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Abstract— We introduce a recursive generalized total least-
squares (RGTLS) algorithm with exponential forgetting that
is used for estimation of vehicle driving resistance parameters.
A vehicle longitudinal dynamics model and available control
area network (CAN) signals form appropriate estimator inputs
and outputs. In particular, we present parameter estimates for
the vehicle mass, two coefficients of rolling resistance, and drag
coefficient of one test run on public road. Moreover, we compare
the results of the proposed RGTLS estimator with two kinds
of recursive least-squares (RLS) estimators. While RGTLS
outperforms RLS with simulation data, the recursive least
squares with multiple forgetting (RLSMF) estimator provides
superior accuracy and sufficient robustness through orthogonal
parameter projection with experimental data. Here, RGTLS
needs a parameter projection scheme that is equivalent to
RLSMF.

I. INTRODUCTION

Energy-efficient trajectory planning, range prediction, and
recuperation strategies are highly reliant on accurate models
of the vehicle total driving resistance. Parametric models
are commonly used with unknown parameters that vary
at different rates such as the vehicle mass, coefficients of
rolling resistance, and drag coefficient. This is why one needs
fast and accurate estimates of unknown driving resistance
parameters.

Previous work mainly focused on the estimation of in-
dividual parameters. In particular, the vehicle mass was
the subject of numerous studies. Input-output or state-space
models of the vehicle longitudinal dynamics in connection
with recursive least squares (RLS) or Kalman filters are
applied most often to perform online estimation. Available
control area network (CAN) signals feed these models with
the required driving state information such as the velocity,
acceleration or the current gear ratio.

Fathy, Kang, and Stein [1] presented a vehicle mass RLS
estimator with a fuzzy supervisor to extract beneficial driving
states where the vehicle motion is predominantly longitudi-
nal. Road grade and rolling resistance were separated by a
band-pass filter.

Vahidi, Stefanopoulou, and Peng [2] introduced a simul-
taneous vehicle mass and road grade RLS estimator with
multiple forgetting factors. Their estimator considers time-
varying and time-constant parameters with multiple forget-
ting factors.
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An early attempt to estimate all major driving resistance
parameters was made by Bae, Ryu, and Gerdes [3]. They
used road grade information from a global positioning system
(GPS) and performed simultaneous online estimates of the
vehicle mass, one coefficient of rolling resistance, and the
drag coefficient with a RLS estimator.

The contribution of this paper is a recursive generalized to-
tal least-squares (RGTLS) estimator that offers exponential
forgetting and treats data with unequally sized and correlated
noise. First, we review briefly the basic total least-squares
(TLS), least-squares (LS) and generalized total least-squares
(GTLS) methods in Sec. II. Then, we show the transition
from TLS into recursive total least squares (RTLS) in
Sec. III-A–Sec. III-C, while Sec. III-D introduces RGTLS.
Moreover, Sec. III-E provides the well-known RLS and an
extension to recursive least squares with multiple forgetting
(RLSMF). We compare the results of RGTLS and RLS with
simulation data in Sec. III-G. Sec. IV deals with the vehicle
longitudinal dynamics model (Sec. IV-A) and methods to
exclude adverse driving states Sec. IV-B). The estimates of
various driving resistance parameters are presented in Sec. V,
where we compare the previously discussed estimators. Fi-
nally, Sec. VI gives conclusions.

II. TOTAL LEAST SQUARES
First, we introduce some notation for element-wise matrix

operations. The element-wise product is donated by A�B :=
Ai j ·Bi j; the element-wise division is donated by A�B :=
Ai j/Bi j, and the element-wise power by A7k := Ak

i j. Finally,
we vectorize the main diagonal elements of matrix into a
column vector with main(A) := (Aii)i=1...n.

Total least squares is a data fitting method for the uncon-
strained perturbation problem (1) that is known as errors-in-
variables (EIV) model.

AX ≈ B, A = A+ Ã, B = B+ B̃. (1)

The input data A ∈ Rm×n and output data B ∈ Rm×d are
sums of noise-free data A, B and measurement noise Ã,
B̃, respectively. From now on, we focus on overdetermined
(m > n), multivariate (n > 1) and one-dimensional (d = 1)
systems, that are also known as multi-input single-output
(MISO) systems.

Markovsky and Van Huffel [4] pointed out, that TLS
searches for optimal data corrections [∆A ∆B] := [A B]− [Â B̂]
(2), to find an approximate solution of the overdetermined
system of equations ÂX̂ = B̂.

min
[Â B̂]∈Rm×q

‖[A B]− [Â B̂]‖F (2)
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If the noise is independently identically distributed (i.i.d.)
with zero mean and a covariance matrix

cov([Ã B̃]) = σ
2I, (3)

equal to the identity matrix I up to σ2, TLS is the maximum-
likelihood estimator for (1), [4]. Note that σ2 is an unknown
scalar, that does not affect the TLS correction. Another class
of EIV identification is instrumental variables (IV), studied
in [5].

The solution of the basic TLS requires the singular value
decomposition (SVD) (4) of the data matrix Z = [A B],
where Z ∈Rm×q. The matrices U ∈Rm×m and V ∈Rq×q are
orthogonal U>U = I, V>V = I and their columns are called
the left and right singular vectors, respectively. The positive
diagonal matrix S ∈ Rm×q contains the singular values of Z
in decreasing order.

Z =USV>, U>ZV = S, S = diag(S1, . . . ,Sq). (4)

A. Total Least-squares Algorithm

Alg. 1 provides the required computations for the basic
TLS solution. First, compute the SVD of Z (Alg. 1 line 3).
After that, partition V (Alg. 1 line 4) and finally compute the
parameter estimate X̂ according to Alg. 1 line 5, [6, p. 37].
Note that only V is needed from the SVD in Alg. 1 line 3
to compute the parameter estimate X̂ in Alg. 1 line 5. The
solution is generic (does exist) if V22 is non-singular. In our
case with d = 1, it is generic if V22 6= 0. Furthermore, the
solution is unique if Sn 6= Sq, [4]. Extensions to the non-
generic and non-unique case are categorized in [6, p. 50].

In our opinion, the covariance information cov(X̂) of the
estimate X̂ is as important as the estimate itself. This is a
challenging task in TLS and is discussed only insufficiently
in the TLS literature. Van Huffel and Vandewalle [6, p. 242]
provide an approximate covariance formula that we integrate
in Alg. 1 line 6. The data corrections are given with

Alg 1. TLS
input: A, B

1 batch
2 Z = [A B]
3 USV> = svd(Z)

4 V :=

n d[
V11 V12
V21 V22

]
n
d

5 X̂ =−V12V22
−1

6 cov(X̂)≈
(1+‖X̂‖2

2)σ
2

A>A−m ·σ2 · I
with σ2 ≈

Sq,q

m

output: X̂ , cov(X̂)

[∆A ∆B] = Sq,qU:,qV>:,q, (5)

[6, p. 35]. We found that

[∆A ∆B]≈ [A B]
[

V12
V22

]
[V>12 V>22] (6)

is a more convenient form that is derived according to [7,
p. 435]. During our simulations, the error between the exact
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Fig. 1: Data fitting with LS in Fig. 1 (a) and TLS in Fig. 1 (b).
shows the data [A B], shows approximations [Â B̂],

shows the estimated model and shows the corrections
[∆A ∆B].

form (5) and the approximate (6) was in the range of machine
precision. Note that (6) has the advantage that the costly
matrix U is not required. Finally, the approximate data is
[Â B̂] = [A B]− [∆A ∆B].

B. How Least Squares Differs from Total Least Squares

We use the term LS as short version of OLS (ordinary
least squares). Otherwise, the nomenclature would differ
from Sec. III, where RLS is used for recursive versions of
LS according to the literature.

Conversely to TLS, LS assumes a constrained pertur-
bation problem with noise-free inputs Ã := 0. All noise is
referred to the output B = B + B̃ and the solution of the
overdetermined system of equations is AX̂ = B̂. LS searches
for optimal corrections (7) only in B and is the maximum-
likelihood estimator for noise-free inputs. The closed-form
LS solution is X̂ = (A>A)−1A>B [8, p. 4], while the co-
variance is commonly given by P = σ2

A>A
with σ2 ≈ ∆B>∆B

m−n .

min
B̂∈Rm×d

‖B− B̂‖2 (7)

Fig. 1 visualizes the difference between LS and TLS. While
LS corrects the data vertically and assumes that A is exactly
known, TLS performs perpendicular data corrections. That
is also the reason why TLS is sometimes called orthogonal
regression.

C. Generalized Total Least-squares Algorithm

So far, TLS seems to be the superior method, due to
the more realistic unconstrained perturbation model (1).
However, as noted, TLS requires quite restrictive conditions
for maximum-likelihood characteristics. In practice, it is
unlikely that all errors are uncorrelated and equally sized
as required by (3).

Generalizations of basic TLS can deal with column-
wise or row-wise correlated noise and unequally sized error
covariance matrices [9]. Markovsky et al. [10] introduced
an element-wise weighted TLS method and accepted the
drawback of losing a closed-form solution.

Apart from SVD-based TLS methods, Schaffrin and
Wieser [11] introduced an element-wise weighted TLS
method based non-linear Lagrange functions and Shen, Li,



and Chen [12] solved this problem with a Newton-Gauss-
based scheme.

Schuermans et al. [13] provide the simplest kind of GTLS
scheme through rescaling the data in a way that the noise
covariance matrix meets the form required by TLS (3). This
data scaling is performed from line 2–line 4 in Alg. 2. The
Cholesky decomposition of the weighting matrix W (line 2)
is used to transform the data into a new space in line 4.
The basic TLS algorithm is used as nested function in
Alg. 2 line 6 to compute the parameter estimates X̂ ′ in the
transformed space. Finally, Alg. 2 line 7 converts X̂ ′ back in
the original space.

Alg 2. GTLS
input: A, B, W

1 batch
2 C = chol(W )

3 C−1 :=

n d[
C11 C12

0 C22

]
n
d

4 [A′ B′] = [A B] ·C−1

5 function call
input: A′, B′

6 Alg. 1
output: X̂ ′, cov(X̂ ′)

7 X̂ =
C11 · X̂ ′−C12

C22

output: X̂ , cov(X̂ ′)

Alg. 2 can treat three different TLS problems:
1) If W = I, Alg. 2 works like Alg. 1 in the TLS sense

(errors are equally sized and uncorrelated);
2) If W = cov([Ã B̃]), Alg. 2 acts as GTLS (errors are

unequally sized and correlated);
3) If W is a diagonal matrix W = I�cov([Ã B̃]), Alg. 2

computes the weighted total least-squares (WTLS)
solution (errors are unequally sized and uncorrelated).

III. ONLINE ESTIMATORS
A. Steps Towards Recursive Total Least Squares

If one thinks of online applications, the major drawback
of Alg. 1 and Alg. 2 is the computational effort. The size of
Z,U , and S depends on m. Hence, the SVD computation
becomes slower with increasing number of data. A buffer
is required to store previous data and computationally ex-
pensive re-calculation of old data occurs in each iteration.
By reason of this, the batch computation of the SVD is
inapplicable on control units that are limited in memory
and processing power. However, we take advantage of three
important facts to obtain a recursive form of TLS (Alg. 1)
and GTLS (Alg. 2):

1) A full SVD is not required to solve TLS. The costliest
matrix U is not involved in Alg. 1;

2) The size of V is independent of m, that means it can
be easily stored;

3) Powerful SVD update and downdate schemes were
discovered in [14–17], that can be used interchange-
ably.

To the best of our knowledge, Kubus, Kroger, and Wahl [18]
proposed the first RTLS algorithm based on the SVD update
scheme of Brand [16]. Apart from SVD-based RTLS that
we discuss in Sec. III-C, other online-capable TLS methods
were discovered. Rayleigh quotient-based RTLS algorithms
are shown in [8, 19] while Lim, Choi, and Sung [20]
proposed a square root-free Cholesky decomposition (UDU)-
based RTLS method. Additionally a rank-revealing ULV
decomposition-based RTLS method was introduced in [21,
p.117-126].

B. Updating the Singular Value Decomposition

The recursive singular value decomposition (RSVD)
Alg. 3 is based on the SVD update algorithm of Gu and
Eisenstat [14], but skips the update of U entirely. The
interested reader is referred to [14] for the full SVD up-
date procedure. The basic idea is to take advantage of the
previous SVD matrices S(t − 1) and V (t − 1) when new
data arrives in Alg. 3 line 2. We focus here on appending
a single data row, but the algorithm works as well when a
batch of new samples arrives. Herein, we extend our previous
scheme [22] with an exponential forgetting factor λ in line 4.
Accordingly, Alg. 3 has a fading memory. In line 5 and line 6,
we implement the truncation approach of [16] to size the
following SVD to an efficient rank. Note that J is not
needed further on. Brand [16] defines v as volume of z>

that is orthogonal to V (t− 1). If v < v (line 6), where v is
a chosen threshold near the machine precision, we downsize
S(t) to S(t) ∈Rq×q in line 9. This means, that the number of
singular values in S(t) remains at q and the computational
effort is notably reduced. Otherwise, Matlab’s economy-sized
SVD command svd(M,’econ’) ensures that S(t)∈Rq×q

(line 11). Hence, S and V remain in size and Alg. 3 is suitable
for online applications.

Alg 3. RSVD
input: A(t), B(t), S(t−1), V (t−1), v, λ

1 batch
2 z = [A(t) B(t)]>

3 a =V (t−1)> · z

4 M =

[
λ ·S(t−1)

a>

]
5 JK = qr(z−V (t−1) ·a)
6 v =

√
det(K>K)

7 if v < v then
8 PNQ> = svd(M)
9 S(t) = N1:q,1:q

10 else
11 PS(t)Q> = svd(M, ’econ’)

12 V (t) =V (t−1) ·Q
output: S(t), V (t)

C. Recursive Total Least-squares Algorithm

RTLS in Alg. 4 has basically the same structure as TLS
(Alg. 1). However, Alg. 4 is iteratively executed throughout
the data set from time step t = 1 to t = m, while Alg. 1
computes the result for the entire data set in one step. The



nested RSVD in Alg. 4 line 3 replaces the batch SVD in
Alg. 1 line 3 and requires the additional inputs S(t−1), V (t−
1), v, λ . The next two computations in Alg. 4 line 4 and
line 5 are similar to Alg. 1 line 4 and line 5. The parameter
covariance matrix in Alg. 4 line 7 requires the update of
(A>A) that is performed in Alg. 4 line 6.

Alg 4. RTLS
1 for t← 1 to m do

input: A(t), B(t), S(t−1), V (t−1), (A>A)(t−1), v, λ

2 function call
input: A(t), B(t), S(t−1), V (t−1), v, λ

3 Alg. 3
output: S(t), V (t)

4 V (t) :=

n d[
V11 V12
V21 V22

]
n
d

5 X̂(t) =−V12V22
−1

6 (A>A)(t) = ((A>A)(t−1) ·λ 2)+A(t)>A(t)

7 cov(X̂(t))≈
(1+‖X̂(t)‖2

2)σ
2

(A>A)(t)− t ·σ2 · I
with σ2 ≈

S(t)q,q

t
output: X̂(t), cov(X̂(t)), S(t), V (t), (A>A)(t)

D. Recursive Generalized Total Least-squares Algorithm

The transition from RTLS to RGTLS is similar as TLS
to GTLS and shown in Alg. 5. The data transformation in
Alg. 5 line 2–line 4 is equal as in Alg. 2 line 2–line 4. The
same holds for the conversion of X̂ ′ in Alg. 5 line 7 compared
with Alg. 2 line 7. Note that we use now two nested functions
in Alg. 5 line 6. Similar to the statements in Sec. II-C, Alg. 5

Alg 5. RGTLS
1 for t← 1 to m do

input: A(t), B(t), S′(t−1), V ′(t−1), (A>A)′(t−
1), v, λ , W

2 C = chol(W )

3 C−1 :=

n d[
C11 C12

0 C22

]
n
d

4 [A′(t) B′(t)] = [A(t) B(t)] ·C−1

5 function call
input: A′(t), B′(t), S′(t−1), V ′(t−1), (A>A)′(t−

1), v, λ

6 Alg. 4
output: X̂ ′(t), cov(X̂ ′(t)), S′(t), V ′(t), (A>A)′(t)

7 X̂(t) =
C11 · X̂ ′(t)−C12

C22
output: X̂(t), cov(X̂ ′(t)), S′(t), V ′(t), (A>A)′(t)

can treat various RTLS extensions through an appropriate
setting of W . Therefore, we can use solely RGTLS from now
on. On the other hand, this comfortable procedure is costly in
the case of W = I due to the unessential data transformation
(Alg. 5 line 2–line 4) and back conversion (Alg. 5 line 7). The
pure RTLS scheme (Alg. 4) is computationally cheaper if
W = I.

E. Recursive Least Squares

Without detailed explanation, we present the well-known
RLS scheme in Alg. 6, [23, p. 365]. RLS offers simple
implementation and is computationally cheap.

Alg 6. RLS
1 for t← 1 to m do

input: X̂(t−1), P(t−1), A(t), B(t), λ

2 L(t) =
P(t−1) ·A(t)>

λ +A(t) ·P(t−1) ·A(t)>
3 X̂(t) = X̂(t−1)+L(t)(B(t)−A(t) · X̂(t−1))

4 P(t) = (I−L(t) ·A(t))P(t−1)
1
λ

output: X̂(t), P(t)

Vahidi, Stefanopoulou, and Peng [2] developed the vector-
type forgetting RLS estimator of [24] further to prevent
the wind-up effect. The wind-up effect is the exponential
growing of the covariance matrix P during low system
excitation or when multiple parameters vary at different rates.
The extension of [2] outperforms the basic RLS estimator
(Alg. 6) in their experiments. Note that there is no proof
of convergence as for the most RLS extensions. Vahidi,
Stefanopoulou, and Peng [2] present their recursive least-
squares with multiple forgetting (RLSMF) scheme for two
parameters (n = 2).

We can rewrite the equations of [2] and present an n-
independent form in Alg. 7 that is related to the basic RLS
scheme in Alg. 6. Note that, in contrast to RLS, RLSMF
has a diagonal covariance matrix P and requires a forgetting
factor for each parameter Λ = [Λ1 . . . Λn]

>.

Alg 7. RLSMF
1 for t← 1 to m do

input: X̂(t−1), P(t−1), A(t), B(t), Λ

2 L(t) =
(P(t−1) ·A(t)>)�Λ

1+∑(P(t−1) · (A(t)>72)�Λ)
3 X̂(t) = X̂(t−1)+L(t)(B(t)−A(t) · X̂(t−1))
4 P(t) = diag(main((I−L(t) ·A(t))P(t−1))�Λ)

output: X̂(t), P(t)

F. Parameter Projection

Parameter projection improves robustness if prior knowl-
edge about the reasonable range for some or all parameters
is available. In many cases, a non-zero or larger-than-zero
condition makes sense and often, there is specific prior
knowledge to set lower and upper bounds for each param-
eter. Timmons et al. [25] showed that orthogonal parameter
projection reduces to a simple saturator when constraints
are given for each parameter. These user-defined constraints
are considered by X in Alg. 8. More sophisticated parameter
projection in closed-loop applications is discussed in [25,
26].

Alg. 8 can be used in conjunction with RLS and RLSMF.
So far, we have no solution to include any parameter projec-
tion in the presented SVD-based TLS schemes.



Alg 8. Parameter projection
input: X̂(t), X

1 for i← 1 to n do
2 if X̂i(t)< Xi,1 then
3 X̂i(t) = Xi,1
4 else if X̂i(t)> Xi,2 then
5 X̂i(t) = Xi,2

output: X̂(t)

G. Simulation Example

A three-input one-output channel model was simulated
to verify RGTLS (Alg. 5) with TLS (Alg. 1). We created
uniformly distributed input data A with Matlab’s unifrd
command in the range of (−20 . . .20) for n = 3, m = 3000
and use X = [3 12 8]> for the first half of our data t =
1 . . .m/2. For t = m/2 + 1 . . .m we set X = [6 12 8]> to
perform a step in parameter X1. Then, we compute the output
with A ·X = B. White Gaussian noise with different noise
power was added to [A B] with wgn to get noisy data [A B].
The noise covariance matrix is shown in (8).

cov([Ã B̃]) =

 6.4210 0.0286 −0.2366 0.0718
0.0286 2.5874 −0.0367 −0.0124
−0.2366 −0.0367 16.1123 −0.1608

0.0718 −0.0124 −0.1608 10.6422

 (8)

RGTLS (Alg. 5) was used with W = I to meet the TLS
case and λ was fixed at λ = 0.997. TLS (Alg. 1) was
executed in a loop from t = 1 . . .m. The data was scaled
row-wise with Λ = [λ t−1 λ t−2 . . . λ t−t ]> inside each loop.
The result is presented in Fig. 2 showing the high accuracy
of RGTLS. After roughly 500 samples, there is virtually no
difference between RGTLS and TLS to see in Fig. 2 (a) and
this is exactly what we want. The parameter variance differs
only in the first few samples in Fig. 2 (b). The speed-up of
Alg. 5 compared with Alg. 1 is remarkable.

Now, we compare RGTLS with RLS in Fig. 3 in terms
of the relative estimation error (zero is desired). In RGTLS,
W was fixed to W = cov([Ã B̃]) taken from (8). Both
estimators use λ = 0.997. The step in X1 at t = 1500 affects
both estimators. However, RLS seems more sensitive than
RGTLS. In addition to that, RLS gives biased estimates in
X̂3RLS. That is explainable with the large noise variance of
cov([Ã B̃])3,3 in (8). The estimates of RGTLS have slightly
larger variances. There is no big difference in computational
time for this amount of data.

Finally, we use RGTLS in a RLS sense by setting W =
diag([10−5 10−5 10−5 105]) in Fig. 4. That means we as-
sume that all inputs have negligible noise variance compared
with the output. Apart from X̂1 around the parameter step
(t = 1500), RGTLS shows very similar results to RLS. By
this, we can set W in an intuitive way and take advantage
of RGTLS if prior knowledge of the noise covariance
is available. At the moment, an extension of RGTLS to
multiple forgetting like in RLSMF is not available.
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Fig. 2: Validation of RGTLS with W = I (Alg. 5) with TLS
(Alg. 1). Alg. 5 took 1.35 seconds, while Alg. 1 required
259 seconds on an Intel P8600 CPU.
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Fig. 3: Relative estimation error of RGTLS with W =
cov([Ã B̃]) (Alg. 5) in Fig. 3 (a) and RLS (Alg. 6) in
Fig. 3 (b). Alg. 5 took 1.24 seconds, while Alg. 1 required
0.98 seconds on an Intel P8600 CPU.
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Fig. 4: Relative estimation error of RGTLS with W =
diag([10−5 10−5 10−5 105]) (Alg. 5) and RLS (Alg. 6).

IV. DRIVING RESISTANCE ESTIMATION

For convenience of the reader, Sec. IV-A briefly reviews
the transition from a vehicle longitudinal dynamics model
into a MISO system. More detailed information can be found
in [22].

A. Vehicle Longitudinal Dynamics Model

We take advantage of the force equilibrium (9) between
the tractive force F on the left-hand side and the sum of
rolling resistance, climbing resistance, aerodynamic drag,
and acceleration resistance, that is known as total driving
resistance.

F =m ·g · cosα · v( fr0/v+ fr1)+m ·g · sinα

+cx
ρ

2
A · v2 +(m+mrot)ax, (9)

In (9), α , v, ρ , g, and ax are the road-grade, velocity, air
density, gravity acceleration, and longitudinal acceleration
respectively.

One can decompose from (9) a vector of unknown time-
varying parameters

X = [ m · fr0 m m · fr1 A · cx ]>, (10)

with the vehicle mass m, the coefficients of rolling resistance
fr0,1, the drag coefficient cx and the vehicle cross-sectional
A. Note that mrot in (9) is known by the use of gear, dynamic
rolling radius and reduced moment of inertia.

CAN signals of F , α , v, ρ , and ax form adequate input

and output data to feed the MISO model A11 . . . A1n
...

...
...

Am1 . . . Amn


︸ ︷︷ ︸

inputs

[
X1 . . . Xn

]>︸ ︷︷ ︸
parameters

≈

 B1
...

Bm


︸ ︷︷ ︸

output

. (11)

All CAN signals are read at 100 hertz frequency and run
through a third-order Butterworth filter with 1 hertz pass
frequency and 10 hertz stop frequency. A simple Boolean
logic excludes harmful driving states that are not considered
in (9), such as braking. Moreover, we use an outlier detec-
tion scheme that excludes additional adverse driving states
automatically.

B. Outlier Detection

Knorr and Ng [27] introduced several distance-based
outlier detection schemes that are optimized for fast batch
computation of large data sets. Their method is purely data-
driven, without regression or any kind of model. Further-
more, their method can handle various assumptions of the
data distribution (Gaussian, Student-t, . . . ) by appropriate
setting of only two parameters.

The basic idea in distance-based outlier detection is to
compute the Euclidean distance between each sample (Zi,:)
and the rest of the data set. The number of times when
this distance is smaller than a threshold corresponds to the
number of neighbors for this individual sample. Finally, the
observed sample (Zi,:) is no outlier if the number of neighbors
exceed a second threshold. If the second condition fails, Zi,:
is marked as outlier.

We use the nested-loop scheme among the algorithms
presented in [27] and refer the reader to the corresponding
pseudo code section in this remarkable reference. We normal-
ize the data with the standard score Z′ = (Z− µ(Z))/σ(Z)
before applying nested loop. The recursive sample mean is
given by (12), [28] and the recursive sample covariance by
(13), [29, p. 19].

µ(Z(t)) =
(t−1)

t
·µ(Z(t−1))+

1
t
·Z(t) (12)

cov(Z(t)) = cov(Z(t−1))+
1
t
· (Z(t)>Z(t)− cov(Z(t−1))

(13)

Nested loop is performed in batch mode on a small number
of samples (buffer size m) to detect outliers and remove
them before we apply one of the estimators from Sec. III. We
accept the delay of m samples in the parameter estimates due
to the partition of the data in small batches. This procedure
fails presumably if the number of outliers is too large in
respect to m. Further work is needed to find a recursive
distance-based outlier detector.

V. RESULTS WITH EXPERIMENTAL DATA

We performed several test runs with a grand touring sports
car on a 22.9 kilometer long public road. The track offers rich
variation in road grade and curvature, while the maximum
allowed velocity is 100 kilometers per hour. We used a CAN
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Fig. 5: Estimated mass m̂ in Fig. 5 (a) and Âcx in Fig. 5 (b).
shows the true parameters m and Acx, respectively.

logger to record full sets of CAN signals in order to execute
the presented algorithms afterwards. The following results
were obtained by Matlab computations of one test run. In
addition, we successfully implemented the presented online-
capable algorithms on hardware.

A. Mass and Drag Coefficient Estimates
As noted, we assume that m,A,cx have negligible varia-

tions in time. Hence, we desire smooth and constant esti-
mates for these parameters. Furthermore, we know the true
parameters through balancing the vehicle prior to the test
run and from wind tunnel measurements. Fig. 5 compares
the results for m̂ in Fig. 5 (a) and Âcx in Fig. 5 (b) of four
different estimators. In particular, we use:

1) RGTLS with W = I in the TLS sense (Alg. 5);
2) RLS (Alg. 6);
3) RLSMF (Alg. 7);
4) RLSMF with parameter projection; (Alg. 7 with

Alg. 8).
First, we notice that RLS outperforms RGTLS and

RLSMF with or without parameter projection in the mass
estimates in Fig. 5 (a). However, RLS tends to overestimate
the mass from sample 104 on. Notice that the parameter
projection has practically no influence on RLSMF after ap-
proximately 3000 samples. RGTLS computes the smoothest
results with the smallest break down around sample 3000.
Apart from this, the curves of RLS and RGTLS show a
similar trend. RLSMF gives high accurate mass estimates at
the end of the data set.

The ranking changes in Fig. 5 (b). Now, RLSMF with
parameter projection is superior and we clearly observe the

benefit of the projection. Note that we use a lower bound for
Âcx near the true value. Nevertheless, RLSMF gives smooth
results as well. RLS and RGTLS produce roughly similar
results from sample 6000 on, where both estimators show a
large bias. The poor results of RLS, RGTLS, and RLSMF
correspond to the results of [3]. Bae, Ryu, and Gerdes [3]
used RLS with a similar model and explained the poor drag
coefficient results with the narrow speed range that does
not permit a precise separation between velocity-dependent
and velocity-independent parameters. We observed a heavily
one-sided velocity distribution in our test runs and suppose
that this non-uniform distribution introduces an undesired
weighting towards small velocities. Further work is required
to compensate this negative weighting effect.

B. Estimates for Coefficients of Rolling Resistance
As mentioned above, we suppose some variation in time

for the coefficients of rolling resistance. Time-dependent
exact values for fr0 and fr1 are not available due to several
environmental influences. However, we know the value of fr0
from standard rolling resistance measurements and expect f̂r0
to be in the same range.

Fig. 6 gives the results for f̂r0 in Fig. 6 (a) and f̂r1 in
Fig. 6 (b) for the same set of estimators as used in Sec. V-
A. RLSMF with and without parameter projection gives
reasonable results for f̂r0 in Fig. 6 (a). As in Fig. 5 (b),
RGTLS and RLS show similar results from sample 6000
on that are unlikely large. RGTLS and RLS fail entirely
in the estimation of f̂r1 in Fig. 6 (b) by showing negative
values. RLSMF with and without parameter projection gives
reasonable estimates above zero that range approximately
one decade below f̂r0.

VI. CONCLUSIONS
The presented RGTLS estimator with exponential forget-

ting can treat basic TLS and the extensions WTLS and
GTLS in real-time by appropriate setting of the weight-
ing matrix W . Further, the simulations show that RGTLS
performs RLS-similar results by intuitive adjustment of W .
We present a flexible algorithmic structure that builds on an
interchangeable SVD update scheme and calls for clearly
arranged nested functions. If prior knowledge of the noise
covariance matrix is present, RGTLS outperforms RLS in
our simulations.

On the other hand, RGTLS and RLS fail in the esti-
mation of particular driving resistance parameters such as
the coefficients of rolling resistance. This is presumably
caused through unobserved outliers and the mixture of time-
constant and time-varying parameters. Overall RLSMF with
parameter projection shows superior accuracy in the estima-
tion of vehicle mass, drag coefficient, and coefficients of
rolling resistance. Sufficient robustness is added due to a
basic parameter saturator. An equivalent parameter projection
approach for RGTLS is desirable in the future.
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