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The rapid growth of world population and economy requires new meth-
ods of environmentally friendly energy generation. One future candidate 
is controlled thermonuclear fusion in magnetically confined plasmas 
where high-power microwave sources (gyrotrons) are used for plasma 
heating and stabilization to achieve the required temperatures of around 
120 Million degree Celsius. Gyrotrons are electron cyclotron masers driven 
by weakly relativistic helical electron beams, operating in a longitudinal 
magnetic field and highly oversized cavities. The current state-of-the-art 
for frequencies up to 170 GHz is 1 MW output power in continuous wave 
(CW) operation at 50 % efficiency, including single-stage depressed col-
lector operation. Gyrotrons have to run in single-mode operation in order 
to guarantee high output mode purity for low-loss transmission to the 
plasma torus and to generate  sufficient low level of internal stray radia-
tion. This mandatory requirement forces gyrotron developers to have a 
close look on to all possible parasitic oscillations in the tube. Experiments 
at KIT have shown that under certain conditions, parasitic oscillations are 
excited in the region after the main interaction region of the gyrotron. 
Those oscillations are named “After Cavity Interactions (ACI)”. In most 
publications, ACI is described as stationary, hence, defined as “static 
ACI”, That static ACI is characterized by the reduction of the overall gyro-
tron efficiency caused by an unwanted energy exchange after the cavity 
between the electron beam and the RF field. 

In the present work Dr.-Ing. Amitavo Roy Choudhury considered the  
effect of “dynamic ACI”. It is defined as the time-variant interaction of 
the electron beam either with the main mode or with different other 
competing modes, mainly at lower frequencies and, again, at a physical 
location behind the cavity. As prerequisite of his work, Dr. Choudhury 
modified the self-consistent multi-mode code SELFT. Doing that, he did 
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extend the simulation domain of the KIT code into the up-taper region 
of the gyrotron. At this region the strength of the longitudinal magnetic 
field is strongly varying and has to be added to the simulation. The modi-
fied code has been applied to dynamic ACI studies using four different 
gyrotron configurations (two conventional and two co-axial cavities). The 
results of the simulation confirm the existence of ACI.  A comparison with 
measurements results verifies the theoretical predictions.
Dr.-Ing. Amitavo Roy Choudhury provides the worldwide first detailed 
investigation of dynamic ACI in high-power megawatt-class gyrotrons. 
The results confirm that both up-taper radius contour and magnetic field 
profile have to be optimized in order to minimize ACI. 
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Kurzfassung

i

Die steigende Nachfrage nach leistungsstarken, verlässlichen und effizienten Gyrotron-
Oszillator-Röhren als Millimeterwellenquellen für Elektron-Zyklotron-Resonanz-Heizung 
(ECRH) und nichtinduktiven Stromtrieb in Fusionsplasmaexperimenten erfordert eine ge-
naue Betrachtung aller möglicher parasitärer Schwingungen im Gyrotron. Dabei wurden neue 
Effekte beobachtet, wobei experimentell herausgefunden wurde, dass einige schwache Oszil-
lationen auch im Bereich nach dem Gyrotron-Wechselwirkungsresonator angeregt werden. 
Deshalb werden diese Effekte als After-Cavity-Interaction (ACI) bezeichnet. In den meisten 
Veröffentlichungen wird die ACI als eine stationäre Reduktion des Gesamtwirkungsgrads 
beschrieben, die aufgrund eines weiteren Energieaustauschs zwischen Elektronenstrahl und 
Hochfrequenzfeld zustande kommt und hier als statische ACI bezeichnet wird. In der vorlie-
genden Arbeit betrachten wir die dynamische ACI, welche sich unterschiedlich verhält: die 
Wechselwirkung mit der Hauptmode oder mit anderen Moden bei niedrigerer Frequenz nach 
dem Resonator führt zu einer dynamischen Modulation der Ausgangsleistung.
Der selbstkonsistente KIT Multimoden-Code SELFT wurde modifiziert, um den Simulati-
onsbereich in die Radiusaufweitungs-Sektion (Uptaper) des Gyrotronresonators zu erwei-
tern, wo die Wahrscheinlichkeit des Auftretens dynamischer ACI besteht und die Stärke des 
Längsmagnetfeldes nicht mehr konstant ist. Dieser modifizierte KIT SELFT Code wurde zur 
Untersuchung der ACI in vier verschiedenen Gyrotronkonfigurationen eingesetzt (zwei Gy-
rotronröhren mit konventionellem zylindrischem Resonator und zwei Koaxial-Gyrotrons). 
Die Studie bestätigt, dass unerwünschte Wechselwirkungen in der Uptaper Region zu zu-
sätzlichen parasitären Schwingungen mit Leistungen im 1%-Bereich führen können. Auf-
grund der Einführung eines dBR(z)/dz ≠ 0-Terms und der signifikanten Verkleinerung des 
Magnetfelds in Richtung Uptaper-Ausgang konnten einige schwache Störschwingungen im 
Hochfrequenzspektrum des Ausgangssignals beobachtet werden. Theorie und Messungen 
stimmen gut überein was die im SELFT Code durchgeführten Modifikationen bestätigt. Die 
Ergebnisse dieser Studie bestätigen, dass die Radiuskontur des Uptapers und das Profil des 
Magnetfelds optimiert werden müssen um die ACI zu minimieren.



Abstract

The increasing demand for powerful, reliable and efficient gyrotron oscillators as
millimeter-wave sources for Electron Cyclotron Resonance Heating (ECRH) and non-inductive
current drive in fusion plasma experiments calls for a close look on all possible parasitic
oscillations in gyrotrons. New effects are observed where it has been experimentally found
that some spurious oscillations are also excited by the electron beam in the region after the
gyrotron interaction cavity. Therefore these effects are called After Cavity Interaction (ACI).
In most publications, ACI is described as a stationary reduction in the overall efficiency caused
by further energy exchange after the cavity between electron beam and RF field which here
is named static ACI. In this study we considered dynamic ACI, which behaves differently:
the interaction after the cavity, either with the main mode or with different modes at lower
frequency, leads to a dynamic modulation of the output power.
The self-consistent KIT multi-mode code SELFT has been modified in order to extend the
simulation domain into the radius uptaper section of the gyrotron cavity where the probability of
occurrence of dynamic ACI exists and the strength of the longitudinal magnetic field is no longer
constant. This modified KIT SELFT code has been applied to dynamic ACI studies using four
different gyrotron configurations (two conventional cylindrical cavity gyrotrons and two coaxial
cavity gyrotrons). The study confirms that undesired interactions in the uptaper region can result
in additional parasitic oscillations with power in the 1% region. Due to the implementation of
a dBR(z)/dz 6= 0 term and the significant reduction of the magnetic field towards the uptaper
output, some spurious oscillations have been observed in the RF spectrum of the output signal.
Theory and measurements are in good agreement verifying the modifications performed on the
SELFT code. The results of this study confirm that uptaper radius contour and magnetic field
profile have to be optimized in order to minimize ACI.
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1 Introduction

Microwave tubes are still extensively employed in certain areas for applications for which
their solid state semiconductor counterparts are not able to compete as far as delivering the
required power level at microwave to millimeter wavelengths. These applications vary from
Electron Cyclotron Resonance Heating (ECRH) of plasmas in fusion reactors to the sintering
of high-performance industrial ceramics. This unique ability to produce hundreds of kilowatts
of pulsed to continuous waves (CW) at frequencies higher than 200 MHz has made microwave
tubes an indispensable source for high power and high frequency applications. There are various
types of microwave devices which can be found in [Gil86]. Conventional microwave tubes
impose limitations on the interaction circuit physical size and output power as the operating
frequency increases. The interaction structure gets smaller with increasing frequency which
consequently puts a limitation on output power [Bas96].
In order to meet the increasing demand for energy, it is necessary to have some alternative
power plants, instead of having power plants using fossil fuels. Out of all the promising
candidates, power plants using thermonuclear fusion in magnetically confined plasmas are
the most promising one. Thermonuclear power plants have many advantages over the nuclear
fission plants like there is no need for disposal of the spent nuclear rods, fuels can be recycled
and also there is no CO2 emission. In these thermonuclear plants the fusion process is started
by heating a gas mixture, consisting of Deuterium and Tritium, up to several 100 Million degree
of centigrade, in order to form a plasma. As a result a large number of neutrons are produced
which transfer their kinetic thermal energy (80% of the total fusion energy) to a Lithium blanket
so that a turbine generator can operate to produce electricity. An efficient way, by which the
plasma heating is carried out, up to the required elevated temperature, is by using microwaves
for electron heating which is accomplished by ECRH. This method has many advantages over
other employed methods like it has a very high coupling factor into the plasma and also increases
the possibility of localized heating. The minimum power level required for the generation
of burning plasmas in future fusion reactors depends on the Q-factor. It is 50-100 MW and
the required operating frequency range lies between 100 to 250 GHz. Such high frequencies
are needed for efficient non-inductive current drive. Today, for this power and frequency
regime gyrotrons are the only solution. A current overview of the state-of-the-art of gyrotrons,
gyro-devices and free electron masers and their fields of application is given in [Thu13]. Thus,
gyrotron operation with highest possible efficiency at the required frequency and power level
and also with low spurious oscillations gain increasing importance for the successful realization
of future reactors. The presented theoretical work is mainly concerned with the investigation of

1



1 Introduction

spurious oscillations present in the output of gyrotron interaction cavities. It starts from the KIT
developed time-dependent self-consistent slow-variables multi-mode interaction SELFT code.

1.1 Gyrotron components and principle of operation

The gyrotron is a fast wave microwave tube which emits radiation in the millimeter and
sub-millimeter wavelength range. It covers the gap between conventional microwave tubes
(for example klystrons, magnetrons, etc.) and far-infrared lasers [KBT04]. It is based
on the Electron Cyclotron Maser (ECM) instability discovered in the late 1950s, when
three researchers began to examine theoretically the generation of microwaves by the ECM
interaction [FGP+77, HG77]: Richard Twiss in Australia [Twi58], the German Jürgen
Schneider in the US [Sch59] and Andrei Gaponov in Russia [Gap59]. The same is based on the
fact that moving electrons gyrate in the presence of an axial magnetic field due to the Lorentz
force, hence the name gyro-tron. Latest gyrotron developments extend into the THz-regime
[GLG08, BGI+09]. The schematic of a state-of-the-art high power gyrotron with a coaxial
insert cavity and lateral RF output is shown in Fig. 1.1; its elements are explained below. A
gyrotron consists of following major parts: Magnetron Injection Gun (MIG), magnet, beam
tunnel, interaction cavity, quasi-optical mode converter, RF output window and collector.
Gyrotrons require a hollow electron beam with sufficient orbital velocity (v⊥) and small velocity
spread in order to generate high power RF radiation. The MIG produces an annular electron
beam in which electrons execute small cyclotron orbits at a frequency required for cyclotron
resonance interaction in the cavity. The magnet is used to provide the necessary magnetic field
in the cavity while a compensation coil is used to suppress the field produced by the main coil in
the emitter region. The MIG used in gyrotrons are usually operated in the temperature-limited
(TL) region of the emitter [Pio93]. In addition to that, a sufficient parallel velocity component
vq is also required so that the electron beam can reach the interaction region and leave the cavity
after the energy transfer. Due to the axial and the transversal component of the electron velocity
in the presence of the magnetic field, the electron beam forms helical trajectories. It is noted
that the radius of rotation of the electrons in their helical path i.e. Larmorradius rL = v⊥/Ωc

is much smaller than the beam radius . Ωc is the electron cyclotron frequency. The ratio of
the perpendicular velocity component v⊥ to the parallel velocity component vq is called pitch

factor. It is defined as:
α =

v⊥
vq

with β⊥,q =
v⊥,q

c
(1.1)

The velocities v⊥ and vq are generally normalized to the velocity of the light c. Thus total
normalized electron velocity is given by:

β =
√

β 2
⊥+β 2

q (1.2)

2



1.1 Gyrotron components and principle of operation

Figure 1.1: Schematic diagram of a gyrotron in coaxial cavity configuration.
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1 Introduction

The electronic efficiency of a gyrotron is given by:

ηelec =
α2

1+α2 η⊥ (1.3)

where η⊥ is the efficiency of the energy transfer from the perpendicular energy component of
the gyrating electron beam to the generated RF output power. The maximum theoretical value is
η⊥ ≈72% [KDS+85], based on the theory of normalized variables (discussed in section 1.1.3).
The value of η⊥ depends primarily on the main operating parameters of the MIG i.e. beam
current and beam voltage. The overall efficiency ηtot is even lower than the electronic efficiency
η⊥. Typically, it is about 30% if no other measures for energy recovery are used.
In the interaction cavity the energy exchange between electron beam and RF takes place due
to the electron-cyclotron interaction mechanism. The purpose of the interaction cavity (either
convention or coaxial type) is to provide a stable oscillation with one of the eigenmodes of
the waveguide. The coaxial cavity consists of a simple cylinder with a down taper section of
length Ld at the cavity entrance and an up taper section of length Lu at the cavity exit along
with a longitudinally corrugated coaxial insert. For an in-depth description about the coaxial
cavity see [Ker96]. The schematic diagram of a cavity with a tapered coaxial insert for a high
power gyrotron along with a typical longitudinal field profile is shown in Fig. 1.2. In case
of a conventional cavity, the coaxial insert is not used. The transitions between each section
are normally smoothed, over a length of Ls,d and Ls,u for the downtaper and uptaper section
respectively, using a parabolic function to minimize unwanted mode conversion at sharp edges.
Gyrotrons operate near the cut-off frequency of the desired operating mode in the cavity. The
frequency of the resulting TEm,p mode resonance is set to correspond to the desired operating
frequency, which in turn must satisfy the cyclotron resonance condition. At the resonance
frequency f the length of the middle section of the resonator is approximated by:

LR ≈ n ·λq/2 (1.4)

where λq is the wavelength in the resonator and n is the number of field maxima in the axial
direction (the axial mode index). Usually it is taken as one in high power gyrotrons and it is
neglected in the further contents of this thesis for the better readability. LR is typically about
5-10 free space wavelengths λ0 [Ker96].
The field amplitude in axial direction can be described by a complex function f (z) (see chapter
2). Fig. 1.2b shows a typical f (z) of an operating mode (TE−34,19), calculated along the cavity
having maximum at the straight portion of the interaction cavity. The electric field structure
in the resonator is determined by the excited eigenmode in the cavity [JPT+06]. Fig. 1.3
shows some typical TE-eigenmodes. For a cylindrical waveguide cavity, the eigenmodes are
given as TEm,p, TMm,p -modes and, especially for a coaxial structure, the TEM-mode. Efficient
energy exchange with TMm,p modes in the cylindrical waveguide structure is not possible as the
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1.1 Gyrotron components and principle of operation
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Figure 1.2: (a) Schematic diagram of a coaxial cavity with a tapered insert and (b) typical example of a
longitudinal field profile inside the cavity.

Figure 1.3: Typical eigenmodes used in gyrotrons (from [Ber11]).

transverse components Eϕ and Er vanish in the portion of the resonator close to the cut-off. As
the TEM-mode of a coaxial cavity has no cut-off frequency it is not possible to have reflections
towards the down taper section of the resonator which makes a resonance with a high quality
factor impossible. It results, in typical gyrotron operation only TEm,p modes are excited as
for these modes transverse components do not vanish and also the dimensions of the resonator
have no limitation with respect to the wavelength of the radiation. It should be mentioned
that different rotations of the mode relative to the helical motion of the electrons is reflected
by different signs of the azimuthal index ±|m| (TE−m,p = co-rotating mode and TE+m,p =

counter-rotating mode). The maximal coupling of TE−m,p modes to the electron beam is slightly
higher which makes them preferable [Ber11].
In high power gyrotrons, non-linear tapers are used to connect the interaction region with the
output waveguide system. The presence of a taper in a waveguide introduces unwanted parasitic
modes. The main challenge in the design of a non-linear taper for a gyrotron is that it requires
very high transmission (above 99%) with very low spurious mode generation. Due to high
output power, even 1% of reflections can cause severe damage to the entire system. Gyrotron
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1 Introduction

output tapers should act as a nearly perfect match at the input port of the launcher section
with suppressed spurious modes at the output port of the uptaper section of the cavity with a
taper length as short as possible. Non-linear tapers with gradual change of the radius cause
low power conversion to spurious modes. The methods used for the analysis and synthesis of
gyrotron output tapers are given in detail in [KBT04].
After the beam-wave interaction inside the cavity, the electron beam and RF wave travels
towards the quasi-optical (QO) output system. This quasi-optical mode converter consists of a
waveguide antenna launching a wave beam onto several deflecting mirrors. In most high-power
gyrotrons, the QO mode converter system consists of a waveguide launcher, a quasi-parabolic
or quasi-elliptical mirror and two or three focussing mirrors. It is placed in between gyrotron
interaction cavity and the RF output window. A typical and simple example of launcher, usually
used in gyrotrons, is a Vlasov type launcher, which consists of a cylinder whose end opening is
cut along a helix [HMH+03]. By using a specific inner wall perturbation along this launcher, a
mode mixture can be generated which consists of several neighbouring modes having different
orders [BD04] and which forms a Gaussian like intensity distribution. A detailed description
can be found in [JTP+09, Fla12].
At the end of the QO mode converter of a gyrotron, the generated RF power is coupled to
the transmission line through a dielectric vacuum RF window. It serves as a barrier between
the vacuum side of the gyrotron and the output transmission line. It must withstand high
power, mechanical and thermal stresses, be leak tight (≈ 10−10Torr) and should have very low
absorption. At the end of the QO mode converter of a gyrotron, the generated RF power is
coupled to the transmission line through a dielectric vacuum RF window which is an important
component and serves as a barrier between the vacuum side of the gyrotron and the output
transmission line. It should withstand high power, mechanical and thermal stresses, be leak
tight (≈ 10−10Torr) and be should have very low absorption.
Finally after the separation of the electron beam from the RF wave, the spent electron beam
travels towards the collector where a depressed collector system allows recovery of some of the
residual energy from the electron beam and thus can enhance the overall device efficiency.

1.1.1 The electron cyclotron interaction

The electron cyclotron interaction was initially discovered as a quantum mechanical effect of
the coherent emission and absorption of radiation, and later on it was designated as the gyrotron
ECM (‘electron cyclotron maser’) or CRM (‘cyclotron resonance maser’) instability. It should
be noted that in addition to ECM or CRM mechanism, a kinetic theory of interaction exists in
which the entire electron beam is considered as an active medium [DL92].
The electron-cyclotron-interaction, which in this case is simply called gyrotron interaction,
describes the mechanism of the energy exchange of the rotational motion of the electron beam
and the RF wave. A brief review of the principles and theory of gyrotron and its components
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1.1 Gyrotron components and principle of operation

are presented in the subsequent part of this chapter. A more complete and detailed description
can be found in [KBT04, FDJ+99, Lit08].
Due to the electron-cyclotron-interaction, electromagnetic energy is radiated by weakly
relativistic electrons gyrating in an external magnetic field which is produced by a magnet.
In this case, the effective frequency, which corresponds to the relativistic electron cyclotron
frequency Ωc, is given by [KBT04]:

Ωc = 2π fc =
eB
mγ
≈ 2π

28GHz ·B/T
γ

(1.5)

where γ (relativistic factor) is given by:

γ =
1√

1− (v/c)2
= 1+

Wkin

mc2 ≈ 1+
Wkin

511keV
(1.6)

where Wkin and v are the kinetic energy and velocity of the electron beam respectively. The
weakly relativistic electrons gyrating in a strong magnetic field are radiating energy coherently
due to bunching caused by the relativistic mass dependence of their gyration frequency.
Bunching is achieved because, as an electron loses energy, its relativistic mass decreases and it
thus gyrates faster (see Fig. 1.4). The strength of the magnetic field determines the radiation
frequency. It should be mentioned that when ωRF is exactly synchronous to the Ωc some
electrons are accelerated while some electrons are decelerated depending upon the position of
the electron relative to the phase of the RF field. In the non-relativistic case the net energy
transfer from the electron beam to the RF wave averages out to be zero. However, in the
relativistic case due to the changing relativistic factor of each electron there is a non zero net
energy transfer and as a result generation and enhancement of the RF field takes place. As
a consequence of this relativistic effect, the frequency difference between RF wave and the
electrons movement |ωRF -Ωc| changes and thus the relative phase difference for every electron
changes over time.
If we assume that ωRF>Ωc, the behaviour of electrons initially losing energy differs from that of
electrons initially gaining energy. For electrons which are in the acceleration phase γ increases,
thus Ωc decreases and as a result the frequency difference with respect to the initial higher
ωRF increases. Over time, accelerated electrons are accumulated with an increasing phase with
which they tend to leave this undesired phase position more quickly. In contrast, as indicated
in Fig. 1.4, for decelerated electrons their Ωc increases and thus the frequency difference with
respect to ωRF decreases, which means that these electrons tend to remain longer in their desired
phase position relative to the RF-field. Thus when ωRF>Ωc, electrons remain longer in the phase
relative to the RF field, in which they emit their energy, since the change in phase per oscillation
period decreases. In summary, the particles accumulate in a particular relative phase position
where electrons transfer energy to the RF field. In cylindrical cavity gyrotrons with radius
R0 the operating mode is chosen close to cut-off (vph = ωRF/kq >> c), vph is the wave phase
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Figure 1.4: Principle of electron cyclotron interaction ([Thu13]).

velocity. To keep the bunched electron in the retarding phase, the frequency mismatch |ωRF -Ωc|
is chosen small but positive. The Doppler term kqvq is of the order of the gain width and is small
compared to the radiation frequency.
In the above description of the electron-cyclotron-interaction, it is required to consider the
movement of the electrons in the direction of the flow of the electron beam. The electrons pass
through the cavity with an axial velocity vq, within a certain transit time. Due to the presence of
the electron axial velocity, the operating frequency is shifted by the Doppler term kqvq where vq
is the axial wave number of the operating mode. The total wave number is given by:

k =
2π

λ
=

2π f
c

(1.7)

with
k2 = k2

q + k2
⊥ (1.8)

To ensure that the phase of the electric field is synchronous to the rotational movement of the
electrons, the phase difference over time needs to be

d
dt
(ωRFt− kqvq−Ωct)≥ 0 (1.9)

Considering the Doppler shift, the resonance condition becomes

ωRF − kqvq ≥Ωc (1.10)

Gyrotrons can also oscillate at higher cyclotron harmonics sΩc. s is the harmonic number in
which the RF field is inhomogeneous to the rotational movement of the electrons [Nus04].
Harmonic operation reduces the required magnetic field for a given frequency by the factor s.
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1.1 Gyrotron components and principle of operation

As a result, the resonance condition becomes:

ωRF − kqvq ≥ sΩc (1.11)

1.1.2 Dispersion diagram of a gyrotron

The operation of microwave tubes can be compactly presented with the help of dispersion

(Brillouin) diagrams [Thu13]. Dispersion diagrams show the relation between a waveguide
cavity mode

ω
2
RF = k2

q c2 + k2
⊥c2 (1.12)

and the fast cyclotron mode
ωRF − kqvq = Ωc (1.13)

Here ωRF is the RF frequency. The cyclotron resonance occurs at that point, for which the
two frequencies obtained from equations (1.12) and (1.13) are equal. The typical dispersion
diagram of a gyrotron oscillator is shown in Fig. 1.5 where equations (1.12) and (1.13) are
plotted simultaneously i.e. the RF wave frequency is shown as a function of the axial wave
number . In gyrotron oscillators, the measured efficiencies at higher harmonics (s = 2 & 3) are
lower than those operating at the fundamental frequency (s = 1).

Figure 1.5: Dispersion diagram showing the region of interaction between the waveguide cavity modes,
the beam, and beam harmonics.

Using a dispersion diagram, different operating points of the gyrotron interaction can be
demonstrated by selecting points where the waveguide mode hyperbola curves touch or intersect
with the beam line. In Fig. 1.5, point 1 corresponds to the classical gyrotron interaction with
mode 1 near cut-off region at the fundamental electron cyclotron frequency Ωc. The Doppler
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term is kept small, and the oscillating frequency is in first approximation equal to the cyclotron
frequency. Point 2 in Fig. 1.5 represents a backward wave interaction with mode 1, since
the corresponding vq is negative where the waveguide dispersion hyperbola and the beam line
of the second harmonic 2Ωc intersect. Point 3 corresponds to the interaction of a forward
travelling mode 2 with the second harmonic of the electron cyclotron frequency. Point 3
represents the gyro-TWT type interaction. For numerical calculation of the gyrotron interaction
more complicated models have to be considered. The corresponding theories can be found in
[Ker96, Jel00].

1.1.3 Formalism of normalized variable

Generally the Brillouin diagram is used as a suitable way for the first estimation of the
beam-wave interaction mechanism. However, for more detailed analysis of the gyrotron
interaction it is necessary to consider detailed differential equations derived from Maxwell
equations and the Lorentz force equation for the field profile and electron motion respectively.
A ballistic theory can be used to estimate the trajectories of the annular electron beam inside
the gyrotron cavity, electronic efficiency as well as impact of the calculated electric field on the
annular electron beam.
Another possible way to describe the nonlinear theory of a gyrotron oscillator is the use
of universal pendulum equations [DT86]. These generalized differential equations describe
the evolution of the electron energy and their phase with respect to the RF field. The
normalized variables method [KDS+85] allows the evaluation of the efficiency of the
electron-cyclotron-interaction for a broad mode spectrum. Summaries of the theory can
be found in [IKP96, DT86, KT80]. [Bor91] gives an overview on different systems of
dimensionless systems and variables. The method had verified success in several gyrotron
experiments and is simple to adapt to various problems.
According to the normalized variable approach and with many simplifications and assumptions,
the transverse energy u of a single particle can be given by [KDS+85]:

du
dζ

= 2F f (ζ )
√

1−usinθ

dθ

dζ
=M−µ−2

F f (ζ )√
1−µ

cosθ

(1.14)
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1.1 Gyrotron components and principle of operation

The three normalized variables such as the field amplitude F , the interaction length µ and the
detuning factor M can be written as:

F =
E0β

−3
⊥

BR
Jm−1(k⊥Re)

µ = π

(
β 2
⊥

βq

)(
LR

λ0

)
M=

2
β 2
⊥

(
1− fc

f

) (1.15)

where β⊥, βq, BR, Re, fc, f , θ is the normalized electron velocity perpendicular to the magnetic
field, the normalized electron velocity parallel to the magnetic field, the maximum magnetic
field value in the gyrotron resonator, the electron guiding center radius, the relativistic electron
cyclotron frequency, the frequency of the RF wave and the slowly varying gyro-phase of the
electron respectively. With the effective cavity length (LR = 2/kq)) the normalized energy
variable u as well as a axial position variable ζ is given by:

µ =
2

β 2
⊥,in

(
1− γ

γin

)
ζ = π

(
β 2
⊥

βq

)(
z

λ0

) (1.16)

Considering an axial Gaussian field profile f (ζ ) = e−(2ζ/µ)2
, the electronic efficiency along

with the transverse efficiency η⊥ is given by:

ηelec =
γin− γ

γin−1

=
γinβ⊥,in

2(γin−1)
η⊥

with η⊥ = 〈µ(ζout)〉θin

(1.17)

where η⊥ is the average over an adequate number of electron input phase positions θin. The
results of the numerical integration of equation (1.14) can be presented in the form of a single
plot of the efficiency η⊥ in the F − µ space (see Fig. 1.6). In this particular given example
F−µ plot along with the Gaussian field profile, the transverse efficiency has it maximum value
of 72% at µ = 19 and F = 0.13.
Although the normalized variable system is more elegant and expresses the whole gyrotron
interaction process with dimensionless as well as with sufficiently accurate parameter values,
in the in-house developed KIT SELFT code these normalized variable approach is not used for
the beam-wave interaction calculations due to the following two reasons: First these normalized
variable system incorporates some more approximations than actually used in the SELFT code
(e.g. velocity spread is not included), second the normalization factors usually include beam
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Figure 1.6: Transverse efficiency contour η⊥(solid line) as a function of the normalized field amplitude F
and normalized effective interaction length µ for optimum detuning ∆ (dashed line) [Ker96].

parameters which change in different situations during performing actual gyrotron experiments
(e.g. during startup). The normalized variable approach is very powerful for basic studies but
does not appear really appropriate for simulations codes which are set up for the design and
experimental comparisons.
3D numerical methods like the finite difference method or the finite element method without any
approximations, for field calculations, require large computational memory as well as very long
computational time due to the large dimension of the resonator and uptaper as compared to the
free-space wavelength of the propagating wave. Such 3D field calculation methods, therefore,
are only suitable for problems of relatively low dimension.

1.2 Design considerations for CW gyrotron

Generally the design of high power gyrotrons involves trade offs among a number of design
goals and constraints. In this section, some general design considerations particular for high
power gyrotrons design in terms of the main technological as well as physical design constraints
are discussed. Gyrotron design specifications and goals become more and more difficult if one
wishes to work at very high frequencies, high power levels from long-pulse to CW operation,
and with higher cyclotron harmonic number. The main design constraints for high power CW
gyrotrons are shown in Table 1.1. The first four constraints given in Table 1.1 are related to
electron beam physics whereas the emitter ring radius and the corresponding current density
are technological constraints. The magnetic compression has a direct relation to the emitter
radius.
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1.2 Design considerations for CW gyrotron

Constraints Limit (for CW operation)
TechnologicalConstraints

Peak ohmic wall loading (ρohm) ≤ 2.0kW/cm2

Emitter current density (JE) < 3−5A/cm2

Electric field at the emitter (EE) ≤ 70kV/cm2

Emitter mean radius (RE) ≤ 5.5−8cm
PhysicalConstraints

Ratio of beam current to limiting current (Ib/IL) ≤ 0.5
Magnetic compression (b = BR/BE) < 50.0
Fresnel parameter (CF) ≥ 0.7−1.0
Emitter/space charge current density (JE/JSC) ≥ 0.15−0.3

Table 1.1: Main technological and physical constraints for CW gyrotron design [Pio93]

Cavity wall losses

The consideration of the cavity wall losses is important for long pulse to CW operation of high
power gyrotrons. Requirements for cooling depend on the wall loading as well as the total
losses [KR81, KKD+97, PBD+99]. Cavity wall losses are directly related to the quality factor
of the resonator and the operating mode [Ker96]. The total output power P radiated from the
type of cavity used in gyrotrons is composed of the radiated power Pdi f as well as the power due
to ohmic loss Pohm, so accordingly the diffractive quality factor Qdi f as well as ohmic quality
factor Qohm are defined by:

Qdi f = ω
W

Pdi f

Qohm = ω
W

Pohm
, W = Stored energy

(1.18)

Knowledge of the ohmic quality factor is essential for efficiency estimations [KBT04]. The
actual quality factor is somewhat different due to the reflection ρ at the end of the cavity. For
high power gyrotrons, the total quality factor Q is almost equivalent to the diffractive quality
factor. The total quality factor for the resonator having a uniform straight part of the cavity is
given by [FN88]:

1
Q

=
1

Qdi f
+

1
Qohm

(1.19a)

with Qdi f = 4π
L2

R

λ 2
0

(
1

1−ρ

)
(1.19b)
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where LR is the effective length of the cavity. The ohmic quality factor of the cavity, excited by
a TEm,p mode, is defined by:

Qohm =
R0

δ

(
1− m2

χ2
m,p

)
(1.20)

δ =
√

π f µ0σ is the skin depth at the frequency f for the cavity radius R0, σ is the conductivity,
µ0 is the absolute permeability, and χm,p is the eigenvalue of the TEm,p mode where m and p

denote its azimuthal and radial index. Having the surface area of the cavity (S = 2πR0LR), the
average ohmic power density ~ρohm loss is described by [VZO76, BW86]:

~ρohm =
Pohm

S
=

Qdi f ·Pdi f

Qohm ·S
≈ 2

√
π

c3√µ0σ
·

f 2.5Qdi f

LR/λ0 · (χ2
m,p−m2)

Pdi f (1.21)

Equation (1.21) can be used for an estimation of the power loss by considering a Gaussian field
profile. The maximum power dissipation density is higher while assuming a Gaussian field
profile by a factor of ≈1.6 and on the other hand numerical calculations of the field profile in
the resonators for high power gyrotron show typically a factor of ≈1.4. Thus a more accurate
result can be obtained by performing a numerical evaluation of the resonator field profiles for
high power gyrotrons.
Voltage depression and limiting current

Due to the presence of the space charge of the electron beam, a negative potential is created
which screens the electrons partially from the accelerating voltage. The difference between the
accelerating cathode voltage Uk and the corresponding beam voltage UB i.e. |∆U | = |Uk−UB|
describes the voltage drop (‘voltage depression’) within the hollow electron beam with respect
to the cavity wall. The voltage depression for a conventional cavity is given by [DK81, KBT04]:

∆U =− IB

2πε0vq
In
(

R0

Re

)
≈−60V

IB/A
βq

In
(

R0

Re

)
(1.22)

Similarly the voltage depression for a coaxial cavity is defined as [CB93]:

∆U ≈−60V
IB/A

βq
In
(

R0

Re

)(
In(Re/Ri)

In(R0/Ri)

)
(1.23)

IB is the beam current and Ri is the coaxial cavity insert radius. The upper limit for the allowed
voltage depression is roughly estimated to be around 10% of the applied cathode voltage
[KBT04]. The limiting current is the current for which the voltage depression becomes so
large that the beam cannot propagate (βq→ 0 and mirroring of the electron beam occurs). The
limiting current should be at least twice as large as the operating beam current [KBT04]. The
limiting current for the conventional and coaxial cavities are given by [GC84, CB93]:

Ilim ≈ 17070A
γ0(βq0/

√
3)3

2In(R0
Ri
)

(for conventional cavity gyrotron) (1.24)
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Ilim ≈ 17070A
γ0(βq0/

√
3)3

2In(R0
Ri
)( In(Re/Ri)

In(R0/Ri)
)

(for coaxial cavity gyrotron) (1.25)

It should be mentioned that the voltage depression of a conventional cylindrical cavity is much
larger than that of a coaxial cavity gyrotron and so accordingly the limiting current for the
conventional case is much smaller than that of the coaxial gyrotron case. Because of the
greater margin in the limiting current and the less voltage depression, the coaxial cavity gyrotron
exhibits considerable advantage over the conventional gyrotron.
Fresnel Parameter

The Fresnel parameter describes how a particular mode will oscillate in the resonator [KBT04].
It also describes the losses due to diffraction in a quasi-optical resonator with a given length LR

(see Fig. 1.2a). In case of the gyrotron operation near the cut-off frequency of the operating
mode in the resonator i.e. (2π/λ ) ≈ (χm,p/R0), the expression for the Fresnel parameter (CF )
is defined by [KBT04]:

CF ∼=
π

4
·

(LR
λ
)2√

χ2
m,p−m2

(1.26)

CF is a measure for the deformation of the phase front in a tapered waveguide due to diffraction.
[GFG+81] shows that when CF<1 the transverse as well as the longitudinal structure of the RF
field is not sufficient enough for onset of a particular TEm,p mode in the gyrotron cavity. Using
CF>1 a single-mode description is appropriate.

1.3 State-of-the-art of static and dynamic after cavity interaction

Megawatt and multi-megawatt gyrotrons are under careful investigation by several institutions
worldwide [RPD+07, HGA+09, KST+08, DLM+08]. As a result, new effects are observed
where it is assumed that some spurious oscillations are excited by the electron beam after the
interaction cavity. One of those effects is called ‘After Cavity Interaction (ACI)’which takes
place in the uptaper section after the interaction zone, if proper synchronization conditions
(1.10) for a beam-wave interaction of the gyrotron type are fulfilled [SN09]. In most
publications [CSS+07, ZM04, SNA10], the possible impact of ACI is described as a stationary
reduction in the overall efficiency caused by direct energy exchange after the cavity between the
electron beam and the RF field where RF energy is transferred back to the electron beam leading
to lower efficiency. Due to this, the energy distribution of the spent electron beam after ACI
is less suitable for energy recovery through means of a depressed collector. This phenomenon
is described as static ACI [ZM04]. While the above effect exists and may have a deteriorating
influence on the operation of a gyrotron, other kinds of ACI have also been found in recent
theoretical and experimental investigations on possible undesired oscillations and interactions
in a gyrotron which is known as dynamic ACI [KAC+10]. Dynamic ACI is based on the same
mechanism as static ACI, but it behaves differently since further RF waves are generated: The
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interaction after the cavity leads to a dynamic amplitude modulation, either with the main mode
or with different modes at lower frequency. Dynamic ACI modulates the output power and
limits the stability region of the operating mode thereby inhibiting operation at the desired
output power. On the contrary, dynamic ACI which takes place further away from the cavity
interaction region seems to be no more than a minor side effect of a usual gyrotron operation,
since the cavity oscillation remains undisturbed in such cases. However parasitic modes at lower
frequencies will increase the stray radiation level in the tube. To understand dynamic ACI both
experimental and theoretical investigations are carried out [CSS+07, SCG+11, CKA+12]. A
first indication of limitations on output power was found in experiments at KIT Germany, when
the frequency step tunable gyrotron did not deliver the desired MW power, after the operating
mode was changed [TAB+03]. In the first version this tube only reached 0.6 MW, and the
corresponding simulation indicated that the reason was the onset of dynamic ACI at higher
acceleration voltages. It should be mentioned that in these experiments, an oscillation operating
in a different frequency was found [KSF+09].

1.4 Statement of the problem addressed

In recent years, spurious oscillations like dynamic ACI in high power gyrotron gained a special
attention as an influencing factor on the overall efficiency as well as device performance.
Dynamic ACI is currently under extensive analysis regarding both the experimental findings
and the capability of the present interaction models and simulating codes to describe dynamic
ACI as close as possible [KAC+10, SCG+11, CSA+11].
Generally, the interaction of the electron beam with a particular waveguide mode takes place
in the region of the cavity where the oscillation frequency is close to the cut-off frequency of
the waveguide. Normally in the region after the gyrotron interaction cavity (see Fig. 1.7), the
wave becomes a travelling wave and the interaction stops. Therefore, in most gyrotrons, the
device performance in terms of overall efficiency, output power and operating mode stability
does not change after the electrons pass through the cavity. But in high-power gyrotrons due
to high electron currents there is a great probability to exceeds the starting current for ACI.
When electrons propagate along the decreasing magnetic field and simultaneously along the
uptaper waveguide section at which the cut-off frequency of the operating mode decreases
(ωcutt = ck⊥ = cχm,p/Rw(z) where χm,p is the eigenvalue for the TEm,p mode and Rw is the
varying cavity wall radius) it may be possible that the cyclotron resonance condition is fulfilled
for a certain mode and again beam-wave synchronization may take place. This fact is also
depicted in Fig. 1.8 where the after cavity interaction point is drawn by the interception of two
dashed lines: the parabolic dashed line shows the dispersion curve for a waveguide mode of a
larger radius. The straight dashed line shows the beam line for electrons with axial velocity and
cyclotron frequency different from those in the cavity region.
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Figure 1.7: Gyrotron interaction cavity showing different sections.

Figure 1.8: Dynamic ACI in Brillouin-Diagram shows resonance interaction in the cavity solid lines and
after the cavity dashed lines.

At the Institute for Pulsed Power and Microwave Technology (IHM) of the Karlsruhe Institute of
Technology (KIT), high power conventional as well as coaxial gyrotrons are under development
in collaboration with several partners [Thu13], for example, high power gyrotrons with
conventional cavity (e.g. 1 MW CW at 140 GHz for the Stellarator Wendelstein 7-X)
and coaxial cavity (2 MW short pulse at 170 GHz for ITER) for fusion applications are
being developed and verified experimentally. State-of-the-art high-power tubes are also being
developed at the Institute of Applied Physics in Nizhny-Novgorod, Russia [DLM+08].
In the experiments performed at KIT Germany, frequencies of spurious oscillations are
measured very precisely. For theoretical interpretations of the measured results with respect
to dynamic ACI it is necessary to model the simulating tools as close to the reality as possible
with adapting less assumptions in the simulating tool in order to support the measured results.
In all previous investigations, spurious oscillations in the simulation results are treated as static
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or stationary ACI in which the overall efficiency is reduced by several percentages due to energy
exchange between the electron beam and the outgoing travelling wave.
There are several European-Union (EU) codes which are based on the slow-time-scale
approximation and uses different approaches for beam-wave interaction calculations like
COAXIAL [Dum01], EURIDICE [AIP+08] and TWANG [ATA+11]. Comparing with these
EU codes, the KIT developed SELFT code also utilizes direct time-dependent differential
equations for beam-wave calculations which are directly derived from the fundamental Maxwell
equations and the Lorentz force equation.
Using the SELFT code [Ker96] attempts were made to simulate the measured parasitic spectra.
It has to be noted that SELFT originally was developed for the simulation of gyrotron interaction
in the cavity and its vicinity where the magnetic field is considered to have a constant value. For
calculation of ACI it is required to extend the simulation domain well into the uptaper section of
the gyrotron cavity. Several assumptions in the code have only reduced validity with increasing
distance from the cavity.
In the present work, comprehensive investigations has been carrier out with respect to dynamic
ACI, in order to support the experimental results, by modifying the existing SELFT code in such
a way that the time-dependent differential equations for beam-wave interaction calculations
include a term containing a change in magnetic field. This means that SELFT calculations are
also influenced by variation in the magnetic field along the cavity axis. In the present work
it is the first time where the KIT SELFT code is used for extensive investigations of dynamic
ACI present in the uptaper section of gyrotron interaction cavities and it will be shown that the
tapered magnetic field and the contour of the waveguide have an important influence.

1.5 Content and structure of the thesis

This work is structured as follows:
In the present chapter 1, the main components and the operational principle of gyro-oscillators
are introduced. In addition to that this chapter discusses the principal design considerations
which are relevant for the design of high power gyrotrons. Subsequently this chapter also deals
with the state-of-the-art of static as well as dynamic ACI investigations and also discusses the
problems which are addressed in the present thesis.
Chapter 2 reviews the mathematical representation of the electron momentum and RF field
profile equations.
In chapter 3, investigations of dynamic ACI phenomena with a uniform magnetic field profile,
throughout the simulation domain, are addressed. In this chapter the adiabatic approximation
is used to determine uq(z) according to the varying magnetic field and to solve the resonance
condition. Solutions for the resonance condition are then used to determine the approximate
region(s) of the appearance of dynamic ACI in the simulation domain. In the subsequent part
of this chapter the uq(z) values, obtained according to adiabatic approximation, are used in the
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1.5 Content and structure of the thesis

time-dependent self-consistent multi-mode simulations. KIT SELFT code RF spectra of the
simulated electric field profiles are presented in order to determine the oscillation frequency of
the main mode as well as parasitic/spurious modes.
In chapter 4 the discretized form of the differential equations, responsible for the beam-wave
interaction calculations, and their numerical implementations in the KIT SELFT code which
consider an axial inhomogeneous magnetic field term dBR,z/dz 6= 0 are described. Necessary
modifications to the existing code are described with respect to the slowly varying reference
frequency calculated according to the varying magnetic field and the electron transit time
influenced by the averaged electron parallel velocity taken over a number of macro-particles
at each discrete point of the geometry.
In Chapter 5, convergence studies of the modified version of the SELFT code are presented with
respect to the three numerical parameters: temporal step size, spatial step size as well as number
of electrons required for azimuthal phase discretization. The modified differential equation
required for the electron motion, solved by the Predictor-Corrector method is compared with
the piecewise linearized analytical approach.
In chapter 6, dynamic ACI studies with the modified version of the SELFT code using
four different gyrotron configurations (two conventional cavity gyrotrons and two coaxial
gyrotrons) are presented. The simulated results for the W7-X 140 GHz TE−28,8 mode gyrotron
are compared with the available experimental results with respect to the parasitic/spurious
oscillations present in the output section of the resonator. RF spectra of the simulated electric
field profiles for each case are also presented. The simulated results presented in this chapter
may be considered as a validation of all the proposed modifications made in the SELFT code,
as described in chapter 4.
Chapter 7 summarizes the work towards the effect of the influence of the changing magnetic
field and the contour of the cavity output taper on the appearance of dynamic ACI phenomena
in the uptaper section, draws conclusion and gives an outlook addressing future issues and
improvements that can be made in the existing modified SELFT code.
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2 Physical-mathematical model implemented in SELFT

The core of the work described in this doctoral thesis consists of the numerical investigation
of so-called ACI phenomena through the use of the SELFT code, developed at the Institute of
Pulsed Power and Microwave Technology of KIT (former Forschungszentrum Karlsruhe) by S.
Kern for his Ph.D. Thesis [Ker96]. In order to give a better understanding of the modifications
in the SELFT code necessary for the calculation campaign performed in this work, and
described in detail in Chapter 6, a short review of the equations implemented in the code is
given in the following along with the necessary physical assumptions.
We anticipate here that, in the development of this work, it became clear that an extension of the
existing numerical model was needed for a better description of the ACI phenomena. A term
accounting for the changing magnetic field has to be explicitly introduced in the discretized
equations (see chapter 4). This new item contributed to expand the range of applications of
SELFT, whose fundamentals are given in this paragraph.
The implemented mathematical theory in the SELFT code for gyrotron interaction calculations,
which can also be referred to as ballistic theory, is based on the theory which is described
in [VZO+69, BMP+73, FRC+82, Bor93, CAS92]. It should be mentioned that SELFT can
describe the beam-wave interaction well within the interaction cavity where the value of the
magnetic field is taken as constant [Ker96]. The purpose of the present work is to study the
behaviour of the beam-wave interaction in the uptaper from the interaction cavity (conventional
cylindrical or coaxial) to the launcher where the magnetic field is no longer constant but varies
with the axial.
The present section does not deal with the complete mathematical modelling of the gyrotron
interaction which is actually used in the SELFT code (for more details see [Ker96]) but
highlights only the required portion of the mathematical modelling which is directly influenced
by the change of the magnetic field. In the SELFT code a time-dependent self-consistent
approach has been adapted in the calculations which mean that the movement of a representative
set of macro-particles (ensemble of electrons) is performed under the influence of the RF field
in the resonator. So the change in magnetic field has a significant simultaneous influence
on both the electron motion equation (Lorentz force equation) as well as the RF field profile
equation. Following the expansion of theory to coaxial geometries as shown in [Ker96], this
section gives a rough overview of the corresponding formulas required for calculation of
gyrotron interaction influenced by non-uniform magnetic field.
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2 Physical-mathematical model implemented in SELFT

2.1 RF field profile

The starting point for the derivation of the RF field equation are the Maxwell equations in the
differential form:

rot~H = O×~H =~J+
∂~D
∂ t

div~B = O ·~B = 0

rot~E = O×~E =−∂~B
∂ t

div~D = O ·~D =~η

(2.1)

Assuming homogeneous and isotropic materials, the time-harmonic (e jωkt) RF field is described
by the following differential equation

∆~E− 1
c2

∂ 2~E
∂ t2 = µ0

∂~J
∂ t

+grad
~η

ε0
(2.2)

The electric field~E can be splited into eigenwaves~ek =(~e+k +~e−k )/2 in forward (-) and backward
(+) direction at a given local resonator cross section. The index k represents the mode indices
(m,p) of a TEm,p mode and is used for better readability.

~E = ∑
k

(
~f+k (z, t)e jkq,kz~e+k +~f−k (z, t)e− jkq,kz~e−k

)
e jωkt (2.3)

Here~ek have the following characteristics∫
A
~ek′~e

∗
kda = δk′k A:Cross-section of the resonator (2.4a)

and ∆⊥~ek +
ω2
⊥,k
c2 ~ek = 0 (2.4b)

The transverse Laplace operator is given by ∆⊥ = ∆|∂/∂ z=0. Here ~f±k describes the
time-dependent complex field amplitudes. ~f±k can be splited into two components: the
transverse component ~f⊥,k and the longitudinal component ~fq,k. For the sake of simplicity
the transverse component ~f⊥,k is represented by ~fk.

~fk =
(
~f+k (z, t)e jkqz +~f−k (z, t)e− jkq,z

)
/2

~fq,k =
k2
⊥,k

k2
q,k

(
~f+k (z, t)e jkq,z−~f−k (z, t)e− jkq,z

)
/2

(2.5)

It has been mentioned before that efficient interaction in the gyrotron cavity is only possible
with TE-modes because the transverse field components are not equal to zero. TE-modes do
not have longitudinal electric field components ~Ez = 0 and can therefore be described solely
with the transverse field portions ~fk.
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2.1 RF field profile

Thus, the RF field~E in the gyrotron resonator can be described as:

~E = ∑
k

~fk(z, t)~eke jωkt (2.6)

The angular frequency ωk is chosen close to the cut-off frequency of the operating mode in
the resonator. Thus the resulting equation for the RF field profile in the resonator without any
simplifications, obtained by using equations (2.2), (2.5) and (2.6) and also by applying some
mathematical operations, can be written as (for more details see [Ker96]):

∂ 2

∂ z2 (
~fk(z, t))+

ω2
k −ω2

⊥,k
c2

~fk(z, t)−
1
c2

∂ 2

∂ t2
~fk(z, t)− j

2ωk

c2
∂

∂ t
~fk(z, t)

+∑
k

[(
2

∂

∂ z
(~fk(z, t))

∫
A

∂

∂ z
(~ek′) ·~e∗kda+~fk(z, t)

∫
A

∂ 2

∂ z2 (~ek′) ·~e∗kda
)

e jωkt
]

e− jωkt

= µ0

[
∂

∂ t ∑
j

(
~u j~e∗k
uq, j
· IB, j

)]
· e− jωkt +

∫
A

grad
~η

ε0
·~e∗kda · e− jωkt

(2.7)

The first line of the RF field profile equation (2.7) contains the terms for the RF field profiles,
the second line describes the coupling due to mode conversion whereas the third line describes
the excitation and feedback term from the electron beam. This excitation term for the RF field
profile is obtained by performing a summation over the number of macro-particles (ensemble
of electrons) with the complex relativistic momentum ~u j (details of the description will be
presented later on) times the beam current of each macro-particle IB, j and also with the
longitudinal component of the relativistic momentum uq, j. In order to make SELFT simulations
as fast as possible, equation (2.7) is implemented with several approximations, see [Ker96]. Out
of several approximations, the three main simplifications are the negligence of mode conversion,
of space charges and of fast time-dependent changes (∂ 2/∂ t2 = 0). As a result equation (2.7)
becomes

∂ 2

∂ z2 (
~fk(z, t))+

ω2
k −ω2

⊥,k
c2

~fk(z, t)− j
2ωk

c2
∂

∂ t
~fk(z, t)

= µ0

[
∂

∂ t ∑
j

(
~u j~e∗k
uq, j

.IB, j

)]
.e− jωkt

= ~Rk

(2.8)

In the above RF field profile equation equation (2.8) only the excitation term ~Rk depends
explicitly on ~ek and the complex relativistic momentum of each particle which in turns also
depends on the change in magnetic field along the axis of the resonator. Consideration of the
dependency of ~Rk on the change in the magnetic field is essential in order to make investigations
of dynamic ACI. The dependence of the ~Rk on the change in magnetic field will be described
later. The fully coupled differential equation (2.8) is suitable for time-dependent self-consistent
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2 Physical-mathematical model implemented in SELFT

non-steady state simulation of each mode along with simultaneously solving the equation of
motion for each particle. The equation for stationary state condition of the RF field profile is
obtained by putting time derivative terms in equation (2.8) equal to zero i.e. ∂/∂ t = 0. In this
case equation (2.8) can be written as:

∂ 2

∂ z2 (
~fk(z))+~k2

q,k ·~fk(z) = µ0

[
∂

∂ t ∑
j

(
~u j~e∗k
uq, j

.IB, j

)]
.e− jωkt

= ~Rk

(2.9)

Stationary self-consistent single-mode calculations prove to be an important tool for
cavity design. Finally, the cold cavity RF field profile can be obtained by putting the excitation
term equal to zero [VZO+69] i.e. ~Rk = 0 in equation (2.9).

∂ 2

∂ z2 (
~fk(z))+~k2

q,k ·~fk(z) = 0 (2.10)

The cold cavity field profile provides initial field profile values along the resonator axis for the
non-stationary time-dependent self-consistent simulations using the SELFT code.

2.2 Lorentz force equation

The aim of this derivation is to obtain time dependent differential equations for the slowly
varying electron motion under the influence of the RF field. However again the intention is
not to be exhaustive. The mathematical description for the electron movement are based on the
equilibrium of the relativistic Lorentz- and the centrifugal-forces for the undisturbed rotating
electrons. Theoretical approaches and summaries are gathered among many others in [FRC+82,
Bor93]. The starting point is the relativistic Lorentz force equation which is given by:

dγm~v
dt

= ∆q(~E+~v×~B) (2.11)

where ∆q and m are the charge and mass of the electron and~v is it’s velocity. BR is the magnetic
flux density in the resonator. The velocity of the electron can be substituted by a normalized
velocity which is given by:

~u =
γ~v
c

(2.12)

The normalized velocity of the particle can be split into the transverse velocity component u⊥
as well as the longitudinal velocity component uq in the z-direction and from Fig. 2.1, it can be
seen that u⊥ has also two components: one is in the radial direction i.e. radial component ur
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2.2 Lorentz force equation

Figure 2.1: Schematic diagram showing transverse velocity components of a particle (bold vectors)
rotating around the guiding center (Re,ϕe) (circle). The angular position of the particle around
the guiding center is described by ψ (Adapted from [Ker96] for illustration purpose).

and another is in the azimuthal direction i.e. azimuthal component uϕ . As a consequence the
normalized velocity can be written as:

u = u⊥+uqez = urer +uϕeϕ +uqez

with ur = u⊥ cos(ψ−ϕ) uϕ = u⊥ cos(ψ−ϕ)
(2.13)

Using equation (2.11) and considering ∆q/m = −e/m, the Lorentz force equation can written
as follows

du⊥
dt

=− e
m

(
E⊥
c

+

(
uϕBR,z−uqBR,ϕ

)
er +(uqBR,r−urBR,z)eϕ

γ

)
(2.14a)

duq
dt

=− e
m

(
Ez

c
+

u⊥×BR,⊥
γ

)
(2.14b)

After inserting the components of u⊥ (2.13) into equation (2.14a), one gets:

d
dt

(
u⊥
(
cos(ψ−ϕ)er + sin(ψ−ϕ)eϕ

))
=− e

m

(
E⊥
c

+

(
u⊥ cos(ψ−ϕ)BR,z−uqBR,ϕ

)
er +(uqBR,r−u⊥ cos(ψ−ϕ)BR,z)eϕ

γ

)
(2.15)
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2 Physical-mathematical model implemented in SELFT

The phase angle ψ can be described as the summation of the rapidly varying portion Ω f t, with
an average angular frequency Ω f , which is very close to the cyclotron frequency, the slowly
varying portion (‘Slow Variable Phase’) and a phase offset value ξ .

ψ =−Λ(t)+Ω f t +ξ (2.16)

In order to describe the bunching mechanism and the energy exchange with the RF field,
it is necessary to calculate the slow phase variable Λ(t) and the amplitudes of the velocity
components.
Solving the time derivative portion i.e. left hand side of equation (2.15) using the time
derivative of the product of sine and cosine functions having arguments (ψ −ϕ) along with
the time derivation of the eigenvectors and also using the time derivative of equation (2.16), the
differential equation for the transverse velocity component can be written as:

(
cos(ψ−ϕ)er + sin(ψ−ϕ)eϕ

) du⊥
dt

+u⊥

(
−dΛ

dt
+Ω f

)(
−sin(ψ−ϕ)er + cos(ψ−ϕ)eϕ

)
=− e

m

(
E⊥
c

+

(
u⊥ cos(ψ−ϕ)BR,z−uqBR,ϕ

)
er +(uqBR,r−u⊥ cos(ψ−ϕ)BR,z)eϕ

γ

) (2.17)

Decomposing equation (2.17) into the radial er as well as azimuthal eϕ eigenvector components
and also by performing multiplication with a sin(ψ − ϕ) or cos(ψ − ϕ) term, addition and
subtraction on the decomposed equations, the time derivative differential equation for the
transverse component u⊥ i.e. du⊥/dt as well as the time derivative of the slow phase variable
i.e. dλ/dt can be obtained (for more details see [Ker96]). The differential equation for
the transverse electron movement can be written after introduction of the complex transverse
momentum ~p [Ker96, Bor93].

~p = u⊥e− jΛ(t) (2.18)

Applying the product rule of derivation to equation (2.18), the time derivative of the transverse
electron momentum is given by:

d
dt

(~p(t)) =
d
dt

(
u⊥(t)e− jΛ(t)

)
= e− jΛ(t)

(
d
dt

u⊥(t)− ju⊥(t)
d
dt

Λ(t)
) (2.19)
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2.2 Lorentz force equation

Inserting the values of du⊥/dt and dλ/dt into equation (2.19), the differential equation for the
transverse electron momentum can be written as:

d
dt
(~p) =− e

m

(
Er

c
+ j

Eϕ

c
−

uq(BR,ϕ − jBR,r)

γ

)
e− j(Ω f t+ξ−ϕ)

+ j
(

e
m

BR,z

γ
−Ω f

)
~p

(2.20)

Using vector components the longitudinal momentum from equation (2.14b) can be written as:

duq
dt

=− e
m

(
Ez

c
+u⊥

cos(ψ−ϕ)BR,ϕ − sin(ψ−ϕ)BR,r

γ

)
(2.21)

Equations (2.20) and (2.21) are the differential equations of the motion of a single particle in the
interaction cavity without any simplifications [Ker96, GA82]. The position of each particle is
determined by calculating the components of ~p and uq, and then by integrating both equations
(2.20 and 2.21) along the whole length of the interaction cavity. Equations (2.20 and 2.21)
can be simplified using several assumptions. First it was assumed that all fast time varying
magnetic field components are neglected because gyrotron operation takes place efficiently only
with TEm,p modes (~Ez = 0) close to the cut-off frequency and the transversal magnetic field
components are very small in comparison to the external magnetic field [Ker96]. Also the
coordinate system is chosen such that the magnetic field has no ϕ component i.e. BR,ϕ = 0,
this assumes rotational symmetry of the magnetic field. Another simplification is that the static
magnetic field has only z-components. Thus in the SELFT calculations only the transverse RF
electric field and external static magnetic field are used. The external static magnetic field in
the resonator BR can be decomposed into radial as well as axial direction which is given by:

BR = BR,rer +BR,zez (2.22)

Using Maxwell’s equation (O ·~B = 0) we get:

∂ (rBR,r)

∂ r
=−r

∂BR,z

∂ z
(2.23)

Integrating equation (2.23) by using near-axis approximation i.e. BR,z(z,r)≈ BR,z(z,0) and the
boundary condition BR,r(z,0) = 0, the value of BR,r(z,r) can be defined by:

BR,r =−
r
2

dBR,r

dz
(2.24)

From Fig. 2.1, r (radius in cylindrical coordinate system) is determined from the movement of
the electron and also by it’s rotation with the Larmorradius (rL = v⊥/Ωc) around the guiding
center whose position is determined by the radius Re and the phase ϕe as shown in Fig. 2.1.

27



2 Physical-mathematical model implemented in SELFT

Thus from Fig. 2.1 it follows that [Ker96]

r sin(ψ−ϕ) = rL +Re sin((ψ−ϕe))

r cos(ψ−ϕ) = Re cos(ψ−ϕe)
(2.25)

In the electron momentum differential equations, the relativistic Ωc(z,γ) as well as
non-relativistic Ω0(z) cyclotron frequencies are used which are given by:

e
m

BR,z(z)
γ

= Ωc (z,γ) =
Ω0 (z)

γ
(2.26)

Using equations (2.20, 2.21, 2.24, 2.25 and 2.26), the simplified equations for the electron
movement with varying magnetic field can be written as:

d
dt

(~p)+ j
(
Ω f −Ω0/γ

)
~p−

(
cuq
γ

1
2BR,z(z)

dBR,z

dz

)
~p (2.27a)

=− e
m

(
Er + jEϕ

)
e− j(Ω f t+ξ−ϕ) =~a

duq
dt

=−
(

cu2
⊥

γ

1
2BR,z(z)

dBR,z

dz

)
(2.27b)

The above differential equations are suitable for fast non-steady-state simulations in which the
positions of the particles are still determined by performing numerical integration over time
but in order to have fast and slowly vaying non-stationary simulations, as in the case of the
SELFT code, it is necessary to convert differentiation over time into differentiation over the
axial coordinate of the resonator by using the following transformation [Ker96]:

d
dt

=
cuq
γ

d
dz

(2.28)

For gyrotron cavities, the time evolution of the modes is much slower than the electron transit
time of the electrons through the cavity. This means that the amplitude of the RF field profile
remains constant during the electron transit time. Based on this assumption the coordinate
transformation (2.28) is used to distinguish the fast and slow time scales. In this case the slow
time scale is kept in time while the fast time scale is changed to a space coordinate. The physics
remains the same with or without this transformation because both time scales are independent
of each other. It is only a convenience to be able to plot electron bunching in space to be better
able to visualize the electron position in space with each time step in the slow time scale.
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2.2 Lorentz force equation

Thus using equation (2.28), equation (2.27) with tapered magnetic field can be described
as [Ker96]:

cuq
γ

d
dz

(~p)+ j
(
Ω f −Ω0/γ

)
~p−

(
cuq
γ

1
2BR,z(z)

dBR,z

dz

)
~p (2.29a)

=− e
m

(
Er + jEϕ

)
e− j(Ω f t+ξ−ϕ) =~a

uq
γ

duq
dz

=−
(

u2
⊥
γ

1
2BR,z(z)

dBR,z

dz

)
(2.29b)

The above differential equations are used for the calculation of the electron motion, both in
transverse as well as longitudinal direction, under the influence of the changing magnetic field.
In order to have a self-consistent single-mode or multi-mode simulation, it is necessary to solve
equation (2.29) in parallel to the RF field profile equation (2.8). The acceleration term~a required
for the electron motion in equation (2.29a) can be determined in terms of the electric field by
using equation (2.6). The acceleration term for a single macro-particle ~a j(r j,ϕ j) (see also Fig.
2.1) is given by:

~a j
(
r j,ϕ j

)
=− e

mc

[
Re

(
∑
k

~fk (z, t)
(
~er,k + j~eϕ,k

)
e jωkt

)
e j(−Ω f t−ξ+ϕ)

]
r j,ϕ j

(2.30)

and the excitation term for the RF field profile from equation (2.8) is given by:

~Rk = µ0

[
∂

∂ t ∑
j

(
~u⊥, j~e

∗
k

uq, j
· IB, j

)]
· e− jωkt (2.31)

A detailed derivation of the excitation term in terms of the current pulse is given in [FRC+82].
However, the detail derivation of the excitation term (~Rk) required for the RF field profile used in
SELFT code can be found in [Ker96]. Since in equation (2.31) the complex transverse velocity
for each electron is considered which is given by:

u⊥ = u⊥(cos(ψ−ϕ)er + sin(ψ−ϕ)eϕ)

→~u⊥ = u⊥(er− jeϕ)eψ−ϕ
(2.32)

Thus equations (2.30) and (2.31) can be written as:

~a j(r j,ϕ j) =−
e

2mc ∑
k

~fk(z, t)(~er,k + j~eϕ,k)e j((ωk−Ω f )t−ξ+ϕ j) (2.33a)

~Rk = µ0

[
∂

∂ t ∑
j

IB, j ·u⊥, j
uq, j

(
(~er,k + j~eϕ,k)e− j(ψ j−ϕ j)

)∗]
· e− jωkt (2.33b)
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2 Physical-mathematical model implemented in SELFT

The excitation term ~Rk can also be processed further utilizing the product rule for differentiation
and by using equation (2.16): ψ = −Λ(t)+Ω f t + ξ and equation (2.18): ~p = u⊥e− jΛ(t). The
transformed equation is given by:

~Rk = µ0 ∑
j

[
IB, j

∂

∂ t

(
~p j

uq, j
·
[(

~er,k + j~eϕ,k

)
e j((ωk−Ω f )t−ξ+ϕ j)

]∗)
+ jωk

(
~p j

uq, j
·
[(

~er,k + j~eϕ,k

)
e j((ωk−Ω f )t−ξ+ϕ j)

]∗)]
(2.34)

A comparison between equation (2.33a) and equation (2.34) show that both equations have a
common factor which is given by [Ker96]:

(~er,k + j~eφ ,k)e j((ωk−Ω f )t−ξ+ϕ j) (2.35)

The eigenvectors for the RF field profile (~er,k,~eϕ,k) of a coaxial cavity gyrotron configuration
can be described in terms of Bessel functions of the first kind and Neumann functions (Bessel
function of the second kind) and are given by [Ker96]:

~er,k =−∑
m

Ck~Am,k
jm
r
(Jm(k⊥,kr)+~Bm,k ·Nm(k⊥,kr)) · e jmϕ

~eϕ,k =−∑
m

Ck~Am,kk⊥,k(J′m(k⊥,kr)+~Bm,k ·N′m(k⊥,kr)) · e jmϕ (2.36)

with Ck =
1√

π(χ2
m,p−m2)J2

m(χm,p)
(Normalizing Factor)

Similarly, for the conventional cavity gyrotron configuration, the term ~Bm,k is considered to be
zero and thus equation (2.36) can be written as:

~er,k =−∑
m

Ck~Am,k
jm
r
(Jm(k⊥,kr)) · e jmϕ

~eϕ,k =−∑
m

Ck~Am,kk⊥,k(J′m(k⊥,kr)) · e jmϕ
(2.37)

where ~Bm,k is an intermediate constant and ~Am,k is the amplitude factor. Inserting the values
of the eigenvectors obtained from equation (2.36) and applying the additive property of Bessel
functions, equation (2.35) can be described as:

(~er,k + j~eφ ,k)e j((ωk−Ω f )t−ξ+ϕ j)

=− j∑
m

Ck~Am,kk⊥,k(Jm+1(k⊥,kr)

+~Bm,k ·Nm+1(k⊥,kr)) · e jmϕ · e j((ωk−Ω f )t−ξ+ϕ j)

(2.38)
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2.2 Lorentz force equation

Since gyrotrons operate under the resonant interaction between the beam of rotating electrons
and electromagnetic waves at the cyclotron frequency or its harmonics it is necessary that
the electrons see a synchronous RF field profile for efficient beam-wave interaction. As a
consequence Graf’s Theorem [AS64] is applied to equation (2.38) [Ker96]. Thus equation
(2.38) can be described by:

(~er,k + j~eϕ,k)e j((ωk−Ω f )t−ξ+ϕ j)

=Ckk⊥,kJm+1(k⊥,kRe)︸ ︷︷ ︸
Ge,k

Js−1(k⊥,krL)︸ ︷︷ ︸
A

e j((ωk−sΩ f )t+(s−1)Λ(t)) · e jmϕe (2.39)

where Ge,k is the coupling factor and s is the harmonic number. For a relativistic electron beam
with beam energy less than 250 kV, k⊥,krL <<1 (Estimated by Borie [Bor93]), the factor A can
be defined as:

A|k⊥,krL<<1 ≈
1

(s−1)!

(
k⊥,krL

2

)s−1

(2.40)

Thus by using the above equations equations (2.39 and 2.40) and the definition of the complex
transverse momentum (2.18) and Larmoradius (rL = v⊥/Ωc), the corresponding expressions
for the excitation and acceleration terms (equations 2.33a and 2.34 respectively) for the special
case of first harmonic i.e. s = 1 can be described by equation (2.41) [Ker96]. It can be seen
from equation (2.41b) that the excitation term for the RF field profile is also influenced by the
change of the magnetic field and this dependency is important to be considered in order to study
or simulate the occurrence of dynamic ACI phenomena in gyrotrons [CKA+12].

~a j(r j,ϕ j) =−
e

2mc ∑
k

~fk(z, t)Ge,k, j · e j(ωk−Ω f )t · e jmϕe, j (2.41a)

~Rk = µ0 ∑
j

IB, j

uq, j
Ge,k, je− jmϕe, j · e− j(ωk−Ω f )t

·
(

jΩ0 +

(
γ2

j −1

u2
q, j

)(
1

2BR,z(z)
dBR,z

dz

))
~p j

γ j
(2.41b)

In [Ker96] computer programs for the numerical solution of these time-dependent
self-consistent equations have been developed with the assumption of a constant magnetic field
which is not sufficient enough to study dynamic ACI phenomena in the gyrotron uptaper section.
For the studies in the present thesis the existing SELFT code [Ker96] has been modified (see
chapter 4) using the formulas reviewed in this chapter. To summarize, within self-consistent
calculations, the field equations and the equations for the motion of the electrons have been
solved simultaneously including time dependence, changing magnetic field and multi-mode
scenarios.
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3 Investigation of Dynamic ACI with uniform magnetic field and
adiabatic approximation in the SELFT code

In this chapter the results of simulations, using the unmodified version of the SELFT code are
described which show parasitic/spurious oscillations in the output section of the gyrotron cavity
that may be attributed to the occurrence of dynamic ACI. In this study results are generated
along with the assumption of constant BR,z(z) = B0 (maximum magnetic field) as well as with
the implementation of the adiabatic approximation in the case of varying magnetic field. Due to
the consideration of the adiabatic approximation, the axial velocity of each macro-particle can
be determined. It depends upon the non-uniform distribution of the magnetic field. The varying
axial velocities of each electron have been used to solve the well know synchronous condition
equation (1.9)

ωRF − kqvq ≥Ωc (3.1)

in order to estimate the region of fulfillment of the cyclotron resonance interaction condition
between the spent electron beam leaving from the cavity and the traveling electromagnetic
wave propagating towards the output part of a tube.
It was mentioned that the ACI, no matter whether it is a dynamic or static, occurs far away
from the interaction region (see chapter 1). The dynamic ACI having a lower oscillating
frequency than the main cavity oscillation seems to be no more than a minor side effect
of the usual gyrotron operation, since the cavity oscillation remains almost undisturbed in
such cases. This type of undesired oscillations probably mainly concentrate in the uptaper
section, downstream from the cavity, where the magnetic field is slightly lower than in the
cavity region (straight portion). Therefore, it is possible that in a certain cross sectional
area of a gyrotron cavity output section a simultaneous tapering of the magnetic field and
the waveguide radius will result in the fulfillment of the cyclotron resonance condition (3.1)
between the electron beam and the traveling wave. In the Doppler term kqvq in equation
(3.1), both the axial wave number kq as well as the axial electron velocity vq vary along the
axial z-coordinate. Moreover in the right-hand side of equation (3.1) the electron cyclotron
frequency Ωc is proportional to the non-uniform distribution of the magnetic field profile. Fig.
3.1 shows the gyrotron cavity region where the possibility of the fulfillment of the synchronous
condition after the cavity is very high (shown by a dark ellipse) due the simultaneous
variation of both the waveguide radius and magnetic field. Previously in the unmodified version
of the SELFT code it has been assumed that the axial velocities of all electrons remain constant.
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Figure 3.1: Schematic representation of axial profiles of the magnetic field, waveguide wall, and electron
beam in the gyrotron after cavity region (adapted from [SN09] for illustration purpose).

In order to simulate as realistically as possible it is necessary to consider that electrons
should have different axial velocity depending upon the non-uniform distribution of the
magnetic field profile. It also requires that the transverse electron momentum should also
depend upon the change in magnetic field (see chapter 4 for details). Thus before solving
numerically the actual time-dependent differential equation (2.29b) for the electron axial
velocity, initially adiabatic approximations are used to calculate the electron parallel velocity
for all the electrons depending on the varying axial magnetic field profile. In this case still
only the time-dependent differential equation (2.29a) is solved self-consistently with the RF
field profile equation (2.8) in the unmodified version of the SELFT code assuming a uniform
magnetic field profile. In reality, the magnetic field remains no longer constant and thus from
Fig. 3.1, it is clear that in order to simulate spurious oscillations present in the output section
of the cavity, it is necessary to include the regions after the cavity in the simulation domain i.e.
the simulation domain should be extended up to the input of the launcher section.
In the initial numerical study, the first version of the TE−22,8 mode frequency step tunable
gyrotron of KIT was used in order to perform investigations on the parasitic/spurious
oscillations present in the uptaper section since this tube did not deliver the desired MW
output power, after the operating mode was changed [TAB+03]. The tube only reached 0.6
MW. Initially it was not clear that the presence of this additional frequency is the result of an
additional cavity oscillation mechanism in a different mode, as proposed in [KSF+09], or if
it represents the actual dynamic ACI, which has influence to the mode operating in the cavity
[KAC+10].
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3.1 Adiabatic Approximation

3.1 Adiabatic Approximation

To describe the electron motion in crossed electric and magnetic fields, it is useful to separate
velocity components into the gyrating motion and drift of the corresponding guiding centres.
The approach, which is called adiabatic approximation, describes a very slow change of the field
characteristics. It is valid, if the variations of the electric and magnetic fields are rather small
at dimensions comparable with the electron trajectories [Pio93]. The conditions for adiabatic
motion are given as [Che95, Siv65]:

z2
L

∣∣∣∣∣∂ 2~B
∂ z2

∣∣∣∣∣� ∣∣∣~B∣∣∣; r2
L

∣∣∣∣∣∂ 2~B
∂R2

∣∣∣∣∣� ∣∣∣~B∣∣∣ (3.2a)

z2
L

∣∣∣∣∣∂ 2~E
∂ z2

∣∣∣∣∣� ∣∣∣~E∣∣∣; r2
L

∣∣∣∣∣∂ 2~E
∂R2

∣∣∣∣∣� ∣∣∣~E∣∣∣ (3.2b)∣∣∣~E×~B∣∣∣∣∣∣~B∣∣∣2 � c (3.2c)

During one rotation along the circle with the Larmorradius (rL = v⊥/Ωc) the electron travels a
distance zL in axial direction. Since

∣∣∣~E×~B
∣∣∣ is the pointing vector (energy flux), equation (3.2c)

indicates that the energy gain over one Larmor period has to be small. Thus, within the validity
of the adiabatic approximation, the energy gain in axial direction over one Larmor period must
not be higher than the initial beam energy. It results that the quantity P2

⊥/B is an invariant of
motion i.e.

p2
⊥

B
= Constant (3.3)

where p⊥ is the total transverse electron momentum and B is the local magnetic flux density.
In the region between the gyrotron electron gun and cavity i.e. in the interaction free region,
due to the increase in magnetic field amplitude (without any electric field) and also according
to equation (3.3), the transverse momentum p⊥ as well as velocity β⊥ (transverse velocity v⊥
normalized to the velocity of the light c) increases and as a consequence of conservation of
beam energy, the axial momentum pz as well as velocity βq (axial velocity vq normalized to
the velocity of the light c) decreases thus it may be possible that the transverse momentum
may become equal to the total momentum and simultaneously axial momentum becomes zero
and thus at this condition electrons change their direction of propagation and become reflected
electrons. Like in Busch’s theorem i.e. for any two arbitrary positions (a) and (b) along the beam
path the ratio between the change of the angular momentum and the change in the magnetic flux
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can be determined and similarly by using equation (3.3) it is possible to describe the relation
for the transformation of the transverse momentum of the gyration motion at two arbitrary axial
positions (a) and (b) which is given by:

p⊥(b) = p⊥(a)
[

B(b)
B(a)

]1/2

(3.4a)

β⊥(b) = β⊥(a)
γ(a)
γ(b)

[
B(b)
B(a)

]1/2

(3.4b)

3.2 Adiabatic Approximation in the SELFT code

In the adiabatic approach we assume that at every point of the cavity we have γ for each
macro-particle obtained from the beam-wave interaction calculations. It is also assumed that
the transverse velocity components of each macro-particle at the entrance of the cavity (β⊥,in)
are known. Before the implementation of the proposed modifications (see chapter 4) in the
actual differential equations (2.8 and 2.29) of the unmodified version of the SELFT code,
with an aim to consider the effect of the non-uniform distribution of the magnetic field on the
gyrotron beam-wave interaction calculations, it has been assumed that βq× γ = uq is constant
for all macro-particles and also at every point of the gyrotron cavity [Ker96]. This assumption
becomes incorrect when the magnetic field is not considered to have a constant value rather it
varies along the axial coordinate of the cavity with a specific magnetic field profile. In the latter
case, βq can be calculated using the so called adiabatic constant i.e. β 2

⊥/BR,z = constant (this
constant assumes that there was no beam-wave interaction). In order to determine the influence
of the non-uniform distribution of the magnetic field profile on the beam-wave interaction
phenomenon, initially the adiabatic approximation approach has been adapted where only initial
values, i.e. values at the entrance of the cavity, for u⊥,in and uq,in have been used for the
calculations of βq. β⊥ = u⊥/γ , for each value of axial coordinate (z), was then calculated
within the validity of the adiabatic approximation using the expression given by equation (3.4b)
and thus from the known values of β⊥ and γ (calculated from the interaction calculations). Then
βq = uq/γ can be calculated at each z-coordinate using the analytical formula:

γ =
√

1+u2
q +u2

⊥

γ
2 = 1+ γ

2
β

2
q + γ

2
β

2
⊥

βq = (1−β
2
⊥−1/γ

2)1/2

(3.5)

These locally changing values can then be used to calculate curves of the resonance frequencies
according to equation (3.1) in order to determine the region(s) of interest along the simulation
domain where fulfillment of the cyclotron resonance condition may occur due to the presence
of both varying magnetic field profile as well as varying cavity radius. In these calculations
the differential equation for electron motion (2.29a) is solved still without considering the axial
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3.3 Simulation results with unmodified version of the SELFT code and discussions

change of the magnetic field profile explicitly in the differential equation, but the non-uniform
magnetic field has been used in the calculations of the electron cyclotron frequency (Ωc) and
the changing beam radius.
As long as it was assumed that there is no beam-wave interaction in the calculations of β⊥ (that
means β⊥ was calculated by using the adiabatic constant) it was straight forward to calculate
βq for each macro-particle at each z value using equation (3.5). As a result the values βq can be
used for initial estimation of intersection points between the mode’s dispersion curve and the
beam line in the Brillouin diagram by solving the resonance condition (3.1). On the other hand
in order to include the actual beam-wave interaction in the calculation of βq, the best way is to
skip the approximations and to solve the actual differential equation for βq (2.29b). Then the
values βq of can be used in the further calculations of β⊥ which also includes the effect of the
non-uniform distribution of the magnetic field (for more details see chapter 4). Similarly the
calculated β⊥ values can be used for the further estimation of the βq values.

3.3 Simulation results with unmodified version of the SELFT code and
discussions

In Fig. 3.2, a typical single-mode calculation field profile featuring a dynamic ACI is shown.
By including the regions after the cavity in the simulation domain, i.e. by considering the
uptaper section, it has been observed that at the output section the field profile is varying (see
Fig. 3.2) along the waveguide. This indicates that in this particular region, the beam-wave
interaction condition is again fulfilled due to the presence of the tapered non-uniform magnetic
field distribution that satisfies the synchronism condition with the outgoing radiation at some
location in the uptaper section, where the varying radius is larger than the cavity radius. In
order to confirm this unwanted phenomenon some numerical experiments have been carried
out studying the influence of a uniform magnetic field distribution considered in the differential
equations responsible for the calculations of the beam-wave interaction phenomenon. However,
in reality the magnetic field is not uniform along the whole gyrotron resonator uptaper which
has been considered in the subsequent part of this thesis in order to investigate the effect of
non-uniform distribution of the magnetic field on the appearance of dynamic ACI in the uptaper
section of the cavity geometry.
In the first numerical experiment, the second version of the TE−22,8 mode 140 GHz
step-frequency tunable gyrotron was taken into consideration in order to perform single-mode
numerical investigations on the presence of dynamic ACI in the uptaper section of the geometry.
In this beam-wave interaction calculations, the following beam parameters Vbeam = 80.0 kV,
Ibeam = 40.0 A, α = 1.24, B0 = 5.61 T and Rbeam = 8.0 mm have been used. Fig. 3.3 depicts
the corresponding startup simulation, i.e. how the output power evolves during the time while
the above electron beam parameters are achieved (linear increase). In Fig. 3.3, the vertical black
line denotes the time (≈860 ns) at which the electric field profile, shown in Fig. 3.2, is obtained
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3 Investigation of Dynamic ACI using B(z)=constant and adiabatic approximation in the SELFT code

and the final beam parameters have been achieved. Because of the modulation of the output
power, as shown in Fig. 3.3, the display of power vs. time is not suitable for estimations of the
modulation frequency of the desired operating mode as well as parasitic/spurious oscillating
mode, if any. As a consequence it was necessary to plot the RF spectrum of the corresponding
field profile so that the presence of any dynamic ACI in the uptaper section can be determined.
As already mentioned in these numerical investigations, the simulated results have been
obtained by using the unmodified version of the KIT SELFT code (i.e. solving only equation
(2.29a)) in which a non-uniform distribution of the magnetic field has been taken into
consideration only in the detuning factor (3.6a); this can be considered as a deviation only
in the electron cyclotron resonance condition. This detuning factor in turn depends on the axial
coordinate through the non-uniform distribution of the magnetic field profile i.e. the detuning
factor in terms of change of magnetic field profile is given by (see equation 1.15):

∆ =
2

β 2
⊥,in

ω−Ωc

ω
, Ωc = e/mγBR,z(z) (3.6a)

and also in the changing beam radius i.e.

Rbeam(z) = Rbeam/(BR,z(z)/B0) (3.6b)

where B0 is the maximum value of the magnetic filed in the center of the interaction cavity.
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Figure 3.2: Geometry and field profile of an operating mode under influence of dynamic ACI
(single-mode calculation).
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Figure 3.3: Startup simulation of RF power. The vertical black line denotes the time at which the field
profile, shown in Fig. 3.2, is obtained (single-mode calculation).

In order to determine the reason of this modulating behavior of the RF field profile in the
uptaper section of the geometry, initially the well known interaction condition (3.1) for electron
cyclotron resonances has been solved to depict the regions of synchronism between RF wave
field and electron beam. In order to investigate the dynamic ACI phenomenon due to the
presence of the non-uniform distribution of the magnetic fields, it is more useful to solve
equation (3.1) so that the value of ωRF can be obtained along with the values of kq which are
calculated for the whole simulation domain. In this calculation the effect of the non-uniform
distribution of the magnetic field has been taken into account according to the adiabatic
approximation. These calculations also include the influence of the beam parameters through
Ωc calculations. Simultaneously the waveguide radius has an influence on these calculations
through kq. The influence of the changing magnetic field as well as the waveguide radius
are necessary to be included in the determination of the resonance curves in order to make
a dynamic ACI study. In this single-mode (desired operating mode) simulation, still a constant
value of uq for each macro-particle has been considered in the differential equations used in
the beam-wave interaction calculations and as a result a change in the magnetic field profile
has no direct influence on the equations governing electron motion as well as RF field profile
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calculations. Solving equation (3.1) for ωRF leads to a quadratic equation since kq is also a
function of ωRF which is given by:

kq =
√

k2
0− k2

⊥, k0 = ωRF/c, k⊥ = χm,p/R0 (3.7)

where k0 is the free space wave number and c is the velocity of light. The result of possible
interaction frequencies are shown in Fig. 3.4 along the z-coordinate of the cavity geometry (see
Fig. 3.2) using the beam parameters at the end of the startup simulation shown in Fig. 3.3.
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Figure 3.4: Frequencies that fulfill the interaction condition (3.1) along the cavity and uptaper geometry
(see Fig. 1.7) at the end of the startup (see Fig. 3.3).

The two possible solutions shown in Fig. 3.4 (upper and lower curves) correspond to the two
crossing points of a mode’s hyperbola with the beam line (gyrotron and gyro-travelling wave
interaction, see chapter 1) in the Brillouin-Diagram. Longer straight sections with nearly
constant wave frequency ωRF vs z. can be considered as suitable for a considerable net energy
exchange between RF wave and electron beam. These possible curves can be used to depict
the possible regions of interactions where the synchronization condition is valid along the
length of the resonator and output waveguide. One can observe from Fig. 3.4 that there
are some flat responses which can be seen as the region where the beam-wave interaction
condition is fulfilled due to having a constant wave frequency along the z-coordinate: one
region is 20.0mm ≤ z ≤ 30.0mm (cavity region) where the synchronization condition exists at
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≈140 GHz (desired frequency) whereas at a different location 75.0mm ≤ z ≤ 85.0mm another
synchronization condition exits around 134 GHz which may be treated as undesired oscillation
suspected to be related to dynamic ACI. If this is the excitation of a TE−22,8 mode backward
wave the output power modulation feature can be explained as beat structure of a 140 GHz
forward wave and a 134 GHz backward wave. In order to plot solutions of equation (3.1)
(see Fig. 3.4), here the axial velocity of the single particle is considered since it was assumed
that all particles have the same axial velocity. It should be mentioned that the constant axial
velocity of all macro-particles is due to the consideration of the uniform magnetic field profile
throughout the simulation domain (see equation (2.29b), if BR,z(z) = B0 uniform magnetic field
then uq = constant for all macro-particles) and hence it is sufficient to consider a single particle
in order to plot the resonance frequency curve, whereas in reality each particle has different
axial velocity. One can also observe from Fig. 3.4 that another synchronization condition
exists at the same desired interaction region (20.0mm ≤ z ≤ 30.0mm) as for the 140 GHz but
with a frequency around 164 GHz which is far from the cut-off frequency designed for the
chosen gyrotron resonator. Since a gyrotron operates near the cut-off frequency, this frequency
corresponding to a gyro-TWT interaction and was not taken into consideration for the dynamic
ACI investigations (see explanation of Fig. 3.9). Because of the modulation of the output power
(see Fig. 3.3) and also as it has been mentioned earlier because the display of power vs. time
is not suitable for estimation of the modulation frequency in order to have a closer observation,
the RF spectrum of the corresponding varying electric field profile has been plotted in Fig.
3.5. The RF spectrum at the end of the simulation domain (see Fig. 3.43.2) indicates that, in
addition to the desired operating 140 GHz oscillation of the cavity, another parasitic oscillation
at ≈134.72 GHz may also exists. This parasitic oscillation in the cavity output section has
been observed due to the consideration of the longer geometry in the simulation domain where
the radial eigenvalue (χm,p ·R0) changes due to the change in cavity radius R0. The presence
of the flat response in the location 75.0mm ≤ z ≤ 85.0mm, as shown in Fig. 3.4, corresponds
the presence of an oscillation around 134 GHz in the RF spectrum plot. The appearance of
this parasitic oscillation in the uptaper section of the geometry is considered to be due to the
presence of the dynamic ACI phenomenon.
In addition to the peak at ≈134.72 GHz and at the desired oscillating frequency 140 GHz,
other peaks may be treated as numerical noise as frequencies corresponding to these peaks (see
Fig. 3.5) have not been found in the plots of equation 3.1 (see Fig. 3.4). As a consequence
in order to confirm the existence of these unwanted spurious oscillations in the cavity output
region, it is necessary to perform some more numerical investigations. [AIP+08] equipped
the EURIDICE code with a broadband boundary condition and showed in corresponding
single-mode calculations that ACI persists and it is not an artefact of the single-frequency
boundary condition of the SELFT code. Of course, a realistic description of ACI phenomena
requests for multi-mode simulations.
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Figure 3.5: RF spectrum at the geometry output (see Fig. 3.2) at the end of the startup shown in Fig. 3.3.
In this simulation result still only equation (2.29a) is solved for the particle motion while uq
has been treated as a constant value (single-mode calculation).

In the continuation of the above findings regarding the possibility of the appearance of
dynamic ACI phenomena in the cavity output section, a few multi-mode simulations have also
been performed using the unmodified version of the KIT SELFT code. In these calculations
still only equation (2.29a) has been numerically solved. A similar approach (discussed above)
has been adapted to plot the synchronization regions where the fulfilment of the interaction
condition (3.1) exists along the cavity and uptaper geometry. In this case the chosen example
was the 140 GHz TE−28,8 mode W7-X gyrotron. In these multi-mode simulations three radial
neighbour modes, which are relevant for our comparisons, have been taken into considerations.
These modes may affect the excitation of the desired mode especially during the start-up.
Moreover, all other modes will interact with each other through the electron beam during
start-up but here we want to investigate the influence of radial-satellite modes as a ACI
phenomena in the uptaper section of the geometry along with the excitation of the desire mode.
Typical results describing regions of existence of the synchronization condition, obtained for
the TE−28,8 mode and its radial neighbour modes (TE−28,7 and TE−28,9) along the z-coordinate
are shown in Fig. 3.6. It should be mentioned again that these simulated results are generated
by using a uniform magnetic field in the electron motion as well as in the RF field differential
equations and the non-uniform magnetic field only influences the detuning factor (as discussed
earlier). The simulated electric field profiles (see Fig. 3.7) of the three modes TE−28,8, TE−28,7
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and TE−28,9 at an optimized operating point for the main operating mode TE−28,8 clearly
indicate that all three modes are exchanging power with the electron beam both in cavity and
in the uptaper region. These simulated results have been treated as the initial estimation of
the presence of parasitic/spurious oscillations in the cavity uptaper section. In order to have
a clear understanding of the appearance of the oscillating frequencies which belong to either
the main cavity operating mode or to other specific modes having different frequencies as
spurious/parasitic oscillations which are suspected to be dynamic ACI, it is required to have an
RF spectrum plot which is shown in Fig. 3.8.
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Figure 3.6: Estimated interaction frequencies for different modes, calculated from equations (3.1 and
3.7), for the parameters given in Fig. 3.7.

The plots of the electric field profile, which are shown in Fig. 3.7, depict the presence of weak
amplitude modulations in the output section of the simulation domain, weaker than that of
the single-mode simulation. These amplitude modulations in the electric field profiles clearly
indicate the presence of undesired interactions between spent electron beam and RF travelling
waves in the output section of the geometry. The RF spectrum of the simulated electric field
profile is plotted in Fig. 3.8 in order to have a clear visualization of the appearance of the
oscillating frequency of the main mode as well as any parasitic modes. From the RF spectrum
plot it can be observed that in addition to the desired operating mode (TE−28,8), denoted
by ‘a’, other few modes also appear as parasitic/spurious modes having different oscillating
frequencies which are denoted by ‘b’, ‘c’, ‘d’ and ‘e’ respectively. They can be suspected to
be due to the presence of dynamic ACI phenomena. Out of all the above mentioned parasitic
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Figure 3.7: Calculated electric field profiles in a stationary operating point at Vbeam = 81.2 kV, Ibeam =
39.0 A, α = 1.3, B0 = 5.56 T and Rbeam = 10.3 mm.
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Figure 3.8: RF spectrum of the 3 relevant modes plotted at the end of the simulation domain (Fig. 3.7).
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oscillations, present in the output section of the cavity geometry, few were found with a less
significant magnitude in the RF spectrum plot whereas on the other hand the presence of
parasitic oscillations in the uptaper section is clear from Fig. 3.6 and Fig. 3.7 respectively. As
a consequence, parasitic oscillations with less significant amplitude may be due to numerical
noise. Thus in order to confirm these oscillations as spurious oscillations in terms of the
dynamic ACI phenomenon we have removed few approximations in the calculation using the
unmodified version of the KIT SELFT code which will be described in the subsequent chapters
of this thesis.
Looking at the RF spectrum plot of the field profiles (see Fig. 3.8), several beam-wave
interactions have been identified which are labeled as ‘b’, ‘c’, ‘d’ and ‘e’. These beam-wave
interactions points also correspond to the presence of the flat responses in Fig. 3.6 as well as
modulated electric field profiles (see Fig. 3.7). Some of the salient points have been drawn
from the RF spectrum plots (see Fig. 3.8) which are as follows:

a) Main line of the TE−28,8 mode at 140.2 GHz: This is the desired cavity beam-wave
interaction corresponding to the straight portion of the resonator.

b) Spurious line of the TE−28,8 mode at 131.4 GHz: This interaction corresponds to a
broad region in the uptaper (65.0mm ≤ z ≤ 77.0mm) with relatively constant interaction
frequency. This interaction may be labeled as dynamic ACI phenomenon. The intensity
of this interacting mode is much less in comparison with the main mode intensity and so
it is necessary to have some more investigations on the appearance of the dynamic ACI
by considering more realistic cases like a non-uniform distribution of the magnetic field
profile in the simulation domain particularly in the uptaper section of the cavity.

c) Main line of the TE−28,9 mode at 140.2 GHz which is similar to b), but for a different
mode: The frequency seems to be locked to the main mode’s oscillation.

d) Weak and noisy line for the TE−28,7 mode at 124 GHz which is again similar to b), but
weakly coupled to the electron beam: This interaction line corresponds to the flat response
in the location 65.0mm≤ z≤ 77.0mm as shown in Fig. 3.6.

e) An interaction line of the TE−28,7 mode at 134.7 GHz corresponds to the main cavity
interaction region but with a weak coupling to the electron beam.

Further refinements in the simulations have been done by considering the influence of the cavity
beam-wave interaction after the straight portion of the cavity (i.e. in the uptaper section) on
the electron beam parameters by calculating the pitch factor (α) as well as γ for each particle
as a function of the velocity components (u⊥ and uq). These velocity components were in
turn calculated by considering a non-uniform distribution of the magnetic field profile in the
time-dependent differential equations required for the self-consistent beam-wave interaction
calculations (see equations (2.29) and (2.8)) (for more details see chapter 4).
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In all the above simulation results it has been considered that each macro-particle has the same
longitudinal velocity uq but this is not true when the magnetic field is not considered to have
a constant value. The consideration of the influence of the change of the magnetic field in
the beam-wave interaction calculations is necessary to simulate the interaction phenomenon,
particularly near the uptaper section of the geometry, as close to the reality as possible and also
in order to correlate the simulated results with the experimental one obtained with the reference
to the study of the dynamic ACI performed at KIT [KAC+10]. As a consequence, it is required
to consider that each particle has its own γ and velocity components u⊥ and uq depending upon
the non-uniform distribution of the magnetic field. As a result each of them has an individual
curve of resonance frequencies by means of which the regions of synchronism between RF
wave and electron beam can be depicted. The result of possible interaction frequencies for
each electron as well as for each mode are shown in Fig. 3.9 plotted along the z-coordinate
of the cavity geometry (140 GHz TE−28,8 mode W7-X gyrotron having the following beam
parameters: Vbeam = 81.8 kV, Ibeam = 43.2 A, α = 1.18, B0 = 5.615 T and Rbeam = 10.17
mm). In these calculations βq has been obtained by using the adiabatic approximation (equation
(3.5), see section 3.2) for each macro-particle calculated at each z value using the analytical
formula equation (3.5) in which the values of β⊥ for each macro-particle are obtained from the
interaction calculations by solving only equation (2.29a). These locally varying βq were used
in the solutions of equation (3.1) in order to determine the regions where the synchronization
condition may exist along the whole simulation domain.
The solutions shown in Fig. 3.9 correspond to the two crossing points of each mode’s hyperbola
in the Brillouin-Diagram (see chapter 1 and for more details see [Ker96]) with the electron beam
line having different γ (obtained from the interaction calculations) in the calculations of Ωc for
different particles. Fig. 3.9 has been plotted while considering 900 micro-particles and 13 TEm,p

modes with different directions of rotation (see Fig. 3.11). It has already been mentioned that
the longer straight regions with nearly constant frequency vs. z can be considered for regions
suitable for a net energy exchange between RF wave and electron beam. Thus from Fig. 3.9, a
frequency of 140 GHz for the main mode TE−28,8 has been estimated from the lower section of
the curves in the cylindrical cavity region (18.0mm≤ z≤ 22.0mm), as desired. But on the other
hand, almost flat frequency responses around 132 GHz are also found in the uptaper region
(65.0mm ≤ z ≤ 77.0mm) with different TEm,p modes which may be considered as undesired
oscillations suspected to be due to the dynamic ACI phenomenon. Thus it can be assumed that
this undesired additional interaction region is the reason for the dynamic ACI phenomenon in
these simulations which require a deeper investigation.
The upper high-frequency gyro-TWT branches in Fig. 3.9 are broadened due to strong
sensitivity to different uq (Doppler broadening). Thus they are much less prone to dynamic
ACI.
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Figure 3.9: Estimated interacting frequencies curves for 900 macro-particle and 13 TEm,p, modes, having
different γ and βq(z) for each particle, at parameters shown in Fig. 3.10.

in the time-dependent self-consistent multi-mode simulation using the unmodified version of
the SELFT code. In this numerical experiment again only equation (2.29a) has been solved
numerically. Electric field plots have been generated and are shown in Fig. 3.10. The presence
of undesired oscillations in the output section of the simulation domain, as depicted in Fig.
3.10, have been observed due to the presence of parasitic modes TE−27,8, TE+26,9 and TE+26,8.
This indicates power exchange between traveling RF wave and the spent electron beam in the
uptaper section of the cavity geometry (see Fig. 3.10). The electric field strength of the other
competing modes has been observed significantly lower (≈less than 103) than the strength of
the main operating mode electric field profile and hence may be considered at the noise level.
Thus other competing modes do not contribute in the present investigations. This parasitic mode
TE−27,8 clearly features the dynamic ACI phenomenon in the uptaper section and indicates that
the consideration of a non-uniform magnetic field distribution in the differential equations is
necessary for the realistic investigations of the dynamic ACI phenomenon in the cavity output
section.
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In the next numerical experiment, the values of βq, calculated using the adiabatic constant
which depends on the non-uniform distribution of the magnetic field profile, have been used
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Figure 3.10: Calculated electric field profiles in a stationary operating point at Vbeam = 81.8 kV, Ibeam =
43.2 A, α = 1.18, B0 = 5.615 T and Rbeam = 10.17 mm . βq(z) are used in calculating
electric field profiles.

observed but with a much lower magnitude as compared to the main mode oscillation. These
undesired parasitic frequencies also correspond to flat responses of the resonance frequency
curves (see Fig. 3.9). The consideration of the adiabatic approximation in the calculation
of the electron parallel velocity which includes the influence of the non-uniform distribution
of the magnetic field profile along the simulation domain provides a better estimation of
parasitic/spurious oscillations in the uptaper section. This observation was evident from the RF
spectrum plot (see Fig. 3.11) where the magnitude of the intensity of the spurious oscillations, in
the uptaper section of the geometry, was more prominent than in the RF spectrum plots (see Fig.
3.8), which were obtained from the previously discussed numerical experiment. This confirms
that the inclusion of the influence of the non-uniform distribution of the magnetic field directly
in the time-dependent gyrotron beam-wave interaction differential equations (i.e. equations
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The RF spectrum plot at the end of the simulation domain has been calculated at the simulation
time ts = 2200 ns and is shown in Fig. 3.11. From this plot one can confirm that in addition
to the desired ≈140 GHz oscillation of the cavity, other parasitic oscillations like at ≈134.56
GHz (TE+26,9 mode), ≈130.14 GHz (TE−27,8 mode) and at ≈128.19 GHz (TE+26,8) are also
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(2.8) and (2.29)) is necessary in order to make proper investigations in terms of the appearance
of the dynamic ACI particularly in the uptaper section where the non-uniform distribution of the
magnetic field is more significant. Further numerical investigations have been performed under
the consideration of the non-uniform magnetic field distribution directly in the solutions of the
differential equations which are responsible for the gyrotron beam-wave interaction calculations
in the SELFT code (see chapter 6).





4 Numerical implementation and proposed modifications in the
SELFT code

We now discuss the numerical implementation of the described differential equations applied
in the SELFT code as well as the modifications made in the required differential equations
with reference to make more realistic investigations on the dynamic ACI phenomena in the
uptaper section of gyrotron cavities under the consideration of a non-uniform distribution of the
magnetic field. In the SELFT code, finite difference methods with several approximations are
used in order to make simulations fast and accurate. These implemented approximations are
described in [Ker96]. Particularly the field profile equation (2.8) and electron motion equation
(2.29) are solved by using the Crank-Nicholson method as well as Predictor-Corrector method,
respectively, and are described in the later part of this chapter.
In this chapter, a discretized form of the differential equations (see sections 4.2 and 4.3),
responsible for the actual beam-wave interaction calculations, and their implementations in
the existing SELFT code, which includes the influence of the non-uniform distribution of the
magnetic field, are discussed for numerical solution of the physical behaviour of the beam-wave
interaction process. In this course, the stationary cold cavity field profile along with the
implemented boundary conditions in the simulations of the RF field profile, stationary as well
as non-stationary, are also discussed followed by discussions on the numerical aspects of the
electron momentum equation. Finally, a modification with respect to the reference frequency
is also been discussed in which a slowly varying reference frequency has been used for the
calculations of the slow-phase-variable. The axial z-coordinate as well as the time coordinate
are discretized by zn and ti respectively which are given by:

zn = zin +n ·∆z, ti = ti−1 +∆t n = 0,1,2, . . . (4.1)

Here ∆z and ∆t denote the step size of the axial as well as time coordinate discretization and the
corresponding sample of the field profile can be given as follows:

~fk,n,i = ~fk(zn, ti) (4.2)

The index k is the same as described in chapter 2 but in general it is ignored for the sake of
simplicity.
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4 Numerical implementation and proposed modifications in the SELFT code

4.1 Implemented numerical method for the stationary cold cavity field profile

In the SELFT code, non-stationary multi-mode simulations have been carried out by
considering the stationary cold cavity field profile along the resonator axis as an initial RF
field profile which is obtained by considering the excitation term in the field profile equation
equal to zero i.e. ~Rk = 0 (see equation 2.10). The cold cavity field profile has already been
proposed in [FR81]. In the SELFT code these cold cavity field profiles are effectively solved
by using the Numerov-Algorithm [Sch68]. The angular frequency ω , which has been included
in the calculation of kq for each TEm,p mode, has been expressed as a complex quantity ~ω in the
SELFT code [Ker96], wherein the imaginary part describes the rate of the decay process and is
given by:

~ω = ω

(
1+ j

1
2 ·Qdi f

)
(4.3)

Using (4.3), the equation for the cold cavity field profile (2.10) can be expressed as follows:

∂ 2

∂ z2 (
~f (z)) =−~k2

q ·~f (z) =

(
−ω2

c2 +
ω2

4c2Q2
di f
− k2
⊥(z)− j

ω2

c2Qdi f

)
~f (z) (4.4)

The quantity k2
⊥(z) in equation (4.4) can be obtained, at each discretized value of z, by using

the relation k⊥(z) = χm,p/R0(z) and as a result the above cold cavity field profile equation can
be discretized numerically in equidistance along the z-axis by using the Numerov-Algorithm
[Sch68] which is given by:

~fn+1−2~fn +~fn−1

∆z2 =
1

12

(
~k2
q,n+1

~fn+1 +10~k2
q,n~fn +~k2

q,n−1
~fn−1

)
~fn+1 = 2~fn−~fn−1−

∆z2

12

(
~k2
q,n+1

~fn+1 +10~k2
q,n~fn +~k2

q,n−1
~fn−1

) (4.5)

The above equation (4.5) has been solved and stored at each discretized value of the z-axis which
is further used as the initial values for the non-stationary multi-mode self-consistent simulation.
For more details see [Ker96, and references therein]. The solution of equation (4.5) has been
associated with the boundary condition that is applied in the SELFT code which can be defined
as follows:

∂

∂ z

(
~f (zin)

)
=+ j

1−~Γin

1+~Γin

~kq~f (zin)

∂

∂ z

(
~f (zout)

)
=− j

1−~Γout

1+~Γout

~kq~f (zout)

(4.6)

where ~Γin and ~Γout denotes the reflection coefficient at the input and output of the simulation
domain respectively. The discretized form of the above boundary condition equation (4.6)
has been used in the SELFT code for the solution of equation (4.5). The difference forms
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4.1 Implemented numerical method for the stationary cold cavity field profile

of equation (4.6), obtained only at the input and output of the simulation domain have been
described as follows:

~f1−~f−1

2∆z
=+ j

1−~Γin

1+~Γin

~kq,0~f0 (4.7a)

~fnout+1−~fnout−1

2∆z
=− j

1−~Γout

1+~Γout

~kq,nout
~fnout (4.7b)

Since in the gyrotron simulation, the TEm,p mode should be at the cavity resonant frequency
placed at the input of the resonator or somewhere in between the downtaper and straight portion
of the cavity (see Fig. 1.7) which is well below the cut-off frequency so, in view of the above,
the calculation of the boundary condition at the input of the simulation domain is not taken into
account in this chapter and for more details see [Ker96]. In the SELFT code the solution for the
cold cavity field profile has been obtained by integrating equation (4.5) over the axial coordinate
z while using the boundary condition (4.7b) optimized for the particular given resonant angular
frequency (ω) and quality factor (Qdi f ) in such a way that the reflection coefficient at the output
of the simulation domain must satisfy the following relation, which is given by:

~Γout
(
ω,Qdi f

)
=

2∆z~kq,nout
~fnout − j

(
~fnout+1−~fnout−1

)
2∆z~kq,nout

~fnout + j
(
~fnout+1−~fnout−1

) (4.8)

Generally the value of the output reflection coefficient (~Γout
(
ω,Qdi f

)
)at the desired frequency

of oscillation is required to be optimized in order to get the require beam-wave interaction
simulation using the existing SELFT code but ideally it should be considered equal to zero i.e.

~Γout
(
ω,Qdi f

)
= 0 (4.9)

Optimization has been performed using a non-linear optimization techniques [PTV+92] with
different values of quality factor in order to obtain a minimum absolute value of the reflection
factor | ~Γout | or less than the predefined limit (for example 0.01) for the calculation of a
single-mode cold cavity field profile. It should be mentioned that for the same transverse mode
indices k (k stands for m and p) several solutions may occur which correspond to different axial
mode indices n [Ker96]. Thus one can perform optimization for getting the required value of
n by considering the minimum value of the frequency, for example the cut-off frequency of the
resonator. It was also observed that the resonant frequency increases with increasing n. In the
SELFT simulation n is generally considered to be 1 (first axial mode).
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4.2 Numerical methods implemented for stationary and non-stationary
beam-wave interaction simulation

A detailed description of the numerical methods implemented in the unmodified version of
the SELFT code for stationary as well as non-stationary simulations, with constant magnetic
field, has been discussed in [Ker96]; a brief discussion is presented in this section for a
better reference. In many publications for example in [BJ87, BJ92] it has been reported that
self-consistency in the simulation is necessary for the most reliable beam-wave interaction
studies with or without non-uniform distribution of the magnetic field. The self-consistent
approach is certainly provided by solving both equations, i.e. the RF field equation equation
(2.8) and electron motion equation (2.29), simultaneously in such a way that the changing beam
parameters (like electron transverse as well as longitudinal velocities) have an influence on
the evolution of the RF field profile through the calculation of the excitation term (~Rn) which
is directly influenced by the beam current (IB, j), relativistic factor (γ j) as well as electron
transverse and longitudinal velocities.
In the case of stationary self-consistent single-mode simulation, the stationary RF field profile
equation (2.10) has been discretized by using a ‘Leapfrog’ scheme [PTV+92] i.e.

∂ 2

∂ z2

(
~f (z)

)
+~k2

q ·~f (z) = ~Rn

∂

∂ z
~fn+ 1

2
=

∂

∂ z
~fn− 1

2
+∆z

(
~Rn−~k2

q,n ·~fn(z)
)
, ~fn+1 = ~fn +∆Z

∂

∂ z
~fn+ 1

2

(4.10)

In order to have a self-consistent stationary single-mode calculation, the discritization of the
electron momentum equation has also been carried out and is described in section 4.3 whose
solutions have a direct influence on the discretized stationary field equation (4.10) through the
excitation term ~Rn. It should also be mentioned that in the case of a stationary solution of a
single-mode calculation i.e. in the solution of the equation (4.10), the same boundary condition
has been implemented as was used for the evolution of the cold field profile (see equation 4.5)
(discussed in section 4.1). The simulation results obtained with the self-consistent stationary
single-mode calculations provide a rough estimation of the output power and electronic as well
as RF efficiencies for fixed values of the beam parameters. Then these estimated values can
be used as input for self-consistent non-stationary multi-mode calculations. As in the case
of self-consistent calculations, for given parameters, several solutions can be possible and
thus this property can also be used for parametric studies. For more details see [Ker96] and
references therein. Moreover all the above implementations have been treated as input for the
non-stationary self-consistent multi-mode simulations.
In the time-dependent self-consistent beam-wave interaction calculations, the computational
time, due to the inclusion of multi-mode features influenced by the non-uniform distribution of
the magnetic field, increases by 40% as compared to the calculations reported in [Ker96] where
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4.2 Numerical methods implemented for stationary and non-stationary beam-wave interaction

the magnetic field is taken as a constant value and where a typical computational time is ≈20
hours. This is because most of the computing time is consumed for solving the particle motion
equation in which particle momenta (transverse as well as longitudinal) are also influenced
by the non-uniform distribution of the magnetic field as compared to [Ker96]. Multi-mode
calculations are therefore exclusively performed non-stationary and self-consistently under the
influence of the non-uniform distribution of the magnetic field.
In the existing SELFT code, due to the consideration of multi-mode features, the frequency ωk

is no longer the oscillation frequency as compared to the stationary self-consistent single-mode
simulation but it has been estimated by a fixed averaged value rate and should preferably be
close to the resonant frequency [Ker96]. The deviation of the oscillation frequency from the
averaged frequency is described by the difference between the timings of the phases of the
associated field profiles present at time steps i and i− 1 respectively divided by the time step
width and has been determined by [Ker96]:

ω = ωk +
∠
(
~fk,i

)
−∠

(
~fk,i−1

)
∆t

(4.11)

where ∠ represents the phase angle of the field profiles observed at time i and i−1 respectively,
and ∆t represents the discritization time step size. In the time-dependent multi-mode
simulations using the unmodified SELFT code, the oscillating frequency obtained by using
equation (4.11) provides a sufficiently well defined frequency and it has also been observed that
it has very less influence on the estimation of power and efficiencies.
In order to perform time-dependent self-consistent multi-mode simulations under the influence
of a non-uniform distribution of the magnetic field, it is of course necessary also to solve the
coupled differential equations of the field profile (2.8) and the electron momentum equation
(2.29) simultaneously which includes the term containing the effects of the non-uniform
distribution of the magnetic field. The difference form of the electron momentum equation
is described in the next section 4.3. For the numerical implementation of the equation of the
RF field profiles in the modified version of the SELFT code, an implicit solver is used because
due to the Courant condition [PTV+92] there is no longer a limitation on the time step size.
Due to the implicit solver, the numerical stability region is much larger than for an explicit one.
In this case the maximum time step is then determined, not due to the numerical instabilities,
but by the time behaviour of the physical quantities. In the modified version of the SELFT
code a partially implicit Crank-Nicholson scheme [PTV+92] has been implemented for solving
the RF field profile equation (2.8) [Ker96]. For better understanding a brief description of the
numerical aspects of the Crank-Nicholson scheme is introduced below.
Numerical aspects of Crank-Nicholson scheme

The Crank-Nicholson method is a finite difference method used for numerically solving
diffusion type partial differential equations. It has second-order accuracy both in space as
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well as in time because it combines the accuracy of both implicit and explicit FTCS (Forward
Time Centered Space) schemes. Stability criteria for this numerical method can be seen
from Von Neumann stability analysis. It is a standard textbook result that this scheme is
unconditional stable, see [PTV+92] for details. However, the approximate solutions can still
contain (decaying) spurious oscillations if the ratio of time step ∆t to the square of space step
∆z2 is large. For this reason, whenever large time steps or high spatial resolution is necessary,
the less accurate backward Euler method is often used, which is both stable and immune to
oscillations. The Crank-Nicholson method is based on central difference in space domain and
the trapezoidal rule in time domain, giving second-order convergence in time. Let us consider
a one-dimensional diffusion equation, as an example, for illustration purpose.

∂ f
∂ t

= D
∂ 2 f
∂ z2

Applying the Crank-Nicholson scheme for the discretization of the above diffusion equation,
we can obtain the value of the function f at each discrete point of the geometry.
With α = D∆t

2∆Z2 and rewriting the above equation we get:

−α fn+1,i+1 +(1+2α) fn,i+1−α fn−1,i+1 = α fn+1,i +(1+2α) fn,i−α fn−1,i

The above equation is a tridiagonal problem in which fn,i+1 can be efficiently solved by using
the tridiagonal matrix algorithm.
Similarly the RF field profile equation (2.8) has been discretized by using the above explained
Crank-Nicholson algorithm and has been used in the modified SELFT code in order to have RF
field values at each point of the resonator along the axial coordinate; the discretized form of
equation (2.8) can be described by [Ker96]:

~fk,n+1,i+1−2~fk,n,i+1 +~fk,n−1,i+1

2∆z2 +
~fk,n+1,i−2~fk,n,i +~fk,n−1,i

2∆z2

+

[
ω2

k −ω2
⊥,k

c2

]
n︸ ︷︷ ︸

Ak,n

~fk,n,i− j
2ωk

c2︸︷︷︸
Bk

~fk,n,i+1−~fk,n,i

∆t
= ~Rk,n,i

(4.12)

The above equation (4.12) has been solved and implemented in the modified version of the
SELFT code by using the boundary condition given by equation (4.7). The equation (4.12) has
been recasted into the implicit matrices form and can be described by:(

~Mk,i− j
Bk

∆t
I
)
·~fk,i+1 =~Rk,i−

(
~Mk,i + j

Bk

∆t
I+Ak

)
·~fk,i (4.13)
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The matrices, vectors and constants used in equation (4.13) are described in equation (4.14).

~fk,i =



~fk,nout ,i
...

~fk,n,i
...

~fk,0,i


Ak =



Ak,nout 0
. . .

Ak,n
. . .

0 Ak,0


~Rk =



~Rk,nout 0
. . .

~Rk,n
. . .

0 ~Rk,0



~Mk =
1

∆,z2



−1−~Cout,i 1 0
. . . . . . . . .
1
2 −1 1

2
. . . . . . . . .

0 1 −1−~Cin,i


Ak,n =

[
ω2

k −ω2
⊥,k

c2

]
n

Bk =
2ωk

c2
~Cin,out,i = j~k||,k,i

1−~Γin,out

1+~Γin,out
∆z (4.14)

In the modified SELFT code, the above matrix equations are solved at each time step after
having done a complete calculation of the RF field excitation term ~Rk,n,i at every point of the
resonator. In contrast to the calculations reported in [Ker96] in the calculation of the above
matrix equation (4.13), the ~Rk,n,i contain terms which are directly influenced by the non-uniform
distribution of the magnetic field profile. In the modified SELFT code, the inversion of the
tridiagonal matrix has been performed by a standard subroutine called TRIDAG written in the
complex form [PTV+92, Ker96]. In order to make investigations regarding the occurrence
of dynamic ACI phenomena in the uptaper section of the geometry, for which the change of
the magnetic field is more significant, the quantity Dn, as shown in equation (4.15) where
Magn (magnetic field value at the nth discrete point) has been included in the calculation of
the excitation term of the RF field profile in contrast to the same quantity reported in [Ker96].
As a consequence the above matrix equation (4.13) has been modified accordingly. This is one
of the important modifications done in the modified SELFT code towards the investigations of
dynamic ACI and is one of the major differences between the unmodified and modified version
of the SELFT code.

~Rk,n,i = µ0 ∑
j

IB, j

uq, j,n,i

[
Ge,k, j,n,ie− jmϕe,i · e j(ωk−Ω f )t

]
n

·

 jΩ0 ·
~p j,n,i

γ j,n,i
+

(
γ2

j,n,i−1

u2
q, j,n,i

) Magn︷ ︸︸ ︷(
1

2BR,z,n

dBR,z,n

dz

)
·
~p j,n,i

γ j,n,i︸ ︷︷ ︸
Dn


(4.15)
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4 Numerical implementation and proposed modifications in the SELFT code

In order to implement the effect of the non-uniform distribution of the magnetic field in
the modified SELFT code, the magnetic field profile values have been obtained from the
external code ESRAY existing at KIT [Ill97]. The quantity Magn in equation (4.15) has been
equidistantly discretized along the axial coordinate, having a second order accuracy by using
equation (4.16). Finally discretized values have been used in the calculations of ~Rk,n,i at each
point of the resonator.

1
2BR,z

dBR,z

dz
=

1
BR,n


(−1.5BR,1 +2BR,2−0.5BR,3)/∆z when n = 1
(BR,n+1−BR,n−1)/2∆z when 1 < n < nz−1
(1.5BR,nz−2BR,nz−1 +0.5BR,nz−2)/∆z when n = nz

nz = Maximum number of discrete points


(4.16)

In the existing SELFT code finally the amplitude of the field profiles has been used in order to
determine the output power (pdi f ,k) according to the equation determined by equation (4.17).
The detailed derivation of this equation can be found in [Ker96]:

pdi f ,k =

 1−
∣∣∣~Γin,out,k

∣∣∣2
1+2Re

∣∣∣~Γin,out,k

∣∣∣+ ∣∣∣~Γin,out,k

∣∣∣2
 ·( kq,k

2µ0ω

∣∣∣~fk(zin,out)
∣∣∣2) (4.17)

4.3 Numerical methods implemented for solution of the Lorentz force
differential equation

The Lorentz force equation, both in transverse as well as longitudinal direction (2.29), has
been resolved in the modified SELFT code in parallel with the RF field profile obtained from
equation (4.13) at each time step in order to obtain a self-consistent solution. In equation
(2.29), the calculated RF field values are included in the acceleration term ~a(r j,ϕ j) (2.41a).
The discretized form of the electron motion momentum equation has been accomplished by
using a Heun’s Predictor and Corrector method [PTV+92, EMR93]. For better understanding a
brief introduction of the Predictor and Corrector method is introduced below.
Numerical aspects of the Predictor-Corrector method

A Predictor-Corrector method is a numerical method that utilizes two steps to determine the
correct approximated solution. First, the prediction step, in which Euler’s Method (explicit
method) is used. It does a rough approximation of the desired quantity; in this case the
electron momentum values are approximated. Secondly, the corrector step refines the initially
approximated values using the Trapezoidal Method (implicit method) to obtain a better
approximation to the true solution. A differential equation as an example has been considered
for illustration purpose. Let us consider a first order partial differential equation:

p′(z) = f (z, p(z)), p(zn) = pn
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4.3 Numerical methods implemented for solution of the Lorentz force differential equation

Then by using the Heun’s Predictor-Corrector method, the above equation can be discretized
as:

p̃n+1 = pn +∆z · f (zn, pn) (Euler’s method-Intermidiate value)

pn+1 = pn +
∆z
2
( f (zn, pn)+ f (zn+1, p̃n+1))

(Trapezoidal method-Final approximated value at next ∆z)

The predictor and the corrector steps have local truncation errors of O(∆z2) and O(∆z3),
respectively. The efficiency of the iterative corrector depends on the accuracy of the initially
predicted value.
As already mentioned above, the electron motion momentum equation, both in transverse as
well as longitudinal direction, (2.29) has been discretized by using the above explained Heun’s
Predictor and Corrector method and implemented in the modified SELFT code. The discretized
version of equation (2.29) has been described by equation (4.18), which is given by:
Predictor Step

~̃pn+1 = ~pn +∆z

[{
~anγn + j

(
Ω0−Ω f γn

)
~pn

uq,n

}
+ j ·Magn ·~pn

]

ũq,n+1 = uq,n +∆z
{(
−|~pn|2

uq,n

)
·Magn ·~pn

}


γ̃n+1 =
1√

1− (v/c)2
=
√

1+ ũ2
q,n+1 + |~̃pn+1|2

Corrector Step

~pn+1 = ~pn +
∆z
2



({
~an+1γ̃n+1 + j

(
Ω0−Ω f γ̃n+1

)
~̃pn+1

ũq,n+1

}
+ j ·Magn+1 · ~̃pn+1

)

+

({
~anγn + j

(
Ω0−Ω f γn

)
~pn

uq,n

}
+ j ·Magn ·~pn

)
︸ ︷︷ ︸

=(~̃pn+1−~̃pn)/∆z



uq,n+1 = uq,n +
∆z
2


{
−
|~̃pn+1|2 ·Magn+1 · ~̃pn+1

ũq,n+1

}
+

{
−|~pn|2 ·Magn ·~pn

uq,n

}
︸ ︷︷ ︸

=(ũq,n+1−uq,n)/∆z
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γn+1 =
√

1+u2
q,n+1 + |~pn+1|2 (4.18)

In the calculations of the acceleration terms ~an, required for calculation of the electron motion
equation in the modified SELFT code, the influence of the space charge effect has also been
included and is calculated according to equation (4.19) in which the quantity ~pn has been
calculated according to equation (4.18). This means that in contrast to [Ker96] the calculation of
the space charge effect also includes the effect of the non-uniform distribution of the magnetic
field. The detailed derivation of this equation can be found in [Ker96, and references therein].
In equation (4.19) the plasma frequency ωp is calculated using the particle normalized initial
velocities β⊥,in and βq,in respectively.

jω2
p

2Ω0

(
〈~p j〉 j−~p j

)
, ω

2
p =

e2n0

mε0
=

2πIB

8500A
Ω0c

4πReβ⊥βq
(4.19)

According to equation (4.18), it has been clear that the non-uniform distribution of the magnetic
field has a direct influence on the calculations of the momentum of the particles traveling
through the resonator under the influence of the modified RF field profile in the SELFT
simulation which is very essential in view of performing investigations of the appearance of
dynamic ACI in the output part of the gyrotron cavity. Equation (4.18) has been solved in
parallel to equation (4.13) in order to have self-consistent solutions using the modified SELFT
code. The inclusion of the effect of the non-uniform distribution of the magnetic field in
equation (4.18) is another important modification made in the time-dependent self-consistent
differential equations which are responsible for the actual beam-wave interaction calculations
considered in the modified SELFT code in comparison to the equations used for the beam-wave
interaction reported in [Ker96] where the magnetic field is considered to have a constant value.
These modifications are necessary in order to perform investigations towards the occurrence of
dynamic ACI phenomena in the output section of the gyrotron resonator where the influence of
the change in magnetic field is significant. Using the coupled differential equations (4.18), the
movement of each particle has been integrated with the known input parameters for the given
geometry. In order to calculate the exchange of power between the electron beam and the RF
wave in terms of calculations of the electronic efficiency, i.e. amount of energy transferred
from the transverse velocity component of the electron beam to the RF field, equation (4.18)
has been solved for each macro-particle (≈ 30). Then the average value of gamma 〈γ j〉 j is
calculated taken over all the electrons and finally, the averaged value has been used in equation
(4.20) in order to get the electronic efficiency, which is given by:

ηelec =

{
γ j,in−〈γ j〉 j

γ j,in−1

}
(4.20)

In principle all the parameters of the electrons, like electron entry location (Re,in, j,ϕe.in, j)
(see Fig. 2.1), velocity components β⊥, j,βq, j, entry phases relative to the phases of the field
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4.3 Numerical methods implemented for solution of the Lorentz force differential equation

which are described by using a slow phase variable λin, j in the SELFT calculations and the
time scale tin, j for each electron which plays a role only for non-stationary simulations, have
to be averaged. For the case of stationary as well as non-stationary simulations, the electrons
azimuthal angles of incidence have not to be averaged because, in SELFT calculations, the
electron beam has been considered as azimuthally symmetric and for the stationary case, in
addition to averaging the frequency, one can also consider the averaged electron cyclotron
frequency Ω f to be equal to the mode’s oscillating frequency ωk i.e. Ω f = ωk so that the
time dependencies in the calculations of the acceleration term in the particles motion equation
as well as in the excitation term of the RF field profile equation (2.29) can be omitted. This
means that all the particles will reach each discrete point of the geometry at the same time step
when the RF field calculations are performed at the same discrete points. and thus under this
condition the electron beam movement is quasi-stationary.
In the case of a non-stationary simulation, the two time scale frames: one for the calculations
of the acceleration term required for the electron motion ‘t ′’(~a j(z, t ′)) and the other for the
calculation of the excitation term required for the RF field profile equation ‘t ′’(~Rk(z, t ′)),
have been considered in the existing SELFT simulations so that it can be easily distinguished
between the calculations of the flight time of the electrons and the evolution of the RF field
profile as both are calculated in different time frames. In reality, without any assumption,
the equation for the motion of each particle is time-dependent and thus in order to have a
physically corrected treatment of the non-stationary condition, equation (2.27) can be used
without considering the assumption ∂/∂ t = (uq/γ)∂/∂ z. This is possible in principle but it
also increases the computational complexity as compared to the quasi-stationary treatment of
the electron motion [Ker96]. The typical transit time for electrons through the cavity is around
1 ns i.e. τ ≈1 ns. For several 1000 geometrical discretization steps along the z-coordinate and
for the several 10 macro-particles the equations for the electron movement need to be solved,
with a time step <1 ps, at each simulation time as well as at each discrete point of the geometry
which makes a long computational time. If the field profile is assumed to be slowly changing
over time, the equations for the electrons need only to be solved once within the time step for
the RF field profile. Descriptively, it has been assumed that the excitation term for the RF field
profile is nearly constant during the transit time of the electrons. It is possible to identify the
greatest possible time step for fast and reliable simulation around 0.01 ns. A second important
numerical parameter for reliable simulation is the number of utilized macro-particles. For the
simulations in this work, the number of macro-particles considered in the simulation is chosen
to be >30. Probably the most crucial numerical parameter is the number of discretization steps
for the slow variable phase Λ as described by equation (2.16). A safe choice for the number of
discretization steps in this case is the next higher prime number related to the highest azimuthal
index m of the modes considered in the multi-mode simulation. This selection reduces the
possibility of beating effects and non-physical behaviours.
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4 Numerical implementation and proposed modifications in the SELFT code

In SELFT simulations the particle movement is treated as quasi-stationary and as a result it is
necessary to solve the equation of motion only once after the evolution of the RF field profile.
This approach is described as ‘fixed field approach’. With this approach the computational
complexity is reduced by about ≈1000 times depending upon the discretization and number of
macro-particle considered in the simulation [Ker96]. Therefore the quasi-stationary treatment
of the electron motion with equation (2.29), where the condition given by equation (2.28) is
already implied, has been used in this work as it allows a much faster as well as sufficiently
accurate simulation. It is also necessary that the RF field profile that acts on the electron must
be obtained at the same time step at which the electron arrives at the appropriate geometry
point. But under the consideration of the ‘fixed field approach’, the excitation term for the RF
field profile must be backdated to a time step at which the particle movement is considered.
In the modified SELFT code, this alteration is numerically implemented in the time factor
associated with the calculation of the excitation term ~Rk(z, t) required for the evolution of the
RF field profile.
It is necessary to mention that the flight time of the electrons through the simulation space
τ(several ns) is much higher than the time step ∆t(≈0.01) required for the evolution of the
RF field profile. This fact has been considered in the existing SELFT code both in the phases
of the RF field at the local positions of the electrons as well as in the acceleration terms for
the electron motion. In the existing SELFT code this has been corrected by assuming that
the field amplitude remains sufficiently constant over a time but the RF field phase varies
harmonically with the difference of the actual oscillation frequency ωk and the chosen carrier
frequency ωcarrier (carrier frequency modulates the physical field down to the slowly varying
field ~fk(z, t)). A large time step for the field calculation i.e. ∆t > t_field (= (Q/ωk)) has
been taken into consideration if the beating period between this two frequencies t_dev =

1/|ωk −ωcarrier| is sufficiently large. In the case when τ>∆t, the phase of ~fk(z, t) changes
considerably during the electron transit. This phase change has been considered in the SELFT
code by predicting the field phase during the electron transit and this has been accomplished by
assuming harmonic behaviour of the field over short times which has been used to extrapolate
the fields through an exponential term and also to backdate the calculated excitation terms
from the electron movement. As a consequence with this technique and under the given
assumptions, τ>∆t has been handled in the frame of the SELFT code without any error.
In the SELFT code for non-stationary multi-mode simulation, the total electric field acting
on the electrons is considered to be a vectorial sum of the fields of individual modes and
the beating process among these modes. This fact has been maintained in the simulation
with many different beating periods which means that in this non-stationary case also the
technique of extrapolating field phases over the electron motion along the z-axis, as described
above, is mandatory as long as a trajectory code has been used for the simulations. Thus
we can say that under the assumption made in the SELFT code (the individual mode fields
behave sufficiently harmonic with a sufficient stationary amplitudes-‘fixed field approach’), the
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4.3 Numerical methods implemented for solution of the Lorentz force differential equation

electrons experience the correct field and the calculated excitation term for the field profiles
are correct as well. According to the above discussion it appears that the appearance of the
dynamic ACI (see chapter 6) in the uptaper section is neither an artefact due to the violation
of the assumptions in the modified SELFT code nor due to numerical reflections but it is due
to the cavity oscillations which influence the electron movement. In other words if the ACI
phenomenon does not essentially change the relevant excitation term of the RF field profile
then it would not be self-sustained but powered by the cavity oscillations. As a result we can
assume that the appearance of dynamic ACI phenomena in the simulated results (see chapter
6) are real since the excitation term would still be calculated correctly despite the appearance
of the dynamic ACI later in the simulation domain due to electron movement in the uptaper
section.
In the SELFT simulations, the time scale required for the calculation of the field profile t has
been associated with the calculation of the time scale required for solving the electron motion
equation (2.29) i.e. with t ′ and this has been done by using the following relation [Ker96]:

t ′ = t +
∫ z

zin

1
vq, j

dζ = t +
∫ z

zin

γ j

cuq, j
dζ (4.21)

This means that at each time step for every simulated electron the complex exponential terms
having a factor of t present in the calculations of the excitation term as well as acceleration term
are required to be calculated, since equation (4.21) depends on the longitudinal velocities of
each individual electron which was considered as a constant value for each electron in [Ker96].
Solving the exponential term at each time step is numerically very expensive and thus can be
avoided by using the following approximation:

t ′ = t +
{
(zn− zin)

vq, j,in

}
Time taken to travel from the initial grid point to any particular grid point

(4.22)

This approximation is good enough only with a particular condition i.e. when vq, j for each
electrons are assumed to be constant which is mentioned in [Ker96] but in this present work vq, j
for each electron is no longer constant due to the inclusion of the non-uniform distribution of the
magnetic field in solving the electron motion equations. The consideration of the longitudinal
velocity for each electron in the calculations of t′ according to equation (4.22) makes the
simulation very slow. Thus in order to have a fast and reliable simulation as close to reality
as possible, vq, j has been calculated as an average value taken over a number of macro-particles
at each discrete point of the geometry i.e.

t ′ = t +
{

(zn− zin)

〈uq(z)〉J=No. of macro-particles

}
Time taken to travel from the initial grid point to any particular grid point

(4.23)
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This is another modification which is included in the modified SELFT code. The impact of
the above approximation (4.23) can easily be checked by varying the average electron cyclotron
frequency Ω f with respect to the average field oscillating frequency ωk since the term t ′, present
in the exponential term required for the excitation as well as acceleration term calculations
in the modified SELFT code, is associated with the difference between these two averaged
frequencies. These frequency differences have a maximum frequency separation bandwidth
where the simulations have been found to be sufficiently good to match with the correct and
reliable results. The results obtained with the above approximation (4.23) are well within the
required excitation band and remain acceptable.
In [Ker96] the slow phase variable has been calculated by using the relation shown in equation
(2.16) where Ω f has been considered to be an arbitrary constant averaged reference frequency
which has been taken to be very close to the electron cyclotron frequency. This assumption is
valid enough when the magnetic field taper is small (≈5-6%) but for the case of large magnetic
field taper there is a violation of energy conservation. This means that in the beam-wave
interaction calculations there is significant difference between the RF efficiency as well as
the electronic efficiency values and also the simulation requires a very small z-step size for
getting a good result without any numerical overflows. As a result the computational time is
longer. In order to simulate beam-wave interaction phenomena self-consistently in the case of a
large tapered magnetic field (≈10-15%) profile it is necessary to modify the average reference
frequency so that it should vary slowly with reference to the axial coordinate of the resonator
and remains no longer a constant value. As a consequence it avoids the violation of the energy
conservation as well as numerical overflows in the simulation results. Simultaneously it can
also handle larger z-step size along with the larger taper in the magnetic field profile. In this
case the reference frequency has been considered to be varied according to the varying magnetic
field profile along the axial coordinate of the resonator and uptaper. Thus the modified version
of (2.16) can be represented by:

ψ =−Λ(t)+Ω f (z)t +ζ (4.24)

with z-dependent electron cyclotron frequency.
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The proper choice of the numerical parameters for non-stationary self-consistent multi-mode
calculations for gyrotron cavities, using the modified version of the SELFT code, like time
step size (temporal discretization), z-coordinate step size (spatial discretization) and number
of electrons distributed at the cavity entrance relative to the field phases will be discussed in
this chapter. The figure of merit in our parametric study are the resonance frequencies of
the main mode and the parasitic/spurious modes. Recent megawatt class gyrotrons required
for fusion plasma heating have reached not only to high power but also require high order
operating modes. Thus mode competition calculations for gyrotron interaction get increasingly
complex, and as a consequence, the proper choice of numerical parameters is obvious very
important for the convergence of the modified SELFT code and simultaneously also required
for proper estimation of the physical behaviour of the gyrotron interaction. Speaking for the
bandwidth of included modes, parameter changes during the calculation must be considered.
Typically, in gyrotron startup simulations the cyclotron frequency decreases with increasing
voltage. Therefore the frequency band must be expanded to ±10 GHz around the working
mode. Having determined the list of modes, it is a save choice to set the time step size to less
than half of the inverse of bandwidth. It is also necessary to have proper azimuthal discretisation
that helps to avoid artificial coupling between some modes. In this chapter a parametric study
of the modified SELFT code has been taken into account in the frame of slow variable codes
for time-dependent, self-consistent multi-mode calculations.
The electron beam has to be modelled through a number of discrete macro-particles with the
desired distribution functions over radius, velocities, entry phase and azimuthal position. In
the KIT SELFT code, for the case of a single-mode simulation, entry phase and azimuthal
position are equivalent and thus there is no need for azimuthal discretization. In the multi-mode
simulation case, the beating phase between modes destroys this equivalence. But in the modified
SELFT code it is still not necessary to do a full azimuthal discretization, since the beating phase
between each pair of modes repeats itself over the azimuth. The azimuthal discretization can be
sparse, but must not be synchronized with any mode beating phases.
In non-stationary single-mode simulations primarily three parameters are discretized namely
the z-coordinate, simulation time and the distribution of all electrons at the entry plane of the
resonator relative to the input field phase Λin (for details see [Ker96]) but for the case of a
multi-mode simulation using the SELFT code the azimuthal angle of incidence of the electrons
ϕe (see Fig. 2.1) is also discretized in consideration with the velocity dispersion of the electron
beam. In the existing SELFT code the velocity distribution function has been modelled by using
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standard deviation with three sample points but for the energy distribution of the electrons after
the beam-wave interaction in the depressed collector, it is required to consider more sample
points (e.g. seven) [Ker96].
For the discretization in the z-coordinate, in order to be sure that the oscillatory behaviour
of the RF field in the region of the output is reproduced accurately, a discretization step
width ∆z<λ0/10 is sufficient. Whatever numerical method is used to integrate the differential
equations, accuracy will be poor if ∆z<λ0/10 [Bor91]. For a further discussion of the effect of
step width in integrating the differential equations see [PTV+92] whereas the averaging over
ϕe has already been discussed in [Ker96]. In the SELFT code the averaging over ϕe has been
done with 7-10 averaging steps and this is sufficient for the proper estimation of the beam-wave
interaction as according to the experience gained with the existing SELFT code; there is no
substantial change in the simulation results with the increase in the number of averaging steps.
Due to the present modifications made in the differential equations responsible for the
beam-wave interaction calculations (see chapter 4) in the modified SELFT code, the
convergence study due to the discretizations in the simulation time as well as the number of
electrons required for the discretization of the entry phase of the field Λin is necessary. This is
important due to the presence of the synchronization between the flight time of the electrons
and the phase change of the field profile. In the SELFT code the common choice on the
number of electrons required for the discretization of the Λin is around 30 (i.e. ne ≈ 30). For
stationary multi-mode simulations, this number is not sufficient, because when the ensemble of
electrons (macro-particles) move towards increasing z values, the distribution of the electrons
over Λin cannot be well represented since most of the electrons are bunched in the period of
maximum energy radiation. Fig. 5.1 represents the phase bunching of the macro-particles as
they propagate towards increasing z-values.

Figure 5.1: Phase bunching of the particles in the plane along z-coordinate (adopted from [Ker96] for
illustration purpose).

In order to solve the problem the SELFT code adopts a possible solution to distribute the
macro-particles at regular intervals of λin so that the distribution curves over the Win−Λ plane
are again sampled uniformly [Ker96].
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Whereas on the other hand in non-stationary multi-mode simulations the above problem is
mitigated because in this case the phase of the field profile at the resonator input changes over
time, and thus the relative entry phase. A moderately poor distribution of the electrons in a
particular time step that produces primarily fluctuations in the simulated results gets averaged
out overall several time steps and as a result the simulated results are sufficiently good having
few numerical noises.
It is also required to mention that a too coarse time discretization step leads to deviations in
the field profile calculations, particularly when the excitation term (~Rk) is found to be large
enough. While on the other hand, due to the assumption of the quasi-stationary movement
of the macro-particles in the SELFT code, the particle motion is not affected by the time
discretization step and as a result the energy delivered by the bunched electrons to the RF
field profile is then calculated correctly even though there is an improper discretization in the
time. For more details see [Ker96]. The ambiguity due to the time discretization step size may
be expressed as a violation of energy conservation. which results in a significant difference
between the two calculated efficiencies (RF as well as electronic efficiencies). This difference
in efficiencies reflects that the bunched electrons are not able to deliver their energy to the RF
field properly. Thus in the KIT SELFT code the measure (or amount) of the violation of the
energy conservation is determined by how large the time step size has been chosen. Therefore
it is necessary to use an optimized value of the time discretization step size in order to estimate
the proper gyrotron beam-wave interactions. For the case of multi-mode simulations due to
the presence of beating frequencies, in the KIT SELFT code the time discretization step size is
generally not allowed to be greater than half of the beat period. The time step may be further
increased, but it must at least be small enough to describe beating frequencies between any
active modes [KAB+08]. It is required to mention that the onset of mode competition occurs
correctly when the discretization time step size is about 1/4 of the beat period between the
competing modes so that the mode eigen frequencies can be of the order of the excitation band
[Ker96, Nus04].
In the existing time-dependent self-consistent SELFT code, capable for multi-mode
simulations, the proposed modifications (see chapter 4) have been implemented in order to
investigate the influence of a non-uniform distribution of the magnetic field on the occurrence
of dynamic ACI in the uptaper section of the cavity geometry. In these modifications mainly
the terms containing dBR,z/dz have been included in the differential equations responsible for
beam-wave interaction. Due to the proposed modifications (see chapter 4), it is necessary to
perform parametric studies to investigate the effect of the numerical parameters on the gyrotron
beam-wave interaction calculations. In the present work the study is based on numerical
experiments performed using the modified version of the SELFT code in order to confirm the
convergence of the simulated results due to the modified differential equations. In this study
convergence of the parasitic frequency has been observed while changing the various above
mentioned numerical parameters. In this parametric study, the TE−28,8 mode 140 GHz W7-X
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gyrotron has been chosen as an example in order to perform investigations on the effect of
numerical parameters on the parasitic/spurious oscillations which can be suspected to be due to
the occurrence of dynamic ACI. In this calculation, the beam parameters are: Vbeam = 81.8 kV,
Ibeam = 43.2 A, α = 1.18, B0 = 5.615 T and Rbeam = 10.17 mm which are typical experimental
beam parameters where a parasitic oscillation at 130.30 GHz has been measured (see chapter 6).
This chapter has been dedicated to parametric single-mode studies with respect to the following
parameters:

• Parametric study with respect to temporal discritization.

• Parametric study with respect to spatial discritization.

• Parametric study with respect to number of electrons for azimuthal phase discritization.

5.1 Effect of temporal discritization step size on the parasitic frequency
oscillations

In this section the effect of the variations of the temporal discretization step size on the
simulated frequency of the parasitic oscillations are presented. The aim of this work is to
determine the range of ∆t in which the simulated results are found to be reasonable. In
this case time-dependent self-consistent non-stationary single-mode simulations have been
performed using the above mentioned beam parameters in the modified version of the SELFT
code. In this calculations the step size for the spatial discretization as well as the number of
macro-particles required for the initial azimuthal phase discretization are considered to be 0.1
mm and 30 respectively. The RF spectrum of the simulation results, considering different time
discrietization step sizes is plotted in Fig. 5.2. One can observe that the solutions, obtained with
the modified version of the SELFT code, converge to the experimentally obtained frequency of
130.30 GHz as the value of ∆t reduces. The zoomed picture of the encircled region of Fig. 5.2a
is plotted for clear visualization purpose in Fig. 5.2b.
Also Fig. 5.3 shows that by decreasing the time discretization step ∆t the solution converges
to a parasitic frequency (130.4 GHz) which is found to be very close to the experimentally
obtained value (i.e. ≈130.30 GHz). This convergence shows that the implementation of the
proposed modifications in the actual time dependent differential equations (see details in chapter
4) for the estimation of dynamic ACI phenomena is found to be correct with respect to the time
discretization step size . Thus for fast and reliable simulations, the time discretization step size
∆t has been taken to be 0.01ns in all the further simulations reported in this thesis performed by
the modified version of the SELFT code (for simulation results see chapter 6). In this case the
theoretical calculated parasitic frequency is 130.8 GHz.
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Figure 5.2: (a) Study of convergence with respect to the time discretization step size (∆t), (b) zoomed
picture of the encircled portion of (a) where the variation of the parasitic frequencies
according to the change in is shown explicitly for clear visualization.
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Figure 5.3: Graphical representation of the convergence of the solution with the decreasing time
discretization step size (∆t).

5.2 Effect of spatial discretization step size on the parasitic frequency
oscillation

In this section investigations on the effect of the variations of the spatial discretization step size
on the modified differential equations implemented in the modified version of the SELFT code
required for time-dependent self-consistent multi-mode simulations are presented. In this study
again the figure of merit is the simulated frequency of the parasitic oscillation.The temporal
discretization step size ∆t and the number of macro-particles required for the initial phase
discretization are considered to be 0.01 ns and 30 respectively. Non-stationary single-mode
simulations are performed using the above mentioned beam parameters in the modified version
of the SELFT code with different spatial discretization sizes.
The simulated RF spectrum plot obtained with different space discritization step sizes is
presented in Fig. 5.4. The zoomed picture of the encircled portion of Fig. 5.4a is also
presented for the clear visualization in Fig. 5.4b in which one can observe that there are two
sets of parasitic oscillations having different frequency range. Each set of parasitic frequency
belongs to different values of ∆z. This sudden jump in the parasitic frequencies to a lower
frequency value (see Fig. 5.4) is attributed to the fact that it is due to the long-line effect
[BJ90]. This phenomenon can be addressed by using Rieke diagrams - a diagram that gives
real and imaginary part of the reflection coefficient along the contour of the constant output
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Figure 5.4: (a) Study of convergence with respect to the space discretization step size (∆z), (b) zoomed
picture of the encircled portion of (a) where the variation of the parasitic frequencies
according to the change in are shown explicitly for clear visualization.
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power and/or frequency [Bor01]. The Rieke diagram provides a quick method for determining
whether or not a solution exists for the parameters and reflection coefficient of interest, and to
determine approximately the value of the frequency to which the specific solution corresponds.
The phase of the electric field in the cavity is generally affected by the long-line effect and is
poorly known since it is difficult to measure [BJ90]. In this condition the phase of the reflection
coefficient at the tapered output of the cavity plays an important role. The effect of reflections
on gyrotron operation depends not only on their magnitude but also their phases. The change
in phase is determined by the changing distance of the resonator output section over a certain
distance corresponding to a phase shift of 0 to 2π . The influence of the phase change of the
reflection coefficient on the calculated parasitic frequency has been depicted in the graphical
representation of the parasitic frequencies along with the ∆z variations where the frequency
jumps suddenly after a certain value of ∆z (see Fig. 5.5). In the KIT SELFT code, the reflection
coefficient is calculated according to equation (4.8) where ∆z has a direct influence on the phase
of the reflection coefficient which in turn has an influence on the long-line effect. From Fig.
5.5 it is also clear that the solutions, obtained with the modified version of the SELFT code,
converge close to 130.8 GHz (see section 5.2) and tend to stabilize as long as the value of lies
within the range 0.05-0.12 mm. On the other hand, the solutions jump to higher frequency
values as soon as lies between 0.13-0.19 mm range due to the long-line effect.
From equation (4.8) it can be seen that the change in ∆z has a direct influence on the numerical
calculations of the output reflection coefficient (both in magnitude and phase). Due to the
change in ∆z values, the numerical value of the reflection coefficient shifts to another contour
of constant frequency, which corresponds to a higher frequency, in the Rieke diagram plot and
this reflected in Fig. 5.5. However from Fig. 5.5, it is clear that due to the presence of stable
solutions, having less divergences, in terms of the parasitic oscillation frequencies in a particular
range of ∆z shows that the proposed modifications in the time-dependent differential equations
(see details in chapter 4) for the estimation of dynamic ACI are validated against the space
discretization step ∆z. For fast and reliable simulations, the space discretization step size ∆z has
been considered to be 0.10 mm in all the further simulations performed by using the modified
version of the SELFT code which are reported in this thesis (for simulation results see chapter
6).

5.3 Effect of number of electrons required for azimuthal phase discretization on
the parasitic frequency oscillations

In this section the effect of the number of electrons required for the azimuthal discretization of
the electron beam which, in the existing SELFT code, appears as an azimuthal phase averaging
among modes, has been validated against the modifications made in the required differential
equations. In this validation work the convergence of the parasitic oscillating frequency has
been taken into consideration. Single-mode non-stationary self-consistent simulations, using
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Figure 5.5: Graphical representation of the convergence of the solution with decreasing space
discretization step size (∆z). The plot represents two different set of parasitic frequencies
(shown by different colours) at the two different set of values.

the above mentioned beam parameters, are performed in order to investigate the convergence of
the solution due to the modified differential equations in terms of parasitic oscillating frequency.
RF spectra of the simulated results for different values of number of electrons are plotted in Fig.
5.6. In this study the temporal step ∆t and the spatial discretization step size ∆z are considered to
be 0.01 ns and 0.10 mm respectively in the modified version of the SELFT code. An expanded
view of the encircled portion of Fig. 5.6a is presented in Fig. 5.6b in order to have a clear
visualization of the variation of the parasitic frequency over the number of electron required for
the initial azimuthal phase discretization.
From the above zoomed picture (see Fig. 5.6b) one can observe that the parasitic oscillation
frequency converges close to 130.8 GHz (see section 5.2). This is the case when the
number of considered macro-particles in the modified SELFT code is greater than 30. The
parasitic oscillating frequencies are also plotted graphically against the different number of
macro-particles required for the initial azimuthal phase discretization and are shown in Fig.
5.7. From Fig. 5.7 it also can be seen that the solutions, in terms of the parasitic frequencies,
converge to 130.8 GHz (see section 5.2) and remain stable. It also shows that there is no
effect on the simulated results as long as the number of macro-particles is greater than or equal
to 30. Thus the above numerical experiment confirms that the proposed modifications in the
time dependent differential equations (see details in chapter 4) of the modified version of the
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phase discretization.(b) zoomed picture of the encircled portion of (a) where variation in the
parasitic frequencies according to the change in the number of electrons are shown explicitly
for clear visualization.

74



5.3 Effect of number of electrons required for azimuthal phase discretization on......

SELFT code in order to estimate dynamic ACI phenomena are validated against the number
of macro-particles required for the initial azimuthal phase discretization. For fast and reliable
simulations, the number of macro-particles have been considered to be 30 in all the further
simulations performed using the modified version of the SELFT code in order to investigate
dynamic ACI in the presence of a non-uniform distribution of the magnetic field (for simulation
results see chapter 6). While correct temporal discretization as well as spatial discretization

Figure 5.7: Graphical representation of the convergence of the modified version of the SELFT simulated
results with the increasing number of macro-particles required for the azimuthal phase
discretization.

step sizes are crucial for obtaining reliable simulation results, as discussed above, the number of
macro-particles is critical when stationary self-consistent simulations are required [DN92] but
turns out to be less sensitive in time dependent non-stationary simulations. On the other hand
it depends on the number of modes considered in the multi-mode simulations. The bunching
process, which collects macro-particles in a small range of the slow variables phase, is highly
desired but leaves only a few macro-particles in a broad region of phase. Macro-particles
remaining in such rarified ranges are not representative any more but can have a strong influence
depending on their starting positions. In the case of non-stationary simulations the above effects
are balanced by the fact that, over time, the influence of such particles is averaged out while for
the case of stationary simulations even 300 macro-particles may be not enough for reliable
simulation results [KAB+08].
It is required to mention that in the modified SELFT code, the simulation model accounts for
the azimuthal structure of each mode TE−m,p analytically but for the multi-mode calculations
the phase difference between two modes of different m changes over the azimuthal angle ϕ

(see Fig. 2.1). Since these beating phases repeat over ϕ , the KIT SELFT code uses only a few
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discretization steps nϕ to cover a representative sample of phase differences but not to fully
describe the mode structure over ϕ . In the KIT SELFT code when two modes with azimuthal
indices m1 6= m2 fulfil the condition (m1−m2)/nϕ = integer, an equidistant azimuthal steps
(equal to nϕ ) will calculate identical azimuthal phase differences [Ker96]. Generally for reliable
simulations using the KIT SELFT code, nϕ can be set to the next higher prime number above
2mmax but less than the 10mmax [KAB+08] (mmax stands for the maximum azimuthal mode
index present in the multi-mode simulations).
A perfect reproduction of the experimental result may not be expected, taking into account
realistic tolerances on the one hand, and remaining numerical uncertainties on the other hand.
So we got ≈130.8 GHz instead of the experimentally observed 130.3 GHz (see section 5.2).

5.4 Validation of equation of motion solved by PC method against the
piecewise linerization method

In order to validate the influence of the inclusion of the term containing the non-uniform
distribution of the magnetic field in the electron momentum and axial velocity differential
equations (see detail in chapter 4), a second order predictor and corrector method (PC method)
has been used to solve the above mentioned differential equations. In this section the results
obtained by using the PC method have been compared with the results obtained by an analytical
calculation approach i.e. by a piecewise linearized approximated solution.
For the sake of simplicity, the acceleration term ~a (see equation 2.29a) in the electron
momentum equation has been set to zero. This is because at the starting point in the simulation
domain (resonator cavity) the initial RF field has no influence on the electron motion. If the
vector ~p is represented in the complex plane, equation (2.29a) without acceleration term ~a can
be separated into real (PR) as well as imaginary part (PI) and recasted in the form which is
described below.
Let us define

A =
cuq
γ

; B =

{
cuq
γ
· 1

2BR,z

dBR,z

dz

}
; Ω

∗ =
(
Ω f −Ω0/γ

)
Equation (2.29a) without acceleration term~a can be written as:

P′R + jP′I =
{

B
A
− Ω∗

A

}
(PR + jPI)

Separating real and imaginary part we get:

P′R =
B
A

PR +
Ω∗

A
PI

P′I =
B
A

PI−
Ω∗

A
PR

(5.1)
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where P′R, P′I are the spatial derivatives of the real and imaginary part of the vector ~p

respectively. In solving equation (5.1), the uq values have been obtained by solving equation
(2.29b). Each separate part of equation (5.1) has been solved separately by using the PC
method and the results (|p| =

√
p2

R + p2
I ) are plotted with respect to the axial coordinate in

Fig. 5.8. Similarly equation (2.29b) has been solved using a PC numerical method in which
the values of u⊥ have been obtained from equation (2.29a) (without accelerating term) and the
results are plotted in Fig. 5.8 along with the axial coordinate.

Another way to see the equation (2.29a) (without accelerating term) in terms of the first
order homogeneous differential equation which involves only the first derivative of a function
and the function itself, with constant only as a multiplier and is given by:

~p′+~A~P = 0 (5.2)

where ~A is a complex quantity, function of uq,γ,Ω f ,Ω0 and BR,z, is defined by

~A =

[
j
(
Ω f −Ω0/γ

)
−
(

cuq
γ
· 1

2BR,z

dBR,z
dz

)]
cuq/γ

A formal solution of equation (5.2) can be written as:

~pn+1 = ~pne−~A∆z (5.3)

where ~A is any suitable approximation of A(z). Similarly a piecewise linearized solution for
equation (2.29b) can be obtained simply intregating equation (2.29b) from zn to zn+1 and can
be written as: :

un+1
q =

√
(un+1

q )2−~u2
⊥B∗∆z (5.4)

where~u⊥ and B∗ are the suitable approximation of u⊥(z) and 1
BR,z

dBR,z
dz respectively.

Fig. 5.8 shows the solutions for the homogeneous electron momentum equation as well
as electron axial velocity equation by using the two methods mentioned above. One can
see that there is very good agreement between numerically obtained results and the results
calculated using the piecewise linerized approach. This confirms that the PC method can be
used to solve the above differential equations in the modified SELFT code.
The above numerical experiment confirms that the inclusion of the term containing the
non-uniform distribution of the magnetic field in the electron motion equations, both in axial
as well as transverse direction, can be implemented in the actual time-dependent differential
equations responsible for gyrotron beam-wave interaction. It also confirms that the second
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Figure 5.8: Solution of the electron momentum and axial velocity equations using a second order PC
method and a piecewise linearized method (analytical approach).

order numerical scheme i.e. Predictor-Corrector method is one of the most suitable numerical
methods to solve numerically the actual differential equations of the electron motion. In the
modified version of the SELFT code, the Predictor-Corrector method has been implemented
(see detail in chapter 4).
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In this chapter a dynamic ACI study with the modified version of the SELFT code is presented
using four different gyrotron configurations (two conventional cavity gyrotrons and two coaxial
gyrotrons). Furthermore in order to verify the implementation of the term containing dBR,z/dz

in the differential equations, which are responsible for the beam-wave interaction calculations,
the simulated results for the case of the 140 GHz, TE−28,8 mode gyrotron developed for the
W7-X Stellarator have been compared with the available experimental results with respect to
the parasitic/spurious oscillations present in the uptaper section of the resonator. In this study
the non-uniform distribution of the magnetic field has been taken into account in contrast to the
results described in chapter 3 where constant magnetic field has been used in the differential
equations for beam-wave interaction calculations [Ker96]. This chapter has been dedicated to
numerical simulations for the following four example gyrotron configurations with the intension
to investigate the presence of dynamic ACI in the output section of the gyrotron resonator:

• 140 GHz TE−28,8 mode 1 MW conventional cavity gyrotron.

• 170 GHz TE−32,9 mode 1 MW conventional cavity gyrotron.

• 170 GHz TE−34,19 mode 2 MW coaxial cavity gyrotron.

• 240 GHz TE−55,29 mode 2 MW coaxial cavity gyrotron.

In these numerical simulations, with high electron beam coupling and within a bandwidth of
±10 GHz around the oscillating frequency of the main operating mode in the cavity have been
taken into account. The coupling limit was chosen to be 70% of the operating mode, since
modes operating in gyrotron cavities tend to suppress other modes with even only slightly
less coupling. The mode selection has been determined using the program called "SCNCHI"
[Ker96].
The simulated results presented in this chapter may be viewed as a validation of all the proposed
modifications implemented in the SELFT code for the investigation of dynamic ACI phenomena
in the uptaper section of gyrotron resonators.

6.1 140 GHz 1 MW TE−28,8 mode conventional cavity gyrotron

In this section the investigation of dynamic ACI in the uptaper section of the resonator of the
140 GHz W7-X gyrotron developed for the W7-X Stellarator is described. In these calculations,
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the beam parameters are: Vbeam = 81.0 kV, Ibeam = 39.0 A, α = 1.13, B0 = 5.59 T and Rbeam =

10.10 mm. These are parameters for which calculations with a constant magnetic field show
no relevant ACI. Multi-mode calculations have been performed, up to 2400 ns simulation time,
under the consideration of all the proposed modifications, described in chapter 4, implemented
in the modified version of the KIT SELFT code which includes the influence of the non-uniform
distribution of the magnetic field profile.
In this particular case, initially with the magnetic field profile obtained from the external code
ESRAY existing at KIT [Ill97], it has been found that the dBR,z/dz profile, required for the
beam-wave interaction calculations, calculated with a second order central difference scheme,
as described in equation (4.16), showed numerical oscillations which may affect the SELFT
calculations (see Fig. 6.1). In order to tackle this problem, BR,z was first best fitted with a fifth
order polynomial curve and then the first derivative was analytically calculated. Equations for
the normalized (with respect to the maximum value) BR,z and dBR,z/dz are shown below:

BR,z = 4.851e−17z5−1.883e−13z4 +1.904e−10z3−1.92e−07z2 +2.493e−05z+9.981e−01

(6.1)

dBR,z/dz = 24.255z4−7.532z3 +5.712z2−2.184z+2.493

where z is the axial coordinate. Equation (6.1) is obtained by using polynomial least-squares
fitting technique [PTV+92]. This corresponds to the magnetic field profile labelled as BR,1(z).
A steeper magnetic field profile namely BR,1(z) has been proposed for comparison reasons.
Both profiles are shown in Fig. 6.2. Some technical references [SN09, SNA10] indicate that
the modification in the axial distribution of the magnetic field profile can result in a reduction of
dynamic ACI effects and this should be verified by performing advanced simulations using the
modified version of the SELFT code with multi-mode simulations applying the two different
axial magnetic filed profiles BR,1(z) and BR,2(z).
In order to estimate the impact of the term dBR,z/dz in the discretized differential equations
described in chapter 4 in terms of dynamic ACI phenomena, numerical experiments have
been performed using the two different versions of the SELFT code i.e. SELFT with uniform
magnetic field and the modified SELFT with non-uniform magnetic field. Comparison of the
electric field profiles are shown in the following figures Fig. 6.3 and Fig. 6.4 respectively.
The electric field profiles obtained in the case when the magnetic field has been considered as
constant with a value which corresponds to the maximum value of the BR,1(z) magnetic field
(BR,1(z) = 5.59T) profile (shown by solid line) and also when considered as a non-uniform
distribution of the BR,1(z) magnetic field profile (shown by line + symbol) are presented in Fig.
6.3. Here only those modes are shown which are relevant for our comparisons. This means that
only those modes are shown in the respective plots which are well above the noise level. These
electric field profiles which are recorded at simulation time 2400 ns show that considering a
non-uniform magnetic field profile, in addition to the operating mode TE−28,8, an undesired
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Figure 6.1: Magnetic field BR,1(z) and its derivative along the z axis.
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Figure 6.2: Two magnetic field profiles along the z axis.
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parasitic mode TE−26,8 has also been oscillating in the cavity uptaper region, with a significant
power level of ≈7.8 kW while, on the contrary, this does not happen if BR,1(z) is constant. This
undesired oscillation can be addressed to the fact that the magnetic field towards the geometry
output is significantly different from the magnetic field value at the mid of the cavity and can
be considered as the dynamic ACI effect because interaction after the cavity leads to a dynamic
amplitude modulation with TE−26,8 at lower frequency. One can also observe from Fig. 6.3
that, in both the cases, the field profiles for the desired operating mode are found to be almost
identical. Similarly self-consistent multi-mode simulations are also performed using a uniform
value of the BR,2(z) magnetic field profile which corresponds to it’s maximum value as well as
using a non-uniform BR,2(z) magnetic field profile. The results are shown in Fig. 6.4 and they
reveal that due to the steeper magnetic field profile BR,2(z), the impact of the undesired parasitic
mode TE−26,8 as an dynamic ACI effect is significantly reduced.
Fig. 6.5 summarizes the results shown in Fig. 6.3 and Fig. 6.4: a steeper magnetic field
profile can suppress the parasitic mode TE−26,8. However, apparently from Fig. 6.5 one can
also observe that the TE−28,9 mode appears as a parasitic mode, contributing as a dynamic
ACI phenomenon due to amplitude modulation with a lower frequency at the cavity uptaper
section. This can be more evident in the RF spectrum plot (see Fig. 6.9). The reason behind the
appearance of this unwanted parasitic mode TE−28,9 has been predicted due to the significant
change in the beam-wave coupling factor [Ker96, KBT04] due to the large variation in the
BR,2(z) magnetic field profile.
Gyrotron interaction efficiency and RF efficiency have also been calculated for the cases when
BR,z1(z) is constant as well as non-uniform magnetic field distribution in order to determine
the dynamical behaviour of the gyrotron under the considerations of all the above proposed
modifications made in the SELFT code. Dynamics of the gyrotron i.e. change in energy stored
in the cavity with respect to time, can be determined with the energy balance equation [KBT04]:

dW
dt

= η(t)V (t)I(t)− ωW
Q

(6.2)

where W is the energy stored in the cavity, Q is the quality factor, η(t) is the total efficiency as
a function of time, V (t) is the beam voltage as a function of time and I(t) is the beam current as
a function of time. From Fig. 6.6 it can be seen that due to this varying magnetic field profile
there are some differences in the efficiencies during the transient start-up phase but both cases
reach the same efficiency value (≈19%) in the steady state phase. This low value of efficiency is
due to the specific operation parameters used for the present study. The efficiency plot Fig. 6.6
also describes the presence of energy conservation in both cases. This is because due to having
a small difference (≈1%) between RF efficiency as well as interaction efficiency for each case
in the steady state phase i.e. after ≈1200 ns.
The RF spectrum plot, corresponding to the simulated electric field profiles (see Fig. 6.3),
calculated using BR,1(z) equal to the constant value as well as using BR,1(z) equal to the
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Figure 6.3: Comparison between electric field profiles obtained in multi-mode calculation with BR,1(z) =
uniform as well as with BR,1(z) = non-uniform.

non-uniform distribution of the magnetic field profile in the modified version of the SELFT
code is presented in Fig. 6.7. The RF spectrum has been recorded at the axial coordinate z =

100.0 mm and at the simulation time 2274 ns for W7-X 140 GHz gyrotron where only those
modes are shown which are relevant for our comparisons.
In Fig. 6.7 the dashed line indicates the RF spectrum of the electric field profile calculated with
the non-uniform magnetic field profile BR,1(z) while the solid line indicates the RF spectrum of
the electric field profile calculated with the uniform magnetic field profile BR,1(z). By taking
the zoom picture of the encircled region, shown in Fig. 6.7a, one can see that in addition to
the desired cavity operating mode at ≈140 GHz, another parasitic modes is also oscillating
at ≈130.21 GHz (TE−26,8 mode) which is due to the dynamic ACI phenomenon. This has
been due to the consideration of the non-uniform distribution of the magnetic field profile
BR,1(z) in the differential equations (2.8 and 2.29). On the other hand, SELFT calculations
with uniform magnetic field BR,1(z) throughout the simulation domain show that beside the
desired operating mode other parasitic oscillating modes do not have any significant effect (no
dynamic ACI). These calculations clearly confirm that the presence of dynamic ACI phenomena
in the uptaper region of the gyrotron cavity can be depicted if the non-uniform distribution of the
magnetic field profile is explicitly considered in the differential equations used for the gyrotron
beam-wave interaction calculations. Similarly the RF spectrum of the electric field profiles (see
Fig. 6.5), recorded at z= 99.90 mm and at 2274 ns simulation time have been plotted in Fig. 6.9
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Figure 6.4: Comparison between electric field profiles obtained in multi-mode calculation with BR,2(z) =
uniform as well as with BR,2(z) = non-uniform.
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Figure 6.5: Comparison between electric field profiles obtained in multi-mode calculation using the
modified SELFT code with non-uniform BR,1(z) and BR,2(z) magnetic fields profiles.
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Figure 6.6: Efficiency plot for unmodified and modified SELFT code with BR,1(z) magnetic field.

in order to depict the influence of the steeper magnetic field profile BR,2(z) with respect to the
reduction of dynamic ACI. From Fig. 6.8, it can be seen that the undesired parasitic mode
(TE−26,8 mode at ≈130.21 GHz) appears clearly in the spectrum plot for the non-uniform
distribution of the BR,1(z) magnetic field profile. The corresponding zoomed figure of the
encircled region of Fig. 6.8 has also been plotted in order to have a clear visualization of the
appearance of the parasitic mode TE−26,8. On the other hand calculations with the non-uniform
distribution BR,2(z) of the magnetic field profile shows that the same parasitic mode i.e. TE−26,8

has less influence on dynamic ACI (see Fig. 6.9) but by taking the zoom picture of the encircled
region, shown in Fig. 6.9, one can observe that also another parasitic mode TE−28,9 is oscillating
at ≈132.78 GHz due to dynamic ACI. This fact can also been observed in the field profile plot
shown in Fig. 6.5. This comparison of ACI for different magnetic field profiles shows that in the
design of high-power gyrotron cavities always both the geometry of the uptaper waveguide and
the distribution of the magnetic field must be included in order to minimize the ACI. SELFT
code calculations shows that the achievable output power in the main operating mode is ≈800
kW using above mentioned beam parameters. The parasitic modes have an impact as dynamic
ACI within 1% of the power in the main mode (≈7.8 kW).
For the purpose of analyzing the effect of variation of two different magnetic fields with respect
to the output power delivered by the main mode TE−28,8 as well as by the parasitic TE modes
TE−26,8 and TE−28,9, a comparison has been plotted in Fig. 6.10. Here again only those modes
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Figure 6.7: (a) RF spectrum of the modes at the geometry output corresponding to Fig. 6.3 (b) Zoomed
picture of the encircled portion of (a).
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BR,1(z) magnetic field profile. The corresponding zoomed picture of the encircled region is
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Figure 6.10: Comparison of output power over time after switching on nominal operation parameters
for main and parasitic mode using two different magnetic field profiles BR,1(z) & BR,2(z).
Zoomed figure of the output power over time, plotted in linear scale, to visualize the power
difference in the main modes.

are shown which are useful for comparison because all other modes have output powers close
to ≈0.01 kW. A power comparison table between main mode and parasitic mode due to two
different magnetic field profiles is also shown in Fig. 6.10. In these calculations, the beam
parameters are: Vbeam = 81.8 kV, Ibeam = 43.2 A,α = 1.18, B0 = 5.615 T and Rbeam = 10.17
mm. From the zoomed plot of the encircled portion as shown in Fig. 6.10 it can be observed
that, for the BR,2(z) magnetic profile, the output power of the main mode has been reduced
to ≈875 kW in comparison to the output power delivered by the main mode considering the
BR,1(z) magnetic profile field (≈930 kW). Similarly it can also be observed, from the main plot
shown in Fig. 6.10, that the output power of the parasitic mode TE−28,9 due to the BR,2(z)

magnetic field profile has a significant power level as compared to the parasitic mode TE−26,8

due to the BR,1(z) magnetic field profile. As expected, the electron efficiency is also affected as
shown in Fig. 6.11 being reduced as highlighted in the zoomed figure of the encircled portion
of the Fig. 6.11. Just passing-by, we also note the difference in the transients generated by these
two magnetic field configurations.
A possible interpretation of the above observations is: Due to the fact that the parasitic mode
TE−28,9 has the same azimuthal index as the main mode TE−28,8, the coupling is strong enough
to share energy from the electron beam.
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Figure 6.11: Comparison of the efficiency of energy exchange calculated with BR,1(z) & BR,2(z) magnetic
field profiles with the same operational parameters as for Fig. 6.10.

All the above calculation are carried out for a particular numerical parameter setting like spatial
discretization (0.1 mm), time discretization (0.01 ns), azimuthal discretization (29 phases) etc
and also for a particular operating parameters like beam voltage, beam current, beam radius,
maximum magnetic field etc. This parametric study with the modified SELFT code has been
carried out in order to depict the effect of variations of the other various parameters (numerical
as well as physical) on the beam-wave interaction calculations and has been described in chapter
5.

6.1.1 Comparison between the simulated and the experimental results

Using the modified version of the SELFT code with the non-uniform distribution of the
magnetic field profile BR,1(z) in the gyrotron interaction calculations as well as with ∆t = 0.01
ns (integration time step), attempts were made to reproduce the measured parasitic spectra
[SCG+11] for the following operating point: Vbeam = 81.8 kV, Ibeam = 43.2 A, α = 1.18,
B0 = 5.615 T and Rbeam = 10.17 mm. In this case 44 TE modes (both co-rotating and
counter-rotating) are considered in the simulation. Fig. 6.12 shows the simulated electric field
profile, observed at 2300 ns simulation time, of different modes which are relevant for our
comparison study. The electric field strength of the other competing modes has been observed
significantly lower than the strength of the main operating mode electric field profile and hence
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6.1 140 GHz 1 MW TE−28,8 mode conventional cavity gyrotron

may be considered at the noise level. Cavity and uptaper geometry profile along with magnetic
field profile for the W7-X 140 GHz gyrotron series SN4R, considered in this study, is shown
in Fig. 6.2. The very week oscillating pattern in the electric field profile of the main mode
observed in the uptaper region reflects a beating process between two waves of the same mode
at different frequencies (see Fig. 6.12). In addition to the main mode oscillation (≈140.2
GHz), some other parasitic modes (TE−28,7, TE−28,9, TE−26,8, TE−28,9 and TE−24,9) with less
electric field strength are also observed in the uptaper section of the geometry (see Fig. 6.12).
This indicates the power exchange between RF travelling waves and the spent electron beam in
the uptaper section of the geometry. As a result dynamic ACI phenomena are observed. The
RF spectrum (see Fig. 6.13), recorded at z = 77.0 mm and simulation time 2300 ns, reveals
that, in addition to the main operating cavity frequency, some other parasitic frequencies were
also observed which were compared with the measured experimental values. These parasitic
frequencies ≈136.05 GHz, ≈133.81 GHz, ≈129.66 GHz and ≈126.45 GHz correspond to the
TE−28,7, TE−28,9, TE−26,8, TE−28,9 and TE−24,9 modes respectively, shown in the RF spectrum
plot, are compared with the experimentally measured values (see Fig. 6.13). Simulations using
only 20 neighbour modes of the operating cavity mode gave the same result so that in the
following studies 20 TE modes have been considered in the calculations.
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Figure 6.12: Simulated multi-mode electric field profiles obtained using the modified version of the
SELFT code for the W7-X Series SN4R gyrotron. Electric field profile is also plotted in
a linear scale to visualize the very week oscillating behavior in the main operating mode.

91



6 Dynamic ACI study with the modified SELFT code

90 100 110 120 130 140 150 160 170 180 190
101

102

103

104

105

106

107

108

fparasitic(Simulated//Measured)
    129.66 GHz/130.30 GHz

fparasitic(Simulated//Measured)
    136.05 GHz/-------

fparasitic(Simulated//Measured)
    126.45 GHz/----

fcavity(Simulated//Measured)
    140.20 GHz/140.09 GHzfparasitic(Simulated//Measured)

    133.81 GHz/132.46 GHz
Am

pl
itu

de
 S

pe
ct

ru
m

 a
t O

ut
pu

t [
a.

u]

Frequency [GHz]

Mainmode TE-28,8 at 2300 ns  
                                   TE-28,7  
                                   TE-28,9   
                                   TE-26,8   
                                   TE-28,9   
                                   TE-24,8  

Figure 6.13: RF spectrum at the geometry output for W7-X Series SN4R comparing simulated as well as
measured parasitic frequencies.

From Fig. 6.13 it is also observed that the spectrum amplitudes of the parasitic modes are
significantly lower than the spectrum amplitude of the main operating mode. These results are
very promising and have an excellent agreement between the simulated as well as experimental
results [SCG+11]. This confirms that the inclusion of the effect of the non-uniform distribution
of the magnetic field in the beam-wave interaction calculations is necessary to describe the
dynamic ACI in the uptaper section of gyrotron resonators. According to the modified SELFT
simulation result, the achievable output power in the main operating mode measured at the
resonator output as well electronic efficiency are ≈930 kW and ≈32% respectively with ≈2
kW (≈0.2%) power being propagating in the parasitic TE−26,8 mode (see Fig. 6.10).
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6.2 170 GHz 1 MW TE−32,9 mode conventional cavity gyrotron

In this section multi-mode self-consistent simulations for the EU 170 GHz 1 MW TE−32,9 mode
conventional cavity gyrotron for ITER are presented. In these calculations the modified version
of the SELFT code, which includes the non-uniform distribution of the magnetic field profile,
has been utilized in order to investigate the presence of spurious/parasitic oscillations in the
output section of the gyrotron resonator which may be attributed to dynamic ACI phenomena.
In this work the optimized conventional cavity geometry as well as the magnetic field profile
has been used as input. Fig. 6.14 shows the cavity profile along with the non-linear uptaper
section and magnetic field profile which are taken into account into this study.
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Figure 6.14: Optimized conventional cavity geometry including nonlinear uptaper as well as magnetic
field profile for the 170 GHz TE−32,9 mode gyrotron.

In order to study possible ACI in the uptaper region the self-consistent multi-mode calculations
are performed using the beam parameters Vbeam = 79.5 kV, Ibeam = 40.0 A, α = 1.30, B0 =

6.785 T and Rbeam = 9.44 mm. Multi-mode electric field profiles, which are obtained by
including up to 20 competing TE modes, calculated up to 3000 ns simulation time using the
non-uniform distribution of the magnetic field profile are shown in Fig. 6.15. Here again only
those modes are considered which are relevant for our study because all other modes appear
with very low magnitudes closer to the noise level, as compared to the considered modes. These
electric field profiles are taken at 2500 ns simulation time when the dynamic ACI effect is most
evident.
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Figure 6.15: Multi-mode electric field profiles obtained using the modified version of the SELFT code
with a varying magnetic field profile.
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Figure 6.16: RF spectrum of the relevant modes at the geometry output corresponding to Fig. 6.15.
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6.3 170 GHz 2 MW TE−34,19 mode coaxial cavity gyrotron

The simulated electric field profiles, shown in Fig. 6.15, depict that, in addition to the required
operating mode TE−32,9, the parasitic modes TE−29,9 and TE−35,9 also oscillating in the cavity
and output geometry while on the contrary, this does not happen if we consider a uniform
magnetic field profile.
In order to make a clear confirmation of the appearance of the above parasitic modes in the
uptaper section of the geometry, the RF spectrum of the simulated electric field profiles is
shown in Fig. 6.16, observed at 2500 ns simulation time and at the axial coordinate z = 99.0
mm. From Fig. 6.16 one can confirm that in addition to the desired oscillating mode TE−32,9,
oscillating at ≈170.03 GHz, also the parasitic modes TE−29,9 and TE−35,9 appear at ≈160.85
GHz and ≈179.41 GHz, respectively. The RF spectrum plot also shows the appearance of the
low amplitude parasitic mode TE−32,9 oscillating at ≈164.17 GHz which leads to the presence
of a beating process with the main operating mode. This fact is also reflected by a weak
modulating feature in the electric field profile of the main mode (see Fig. 6.15). Thus according
to the simulation results minor dynamic ACI phenomena have been observed in the 170 GHz
TE−32,9 1 MW gyrotron while experimental results are still to be performed in order to have
benchmarking of the above simulated results.
Finally it is required to mention that with the modified version of the SELFT code the achievable
output power for the parameter set utilized here is calculated to be ≈1.02 MW in the selected
operating mode TE−32,9. Parasitic modes have an impact within approximately 0.6% of the
main operating mode power. The efficiency calculated by multi-mode simulations drops in
comparison to single-mode simulations from 38% to 35%, because the upper region of the
stability area (accelerating voltage over magnetic field plane) can not be reached.

6.3 170 GHz 2 MW TE−34,19 mode coaxial cavity gyrotron

In this section multi-mode self-consistent calculations using the modified version of the SELFT
code are described with respect to investigate the existence of dynamic ACI in the output
section of the 170 GHz 2 MW TE−34.19 mode coaxial cavity gyrotron resonator. In these
calculations, the beam parameters are: Vbeam = 89.0 kV, Ibeam = 78.0 A, α = 1.20, B0 = 6.82
T and Rbeam = 10.2 mm. These beam parameters are chosen based on the experimental values.
The coaxial cavity geometry as well as the magnetic field profile considered in this simulation
study are shown in Fig. 6.17. Initially the gyrotron cavity was optimized and designed by
IHM/KIT under the assumption of a constant magnetic field in the unmodified SELFT code.
In order to investigate ACI phenomena, a multi-mode simulation up to 2400 ns simulation
time was performed including all the proposed modifications implemented in the modified KIT
SELFT code. Multi-mode electric field profiles considering up to 20 competing TE modes
calculated using the non-uniform distribution of the magnetic field are shown in Fig. 6.18.
Here only the relevant modes are shown; all other modes have very low magnitudes, closer to
the noise level, as compared to the TE modes shown in Fig. 6.18.
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Figure 6.17: Optimized coaxial cavity geometry including nonlinear uptaper as well as magnetic field
profile for the 170 GHz TE−34,19 mode gyrotron.

The calculated electric field profiles shown in Fig. 6.18 depict that practically no other modes
than the required operating mode TE−34,19 are oscillating as spurious/parasitic modes in the
cavity uptaper section with a significant power level. With a more closer look one can observe
that the TE+31,20 mode is also oscillating in the uptaper section but having a very low magnitude
of the electric field. The relative output power in the TE+31,20 mode only is 0.12%. As a result,
this mode cannot be considered to have a significant effect as dynamic ACI phenomenon.
While on the contrary, this does not happen if we consider a uniform magnetic field profile
in the beam-wave interaction calculations. This reveals that the weak appearance of the
TE+31,20 mode is due to the consideration of the non-uniform magnetic field profile. These
theoretical results were also been confirmed experimentally by measurements at IHM/KIT.
No spurious/parasitic oscillations with a significant impact which may be due to dynamic
ACI [PDD+04, PDD+05] were observed. This confirms that the simulated results with the
modified version of the SELFT code, presented in this section, have a good agreement with the
experimental results. In order to have a more closer look about the presence of any oscillating
mode behaving as a dynamic ACI in the uptaper section of the geometry, the RF spectrum of
the simulated electric field profiles (see Fig. 6.18) using the non-uniform distribution of the
magnetic field profile in the modified version of the SELFT code is presented in Fig. 6.19. The
RF spectrum plot is recorded at z = 100.0 mm as well as at 1875 ns simulation time. In this
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Figure 6.18: Multi-mode electric field profiles obtained using the modified SELFT code with a
non-uniform magnetic field profile.

case again only those modes are shown which are relevant for our study. From this RF spectrum
plot it can also be seen that no other modes than the required cavity mode, oscillating at 170
GHz, appear as spurious/parasitic modes with significant amplitude level so that they can be
attributed to dynamic ACI. The mode TE+31,20 oscillating at 164 GHz has been found with a
very low intensity which also corresponds to the simulated electric field profile. Thus from
the above discussion it can be concluded that both the geometry as well as the magnetic field
profiles, used in this study, are well suited to have no spurious/parasitic oscillations. The same
facts are also reflected in the experimental results which have been performed at IHM/KIT.
Finally it is required to mention that the simulated result with the modified version of the SELFT
code considering up to 20 competing TE modes and with the above mentioned beam parameters
shows the achievable output power of≈2.2 MW in the selected operating mode TE−34,19 which
is in agreement with the experimental findings. Parasitic modes have impact as a dynamic ACI
with approximately 0.15% of the output power in the main operating mode.
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Figure 6.19: RF spectrum of the relevant modes at the geometry output corresponding to Fig. 6.18.

6.4 240 GHz 2.5 MW TE−55,29 mode coaxial cavity gyrotron

A first step towards a sample cavity design for a very high frequency, very high order mode
240 GHz high-power gyrotron has been performed in order to investigate the influence of the
non-uniform distribution of the magnetic field in terms of the presence of the dynamic ACI
effect. A coaxial cavity is used for the beam-wave interaction. The main restriction is the ohmic
wall loading on the surface of the coaxial cavity achievable by available cooling and material
techniques: The wall loading cannot exceed more than 2.5 kW/cm2. In order to overcome
this problem the size of the resonator is increased and therefore very high order modes make
this operation possible. Fig. 6.20 shows the coaxial cavity geometry profile along with the
magnetic field profile which are used in this study. For gyrotrons operating with very high-order
volume modes, the dense mode spectrum at high eigenvalues delivers a vast number of possible
mode candidates and competitors. For the design of a gyrotron with a specific frequency (240
GHz) and output power (≈2.0 MW) several physical and technical requirements have to be met
(see Table 1.1). In this numerical experiment a magnetic field profile identical to that of the
KIT-Oxford-Instrument-Magnet has been used and in shown in Fig. 6.20.
For the given beam parameters (Vbeam = 78.5 kV, Ibeam = 89.0 A, α = 1.20, B0 = 9.57
T and Rbeam = 11.4 mm) the output power has been determined using the program called
‘MAXPO’[Ker96] which was developed based on the theory of normalized variables [DT86] to
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Figure 6.20: Optimized coaxial cavity geometry including nonlinear uptaper as well as magnetic field
profiles for an example of a 240 GHz TE−55,29 mode gyrotron.

calculate the maximum possible gyrotron output power considering the physical requirements
and constraints [KBT04, Ker96]. The possible highest output power over artificial continuous
Bessel roots χm,p for different normalized resonator lengths µ (range from 16 to 25) with
respect to the constraints has been determined keeping in mind the physical requirements and
constraints. Within these estimations, no mode conversion has been considered. The highest
output power is predicted for χm,p values between 160 and 230. Within this range a high number
of possible mode candidates are available. Out of those available modes, the TE−55,29 mode
(χm,p = 165.94) has been considered as an operation mode for a 240 GHz gyrotron as this
mode delivers a suitable power and maintains all those design constraints. The parameters for
an optimized sample cavity for the TE−55,29 mode with linear input and output tapers together
with the length of the parabolic smoothing, can be found in Table 6.1. With the chosen radius
of the cavity equal to 33.0 mm an output frequency of 240.20 GHz, slightly higher than the
desired 240 GHz has been obtained.
In this work the outer cavity wall is assumed to be smooth without any corrugation for further
mode selection. Non-linear tapers have been introduced to fit the cavity geometry to the beam
tunnel and launcher section (see Fig. 6.20). These nonlinear tapers have to guarantee low power
conversion towards the gun and beam tunnel region as well as lowest possible mode conversion
towards the launcher. The synthesis of the non-linear tapers has been performed using a
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6 Dynamic ACI study with the modified SELFT code

Table 6.1: Optimized sample cavity geometry for the TE−55,29 mode (for parameters see schematic
diagram shown in the right hand side of this table).

Position 1 Position 2 Position 3
Reflection TE−55,29 99.71 06.47 99.49
Reflection TE−55,28 00.27 00.01 00.45
Reflection TE−55,30 - - 0.017

Reflection TE−55,29 - 93.38 -
Reflection TE−55,28 0.007 0.08 -
Reflection TE−55,30 - 0.011 -
Position 1: The junction between downtaper and straight portion of the cavity.
Position 2: The junction between uptaper and straight portion of the cavity.
Position 3: The output of the cavity.

Table 6.2: Mode conversion [%] at the different positions for the optimized nonlinear tapers

scattering matrix program based on eigenwave expansion (NTLAP-based on the generalized
scattering matrix method). The optimized geometry shows low power conversion (less than
0.1%) towards the gun region. The non-linear uptaper starting from the end of the cylindrical
cavity (up to 42.0 mm) has a length of 73.0 mm. The total length of the cavity including all
tapers is 115.0 mm, which is comparable with the designs for the existing IHM/KIT European
170 GHz 2 MW (≈120 mm) gyrotron for ITER. The corresponding reflection coefficients
values can be found in Table 6.2.
In the next step, time-dependent start-up simulations are performed considering a linear rise of
the accelerating voltage. In order to investigate the influence of the non-uniform distribution of
the magnetic field in terms of ACI phenomena in the designed 240 GHz cavity, self-consistent
multi-mode simulations (with 20 modes) are performed using two different versions of the
SELFT code i.e. SELFT with uniform magnetic field and SELFT with non-uniform magnetic
field. Comparison of the electric field profiles are shown in Fig. 6.21. Here only those modes
are shown which are retained relevant to our comparisons. The electric field profiles in case
of a uniform magnetic field profile (shown by solid line) which corresponds to the maximum
value of the magnetic field profile as well as in the case of a non-uniform magnetic field profile
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Figure 6.21: Comparison between field profiles obtained in multi-mode calculation using the modified
SELFT code with uniform and non-uniform magnetic fields profile.

(shown by line + symbol) recorded at simulation time 2300 ns are shown in Fig. 6.21. The figure
shows that, due to the consideration of a non-uniform magnetic field profile in the beam-wave
calculations, in addition to the operating mode TE−55,29, an undesired parasitic mode TE−55,30

is also oscillating in the cavity uptaper region, with a significant power level. While on the other
hand it is not observed in the case of a uniform magnetic field (see Fig. 6.21). This undesired
oscillations can be attributed to the fact that the inclusion of the non-uniform magnetic field
in the SELFT calculations which has significant different values from the magnetic field value
at the mid of the cavity shows the existence of dynamic after cavity interaction phenomenon.
One can also observe from Fig. 6.21 that in this study the electric field profiles of the operating
mode, for both the cases, are nearly identical.
In order to confirm the above mentioned undesired oscillations, the RF spectrum, corresponding
to the electric field profiles (see Fig. 6.21), have been plotted shown in Fig. 6.22. In
this study, RF spectra, recorded at z = 110.0 mm, are obtained using the uniform magnetic
field corresponding to the maximum value (solid line) as well as the non-uniform magnetic
field (line + symbol) profile. It should be mentioned that the spectrum were observed at the
simulation time 2300 ns. In Fig. 6.22, only those modes are shown which remain relevant
for our comparison study. From Fig. 6.22, one can observe that, due to the consideration
of the non-uniform magnetic field profile, in addition to the desired operating mode TE−55,29
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Figure 6.22: RF spectrum of the relevant modes at the geometry output corresponding to Fig. 6.21.

mode, oscillating at ≈240.2 GHz, also another parasitic mode is oscillating at ≈230.14 GHz
(TE−55,30 mode) which has a significant impact as a dynamic ACI phenomenon. This fact is
also revealed in the electric field profiles (see Fig. 6.21). The RF spectrum plot also shows
the appearance of the parasitic mode TE−55,29 oscillating at ≈226.04 GHz corresponding to
the presence of a beating process with the desired operating mode. This fact is also reflected
by the presence of the modulating feature in the electric field profile of the desired mode
calculated with the non-uniform magnetic field distribution (see Fig. 6.21). These undesired
ACI Phenomena are attributed to the consideration of the influence of a non-uniform distribution
of the magnetic field in the differential equations (2.8 and 2.29) necessary for the gyrotron
beam-wave interaction calculations. Whereas, on the other hand, calculations with a uniform
magnetic field does not show the appearance of any undesired parasitic mode which may has any
significant effect as an ACI phenomena. These calculations also confirm that the detection of the
presence of ACI phenomena in the uptaper region of the gyrotron cavity in the simulation result
is due to the consideration of the non-uniform magnetic field explicitly in the self-consistent
beam-wave interaction calculations. These simulation results again reinforce the fact that in
order to determine the occurrence of undesired parasitic oscillations which can be seen as
dynamic ACI phenomena in the output section of the resonator, it is necessary to consider
the influence of the non-uniform distribution of the magnetic field in the beam-wave interaction
calculations.
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Finally it should be mentioned that the initial optimization with the modified SELFT code shows
the achievable output power of ≈2.1 MW (for the optimistic upper parameter limits in Table
1.1) with the selected operating mode TE−55,29. In this case parasitic modes have an impact as
a dynamic ACI within ≈1.2% of the output power in the main operating mode. The efficiency
drops in comparison to single mode simulations from 38% to 33%, because the upper region
of the stability area (accelerating voltage over magnetic field plane) can not be reached due
to mode competition. This is because due to the presence of the spurious oscillations which
slightly lower the achievable interaction capability of the main mode, but still a satisfying value
for the efficiency of 33% is attainable. Final mode selection and optimization of the 240 GHz
gyrotron cavitiy with many more competing modes and with different working operating points
is still required.
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7 Conclusions and outlook

In this work, dynamic ACI phenomena in the uptaper region of high power gyrotron cavities
(conventional as well as coaxial) have been investigated. Goal of this investigation was
the study of the influence of the non-uniform distribution of the magnetic field on the
parasitic/spurious oscillations present in the output section of gyrotron resonators which are
attributed as dynamic ACI phenomena.
First an adiabatic approximation has been used in order to depict the region(s) of fulfilment
of the condition for the electron beam-wave interaction by solving the well known electron
cyclotron resonance equation. The solution includes varying electron velocity uq(z) according
to the non-uniform distribution of the magnetic field. Within the validity of this approach,
numerical experiments have been performed with two different KIT gyrotron configurations
i.e. the W7-X 140 GHz TE−28,8 mode gyrotron as well as the TE−22,8 mode 140 GHz
step-frequency tunable gyrotron. In both the cases, region(s) in the uptaper section of the cavity
geometry where found as possible regions for the appearance of dynamic ACI phenomena due
to the fulfilment of the resonance condition. In the adiabatic constant implementation, only
the electron transverse momentum equation has been solved for the beam-wave interaction
calculations. Dynamic ACI phenomena with frequencies lower than that of the desired main
mode oscillating frequency have been observed in RF spectral plots. In addition to the above,
interacting frequency curves are also estimated for 900 macro-particle and 13 TEm,p modes,
having different γ and βq(z) for each macro-particle (see chapter 3). From this numerical
experiment it was observed that the upper high-frequency gyro-TWT branches are broadened
due to strong sensitivity to different (Doppler broadening) and they are much less prone to
dynamic ACI.
As main new contribution the present study includes the enhancement of the capability of
the physical interaction models implemented in simulating tools like the time-dependent,
self-consistent KIT SELFT multi-mode code in order to describe the dynamic ACI phenomena
as close as possible. It includes the implementation of the modifications in the differential
equation for the electron momentum as well as for the RF field profile (see chapter 4). These
modifications mainly include the introduction of the term dBR,z/dz in the electron momentum
differential equation (solved by Predictor-Corrector numerical method) as well as in the
acceleration term of the RF field profile differential equation (solved by Crank-Nicolson
numerical method). The modifications also include the implementation of the slowly varying
average reference frequency with reference to the axial coordinate of the resonator in order to
avoid overflow in the simulations. In addition to that the transit time of electrons has also been
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modified which include vq as an average value taken over a number of macro-particles at each
discrete point of the cavity geometry. Due to all the implemented modifications (see chapter
4), the computational time has increased by ≈40% as compared to the unmodified version of
the SELFT code reported in [Ker96]. The main contribution is due to the newly introduced
non-uniform magnetic field distribution particularly in the electron momentum equation.
Convergence studies have been preformed with respect to three numerical parameters such as
spatial discretization step size, temporal discretization step size as well as number of electrons
require for initial azimuthal phase discretization. These studies showed the convergence of the
solutions.
The new capability of the modified KIT SELFT code has been applied for dynamic ACI studies
using four different gyrotron configurations (two conventional cavity gyrotrons and two coaxial
cavity gyrotrons). These studies confirmed that an undesired interaction in the uptaper region
can result in additional parasitic oscillations with relative power lies within the 1% region. It is
also concluded that due to implementation of dBR,z/dz, some spurious oscillations have been
observed in the RF spectral plot due to significant variation of the magnetic field towards the
geometry output. Initial comparison with experiments has been performed for verification of
the modified SELFT code. Attempts were made to reproduce the measured parasitic spectra
[SCG+11] for the TE−28,8 mode 140 GHz W7-X gyrotron developed for the W7-X Stellarator.
In this case theory and experiment are in good agreement. This agreement opens the possibility
to simulate the physical behaviour of the gyrotron beam-wave interaction phenomenon more
closely in the uptaper section of the geometry in the presence of the non-uniform distribution of
the magnetic field. Investigations of dynamic ACI phenomena with the modified version of the
KIT SELFT code, which includes axial inhomogeneous magnetic fields distribution, are made
possible for the first time. In addition to the above, it is also concluded that the radius profile of
the uptaper section of the geometry is very important in avoiding the presence of the dynamic
ACI phenomena. As a result, it has been observed that the shape of the uptaper section profile
used in the 170 GHz TE−34,19 mode coaxial cavity gyrotron as well as in the 170 GHz TE−32,9

mode conventional cavity gyrotron is less prone to ACI parasitic/spurious oscillations than the
uptaper of the 140 GHz TE−28,8 mode W7-X gyrotron.
In addition to that a preliminary study has been performed to investigate the influence of
dBR,z/dz 6= 0 in terms of the presence of dynamic ACI effect in the uptaper section of very high
frequency (for example 240 GHz) and very high order mode (for example TE−55,29) gyrotron.
The RF spectrum plot shows that in addition to the operating mode TE−55,29, an undesired
parasitic mode TE−55,30 is also oscillating in the cavity uptaper region, with a significant power
level (≈1.2% of the main mode power). On the contrary this does not happen if we consider
constant magnetic field. These undesired oscillations can be attributed to the consideration of
the non-uniform magnetic field in the SELFT multi-mode calculations.
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These studies suggest that the occurrence of dynamic ACI is caused due to the changing
magnetic field towards the geometry output where it is significantly different from the value at
the centre of the cavity.

During the next development phase, on the theoretical side, several extensions of the
mathematical model have been reviewed (see chapter 2) that have not been included in the
modified version of the KIT SELFT code. These are the consideration of mode conversion and
the inclusion of TM modes (e.g. for relativistic gyrotrons) which includes a full description
of the RF field profile. It is also necessary to make further improvement in the mathematical
modelling of the electron motion equation both in transverse as well as axial directions. This
includes consideration of the imaginary part of~u⊥ (see equation (2.32)) also in the calculations
of the electron motion equation as well as in the excitation term (~Rk) of the RF field equation
(see equation 2.33b).The underlying assumption in SELFT of using slowly varying RF field
profiles is questionable for the ACI envelope, since a relative fast beating is present.
To address this point and also for a more precise comparison with experimental results, it is
necessary to abandon some of the simplifications of the set of equations in modified SELFT
code (i.e. the way we model the electron movement which includes replacement of the time
coordinate through the space coordinate by using equation (2.28)), in favour of, a filled-cavity
quasi-Particle In Cell (PIC) like approach similar to the approach adapted in EURIDICE
quasi PIC (filled cavity approach) as well as in TUHH code [Jel00]. In this approach in the
modified SELFT code it is necessary to implement directly the numerical solution of the
Maxwell equations as well as Lorentz force equation in the two-dimensional phase-space. The
obtained RF field values can directly be interpolated on to the simulation particles which will
be advanced by a second order Boris scheme. From the advanced particle position, charge and
current source terms can then be interpolated onto the mesh points in order to compute the
RF field profile values at each mesh points of the simulation domain. The calculated RF field
profile values are then interpolated onto the particle positions. The above approach is required
to be performed at each integration time step. This approach can easily be implemented
with the existing utilized mathematical formalism in the SELFT code to perform much faster
simulations than with Particle-In-Cell (PIC) codes. It was mentioned that in the SELFT
code the RF field profile at each axial coordinate value is known prior the movement of
the electrons throughout the simulation domain whereas these quasi-PIC like approach field
solvers require no prior knowledge about the electric fields. In this way we can abolish the
‘fixed-field’approach to make the simulations more accurate.
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The rapid growth of world population and economy re-
quires new methods of environmentally friendly energy 
generation. One future candidate is controlled thermo-
nuclear fusion in magnetically confined plasmas where 
high-power microwave sources (gyrotrons) are used for 
heating and plasma stabilization to achieve the required 
temperatures of nearly 120 Million degrees. These gy-
rotrons should run in single-mode operation in order 
to guarantee high output mode purity and low internal 
stray radiation. In this work dynamic after cavity interac-
tion (ACI) in megawatt-class gyrotrons is investigated that 
could lead to lower output mode purity and increased 
level of internal stray radiation. The self-consistent KIT-
IHM multi-mode code SELFT has been modified in order 
to extend the simulation domain into the radius up-taper 
section of the gyrotron cavity where the probability of ACI 
exists. The results of these studies confirm that up-taper 
radius contour and magnetic field profile have to be opti-
mized in order to minimize ACI.
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