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Abstract

This paper uncovers a novel mechanism by which bubbles crowd in capital invest-
ment. If capital is initially depressed by a binding credit constraint, injecting a bubble
triggers a savings glut. Higher returns in a new bubbly equilibrium attract addi-
tional investors who expand investment at the extensive margin. We demonstrate
that crowding-in through this channel is a robust phenomenon that occurs along the
entire time path after bubbles are injected.
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1 Introduction

The US and other countries have experienced the dot-com bubble and real estate as well
as stock market booms since the late 1990s until the world plunged into recession in 2008.
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Figure 1 shows several interest rates and the average economic growth rate of G7 coun-
tries (Canada, France, Germany, Italy, Japan, the UK and the US).! The interest rates are
greater than the economic growth rate except for the deposit rate until the end of the
1990s. The trend changes around 2000 when some interest rates drop below the growth
rate. After 2004 all interest rates are lower than the growth rate except for the lending rate
until 2008 when the bankruptcy of Lehman Brothers triggered a world-wide recession.
Note also that preceding the crisis, all the interest rates start to soar before they collapse.

Figure 1: The interest rates and growth rate averaged over G7 countries

These observations seem to match the predictions by the theory of rational bubbles de-
veloped by Tirole (1985). The theory predicts that bubbles can arise as long as the growth
rate is above the interest rate in the steady state with no bubbles. By injecting a bub-
ble the economy converges to a steady state where the interest rate is higher. Where the
theory seems to be at odds with past episodes of bubbles is that bubbles crowd out cap-
ital because they compete with investment in capital in the portfolio of investors. Past
episodes of bubbles witnessed investment booms when they emerged (c.f. Kindeleberger
1996). Real estate bubbles in Japan in the late 1980s and in the US in the first decade of
21st century are recent major examples.

Under what conditions rational bubbles crowd in capital investment is a subject of great
importance in macroeconomics. Subsequent to Tirole’s (1985) analysis, the literature has

Each of the interest rates and the economic growth rate is a simple average of G-7 countries (source:IFS).
We exclude the 1991 German data. The loan, bond, money and deposit are the call rate, the short-term rate
on the government bond, the short-term deposit interest rate, and the loan interest rate respectively.



extended his model to incorporate financial frictions (e.g. Caballero and Krishnamurthy
2006, Farhi and Tirole 2009, Martin and Ventura 2012 and Kikuchi and Thepmongkol
2013). To explain the crowding-in most models rely on mechanisms in which bubbles,
by providing liquidity or collateral, help to transfer resources towards productive invest-
ment. The liquidity or collateral effects of bubbles help us to understand the effects of
bubbles on resource allocation. But is it possible that bubbles also generate additional
resources in the economy, which then could be used to expand investment?

One year before Lehman Brothers filed for the largest bankruptcy in US history on Septem-
ber 15, 2008, Ben Bernanke, Chairman of the Federal Reserve Bank, argued that increased
capital inflows to the US from high saving countries such as China contributed to the
lower than expected US longer-term interest rates during 2003-2007 (cf. Bernanke 2007).
Testifying at the Financial Crisis Inquiry Commission on April 7-9, 2010, Alan Greenspan,
Chairman of the Federal Reserve from 1987 to 2006, explained: “Whether it was a glut of
excess intended saving, or a shortfall of investment intentions, the result was the same: a
fall in global real long-term interest rates ... House prices, in nearly two dozen countries
accordingly moved dramatically higher. US house price gains were high by historical
standards but no more than average compared to other countries.” His testimony hints at
the possibility how low interest rates might have caused bubbles in housing prices world-
wide. By making the US mortgage market so awash with cash economic historian Niall
Ferguson describes in his book how an Asian savings glut caused the subprime mortgage
crisis in 2007 (c.f. Ferguson 2008).

The challenge is to build a model of rational bubbles, in which a savings glut fuels both
bubbles and investment. We develop a version of Diamond’s OLG model with hetero-
geneous agents subject to a borrowing constraint. Crowding-in requires two conditions.
First, emergence of bubbles must be accompanied by a savings glut. Without the savings
glut, the resources available for capital investment do not change and bubbles crowd out
capital investment just as in Tirole (1985). Second, the borrowing constraint must be bind-
ing in the bubbleless steady state. Without the borrowing constraint, the return on loans
is equal to the marginal product of capital. This implies that the return decreases with
capital investment, which is not compatible with an increase in savings. In our model,
the presence of bubbles in the economy creates a new equilibrium with higher savings
and a higher interest rate. Bubbles do divert savings away from investment. However,
when increased savings overcompensate the resources absorbed by the bubble, invest-

ment increases at the extensive margin.

In our model there are three types of agents: entrepreneurs, savers and semi-entrepreneurs.
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When a bubble appears, it competes with entrepreneurs for the economy’s savings rais-
ing the interest rate while lowering the entrepreneurial rate of return. The behavior of
entrepreneurs is not much affected by this change in rates of return as they only adjust
their capital investment at the intensive margin. Neither is the behavior of savers affected
as they just provide their entire labor income as loans. Semi-entrepreneurs, however,
start to save adding resources to the economy in response to the rise in the interest rate.
The increase in savings at the extensive margin (a savings glut) fuels bubbles while some

semi-entrepreneurs obtain access to capital investment and expand investment.

Who are the semi-entrepreneurs? Their savings are the only additional resources for in-
vestment in the economy. When they do not save, their wealth is consumed. Therefore,
we interpret the resources they provide as a savings glut, which is, strictly speaking, gen-
erated within the economy but may be viewed as an exogenous resource—more in line
with the story of the Asian savings glut. Whatever the interpretation, the key is that the
additional resources finance bubbles and expand investment.

The structure of the paper is as follows. Section 2 formulates the model and derives equi-
librium conditions. Section 3 uncovers the recursive structure of equilibria and defines a
state space. The existence of steady states and the scope for crowding-in are studied in
Section 4. The economic mechanism of the model are inspected in Section 5. Section 6
studies the dynamics. Section 7 concludes. All proofs can be found in the appendix.

2 The model

2.1 Production sector

The production sector consists of a single firm which operates a constant-returns-to-scale
technology to produce a consumable output good using capital and labor as inputs. The
production function in intensive form is f : Ry — IRy which is twice continuously dif-
ferentiable and satisfies f(0) = 0, f/"" < 0 < f', limjy f'(k) = 0 and limy o f' (k) = oo.
At equilibrium labor supply will be constant and normalized to unity. Given the capital
stock k; > 0, perfect competition in factor markets determines the wage and capital return
in period t as

wy = f(ki) —kef' (ki) and  or = f'(Ki). (1)



2.2 Heterogenous agents

In each period t > 0, a continuum of young consumers is born whose mass is normalized
to unity. Each of these consumers lives for two periods and supplies one unit of labor in
the first period to earn labor income w; > 0. Each generation consists of three types of

consumers: (i) savers, (ii) entrepreneurs and (iii) semi-entrepreneurs.

Savers only consume in the second period of life and, therefore, wish to transfer their
current wealth w; into the next period. For this purpose, they supply loans to the credit
market and purchase bubbly assets whose value at time ¢ is by > 0. Both investments
yield an identical return Ry, 1 > 0.

Entrepreneurs have access to investment projects, which transform final goods into capital
unit by unit available in the next period. Entrepreneurs also consume only when old and,
therefore, invest their entire wealth when young. In addition, they take loans in the credit
market to finance their capital investment. The gross return earned by entrepreneurs on

their income w; is RfH > Riiq-

Semi-entrepreneurs have to decide whether to consume or save their wealth w;. When
they decide to save, they gain access to investment project just as an entrepreneur with
probability p € (0,1) and otherwise behave as a saver. The decision is irreversible and
made ex-ante, i.e., before the uncertainty is revealed.? Thus, it must be based on the
ex-ante return

RPyy == PRy + (1= p)Resa. @)
Semi-entrepreneurs save their wealth if and only if R} 1 exceeds a threshold p > 0.

There are various interpretations for this assumption. First, p may represent an outside
investment opportunity (e.g., a foreign asset promising a return p). A second, alterna-
tive interpretation is that semi-entrepreneurs are endowed with a linear utility function
u(c¥, %) =¥+ %co which would result in the same investment behavior. In what follows
we simply treat p as a parameter of the model.

2.3 Savings glut

The saving behavior of semi-entrepreneurs is the driving force of the model. Thus, with-
out loss of generality, the fractions of entrepreneurs and savers are assumed to be the

2Caballero and Krishnamurthy (2006) use a similar setup where investment opportunities are revealed
after saving decisions are made.



same and equal to a € (0,1/2). Defining s := 24 and 5§ = 1, the saving decision by
semi-entrepreneurs determines the aggregate saving rate

. DS
5 — s 1th+1.<p 3)
5 otherwise

Equation (3) is precisely what we call a savings glut in our economy. It represents an ad-
justment of aggregate savings at the extensive margin, i.e., due to more people investing
if the return exceeds a certain threshold.

At the aggregate level, the total resources s;w; invested in period t are used to form the
capital stock k¢ of the following period and finance the current bubble b;. Thus,
ki1 = siwi — by. 4)

One observes from (4) that the savings boost (3) has the potential to explain crowding-in
of capital: If the injection of a bubble b; causes the savings rate s; to increase from s to 5,
this may overcompensate the resources absorbed by the bubble and capital may increase
relative to the bubbleless situation.

2.4 Investment behavior

Let a; denote the share of consumers who run investment projects at time f. These con-
sumers will be called investors. The behavior of semi-entrepreneurs determines the share

S
w=1" Rvp <P ®)
a+p(l—2a) otherwise.

of investors as

Investors in period t take the wage w; and returns on capital f’(k;;1) and loans R; 1 as
given and choose investment i to maximize expected profit. The objective function reads

1(i) = f'(kes1)i = Rega (i — we). (6)
In addition, we assume that investors can credibly pledge only a fraction A € (0,1) of
expected earnings f’(k;1)i to meet their repayment obligation Ry, 1(i — w;). Thus, the
choice of i is made subject to the borrowing constraint

Rip1(i—wi) < Af'(kpsq)is )

The parameter A can be interpreted as the degree of financial market imperfections, with

higher degree corresponding to a lower imperfection.?

3The simplest story to justify the assumption is that borrowers strategically default whenever the repay-
ment obligation exceeds the default cost, which is proportional to the project revenue.
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2.5 Equilibrium

By (6), positive investment at equilibrium requires returns to satisfy the profitability con-
straint

Rip1 < f'(kesa). (8)
By (3) and (5), the share of consumers who behave as a saver can be written as s; — a;.
Thus, the supply of loans is (s; — a;)w; — by and the demand for loans is a;(i; — w;). This
and (4) determine equilibrium investment

. St — bt
1y =

ki1
= . 9
” ” 9)

Using (9) in (7) determines the equilibrium borrowing constraint

Ryt (ke — arwe) < Af' (ki ki (10)

Perfect competition in the credit and capital markets implies that the return R;; adjusts
until either the constraint (8) or (10) binds in equilibrium. Thus, given k;;; determined

by (4) we obtain

frkeyn) { }
— T _min< k; 1 — a;wy, Ak . 11
K1 — aroo; t+1 — Q¢ Akpiq (11)

Note that Ry1 < f'(kt41) if the borrowing constraint (10) is binding. Also observe that
investors may invest part of their wealth in bubbles if the profitability constraint (8) is

Ripq =

binding. This happens precisely if i; < wy, i.e., k;y1 < ayw;. Using (9) in (6) the return
earned by each entrepreneur is

I q1(i '(k
RE, = t";ult( t) = f{it;};l) max{zxtwt, (1-— A)kt+1}. (12)

E
t+1

strictly prefer running projects to supplying credit or purchasing bubbles.

Note that if the borrowing constraint (10) is binding, Ry, ; > f’(k;+1) and semi-entrepreneurs

Young savers lend in the credit market at the return R; 1 or purchase bubbles, which have
a fixed supply normalized to one, at price by and sell them at price by in the next period.
Given the return determined by (11), no-arbitrage implies that the bubble evolves as

bit1 = Ryq1by. (13)
The economy can be summarized as & = (a,p, A, p, f) plus initial conditions ky > 0 and
by > 0. Following is a general definition of equilibrium.

Definition 2.1. Given kg > 0 and by > 0, an equilibrium of & is a sequence of non-
negative values {wy, by, s¢, at, ki1, Rt+1,Rf+1, R;fs+1}f20 which satisfies (1), (2), (3), (4), (5),
(11), (12) and (13) for all t > 0.



3 Equilibrium dynamics

3.1 Recursive equilibrium structure

In this section, we uncover the forward-recursive structure of equilibria and formulate an
appropriate state space. Consider an arbitrary period t > 0 and let the current bubble
b > 0 be determined by (13) and the capital stock k; > 0 determining the wage w; > 0
be given. In the following analysis, we will choose x; := (wy, bt) as our state variable
which takes values in some state space X to be specified below. While this is equivalent
to the usual choice (k¢, by), it will considerably simplify the results. In particular, several
equilibrium constraints and the stable manifold defined in Section 6.1 will become linear.

Given a candidate savings rate s; € {s,5}, the variables determined by (4), (5), (11), (12)
and (2) can be written as the following functions of the state variable x;:

kt—|—1 = IC(xt;st) = S5t — bt (14a)
ay = afsy) :=a+ p(st —2a) (14b)
_ ooy fee)
Riy1 = Rxst) = 7————min< ky 11 — asws, Ak (14c)
kiy1 — apwy
o ooy fke1)
RH—l = R (Xt, St) = W maxs< &+Wt, (1 — A)kt+1 (14d)
RfH = Rs(xt,'St) = pRE(Xt,'St) + (1 — p)R(xs;8¢). (14e)

By (14a), positivity of capital requires b; < s;w¢, which imposes a first restriction on X. A
second restriction is that the savings rate s; must be consistent with the savings behavior
of semi-entrepreneurs. For s; = §, this requires R°(wy, b;;5) > p while R (wy, bi;s) < p
must hold for s; = s to be consistent. Suppose that precisely one of these conditions holds.
Then, the consistent savings rate is determined by the mapping

if RS(x;5) > p

B (15)

S:X—{s,5}, s =5(x) ::{ if RS(xy;8) < p

|« U0y

Below we impose restrictions on X such that at least one of the two qualifications holds.*
Inserting (15) permits to write all variables determined by equations (14b—d) as functions

4For states where both 5 and s are consistent, the definition (15) would need to be modified to select a
savings rate, for example, by a random selection.



of x; alone. Furthermore, using (14b-d) and (15), the new state x;11 = (w1, br41) is
determined as

Wi+1 = q)l (wt, bt) =Wo IC(wt, bt;S(wt, bt)) (16&)
bii1 = Do(wy, by) := byR(wt, by; S(wy, by)). (16b)

where W (k) := f(k) — kf’(k). An initial state xy € X defines an equilibrium for & in the

sense of Definition 2.1 if (16,b) generates a sequence {x; };>¢ of states which satisfy x; € X
for all t > 0. All other equilibrium variables follow from (14b—d) and (15).

3.2 Defining a state space

The set of states x; for which a continuation value x;,; determined as in the previous
subsection is well-defined and decomposes into the set X of states consistent with high
savings s; = 5 and the set X consistent with low savings s; = s. Formally, recalling the
additional restriction by < s;w;

= {(w,b) € IR%r | b < s‘w,RS(w,b;§) > p} (17a)

< Xl

= {(w,b) ER2 | b<sw R (wb;s) < p}. (17b)

Defining the state space X := X U X ensures that each x; € X has a continuation value x; 1
which is unique whenever x; € X\(X N X). As mentioned in footnote 4, if XN X # @,
the savings function (15) can be modified appropriately to induce a unique continua-
tion value. Also observe that for (16,b) to define a dynamical system, the mappings
® = (O, Py) must further be restricted to a subset X C X which is self-supporting, i.e.,
®(X) C X. This is a typical property of models with bubbles also present—though not
explicitly discussed —in Tirole (1985). We will handle this issue in the following sections.

3.3 Regimes in the state space

The sets defined in (17a,b) can be partitioned into states where the borrowing constraint
is binding and where it is not. By (14c), the borrowing constraint is binding in period ¢, if
and only if k; 11 — agw; > Ak; 1. Using (14a), this is equivalent to by < y(s;)w; where

v(s) :=s— 1DC£S))L'S € {s,5}. (18)
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We see that whether borrowing constraint binds in a given savings regime depends en-
tirely on the size of the ratio i—tt relative to a constant 7y(s). As a consequence, the borrow-
ing constraint is more likely to bind if the bubble is small and vanishes if b; is large, rela-
tive to the wage w;. If b; is small, savings net of bubbles and thus investment are higher.
This implies a higher loans-to-investment ratio making the borrowing constraint more
likely to bind. In contrast, low savings net of bubbles decrease the loans-to-investment
ratio which relaxes the borrowing constraint. Also observe that y(s) < s and, possibly,
7(s) < 0. In the latter case, the borrowing will never bind.

Thus, we obtain four regions depending on whether savings are high or low and the
borrowing constraint is binding or not. Formally, X = X U X and X = X U Xy where

Xg = {(bh)eX|b<r@u), Xp = {(wb)€X|b<y(s)w}

Xv = {b)eX|b>q@w), Xy = {(wb)eX|b>y()w}. (19)

We also let X3 := Xz UXp and Xy := Xy U Xy the set of states where the borrowing
constraint is binding and where it is not.

4 Steady state analysis

In this section, we analyze steady states of P, i.e., states x € X for which ®(x) = x. We
call a steady state x = (w, b) bubbleless if b = 0 and bubbly otherwise. In what follows,
steady state values are denoted by the symbol of the respective variable with no time
index. In addition, a superscript zero identifies variables associated with a bubbleless
steady state.

4.1 Existence of steady states

To obtain explicit results and closed-form solutions, the remainder of this paper assumes
a Cobb-Douglas production technology f(k) := k%, 0 < 6 < 1. The economy is then sum-
marized by the list & = (a, p, A, p,0). Under this additional restriction, explicit conditions
can be derived under which steady states of either type (bubbleless or bubbly) exist in
the four regimes of the state space. These are stated formally in Lemma A.1 and A.2 in
Appendix A.1. The main findings are the following.
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First, compared to similar models in the literature, additional restrictions are necessary
for steady states of either type to exist. These restrictions are necessary to render returns
consistent with the savings behavior of semi-entrepreneurs. Furthermore, Lemma A.2
shows that the returns supporting the bubbleless steady state are crucial for the existence
of bubbly steady states, a typical feature of OLG models with bubbles (cf. Tirole 1985 or
Kunieda 2008). As in these models, a bubble return less than unity is necessary to ensure
existence of a bubbly steady state in the same savings regime (if a bubbleless steady state
in the respective regime fails to exist, one should interpret the condition as a shadow
return). While these conditions are also sufficient in Tirole (1985) in the absence and
in Kunieda (2008) in the presence of financial frictions, more is required here to ensure
consistency with the savings behavior of semi-entrepreneurs. Section 5 offers a detailed
discussion of these conditions.

Second, both types of steady states may not be unique. However, if there are two bubble-
less steady states, either one will be in X3 and the other one in X or one will be in Xy
and the other one in Xg. Thus, in each of the sets Xy, X3, X and X the map ® possesses
at most one bubbleless steady state. The same holds for bubbly steady states. Again, the
potential multiplicity of steady states of each type—which is not observed in comparable
OLG models with bubbles—is due to the interaction between the financial friction and
the savings glut and vanishes as soon as one of these ingredients is turned off (cf. Section
5).

4.2 Crowding-in

Crowding-in occurs if capital or, equivalently, the wage in a bubbly steady state is higher
than in the bubbleless steady state. Formally, we have

Definition 4.1. Given a bubbleless steady state x° = (w?,0) and a bubbly steady state

x = (w,b), b > 0, we say that crowding-in occurs iff w > w.

The following two results show that both the savings glut and the borrowing constraint
are essential for crowding-in. The economic intuition why this holds will be provided in
the next section.

Lemma 4.1. The following conditions are necessary for crowding-in:
(i) xX°c Xand x € X (i) xY € Xp

11



Combining both results from Lemma 4.1, a necessary condition for crowding-in is that
x¥ € X, i.e., the bubbleless steady state must lie in the low-savings regime and the bor-
rowing constraint must be binding at x”. Further, x must lie in the high-savings regime
X. It follows that we can distinguish the two cases where the borrowing constraint is
non-binding and binding at the bubbly steady state, i.e., x € Xy and x € Xp. The next
theorem provides a complete characterization for crowding-in to occur in each of these
two cases. Here we define for s € {s, 5} the functions

1
s

0"(s) = % and gp(s) := %W (20)

As shown in Appendix A.1, these mappings determine the capital returns in the bubble-
less steady state and in the bubbly steady state with a binding borrowing constraint.

Theorem 4.1. Let x° = (w?,0) € X and x = (w,b) € X, b > 0 be steady states of ®. Then,
crowding-in occurs iff either of the following conditions hold:

(i) x € Xy and 0°(s) > 1 (ii) x € Xp and 0°(s) > 05(5).

As Theorem 4.1 is not stated in terms of the primitive parameters of the model, it raises the
questions whether the set of economies which satisty either conditions (i) or (ii) of Theo-
rem 4.1 are non-empty and how they can be characterized. Let € := {& = (a,p, A, p,0) €
R0 <a<i0<p<1,0<A<Lp>00<6 < 1} denote the entire class of
economies studied in this paper and ¢; C € and &, C € be the subclasses of economies
which satisfy conditions (i) and (ii) of Theorem 4.1. Then, &; U &; is the class of economies
for which crowding-in occurs. Note that € N &, = @.°> The following theorem comple-
ments Theorem 4.1 by providing a complete characterization of these classes.

Theorem 4.2. Both & and &; are non-empty and take the following form:

L 0"y m(Ap) y1-A
_ 1 v < 1
¢ {(a,p,/\,p,H)EQS'A<2,6 <1,a<2,6 . <p_1'9n(a;p)<

1 ,7(Ap) , 1—A
= — - 7 <1 —
() {(a,p,A,p,O)eQE'A<2,9 . <p<1l—p+po w(ap)’

2a < mw(a;p) + A0 < min{l,@’}}

where t(x;p) == x(1 —p) +p(1 —x)and 6’ := 1’%9

12
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Figure 2: Parameter restrictions for crowding-in: & = (a,p,Ap0) =
(0.22,0.30,0.25,1.00,0.33) € ¢y and & = (a,p, A, p,0) = (0.22,0.30,0.20,1.00,0.33) € &,

Note that each ¢; and &, contain open subclasses of economies for Theorem 4.1 holds.
Thus, the phenomenon of crowding-in is robust in the sense that it occurs on an open
subclass of economies satisfying the assumption in this paper. Figure 2 depicts a projec-
tion of the sets &; and &, into the p — A space.

4.3 Examples for crowding-in

The following examples illustrate the two cases (i) and (ii) of Theorem 4.1.

Example 1: x° € X, x € Xy

The economy & = (a1, p1, A, p1,61) = (0.21,0.30,0.25,1.00, 0.33) satisfies the conditions
in Theorem 4.2 (i) and, therefore, belongs to &;. Thus, &} has a bubbleless steady state
x? = (w®,0) in X and a bubbly steady state x = (w, b) in X. The values at the respective

steady states compute

w’ = 0.35 Ko =015 f(k = 119 i = 070
w = 043 k =019 f(ky = 1 i = 050
RO = 060 RS = 0.60 REO = 179 1 = 0.07
R = 1.00 RS = 1.00 RE = 100 [ = 023

5This follows by uniqueness of the bubbly steady state in X = Xy U X3, cf. Lemma A.2. Alternatively,

. . . 1—X . 1—X .
the conditions in Theorem 4.2 imply ¢’ 2y < 1in ¢; and ¢’ 2ap) > 1lin &,.

13



Here, i* = % and i = ﬁ is the investment and I¥ = «(s)(i® — w") and | = a(3)(i — w)

the credit volume at the respective steady states which we compute for later reference.
While in principle the economy could have an additional co-existing bubbleless steady
state ¥ € X and/or a bubbly steady state ¥ € Xp, we readily check that neither the
conditions from Lemma A.1(i) nor from Lemma A.2(iv) are satisfied. Thus, the values
computed are in fact the only steady states of the economy. The bubble in this example
crowds in capital by 27%.

Example 2: x° € X, x € Xp.

The economy & = (ay, p2, A2, p2,62) = (0.21,0.30,0.20,1.00, 0.33) satisfies the conditions
in Theorem 4.2 (ii) and, therefore, belongs to &,. Thus, &> has a bubbleless steady state
x? = (w?,0) in Xz and a bubbly steady state x = (w,b) in Xp. The steady state values

compute
w’ = 035 K = 015 (k%) = 190 ¥ = 0.70
w = 0.38 k = 0.18 fl(k) = 1.03 i = 047
RO = 047 R0 = 0.90 REV = 119 19 = 0.07
R = 1.00 RS = 1.03 RE =101 I = 028

Similar to the previous case, neither the conditions from Lemma A.1 (i) nor from Lemma
A.2 (ii) hold. Thus, the steady states computed are the only ones of the economy &5. The
bubble in this example crowds in capital by 20%.

In both of the previous examples the return earned by entrepreneurs decreases while the
one on loans rises. The final result of this section states that this result holds in general.

Proposition 4.1. Under crowding-in, the associated returns satisfy RE < REQ and R > RO,

When crowding-in occurs, savers will be better off since both the return on loans and
the wage increase. However, entrepreneurs will be better off only if the rise in the wage
overcompensate the decline in the return on investment. Both numerical examples show
that capital investment decreases at the intensive margin (i’ > i) due to the decline in
the entrepreneurial return. However, the increase in investment at the extensive margin
overcompensates the decrease in investment at the intensive margin when bubbles crowd
in capital.
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5 The mechanism

This section inspects the economic mechanisms of our model that generate crowding-in.
Recall that our model has two main ingredients: a financial friction and a savings glut. We
will first study each role separately by turning off the other mechanism and then show
how their interaction leads to crowding-in.

5.1 Role of the savings glut

We turn off the savings glut by assuming S(x) = s for all x € X. Formally, this can
be achieved by choosing p € {0,c0}. Then, by Lemmas A.1 and A.2, the economy &
has a unique bubbleless steady state x° = (w?,0) and at most one bubbly steady state
x = (w,b), b > 0. The bubbleless steady state lies in Xp if y(s) > 0 and in Xy if y(s) < 0.

For ease of notation, define the functions

RY(s) := tlg 2, REV(s):= el R (s) := pREY(s) + (1 — p)RY(s).  (21)

s—u(s) IX(_S

Note that all these mappings are strictly decreasing. As the notation suggests and shown
in Appendix A.1, they determine the returns at the bubbleless steady state with a binding
borrowing constraint. Lemma A.2 shows that they play a crucial role for existence of
bubbly steady states. There are two generic cases.

First, suppose Rg’o(s) < 1. In this case, the borrowing constraint will be non-binding
at any bubbly steady state (i.e., x € Xy provided it exists). A restriction necessary and
sufficient for x to exist is ¢’(s) < 1, which is precisely the overaccumulation condition
in Tirole (1985). As the bubbly steady state satisfies f/(k) = 1 > f'(kV), crowding-in is
excluded in this case. One may view the model as a special case of Tirole (1985) in this
first case.

Second, suppose RE’O (s) > 1. In this case, the borrowing constraint will be binding at
the bubbly steady state (i.e., x € Xp provided it exists), but also at the bubbleless steady
state. In this case, a necessary and sufficient condition for x to exist is R}(s) < 1, which
is precisely the existence condition in Kunieda (2008). Note that unlike the previous case,
the existence of a bubbly steady state is compatible with underaccumulation of capital at
the bubbleless steady state (i.e., f’ (k) > 1). One may view our model as a special case of
Kunieda (2008) in this second case. As in his model, crowding-in is excluded.
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Whether an initially binding borrowing constraint induces a spread between the returns
on capital and loans/bubbles or not, it does not affect the resources transferred through
the credit market because savers have a low (in fact, zero) intertemporal elasticity of sub-
stitution in consumption. Therefore, injecting a bubble necessarily absorbs part of con-
sumer incomes which unambiguously leads to crowding-out.® This shows why savings
have to adjust at the extensive margin for crowding-in to occur.

5.2 Role of the financial friction

The financial friction can be turned off by setting A = 1. In this case, by Lemmas A.1 and
A.2 the economy & has at most one bubbleless steady state x” = (w”,0) and at most one
bubbly steady state x = (w, b). Let us assume that both x” and x exist.”

By the observations from the previous subsection, crowding-in can not occur if both
steady states lie in the same savings regime. Furthermore, the injection of bubbles can
only induce a switch from low to high savings (i.e., xX’ € X and x € X). If the savings rate
is constant, any injection of bubbles crowds out investment. But then, returns—equal
to the marginal product of capital—would be higher in the bubbly equilibrium which is

inconsistent with a decline in savings rates.?

Therefore, suppose ¥’ € Xand x € X, i.e., a savings glut occurs and investment adjusts at
the extensive margin. In the absence of the frictions, a savings glut is only compatible with
an increase in capital returns which requires a decrease in capital. Thus, the savings glut
alone is not sufficient to generate crowding-in. To summarize, the injection of bubbles is
capable of triggering the savings glut, but in the absence of financial frictions, this will
unambiguously lead to crowding-out.

®Formally, when the borrowing constraint is binding at the bubbly steady state f’(k’) = ¢%(s) and
f'(k) = 0g(s). The borrowing constraint is necessarily binding also at the bubbleless steady state. This and
RY(s) < 1imply 0°(s) < 0g(s).

"Formally, by Lemma A.1, a bubbleless steady state exists in Xy = X iff ¢°(3) > p, in Xy = X iff
0"(s) < p and fails to exist if 0°(5) < p < 0%(s). By Lemma A.2, a bubbly steady state exists in X iff
0°(3) < 1Ap<landinXiff o°(s) <1Ap > 1.

8Note that by Lemma A.1 x? € X requires f'(k”) = ¢°(5) > p while x € X requiresp > 1 = f’(k) and
0°(s) < 1. But then, ¢°(5) > 0°(s) which is impossible since ¢ is decreasing.
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5.3 Interaction of the financial friction and the savings glut

We saw in the previous subsections why crowding-in requires a switch from low to high
savings and a binding borrowing constraint in at least one of the two steady state. Let us
now assume 0 < p < o0 and A < 1 and focus on the case x’ € X and x € X.

Why does crowding-in require a binding borrowing constraint at the bubbleless steady
state? Suppose the borrowing constraint were non-binding at x° (i.e., x° € Xy). Then, as
demonstrated in the previous section, even if we were to switch to a bubbly steady state
x in the high-savings regime where the borrowing constraint is non-binding, crowding-
out necessarily occurs by savings consistency. If, in addition, capital is depressed at the
bubbly steady state due to a binding borrowing constraint, this would further amplify
and add to the crowding-out effect. Thus, x’ € Xy is not compatible with an increase in
returns necessary to support a savings glut. These insights show why savings must be
low and capital investment must be depressed due to a binding borrowing constraint at
the bubbleless steady state for crowding-in to occur.

We can now explain the mechanism of crowding-in. In the initial bubbleless steady state,
a binding borrowing constraint keeps the return on loans R’ low relative to the capital re-
turn. All capital investment is undertaken by entrepreneurs who earn a high return REY
while the return on bubbles R is still so low that R5? < p and semi-entrepreneurs choose
not to save their wealth. Injecting a bubble now offers an alternative investment opportu-
nity to savers. In response they reduce their supply of loans—or demand a higher return
on their credit. This increases the returns R on loans and bubbles, and decreases the re-
turn RE earned by entrepreneurs. At this point, it is crucial that the change in returns
increases R° above the threshold value p to trigger a savings glut. For this to happen,
the probability p must be sufficiently small such that the increase in (1 — p)R overcom-
pensates the reduction in pRE. Instead of consuming semi-entrepreneurs now save and
invest their wealth which adds additional resources to the economy. Part of these addi-
tional resources is absorbed by the bubble while the rest increases the formation of capital.

Finally, recall that out of the group of semi-entrepreneurs, only a fraction p become in-
vestors while the remaining 1 — p become savers. Therefore, the additional formation of
capital is not necessarily accompanied by an increase in the resources exchanged through
the credit market. In fact, the numerical examples presented above demonstrate that the
equilibrium credit volume even decreases in the bubbly equilibrium (I < I°) making the
credit constraint less tight which may even vanish entirely.
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6 Dynamics

We first provide a theoretical characterization of the stability properties of bubbleless and
bubbly steady states. We then focus on the crowding-in scenario and ask whether, starting
from a bubbleless situation, it is possible to inject a bubble to increase capital and converge
to the bubbly steady state. In the following analysis, we denote by ®", n > 0 the n-fold
composition @ o ... o P setting P = idy.

n-times

6.1 Stability of bubbleless steady states

Let X € {Xy, Xg, Xy, X5} be one of the four regimes defined above and % = (w?,0) € X
be a bubbleless steady state of the system (16,b). We define M to be the set of bubbleless
initial states attracted by x’—which stay in X under iteration of ® and converge to x°.
Formally,

M = {(w,o) € X|®"(,0) € X¥n > 0 A lim ®"(w,0) = xo}. (22)
n (e

Observe from (16) that for a given initial value wy the bubbleless dynamics take the one-
dimensional form w1 = (1 — ) (s;w;)?, t > 0. Hence, for a constant savings rate s, any
initial value (w, 0) converges to x” under iteration of ®, even monotonically. Furthermore,
whether the borrowing constraint is binding or not is exclusively determined by whether
v(s) > 0 or y(s) < O—whether it is binding at the steady state or not. Thus, it remains
to ensure that the savings rate is consistent with the returns along the entire path. We
obtain the following result which provides a complete characterization of the sets (22) for
each of the four cases from Lemma A.1. The proof follows from the respective savings
consistency condition and direct calculations.

Lemma 6.1. Let X € {Xy,Xp, Xy, Xg} and x° = (w°,0) € X be a steady state. Define
w? . = wO (RSO /p) 0. Then, the following holds:

crit *
(i) Ifx° € X, then M° = {(w, 0)|w < w?_.}
(ii) If x° € X, then M® = {(w,0)[w > wl;}

Note that in case (i) where x0 lies in the high savings regime, R5? > p by savings-

consistency which implies w? .. > w". In this case, the steady state attracts all bubbleless

initial states which lie below the threshold wgrit. grit

RSV < p and the steady state attracts all initial states that exceed the threshold w?

crit*

Likewise, w?.. < w” in case (ii) where
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6.2 Stability of bubbly steady states

LetX € {Xn, X, Xy, X} be one of the four regimes defined above. We call a steady state
x € X interior if x is an interior point of X. The stability properties of interior steady
states can be inferred by studying the Eigenvalues A1, A, of the Jacobian matrix D®(x).
A steady state whose Eigenvalues are real and satisfy 0 < |A1]| < 1 < |Ay] is called saddle-
path stable. In this case, stability obtains along a one-dimensional set M C X, the so-called
stable manifold. Formally,

M= {7 € X|®"(%) € X¥n >0 A lim (%) =x}. (23)
In other words, the stable manifold M associated with an interior steady state x € X is
the set of points which remain in X under iteration of ® and converge to x. As a major
advantage, our restriction to a Cobb-Douglas technology permits to characterize these
sets explicitly in the following result.

Lemma 6.2. Let X € {Xy, Xp, Xy, Xg} and x = (w, b) € X be an interior steady state. Then x

is saddle-path stable. Defining m := s(1 — Q?(S) and et := w(RS/ ﬁ, the sets (23) take the
P g F) P

form:

(i) Ifx € X, then M = {(w,E) ER? | @ < Weriy, & = m}

w

(ii) If x € X, then M = {(w, D) € RE | @ > Were, L = m}

Note that (w,b) € M and that m > 0 as argued in footnote 9. Geometrically, M defines a
linear curve in the state space which is self-supporting under ® (i.e., ®(M) C M). Thus,
any initial state stays in M under iteration of & for all times ¢.

6.3 Multiple equilibria

The analysis from Section 4 revealed that two conditions must hold for crowding-in to
occur: 1. bubbles boost savings and 2. the borrowing constraint binds in the bubble-
less economy. Furthermore, the stability properties of steady states established that there
exists a saddle path M converging to the bubbly steady state and a bubbleless path M’
converging to the bubbleless steady state. We now limit our focus on the parameter set
for which crowding-in occurs and analyze the dynamics on a subset of the state space.
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Let the economy & possesses a bubbleless steady state xX’ = (w’,0) € Xz and a bubbly
steady state x = (w,b) € X. Assume that the hypotheses from Theorem 4.1(i) or (ii) are
satisfied such that w > w’. Suppose that the economy is initially in a bubbleless state with
a binding borrowing constraint (i.e., xg = (wp,0) € Xp). We now ask two questions. First,
is it possible to inject a bubble into the system such that long-run investment increases
and the economy converges to a bubbly steady state with higher capital? More formally:
Is there a value by > 0 which shifts the initial state xg to x{, = (wp, bp) such that the
economy converges to a bubbly steady state x? Second, which properties do we observe
along the path starting in x,? The next theorem gives the answers.

Theorem 6.1. Let x* = (w°,0) € Xz and x = (w,b) € X be steady states of (16,b) for which
w > wY. Then, we have:

(i) For all wy < weyt there is a unique by > 0 such that lim;_,« ®* (wy, by) = x.
(ii) If wy < w, the sequence (wy, by) := @' (wy, by), t > 0 is strictly increasing.

(iii) If w® < wy < Wiy, then wy > W for all times t > 0.

The first assertion employs the explicit form of the stable set M from Lemma 6.2 and the
value by is such that xy € M. On M, convergence to x is always monotonic. By (ii), if the
initial state wy is below w, the bubble increases investment immediately and in all future
periods relative to wp. In the case when wy = w?, the economy is initially in a bubbleless
steady state, and crowding-in occurs immediately in ¢t = 0 and investment continues to
increase in all successive periods as the economy converges to the bubbly steady state
x. Due to the stability properties of x” stated in Lemma 6.1(ii), the assumption wy = w"
seems not too restrictive. Finally, whether the bubbly steady state x satisfies the golden
rule depends on whether x € Xy or x € Xp. By Lemma A .2(i), the former is only possible

if p < 1. The findings from Theorem 6.1 are illustrated in the following figure.

The remainder of this section illustrates the adjustment process towards the bubbly steady
state for the example economy &, studied in Section 4.3. In the initial period t = 0, the
economy is in a bubbleless steady state x° = (w”,0) when a bubble by > 0 determined
as in Theorem 6.1 is injected into the system. Figure 4 shows the induced time series of
the bubble, the wage and the returns as the economy converges to the bubbly steady state
x = (w,b). The solid lines are the bubbleless steady state values. The dots show the
variables (b, wy, Ry, Rf) in the bubbly equilibrium converging to (0.18,0.38,1.00, 1.01).
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Figure 3: Dynamics of crowding-in: & = (az, p2, A2, p2,62) = (0.21,0.30,0.20,1.00, 0.33)
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Figure 4: When bubbles emerge.
The fact that b;.1/b; = Ry > 1 in the bubbly equilibrium implies that R; falls when

the economy converges to the bubbly steady state. This together with R > R? from
Proposition 1 (i) implies that R; must initially overshoot its long run value at t = 0 and
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then decline. The injection of bubbles brings the economy on a new equilibrium where R;
jumps initially due to an increase in investment at the extensive margin, which creates an
additional demand for credit. Savings also increase at the extensive margin. However, the
effect of savings net of bubbles is dominated by the demand effect when the interest rate
rises. When the borrowing constraint is binding, R;y; = /\Okf 1/ (ki1 — apwy). Since Ry 14

is decreasing in k1, the overshooting must be caused by a jump in «;: an adjustment of

E
t+1

drops and then must decline further to be consistent with RE? > RE from Proposition

E
t+1

semi-entrepreneurs to obtain access to investment projects must be sufficiently low for a

investment at the extensive margin. The jump in «, in contrast, causes R;EH to fall. R

1 (ii). The fact that Ry;+q jumps up and Ry, , drops suggest that the probability p for

savings glut to occur.

Figure 5 shows the time series in the bubbleless equilibrium starting at t = 0 with the
bubbly steady state value of the wage w = 0.35 as the initial condition. The solid lines are
the bubbly steady state values. The dots show the variables (b;, wy, Ry, Rf) in the bubbly
equilibrium converging to (0.00,0.35,0.47,1.19).
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Figure 5: When bubbles burst.

Panel (a) simply shows the bubbly steady state value and zero. Panel (b) shows that
the wage gradually declines due to declining capital investment. Panel (c) shows that
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the return on loans R; initially drops below the bubbleless steady state due to a drop
in capital investment and then gradually rises. We know R > R’ when crowding-in
occurs (c.f. Proposition 1 (ii)). For this to be consistent with R;; being decreasing in k; 1,
R;4+1 must undershoot its long run value. On the other hand, the return on investment
R,
Proposition 1 (i)).

jumps up and then rises further converging to its long run value RE? = 1.19 (c.f.

7 Conclusion

The main contribution of our paper is that we provide a new mechanism of how bub-
bles crowd in capital investment. When bubbles compete with entrepreneurs for savings
and raise the interest rate, the rise causes a savings glut. When savings net of bubbles
increase, investment expands. The central feature of our model is that savings and in-
vestment increase at the extensive margin. It is notable that this channel operates even
when entrepreneurs do not hold bubbles, i.e., in the absence of collateral effects of bubbles
on capital investment.

A Appendix

A.1 Existence of steady states
A.1.1 Bubbleless steady states

Using (20) and (21) the following result provides a complete characterization of the con-
ditions under which bubbleless steady states exist in either of the regimes defined in (19).

Lemma A.1. The map ® has a bubbleless steady state x° = (w?,0) in

() Xniffy(3) <0and °(5) >p (i) Xpiffy(5) > 0and RY°(3) > p
(i) Xy iffy(s) <O0and(s) <p (V) Xgiff7(s) > Oand Ry(s) < p.

The second conditions in (i) and (ii) as well as in (iii) and (iv) are mutually exclusive
(recall that the functions defined in (21) are decreasing). Thus, in each of the sets Xy, X5,
X and X @ has at most one bubbly steady state. Further, the bubbleless steady state—if it
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exists—is unique if either y(5) < 0Ay(s) < 0or (5) > 0A (s) > 0. Thus, co-existing
bubbleless steady states can only occur if either ¥(5) < 0 < ¥(s) or y(s) < 0 < ¥(5), in
which case the borrowing constraint is binding in precisely one of them.

To characterize the associated steady state values, denote by s° = S(x") the savings rate
and k¥ = K(x?;s") the capital stock at the steady state x°. In cases (i) and (ii) of Lemma
A.1 where the borrowing constraint is non-binding, the steady state returns satisfy

R?=RFV =R = (k%) = °(s"). (A1)
In cases (iii) and (iv) where the borrowing constraint is binding, they are
RY = RY%(s%) < 0%(s?) = f'(k%) < REO = REO(s7), RSY = pREC +- (1 — p)R®.  (A2)

Note that f/(k%) = ¢%(s”) independently of whether the borrowing constraint is binding
or not. Thus, the same holds for the steady state wage which can be written as

@’ = (1— )01 %(s%) 1. (A.3)

A.1.2 Bubbly steady states

The following result offers a complete characterization of the conditions under which
bubbly steady states exist in each of the four regimes defined in (19).

Lemma A.2. The map ® has a bubbly steady state x = (w,b), b > 0 in

(i) Xy, iff0°(3) < 1, RE’O(ST) <l,andp <1
(i) Xy, iff(s) < 1, RF%(s) < 1,and p > 1
(iii) Xp, iff R}(5) <1 < REC(3), and 1 — p+ pR5°(3) > p
(iv) Xp, iff R%(s) <1< Rg’o(g), and 1 —p + pRg’O(g) <p.
The last conditions (involving p) in cases (i) and (ii) as well as in (iii) and (iv) are again
mutually exclusive. The same is true of the requirements in (i) and (iii) as well as in (ii)
and (iv). Thus, in each of the sets Xy, Xg, X and X @ has at most one bubbly steady state.

Of course, the existence conditions do not require a bubbleless steady state to exist in the

same regime.
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To characterize the associated steady state values, denote by s = S(x) the savings rate
and by k = K(x;s) the capital stock at the bubbly steady state x. Then, the steady state
returns in cases (i) and (ii) satisfy

R=R>=RE=F(k)=1. (A.4)
In cases (iii) and (iv) they are given by

R=1< f'(k) = op(s) < RE=REY(s) and R®=pRE+1—p. (A.5)
Using the previous definitions the steady state values can be expressed as’

w=(1-0)0T7f (k) 19, b=sw (1—19%). (A.6)

A.2 Proofs

Proof of Lemma A.1. As the question whether or not the borrowing constraint is binding
depends exclusively on the ratio % (which is zero at any bubbleless steady state) rela-
tive to 7y(s), the sign of the latter determines the regime in which the bubbleless steady
state lies. One can then show by direct computations using equations (14b)—(14e) that the
functions defined in (21) determine the steady state returns in the respective regime. The
second condition ensures consistency with the behavior of semi-entrepreneurs. O

Proof of Lemma A.2. Define m; := i—tt. Then, using (16,b) and the Cobb-Douglas specifica-
tion, one obtains the following relation that holds for each t > 0:

0 my . St — &y — My
Mip1 = P(my;s¢) = minqA, — 5. A7
t+1 (P( ! t) 1—95t—06t—mt { St — My ( )
As the savings rate s; = S(x;) can not be written as a function of m;, (A.7) does not

directly define a dynamical system in m. Observe, however, that for any bubbly steady
b
w

steady state of ¢(+;s),i.e., m = ¢(m;s) and 0 < m < s. Inaddition, the steady state returns

state x = (w, b) of ® with steady state savings rate s = S(x), the ratio m := - mustbe a

must be consistent with the behavior of semi-entrepreneurs. Evaluating these conditions
separately for each of the four regimes gives the conditions of the lemma. O

To see that the second quantity in (A.6) is positive, i.e., % < 1 note that x € Xy implies f'(k) =1
and ¢°(s) < 1 by Lemma A.2(i),(ii) while x € Xp requires R} (s) < 1 due to Lemma A 2(iii),(iv) which again
implies ]Q([,)((;; = SZ—((SS)) < 1. Thus, indeed b > 0. The economic reason is a crowding out effect that occurs
between the bubbleless and bubbly steady states that lie in the same savings regime.
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Proof of Lemma 4.1. First note from (A.3), (A.6) that w > w? iff f'(k) < f'(k°).

(i) Assume by contradiction that both x* and x lie in X (the proof for X is analogous).
Suppose x € Xy. Then, f'(k) < f' (k%) iff ¢°(5) > 1, contradicting Lemma A.2(i). Suppose
x € Xp. Then, f'(k) < f'(k°) iff 05(5) < 0%(5), which can be rearranged to R%(5) > 1,
contradicting Lemma A.2(iii).

(ii) By contradiction, let xX’ € Xy. Then, by (i), x° € Xy and f’(k°) = ¢"(s). Suppose x =
(w,b) € Xy. Then, f'(k) < f'(k°) iff ¢°(s) > 1. But savings consistency requires f’(k°) =
0°(s) < p < 1= f'(k) by Lemma A.1(ii) and Lemma A.2(i), which is a contradiction.
Second, suppose x € Xp. Then, f/(k) < f'(k°) iff

0’(s) > og(3)- (A.8)
The savings consistency conditions from Lemmas A.1(ii) and A.2(iii) yield
0 EO/~
Q' (s) <p<1—p+pRg(5) (A.9)

We also know from (A.5) that g5(5) > 1. Thus, by (A.8) ¢°(s) > 1 and, therefore, 1 — p +
pa®(s) < 0°(s). Using this last result in (A.9) implies ¢°(s) < R5’(3). By Lemma A.1(ii)
v(s) < 0 which implies RE’O (s) < 0°(s) by (21). Combining both results gives

RE (s) < ¢%(s) < RE"(5)

which is impossible, since RE’O defined in (21) is decreasing in s proving the claim. 0

Proof of Theorem 4.1. By (A.3) and (A.6), w > w” iff f'(k) < f'(kV). Using (A.2) and (A.5)
gives precisely the conditions depending on whether x € Xy or x € Xp. O

Proof of Theorem 4.2. Non-emptiness is a direct consequence of the examples. The condi-
tions stated can be verified directly by solving the parameter restrictions using the results
from Lemmas A.1 and A.2 and Theorem 4.1 together with equations (14b), (18), (20) and
(21). O

Proof of Proposition 4.1. When bubbles crowd in investment, RF0 = %% > f1(K%) > 1
and RF = max{1, %%}. Hence, RF? > RE. From Lemma 3 (i), crowding-in requires a
savings glut. Hence, it must be that pRE + (1 — p)R > pRE? + (1 — p)R or (1 — p)(R —
R%) > p(REY — RE). As REV > RE by the first part of this proof, R — R® > 0. O
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Proof of Lemma 6.2. Let X be one of the four regimes. Evaluating the trace and determinant
of the Jacobian matrix D®(w, b) at the steady state one verifies that det D®(w, b) > 0 and
trD®(w,b) > 1+ detDP(w,b) > 0 which implies saddle-path stability. To explicitly
construct the stable sets (23), equation (A.7) is key. Let xg = (wp, by) € M be arbitrary and
define x; := ®!(x(). As @(ﬁ) C M, x; € M for all t > 0. Further, M C X implies x; € X
for all t > 0, i.e., the sequence {x; };>¢ stays in the same regime for all + > 0. Therefore,
st = S(wy, by) = s for all t and the borrowing constraint is either always or never binding.
Define the induced sequence m; := %, t > 0 which necessarily satisfies m; < s for all
t > 0. Given a constant savings rate s, (A.7) defines a one-dimensional dynamical system
which governs the evolution of (1;);>0. As lim¢_,e(wy, bt) = (w,b) by definition of M,
lim; seomy = m := % where 0 < m < s. Consider the following two cases 1 and 2. In
case 1, X C X and the borrowing constraint is always binding, i.e., m; < 7(s) for all
t > 0. Incase 2, X C Xy and the borrowing constraint is never binding, i.e., m; > y(s)

for all t > 0. In either case, (A.7) implies that the sequence (m;);>¢ is generated by a
—t .
while a9 = %, a; = s in case 2. One verifies directly that ¢ has precisely two steady
1

map of the form ¢(m) = 0 < m < a; where gy = A%, ap = s —a(s) in case 1

states m? = 0 and m! = a7 — ap. Note from Lemma A.2 that ! > 0 in both cases as

RY%(s) < lin case 1 and ¢°(s) < lincase 2. As §'(m!) = 1+ m!/ag > 1, m! is unstable

while 7Y is stable. By this observation , we claim that (wy, bp) must satisfy my = 5}—% = ml.

By contradiction, suppose my < ml. Then, stability of 1m0 implies lim¢ e m; = 0 which
contradicts limy . 1; = m. Conversely, suppose my > m!. Then, as lim,, »,, ¢(m) = oo,
the sequence {m;};>¢ would grow without bound such that m; > a; after finitely many
periods, which violates m; < 7(s) < a; in case 1 and m; < s in case 2. Conclude that
indeed 5]—% = ! which implies % = 1! for all + > 0 and, therefore, m = ml. It follows
that M is a subset of {(w,b) € R? , |b = mw}. Also note that (A.4) and (A.5) permit m

to be written in the form stated in the lemma. Finally, by = mw; and s; = s permit the
s _ fllki1) ps _ (w\0-1 ps

f = R =(%) R

for each t > 0. As the sequence {w;};>¢ converges monotonically to w, the additional

S
t+1

< pin case (ii). O

return (14e) earned by semi-entrepreneurs to be written as R

conditions of the lemma restrict the initial value wg such that R

S
Rt—|—1

> p in case (i) and

Proof of Theorem 6.1. The proof follows directly from Lemma 6.2 and the form of the stable
set M. Recall that q)(ﬁ) C M such that (wy, by) € M and b; = mw; for all t > 0. In
particular, w;, 1 = (1 —0)(5 — m)%w? for all + > 0 which converges monotonically to
w. O
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