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1 Introduction

In this work we will study an interbank market model, which is based on a model used

in an ECB working paper by Heider and Hoerova [15]. There is no doubt about the

importance of interbank markets as a way to smooth out different liquidity levels of

banks without intervention of a central bank. There are various markets for different

durations of the credits. We are interested in the different interest rates on secured and

unsecured markets and therefore consider one fixed time horizon in this work. During the

financial crisis, the spread between the various rates has increased significantly, which is

why we try to model this spread and try to analyze in which way it depends on liquidity

shocks for individual banks.

A version of the model we study has been discussed by Freixas and Holthausen [12].

This paper is one of a series of papers on the topic of liquidity, risk and in particular the

effects on inetrbank markets ([10], [11], [12], [15], [16], [17]).

An interbank market of the type at hand has been introduced by Diamond and Dy-

bvig [8] and Bhattacharya and Gale [2]. The interbank markets and interest rates are

determined by a Walrasian auction. There are various papers, which discuss equilibria

in the sense of Walras or an adapted version thereof. An introduction and discussion

of the Walrasian approach is given by Katzner [21]. A general article on auctions and

equilibria, as well as applications, was published by de Vries and Vohra [7].

Walras described an equilibrium and showed properties of equilibrium prices, but did

not address the question of existence of such an equilibrium. Among many others,

Arrow and Debreu [1] discuss the existence of an equilibrium. There are two established

modifications of the classical Walras equilibrium, the Stackelberg-Walras equilibrium

and the Cournot-Walras equilibrium. They are described and compared in a work by

Julien [19]. Codognato and Gabsewicz [5] discuss Cournot-Walras equilibria in markets

with a continuum of traders. An early example, where a continuum of traders is used, is

a paper by Diamond and Dybvig [8]. This is particularly relevant, since we will assume
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1 Introduction

to have a continuum of agents (i.e. banks) as well.

Our model goes als follows: We consider a continuum of identical banks maximizing

expected utility of their terminal wealth in a three-period model (t = 0, t1, t2). There

are households, which have future liquidity needs (in t1 and t2) and therefore let banks

manage their funds.

In t = 0, banks can invest households’ funds in riskless bonds and a risky investment.

Those investments can only be liquidated in t = t2. The remaining funds can be stored

at no cost, i.e. there is a riskless interest-free asset, which can be accessed at any time.

We will refer to this asset as the liquid asset. The risky investment is assumed to have

a higher expected return than the bonds. It represents a combination of loans, venture

capital investments and stock investments. In contrast to usual models, the t2-value of

the investment is determined independently for each bank. The distribution of the value

is the same for all banks. Thus there is a tradeoff between liquidity and return as well

as a tradeoff between expected return and risk.

In t1 and t2, the banks have to satisfy the households’ liquidity needs. Every house-

hold can withdraw an arbitrary fraction of its funds in t1. We assume that only the

distribution of those withdrawals are known, but not the exact amount for every bank.

Since the bonds and the risky investment cannot be liquidated in t1, the withdrawals

have to be paid out of the liquid asset. Without a possibility to smooth out the different

levels of liquidity demand between the banks, every bank has to hold an amount of

liquid asset, which covers the highest possible withdrawal in t1. This obviously harms

the return in t2.

Therefore, we introduce two interbank markets, a secured one and an unsecured one.

The security on the secured market would typically be bonds, thus we allow an outright

sale of bonds. This is easier to handle and yields equivalent results.

As in [15], the interest rates will be determined by a Walras-type auction. We will

derive results for a very general case, thus we will define a generalization of the classical

Walras equilibrium theory in chapter 2. This is necessary, since the most common gener-

alizations, namely the Stackelberg-Walras equilibrium and the Cournot-Walras equilib-

rium, do not fit our needs perfectly. In some aspects, we need a more general formulation,

in other aspects we need to consider a more special situation.

In chapter 3, we will specify the mathematical setup for our model and give an overview
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over the three-period market.

The core of this work will be chapter 3, where we will derive criteria for the de-

velopment of an unsecured interbank market as well as a formula for the unsecured

interest rate. This will be made with little to no assumptions on the distributions of

t1-withdrawals and return on the risky investment.

In the last chapter, we will discuss optimal portfolios in t = 0 by means of certain

examples. Since only very few general results can be shown, the distributions of t1-

withdrawals and return on the risky investment will be specified.
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2 A generalized Walras equilibrium

In this section, we will generalize the classical Walras equilibrium theory. We start from

the trivial classical situation and generalize exactly the parts we consider necessary. We

introduce a way to deal with non-unique demand functions and allow for situations where

the buying price for a certain good exceeds its selling price. We add external cashflows

to the model and introduce storage of excess capital as well as lending between agents.

Finally, instead of limiting the model to a finite number of agents, we let the set of

agents be arbitrary. Even uncountable sets will be possible.

2.1 Classical Walras equilibrium

First of all, let us recap the Walras equilibrium for a market with n agents and m goods.

Let n ≥ 2 be the number of agents on the market, m ≥ 2 the number of goods on the

market and w
j
i agent i’s initial endowment of good j, measured in units of the respective

good (i = 1, . . . n; j = 1, . . .m). The auction is held as follows: First, the auctioneer

announces a price m-tuple for the goods, then the agents state their demand for each

good given those prices. We denote by d
j
i (p1, . . . , pm) the demand function of agent i

for good j given prices p1, . . . , pm (i=1,. . . n; j=1,. . .m). If the market clears (aggregate

demand equals aggregate initial endowment for each good), then the announced price

m-tuple is an equilibrium price m-tuple. Else, the auctioneer adjusts the prices (raise

prices for goods where aggregate demand surpassed aggregate initial endowment; lower

prices for goods where aggregate demand was lower than aggregate initial endowment)

and the process is repeated. Thus by definition, an equilibrium price m-tuple p∗1, . . . , p
∗
m

satisfies
n∑

i=1

d
j
i (p

∗
1, . . . , p

∗
m) =

n∑

i=1

w
j
i , for all j = 1, . . .m.
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2 A generalized Walras equilibrium

2.2 Modifications

2.2.1 Multiple demand functions

Assuming that demand is uniquely determined by a given price m-tuple is not reason-

able. From an agent’s point of view, demand depends on a utility function and the

initial endowment. In general, the agents’ utility functions allow for multiple optimal

allocations. Thus, we replace the demand functions by a set of functions, namely the

optimal order sets. Let f i : Rm → R be the reward function, mapping an allocation

(x1, . . . , xm) of goods to its numerical value to the i-th agent. Every agent’s preferences

are included in this reward function. We assume, that f i is increasing in every ele-

ment. The function f i may depend on the price m-tuple (p1, . . . , pm), a typical choice

is f i(x1, . . . , xm) = U i(
∑m

j=1 pjxj) where U i is a utility function.

Definition 2.1. Let (p1, . . . , pm) be fixed. The optimal order set of agent i is the set

Oi = Oi(p1, . . . , pm) ⊂ R
m
≥0, s.t. every x = (x1, . . . , xm) ∈ Oi satisfies

• budget constraint:
∑m

j=1 pjxj =
∑m

j=1 pjw
j
i ,

• optimality:

f i(x) = max
(y1,...,ym)∈Rm

≥0

f i(y1, . . . , ym).

By stating an optimal order set, the agent agrees with being assigned an arbitrary

x ∈ Oi. It is now up to the auctioneer to assign to every agent an allocation out of his

order set such that the market clears. The following definition provides all possible ways

to do so.

Definition 2.2. Let (p1, . . . , pm) be fixed. An optimal market-clearing assignment

is a function

a : {1, . . . , n} → R
m
≥0, i 7→ (a1(i), . . . , am(i)),

such that for every i ∈ {1, . . . , n}

a(i) ∈ Oi

and the market clearing conditions hold:

n∑

i=1

aj(i) =
n∑

i=1

w
j
i , j = 1, . . . ,m.

If such a function exists, we call (p1, . . . , pm) an equilibrium price m-tuple.
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2.2 Modifications

If there is no such function, the auctioneer adjusts the prices as in the classical model

and the process is repeated.

2.2.2 Asymmetric markets

One can easily adjust the model to allow asymmetric markets. The classical model as-

sumes that buying prices equal selling prices for each good. There are various situations,

in which that is not the case. An example is the existence of transaction costs or delivery

costs. Obviously, the buying price should always be at least as high as the selling price.

Let us assume that the buying price may depend on the selling price and the amount

of goods sold, and denote this relation by a function gj . Thus for selling xj units of

good j at price pj , an agent receives pjxj . For buying xj units of good j at price pj , an

agent has to pay gj(pj , xj)xj . It makes sense to assume that gj(pj , xj) ≥ pj . Note that

for goods with symmetric price structure we have gj(pj , xj) ≡ pj . The market clearing

condition and the optimality condition remain the same. We have to adjust the budget

constraint to
m∑

j=1

gj(pj , xj)(xj − w
j
i )

+ =

m∑

j=1

pj(xj − w
j
i )

−.

The left-hand side is the amount of money spent on the market, the right hand side is

the amount of money earned, since for xj −w
j
i > 0, agent i is a buyer on the market for

good j and for xj − w
j
i < 0, agent i is a seller on the market for good j. Note that for

gj(pj , xj) ≡ pj (j = 1, . . . ,m), the equation is the same as the old budget constraint:

m∑

j=1

pj(xj − w
j
i )

+ =

m∑

j=1

pj(xj − w
j
i )

− ⇐⇒
m∑

j=1

pj(xj − w
j
i ) = 0.

2.2.3 Payment obligations, income, storage and lending

Agents on the market might have income from and payment obligations to either other

agents which participate in the Walras auction or external counterparties. We aggregate

all those cashflows in the (possibly negative) net income and denote it by ci ∈ R for

agent i. This value can be added to the endowment vector as an (m + 1)-th element.

The budget constraint of agent i for given (p1, . . . , pm) now reads

m∑

j=1

gj(pj , xj)(xj − w
j
i )

+ =
m∑

j=1

pj(xj − w
j
i )

− + ci.
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2 A generalized Walras equilibrium

But for ci < −
∑m

j=1 pjw
j
i this is not possible: Assume, the budget constraint holds,

then

ci =
m∑

j=1

gj(pj , xj)(xj − w
j
i )

+ −
m∑

j=1

pj(xj − w
j
i )

− ≥
m∑

j=1

pj(xj − w
j
i ) ≥ −

m∑

j=1

pjw
j
i .

We want to allow for general net incomes and since there might be agents with spare

liquidity from their cashflows, we introduce lending between agents. Generally, there are

two possible ways to do so:

• Allow every agent to lend to any other agent individually. This means that we get

up to n(n−1)
2 different lending markets, possibly with different interest rates.

• Have a centralized lending market, where all lenders and borrowers are perfectly

diversified.

In the current setup, we can handle both options. But since we want to generalize the

set of agents later on, the second option is the more sensible choice. There might be a

positive probability that a borrower cannot pay back such a debt. Therefore we model

the lending market between agents as an asymmetric market. We introduce two variables

referring to the amount lent and borrowed on the market, y+ and y−. Since there might

be tradeable goods or assets outside the auction, we introduce an additional variable z,

which represents the aggregated investments in anything else except the goods 1, . . . ,m

and the interbank market.

A rather strong assumption we have to make at this point is that the redemption

rate on the lending market is known to the auctioneer when making the assignments.

This means that agents state their optimal order sets depending on an assumed overall

redemption rate p̂ and on the interest rate r on the lending market, thus

Oi = Oi(p1, . . . , pm, r, p̂).

The interpretation of this modification is the following: by stating an optimal order set,

the agent agrees with being assigned an arbitrary x ∈ Oi, given prices (p1, . . . , pm) and

interest rate r, if the redemption rate is p̂. The interest rate and a possible surcharge

for borrowers enter the reward functions. An element of the optimal order set now is an

(m+ 2)-tuple (x1, . . . , xm, y+, y−), the budget constraint of agent i becomes

m∑

j=1

gj(pj , xj)(xj − w
j
i )

+ + y+ + z =
m∑

j=1

pj(xj − w
j
i )

− + ci + y−.
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2.2 Modifications

The reward functions are modified to include y+ and y−. For example, the typical

reward function from Section 2.2.1 becomes f i(x1, . . . , xm, y+, y−) = U i(
∑m

j=1 pjxj +

(1+ r)p̂y+− (1+ r)y−). We now assume that f i is increasing in the first m+1 elements

and decreasing in the (m+ 2)-th element. An optimal market clearing assignment now

also has two more entries am+1 and am+2. The old market clearing conditions still have

to hold, additionally we require

n∑

i=1

am+1(i) =

n∑

i=1

am+2(i),

which simply means that the market for interagent loans clears. We do not restrict

external investments (except for obviously only allowing positive investments) and they

have no influence on the auction, thus there is no need for another entry to the assignment

vector.

An additional step is required since the auctioneer has to check for consistency: if

(p1, . . . , pm, r, p̂) is a market-clearing price-(m+ 1)-tuple, the auctioneer can only make

the corresponding assignments, if p̂ is actually the real redemption rate in this market.

This requires knowledge of the borrowers’ situation when the credits are due. Assume

that there is a function V , s.t. the wealth of agent i at maturity of the loans, before

clearing, is given by

V (a1(i), . . . , am(i), p1, . . . , pm, vi),

where vi ∈ R is the net income of agent i at maturity. We write shortly V (i, vi) :=

V (a1(i), . . . , am(i), p1, . . . , pm, vi).

The individual redemption rate of agent i, Ri,vi = Ri,vi(p̂, r, p1, . . . , pm, a) is defined

by

Ri,vi :=







am+2(i)(1 + r), V (i, vi)+am+1(i)(1+r)p̂ ≥ am+2(i)(1+r), am+2(i)>0,

(V (i, vi)+am+1(i)p̂)
+, V (i, vi)+am+1(i)(1+r)p̂ < am+2(i)(1+r), am+2(i)>0,

0, am+2(i) = 0.

The first case is clear: if solvent (i.e. wealth exceeds debts), the agent pays back all his

debts. Otherwise, he pays back as much as he can, i.e. the positive part of his current

wealth. Obviously

Ri,vi(p̂, r, p1, . . . , pm, a, vi) ≤ a3(s)(1 + r).

Since there is full diversification in the lending market, every lender gets paid back the

same fraction of its investment i.e. p̃ · am+1(i) with p̃ ∈ [0, 1]. At maturity, the market
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2 A generalized Walras equilibrium

in has to clear the same way as in the auction, that means aggregated redemption paid

by borrowers equals aggregated redemption received by lenders:

n∑

i=1

Ri,vi(p̂, r, p1, . . . , pm, a, vi) =
n∑

i=1

p̃am+1(i) = p̃

n∑

i=1

am+2(i).

This yields the following definition:

Definition 2.3. For given price parameters (p1, . . . , pm), interest rate r and (assumed)

redemption rate p̂, let a be an optimal market clearing assignment. The real redemption

rate on the lending market is defined by p̃ := 1, if am+2 ≡ 0 and

p̃ :=

∑n
i=1R

i,vi(p̂, r, p1, . . . , pm, a, vi)
∑n

i=1 am+2(i)

else. If p̂ = p̃, then (p1, . . . , pm, r), a and p̂ are called consistent.

2.2.4 Arbitrary agent set

In this section we assume, that agents are identical in the sense that there is only one

reward function f valid for all agents. This means that two agents with the same

endowment have the same optimal order set. Furthermore, we assume that the optimal

assignments for two agents with the same optimal order sets coincide, i.e. for i1, i2 ∈

{1, . . . , n}

Oi1 = Oi2 =⇒ a(i1) = a(i2).

These assumptions are necessary for the following reformulation of the problem. Let

I = {1, . . . , n} be the set of agents in the market and let S be a state space. Agent

i’s state is denoted by si. We assume that an agent’s endowment (and therefore his

demand) as well as his net income are determined by such a state, consequently there is

a function h : S → R
m
≥0 × R and agent i has the endowment h(si), i.e. w

j
i = hj(si) and

ci = hm+1(si).

The optimal order sets only depend on the state, thus we write Osi instead of Oi. Here

we have S = {z1, . . . , zl} with l ≤ n (the number of states is n, if every agent faces

a different state). We denote by δk the number of agents, who face situation zk, i.e.

δk = |{i ∈ {1, . . . , n} : si = zk}|. Obviously,
∑l

k=1 δk = n has to hold. Since the optimal

assignment now only depends on the optimal order set, which in turn only depends on

the state an agent faces, we can think of it as a function with domain S instead of I.
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2.2 Modifications

The market clearing conditions can be rewritten:

n∑

i=1

aj(si) =
n∑

i=1

hj(si) ⇐⇒
l∑

k=1

δkaj(zk) =
l∑

k=1

δkhj(zk),

for j = 1, . . . ,m and

n∑

i=1

am+1(i) =

n∑

i=1

am+2(i) ⇐⇒
l∑

k=1

δkam+1(zk) =

l∑

k=1

δkam+2(zk).

Now consider a probability space (Ω,A,P) and the random variable Y : Ω → S with

distribution P(Y = zk) = δk
n

(k = 1, . . . , l). Then the market clearing conditions can

again be rewritten as

E(aj(Y )) = E(hj(Y )), j = 1, . . . ,m,

E(am+1(Y )) = E(am+2(Y )).

We can proceed similarly with the net income of agent i at maturity, vi. Define a

random variable X by P(X = vi) =
|{j∈{1,...,n}:vj=vi}|

n
. With the setup of this section,

the individual redemption rate depends on the state of an agent and the net income at

maturity. Thus the definition of the real redemption rate becomes

p̃ :=
E(RY,X(p̂, r, p1, . . . , pm, a))

Eam+2(Y )
.

With this interpretation we can now allow for arbitrary agents sets I, state sets S and

state distributions, represented by a random variable Y as well as income distributions,

represented by a random variable X. The only necessary assumption is the existence of

E(h(Y )).
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2 A generalized Walras equilibrium

2.3 The generalized Walras equilibrium with lending

Now let us sum up all the changes and list the necessary steps for determining equilibrium

prices and assignments. A generalized Walras equilibrium with lending for m tradeable

goods is derived as follows: Let I and S be arbitrary sets, Z ∈ {{0},R≥0}, h : S →

R
m
≥0 ×R and v : R2m

≥0 ×R → R functions and f : Rm+3
≥0 → R a function, which is strictly

decreasing in the (m+ 2)-th element and strictly increasing in every other element. For

j = 1, . . . ,m let gj : R
2
>0 → R>0 be a function with gj(p, x) ≥ p, for all (p, x) ∈ R

2
>0. Let

(Ω,A,P) be a probability space. Let Y : Ω → S and X : Ω → R be random variables,

with E(|hj(Y )|) < ∞ for all j = 1, . . . ,m.

Definition 2.4. Let (p1, . . . , pm), r and p̂ be fixed. The optimal order set of an

agent facing state s ∈ S is the set Os = Os(p1, . . . , pm, r, p̂) ⊂ R
m+2
≥0 , s.t. every x =

(x1, . . . , xm, y+, y−) ∈ Os satisfies:

• budget constraint:

z :=
m∑

j=1

pj(xj − hj(s))
− −

m∑

j=1

gj(pj , xj)(xj − hj(s))
+ + hm+1(s) + y− − y+ ∈ Z,

• optimality:

f(x, z) = max
(y1,...,ym+3)∈R

m+3
≥0

f(y1, . . . , ym+3).

Note that the choice of Z decides whether external investments are allowed (Z = R≥0)

or not (Z = {0}). z is the optimal amount invested outside the Walras auction.

Definition 2.5. Let (p1, . . . , pm), r and p̂ be fixed. An optimal market-clearing

assignment is a function

a : S → R
m+2
≥0 , s 7→ (a1(s), . . . , am+2(s)),

such that for every s ∈ S

a(s) ∈ Os

and the market clearing conditions hold:

E(aj(Y )) = E(hj(Y )), j = 1, . . . ,m,

E(am+1(Y )) = E(am+2(Y )).
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2.3 The generalized Walras equilibrium with lending

If such a function exists, we call (p1, . . . , pm, r) an equilibrium price (m + 1)-tuple.

We call (p1, . . . , pm, r), a and p̂ consistent, iff

p̂ =
E(RY,X(p̂, r, p1, . . . , pm, a))

Eam+2(Y )
,

where for s ∈ S and x ∈ R, Rs,x = Rs,x(p̂, r, p1, . . . , pm, a) is defined by

Rs,x :=







am+2(s)(1 + r), V (s, x) + am+1(s)p̂ ≥ am+2(s)(1 + r), am+2(s) > 0,

(V (s, x) + am+1(s)p̂)
+, V (s, x) + am+1(s)p̂ < am+2(s)(1 + r), am+2(s) > 0,

0, am+2(s) = 0,

with V (s, x) := v(a1(s), . . . , am(s), p1, . . . , pm, x).
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3 The Interbank Market

3.1 The model

In this section we will specify the mathematical setup for our model and give an overview

over the three-period market.

We assume WLOG that there is no discounting between the three dates t = 0, t1, t2

and that the set of banks is given by [0, 1].

Utility is measured by a strictly increasing, strictly concave and continuous function

u.

We normalize the problem by assuming that each bank has one unit of the households’

funds under management at t = 0. Thus all other values are to be considered relative

to the actual value of funds managed by each bank. Any fraction of those claims can be

withdrawn either at t = t1 or t = t2 and the resulting payout is calculated as withdrawal

times a factor c1 or c2 respectively.

The demand for liquidity on individual bank level is determined by a [0, 1]-valued

non-constant random variable Λ with known distribution. Λ describes the fraction of

claims, which are withdrawn in t = t1, thus a bank pays out Λc1 in t = t1 and (1−Λ)c2

in t = t2.

The value of the risky investment is modeled by a constant S0 and a random variable

St2 , where St2 is the t2-value of the risky asset and for all banks the distribution of said

value is the same.

The bond prices are denoted by P0 in t = 0 and P2 in t = t2. The liquid asset obviously

has a constant price of 1.

Since all banks are identical and face the same situation in t0, we can assume WLOG,

that their investment decisions in t0 coincide. We denote the allocation by (α, β0, δ0),

which represents the fraction of funds invested in the risky investment, bonds and the

liquid asset, where α, β0, δ0 ≥ 0 and α + β0 + δ0 = 1. Note that α, β0 and δ0 are the
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3 The Interbank Market

t0-value of the assets held, which is equivalent to holding α
S0
, β0

P0
and δ0 units.

Assuming that we find equilibrium prices P1 (bond price) and r (unsecured interest

rate) and a consistent redemption rate p̂, the assets and financial claims (measured in

monetary value) are given by:

t 0 t1 t2

cash −δ0 δ0

−δ1 δ1

stock −α 0 α
St2
S0

bond −β0 β0
P1
P0

−β1 β1
P2
P1

unsecured ib debt −γ+ γ+p̂(1 + r)

γ− −γ−(1 + r)

cash flow 1 −Λc1 −(1− Λ)c2

The budget constraints in t = 0 and t = t1 are included in this table. In order to retrieve

them, we take the sum over all entries in the corresponding column.

The terminal wealth can be calculated by taking the sum over all entries in the last

column.
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3.2 The existence of an interbank market and equilibrium prices

3.2 The existence of an interbank market and equilibrium

prices

In this chapter we will study the banks’ behaviour in t1 given an arbitrary investment

decision from t0. Banks have to satisfy households’ liquidity needs. The illiquid asset

cannot be traded, bonds will be traded in a generalized Walras auction with lending.

Spare liquidity can be put into the liquid asset.

As we assume that bonds can be traded, there is one good that will be auctioned, thus

m = 1. The agent set for the Walras auction is I = [0, 1], since every bank is an agent.

We choose the space of all possible payouts a bank has to make to the households as the

state space, i.e. S = supp(Λc1) ⊂ [0, c1]. The state distribution is given by Y ≡ Λc1.

We assume that there are no transaction costs on any trade of bonds, thus g1(p, x) ≡ p.

There is an external investment possibility, namely the liquid asset. Thus Z = R≥0.

What remains is deriving the endowment function h and the reward function f .

The initial endowment of bonds is the same for all banks:

h1 ≡
β0

P0
.

The net income is the difference between what was stored in the liquid asset and the

payout to households:

h2(s) = δ0 − s, s ∈ S.

The goal is to maximize expected utility of terminal wealth (i.e. wealth in t2). If there

is an optimal assignment a with a corresponding investment in the liquid asset δ1, then

a bank facing state s will have a terminal wealth of

V s
2 (α, β0, δ0) = α

St2

S0
+ a1(s)P2 + a2(s)(1 + r)p̂− a3(s)(1 + r) + δ1(s)− (1−

s

c1
)c2.

Thus a possible function v, as introduced in section 2.3, is

v(a1(s), . . . , a3(s), P1, x) := α
x

S0
+ a1(s)P2 + δ1(s)− (1−

s

c1
)c2

and the distribution of the net income is X
d
= St2 .

Before checking for optimal assignments, we have to determine optimal order sets by

looking for maxima. For the optimization problem at hand, the reward function of an

agent facing state s for given p1, r and p̂ should be
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3 The Interbank Market

E

[

U(α
St2

S0
+ x1P2 + y+(1 + r)p̂− y−(1 + r) + z − (1−

s

c1
)c2)

]

.

But we can simplify this function in this chapter, since a bank can only influence x1,

y+, y− and z. The only random part is
St2
S0

and since expectation is strictly increasing,

it can be left out of the maximization problem at hand. u is also assumed to be strictly

increasing, therefore neither changes the result and can be left out. Finally, (1 − s
c1
)c2

is a constant and thus also ignored. Summing up, maximizing the above term in t1 is

equivalent to maximizing

f(x1, y+, y−, z) := x1P2 + y+(1 + r)p̂− y−(1 + r) + z.

The definiton of z in the budget constraint z ∈ Z = R≥0 can be written more simple

as in the definition, since we have a symmetric market:

z =

m∑

j=1

pj(xj − hj(s))
− −

m∑

j=1

gj(pj , xj)(xj − hj(s))
+ + hm+1(s) + y− − y+

⇔ z = p1(
β0

P0
− x1) + δ0 − s+ y− − y+.

We replace the notation from chapter 2 by the notation in chapter 3.1. Thus we will

write P1 instead of p1, β1 instead of x1, δ1 instead of z (the liquid asset is the only

external investment possibility) and γ+/γ− instead of y+/y− respectively. We define for

every s ∈ S the constraint set Cs by

Cs := {(β1, γ+, γ−) ∈ R
3
≥0 : β1P1 + γ+ − γ− ≤ β0

P1

P0
+ δ0 − s}.

This is the set of all (β1, γ+, γ−) ∈ R
3
≥0, which satisfy δ1 ∈ R≥0, i.e the budget constraint

in the definition of the optimal order set.

Thus we have X = St2 and for x ∈ supp(St2) and s ∈ supp(Y ), the individual

redemption rate is given by

Rs,x(p̂, r, P1, a) :=







a3(s)(1 + r), V
s,x
2 (α, β0, δ0) ≥ 0, a3(s) > 0,

(V s,x
2 (α, β0, δ0) + a3(s)(1 + r))+, V

s,x
2 (α, β0, δ0) < 0, a3(s) > 0,

0, a3(s) = 0.

Recall that the real redemption rate on the unsecured interbank market is given by

p̃ := 1, if a3 ≡ 0 and

p̃ :=
E
[
RY,St2 (p̂, r, P1, a)

]

E [a3(Y )(1 + r)]
=

E
[
RY,St2 (p̂, r, P1, a)1{a3(Y )>0}

]

E
[
a3(Y )(1 + r)1{a3(Y )>0}

]
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3.2 The existence of an interbank market and equilibrium prices

else.

Now we can determine the optimal order sets. The reward function f is affine and the

constraint set Cs is a convex polytope. Therefore, Os either is empty, contains only one

element or is uncountable for a given (P1, r, p̂).

Write o = (β1, γ+, γ−) for an element of the order set. For p̂ = 0, define 1
p̂
− 1 := +∞.

Theorem 3.1. For every s ∈ S, the order sets Os = Os(P1, r, p̂) are uniquely determined

by

Os=







∅,
p̂ ∈ [0, 1], r ∈ (−1, 0), P1 ∈ (0,∞) or

p̂ ∈ [0, 1], r ∈ [0,∞), P1 ∈ (0, P2
1+r

),

{o∈Cs : β1=γ+=0}, p̂ ∈ [0, 1), r = 0, P1 ∈ (P2,∞),

{(0, 0, (β0
P1
P0

+ δ0 − s)−)}, p̂ ∈ [0, 1), r ∈ (0, 1
p̂
− 1), P1 ∈ (P2,∞),

{

o ∈ Cs :
γ+ ≤ (β0

P1
P0

+ δ0 − s)+,

β1=0, γ−=(β0
P1
P0

+ δ0 − s)−

}

, p̂ ∈ (0, 1), r = 1
p̂
− 1, P1 ∈ (P2,∞),

{o∈Cs : γ+=0}, p̂ ∈ [0, 1), r = 0, P1 = P2,

{o∈Cs :γ+=0, β1P1−γ−= P1β0

P0
+δ0−s}, p̂ ∈ [0, 1), r ∈ (0,∞), P1 =

P2
1+r

,

{( δ0
P1

+ β0

P0
− s

P1
, 0, (β0

P1
P0

+ δ0 − s)−)},

p̂∈(0, 1), r∈(0, 1
p̂
−1], P1∈( P2

1+r
, P2)

or p̂=0, r∈(0,∞), P1∈( P2
1+r

, P2) or

p̂∈(0,1), r> 1
p̂
−1, P1∈( P2

1+r
, P2
(1+r)p̂),

{

o∈Cs :
β1P1≤(β0

P1
P0

+ δ0 − s)+,

γ+=0, γ−=(β0
P1
P0

+ δ0 − s)−

}

, p̂ ∈ [0, 1), r ∈ (0, 1
p̂
− 1), P1 = P2,

{

o∈Cs :
β1P1 + γ+≤(β0

P1
P0

+ δ0 − s)+,

γ−=(β0
P1
P0

+ δ0 − s)−

}

, p̂ ∈ (0, 1), r = 1
p̂
− 1, P1 = P2,

{

o∈Cs :
β1P1 + γ+=(β0

P1
P0

+ δ0 − s)+,

γ−=(β0
P1
P0

+ δ0 − s)−

}

, p̂ ∈ (0, 1), r ∈ (1
p̂
−1,∞), P1 =

P2
(1+r)p̂ ,

{(0, (β0
P1
P0

+δ0−s)+, (β0
P1
P0

+δ0−s)−)}, p̂∈(0,1), r∈(1
p̂
−1,∞), P1∈( P2

(1+r)p̂ ,∞),

{o∈Cs : β1 = 0}, p̂ = 1, r = 0, P1 ∈ (P2,∞),

{o∈Cs : β1=0, γ+−γ−= P1
P0
β0+δ0−s}, p̂ = 1, r ∈ (0,∞), P1 ∈ ( P2

(1+r) ,∞),

{o∈Cs : β1P1+γ+−γ−= P1
P0
β0+δ0−s}, p̂ = 1, r ∈ (0,∞), P1 =

P2
(1+r) ,

Cs, p̂ = 1, r = 0, P1 = P2.

With knowledge of the order sets, we can determine optimal assignments and equilib-

rium prices. Recall that an optimal assignment is a function a : S → R
3
≥0 with a(s) ∈ Os

for all s ∈ S and

E[a1(Y )] =
β0

P0
, E[a2(Y )] = E[a3(Y )].
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3 The Interbank Market

Write A for the set of all functions from S to R
3
≥0, which (as an assignment) satisfy the

market clearing conditions i.e.

A := {a ∈
(
R
3
≥0

)S
: E[a1(Y )] =

β0

P0
, E[a2(Y )] = E[a3(Y )]}.

For given (α, β0, δ0), we write all possible equilibrium prices and corresponding optimal

market clearing assignments as a subset of

B := [0, 1]× (−1,∞)× (0,∞)×A.

Write b = (p̂, r, P1, a) for an element of B and define

Y := ess sup Y = inf
N⊂[0,1],P (N)=0

sup
i∈[0,1]\N

Y (i).

Theorem 3.2. For an initial allocation (α, β0, δ0), the set of all possible equilibrium

prices and corresponding optimal market clearing assignments is given by

∅, δ0 < E(Y ),

{b∈B : p̂∈(0, 1), r∈ [1
p̂
−1,∞), P1∈ [ P2

(1+r)p̂ ,∞), a∈A1}
⋃
{b∈B : p̂=1, r∈ [0,∞), P1∈ [ P2

1+r
,∞), a∈A2}

, δ0 = EY, β0 = 0,

{b∈B : p̂∈(0, 1), r= 1
p̂
−1, P1∈ [P2,∞), a∈A3}

⋃
{b∈B : p̂=1, r=0, P1∈ [P2,∞), a∈A4}

, δ0∈(EY, Y ), β0=0,

{b∈B : p̂∈ [0, 1), r∈ [0, 1
p̂
−1], P1∈ [P2,∞), a ≡ 0}

⋃
{b∈B : p̂=1, r=0, P1∈ [P2,∞), a∈A4}

, δ0∈ [Y , 1], β0=0,

{b∈B : p̂∈(0, 1), r∈ [1
p̂
−1,∞), P1=

P2
(1+r)p̂ , a∈A5}

⋃
{b∈B : p̂=1, r∈ [0,∞), P1=

P2
1+r

, a∈A6}
,

δ0=EY, β0>0

β0<
P0
P2
(Y −EY ),

{b∈B : p̂∈(0, 1), r∈ [1
p̂
−1,∞), P1=

P2
(1+r)p̂ , a∈A5}

⋃
{b∈B : p̂=1, r∈ [0,∞), P1=

P2
1+r

, a∈A6}
⋃

{b∈B : p̂∈ [0, 1), P1∈ [P0
Y−EY

β0
, P2], r∈ [P2

P1
−1, P2

P1p̂
−1), a∈A7}

,
δ0=EY, β0≤1−EY,

β0≥
P0
P2
(Y −EY ),

{b∈B : p̂∈(0, 1), r= 1
p̂
−1, P1=P2, a∈A8}

⋃
{b∈B : p̂=1, r=0, P1=P2, a∈A9}

,
δ0∈(EY, Y ), β0>0

β0<
P0
P2
(Y −δ0),

{b∈B : p̂∈(0, 1), r= 1
p̂
−1, P1=P2, a∈A8}

⋃
{b∈B : p̂=1, r=0, P1=P2, a∈A9}

{b∈B : p̂∈ [0, 1), r∈ [0, 1
p̂
−1), P1=P2, a∈A10}

,
δ0∈(EY, 1), β0≤1−δ0,

β0≥
P0
P2
(Y −δ0).

The sets of corresponding optimal market clearing assignments above are defined as
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3.2 The existence of an interbank market and equilibrium prices

follows:

A1:={a ∈ A : a(s) = (0, (EY − s)+, (EY − s)−) ∀s ∈ S}

A2:={a ∈ A : a1(s) = 0, a2(s)− a3(s) = EY − s ∀s ∈ S}

A3:={a ∈ A : a1(s)=0, a2(s)≤(δ0 − s)+, a3(s)=(δ0 − s)− ∀s ∈ S}

A4:={a ∈ A : a1(s) = 0, a2(s)− a3(s) ≤ δ0 − s ∀s ∈ S}

A5:={a ∈ A : a1(s)P1+a2(s)=(EY +β0
P1
P0

−s)+, a3(s)=(EY +β0
P1
P0

−s)− ∀s ∈ S}

A6:={a ∈ A : a1(s)P1+a2(s)−a3(s)=EY +β0
P1
P0

−s ∀s ∈ S}

A7:={a ∈ A : a(s) = (EY
P1

+ β0

P0
− s

P1
, 0, 0) ∀s ∈ S}

A8:={a ∈ A : a1(s)P2+a2(s)≤(δ0+β0
P2
P0

−s)+, a3(s)=(δ0+β0
P2
P0

−s)− ∀s ∈ S}

A9:={a ∈ A : a1(s)P2+a2(s)−a3(s)≤δ0+β0
P2
P0

−s ∀s ∈ S}

A10:={a ∈ A : a2(s) = a3(s) = 0, a1(s)P2 ≤ δ0 + β0
P2
P0

− s ∀s ∈ S}

The last step is to check the parameter p̂ for consistency in the sense of definition 2.5.

Theorem 3.2 implies, that there is no consistent quadruple for δ0 < EY . Thus, assume

δ0 ≥ EY .

We have a fix point problem. There might be multiple redemption rates that allow

for consistent equilibrium prices and assignments. In this chapter, we will characterize

the existence of a consistent quadruple (p̂, r, P1, a).

But first we discuss a trivial case, δ0 + β0
P2
P0

≥ Y . In this case, there is no need for

interbank lending. All banks can pay out the households’ claims by liquidating bonds

and using the liquid asset. Thus (p̂, r, P1, a) = (1, 0, P2, a) is consistent for all a ∈ A

with a2 ≡ a3 ≡ 0.

For the rest of this chapter we consider the non-trivial case δ0 + β0
P2
P0

< Y . If we find

a consistent quadruple, then there is definitely unsecured interbank lending, since banks

with s > δ0 + β0
P2
P0

need to borrow in order to pay out the households’ claims.

Define S :=
ess inf St2

S0
and S :=

ess sup St2
S0

. Set A := {Y > δ0 + β0
P2
P0
} =

Y −1
((

δ0 + β0
P2
P0
, c1

])

⊂ [0, 1] and define

Y := ess inf
A

Y = sup
N⊂A,P (N)=0

inf
i∈A\N

Y (i).

Note that Y ≥ δ0 + β0
P2
P0
.

Furthermore, define h : [0, 1] → [0, 1] by

h(0) := 0, h(p) := p
E
[

RY,St2 (p, 1
p
− 1, P2, a)

]

E
[

(δ0 + β0
P2
P0

− Y )−
] , p ∈ (0, 1],
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3 The Interbank Market

with a3(s) = (δ0 + β0
P2
P0

− s)− and (a1(s) + a2(s))a3(s) = 0 for all s ∈ S. Thus, by the

definiton of Rs,x, h is well-defined.

Lemma 3.3. Set p0 := 0 and pn := h(pn−1),n ∈ N. Then p := limn→∞ pn ∈ [0, 1] exists

and depends only on (α, β0, δ0). p is the largest fixpoint of h.

We consider the model parameters as constant. Obviously, p depends on P2 and the

distributions of St2 and Y . The lemma states, that p is independent of the choice of a

particular assignment or equilibrium prices where there is ambiguity. This is important

in the next theorem, since the existence of a consistent quadruple depends only on the

value of p.

Theorem 3.4. There is a consistent quadruple (p̂, r, P1, a), iff p > 0 and for p > 0

there is an assignment a ∈ A, s.t. (p, 1
p
− 1, P2, a) is consistent. A consistent quadruple

(p̂, r, P1, a) with p̂ = 1 exists, iff p = 1, which is equivalent to

αS + β0
P2

P0
+ δ0 + Y (

c2

c1
− 1)+ − Y (

c2

c1
− 1)− ≥ c2.

The value of p also tells us whether a redemption rate of 1 is possible, which is,

economically speaking, the optimal case. There might be other criteria to choose a

consistent quadruple than maximizing the redemption rate. We will discuss some of

those in a more specific setup in the next chapter.

Finally, we will show that we can get unique optimal assignments for given (p̂, r, P1)

by making only the following two assumptions:

Assumption 3.5. The auctioneer assigns bonds and unsecured interbank loans according

to the following rules:

• suppliers in the bond market may sell their minimal supply only

• demanders in both markets get assigned a constant fraction of their maximal de-

mand

Minimal supply and maximal demand are taken over all possible optimal assignments,

given by theorem 3.2.
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Theorem 3.6. For equilibirum prices (p̂, r, P1), assuming 3.5, the optimal assignment

is unique and given by

a1(s) =







0 , s > δ0 + β0
P1
P0

δ0 + β0
P1
P0

− s , δ0 ≤ s ≤ δ0 + β0
P1
P0

β0
P1
P0

+ ASB

AD
(δ0 − s) , s < δ0

a2(s) =







0 , s ≥ δ0

ASU

AD
(δ0 − s) , s < δ0

a3(s) =







s− δ0 − β0
P1
P0

, s > δ0 + β0
P1
P0

0 , s ≤ δ0 + β0
P1
P0

δ1(s) =







0 , s ≥ δ0

(1− ASB+ASU

AD
)(δ0 − s) , s < δ0

where

ASU = E[(Y − δ0 − β0
P1

P0
)1

{Y >δ0+β0
P1
P0

}
],

ASB = β0
P1

P0
P (Y > δ0 + β0

P1

P0
) + E[(Y − δ0)1{δ0<Y≤δ0+β0

P1
P0

}
].

and

ADU = E[(δ0 − Y )1{Y <δ0}].
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4 Optimal interest rates and initial

allocation

As we have seen in the previous section, the auctioneer can choose between different

interest rates, iff δ0 = EY . This choice has an impact on the expected utility of terminal

wealth, in contrast to the choice of an optimal assignment. Therefore we will determine

the interest rate, which maximizes expected utility of terminal wealth, given an initial

allocation (α, β0, δ0).

Depending on the distribution of Λ, supP1∈(0,P2] V2(P1) might not be attained. Thus

we will choose an interest rate P ∗
1 ∈ argmaxV2(P1), if possible and P ∗

1 = P2 else (P1 = P2

is a possible equlibrium price in every case and is also the unique equilibirum price for

any initial allocation with δ0 > EY ). Note that P ∗
1 depends on the initial allocation:

P ∗
1 = P ∗

1 (α, β0, δ0).

The banks are aware of the choice of P1 a priori, i.e. they know which interest rate

will result depending on their initial allocation. Thus we can look for an optimal initial

allocation considering the choice of interest rate described above.

We will calculate some examples in this chapter, but first we will derive a general

result, namely the optimal amount invested in the liquid asset.

Assume that there is an optimal allocation (α, β0, δ0) with δ0 > EY . Set (α̃, β̃0, δ̃0) :=

31



4 Optimal interest rates and initial allocation

(α, β0 + δ0 − EY,EY ). Then the bond price in t = t1 is given by P2 > P0 and we have

V2(α, β0, δ0, P2)

=

(

α
St2

S0
+ β0

P2

P0
+ δ0 − Λc1 − (1− Λ)c2

)

· 1
{Λ≤ 1

c1
(δ0+β0

P2
P0

)}

+

(

α
St2

S0
+ β0

P2

P0p̂
+ (δ0 − Λc1)

1

p̂
− (1− Λ)c2

)

· 1
{Λ> 1

c1
(δ0+β0

P2
P0

)}

<

(

α
St2

S0
+ β̃0

P2

P0
+ EY − Λc1 − (1− Λ)c2

)

· 1
{Λ≤ 1

c1
(δ0+β0

P2
P0

)}

+

(

α
St2

S0
+ β̃0

P2

P0p̂
+ (EY − Λc1)

1

p̂
− (1− Λ)c2

)

· 1
{Λ> 1

c1
(δ0+β0

P2
P0

)}

= V2(α̃, β̃0, δ̃0, P2)

Expected utility is strictly increasing, thus we have

E(U(V2(α, β0, δ0, P2))) < E(U(V2(α̃, β̃0, δ̃0, P2))) ≤ E(U(V2(α̃, β̃0, δ̃0, P
∗
1 ))).

by definition of P ∗
1 . This is a contradiction to (α, β0, δ0) being optimal.

Using δ0 = EY , the equality constraint on the initial allocation is equivalent to α =

1− EY − β0. The inequality constraints on α and β0 become

0 ≤ β0 ≤ 1− EY.

The constraint on δ0 is obviously fulfilled, since EY > 0. We can rewrite the terminal

wealth as a function in one variable:

V2(β0) := V2(1− EY − β0, β0, EY, P ∗
1 (1− EY − β0, β0, EY )).

The optimization problem becomes

max
β0∈[0,1−EY ]

V2(β0).

Where convenient, we will consider V2 as a function in α and β0 or only in α.
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4.1 Example: Binomial distributions for risky asset and liquidity demand

4.1 Example: Binomial distributions for risky asset and

liquidity demand

Let 0 ≤ d < u, p ∈ (0, 1) and assume

P (
St2

S0
= u) = p = 1− P (

St2

S0
= d).

Furthermore, let 0 < λl < λh < 1, πh ∈ (0, 1) assume

P (Λ = λh) = πh = 1− P (Λ = λl).

Set πl := 1− πh. Recall that Y = c1Λ. Thus EY = c1(πhλh + πlλl), Y = c1λh.

Let the utility function of banks be given by U : R → R, U(x) := − 1
κ
exp(−κx) for

some κ > 0.

First, we determine optimal bond prices.

(i) δ0 = c1(πhλh + πlλl), β0 ≥
P0
P2
c1πl(λh − λl)

In this case, there is no need for unsecured lending, if P1 ∈
[

P0
c1πl(λh−λl)

β0
, P2

]

6= ∅.

Substitute x = 1
P1
. Expected utility of terminal wealth is given by

E(U(V2(x))) = πlpU

(

αu+ β0
P2

P0
+ πh(λh − λl)c1P2x− (1− λl)c2

)

+πl(1− p)U

(

αd+ β0
P2

P0
+ πh(λh − λl)c1P2x− (1− λl)c2

)

+πhpU

(

αu+ β0
P2

P0
− πl(λh − λl)c1P2x− (1− λh)c2

)

+πh(1− p)U

(

αd+ β0
P2

P0
− πl(λh − λl)c1P2x− (1− λh)c2

)

Taking the derivative with respect to x and evaluating at x = c2
P2c1

, we get

∂E(U(V2(x)))

∂x
|x= c2

P2c1

= πlπh(λh − λl)c1P2pU
′

(

αu+ β0
P2

P0
+ πh(λh − λl)c2 − (1− λl)c2

)

+πlπh(λh − λl)c1P2(1− p)U ′

(

αd+ β0
P2

P0
+ πh(λh − λl)c2 − (1− λl)c2

)

−πhπl(λh − λl)c1P2pU
′

(

αu+ β0
P2

P0
− πl(λh − λl)c2 − (1− λh)c2

)

−πhπl(λh − λl)c1P2(1− p)U ′

(

αd+ β0
P2

P0
− πl(λh − λl)c2 − (1− λh)c2

)

= 0,
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4 Optimal interest rates and initial allocation

since

πh(λh − λl)c2 − (1− λl)c2 = (πhλh + πlλl − 1)c2 = −πl(λh − λl)c2 − (1− λh)c2.

The second derivative with respect to x is strictly negative:

∂2E(U(V2(x)))

∂2x

= πl(πh(λh − λl)c1P2)
2pU ′′

(

αu+ β0
P2

P0
+ πh(λh − λl)c2 − (1− λl)c2

)

+πl(πh(λh − λl)c1P2)
2(1− p)U ′′

(

αd+ β0
P2

P0
+ πh(λh − λl)c2 − (1− λl)c2

)

+πh(πl(λh − λl)c1P2)
2pU ′′

(

αu+ β0
P2

P0
− πl(λh − λl)c2 − (1− λh)c2

)

+πh(πl(λh − λl)c1P2)
2(1− p)U ′′

(

αd+ β0
P2

P0
− πl(λh − λl)c2 − (1− λh)c2

)

< 0,

since U is strictly concave an therefore U ′′ < 0.

Thus x = c2
P2c1

is the unique zero of ∂E(U(V2(x)))
∂x

, E(U(V2(x))) is increasing for

x < c2
P2c1

and decreasing for x > c2
P2c1

. Resubstituting P1 =
1
x
, we get as expected-

utility-maximizing bond price P1 = P2
c1
c2
. This value does not necessarily lie in the

interval
[

P0
c1πl(λh−λl)

β0
, P2

]

, thus we get different optimal interest rates depending

on the values of c1 and c2:

P ∗
1 =







P2 , c1 ≥ c2

P2
c1
c2

, c1 < c2 ≤
P2
P0

β0

πl(λh−λl)

P0
c1πl(λh−λl)

β0
, c2 >

P2
P0

β0

πl(λh−λl)

Note that this result holds for all strictly increasing, strictly concave utility func-

tions.

(ii) δ0 = c1(πhλh + πlλl), β0 <
P0
P2
c1πl(λh − λl)

In this situation, banks with s = λhc1 need to borrow on the unsecured interbank

market and banks with s = λlc1 can pay households’ liquidity needs out of the

liquid asset.

By theorem 3.4, a consistent quadruple (p̂, r, P1, a) with p̂ = 1 exists, iff

αS + β0
P2

P0
+ δ0 + Y (

c2

c1
− 1)+ − Y (

c2

c1
− 1)− ≥ c2.
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4.1 Example: Binomial distributions for risky asset and liquidity demand

Here we have Y = ess inf (Y 1
{Y >δ0+β0

P2
P0

}
) = c1λh and S =

ess inf St2
S0

= d. The

condition becomes

αd+ β0
P2

P0
+ δ0 + c1λh(

c2

c1
− 1)+ − c1λh(

c2

c1
− 1)− ≥ c2

⇐⇒ αd+ β0
P2

P0
+ δ0 − λhc1 − (1− λh)c2 ≥ 0

⇐⇒ α

(
P2

P0
− d

)

≤
P2

P0
− δ0

(
P2

P0
− 1

)

− λhc1 − (1− λh)c2.

Since P2
P0

> d, this is possible, iff

P2

P0
− δ0

(
P2

P0
− 1

)

− λhc1 − (1− λh)c2 > 0.

This also means, that for

α

(
P2

P0
− d

)

>
P2

P0
− δ0

(
P2

P0
− 1

)

− λhc1 − (1− λh)c2,

there is no consistent quadruple (p̂, r, P1, a) with p̂ = 1 and thus only banks with

s = λhc1 are borrowers on the unsecured market. Therefore the redemption rate

can either be p or 0. In the latter case, there is no consistent quadruple. A

redemption rate of p is possible, if

α

(

u−
P2

P0

)

≥ −
P2

P0
+ δ0

(
P2

P0
− 1

)

+ λhc1 + (1− λh)c2.

Expected utility of terminal wealth is given by

E(u(V2(x))) = πlpU

(

αu+ β0
P2

P0
+ πh(λh − λl)c1P2x− (1− λl)c2

)

+πl(1− p)U

(

αd+ β0
P2

P0
+ πh(λh − λl)c1P2x− (1− λl)c2

)

+πhpU

(

αu+ β0
P2

P0p
− πl(λh − λl)c1

P2

p
x− (1− λh)c2

)

+πh(1− p)U

(

αd+ β0
P2

P0p
− πl(λh − λl)c1

P2

p
x− (1− λh)c2

)

Taking the derivative with respect to x, evaluating at

x =
ln(p)− κ(β0

P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(πh +
1
p
πl)(λh − λl)c1P2
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4 Optimal interest rates and initial allocation

and dividing by the positive constant πlπh(λh − λl)c1P2 exp(κc2), we get

1

πlπh(λh − λl)c1P2 exp(κc2)

∂E(U(V2(x)))

∂x

∣
∣
∣
∣
x=

ln(p)−κ(β0
P2
P0

(1− 1
p )−(λh−λl)c2)

κ(πh+1
pπl)(λh−λl)c1P2

= pU ′

(

αu+ β0
P2

P0
+ πh

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(πh +
1
p
πl)

+ λlc2

)

+(1−p)U ′

(

αd+ β0
P2

P0
+ πh

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(πh +
1
p
πl)

+ λlc2

)

−U ′

(

αu+ β0
P2

P0p
− πl

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(pπh + πl)
+ λhc2

)

−
1−p

p
U ′

(

αd+ β0
P2

P0p
− πl

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(pπh + πl)
+ λhc2

)

= 0,

since

pU ′

(

αu+ β0
P2

P0
+ πh

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(πh +
1
p
πl)

+ λlc2

)

=

pU ′

(

ln(p)
πh

κ(πh+
1
p
πl)

+ αu+ β0
P2

P0

(

1−
πh(1−

1
p
)

πh+
1
p
πl

)

+ c2

(

πh(λh−λl)

πh+
1
p
πl

+ λl

))

= p
πl

pπh+πl exp

(

−κ

(

αu+ β0
P2

P0

1)

pπh + πl
+ c2

πhλh +
1
p
πlλl)

πh +
1
p
πl

))

=

U ′

(

− ln(p)
πl

κ(pπh + πl)
+αu+β0

P2

P0

1

p

(

1+
πl(1−

1
p
)

πh +
1
p
πl

)

+c2

(
−πl(λh − λl)

pπh + πl
+λh

))

= U ′

(

αu+ β0
P2

P0p
− πl

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(pπh + πl)
+ λhc2

)

and analoguosly

(1−p)U ′

(

αd+ β0
P2

P0
+ πh

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(πh +
1
p
πl)

+ λlc2

)

=

1−p

p
U ′

(

αd+ β0
P2

P0p
− πl

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

κ(pπh + πl)
+ λhc2

)

.
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4.1 Example: Binomial distributions for risky asset and liquidity demand

Again, the second derivative with respect to x is strictly negative:

∂2E(U(V2(x)))

∂2x

= πl(πh(λh − λl)c1P2)
2pU ′′

(

V
u,l
2 (P1)

)

+πl(πh(λh − λl)c1P2)
2(1− p)U ′′

(

V
d,l
2 (P1)

)

+πh(πl(λh − λl)c1P2)
2 1

p
U ′′
(

V
u,h
2 (P1)

)

+πh(πl(λh − λl)c1P2)
2 1− p

p2
U ′′
(

V
d,h
2 (P1)

)

< 0,

since U is strictly concave an therefore U ′′ < 0.

Thus the optimal bond price in this case is

P1 =
κ(πh +

1
p
πl)(λh − λl)c1P2

ln(p)− κ(β0
P2
P0
(1− 1

p
)− (λh − λl)c2)

.

Next, we look for an optimal initial allocation. Using δ0 = EY = c1(πhλh + πlλl) and

α+ β0 + δ0 = 1, we can write the portfolio value as a function of only one variable, for

example for λ = λl and
St2
S0

= u:

V
λl,u
2 (α) = αu+ (1− α− c1(πhλh + πlλl))

P2

P0
+ πh(λh − λl)c1

P2

P1
− (1− λl)c2

= α(u−
P2

P0
) + (1− c1(πhλh + πlλl))

P2

P0
+ πh(λh − λl)c1

P2

P1
− (1− λl)c2.

The first derivative of the expectation of terminal wealth with respect to α is

∂E(U(V2(α)))

∂α

= πlp(u−
P2

P0
) exp

(

−κ
(

V
λl,u
2 (α)

))

+πl(1− p)(d−
P2

P0
) exp

(

−κ
(

V
λl,d
2 (α)

))

+πhp(u−
P2

P0
) exp

(

−κ
(

V
λh,u
2 (α)

))

+πh(1− p)(d−
P2

P0
) exp

(

−κ
(

V
λh,d
2 (α)

))

Thus ∂E(U(V2(α)))
∂α

= 0, iff

p(u−
P2

P0
)
(

πl exp
(

−κ
(

V
λl,u
2 (α)

))

+ πh exp
(

−κ
(

V
λh,u
2 (α)

)))

=

(1− p)(
P2

P0
− d)

(

πl exp
(

−κ
(

V
λl,d
2 (α)

))

+ πh exp
(

−κ
(

V
λh,d
2 (α)

)))

.
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4 Optimal interest rates and initial allocation

This equation can be solved to

exp (−κα(u− d)) =
1− p

p

P2
P0

− d

u− P2
P0

⇐⇒ α =
1

−κ(u− d)
ln

(

1− p

p

P2
P0

− d

u− P2
P0

)

.

Since pu+ (1− p)d > P2
P0
, we have 1−p

p

P2
P0

−d

u−
P2
P0

< 1, thus the right-hand side is positive.
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5 Proofs

Proof of 3.1. We will prove Theorem 3.1 by stating the KKT conditions for our opti-

mization problem and then deriving the set of optimal solutions for every case. In order

to get the standard KKT representation, we rewrite the constraints with δ1 as a slack

variable.

The Karush Kuhn Tucker conditions

For a fixed state s ∈ S and fixed (P1, r, p̂) we get as necessary conditions for the

optimization problem max f(β1, γ+, γ−, δ1) with f(β1, γ+, γ−, δ1) := β1P2+γ+(1+ r)p̂−

γ−(1 + r) + δ1.

(1) primal feasibility

g(β1, γ+, γ−, δ1) ≥ 0 with g : R4 → R
4,

g(β1, γ+, γ−, δ1) = (β1, γ+, γ−, δ1)

h(β1, γ+, γ−, δ1) = 0 with h : R4 → R,

h(β1, γ+, γ−, δ1) = β1P1 + γ+ − γ− + δ1 − β0
P1

P0
− δ0 + s

(2) dual feasibility

Let µi, i = 1, 2, 3, 4 be the KKT multipliers on β1 ≥ 0, γ+ ≥ 0, γ− ≥ 0 and δ1 ≥ 0

and ν the multiplier on the budget constraint. Then

µ1, µ2, µ3, µ4 ≥ 0

(3) complementary slackness

β1µ1 = γ+µ2 = γ−µ3 = δ1µ4 = 0
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5 Proofs

(4) stationarity: ∇f +
∑4

i=1 µi∇g + ν∇h = 0

P2 + µ1 + νP1 = 0

(1 + r)p̂+ µ2 + ν = 0

−(1 + r) + µ3 − ν = 0

1 + µ4 + ν = 0

We can rewrite the first condition as P2
P1

+ 1
P1
µ1 + ν = 0, since P1 ∈ (0,∞). Dual

feasibility and complementary slackness hold for µ1 iff they hold for µ̃1 :=
1
P1
µ1, i.e.

the first stationarity condition can be replaced by

P2

P1
+ µ1 + ν = 0

Regularity

Since f and g are affine functions, a maximum point must satisfy the above conditions.

Sufficiency

Since f and gj (j = 1, . . . , 4) are continuously differentiable and concave and h is

affine, those conditions are also sufficient for optimality.
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For every element of the optimal order set, there is a unique δ1, which represents the

amount invested in the liquid asset. Since it can be calculated via

δ1 =
P1

P0
β0 − β1P1 + δ0 − s+ γ− − γ+,

it will not be stated explicitely for every case.

We will have to consider various different cases in order to determine optimal order

sets for p̂, r and P1. The following charts sum up all case differentiations: For p̂ ∈ [0, 1],

r ∈ (−1, 0), P1 ∈ (0,∞), refer to case (i) and for p̂ ∈ [0, 1], r ∈ [0,∞), P1 ∈ (0, P2
1+r

),

refer to case (v). What remains is p̂ ∈ [0, 1], r ∈ [0,∞), P1 ∈ ( P2
1+r

,∞), which splits up

into the following cases:

• For p̂ = 0:

P1 =
P2
1+r

P1 ∈ ( P2
1+r

, P2) P1 = P2 P1 ∈ (P2,∞)

r = 0 - - (vi) (ii)

r ∈ (0,∞) (vii) (viii) (vi) (iii)

• For p̂ ∈ (0, 1):

P1 =
P2
1+r

P1 ∈ ( P2
1+r

, P2) P1 = P2 P1 ∈ (P2,∞)

r = 0 - - (vi) (ii)

r ∈ (0, 1
p̂
− 1) (vii) (viii) (ix) (iii)

r = 1
p̂
− 1 (vii) (viii) (x) (iv)

P1 =
P2
1+r

P1 ∈ ( P2
1+r

, P2
(1+r)p̂) P1 =

P2
(1+r)p̂ P1 ∈ ( P2

(1+r)p̂ ,∞)

r ∈ (1
p̂
− 1,∞) (vii) (xi) (xii) (xiii)

• For p̂ = 1:

P1 =
P2
1+r

P1 ∈ ( P2
1+r

, P2) P1 = P2 P1 ∈ (P2,∞)

r = 0 - - (xvi) (xiv)

r ∈ (0,∞) (xvii) (xv) (xv) (xv)

(i) p̂ ∈ [0, 1], r ∈ (−1, 0), P1 ∈ (0,∞)

By stationarity we have

µ3 + µ4 = r < 0,
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which is a contradiction to dual feasibility. Thus there is no maximum. (For a

given strategy, lending more on the unsecured interbank market and investing it

into the liquid asset always yields higher return)

Os = ∅, s ∈ S

(ii) p̂ ∈ [0, 1), r = 0, P1 ∈ (P2,∞)

Then by stationarity

µ1 = 1−
P2

P1
+ µ4 > µ4 ≥ 0,

µ2 = 1− (1 + r)p̂+ µ4 > µ4 ≥ 0

and therefore by complementary slackness β1 = γ+ = 0. Given the price parame-

ters, the objective function now is independent of the choice of γ− and δ1:

f(0, 0, γ−, δ1) = −γ− + δ1 = β0
P1

P0
+ δ0 − s.

The resulting order sets are uncountable:

Os = {(β1, γ+, γ−) ∈ Cs : β1 = γ+ = 0}, s ∈ S.

(iii) p̂ ∈ (0, 1), r ∈ (0, 1
p̂
− 1), P1 ∈ (P2,∞) or p̂ = 0, r ∈ (0,∞), P1 ∈ (P2,∞)

By stationarity,

µ1 = 1−
P2

P1
+ µ4 > µ4 ≥ 0,

µ2 = 1− (1 + r)p̂+ µ4 > µ4 ≥ 0,

µ3 + µ4 = r > 0

and therefore by complementary slackness β1 = γ+ = 0 and (γ− = 0 ∨ δ1 = 0).

The resulting order sets are singletons:

Os = {(0, 0, (β0
P1

P0
+ δ0 − s)−}, s ∈ S.

(iv) p̂ ∈ (0, 1), r = 1
p̂
− 1, P1 ∈ (P2,∞)

By stationarity

µ1 = 1−
P2

P1
+ µ4 > µ4 ≥ 0,

µ3 + µ4 = r > 0,

µ3 + µ2 = r > 0

and therefore by complementary slackness β1 = 0 and (γ− = 0 ∨ δ1 = γ+ = 0).
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a) β0
P1
P0

+ δ0 − s > 0

The budget constraint implies

γ+ − γ− + δ1 = β0
P1

P0
+ δ0 − s > 0.

Since γ− ≥ 0, we get γ+ + δ1 > 0 and thus γ− = 0. Again, the objective

function is constant and γ+ and δ1 can be chosen arbitrarily as long as γ+ +

δ1 = β0
P1
P0

+ δ0 − s.

b) β0
P1
P0

+ δ0 − s = 0

γ+ − γ− + δ1 = 0 and the above conditions imply γ+ = γ− = δ1 = 0.

c) β0
P1
P0

+ δ0 − s < 0

Since γ+ − γ− + δ1 < 0 we get γ+ = δ1 = 0 and γ− = −β0
P1
P0

− δ0 + s.

The optimal order sets can be summed up in the following form for s ∈ S:

Os = {(β1, γ+, γ−) ∈ Cs : β1 = 0, γ+ ≤ (β0
P1

P0
+ δ0 − s)+, γ− = (β0

P1

P0
+ δ0 − s)−}

(v) p̂ ∈ [0, 1], r ∈ [0,∞), P1 ∈ (0, P2
1+r

)

µ1 + µ3 = (1 + r)−
P2

P1
< 0,

a contradiction to dual feasibility and again we have no maximum. In this case

lending more on the unsecured interbank market and investing it into bonds always

yields higher return.

Os = ∅, s ∈ S.

(vi) p̂ ∈ [0, 1), r = 0, P1 = P2

µ2 = µ1 + 1− p̂ > µ1 ≥ 0,

which by complementary slackness means γ+ = 0.

The objective function becomes β1P1−γ−+δ1 ≡ β0
P1
P0

+δ0−s by primal feasibility.

Thus all allocations with β1P1 − γ− + δ1 = β0
P1
P0

+ δ0 − s and β1, γ
,
−δ1 ≥ 0 are
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optimal.

Note that for s > δ0 + β0
P1
P0

we get

γ− = β1P1
︸ ︷︷ ︸

≥0

−δ0 − β0
P1

P0
+ s

︸︷︷︸

>δ0+β0
P1
P0

> 0.

Os = {(β1, γ+, γ−) ∈ Cs : γ+ = 0}, s ∈ S.

(vii) p̂ ∈ [0, 1), r ∈ (0,∞), P1 =
P2
1+r

µ2 = µ1 + (1 + r)− (1 + r)p̂ > µ1 ≥ 0,

µ4 = µ1 + (1 + r)− 1 > µ1 ≥ 0,

which by complementary slackness means γ+ = δ1 = 0. The objective function

becomes (β1P1 − γ−)(1 + r) ≡ (β0
P1
P0

+ δ0 − s)(1 + r) by primal feasibility. Thus

all allocations with β1P1 − γ− = β0
P1
P0

+ δ0 − s and β1, γ− ≥ 0 are optimal. Again,

for s > β0
P1
P0

+ δ0 we get

γ− = β1P1
︸ ︷︷ ︸

≥0

−δ0 − β0
P1

P0
+ s

︸︷︷︸

>δ0+β0
P1
P0

> 0.

Os = {(β1, γ+, γ−) ∈ Cs : γ+ = 0, β1P1 − γ− =
P1

P0
β0 + δ0 − s}, s ∈ S.

(viii) p̂ ∈ (0, 1), r ∈ (0, 1
p̂
− 1], P1 ∈ ( P2

1+r
, P2) or p̂ = 0, r ∈ (0,∞), P1 ∈ ( P2

1+r
, P2)

µ2 = µ1 +
P2

P1
− (1 + r)p̂ > µ1 ≥ 0,

µ4 = µ1 +
P2

P1
− 1 > µ1 ≥ 0 and

µ1 + µ3 = (1 + r)−
P2

P1
> 0,

which by complementary slackness means

γ+ = δ1 = 0 ∧ (β1 = 0 ∨ γ− = 0.)

a) s > δ0 + β0
P1
P0

γ− = β1P1
︸ ︷︷ ︸

≥0

−δ0 − β0
P1

P0
+ s

︸︷︷︸

>δ0+β0
P1
P0

> 0,

thus β1 = 0.
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b) s = δ0 + β0
P1
P0

γ− = β1P1,

which means γ− = β1 = 0.

c) s < δ0 + β0
P1
P0

β1P1 = γ−
︸︷︷︸

≥0

+δ0 + β0
P1

P0
− s

︸︷︷︸

<δ0+β0
P1
P0

> 0

and therefore γ− = 0, β1P1 = δ0 + β0
P1
P0

− s.

Os = {((
β0

P0
+

δ0

P0
−

s

P0
)+, 0, (β0

P1

P0
+ δ0 − s)−)}, s ∈ S.

(ix) p̂ ∈ (0, 1), r ∈ (0, 1
p̂
− 1), P1 = P2 or p̂ = 0, r ∈ (0,∞), P1 = P2

µ2 = µ4 + 1− (1 + r)p̂ > µ4 ≥ 0,

µ1 + µ3 = r > 0 and

µ4 + µ3 = r > 0,

which by complementary slackness means

γ+ = 0 ∧ (β1 = δ1 = 0 ∨ γ− = 0).

a) s > δ0 + β0
P1
P0

γ− = β1P1 + δ1
︸ ︷︷ ︸

≥0

−δ0 − β0
P1

P0
+ s

︸︷︷︸

>δ0+β0
P1
P0

> 0,

thus β1 = δ1 = 0 and γ− = −δ0 − β0
P1
P0

+ s.

b) s = δ0 + β0
P1
P0

γ− = β1P1 + δ1,

which means γ− = β1 = δ1 = 0.

c) s < δ0 + β0
P1
P0

β1P1 + δ1 = γ−
︸︷︷︸

≥0

+δ0 + β0
P1

P0
− s

︸︷︷︸

<δ0+β0
P1
P0

> 0

and therefore γ− = 0. The objective function becomes β1P1 + δ1 ≡ δ0 +

β0
P1
P0

− s, thus all allocations with β1P1 + δ1 = δ0 + β0
P1
P0

− s and β1, δ1 ≥ 0

are optimal.
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for all s ∈ S

Os = {(β1, γ+, γ−) ∈ Cs : β1P1 ≤ (δ0+β0
P1

P0
−s)+, γ+ = 0, γ− = (δ0+β0

P1

P0
−s)−}.

(x) p̂ ∈ (0, 1), r = 1
p̂
− 1, P1 = P2

µ3 + µ1 = r > 0,

µ3 + µ2 = r > 0 and

µ3 + µ4 = r > 0,

which by complementary slackness means

γ− = 0 ∨ β1 = γ+ = δ1 = 0.

a) s > δ0 + β0
P1
P0

As in (vi), by primal feasibility we get

γ− > 0,

thus

β1 = γ+ = δ1 = 0,

which means

γ− = −δ0 − β0
P1

P0
+ s.

b) s = δ0 + β0
P1
P0

Primal feasibility implies

β1P1 + γ+ + δ1 = γ−,

thus

β1 = γ+ = δ1 = γ− = 0.

c) s < δ0 + β0
P1
P0

Here the budget constraint implies

β1P1 + γ+ + δ1 = γ−
︸︷︷︸

≥0

+δ0 + β0
P1

P0
− s

︸︷︷︸

<δ0+β0
P1
P0

> 0.
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Thus we get γ− = 0. The objective function becomes

β1P1 + γ+ + δ1 ≡ δ0 + β0
P1

P0
− s,

independent of all four variables. Thus every allocation with

β1, γ+, δ1 ≥ 0, γ− = 0

and

β1P1 + γ+ + δ1 = δ0 + β0
P1

P0
− s

is optimal.

Os = {(β1, γ+, γ−) ∈ Cs : β1P1 + γ+ ≤ (δ0 + β0
P1

P0
− s)+, γ− = (δ0 + β0

P1

P0
− s)−}.

(xi) p̂ ∈ (0, 1), r ∈ (1
p̂
− 1,∞), P1 ∈ ( P2

1+r
, P2
(1+r)p̂)

µ2 = µ1 +
P2

P1
− (1 + r)p̂ > µ1 ≥ 0,

µ4 = µ1 +
P2

P1
− 1 > µ1 ≥ 0 and

µ1 + µ3 = (1 + r)−
P2

P1
> 0,

which by complementary slackness means

γ+ = δ1 = 0 ∧ (β1 = 0 ∨ γ− = 0).

This is the same situation as in case (viii).

Os = {((
β0

P0
+

δ0

P0
−

s

P0
)+, 0, (β0

P1

P0
+ δ0 − s)−)}, s ∈ S.

(xii) p̂ ∈ (0, 1), r ∈ (1
p̂
− 1,∞), P1 =

P2
(1+r)p̂

µ4 = µ1 +
P2

P1
− 1 > µ1 ≥ 0,

µ3 + µ1 = (1 + r)− (1 + r)p̂ > 0 and

µ3 + µ2 = (1 + r)− (1 + r)p̂ > 0,
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5 Proofs

which by complementary slackness means

δ1 = 0 ∧ (γ− = 0 ∨ β1 = γ+ = 0).

Analogously to case (viii) this yields the following optimal allocations:

a) s > δ0 + β0
P1
P0

β1 = γ+ = δ1 = 0,

γ− = −δ0 − β0
P1

P0
+ s.

b) s = δ0 + β0
P1
P0

β1 = γ+ = δ1 = γ− = 0.

c) s < δ0 + β0
P1
P0

Every allocation with

β1, γ+ ≥ 0, γ− = δ1 = 0

and

β1P1 + γ+ = δ0 + β0
P1

P0
− s.

Os = {(β1, γ+, γ−) ∈ Cs : β1P1 + γ+ = (δ0 + β0
P1

P0
− s)+, γ− = (δ0 + β0

P1

P0
− s)−}.

(xiii) p̂ ∈ (0, 1), r ∈ (1
p̂
− 1,∞), P1 ∈ ( P2

(1+r)p̂ ,∞)

µ1 = µ2 + (1 + r)p̂−
P2

P1
> µ2 ≥ 0,

µ4 = µ2 + (1 + r)p̂− 1 > µ2 ≥ 0,

µ2 + µ3 = (1 + r)(1− p̂) > 0,

therefore β1 = δ1 = 0 and (γ+ = 0 ∨ γ− = 0).

Os = {(0, (β0
P1

P0
+ δ0 − s)+, (β0

P1

P0
+ δ0 − s)−)}, s ∈ S.
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(xiv) p̂ = 1, r = 0, P1 ∈ (P2,∞)

µ1 = µ2 + (1 + r)−
P2

P1
> µ2 ≥ 0,

therefore β1 = 0. The objective function becomes constant, thus

Os = {(β1, γ+, γ−) ∈ Cs : β1 = 0}, s ∈ S.

(xv) p̂ = 1, r ∈ (0,∞), P1 ∈ ( P2
(1+r) ,∞)

µ1 = µ2 + (1 + r)−
P2

P1
> µ2 ≥ 0,

µ4 = µ2 + (1 + r)− 1 > µ2 ≥ 0,

therefore β1 = δ1 = 0. Again, the objective function becomes constant, thus

Os = {(β1, γ+, γ−) ∈ Cs : β1 = 0, γ+ − γ− =
P1

P0
β0 + δ0 − s}, s ∈ S.

(xvi) p̂ = 1, r = 0, P1 = P2

The objective function directly becomes constant, thus Os = Cs for all s ∈ S.

(xvii) p̂ = 1, r ∈ (0,∞), P1 =
P2

(1+r)

µ4 = µ1 + (1 + r)− 1 > µ2 ≥ 0,

therefore δ1 = 0. The objective function becomes constant, thus

Os = {(β1, γ+, γ−) ∈ Cs : β1P1 + γ+ − γ− =
P1

P0
β0 + δ0 − s}, s ∈ S.
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5 Proofs

Proof of 3.2. Now we prove Theorem 3.2 by looking for optimal assignments. By defini-

ton, (r, P1) is an equilibirum price pair iff there is an optimal assignment. Since we now

have to check the market clearing conditions, the initial endowment is important and

we have to make case differentiations accordingly. All equations containing the liquidity

demand s are to be considered P Y -a.s..

First, let δ0 < E(Y ) and assume there is an optimal assignment. Thus by definiton

a(s) ∈ Os ⊂ Cs, in particular a1(s)P1 + a2(s)− a3(s) ≤ β0
P1
P0

+ δ0 − s. We have

E[a1(Y )P1 + a2(Y )− a3(Y )] ≤ E[β0
P1

P0
+ δ0 − Y ] = β0

P1

P0
+ δ0 − E[Y ] < β0

P1

P0
,

in contradiction to

E[a1(Y )P1 + a2(Y )− a3(Y )] = β0
P1

P0
,

which can be derived directly by applying the market clearing conditions E[a2(Y )] =

E[a3(Y )] and E[a1(Y )] = E[h1(Y )] = β0

P0
. Thus there is neither interbank lending nor

trading of bonds, thus banks with δ0 < s fail. The remaining banks can only put their

spare liquidity in the liquid asset. This implies

(βs
1, γ

s
+, γ

s
−, δ

s
1) = (

β0

P0
, 0, 0, δ0 − s).

The terminal wealth of a bank facing liquidity demand s ≤ δ0 is

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ δ0 − s− (1−

s

c1
)c2.

Now let δ0 = E(Y ) and β0 > 0, consider the cases (i) to (xvi) from above. We do

not have to check each of the seventeen cases from the proof of 3.1 individually. We can

group them in five categories:

• Cases (i) and (v)

Since Os = ∅ for all s ∈ S, there is no optimal assignment.

• Cases (ii), (iii), (iv), (xiii), (xiv) and (xv)

For all s ∈ S and for all (β1, γ+, γ−) ∈ Os we have β1 = 0. Assume there is an

optimal assignment, then a(s) ∈ Os for every s ∈ S implies

E[a1(Y )] = 0,

which is a contradiction to β0 > 0 and the market clearing condition E[a1(Y )] =

β0

P0
. Again, there is no optimal assignment.
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• Cases (vi), (vii), (viii), (ix) and (xi)

This means p̂ ∈ [0, 1), r ∈ [0,∞) and P1 ∈ [ P2
1+r

, P2]∩ [ P2
1+r

, P2
(1+r)p̂) (where for p̂ = 0,

P2
(1+r)p̂ = +∞).

For all s ∈ S and for all (β1, γ+, γ−) ∈ Os we have γ+ = 0. Also, for s > δ0 + β0
P1
P0

we have γ− > 0.

Assume P
(

Y > δ0 + β0
P1
P0

)

> 0 and let a be an optimal assignment. Then

E[a2(Y )] = 0 and E[a3(Y )] > 0,

a contradiction to the market clearing condition E[a2(Y )] = E[a3(Y )]. This means

that in order to find an optimal assignment in these cases we have to assume

Y ≤ δ0 + β0
P1
P0

P-a.s..

In cases (viii) and (xi), all order sets Os consist of only one element

Os = {(
δ0

P1
+

β0

P0
−

s

P1
, 0, 0)}

and assigning exactly those amounts accords with both market clearing conditions:

E[a1(Y )] =
δ0

P1
+

β0

P0
−

E(Y )

P1
=

β0

P0
,

E[a2(Y )] = 0 = E[a3(Y )].

We get

a(s) = (
δ0

P1
+

β0

P0
−

s

P1
, 0, 0). (5.1)

In cases (vi), (vii) and (ix), the market clearing condition demands

E[a2(Y )] = E[a3(Y )] = 0,

thus by a2(s) ≥ 0 we get a2 ≡ 0. In case (vii), this results directly in the unique

optimal assignment (5.1).

In cases (vi), we apply the budget constraint:

a1(s)P1 = a1(s)P1 + a2(s)− a3(s) ≤ β0
P1

P0
+ δ0 − s,

which also holds in case (ix). By the market clearing conditions we get

E[a1(Y )P1] = E[a1(Y )P1 + a2(Y )− a3(Y )] = β0
P1

P0
= E[β0

P1

P0
+ δ0 − Y ],
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5 Proofs

thus a1(s)P1 = β0
P1
P0

+δ0−s for all s ∈ S. Therefore, the unique optimal assignment

is again given by (5.1)

There is no trading on the unsecured interbank market. Therefore p̂ and r can be

chosen arbitrarily (they do not matter anymore regarding optimization). Also, p̂

doesn’t have to be checked for consistency. What remains is two conditions on P1:

P1 ∈ (0, P2] and ess sup Y ≤ δ0 + β0
P1
P0
, which means

P1 ∈

[

P0
ess sup Y − E(Y )

β0
, P2

]

.

This is possible, iff β0 ≥ (ess sup Y − E(Y ))P0
P2

> 0.

The investment in the liquid asset is given by

δ1 =
P1

P0
β0 − a1(s)P1 + δ0 − s+ a3(s)− a2(s) = 0

for all s ∈ S.

Thus, the terminal wealth of a banking facing liquidity demand s = λc1 is

V2(α, β0, δ0) = α
St2

S0
+ (

δ0

P1
+

β0

P0
−

s

P1
)P2 − (1−

s

c1
)c2

= α
St2

S0
+ β0

P2

P0
+ δ0

P2

P1
− s

P2

P1
− (1−

s

c1
)c2

= α
St2

S0
+ β0

P2

P0
+ (E(Y )− s)

P2

P1
− (1−

s

c1
)c2

(

= α
St2

S0
+ β0

P2

P0
+ (E(Λ)− λ)c1

P2

P1
− (1− λ)c2

)

• Cases (x) and (xii)

This means p̂ ∈ (0, 1), r ∈ [1
p̂
− 1,∞) and P1 = P2

(1+r)p̂ or p̂ = 1, r ∈ (0,∞) and

P1 =
P2
1+r

. For s > δ0 + β0
P1
P0

we directly get

a1(s) = a2(s) = 0, a3(s) = s− δ0 − β0
P1

P0
.

In case (x), we have a1(s)P1 + a2(s) ≤ δ0 + β0
P1
P0

− s and by the market clearing

conditions

E[a1(Y )P1+a2(Y )] = E[a1(Y )P1+a2(Y )−a3(Y )]+E[a3(Y )] = β0
P1

P0
+E[a3(Y )]

= β0
P1

P0
+E[(Y − δ0−β0

P1

P0
)1

{Y >δ0+β0
P1
P0

}
]
EY=δ0= E[(δ0+β0

P1

P0
−Y )1

{Y≤δ0+β0
P1
P0

}
].
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Since

E[a1(Y )P1 + a2(Y )] = E[(a1(Y )P1 + a2(Y ))1
{Y≤δ0+β0

P1
P0

}
],

this implies a1(s)P1 + a2(s) = δ0 + β0
P1
P0

− s for all s ≤ δ0 + β0
P1
P0
. This equation

also holds for case (xii). In both cases, an optimal assignment is characterized by

a1(s)P1 + a2(s) = (δ0 + β0
P1

P0
− s)+, a3(s) = (δ0 + β0

P1

P0
− s)−, E[a1(Y )] =

β0

P0
.

The investment in the liquid asset is given by

δ1 =
P1

P0
β0 − a1(s)P1 + δ0 − s+ a3(s)− a2(s) = 0

for all s ∈ S.

Note that if P
(

Y > δ0 + β0
P1
P0

)

= 0, there is no unsecured lending and the results

are as in cases (vi), (vii), (viii), (ix) and (xi). In particular, the optimal assignment

is unique. Else, we get multiple solutions. Applying P1 =
P2

(1+r)p̂ ( ⇐⇒ (1+ r)p̂ =

P2
P1
) , we get for the terminal wealth of a banking facing liquidity demand s:

V2(α, β0, δ0) = α
St2

S0
+ a1(s)P2 + a2(s)(1 + r)p̂− a3(s)(1 + r)− (1−

s

c1
)c2

= α
St2

S0
+ (a1(s)P1 + a2(s))

P2

P1
− a3(s)

P2

P1p̂
− (1−

s

c1
)c2.

For a bank facing liquidity demand s ≤ δ0 + β0
P1
P0

this results in

V2(α, β0, δ0) = α
St2

S0
+ (δ0 + β0

P1

P0
− s)

P2

P1
− (1−

s

c1
)c2

= α
St2

S0
+ β0

P2

P0
+ (E(Y )− s)

P2

P1
− (1−

s

c1
)c2

And for s > δ0 + β0
P1
P0

we get

V2(α, β0, δ0) = α
St2

S0
− (s− δ0 − β0

P1

P0
)
P2

P1p̂
− (1−

s

c1
)c2

= α
St2

S0
+ β0

P2

P0p̂
+ (E(Y )− s)

P2

P1p̂
− (1−

s

c1
)c2

• Cases (xvi) and (xvii)

This means p̂ = 1, r ∈ [0,∞) and P1 =
P2
1+r

. In case (xvi), we get

E[
P1

P0
β0 + δ0 − Y − a1(Y )P1 + a3(Y )− a2(Y )] = 0
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5 Proofs

by market clearing and δ0 = E(Y ). Together with a(s) ∈ Os, this implies

P1

P0
β0 + δ0 − s = a1(s)P1 + a2(s)− a3(s). (∗)

The same holds in case (xvii). In particular, δ1 = 0. All assignments with

E[a1(Y )] = β0

P0
, E[a2(Y )] = E[a3(Y )] and (∗) are optimal. For a bank facing

liquidity demand s, this results in

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ (δ0 − s)(1 + r)− (1−

s

c1
)c2.

Next, let δ0 > E(Y ) and β0 > 0. Since many of the arguments are the same as in the

correspondent cases for δ0 = E(Y ), we can keep the proofs shorter. As above, we can

show that in the cases (i), (ii), (iii), (iv), (v), (xiii), (xiv) and (xv) there is no optimal

assignment.

• Cases (vii), (viii), (xi), (xii) and (xvii)

Assume, there is an optimal assignment. Then a(s) ∈ Os, thus

E[a1(Y )P1 + a2(Y )− a3(Y )] = E[β0
P1

P0
+ δ0 − Y ] = β0

P1

P0
+ δ0 − E[Y ] > β0

P1

P0
.

But the market clearing conditions imply

E[a1(Y )P1 + a2(Y )− a3(Y )] = E[a1(Y )P1] = β0
P1

P0
,

a contradiction.

• Cases (vi) and (ix)

This means p̂ ∈ [0, 1), r ∈ [0, 1
p̂
− 1) and P1 = P2 (where for p̂ = 0, 1

p̂
− 1 = +∞).

For P
(

Y > δ0 + β0
P1
P0

)

> 0 there is no optimal assignment, following the same

arguments as above. Again we get, a2(s) = a3(s) = 0 for all s ∈ S. In case (vi),

the budget constraint implies a1(s)P1 ≤ δ0 + β0
P1
P0

− s, which also holds in case

(ix). The resulting optimal assignments are characterized by

a2(s) = a3(s) = 0, a1(s) ≤
δ0

P1
+

β0

P0
−

s

P1
, E[a1(Y )] =

β0

P0
.

The investment in the liquid asset is given by

δ1 =
P1

P0
β0 − a1(s)P1 + δ0 − s+ a3(s)− a2(s) =

P1

P0
β0 + δ0 − a1(s)P1 − s.
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There is no trading on the unsecured interbank market, p̂ and r can be chosen

arbitrarily. The resulting terminal wealth of a banking facing liquidity demand s

is

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ δ0 − s− (1−

s

c1
)c2.

• Case (x)

This means p̂ ∈ (0, 1), r = 1
p̂
− 1 and P1 = P2. Optimal assignments are charac-

terized by

a3(s) = 0, a1(s)P2 + a2(s) ≤ δ0 + β0
P2

P0
− s, for s ≤ δ0 + β0

P2

P0
,

a1(s) = a2(s) = 0, a3(s) = s− δ0 − β0
P2

P0
, for s > δ0 + β0

P2

P0
,

E[a1(Y )] =
β0

P0
, E[a2(Y )] = E[a3(Y )].

The investment in the liquid asset is given by

δ1 =







β0
P2
P0

+ δ0 − a1(s)P2 − a2(s)− s, s ≤ δ0 + β0
P2
P0
,

0, s > δ0 + β0
P2
P0
.

The terminal wealth of a banking facing liquidity demand s ≤ δ0 + β0
P2
P0

is

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ δ0 − s− (1−

s

c1
)c2,

and a banking facing liquidity demand s > δ0 + β0
P2
P0

has terminal wealth

V2(α, β0, δ0) = α
St2

S0
+

(

β0
P2

P0
+ δ0 − s

)
1

p̂
− (1−

s

c1
)c2.

• Case (xvi)

This means p̂ = 1, r = 0 and P1 = P2. All assignments with E[a1(Y )] = β0

P0
,

E[a2(Y )] = E[a3(Y )] and a(s) ∈ Os for all s ∈ S are optimal assignments. The

terminal wealth, given liquidity demand s, is

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ δ0 − s− (1−

s

c1
)c2.

Technically, for β0 = 0 there is only lending and 0 goods on the market. But the above

results also hold (they were derived for β0 ≥ 0), i.e. instead of deriving optimal order

sets on a market without bond trade, we formally allow trade of bonds but demand

E[a1(Y )] = 0. Thus we assume δ0 = E(Y ) and β0 = 0. There is no optimal assignment

in the cases (i) and (v).
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5 Proofs

• Cases (vii), (viii) and (xi)

Assume, there is an optimal assignment a. Then for all s ∈ S a2(s) = 0. The

second market clearing condition E[a3(Y )] = E[a2(Y )] = 0 implies a3 ≡ 0. By the

first market clearing condition E[a1(Y )] = 0 we have a1 ≡ 0. But then, in all three

cases, the condition a(s) ∈ Os for all s ∈ S is violated.

• Cases (ii), (iii), (vi) and (ix)

Again, a2(s) = 0 for all s ∈ S, thus a3 ≡ 0. This can hold only if Y ≤ δ0+β0
P1
P0

= δ0

P-a.s.. This is a contradiction to δ0 = E(Y ), since Y is assumed not to be constant.

• Cases (iv), (x), (xii) and (xiii)

This means p̂ ∈ (0, 1), r ∈ [1
p̂
− 1,∞) and P1 ∈ [ P2

(1+r)p̂ ,∞). In case (x) and (xii),

we derive a1 ≡ 0 with the first market clearing condition. In case (iv) and (x) we

now have a2(s) ≤ (δ0 − s)+ for all s ∈ S. The second market clearing condition

implies

E[a2(Y )] = E[a3(Y )] = E[(δ0 − Y )−] = E[(δ0 − Y )+].

The last equation holds, because E[δ0 − Y ] = δ0 − E(Y ) = 0. This concludes

a2(s) = (δ0 − s)+ for all s ∈ S. This also holds in cases (xii) and (xiii), thus we

can characterize an optimal assignment by

a1(s) = 0, a2(s) = (δ0 − s)+ and a3(s) = (δ0 − s)− for all s ∈ S.

We get δ1 = 0 for all s ∈ S. Applying 1 = α+ β0 + δ0 = α+ E(Y ) yields

V2(α, β0, δ0) =







(1−E(Y ))
St2
S0

+ (E(Y )−s)(1 + r)p̂− (1− s
c1
)c2, s ≤ E(Y )

(1−E(Y ))
St2
S0

+ (E(Y )−s)(1 + r)− (1− s
c1
)c2, s > E(Y )

• Cases (xiv), (xv), (xvi) and (xvii)

This means p̂ = 1, r ∈ [0,∞) and P1 ∈ [ P2
1+r

,∞). We can show a1 ≡ 0 using the

first market clearing condition. In case (xiv) and (xvi) we use a(s) ∈ Os ⊂ Cs to

show a2(s)− a3(s) ≤ δ0 − s. Applying

E[a2(Y )− a3(Y )] = 0 = E[δ0 − Y ]

yields a2(s) − a3(s) = δ0 − s. The same holds for the cases (xv) and (xvii). An

optimal assignment is characterized by

a1(s) = 0 and a2(s)− a3(s) = E(Y )− s, for all s ∈ S.
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Terminal wealth is

V2(α, β0, δ0) = α
St2

S0
+ β0

P2

P0
+ (δ0 − s)(1 + r)− (1−

s

c1
)c2.

Finally, let δ0 > E(Y ) and β0 = 0. The cases (i), (v), (vii), (viii) and (xi) can

be treated as for δ0 = E(Y ) and β0 = 0, where we showed that there is no optimal

assignment.

• Cases (ii), (iii), (vi) and (ix)

This means p̂ ∈ [0, 1), r ∈ [0, 1
p̂
− 1) and P1 ∈ [P2,∞). For an optimal assignment

we have a2 ≡ 0, thus a3 ≡ 0. This can hold only if ess sup Y ≤ δ0. In this case

the optimal assignment is given by a ≡ (0, 0, 0) and the investment in the liquid

asset is δ1 = δ0 − s. This yields terminal wealth of

V2(α, β0, δ0) = α
St2

S0
+ δ0 − s− (1−

s

c1
)c2.

• Cases (xii), (xiii), (xv) and (xvii)

By the market clearing conditions, we get 0 = E[a1(Y ) + a2(Y ) − a3(Y )], which

by a(s) ∈ Os turns into

0 = E[δ0 − Y ] = δ0 − E(Y ) > 0,

a contradiction.

• Cases (iv) and (x)

This means p̂ ∈ (0, 1), r = 1
p̂
− 1 and P1 ∈ [P2,∞). a1 ≡ 0 is clear. For s > δ0

we get a2(s) = 0, a3(s) = δ0 − s and therefore δ1 = 0. For s ≤ δ0, a3(s) = 0.

Thus a2(s) ≤ δ0 − s and δ1 = δ0 − s − a2(s). a is an optimal assignment iff

E[a2(Y )] = E[Y 1{Y >δ0}]− δ0P (Y > δ0) and for all s ∈ S

a1(s) = 0, 0 ≤ a2(s) ≤ (δ0 − s)+, a3(s) = (δ0 − s)−.

Terminal wealth is

V2(α, β0, δ0) =







α
St2
S0

+ δ0 − s− (1− s
c1
)c2, s ≤ δ0

α
St2
S0

+ (δ0 − s)1
p̂
− (1− s

c1
)c2, s > δ0
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5 Proofs

• Cases (xiv) and (xvi)

This means p̂ = 1, r = 0 and P1 ∈ [P2,∞). a is an optimal assignment iff

E[a2(Y )] = E[a3(Y )] and for all s ∈ S

a1(s) = 0, a2(s) ≥ 0, a3(s) ≥ 0, a2(s)− a3(s) ≤ δ0 − s.

Furthermore, δ1 = δ0 − s+ a3(s)− a2(s) and terminal wealth is

V2(α, β0, δ0) = α
St2

S0
+ δ0 − s− (1−

s

c1
)c2.
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Proof of 3.3. For a3(s) = (δ0+β0
P2
P0

− s)− and (a1(s)+ a2(s))a3(s) = 0 for all s ∈ S, we

get

Rs,x(p,
1

p
− 1, P2, a) =







(s− δ0 − β0
P2
P0
)1
p
, V

s,x
2 (α, β0, δ0) ≥ 0, s > δ0 + β0

P2
P0
,

(α x
S0

− (1− s
c1
)c2)

+, V
s,x
2 (α, β0, δ0) < 0, s > δ0 + β0

P2
P0
,

0, s ≤ δ0 + β0
P2
P0
.

with V
s,x
2 (α, β0, δ0) = α x

S0
− (s− δ0 − β0

P2
P0
)1
p
− (1− s

c1
)c2 for s > δ0 + β0

P2
P0
.

Thus

E

[

RY,St2 (p,
1

p
−1, P2, a)

]

=
1

p
E

[(

Y −δ0−β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0−β0
P2
P0

) 1
p
,Y >δ0+β0

P2
P0

}

]

+E

[(

α
St2

S0
−(1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
p
,Y >δ0+β0

P2
P0

}

]

=
1

p
E

[(

Y − δ0 − β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0−β0
P2
P0

) 1
p
>0}

]

+E

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
p
}

]

.

We will show that h is monotonely increasing on [0, 1]. By definition, h(p) ≥ 0 = h(0)

for all p ∈ [0, 1]. Let 0 < p < q ≤ 1, then

h(p)E

[

(δ0 + β0
P2

P0
− Y )−

]

= pE

[

RY,St2 (p,
1

p
− 1, P2, a)

]

= E

[(

Y − δ0 − β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0+β0
P2
P0

) 1
p
>0}

]

+pE

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
p
}

]

= E

[(

Y − δ0 − β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0−β0
P2
P0

) 1
p
>0}

]

+pE

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
q
}

]

+pE

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0<(Y−δ0+β0

P2
P0

) 1
q
≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
p
}

]

≤ E

[(

Y − δ0 − β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0−β0
P2
P0

) 1
p
>0}

]

+qE

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
q
}

]

+pE

[
1

p

(

Y − δ0 + β0
P2

P0

)

1
{0<(Y−δ0+β0

P2
P0

) 1
q
≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
p
}

]
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5 Proofs

= E

[(

Y − δ0 − β0
P2

P0

)

1
{α

St2
S0

−(1− Y
c1

)c2≥(Y−δ0−β0
P2
P0

) 1
q
>0}

]

+qE

[(

α
St2

S0
− (1−

Y

c1
)c2

)

1
{0≤α

St2
S0

−(1− Y
c1

)c2<(Y−δ0−β0
P2
P0

) 1
q
}

]

= qE

[

RY,St2 (q,
1

q
− 1, P2, a)

]

= h(q)E

[

(δ0 − β0
P2

P0
− Y )−

]

.

Define a [0, 1]-sequence (pn)n∈N0 by

p0 := 1, pn := hn(1), n ∈ N.

Then obviously for n ∈ N0 we have pn+1 = h(pn) and the sequence (pn)n∈N0 is monotone,

since p1 ≤ 1 = p0 and pn ≤ pn−1 implies pn+1 = h(pn) ≤ h(pn−1) = pn. Since (pn)n∈N0

is bounded, the monotone convergence theorem for sequences of real numbers implies

that the sequence is convergent. We define

p := lim
n→∞

pn = lim
n→∞

hn(1).

By the representation of h(p) we derived above, it is clear that p only depends on

(α, β0, δ0).

Using this representation again and applying that the sequence (pn)n∈N0 is mono-

tonely decreasing, monotone convergence (Beppo Levi) implies h(p) = h(limn→∞ pn) =

limn→∞ h(pn) = p.

Finally, assume, there is p̃ > p with h(p̃) = p̃. Then p0 = 1 and pn ↓ p imply that

there are k,m ∈ N with m > k and pk > p̃ > pm. Then pm = hm−k(pk) ≥ hm−k(p̃) = p̃

by monotonicity of h, which is a contradiction. Therefore, p is the largest fixpoint of

h:
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Proof of 3.4. First assume, that p > 0. Then by theorem 3.2, r = 1
p
− 1 and P1 = P2

are equilibrium prices. A corresponding market clearing assignment is (not necessarily

uniquely) given by a ∈ A, a3(s) = (δ0+β0
P2
P0

− s)− and a1(s)+ a2(s) ≤ (δ0+β0
P2
P0

− s)+

for all s ∈ S. In this market, the real redemption rate (see definition 2.5) is given by

p̃ = h(p) = p.

Thus, (p, 1
p
− 1, P2, a) is a consistent quadruple.

Now, let (p̂, r, P1, a) be a consistent quadruple. Remember that we only consider the

case δ0 ≥ EY and δ0 + β0
P2
P0

< Y . Therefore, p̂ > 0.

• p̂ = 1

This means
E
[
RY,St2 (1, r, P1, a)

]

E [a3(Y )(1 + r)]
= 1.

Since 0 ≤ Rs,x(1, r, P1, a) ≤ a3(s)(1 + r), this implies

RY,St2 (1, r, P1, a) = a3(Y )(1 + r).

By definition of Rs,x, this implies for all x ∈ supp(St2)

α
x

S0
+a1(s)P2+a2(s)(1+r)−a3(s)(1+r)+δ1(s)−(1−

s

c1
)c2 ≥ 0 for all s : a3(s) > 0.

In particular,

α
x

S0
+a1(s)P2+a2(s)(1+r)−a3(s)(1+r)+δ1(s)−(1−

s

c1
)c2 ≥ 0 for s > δ0+β0

P1

P0
,

since all assignments satisfy a3(s) > 0 for s > δ0 + β0
P1
P0

(see the definition of

A1, . . . , A6, A8 and A9 in theorem 3.2).

Looking at possible equilibrium prices, also given by theorem 3.2, we have for

β0 > 0

r ≥ 0 and P1 =
P2

1 + r
.

This implies for all β0 ≥ 0

β0
P1

P0
= β0

P2

P0(1 + r)
≤ β0

P2

P0

and

a1(s)P2 = a1(s)P1
P2

P1
= a1(s)P1(1 + r),
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since a1 ≡ 0 for β0 = 0 (see A1, . . . , A4).

Applying r ≥ 0 and δ1(s) =
P1
P0
β0 − a1(s)P1 + δ0 − s− a2(s) + a3(s), (see proof of

3.1), we get

a1(s)P2 + a2(s)(1 + r)− a3(s)(1 + r) + δ1(s) ≤ (δ0 + β0
P1

P0
− s)(1 + r).

This yields

α
x

S0
+ (δ0 + β0

P1

P0
− s)(1 + r)− (1−

s

c1
)c2 ≥ 0 for s > δ0 + β0

P2

P0

and thus

α
x

S0
+ (δ0 + β0

P2

P0
− s)− (1−

s

c1
)c2 ≥ 0 for s > δ0 + β0

P2

P0
.

Thus, by definition of h, we have h(1) = 1 and thus p = 1.

• 0 < p̂ < 1

For the assignments, we only have to consider A1, A3, A5 and A8. Thus a3 is

uniquely determined by

a3(s) = (δ0 + β0
P1

P0
− s)− for all s ∈ S

and a1(s) = a2(s) = 0 for s > δ0 + β0
P1
P0
. Assume p = 0. Thus RY,St2 (p, 1

p
−

1, P2, a) ≡ 0, where a satisfies a3(s) = (δ0+β0
P2
P0

−s)− and (a1(s)+a2(s))a3(s) = 0

for all s ∈ S. This is equivalent to

(α
St2

S0
− (1−

Y

c1
)c2)1Y >δ0+β0

P2
P0

≤ 0, P-a.s.

Since we assumed δ0 + β0
P2
P0

< Y , this implies

αS − (1−
Y

c1
)c2) ≤ 0.

Therefore,

α
St2

S0
− (1−

Y

c1
)c2 ≤ 0, P-a.s.

ans thus

RY,St2 (p̂, r, P1, a)
P-a.s.
= 0.

But then

p̂ =
E
[
RY,St2 (p̂, r, P1, a)

]

E [a3(Y )(1 + r)]
= 0,

a contradiction.
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