
1 

 

Shear strength and shear stiffness of 

CLT-beams loaded in plane 

 

M. Flaig, H. J. Blaß 

Holzbau und Baukonstruktionen 

Karlsruhe Institute of Technology, Germany 

 

1 General 

Beams made of cross laminated timber (CLT) offer several advantages over solid or glued 

laminated timber beams due to their typical layup of orthogonally bonded layers. One major 

benefit of CLT is the high tensile strength perpendicular to the beam axis making CLT-beams less 

susceptible to cracks. Therefore, the use of CLT for the production of beams with tensile stresses 

perpendicular to the beam axis provides a considerably improved robustness. 

In Europe, the requirements for the production and design of CLT-products are currently 

governed by technical approvals. However, a draft European standard specifying the performance 

requirements of cross laminated timber products has already been published in 2011. Although 

most of today’s CLT-products are very similar in their structure and also efforts are made to 

develop standardised methods for design and verification of CLT, there is, so far, no general 

approach for the shear design of CLT-members loaded in plane. In fact, the strength properties 

and also the design methods given in different technical approvals for the verification of in plane 

shear stresses vary significantly and, moreover, for most products no information on the shear 

stiffness in plane direction is given at all. One main reason for the disparities seems to be the more 

complex calculation of shear stresses and deformations in CLT-members compared to traditional 

timber materials and therefore, in many cases, vastly simplified methods are used. 

The intention of the present paper is to contribute to the development of standardised methods for 

the shear design of CLT-members loaded in plane. Therefore, at first, analytical solutions for the 

calculation of shear stresses and shear deformations in CLT-beams loaded in plane are presented. 

The equations are then validated by test results. 

2 Shear strength of CLT-beams loaded in plane 

2.1 Failure modes 

In CLT-beams, like in solid materials, transversal forces acting in plane direction will cause shear 

stresses. The shear stress distribution can be assumed to be constant over the element thickness. In 

CLT-beams where adjacent lamellae within individual layers are not glued to each other at their 

edges, however, the thickness is not constant throughout the beam. In sections that coincide with 

unglued joints between neighboured lamellae shear forces can hence only be transferred by 

lamellae arranged perpendicular to the joints. The shear stresses in these net cross sections will 

consequently be greater than in the gross cross sections in-between unglued joints. The transfer of 

shear forces between longitudinal and transversal layers also causes shear stresses in the crossing 

areas of orthogonally bonded lamellae. Considering both shear stresses in the lamellae and the 
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crossing areas three different failure modes can be distinguished in CLT-beams subjected to shear 

stresses as shown in Figure 1. 

Failure mode I is characterised by shear failure parallel to the grain in the gross cross section of a 

beam. The failure occurs in sections between unglued joints with equal shear stresses in 

longitudinal layers and transversal layers. 

Failure mode II is characterised by shear failure perpendicular to the grain in the net cross section 

of a beam. The failure occurs in sections coinciding with unglued joints with shear stresses only in 

lamellae perpendicular to the joints.  

Failure mode III is characterised by shear failure within the crossing-areas between orthogonally 

bonded lamellae. The failure is caused by torsional and unidirectional shear stresses resulting 

from the transfer of shear forces between adjacent layers. 

 

Figure 1: Failure modes I, II and III in CLT-beams subjected to transversal forces in plane 

direction (from left to right) 

2.2 Calculation of shear stresses 

For design and verification of CLT beams the shear stresses, corresponding to each of the three 

failure modes need to be calculated. In failure modes I and II shear stresses in the gross and the 

net cross section, respectively, need to be evaluated. In failure mode III three different 

components of shear stresses can be distinguished. The calculation of the five different shear 

stress components is described in the following sections. 

2.2.1 Shear stresses in the lamellae 

In CLT-beams the bonding between adjacent longitudinal lamellae, although connected only 

indirectly via transversal layers, is strong enough to ensure the layers to act as solid units. Shear 

stresses τxz in the lamellae causing failure parallel and perpendicular to the grain in failure modes 

I and II, respectively, can therefore be calculated according to Bernoulli-Euler Beam Theory by 

taking into account the appropriate thickness of the cross section considered. 

z y,gross

xz,gros

y,gross gross

⋅
=

⋅
τ
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I t
 Shear stress in the gross cross section  

(Failure Mode I) 
Eq. 1 

z y,net
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y,net net

⋅
=

⋅
τ

V S

I t
 Shear stress in the net cross section 

(Failure Mode I) 
Eq. 2 

 where tgross is the total thickness of the element 

 and tnet is the smaller of the sum of the thickness of longitudinal or transversal layers 

The parabolic functions in Eq. 1 and Eq. 2 describe curves that envelope the actual shear stresses 

in the net and the gross cross section. In CLT-beams normally the proportion of transversal layers 

will be kept as small as possible. Therefore, in most cases the net cross section of transversal 
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layers is decisive for the calculation of shear stresses τxz,net. Starting from the upper and lower 

edge of a cross section, at first shear stresses both in longitudinal and transversal layers follow the 

parabolic function calculated with the gross cross section. In unglued joints between adjacent 

lamellae, however, shear stresses must be zero. In horizontal sections through unglued joints 

between longitudinal lamellae the shear stresses acting in transversal layers consequently can be 

found on a parabola calculated with the net cross section of transversal layers. As an example the 

distribution of shear stresses in the gross and the net cross section of a three layered CLT-beam is 

shown in Figure 2. The width of grooves and peaks in the curves of shear stresses depend on the 

stiffness of crossing areas and the stiffness ratios within a beam and is depicted only in a general 

manner in the graphs. 

 

Figure 2: Distribution of shear stresses in the lamellae of a three-layered CLT-beam in  

cross sections within transversal lamellae: shear stresses τxz,long in longitudinal 

lamellae (left) and shear stresses τxz,cross in transversal lamella (right) 

A conservative estimate of the actual maximum shear stress in longitudinal and transversal layers 

can be made by calculating the peak values of the parabolic functions according to Eq. 3 and Eq. 4. 
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gross

3
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⋅
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⋅ ⋅
τ
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h t
 Theoretical maximum shear stress in 

longitudinal layers 
Eq. 3 
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xz,net ,max

net

3

2

⋅
=

⋅ ⋅
τ

V

h t
 Theoretical maximum shear stress in 

transversal layers 
Eq. 4 

For beams with an even number of lamellae in longitudinal layers Eq. 3 overestimates the 

maximum shear stress in the gross cross section whereas in beams with an odd number of 

lamellae in longitudinal layers too large shear stresses in the net cross section result from Eq. 4. 

For the cross section depicted in Figure 2 the difference between the theoretical and the actual 

maximum shear stress in the transversal layer amounts to 11%. However, the error decreases 

rapidly with an increasing number m of lamellae in longitudinal layers. 

Table 1: Error in shear stresses calculated according to the expressions given in Eq. 3 and Eq. 4 

number m of lamellae in longitudinal layers 2 3 4 5 6 7 8 9 10 11 12 

error in the gross cross section in % 25 - 6.3 - 2.8 - 1.6 - 1.0 - 0.7 

error in the net cross section in % - 11 - 4.0 - 2.0 - 1.2 - 0.8 - 

2.2.2 Shear stresses in the crossing areas 

In failure mode III three different components of shear stresses occurring in the crossing areas 

have to be considered:  
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Shear stresses parallel to the beams axis which are caused by the change of the bending moment 

and the balancing of the resulting differential normal stresses in longitudinal lamellae, 

Torsional shear stresses which arise due to the eccentricity between the centre lines of adjacent 

lamellae and 

Shear stresses perpendicular to the beam axis occurring in the crossing areas at supports and 

concentrated load application points and in beams with variable cross section, such as notched 

beams, beams with holes and tapered beams. 

The first two shear stress components can be derived from the model of a composite beam, where 

the longitudinal lamellae represent the individual parts of the beam. The third component 

corresponds to transverse tensile or compressive stresses occurring in glulam beams and can be 

calculated accordingly. 

a) Shear stresses parallel to the beam axis 

Since adjacent lamellae within longitudinal layers are not bonded at their edges differential 

normal forces dNi caused by the change of the bending moment along the axis of a CLT-beam 

need to be transferred via the crossing areas between longitudinal and transversal layers. The 

normal forces Ni and the corresponding differentials dNi acting in longitudinal lamellae can be 

calculated using the model of a composite beam shown in Figure 3. The resulting unidirectional 

shear stresses τyx in the crossing areas are obtained by dividing the differential normal force in a 

section of a longitudinal lamella through the crossing areas of the specific lamella within the 

considered section. As a result the distribution of shear stresses τyx within the element thickness 

depends on the ratio between the axial stiffness of longitudinal lamellae and the stiffness of the 

connections between longitudinal and transversal layers, i.e. the stiffness of crossing areas. 

 

Figure 3: Side view and cross section of a four-layered CLT-beam loaded in plane (top) and 

internal forces in the beam, in individual lamellae and in the crossing areas 

(bottom, from left to right) 
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Substituting the given expressions for dNi, Inet,long and ai,max into Eq. 5 yields 

yx 2 2 3

CA

6 1 1⋅  
= ⋅ − 

⋅  

V

b n m m
τ  Eq. 6 

As can be seen, shear stresses τyx are linearly dependent on the reciprocal values of the squared width 

of lamellae b and the number of crossing areas nCA within the element thickness. The last term in 

brackets describes the influence of the number of lamellae m within longitudinal layers. Eq. 5 and Eq. 

6 provide accurate results for CLT-beams with a constant ratio of tlong,k/nCA,k between the thickness of 

an individual longitudinal layer and the number of glue lines the respective layer shares with adjacent 

transversal layers. In such beams shear stresses τyx in the crossing areas are constant within the 

element thickness since the ratio between the axial stiffness and the stiffness of adjacent crossing areas 

is equal for all longitudinal lamellae. In contrast to this, shear stresses τyx vary within the thickness of 

CLT-beams where the ratio of tlong,k/nCA,k is not equal for all longitudinal layers. However, within the 

range of layups that are used in practice the variation of shear stresses τyx within the element thickness 

is small, especially in CLT-beams made of softwood, with a modulus of elasticity of lamellae of about 

11,000 N/mm² and a slip modulus of crossing areas of about 5 N/mm³ (see 3.2). Therefore Eq. 5 and 

Eq. 6 provide good approximations for the shear stresses τyx in such beams. 

b) Torsional shear stresses 

Due to the eccentricity of the normal forces Ni acting in the centre lines of adjacent longitudinal 

lamellae the differential normal forces dNi transferred via the crossing areas not only induce shear 

stresses parallel to the beam axis, but also torsional shear stresses within the crossing areas. Like shear 

stresses τyx acting in the direction of the beam axis, torsional shear stresses τtor can be derived from the 

model of a composite beam shown in Figure 3. Assuming that torsional shear stresses are, like shear 

stresses τyx, constant within the beam thickness and in addition also uniformly distributed within the 

beam height, which is given on the condition that the lamellae in transversal layers stay straight in the 

deformed beam, torsional shear stresses in the crossing areas can be calculated according to Eq. 7. In 

Eq. 7 τtor is the stress vector acting parallel to the shorter edges of a crossing area causing rolling shear 

stresses in the narrower of the two bonded lamellae and b is the width of the broader lamellae. 

m
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The assumption of a constant width b of lamellae in all longitudinal and transversal layers and the 

substitution of the expressions above into Eq. 7 yields the closed-form solution given in Eq. 8. A 

closed-form solution for beams with lamellae of different widths in longitudinal and transversal 

layers can be found in Blaß and Flaig (2012). 

tor 2 3

CA

3 1 1⋅  
= ⋅ − 

⋅  

V

b n m m
τ . Eq. 8 

The torsional shear stresses τtor are, like shear stresses τyx, linearly dependent on the reciprocal 

values of the squared width of lamellae b and the number of crossing areas nCA within the element 

thickness. The term in brackets describes again the influence of the number of lamellae m within 

longitudinal layers. In beams with a large number m of lamellae within longitudinal layers the 

third order term 1/m³ becomes very small and therefore may be neglected. This simplifies Eq. 8 to 

tor 2

CA p,CA

3

2

⋅ ⋅
= = ⋅

⋅ ⋅ Σ

V V b b

b n m I
τ . Eq. 9 

The expression on the right side can also be found in many technical approvals, where it is given 

for the calculation of torsional shear stresses in shear walls and diaphragms. 

c) Shear stress components perpendicular to the beam axis 

Shear stresses τyz in the crossing areas of CLT-beams may result from both external forces, e.g. 

support reactions and loads, and internal forces arising from changes in the cross section or the 

direction of the beam axis. Equations for the calculation of shear stress components τyz in the 

crossing areas of CLT-beams with holes and notches as well as for tapered CLT-beams and CLT-

beams with dowel type connections loaded perpendicular to the beam axis are specified in Blaß 

and Flaig (2012). 

For beams subjected to external forces acting in plane and on the surface, shear stresses τyz can be 

calculated according to Eq. 10, provided that the loads are transferred by contact via the end grain 

surfaces of transversal layers only and on the assumption that shear stresses τyz are uniformly 

distributed within the beam height. 

z
yz =

⋅

q

m b
τ  Eq. 10 

2.3 Strength properties and verification of shear stresses 

In the design of CLT-beams each of the above-described shear stresses must be verified with the 

corresponding shear strengths related to the relevant shear failure mode. In the crossing areas also 

the interaction of simultaneously acting shear stress components has to be taken into 

consideration. 

2.3.1 Failure Mode I 

Since failure mode I is characterised by shear failure parallel to the grain within the lamellae, the 

shear strength specified in EN 338 is used for the verification of shear stresses. Since, in general, 

the cross sections of the individual lamellae are rather small and moreover the development of 

large, individual cracks is impeded by transversal layers, the influence of cracks on the shear 

strength of the lamellae is low. Therefore, a factor kcr = 1,0 can be assumed, which is also 

specified in Germany’s National Annex to Eurocode 5. 
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2.3.2 Failure Mode II 

In failure mode II shear failure occurs in the net cross section within the joints between non edge 

bonded lamellae. Jöbstl et al. (2008) determined a mean value of the corresponding shear strength 

fv,lam,90 perpendicular to the grain of 12.8 N/mm² and a characteristic value of 10.3 N/mm² by tests 

with single boards subjected to shear forces perpendicular to the grain. Considerably higher shear 

stresses perpendicular to the grain were evaluated from tests with beams with holes (Blaß and 

Flaig, 2012), however, none of the tested beams failed within the net cross section. 

2.3.3 Failure Mode III 

In CLT-beams subjected to transversal forces in plane direction failure in the crossing areas is 

caused by the interaction of at least two shear stress components, since both torsional shear 

stresses and shear stresses in direction of the beam axis always occur simultaneously. In addition 

shear stresses perpendicular to the beam axis may arise from external or internal forces. In the 

verification of shear stresses in failure mode III the interaction of the different shear stress 

components has to be considered. 

In recent years the shear strength of crossing areas against both shear forces and torsional moments, 

has been determined in several test series. An overview of the shear strengths evaluated from tests 

with small specimens comprising one or two crossing areas is given in Table 2, lines 2 - 5. 

Table 2: Torsional shear strength and rolling shear strength of crossing areas determined by 

tests with small specimens and with CLT-beams 

Author description of test setup n 

fv,tor,mean 

in 

N/mm² 

fv,tor,k 

in 

N/mm² 

fR,mean 

in 

N/mm² 

fR,k 

in 

N/mm² 

Blaß/Görlacher (2002) single crossing areas 57 3.59 2.82 - - 

Jöbstl (2004) single crossing areas 81 3.46 2.71 - - 

Wallner (2004) two symmetric crossing areas 122 - - 1.51 1.18 

Blaß/Flaig (Figure 4)  two symmetric crossing areas 6 - - 1.43 1.18 

Blaß/Flaig (2012) notched beams (bending tests) 13 3,98 2,76 1,71 1.19 

Blaß/Flaig (2012) beams with holes (bending tests) 13 3,69 2.79 1.58 1.20 

Blaß/Flaig (2010) CUAP (see Table 3) 12 4.67 2,68 1.99 1.15 

From the different test series that were performed with small specimens it can be concluded that 

the shear strength of crossing areas against unidirectional shear stresses is equal to the rolling 

shear strength of timber. The torsional shear strength in contrast exceeds this value considerably, 

although the failure is also governed by rolling shear stresses. The torsional shear strengths found 

by Blaß and Görlacher and Jöbstl et al., respectively, are very similar, both mean and characteristic 

values, although the size of the tested crossing areas varied considerably (Blaß/Görlacher 

40 x 40 mm, 40 x 64 mm, 62 x 95 mm, 62 x 75 mm, 64 x 64 mm, 64 x 100 mm; Jöbstl et al. 

100 x 145 mm, 150 x 145 mm, 200 x 145 mm). The results within either test series also showed no 

significant influence of the crossing area size on the shear strength. The same applies to the shear 

strength against unidirectional shear stresses where the tested crossing areas had dimensions of 

100 x 150 mm, 150 x 150 mm, 200 x 150 mm (Wallner) and 75 x 150 mm (Blaß/Flaig, Figure 4). 

Both rolling shear strength and torsional shear strength of crossing areas seem therefore to be size 

independent within the sizes tested and occurring in practice. 
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To identify a suitable criterion for the 

verification of shear stresses in the crossing 

areas – considering the interaction of 

unidirectional and torsional shear stress 

components – the results of bending tests 

where failure occurred due to shear stresses 

in the crossing areas were evaluated using 

equations Eq. 6, Eq. 8 and Eq. 10. The 

considered tests were performed with 

prismatic beams (see Table 3), notched 

beams and beams with holes (Blaß and 

Flaig, 2012).Tests with prismatic beams 

were performed according to CUAP 

03.04/06 involving a kerf that was sawn into 

the longitudinal layers in the middle of the 

beam height. The tested CLT-beams with 

notches and holes were three- and six-

layered with heights of 300 mm and 600 

mm. The span of all tested beams was within 

the range of 7.5 to 10 times the beam height. 

 

Figure 4: Compressive shear tests to determine 

the shear strength and the slip 

modulus of crossing areas subjected 

to unidirectional shear stresses 

Table 3: Torsional shear strength and rolling shear strength of crossing areas evaluated from 

bending tests according to CUAP 03.04/06 

 

series 27-27-27 

fv,tor in N/mm² 3.68 4.43 3.72 3.72 3.51 3.61 

fR in N/mm² 1.58 1.90 1.59 1.59 1.50 1.55 

 

series 30-20-30 

fv,tor in N/mm² 4.64 6.49 6.05 3.66 6.26 6.33 

fR in N/mm² 1.99 2.78 2.59 1.57 2.68 2.71 

To evaluate the strength properties of crossing areas from beam tests a total of six different failure 

criterions were investigated (Flaig, 2013). The best agreement between the shear properties 

evaluated from beam tests and the respective values obtained from tests with small specimens was 

found for the failure criterion given in Eq. 11, which takes into account the interaction of torsional 

and unidirectional shear stresses, but no interaction of unidirectional shear stresses in direction of 

and perpendicular to the beam axis. 

yx,d yz,dtor,d tor,d

v,tor,d R ,d v,tor,d R ,d

1 and 1+ ≤ + ≤
f f f f

τ ττ τ
 Eq. 11 

To evaluate both strength properties, a constant ratio between torsional and rolling shear strength 

of 2.33 was assumed that was derived from the results of tests performed with small specimens 

given in Table 2. In beams with holes and notches also stress peaks near holes and notches were 

considered (Blaß and Flaig, 2012). In Table 2, lines 6, 7 and 8 the rolling shear strength and the 

torsional shear strength evaluated from test series with CLT-beams are given. 
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2.3.4 Effective shear strength of prismatic CLT-beams 

Depending on the width of lamellae and on the thickness and the arrangement of longitudinal and 

transversal layers within the beam the shear resistance of a CLT-beam is governed by either of the 

three failure modes. The effective shear strength fv,CLT related to the gross cross section of CLT-

beams can be calculated as the minimum value resulting from the three expressions given in Eq. 

12, each representing one of the three failure modes. 

v,CLT min=f  

v,lam

net
v,lam,90

gross

CA

gross
2 2

v,tor R

1

1 1 2 1 12
1






⋅

 ⋅
 ⋅

⋅     ⋅ − + ⋅ −       

f

t
f

t

b n

t

f m f m m

 
Eq. 12 

In Figure 5 characteristic shear strengths of CLT-beams determined from Eq. 12 are given in 

graphical form. 
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Figure 5: Effective shear strength fv,CLT of CLT-beams resulting from failure modes I and II 

(left) and failure modes I and III (right) 

In the diagram on the left side the shear strength calculated from the second expression in Eq. 12, 

corresponding to failure mode II (FM II), is plotted against the ratio tnet/tgross, which in CLT-beams 

normally equals the proportion of transversal layers. The shear strength calculated from the third 

expression in Eq. 12, representing failure mode III (FM III), is plotted in the diagram on the right 

side. Here, the beam layup is given on the abscissa in form of the ratio tgross/nCA, where tgross is the 

total thickness of the beam and nCA is the number of glue lines between longitudinal and 

transversal layers within the total thickness. The three different sets of curves demonstrate the 

influence of the width b of lamellae in failure mode III whereas the influence of the number m of 

lamellae within longitudinal layers is represented by the curves within each set. 

The graphs were calculated assuming a characteristic value of the shear strength perpendicular to 

the grain of 10.3 N/mm² and characteristic torsional and rolling shear strength of 2.75 N/mm² and 

1.1 N/mm², respectively. In both diagrams the effective shear strength resulting from failure 

mode I (FM I) is given, too. The characteristic value was determined with the shear strength of 

strength class C24 given in EN 338 and a crack reduction factor of 1.0. 
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3 Shear stiffness of CLT-beams loaded in plane 

3.1 Analytical approach 

In CLT-beams subjected to in plane transversal forces, shear stresses acting within the crossing 

areas will entail mutual displacements between the bonded lamellae. Therefore, the shear  

 

deformation of CLT-beams originates 

not only from shear strain within the 

lamellae but also from rotational and 

translational displacements in the 

crossing areas. Using the definitions 

given in Figure 6 the shear strain

components γyx andγtor resulting from the 

displacements within the crossing areas

can be calculated according Eq. 13 and 

Eq. 14, where K is the slip modulus of 

the crossing areas in N/mm³. 

Figure 6: Shear strain components γtor and γyx 

resulting from shear stresses in the 

crossing areas of CLT-beams 

yx

yx

22 ⋅⋅
= =

⋅ ⋅ ⋅

tdu

b (m - 1) K b (m - 1)
γ  Eq. 13 

tor
tor

2 ⋅
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⋅

t

K b
γ  Eq. 14 

By substituting the shear stresses τyx andτtor given in Eq. 6 and Eq. 8 into the expressions given in 

Eq. 13 and Eq. 14, respectively, the relations given in Eq. 15 and Eq. 16 are obtained. 

tor 3 3

CA

6 1 1 1⋅  
= ⋅ − ⋅ 

⋅  

V

b K m m n
γ  Eq. 15 

yx 3 3

CA

12 1 1⋅
= ⋅ ⋅

⋅ ⋅

V

b K m n
γ  Eq. 16 

Using the constitutive equation τ = γ · G an effective shear modulus Geff,CA representing the shear 

deformation in the crossing areas can be calculated. For CLT-beams with rectangular cross 

section the shear modulus Geff,CA related to the gross cross section can be obtained from the 

expression given in Eq. 17. 

( ) ( )

2 2

CA
eff ,CA 2

grossgross tor yx
55 1

⋅ ⋅
= = ⋅ ⋅

⋅ ⋅ + +

n6 V K b m
G

tA mγ γ
 Eq. 17 

The superposition of shear deformations in the lamellae and in the crossing areas yields the 

effective shear modulus Geff,CLT of CLT-beams given in Eq. 18, which again is related to the gross 

cross section. 

1

eff ,CLT

lam eff ,CA

1 1
−

 
= +  
 

G
G G

 Eq. 18 

In Figure 7 the effective shear modulus of CLT-beams calculated from Eq. 18 is given as a 

function of the ratio tgross/nCA between the element thickness and the number of glue lines within the  
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element thickness and for different widths b 

and numbers m of lamellae in longitudinal 

layers The graphs plotted in the diagram 

apply to a shear modulus of the lamellae of 

690 N/mm² and a slip modulus of the crossing 

areas of 5 N/mm³. The large distances 

between the sets of curves demonstrate the 

influence of the size of crossing areas – 

expressed through the width of lamellae b – 

on the shear stiffness of CLT-beams. The ratio 

of tgross/nCA also significantly affects the shear 

stiffness, whereas the number of lamellae 

within longitudinal layers has rather small 

influence, especially if m is greater than 2. 
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Figure 7: Effective shear modulus of CLT-

beams 

3.2 Test results 

Until today only few test have been performed to determine the shear stiffness of CLT loaded in 

plane (Bosl, 2002; Traetta et al., 2006) but various tests have been performed to determine the 

stiffness of crossing areas of orthogonally bonded boards, both with torsional and unidirectional 

shear stresses. In Table 4 the results from tests with small specimens comprising one or two crossing 

areas are given. Tests to determine the torsional slip modulus of crossing areas have been performed 

by Blaß and Görlacher (2002) and by Jöbstl et al. (2004). The obtained values differ quite 

significantly but the disparity most likely originates from shear deformations within the bonded 

boards, which are, at least partly, included in the results presented by Jöbstl et al. but not contained 

in the values given by Blaß and Görlacher. However, the values presented by Blaß and Görlacher 

still include deformations due to compressive stresses perpendicular to the grain since the torsional 

moment was transferred to the specimens through contact by means of a clamping. From tests with 

crossing areas subjected to shear forces similar slip moduli have been determined by (Wallner 

2004). However, these test results again comprise parts of the shear deformation within the boards. 

Considering the influence of the different test setups used to determine the slip moduli of crossing 

areas the disparity between the obtained values becomes much less pronounced. 

Table 4: Slip modulus K of orthogonally bonded lamellae determined by tests performed with 

specimens with one or two crossing areas 

Author description of test setup 
shear stress in  

crossing area 

n Kmean 

in N/mm³ 

Blaß/Görlacher (2002) single crossing areas torsion 30 4.87 

Jöbstl (2004) single crossing areas torsion 81 3.45 

Wallner (2004) two symmetric crossing areas unidirectional 122 4.26 

From the difference between local and global modulus of elasticity of CLT-beams, measured in 

four-point bending tests, a distinctly higher slip modulus with an average of 7.58 N/mm³ was 

evaluated (Blaß and Flaig, 2012). The results of the performed tests are summarised in Table 5. The 

effective shear moduli and the slip moduli of crossing areas given in the table have been evaluated 

using Eq. 17 and Eq. 18, assuming a constant shear modulus of the lamellae of 690 N/mm². 
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The slip moduli evaluated from the bending tests are distinctly higher than the values obtained 

from tests with single crossing area whereas the agreement with the value of 7.67 N/mm² 

evaluated from the tests described in Figure 4 is very good. 

Table 5: Local and global modulus of elasticity and effective shear modulus of CLT-beams and 

slip modulus of crossing areas evaluated from four-point-bending tests with CLT-beams 

series 2-2 
Elok,gross Eglob,gross Geff,CLT K 

series 3-2 
Elok,gross Eglob,gross Geff,CLT K 

in N/mm² in N/mm³ in N/mm² in N/mm³ 

 

12160 10880 300 7.35 

 

9255 8685 409 11.1 

13024 11528 291 6.99 9240 8558 336 7.27 

13752 11744 233 4.89 10568 9495 271 4.96 

10400 9376 276 6.39 9165 8573 384 9.64 

10952 9416 195 3.76 9983 9353 430 12.6 

7680 7216 346 9.64 7433 6893 275 5.08 

8120 7424 251 5.47 7613 7163 351 7.95 

7872 7016 187 3.56 6983 6630 381 9.43 

8048 7560 361 10.5 7200 6863 424 12.2 

8184 7448 240 5.11 6975 6930 - - 

mean   268 6.36    362 8.92 

4 Summary and conclusions 

In shear design of CLT-beams three different failure modes are distinguished considering shear 

stresses acting parallel and perpendicular to the grain within the lamellae and shear stresses within 

the crossing areas of orthogonally bonded lamellae, respectively. For the calculation of shear 

stresses occurring in the lamellae and the crossing areas of CLT-beams subjected to transversal 

loads acting in plane direction an analytical approach is presented. On the basis of experimental 

data, published by other researchers and obtained by own tests, strength properties and criteria for 

the verification of shear stresses corresponding to the different failure modes were specified. From 

the equations for the calculation of shear stresses and the respective failure criteria an expression for 

the calculation of the effective shear strength related to the gross cross section of CLT-beams was 

derived to simplify the verification of shear stresses and it was shown that the effective shear 

strength of CLT-beams is strongly dependent on cross sectional arrangement and thickness ratio of 

longitudinal and transversal layers and on the width of lamellae. The equations for the calculation of 

shear stresses were also used to derive solutions for the calculation of shear strain components 

resulting from mutual displacements in the crossing areas of CLT-beams. By the superposition of 

strain components resulting from shear stresses in the crossing areas and in the lamellae a closed-

form expression for the calculation of an effective shear modulus of CLT-beams was obtained. The 

expression shows that the effective shear stiffness of CLT-beams, like the effective shear strength, 

strongly depends on the width of lamellae and their cross sectional arrangement. The presented 

analytical approach was used to evaluate strength and stiffness properties of crossing areas from 

tests performed with different types of CLT-beams comprising prismatic beams, notched beams and 

beams with holes. The obtained values were compared to strength and stiffness properties 

determined by tests with small specimens and good agreement was found. 

Due to its simplicity and the good agreement with experimental results the presented approach 

represents a suitable and effective tool for the shear design of CLT-beams including both the 

calculation of shear stresses and shear deformations and it provides conservative results if strength 

and stiffness properties determined by tests with small specimens are used. 
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5 Symbols 

ai distance between the centre line of an individual longitudinal lamella and the 

xy-centre plane of the gross cross section 

ai,max distance between the centre line of the uppermost/lowermost longitudinal lamella 

and the xy-centre plane of the gross cross section 

b width of lamellae (here constant within all layers) 

dNi,k differential normal force within an individual longitudinal lamella i,k 

dM differential bending moment within the gross cross section 

fv,lam shear strength of the lamellae according to EN 338 

fv,90,lam shear strength perpendicular to the grain in joints between non edge bonded lamellae 

fv,tor torsional shear strength of crossing areas of orthogonally bonded lamellae 

fR rolling shear strength 

GCA shear modulus of a CLT-beam resulting from the joint slip in crossing areas 

Geff,CLT effective shear modulus of a CLT-beam 

Glam shear modulus of lamellae 

h beam height 

Iy,net,long second moment of area of longitudinal layers about y-axis 

Ip,CA polar moment of inertia of a single crossing area 

K slip modulus of crossing areas in N/mm per mm² 

m number of longitudinal lamellae within the beam height 

nCA number of glue lines between longitudinal and transversal layers within the element 

thickness 

Sy static moment about y-axis 

tgross overall thickness of the CLT-element 

tnet smaller of the sum of the thickness of longitudinal and transversal layers; in CLT-

beams usually the sum of the thickness of transversal layers 

tnet,cross sum of the thickness of transversal layers 

tnet,long sum of the thickness of longitudinal layers 

V transversal force 

qy external load 

τeff shear stress according to the beam theory calculated with the gross cross section 

τtor torsional shear stress acting in crossing areas 

τxz,gross shear stress calculated with the gross cross section 

τxz,net shear stress calculated with the net cross section 

τyx unidirectional shear stress parallel to the beam axis acting in crossing areas 

τyz unidirectional shear stress perpendicular to the beam axis acting in crossing areas 
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