− s2 − 2β1
2

)2

− 2
(
n2 −

1/2 + c2 − 2β2
2

)2

+ 1
4 ∓ c

2s2 (7.9)

for n3 = n1 + n2 − 1 and

T ′−(V ′−) = −2
(
n4 −

−cs− 2β3
2

)2

− 2
(
n5 −

cs− 2β4
2

)2

∓ c2s2 (7.10)

for n6 = n4 + n5.
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7.4 Conclusions

In this chapter we considered the time-evolution of the momentum distribution function of a nonequi-
librium Luttinger liquid after an interaction quench. The initial state was chosen to be a double-step
distribution function. Similarly to the equilibrium situation previously discussed by [115, 116] at finite
times and long distances correlations are Fermi-liquid-like. The momentum distribution functions ex-
hibit discontinuities with decaying quasiparticle weights, see Figs. 7.1 and 7.2. In both situations the
system relaxes into a steady state with Luttinger-liquid-like power-law correlations, Fig. 7.3.
As expected the relaxation process does not lead to a complete loss of memory of the initial state:

Neither when quenching out of equilibrium nor out of nonequilibrium does the steady state have the
same powers as in the equilibrium state, see Fig. 7.3. In the nonequilibrium case the momentum distri-
bution function never ceases to maintain a double-step structure. One of the main additional features
arising from nonequilibrium is dephasing which leads to an expontial suppression of the quasiparticle
weights.
To conclude, let us note that the applied formalism can deal with arbitrary initial states as well as

interactions which are constrained to region with both spatial and temporal boundaries.
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8 Chapter 8

Summary

In this thesis we developed a framework for nonequilibrium networks of interacting quantum wires
which are coupled by tunneling or impurity scattering and gave some examples for its application.
Examples for “quantum wires” may be right- and left-moving states in a nanowire and their tunnel-
coupling may be provided by an backscattering impurity. The model is able to account for the physics
in a large range of mesoscopic systems, and we discussed examples which are subject of ongoing
theoretical and experimental research.
In Chapter 3, using the Keldysh formulation of functional bosonization, we derived the bosonic

Keldysh action of the system, which takes the form of a Fredholm determinant and is highly reminiscent
of the full counting statistics cumulant generating functional, though with interaction-induced time-
dependent “counting fields”. The dynamics of the electrons in the system enters via the time-dependent
scattering matrix.
For the case of weak interchannel tunneling, we derived the lowest order expansion for the action

which yields at every point of tunneling terms analogous to the Ambegaokar-Eckern-Schön action[29].
We further presented the corresponding saddle-point approximation scheme to evaluate physical ob-
servables, taking into account non-Gaussian correlations.
The main part of this work was devoted to applications of the framework. In Chapter 4, we con-

sidered the problem of tunneling into a Luttinger liquid with a single impurity biased by a voltage V .
The tunneling rates we found have a double-edge structure with smeared power-law singularities. This
indicates the presence of a plasmon bath which is populated through inelastic scattering of nonequi-
librium electrons off the impurity. The bath “provides” energy and noise and thus has two effects:
inelastic tunneling of electrons into/out of the wire and dephasing. We pointed out that the former is
responsible for the double-edge structure while the latter leads to the smearing.
As a second application of our approximation scheme, in Chapter 5 we studied the quantum Hall

Fabry-Pérot interferometer for arbitrary integer filling factor. Our results provide explanations for the
large range of experimental findings: The visibility of Aharonov-Bohm (AB) oscillations is suppressed
by renormalization of QPC transmissions and dephasing for high bias. The effective symmetrization
of the chemical potentials of the two interferometer arms leads to the observed oscillatory features
(“lobes”) in the visibility, including the exact vanishing of visibility for certain values of bias.
Taking into account the electrostatic coupling of the current carrying edges with charge localized

in the interferometer cell (in a “compressible island”), we can describe the motion of the interference
loop upon varying the magnetic field. This may even lead to the somewhat counterintuitive result of
a shrinking AB phase upon increasing magnetic field. Depending on experimental parameters such as
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8 Summary

relative strengths of couplings between different edge states and the compressible island the system
can fall into one of four different regimes with very distinct dependence of conductance on magnetic
field and gate voltage.
The quantum Hall Mach-Zehnder interferometer is an example where the functional bosonization

framework can be evaluated exactly, when assuming that interaction be absent outside the interfe-
rometer cell. For long-range intraarm interaction we found the visibility for arbitrary integer filling
factors, and the evolution of the lobe structure as a function of QPC transmission.
Formally, the current could be expressed in terms of a Fredholm determinant, which in the strong

coupling limit is of block Toeplitz form. Owing to its specific structure, by means of a Riemann-
Hilbert problem it could be brought into conventional Toeplitz form, for which asymptotic expansions
are known.
In addition we applied the nonequilibrium (full) bosonization approach presented in Sect. 2.3 to

study the evolution of a Luttinger liquid, initially in a nonequilibrium state, after a sudden switch-on
of the interaction. Similarly to an interaction quench from an initial equilibrium state, we observe a
retardation in the build-up of power-law correlations typical for Luttinger liquids. At finite times t̄
after the quench, correlations between long distances |x̄| � ut̄ (with plasmon velocity u) are Fermi-
liquid-like and lead to discontinuities in the momentum distribution function at the Fermi edge. As
an effect of nonequilibrium the quasiparticle weight corresponding to the discontinuity is not only
algebraically suppressed for increasing times t̄, but – due to dephasing – dominantly exponentially.
As t̄ → ∞ the system relaxes to a steady state which differs both from the equilibrium and from

the quenched equilibrium situation. Starting with a double-step distribution function, the steady-state
momentum distribution function is still reminiscent of the initial two edges which no support power-law
singularities (smeared by dephasing).
To conclude, let us discuss possible future research directions. Quantum wire network models cover

a broad class of systems whose behavior under the influence of nonequilibrium and in the presence
of interaction could be studied within the developed framework. Examples are edge states in spin
quantum Hall topological insulators and two-dimensional electron gases at the (integer) quantum
Hall transition. Further, of great interest is a generalization to fractional quantum Hall edge states,
and in particular to systems with non-Abelian excitations which are promising candidates for the
implementation of topological quantum computation.
While we developed an approximative approach for the limit of weak tunneling and discussed an

exactly solvable example, it is important to understand under what general conditions and how we
can proceed in a controllable way. For this purpose, and in general, the analysis of the asymptotic
behavior of Fredholm determinants is relevant. While in this work in the specific situation of two
coupled channels and zero temperature the arising block Toeplitz determinant could be reduced to
conventional Toeplitz determinants, the general treatment of block Toeplitz determinants is still an
interesting open question.
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A Appendix A

Asymptotics of Toeplitz determinants and
Generalizations

In this chapter we summarize useful results on the asymptotic behavior of Toeplitz determinants
∆N = det(gj−k)1≤j,k≤N for large matrix sizes N . In what follows we assume the matrix elements
drop off fast enough

∑∞
k=−∞|gk| < ∞, such that we can express them in terms of the “symbol”

g(eiϕ) ≡
∑∞

k=−∞ gke
ikϕ, a complex-valued function on the unit circle with

gj−k =
∫ π

−π

dϕ
2π g(eiϕ)e−iϕ(j−k).

The strong Szegö limit theorem applies for sufficiently smooth symbols g(z) = eV (z). The logarithm
V (eiϕ) =

∑∞
k=−∞ Vke

ikϕ is assumed to be smooth with Fourier harmonics Vk =
∫ π
−π

dϕ
2π V (e−ikϕ)

satisfying
∑∞

k=−∞|Vk|2|k| <∞. Then for large N the determinant behaves as

∆N = eNV0 exp

 ∞∑
k=1

kVkV−k

 .
The Fisher-Hartwig (FH) formula (proven by [117]) allows to relax the smoothness conditions on

g(z). The symbols may have “FH singularities”, i.e. be of the form

g(z) = eV (z)
m∏
j=0

∣∣∣z − zj∣∣∣2αj γj(z)(z/zj)βj (A.1)

with integer m ≥ 0, zj ≡ eiϕj , Reαj > −1
2 , βj ∈ C,

γj(z) =
{
eiπβj , −π < arg z < ϕj ,
e−iπβj , ϕj < arg z < π,

(A.2)

for j = 0, . . . ,m, and sufficiently smooth V (z). The authors of [117] derived the leading asymptotic
behavior of ∆N for sufficiently close βj ,

∣∣∣βj − βk∣∣∣ < 1, j, k = 0, . . . ,m. In the context of our work and
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of [21], we deal exclusively with αj = 0, hence, we will not bother about more general results here.
The leading asymptotics according to [117] is

∆N = eNV0N−
∑m
j=0 β

2
j

∏
0≤j<k≤m

∣∣∣zj − zk∣∣∣2βjβk m∏
j=0

G(1 + βj)G(1− βj) (A.3)

where V0 =
∫ π
−π

dϕ
2π V (eiϕ) and G is the Barnes G-function. The authors of [21] used a generalized

result which is valid for arbitrary βj and yields also subleading contributions:

∆N = eNV0
∑

n0+...+nm=0

m∏
j=0

z
njN
j

N−∑m
j=0 β

2
j

∏
0≤j<k≤m

∣∣∣zj − zk∣∣∣2βjβk m∏
j=0

G(1 + βj)G(1− βj)


βj→βj+nj

.

(A.4)

We turn to an example which is ubiquitous throughout the main part of this thesis. Let f(ε) be
some (stationary) distribution function and δ(t) = δ̄1[0,τ ](t) some piecewise constant phase. The goal
is to extract the large-τ asymptotic behavior of Det

[
1 + (eiδ − 1)f

]
. By introducing the projector Pτ ,

which acts on functions φ(t) as Pτφ(t) = φ(t)1[0,τ ](t), we convince ourselves that the determinant in
question,

Det
[
1 + (eiδ − 1)f

]
= Det

[
1 + Pτ (eiδ̄ − 1)f

]
= Det

[
1 + Pτ (eiδ̄ − 1)fPτ

]
,

is in fact effectively of Toeplitz form (cf. also the discussion in the beginning of Sect. 2.3). As high-
energy regularization time is discretized, tj = j∆t = jπ/Λ which amounts to restricting the energy
range to (−Λ,Λ]. In energy representation the operator of interest reads

g̃(ε) = 1 + (eiδ̄ − 1)f(ε). (A.5)

Being related to the time representation by Fourier transformation it corresponds to the symbol g(z)
provided energy ε ∈ (−Λ,Λ] and angle ϕ ∈ (−π, π] are related by rescaling: ϕ = επ/Λ. The intro-
duction of a hard cutoff ±Λ will give rise to unphysical effects at this energy scale. In order to avoid
them and to make the above FH result applicable, we impose “periodic boundary conditions” in energy
domain limε→−Λ g(ε) = limε→Λ g(ε):

g(ε) = eiδ̄ε/(2Λ)
[
1 + (eiδ̄ − 1)f(ε)

]
(A.6)

where we took into account limε→−Λ f(ε) = 1, limε→Λ f(ε) = 0. In discretized (dimensionless) time
representation the Toeplitz matrix is

gj−k =
∫ π

−π

dϕ
2π e

−iϕ(j−k) g(eiϕ) =
∫ Λ

−Λ

dε
2Λ e−iεπ/Λ(j−k)g(ε). (A.7)

To be specific we consider one of the examples of [21], the equilibrium distribution function fsingle(ε) =
θ(µ− ε). The symbol is

g(eiϕ) =
{
eiδ̄ϕ/(2π)eiδ̄, −π < ϕ < πµ/Λ,
eiδ̄ϕ/(2π), πµ/Λ < ϕ < π,

(A.8)
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which is of the form (A.1) with m = 0, α0 = 0, β0 = δ̄/(2π), z0 = eiπµ/Λ, and V0 = iδ̄(1 + µ/Λ)/2.
According to Eq. (A.4) in the large-N limit the det(gj−k) asymptotically behaves as

∆[δ̄, fsingle] = exp
[
i
δ̄

2π (Λ + µ)τ
] (

Λτ
π

)−( δ̄
2π

)2

G

(
1− δ̄

2π

)
G

(
1 + δ̄

2π

)
(A.9)

Another example of [21] is the double-step distribution function fdouble(ε) = (1 − a)θ(µ0 − ε) +
aθ(µ1 − ε), µ0 < µ1. In this case the symbol reads

g(eiϕ) =


eiδ̄ϕ/(2π)eiδ̄, −Λ < ϕ < µ0,

eiδ̄ϕ/(2π)
[
1 + (eiδ̄ − 1)a

]
, πµ0/Λ < ϕ < πµ1/Λ,

eiδ̄ϕ/(2π), πµ1/Λ < ϕ < π.

(A.10)

Hence, the symbol has two FH singularities zj = eiπµj/Λ, j = 0, 1, with

e−2πiβ0 = 1 + (eiδ̄ − 1)a
eiδ̄

, e−2πiβ1 = 1
1 + (eiδ̄ − 1)a

. (A.11)

We choose

β1 = − i

2π ln
[
1 + (eiδ̄ − 1)a

]
, β0 = δ̄

2π − β1. (A.12)

It is then simple to show that the symbol has the form (A.1) with m = 1, αj = 0, and

V (z) = V0 = iδ̄/2 + iδ̄
µ0
2Λ + ieV

π

Λβ1 (A.13)

where we introduced eV = µ1 − µ0. According to (A.4) the asymptotic behavior of the Toeplitz
determinant det

(
gj−k

)
is given by

∆[δ̄, fdouble] = exp
[
i
δ̄

2π (Λ + µ0)τ + eV τ

2π ln
[
1 + (eiδ̄ − 1)a

]]

×
∞∑

n=−∞
e−ieV τn

(
Λτ
π

)−(β0+n)2−(β1−n)2 (
πeV

Λ

)2(β0+n)(β1−n)

×G(1 + β0 + n)G(1− β0 − n)G(1 + β1 − n)G(1− β1 + n). (A.14)

Identifying the asymptotically leading n-contributions requires maximizing the exponent

Re
[
−(β0 + n)2 − (β1 − n)2

]
= −2

(
n− n∗

)2 + const. (A.15)

with n∗ = 1
2Re (β1 − β0) = −1

2
δ̄

2π . (A.16)

Note that
[
−(β0 + n)2 − (β1 − n)2

]
−
[
2(β0 + n)(β1 − n)

]
= −(β0 + β1)2 is independent of n. Thus,

terms dominant for Λτ � 1 are also leading for large voltages, eV τ � 1. For the analysis of the
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optimal value n∗, we make the decomposition δ̄ = 2πM + δ̄′ with M ∈ Z and |δ̄′| < π. One can show
that δ̄′′ ≡ Im ln

[
(1− a) + aeiδ̄

]
is a phase with the same sign as δ̄′ and which satisfies |δ̄′′| ≤ |δ̄′|.

Then, n∗ = −M
2 −

δ̄′−2δ̄′′
4π and |n∗ + M/2| ≤ 1/4. Concluding, for even M , one single contribution,

n = −M/2, for odd M , two comparable contributions, n = −(M ± 1)/2, are significantly dominating.
If in the latter case a = 1/2 and thus δ̄′′ = δ̄′/2, both contributions come with equal exponents.
Numerical studies suggest that the above results (A.9) and (A.14) can be generalized to non-Toeplitz

cases where the phase δ(t) may be a piecewise constant function of time[22]. Let us reiterate the idea.
Consider the generalized Toeplitz matrix

gj,k =
∫ Λ

−Λ

dε
2Λ e−iεπ/Λ[j−k−δ(tj)/(2π)] g̃(tj , ε), g̃(t, ε) ≡ 1 +

(
eiδ(t) − 1

)
f(ε) (A.17)

where the notion of a symbol is generalized to a time- and energy dependent function. Phase δ(t)
and distribution function f(ε) are assumed to be piecewise constant functions with jumps at times
τ1 < τ2 < . . . < τNτ and energies µ1 < µ2 < . . . < µNµ , respectively. They satisfy δ(t) = 0 for
t /∈ [τ1, τNτ ], f(−Λ) = 1 and f(ε) = 0 for ε > µNµ (periodic boundary conditions in energy domainare
thus ensured as before). For j ∈ {1, . . . , Nτ − 1}, k ∈ {1, . . . , Nµ − 1} and an arbitrary set of integers
{njk} we define

cjk ≡
1

2πi ln g̃(τj + 0, µk + 0) + njk, (A.18)

cj0 ≡ δ(tj + 0)/(2π), c0k = cNτ ,k = cj,Nµ = 0. (A.19)

Then we define for j, l ∈ {1, . . . , Nt}, k,m ∈ {1, . . . , Nµ}:

βjk ≡ cj,k−1 − cj,k + cj−1,k − cj−1,k−1, pjl ≡
Nµ∑
m′=1

βjm′βlm′ , qkm ≡
Nt∑
l′=1

βl′kβl′m. (A.20)

Remember that cjk and thus βjk, pjl, and qkm depend on the set of integers njk. In Eqn. (A.18) the
logarithm ln g̃ is to be evaluated at its principal branch, Im ln g̃ ∈ (−π, π]. Summation over different
integers njk hence amounts to summing over different branches of the logarithms.
For large time and energy differences |(τj−τl)(µk−µm)| � 1 (j 6= l, k 6= m) the asymptotic behavior

of det(gj,k) is given by the superposition

∆[δ(t), f(ε)] =
∑
{njk}

Γ{njk} exp

i ∑
1≤j<Nt

cj0(Λ + µ1) +
∑

1≤k<Nµ

cjk
(
µk+1 − µk

) (τj+1 − τj)


×

∏
1≤j<l<Nt

∏
1≤k<m<Nµ

∣∣∣∣∣∣∣
Λ
(
τj − τl

)
π

∣∣∣∣∣∣∣
pjl ∣∣∣∣∣π

(
µk − µm

)
Λ

∣∣∣∣∣
qkm

(A.21)

where Γ{njk} are constants which depend on cjk (but not on τj and µk).
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