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Abstract

The new weather radar network of the German Weather Service (DWD) will, after

its complete update in 2014, comprise 17 dual-polarimetric C-Band Doppler radars

evenly distributed throughout Germany for complete coverage. They provide unique

3-dimensional information about dynamical and microphysical characteristics of pre-

cipitating clouds in high spatial and temporal resolutions. Up to now, these data are

not used in the operational COSMO-model of DWD except within the framework of

the latent heat nudging and for a simple nudging method of Doppler velocity. Future

applications are, however, planned to take better advantage of radar data within an

upcoming new 4-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF)

data assimilation system, which will be based on the operational convective-scale

ensemble prediction system (EPS) COSMO-DE-EPS (grid spacing of 2.8 km, rapid

update cycle, Central Europe domain). It is assumed that the assimilation of weather

radar data is a promising means for improvements of short-term precipitation forecasts,

especially in convective situations.

However, the observed quantities (reflectivity, Doppler velocity and polarization

properties) are not directly comparable to the prognostic variables of the numerical

model. In order to, on one hand, enable radar data assimilation in the framework of the

above-mentioned 4D-LETKF-assimilation system and, on the other hand, to facilitate

comparisons of numerical simulations with radar observations in the context of cloud

microphysics verification, a comprehensive modular radar forward operator has been

developed. This operator simulates the measurement process of radar observables

from the prognostic cloud physical model variables and allows for direct comparison

in terms of radar observables. The operator consists of several modules, each of which

handles a special physical process (e.g., scattering, extinction, microwave propagation,

etc.). Each of these modules offers different formulations associated with different

complexity in simulations, which can be flexibly chosen according to user’s needs.

In order to assess the performance of the operator, a series of sensitive experiments



have been conducted. The main goal here is to find an optimal configuration of the

operator in the sense of balance between physical accuracy and computational expense.

Examples of various possibilities which can be chosen depending on the situations

are: 1) the radar beam can be considered to propagate as a simple ray or treated with

the actual volume averaging characteristic; 2) beam bending can be either derived

from a 4/3 earth radius concept or from the actual simulated vertical gradient of the

refractive index of air; 3) radar reflectivity may be calculated from the full Mie-theory

or from various (more efficient) approximations. 4) Attenuation effects may be taken

into account or not. To meet operational demands, the operator should be compatible

with supercomputer architectures. Moreover, the program code has to be as efficient as

possible, which requires good parallelization and vectorization properties of the code.

The results of sensitivity experiments show that the operator is able to efficiently

simulate reflectivity and Doppler velocity under consideration of effects like beam

bending and broadening as well as attenuation.

After having developed the operator and integrated the processing of radar data into

the 4D-LETKF software package provided by DWD, we have exemplarily performed

first data assimilation experiments. For that we have investigated the convective event

of 31 May 2011. The required COSMO-DE ensemble is driven by a test ensemble of

the global model GME. The preliminary results are then presented.



Kurzfassung

Das neue Wetterradar-Netzwerk des Deutschen Wetterdiensts (DWD) wird nach seiner

vollständigen Aktualisierung im Jahr 2014 17 dual-polarisierte C-Band Dopplerradare

enthalten, die mit einer kompletten Abdeckung gleichmäßig in ganz Deutschland

verteilt sind. Wetterradare liefern einzigartige 3-dimensionale Informationen über

dynamische und mikrophysikalische Eigenschaften von Niederschlagswolken in hohen

räumlichen und zeitlichen Auflösungen. Bisher werden diese Daten noch nicht im

operationellen Wettervorhersagemodell COSMO des DWD verwendet außer bei ein-

fachen Verfahren zum Nudging der latenten Wärme und der Dopplergeschwindigkeit.

Jedoch ist eine Nutzung der Radardaten ist in der Zukunft geplant, nämlich indem

Radardaten mit dem zukünftigen neuen Datenassimilationssystem 4-Dimensional Lo-

cal Ensemble Transform Kalman Filter (4D-LETKF) assimiliert werden, das auf dem

konvektion-erlaubenden Ensemble-Prognose-System (EPS) COSMO-DE-EPS (hori-

zontaler Rasterabstand von 2,8 km, schneller Update-Zyklus, Zentraleuropa) basiert.

Wir gehen davon aus, dass die Assimilation von Radardaten ein vielversprechendes

Mittel zur Verbesserung der kurzfristigen Niederschlagsvorhersage ist, insbesondere

in konvektiven Situationen.

Doch die Radardaten (Reflektivität, Dopplergeschwindigkeit und Polarisationspa-

rameter) sind nicht direkt vergleichbar mit den prognostischen Variablen COSMO-

zu assimilieren, und um andererseits den Vergleich zwischen Daten der numerischen

Simulationen und Radardaten im Rahmen der Verifikation der Wolkenmikrophysik

zu erleichtern, wird ein umfassender modularer Radarvorwärtsoperator entwickelt.

Der Operator simuliert den Messvorgang von Radardaten aus den prognostischen

wolkenmikrophysikalischen Modellvariablen und ermöglicht den direkten Vergleich

in Form von Radardaten. Der Operator besteht aus mehreren Modulen, die jeweils ein

spezielles physikalisches Verfahren (z.B., Streuung, Extinktion, Ausstrahlungsausbre-

itung, usw.) beschreiben. Jedes dieser Module bietet verschiedene Formulierungen

Modells. Um einerseits Radardaten in das oben genannte 4D-LETKF-Assimilationssystem



mit unterschiedlichen Simulationskomplexitäten, die nach Bedarf flexibel gewählt

werden können. Um die Leistung des Operators zu überprüfen, werden mehrere

Sensitivitätsexperimente wurden durchgeführt. Das Hauptziel ist dabei eine optimale

Konfiguration im Sinne eines Gleichgewichts zwischen physikalische Genauigkeit

und Rechenaufwand zu finden. So kann zum Beispiel: 1) Jede Radartrahlung kann

der Einfachheit halber als eine einzelne Linie betrachtet werden oder als tatsächlichen

Volumenmittelungseigenschaft behandelt werden. 2) Die Ausbreitungstrajektorie kann

entweder aus einem einfachen Konzept vom 4/3 Erdradius abgeleitet werden oder aus

Methoden, die auf der Berüsichtigung der vertikalen Gradienten des Brechungsindexes

der Luft beruhen. 3) Reflektivität kann aus der Mie-Theorie oder aus den anderen

effizienteren Näherungen berechnet werden. 4) Dämpfungseffekte werden berück-

sichtigt oder nicht. Um den Operator operationell betreiben zu können, sollte er

kompatibel mit der Supercomputer-Architektur sein. Dabei ist die Effizienz ist ein

wichtiges Entwurfkriterium, sodass auf eine gute Parallelisierung und Vektorisierung

des Codes Wert gelegt wird.

Die Ergebnisse von Sensitivitätsexperimenten zeigen, dass der Operator in der Lage

ist, Reflektivität und Dopplergeschwindigkeit unter Berücksichtigung der Effekte wie

Strahlbeugung, Strahlausbreitung und Dämpfung effizient zu simulieren.

Nach der Entwicklung des Operators and Integration von Radardaten in das 4D-

LETKF Software-Paket, sind wir soweit, die ersten Datenassimilationsexperimente

durchzuführen. Dazu haben wir das konvektive Ereignis vom 31.05.2011untersucht.

Das benötigte COSMO-DE Ensemble wird angetrieben von einem Testensemble des

globalen Modells GME. Die vorläufigen Ergebnisse werden zum Schluss vorgestellt.
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1. Introduction

1.1. Motivation and background

Reliable quantitative precipitation forecasts (QPFs) are regarded as one of the most

challenging tasks in numerical weather prediction (NWP). Especially in case of heavy

precipitation events associated with small-scale convection like thunderstorms, the

current operational forecast models have their problems. In order to resolve clouds

and to describe the microphysical processes more accurately at the convective-scale,

the current NWP models are and will be in the near future replaced or complemented

by a new generation of nonhydrostatic mesoscale models with a horizontal resolution

of 1-3 km. For instance, Meteo-France is working on the model AROME (Application

of Research to Operations at Mesoscale), while the american model WRF (Weather

Research and Forecasting) is developed and operated by the National Center for At-

mospheric Research (NCAR), the National Oceanic and Atmospheric Administration

(NOAA), the Center for Analysis and Prediction of Storms (CAPS) and by many sci-

entists from universities becomes very popular in the atmospheric and climate science

community.

Seven European national meteorological services including German Weather Service

(Deutscher Wetterdienst, abbr. DWD) cooperate in the framework of the Consortium

for Small-scale Modeling (COSMO) for both operational and research applications.

The COSMO-model is a limited area non-hydrostatic and fully compressible NWP

model in advection form, initially known as “Local Model (LM)” (Steppeler et al.,

2003). While hydrostatic models like the global model GME of DWD are restricted to

a grid spacing larger than about 10 km, non-hydrostatic models could in principle be

applied at an extremely high resolution, e.g., 100 m, to resolve convective events.

From a mathematical point of view, NWP constitutes an initial (and boundary) value

problem, which means that in order to be able to predict what the weather looks like

in a few hours or days, it is a prerequisite to know the present weather as precisely

1



1. Introduction

Fig. 1.1.: Meteorological observing system (Hagedorn, 2010)

as possible. Although a NWP model may provide the necessary framework for an

explicit description of microphysical properties in the atmosphere due to its high

resolution, improvements in forecasts can only be achieved if appropriate techniques

for initialization of models based on observations in comparable spatial and temporal

resolutions are also available. Data assimilation is presently the most popular one

of these techniques, which analyzes the likely current state of the atmosphere and

determines the error of this analysis on the basis of incomplete and potentially faulty

observations and an approximate description of the atmosphere given by the forecast

model equations. The observed data used by DWD are provided by a world-wide Me-

teorological Observation Network (see Fig. 1.1). Considering the types of observations

we can distinguish them in conventional observations (i.e., in situ observations) and

non-conventional observations (i.e., remote sensing observations). The most important

conventional observations are

• SYNOP data, i.e., temperature, pressure, humidity and 10-m wind at surface

levels, measured by synoptic stations, at uniform times (i.e., at least at 00, 06, 12

and 18 UTC);

2



1.1. Motivation and background

• SHIP data, i.e., weather reports from ships;

• DRIBU data, i.e., pressure and wind at or near sea surface level, measured by

drifting buoys;

• TEMP data, i.e., highly accurate vertical profiles of temperature, humidity and

wind in the upper air. The radiosondes are launched (nearly) simultaneously

worldwide twice a day;

• PILOT data, i.e., wind measurements in the free atmosphere by tracking small

ascending small balloons;

• PROFILERS data, i.e., measuring vertical wind profiles with remote sensing

procedures, provide wind speed and wind direction observations at very high

temporal and vertical resolutions;

• AIREP data (manual aircraft reports), AMDAR (Aircraft Meteorological Data

Relay) and ACARS (automatic aircraft reports) supply vertical profiles of temper-

ature and wind. AMDAR and ACARS systems usually provide more information

than AIREP. During landing and take-off, ACARS deliver data in quantity, quality

and location comparable to radiosondes.

Non-conventional observations are data from weather satellite and radar1. Weather

satellite data are more and more being used because of their almost global coverage.

However, accuracy and resolution of satellite data are inferior to those of radar data, so

their use are of less importance for convective-scale models, especially over land, where

more and more countries invest to achieve a good areal radar coverage. Modern weather

radars are mostly polarimetric pulse-Doppler radars, whose typical observables are

reflectivity, Doppler velocity and polarimetric parameters. Reflectivity is the amount of

transmitted power returned to the radar receiver and depends among others on scatterer

concentration, size, phase (liquid or ice) and orientation. Based on that, raw estimate

of the precipitation rate are possible. Doppler velocity is basically a volume-averaged

measure of the component of scatterer motion away from or toward a radar. It is

1The term RADAR was coined in 1940 by the United States Navy as an acronym for RAdio Detection
And Ranging. The term radar has since entered English and other languages as the common noun
radar, losing all capitalization.

3



1. Introduction

Fig. 1.2.: Map of the DWD radar network (from DWD)
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1.1. Motivation and background

deduced from Doppler phase shift from one pulse to the next and can be used to

estimate the precipitation’s motion. Most liquid hydrometeors have a larger horizontal

axis due to the drag of air during sedimentation, which makes the water molecule dipole

orient in the horizontal direction so radar pulses are generally polarized horizontally to

receive the maximal power. A polarimetric radar sends out horizontally and vertically

oriented pulses simultaneously or one after another and records the reflected power

from both. By comparing these reflected power returns in different ways (ratios,

correlations, etc.), it is possible to differentiate precipitation types (spherical drops,

irregular ice particles, hail, etc.), non-meteorological targets, and to produce better

rainfall estimates. However, with a single radar it is difficult to observe synoptic scale

weather phenomena, such as cold fronts in the midlatitudes. This highlights an essential

feature of radar observations and, in fact, that of all meteorological observations,

namely the need for networking. A wide range of atmospheric phenomena can be

observed with a well-distributed network of radars, which supports many applications

such as operational weather monitoring and nowcasting. DWD is currently in the

process of installing/upgrading a radar network of 16 dual-polarimetric C-band Doppler

radar stations with a uniform scan strategy (17 after completion of network renewal).

They are distributed throughout Germany for complete coverage (see Fig. 1.2 and

details in Tab. A.1 in Appendix A) and delivers radar volume scans every 15 minutes

for the Doppler velocity and intensity and every 5 minutes a precipitation scan, with a

high spatial resolution of 1 km in range and 1◦ in azimuth. The Doppler volume scan

(dual PRF, 800/1200 Hz, maximum range 124 km) is comprised of single sweeps with

18 elevations ranging from 0.5◦ to 37◦. A sweep means a complete antenna revolution

at a constant elevation, which geometrically corresponds to a cone. The intensity

volume scan (500 Hz, max. range 256 km) has a larger areal cover and considers only

the lower 5 elevations from 0.5◦ to 4.5◦. The precipitation scan (600 Hz, max. range

150 km) is a terrain-following scan. In order to observe precipitation near the Earth’s

surface, the radar beam is then closely following the horizon line with an elevation

offset, which should be large enough to minimize beam blockage and suppress clutter

from orographic obstacles. Here, what we call “beam” is understood as a collection

of neighboring rays (infinitesimally thin subparts of a beam) which individually may

undergo different refraction, leading to a distortion of the beam.

5



1. Introduction

However, to date only conventional data are operationally assimilated into the

COSMO-model except the radar-derived precipitation rates, which are assimilated

using the latent heat nudging approach (Stephan et al., 2008). Note that there are

only O(106) conventional observations available but O(107) state variables in an NWP

model. Thus, it is impossible to use those observations alone to provide the initial

conditions for the model, in other words, NWP is an under-determined initial value

problem. Since the weather radar is regarded as the only tool with the ability of

observing the microphysical processes and dynamical movements in rapidly develop-

ing mesoscale weather phenomena on relevant temporal and spatial resolutions and

COSMO-model provides the possibility to incorporate high frequency measurements

into the model, the data gap left by the conventional observations could at least partially

be filled by employing radar observations.

However, radar observations do not provide explicit measurements of the model

variables, and it is difficult to estimate relevant model variables from radar measure-

ments because their relations are complex and usually not unique. One possibility is to

apply a so-called radar forward operator which simulates the measurement process of

radar observables from the prognostic model outputs and allows for comparisons in

terms of radar observables. Then, based on this operator, radar data maybe assimilated

by using advanced techniques (see below). A few operators are already available in

publications, which often just concentrate on specific aspects. For instance, Krajewski

and Chandrasekar (1993) simulated radar reflectivity for realistic precipitation events

using a stochastic space-time model and a statistically generated drop size distribu-

tion. Haase and Crewell (2000) developed a complete radar reflectivity simulator, the

RADAR Simulation Model (RSM), which used the three dimensional fields of LM. A

more advanced tool has been presented by Caumont (2006) at Meteo-France , who

took, among others, Doppler observations and beam bending into account. SynPolRad,

designed by Pfeifer et al. (2008), integrated polarimetric radar quantities using T-

matrix calculations into RSM. With respect to Doppler velocity, Sun and Crook (1997)

considered the vertical fall speed of hydrometeors in their operator and extended it in

Sun and Crook (2001) by taking the beam broadening effect in vertical direction into

account. Weighting the fall velocity by reflectivity was introduced by Wu et al. (2000)

and Tong et al. (2008). A further refinement regarding weighting Doppler velocity by

6



1.1. Motivation and background

reflectivity can be found, for instance, in May et al. (2007), Cheong et al. (2008) as

well as Caumont and Ducrocq (2008).

The goal of this thesis is to develop a comprehensive modular radar observation

operator, which comprises all relevant physical aspects of radar cloud measurements

in a quite accurate way, but offers also a variety of possible simplifications for each

module. The choice of options has to consider a balance between physical accuracy

and computational effort inasmuch as the model sophistication allows it, which may

vary according to special applications, such as radar data assimilation or verification

of cloud microphysical parametrizations. The latter one is done jointly with another

PhD-project Jerger et al. (2012).

In terms of data assimilation, various techniques have been explored in the last few

decades, which combine a prior forecast state with observations to produce an estimate

of the analysis state of the atmosphere, which will be used as initial conditions for

the next NWP run. The prior forecast state is also known as the background state,

while the analysis state is obtained after the observational data have been assimilated

into the background state. Those techniques can be divided into two main categories

depending on the fact whether they are statistical methods or not.

The most important non-statistical approach is nudging (Hoke and Anthes, 1976).

This method involves adding a term to the prognostic model equations that effectively

nudges the solution towards observations. This nudging term is time dependent and

should be large enough to be influential on the solution but small enough not to domi-

nate the other terms (Stauffer and Seaman, 1990). Up to date, data assimilation in the

COSMO-model is operationally done by nudging, but this has several disadvantages.

First, it doesn’t contain a mathematical formalism to determine a theoretically optimal

solution to the analysis problem. Hence, there are several free parameters, whose

optimal values can only be roughly estimated by means of physical reasoning and

tuning experiments. Second, nudging can be only applied on the prognostic variables

of models and thus its application to remote sensing data from satellites and weather

radars is limited.

With regard to statistical techniques there is a mathematical representation of un-

known uncertainties involved in observations and model states, so the means about

which we try to find a solution is statistical (i.e., maximum likelihood, or probability).

The goal is then to find an optimal combination of the model forecast background and

7



1. Introduction

observations with weights determined by their error statistics. It is done by minimizing

a cost function, defined as a measure of the difference between the forecast states and

observations. Depending on the computational methods solving this minimization

problem, there are two main types of statistical techniques in modern weather fore-

casting (Bouttier and Courtier, 2002): variational assimilation methods and sequential

methods. The former one integrates both the nonlinear model and its adjoint model

over the assimilation window to compute the gradient of the cost function, and this

process is repeated until a sufficient approximation to the minimum is obtained. Many

meteorological centers use three-dimensional variational data assimilation (3D-VAR)

due to its ease of implementation and statistical reliability. 3D-VAR assumes that

within the assimilation time window all observations are all taken at the actual analysis

update time and the forecast error covariance is constant. So it does not include

the dynamic model in the minimization algorithm and the effects of “errors of the

day”, that is, having forecast error covariances reflecting the current atmospheric state.

Four-dimensional variational data assimilation (4D-VAR) is a direct generalization

of 3D-Var, in which the observations now are distributed in time and compared to

the forecast state at the exact time, and the forecast error statistics are implicitly flow-

dependent. 4D-VAR evolves the forecast error covariance implicitly from a constant

initial forecast error covariance within the assimilation window and computes the

model trajectory which best fits the observations distributed within the assimilation

window with the dynamics described by the model. Although 4D-VAR shows espe-

cially good performance in a longer assimilation window, high costs arise from the

development and maintenance of the adjoint model, which have limited its operational

applications in large and complicated NWP systems.

Sequential methods include the linear Kalman filter (KF) and its nonlinear extension,

the extended Kalman filter (EKF) (Gelb, 1974), which process in two steps. In the

first forecast step, the model is used to integrate an earlier state estimate over the

assimilation window to provide a forecast state at the time of the latest observations.

In the analysis step the observations are used to improve the prior forecast state,

producing a current state estimate referred to as an analysis. This analysis is used to

initialize the next forecast, which is subsequently used in the next analysis, and so

forth. EKF also has to use costly adjoint model. The Ensemble Kalman Filter (EnKF)

is an attempt to overcome this disadvantage, which applies estimation theory with

8



1.1. Motivation and background

a Monte Carlo method to the conceptual and mathematical framework of KF. The

starting point is to choose a set of sample points, i.e., an ensemble of state estimates

that represents the initial probability distribution of the state. These sample points

are then propagated through the true nonlinear system and the probability density

function of the actual state is approximated by the ensemble of the estimates. EnKF

retains the flow-dependent nature of the forecast error covariance matrix of KF. In the

past decade, several types of EnKF have been developed. An important development

was achieved by Houtekamer and Mitchell (1998), using an ensemble of pseudo-

random perturbed observations to estimate the correct statistics from the analysis

ensemble. A second type of EnKF is a class of deterministic (square root) filters

(Anderson, 2001), which consist of a single analysis based on the ensemble mean, and

the analysis perturbations are obtained from the square root of the KF analysis error

covariance. Given the same size of ensemble, the square root filters are more accurate

than perturbed observation filters because random errors are introduced through the

perturbed observations (Whitaker and Hamill, 2002). So far different square root filters

have been explored, such as Ensemble Adjustment Kalman filter (EAKF) (Anderson,

2001) and Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001). The latter

approach improves the computational efficiency of the algorithm by transforming the

matrices into the subspace spanned by the forecast ensemble perturbations and doing

all the matrices computation in this subspace.

It should be emphasized that a low dimensionality of the ensemble usually introduces

sampling errors in the forecast error covariance, especially at long distances. Simply

enhancing the size of ensemble reduce the efficiency of the method and can not be the

ideal solution. Fortunately, adopting a covariance localization is able to mitigate this

problem by greatly increasing the number of degrees of freedom available to fit the data.

For instance, Ott et al. (2004) developed the Local Ensemble Kalman Filter (LEKF),

which carries out the analyses locally in space. This reduces the computational efforts

because the analyses at each grid point are independent and thus can be performed in

parallel. Hunt et al. (2004) proposed an alternative type of LEKF using the ensemble

transform approach introduced by Bishop et al. (2001), which is called Local Ensemble

Kalman Filter (LETKF). Adding the dimension of time, Hunt et al. (2007) extended

the LETKF to 4D-LETKF, which shares the main advantage of 4D-VAR to assimilate

asynchronous observations at the right time.

9



1. Introduction

In the field of radar data assimilation, research efforts have been achieved in the

last decade, most of which have been carried out in research mode regarding specific

convective case studies. Sun and Crook (1997) demonstrated a 4D-VAR scheme to

assimilate radar reflectivity and Doppler velocity into a simulated moist convection

case. In spite of the encouraging results, several difficulties such as the construction of

the moist adjoint retrieval model and specification of background error matrix have

been encountered. Lindskog et al. (2004) investigated the impact of the assimilation

of Doppler velocity and velocity-azimuth display (VAD) profiles, deduced from the

Swedish radar network, using the 3D-VAR of hydrostatic High-Resolution Limited

Area Model (HIRLAM). Xiao and Sun (2007) introduced a radar reflectivity 3D-VAR

data assimilation scheme within the fifth-generation Pennsylvania State University-

National Center for Atmosphere Research (NCAR) Mesoscale Model (MM5), where

some positive impacts have been found on rainfall forecasts for two particular convec-

tive cases in Korea. This approach was then operationally implemented in the Korean

Meteorological Administration Doppler Radar Network in another study (Xiao et al.,

2008). In recent years, EnKF has been becoming more and more appealing in radar

data assimilation. The first successful study of EnKF with radar observations appeared

in Snyder and Zhang (2003), where simulated radar data of single convective cells were

assimilated into a cloud model. The same EnKF was tested with real radar data of a

tornadic supercell in Dowell et al. (2003). The first pseudo-operationally regional-scale

EnKF system was established at the University of Washington in January, using the

WRF model (Torn and Hakim, 2008). Zhang et al. (2009) demonstrated that the radar

data assimilation could improve the initialization and forecast of Hurricane Humberto.

Overall, all of these studies show a positive impact of the assimilation of radar data

on the short-range QPF. These promising results and the fact that DWD runs a radar

network with a complete coverage over Germany have motivated us to take advantage

of this significant amount of information to acquire more precise initial conditions of

NWP, so as to improve the quality of QPF, especially at the convective scale. Since

2010, COSMO started with the priority project "KENDA" (Km-Scale Ensemble-Based

Data Assimilation) under the lead of DWD, with the goal to provide suitable perturbed

initial conditions for an ensemble prediction system. One of its main tasks is to develop

a general 4D-LETKF data assimilation system for the COSMO-model. As part of this
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task, an efficient radar forward operator is desired for radar data assimilation in the

new LETKF-system.

1.2. Outline

The present thesis is organized as follows. Chapter 2 briefly describes the COSMO-

model. In Chapter 3, fundamentals of weather radars are described and a detailed

description of the radar forward operator is given in a modular manner, followed by

corresponding experiments. Chapter 4 is devoted to an overview of code implementa-

tion of the operator because it is one of major efforts in this thesis. The performance of

the forward operator is assessed in two case studies in Chapter 5. Chapter 6 introduces

the theory of the traditional Kalman Filter and its variants in brief. The following

Chapter 7 addresses the results of our first data assimilation experiments. Finally, the

last chapter gives a summary of this thesis, draws some conclusions and hints to some

perspectives.
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2. Description of the COSMO-model

The COSMO-model is based on the former NWP model LM (Lokal Modell). LM

is a nonhydrostatic fully compressible regional atmospheric forecast model that has

been developed and used at DWD and used operationally since December 1999

for both operational NWP and scientific applications on the meso-β (20-200 km,

dealing with phenomena like sea breezes) and meso-γ scales (2-20 km, dealing with

phenomena like thunderstorms and complex terrain flows). The basic equations

of LM describe compressible flow in a moist atmosphere, which are formulated in

rotated geographical coordinates with terrain following heights and consider various

parametrization schemes for characterization of physical processes (see Section 2.4).

In addition to the physical basis of the forecast model itself, LM requires other

components, e.g., data assimilation, interpolation of boundary conditions from a

driving model, in order to run the model in NWP-mode or for case studies.

The further development in the field of high-resolution modeling has been done in

close cooperation with other European weather services including those from Greece,

Poland, Romania, Russia and Switzerland. In 2007, LM was renamed as COSMO

to show this joint effort. Actually, DWD operationally runs two configurations. Ac-

cording to the configuration in which the model is run, the model name is specified

by the appendix. For instance, COSMO-EU (COSMO Europe, Fig. 2.1a) covers the

Eastern Atlantic and Europe with 665× 657 = 436905 grid points at a horizontal

resolution of 7 km and 40 vertical levels from the surface up to approximately 24 km,

that is 436905×40 ∼ 17.5 million grid points in total. Since 2003, DWD has been

developing a new version of the COSMO-model called COSMO-DE with a horizontal

resolution of 2.8 km (∼ 0.025◦). The COSMO-DE model has been operationally run

since April 2007 and provides forecasts every three hours, each forecast has a run

time of 21 hours. The domain of COSMO-DE (Fig. 2.1b) covers a field of about

1300×1200km2 including Germany, Switzerland, Austria and some small parts of

the neighbouring countries, with horizontally 421×461 grid points.
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2. Description of the COSMO-model

(a) The domain of COSMO-EU (b) The domain of COSMO-DE

Fig. 2.1.: Orography (height [m] in color bar) of the operational domains of the COSMO-EU
(left) and COSMO-DE (right) at DWD

The development of the COSMO-model is an ongoing task. The following sections

introduce briefly the main features and characteristics. For the present thesis, the

version COSMO-4.21 has been used. For a more detailed description, we refer to

Doms and Schättler (2002).

2.1. Model equations

To describe the atmospheric state and its spatio-temporal development in an appropriate

manner, the atmosphere is treated as a multicomponent continuum which is composed

of dry air, water vapor, liquid water and water in solid state forming an ideal mixture.

Water in liquid and solid forms may be further divided into various categories as cloud

droplets, raindrops, pristine ice crystals, rimed aggregates of crystals, graupel and

hail, etc.. Considering forces from gravity and earth rotation (by the Coriolis force)

as well as internal processes due to heat, mass and momentum balances and phase

changes of water, the general hydrothermodynamic equations describing compressible

nonhydrostatic flow in a moist atmosphere without any scale approximations are given

by:
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2.1. Model equations

ρ
d�v
dt

=−∇p+ρ�g−2�Ω× (ρ�v)−∇ ·��τ , (2.1)

dp
dt

=
cp
cv

p∇ ·�v+
(

cp
cv

−1
)

Qh +

(
cp
cv

)
Qm , (2.2)

ρcp
dT
dt

=
dp
dt

+Qh , (2.3)

ρ
dqx

dt
=−∇ ·�Jx

+ Ix , (2.4)

ρ = p/ [Rd(1+αm)T] . (2.5)

The index x represents a specific constituent of the mixture with

x = d for dry air,

x = v for water vapor,

x = l for liquid water, and

x = f for water in the solid state, i.e., ice.

The total derivative of a field ψ is related to partial time and space variations by the

Euler decomposition:

dψ
dt

=
∂ψ
∂ t

+�v ·∇ψ . (2.6)

The list of symbols in Eqs. (2.1-2.5) are given in Tab. 2.1.

Several modifications should be made in Eqs. (2.1-2.5) since they are numerically

solved on a structured grid. First of all, differential operators appearing in the equations

are approximated by difference operators and thus only valid in the limit when the

time interval Δt and the spatial increment ΔV (ΔV := ΔxΔyΔz) approaches zero. For

a physically meaningful interpretation, on one hand, spatial increment ΔV muss be

much larger than the spacing between molecules to contain a sufficient number of

molecules to apply statistical thermodynamics, but on the other hand, it must be

much smaller than macroscopic dimensions so that the values of variables do not

strongly change within Δt and ΔV. These conditions restrict the direct application of

Eqs. (2.1-2.5) to space scales on the order of about 1 cm and to time scales of about 1 s.
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2. Description of the COSMO-model

t Time
p Pressure
T Temperature
ρx Partial density of mixture constituent x
ρ = ∑x ρx Total density of the air mixture
qx = ρx/ρ Mass fraction (specific content) of constituent x
�v = (u,v,w) Wind vector
cp, cv Heat capacities for constant pressure and volume

αm =

(
Rv

Rd
−1
)

qv −ql −q f Moisture term

Rv, Rd Gas constant for water vapor and dry air
Ix Source/sinks of constituent x
�J

x
Diffusion flux of constituent x

Qh Diabatic heating

Qm = ρRdT
dαm

dt
Impact of changes of humidity

��τ Stress tensor due to friction
�Ω Constant angular velocity vector of earth rotation
�g Apparent acceleration of gravity
∇ Gradient Nabla operator

Tab. 2.1.: The list of symbols in Eqs. (2.1-2.5)

However, as mesoscale circulations have horizontal scales up to 100 km and vertical

scales up to 10 km, using a numerical model of grid spacing on the order of 1 cm

to simulate such flows is not feasible. To circumvent this problem, the equations are

averaged over specified space and time step, and then the meteorological variables are

split up into a mean value (the grid scale value) and its deviation (the subgrid scale

value). Furthermore, some assumptions are made to simplify the equations (Doms and

Schättler, 2002):

1. all molecular fluxes are replaced by turbulent fluxes formally written in the same

manner. Components of the turbulent stress tensor follow from a parametrization

of turbulence.

2. the specific heat of moist air is replaced by that of dry air,

3. the diabatic terms Qh and Qm are neglected,

4. temperature changes due to buoyant heat and moisture fluxes are neglected.
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2.1. Model equations

These assumptions are typically justified with the fact that the atmosphere air

can be described as a very diluted mixture with respect to the water constituents.

Moreover, in order to enhance the numerical accuracy, the thermodynamic variables

temperature T, pressure p and density ρ can be formally expressed as the sum of a

height dependent base state as reference value (indicated with subscript 0) and a space

and time dependent deviation (indicated by a prime):

T= T0(z)+T′ ,

p= p0(z)+p′ ,

ρ = ρ0(z)+ρ ′ .

Fig. 2.2.: Geographical longitude and latitude in the unrotated grid. The dashed line indicates
the equator in the rotated grid with pole coordinates 32.5◦S and 10.0◦E in the unrotated system.
The rotated 0◦ meridian corresponds to the 10◦E geographical meridian (Doms and Schättler,
2002).
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2. Description of the COSMO-model

To take the (nearly) spherical nature of the earth into account, the usual way would

be to transform the model equations into geographical coordinates. However, regard-

ing practical applications on a large model domain, such spherical coordinates cause

numerical problems arising from the convergence of the meridians and the resulting

pole singularities. A suitable way to minimize these problems is to introduce rotated

spherical coordinates (λ ,ϕ,z), where λ is geographical rotated longitude, ϕ is geo-

graphical rotated latitude, z is geographical height above mean sea level. It is done by

shifting the North Pole of the new system in such a way that the intersection of the

equator and the prime meridian of the new system passes through the centre of the

model domain and thus the convergence of the meridians can be minimized (Fig. 2.2).

Transformation equations can be found in Doms and Schättler (2002).

In spherical coordinates, the vertical coordinate z is curvilinear but orthogonal.

When surface terrain is considered, it becomes very complicated to formulate the

lower boundary conditions and quite expensive to find the numerical solution of the

basic equations. An elegant way to alleviate this problem is the transformation of z to

a terrain-following coordinate system, where the lowest surface of constant vertical

coordinate becomes conformal to the terrain height. The new vertical coordinate ζ is

a time-independent function of λ , ϕ and z. This is different from the pressure based

coordinate system of most hydrostatic models, where the surfaces of constant vertical

coordinate move in space with changing surface pressure. Fig. 2.3 views a sketch of

terrain-following coordinate system over orography.

In order to keep the numerical formulation of the model equations independent from

the choice on ζ , the coordinate transformation will be done in two steps. The first

step involves a terrain-following transformation using a user-specified coordinate ζ̃ .

In the second step, ζ̃ is mapped to the computational coordinate ζ by a monotonic

function m in the form ζ̃ = m(ζ ). Since m can be any monotonic function, we define

this function to map (by its inverse) the coordinate ζ̃ to the index space with top-down

increasing indices and an equidistant grid spacing of Δζ = 1. Fig. 2.4 illustrates this

two-step transformation. In fact, there are three options for the terrain-following ζ̃ in

the COSMO-model. The first one is a reference-pressure based coordinate, the second

one is a Gal-Chen height-based coordinate (Gal-chen and Somerville, 1975) and the

third one is the height-based SLEVE (Smooth Level VErtical) coordinate according to

Schär et al. (2002).
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2.1. Model equations

Fig. 2.3.: Sketch of a terrain following coordinate system (Doms and Schättler, 2002)

Introducing these modifications into Eqs. (2.1-2.5), we obtain the final version of

model equations including seven prognostic equations for horizontal wind velocity,

vertical wind velocity, perturbation pressure, temperature, water vapor, liquid and solid

forms of water and one diagnostic equation for total density of air (Doms and Schättler,

2002):

• Horizontal wind velocity components

∂u
∂ t

=−
{

1
RE cosϕ

∂Eh

∂λ
− vVa

}
− ζ̇

∂u
∂ζ

− 1
ρRE cosϕ

(
∂p′

∂λ
− 1√γ

− 1√γ
∂p0

∂λ
∂p′

∂ζ

)
+Mu , (2.7)

∂v
∂ t

=−
{

1
RE

∂Eh

∂ϕ
−uVa

}
− ζ̇

∂v
∂ζ

− 1
ρRE

(
∂p′

∂ϕ
− 1√γ

− 1√γ
∂p0

∂ϕ
∂p′

∂ζ

)
+Mv ,

(2.8)
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2. Description of the COSMO-model

Fig. 2.4.: Mapping of an irregular curvilinear grid with a terrain following coordinate ζ̃ onto a
rectangular equidistant grid ζ labeled by integers (Doms and Schättler, 2002)

• Vertical wind velocity

∂w
∂ t

=−
{

1
RE cosϕ

(
u

∂w
∂λ

+ vcosϕ
∂w
∂ϕ

)}
− ζ̇

∂w
∂ζ

− g√γ
p0

ρ
∂p′

∂ζ
+Mw

+g
ρ0

ρ

{
T−T0

T
− T0p

′

Tp0
+

(
Rv

Rd
−1
)

qv −ql −q f
}

, (2.9)

• Perturbation pressure

∂p′

∂ t
=−
{

1
RE cosϕ

(
u

∂p′

∂λ
+ vcosϕ

∂p′

∂ϕ

)}
− ζ̇

∂p′

∂ζ
+gρ0w− cp

cv
pD ,

(2.10)

• Temperature

∂T
∂ t

=−
{

1
RE cosϕ

(
u

∂T
∂λ

+ vcosϕ
∂T
∂ϕ

)}
− ζ̇

∂T
∂ζ

− 1
ρcd

pD+QT , (2.11)

• Water vapor

∂qv

∂ t
=−
{

1
RE cosϕ

(
u

∂qv

∂λ
+ vcosϕ

∂qv

∂ϕ

)}
− ζ̇

∂qv

∂ζ
−
(

Sl +S f
)
+Mqv ,

(2.12)
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2.2. Discretized form of the model equations

• Liquid and solid forms of water

∂ql, f

∂ t
=−
{

1
RE cosϕ

(
u

∂ql, f

∂λ
+ vcosϕ

∂ql, f

∂ϕ

)}

− ζ̇
∂ql, f

∂ζ
− g√γ

ρ0

ρ
∂Pl, f

∂ζ
+Sl, f +Mql, f , (2.13)

• Total density of air (cf. Eq. (2.5)

ρ = p

{
Rd

(
1+
(

Rv

Rd
−1
)

qv −ql −q f
)
T

}−1

, (2.14)

where g is the gravity acceleration, D is divergence of the wind field, Eh =
√

u2 + v2

is kinetic energy of horizontal motion,
√γ is variation of reference pressure with ζ ,

Va is the vertical component of the absolute vorticity, Pl, f are precipitation fluxes, the

terms Mψ denote contribution from subgrid scale processes as, e.g., turbulence and

convection. QT summarizes the diabatic heating rate due to this processes. The various

cloud microphysical sources and sinks due to phase changes are denoted by Sl and

S f . The calculation of all these terms related to subgrid-scale processes is done by

physical parametrization schemes. Notice that the pressure equation (2.2) has been

replaced by an equation for pressure deviation p′. Also note that Eh and Va enable an

elegant formulation of horizontal advection, Coriolis force and an Earth’s curvature

term together. However, the numerical discretization is only done using the original u

and v.

2.2. Discretized form of the model equations

For the numerical solution of the continuous model equations listed in the previous

section, spatial and temporal discretization of the equations must be done. The spatial

discretization is realized by model grid structure and for the temporal discretization a

Runge-Kutta scheme is currently used.
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2. Description of the COSMO-model

2.2.1. Model grid structure

Eqs. (2.8-2.13) have been written in a terrain-following coordinate system using a

generalized vertical coordinate ζ . This general form of the transformation is employed

to map the irregular curvilinear grid associated with the terrain-following system

ζ̃ in physical space onto a regular computational grid, which is set up by constant

increments:

Δλ : grid-spacing in λ -direction,

Δϕ : grid-spacing in ϕ-direction,

Δζ : grid-spacing in ζ -direction.

The computational (λ ,ϕ,ζ )-space is then represented by a finite number of grid points

with integer values (i, j,k), where i corresponds to the λ -direction, j to the ϕ-direction

and k to the ζ -direction. The position of the grid points in the computational space is

defined by

λi = λ0 +(i−1)Δλ , i = 1, . . . ,Nλ , (2.15)

ϕ j = ϕ0 +( j−1)Δϕ , j = 1, . . . ,Nϕ , (2.16)

ζk = k , k = 1, . . . ,Nζ , (2.17)

where Nλ , Nϕ and Nζ denote the number of grid points in λ , ϕ and ζ -directions,

respectively. Thus, λ0 and ϕ0 are the southwestern corner of the model domain in the

rotated spherical coordinates (λ ,ϕ). Every grid point (i, j,k) represents the centre of

an elementary rectangular grid volume with side lengths Δλ , Δϕ and Δζ . Horizontally,

the grid-box faces are located halfway between the grid points in the corresponding

directions, i.e., at λi ±1/2, ϕ j ±1/2 and ζk ±1/2. Vertically, the grid-box faces are

usually referred to as the half levels. These interfacial levels separate the model layers

from each other. The model layers labeled by integers k are also referred to as main

levels. The top boundary of the model domain is defined to be the half level (ζ = 1/2)

above the uppermost model layer (ζ = 1) and the ζ -coordinate surface becomes

conformal to the orography at the lower boundary. The half level (ζ = Nζ + 1/2)

below the first model layer above the ground (ζ = Nζ ) defines the lower boundary of

the model.
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2.2. Discretized form of the model equations

The scalar model variables (temperature, pressure and humidity variables) are

defined at the centre of a grid box (main level) while the wind components u, v and w

are defined on the corresponding box faces (half level in the vertical) (Fig. 2.5). This

grid structure is called staggered Arakawa-C/Lorenz grid and is advantageous for the

discretization of the flow equations.

Fig. 2.5.: A grid box volume showing the Arakawa-C/Lorenz staggering of the dependent
model variables (Doms and Schättler, 2002)

2.2.2. Time integration scheme

Three different time integration schemes have been implemented within the COSMO-

model: the leapfrog-scheme (Klemp and Wilhelmson, 1978) and the semi-implicit

solver (Thomas et al., 2000) and the third order Runge-Kutta method (RK3) of Wicker

and Skamarock (2002). All these schemes use time splitting techniques, which sep-

arate the prognostic equations in terms of fast processes related to acoustic wave

modes and terms in conjunction with comparatively slowly varying modes of motion
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2. Description of the COSMO-model

(e.g., advection), but in different manners (Doms and Schättler, 2002). As RK3 is

numerically quite stable and efficient, it has been operationally run at DWD since

April 2007.

2.3. Initial and boundary conditions

In a limited area model as COSMO, only the lower boundary is physical due to the

Earth’s surface. The top and lateral boundaries are usually artificial, and have to be

specified. It is important to use open or inflow-outflow lateral boundary conditions

to allow the atmosphere in the model interior domain to interact with the external

environment, when it comes to the simulation of real data cases or NWP purposes

(Davies, 1976). Alternatively, we can use open and periodic boundary conditions for

specific scientific applications (i.e., idealized simulations).

For operational applications and real data simulations, the initial conditions for the

COSMO-model can be specified by forecasts interpolated from various global models,

e.g., the GME model of DWD or the global IFS model from ECMWF. Alternatively,

the analysis results of data assimilation in the COSMO-model can be used for initial

conditions. For the purpose of idealized case studies, user-specified artificial initial

data can also be chosen.

The approaches to establish the lateral boundary conditions are almost the same as

for the initial conditions.

For NWP purposes, information on the variables at the lateral boundaries and their

time evolution is obtained by interpolation from larger models. The use of a model at

a coarser resolution for driving a high-resolution limited area model causes numerical

problems, since the time evolution of the model variables is based on a set of equations

differing from those of the driving model. The problems are related to a non-unique

information transfer between the models at the boundaries, due to differences in the

spatial resolution and model equations. These numerical noises can propagate from the

lateral boundaries to the interior of the model domain. To fix this problem, a relaxation

zone close to the boundaries is used, in which the variables of the high- resolution

model are gradually modified to blend them with the driving model variables, and the

influence of the driving model decreases exponentially with increasing distance to the

domain boundary (Davies, 1976).
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2.4. Physical parametrization

For idealized runs, the periodic boundary condition assumes indefinite repetition

of the solution of the model equations outside the computational domain, so that the

solution at a certain distance to the west (north) of the computational domain western

(northern) boundary is equal to that at the same distance to the west (north) of the

eastern (southern) boundary.

The top boundary of the model domain is defined as the top half level with constant

computational coordinate ζ = 1/2 with fixed height above mean sea level and a

rigid lid, i.e., ζ̇ = 0. For the horizontal wind velocity, the temperature and the water

substances, the free-slip condition is assumed, i.e., no mass transfer across the upper

boundary.

Additionally, a so-called Rayleigh damping scheme may be applied to a number

of model layers just below the upper boundary to absorb upward propagating wave

disturbances and to suppress gravity wave reflection at the top boundary resulting from

the rigid lid upper boundary condition. The prevention of wave energy reflection at the

upper boundary is vital for a correct simulation of orographically induced flows.

2.4. Physical parametrization

Atmospheric processes span horizontal scales from molecular to planetary, and they

vary in time scales from less than seconds to longer than annual scales. Because of the

limited spatial and temporal resolutions of atmospherical models, an important part of

these physical processes is not accounted for by the explicit solution in the model grid

of the basic equations. On one hand, this concerns all molecular processes as radiation,

cloud microphysics and laminar transport in the immediate vicinity of solid boundaries.

On the other hand, there are processes as turbulence and convection. All processes that

are not explicitly simulated by the model bu considered to be important for the model

results have to be treated in a special manner called parametrization. This section

summarizes shortly the parametrization schemes used in the COSMO-model more

details can be found in Doms and Schättler (2002).

Subgrid-scale turbulence: a prognostic equation for TKE (turbulent kinetic en-

ergy), which is a level 2.5 closure scheme (Raschendorfer, 2001), is used. A parametriza-

tion of the pressure transport term is considered in the TKE-equation, which accounts

for TKE-production by subgrid thermal circulations. The whole scheme is formulated
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2. Description of the COSMO-model

with conservative thermodynamic variables together with a statistical cloud scheme in

order to consider effects from subgrid-scale condensation along the lines of Sommeria

and Deardorff (1977).

Surface layer parametrization: the surface layer scheme extends the TKE-equation

to the constant flux layer and introduces an additional laminar layer just above the

surface. This makes it possible to discriminate between values of model variables

at the rigid surface (e.g., radiative surface temperatures) and values at the roughness

height (lower boundary of the turbulent atmosphere).

Grid-scale clouds and precipitation: the standard COSMO-model uses the so-

called one-moment scheme for cloud physics, i.e., only the bulk masses of five or six

different hydrometeor classes (water vapor, cloud water, cloud ice, snow and optionally

graupel) are predicted at each grid point, by assuming a prescribed size distribution

of the particles (cloud water: no assumption necessary in the simple parametrization

framework; cloud ice: monodispers; rain: Gamma-distribution; snow: implicit shape

based on Field et al. (2007); graupel: exponential distribution). It considers explicitly

processes of cloud and ice nucleation, diffusional growth of water and ice phase, drop

to drop, drop to ice, and ice to ice collision, ice multiplication, break up of raindrops,

freezing and melting. A more advanced approach, a two-moment scheme, extends

the description with hail and additional prognostic variables, the hydrometeor number

densities (Seifert and Beheng, 2006; Seifert et al., 2006; Blahak, 2008b; Noppel et al.,

2010). This allows a better parametrization of the size distribution function. But owing

to their enormous computational complexity, it is currently not used for operational

applications but for research. Note that without explicit statement all model runs are

performed with the so-called one-moment graupel scheme (Reinhardt and Seifert,

2006) in this thesis.

Fractional cloud cover: in the parametrization schemes for grid-scale clouds and

precipitation, the condensation rate for cloud water is based on saturation equilibrium

with respect to water. Therefore, a grid element is either fully filled with clouds at

water saturation where qc > 0 (relative humidity = 100%) or it is cloud free at water

subsaturation where qc = 0 (relative humidity < 100%), so the area fraction of a
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2.4. Physical parametrization

grid element covered with grid-scale clouds is either 1 or 0. However, with respect

to the calculation of radiative transfer and weather interpretation in postprocessing

routines, it is meaningful to define a fractional cloud cover for those grid boxes where

the relative humidity is less than 100% and no grid-scale cloud water exists. The

calculation of the fractional cloud cover in each model layer is determined by an

empirical function of relative humidity, height of the model layer, convective activity

and stability (Sommeria and Deardorff, 1977).

Moist convection: either the mass-flux convection scheme with equilibrium closure

based on moisture convergence (Tiedtke, 1989) or the mass-flux convection scheme

with non-equilibrium CAPE-type closure (Kain and Fritsch, 1993) can be used. In

addition to the closure, they differ from each other mainly in the triggering criteria

for convection and the processes influencing detrainment and entrainment (Smoydzin,

2004).

Radiation: it is parameterized according to a so-called two-stream scheme of Rit-

ter and Geleyn (1992) which considers three short wave (solar) and five long wave

(thermal) spectral intervals. Clouds, aerosol, water vapor and other gaseous tracers

are treated as optically active constituents of the atmosphere, which modify the ra-

diative fluxes by absorption, emission and scattering. As an extension to the original

scheme, a new treatment of the optical properties of ice particles has been introduced

which allows a direct cloud-radiative feedback with the predicted ice and water content.

Soil model: A simple two-layer soil model (Jacobsen and Heise, 1982) employ-

ing the extended force-restore method is applied; snow and interception storage are

included. Optionally, a new multilayer version of the model based on the direct numer-

ical solution of the heat conduction equation can be used.

Terrain and surface data: for data like orography, land-sea mask, soil type and

vegetation cover (the so-called “external” data), the model employs standard data sets

provided by various sources (e.g., orography from the Global Land One-km Base

Elevation (GLOBE), harmonized world soil database form the Food and Agriculture

Organization of the United Nations (FAO), etc.). There is a software package at DWD,
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2. Description of the COSMO-model

which is able to aggregate/interpolate/convert these data sets to the required exter-

nal datasets for the COSMO-model (see webpage http://www.cosmo-model.org/

content/model/modules/externalParams/default.htm). Data sets are available for

different horizontal resolutions and pre-defined regions covering Europe. Other data

sets can be created by DWD on request.
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3. Radar forward operator

As mentioned in Section 2.4, moist convection has to be parameterized in NWP models

including the COSMO-model. The inherent limitations of this subgrid parameterization

usually lead to the low confidence of QPFs (Fritsch and Carbone, 2004). As pointed out

in Ducrocq et al. (2000) and Trier and Manning (2004), improvements in QPFs can be

achieved by both explicit treatment of moist convection and advanced parametrization

of microphyiscal processes. These studies also expressed the improvement possibility

by assimilating high-resolution observations such as weather radar data. As noticed,

the DWD radar network provides a huge amount of data in high spatial and temporal

resolutions, covering the entire COSMO-DE domain, which has encouraged the use of

radar data to enhance the quality of operational analyses and forecasts.

However, a viable radar data assimilation scheme requires a tool that establishes

a link between the model data and radar data and allow for a direct comparison be-

tween them. For this purpose, a model-to-observation method, the so-called “forward

operator” has been developed which transforms the model outputs into radar observa-

tions and performs comparisons in terms of observed quantities. This transformation

succeeds by simulating the main processes relevant to radar measurements. In the

first step, radar observables are computed from predicted bulk water quantities. In

the second step, the beam propagation is simulated under consideration of physical

processes influencing radar measurements like attenuation, beam bending and broad-

ening. Note that simulations have to follow the model assumptions as closely as

possible for the sake of consistency. One important criterion of the operator design is

modularity, which means that the operator should be comprised of several building

modules and each module describes a particular physical process in radar measure-

ments and offers several options associated with different accuracy and complexity

in simulations. These options can be flexibly switched on/off in accordance with the

user’s needs: the radar forward operator can be used as a model evaluation tool and

also as an observation operator for (operational) assimilation systems. The former
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3. Radar forward operator

one demands relative high accuracy rather than efficiency of simulations although

for the latter one special emphasis must be given to simulation time, especially for

operational applications. Since the development of the radar forward operator for

operational data assimilation is the main objective of this thesis, it is proposed here that

sensitivity experiments be performed systematically for each module of the operator

(see this chapter and more in Chapter 5) and based on the results of experiments we are

able to recommend how to configure the operator for the purpose of data assimilation.

Moreover, the radar forward operator should be flexible enough to be able to simulate

radars that operate at different frequencies and scan strategies in either research or

operational modes.

Owing to the limited time given for this thesis, the polarization parameters are not

considered yet, but integration of those parameters should mostly be straight-forward

and we intend to implement a code for one-layered spheroidal particles in near future

according to Pfeifer et al. (2008). Indeed, this will probably drastically increase the

computational expense, so it is necessary to simplify the computations, e.g., by means

of lookup tables, which cover the relevant range of the basic parameters and depend

on assumptions about canting angle distributions and axis ratios of the spheroids as

function of size.

This chapter gives at first fundamentals of weather radars and then Sections 3.6-3.8

are devoted to a comprehensive description of the radar forward operator in a module-

wise way, where sensitivity experiments for beam bending and broadening are done

and their outcomes are discussed. For brevity in the remainder of the work, the term

“operator” refers to the radar forward operator without explicit statement.

3.1. Basic radar terms

Most weather Doppler radars are pulsed radars, which emit microwave energy from

a transmitter into the atmosphere in a rapid succession of short (i.e., from tens of

nanosecs to tens of microsecs) pulses (see Fig. 3.1). During the time between two

transmitted pulses, the radar switches to receive mode. When these pulses impinge on

objects in the atmosphere such as raindrops, hail stones, snowflakes, cloud droplets,

birds, insects, dust particles, vegetation and even the ground, part of the energy bounces

back towards the radar. A receiver on the radar then collects the reflected energy and
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3.1. Basic radar terms

1
r2I ~ 

cτ

c

f 2

σb I
l

Fig. 3.1.: Schematic representation of the radar measurements: The radar antenna transmits an
electromagnetic pulse that travels with light speed c through the atmosphere until it encounters
scatters, in the atmosphere mostly hydrometeors. A part of energy (σbI) will be then backscat-
tered to the antenna (short arrows). In addition, some energy will be lost on its way due to
attenuation (�). τ is the pulse duration and cτ is the pulse length.

stores the data for visualization (see Fig. 3.2). The PPI (Plan Position Indicator, see

Figs. 3.2a and 3.2b) is the most common type of radar display, which exhibits radar

data horizontally using a map projection. In PPI mode, the radar performs a 360-degree

sweep with the antenna at a specific elevation. Other radar images include MAXCAPPI

(Maximum Constant Altitude Plan Position Indicator: vertical maxima projected on

the horizontal plan and maxima from each level horizontally projected from south to

north and from west to east, see Fig. 3.2c), SRI (Surface Rain Intensity, see Fig. 3.2d),

etc..

With each pulse, a radar resolution volume, the so-called the pulse volume, posi-

tioned by its center �r0 = (r0,α0,ε0), is illuminated with the following illumination

function:

I(�r) =Cr
f 4(φ ,θ)

r2 |W (r0 − r)|2 , (3.1)

where I is the emitted energy intensity, r0 is the radial distance (also called range)

between the antenna and the center of the pulse volume, r is the radial distance from

antenna to an arbitrary position within the pulse volume, α0 and ε0 are azimuth and
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3. Radar forward operator

(a) PPI for Doppler velocity (b) PPI for reflectivity

(c) MAXCAPPI (d) SRI

Fig. 3.2.: Examples of radar displays: observations of C-Band Doppler radar at KIT Campus
North on 29 January 2013
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3.1. Basic radar terms

Fig. 3.3.: A single radar beam, described in the radar system (r0,α0,ε0) and beam system
(r0,φ ,θ). Pulse volume is represented by thin ellipses. The general radar system coordinates
(r,α,ε) are determined relative to the coordinates (r0,α0,ε0) (Blahak, 2008a).

elevation of the antenna, respectively. The coefficient Cr is the so-called radar constant

and depends on radar system parameters including power transmitted Pt , antenna gain

G0 and radar wavelength λ .

The geometric dependency of quantities determining I is expressed in terms of the

so-called “beam system”�r = (r,φ ,θ), where φ and θ are horizontal and vertical angles

relative to the ray in the beam center, respectively. This is different from the “radar

system”�r = (r,α,ε). The contrast of both systems is illustrated in Fig. 3.3 for a single

radar beam.

The term of 1/r2 in Eq. (3.1) indicates that the energy intensity I decreases with

distance by 1/r2 as for spherical waves. Consequently, the targets at long ranges are

poorly illuminated and their echoes might be too faint to be detected, so that light

precipitation becomes undetectable at long ranges. The range r is determined by

measuring the delay Δt between transmission of a pulse and its echo (see Fig. 3.4),

that is, r = cΔt/2, where the factor 1/2 accounts for the two-way time delay.

The pulse duration τ is the time over which a pulse lasts (see Fig. 3.4). τ can be

multiplied by the light speed to determine the pulse length (= cτ). The Pulse Repe-

tition Frequency (PRF) is the number of pulses that are transmitted per second. The

reciprocal of PRF is called the Pulse Repetition Time (PRT), which is the time interval
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3. Radar forward operator

Fig. 3.4.: Train of transmitted and received pulses (Mahafza, 2000)

between the start of two consecutive pulses. When multiple pulses are transmitted,

there is the possibility of a range ambiguity. To determines the range r unambiguously

requires that the time interval between pulses PRT must be larger than the time for a

single pulse to propagate to range r and back, that is PRT≥ 2r/c, and the unambiguous

range is rmax:

rmax =
c ·PRT

2
=

c
2PRF

. (3.2)

The radar pulse volume is spacious and keeps broadening as the pulse propagates

away from the radar antenna. The function f 2(φ ,θ) is the beam weighting function

describing the weight at which local reflectivity and attenuation contribute to the

echo power in a given direction (φ ,θ). The pattern of f 2(φ ,θ) typically generates

conical or pencial-shaped beams, as shown in Fig. 3.5. It consists of a large main

lobe (or main beam) that exhibits the greatest field strength and several smaller lobes

surrounding the main lobe, with subsidiary power maxima called side lobes, caused

by interference effects. Although side lobes extend outward only a short distance and

contain very low power, they can detect strong non-meteorological targets in proximity

of the radar, so that strong nearby ground echoes can arise and cause confusion in

interpreting close targets. The smaller lobes in directions nearly opposite to the main

lobe are called back lobes. The direction of maximum power is the beam axis and

the planes φ = 0◦ and θ = 0◦ are the principal planes of antenna pattern. Another

important parameter is the angular width of the main lobe, also called beamwidth,
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3.1. Basic radar terms

Fig. 3.5.: Antenna radiation pattern: the radial distance from the center represents signal
strength.

which is usually defined as the angle between the two directions in a principal plane

where the antenna power is one-half, or 3-dB less than its maximum value. The area

within these 3-dB points contains nearly 80 percent of all power. Beamwidth varies

directly with wavelength and inversely with antenna size. Use of the half-power or

3-dB points to define the beamwidth derive from the so-called “Rayleigh criterion”,

according to which two distant points separated by an angle equal to the half-power

beamwidth can be resolved. This criterion is not directly applicable to radar because it

involves two-way propagation of the microwaves, but the 3-dB beamwidth provides a

convenient basis for evaluating and comparing the performance of radar antennas, so

it is almost universally employed. Beamwidths are dimensionless and are measured

in radians, although for convenience the values are often converted to degrees. The

symbols φ3 and θ3 are used to represent the beamwidths in the horizontal (azimuth)

and vertical (elevation) principal planes, respectively (φ3 and θ3 typically have small

values (≈ 1◦)). For meteorological applications, f 2(φ ,θ) is usually expressed as a

Gaussian function (Probert-Jones, 1962):

f 2(φ ,θ) = exp
[
−4ln2

(
φ 2

φ 2
3
+

θ 2

θ 2
3

)]
, (3.3)
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3. Radar forward operator

by neglecting the echoes from side lobes because side lobes can be different on different

radar systems and a general parametrization formula for the effective beam pattern

would be complicated and would not show significant impacts for most practical

applications. For symmetric antennas, φ3 and θ3 are equal, so Eq. (3.3) becomes:

f 2(θz) = exp
[
−4ln2

(
θ 2

z

θ 2
3

)]
, (3.4)

with θ 2
z = φ 2 +θ 2.

We have so far neglected that output values in radar data sets are usually averages

over many consecutive pulses to achieve statistical signal stability while the antenna

rotates. As shown in Blahak (2008a), this leads to a somewhat broader effective beam

weighting function, denoted by fe. Provided that the radar is scanning horizontally

at a constant elevation ε0, which depends on the common practice in setting up radar

schedulers scanning azimuthally in a continuous mode with a discrete change in

elevation after finishing a 360◦ rotation, that is (Blahak, 2008a),

f 2
e (α,ε) =

exp

{
−4ln2

[(
(α −α∗)cosε

α3,e f f ,0 +(cosε0 −1)Δα[1− exp(−1.5Δα/θ3)]

)2

+

(
ε − ε0

θ3

)2
]}

.

(3.5)

Note that in order to describe the angular averaging correctly in terms of azimuth,

the formulation has been transformed from the beam system to the radar system, i.e,

�r = (r,α∗,ε), where α∗ is the center of the averaging interval. Δα is the averaging

interval of the consecutive pulses, and α3,e f f ,0 is the effective 3-dB beamwidth at 0◦

elevation, which depends only on the radar specific ratio Δα/θ3 and can be calculated

by interpolation from Table 1 of Blahak (2008a).

A key parameter often used to judge the quality of radar observations is the spatial

resolution, defined as the minimum separation between two targets of equal reflectivity

that permits them to be distinguished individually in a processed radar image. The

spatial resolution at any point in a radar image is determined by computing the

resolution in two dimensions: the range and the azimuthal resolutions. The range

resolution is the ability of radar to differentiate two targets that are close together in
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range. The range resolution is limited by the pulse length, the types and sizes of the

targets, and the efficiency of the receiver and the indicator, but the pulse length is

the primary factor. A well-designed radar system, with all other factors at maximum

efficiency, is able to discriminate between separate echoes only if the difference in

their delays is larger than the pulse duration τ , so the range resolution Δr is equal to

cτ/2. The azimuthal resolution is the ability of radar to resolve between two targets in

the azimuthal direction. Two targets can be separated in the azimuthal direction only if

the distance between them is larger than one beamwidth, so the beamwidth is taken

as the measure of azimuthal resolution. Since radars have a certain spatial resolution,

the radar displays usually look gridded and blocky (see Fig. 3.2), and each individual

block or box of data is called a pixel, bin or gate.

Radars from DWD’s network have range resolution of 1000 m and azimuthal

resolution of 1◦. The antenna moves constantly in the azimuthal direction from 0◦

to 359◦ and each pulse is sent in a different azimuthal direction, separated by 1◦.
When the radar finishes scanning in 360 degrees at one elevation, it tilts up to the next

elevation and does the same sweep again. The radar repeats this until it has scanned

at all elevations (see Fig. 3.6). As the beam broadening (see Section 3.6) reduces the

reliability of radar measurements with distance, only measurements within the range of

124 km (= 124×1000 m) from each radar site are taken into account. As mentioned

in Chapter 1, there are different scanning types, i.e., Doppler- and intensity volume

scans and precipitation scan. For the purpose of data assimilation, the Doppler volume

scan is of interest, therefore the relevant one in this thesis. Currently, one complete

Doppler volume scan takes about 5 minutes, so the radars have temporal resolution of

5 minutes.

In Eq. (3.1), W is the range weighting function. To simply notation, we assume that

all scatterers located on the same ray path contribute equally to the received power and

the range weighting function W can be written as a simple step function:

W (r0 − r) =

⎧⎨
⎩1, if r ∈ [r0 −Δr/2,r0 +Δr/2];

0, otherwise.
(3.6)

Considering the fact that an output value of the radar results from averaging over

several bins in range, Eq. (3.6) also represents a sound approximation. Moreover, for
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Fig. 3.6.: Sketch of volume scan strategy showing the polar coordinate system (Ruffieux and
Illingworth, 2008)

our typical applications the horizontal resolution of the COSMO-model is about one

order larger than the pulse length, so that a realistic range weighting would not have

significant effects anyway.

It should be remembered that the microwave energy emitted by radar is, in fact,

a wave, so it has all the characteristics of waves such as wavelength, defined as the

distance between two points of corresponding phase in consecutive cycles and denoted

with λ . In the microwave portion of the electromagnetic spectrum, wavelengths vary

between 1 mm and 1 m (see Fig. 3.7). According to the wavelength, Doppler radar

can be divided into several band categories, which are L, S, C, X, Ku, K and Ka (see

Tab. 3.1). The DWD radar network consists of C-band radars.

Band Wavelength [cm] Frequency [GHz] Usage
L 15-30 1-2 clear air turbulence studies
S 8-15 2-4 near and far range weather observation
C 4-8 4-8 short range weather observation
X 2.5-4 8-12 cloud development studies
Ku 1.7-2.5 12-18 satellite communications
K 1.2-1.7 18-27 detecting clouds
Ka 0.8-1.1 27-40 airport surveilance

Tab. 3.1.: Overview on the different bands of Doppler radars
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3.2. Reflectivity factor

Fig. 3.7.: The electromagnetic spectrum: the microwave region of the spectrum is towards the
left, where wavelengths are longer and frequencies are lower.

The typical observations of a conventional Doppler radar are reflectivity and Doppler

velocity. Their measurement principles are introduced in the following sections.

3.2. Reflectivity factor

As electromagnetic radiation travels in the atmosphere, it interacts with air molecules,

dust particles, water vapor, rain, ice particles, insects and etc.. These interactions make

the radiation undergo attenuation in the form of scattering and absorption. The amount,

by which a “target” can scatter or absorb radiation, is typically described through an

apparent area, called cross section σ .

3.2.1. Cross section

When a target is illuminated by a wave having an incident power density Si, it will

scatter/absorb a part of the power. An observer located at a specific position (φ ,θ ) will

receive radiation scattered by the target with a power density Sr. Under the assumption

that the target is an isotropic scatterer, σ can be directly calculated by

σ(r,φ ,θ) = 4πr2 Sr(φ ,θ)
Si

, (3.7)
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where φ and θ are referenced to a polar axis connecting the target and the transmitter

with the target at the origin, r is the distance between the target and the observer. In

general, the scattering cross section depends on the angles φ and θ , which means that

scattering is not really isotropic. Also note that the value of σ does not correspond to

the geometric cross section of the target. Sometimes, σ is also called the differential

cross section to distinguish it from the total cross section Q, which is obtained by the

integration of σ over the entire solid angle1. For instance, the total scattering cross

section Qs multiplied by the power density Si is equivalent to total amount of energy

removed from the electromagnetic wave due to scatter in all directions. A certain

amount of energy is absorbed and heats the target. The amount of energy removed

from the electromagnetic wave through this process is equal to the total absorption

cross section Qa multiplied by Si. The cumulative effect of scattering and absorption

is described by the attenuation cross section Qt . For the radar technique, the value of

σ(φ ,θ) in the direction from which the wave originates is of great interest, this value

defines the backscattering cross section σb.

On the basis of application of Maxwell’s equations to the scattering of a planar wave

by a homogeneous sphere in a nonabsorbing medium, Mie (1908) formulated a com-

plete scattering/absorption theory in terms of an infinite series of electric and magnetic

multipoles. The attenuation, total scattering, total absorption and backscattering cross

sections can be expressed as

Qt =
λ 2

2π
(−Re)

[
∞

∑
n=1

(2n+1)(an +bn)

]
, (3.8)

Qs =
λ 2

2π

∞

∑
n=1

(2n+1)(|an|2 + |bn|2) , (3.9)

Qa = Qt −Qs , (3.10)

σb =
λ 2

4π

∣∣∣∣∣
∞

∑
n=1

(−1)n(2n+1)(an −bn)

∣∣∣∣∣
2

, (3.11)

respectively, where an and bn are the so-called Bessel functions, which represent the

magnetic and electric multipoles of order n and depend on the radio electric size

γ = πD/λ and the complex refractive index m.
1In some literatures, Q will normalized by 4π , in that case Q will be actually an averaged cross

section.
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For relatively small drop-diameter/wavelength ratios (i.e., D ≤ λ/16), the multipole

moments can be neglected and only the lowest order in the series solution, namely the

dipolterm is considered, which is equivalent to setting all an and bn to zero except a1,

a1 =
2i
3

(
m2 −1
m2 +2

)
γ3 , (3.12)

which yields

Qs =
2
3

π2

λ 4 |K|2 D6 , (3.13)

Qa =
π2

λ
Im(−K)D3 , (3.14)

σb =
π5

λ 4 |K|2 D6 , (3.15)

where K =

∣∣∣∣m2 −1
m2 +2

∣∣∣∣2 is the dielectric factor of the particles. Eqs. (3.13)-(3.15) are the

Rayleigh approximation, according to which σb is proportional to the reciprocal of the

fourth power of the wavelength and to the sixth power of the particle’s diameter.

3.2.2. Unattenuated reflectivity

The summation of all backscattering cross sections per unit volume is defined as the

radar reflectivity and represented by the symbol η :

η = ∑
k∈S

∑
j∈Nk

σbk j , (3.16)

where S contains all hydrometeor types in volume and Nk the number of hydrometeors

of type k, or in continuous form:

η = ∑
k∈S

∫ ∞

0
σbk(D)N k(D)dD , (3.17)

where N k [mm−1m−3] is the particle size distribution (PSD) and N k(D)dD repre-

sents the mean number of hydrometeors with equivalent spherical diameters between

D and D+dD [mm] present per unit volume.
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At standard wavelengths of the weather radars, the conditions for Rayleigh scattering

in terms of clouds and precipitation (except hail) are usually fulfilled, so we have

η = ∑
k∈S

π5

λ 4 |Kk|2
∫ ∞

0
N k(Dk)D6

kdDk︸ ︷︷ ︸
:=Zk

= ∑
k∈S

π5

λ 4 |Kk|2Zk . (3.18)

As indicated by the factor λ−4 in Eq. (3.18), η varies strongly with wavelength, which

makes η not suitable for describing precipitation targets when weather radars of differ-

ent wavelengths are involved. The new variable Zk , under Rayleigh approximation,

is the so-called radar reflectivity factor, which depends exclusively on the number of

scattering elements and their sizes. In other words, the reflectivity factor Zk is a typical

feature of the target.

In practice, the phase and composition of hydrometeors inside the volume is usually

unknown. Unter the assumption that hydrometeors are spherical liquid hydrometeors

and satisfies Rayleigh approximation, it yields

η =
π5

λ 4 |Kw|2Ze , (3.19)

where |Kw|2 = 0.93 is the dielectric factor for water and Ze is the (water-)equivalent

reflectivity factor that is the most important variable in radar meteorology.

Ze has conventional units of [mm6/m3]. Because numerical values of Ze may span

several orders of magnitude in practice, it is convenient for numerical calculation to

use a logarithmic scale. The logarithmic equivalent reflectivity factor is defined as

10log10

[
Ze

1mm6/m3

]
and is expressed in units of dBZ (Battan, 1973). For instance,

when Ze = 1mm6/m3 the reflectivity factor level is 0 dBZ and when Ze = 105 mm6/m3
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3.2. Reflectivity factor

it is 50 dBZ. It is worth noting that the difference of two logarithmic reflectivities is

not in logarithmic units but in linear units of dB:

dBZ− dBZ −→ dB . (3.20)

For example, a 55 dBZ storm has decreased 10 dB to become a 45 dBZ storm, or say,

the intensity difference between a 55 dBZ storm and a 45 dBZ storm is 10 dB.

3.2.3. Attenuation

It can be shown that Qs < Qa for the Rayleigh approximation, so one would use Qa

for attenuation estimation at wavelengths λ ≥ 10 cm, at which the Rayleigh condition

D ≤ λ/16 is fulfilled for all raindrops. However, we must note that the Rayleigh

approximation is just the leading term in the series solution formulated by Mie but

the other terms of the series contributes significantly to absorption (even at λ = 10

cm although D ≤ λ/16 for all raindrops). Consequently, the Rayleigh approximation

for attenuation is in error for moderate to heavy rains and we must employ the Mie

solution for Qt .

The attenuation for a given path in the atmosphere is described by the Beer-Lambert

law. At a particular range r, the attenuation factor of the radar beam is expressed by

�(r) = exp

⎛
⎝ r∫

0

Λ(r′)dr′
⎞
⎠ (3.21)

is the one-way loss factor due to attenuation, where

Λ(r) := ∑
k∈S

∫ ∞

0
Qtk(D,r)N k(D,r)dD (3.22)

is attenuation coefficient.

Another often used term is the so-called two-way attenuation coefficient k2, which

is defined as

k2 = 10log10(exp(−2Λ)) =− 20Λ
ln10

(3.23)
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3. Radar forward operator

in a logarithmic scale [dB km−1], where the power -2 is the two-way factor.

The final form of the attenuated reflectivity for spherical particles at a particular

distance r and wavelength λ is given by

Ze =
ηλ 4

π5|Kw|2 �
−2(r) (3.24)

with the power −2 for the two-way attenuation.

Loosely speaking, attenuation increases as radar wavelength decreases, for instance,

radars operated with λ = 5cm suffer 100 times larger power loss than radars with

λ = 10cm, therefore attenuation could have considerable influences on observations

from the C-Band radar network of DWD. For instance, Scarchilli et al. (1993) stated

that specific attenuation could attain 0.5dB/km for C-band radars. As known, the

attenuation of the radar signal arises from absorption and scattering by atmospheric

gases and hydrometeors, but in fact the attenuation by gases is often a small constant

and already corrected in most radar signal processors, thus it is neglected in this work.

3.2.4. Radar equation

The radar equation provides the fundamental relationship between the received power

and the characteristics of the target, situated at position�r0 = (r0,α0,ε0), as a function

of the technical characteristics of the radar and the atmospheric conditions on the

propagation path.

As shown in Doviak and Zrnic (1993), under assumptions that:

1. the particles occupy the entire volume of the pulse,

2. the hydrometeor particles are homogeneous dielectric spheres with diameters

small compared to the radar wavelength,

3. all the particles have the same dielectric factor |K|2,

4. the main lobe of the antenna beam pattern is expressed by a Gaussian function f ,

5. the incident and back-scattered waves are linearly polarized,

6. radar miscalibration and wetted radome are negligible,
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3.2. Reflectivity factor

the radar equation can be written in terms of the radar reflectivity (Blahak, 2004):

Pr(�r0) =

Cr

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)�−2(r,φ ,θ)
f 4(φ ,θ)

r4 |W (r0 − r)|2r2 cosθdθdφdr ,

(3.25)

where Pr is the received power at the antenna. As shown in Eq. (3.25), η is integrated

over pulse volume (dV = r2 cosθdθdφdr), weighted by the antenna pattern f 2(θ ,φ)
and the range weighting function W .

By substituting Eq. (3.6) in Eq. (3.25) we obtain

Pr(�r0) =Cr

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)�−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr . (3.26)

Note again that the simple boxcar-function for the range weighting is a good approx-

imation if several range bins are averaged in range by the radar processor to gain a

single output value.

Applying the mean value theorem to Eq. (3.26) yields:

Pr(�r0) =Cr

[η
�2

]
(�r0)

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr , (3.27)

where

[η
�2

]
(�r0) =

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)�−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr

. (3.28)
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3. Radar forward operator

Since attenuation by hydrometeors is not related to the beam weighting function, we

can set �2 = 1 and obtain

Pr(�r0) =Crη(�r0)

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr , (3.29)

or equivalently,

η(�r0) =
Pr(�r0)

Cr

1
r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr

. (3.30)

To relate the received power to the physical properties of the medium observed, η is

substituted by the factor Z using Eq. (3.19), which results in

Z(�r0) =
λ 4

π5|K|2
Pr(�r0)

Cr

1
r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr

. (3.31)

However, in day-to-day radar operations there are many occasions where one or more

of these assumed conditions are violated. For instance, Eq. (3.26) does not hold if

the raindrops and ice particles illuminated by the radar beam are not in the Rayleigh

regime. If conditions 2 and 3 are not satisfied2, Z is replaced by Ze, which yields

Pr(�r0) =

Cr
π5|Kw|2

λ 4

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

Ze(r,φ ,θ)�−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr . (3.32)

Let now Ze be the “true” effective radar reflectivity field, Z(R)
e an instantaneous value

derived by the radar processor from an instantaneous power measurement P(R)
r . As

the radar constant Cr is generally not exactly known and may change with time, we

replace it in Eq. (3.31) by a reference radar constant C0, which is used in radar software.

2Considering the violation of the other conditions are beyond the scope of my work.
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3.2. Reflectivity factor

By using Eq. (3.32) and substituting Z with Z(R)
e and Pr with P(R)

r , Eq. (3.31) can be

written as

Z(R)
e (�r0) =

λ 4

π5|Kw|2
P(R)

r (�r0)

Cr

1
r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr

(3.33)

=

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

Ze(r,φ ,θ)�−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr

r0+Δr/2∫
r0−Δr/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)
r2 cosθdθdφdr

. (3.34)

Eqs. (3.33-3.34) establish the relationship between the single measured Z(R)
e and

received power P(R)
r . Eq. (3.33) is applied in most of the radar software while Eq. (3.34)

is for our simulation of interest. However, Pr can not be estimated just by a single radar

pulse. Marshall and Hitschfeld (1953) showed that owing to the random distribution

of the scatterers relative to the pulse wave phase, the squared amplitude of the electron

magnetic field derived from a single P(R)
r is statistically distributed in the vicinity of Pr

and only its ensemble average 〈P(R)
r 〉 is equal to Pr. The common technique to achieve

〈P(R)
r 〉 with statistical stability is averaging over many consecutive pulses during the

antenna rotation operating with a certain angular velocity. As mentioned in Section 3.6,

this leads to a somewhat broader effective beam weighting function fe as expressed in

Eq. 3.5. Substituting f with fe in Eq. (3.33) yields

〈Z(R)
e 〉(�r0) =

Cr

C0

r0+Δr/2∫
r0−Δr/2

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r,α,ε)�−2(r,α,ε)
f 4
e (α,ε)

r2 cosεdεdαdr

r0+Δr/2∫
r0−Δr/2

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)

r2 cosεdεdαdr

,

(3.35)

which takes azimuthal scanning into account.

On the basis of Eq. (3.35), it is often assumed that the distance from the radar

antenna to the target is large compared to the length of pulse volume (i.e., r0 � Δr/2)
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3. Radar forward operator

and that Ze and � do not vary much within Δr, the integrand 1/r2 ≈ 1/r2
0 can thus be

pulled out of the integral, which results in:

〈Z(R)
e 〉(�r0) =

Cr

C0

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r0,α,ε)�−2(r,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.36)

Since the factor Cr/C0 is generally unknown, it is set to 1 in the remainder of this

thesis with caution that it may pose a serious source of bias (cf. Section 3.4).

For the purpose of brevity, Ze is often called reflectivity factor or simply reflectivity.

To avoid terminology ambiguity, the term reflectivity will hereafter always refer to the

effective reflectivity factor Ze.

3.3. Doppler velocity

A Doppler radar observes not just reflectivity but also mean Doppler velocity within the

resolution volume (function of the mean component of scatterers’ three-dimensional

motion in the radial direction toward or away from the radar), since each scatter has its

own speed and direction, depending on its size, shape and motion of the surrounding

air.

The measurement of Doppler velocity is based on the phenomenon called the

Doppler effect. When a pulse of radiation interacts with a target, it induces molecular

vibrations of the target’s electric and magnetic fields. If the target is moving toward the

transmitter in the radial direction at velocity vr (positive being away from the radar),

its vibrational frequency gets higher by vr/λ (Doviak and Zrnic, 1993). The vibrating

molecules themselves create electromagnetic fields, which in turn radiate outward
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3.3. Doppler velocity

from the target. The frequency of scattered radiation is then shifted by an amount of

Δf=−2vr/λ . The factor of 2 is due to a two-step increase in the frequency, first in

the target’s electric vibrational frequency and second in the frequency of its radiation

field in the radial direction.

The maximum velocity vr,max that a Doppler radar can detect unambiguously is

given by the velocity, which just produces a phase shift of ±π . This velocity is called

Nyquist velocity, given by (Battan, 1973)

|vr,max|= PRF λ/4 . (3.37)

Notice that the maximum unambiguous range rmax and maximum unambiguous veloc-

ity vr,max both depend on PRF but in opposite ways, which leads to the fundamental

equation:

|vr,max · rmax|= cλ/8 . (3.38)

This is known as "Doppler dilemma", a trade-off has to be made between vr,max and

rmax. For a typical C-band weather radar with rmax = 150km, vr,max is about only

12m/s. When an environmental wind exceeds vr,max, the radar interprets it as a weaker

wind of the opposite sign. The true environmental wind is offset by factor of 2 · vr,max

until it falls within the Nyquist interval. This is called velocity folding/aliasing. For

example, if vr,max is 25m/s and the environmental wind speed is −30m/s, then it

is folded and the radar interprets it as 20m/s. Nowadays, advanced techniques like

dual-PRF (Dazhang et al., 1984) and correction by using dealiasing algorithms (Haase

and Landelius, 2004) can be used to mitigate the ambiguity problem.

Doppler velocity is also an observed volumetric quantity. Unlike the pulse volume

averaged reflectivity, this is the average of point velocities weighted by the reflectivity

and antenna pattern in the pulse volume. The relationship between the point velocities,

reflectivity fields, antenna pattern and the power weighted moment is given in Doviak

and Zrnic (1993). Here we refine the original formulation by taking the fall velocity of

hydrometeors and attenuation into account and the averaged Doppler velocity is given

by
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+
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where �v =

⎛
⎜⎜⎝

u

v

w

⎞
⎟⎟⎠ is the 3D wind vector, �e3 =

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ is the unit vector upwards

perpendicular to the earth surface and �er =

⎛
⎜⎜⎝

cosθ sinφ
cosθ cosφ

sinθ

⎞
⎟⎟⎠ is the unit vector on the

radial ray path direction.

In analogy with reflectivity, by neglecting the integral over r and applying the

effective beam weighting function fe, we obtain

〈v(R)r 〉(�r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(�v(r0,α,ε) ·�er)
η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

−

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(�e3 ·�er)wt(r0,α,ε)
η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

.

(3.40)

Eq. (3.40) is the benchmark formulation for Doppler velocity in this work.

3.4. Sources of errors

Ideally, we would like to measure with radars the exact local values (i.e. point

measurement) of unattenuated Ze and dealiased vr in the atmosphere, which is by

all means impossible in reality. The accuracy of weather radar measurements varies

considerably with radar range, radar types, storm characteristics, geographical location

and data processing techniques (Wilson and Brandes, 1979; Dalezios and Kouwen,

1982). Various sources of errors which have been discussed by several authors (Austin,

1987; Joss and Waldvogel, 1990; Wilson and Brandes, 1979; Zawadzki, 1973) are:

1. Non-meteorological echoes (e.g., group clutter and variable clutter);

2. Side lobe echoes;
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3. Radar forward operator

3. Multiple scattering;

4. Second trip echo: a radar assumes that any returned echo is from the most recent

pulse that it has transmitted. If the first pulse reaches clouds farther than rmax,

before its echoes return, a second pulse has been emitted. When the echoes

from the first pulse return, the radar think they are from the second pulse and

accordingly places them closer to radar than where they actually are;

5. Aliasing;

6. Beam shielding by natural obstacles (such as mountains and trees) or by man-

made obstacles (such as buildings and power poles). At ranges beyond, reflectiv-

ities will be undervalued and Doppler velocities will be estimated from a higher

altitude than expected;

7. Deviation of atmospheric conditions from assumption of 4/3 Earth radius model

(see Section 3.5), which can easily make an error of 100 m in height estimate

at far range. For a vertical wind shear of 4 m/s per km, a height bias of 100 is

sufficient to produce a 0.4 m/s wind bias;

8. Non-uniform beam filling;

9. Attenuation of radar signals due to heavy rainfall along the beam and the effects

of water on the radome;

10. Instrumental noise;

11. Statistical fluctuations of the reflectivity due to the random phase position of the

instantaneously received signal, even in case of averaging over several pulses;

12. Radar miscalibration due to unknown drifts in radar constant Cr;

13. Inaccuracies in position specification of azimuth, elevation or radial distance.

On the other hand, a success of data assimilation system generally requires:

(1) Observations are free of bias,
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3.4. Sources of errors

(2) Oberservation error variances and correlations must be properly specified and easy

to use,

(3) The operator should simulate observations as accurately as possible.

With respect to radar data, data assimilation is even more challenging because radar

data have very high spatial and temporal resolutions than the other observations (see

Chapter 1) and there is very little that can invalidate radar data if they are wrong

or wrongly assimilated. Consequently, they must be particularly carefully treated in

assimilation. Regarding item (1), a strict quality control of radar data being available

at real-time is mandatory. In DWD, the quality control consists of two steps: pre- and

postprocesses (Hengstebeck et al., 2010). The preprocessed data are also called basic

data. In the preprocessing procedure that is done at the radar site itself (within the

radar device’s signal processor) a first quality control is performed by setting filters and

thresholds (e.g., Doppler Filter for removing stationary clutter (Seltmann, 2000)). The

basic data from the radar network gathered by an automated file distribution system in

real-time at the DWD central office in Offenbach and are ready for the post-processing

quality control, by which the remaining errors (e.g., sources of errors 1-5 in the list

above) are specified and identified by flags in a quality product. The quality products

are made for all radar basic data and archived together with the data themselves

in a database system using the BUFR format, which is a binary universal form of

representation of meteorological data (Dragosavac, 2008). Item (2) is crucial for the

quality of analysis because error variances affect to what extent the forecast fields will

be corrected to match observations, and error correlations provide how the observed

information will be smoothed in the model space if there is a mismatch between the

model resolution and the density of observations. Observation error variances are

mainly specified according to the knowledge of instrumental characteristics, which

can be estimated by using collocated observations. Observation error correlations are

difficult to estimate, so most models of covariances used in practice often assume them

to be zero, i.e., one believes that distinct measurements are affected by physically

independent errors. This might be reasonable for pairs of observations carried out

by distinct instruments but is likely not valid for sets of observations performed by

the same platform, like radiosonde, satellite or radar measurements. Neglection of

observation error correlations will overrate the weight given to the observations and
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3. Radar forward operator

can create problems in the numerics of the analysis. Usually, considerable error

correlations occur when observations are close to each other, so it makes sense to

try to minimize them by thinning dense data (see Section 6.8). Concerning item (3),

this statement is the main goal of this work. A radar operator uses model variables

to simulate expected values of radar measurements. If a data assimilation system

can precisely mimic what a radar would observe under given known atmospheric

conditions, then it can ingest the true radar data to tune the model states until simulated

observations converge towards the true ones. Vice versa, if the simulated observations

are biased, wrong information will be assimilated. To minimize the bias, i.e., the

difference between observations and simulated observations, we aim to develop an

accurate operator that can reproduce radar observations as well as possible by taking

each physical process in radar measurements into account, including the sources of

errors 6-9.

In the next sections, we will give a detailed description about how the individual

physical processes, such as beam bending and broadening, and radar observables (i.e.,

reflectivity and Doppler velocity) are simulated within the operator, followed by the

corresponding sensitive experiments.

3.5. Beam bending

A radar beam which is propagated through the atmosphere encounters variations of

refractive index along its trajectory, which causes the beam to become curved. The

total angular refraction of the beam between two points is commonly called “bending”.

It is helpful to briefly recall the physical basis for computation of atmospheric

refraction at first. More thorough treatments on the subject may be found, e.g., in Bean

and Dutton (1966) as well as Doviak and Zrnic (1993).

For describing the ray path, the classical geometric optics is a commonly used ap-

proximation. This approximation is applicable, if, within one wavelength of radiation,

• the refractive index n changes only very little, and

• the mutual distances between “neighboring” rays change also only very little.

Under these conditions, a single ray path is determined by Fermat’s principle, which

states that the travel time t between two points A and B be minimal. Travel time
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3.5. Beam bending

depends on the propagation speed, which is given by c′ = c/n, where c is the speed

of light in vacuum and n is the refractive index of the medium (to be precise: its real

part).

Fermat’s principle reads

t =
B∫

A

n

c
dr !

= min , (3.41)

where dr is an infinitesimal arc element. This is a classical problem of functional

analysis. For the atmospheric ray propagation, it is assumed that the earth is spherical

with radius RE (defining the mean sea level MSL). The refractive index n, in general,

varies in all spatial directions, but in the atmosphere, vertical variations are usually

much larger than horizontal variations. Therefore, it is assumed hereafter that n only

depends on height h over the Earth’s surface, which allows us to define the ray path

by the Euler-Lagrange-equation of the system, which reads, after transforming the

infinitesimal line element dr to the arc distance element ds at MSL height h = 0

(Hartree et al., 1946)

d2h
ds2 −

(
dh
ds

)2(1
n

dn
dh

+
2

RE +h

)
−
(

RE +h
RE

)2 (1
n

dn
dh

+
1

RE +h

)
= 0 . (3.42)

One can show that this second order non-linear ordinary differential equation (ODE)

is "almost" equivalent to the integral conserved quantity

n(h)(RE +h) cosε = const , (3.43)

where ε is the local elevation and is given by

tanε =
RE

RE +h
dh
ds

. (3.44)

By "almost" we mean that integration is mathematically not an equivalent transforma-

tion and additional (non-physical) solutions can be created by integration. Here, the is

manifested by a sign ambiguity of ε in Eq. (3.43), because cosε = cos(−ε). We will

come to this problem later in Subsection 3.5.3.
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3. Radar forward operator

Eq. (3.43) is the well-known Snell’s law for a continuous spherically stratified

medium, which states that the constant on the r.h.s is conserved along a ray path. This

conserved quantity has a similar significance as, e.g., the mechanical energy for the

equation of motion.

A useful simplified approximation of Eq. (3.42) may be obtained by assuming:

• RE +h ≈ RE

• dh
ds

� 1 (rays at low elevations)

• n ≈ 1

so that Eq. (3.42) becomes

d2h
ds2 =

1
RE

+
dn
dh

. (3.45)

Based on Eq. (3.45), Doviak and Zrnic (1993) showed that the curvature of the ray C0

is

C0 =−dn
dh

. (3.46)

Since dh/ds ≈ ε for small ε , the term d2h/ds2 describes the change of the local

elevation with s. Hence, it is clear from Eq. (3.45) that if dn/dh =−1/RE , then dh/ds

is constant and equal to zero if ε = 0. That is, the ray spreads parallel to the Earth’s

surface and the curvature of the ray path is 1/RE , but its curvature relative to the earth

is zero. With Eq. (3.46) we can conclude that the ray’s curvature CE relative to the

earth is

CE =− 1
RE

− dn
dh

. (3.47)

3.5.1. Refractive index

The variation of n is closely related to the vertical variation of temperature T , water

vapor partial pressure e and total pressure p. As n is slightly larger than unity (e.g.,

1.0003), it is much more convenient to define the so-called refractivity N, given by

N= (n−1)×106 . (3.48)
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Fig. 3.8.: Common classification of atmospheric refraction conditions (in analogy to Turton
et al. (1988))

For instance, if n is 1.0003, the corresponding value of N is 300. Bean and Dutton

(1966) showed that N can be empirically given by

N= c1
p
T
+ c2

e
T
+ c3

e
T 2 , (3.49)

where c1 = 77.6 KhPa−1, c2 =−6.0 KhPa−1, c3 = 3.75×105 K2 hPa−1.

Normally, the refractivity N decreases with height in the atmosphere, which leads

to a downward bending of radar beams. Under some circumstances, N may increase

with the height, i.e., dN/dh > 0, and the beam bends away from the Earth’s surface.

As mentioned above, a horizontal ray (dh/ds = 0) remains horizontal (i.e., has the

same curvature as the earth), if dn/dh = −1/RE resp. dN/dh = −106/RE , and a

non-horizontal ray would preserve its local elevation, e.g., if dh/ds > 0, a quasi-

helical motion around the earth would result. With RE ≈ 6371 km, this is dN/dh =

−157km−1. If the derivative of N is smaller than that, the curvature of the ray becomes

larger than that of the earth, and the ray will, after reaching a maximum height, be

bent down and trapped between this height and the Earth’s surface. This process is
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3. Radar forward operator

called trapping, and the layer of the atmosphere within which the beam is bent back

downwards is called trapping layer. If there is a region below the trapping layer with a

larger derivative of N, the mode of beam propagation is similar to that of a waveguide,

and this configuration is called a duct.

For the lowest 1 km of the ICAO (International Civil Aviation Organization) standard

atmosphere, Doviak and Zrnic (1993) give a value of dN/dh =−40km−1, and we will

refer to this as “normal” conditions in the following, as they represent some “average”

climatological conditions near the ground.

If dN/dh lies between 0 and -40km−1, the beam will be bent towards the Earth’s

surface with a curvature less than that of the normal conditions, and we refer to it as

sub-refraction (see Fig. 3.8). Super-refraction occurs when dN/dh ranges from -40 to

-157 km−1. In this situation the beam is bent down to the surface at a rate less than the

Earth’s curvature but more than normal.

When considering atmospheric ducts, instead of N the so-called modified refractivity

M is usually preferred, defined as

M = N +
h

RE ×10−6 ≈ N + h 157km−1 . (3.50)

Then dM/dh = dN/dh+ 157km−1 and for constant M (dM/dh = 0) the curvature

of the propagation of a nearly horizontal beam is that of the Earth’s surface, and

dM/dh < 0 for trapping conditions. Fig. 3.8 shows the various categories of refraction

in terms of dN/dh and dM/dh.

According to the profile of M, three basic forms of a duct with corresponding duct

depths are shown in Fig. 3.9. The case in Fig. 3.9(a) illustrates the structure associated

with a simple surface duct. Here the duct extends from the local minimum to the

surface, and the trapping layer, where dM/dh < 0, stretches throughout the duct.

Fig. 3.9(b) is referred to as the surface S-shaped duct, which reaches down to the

surface, while the trapping layer doesn’t, since dM/dh > 0 near the surface. In these

two cases, the duct depth is the height difference between the ground and the top of

the duct where the minimum in modified refractivity profile is achieved. In Fig. 3.9(c),

the common conditions for an elevated duct are given, where the value of M at the

surface is less than that at the top of the duct, and so the duct can not reach down to
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(a) Simple surface duct

(b) Surface S-shaped duct

(c) Elevated duct

Fig. 3.9.: Left column: Typical modified refractivity M profiles. The depth of the ducts and the
trapping layers are illustrated. Right column: Corresponding typical radar beam propagation
paths in these ducting conditions (in analogy to Turton et al. (1988)).
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3. Radar forward operator

the surface. Its depth extends from the local minimum to the height at which the M

value equals that at the top of the duct.

As mentioned above, a duct is the result of strong vertical changes in the refractive

index of the atmosphere between air masses of different temperatures and humidities,

especially at low levels of the atmosphere. A duct can occur on a very large scale

when a large mass of cold air is overrun by warm air, leading to a strong temperature

inversion. A duct can also occur when a strong cap of warm and dry air exists in the

lower troposphere above very moist air. On one hand, a duct causes the electromagnetic

energy to be able to propagate over further distances, allowing long-range radio

communication; on the other hand, in weather radar applications, ducts usually lead to

coverage fades, increased ground clutter, increased anomalous propagation and range-

height errors. One part of the radar simulation process is the computation of beam

propagation within the atmosphere simulated by an NWP model in an appropriate

way. It is known that low elevations are often vulnerable to anomalous propagation

and orographic beam blockage, which can seriously affect the radar’s ability to detect

and quantify precipitation at ground level. Important issues here are to minimize the

influences of these effects in the observation-simulation-comparison. In the following

sections, we briefly describe and analyze a simple well-known approximate technique

and two more sophisticated (new) methods.

3.5.2. 4/3 Earth radius Model

For convenience of computation, one likes to consider the ray path as a straight line.

This can be accomplished by multiplying Eq. (3.47) with -1, resulting in

Re f f =− 1
CE

=
1

1
RE

+
dn
dh

=
1

1+RE
dn
dh︸ ︷︷ ︸

=:Ke f f

·RE = Ke f f ·RE . (3.51)

Here, Re f f denotes the Earth’s curvature relative to a straight ray and Ke f f is the

effective Earth radius factor depending on dn/dh. From Eq. (3.51) we can see that if

dn/dh is constant, then the earth has an effective radius of constant Re f f .
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h
s

Re f f

ε0

r

Radar

P

h0

Δφ

Fig. 3.10.: P is the position of ray at range r; Re f f = 4/3RE ; h0 is the height of radar above
MSL and ε0 is the initial elevation of ray at radar antenna. Due to the geometric relationship,
it holds (h+Re f f )

2 = (Re f f +h0)
2 + r2 −2(Re f f +h0)r cos(90◦+ε0) and Re f f Δφ = s, where

sinΔφ =
r sin(90◦+ ε0)

Re f f +h
due to the Law of Sines.

In the standard atmosphere, where the refractive index decreases linearly with the

height in the mean by dn/dh =−40×10−6 km−1 in the lowest 1 km or so (i.e., -40

N-unitskm−1 or 117 M-unitskm−1), then it yields

Ke f f =
1

1+RE
dn
dh

≈ 4
3

. (3.52)

This is a common model to approximate ray paths, which assumes that the effective

Earth radius is 1/3 larger than the real one, so Re f f = 4/3RE . This model allows for

a straightforward analytical estimation of each pulse volume height h and surface

distance s relative to the radar site at a height of h = 0 (MSL) by (cf. Fig. 3.10):

h = h(Re f f ,ε0) =
√

(Re f f +h0)2 + r2 + 2(Re f f +h0)r sinε0 −Re f f , (3.53)

s = s(Re f f ,ε0) = Re f f arcsin
(

r cosε0

Re f f + h

)
. (3.54)
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This model is referred to as the “4/3 Earth radius model” and abbreviated in the

following by 43ERM. As shown in Doviak and Zrnic (1993), for weather radar

applications 43ERM can be used for all elevations, if h is confined to the first 10-20

km and if n has a slope of −1/(4RE) in the first kilometer of the atmosphere. But

the slope of n is usually not constant. If n decreases much more rapidly than in the

standard atmosphere, the beam will likely be bent downwards, and then the height

of pulse volumes tends to be overestimated by 43ERM. These errors can be quite

significant for elevations smaller than ∼ 1◦. More sophisticated methods can be found

in Caumont (2006), Gao et al. (2006), Chen et al. (2009) and Siebren (2003), however,

their performances and limitations, especially under the challenging ducting conditions

for low elevations, have been rigorously reviewed to date. Therefore, two robust

methods are introduced in the following.

3.5.3. Method based on the total reflection

Under realistic atmospheric conditions, e.g., n-profile based on a radiosonde measure-

ment, some authors computed the ray propagation iteratively by discretizing Snell’s

law Eq. (3.43) in the along-beam direction r in steps of some fixed increment Δr.

In this sense, a method used in Caumont (2006) has been revised, adding a simple

criterion for total reflection.

Let l = 1, . . . , L be the numeration index of steps. Then the height hl and the MSL

reduced surface distance sl at some location are iteratively calculated from the values

at l−1 (height above MSL hl−1, local elevation εl−1) under the assumption of straight

rays within Δr

hl =
√

(RE +hl−1)2 +Δr2 +2(RE +hl−1)Δr sinεl−1 −RE , (3.55)

sl = sl−1 +Δsl = sl−1 +REΔφl = sl−1 +RE arcsin
(

cosεl−1 Δr
RE +hl

)
. (3.56)

Fig. 3.11 shows a sketch of these quantities.

Given the new hl , the new εl can be directly derived from the discretized Eq. (3.43),

εl = ±arccos
(
(RE +hl−1)

(RE +hl)

nl−1

nl
cosεl−1

)
︸ ︷︷ ︸

:=F

. (3.57)
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Δr

hl−1

Δsl

εl−1

Δφl

RE

hl

RE

Fig. 3.11.: Sketch of a straight ray path segment Δr and corresponding MSL reduced arc
segment Δsl−1 for the TORE method.

where εl is the local elevation of the ray at range lΔr.

Two problems arise here:

(1) arccos is not defined in the case of F > 1;

(2) the sign of εl is ambiguous (±) because arccos is not a unique mapping for the

co-domain [−π
2 ,

π
2 ].

Concerning (1), this could physically happen if nl is "sufficiently" smaller than nl−1 at

some location l . In analogy to total reflection at a discrete n-jump, we here assume

that the ray be reflected back internally, so

εl = −

⎛
⎜⎜⎝εl−1 +

Δr cosεl−1

RE +hl−1︸ ︷︷ ︸
=:Δε

⎞
⎟⎟⎠ . (3.58)

Δε is a correction term which accounts for the effect of the Earth’s curvature on the

local elevation along a Δr-segment. A graphical derivation of Δε can be found in

Fig. 3.12.
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If F ≤ 1, it is reasonable to assume for starters that the sign of ε does not change

from one step to the next, so we have instead of Eq. (3.57)

εl =

⎧⎨
⎩sign(εl−1)arccos(F) , if F ≤ 1;

−(εl−1 +Δε) ,otherwise .
(3.59)

At first glance, the criterion F ≤ 1 or F > 1 in the iteration of Eqs. (3.55) and (3.59)

could also work for the case of negative elevations, where the sign changes from - to +

somewhere along the ray under “normal” propagation conditions due to the Earth’s

curvature. In this case, it holds hl < hl−1 in F , so that F > 1 would be theoretically

possible. But we found by extensive testing that the asymptotic behavior of F as a

whole is such that it usually remains ≤ 1 in the iteration when εl−1 approaches 0 from

the negative side (except for cases where the n-gradient is very weak), and no sign

change occurs. An example can be found in the later Experiment 4 in Section 3.5.5.

Unfortunately, this asymptotic behaviour seems to be independent of the choice of

Δr. To circumvent this problem, an extra ad hoc criterion is adopted, which uses

the increment between εl−1 and εl−3 to linearly extrapolate and predict εl. A sign

change is assumed if εl−1 < 0 and εl−1 +(εl−1 − εl−3)> 0. The reason we choose the

increment between εl−1 and εl−3 instead of the increment between εl−1 and εl−2 is

that the later one is often too small to prompt the sign change, again because of the

asymptotic behavior of the iteration when εl−1 approaches 0 from the negative side.

This ad hoc criterion works effectively as shown in the Experiment 4 in Section 3.5.5.

Therefore, Eq. (3.59) is modified to

εl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−sign(εl−1)arccosF , if F ≤ 1∧ (εl−1 < 0∧ εl−1 +(εl−1 − εl−3))> 0 ;

−(εl−1 +Δε) , if F > 1 ;

sign(εl−1)arccosF ,otherwise .

(3.60)

Because of the newly considered total reflection assumption, this modified method

is called TORE (acronym for TOtal REflection) and can be summarized as follows

(see Fig. 3.13):
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εl

εl

90◦ − εl
εl−1

90◦+ εl−1

Δφ

RE +hl

RE +hl

Δr
Δs

Fig. 3.12.: Derivation of Δε: on one hand, because (RE + hl−1)Δφ = Δs, it holds Δφ =
Δs

RE +hl−1
=

Δr cosεl−1

RE +hl−1
. On the other hand, it holds (90◦ − εl)+(90◦+ εl−1)+Δφ = 180◦.

Together, it yields Δε = εl − εl−1 = Δφ =
Δr cosεl−1

RE +hl−1
.
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n0Earth

Δr

Δr

ε0

ε1
εl−1

εl

n1 nl−1 nl

h0

Fig. 3.13.: Illustration of the iterative polygon pieces of length Δr and successive local eleva-
tions εl and refractive indices nl for the TORE method.

Step 1: Calculate height hl and MSL-reduced surface distance sl using Eqs. (3.55-

3.57), starting from hl−1 and sl−1 with local elevation εl−1,

Step 2: Estimate nl = n(hl) using radiosonde or NWP data,

Step 3: Calculate εl using Eq. (3.60). Note that nl−1 is known from Step 2 of the

previous iteration.

Steps 1 - 3 are repeated from l = 1 to l = L. In the first iteration, the values at l −1

are antenna elevation ε0, height h0 at the radar antenna, refractive index n0 = n(ho)

and s0 = 0.

Note that, despite extensive testing, we cannot exclude that the above ad hoc criterion

might fail in rare instances, because it is not rigorously mathematically well-founded.

Note also, that the above sign ambiguity is a general problem of Snell’s law (as stated

earlier), and that all methods based on it have to deal with the problem in one way or

another.
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dh

dr

ds

hs

RE

ε

Fig. 3.14.: Sketch of RE , h, s and their differentials for the derivation of Eqs. (3.68) and (3.69)

3.5.4. Method using Second-order Ordinary Differential Equation

Although TORE considers explicitly the actual refractive index, an ad hoc criterion

is required to determine the sign change of local elevations. In this section, we

have found a novel method, called SODE (abbreviation for Second-order Ordinary

Differential Equation), which offers a straightforward analytical/numerical solution

for ray propagation and considers the sign change automatically.

As can be seen from Eq. (3.42), the ray propagation can be formulated as an initial

value problem of an ODE. Principally this would be possible by employing Eq. (3.42)

directly, but it has the drawback of being formulated relative to the independent

coordinate s. For many practical applications, e.g., as part of a radar forward operator,

a formulation relative to the along-beam range r would be preferential, because it is

then possible to discretize the solution by using a constant Δr which is directly related

to the radar range.

To derive such an alternative ODE, we start from Snell’s law Eq. (3.43) but now

assume h as a function of r, i.e.,

n(h(r)) [RE +h(r)]cosε = const . (3.61)

From differential geometry (cf. Fig. 3.14) one obtains for infinitely small dh and dr
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sinε =
dh
dr

(3.62)

cosε =

√
1−
(

dh
dr

)2 (
≤ 0 because of ε ∈ [−π

2
,
π
2
]
)

, (3.63)

therefore

n(h(r)) [RE +h(r)]

√
1−
(

dh
dr

)2

= const . (3.64)

As indicated, h is assumed to be a function of the range r, so the refractive index n

depends implicitly on r. One differentiates Eq. (3.64) with respect to r and obtains

dn
dh

dh
dr

(RE +h)

√
1−
(

dh
dr

)2

+n
dh
dr

√
1−
(

dh
dr

)2

+n(RE +h)
−2

dh
dr

d2h
dr2

2

√
1−
(

dh
dr

)2
= 0 ,

(3.65)

The singularities dh/dr =±1 can be removed by multiplying
√

1− (dh/dr)2, which

yields

dh
dr

{
n(RE +h)

d2h
dr2 +

(
dh
dr

)2[dn
dh

(RE +h)+n

]
−
[

dn
dh

(RE +h)+n

]}
= 0 .

(3.66)

Since dh/dr = 0 as a general solution is unphysical, it holds

n(RE +h)
d2h
dr2 +

(
dh
dr

)2[dn
dh

(RE +h)+n

]
−
[

dn
dh

(RE +h)+n

]
= 0 . (3.67)

One divides both side of Eq. (3.67) by n(RE +h) and obtains the second-order nonlinear

ODE
d2h
dr2 +

(
dh
dr

)2(1
n

dn
dh

+
1

RE +h

)
−
(

1
n

dn
dh

+
1

RE +h

)
= 0 (3.68)
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and, by substituting dh/dr = u, the equivalent set of two coupled first-order equations

are arrived at

dh
dr

= u ,

du
dr

=−u2
(

1
n

dn
dh

+
1

RE +h

)
+

(
1
n

dn
dh

+
1

RE +h

)
.

(3.69)

Eqs. (3.68-3.69) are physically equivalent to Eq. (3.42), but are formulated with

independent coordinate r instead of s. It can be easily checked that Eqs. (3.68-3.69)

also include the constant solution dh/dr = 0 describing a ray along the Earth’s surface

for dn/dh =−n/(RE +h) and the cases dh/dr =±1 for the exact vertical propagation

(an advantage against Eq. (3.42)).

The equation system (3.69) can be treated as an initial value problem (IVP) with

initial values

u(r = 0) =
dh
dr

∣∣∣∣
r=0

= sinε0 , (3.70)

h(r = 0) = h0 , (3.71)

and the ray tracing problem is then uniquely solved by this IVP.

In analogy to TORE, Eq. (3.69) is discretized and solved in steps of Δr. The iteration

step from location l −1 to l is done as follows:

Step 1: Estimate 1/nl−1 and dn/dh|l−1 at the height hl−1 using radiosonde soundings

or NWP data,

Step 2: Solve Eq. (3.69) with initial values ul−1 and hl−1 to obtain ul and hl

Step 3: As in Eq. (3.57), calculate MSL-reduced surface distance sl from

sl = sl−1 +RE arcsin
(

cosεl−1 Δr
RE +hl

)
,

with

εl−1 = arcsin(ul−1) . (3.72)
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Steps 1 - 3 are repeated from l = 1 to l = L. Note that the IVP posed in Step 2

is currently solved using the 4th order explicit Runge-Kutta method (RK4, see Ap-

pendix B.2), but any other numerical standard method for solving ODEs would be

suitable as well. For the first iteration l = 1, the initial values in Step 2 are given

by Eqs. (3.70-3.71), and the refractive index and its slope has to be estimated at h0,

resulting in 1/n0 and dn/dh|0.

Other authors have also applied differential equation solvers for the ray propagation

problem (Hartree et al., 1946; Siebren, 2003), but the formulation of the above ODE

in terms of r is believed to be new and especially suitable for radar forward operators.

3.5.5. Sensitivity experiments

So far we have presented three methods to calculate radar beam propagation in a

stratified atmosphere. In what follows, we compare all these methods by evaluating

them for specific atmospheric conditions. This is done with a series of sensitivity

experiments in a framework, where certain horizontally homogeneous vertical profiles

of T , p and e are prescribed (cf. Neuper (2010)). The first three experiments are based

on the idealized ducting profiles introduced in Fig. 3.9. A fourth experiment is based

on standard atmosphere data, and a fifth applies measured radiosonde data from a

ducting case.

For all experiments we choose a maximal surface cover range of 300km and a range

resolution Δr of 500m. In the first three experiments we investigate simulations of

beam propagation for two initial elevations ε0 = 0.1◦ and ε0 = 1.1◦, and in the fourth

one for ε0 =−0.3◦. In order to stimulate different kinds of ducts, the radar antenna is

set accordingly to different heights in the experiments.

Experiment 1: idealized surface duct

In this experimental setup we simulate a surface duct. Accordingly, we have cho-

sen the profiles of M and N with respect to h as given in Figs. 3.15(a) and 3.15(b),

respectively. The radar antenna is set at a height of 200 m. Fig. 3.15(a) shows a large

negative slope of -100 M-unitskm−1 of M for the first 350 m and thereafter a slope of

117 M-unitskm−1.
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The simulation results are shown in Figs. 3.15(c) and 3.15(d). Fig. 3.15(c) represents

the variations of beam heights h with distance s computed by the three methods, while

Fig. 3.15(d) shows the absolute height differences of TORE and SODE, respectively,

compared to 43ERM. One can see that for ε0 = 1.1◦, the beam heights calculated by

all three methods are generally close to each other (as shown in Fig. 3.15(d)) and

are less than 600 m at maximum range; for ε0 = 0.1◦, the resulting rays according

to TORE and SODE are refracted downward to the Earth’s surface because of the

strong negative dM/dh, while 43ERM produces a curve which is straightening up.

No surface reflection was taken into account in these calculations, and therefore the

rays of TORE and SODE end when reaching the ground. The discrepancies compared

to 43ERM grow already to about 1600 m at a distance of 140 km. This observation

is therefore in accordance with the statement from Doviak and Zrnic (1993) that for

the higher elevations the radar beams are less sensitive to the refractivity gradient,

while for low elevations (< 1◦) under ducting conditions 43ERM is prone to (strongly)

overestimating the beam heights.

Experiment 2: idealized surface S-shaped duct

Now we apply all these methods to an idealized surface S-shaped duct, characterized

by the profiles of M and N, shown in Figs. 3.16(a) and 3.16(b). The antenna’s height

is chosen to 40 m. The profile of M begins with a slope of 117 M-unitskm−1 for

the lowest 100 m, then alters to -100 M-unitskm−1 until 400 m and thereafter goes

back to 117 M-unitskm−1. As can be seen in Figs. 3.16(c) and 3.16(d), for ε0 = 1.1◦

the differences of three methods are insignificant (about 1 km at maximal distance),

in contrast to ε0 = 0.1◦, where the rays calculated by SODE and TORE are both

propagated in a wave-like mode, trapped within the ducting layer (see Fig. 3.16(c)),

and the height differences compared to 43ERM reach 1600 m at a distance of 150 km

(see Fig. 3.16(d)). The reason for slight discrepancies between SODE and TORE for

ε0 = 0.1◦ in Fig. 3.16(c) will be addressed in Experiment 5.
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Fig. 3.15.: Experiment 1: simple surface duct. (a) and (b): profiles of M and N with height in
m; (c): beam heights in m for different initial elevations and simulation methods as indicated
as a function of surface distance in m×105. The antenna height is assumed to be 200 m; (d):
height differences compared to 43ERM as a function of surface distance in m×105.

72



3.5. Beam bending

380 400 420 440 460 480 500 520 540
0

200

400

600

800

1000

1200

1400

1600

Modified refractivity M

H
ei

gh
t [

m
]

(a)

260 280 300 320 340 360 380 400
0

200

400

600

800

1000

1200

1400

1600

Refractivity N
H

ei
gh

t [
m

]

(b)

0 0.5 1 1.5 2 2.5 3

x 10
5

0

200

400

600

800

1000

1200

1400

1600

Surface distance [m]

H
ei

gh
t [

m
]

ε
0
 = 1.1°

ε
0
 = 0.1°

ε
0
 = 0.1°

(c)

0 0.5 1 1.5 2 2.5 3

x 10
5

0

200

400

600

800

1000

1200

1400

1600

Surface distance [m]

H
ei

gh
t d

iff
er

en
ce

 [m
]

 

 

ε
0
 = 0.1° : 43ERM − TORE

ε
0
 = 0.1° : 43ERM − SODE

ε
0
 = 1.1° : 43ERM − TORE

ε
0
 = 1.1° : 43ERM − SODE

(d)

Fig. 3.16.: Experiment 2: same as Fig. 3.15 but for a surface S-shaped duct
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3. Radar forward operator

A further situation modelled is an idealized elevated duct. The corresponding pro-

files of M and N are illustrated in Figs. 3.17(a) and 3.17(b). The antenna height is

300 m. The profile of M starts with slope 117 M-unitskm−1 for the first 250 m, then

changes to −100 M-unitskm−1 until 400 m and at last returns to 117 M-unitskm−1.

The general features of the results, illustrated in Figs. 3.17(c) and 3.17(d), are mainly

the same as those in Experiment 2 except that the duct here is lifted in the air and does

not touch the ground.

Experiment 4: standard conditions

The current experiment is based on data for standard conditions. As shown in

Fig. 3.18(a) (or 3.18(b)), now a constant slope of dM/dh = 117 M-unitskm−1 through-

out the atmosphere is considered. The antenna height is set to 200 m. But now the ele-

vation is set to a negative value, ε0 =−0.3◦. In order to demonstrate the effects of the

ad hoc approach Eq. 3.59) for TORE, two experiments are performed here, one using

Eq. (3.59), denoted with E4(1) and the other one simplily εl = sign(εl−1) · arccos(F),

denoted with E4(2). In E4(1), the results of all three methods are basically identical

(see Figs. 3.18(c) and 3.18(e)). All prompt the beams to descend at the beginning in

virtue of the negative initial elevation and to slope upwards after a distance of about

50 km due to the Earth’s curvature. This shows that, for “normal” conditions, 43ERM

is a satisfactory approximation in comparison with the solution of SODE, which is

considered as an accurate reference solution.

But in E4(2), TORE is not able to overcome the slight negative elevations (near to 0◦

as shown in Fig. 3.18(e)) and thus flattens out afterwards, which is due to the fact that,

under standard conditions, the beam parts with negative local elevation are propagated

from smaller to larger n. Thus, the conditions for “total reflection” are not met and the

negative local elevations fail to become positive, because Eq. (3.60) preserves the sign

of the elevation from one TORE iteration step to the next. This special artifact shows

the necessity of Eq. 3.59) as a criterion for a sign change of ε in “non-total-reflection”

conditions (i.e., the elevation at some distance has to change its sign from negative to

positive just because of the Earth’s curvature).
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Fig. 3.17.: Experiment 3: same as Fig. 3.15 but for an elevated duct
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(e) E4(1): variations of local elevation as func-
tion of surface distance for elevation −0.3◦:
+ 43ERM; SODE; ◦ TORE
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Fig. 3.18.: Experiment 4: standard conditions. (c) and (d): beam heights in m calculated
by TORE, using Eq. (3.59) or simplily εl = sign(εl−1) · arccos(F), respectively, indicated as
a function of surface distance in m×105; (e) and (f): same as (c) and (d) but for the local
elevation in degree.
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Fig. 3.19.: Sounding from Stuttgart-Schnarrenberg at 00:00 UTC on 4th September 2004

Experiment 5 using measured radiosonde data

In this experiment, a case based on real atmospheric conditions is investigated,

which exhibits a strong temperature inversion and moisture profile near the ground

observed at Stuttgart-Schnarrenberg (WMO-ID 10739) in Germany at 00 UTC on

4th September 2004 (see Fig. 3.19). The corresponding profiles of M and N given

in Figs. 3.20(a) and 3.20(b) are derived from the radiosonde data available from the

University of Wyoming3, where a vertical interpolation of original T , dew point Td

and p-data to additional levels (linear oversampling every 10 m vertical) is performed

and from these oversampled data, n is computed. The refractive index nl at some

arbitrary level l is derived by linear interpolation from upper and lower neighboring

3Although a radiosonde measures on a spatial scale much larger than the radar wavelength, the data are readily available and
are a good source of atmospheric information on temperature and humidity structure. It is assumed that the radiosonde
data will at least yield a not too noisy representation of the n-profile in ducting conditions.
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3. Radar forward operator

oversampling points at locations l> and l<. The refractivity slope is approximated by

a simple differential quotient

dn
dh

∣∣∣∣
l
=

nl> −nl<
hl> −hl<

. (3.73)

The linear oversampling of the original radiosonde data minimizes interpolation arti-

facts for n and its vertical slope. It is justified because in radiosonde data, T and Td

often exhibit a near-linear dependence on height inbetween the data points which are

stored in radiosonde data sets, and p varies smoothly with height.

If, however, some noise in the derived n-profiles should lead to noisy gradients, some

smoothing could be obtained by applying more sophisticated methods for interpolation

and slope calculation. The authors found the so-called Savitzky-Golay-Filter (Press

et al. (1993)) very useful, i.e., fitting of a low-order polynomial to a wider stencil of

neighboring oversampling points (e.g., 5th order polynomial, 12 surrounding points)

and computing n and its slope from this polynomial instead of interpolating from the

original data.

The setup of maximal surface distance, range resolution and initial elevations remain

the same as previously and the radar antenna height is set to 40 m.

The corresponding M-profile in Fig. 3.20(a) shows a duct between 17 m and 144 m

above the surface (i.e., duct depth = 127 m) and a trapping layer extending from 71 m

to 144 m. Therefore, it can be expected to observe an elevated duct between 17 m

and 144 m in ray paths with low elevations. Fig. 3.20(c) illustrates the comparison

of beam heights computed by the three methods. As expected, all three methods

provide nearly the same results for ε0 = 1.1◦; for ε0 = 0.1◦, 43ERM, not “knowing”

about the actual ducting conditions, generates a lifting curve, while TORE and SODE

are consistent with the expected ducting conditions, and both are able to deliver

reasonable waveguide-like results, with however slightly different shapes (Figs. 3.20(c)

and 3.20(d)). Fig. 3.20(e) shows the corresponding local elevations.

It is worth noting that the discrepancies between SODE and TORE, as shown in

Fig. 3.20(c), arise from numerical reasons, which can be eliminated by refining the

range resolution Δr. For instance, if we replace Δr = 500 m with Δr = 200m, the

discrepancies almost disappear as illustrated in Figs. 3.21(c) and 3.21(e).
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Fig. 3.20.: Experiment with real radiosonde data. (c): beam heights in m for different initial
elevations and simulation methods as indicated as a function of surface distance in m×105.
The antenna height is assumed to be 40 m; (d): height differences compared to 43ERM as a
function of surface distance in m×105; (e): same as (c) but for the local elevation in degree.
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Fig. 3.21.: As Fig 3.20 but with a finer range resolution of Δr = 200 m

Idealized case study with the COSMO-model

SODE, as the reference method, gives us an incentive to take a further insight into

viability of SODE under abnormal conditions within the COSMO-model. Therefore,

we test SODE again with the same thermodynamic profile given in Fig. 3.19 but now in

framework of the COSMO-model. Here, special care must be given to the vertical grid

resolution. Thus, two idealized COSMO-model runs are done with exp_galchen = 2.6

and exp_galchen = 3.6. Both grids have 64 vertical levels that are unequally spaced

as shown in Tab. 3.2. Those values are interpolated, in accordance with the value of

exp_galchen, from the initial thermodynamic profile to the model levels, and serve

as initial data for model runs. We can see that the larger exp_galchen is, the denser

the lower vertical levels are. Lateral boundaries are periodic. A radar station with an

effective range of 124 km and an altitude of 100 m is assumed, thereby two elevations

ε0 = 0.1◦ and 0.5◦ are investigated.
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3.5. Beam bending

exp_galchen = 2.6 exp_galchen = 3.6

Vertical index Height [m] Temperature
[K]

Height [m] Temperature
[K]

64 37.693 292.273 4.247 291.523
63 130.821 294.568 19.108 292.084
62 251.433 294.692 45.840 292.450
61 389.199 293.751 83.223 293.454
60 540.569 292.572 130.689 294.782
59 703.551 291.089 187.889 294.880
...

...
...

...
...

1 21717.759 218.345 21611.143 218.183

Tab. 3.2.: Interpolated vertical profiles of temperature on the first grid points of each model
level: the vertical index begins from the top of the model. The heights result from the formula

(Gal-chen and Somerville, 1975): z = z∗
(

2
π

arccos
(

k−1
ke−1

))exp_galchen

, where z∗ is the

height of the model top level and ke is the total number of model main levels.
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Fig. 3.22.: The idealized case study with the COSMO-model: beam heights in m, calculated
by SODE for different initial elevations and exp_galchen, as indicated as a function of surface
distance in m×104. The antenna height is assumed to be 100 m

The results of experiments are demonstrated in Fig. 3.22. With exp_galchen = 3.6,

a wave-shaped ray path for ε0 = 0.1◦ is produced, having nearly the same wave length
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3. Radar forward operator

(about 100 km) as in Fig. 3.20(b), in constrat to exp_galchen = 2.6 that leads to a

monotone ascending ray path. The reason is that the latter one generates a coarse grid

spacing which smooths out the gradient of refractive index in the lower atmosphere

and renders the curvature (towards the Earth’s surface) of the ray path less due to

Eq. (3.45). For ε0 = 0.5◦, the slope is already large enough so that the beam penetrates

the ducting layer despite of finer resolution exp_galchen = 3.6.

3.5.6. Summary and Discussion

In this section, we assessed the performance of three radar beam tracing methods,

43ERM (well-known and based on atmospheric standard conditions), TORE (partly

known from literature and based on actual vertical profiles of refractive index n) and

SODE (new method, based on actual profiles of n and introduced in Subsection 3.5.4

by several sensitivity experiments. Both TORE and SODE methods employ actual n

data and are rigorously based on Geometrical Optics and its fundamental Fermat’s

principle. Whereas SODE involves the solution of an initial value problem of an

ordinary differential equation, TORE is based on the conservation of an integral

quantity of this differential equation along the ray path, known as Snell’s law for

continuously stratified media. It is documented that 43ERM may expose errors under

ducting situations and TORE has to employ an ad hoc approach to allow for the sign

switch under standard conditions.

Because 43ERM does not take into account the true environmental conditions at a

specific time, it tends to overestimate the beam heights in the case of superrefraction

or ducting, especially for low elevations (ε0 � 1.0◦). However, for conditions which

are near-normal in the lowest 1000 m or so of the atmosphere or for higher antenna

elevations, it generally works well, as also noted in earlier studies (e.g., Doviak and

Zrnic (1993)) and is a commonly-used method among radar specialists today. Such

conditions are prevailing for the vast majority of cases, because most radar data are

taken from elevations > 1◦, and superrefraction or ducting conditions occur only

occasionally.

When it comes, however, to superrefraction or ducting conditions connected with

low elevations, TORE is able to grasp the ducting effect on propagation, where the

ad hoc approach plays a key role, without which the beam gets “stuck” at a local
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elevation ε � 0◦ and propagates purely horizontally further out under more or less

standard conditions. Nevertheless, this ad hoc approach is based on very simple linear

extrapolation, and its stability and robustness in practice need to be further examined.

Instead, reflections occur naturally with SODE, which means that no special mea-

sures are necessary to correctly treat reflection points, and it can also provides rea-

sonable and robust results in all presented tests. Moreover, SODE is more convenient

in implementation of the radar forward operator due to its r dependency instead of s.

Regarding these facts, we consider SODE as a reference method.

It can be said that if consideration of the actual atmospheric conditions is important,

the SODE method is more reliable than TORE from the current view, because there are

no ad hoc criteria involved in SODE. However, prerequisite for a successful detailed

beam propagation computation is a very good knowledge of the 3D atmospheric state,

i.e., n and its vertical slope, which may vary also horizontally (this last point is not

taken into account in the present paper). With today’s aerological network (sparse

number of stations and sparse observation times), this is certainly not the case in

general, and the results can only be as good as the input data. However, if one day

better, i.e., spatially and temporally more dense, observations should be available, then

SODE can play out its advantages. We also see that the vertical resolution is important

for the accuracy of beam propagation simulation. In this sense, the vertical resolution

in (operational) NWP models today might be not be sufficiently high, but for the future

it is foreseeable that much efforts will go into higher model resolution (at least in

research), so that then, SODE could be the method of choice.

3.6. Beam broadening and shielding

3.6.1. Beam broadening

For a radar of DWD with azimuthal resolution of 1◦, the areal size of one bin ranges

from around 0.05km2 very close to the radar site to around 3.75km2 near the end of

the radar effective range, that is a size difference of factor 75. Thus, radar observations

are of lower resolution at farther distance, which causes differences in appearance of

radar returns close to and far from the radar site. The wider the beam is, the greater

the likelihood of sampling a mixture of precipitation types becomes, especially in the

vertical considering that ice particles melt and change their shape and composition as
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they fall. Therefore, it is more realistic to account for beam broadening than evaluate

reflectivity solely along the beam axis when using radar data as well as developing the

operator.

This is done in our operator, e.g., in Eq. (3.36), by pulse-volume averaging over

azimuthal and elevational directions. Numerically, integration is approximated by a

sum of values at finite integration points within the integration interval, which means

that we have to simulate/evaluate not just the ray path of the beam axis but also those of

some auxiliary axes. In our operator the two dimensional Gauss-Legendre quadrature

(see Appendix B.1) is implemented, with selectable numbers nh and nv of integration

points in azimuthal and elevational directions (see Fig. 3.23). For each integration we

have to first estimate the integration intervals Δα and Δε . Note that Δα expands by

factor c′ due to the angular averaging, which is given by Blahak (2008a)

c′ =
α3,e f f ,0 +(cosε0 −1)Δα[1− exp(−1.5Δα/θ3)]

θ3
. (3.74)

Additionally, we scale up Δα and Δε by factor c′′ (≈ 1.29) to contain 90% power.

Therefore, the actual integration intervals in the operator are Δα = [α0−c′c′′φ3/2,α0+

c′c′′φ3/2] and Δε = [ε0 − c′′θ3/2,ε0 + c′′θ3/2].

Next, one selects the number of integration points and calculate their positions.

Note that since the integration points are symmetrically distributed around the center

of the integration interval, odd numbers are suggested to make sure that the beam

axis is among the integration points. For instance, nh and nv are the numbers of

integration points for intervals Δα and Δε , respectively, the positions of integration

points
{

α ih
0 : ih = 1, · · · ,nh

}
and
{

ε iv
0 , iv = 1, · · · ,nv

}
are determined by formula of

Gauss-Legendre quadrature. For each integration point an auxiliary axis has to be

simulated and the pulse-volume averaging of a certain bin is done by summing up the

values (with corresponding Gauss-Legendre weights) on these auxiliary axes within

that bin. Thus, (nh+nv−1) auxiliary rays - instead of solely one beam axis - are used

to represent one single beam.
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3.6. Beam broadening and shielding

Fig. 3.23.: Sketch of areal integration (plane surrounded by the solid line) with auxiliary
interpolation point for the Gauss-Legendre quadrature. The horizontal and vertical axes are
integration intervals Δα and Δε , respectively, with auxiliary interpolation points, denoted with
� and •.

Fig. 3.24.: Beam shielding: the lower portion of the beam strikes the mountain and hence the
grey area can not be seen by the radar. The dotted line represents, for instance, an auxiliary ray
which is blocked by the mountain and is no taken into account in pulse volume averaging.
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3.6.2. Beam shielding

When radars scan in an environment with natural or man-made obstacles, the beams of

lowest elevation run very likely into surrounding obstacles. If merely the beam axis is

used to represent the beam in simulation, once it hits the obstacle, the beam is totally

blocked. But in the reality, a portion of the beam may be still able to travel above the

top (or side) of the obstacle, so that the radar can still detect the precipitation behind

it (or near it). With pulse-volume averaging this shielding effect can be effectively

approximated. Once an auxiliary ray gets blocked somewhere on the way, it and only

it will be blocked (see Fig. 3.24). In light of different behaviors of measurements,

different averaging strategies are applied to reflectivity and Doppler velocity. For the

former one we average over the whole bin, setting the reflectivity in blocked part equal

to 0mm6/m3 with full weight, while for the latter one we discard the blocked part

and just average over the unblocked area. This treatment is consistent with the real

behaviour of radar measurements.

3.6.3. Sensitivity experiments

Now we are interested in determining the sufficient number of integration points.

Loosely speaking4, the more integration points are, the more accurate are the integrals.

But more points potentially bring about more computational time and memory usage. A

good choice could be very circumstantial, it depends primarily on the model resolution.

For instance, it is advisable to do more averaging when the model resolution is higher

than that of radars. Second, it depends on the variability of model states, e.g., larger

wind shear needs more averaging for Doppler velocity. On the subject of beam

shielding, it is also related to physical properties of obstacles (e.g., height and position

relative to radar).

Next, we intend to find an appropriate number of integration points for the given

model resolution, thermodynamic profiles and orographic obstacle by a series of

experiments in an idealized framework. The first experiment E1×1 is done without

averaging (the first number in subscript refers to nh and the second one to nv) and in

each subsequent experiment we increase the number of integration points by two (note:
4To be precise, an n-point Gaussian quadrature rule yields already an exact result for polynomials of

degree 2n−1, which means the accuracy of an numerical integration can be limitedly enhanced by
increasing integration points.
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3.6. Beam broadening and shielding

first in nv and then in nh). The model setup is same for all experiments: the model

grid comprises of 201×100×64 grid points, with horizontal grid spacing of (0.025◦,

0.025◦) (approx. 2.8 km). The vertical coordinate is the Gal-Chen coordinate with

exp_galchen = 2.6, which generates a moderately increasing grid distance with height

(see Tab. 3.2). The thermodynamic profiles are specified analytically and periodic

conditions are used at the lateral boundaries. A three dimensional Gaussian-shaped

mountain centered at model grid point (i, j) = (72,72) is set with height of 1000 m

and radii of (75000,20000) m, extending to the northeast corner of the observed area.

A convective system is triggered by three ellipsoidal warm air bubbles centered

at (i, j) = (22.5,45.5), (i, j) = (26.5,50.5) and (i, j) = (25.5,55.5), with the same

height of 1400 m and three dimensional radii of (16000,16000,1600) m (i.e., the

bubbles spread out to the surface), within environmental conditions similar to those

given by Weisman and Klemp (1982). The maximum potential temperature deviation

amounts to 3 K. Because the bubbles are warmer than the surrounding air, they are

buoyant and rise freely. As they ascend, they cools at the dry adiabatic rate and the dew

point falls, but not as rapidly. So the temperature of bubbles and dew points approach

each other and relative humidity of bubbles increases. As the bubbles have cooled

down to the dew point, condensation begins, and clouds form. The condensing water

releases latent heat energy, which promotes the air lift. During this process, large

quantities of water emerge which can cause showers or even thunderstorms.

After about three hours, a large squallline type system has developed and reached

mountain area. Fig. 3.25 illustrates the simulated PPI scans at elevation 0.5◦ for E1×1,

E1×3 and E5×9. As shown in Figs. 3.25a and 3.25b, the radar beams are hindered by

the mountain in the northeast part and there are no data behind it. In E1×3, applying

pulse-volume averaging, the elevation of the upper auxiliary axis is already large

enough to make it penetrate the top of mountain and consequently enlarge the areal

cover of reflectivity and Doppler velocity (see Figs. 3.25c and 3.25d, note that Doppler

velocities exist even where no reflectivity is present. This is because weighting by

reflectivity was not used here, and we will come back to this points later on in the the

next chapter). Meanwhile, we can see value cliffs of reflectivity and Doppler velocity

on the edge of the mountain, but by employing more and more integration points, this

discontinuity can be gradually smoothed away (see Figs. 3.25e and 3.25f).
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To gain a deeper insight into effects of increasing integration points, we calculated

differences of every two successive experiments and denote them as Eih×(iv+2)−Eih×iv

or E(ih+2)×iv −Eih×iv (the substration is binwise). The results are shown in Fig. 3.26

for reflectivity and Fig. 3.27 for Doppler velocity. The bins, where at least one of the

experiments does not have numerical values (i.e., bins are either blocked due to the

orography or outside the model domain), are marked in black color5. In Fig. 3.26a,

we confirm the occurrence of total beam blockage in E1×1 in black area. The dark red

area arises from comparing small reflectivities of small values (≤ -5 dBZ) with no

reflectivity, represented by -99.99 dBZ. From Fig. 3.26b to Fig. 3.26d we can see the

impacts of vertical averaging, which continually decrease as integration points increase

due to the edge effect. As expected, the horizontal averaging does not exhibit strong

impacts because of the relative coarse horizontal resolution. The dark red spots in

Fig. 3.26e basically outline the border from reflectivities of small values (≤ -5 dBZ) to

no reflectivity, and emerge clearly due to the same reason just described above. These

are, however, already greatly reduced in E5×9, as shown in Fig. 3.26f. For Doppler

velocity (see Fig. 3.27), the differences also tendentially fade out with increasing

integration points. Meanwhile, a clear stripe structure can be seen which becomes finer

as more integration points are employed. The reason is illustrated in Fig. 3.28, where

we compare integration schemes with three and five points, for instance. At position

P1 the lower outermost point of 5-point integration scheme is under the orography

(i.e., the corresponding auxiliary axis is blocked), so its value will not contribute

to the integration according to the averaging strategy for Doppler velocity and the

other four points build the integration. By doing this, we neglect the point with the

smallest value since the wind speed rises with the height, which results in a faster

Doppler velocity than the 3-point integration scheme using all three points in this case.

When the radar scan moves horizontally closer to mountain, say at position P2, the

lower outermost point of 3-point integration scheme encounters the orography as well,

analogously, this enhances the value of integral, but to a even higher extent and results

in a faster Doppler velocity than 5-point integration at this position. This alternating

value relationship brings about the stripe structure. If we compare two integration

5In this thesis, we distinguish places where no reflectivity exists and where beams are blocked or
outside the model domain. The first one is assigned to value of -99.99 dBZ, while the latter one is
given a nonnumerical value.
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schemes with even more integration points, this kind of alternation will occur more

frequently and we will see more stripes with smaller widths. Figs. 3.27e-3.27f show

that the horizontal averaging is negligible here, which is attributable to the model

resolution and homogeneous wind profile.

3.6.4. Summary

To conclude, the choice of (nh,nv) = (5,9) already provides hardly improvable results

with respect to pulse-volume averaging. Concerning the computational efforts, we

can not arbitrarily increase the number of integration points. One must be aware that

a strong convective scenario is handled here, representing large inhomogeneity of

reflectivity and Doppler velocity. In case of a stratiform rain, probably less integration

points can be considered. Therefore, in the sensitive experiments below, the choice of

(nh,nv) = (5,9) is adopted to guarantee good averaging results.

3.7. Simulation of attenuated reflectivity

The simulation of attenuated reflectivity corresponds to the hydrometeor and the

thermodynamic values including rain water-, graupel/hail- and snow content, air

density and air temperature on model grids and follow the so-called graupel scheme

(Reinhardt and Seifert, 2006) that considers mass densities {qc, qi, qr, qs, qg} of cloud

water, cloud ice, rain, snow and graupel as prognostic variables in case of the one

moment scheme and hail as an additional type of precipitation particle in case of two-

moment scheme (Seifert and Beheng, 2006). The simulation code used here is provided

by Blahak (2007), which computes the reflectivity Ze and attenuation coefficient

Λ on model grid points, based on the full Mie-scattering scheme and temperature

dependent refractive index of the particles. Alternatively, Ze can be calculated by

the Rayleigh approximation together with simple formulas for the refractive index

(Oguchi, 1983). Special care is given to the description of melting particles. As

well-known, the shape of particles are usually different from sphere and the refractive

index of the particle material (mixture of ice, water and air) is considerably sensitive

to the type and structure of the mixture and the bulk density. Since no absolutely

correct theoretical description of the refractive index of such complex mixtures exists,

there are many different formulas available. For that, Blahak (2007) chooses three
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(a) E1×1 (b) E1×1

(c) E1×3 (d) E1×3

(e) E5×9 (f) E5×9

Fig. 3.25.: Sensitivity results at an elevation of 0.5◦ (PPI mode), based on different numbers
of integration points. Left column: radar reflectivity in dBZ (see color bar); Right column:
Doppler velocity in m/s (see color bar)

90



3.7. Simulation of attenuated reflectivity

(a) E1×3 −E1×1 (b) E1×5 −E1×3

(c) E1×7 −E1×5 (d) E1×9 −E1×7

(e) E3×9 −E1×9 (f) E5×9 −E3×9

Fig. 3.26.: Reflectivity differences in dB (see color bar) of sensitivity results at an elevation of
0.5◦ (PPI mode)
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(a) E1×3 −E1×1 (b) E1×5 −E1×3

(c) E1×7 −E1×5 (d) E1×9 −E1×7

(e) E3×9 −E1×9 (f) E5×9 −E3×9

Fig. 3.27.: As Fig. 3.26 but for differences of Doppler velocity in m/s (see color bar)
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3.7. Simulation of attenuated reflectivity

Fig. 3.28.: Vertical section of an azimuthal scan: The straight line represent the integration
interval (or beamwidth); 3-point integration scheme: �; 5-point integration scheme: •.

popular Effective Medium Approximations (EMA) (Maxwell-Garnett, Wiener and

Bruggmann) but considers only spherical particles, where a concentric two-layer-

sphere particle model is implemented for e.g., snowflakes as well as melting hail- and

graupel particles. Normally, the Mie solution results in lower reflectivities than the

Rayleigh approximation for the large particles (except rain drop), but when it comes to

the melting particles, the Mie-scattering scheme usually produces higher reflectivities

because of the special effective refractive index generated by EMA engenders stronger

echoes than the Ogachi’s formula. In this connection, more can be seen in Chapter 5.

As noticed in Eq. (3.19), PSDs of the different hydrometeors are required for

computation of ηe (or Ze). Within the operator, PSDs are derived from the prognostic

specific mass fractions qx in a model-consistent way, i.e., using the same assumptions

for PSDs (e.g., generalized gamma distribution) and the mass-size- and fallspeed-size-

relations (power laws) as the COSMO-model does, and then σb can be integrated over

PSDs and summed up over all species to get Ze. We take here graupel as example

for a brief derivation of a PSD and for the other hydrometeors we refer to Doms and

Schättler (2002).
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3. Radar forward operator

An expontenial size distribution is assumed for graupel:

N g(D) = N g
0 (D)exp(−λ gD) , (3.75)

where N g
0 (D) = 4×106 m−4 (Rutlege and Hobbs, 1984). The properties aof single

graupel particles in the form of power laws are based on Heymsfield and Kajikawa

(1986) for their lump graupel (ρg ≈ 0.2 g/cm3) and it is assumed that mg = ag
mD3.1

with ag
m = 169.6 for the masse-size relation and for the terminal fall velocity: wg

T (D) =

wg
0D0.89 with wg

0 = 442.0 (all in the corresponding SI units).

Because it holds for the graupel mass density

qg =
∫ ∞

0
mg(D)N g(D)dD , (3.76)

we replace N g(D) in Eq. (3.76) with the right-hand side of Eq. (3.75) and express λ g

with known quantities

λ g = f g(N g
0 ,qg) , (3.77)

and applying Eq. (3.77) in Eq. (3.75), we can obtain N g.

The extension of the original code to include attenuation coefficient Λ has been

done by Jerger und Blahak (Jerger et al., 2012). Meanwhile, lookup-tables have been

established for each specie of hydrometeor to avoid the excessive time consumption

of the Mie solution. The values vary with water content, temperature (due to the

refractive index) and average water content in the ice-water-air mixture. Particularly,

each combination of different models for particles with different melting degree (single-

/two-shell configurations combined with either internally accumulated melt water or

absorption of water in the porous structure of ice) needs to be handled separately. The

Mie solution can then be comfortably estimated by interpolation of values in look-up

tables. These three approaches (Mie-scattering scheme, lookup tables and Rayleigh

approximation) form the modular options for simulation of reflectivity in the operator.

Within the operator, Ze and Λ are first computed on the COSMO-model grid points

and then linearly interpolated to the polar radar grid to subsequently perform Eq. (3.36),

which serves as a benchmark to calculate Ze in this work. For the sake of computational

efficiency, we often assume that the beam broadening effect is insignificant and hence
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pulse-volume averaging can be switched off, which means that reflectivity is just

evaluated at the centre of each bin, Eq. (3.36) becomes

〈Z(R)
e 〉(�r0) = Ze(�r0)�

−2(�r0) , (3.78)

and the assumption that attenuation is negligible yields

〈Z(R)
e 〉(�r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r0,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.79)

3.8. Simulation of Doppler velocity

In this work, we aim to devise a comprehensive and flexible simulator of Doppler

velocity which accounts for the reflectivity weighting for wind velocity and fall velocity

of hydrometeors as well as effects like beam bending and broadening.

The 3D-wind vector is projected on the slanted direction of the radar beam and the

model counterpart of the measured Doppler velocity is given by Lindskog et al. (2004)

vr = (usinα + vcosα)cosε +(w−wt)sinε , (3.80)

where α is the radar antenna azimuth and ε is local elevation. ε can be estimated by

the online methods for beam propagation introduced in Section 3.5 (i.e., TORE snd

SODE). u, v and w are the zonal, meridional and vertical components of the wind

vector from the model, respectively. The meteorological convention for winds is that u

component is positive for a west to east flow (west wind), the v component is positive
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for a south to north flow (south wind) and w is positive for a upward flow. wt is the

average terminal fall speed of hydrometeors, which is defined by:

wt :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ρ0

ρ

)0.5 ∑
k∈S

∫ ∞
0 σbk(Dk)wtk(Dk)N

k(Dk)dDk

η
, if weighting by reflectivity;

(
ρ0

ρ

)0.5 ∑
k∈S

∫ ∞
0 wtk(Dk)N

k(Dk)dDk

∑
k∈S

∫ ∞
0 N k(Dk)dDk

, otherwise,

(3.81)

where ρ is the air density, ρ0 is the reference (mostly surface air) density and wtk(Dk)

is the terminal fall velocity of a single hydrometeor as function of diameter Dk. Within

the COSMO-model, wtk is computed by the formula wtk(Dk) = aDb
k , where a and b

are different for each hydrometeor class k. The consideration of terminal fall velocity

is important, especially for assimilation of high-elevation radar data. Currently, we use

some constant value for wt (e.g., 5 m/s) because its implementation with full model-

consistent coupling to N k(Dk), σbk(Dk) and wtk(Dk) could not be accomplished

during the course of this work but it will be done in the near future.

If one applies 43ERM to approximate the radar beam, Eq. (3.80) becomes (Järvinen

et al., 2009)

vr = (usinα + vcosα)cos(ε +δε)+(w−wt)sin(ε +δε) , (3.82)

where

δε = arctan

⎛
⎜⎝ r cosε

r sinε +
4
3

RE +h0

⎞
⎟⎠ (3.83)

takes approximately the curvature of the earth into account.

Taking into account beam broadening, Eq. (3.40) is applied in (almost) full detail

(no range weighting). By neglecting the effect of beam broadening, Eq. (3.40) can be

reduced to:

〈v(R)r 〉(�r0) =�v(�r0) ·�er − (�e3 ·�er)wt(�r0) . (3.84)
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Under the assumption that the hydrometeor fall speed is negligible, Eq. (3.40) can be

rewritten as:

〈v(R)r 〉(�r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(�v(r0,α,ε) ·�er)
η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)
�2(r0,α,ε)

f 4
e (α,ε)cosεdεdα

. (3.85)

Another simplification can be achieved if we neglect the weighting by (attenuated)

reflectivity:

〈v(R)r 〉(�r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(�v(r0,α,ε) ·�er) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

−

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(�e3 ·�er)wt(r0,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.86)

At this point we would like to summarize all available simplifications. With respect

to beam bending, we can choose among the simple offline method 43ERM and

sophisticated online methods TORE and SODE. In terms of beam broadening, we can

take this effect into account by integration or neglect it. The computation of reflectivity

can be done either by Mie solution or by Rayleigh approximation, with or without

consideration of attenuation. We can also decide to apply weighting by reflectivity or

not in computation of Doppler velocity. Those simplifications can save computational

efforts but might lead to accuracy loss in simulations, and their significances will be

evaluated in Chapter 5. Before that, we will first give a brief overview of the operator

from the implementation point of view in the next section.
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With respect to the program design, applicability and efficiency of the operator code

on vector-parallel supercomputers is a major concern. Currently, DWD operates

two independent NEC SX-9 clusters, one for the operational weather forecast, the

other one for research and development. In this section, we explain the computer

implementation of the operator for the NEC SX-9 clusters of DWD. Because the

operator is implemented in the framework of the COSMO-model, it shares the same

programming language, namely FORTRAN 90 or 95. Recall that another goal of the

code design stated in the last chapter is to have a flexible modular operator that offers

different options for each module. The control flags introduced in Tab. 4.1 are used in

implementation to switch on/off modules or to select specific options, and they can be

specified via a Fortran 90 namelist file.

Logical flag (default = .true.) Function
lout_geom Output of heights h and elevations ε of radar bins
loutradwind Output of Doppler velocity vr
loutdbz Output of reflectivity Ze
l f all Taking fallspeed wt into account
lweightdbz Taking weighting by reflectivity into account
lextdbz Taking attenuation into account
lsmooth Taking pulse averaging into account
lonline Simulation of beam propagation with SODE
l f irst_cmp Indication of the first call of the operator in a model run

Tab. 4.1.: Function of the control flags in algorithms
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4.1. Vectorization

Each cluster of DWD has 14 nodes with 4096GB/s shared memory bandwidth per

node and 2×128GB/s bidirectional internode bandwidth. There is 512GB physical

memory per node, the complete system having 7TB physical memory. Each node has

16 processors. The NEC SX-9 processors run at 3.2 GHz, with eight-way replicated

vector pipes, each having two multiply units and two addition units; this results in a

peak node performance of 102.4GFlops/s (= 102,4 billion operations per second) and

102.4GFlops×14 = 22.93TFlops/s peak system performance. For non-vectorized

code, there is a scalar processor that runs at half the speed of the vector unit, i.e., 1.6

GHz. This gives a hint that vectorization1 of code architecture can accelerate the model

runs and save enormous computational time, which is especially of great importance

for the operational use. Vectorization entails changes in the order of operations within

a loop, so vectorization is only possible if this change of order does not affect the

calculation results, which means no data dependency between loop iterations exists.

The NEC SX-9 processors are able to vectorize the innermost loop, so we should

make the innermost loop as long as possible in the operator implementation. Naively,

we can deal with all radar bins of a radar station in three loops over naz (number of

azimuths), nra (number of range) and nel (number of elevations), thereby the length of

the innermost loop can just be maximum among them. However, under the assumption

of a static radar grid geometry (i.e, using 43ERM), each radar bin is independent from

the others and hence we can build one single vectorizable loop over nrp= naz ·nra ·nel

of all bins. The formulas:

irp = iaz+(ira−1) ·naz+(iel −1) ·naz ·nra , (4.1)

iaz = MOD(np−1,naz)+1 , (4.2)

ira = MOD(np−1/naz,nra)+1 , (4.3)

iel = (np−1)/(naz ·nra)+1 , (4.4)

1In Computer science the process of converting an algorithm from a scalar implementation, which
does an operation on one pair of operands at a time, to a vector process where a single instruction
can refer to a vector (series of adjacent values) is called vectorization (Piper, 2012).
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allow for a unique bidirectional mapping between irp and (ira, iaz, iel), where irp is the

numeration index of the single loop and ira, iaz and iel are indices of range, azimuths

and elevations, respectively. In this way, we maximize the length of the innermost

loop and from the loop index irp we can easily estimate azimuth, range and elevation

of a specific bin. Meanwhile, it also reduce the communication overhead, since only

one communication step is required instead of three. In case of the dynamical radar

grid geometry (i.e., using TORE or SODE), however, this kind of vectorization is not

totally feasible due to the dependency on the radial direction. Therefore, the code is

vectorized over naz ·nel as it is later discussed.

4.2. Parallelized code

The idea of parallelization is to distribute the computation efforts to each processor,

with an appropriate load balancing, which refers to the practice of distributing work

among processors as equally as possible so that all processors are kept busy all of the

time. Load balancing is important for decent performance of parallel programs. For

example, if all processors are subject to a barrier synchronization point, the slowest

processor will determine the overall performance, so load balancing can be considered

as a minimization of the processor’s idle time. The COSMO-model exploits static

coarse-grained parallelism through the use of MPI (Message Passing Interface) tasking

(Vetter et al., 1999). The entire COSMO-model domain is split horizontally in a

number of regular rectangles with equal base area, so that each processor computes the

time integration of the model equations only for such a subdomain and all processors

have comparable work to do. In each time step, the exchange of data values across

domain borders is required for the finite-difference calculation of horizontal gradients

at the domain boundaries, therefore, communication between neighboring processors

has to be executed. However, since the communication can be very time-consuming

for current supercomputer architectures, we attempt to minimize communication steps

as much as possible.

Depending on methods of simulating radar beam propagation, two kinds of par-

allelization strategies are viable. In case of the time-constant 43ERM, we have to

101



4. Programming aspects of the radar forward operator

calculate the geographic latitudes, lontitudes and heights (ϕg,λg,h) of the radar bins,

using (Blahak, 2004):

ϕg = arcsin
(

sinϕg0 cos
(

s
Re f f +h0

)
+ cosϕg0 sin

(
s

Re f f +h0

)
cosα

)
, (4.5)

λg =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λg0 + arccos

⎛
⎜⎜⎝

cos
(

s
Re f f +h0

)
− sinϕg0 sinϕg

cosϕg0 cosϕg

⎞
⎟⎟⎠ ; if sinα ≤ π,

λg0 − arccos

⎛
⎜⎜⎝

cos
(

s
Re f f +h0

)
− sinϕg0 sinϕg

cosϕg0 cosϕg

⎞
⎟⎟⎠ , if sinα > π

(4.6)

and Eqs. (3.53-3.54), where (ϕg0,λg0) is the horizontal position of the radar, and

then transform them to the rotated coordinates (ϕ,λ ,h) (cf. Section 2.1). These

calculations have to be done only once at the beginning of a model run because of

offline characteristic of 43ERM. The parallelization is realized in the framework of

the static domain decomposition of the COSMO-model. Each processor computes

first geometric coordinates of all possible bins for each radar and then determines the

observable bins in its own domain.

Algorithm 1 calc_geometry_43ERM
1: for each radar station do

2: for irp := 1 to nrp do

3: Calculate (ϕ,λ ,h) of the bin
4: Estimate index imp, indicating the model grid box, in which the bin is

located
5: Calculate 3D weight �w3 and determine if the bin is observable
6: Estimate ε and h and save index irp if the bin is observable
7: end for

8: Estimate the total number nobs of observable bins
9: end for

In Alg. 1, the index imp is used to remember the model grid (i, j,k) and works in a

similar way as irp in terms of vectorization (cf. Eqs. (4.1-4.4)). In Step 3, �w3 reflects
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the distances to the upper southwest corner of impth model grid box (cf. Fig. 2.5): the

farther the distance is, the smaller value �w3 gains. A failure value2 is assigned to �w3

if the bin is outside the processor domain or unobservable. So for each observable

bin we save irp, imp and �w3 for subsequent calculations, from which we can extract

the knowledge of radar polar coordinates of each observable bin, the model grid box

containing it and its ratio to model values.

The processor now can calculate fall speed (Alg. 2), Doppler velocity (Alg. 3) and

reflectivity (Alg. 4) on those bins and save them in respective vectors. In Algs. 2 and 4,

one computes first wt , Ze or Λ on model grids and then interpolate them trilinearly

onto radar grids, according to irp, imp and �w3. Step 3 in Alg. 3 is done by trilinear

interpolation as well.

Algorithm 2 calc_mod_fallspeed(time)
1: Calculate fallspeeds wt on all model grid points within the processor domain
2: for each radar station do

3: for iobs := 1 to nobs do

4: Calculate wt and save
5: end for

6: end for

Algorithm 3 calc_mod_radialwind(time)
1: for each radar station do

2: for iobs := 1 to nobs do

3: Calculate wind vector (u,v,w)
4: if l f all then

5: Calculate vr and save, using Eq. (3.82) with wt calculated from Alg. 2
6: else

7: Calculate vr and save, using Eq. (3.82) with wt = 0.0
8: end if

9: end for

10: end for

2For all quantities in the operator their failure values are set to be -999.99.
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Algorithm 4 calc_mod_reflectivity(time)
1: Calculate reflectivities Ze on all model grid points within the processor domain
2: if lextdbz then

3: Estimate attenuations Λ on all model grid points within the processor domain
4: end if

5: for each radar station do

6: for iobs := 1 to nobs do

7: Calculate Ze and save
8: if lextdbz then

9: Calculate Λ and save
10: end if

11: end for

12: end for

The last remaining work is to output the data of each radar station in separate files

(Alg. 5), thereby the data of h, ε , vr, Ze and possibly Λ of a single radar station are

collected to a single processor. Since the output files are supposed to be written in radar

polar coordinates for the further processing, the indices irp have to be collected as

well to provide ranges, azimuths and elevations of radar bins. If taking attenuation into

account, Λ (cf. Eq. (3.22)) are summed up along single ray paths to obtain attenuation

factor � (cf. Eq. (3.21)) and attenuated reflectivity Ze at a particular range. The output

files are in two formats: ASCII and NETCDF3. The ASCII files allow us to plot the

results with graphical visualization packages (in this work, Matlab has been used for

this purpose). The NETCDF files follow the feedback file definition of DWD, given by

Rhodin (2012), and serve as inputs for the data assimilation step. Notice that if there

are considerably less radar stations than processors, Alg. 5 can be very imbalanced,

but it does restrict the expensive communication to a minimum.

In terms of this parallelization strategy, the bins of a specific radar might be dis-

tributed asynchronously over different neighboring processor domains: the bins are

much denser distributed for regions close to the radar than for remote regions and the

number of bins per processor domain depends on the radar position. This could cause

some unavoidable load imbalance.

3NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-oriented scientific
data. It is initially developed by the Unidata program at the University Corporation for Atmospheric
Research (UCAR) and is widely used in climatology, meteorology and oceanography applications
(e.g., weather forecasting, climate change).
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Algorithm 5 output_radar
1: for each radar station do

2: Determine the processor x to process data
3: if lout_geom then

4: Gather h and ε onto processor x
5: end if

6: if loutradwind then

7: Gather vr onto processor x
8: end if

9: if loutdbz or lweightdbz then

10: Gather Ze onto processor x
11: if lextdbz then

12: Gather Λ onto processor x
13: end if

14: end if

15: Gather irp onto processor x
16: for iobs := 1 to nobs do

17: Estimate range, azimuth and elevation from irp
18: end for

19: if lout_geom then

20: for iobs := 1 to nobs do

21: According to results of Step 17, re-sort h and ε into hrpolar and epolar
22: end for

23: Write out hrpolar and epolar in two binary files, respectively
24: end if

25: if loutradwind then

26: for iobs := 1 to nobs do

27: Re-sort vr into vrpolar
28: end for

29: Write out vrpolar in a binary file
30: end if

31: if loutdbz then

32: for iobs := 1 to nobs do

33: Re-sort Ze into zrpolar
34: end for

35: if lextdbz then

36: for iobs := 1 to nobs do

37: Re-sort Λ and calculate � and save it in zepolar
38: end for

39: Correct zrpolar with zeploar
40: Write out zepolar in binary file
41: end if

42: Write out zrpolar in binary file
43: end if

44: end for

105



4. Programming aspects of the radar forward operator

Fig. 4.1.: Sketch of the parallelization concept with an auxiliary grid: Left: the radar volume
scan is contained in a cylinder; Middle: the model domain (dashed line) is, for instance,
divided into three processor domains (p0, p1, p2). Discretize the cylinder with an auxiliary
grid (α,s,h), see details in text, interpolate the data from the model grid onto the azimuthal
slices. Right: data along with the azimuthal slices are equally distributed to three processors,
i.e., p0 acquires 120 slices from 0◦ to 119◦, p1 from 120◦ to 239◦, p2 from 240◦ to 359◦.

If SODE is used to simulate the beam propagation, geometric coordinates of radar

bins must be computed every time step due to temporal variability of refractivity. Since

SODE computes iteratively the heights of radar bins along each ray path from the radar

site radially outwards, costly and very imbalanced communication steps are expected

when ray paths pass through the processor borders because processors have to wait for

the results of the others. To avoid this and to ease the organization of communication,

an auxiliary grid structure is proposed which consists of azimuthal slices centered

around the radar stations (see Fig. 4.1). Each grid point is identified by three elements

(α,s,h), where α refers to azimuths of radar scanning and s equidistant arc length

along the surface reduced to MSL. The subspace (s,h) represents vertical “slices” at

constant azimuths. The auxiliary structure has the same number of vertical levels as the

model and h is obtained by horizontal interpolation from heights of four surrounding

model grid points. Let nal be the dimension in s and nhl the dimension in h, then there

are ngp = naz ·nal ·nhl auxiliary grid points in total. As the first step, each processor

has to determine the valid points, i.e., in its own domain, using Alg. 6.

106



4.2. Parallelized code

Algorithm 6 calc_geometry_grid
1: for each radar station do

2: for igrd := 1 to ngp do

3: Calculate (ϕ,λ ) of the auxiliary grid point
4: Estimate index imp, indicating the model grid box, in which the point is

located
5: Calculate 2D weight �w2
6: Calculate h for each point by bilinear interpolation, using �w2
7: Save index igrd if the point is valid
8: end for

9: Estimate the total number ngrd of valid points
10: end for

In Alg. 6, Step 3 includes Eqs. (4.5-4.6) and transformation to rotated coordinates.

It is worth mentioning that just two dimensional horizontal weights �w2 need to be

calculated here and a failure value is assigned if the point is outside the processor

domain. The index igrd is used to save indices of (α,s,h) of each auxiliary grid point

and works in a similar way as irp.

After geometric coordinates of all valid auxiliary grid points have been computed

on a certain processor, the fall speed, Doppler velocity, reflectivity and refractivity

can be horizontally interpolated onto those points. In Algs. 7-10, the estimations of

quantities on the auxiliary grid points are done by the bilinear interpolation from the

corresponding model values, based on �w2 and imp. To solve Eq. (3.68), two quantities

n and
dh
dn

are desired, but in order to lighten the communication load, a resultant

quantity
1

n_grd
· n_low−n_up

h_low−h_up
in Step 9 is introduced to approximate

1
n
· dn

dh
.

Algorithm 7 calc_grd_uvw(time)
1: for each radar station do

2: for igrd := 1 to ngrd do

3: Calculate (u,v,w)
4: end for

5: end for
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Algorithm 8 calc_grd_fallspeed(time)
1: Calculate wt on native model grid points within the processor domain
2: for each radar station do

3: for igrd := 1 to ngrd do

4: Estimate wt_grd
5: end for

6: end for

Algorithm 9 calc_grd_reflectivity(time)
1: Calculate Ze on native model grid points within the processor domain
2: if lextdbz then

3: Calculate Λ on native model grid points within the processor domain
4: end if

5: for each radar station do

6: for igrd := 1 to ngrd do

7: Estimate Ze_grd
8: if lextdbz then

9: Estimate Λ_grd
10: end if

11: end for

12: end for

Algorithm 10 calc_grd_rfridx(time)
1: for each radar station do

2: for igrd := 1 to ngrd do

3: Estimate T, e and p

4: Estimate n_grd using Eq.(3.49)
5: Estimate n_low on the lower model level in an analogous manner
6: Estimate n_up on the upper model level in an analogous manner
7: Estimate h_low on the lower level
8: Estimate h_up on the upper level

9: Update n_grd using Eq. n_grd =
1

n_grd
· n_low−n_up

h_low−h_up
10: end for

11: end for
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After the necessary data have been interpolated to the auxiliary slices, it is time to

distribute data among processors and to let each processor do its portion in parallel.

In the implementation, the so-called block distribution (Vetter et al., 1999) is applied,

where the slices are divided into nprocs parts (nprocs is the number of processors)

and the slices in each part is consecutive in terms of the azimuthal index from n1 = 0

to n2 = 359. For instance (see Fig. 4.1), if three processors are employed to process

the 360 slices, processor 0 does slices 0-119, processor 1 slices 120-239, processor

2 slices 240-359. If the total number of slices is not divisible by the number of

processors, for example nprocs = 16, that is 360 = 16×22+8, we should adjust the

way in distributing slices. The idea adopted here is that processors 0, . . . ,8−1 = 7 are

assigned 22+1 = 23 slices each and the other processors are assigned 22 slices. The

following Alg. 11 depicts how the ranges of slices for all processors are determined.

Algorithm 11 para_range(n1,n2,nprocs,nbl_az, istart, iend)

1: iwork1 = (n2−n1+1)/nprocs
2: iwork2 = MOD(n2−n1+1,nprocs)
3: for i := 0 to nprocs−1 do

4: istart(irank) = irank · iwork1+n1+MIN(irank, iwork2)
5: iend(irank) = istart(irank)+ iwork1−1
6: if iwork2 > irank then

7: iend(irank) = iend(irank)+1
8: end if

9: iend(irank) = iend(irank)+2 ·nbl_az
10: end for

Once the range of slices for each processor is estimated, data can be distributed

accordingly by Alg. 12.

Algorithm 12 distribute_onlineinfos(x)
1: Estimate the range of slices for each processor using Alg. 11
2: Distribute specific data x to each processor according to results of Step 1
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After distribution of all the necessary data, the radar grid geometry, especially the

radar bin heights can be computed independently on each processor (Alg. 13). Notice

that the previous loop over nrp is here bisected into two loops: one over range index

nra, another one over nae, which is joint index over azimuths and elevations. This is

done because of the dependency arising from iterative computations in radial direction,

which makes vectorization in the dimension of range impossible. In Alg. 13, a flag

ensures that the blocked rays are no longer processed once they encounter obstacles.

Step 6 is based on Eqs. (3.57) and (3.72); �w2 gives the appropriate weight for bilinear

interpolation within the ig f th auxiliary grid field and the failure value is assigned if a

bin is unobservable; Step 10 is done by bilinear interpolation from the auxiliary grid,

with �w2, igrd and ig f provided.

Algorithm 13 calc_geometry_sode(time)
1: for each radar station do

2: for ira := 1 to nra do

3: for iae := 1 to nae do

4: if f lag(ira, iae) == 1 then

5: Solve Eq. (3.68) to obtain
dh
dr

(ira,iae) and h(ira,iae)

6: Calculate el(ira, iae) and s(ira, iae)
7: Estimate index ig f of the auxiliary grid field, in which bin is

located
8: Calculate 2D weight �w2 and determine if the bin is observable
9: Calculate n(ira, iae) if the bin is observable and set

f lag(ira, iae) = 1
10: end if

11: end for

12: end for

13: Estimate the total number nobs of observable bins
14: end for

Then, we can evaluate the fall speed of hydrometeors and radar quantities on

observable bins by Algs. 14-16, where the operations are basically bilinear interpolation

from the auxiliary grid.

Finally, the collection of the whole radar station data sets on single output processors

and computation of attenuation factors are performed in the same output subroutine as
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Algorithm 14 calc_mod_fallspeed_sode(time)
1: for each radar station do

2: for iobs := 1 to nobs do

3: Calculate wt
4: end for

5: end for

Algorithm 15 calc_mod_radialwind_sode(time)
1: for each radar station do

2: for iobs := 1 to nobs do

3: Calculate (u,v,w)
4: if lfall then

5: Calculate vr using Eq. (3.82) with wt calculated from Alg. 14
6: else

7: Calculate vr using Eq. (3.82) with wt = 0.0
8: end if

9: end for

10: end for

Algorithm 16 calc_mod_reflectivity_sode(time)
1: for each radar station do

2: for iobs := 1 to nobs do

3: Calculate Ze
4: if lextdbz then

5: Calculate Λ
6: end if

7: end for

8: end for
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for the time-constant 43ERM (Alg. 5). Obviously, compared to 43ERM, additional

communication steps are necessary which are costly but lead to a better balanced

computation of beam propagation because each processor has more or less the same

number of azimuthal slices to deal with. A main improvement could be, if it would be

possible to organize the output of the data to radar station files in a somewhat different

way, so that each processor (not only 1 processor per station) could be involved here.

However, no good solution has been found until now.

4.3. Organization of the radar forward operator

At last, we summarize the whole program design in Alg. 17. The outermost loop

is time-stepping, the operator conducts simulations and writes out results in interval

timesteps. As mentioned before, Algs. 1 and 6 are time-invariant and have to be

executed only once at the first time step, but Alg. 13 must be done every time as

refractivity changes with time.

For the sake of simplicity, only the non-averaging implementation is introduced

above. In case of accounting for pulse averaging, the additional auxiliary rays have

to be defined for the numerical quadrature (see Section 3.6) and then essentially the

same calculations are executed on those rays as for the non-averaging case. A few

more differences occur in the output subroutine, where the with averaging coherent

integration steps are carried out and observable bins are just determined.

This chapter can also serve as a manuscript for a rudimentary impression of the

technical realization of the operator. Of course, there are some other programming

details not described here. For example, the subroutine output_obs_dwd, which reads

the radar observations from data base of DWD and write observed and simulated

values to the above-mentioned NETCDF feedback file, optionally with data thinning

(see Section 6.8).
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Algorithm 17 organize_radar
1: for time = starttime : timestep : endtime do

2: if lonline then

3: if l f irst_cmp then

4: Call calc_geometry_grid
5: for each radar station do

6: Call distribute_onlineinfos(hl_grd)
7: Call distribute_onlineinfos(nk_grd)
8: end for

9: lfirst_cmp = .false.
10: end if

11: if loutradwind or loutdbz then

12: Call calc_grd_rfridx(time)
13: if loutradwind then

14: Call calc_grd_winduvw(time)
15: end if

16: if loutdbz then

17: Call calc_grd_reflectivity(time)
18: end if

19: for each radar station do

20: if loutradwind then

21: Call distribute_onlineinfos(u_grd)
22: Call distribute_onlineinfos(v_grd)
23: Call distribute_onlineinfos(w_grd)
24: end if

25: if loutdbz then

26: Call distribute_onlineinfos(z_radar_grd)
27: if lextdbz then

28: Call distribute_onlineinfos(z_ext_grd)
29: end if

30: end if

31: Call distribute_onlineinfos(rfridx_grd)
32: end for

33: Call calc_geometry_sode(time)
34: if loutradwind then

35: Call calc_mod_radialwind_sode(time)
36: end if

37: if loutdbz then

38: Call calc_mod_reflectivity_sode(time)
39: end if

40: Call output_radar
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Algorithm 17 organize_radar (continued)
41: else � 43ERM used
42: if l f irst_cmp then

43: if loutradwind or loutdbz then

44: Call calc_geometry
45: end if

46: l f irst_cmp = . f alse.
47: end if

48: if loutradwind or loutdbz then

49: if loutradwind then

50: Call calc_mod_radialwind(time)
51: end if

52: if loutdbz then

53: Call calc_mod_reflectivity(time)
54: end if

55: Call output_radar
56: end if

57: end if

58: end if

59: end for
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In order to specify appropriate configurations for the purpose of operational data

assimilation, a series of sensitivity experiments are conducted in a module-wise way,

i.e., we begin with the experiment E0 associated with the simplest (or probably fastest)

formulations for each module and upgrade one particular module in each successive

experiment (see Tab. 5.1). We attempt to find an optimal configuration in the sense

of balance between physical accuracy and computational expense by comparing the

results of experiments with observations, because it provides us the opportunity to

verify which formulation leads to significant errors and which does not, or in the other

words, whether a more comprehensive formulation is necessary. With a clear physical

understanding, we would like to do the least possible amount of adjustment in the

operator to improve the comparisons.

All experiments are run on 16 processors (on a single node) of the NEC SX-9 cluster

at DWD. The horizontal resolution of the COSMO-model is set to be (0.025◦, 0.025◦)
and vertical grid spacing ranges from 20 m at the bottom to 1000 m on the top in 51

levels. The one-moment microphysics schemes are used and the initial and boundary

conditions are provided by the COSMO-EU model. For comparison, observations

come from the radar network of DWD. Recall that these radars have 18 elevations, 1◦

azimuthal resolution, 1 km range resolution and 124km effective range. To avoid the

overlapping data issue caused by taking measurements from multiple radars, a single

radar is involved in each case study.

As for quantitative comparisons between observations by radar and model simula-

tions, the Contoured Frequency with Altitude Diagrams (CFADs, Yuter and Houze

(1995)) are used, which summarize the vertical structure of the radar echoes through

the frequency distribution of three-dimensional gridded reflectivity data and provide

insight into the microphysical processes and structure of precipitating cloud systems.

Yuter and Houze (1995) analyzed the transition of convective to stratiform precipi-

tation in CFADs and pointed out that radar volume scans taken in stratiform event
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Experiment Pulse volume Beam Scattering Attenuation Reflectivity
averaging bending Schemes weighting

E0 No 43ERM Rayleigh No No
E1 No SODE Rayleigh No No
E2 Yes SODE Rayleigh No Yes
E3 Yes SODE Mie No Yes
E4 Yes SODE Mie Yes Yes

Tab. 5.1.: Configuraions of the sensitivity experiments

showed narrow reflectivity distributions at all altitudes, while convection accompanied

with broader distributions, especially in early stages. Therefore, in view of different

meteorological situations, a stratiform precipitation case on 19 January 2012 and a

convection case on 30 June 2012 are explored below.

5.1. The 19 January 2012 stratiform precipitation event

Stratiform precipitation is usually caused by large-scale, dynamic ascent of stably strat-

ified, saturated air and is characterized by relatively small vertical air motion and large

horizontal homogeneity of precipitation fields. It may extend for hundreds of kilometer

but produce in general low rain rates that rarely exceed 10 mm/h. Precipitation typically

first forms at high levels in the atmosphere. In this region, the temperature is normally

below the freezing point of water. The precipitation forms initially as a succession of

very small ice particles. Owing to weak upward air motions, ice particles of all types

drift downward. During the sedimentation phase, they collect each other to form large

snowflakes. As the snowflakes fall, they muss pass through the melting (or 0◦) level

where the temperature rises above the freezing point. At this stage the snowflakes will

start to melt. The initial melting will be on the exterior of the snowflake where a water

coating develops. Water is about 9 times more reflective than ice at microwave wave-

lengths, so these large wet snowflakes exhibit a high reflectivity. The highly reflective

melting snow appear to the weather radars as more intense than it actually is. As the

melting snow continues to fall and melt until it finally becomes rain drops that are

smaller and fall faster, so both the size of the drops and their concentration are reduced,

reducing the reflectivity. All of these processes lead to the formation of a narrow area

of high reflectivity near the melting level, called the "bright band", which is considered
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Fig. 5.1.: Sounding from Munich-Oberschleissheim at 00:00 UTC on 19 January, 2012

a major source of error in precipitation estimation. However, in a stratiform system the

formation of heavily rimed ice species like graupel/hail is quite unlikely, so that less

complicated microphysical processes are involved, which provides ideal conditions for

the preliminary evaluation of microphysical parametrization schemes in snow and rain

as well as the representation of the bright band in the operator/model. Commonly, the

model is expected to agree with a stratiform precipitation event to a high extent.

5.1.1. Description of weather conditions, model data and observations

On 19 January, two low pressure systems “Fabienne I and II” moved from North sea to

Baltic. To the south of the pressure centers, large-scale warm, cold and occluded fronts

took place alternately in Central Europe, which caused widespread heavy rainfall. In

the early morning, west wind brought warm Atlantic air into southern Germany and

lifted rapidly the snow line up to about 1.8 km (see Fig. 5.1). Therefore, except the

highest altitudes of Black Forest and Bavarian Forest where snow or sleet could still
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occur, heavy rain fell in most part of southern Germany, which caused several river

floods in the northern part of Bavaria.

With respect to the study area, the radar station of Munich-Fuerholzen is chosen.

According to Tab. 5.1, five COSMO-model runs are done, starting at 00:00 UTC on 19

January 2012 when the stratiform system entered the study area until 06:00 UTC. The

initial and boundary conditions for model runs are interpolated from the COSMO-EU

model at 00:00 UTC on 19 January 2012. The observed and simulated reflectivities

are written in two output files, respectively, with a temporal resolution of 15 minutes.

5.1.2. Observed and simulated evolution of the precipitation

Firstly, we focus on examining the model representation of the precipitation in aspects

of the timing, intensity and spatial distribution of the reflectivity by means of compari-

son of observed and simulated 2.5◦ PPI radar scans in 3-hour intervals. Later in this

section, we will also specify and analyze the differences among simulations.

Fig. 5.2 views the observed and simulated 2.5◦ PPI scans at 00:00 UTC. In the

observations, the event just moves into the study area from the northwest and the

highest reflectivities reach 25 dBZ. Those features are fairly well captured in the

simulations.

At 03:00 UTC (Fig. 5.3), the precipitation has arrived over the radar site and has

been spread out over a larger area and the maximum values of reflectivities (appr. 40

dBZ) is found beneath the melting level, so it can be explained by the brightband effect.

In the simulations, the position and intensity of the event are well represented and the

maximum values of simulated reflectivities can also be seen below the melting level,

however, approximately 5dBZ less than observed.

At 6:00 UTC (Fig. 5.4), the precipitation persists over the radar site and the intensity

has grown further with more reflectivities exceeding 40dBZ, mainly distributed in the

melting layer, below which reflectivity tends to decreases with the height. In contrast,

the brightband structure is less clear in the simulations, the highest reflectivities attain

just 35dBZ and simulated reflectivity remains roughly constant below the melting

level.

It is also noteworthy to mention that an evident overestimation of simulated spatial

distribution in the higher atmosphere due to the presence of a huge amount of simulated
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reflectivities with values ≤−5dBZ can be seen throughout the whole case study period.

This is because the threshold value for the simulated reflectivity (-90 dBZ) is set much

lower than that for radar measurements (about -31.5 dBZ).

5.1.3. CFADS and effects of operator modules

To help further understand some of the behaviors seen in the previous figures, CFADs

are constructed for observed and simulated reflectivity (see Fig. 5.5). The different

colors represent the percentage of particular reflectivity values falling in a given

class compared to the total number of reflectivity values above a given threshold

(≥−30dBZ) at a given height. The class size selected for this diagram is 2dBZ. The

contours are at interval of 2% per dBZ per 500 m.

In Fig. 5.5, CFADs for the observations and five simulations at 06:00 UTC are

shown. In a gross sense, Fig. 5.5a characterizes the typical stratiform precipitation

as observed: the highest probabilities follow a coherent pattern with the peak density

continually decreasing with the height from about 25 dBZ around the melting layer

(roughly at 2 km high) to -10 dBZ around 7 km and remaining constant afterwards.

Below the melting layer, peak probabilities decrease slightly, probably due to the

evaporation, and then remain constant down to the surface. Maximum reflectivities are

slightly over 35 dBZ at the surface, close to 40 dBZ around 2 km, and decay steadily

upwards until about 7 km.

Although both in observation and simulations the frequency distributions of reflectiv-

ity at upper levels are generally different from those at low levels, notable discrepancies

can be seen while all five simulations are quite similar to each other. In CFADs of

the simulations, reflectivity has a more rapid linear decrease above the melting level,

which leads to more than 10 dB underestimation of reflectivity on average around 7

km compared with observations. The distributions below the melting level are much

narrower and show no evidence of decrease by evaporation. Near the surface, the maxi-

mum simulated reflectivities are slightly lower than observed, which may be explained

by the remaining ground echos not removed by the clutter removal algorithm for the

observed reflectivity. However, 30 dBZ echoes occur at a frequency of more than 20%

compared to about 2% in observation. Since the raindrop collision/coalescence process

plays a relatively small role in shaping its size distribution due to the low rainfall rates
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.2.: Radar reflectivity in dBZ (see color bar) at an elevation of 2.5◦ (PPI mode) on 19
Jan, 2012, 00:00 UTC: (a) observations; (b)-(f) different sensitivity results (see details in text)
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5.1. The 19 January 2012 stratiform precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.3.: As Fig. 5.2 but for 03:00 UTC
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5. Sensitivity experiments

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.4.: As Fig. 5.2 but for 06:00 UTC
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5.1. The 19 January 2012 stratiform precipitation event

(generally less than 6 mm/h) in stratiform precipitation, the high concentrations of

simulated large raindrops near the surface mainly arise from melting large ice-phase

particles, as indicated by high frequency of reflectivities ranging from 10 to 20 dBZ

between 2 and 3.5 km.

In addition to examining the behavior of simulations from the CFAD perspective,

this study also attempts to verify the performance of the individual configurations

of the operator. Here we take for instance the 2.5◦ PPI at 06:00 UTC on 19 January

2012 (Fig. 5.7), which shows some important differences. The effects of upgrades are

depicted in differences between two experiments, denoted as Ei+1−Ei (the subtraction

is class-wise). The classes, at which either the observed or the simulated data are not

present and thus the amount of differences can not be expressed, will be marked in

color black. As shown in Fig. 5.7a, visible differences occur at a distance of about 100

km where height differences computed by 43ERM and SODE become considerable,

say 100 m (Fig. 5.6b). In Fig. 5.7b, the clearest differences (in dark red) appear at

further distances, resulting from comparisons of negative reflectivities, and the black

area indicates a larger areal coverage by means of pulse-volume averaging. However,

differences in radius of 30 km, that is, about 2 km in height, are more interesting.

By virtue of the height, the differences arise probably from the beam interception of

the melting level and consequently pulse-volume averaging over an inhomogeneous

vertical profile of reflectivity around the melting level. In Fig. 5.7c, it can be seen that

the Mie-scattering scheme produces higher reflectivities than the Rayleigh’s method

regarding the melting particles between heights of 30 and 70 km (cf. Section 3.7)

but no notable differences when it comes to light snow and large rain drops in the

lower and upper atmosphere. Finally, Fig. 5.7d shows that attenuation does not play

an essential role in stratiform precipitation.

Experiment Operator [s] Total model run [s] Ratio [%]
E0 72.10 348.24 20.70
E1 81.70 354.65 23.04
E2 117.36 387.70 30.27
E3 143.79 419.71 34.26
E4 150.59 426.59 35.30

Tab. 5.2.: Elapsed wall-clock time: (Ratio = Operator/Total model run × 100)%
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5. Sensitivity experiments

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.5.: CFADs of radar reflectivity in % on 19 January, 2012, 06:00 UTC: (a) Observed;
(b)-(f) different sensitivity results (for details see text)
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5.1. The 19 January 2012 stratiform precipitation event

(a) E0 (b) E1 −E0

Fig. 5.6.: Left column: height in km (see color bar) calculated by 43ERM (from E0), at
an elevation of 2.5◦ (PPI mode) on 19 January, 2012, 06:00 UTC; Right column: height
difference in m (see color bar) between SODE (from E1) and 43ERM

As aforementioned, efficiency of the operator is also regarded as a crucial criterium

for performance. Tab. 5.2 lists the elapsed wall-clock times of total model run and

operator for each experiment. We should be aware that there are variable number of

background computations on SX-9 from time to time, which may delay the model

runs. Typically, operational routines of DWD with higher priority can drive away our

runs on the waiting queue. So the absolute time differences depicted in Tab. 5.2 do not

mean definitely how much one run is faster/slower than the others, however, it does

show us that the time expense tends to ascend with updating configurations, but not

dramatically. The operator occupies minimal 20.70% time of total model run in E0

and maximal 35.30% in E4. The most significant increase occurs when pulse-volume

averaging is switched on in E2, followed by E3 that puts Mie-scattering scheme in

action.

Tabs. 5.3-5.7 reveal the specific elapsed wall-clock time distribution of the operator

in each experiment. We consider the sum of time consumed by "Init./const. geom."

(Algs. 1 and 6), "Grid point values" (calculation reflectivity, attenuation coefficient

and fall speed on model grid), "Online beam propag." (Alg. 13) and "Comp. on

polar grid" (Algs. 3, 4, 7, 9, 10, 15 and 16) as work load and the others, i.e., "MPI

Communications" (Alg. 12) and "Output" (Alg. 5) as communication overhead. The
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5. Sensitivity experiments

(a) E1 −E0 (b) E2 −E1

(c) E3 −E2 (d) E4 −E3

Fig. 5.7.: Reflectivity difference in dB (see color bar) of sensitivity results at an elevation of
2.5◦ (PPI mode) on 19 January, 2012, 06:00 UTC
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5.1. The 19 January 2012 stratiform precipitation event

modest time growth in E1 arises from the online simulation of beam propagation and

the associated communication efforts. Due to intensive pulse-volume averaging, that is

(nh,nv) = (5,9), E2 has obviously much more ray paths to simulate in "Online beam

propag." and additional integration steps in "Output". The main increase in E3 stems

from "Grid point values", where considerable time has to be spent in establishing a

lookup-table for the Mie-scattering scheme. Fortunately, this work needs to be done

just once, so it will become less immaterial for model runs of long term. The slight

increase in E4 results from the sum operations of attenuation coefficients to attain total

attenuation in "Output".

With respect to the topic of load balance, which is defined here as the average work

load among all processors divided by the maximum work load (the ideal case is a load

balance of one and the worst case is the reciprocal of the number of processes), the

operator exposes a proficient load balance, indeed, above 97% (see Tab. 5.8). The

"lowest" load balance in E0 can be explained by the inhomogeneous distribution of

clouds in the model domain, so that some processors have more to do than the others,

and the load balance is continuously ameliorated with configuration updating.

Task Min Ave Max
Operator 69.67 72.10 74.07
Init./const. geom. 12.08 12.18 12.29
Grid point values 1.98 4.23 6.13
Online beam prop. 0.00 0.00 0.00
Comp. on polar grid 0.00 0.03 0.25
Work load 14.06 16.44 18.67
MPI Comm. 0.04 0.70 0.95
Output 54.79 54.84 55.55
Comm. overhead 54.81 55.54 56.50

Tab. 5.3.: Elapsed time distribution in E0
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5. Sensitivity experiments

Task Min Ave Max
Operator 79.16 81.70 83.76
Init./const. geom. 12.66 12.78 12.90
Grid point values 1.98 4.38 6.34
Online beam prop. 0.57 0.58 0.59
Comp. on polar grid 0.06 0.09 0.17
Work load 15.27 17.83 20.00
MPI Comm. 5.64 6.33 6.60
Output 57.83 57.43 58.14
Comm. overhead 63.47 63.76 64.74

Tab. 5.4.: Elapsed time distribution in E1

Task Min Ave Max
Operator 114.94 117.36 119.40
Init./const. geom. 12.38 12.47 12.59
Grid point values 2.05 4.33 6.26
Online beam prop. 14.67 15.02 15.53
Comp. on polar grid 1.13 1.19 1.31
Work load 30.23 33.01 35.69
MPI Comm. 6.00 7.20 7.68
Output 76.95 77.03 77.72
Comm. overhead 82.95 84.23 85.40

Tab. 5.5.: Elapsed time distribution in E2

Task Min Ave Max
Operator 141.31 143.79 145.84
Init./const. geom. 12.22 12.33 12.44
Grid point values 24.06 26.17 28.04
Online beam prop. 14.77 15.21 15.60
Comp. on polar grid 1.13 1.19 1.30
Work load 52.18 54.90 57.38
MPI Comm. 6.30 7.38 8.03
Output 81.33 81.40 82.09
Comm. overhead 87.63 88.78 90.12

Tab. 5.6.: Elapsed time distribution in E3
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5.1. The 19 January 2012 stratiform precipitation event

Task Min Ave Max
Operator 148.14 150.59 152.57
Init./const. geom. 12.26 12.36 12.48
Grid point values 23.89 26.05 27.99
Online beam prop. 14.62 15.00 15.55
Comp. on polar grid 1.42 1.50 1.63
Work load 52.19 54.91 57.65
MPI Comm. 7.38 8.90 9.63
Output 86.58 86.66 87.49
Comm. overhead 93.96 95.56 97.12

Tab. 5.7.: Elapsed time distribution in E4

Experiment Load balance [%]
E0 72.10/74.07 = 97.34
E1 81.70/83.76 =97.54
E2 117.36/119.40 = 98.29
E3 143.79/145.84 = 98.59
E4 150.59/152.57 = 98.70

Tab. 5.8.: Load balance
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5. Sensitivity experiments

5.2. The 30 June - 01 July 2012 convective precipitation event

The dynamical characteristics of convective processes differ stronly from those of

stratiform events, which results in distinction in microphysics and spatial distribution

of precipitation. In meteorology, convection refers primarily to heat transport by

vertical motions of the flow, being produced by differences in bouyancy arising from

variations in density. Vertical motions are about 1 to 10 m/s or more, which equals

or exceeds terminal fall velocities of ice particles (Houze, 1993), so that particles

are rapidly carried up and down inside the cloud by up- and downdrafts and grow by

riming, which allows the formation of larger ice species like graupel or hail. Because

updrafts exist in a limited region of the convective clouds, radar echoes associated

with active convection form a vertical region of maximum reflectivity, which contrasts

with the horizontal orientation of radar bright band seen within the melting layer of

stratiform precipitation. The current COSMO-model is supposed to be able to resolve

convective systems, but to which extent a convection can be outlined by the event and

the model will be investigated in what follows.

5.2.1. Description of weather conditions, model data and observations

Massive warm and humid air had accumulated in the south of Germany for several

days before 30 June 2012. At midnight, the temperature was exceptionally high in

Bavaria (see Fig. 5.8). Together with the high humidity, it provided the necessary

energy for the severe nighttime storm. As a low pressure system expanded reluctantly

from Southwestern Europe to Bavaria on the night of 30 June, strong thunderstorms

were ultimately triggered, accompanied with heavy rain, hail and stormy southwest

winds. The hail was mostly small-grained, but some of which reached diameter up to

4cm.

In this case, the simulations are initialized using the COSMO-EU model at 21:00

UTC, 30 Juni 2012 and run for 4 hours. In addition to reflectivity, Doppler velocity

are simulated and analysed as well. Observations are collected from the radar site

Türkheim, located at the Swabian Alb.
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5.2. The 30 June - 01 July 2012 convective precipitation event
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Fig. 5.8.: Sounding from Munich-Oberschleissheim at 00:00 UTC on 01 July, which is about
90 km away from Türkheim.
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5. Sensitivity experiments

5.2.2. Observed and simulated evolution of the precipitation

In analogy to the stratiform case study, the evaluation of the representation will be based

on 2.5◦ PPI radar scans compared to five simulations each two hours starting 21:00

UTC on 30 Juni 2012 until 01:00 UTC on 01 July 2012 when the convective system

had almost totally faded in the study area. Because of the complex microphysical

processes in convection, discrepancies in timing, organization and intensity of the

event are expected.

Fig. 5.9 and 5.10 show the observed and simulated 2.5◦ PPI scans at 21:00 UTC on

30 June 2012 for reflectivity and Doppler velocity, respectively. In the observations

(Fig. 5.9a), the convective system propagates to the study area from the northwest

with the main squall line in the west (with N/S orientation) spreading from 150 km

to 250 km in Y direction. The line has the highest reflectivities up to 55 dBZ in

the south and weakens gradually towards the north. From the north to the northeast,

the observations are dominated by reflectivities between 20 and 30 dBZ with some

convective cells in the vicinity of (230, 150) km. All the simulations (Figs. 5.9b-5.9f)

are able to rebuild the movement and shape of the event appropriately but the intensity

is comparable apart from observations. In the northern part, the number of reflectivities

between 20 and 30 dBZ are mainly overestimated in simulations and the position of

observed convective cells around (230, 150) km seems to be shifted to the northwestern

sector near the radar site. The simulated reflectivities of value ≤−5 dBZ are mostly

distributed in the higher atmosphere, while the observed ones are concentrated in the

lower levels. In terms of Doppler velocity, all the simulations show a good agreement

with the observations in strength and direction. Since Doppler radars can only measure

wind where reflectivity is present, the observed wind shows an identical areal extent

as reflectivity. Ignoring this factor, E0 and E1 overestimate clearly the coverage of

Doppler wind compared to the observations, especially in the southern part, where

no reflectivity is observed (see Fig. 5.9a). Fig. 5.10d highlights the effects of taking

weighting by reflectivity into account, which adjusts the coverage close to the observed

one. In Figs. 5.10e and 5.10f, no distinction can be seen, though.

At 23:00 UTC, the squall line has arrived in Türkheim, the highest reflectivities

of which have strengthened slightly with maximal value up to 60 dBZ, as shown

in Fig. 5.11a. In the simulations, the system has also moved further to the east but
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.9.: Radar reflectivity in dBZ (see color bar) at an elevation of 2.5◦ (PPI mode) on 30
June, 2012, 21:00 UTC: (a) observations; (b)-(f) different sensitivity results (see details in text)
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.10.: Doppler velocity in m/s (see color bar) at an elevation of 2.5◦ (PPI mode) on 30
June, 2012, 21:00 UTC: (a) Observed; (b)-(f) different sensitivity results (for details see text)

134



5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.11.: As Fig. 5.9 but for 23:00 UTC
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.12.: As Fig. 5.10 but for 23:00 UTC
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5.2. The 30 June - 01 July 2012 convective precipitation event

apparently more slowly and the highest reflectivities attain values just close to 55 dBZ.

Related to the discrepancies in reflectivity, the simulated Doppler velocities are also

apart from the observations in strength and distribution pattern, as shown in Figs. 5.12a

and 5.12d.

At 01:00 UTC on 01 July 2012, the convection has passed Türkheim and the intensity

of the event has significantly declined with just a few cells exceeding 45 dBZ and

the squall line expends from the southwest to the northeast. The overall structure

and evolution of the event are well established in the simulations but the number of

reflectivity with value ≤−5 dBZ is underestimated in the lower and overestimated in

the higher levels beside the observations. This disagreement is also visible for Doppler

velocity (Fig. 5.14d).

In order to compare the observed and the simulated evolution of the precipitation

in a more quantitative way, we now express the temporal evolution of the system

at 15-minute intervals as histograms based on different reflectivity classes given in

Tab. 5.9.

Reflectivity class Interval [dBZ] Precipitation
1 (−∞,5) no
2 [5,15) very light
3 [15,25) light
4 [25,35) moderate
5 [35,45) heavy
6 [45,∞) very heavy

Tab. 5.9.: Different reflectivity classes

Fig. 5.15 is derived from the 2.5◦ PPI scans. As shown in Fig. 5.15a, a great amount

of reflectivities fall in Class 1 both in observations and simulations, and an evident

overestimation of simulated reflectivities can be seen throughout the entire study

period. For Class 2, 3 and 4, there are more observed reflectivities and the numbers

peak at 23:30 UTC, closely one hour earlier than the simulations, which confirms the

previous finding that the evolution of model is likely slower. Fig. 5.16 is the histogram

of all reflectivities, and shows nearly the same characteristics as Fig. 5.15 does, which

means that the 2.5◦ PPI scan is a suitable representative for the whole event. To
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.13.: As Fig. 5.9 but for 01 July, 2012, 01:00 UTC.
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.14.: As Fig. 5.10 but for 01 July, 2012, 01:00 UTC.
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verify the model’s delay, we add Fig. 5.17, the simulated PPI scan of elevation 2.5◦

at 00:00 UTC on 01 July 2012 for E4, which shows that the reflectivity coverage and

wind pattern in Figs. 5.17a and 5.17b are much closer to Figs. 5.11a and 5.12a than

Figs. 5.11f and 5.12f. This lag is also visible in Class 5 and 6 although the number of

simulated reflectivities is generally overestimated. The observations and simulations

reach comparable numbers in all classed except Class 1 for the first time at 01:00 UTC

on 01 July when the convective system has strongly decayed.

5.2.3. CFADS and effects of operator modules

Again for further analysis, reflectivity CFADs are constructed by classing the reflectiv-

ities into 2-dBZ classes beginning at -30 dBZ at each height. The contours here are at

interval of 2% of data per dBZ per 1 km. Fig. 5.18 shows the observed and simulated

CFADs for 23:00 UTC. In comparison to the stratiform case, the convective CFADs

indicate much broader distributions of reflectivity values in all levels, which agrees

with the statement of Yuter and Houze (1995). In the observed CFAD (Fig. 5.18a),

above the melting level (appr. 3 km high), the intensity decreases with increasing

height and high concentration of 20 dBZ reflectivities can be seen at 8 km height.

Maximum reflectivities are around 55 dBZ at the surface, over 45 dBZ between 2 und

4 km height and drop off steadily aloft. High reflectivities (≥ 40 dBZ) aloft suggest

a predominance of graupel or hail, as consequence of convective updrafts favoring

growth of particles by riming. The melting large ice-phase particles and the raindrop

collision/coalescence process in convection give rise to the large raindrops under the

melting level. In comparison, the shapes of observed and simulated distributions are

considerably different, while all five simulations are similar to each other (Fig. 5.18).

As indicated in Fig. 5.18b, the simulated reflectivities exhibit a even broader distribu-

tion and decrease faster with the increasing height than the observed ones down till

the melting level, and the concentration of 20 dBZ reflectivities is not present. Below

the melting level, most reflectivities accumulate at 40 dBZ, about 10 dBZ more than

observations.

We give now a look at the effects of the individual configurations of the operator.

Here we focus on the 2.5◦ PPI scans at 23:00 UTC. The differences are depicted in

Figs. 5.19 (for reflectivity) and 5.20 (for Doppler velocity). As indicated in Fig. 5.19a,
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

Fig. 5.15.: Histograms of reflectivity in different classes (a-f) as function of time at 15-minute
intervals from 21 UTC on 30 June to 01 UTC on 01 July 2012 at an elevation of 2.5◦ (PPI
mode): observations in black line; sensitivity results in color lines. The class intervals are
written on the top of each subfigure. The X-axis is in units of hour, from 0 to 4 hours,
representing from 21 UTC to 01 UTC. The Y-axis is the number of reflectivity bins.
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(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

Fig. 5.16.: As Fig. 5.15 but for all elevations
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5.3. Summary

(a) Reflectivity (b) Doppler velocity

Fig. 5.17.: Sensitivity results of E4: (a) radar reflectivity in dBZ (see color bar) at an elevation
of 2.5◦ (PPI mode) on 01 July, 2012, 00:00 UTC; (b) Doppler velocity in m/s

the chosen methods for simulating beam propagation have trivial distinctions in this

case. The differences in Figs. 5.19b and 5.19c arise from the reasons as in the stratiform

case study. The most crucial impacts are probably when the attenuation is accounted

for Fig. 5.19d, where the intensity of reflectivities weakens by more than 10 dB in

the western and northern parts of the study area. For Doppler velocity, the most

important improvement is brought about by weighting Doppler velocity by reflectivity

(Fig. 5.20b). Besides the reduction of the spatial extent of wind to comparable surface

of observations, the strength of wind also drops in general because reflectivity declines

with height in most cases. The other upgrades reveal little importance.

5.3. Summary

To sum up this chapter, a good agreement between model and radar observations was

achieved in the case of the stratiform event, including the intensity and position of the

event and bright band. Regarding the convective event, the model is able to catch the

general evolution of the system but with some time delay. This might have contributed

to disagreements in intensity and position.
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.18.: As Fig. 5.5 but for 30 June, 2012, 23:00 UTC.
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5.3. Summary

(a) E1 −E0 (b) E2 −E1

(c) E3 −E2 (d) E4 −E3

Fig. 5.19.: Reflectivity difference in dB (see color bar) of sensitivity results at an elevation of
2.5◦ (PPI mode) on 30 June 2012, 23:00 UTC
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(a) E1 −E0 (b) E2 −E1

(c) E3 −E2 (d) E4 −E3

Fig. 5.20.: As Fig. 5.19 but for differences of Doppler velocity in m/s (see color bar)
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5.3. Summary

By reason of elevations, thermodynamical profiles and model set-up, SODE results

in a similar beam propagation as 43ERM. Pulse-volume averaging shows effects

when radar beams arrive at long distances or intercept the melting level. The Mie-

scattering scheme stimulates higher reflectivities than the Rayleigh method in case of

large melting particles due to the special treatment of the refractive index by EMA.

Taking attenuation into account has less significance in the stratiform event but has

great impacts in convection. Weighting Doppler velocity by reflectivity allows for

adjustment of areal coverage of Doppler velocity to the measured one.

With regard to the efficiency, the operator approaches a sufficient extent in all

experiments, thanks to sophisticated vectorization and parallelization. The largest

increase of computational time occurs when an intense pulse-volume averaging is

applied. Another considerable increase is provoked by using the full Mie-scattering

scheme instead of the Rayleigh approximation owing to estimation of numerous lookup

tables. However, this work has to be done just once at the beginning of the model run

and its computational significance will fade out as the model runs for a long period.

Calculations of online beam propagation (SODE) and attenuation contribute slightly

to the computational time.

Concerning the goal of experiments, which is to acquire a good balance between

accuracy and efficiency of the operator, the question remains if such an intensive

pulse-volume averaging is tolerable for purpose of data assimilation.
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6. Data assimilation with Kalman Filter and its variants

Since Rudolf Kalman’s first seminal paper on state estimation (Kalman, 1960), Kalman

filter has been widely used in virtually many technical or quantitative fields such as fault

detection, mathematical finance and global positioning, etc.. This recursive algorithm

determines state variables of a noisy (linear) dynamical system by minimizing the

analysis error of the current state in a root mean square sense as noisy measurements

are taken and as the system propagates in time. Each update provides the latest

unbiased state estimate together with a measure on the uncertainty of those estimates

represented in form of a covariance matrix.

In this chapter, we begin with the mathematical and statistical background of a

Kalman filter and then give an overview of derivation path to its variants. These

information have been condensed out of a wealth of literature sources, mostly notably

from Kalman (1960), Bouttier and Courtier (2002), Evensen (2003), Tippett et al.

(2003), Wang et al. (2004) and Hunt et al. (2007).

6.1. Traditional Kalman Filter

A traditional Kalman Filter (hereafter KF) is a sequential method, which means that

the model is integrated forward in time and before the next integration, the model state

is reinitialized whenever observations are available. KF aims at finding an optimal

analysis state xa ∈ R
n of the model, provided a forecast state x f ∈ R

n available at

model grid points and a set of observations yo ∈ R
p available at irregularly distributed

points, where p is the number of observations. Notice that a single vector of state x is

formed by ordering the model variables by grid points and by variables, so the length

n of x is the product of the number of grid points times the number of variables.
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Let xt
k ∈ R

n be the unknown true state of the system at time tk. We consider that the

evolution of xt
k is modeled by a discrete-time system:

xt
k+1 = M (xt

k)+ηk , (6.1)

where M : Rn −→ R
n is a nonlinear operator.

Eq. (6.1) defines thus the pseudo random model error by

ηk := xt
k+1 −M (xt

k) , (6.2)

with zero mean1 and the corresponding error covariance matrix Qk := E
(
ηkηT

k

) ∈
R

n×n, where E(·) represents the statistical expected value.

Similarly, we define the forecast error by

ε f
k : = M (xt

k−1)+ηk−1︸ ︷︷ ︸
=xt

k

−M (xa
k−1)︸ ︷︷ ︸

=x
f
k

(6.3)

= xt
k −x

f
k , (6.4)

with the corresponding forecast error covariance matrix P
f
k := E

(
ε f

k ε f T

k

)
∈ R

n×n.

On the other hand, the relation between the true state and the observational variables

is assumed to be described by the following expression:

yo
k = H (xt

k)+ εo
k , (6.5)

where H : Rn −→ R
p represents the observation forward operator that includes trans-

formations from state variables into the observations and grid interpolations, and εo
k

is the observation error with the corresponding covariance matrix Rk := E
(

εo
kεoT

k

)
∈

R
p×p. Unfortunately, Rk is very hard to estimate and can cause problems in the

analysis and quality control algorithms, therefore it makes sense in practice to try to

minimize it by improving the accuracy of the model and forward operators, by using a

bias correction scheme, by avoiding unnecessary observation preprocessing and by

data thinning (Bouttier and Courtier, 2002). Several advanced techniques have been

1Although we assume that mean error is zero, in reality a model error has usually a bias needed to be
taken into account.
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6.1. Traditional Kalman Filter

developed for estimating Rk (Chapnik et al., 2004). However, at the early stage of this

study, Rk is often assumed to be diagonal for simplicity, which means the observations

are not correlated. This assumption applies also in this thesis.

Since we do not know exactly the true xt
k, we do not have full knowledge about the

errors of forecast and observations, either. To deal with it, KF generally assumes a

Gaussian forecast and observation error distribution, that is, p(ε f
k ) = N (0,P f

k ) and

p(εo
k) = N (0,Rk), where p is probability density function. In addition, we assume

that the observation and forecast errors are uncorrelated:

E
(

εo
kε f T

k

)
= 0 . (6.6)

Furthermore, we define the analysis error by

εa
k = xa

k −xt
k , (6.7)

with the corresponding analysis error covariance matrix Pa
k := E

(
εa

kεaT

k

)
∈ R

n×n.

If we now assume that the dynamics and observations in Eqs. (6.1) and (6.5) are

linear, the operators M and H will be replaced by two matrices Mk ∈ R
n×n and

Hk ∈ R
p×n, respectively, and we obtain:

xt
k+1 = Mk(x

t
k)+ηk, (6.8)

yo
k = Hk(x

t
k)+ εo

k . (6.9)

For the “optimal” analysis, we aim to find the best estimates xa
k of the state xt

k using

measurements yo
k . We say that xa

k is optimal if the trace2 of the analysis error covariance

matrix Tr(εa
kεaT

k ) is minimized, and it is provided in the two following steps:

1. ) Forecast step:

x
f
k = Mkxa

k−1 , (6.10)

P
f
k = MkPa

k−1MT
k +Qk , (6.11)

2In linear algebra, the trace of an n×n matrix A is defined as the sum of the elements on the main
diagonal of A, i.e., Tr(A) = a11 + a22 + · · ·ann = ∑n

i=1 aii, where aii represents the entry on the
i−th row and i-th column of A. The trace is invariant with respect to a change of basis.
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6. Data assimilation with Kalman Filter and its variants

2. ) Analysis step:

Kk = P
f
k HT

k

(
HkP

f
k HT

k +Rk

)−1
, (6.12)

Pa
k = (I−KkHk)P

f
k (I−KkHk)+KkRkKT

k = (I−KkHk)P
f
k , (6.13)

xa
k = x

f
k +Kk

(
yo

k −Hkx
f
k

)
. (6.14)

where the matrix Kk is the optimal weight matrix, also called Kalman gain.

Kk is obtained by the forecast error covariance in the observation space P
f
k HT

k

multiplied by the inverse of the total error covariance (the sum of the forecast and

observation error covariances) and can be intuitively understood to describe the cor-

relation between state vector and observations. The relative magnitudes of matrices

Rk and HkP
f
k HT

k control a relation between the filter’s use of the forecast x
f
k and the

observations yo
k: when the magnitude of Rk is small, meaning that the observations

are accurate, the state estimate depends mostly on the observations; when the state

is known accurately, then HkP
f
k HT

k is small compared to Rk, and the filter mostly

ignores the observations relying instead on the forecast. In Eq. (6.12), Kk linearly

regresses the innovation (difference between the observation and the forecast in the

observation space) onto state vector increments which are added to the forecast to

generate the analysis. The analysis error covariance is given by the forecast error

covariance multiplied by a matrix equal to the identity matrix minus the Kalman gain,

and the data assimilation scheme uses observations to reduce forecast error covariance

by the factor (I−KkHk).

KF is considered optimal when the following two assumptions are fulfilled:

1. Observation and forecast errors are Gauss-distributed and unbiased.

2. Observations are linearly related to the true model state (i.e., linear H ),

6.2. Extended Kalman Filter

Often in reality, M and H are nonlinear, so we have to consider approximate tech-

niques for the non-linearity. One of the most widely used methods for state estimation

of nonlinear system is the Extended Kalman Filter (EKF) that linearizes locally M and

H (Bouttier and Courtier, 2002). If M is nonlinear, Mk can be defined as the tangent
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6.3. Ensemble Kalman Filter

linear operator (Jacobian) of M in the vicinity of xa
k−1, that is Mk :=

∂M

∂x

∣∣∣∣
x=xa

k−1

.

Similarly, H can be linearized in the vicinity of x
f
k , which means Hk :=

∂H

∂x

∣∣∣∣
x=x

f
k

.

6.3. Ensemble Kalman Filter

However, updating the forecast error covariance by Eq. (6.11) becomes very costly

when dealing with complex data assimilation problems such as most meteorological

and oceanographical models, owing to the massive dimensions of M and Pa. In

addition, the strongly nonlinear dynamics in these problems are difficult to linearize

and the linearization generates instabilities which tend to make the filter diverge

(Gauthier et al., 1993). Hence, it is necessary either to include empirical correction

terms in the filter, or to use a more general stochastic forecast technique based on

a Monte Carlo sampling of the filtering law, known as the Ensemble Kalman Filter

(EnKF) (Evensen, 2003). EnKF represents the distribution of the system state using

a collection of states, called an ensemble, and replace the covariance matrix by the

sample covariance computed from this ensemble.

We start with an ensemble
{

x
a(i)
k−1 : i = 1,2, . . . ,N

}
of model states at time tk−1.

The forecast step consists in evolving each ensemble member through the nonlinear

dynamics (including the model noise simulation) to obtain a forecast ensemble at time

tk:

x
f (i)
k = M

(
x

a(i)
k−1

)
+η i

k−1 . (6.15)

The empirical mean of the forecast ensemble is defined by

x
f
k =

1
N

N

∑
i=1

x
f (i)
k . (6.16)
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6. Data assimilation with Kalman Filter and its variants

The empirical forecast ensemble error covariance matrix is then deduced from the

following equation:

P
f
k =

1
N −1

N

∑
i=1

(
x

f (i)
k −x

f
k

)(
x

f (i)
k −x

f
k

)T

=
1

N −1
X

f
k X

f T

k , (6.17)

where

X
f
k =
[
x

f (1)
k −x

f
k ,x

f (2)
k −x

f
k , . . . ,x

f (N)
k −x

f
k

]
(6.18)

is the n×N matrix of forecast ensemble perturbations. Note that wherever an overbar

is used in the context of a covariance estimate a factor of N − 1 instead of N is

implied in the denominator, so that the estimate is unbiased. P
f
k not just quantifies

uncertainties of model forecasts and weights applied to the model with respect to

observations, it also provides estimated correlations between variables of the model

state for the propagation of the weighted information form the observed variables to the

correlated ones, especially the unobserved ones. However, compared to Eq. (6.11), P
f
k

in Eq. (6.17) can only represent the first term in Eq. (6.11) and hence is “blind” to model

errors. A way to lighten this problem will be introduced later in Subsection 6.6.2.

The output of the analysis step is the analysis ensemble
{

x
a(i)
k : i = 1,2, . . . ,N

}
. The

analysis mean is considered as the best estimate for the system state, defined by

xa
k =

1
N

N

∑
i=1

x
a(i)
k , (6.19)

with analysis ensemble error covariance matrix

Pa
k =

1
N −1

N

∑
i=1

(
x

a(i)
k −xa

k

)(
x

a(i)
k −xa

k

)T

=
1

N −1
Xa

kXaT

k , (6.20)
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6.3. Ensemble Kalman Filter

where

Xa
k =
[
x

a(1)
k −xa

k,x
a(2)
k −xa

k, . . . ,x
a(N)
k −xa

k

]
(6.21)

is the n×N matrix of analysis ensemble perturbations.

The EnKF processes ensemble mean and each ensemble member using Eq. (6.14)

xa
k = x

f
k +Kk

(
yo

k −Hkx
f
k

)
, (6.22)

x
a(i)
k = x

f (i)
k +Kk

(
yo

k −Hkx
f (i)
k

)
, (6.23)

where Kk is given by Eq. (6.12) and P
f
k by Eq. (6.17). But it has been pointed out

(Burgers et al., 1998) that a straightforward application of Eq. (6.23) to each ensemble

member may cause an ensemble collapse, when the ensemble spread shrinks too

rapidly. The traditional way of handling this problem proposed by Houtekamer and

Mitchell (1998) and Burgers et al. (1998) is to update each ensemble member in a

stochastic manner, instead of using a single realization of the observations yo
k , treating

the observations as random variables by generating an ensemble of observations from

a distribution with mean equal to the first-guess observation yo
k and error covariance

equal to Rk, that is

Rk = E
(

Yo
kYoT

k

)
, (6.24)

yields

x
a(i)
k = x

f (i)
k +Kk

(
yo

k + εo(i)
k −Hkx

f (i)
k

)
, (6.25)

where εo(i)
k is a synthetic vector of perturbations of observations yo

k .

The ensemble average of Eq. (6.25) yields Eq. (6.22), provided that the ensemble

average of εo(i)
k is zero:

Yo
k1 = 0 , (6.26)
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6. Data assimilation with Kalman Filter and its variants

where Yo
k =
[
εo(i)

k , . . . ,εo(N)
k

]
and 1 = [1, . . . ,1]T . To compute the analysed error

covariance, we first subtract the analysis Eq. (6.25) from (6.22) and gain the equation

for the update of an ensemble perturbation:

X
a(i)
k = X

f (i)
k +Kk

(
εo(i)

k −HkX
f (i)
k

)
, (6.27)

which can be written in a matrix form for the full ensemble as

Xa
k = X

f
k +Kk

(
Yo

k −HkX
f
k

)
. (6.28)

The analyse error covariance carried by the ensemble can then be calculated using

Eq. (6.20):

Pa
k =

1
N −1

[
X

f
k +Kk

(
Yo

k −HkX
f
k

)][
X

f
k +Kk

(
Yo

k −HkX
f
k

)]T
= P

f
k −P

f
k HT

k KT
k −KkHkP

f
k +KkHkP

f
k HT

k Kk

+
1

N −1
KkYo

kYoT

k KT
k +

1
N −1

(I−KkHk)X
f
k YoT

k KT
k

+
1

N −1
KkYo

kX
f T

k

(
I−HT

k KT
k
)

. (6.29)

In the EnKF, if all members are updated with the same observations without per-

turbations, that is, Yo
k = 0, the analysed error covariance produced by the ensemble

becomes

Pa
k = P

f
k −P

f
k HT

k KT
k −KkHkP

f
k +KkHkP

f
k HT

k Kk

= (I−KkHk)P
f
k

(
I−HT

k KT
k
)

. (6.30)

Differing from Eq. (6.13), this expression contains one factor, (I−KkHk), too many.

The missing term KkRkKT
k causes Pa

k to be less than the value given by Eq. (6.13) and

therefore results in underestimating analysis error and a premature reduction in the

ensemble spread (Houtekamer and Mitchell, 1998; Burgers et al., 1998).

If there was Yo
k that satisfies not just Eqs. (6.24) and (6.26) but also

X
f
k YoT

k KT
k = 0 , (6.31)
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then the analyzed error covariance (6.29) would exactly match the theoretical value (6.13).

However, such a solution does not exist in general. Consequently, EnKF only satis-

fies these conditions approximately in a statistical sense, which can be expressed as

(Burgers et al., 1998):

Pa
k = (I−KkHk)P

f
k +O

(
1√
N

)
. (6.32)

This traditional algorithm is a stochastic filter and has become known as the perturbed

observations EnKF. Its advantage is that the covariance matrices are no longer evolved

using the forecast model like they are in KF, however, it introduces sampling errors

which reduce the accuracy of the analysis covariance estimate, especially for small

ensembles as Eq. (6.32) suggests. Therefore, designing an approach that does not

require perturbed observations is desirable.

6.4. Ensemble Square Root Filter

Ensemble Square Root Filter (EnSRF) is a deterministic filter which means that no

perturbed observations are used, and thus it differs from EnKF in the analysis step

(Tippett et al., 2003).

We begin with substituting Eq. (6.17) to (6.12), which yields

Kk =
1

N −1
X

f
k X

f T

k HT
k

(
1

N −1
HkX

f
k X

f T

k HT
k +Rk

)−1

. (6.33)

At this point, we can effectively handle the nonlinear observation operator H . In

Eq. (6.33), we see that the linearized operator Hk always appears next to the matrix

X
f
k . The i-th column of HkX

f
k is Hk

(
x f (i)−x

f
k

)
, which is the 1-st order Taylor

approximation of H
(

x f (i)
)
−H

(
x

f
k

)
. Instead of linearizing H on the entire

model space, we linearly approximate HkX
f
k by the n×N matrix of forecast ensemble

observation perturbations

Y
f
k =
[
y

f (1)
k −y

f
k ,y

f (2)
k −y

f
k , . . . ,y

f (N)
k −y

f
k

]
, (6.34)
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where y
f
k :=

1
N

N
∑

i=1
H
(

x
f (i)
k

)
is the observation ensemble mean and y

f (i)
k :=H

(
x f (i)
)

.

Notice that the sum of the columns of Y
f
k is zero.

Consequently, we can rewrite Eq. (6.12) as

Kk = X
f
k Y

f T

k

[
Y

f
k Y

f T

k +(N −1)Rk

]−1

︸ ︷︷ ︸
=:D−1

k

, (6.35)

where Dk ∈ R
N×N is positive definite and hence invertible.

The analysis ensemble mean is given by the following step:

xa
k = x

f
k +Kk

(
yo

k −y
f
k

)
(6.36)

and the analysis covariance matrix can now be written as

Pa
k =

1
N −1

Xa
kXaT

k

= (I−KkHk)P
f
k

=
(

I−X
f
k Y

f T

k D−1
k Hk

) 1
N −1

X
f
k X

f T

k

=
1

N −1
X

f
k

(
I−Y

f T

k D−1
k Y

f
k

)
X

f T

k , (6.37)

so the analysis ensemble perturbation matrix Xa
k is updated by

Xa
k = X

f
k Wa

k , (6.38)

where Wa
k ∈ R

N×N is a matrix square root of I−Y
f T

k D−1
k Y

f
k in the sense that

WaT

k Wa
k = I−Y

f T

k D−1
k Y

f
k . (6.39)

Thus the analysis states can now be updated as

x
a(i)
k = xa

k +X
f (i)
k . (6.40)

Eq. (6.39) is essentially a Monte Carlo implementation of a square root filter (May-

beck, 1979), which explains the name of EnSRF. However, the matrix square roots
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in Eq. (6.39) are not unique, they can be computed in different ways, such as by

Cholesky factorization or by singular value decomposition (Stoer, 1999), but they

are all functionally equivalent, distinguishing only in algorithmic details. In the next

section, one form of EnSRF is introduced, which computes the matrix square roots in

the subspace spanned by the ensemble.

6.5. Ensemble Transform Kalman Filter

There are two difficulties in evaluating D−1
k . The first is size: a p× p matrix. For

atmospheric applications where p ≈ O(105), it can be costly to gain the inverse of Dk.

The second difficulty occurs when the largest eigenvalue of Dk in Eq. (6.12) may be

many orders of magnitude larger than its smallest eigenvalue. In this case, the matrix is

ill-conditioned and hence very problematic to inverse. To implement it in an efficient

manner, Ensemble Transform Kalman Filter (ETKF) rewrites the Kk so that the matrix

inverse can be done in the ensemble space. ETKF makes use of the identity:

Y
f T

k

[
Y

f
k Y

f T

k +(N −1)Rk

]−1
=
[
(N −1)I+Y

f T

k R−1
k Y

f
k

]−1
Y

f T

k R−1
k . (6.41)

which can be verified if we multiply both sides of the equation on the right by[
Y

f
k Y

f T

k +(N −1)Rk

]
and consider that

Y
f T

k R−1
k

[
Y

f
k Y

f T

k +(N −1)Rk

]
=
[
(N −1)I+Y

f T

k R−1
k Y

f
k

]
Y

f T

k ,

Now we have

Kk = X
f
k

[
(N −1)I+Y

f T

k R−1
k Y

f
k

]−1
Y

f T

k R−1
k , (6.42)

and then Eq. (6.13) becomes

Pa
k =

1
N −1

(I−KkHk)X
f
k X

f T

k

=
1

N −1
X

f
k

{
I− 1

N −1

(
I+

1
N −1

Y
f T

k R−1
k Y

f
k

)−1

Y
f T

k R−1
k Y

f
k

}
X

f T

k . (6.43)
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Applying the identity I− (I+B)−1B = (I+B)−1 with B =
1

N −1
Y

f T

k R−1
k Y

f
k , we can

rewrite the analysis error covariance matrix as

Pa
k =

1
N −1

X
f
k

(
I+

1
N −1

Y
f T

k R−1
k Y

f
k

)−1

X
f T

k

= X
f
k

[
(N −1)I+Y

f T

k R−1
k Y

f
k

]−1

︸ ︷︷ ︸
=:P̃a

k

X
f T

k

= X
f
k P̃

a
kX

f T

k , (6.44)

where P̃
a
k ∈ R

N×N is the analysis error covariance matrix in the ensemble space that

transforms the forecast ensemble perturbations into the analysis ensemble perturbations.

Thus, we have

Xa
k = X

f
k

[
(N −1)P̃a

k
] 1

2

= X
f
k Wa

k (6.45)

and

Kk = X
f
k P̃

a
kY

f
k R−1

k . (6.46)

Instead of an expensive computation of D−1
k in Eq. (6.35), Eq. (6.46) takes advantage

of the fact that the matrix Rk is much easier to invert due to its typically diagonal or

block diagonal structure and many or all of the blocks of Rk may remain the same from

one analysis time to the next so R−1
k need not be recomputed each time. In addition,

the matrix inverse P̃
a
k is done within the ensemble space, which usually has a much

smaller dimension than the observation space (N � p).

Therefore, Eq. (6.36) becomes

xa
k = x

f
k +X

f
k P̃

a
kY

f
k R−1

k

(
yo

k −y
f
k

)
︸ ︷︷ ︸

:=wa
k

= x
f
k +X

f
k wa

k , (6.47)

where wa
k is the analysis increment in the ensemble space.
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In Eq. (6.45), Wa
k is the symmetric square root of the analysis error covariance

matrix in ensemble space. Since P̃
a
k is symmetric positive definite matrix, it always

has a unique symmetric positive definite square root (Halmos, 1974). It is numerically

solved by singular vector decomposition (SVD) using eigenvalues and eigenvectors of

(N −1)P̃a
k:

Wa
k =UΣ

1
2UT , (6.48)

where U is an orthogonal matrix of eigenvectors of (N −1)P̃a
k and Σ

1
2 is the diagonal

matrix of the square roots of the eigenvalues.

With this choice for Wa
k , we obtain

Pa
k = X

f
k P̃

a
kX

f T

k

= X
f
k

1
N −1

Wa
kWaT

k X
f T

k

=
1

N −1
Xa

kXaT

k (6.49)

and as shown in Wang et al. (2004) that the sum of columns X
a(i)
k of Xa

k is zero, so the

analysis ensemble has the correct sample mean.

Another reason in favor of the use of the symmetric square root to calculate Wa
k

from P̃
a
k is that it ensures the continuous dependency of Wa

k on P̃
a
k (Hunt et al., 2007),

which is substantial in a local analysis scheme, as we will see in the next section,

so that adjacent analysis points, whose corresponding local forecast ensemble has

small disparities, will differ slightly in P̃
a
k . The derived symmetric square root matrix

can carry such characteristics and result in similar analysis ensemble perturbations at

adjacent points and thus smoothness in the analysis. Another desirable property of the

symmetric square root is that it minimize the distance3 between Wa
k and the identity

matrix, thus the analysis ensemble perturbations are in this sense as close as possible

to the the forecast ensemble perturbations subject to the constraint on the analysis

error covariance matrix (Ott et al., 2004). Harlim (2006) showed that the symmetric

solution outperforms a non-symmetric one, given the same ensemble size.

3The distance is measured by the Frobenius norm.
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Once xa
k and Pa

k are specified, we have to construct an analysis ensemble of model

states, whose mean is xa
k and whose error covariance matrix satisfies Pa

k =
1

N −1
Xa

kXaT

k .

To fulfill these conditions, we generate the ensemble using

x
a(i)
k = xa

k +X
f
k W

a(i)
k

= x
f
k +X

f
k wa

k +X
f
k W

a(i)
k

= x
f
k +X

f
k

(
wa

k +W
a(i)
k

)
, (6.50)

where W
a(i)
k is the ith column of symmetric square root matrix Wa

k =
[
(N −1)P̃a

k
] 1

2 .

6.6. Local Ensemble Transform Kalman Filter

Hunt et al. (2007) adopted an alternative algorithm of ETKF, named Local Ensemble

Transform Kalman Filter (LETKF), by performing the analyses locally in space.

The fundamental difference between LETKF and ETFK is, as the names suggest,

the localization, which ameliorates computational efficiency because the analyses at

different model grid points are independent and can be done in parallel. Furthermore,

since observations are assimilated simultaneously, not serially, it is simple to take

observation error correlations into account. In what follows, we will introduce the

corresponding techniques including localization and covariance inflation.

6.6.1. Localization

In fact, the forecast covariance matrix P
f
k in all previous mentioned forms of Ensemble

Kalman filters suffer from a sampling error which increases as the absolute value of

the correlation between an observation and a state variable becomes weak. To estimate

those weak correlations precisely, thousands of ensemble members are required in

any case, thus for the limited size of ensemble in practical use we have to somehow

deal with the sampling error associated with weak correlations. Although the expected

correlation is usually not known a priori, it is generally believed that the correlation

weakens with physical distances between an observations and a state variable. As

observations become remote from the state variables, their potential positive impact

can be expected to be insignificant. So we consider only the observations from a local
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Fig. 6.1.: Top view of a localized domain: model grid and irregularly distributed observations
are denoted with © and �, respectively, while the current analysis grid point and its associated
observations are found within the localization radius (indicated by the dashed line).

domain surrounding the location of the analysis (Keppenne, 2000; Ott et al., 2002,

2004) and multiply the entries in R−1
k by a factor that decays from one to zero as the

distance of the observations from the analysis grid point increases, which corresponds

to gradually increasing the uncertainty assigned to the observations until beyond a

certain distance they have infinite uncertainty and thus no influence on the analysis.

The choice of the size of the local domains should reflect the distance over which

dynamical correlations represented by the ensemble are meaningful. A common idea

is to use observations within a cylinder of a given radius and height centered at the

analysis grid point and to determine empirically which value of volume produces the

best results (see Fig. 6.1). This is denoted as explicit localization. Another localization

is done implicitly by multiplying the elements in P
f
k with a distance-depend weight

function. If the expected absolute value of correlation is small enough, the weight

can be equal to zero and the regression does not need to be done. The most popular

weight function χ(d,c) is given by Gaspari and Cohn (1999), where d is the distance

and c half-width. For d ≥ 2c, the observation has no impact on the state variable; for

d < 2c, χ behaviors like a Gaussian. The optimal value of c depends on the size of

the ensemble, with increasing size, corrections at larger and larger distances can be

precisely estimated. Therefore, an appropriate c can be specified for a certain ensemble

size. In this work, the explicit manner is employed in which we choose a local subset
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of the global observations within a local domain around each grid point of the model

and conduct separate analyses simultaneously using only the local observations.

A complementary reason favoring the localization is deduced from the fact that the

rank of P
f
k is equal to the rank of X

f
k , which is at most N −1 because the sum of its

columns is equal to 0. Consequently, the ensemble size limits the rank of P
f
k that can

represent uncertainty only in (N−1)-dimensional subspace spanned by the columns of

X
f
k and a global analysis will allow correction to the model state only in this subspace,

which means that forecast errors will increase in directions not included in this space

and will not be adjusted by the analysis step. If the observations are plentiful whereas

the ensemble size N is small, the analysis will inevitably smooth the observational

information, which leads to a loss of analysis accuracy and divergence from the real

state. Consequently, we need to make the ensemble size commensurable with the

number of observed degrees within the global model to provide an accurate represen-

tation, which makes the algorithm computationally very inefficient. As recognized

in Oczkowski et al. (2005) and Patil et al. (2001), the smaller the local domain in a

model we choose, the smaller the ensemble size is necessary to properly represent the

model dynamics in the local domain. So if we carry out the analysis step locally by

choosing different linear combinations of the ensemble members in different domains,

the selected ensembles need to represent uncertainty only in the local domain and the

rank problem is mitigated to a high extent. The global analysis that becomes a larger

amount of small local problems, each of which individually has no rank problem, is

able to fit much higher observed degrees of freedom (Fukumori, 2002; Ott et al., 2002,

2004).

6.6.2. Covariance inflation

Besides sampling errors, ensemble Kalman filters are also subject to other sources of

errors, such as model errors and interpolation as well as representativeness errors of

the operator. All these errors can potentially cause underestimation of the forecast

covariance and overconfidence in the forecast state estimate. As previously stated,

the ensemble spread P
f
k ignores model errors. Moreover, when the observations

are dense, P
f
k will be reduced massively and turns out to be too small. As spread

represents the uncertainty, the filter believes that it performs better than it does in
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reality and thus the analysis loses track of the truth. In order to compensate for this

tendency, an ad hoc approach is commonly employed which artificially inflates the

forecast error covariance matrix P
f
k before each analysis (alternatively, one could

inflate the analysis error covariance matrix Pa
k after each analysis). Although the

standard covariance inflation method is to multiply the forecast ensemble perturbations

X
f
k by an appropriate constant factor

√
β > 1, which is equal to multiplying P

f
k by β ,

one can also attain similar results in a more efficient way which leaves X
f
k alone but

rewrites P̃
a
k as follows

P̃
a
k =
[
(N −1)I/β +Y

f T

k R−1
k Y

f
k

]−1
. (6.51)

It can be shown that this modification has the same effect on the analysis mean x
a(i)
k

and covariance matrix Pa
k as multiplying X

f
k and Y

f
k by
√

β , respectively. Notice that

in case of a linear H , this is same as inflating the forecast ensemble by
√

β before

applying H to get Y
f
k . If β is close to one, this is a good approximation even for a

nonlinear H .

On the other hand, covariance inflation can be thought as applying a damping factor

to the influence of previous observations on the current analysis. Because this damping

factor is applied in each analysis step, the cumulative effect is to diminish the influence

of an observation on future analyses exponentially with time, so the inflation factor

determines the time scale over which observations have an influence. This effect is

particularly advantageous in the presence of model errors, because then the model can

only reliably propagate information given by the observations for a limited time range.

In this sense, covariance inflation also localizes the analysis in time.

But a single value of inflation is not appropriate for all state variables since the

ensemble spread is very sensitive to the observing density. When the observations

are dense, the ensemble spread is cut down excessively, which means that the model

is too confident, so a larger value of β should be taken, and vice versa. A fixed β
can result in values that are inconsistent with climatological values, and in the worse

case, incompatible with model’s numerical methods (Anderson, 2008), leading to

model failure. So an adaptive inflation is preferable (Li et al., 2009), which proposed

an online estimation of the inflation factor. The idea is to compare the “observed”

observation-minus-forecast, given by [yo −H (x f )], with the “predicted” one, given
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by (R+HP f HT ). This method was adopted in a LETKF environment by Bonavita

et al. (2010), where β was time and space dependent.

6.6.3. Implementation of LETKF

In this section, we explain how the LETKF algorithm given above is implemented. This

method can be summarized by ten steps described below. The inputs to the analysis are

a forecast ensemble of n[g]-dimensional model state vectors
{

x
f (i)
[g] : i = 1,2, . . . ,N

}
, a

nonlinear operator H[g] from the n[g]-dimensional model space to the p[g]-dimensional

observation space, an p[g]-dimensional vector yo
[g] of observations, and an p[g]× p[g]

observation error covariance matrix R[g]. The subscript [g] refers to the global model

state and all available observations, from which a local subset will be chosen for each

local analysis and the subscript [l] reflects a local domain associated with an arbitrary

grid point. Step 1 and 2 are basically global operations, but can be carried out locally

in a parallel scheme, if H is a local interpolation operator. In Step 3, for each model

grid point, we truncate x
f
[g] and X

f
[g] to contain only the model variables for that grid

point, and truncate yo
[g], y

f
[g] and Y

f
[g] to contain observations within a local domain

around that point. After the local analysis for each grid point is done separately in

Step 3 - 8, the final result of the global analysis is given in Step 9. In Step 10, the new

global forecast ensemble is created.

In details the steps are:

1. Apply the operator H[g] to each x
f (i)
[g] to obtain the global forecast observation

ensemble
{

y
f (i)
[g]

}
, and calculate the ensemble average y

f
[g] of

{
y

f (i)
[g]

}
. Construct

the global forecast observation ensemble perturbation p[g]×N matrix Y
f
[g] by

taking its columns to be the vectors obtained by substracting y
f
[g] from each y

f (i)
[g] .

2. Calculate the ensemble mean x
f
[g] of

{
x

f (i)
[g]

}
and subtract x

f
[g] from each x

f (i)
[g] to

build the columns of global forecast ensemble perturbation n[g]×N matrix X
f
[g].

3. Select all necessary data needed to obtain the analysis ensemble at a given grid

point. Select the rows of x
f
[g] and X

f
[g] corresponding to the given grid point,

forming their local counterparts: the n[l]-dimensional vector x
f
[l] and the n[l]×N

matrix X
f
[l]. Select the rows of y

f
[g] and Y

f
[g] corresponding to the observations
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chosen for the analysis in the local domain to form the p[l]-dimensional vector

y
f
[l] and p[l]×N matrix Y

f
[l]. Select the corresponding rows of yo

[g] to form the

p[l]-dimensional vector yo
[l]. Select the corresponding rows and columns of R[g]

to form p[l]× p[l] matrix R[l].

4. Calculate the N × p[l] matrix C[l] = Y
f T

[l] R−1
[l] . Since this is the only step where

R[l] is used, it is much more convenient to estimate C[l] by solving the linear

system R[l]C
T
[l] = Y f than inverting R[l].

5. Calculate the N ×N matrix P̃
a
[l] =
[
(N −1)I/β +Y

f T

[l] R−1
[l] Y

f
[l]

]−1
.

6. Calculate the N ×N matrix Wa
[l] =
(
(N −1)P̃a

[l]

) 1
2
.

7. Calculate the N-dimensional vector wa
[l] = P̃

a
[l]C[l]

(
yo
[l]−yo

[l]

)
and add it to each

column of Wa
[l], The columns of resulting N ×N matrix are the weight vectors{

wa(i)
}

.

8. Calculate the analysis ensemble members at the analysis grid point by x
a(i)
[l] =

X
f
[l]w

a
[l] +x

f (i)
[l] .

9. After completing Step 3-8 for each grid point, the results of Step 8 are gathered

to form the global analysis ensemble
{

x
a(i)
[g]

}
.

10. Calculate the new global forecast ensemble
{

x
f (i)
[g]

}
by x

f (i)
[g] = M

(
x

a(i)
[g]

)
.

6.7. 4-Dimensional Local Ensemble Transform Kalman Filter

In an operational setting, the analyses are generated at several hours intervals, though

many observations are available more frequently. Since significant changes could hap-

pen over such a time interval, it is reasonable to consider observations at intermediate

times than to pretend that they were taken at the analysis time. Hunt et al. (2004)

extended the LETKF to a four-dimensional version 4D Local Ensemble Transform

Kalman Filter (4D-LETKF) which estimates the analysis ensemble mean by fitting

the linear combinations of the trajectories of the background ensemble to all of the

observations collected between two analysis times.
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Recall that in Section 6.5 we wrote the analysis mean as xa = x f + X f wa (cf.

Eq. (6.47), the subscript k is omitted here and hereafter for brevity),where wa is

determined by R, yo, y f and Y f . Essentially, wa specifies the linear combination

of background ensemble states that best fit yo. Moreover, yo and Y f are formed by

mapping the background ensemble into the observational space. So for observations

taken at different times yo and Y f must be accordingly redefined. To be more concrete,

let’s assume that we have data (t j,y
o
t j
) from various times t j since the last analysis. Let

x
f
t j and X

f
t j be the ensemble background mean and matrix of background ensemble

perturbations at time t j. Let Ht j be the observation operator for time t j and Rt j the

error covariance matrix for these observations. So now, for each t j, we apply Ht j

to the background ensemble state x
f (i)
t j to gain vectors y

f (i)
t j , average those vectors

to gain y
f
t j , and subtract y

f
t j from y

f (i)
t j to get the columns of Y

f
t j . Then, a combined

observation vector yo is formed by vertically concatenating the column vectors yo
t j

, and

analogously by vertical concatenation of the vectors y
f
t j and matrices Y

f
t j , respectively,

we build the combined background observation mean y f and perturbation matrix Y f .

The corresponding R is a block diagonal matrix with blocks Rt j (this assumes that

observations taken at different times have uncorrelated errors, though such correlations

if present could be included in R).

Accordingly, the steps in Subsection 6.6.3 should be modified. Step 1 is executed

for each observation time t j and the results are combined as described in the previous

paragraph to form y f and Y f . However, Step 2 is only carried out only at the analysis

time and save the resulting x f and X f for use in Step 8.

6.8. Data thinning

Although the high frequency of radar observations is very advantageous for estimating

an initial state for NWP, a huge amount of assimilated observations may also lead to

high computational costs, massive memory space allocation and very time-consuming

data transmission. Additionally, dense data can severely violate the assumption

of independent observation errors made in most assimilation schemes, including

Kalman filters. The error correlations are unknown a priori, and calculations of

these correlations in the assimilation system would require more complex observation

error statistics and evoke increased computational costs. To combat these problems,
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efforts must be made to cut back on the amount of observations before assimilation,

meanwhile, the quality of assimilation should be preserved or even be enhanced.

Since error correlations often exist for observations lying close together, if we dilute

the observations so sparse that the distances among observations are larger than the

correlation length, the observations can be considered as uncorrelated. Currently,

a simple data thinning method is implemented in the operator, where observations

can be thinned in radial distance and azimuthal scanning angle at specified intervals.

The crudeness of this technique is that the problem of inhomogeneous radar data

distribution (more data at closer distance from radar) is not alleviated by that.

6.9. Statistics used for verification of assimilation performance

A fundamental assumption of the standard KF is that the observations and the model

outputs are unbiased. An observation bias typically indicates instrumental inaccuracies,

representativeness errors, or, in the case of remote sensing observations, errors in the

retrieval algorithm. After quality control the observations can be often but not always

assumed to be unbiased (Lorenc and Hammon, 1988). In contrast, model forecasts are

hardly ever unbiased. Model forecast errors depend on model structure, parameters,

discretization as well as model initial conditions. Generally, the forecast error contains

a random and a systematic component. The latter one is referred to as model bias.

Let yo = [yo
1, . . . ,y

o
p] be set of observations. We define bias of forecast ensemble

mean by

Bias f =
1
p

p

∑
i=1

[
yo

i − y f
i

]
. (6.52)

It is the difference between the observation and the forecast projected to the observation

points. Bias f is positive when the model overestimates the observations, while a

negative bias reveals underestimation of the observations.

A standard measure for the misfit of simulated ensemble mean and observations is

the root mean square error (RMSE)

RMSE f =

√
1

p−1

p

∑
i=1

[
yo

i − y f
i

]2
, (6.53)
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which is considered as the expected spread. In contrast to Bias f , RMSE f quantifies

the error of the estimates in a least-square sense and it is always larger than or equal to

zero. A small RMSE f corresponds to a good fit.

To estimate the reliability of assimilation results (Sacher and Bartello, 2009), RMSE f

is usually compared with the aforementioned spread, which is considered as a measure

for the ensemble variability, defined as

Spread f =

√
Spread f 2

1 +Spread f 2

2 + · · ·+Spread f 2
p

p−1

=

√
1

p−1

p

∑
i=1

Spread f 2

i , (6.54)

where

Spread f
i =

√
(y f (1)

i − y f
i )

2 +(y f (2)
i − y f

i )
2 + · · ·+(y f (N)

i − y f
i )

2

N −1
, i = 1,2, . . . , p

(6.55)

is root mean square difference between the forecast ensemble members and the forecast

ensemble mean. Spread f can be interpreted as the assumed forecast error covariance.

In analogy to definitions of Bias f , RMSE f and Spread f before the analysis step, we

can also define Biasa, RMSEa and Spreada after the analysis step. All of them are

used to quantify the assimilation performance and to represent the model/observations

consistency. If RMSE and spread are approximately identical, the ensemble variance

captures the estimation error correctly and thus the ensemble forecasting system is

reliable. In practice, the RMSE is always higher than the actual spread and an increase

in the spread usually helps to reduce the RMSE and give a better performance of the

data assimilation system.
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7. Data assimilation experiments using 4D-LETKF for the
convective event of 31 May 2011

In this chapter, first experiments applying the new radar forward operator in the data

assimilation procedure are performed. The used data assimilation scheme is a newly

developed 4D-LETKF software package from DWD (Schraff et al., 2012).

Generally, the best way to examine a newly built data assimilation system and to

investigate the potential impacts of new observations on it is to conduct Observing

System Simulation Experiments (OSSEs, Arnold Jr. and Dey (1986)). The OSSE

methodology begins with a free running mode without data assimilation to provide

the “truth” and generate simulated observations with realistic errors. This run is called

Nature Run (NR). Then, two experiments are to be carried out: a control run, in

which current observational data are included, used to generate a reference field and

a perturbation run, in which simulated new observations under evaluation are added.

By comparison of results of these two runs, we are able to evaluate beforehand the

improvement in forecast skill due to the proposed new data.

There are several advantages of OSSEs, such as easy control of the experiments,

precise knowledge of the data properties and errors, and knowledge of the truth.

However, OSSEs require immense resources in maintenance and computing power

(McCarty, 2012), particularly when radar data are involved. Unfortunately, a first

version of the 4D-LETKF data assimilation system at DWD has been just finished

at the time of this writing, such that, among the other ongoing work, a framework

for OSSEs is still under construction at present. Therefore, we have to apply the

data assimilation system to a real case, for which the characteristics of model and

observation errors are not known precisely. Considering the assimilation of radar

reflectivity would be more problematic than Doppler velocity for several reasons:

1. Model errors are expected to be particularly large for reflectivity (Gilmore et al.,

2004). Whereas simulated Doppler velocity is computed from the 3D wind vector,

which are controlled by grid-scale dynamics, simulated reflectivity is computed
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from hydrometeor fields, which are controlled by microphysical parametrizations

and their inherent uncertainties.

2. Even if the hydrometeor fields are predicted well by the model, there are con-

siderable uncertainties in how to calculate reflectivity from model hydrometeor

fields. particularly for ice and mixed-phase precipitation, i.e., bias errors in the

operator,

3. Reflectivity is strongly nonlinearly tied to model variables (Tong and Xue, 2005),

4. Unlike Doppler velocity observation errors, reflectivity observation errors are

affected significantly by attenuation and errors in radar calibration (Wilson and

Brandes, 1979).

Therefore, we prefer assimilation of Doppler velocity as a start point to collect first

experiences, and assimilation of reflectivity will be investigated in future.

Additionally, a verification tool for 4D-LETKF results (typically, analysis mean

against observations in terms of surface precipitation) and an algorithm that combines

the post-processing quality products with radar observations to filter contaminated data

are currently also under development. Constrained by these conditions, the experiments

results have to be taken only as first steps and a technical proof of concept. More work

will be done in the future to tune the system towards operational application.

7.1. Description of weather conditions, model and 4D-LETKF setup

On the morning of 31 May 2011, the cold front of low pressure system “Yves” arrived

in West Germany and during day advanced slowly eastwards. Due to the extreme

temperature changes across the front boundary (hardly more than 13◦C in the west, 25

- 32◦C in the east), severe thunderstorms occurred along the frontal zone. After the

front passage, the thunderstorms partly turned into persistent rain (see Fig. 7.1).

All data assimilation experiments described in detail in the next section are run on 8

processors of the NEC SX-9 cluster at DWD. The COSMO-DE-model is operated with

an horizontal resolution of (0.025◦, 0.025◦) and 51 vertical levels within the domain

depicted in Fig. 2.1b. An ensemble size of at least 40, suggested by Chris Snyder at

the COSMO GM at Athens, is expected to be sufficient to render good results. To
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create the ensemble members, we start with 40 identical members and add random

perturbations coming from the boundary data of GME-LETKF. These perturbations

will be transported into the internal domain by the model itself1. Starting at 18:00

UTC 31 May 2011, we perform a 1-hour data assimilation cycle until 21:00 UTC,

i.e., the observations are assimilated every one hour. It is assumed throughout that the

observation error has a Gaussian distribution with 1 m/s for Doppler velocity. To get

rid of outlying observations, especially in the radar data, a rough solution, though not

necessarily a bad one, is to reject all data that have a potential of being contaminated,

i.e., it is claimed that

∣∣yo −y f ∣∣> 3
√

(εo)2 +(ε f )
2 , (7.1)

where εo and ε f are observation and forecast errors in observation space, respectively.

Note that too many data will be rejected if the specified observation errors or spread

are too small, and vice versa.

In terms of radar data thinning (cf. Section 6.8), for each 5 km in radial distance and

for each 5 degree in azimuth one bin has been selected. An adaptive covariance inflation

is utilized with an initial value of 1.05 and ranges from 0.5 to 3.0 (cf. Subsection 6.6.2).

7.2. Assimilation experiments

Tab. 7.1 lists four experiments performed to be discussed and evaluated in this section.

At first, 4D-LETKF is first tested in E0 by assimilating the conventional observations

from AIREP, DRIBU, PILOT and SYNOP (see Chapter 1). During the chosen time,

there are no TEMP data available. In terms of localization, a uniform localization

strategy is applied to all types of observations. That is, horizontal localization length is

chosen to 100 km, and for the vertical localization different lengths are set to different

heights due to the variation of observation density with height: it begins with 0.075

log hPa at the surface level and linearly increases to 0.5 log hPa on the top level. Next,

E1 shares the same configurations as E0 but assimilates Doppler velocity measured

from the radar network of DWD as additional data by using the radar forward operator

1In the future we want to initialize the ensemble members by multiplying a gauss-distributed random
vector with an error covariance matrix of 3D-VAR in GME-LETKF and then interpolating the
resulting boundary data onto the COSMO-model.
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Fig. 7.1.: Left column:: precipation rate in mmh−1 (see color bar) on 31 May, 2011, derived
from the radar network of DWD and made available form www.Niederschlagradar.de; Right

column: geopotential in gpdam (see color bar) and surface pressure at 18:00 UTC, cited from
www.Wetterzentrale.de

with simplest configurations Hradar. Considering much higher resolutions of radar

data than the other data, a stronger localization is applied to radar data in E2, with the

horizontal localization length cut down to 20 km. As mentioned in Chapter 5, we are

also very interested in the influence and efficiency of Hradar with full configurations

(compared to E2) in the framework of data assimilation. For this reason, configurations

of Hradar are upgraded to the full degree in E3 (cf. E4 in Chapter 5). The results of

experiments are presented in the following.
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Observation Horizontal localization [km]

Exp. Conventional vr Conventional vr Configurations of Hradar

E0 active passive 100 100 simplest
E1 active active 100 100 simplest
E2 active active 100 20 simplest
E3 active active 100 20 full

Tab. 7.1.: Description of data assimilation experiments. passive: read but not assimilated,
active: read and assimilated; Hradar represents the radar forward operator. Simplest and full
respectively refer to the configurations of Hradar in E0 and E4 in Chapter 5.

Fig. 7.2 shows observation errors, RMSE, spread of prior and posterior ensembles

at 21:00 UTC in E0. These statistics are evaluated on the mandatory levels from

1000 to 100 hPa at intervals of 100 hPa with respect to the observations AIREP (the

first three subfigures) and from 0 to 20000 m at intervals of 2000 m with respect to

Doppler observations (the lowermost subfigure). For u, v and T, RMSEa is smaller

than RMSE f throughout the entire depth of the model, which indicates that 4D-LETKF

is able to extract information from observations. But we also recognize that, on one

hand, observation errors are obviously set too high, on the other hand, Spread f is

considerably smaller than RMSE f , both of which make the model believe it performs

better than it really does and thus underestimate the observed information (remember

that the observation errors and spread represent the assumed validity of observations

and the model, respectively). As stated in Section 6.1, tuning the observation errors

is a difficult issue and will not be handled in this study. Instead, we would like to

focus on the lack of spread, terminologically called underdispersion, which is usually

caused by underdisturbed initial conditions, no (sufficient) consideration of model

errors and finite ensemble size (Buizza et al., 2005). For Doppler velocity, RMSEa

is even larger than RMSE f up to 2000 m. Since RMSEa (in the lowermost subfigure

of Fig. 7.2) represents the difference between observations of vr and the analysis by

assimilating the conventional data, the phenomenon of RMSEa ≥ RMSE f suggests a

disparity between conventional and radar observations at lower levels.

Fig. 7.3 illustrates the preliminary results of assimilating Doppler velocity in E1. One

can clearly see that Spread f of u, v, T and vr is considerably reduced. From a positive

point of view, this confirms the capability of assimilating radar data, but the negative
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effect is overconfidence of the model on itself and ignorance of observations. One

should also notice that RMSEa of u, v and T has been hardly improved or even changed

for the worse against RMSE f while RMSEa of vr becomes smaller than RMSE f (cf.

vr in Fig. 7.2). This is because that radar data are much denser than AIREP and they

represent different scales of correlations (radar data for small-scale correlations and

AIREP for large-scale correlations). By applying a same large-scale localization length

to both data the local analysis is essentially attracted to radar data and downgrades the

role of AIREP. In anticipation it should be noted that this also explains the finding in

Fig. 7.5, where RMSE f and Bias f of E1 are often larger than those of E0 for u, v and

T. As previously stated, an effective way to increase spread and to reduce amount of

active data used for local analysis is application of a stricter localization length, that is

what happens in E2.

Fig. 7.4 reveals the positive influences of using separate localization lengths for

conventional and radar data. Spread f has been increased and RMSEa lies considerably

beneath RMSE f , which means that the data assimilation system can now better tune

the observations into the model. When comparing E1 and E2 (see Fig. 7.6), RMSE f

and Bias f of E2 are now smaller than those of E1 in general.

What is not shown here are the statistical results of E3 with a full upgrade of Hradar.

This is because of its similar results as E2, which can be explained as follows. In

order to clean the data before assimilation, there is a general data preprocessing

procedure that saves only the data, for which both observed and simulated data are

present, in the input files of data assimilation. On the other hand, recall that the most

powerful update regarding Doppler velocity is weighting by reflectivity that reduces

the coverage of Doppler velocity to the area where the simulated reflectivity exists (cf.

Subsection 5.2.3, the others updates like online beam propagation (e.g., SODE) and

beam smoothing show marginal effects). In fact, this effect is more or less implicitly

included in the data preprocessing procedure and thus we could not see the benefits

brought by upgrading Hradar.

Figs. 7.7, 7.8 and 7.9 illustrate the analysis ensemble mean, Spreada of temperature

T and horizontal wind�vh := (u v)T at height of 5000 m in E0, E1 and E2, respectively.

In E0, Spreada is relative large close to the boundary of the model domain and small in

the inner area (see Figs. 7.7b and 7.7d) because of different densities of observations.

In terms of mean, the temperature T increases gradually from the west to the east
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7.2. Assimilation experiments

in general but in the south we can observe an Alps-shaped area (cf. Fig. 2.1b) of

lower temperature (see Fig. 7.7a), which results from the terrain following vertical

coordinates that are actually higher than 4000 m in the area of the Alps and thus are

associated with lower temperature than the vicinity. In Fig. 7.7c, the wind�vh blows

from the northwest at the west boundary and changes quickly to the south wind, due

to a narrow trough present at the west boundary (see Fig. 7.1).

Compared to Fig. 7.7, the most obvious differences in Fig. 7.8 are the aforemen-

tioned reduction of spread, caused by assimilation of the highly dense radar data (see

Figs. 7.8b and 7.8d). With respect to the mean, the overall picture of Fig. 7.7 is repro-

duced by E1 with some differences. For instance for�vh in area of [4W,2W ]× [2S,2N]

of Fig. 7.8c, E1 produces considerably higher wind speeds than E0. For T only few

differences can be seen.

In Fig. 7.9 for E2, spread has been effectively enhanced by the special treatment of

localization length for radar data (see Figs. 7.9b and 7.9d), but only small changes

occur with respect to the mean.

In an operational context, we are also interested in the total wall-clock elapsed

time of each experiment, as shown in Table 7.2. It mainly consists of two parts: the

elapsed time spent by the COSMO-model, including the radar forward operator, and

the elapsed time consumed by 4D-LETKF. As already noticed in Subsection 6.6.3,

the algorithm of 4D-LETKF comprises several steps, but only those steps that are

responsible for the time differences are accounted for here, which are Setup and Grid

loop. The former one arranges the observation vector yo, specifies the observation

error covariance matrix R and conducts the quality control (i.e., Eq. (7.1)). The latter

one computes the analysis covariance matrix Pa on each grid point of a coarse model

grid2 and save them.

In Table 7.2, we can clearly see an acute increase (601.47%) from E0 to E1. The

reason for that is quite plausible. Due to the consideration of radar data, more efforts

have to be made in Setup to treat yo, R and quality control. Furthermore, the local

analyses have to consider far more observations when estimating Pa and thus consume

more computational time in 4D-LETKF. In E2, the time increase reduces significantly

to 281.87%, which is attributable to the stronger localization that makes the local

2For reasons of time, the analysis covariance matrix are first computed on a coarse model grid and
then interpolated onto the fine grid.
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

analyses have much less observations to deal with and save the computational time

in Grid loop. In E3, we first see a moderate time increase to 640.63 s in COSMO

due to the upgrade of configurations of the radar forward operator (cf. Section 5),

however, as mentioned before, the use of weighting by reflectivity trims the number

of observations, which accelerates the process of 4D-LETKF and compensates the

increased time in COSMO. Combining all these effects, E3 requires just 110.27% more

time than E0 but much less time than E2.

4D-LETKF [s] Total [s]

Exp. COSMO [s] Setup Grid loop Total COSMO + 4D-LETKF Increase [%]

E0 453.06 19.93 114.04 1214.3 1667.36 Reference
E1 466.88 1251.27 8899.41 11229.13 11696.01 601.47%
E2 438.25 1139.14 3655.67 5928.95 6367.20 281.87%
E3 640.63 928.49 914.36 2865.32 3505.95 110.27%

Tab. 7.2.: Wall-clock elapsed time distribution of data assimilation experiments. Fifth column:
total elapsed time of 4D-LETKF; Sixth column: total elapsed time of the experiment (i.e.,
COSMO + 4D-LETKF); Seventh column: Time increase of each experiment in reference to
E0.

7.3. Summary

In this chapter we have reviewed the performance of 4D-LETKF with a convective

case through short assimilation cycles. Note that these analyses are preliminarily

since critical parts of the assimilation scheme are still under construction. Therefore,

the focus of experiments has been laid on the technical aspects of 4D-LETKF. The

capability of 4D-LETKF to assimilate conventional and radar data was shown in E0

and E1, respectively. But there are two critical issues arising in E1. First, the spread

dropped dramatically, which made the model underweight the observed information.

Second, RMSE and bias of u, v and T with respect to AIREP became even worse.

These issues were attributable to the assimilation of highly dense radar data and relative

weak localization strength. These issues were then defused in E2 by using a shorter

localization length, where the spread was successfully increased and RMSE and bias
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7.3. Summary

Fig. 7.2.: Various error statistical parameters Spread f , RMSE f , obs. err and RMSEa for 21:00
UTC in E0 as indicated by different notations, concerning the horizontal velocity components
u and v in m/s (the two uppermost subfigures), temperature T in K (the third subfigure) as
function of pressure in hPa and Doppler velocity vr in m/s (the lowermost subfigure) as function
of height in m (mandatory levels only). The right ordinate refers to the number of observations,
indicated by “obs” bar (note the different scale relative to the foregoing subfigures).
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Fig. 7.3.: As Fig. 7.2 but for E1
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7.3. Summary

Fig. 7.4.: As Fig. 7.2 but for E2
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Fig. 7.5.: Comparison of RMSE f and Bias f between E0 and E1
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7.3. Summary

Fig. 7.6.: As Fig. 7.5 but for E1 and E2
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of�vh (d) Spreada of�vh

Fig. 7.7.: Analysis ensemble mean and Spreada at 5000 m in COSMO-DE domain (Fig. 2.1b)
for 21:00 UTC in E0. First row: mean and Spreada of temperature T in K; Second row:

mean and Spreada of horizontal wind�vh in m/s
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7.3. Summary

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of�vh (d) Spreada of�vh

Fig. 7.8.: As Fig. 7.7 but for E1
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of�vh (d) Spreada of�vh

Fig. 7.9.: As Fig. 7.7 but for E2
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7.3. Summary

became plainly smaller. Although only few improvements in statistics have been seen

with the E3-setup, the computational time was (surprisingly) reduced against E2, which

allows the full upgrade of the radar forward operator for the operational use.

It must be recognized that these results are based on the statistics from merely one

assimilation cycle. In order to obtain more convincing results, these values have to

be averaged over weeks or months of cycled assimilations. Furthermore, we should

choose cases that have more detailed observations, particularly TEMP, available for

verification. Of cause, an effective quality control to remove gross observation errors

and a realistic appraisal of the magnitude and structure of the error correlations in

“good” data are also desirable. Concerning the high temporal resolution of radar

observations we can consider performing the analysis step more frequently, e.g.,

every 15 min. Although the localization length has been cut to maintain a realistic

amount of spread and to reduce RMSE, to preserve adequate continuity of analysis

on adjacent points, we can not arbitrarily limit the localization length, so an optimal

value of localization has to be tuned. From this point of view, an adaptive localization,

depending on the density of observations, is desirable. Due to the limited ensemble size,

the forecast covariance can not correctly represent large- and small-scales correlations

at the same time. Motivated by this, a two-step analysis is currently under development

at DWD: in the first step the conventional data are assimilated, and its results serve

as first guess for the second step, performing assimilation of the additional radar data.

More perspectives will be discussed in Chapter 8.
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8. Conclusions and outlook

The goal of this thesis is to develop an efficient radar forward operator to be imple-

mented into operational weather forecast COSMO1-model. Based on current output

data of the COSMO-model, Doppler weather radar observations are calculated, which

allows for a direct comparison in terms of observed radar data. With the help of

the operator, the COSMO-model is able to assimilate besides usual meteorological

observations the radar data. As radars provide measurements in very high spatial and

temporal resolutions and DWD operates a well-distributed radar network covering

the whole COSMO-DE domain, it is aimed at that the quality of operational weather

forecasts, especially of short term QPFs of convective events, can be improved by

means of assimilating radar data into the COSMO-model. The development work is

shared with an accompanying PhD project of Dorit Jerger (Jerger et al., 2012), who

concentrated on aspects of radar reflectivity, attenuation and the application of the

operator as a verification tool for the cloud microphysics in the model, whereas the

present thesis focused on aspects of radar beam propagation as, e.g., beam bending and

broadening, programming issues as, e.g., parallelization and vectorization strategies,

as well as application for data assimilation.

For the sake of flexible use, a modular operator has been designed. Each module

represents a specific physical process or quantity of radar measurement, e.g., beam

bending, beam broadening, Doppler velocity and reflectivity, and provides various

options associated with different levels of sophistication. A series of sensitivity experi-

ments have been conducted to find the best balance between efficiency and accuracy

of modules. For beam bending, three methods have been investigated. 43ERM is a

commonly applied in radar meteorology, considering climatological standard condi-

tions; TORE is derived and modified from an existing method, characterized by total

reflection and exploits Snell’s law for spherically stratified media; SODE is based on a

new formulation of the 2nd order ODE describing the ray propagation in spherically
1For the abbreviations please refer to Appendix D
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stratified media based on Fermat’s principle. It turned out that 43ERM works well

under standard conditions or for high elevations but suffers from height overestimation

in the case of superrefraction or ducting, especially for low elevations. Both TORE and

SODE methods consider the actual refractivity in the atmosphere and are robust under

non-standard conditions. They compute beam heights radially outwards in step of

range bins instead of surface distance, which eases the implementation of the operator.

But it was found that an ad hoc approach has to be imposed in TORE to determine

the correct sign of local elevations at reflection points that occur under ducting con-

ditions or negative antenna elevation. In contrast, SODE does not require such an

additional constraint and shows the best stability and performance in all presented

tests. Although the accuracy of online methods is also dependent on the density of

aerological observations and model (vertical) resolution, the advantage of SODE will

be increasingly obvious due to more dense observation networks and higher model

resolution in the future. With respect to beam broadening, it is pointed out that the

pulse-volume averaging generally show stronger effects in vertical than in horizontal

directions and is especially necessary when the beams encounter obstacles. The aver-

aging is numerically done by the Gauss-Legendre quadrature with variable integration

points nh and nv in horizontal and vertical directions. It was recognized that for our

experiments with the COSMO-model at a usual resolution, the tuple (nh,nv) = (5,9)

is a reasonable choice to guarantee good averaging results.

In the stratiform and convective case studies, the ability of the model to represent

different dynamical regimes has been evaluated. In terms of the stratiform event,

a good agreement between model and radar observations was achieved, including

the intensity and position of the event and bright band. Regarding the convective

event, the model is able to catch the general evolution of the system but with some

time delay. This might have contributed to disagreements in intensity and position

between simulations and observations. With respect to configurations of the operator,

SODE generates radar beam propagation comparable to 43ERM because no ducting

conditions were prevailing in those case studies and antenna elevations are relative

high. The effects of pulse-volume averaging become noticeable when beams arrive at

long distances or intercept the melting level. The Mie-scattering scheme stimulates

higher reflectivities than the Rayleigh approximation for partially melted particles due

to the special treatment of the refractive index by Effective Medium Approximations
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(EMA). Taking attenuation into account has less significance in the stratiform event

but more significant impacts in the convection case. Weighting Doppler velocity by

reflectivity allows for adjustment of areal coverage of Doppler velocity to the observed

one. From the aspect of computational time, the most significant increase occurred

when pulse-volume averaging was upgraded to (nh,nv) = (5,9). On the whole, the

operator is very efficient due to its sophisticated parallelization and vectorization.

There are, however, some remaining development steps which have to be left for

future work. A short-term plan includes 1) the implementation of the hydrometeor

fall speed and corresponding sensitivity experiments, where improvements in high-

elevation radar data are expected; 2) implementation of beam smoothing in range (up

to now only in azimuthal and elevational directions), which may be important for

higher-resolution models, e.g., LES (Large Eddy Simulation) models; 3) using quality

control products to clean contaminated data in observations; 4) a new parallelization

strategy, considering the prospective new supercomputer of DWD with thousands of

processors; 5) solving the data overlapping problem of multiple radars; 6) using the

operator as a validation tool for the COSMO-model (part of work has been done by

my Co-PhD mate Dorit Jerger). In the long term, one ambitious goal could be to

include polarimetric parameters into the operator in such a way that it is also suitable

for the operational use. Several studies have shown that polarimetric radars provide

more accurate information on cloud/precipitation microphysics than non-polarimetric

weather radars (Brandes et al., 2002; Li and Mecikalski, 2012; Pfeifer et al., 2008), so

the integration of polarimetric parameters may help to reduce the uncertainties in radar

estimate of precipitation and improve radar data assimilation.

In terms of data assimilation, the preliminary results of experiments have shown that

4D-LETKF of DWD is technically able to assimilate the conventional and Doppler

observations. Improvements in spread and RMSE as well as in the computational

time can be attained by tuning the localization length. Moreover, it has been shown

that the most accurate and expensive configurations of the radar forward operator

does not encumber (actually even reduce) the computational time, which makes it

feasible for the operational data assimilation. As the 4D-LETKF system is newly

established, there is still much work to do. The first step may be to develop a ver-

ification tool that can quantify the added value of radar data assimilation for QPF.

Alternatively, we can also assimilate observations from one radar and to use the other
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8. Conclusions and outlook

(radar) observations for verification. For a further insight into 4D-LETKF, a frame-

work for OSSEs is an open working task, which allows us to apply 4D-LETKF to

idealized weather systems and to better tune 4D-LETKF settings (e.g., observation

errors, error correlations, localization, covariance inflation). A more sophisticated

data thinning technique that avoids correlations between adjacent observations and

meanwhile produces relative homogeneously distributed data is desirable. The other

thinning techniques like superobing (Ramachandran et al., 2005) that combines high

density clusters of data into simple but more highly weighted datum is also consider-

able. Since LETKF makes Gaussian assumptions over observation and forecast errors,

which however are expected often non-Gaussian in reality, OSSES can also be used

to quantify non-Gaussianity. Preferably within the framework of OSSEs, we would

like to begin with the first experiments of assimilating reflectivity, which is expected

to have positive influences not just on the analyses of the hydrometeor variables (e.g.,

rain, snow, hail and graupel) of the radar forward operator but also on the analyses of

unobserved variables like temperature, cloud and vertical velocity. Meanwhile, the

impacts on the performance of data assimilation, created by different configurations

of the radar forward operator, should come under closer scrutiny. We expect to see

more updating effects for reflectivity and then we can determine the optimal choice of

the operator configurations in terms of data assimilation. Thereafter, more real case

studies, particularly on convective events, will be performed and the potential of the

assimilation for mid to short range forecast of precipitation events will be appraised.
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A. DWD radar network

Since 2010, DWD has started the exchange of its Doppler C-Band weather radar

network with dual-polarimetric EEC DWSR-5001C/SDP-CE radars. Currently, the

network is being upgraded to new C-Band dual-polarimetric Doppler radars, and some

of the radar sites will be about to change. The details of radars and their distribution are

given in Tab. 1.2, where “Old” denotes the 16 radar sites before the network upgrade

and “New” the 17 stations after renewal.

Name of radar station Abbreviation WMO NR. Coordinates Altitude of antenna [m] Old New

52.48N

Berlin BLN 10384 13.39E 80.3 ×
54.00N

Boostedt BOO 10132 10.05E 124.1 ×
51.12N

Dresden DRS 10488 13.77E 262.4 × ×
49.54N

Eisberg EIS 10780 12.40E 799 × ×
53.34N

Emden EMD 10204 7.02E 58 × ×
51.41N

Essen ESS 10410 6.97E 185.1 × ×
47.87N

Feldberg FBG 10908 8.00E 1517 × ×
Korbach-Rhena 51.31N

Flechtdorf FLD 10440 8.80E 623 × ×
Frankfurt- 50.02N

Walldo FRI 10630 8.56E 144.5 ×
53.62N

Hamburg HAM 10147 10.00E 45.8 ×
52.46N

Hannover HAN 10338 9.69E 80.75 × ×
50.50N

Neuhaus NEU 10557 11.14E 878.5 × ×
50.11N

Neuheilenbach NHB 10605 6.55E 585.15 × ×
49.98N
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Offenthal OFT 10629 8.44E 245.5 ×
52.65N

Prötzel PRO 10392 13.86E 189 ×
48.04N

Memmingen MEM 10950 10.22E 720 ×
München- 48.33N

Fürholzen MUC 10871 11.61E 511.4 ×
54.18N

Rostock ROS 10169 12.06E 36.2 × ×
48.17N

Schnaupping SNA 10873 12.10E 724.399 ×
48.56N

Türkheim TUR 10832 9.78E 764.75 × ×
52.16N

Ummendorf UMD 10356 11.18 183 × ×

Tab. A.1.: Information about DWD radar network
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B. Numerical methods

B.1. Gauss-Legendre quadrature

In a general Gaussian quadrature rule, a definite integral f (x) is first approximated

over the interval [−1,1] by a polynomial approximation function g(x) and a known

weighting function W (x):

∫ 1

−1
f (x)dx =

∫ 1

−1
W (x)g(x)dx .

Those are then approximated by a sum of function values at specified points xi, also

called nodes, multiplied by some weights wi:

∫ 1

−1
W (x)g(x)dx ≈

n

∑
i=1

wig(xi) .

In case of Gauss-Legendre quadrature, the weighting function is W (x) = 1, so we can

approximate the integral of f (x) with:

∫ 1

−1
f (x)dx =

n

∑
i=1

wi f (xi) .

For this, we have to first calculate the nodes and the weights and then use them for

numerical integral evaluation, which greatly speeds up the calculation compared to

more simple numerical integration methods.
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The n evaluation points xi for a n-point rule are roots of nth order Legendre Polyno-

mial Pn(x). Legendre polynomials are defined by the following recursive rule:

P0(x) = 1 ,

P1(x) = x ,

nP2(x) = (2n−1)xPn−1(x)− (n−1)Pn−2(x) .

There are also recursive equations for their derivatives:

P′
n(x) =

n
x2 −1

(xPn(x)−Pn−1(x)) .

The roots of those polynomials are generally not analytically solvable, so they have to

be approximated numerically, for example by Newton iteration:

xn+1 = xn − f (xn)

f ′(xn)
.

The first guess x0 for the ith root of a n-order polynomials Pn can be given by:

x0 = cos

⎛
⎜⎝π

i− 1
4

n+
1
2

⎞
⎟⎠ .

After we get the nodes xi, we calculate the appropriate weights by:

wi =
2

(1− x2
i )[P′

n(xi)]2
.

At last, we can approximate an integral over an arbitrary interval [a,b] by:

∫ b

a
f (x)dx ≈ b−a

2

n

∑
i=1

wi f
(

b−a
2

xi +
a+b

2

)
.

Inductively, we can deduce the 2D integral over an arbitrary interval [a,b]× [c,d]

by:

∫ d

c

∫ b

a
f (x1,x2)dx1dx2 ≈ d − c

2
b−a

2

m

∑
j=1

n

∑
i=1

wiu j f
(

b−a
2

xi +
a+b

2
,
d − c

2
x j +

d + c
2

)
,
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where the interval is divided by m nodes with weights u j, j = 1, . . . ,m.

B.2. One step method: fourth order explicit Runge-Kutta method

The boundary value problem of the second-order ordinary differential equation (ODE)

Eq. (3.68) with boundary values Eqs. (3.70) and (3.71) is solved numerically by

the one step fourth order explicit Runge-Kutta method (abbr. RK4), due to its low

computational complexity and relatively reliable stability. However, to apply this

method, we have to transform Eq. (3.68) to two first-order ODEs by substitution
dh
dr

= x:

dh
dr

= x ,

dx
dr

= x2
(

1
n

dn
dh

+
1

RE +h

)
−
(

1
n

dn
dh

+
1

RE +h

)
= 0 ,

and write them in a vector form:

dy
dr

= f (r,y) = f (r,h(r),x(r)), where y =
(

h
x

)
.

Numerical integrators work with discretization, i.e., one divides the integration interval

r0 ≤ r ≤ re into subintervals r0 < r1 < · · ·< rnra = re, l = 0,1, . . . ,nra. Δrl = rl+1−rl ,

l = 0, . . . ,nra−1 is integration step. For the ease of implementation, an equidistant

integration step Δr is used here, equal to pulse volume resolution.

We define yl :=

(
h(rl)

x(rl)

)
. To calculate yl+1, one step explicit method means that the

right-hand side of Eq. (B.1):

yl+1 = yl +ΔrΦ(rl,yl;Δr) (B.1)

depends only on yl , where Φ is called the increment function. Φ of RK4 is in the form:
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Φ =
1
6
(k1 +2k2 +2k3 + k4) ,

where

k1 = f (rl,yl) ,

k2 = f (rl +0.5Δr,yl +0.5k1Δr) ,

k3 = f (rl +0.5Δr,yl +0.5k2Δr) ,

k4 = f (rl +Δr,yl + k3Δr) .

Here k2 and k3 represent approximations to the derivative y′(·) at points on the solu-

tion curve, intermediate between (rl,y(rl)) and (rl+1,y(rl+1)), and Φ(rl,yl,Δr) is a

weighted average of the ki, i = 1, . . . ,4.

With boundary values

y0 =

⎛
⎝ h(r = 0)

dh
dr

(r = 0)

⎞
⎠=

(
h0

sinε0

)
,

one can now calculate y at ranges rl = lΔr, l ∈N0, and the first component of y provides

the desired heights hl = h(rl).
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C. Symbols

α0 Azimuth of radar antenna

αm Moisture term

β Covariance inflation factor

c Light speed

Cp, Cv Heat capacities for constant pressure or volume

D Diameter

e Water vapor partial pressure

ε0 Elevation of radar antenna

εa Analysis error

ε f Forecast error

εo Observation error

η Radar reflectivity

η Model error

E(·) Statistical expected value

f 2 Beam weighting function

f 2
e Effective beam weighting function

�g Apparent acceleration of gravity

γ Radio electric size

h Height

H Observation forward operator

H Linear observation operator

I Identity matrix

Ix Source/sinks of constituent x

I Illumination function of radar pulse volume
�J

x
Diffusion flux of constituent x

K Dielectric factor
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K Kalman gain

λ Radar wavelength

Λ Attenuation coefficient

� Attenuation factor

m Complex refractive index

M Modified refractivity

M Nonlinear model

M Tangent linear operator (Jacobian) of M

∇ Gradient Nabla operator

n Refractive index

N Refractivity

N Distribution function
�Ω Constant angular velocity vector of earth rotation

φ Horizontal angle relative to the beam axis

φ3 Horizontal beamwidth

p Pressure

p′ Perturbation pressure

p Probability density function

Pr Received power at the radar antenna

P f Forecast error covariance matrix

Pa Analysis error covariance matrix

qx Mass fraction(specific content) of constituent x

Qa Total absorption cross section

Qh Diabatic heating

Qm Impact of changes of humidity

Qs Total scattering cross section

Qt Attenuation cross section

Q Model error covariance matrix

ρ Total density of the air mixture

ρx Partial density of mixture constituent x

r Radial distance to radar antenna

rmax Unambiguous range of radar

200

Re f f Effective earth radius



RE Earth radius

Rv, Rd Gas constant for water vapor and dry air

R Observation error covariance matrix

s Surface distance

σb Backscattering cross section

τ Pulse duration
��τ Stress tensor due to friction

θ Vertical angle relative to the beam axis

θ3 Vertical beamwidth

t Time

T Temperature

u Zonal wind

v Meridional wind

�v Wind vector

vr Doppler velocity

vr,max Nyquist velocity

w Vertical wind

wt Terminal fall speed of hydrometeors

wt Average terminal fall speed of hydrometeors

W Range weighting function

xa Analysis state

x f Forecast state

xa Analysis ensemble mean

x f Forecast ensemble mean

xt True state

Xa Analysis ensemble perturbations

X f Forecast ensemble perturbations

y f Observation ensemble mean

yo Set of observations

Y f Forecast ensemble observation perturbations

ζ Terrain following vertical coordinate

201

Z Radar reflectivity factor

Ze Equivalent radar reflectivity factor





D. Abbreviations and Acronyms

3/4D-VAR Three/Four-Dimensional VARiational data assimilation

43ERM 4/3 Earth Radius Model

4D-LETKF Four-Dimensional Local Ensemble Transform Kalman Filter

CAPS Center for Analysis and Prediction of Storms

CFAD Contoured Frequency with Altitude Diagrams

COSMO COnsortium for Small-scale MOdeling

DWD Deutscher Wetterdienst (engl. German Weather Service)

EMA Effective Medium Approximations

GME Global ModEl

ICAO International Civil Aviation Organization

KENDA Km-Scale Ensemble-Based Data Assimilation

KF Kalman filter

EAKF Ensemble Adjustment Kalman filter

EKF Extended Kalman filter

EnKF Ensemble Kalman Filter

ETKF Ensemble Transform Kalman Filter

LES Large Eddy Simulation

LETKF Local Ensemble Transform Kalman Filter

LM Local Model
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A new radar forward operator for simulating terrestrial weather radar measure-
ments (reflectivity and Doppler velocity) from NWP model output has been 
developed in this work. The operator comprises all relevant physical aspects 
of radar cloud measurements in a quite accurate way, but at the same time 
also provides the possibility for simplifications in a modular fashion to gain the 
”best” balance between physical accuracy and computational effort. This has 
been investigated by a series of sensitivity experiments. Finally, the operator 
has been used to assimilate radar data in the framework of Ensemble Kalman 
Filter Systems and the preliminary results are presented.
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