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Abstract

The goal followed within this work is to consistently and simultaneously de-
termine the geometric as well as the dynamic part of a terrestrial reference
frame (TRF) for geodetic-geophysical purposes. This is done by following the
Integrated Approach of space geodesy as proposed by [Zhu 04] using a selec-
tion of GPS ground stations, the GPS satellite constellation, as well as the twin
GRACE low Earth orbiters meaning the processing is done by combined precise
orbit determination and parameter estimation using GPS measurements of the
ground stations and the GRACE satellites, as well as K-band range-rate obser-
vations between the GRACE satellites based on state-of-the-art background and
a priori models mainly following GRACE RL05 standards ([Dah 12]). Overall,
the time span covered extends from 2004/02/04 to 2005/02/28 with satellite
arcs of one day length delivering daily estimates of the TRF parameters. The
integrated procedure followed here is opposed to the so-called Two-step Ap-
proach, where in a first step only the ground stations’ GPS data are processed,
and in a separate second step only the GRACE data are used with the orbits
and clock parameters of the GPS satellites introduced as fixed.
Using the estimated degree-one and degree-two coefficients of the spherical har-
monic expansion of the Earth gravity field the dynamic part of the TRF is
established. The geometric part is derived from Helmert transformations be-
tween the a posteriori and the a priori ground station polyhedron. Representing
a fundamental problem, determining and rectifying the datum defect inherent
to the Integrated Approach is tackled by means of simulations. It finally turns
out that beside a severe datum defect caused by the ground station network’s
z-translation and by its rotation about the z-axis, there is also a hidden da-
tum deficiency in x- and y-translation. Counteracting the datum defect is done
by imposing appropriate no-net conditions leading to a minimum constraints
solution.
The time series of the estimated TRF parameters reveal a reasonable behaviour
over time, i.e. stable with well-constrained scatter. For evaluating the external
accuracy a comparison with independent sources is made for the determined
GPS and GRACE satellite orbits as well as for the estimated gravity field
coefficients. In terms of 3D position difference RMS the GPS orbits obtained
from the integrated processing agree with the high-quality IGS final orbits at a
level of about 6 cm, thereby not fully reaching the state-of-the-art of GPS orbit
determination. Regarding the origin of the dynamic frame the three spatial
components coincide with external time series at a level of 5mm and less in x and
y and a level amounting up to about 15 mm in z. Results of a comparison w.r.t.
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the conventionally followed Two-step Approach confirm the expected outcome
of the Integrated Approach delivering more accurate estimates of the unknown
TRF parameters.
Additionally, several effects studied in detail reveal the influence of the rela-
tive weighting of the various observation types involved, the effect of different
approaches to counteract the datum defect, and the interaction between the
estimated gravity field coefficients and the GPS orbits. Considering the weight-
ing of observations it can be shown that the origin of the dynamic frame is
determined by the GPS data taken onboard the GRACE satellites whereas K-
band range-rate data measured between both low Earth orbiters are responsible
for accurately deriving the gravity field coefficients of degree two. Regarding
rectifying the inherent datum defect it is shown that the no-net conditions are
superior to the method of simply constraining all ground station coordinates to
their a priori values. In this context it turns out that it is very helpful also to
suppress the hidden datum defect in x- and y-translation in order to improve
the position of the origin of the dynamic frame in x and y. By constraining the
GPS satellites’ orbit force model, evidence is given for remaining high correla-
tions between the translational x- and y-components of the gravity field’s origin
and those of Helmert transformations of the derived GPS constellation versus
IGS final orbits. As revealed by using fixed high-quality IGS final orbits, high
scatter in the time series of the estimated z-component of the dynamic origin
as derived by the Integrated Approach is strongly caused by the quality of the
GPS orbits.



Zusammenfassung

Die Bestimmung globaler Referenzrahmen für die Geometrie sowie das Schwere-
feld der Erde sind seit jeher Hauptaufgaben der Geodäsie. Erste nennenswerte
Versuche, geometrische Referenzrahmen zu bestimmen, stellen die Triangulatio-
nen mit dem Aufkommen der modernen Naturwissenschaften dar (z.B. Snellius,
s. [Tor 01]). Die Einrichtung dynamischer Referenzrahmen begann im späten
19. Jahrhundert durch absolute und relative Schweremessungen. Waren diese
Referenzrahmen lange Zeit von lediglich regionaler Ausdehnung, konnten sie mit
der Verfügbarkeit von Satelltennavigationssystemen wie GPS mit ausreichen-
der Genauigkeit global realisiert werden. Jedoch liegen bis heute geometrische
und dynamische Referenzsysteme getrennt vor. Es war schliesslich das Ziel der
”integrierten Geodäsie”, z.B. in [Heck 95] dargestellt, diesen Nachteil dadurch
zu beheben, indem Observablen ins geodätische Modell einfliessen, welche vom
Schwerefeld abhängen, und indem der geometrische sowie der dynamische Ref-
erenzrahmen durch gleichzeitige Verarbeitung der Messdaten bestimmt wer-
den. Das generelle Anliegen dieses Konzeptes besteht darin, Konsistenz in den
verwendeten A-priori- und Hintergrundmodellen zu bewahren sowie Gleichzeit-
igkeit des Messzeitraumes, Berücksichtigung aller Korrelationen und Effizienz
hinsichtlich der Durchführung zu erreichen. Die Begriffsbildung betreffend wird
innerhalb eines integrierten Konzeptes ein terrestrischer Referenzrahmen bes-
timmt, welcher einen geometrischen Teil in Form eines Netzwerks von Boden-
stationen sowie einen dynamischen Teil umfasst, der durch das Erdschwerefeld
gegeben ist.

Die Zielsetzung der eingereichten Dissertation besteht aus den vorgenannten
Gründen darin, auf konsistente Art und Weise sowohl den geometrischen als
auch den dynamischen Teil eines terrestrischen Referenzrahmens zu geodätisch-
geophysikalischen Anwendungen zu bestimmen. Hierzu wird der Weg des In-
tegrierten Ansatzes der Weltraumgeodäsie, wie von [Zhu 04] vorgeschlagen,
beschritten unter Verwendung einer Auswahl von GPS-Bodenstationen des IGS
(International GNSS Service, [IGS 12a]), der GPS-Satellitenkonstellation sowie
der beiden niedrigfliegenden Satelliten der GRACE-Mission ([Tap 04]). Die ver-
wendete Konfiguration ist in Abb. 1.1 dargestellt.

Zunächst wird im zweiten Kapitel zum Verständnis der dem Integrierten Ansatz
innewohnenden Prozessierung die Methodik der Bestimmung von Erdsystempa-
rametern mit Hilfe von Satellitenmessdaten erläutert. Hierzu erfolgt ein Abriss
der zur Schätzung der gesuchten Parameter notwendigen Schritte sowie der
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Satellitenbahnbestimmung.

Daraufhin wird in Kapitel drei sämtliche Hardware, Software als auch das
Beobachtungsmaterial beschrieben, welches verwendet wird. Besonderes Au-
genmerk wird hierbei auf die GPS-Beobachtungen sowie auf die K-Band-Mes-
sungen zwischen den GRACE-Satelliten gelegt und diese hinsichtlich ihres Ur-
sprungs sowie der zu erwartenden Genauigkeit beschrieben.

Im darauffolgenden Kapitel wird die Bestimmung des geometrischen und des
dynamischen Teils eines terrestrischen geodätischen Referenzrahmens erläutert.
Hierzu wird der Satz an Parametern mit Hilfe ihrer geophysikalischen Inter-
pretation definiert, die zur vollen Bestimmung eines terrestrischen Referenz-
rahmens notwendig sind. Die Wahl der Parameter wird letztendlich derart
getroffen, dass der dynamische Teil mit Hilfe der geschätzten Koeffizienten
der Grade eins und zwei der sphärisch-harmonischen Entwicklung des Erd-
schwerefeldes aufgestellt wird. Hierbei stellen die Schwerefeldkoeffizienten vom
Grade eins (C11, S11, C10), welchen den Massenmittelpunkt der Erde in einem
gewählten Koordinatensystem lokalisieren, den Ursprung des dynamischen Re-
ferenzrahmens dar. Die Orientierung des dynamischen Referenzrahmens wird
mit Hilfe von Koeffizienten vom Grade zwei (S21, C21, S22) beschrieben. Der
geometrische Teil besteht aus den geschätzten Positionskoordinaten der Bo-
denstationen sowie den Parametern von Helmert-Transformationen zwischen
den geschätzten und den A-priori-Koordinaten. Mit Hilfe von Abb. 1.2 soll
die grundlegende Idee verdeutlicht werden, sowohl den geometrischen als auch
den dynamischen Teil des Referenzrahmens gleichzeitig mit Hilfe von Satelliten
zu bestimmen. Nachfolgend werden die Beobachtungsgleichungen angegeben,
über die der Zusammenhang zwischen den Messungen und eines Teils der Pa-
rameter gegeben ist. Abschliessend wird dargelegt, wie der dem Integrierten
Ansatz innewohnende Datumsdefekt mit Hilfe von Simulationen bestimmt wer-
den kann sowie die grundlegende Frage beantwortet, wie dieser durch ”No-
Net-Bedingungen” (s. [Alt 02b]) behoben wird. Die Ergebnisse zeigen, dass
neben einem schwerwiegenden Datumsdefekt in z-Translation und Rotation um
die z-Achse des Bodenstationsnetzes auch ein versteckter Defekt in x- und y-
Translation besteht.

In Kapitel fünf wird ein Überblick über die durchgeführte Prozessierung im Inte-
grierten Verfahren gegeben, vor allem hinsichtlich der Aufstellung der Prozessie-
rungsumgebung sowie der ausgeführten Testberechnungen, welche als tagesweise
kombinierte präzise Bahnbestimmung und Parameterschätzung über den Zeit-
raum 04.02.2004 bis 28.02.2005 durchgeführt wurde. Zudem werden die ver-
wendeten Hintergrund- und A-priori-Modelle angegeben.

Im sechsten Kapitel werden die Ergebnisse der ausgeführten Prozessierungen
zur Bestimmung des geometrischen sowie des dynamischen Teils eines ter-
restrischen Referenzrahmens dargestellt und diskutiert. Die gesuchten Param-
eter des terrestrischen Referenzrahmens werden in Form von Zeitreihen in ihrer
zeitlichen Entwicklung gezeigt. Sie weisen sämtlich zu erwartendes Verhalten
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auf, d.h. über die Zeit stabil mit wohlbeschränkter Streuung. In Abb. 6.1 sind
beispielhaft die Zeitreihen der x-, y- sowie z-Komponente (von oben nach unten)
des Ursprungs des dynamischen Referenzrahmens dargestellt.
Zur Charakterisierung der erreichten internen Genauigkeit wird zudem ein Über-
blick der Beobachtungsresiduen gegeben. Demgegenüber werden zur Beurtei-
lung der äusseren Genauigkeit Vergleiche mit unabhängigen Quellen durch-
geführt. Dies betrifft die berechneten Bahnen der GPS- und der GRACE-
Satelliten sowie die geschätzten Schwerefeldkoeffizienten. Im Sinne des qua-
dratischen Mittels der 3D-Positionsdifferenzen der GPS-Bahnen im Vergleich
mit hochqualitativen IGS-Bahnen ergibt sich eine Übereinstimmung auf einem
Niveau von ungefähr 6 cm. Hinsichtlich des Ursprungs des dynamischen Ref-
erenzrahmens stimmen die drei räumlichen Komponenten mit entsprechenden
externen Zeitreihen auf ca. 5 mm und weniger in X und Y überein und erreichen
Spitzen in Z von ungefähr 15 mm. Ergebnisse eines Vergleichs mit einem kon-
ventionell beschrittenen Zweischritt-Verfahren bestätigen das erwartete Resul-
tat, dass der Integrierte Ansatz genauere Schätzwerte der gesuchten Parameter
liefert.
Verschiedene Detailuntersuchungen enthüllen den Einfluss der relativen Gewich-
tung der Beobachtungstypen, den Einfluss verschiedener Ansätze zur Behebung
des Datumsdefektes sowie das Zusammenspiel der geschätzten Schwerefeldko-
effizienten mit den GPS-Bahnen. Im Falle der Beobachtungsgewichtung wird
gezeigt, dass der Ursprung des dynamischen Rahmens durch die GPS-SST-
Messungen der GRACE-Satelliten bestimmt wird, wohingegen die zwischen bei-
den Satelliten gemessenen K-Band-Beobachtungen für die genaue Bestimmung
der Schwerefeldkoeffizienten vom Grade zwei unverzichtbar sind. Aus Abb. 6.10
ist z.B. ersichtlich, wie die K-Band-Messungen den Schwerefeldkoeffizienten C20

beeinflussen. Diese verursachen zum einen eine Verschiebung der Zeitreihe in
Richtung der positiven Zeitachse, doch sind sie auf der anderen Seite unverzicht-
bar, C20 mit ausreichend kleinem Rauschen mit täglicher Auflösung zu bestim-
men. Ähnlich verhält es sich mit den Schwerefeldkoeffizienten S21, C21 und S22,
die erst durch Verwendung von K-Band-Beobachtungen mit täglicher Auflösung
schätzbar werden, wie in Abb. 6.9 zu sehen ist. Hinsichtlich der Behebung des
inhärenten Datumsdefektes wird nachgewiesen, dass No-Net-Bedingungen der
Methode überlegen sind, in welcher sämtliche Stationskoordinaten an ihre A-
priori-Werte gebunden werden. In diesem Zusammenhang stellt sich zudem
heraus, dass es hilfreich ist, auch den versteckten Datumsdefekt in x- und y-
Translation zu beheben, um den Ursprung des dynamischen Rahmens in X
und Y zu verbessern. Durch Fesselung der Störkraftmodelle der GPS-Satelliten
wird ein Beleg für verbleibende hohe Korrelationen zwischen den x- und y-
Translationen des Schwerefeldes und der GPS-Satellitenkonstellation gegeben.
Ein möglicher Grund für die Schwäche der Bestimmung der z-Komponente
des dynamischen Ursprungs wird durch die Einführung hochqualitativer IGS-
Bahnen als fest vorgegeben aufgespürt. Hierdurch ergibt sich eine Zeitreihe
der z-Komponente mit erheblich reduzierter Abweichung vom Erwartungswert
sowie reduzierter Streuung.
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Chapter 1

Introduction

Implementing and maintaining a geodetic terrestrial reference frame (TRF) of
global extent for the geometry as well as for the gravity field of the Earth has
always been one of the major tasks of geodesy. Thereby, a TRF represents the
physical realisation of a terrestrial reference system which itself provides the
underlying concept comprising the mathematical-physical theory, as well as the
algorithms and constants used (see [Pet 10]). First noteworthy efforts in con-
structing a geometric TRF have been triangulations at the advent of modern
natural sciences (e.g. Snellius around 1600 A.D., c.f. [Tor 01]). The furnishing
of dynamic TRFs as gravimetric networks began in the late 19th century by
absolute and relative gravity measurements. A limitation of all those reference
frames has been their mere regional extent. Until the rise of global navigation
satellite systems (GNSS) like the Global Positioning System (GPS) it has not
been feasible to establish global geometric TRFs with satisfactory accuracy.
Still geometric and dynamic TRFs have been separately put into practice. It
has then been the aim of ”integrated geodesy”, as reviewed e.g. by [Heck 95],
to overcome this drawback by incorporating observables depending on the grav-
ity field into the geodetic model, and by simultaneously determining geometric
as well as dynamic parameters. By following such an integrated concept a
geodetic TRF is determined comprising its geometric part represented by a
ground station network and its dynamic part given by the Earth gravity field.
The general advantages of an approach like this are consistency in a priori and
background models used, simultaneity in measurement time, consideration of
all correlations, and efficiency in accomplishment. A recent activity within op-
erational global geodesy is the Global Geodetic Observing System (GGOS, see
[GGOS 12] and [Plag 05]) installed by the International Association of Geodesy
(IAG, [IAG 12]). Its task is the monitoring of variations in the three fundamen-
tal fields of geodesy namely in Earth geometry, Earth gravity field, and Earth
orientation ([Plag 05]). Thus, in order to achieve the goals of GGOS, there is
need to provide a stable geodetic TRF in its geometric and its dynamic part
along with its variations in time. To do so, it is necessary to integrate geometric
as well as dynamic geodetic observation techniques as will be explained below.

The integrated determination of a geodetic TRF in its geometric and its dy-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: The GPS-GRACE satellite constellation.

namic part is the overall goal of the method presented here to derive those
reference frames by following an approach that is space-geodetic, dynamic, and
one-step. ”Space-geodetic” means that the observations used to derive the
reference frame parameters consist of tracking data to and between dedicated
satellites orbiting the Earth. ”Dynamic” denotes the method of determining
the orbits of the satellites tracked, namely by integrating the underlying equa-
tions of motion based on a dynamic model for the acting forces. Finally, the
approach is ”one-step” as all observations are processed simultaneously and all
desired parameters are estimated at the observation level. For this reason the
procedure applied is also called the ”Integrated Approach of Space of Geodesy”
as proposed by [Zhu 04], or shortly and from now on ”Integrated Approach”.
As shown in Fig. 1.1, the Integrated Approach being space-geodetic makes use
of Earth-orbiting satellites orbiting in two layers: the outer layer consists of
a constellation of high-orbiting GNSS satellites whereas low-orbiting LEOs are
located in the inner layer. In the approach followed here the GNSS used is GPS,
and the LEOs are the twin satellites of the GRACE mission, see [Tap 04]. The
whole constellation is completed by a third level consisting of a network of GPS
ground stations globally distributed over the Earth surface.
While the GNSS satellites provide an outer reference system almost not per-
turbed by anomalies of the Earth gravity field, the low orbit of the LEOs
ensures high sensitivity to gravity feld variations and a dense scanning of them.
By the choice of the aforementioned satellite systems the observations available
for processing are GPS ground measurements as well as measurements taken
by several instruments onboard the GRACE satellites. Those onboard mea-
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surements comprise GPS satellite-to-satellite tracking (SST) data between the
GRACE LEOs and the GPS satellites also known as ”high-low SST”, range-rate
observations (KBRR) coming from the inter-satellite K-band instrument also
denoted as ”low-low SST”, as well as directly measured accelerations (ACC)
and spacecraft attitude (ATT). Moreover, there are also Satellite Laser Rang-
ing (SLR) data available to both GRACE LEOs as well as to the two GPS
satellites PRN 5 and PRN 6. A visualisation of the observation types used in
the present study is provided by Fig. 1.1.
Thanks to the GPS-SST and the KBRR observations a direct link between
geometry and gravity parameters of the Earth is achieved at the observation
level as sketched in Fig. 1.2. Throughout the processing this direct link remains
uninterrupted due to the simultaneous processing of all satellites thus ensur-
ing consistency in models and consideration of all correlations. Opposed to
the Integrated Approach stands the conventionally applied two-step approach
where in a first step the orbits and clocks of the GNSS satellites are determined
which are then introduced as fixed into a second step which only the LEO ob-
servations are processed in. As a consequence, at the observation level, the
direct link between the Earth’s geometry and gravity parameters is interrupted
meaning that considering all correlations as well as consistency in models is not
automatically given.
As mentioned above, the global TRF to be determined consists of a geometric
frame and a dynamic frame. While the geometric frame represents a coordinate
system for geometric referencing, the dynamic frame is given by parts of the
Earth’s gravity field. Furthermore, establishing a global geodetic TRF means to
determine an origin, a scale, and an orientation for each of the two parts by es-
timating appropriate Earth System Parameters. In case of the geometric frame
origin, scale, and orientation can be derived from the estimated coordinates of
the GNSS ground stations. On the other hand, the dynamic frame is defined by
the estimated gravity field coefficients up to degree and order two. Estimating
those parameters leads to a datum defect forcing to impose certain constraints
on the set of unknown Earth System Parameters. Concerning geocentre mo-
tion, which is given by changes of the gravity field coefficients of degree one, the
Integrated Approach as a dynamic space-geodetic method is measuring directly
the integral effect. This is a great advantage against approaches where the
geocentre motion is inferred from surface deformations provided by geophysical
models or GNSS measurements. Considering the above given characterisation
of the Integrated Approach, this procedure is suitable to contribute to the goals
of GGOS by providing a stable as well as consistent geodetic TRF, comprising a
geometric and a dynamic part, and by delivering estimates of variations in each
part. Up to the current date there have been no noteworthy efforts of other
institutions to determine a global geodetic TRF based on GNSS observations
following the Integrated Approach as described above.

The content is organised as follows. First of all, in Chapter 2 the methodology
of the Integrated Approach is described. Thereby, the underlying procedures
of satellite orbit determination and parameter estimation are outlined. Subse-
quently, the hardware, the software, as well as the space-geodetic observational
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Figure 1.2: The satellite link between the geometry and the gravity of the Earth.
The centre of figure coincides with the origin of the coordinate system.

data are introduced in Chapter 3. Especially the GPS data and the K-band
inter-satellite observations between the GRACE satellites are described regard-
ing data origin and expected accuracy.
In Chapter 4, the determination of a TRF in its geometric as well as dynamic
part is explained. Thereby the set of parameters necessary to determine a TRF
in its full range is defined and interpreted regarding its geophysical meaning. It
is decided to put into practice the dynamic part using the estimated degree-one
and degree-two coefficients of the spherical harmonic expansion of the Earth
gravity field. The geometric part, on the one hand, is given by the estimated
GNSS ground station positions while additional parameters, on the other hand,
are derived from Helmert transformations between the ground stations’ esti-
mated and a priori set of positions. Furthermore, the auxiliary parameters
needed to be estimated within the procedural model are explained. By present-
ing the observation equations the relation between the measurements and the
parameters is clarified. The datum defect inherent to the Integrated Approach
and the essential question how to rectify it by imposing no-net conditions are
treated within the same chapter.
Chapter 5 is giving an overview concerning the data processing carried out
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following the Integrated Approach, especially the setup of the integrated pro-
cessing environments, and the test computations performed. The various back-
ground and a priori models used are clarified, too. By day-by-day combined
precise orbit determination and parameter estimation covering the time span
extending from 2004/02/04 to 2005/02/28 the proper processing is done.
In Chapter 6 the results of the processings carried out for determining the geo-
metric and the dynamic part of a TRF are presented and discussed. The time
series of the TRF parameters obtained are shown in their time evolution. In
order to give an idea of the internal precision achieved, an overview of the obser-
vational residuals is given. On the contrary, for evaluating the external accuracy
a comparison with independent sources is made for the GPS and GRACE satel-
lite orbits as well as the estimated gravity field coefficients. A comparison with
respect to the conventionally followed Two-step Approach is carried out, too,
for evaluating which of both approaches delivers more accurate estimates of the
unknown reference frame parameters. Additionally, several effects studied in
detail reveal the influence of the relative weighting of the various observation
types involved, the effect of different approaches to counteract the datum de-
fect, and the interaction between the estimated gravity field coefficients and the
GPS orbits.
Finally, some conclusions are drawn from the results obtained.



Chapter 2

Methodology

As this work is dedicated to investigate the potential of the Integrated Ap-
proach, as introduced by [Zhu 04], of determining simultaneously the geometric
as well as the dynamic part of a global geodetic TRF, the underlying procedure
for accomplishing this task is described in this chapter. After outlining the
basic algorithm a description of the satellite orbit determination as well as of
the parameter estimation procedure follows.

2.1 Integrated Approach

Basically, the procedure of the Integrated Approach consists of a POD of all
satellites involved followed by a simultaneous estimation, using stochastic ob-
servational data, of all parameters needed to describe the physical system. Due
to the parameter estimation in one step automatically consistency in models is
ensured. Additionally, combining the POD with the parameter estimation, and
carrying out the POD iteratively based on the updated parameters, allows for
considering all correlations between the GNSS orbits, the LEO orbits, and the
TRF parameters.

Basic Equations

The goal followed here is to determine the geometric as well as the dynamic
part of a TRF by estimating appropriate parameters of a mathematical-physical
model. In principal, it is most desirable to directly observe the parameters of
interest. However, in the case of determining global parameters for a TRF
this task would require a huge effort if done by terrestrial methods. For that
reason the interesting parameters are indirectly determined via the observation
of satellites orbiting the Earth as shown in Fig. 1.2.
In the present concept, high-orbiting GPS satellites are tracked by a polyhe-
dron of ground GPS receiver stations as well as by LEO satellites orbiting the
Earth at much lower altitude. That way the GPS satellites form an auxiliary
reference system in space for determining a TRF. The idea is to parameterise a
mathematical-physical model relating the set of TRF parameters, among others
contained in a column vector p, with the observations contained in o by making

6
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use of the satellite’s motion along its trajectory xS(t). In concise form the basic
relations governing the model are

• the observation equations

o = o(p) (2-1)

• the equations of motion of the satellite’s centre of mass following from
Newton’s second law related to an inertial frame

ẍS(t) =
1

mS

F
(

p, t
)

(2-2)

with

mS mass of the satellite

F total force acting on the satellite

t ∈ [t0, t1]

t0: begin of the arc

t1: end of the arc

Thereby ”arc” denotes a satellite’s trajectory xS(t) from the initial epoch t0 to
the final epoch t1. The parameters in question in this context are the following:

p =
[

(p
D
)T , (p

G
)T
]T

(2-3)

with p
D
containing the dynamic parameters, and p

G
the geometric parameters.

The dynamic parameters are used for modelling orbit dynamics, i.e. in the
equations of motion (2-6) they appear in the models used for calculating the
forces acting on a satellite. On the other hand, the geometric parameters enter
the observation equations to be presented in Section 4.2 in order to account for
error sources affecting the observations. As a consequence, the satellites’ state
vectors pS(t) are fully determined by p

D
steering the equations of motion:

pS(t) :=
[

(xS(t))T , (ẋS(t))T
]

= pS(p
D
, t) (2-4)

p
D

comprises the satellites’ initial elements pS0 = pS(t0), the gravity field coef-
ficients, the parameters of the solar radiation force model for the GPS satellites,
calibration parameters of the accelerometer measurements of the GRACE satel-
lites, and empirical accelerations. Thus, in more details the two major sets of
equations read as:
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o = o
(

pS(p
D
), p

G

)

(2-5)

ẍS(t) =
1

mS

F
(

pS(p
D
, t), p

D
, t
)

(2-6)

This system of equations establishes the mathematical-physical model needed
to determine the parameters of a TRF by tracking satellites. It expresses the
relationship between the observations o, the satellite orbits xS , and the system
parameters p.
The free parameters inside p are going to be estimated applying a least-squares
estimation procedure outlined in Section 2.3. This procedure requires the orig-
inally nonlinear observation equations to be linearised:

o
.
= o

(

p
0

)

+

(

∂o

∂p

)

0

dp

=: o0 + A dp (2-7)

with

dp = p − p
0

A =

[

∂o

∂p
D

∂o

∂p
G

]

0

(2-8)

o0 as well as A are calculated using a priori values for the parameters contained
in p

0
. In case of satellite positions xS entering the partial derivatives the posi-

tions are provided by an initial satellite orbit determination based on a priori
values for the parameters influencing it.

Partial Derivatives

Determining the partial derivatives is straightforward in case of the observations
directly depending on the parameters. So, the partials

∂o

∂p
G

(2-9)

are obtained by direct differentiation of the observation equations with respect
to p

G
, see Appendix E.

For the dynamic parameters having no direct relation to the observations the
so-called variational equations have to be set up and solved. Determining these
partials requires the application of the chain rule of differentiation:

∂o(pS(p
D
), p

G
)

∂p
D

=
∂o

∂xS
∂xS

∂p
D

+
∂o

∂ẋS
∂ẋS

∂p
D

(2-10)
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∂o/∂xS and ∂o/∂ẋS are obtained by straightforward differentiation of the ob-
servation equations, c.f. Eqns. E-17, E-18, and E-19.
The procedure to determine ∂xS/∂p

D
and ∂ẋS/∂p

D
makes use of the equations

of motion (2-6) again by applying the chain rule:

∂ẍS

∂p
D

=
∂

∂p
D

ẍS(xS , ẋS , p
D
, t) =

=
∂ẍS

∂xS
∂xS

∂p
D

+
∂ẍS

∂ẋS
∂ẋS

∂p
D

+

(

∂ẍS

∂p
D

)

explicitly

(2-11)

with
(

∂ẍS/∂p
D

)

explicitly
being non-zero in case there is a direct relation between

ẍS and the corresponding parameter pi out of pD.
Let

Y (t) =
∂xS

∂pi
, Ẏ (t) =

∂ẋS

∂pi
, Ÿ (t) =

∂ẍS

∂pi
(2-12)

Av(t) =
∂ẍS

∂xS
, Bv(t) =

∂ẍS

∂ẋS
, Cv(t) =

(

∂ẍS

∂pi

)

explicitly

(2-13)

By linearly combining those terms the variational equations are set up, based
on (2-11):

Ÿ (t) = Av(t)Y (t) + Bv(t)Ẏ (t) + Cv(t) (2-14)

with the initial values (c.f. [Beu 05, I, 5.2])

∂pS

∂pi
=

{

ek, pi = k − th element of pS

0, else
(2-15)

ek k-th column of k × k identity matrix (2-16)

So, for determining ∂xS/∂pi and ∂ẋ
S/∂pi these differential equations have to

be solved, preferably by numerical integration. Finally, the obtained partial
derivatives have to be interpolated to the observational epochs.

Differential Orbit Adjustment

Overall, the parameter determination process is carried out as so-called differ-
ential orbit adjustment. This process is iterative and consists of the following
steps:

1. Preliminary orbit determination

The orbits of the satellites involved are determined in a first step by
numerical integration of the equations of motion (2-6) based on a priori
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parameters p
0
initially given or estimated in the preceding iteration step.

Part of them enters the models describing the forces acting on the satellites
and thus determine the shape of the orbits. In general each of the single
forces is described by a model containing certain unknown coefficients.
Details of the orbit integration are presented in Section 2.2.

2. Parameter adjustment

In this step the variational equations are solved and all free parameters
are estimated as corrections d̂p. That way the a priori parameters p

0
are

improved to p
0
+ d̂p. Based on the improved parameters the observational

residuals are calculated. For each residual its weighted square is compared
to a chosen threshold, e.g. n-times the a posteriori standard deviation.
If the residual surpasses the threshold it is marked as an outlier and
eliminated from further processing.

3. Iteration

The process is repeated until convergence is reached in the sense that
the convergence criterion approaches asymptotically a limit. Thereby the
improved parameters of one step are introduced as a priori parameters
into the next step.

2.2 Satellite Orbit Determination

Numerical Integration

Determining the orbits of the satellites is done by means of numerical integra-
tion of the equations of motion (2-6) which represents an ordinary differential
equation system (ODS) of second order. The algorithm for solving this ODS
as implemented in EPOS-OC will not be reproduced here. It is similar to
well-established procedures like those of Adams ([Dor 96]) or Cowell ([See 03,
3.3.2.2]). Common to those procedures is that the whole time interval [t0, tN ]
is subdivided into subintervals [ti, ti+1] with i = 0, 1, 2, ..., N − 1. The proper
numerical integration starts from the beginning of the arc (epoch t0) using the
initial elements

[

(

xS0
)T

,
(

ẋS0
)T
]T

:=

[

(

xS(t0)
)T

,
(

ẋS(t0)
)T
]T

(2-17)

representing the satellite’s position and velocity at time t0 if given in cartesian
coordinates. By advancing in time by ∆ti = ti+1−ti the ODS is solved resulting
in a state vector

[

(

xS(ti+1)
)T

,
(

ẋS(ti+1)
)T
]T

(2-18)

for the end of the current subinterval. After N-1 steps the final epoch is reached,
and the satellite’s orbit is given as a series of N state vectors. Within the
processings carried out in the context of this work the step size ∆ti is fixed
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to 30 s for the GNNS and to 5 s for the LEO satellites. For those satellites
moving in near-circular orbits a fixed step size is justified. As the equations of
motion (2-6) are valid only in an inertial system the integration of the orbits
is done in a Conventional Inertial System (CIS, see Appendix A), given by the
International Celestial Reference System (ICRS, c.f. [McC 04] and [Pet 10]) in
this context.

Orbit Forces Modelled

In the equations of motion (2-6) the total force F represents the sum of various
partial forces acting on the satellite. Those partial forces can be classified into
gravitational, surface, tidal, relativistic, and other forces, an overview of all of
them except for the relativistic ones along with the range of accelerations they
cause is given in Table 2.1. The magnitudes of the indicated ranges are quite
consistent with those given in [Beu 05, II, 3.8]. As is obvious the gravitational
forces caused by the various celestial bodies exert the largest accelerations on a
satellite with the Earth gravitation naturally contributing the major part among
them. In general, the accelerations due to the various surface and tidal forces
are not negligible neither for the GPS nor for the GRACE satellites. Only in
case of the GPS satellites F d and F p,E can be neglected due to the large orbital
height. The relativistic orbit forces considered include the general relativistic
effects of Schwarzschild, Lense-Thirring, and deSitter modelled according to
[Pet 10, 10.3].

Table 2.1: Overview of orbit forces and accelerations caused by them. The nu-
merical values are calculated for one 24-h arc by EPOS-OC using implemented
models.
Source Force Acceleration ẍ caused [m/s2]

Gravitation GPS GRACE

Earth gravitation F g,E 0.56 . . . 0.57 8.67 . . . 8.73
Third Bodies gravitation
- Moon F g,M 2.10 . . . 4.2E-06 5.53 . . . 8.33E-07
- Sun, planets F g,B 3.10 . . . 6.0E-06 0.77 . . . 1.24E-06
Solid Earth tides + F set +
Solid Earth Pole tide F spt 0.95 . . . 1.66E-09 2.25 . . . 2.81E-07
Ocean tides F ot 0.49 . . . 2.86E-10 0.24 . . . 31.02E-08
Atmospheric tides F at 0.92 . . . 2.83E-11 0.52 . . . 54.63E-09

Surface forces

Atmospheric drag F d - 0.39 . . . 0.53E-07
Solar radiation pressure F p,S 8.80 . . . 9.40E-08 0.28 . . . 9.35E-08

Earth albedo pressure F p,E - 1.32 . . . 1.41E-09

Others

Empirical forces F emp 0.51 . . . 2.68E-09 0.51 . . . 2.68E-09

Formulas for selected forces are presented in Appendix B. Tables F.1 and
F.2 give an overview of the force models used in the processing carried out in
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this context. However, in case of the GRACE LEOs there are currently no
models at hand that would model the surface forces accurately enough. For
this reason they are directly measured by the onboard accelerometers resulting
in a combined ”accelerometer” force:

F acc = F d + F p,S + F p,E (2-19)

Since the integration of the equations of motion takes place in a CIS no apparent
forces have to be considered. The purpose of introducing empirical forces F emp

is to account for unmodelled residual effects. Details of their modelling are
given as well in Appendix B.

2.3 Parameter Estimation

In Section 2.1 the basic goal of the Integrated Approach is already described
as to determine a set of parameters p based on observations o and a priori
parameters p

0
. Due to various reasons like rectifying a datum defect or am-

biguity constraining, as discussed later, side constraints have to be added to
the basic unconstrained model relating the parameters to the observations. For
both the unconstrained as well as the constrained model the solution method
is briefly outlined in the sequel, based on [Koch 99]. Details about the proper
measurement models, including corrections and reductions to be applied to the
observations and station positions as well as the a priori models used will be
given in Sections 4.2 and 5.1.

Unconstrained Model

The unconstrained model for estimating parameters, as already stated in Eq.
(2-7), is expressed as a system of linear equations reading as

do = Adp

with

do = o− o0

A =
∂o

∂p
(p

0
) (2-20)

In general, this system of linear equations is inconsistent as there are more
observations involved than parameters estimated. To obtain a consistent system
of linear equations a vector r is added to the vector o resulting in the observation
equations

do+ r = Adp (2-21)
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As evoked by the relation

r = (o0 +Adp)− o = o(p)− o (2-22)

r is called vector of observational residuals. In order to consider the stochastic
nature of the observations the vector o is assigned its covariance matrix C(o)

C(o) = (σij) =: W−1 (2-23)

with

i, j = 1, ..., N

N total number of observations

W weight matrix

σij covariance between observation i and j

In case there is no a priori information available about the covariances between
different observations, C and thus W = (wij) are assumed to be diagonal ma-
trices. Consequently,

wij =

{

σ−2
i , i = j

0, i 6= j
(2-24)

meaning that only the diagonal elements (wii) of W take on nonzero values
representing the weight of observation i determined by its assigned variance
σ2i = σii. The whole system of observation equations (2-21) as well as the
stochastic model (2-23) is also referred to as ”Gaus-Markoff Model”.
As this system of equations is overdetermined and since do is of stochastic
nature dp cannot be solved by direct inversion. A solution d̂p of dp is only
possible if certain conditions are imposed on how the parameters have to fit to
the observations. Here, the method to derive d̂p is the well-known procedure of

weighted least-squares which requires the weighted square sum r̂TW−1r̂ with

r̂ = o(p̂)− o

p̂ = p
0
+ d̂p (2-25)

to become minimized. Omitting details, the solution d̂p is obtained by inverting
the normal equation (NEQ)

(

ATWA
)

d̂p = ATW do (2-26)
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with
(

ATWA
)

being the NEQ matrix. Applying linear error propagation the

covariance matrix of the estimated parameters is obtained as

C(p̂) = C(d̂p) =
(

ATWA
)

−1

(2-27)

It becomes immediately clear that estimating d̂p as well as C(p̂) necessarily

requires the Cayley inverse
(

ATWA
)

−1

to exist. This is only ensured if the

whole set of parameters can be determined from the observations.

Constrained Model

Dependent on the specific application of the Gauss-Markoff model it may be
necessary to impose side constraints on the parameters to be estimated. In
the context of this work side constraints are set up as pseudo observations oc.
Denoting the terms of the unconstrained model with subscript ”u” and those
of the constraining pseudo-observations with ”c” the following enlarged system
of observation equations results:

dou + ru = Audp

doc + rc = Acdp (2-28)

Assuming no cross-correlations between dou and doc the covariance matrix C(o)

and accordingly the weight matrix W for o :=
[

oTu , o
T
c

]T
are given by

C(o) =

(

C(ou) 0
0 C(oc)

)

=

(

W−1
u 0
0 W−1

c

)

=:W−1 (2-29)

By minimizing r̂TW−1r̂ with r̂ =
[

r̂Tu , r̂
T
c

]T
the solution d̂p in the least-squares

sense results by inverting the NEQ

(

AT
uWAu +AT

c WAc

)

d̂p = AT
uW dou +AT

c W doc (2-30)

In this case the Cayley inverse (AT
uWAu + AT

c WAc)
−1 is required to exist in

order to solve for d̂p. The general procedure using a generalized inverse, as
covered by [Koch 99], is not of interest here and will therefore not be treated.
Details about the specific selection of the stochastic model, i.e. W , for the
various observation groups, will be given in Section 5.1.



Chapter 3

Hardware, Software, and Data
Used

For carrying out the task of deriving a global geodetic reference frame the use
of dedicated hardware, software, and observational data is indispensable. As a
basis for the following chapters these issues are addressed here. Concerning the
hardware a subdivision is made into satellites and ground stations.

3.1 Satellites

The satellites used comprise the full constellation of the Global Positioning Sys-
tem (GPS) along with the twin GRACE Low Earth Orbiters (LEOs), GRACE-
A and GRACE-B. As long as there is no danger of confusion, GRACE-A and
GRACE-B are subsumed under ”GRACE”. In Fig. 1.1 the whole GPS-GRACE
constellation is shown. All facts presented here about GPS satellites as well as
basics about receivers are taken from [Hof 01] and from [Beu 98].

GPS

From 1973 on the Global Positioning System has been planned and established
until reaching full operational service in 1994, now consisting of about 30 active
satellites. It is a Global Navigation Satellite System (GNSS) mainly designed
for navigation and time-transfer applications. Exploiting its full potential al-
lows as well for high-precision geodetic applications. Overall, the whole system
comprises a space, a control, and a user segment.
The space segment consists of the satellites that are distributed over six evenly
spaced orbit planes. Each satellite is orbiting around the Earth at an altitude
of about 20,000 km with an orbital period very close to 12 sidereal hours,
an eccentricity less than 0.006, and an inclination of approximately 55o. In
Fig. 3.1 typical examples of GPS satellites are shown. Their main components
are a cube-like body, an antenna array for emitting navigation signals as well
as a pair of solar panels producing electricity. The attitude of each satellite is
maintained in such a way that the antenna array is always pointing towards

15
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Figure 3.1: Typical GPS satellites (from [Beu 98]).

Earth, and that the solar panel’s axis is perpendicular to the plane defined by
Earth, Sun, and the satellite itself.
GPS is a one-way navigation system meaning that the satellites are just broad-
casting structured signals towards Earth. At a receiver station those signals
are caught by an antenna and processed by appropriate electronic devices. The
structured signals are modulated onto two carrier waves, L1 and L2, having the
following structure:

L1(t) = P (t)W (t)D(t)a1 cos(f1t) + CA(t)D(t)a1 sin(f1t)

L2(t) = P (t)W (t)D(t)a2 cos(f2t) (3-1)

with

t time

a1 amplitude of L1 carrier

a2 amplitude of L2 carrier

f1 frequency of L1 carrier (1.575 GHz)

f2 frequency of L2 carrier (1.228 GHz)

CA(t) C/A-code (digital; chip length: 300 m)

P (t) P-code (digital; chip length: 30 m)

W (t) W-code

D(t) navigation message

Both carrier frequencies f1, f2 are derived by multiplying a fundamental fre-
quency f0 = 10.23 MHz by 154 and 120, respectively. By means of replica
signals generated by the receiver it is possible to recover the C/A-code as well
as the P-code, to determine their delay w.r.t. the replica signals, and to mea-
sure the instantaneous fractional phase ϕS(tS) of the carrier wave emitted by
the satellite as well as the instantaneous fractional phase ϕR(tR) of the replica
carrier signal generated in the receiver (tS : epoch of signal emission, tR: epoch
of signal reception). While the measured delays of the codes deliver pseudo-
ranges of m-precision, the instantaneous fractional phases are measured with
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mm-precision, and finally allow for precise geodetic applications. The classi-
fied W-code serves for encrypting the P-code for anti-spoofing (A-S) purposes.
In case A-S is not switched on the P-code is also available for non-military
users. State-of-the-art geodetic receivers deliver code and phase measurements
on both signals L1 and L2 (”dual-frequency”).
When processing GPS measurements several error sources have to be taken into
account. They will be described in Section 4.2 in the context of the observational
equations. Concerning the clocks of the GPS satellites as well as those of the
receivers the exact offset to GPS time is unknown; it can be estimated using
the measurements. In particular, it has to be noted that the GPS carrier
phase observable represents only a fractional part of a full signal wavelength.
Moreover, the actual emission of the signal as well as its reception takes place
at the sender’s and at the receiver’s true antenna phase centres, respectively.
For that reason the total displacement between the true antenna phase centre
and the coordinate reference point has to be known, respectively for each sender
satellite and each ground station. This displacement is made up of the ARP
offset vector between the coordinate reference point and the antenna reference
point (ARP) located at the bottom centre of the antenna, the constant Phase
Centre Offset (PCO) vector between the ARP and the mean phase centre, as
well as the Phase Centre Variation (PCV) between the mean and the true phase
centre. Depending on the models applied the PCV corrections are elevation-
dependent, and for some antenna types they are additionally provided azimuth-
dependent. In case of the GPS sender satellites the ARP offset vector vanishes
as the coordinate reference point being the satellite’s centre of mass coincides
with the ARP.
The Global Positioning System’s user segment as relevant in this context will
be discussed in Section 3.2. A description of the control segment is omitted as
it is of no interest here. Finally it should be noted that the two GPS satellites
PRN5 and PRN6 are also equipped with laser retro-reflectors. This gives the
possibility to track these two spacecrafts (S/C) by the satellite laser ranging
technique.

GRACE

According to [Tap 04] GRACE (Gravity Recovery and Climate Experiment) is
a satellite mission designed for mapping the global gravity field of the Earth and
its temporal variations. GRACE was developed under NASA’s Earth System
Science Program, and launched on March 17, 2002. The mission consists of two
nearly identical satellites orbiting the Earth in near-circular orbits of 89.5o

inclination at initially 500 km altitude. Both spacecrafts are separated by
approximately 220 km. The low altitude makes it possible to recover the Earth’s
gravity field with a spatial resolution of 400 to 40,000 km. Such a spatial
resolution can be obtained every 30 days because the satellites’ short orbital
period of about 90 min results in a dense ground track pattern. GRACE can
be seen as the successor of the CHAMP mission ([Rei 99], in orbit 2000-2010)
which has been the first GPS-tracked geopotential mission in history. From this
precursor mission GRACE inherited much of the design, e.g. concerning the
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Figure 3.2: GRACE internal structure (from [GRACE 12a]).

instrumentation.
In order to deliver scientifically useful data both GRACE S/Cs carry a payload
of instruments dedicated to S/C operations on the one hand and instruments
for carrying out scientific observations on the other hand. Fig. 3.2 shows the
assembly of the satellites’ instruments.
The following overview of the devices dedicated to S/C operations is taken
from [Dun 03] and [Fro 06]. The so-called On-board Data Handling Computer
(OBDH) serves as primary data managing system. Among other tasks it re-
ceives data to be transferred to the ground from the Instrument Processing
Unit (IPU) and sends commands to it. The IPU and the Signal Processing
Unit (SPU) are the central devices of the science instruments. Representing a
multi-purpose specialised computer the IPU hosts the signal processing hard-
ware and the CPU for both the GPS receiver and the K-band interferometer
(KBR), and it delivers signals for timing the Accelerometer (ACC) as well as
the Attitude and Orbit Control System (AOCS). Passing through the SPU the
signals received by the GPS antennas and those of the KBR antennas are down-
converted and digitised. An Ultra-stable Oscillator (USO) serves for generating
the onboard time scale, and for generating the signals of the KBR instrument.
By means of a mass trim assembly (MTM, MTE) coincidence of the centre of
the ACC with the satellite’s centre of mass is accomplished. The attitude of
each satellite is steered by magnetic torquers (MTQ) and cold gas thrusters.
Telemetry, i.e. communication with ground antennas for downloading data
and reception of new commands, is accomplished through an S-band antenna
mounted at the bottom of the S/C, see Fig. 3.3.
Beside these operational devices the scientific payload aboard each satellite
comprises the GPS equipment not hosted by the IPU, the ACC, a star camera
assembly (SAC), the KBR, and a laser retro reflector (LRR). These instruments
deliver the measurements essential for the space-geodetic purpose of the mission;
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Figure 3.3: GRACE bottom view (from [GRACE 12a]).

in the following they will be shortly introduced.

• GPS: Antennas and Receiver

Each GRACE S/C is equipped with three antennas (NAV, OCC, BKUP) for
collecting GPS signals. While the navigation (NAV) antenna serves Precise
Orbit Determination (POD) the OCC antenna is used for atmospheric sounding
by occultation measurements. The third antenna is meant for backup (BKUP).
Interesting in the present context is solely the NAV antenna which is mounted
on the top side of the satellite’s casing, see Fig. 3.2.
The proper processing of the GPS signals takes place in the GPS receiver located
inside the S/C’s casing. Overall, the receiver is derived from the ”BlackJack”
receiver developped by JPL and used on CHAMP. It is a dual-frequency receiver
capable of tracking up to 14 GPS satellites and of extracting the code and carrier
phase observables from the radio frequency (RF) link, c.f. [Dun 03]. According
to [Tap 04] it is designed to measure carrier phases with 7-mm precision and
pseudo-ranges with a precision of 20 cm. As a deviation from the classical GPS
receiver concept, part of the signal processing is done within the multi-purpose
IPU. Beside facilitating POD of the S/C the GPS receiver’s measurements are
as well used to time-tag all Level 1B data products with GPS time.
In contrast to the GPS satellites the coordinate reference point of each GRACE
S/C, again being the centre of mass, does not coincide with the ARP of the
NAV antenna leading to a nonzero ARP offset vector. Within this work the
ARP offset vector is set to 0.0 m in x- and y-direction, and to -0.444 m along
the z-axis in the satellite-fixed coordinate system as defined in Fig. 3.3. The
PCO vector components, on the other hand, are set equal to zero.
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• K-band Interferometer

The central science instrument run on GRACE is the KBR which is a dual
one-way ranging system. This means that on each satellite the KBR assembly
sends two own signals in K- and Ka-band (24.5 and 32.7 GHz, respectively)
generated by the USO towards the other satellite and receives the corresponding
two signals of the other S/C. At the same time the own signals serve as reference
signals. As the frequencies are slightly shifted between both S/Cs the signals
of each frequency band are generated with frequency f1 on S/C 1 and with f2
on S/C 2. A detailed description of the signal processing and modelling can be
found in [Kim 00] of which the main facts are reproduced here.
For each frequency band the IPU of satellite i extracts the fractional phase
of its reference signal (ϕi(t)) as well as of the signal received from satellite j
(ϕj(t)). These phase measurements are downlinked to the ground processing
facility where they are first of all time-tagged with GPS time and interpolated
to common nominal epochs. Differencing the phase measurements results in
single-frequency carrier phase measurements

ϕj
i (t) = ϕi(t)− ϕj(t) + correction terms (3-2)

for each S/C with the correction terms comprising integer ambiguities, phase
shifts due to ionosphere etc., and random measurement noise.
By forming the sum the dual one-way phase measurement (DOWP)

θ(t) = ϕ2
1(t) + ϕ1

2(t) + correction terms (3-3)

results for each frequency band with phase errors due to drift and frequency
instability of the USO cancelled out. Based on the DOWP measurement the
biased range

R(t) =
c

f1 + f2
θ(t)

= ρ(t) + correction terms (3-4)

with

c speed of light

ρ(t) instantaneous range between both S/Cs

is formed for K- and Ka-band observations respectively, with the correction
terms accounting for, among others, the Time of Flight (TOF) difference of the
signals due to satellite motion as well as for errors due to ionospheric refraction.
Combining the biased ranges of both frequencies analogously to GPS L1 and
L2 measurements as
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RL3(t) =
f
2

KRK − f
2

KaRKa

f
2

K − f
2

Ka

= ρ(t) + correction terms (3-5)

with

f
2

K :=
√

fK,1fK,2

f
2

Ka :=
√

fKa,1fKa,2

gives an ionosphere-free (L3) biased range with the ionospheric errors cancelling
out. This is the primary K-band observation. By digitally filtering the biased
ranges K-band range-rate (KBRR) observations ρ̇(t) are derived. These KBRR
data are finally used as observations in the proper POD and parameter estima-
tion processing done with EPOS-OC (see below).

• Accelerometer

In order to determine high-quality Earth reference frames by POD it is crucial
to account for the effects of non-gravitational forces exerted by air drag and
radiation pressure. This can be done either by modelling or by measuring
them. At the low altitude of the GRACE LEOs these forces have a significant
influence on the orbits, and therefore they have to be measured accurately as
there are no models available that are precise enough. For this purpose on
each GRACE S/C the integral acceleration of the satellite’s centre of mass due
to non-gravitational forces is measured by an onboard accelerometer. This is
done by a SuperSTAR accelerometer operated on either satellite. Developped
by ONERA (France), this type of accelerometer evolved from CHAMP’s STAR
device ([Tou 98]). It is a six-axis, electrostatic accelerometer with a proof-mass
enclosed in a cage. For keeping the proof-mass levitating electric forces are
applied that are a measure of the non-gravitational forces acting on the satellite.
By means of the measured electric forces of six axes, the linear as well as the
angular accelerations can be derived. Due to the design there are two highly
sensitive axes, and one less sensitive axis ([Tou 98]). The less sensitive axis
is aligned with the satellite’s cross-track direction the lowest non-gravitational
perturbations are expected along.

• Star Camera Assembly

The absolute orientation of each satellite w.r.t. an inertial reference frame is
permanently determined by a set of two star camera assemblies (SCAs). They
have a field of view of 18o by 16o, and view the sky at a 45o-angle with respect to
the zenith, c.f. Fig. 3.2. The incoming light enters each assembly by a stray light
baffle and goes through optical tools, and is finally detected by a CCD camera
([Dun 03]). The CCDs take images of the stars visible in the field of view,
and compare them to star catalogues ([Fro 06]). After further processing the
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absolute orientation with respect to the ”fixed” stars is determined represented
by quaternions q = (q0, q1, q2, q3), c.f. [Wu 06]. The SCA was developped by
DTU (Danish Technical University), and is as well inherited from the CHAMP
mission.
Knowing the exact orientation of each S/C is indispensable for correctly mod-
elling the perturbation forces as well as for calculating certain partial derivatives
needed in the process of differential orbit adjustment. Moreover, the nominal
attitude w.r.t. the Earth and to the other satellite has to be maintained for
telemetry and the KBR laser link to work properly.

• Laser Retro-Reflector

On the bottom side of each satellite, see Fig. 3.3, there is a Laser Retro-Reflector
(LRR) mounted consisting of four cube corner prisms arranged in a compact
frame. Its purpose is to reflect laser pulses back to emitting ground Satellite
Laser Ranging (SLR) stations. Originally developped by GFZ for the CHAMP
mission and described in detail in [Neu 98] it is used as well aboard each GRACE
S/C. The coordinate reference point of the respective satellite, i.e. its centre of
mass, and the optical centre of its LRR are separated by the LRR offset vector.
This offset vector is set to -0.6 m in x-, to -0.3275 m in y-, and to +0.2178 m in
z-direction within the satellite-fixed coordinate system as defined in Fig. 3.3.
Tracking a satellite’s orbit by SLR additionally to GPS is very useful as it allows
for an independent validation of the orbit.

3.2 Ground Stations

Global Positioning System

In order to establish the link between the geometry and the gravity field of the
Earth by tracking the GPS satellites, as shown in Fig. 1.2, a global network of
GPS ground stations is necessary. The network used is that of the International
GNSS Service (IGS, [IGS 12a]). According to [Dow 09] it consists of approxi-
mately 400 globally distributed tracking stations each made up of a monument
carrying a GPS antenna, a GPS receiver, and an ultra-stable clock. A typical
GPS site is shown in Fig. 3.4.
For ensuring a minimum level of quality the IGS set up guidelines ([IGS 12f])
containing the requirements each station has to meet. So, the receivers used
have to be dual-frequency tracking both, code and phase even in the case of
A-S. This means they have to observe the carrier phase on L1 and L2, as well
as P-code on L2, and at least C/A- or P-code on L1. They have to track
simultaneously at minimum eight satellites at a sampling rate of maximally 30
s with an elevation cutoff angle not exceeding 10o. Each antenna used must have
a well-defined phase pattern revealing a stability of the antenna phase centre
of ±2 mm horizontally, and ±4 mm vertically. The phase centre variations
(PCVs) have to be given in the official IGS PCV file (e.g. [IGS 12c]) based
on calibrations. The antennas have to be rigidly attached to the monument
allowing for not more than 0.1 mm motion. As the position of a GPS site
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Figure 3.4: Typical IGS ground station (from [IGS 12a]).

is determined by the coordinates of the corresponding primary marker, i.e.
its coordinate reference point, and the proper measurement is made at the
GPS antenna’s position, the ARP offset vector has to be known with 1 mm
or better. Local ties between GPS sites and the measurement devices of other
space-geodetic techniques are not relevant here as the are only GPS ground
station positions estimated in the context of this work.
Those requirements finally lead to a high quality of the IGS products as indi-
cated in [Dow 09] or in [IGS 12e].

Satellite Laser Ranging

A valuable tool for an independent validation of satellite orbits determined by
GPS are Satellite Laser Ranging (SLR) observations. SLR tracking data repre-
sent directly the distance between an SLR ground station and the satellite given
by multiplying the measured two-way TOF of the laser signal with the speed
of light. The SLR ground stations belong to the tracking network of the Inter-
national Laser Ranging Service (ILRS, [Pea 02]), a typical site of it is shown
in Fig. 3.5. Currently (2012), the network consists of about 48 operational
stations each collocated by an IGS or IGS-standard GPS receiver. Being one
of the space-geodetic services of the IAG the ILRS collects, evaluates, and dis-
tributes SLR observations to a multitude of Earth-orbiting satellites. Thereby
the ground stations are run by various national institutions.
The SLR station network is not uniformly distributed around the globe with
the great majority of stations located on the northern hemisphere with a strong
concentration in Europe. As the SLR data are merely used for validation in the
present context, the fact of the non-uniform spatial distribution of the network
does not represent a significant drawback.
Derived from the full-rate tracking data so-called normal points (NPs) are dis-
tributed to the user community. Those NPs are caclulated following an algo-
rithm accessible on the ILRS website [ILRS 12a]. For SLR data to be suitable
for validation purposes it has to be of good quality. This is ensured by the ILRS
through certain criteria each station has to meet, see [ILRS 12b]. Concerning
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Figure 3.5: Typical ILRS ground station (from [ILRS 12a]).

the data quality the criteria are defined in such a way that within a period of
three consecutive months a station has to submit at least 50 passes to selected
geodetic satellites satisfying

• a NP RMS of 1cm,

• a short-term range bias stability of 4 cm,

• a NP acceptance rate of 80%.

As the distance measured refers to the ground stations’s laser reference point
(LRP), i.e. the optical centre of the laser instrument, the LRP offset vector
between the ground station’s marker and the LRP, also called eccentricity, has
to be known with an accuracy on the level of a millimetre.
Error sources of the SLR technique include tropospheric and relativistic signal
delay, as well as time delay inside the instrument, c.f. [See 03, 8.4.1]. The
tropospheric and the relativistic effects are accounted for by models, c.f. Table
F.3, whereas the time delay, caused by missing coincidence of the instrument’s
geometric reference point and its electronic zero point, is determined by cali-
bration.

3.3 Software

Orbit Determination and Parameter Estimation

The software system used for carrying out Precise Orbit Determination (POD)
and parameter estimation tasks is GFZ’s EPOS-OC (Earth Parameter and Or-
bit System, see [Zhu 04]). It is a state-of-the-art software system capable of
processing a multitude of different satellite observation types beside GPS and
SLR. An essential property of EPOS-OC are its well-engineered algorithms that
allow for a fast processing. Based on development work of approximately two
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Figure 3.6: Process flow in EPOS-OC. The ”settings for processing configura-
tion” comprise the begin and end epoch of the arc, the integration step size, the
choice of time and coordinate systems etc.

decades it is possible to derive satellite orbits and Earth System Parameters
by rigorous physical modeling of the forces acting on satellites thus minimis-
ing the number of artificial parameters like, e.g., empirical accelerations that
have to be estimated. The modelling of observations and orbit forces as well as
the background models used, as outlined in the subsequent sections, are imple-
mented accordingly. EPOS-OC has been successfully applied at GFZ for many
years for generating predictions for LEOs ([Sno 09]), for POD of GPS and LEO
satellites resulting in so-called Rapid Science Orbits ([KoR 06]), as well as for
deriving GFZ’s EIGEN gravity fields ([För 07]). An overview of the process
flow in EPOS-OC is given in Fig. 3.6.

Orbit Comparisons

For comparing satellite orbits GFZ’s software tool EPOS-OA is used. Reading
the orbits of the respective satellites from two different files, it calculates, after
interpolation to common epochs, if necessary, on the one hand the direct posi-
tion differences, and, on the other hand, it carries out seven-parameter Helmert
transformations. The position differences are determined per epoch for each
satellite separately for all three spatial components that can be chosen to be
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locally along-track, cross-track, and radial or globally X, Y, and Z. The Helmert
transformations are performed per satellite as well as for the whole satellite con-
stellation in each case resulting in three translations, a global scale, and three
rotations. As part of each Helmert transformation the position differences in
global X-, Y-, and Z-coordinates as well as the 3D differences are calculated
before and after applying a spatial similarity transformation of the satellites’
positions using the seven parameters estimated by the Helmert transformation.

Comparison of Ground Station Networks

In order to compare two networks of ground stations seven-parameter Helmert
transformations between their coordinates are carried out using GFZ’s SIM-
TRA software. This tool estimates three translations, a global scale, and three
rotations of a spatial similarity transformation between both networks. Addi-
tionally, for each station separately the differences in the coordinates before and
after (’disclosures’) applying the spatial similarity transformation are calculated
for the X-, Y-, and Z-component.

3.4 Data

The observational data used can be classified into ground data and satellite
data each of them shortly characterised in the sequel. An overview of the
data sets used is given in Table 3.1. The time span covered by the data sets
used extends from 2004-02-04 to 2005-02-28 (391 days), due to missing K-band
data the period 2004-01-01 to 2004-02-03 could not be processed. It should be
noted that in case of GPS observations the measurements finally processed by
EPOS-OC are zero-differenced L3 ionosphere-free linear combinations (LCs).

Ground Data

The ground data comprise GPS code and phase measurements (GPS-ground)
collected by the GPS ground stations as well as laser ranging data (SLR) stem-
ming from the SLR ground stations.

• GPS-ground

Originally the GPS data are retrieved as daily RINEX files from IGS. Before the
GPS observations are introduced into the proper processing they are subject to
a preprocessing.
This preprocessing consists first of all of some file reformatting, applying the
P1-C1 biases, and cycle slip detection. Then, the satellites’ initial elements are
derived from IGS orbits and prepared accordingly for usage in EPOS-OC, and
initial values of the satellites’ clocks are generated from broadcast information.
By a geometric optimisation about 70 uniformly distributed ground stations
are selected. Within this optimisation the Earth surface is subdivided into 74
sectors of equal area, and one station per sector is selected if possible. In case
several stations come into consideration for a sector priority is given to the
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Figure 3.7: Typical GPS ground station selection (2004/06/30).

site possessing the highest data volume. At maximum three maser stations are
selected in order to provide a highly accurate reference to GPS time. A sample
ground station selection is shown in Fig. 3.7.
Subsequently, a preliminary calculation of the ground stations’ clock offsets
and rates as well as of phase ambiguities is carried out. Out of the three
maser stations the clock revealing the lowest rate is selected as reference clock
for the arc to be processed. The GPS-ground measurements are reduced to a
temporal resolution of 30 s, to be used in EPOS-OC, for all ground stations thus
coinciding with the integration step epochs of the GPS satellites. As revealed
by post-fit residuals to be presented in Chapter 6, the phase measurements are
on a level of precision of about 7 mm.

• SLR

The SLR data consist of Normal Points (NPs) provided by the ILRS in quick-
look format. They are retrieved from the ILRS data centres and are merely
reformatted at GFZ. As these observations are rather taken at opportunity
than continuously they reveal a sparse coverage in time. On average, there are
about 200 NPs per day for each GRACE satellite and roughly 10 NPs per day
for each of the GPS satellites PRN5 and PRN6. The single-shot accuracy for
CHAMP is in the range of 1 to 2 cm ([CHAMP 12]) and should be of comparable
quality for GRACE and the GPS S/Cs PRN5 and PRN6. By applying the LRR
offset vector of the satellite tracked the measurements are referred to the S/C’s
centre of mass.

Satellite Onboard Data

The group of satellite onboard data taken aboard the GRACE LEOs comprises
the GPS satellite-to-satellite tracking data (GPS-SST), K-band observations



CHAPTER 3. HARDWARE, SOFTWARE, AND DATA USED 28

(KBR), accelerations (ACC) and attitude (ATT). They are preprocessed by
JPL from Level L0 to level L1B. Details about the preprocessing can be found
in [Wu 06] and [Cas 02]. L0 denotes the level of the raw data as telemetred
from the satellite to the ground. In a next step L1A data are generated by
non-destructive processing, in detail by conversion from binary to ASCII, time-
tagging to respective receiver clock time, editing, and adding quality control
flags. Finally, L1B data are gained by correct time-tagging to GPS time and
filtering, thereby reducing the data sampling rate.

• GPS-SST

The GPS-SST measurements are collected by the onboard GPS receiver of each
GRACE S/C. Due to its dual-frequency capability all code and carrier phases
can be measured. According to [Cas 02] these are the C/A- and P-code on L1
as well as the P-code on L2, and in total three carrier phases of the two signals
on L1 and the single signal on L2 as is obvious from Eq. (3-1) totalling six
observations. Previous to be used in EPOS-OC for the purpose of this work,
the GPS-SST data are subject to a further preprocessing at GFZ similar to the
preprocessing of the GPS-ground data. Thereby the data volume is thinned out
to 30-s intervals in order to fit the integration step size of the GPS satellites.
By applying the ARP offset vector pointing from the satellite’s centre of mass
to the ARP and by applying the PCVs, the measurements are reduced to the
S/C’s centre of mass. Post-fit residuals to be reviewed in Chapter 6 show a
level of precision of the L3 ionosphere-free phase observations of about 2 mm.

• K-band

The raw measurements are instantaneous fractional phases of the received K-
band signal as well as of the reference signal taken onboard each GRACE S/C
at a frequency of 10 Hz. Finally, the phase data are converted to biased dual
one-way range, range rate and range acceleration, and thereby filtered to 5-
s data intervals matching the integration step size of the GRACE satellites.
For the proper processing done with EPOS-OC only the K-band range-rate
(KBRR) observations are used. Phase centre corrections determined within
the L1B preprocessing are applied to the KBRR data during the POD and
parameter estimation processing. Thus they are reduce to the satellites’ centres
of mass. The KBRR post-fit residuals as discussed in Chapter 6 indicate a level
of precision around 0.2µm/s.

• ACC

The accelerations are measured by the on-board accelerometers. They com-
prise raw linear accelerations (3 components, 10 Hz data rate) and raw angular
accelerations (3 components, 1Hz data rate). Within the L1B preprocessing
they are filtered to 1-s time intervals. In order to fit the GRACE satellites’
integration step size they are later reduced to a time interval of 5 s for use in
EPOS-OC. Aboard each GRACE satellite, by means of a mass trim assembly as
mentioned above coincidence of the centre of the accelerometer and the S/C’s
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centre of mass is maintained. Analysing real data [Fro 06] revealed the preci-
sion achieved in terms of standard deviations to be 3 ·10−10m/s2, 2 ·10−10m/s2,
and 7 · 10−10m/s2 for the along-track, the radial, and the cross-track axis, re-
spectively.

• ATT

ATT denotes the attitude quaternions provided by the two star cameras on
each GRACE S/C. Originally output by each star camera with a frequency
of 1 Hz, the raw quaternion data from both cameras are combined within the
preprocessing and filtered to a temporal resolution of 5 s for the same reason
as for the K-band and ACC data. According to [Fro 10] the noise level of the
quaternions, expressed in angular measure, is in the range of 9” to 11”.

Table 3.1: Data sets used; the temporal resolution of the data ”as used” is
chosen to match the integration step size of the corresponding satellites, see
Section 2.2.

Observation Preprocessing Temporal Resolution [s]
Type Source Facility of raw data after preprocessing as used

GPS-ground IGS GFZ ≤ 30 30 30
SLR NPs ILRS ILRS - - -
GPS-SST GRACE JPL, GFZ 1 10 30
K-band GRACE JPL 0.1 5 5
ACC GRACE JPL 0.1 1 5
ATT GRACE JPL 1 5 5



Chapter 4

Reference Frame
Determination

According to a widely accepted convention a reference frame is the physical
realisation of a reference system. A reference system comprises conventions,
constants, and algorithms whereas a reference frame is realised by a set of
positions (and velocities) for physical points on the Earth surface. This work is
dedicated to the determination of a Terrestrial Reference Frame (TRF) within
well-established conventions, physical constants, as well as algorithms as listed
in Table F.3 and mainly based on [Pet 10].

4.1 Components of a TRF

By identifying the components of a TRF a clear idea should be developped
about the Earth system parameters searched for. A TRF in the geodetic sense
consists of a geometric frame and a dynamic frame. Each frame requires an
origin, an orientation, and a scale to be defined. This is done by convention as
described in the following.

Geometric Frame

The geometric frame is determined by a set of ground station markers attached
to the Earth’s crust. In this it is the basis of a global Earth coordinate system
for geolocation purposes. Its origin, orientation, and scale are indirectly defined
by the triplet (x,y,z) of 3D spatial coordinates assigned to each marker.
Its origin OG = (0, 0, 0)T , here also denoted as geometric geocentre, is arbitrar-
ily defined by convention. In the end it is related to the coordinates assigned
to the markers that define its location w.r.t. the Earth’s crust. A natural defi-
nition would be to let OG coincide with the Centre of Figure (CF) of the entire
Earth surface SE as applied in [Don 97], [Don 03], and [Ble 06a]:

OG :=
1

SE

∫∫

SE

xdS (CF ) (4-1)

with

30
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x position vector of an arbitrary point on the Earth’s surface

SE total surface of the Earth

In practice, however, SE can only be approximated by a finite set of markers
with geocentric position vectors xS,i. So, OG would have to be defined as the
Centre of Network (CN; [Wu 12]):

OG :=
1

N

N
∑

i=1

xS,i (CN) (4-2)

In this case OG depends on the chosen set of ground stations. Of course,
CN coincides the more with CF the more evenly and densely the markers are
distributed on the Earth’s crust.
The geometric orientation is defined by the direction of the three orthogonal
base vectors ex, ey, ez of the underlying coordinate system w.r.t. the Earth’s
crust. While the x-axis base vector ex is given by the intersection of the Green-
wich meridian plane with the equatorial plane, ez points towards the North
Pole. ey completes the set of base vectors to a right-handed system (ex, ey, ez).
Finally, the scale is given by the speed of light.

Beside these fundamental definitions of origin, orientation, and scale all three
items may as well be defined w.r.t. another geometric frame considered as a
reference by means of a seven-parameter Helmert transformation between both
frames. Then, the estimated translations Tx, Ty, Tz define the origin, the
estimated rotations Rx, Ry, Rz the orientation, and the scale is defined as
estimated by the scale parameter S. Such a procedure is only advisable if the
geometric frame used as reference is of high quality, i.e. well adjusted and
reflecting the mean evolution of the network’s geometry over a long time span.
This is e.g. the case for ITRF2008 ([Alt 11]).

Dynamic Frame

The dynamic frame is determined by the gravitational field of the Earth whose
potential V at a point with geographical coordinates (r, ϕ, λ) can be repre-
sented by the well-known expansion into spherical harmonic base functions, c.f.
[Tor 01, 3.3.2]:

V (r, ϕ, λ) =
GME

aE

[

N
∑

n=0

(

aE
r

)n+1

·

·
n
∑

m=0

Pnm(sinϕ) (Cnm cos(mλ) + Snm sin(mλ))

]

(4-3)

with
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n,m degree, order

GME geocentric gravitational constant, see [Pet 10, 1.2]

aE equatorial radius of the Earth, see [Pet 10, 1.2]

Pnm associated Legendre functions

Cnm, Snm spherical harmonic coefficients

r geocentric radial distance

ϕ geocentric latitude

λ geocentric longitude

The dependence of V on the spherical coordinates r, ϕ, λ suggests the gravita-
tional potential is defined w.r.t. the coordinate system of a geometric frame.
Within such a coordinate system the gravity field coefficients Cnm, Snm of low
degree possess a geometric meaning([Tor 01, 3.3.4]):

• C00

This coefficient is simply the ratio of the instantaneous mass of the central body
and its nominal mass ME :

C00 =
1

ME

∫∫∫

B
dm ≈ 1 (4-4)

That way it acts as the scale of the dynamic frame.

• C11, S11, C10

As integrals over the Earth body B the degree-one terms are written as

C11 =
1

aEME

∫∫∫

B
xdm =

1

aE
xCM

S11 =
1

aEME

∫∫∫

B
ydm =

1

aE
yCM (4-5)

C10 =
1

aEME

∫∫∫

B
zdm =

1

aE
zCM

This means they are the rescaled x-, y, and z-components xCM , yCM , and zCM

of the Earth’s CM in the above series defining the dynamic frame’s origin. The
CM is also denoted as dynamic geocentre in the context of this work. In case
the CM coincides with the geometric geocentre these coefficients vanish.
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• C20

The integral representation of this gravity field coefficient reads as

C20 =
1

a2EME

∫∫∫

B

(

z2 −
x2 + y2

2

)

dm (4-6)

expressing the negative polar flattening of the gravity field. For that reason
it plays an important role in geophysics as variations in this coefficient reflect
- among others - the response of the visco-elastic Earth to changes in surface
loading caused by geophysical masses like ice or snow.

• S21, C21, S22, C22

Those gravity field coefficients of degree two have the following integral repre-
sentations:

S21 =
1

a2EME

∫∫∫

B
yzdm

C21 =
1

a2EME

∫∫∫

B
xzdm (4-7)

S22 =
1

2a2EME

∫∫∫

B
xydm

C22 =
1

4a2EME

∫∫∫

B
(x2 − y2)dm

Thus, S21, C21, and S22 are directly proportional to the moments of deviation
(products of inertia) about the x-, y-, and z-axis as in the above order. This
means they represent the deviation of the principal axes of inertia of the Earth
body from the axes of the geometric frame. With the principal axes of iner-
tia being the natural set of axes of the dynamic frame these coefficients are
measures of the orientation of the dynamic frame w.r.t. the geometric frame.
Caused by deformations of the Earth gravity field due to lunisolar global defor-
mations of the Earth’s body, daily variations are expected for S21 and C21. It
has to be noted that such variations simply reflect changes of the orientation of
the Earth gravity field w.r.t. the geometric frame; variations of the coordinates
of points on the Earth’s surface, on the other hand, are unaffected by changes
in S21 and C21.
Finally, C22 is the difference of the moments of inertia about the y- and the
x-axis, respectively. Thus, this parameter serves as a measure of the flattening
of the gravity field either along the y- or the x-axis. It is estimated in this con-
text, too, in order to prevent unmodelled changes to distort the other estimated
spherical harmonic coefficients.

In the context of this work the dynamic frame is defined to be represented by
all of the aforementioned gravity field parameters except C22 being regarded as
a by-product for which reason it is not treated in the sequel.
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4.2 Estimating a TRF

Parameter Space

In order to determine simultaneously a geometric frame as well as a dynamic
frame constituting a TRF appropriate parameters have to be estimated based
on the procedure described in Chapter 2 using the space-geodetic observations
introduced in Chapter 3. The whole set of parameters to be estimated is subdi-
vided into the two major groups of TRF parameters and auxiliary parameters.
While the TRF parameters directly represent the geometric frame and the dy-
namic frame, the auxiliary parameters serve to adequately model orbit forces
as well as the observations taken.

• TRF parameters

As visualised in Fig. 1.2 the configuration of the measurement system consists of
ground tracking stations, of LEOs, and of GPS satellites. Within this assembly
the dynamic frame and the geometric frame are linked through the tracking of
the GPS satellites. Due to their rather low orbit altitude the GRACE LEOs
are highly sensitive especially to the low-degree gravity field coefficients that
are needed for determining the dynamic frame. For determining a TRF the
parameters have to be identified that have to be estimated in a differential
orbit adjustment (POD and parameter estimation processing). An overview of
the estimated TRF parameters is given in Table 4.1.

Table 4.1: Estimated TRF parameters and their sensitivity to observation
types; ’xx’ indicates the major contributor, ’x’ indicates a supporting contrib-
utor.

Observation type GPS-ground GPS-SST KBRR

TRF Parameters

(C, S)nm (n=1) x xx
(C, S)nm (n=2) x x xx

xS xx x

In order to determine a geometric frame the geocentric coordinates xS of the
GPS ground station markers contained in the parameter vector p are estimated.
Offline, i.e. after the differential orbit adjustment is finished, origin, scale, and
orientation of the geometric frame are estimated by the parameters Tx, Ty,
Tz, S, Rx, Ry, Rz of a seven-parameter Helmert transformation between the
estimated station coordinates x̂S and the a priori ones xS0. This means that
the geometric frame to be determined is implicitly given by the estimated co-
ordinates x̂S , and that the parameters of the Helmert transformation simply
represent the deviation of the geometric frame, as given by x̂S , from the a priori
model xS0 in terms of origin, scale, as well as orientation. xS0, thereby, is not
completely arbitrary; it should already be quite close to the geometric frame x̂S
in order to ensure the least-squares estimation model (2-28) to be linear. More-
over, applying this methodology it has to be ensured that the ground station
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network used is very dense and uniformly distributed over the Earth surface.

Exploiting the geometric meaning of the gravity field coefficients up to degree
and order two, origin, scale, and orientation of the dynamic frame can be deter-
mined by estimating directly the corresponding gravity field coefficients within
a differential orbit adjustment based on an a priori gravity field model.
However, estimating a scale in form of C00 is problematic as it is highly corre-
lated with the scale of the geometric frame through the satellites’ radial position
components. Also due to the direct proportionality of C00 to the total Earth
mass it does not make sense to estimate this parameter as the total mass can
be assumed constant over the short time spans considered here. Therefore the
scale factor between the a priori and the estimated gravity field is fixed to 1.0.
For determining the dynamic geocentre, i.e. Earth’s CM, various methods ex-
ist as summarised in [Wu 12]. On the one hand there are geometric methods,
e.g. [Fri 10], used to derive geocentre motion from measured Earth surface de-
formations. Another method used is the dynamic method where the dynamic
geocentre is determined as sensed by Earth-orbiting satellites within a fixed
geometric frame. This method makes use of the fact that the satellites perma-
nently orbit around Earth’s CM defining the dynamic geocentre. Of course, the
geometric frame used is not physically fixed as it is permanently deformed by
the motion of the lithospheric plates, and in general the composition of stations
used varies on a daily basis as not every station is available each day. However,
fixed in the sense used here merely means that the station coordinates are not
estimated. Basically, the Integrated Approach followed here is such a dynamic
approach with the difference that the geometric frame is not treated as fixed
but that it is also tried for estimating parts of it. As explained in Section 4.1
the dynamic geocentre components searched for are then given by the estimated
gravity field coefficients of degree one (C11, S11, C10). They finally represent an
offset of the dynamic geocentre w.r.t. the CM of the a priori gravity field. Such
a translation, also called geocentre motion, is caused by mass redistributions
inside the Earth and, mainly, on the Earth’s surface. By directly estimating
the degree-one gravity field coefficients from the motion of LEOs this approach
bears the advantage of directly measuring the integral effect of all mass re-
distributions taking place. Possible correlations with the geometric geocentre
resulting in a datum defect are addressed in Section 4.3.
Determining the orientation of the dynamic frame is done by estimating S21,
C21, S22. The remaining gravity field coefficient of degree two, C22, is estimated
as a by-product.

• Auxiliary Parameters

In order to account for mismodelling some auxiliary parameters have to be
estimated. These parameters are subdivided into dynamic and geometric pa-
rameters.
The dynamic auxiliary parameters are necessary for accurately modelling the
satellite orbits. They comprise the satellite state vectors at the beginning of
the arc xS0 = xS(t0) (initial elements), coefficients for the GPS solar radiation
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force model, accelerometer calibration coefficients, and coefficients for modelling
empirical accelerations. Though essential for a POD to be carried out and not
used to account for mismodelling the initial elements are subsumed among the
auxiliary parameters as they are no direct TRF parameters.
To account for error sources influencing the observations, a number of geometric
auxiliary parameters are needed. These are GPS transmitter and receiver clock
errors δtS and δtR, respectively, tropospheric signal delays for GPS-ground mea-
surements, GPS phase ambiguities, as well as empirical parameters for KBRR
observations.

Observation Equations

As already pointed out in Eq. (2-5) the observations used have to be expressed
as functions of the parameters influencing them. These functional relations
being the basis for the linear parameter estimation algorithm as outlined in
Section 2.3 are presented in the sequel. In Appendix E the linearisation of the
GPS-ground, GPS-SST, and KBRR observations is treated in detail. A general
reference for setting up GPS observations and their linearisation is [Teu 98].
The GPS observation equations as presented here are tailored to the processing
capabilities of EPOS-OC.

• GPS-ground

As mentioned in Section 3.4 the GPS measurements, taken at the phase centres
of the GPS ground stations’ as well as the LEOs’ antennas, consist of code
(C) and carrier phase (Φ) measurements on both the L1- and the L2-signal.
Since the observations finally used are L3-LCs of corresponding L1- and L2-
measurements ionospheric signal delays of first order cancel out, see Appendix
E. For part of the processings done (RL05, see Table F.3) ionospheric signal
delays δiono,L3 of higher order are accounted for by ionosphere maps ([IGS 12d]).
Several further corrections of the range ρSG between the phase centres of the
respective sender antenna as well as the receiver antenna have to be considered.
These include relativistic signal delay, tropospheric signal delay, and corrections
due to antenna PCOs as well as PCVs. Displacements of the ground station
positions due to solid Earth tides loading as well as solid Earth pole tide loading
are taken into account, too. In Table F.3 the models used for calculating the
various corrections are listed.
The tropospheric signal delay is modelled per ground station as the product
of an a priori delay T0 and a scaling factor TG that is estimated as a time
series using the observational data. Thereby the a priori delay is obtained
by mapping the sum of the dry and the wet zenith delay onto the respective
elevation applying one of the mapping functions indicated in Table F.3. In
order to refer the measurements to the respective coordinate reference points,
xS and xS , besides accounting for the PCOs and PCVs, as well the ARP offset
vector has to be taken into account in case of ground stations, as explained in
Section 3.1.
As the GPS carrier phase observable represents only a fractional part of a full
wavelength the number of remaining wavelengths NS

G,L3, also called ”carrier
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phase ambiguity”, for each pair of a GPS satellite and a receiving station has
to be determined in order to fit the observational equation. This is done per
satellite pass, and if necessary after cycle slips occurred. In case of raw L1- and
L2-observations this carrier phase ambiguity is an integer number but for L3-
linearly combined phase observations, as used here, it is a real number. Thus,
see Section 5.1, for one processing part (RL04m) it is merely estimated as a
real number whereas for the other part (RL05m) side constraints for double-
differenced L3-ambiguities are computed and introduced into the NEQ of the
least-squares parameter estimation (see Eq. (2-30)). The method applied for
setting up those side constraints follows a procedure outlined in [Ble 89] and
[Ge 08]. It is comparable to determine the L1- as well as the L2-ambiguities
as integer numbers, and helps reduce significantly the part of the L3-carrier
phase measurement noise that is due to the standard deviation of the ambiguity
parameter.
For any GPS ground station ’G’ with geocentric position vector xG and GPS
satellite ’S’ the associated phase and code observations of type ”GPS-ground”,
are the L3-LCs of the respective L1 and L2 code and carrier phase measure-
ments, CS

G,L3 and ΦS
G,L3, respectively. Their linearised observation equations

read as

CS
G,L3(tG)

.
= CS

G,L3(tG)|0+ <
(

−uSG

)

0
,∆xG > +

+c∆δtG − c∆δtS + T0∆TG (4-8)

ΦS
G,L3(tG)

.
= ΦS

G,L3(tG)|0+ <
(

−uSG

)

0
,∆xG > +

+c∆δtG − c∆δtS + T0∆TG +∆NS
G,L3 (4-9)

with

tG epoch of signal reception at G

uSG unit vector pointing from G to S

c speed of light ([Pet 10])

T0 a priori tropospheric signal delay (model)

∆xG correction to a priori coordinates of G (xG0)

∆δtG correction to a priori clock offset w.r.t. GPS time of G

∆δtS correction to a priori clock offset w.r.t. GPS time of S

∆TG correction to a priori tropospheric scaling factor

∆NS
G,L3 correction to a priori L3-ambiguity

It should be noted that Eqs. (4-8) and (4-9) differ only by the phase ambiguity
term NS

G,L3. The parameters to be estimated comprise ∆xG, ∆δtG, ∆δtS ,

∆TG, and ∆NS
G,L3. As the GPS ground stations are the only ones positions are

estimated for the vector xS constituting the geometric TRF contains only their
position vectors xG. C

S
G,L3(tG)|0 as well as ΦS

G,L3(tG)|0 represent the calculated
observations using a priori parameter values. They contain among others the
correction terms δiono,L3, δρrel, δρPCO,L3, δρPCV,L3, ∆xG,ARP , ∆xG,ARP , and
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∆xG,load present in the original non-linearised observation equations (E-5) and
(E-6) as well as in the range equation (E-3).

• GPS-SST

Analogously to GPS-ground, the GPS observations of type ”GPS-SST” are
modelled similarly except for some peculiarities. In contrast to the GPS-ground
case no tropospheric signal delays are accounted for due to the LEO’s high
altitude. Additionally, the range term ρSL, Eq. (E-10), is not corrected for
loading displacements, and the correction due to PCOs only contains the offsets
of the GPS satellites’ antennas. I.e., for the GRACE POD antennas no PCOs
are considered but only PCVs. The ARP offset vector used in case of the LEOs
is indicated in Section 3.4. Again, the models applied for calculating the various
corrections are listed in Table F.3. Finally, with ’L’ denoting a LEO receiver
station the linearised GPS-SST observation equations read as

CS
L,L3(tL)

.
= CS

L,L3(tL)|0 + c∆δtL − c∆δtS (4-10)

ΦS
L,L3(tL)

.
= ΦS

L,L3(tL)|0 + c∆δtL − c∆δtS +∆NS
L,L3 (4-11)

with

tL epoch of signal reception at L

c speed of light ([Pet 10])

∆δtL correction to a priori clock offset w.r.t. GPS time of L

∆δtS correction to a priori clock offset w.r.t. GPS time of S

∆NS
L,L3 correction to a priori L3-ambiguity

As is obvious the observation equations for any GPS measurements directly
contain only geometric parameters entering the vector p

G
introduced in Section

2.1. Indirectly the GPS observations also depend on the dynamic parameters
in p

D
through the satellite positions xS present in the range terms ρSG and ρSL.

• KBRR

As already mentioned in Section 3.1 the K-band observable used in this con-
text is the unbiased K-band range-rate (KBRR) ρ̇KB between GRACE-A and
GRACE-B. It is derived from the nominal unbiased K-band range ρKB as its
derivative w.r.t. time plus a polynomial P = P(P1,P2,C0,S0,v̇(t),u(t),t), c.f. Ap-
pendix E. Based on the investigations of [Kim 00] such a polynomial reveals to
be necessary in order to account for the influences of unmodelled residual per-
turbation forces on the KBRR measurement at frequencies of 0 Hz (constant)
and one cycle per orbit revolution. The coefficients P1, P2, C0, and S0 are
of empirical nature and therefore denoted as ”K-band Empirical Parameters”.
Like the GPS case, this type of observation equation directly contains only ge-
ometric parameters, and is indirectly dependent on the dynamic parameters in
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p
D

through xS and ẋS . The linearisation of the observation equation (E-11)
w.r.t. all parameters is outlined in Appendix E. Since the differential position
and velocity vectors between the satellites involved, x12 and ẋ12, are not treated
as variables the linearisation is actually carried out only w.r.t. the parameters
of the polynomial P resulting in

ρ̇KB = ρ̇KB|0 +

+∆P1 + 2t∆P2 + v̇(t) cosu(t)∆C0 − v̇(t) sinu(t)∆S0 (4-12)

where

t measurement epoch

v̇(t) mean anomaly rate

u(t) argument of latitude

∆P1 correction to range-rate bias of polynomial model

∆P2 correction to range-acceleration bias of polynomial model

∆C0 correction to range bias cos amplitude of periodic model

∆S0 correction to range bias sin amplitude of periodic model

The parameterisation actually chosen for KBRR measurements is indicated in
Tables G.1 and G.4.

• SLR

The SLR observations used are one-way travel times τSGS,1 of the laser signal
between the SLR ground station GS and the LRR mounted on the respective
satellite S which are derived from the original NPs representing two-way signal
travel times. For the same reason the ARP offset vector has to be considered
in case of GPS-ground observations the LRP offset vector ∆xGS,LRP , i.e. the
spatial offset between the ground station marker (coordinate reference point)
and the LRP, has to be accounted for. The same applies to the LRR offset
vector ∆xSLRR between the LRR and the satellite’s centre of mass. In total, the
SLR observation equation reads as (c.f. Appendix E)

τSGS,1 =
1

c
ρSGS + T0 + δρrel (4-13)

with

ρSGS = |xGS(tLRR) + ∆xGS,LRP +∆xGS,load

−(xS(tLRR) + ∆xSLRR)| (4-14)

where

c speed of light ([Pet 10])

T0 a priori tropospheric signal delay (model)
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δρrel relativistic range correction (model)

xGS geocentric coordinate vector of the marker of GS

xS geocentric coordinate vector of the centre of mass of S

∆xGS,load displacement of the marker of GS due to loading

tLRR epoch of signal reflection at the LRR of S

However, in the context of this work SLR observations are only used for or-
bit validation. Therefore, the parameters appearing in Eq. (4-13) will not
be estimated, and the observations are assigned a very low weight within the
least-squares estimation (c.f. Section 2.3) in order not to influence the other
parameters.

• ACC

The ACC data stem from the onboard accelerometers of the LEOs and represent
the measured spatial acceleration ẍm caused by all surface forces (F drag, F sol,
F alb) acting on the satellite body, see Section 2.2. They are treated as errorless
observations and are merely used in the equations of motion (2-6) for providing
the sum of surface forces to the total sum of forces. For that reason they do not
enter the vector o within the least-squares estimation procedure (c.f. Section
2.3), and consequently they do not influence the estimated parameters in Eq.
2-30. On the other hand, the measured accelerations need some calibration due
to instrumental deficiencies. As proposed by [Schw 00] biases and scale factors
for the measurement axes contained in vectors b and k respectively have to be
estimated. By applying the biases and scale factors following

ẍc = b + K ẍm (4-15)

with

ẍm 3D vector of measured accelerations ẍm,i (i = 1, 2, 3)

ẍc 3D vector of calibrated accelerations ẍc,i (i = 1, 2, 3)

b 3D vector of accelerometer biases bi (i = 1, 2, 3)

K 3x3 diagonal matrix of accelerometer scale factors

i spatial component

the measured accelerations ẍm become calibrated observations ẍc. The biases
and scale factors represent dynamic parameters entering the vector p

D
intro-

duced in Section 2.1. They are estimated based on the other observations
appearing in o that contribute to the least-squares estimation procedure. By
solving the variational equations (2-14) the necessary partial derivatives ∂o/∂p

D
of those observations w.r.t. the accelerometer biases and scale factors are ob-
tained.

In summary, the vector o of observations is filled as follows:
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o =



















Cground

Φground

CSST

ΦSST

ρ̇
KB

τSLR



















(4-16)

It should be emphasised that the SLR observations τSLR are assigned a very
low weight compared to the remaining observations in order not to influence
the parameter estimation.

Expected Sensitivities

In order to successfully estimate the unknown parameters it has to be ensured
that the observations used are sensitive to them. Table 4.1 presents a qualitative
overview of the expected contribution of each observation type to the different
Earth system parameters.
Thereby, GPS-ground measurements are the major contributor to estimating
ground station positions xS , and thus to deriving the scale S as well as the
orientation parameters Rx, Ry, Rz of the geometric TRF. Due to the high
altitude of the GPS satellites GPS-ground contributes only very weakly to the
estimation of gravity field coefficients.
The GPS-SST observations represent the link between the GRACE satellites
that are highly sensitive to changes in the gravity field and the GPS satel-
lites that act as an outer reference frame much less influenced by gravitational
disturbances. For that reason GPS-SST measurements are indispensable for
determining the gravity field coefficients of degree one. Moreover, they are ex-
pected to enhance the quality of the estimated ground station coordinates by
stabilising the GPS orbit constellation.
In contrast, KBRR observations contribute significantly only to the determi-
nation of the gravity field coefficients of degree two as they deliver only the
rate of change of the distance between both GRACE satellites but no absolute
displacements of their orbits. Concerning the gravity field coefficients of de-
gree two, however, their contribution is very strong due to their extremely high
measurement precision.
Principally, SLR observations are suited for determining gravity field coeffi-
cients, ERP, and ground station coordinates. In particular, they would be
very helpful for defining the geometric scale as they represent directly mea-
sured distances between ground stations and satellites without the necessity of
estimating an ambiguity term as in case of GPS measurements. However, as
mentioned above, they are only used for validation purposes in the context of
this work.



CHAPTER 4. REFERENCE FRAME DETERMINATION 42

4.3 The Inherent Datum Defect

Prior to making efforts to estimate parameters for defining a dynamic frame and
a geometric frame it has to be clear whether the parameters are solvable and
whether they can be separated from each other. This question is investigated in
the following applying an empirical strategy based on simulated observations.
First some basic simulations are carried out in order to identify a possible se-
vere datum defect that would prevent any processing. Secondly, supplementary
simulations should reveal a hidden datum defect that is not severe but might
deteriorate some parameters. In both cases ground and space-borne GPS data
are simulated based on up-to-date a priori models acting as reference. By sys-
tematically changing these a priori models and introducing them into a recovery
process of POD and parameter estimation the deviations of the estimated pa-
rameters of the dynamic frame and of the geometric frame from the reference
can be analysed. This procedure finally leads to the qualification of the intrinsic
datum defect of the chosen solution as well. The basic simulations presented
here can also be found in [KoD 12].

Basic Simulations

For the basic simulations a satellite constellation is chosen consisting of all GPS
satellites available and a single CHAMP-type LEO ([Rei 99]). The ground sta-
tion network is synthetic consisting of 60 regularly distributed stations on a
30ox30o mesh not including the poles. Using such an ideal ground station
network is advantegeous in order to exclude disturbing effects coming from a
non-uniform distribution of the stations. Investigating such disturbing effects
would be worthwile but is not pursued here. The a priori and background
models used are mainly those of RL04 as indicated in Table F.1. The orbit
perturbations due to non-conservative forces are modelled according to accel-
erations resulting from CHAMP POD based on real data. Fixing all a priori
models, GPS observations are simulated as L3-LCs with a temporal spacing of
30 s, a measurement standard deviation (STD) of 0.5 m (ground stations) and
0.3 m (LEOs) for code observations as well as 5.0 mm (ground stations) and
3.0 mm (LEOs) for phase observations. By choosing these STDs for the phase
observations which might seem to be rather high it should be ensured that
the results obtained are not on an artificially high level of accuracy but rather
realistic. For the GRACE-type satellite pair also K-band range rate (KBRR)
observations are simulated as an inter-satellite link with a temporal spacing of
5 s and a measurement STD of 0.3 µm/s. The observational data is simulated
for any distinct satellite constellation. Each test covers the same period of 28
days consisting of daily solutions of 24 h length. For both the simulations as
well as the subsequent POD and parameter estimation the software used is
GFZ’s EPOS-OC as described in Section 3.3. The recoveries are carried out
as combined POD and parameter estimation processes following the Integrated
Approach outlined in Chapter 2 using the simulated data and modified a priori
models. As specified in Section 4.2 the parameters solved for comprise, on the
one hand, TRF parameters being the gravity field coefficients (C,S)nm up to
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degree and order two as well as the ground station coordinates xS , and, on
the other hand, auxiliary parameters given by the initial elements xS0 as well
as dynamic and geometric parameters for modeling orbit perturbations and
measurement errors, respectively. Earth Rotation Parameters (ERPs; polar
motion, UT1-UTC) are not estimated as this simulation study should examine
the possibility to separately estimate the TRF parameters as specified in Sec-
tion 4.2. Thus, this simulation study is consistent with the parameter space of
the real-data processing done within this work. Moreover, not solving for ERPs
ensures a clear interpretation of the results obtained, especially concerning the
rotation about the Earth’s z-axis. The a priori model changes are applied to
C10, C11, S11 and to all station coordinates by adding 6 cm to each parameter
of these parameter groups. I.e., the gravity field as a whole and the complete
set of ground station positions are translated in x, y, and z by this amount. 6
cm in all three spatial directions corresponds to roughly 10 cm in 3D. Such a
model change does not harm the linearity of the least-squares estimation but
causes a clear effect.
Assessment of the results is done by comparing the estimated parameters to
the unbiased model values. In case of the gravity field coefficients this is sim-
ply done by calculating the difference between the corresponding parameters.
The estimated ground station coordinates are compared to the reference coor-
dinates by 7-parameter Helmert transformations using the SIMTRA software,
c.f. Section 3.3, per daily solution delivering global translations in Tx, Ty, Tz,
a global scale S, and global rotations Rx, Ry, Rz. Analogously, the orbits are
compared to the reference orbits by 7-parameter Helmert transformations using
EPOS-OA (Section 3.3). Those reference orbits are the orbits from the simula-
tion process that is based on the unchanged a priori models. In the following,
for the sake of intuitive comparison, all non-metric parameters are rescaled to
metric distances on the Earth surface.
The test cases presented here are arranged in four groups, the results are pre-
sented in Table 4.2. All parameters not considered here are resolved very well
in all test cases. Concerning the Helmert transformations between the orbits,
results of the transformations only between the GPS orbits are discussed since
the results of the transformations between the LEOs’ orbits do not differ signif-
icantly from the GPS results. In Table 4.2 the values given are the mean values
together with the STDs of the respective 28-day time series. It should be noted
that a STD refers to the mean of a series of values, i.e. it indicates the series’
remaining deviation after removing the mean. As a reference for all test cases
serves an initial test called ”standard case” hereafter, i.e. an integrated solution
of the CHAMP-GPS constellation without imposing any a priori constraints on
any estimated parameter.
First of all it should be stated that for all test cases the resolved values in the x-
as well as in the y-component are very stable and accurate: their STDs do not
exceed 0.3 mm, the mean values are between -0.1 and +0.1 mm. This means
that both components are extremely well solvable simultaneously. Therefore
the following discussion is focusing on the z-component.
In order to give an idea of the characteristics of the solutions, the time series of
the translational parameters of the dynamic geocentre, the geometric geocentre
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Figure 4.1: Basic simulations: time series of the deviation from the reference
of dynamic geocentre (circles), geometric geocentre (squares), and translations
of GPS orbits (crosses) for the standard case (no constraints).

as well as of the GPS orbits are shown for the standard case in Fig. 4.1. The
maximum difference between the time series is 0.4 mm in the x-, 0.6 mm in
the y-, and 0.7 mm in the z-component. From this it can be concluded that
the translational parameters are highly correlated in each spatial component;
considering that the time series of both geocentres and of the translations of
the GPS orbits reveal the same sign it is clear that they represent the same
physical effect.
The first test case derived from the standard case, called ”Constrained initial
elements” in Table 4.2, is a solution where the initial elements of all satellite
orbits are constrained with a STD of 1.0 mm to their a priori values. Regard-
ing the z-component of the translational parameters the standard case cannot
resolve them as seen by the STDs between 68.5 and 68.7 mm corresponding to
the modelled changes of 6 cm. The case with perfect orbits, on the other hand,
delivers a stable day by day recovery of these parameters with STDs of 0.2 mm.
In contrast, for the standard case, the mean values of the z-translations deviate
from the reference by -2.5 to -2.4 mm only. So by sampling over a certain time
period an unbiased solution can be gained. The whole constellation of ground
stations and satellite orbits is rotationally unstable about the z-axis as can be
seen by considering the RZs in the standard case with STDs of 205.7 mm and
mean biases of +28.1 and -28.1 mm.
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Table 4.2: Basic simulations: mean values and standard deviations of time series resulting from different test cases; the characteristics
of each test case indicate the discrepancy w.r.t. the standard case.

Test Case Characteristics Deviations from Reference

mean
standard deviation

Geocentre Station Coord. GPS orbits
C10 TZ RZ TZ RZ
[mm] -[mm]- -[mm]-

Standard LEO used: CHAMP -2.4 -2.4 +28.1 -2.5 -28.1
No constraints ±68.5 ±68.6 ±205.7 ±68.7 ±205.7

Constrained initial elements Standard deviations of 0.0 0.0 0.0 0.0 0.0
initial elements: 1 mm ±0.2 ±0.2 ±0.0 ±0.2 ±0.1

Constrained station coordinates Standard deviations of +57.8 +57.9 +0.4 +57.8 -0.4
station coordinates: 10 cm ±2.4 ±2.4 ±1.8 ±2.5 ±1.7

Multi-LEO constellation LEOs used:
GRACE (no KBRR) -3.2 -3.2 -77.8 -3.3 +77.8

±101.0 ±101.2 ±296.2 ±101.2 ±296.2
CHAMP+GRACE (no KBRR) -5.0 -5.0 +24.3 -5.0 -24.3

±47.8 ±47.9 ±122.9 ±47.9 ±122.9
CHAMP+GRACE (+ KBRR) -8.5 -8.5 -9.5 -7.7 +9.5

±23.3 ±23.4 ±152.1 ±23.4 ±152.1

Additional GPS orbit plane Orbital elements: a = 26600 km, -11.2 -11.3 +21.8 -11.3 -21.7
of 5 satellites e = 0.005, i = 89o, Ω = 85o ±55.7 ±55.8 ±169.9 ±55.8 ±169.9
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Again with perfect orbits the RZs could be resolved day by day with STDs of
0.1 mm maximum and no biases. Summarizing, an integrated CHAMP-GPS
constellation solution delivers highly accurate daily x- and y-components of the
geometric and dynamic origin simultaneously, however the z-translations need
long-term sampling to become free of systematics. With perfect orbits, however
out of reality, daily resolution of the z-translations would be possible and the
rotational defect would disappear. The obvious asymmetry between the x- and
y-components on the one hand and the z-component on the other hand will be
investigated by means of supplementary simulations to be presented in the next
subsection.
In the second test case (”Constrained station coordinates” in Table 4.2) 10-cm
stochastic constraints are imposed on the station coordinates. Such constraints
have been in use for operational GPS processing for a long time at GFZ for
producing GPS RSOs for preventing any impact of unexpected antenna changes
on the overall solution. As revealed by the STDs of 2.4 to 2.5 mm, c.f. Table
4.2, this case leads to much more stable time series of the z-translations than
the standard case with STDs of 68.5 and 68.7 mm. On the other hand, in
case of constrained station coordinates the biases of these time series, +57.8 to
+57.9 mm, are at the level of the artificial shift of 6 cm. This is certainly due
to the constraints of 10 cm that are relatively strong compared to the changes
of 6 cm. Regarding the RZ estimates, as opposed to the standard case, the case
of constrained station coordinates causes the solutions to become rotationally
stable about the z-axis as revealed by STDs of 1.7 and 1.8 mm and biases of +0.4
and -0.4 mm. So, in summary putting 10-cm a priori constraints on the station
coordinates allows to efficiently care for the rotational stability of the solution.
If such a solution is used for resolving the geocentre motion with expected
amplitudes in the millimeters, c.f. [Don 97], the 10-cm a priori constraints
would allow the recovery of daily translations with a few mm accuracy, however
with a severely biased z-component.
The third group of tests, named ”Multi-LEO constellation” in Table 4.2, aims at
clarifying the effect of making use of additional LEOs or of KBRR observations.
Using a GRACE satellite pair without KBRR data leads to increased STDs of
101.0 to 101.2 mm in the z-translations in comparison to the standard CHAMP
case, c.f. Table 4.2. The reason may be that correlations of environmental per-
turbations between both satellites are not taken into account here, and that the
GRACE satellites are less sensitive than the CHAMP S/C due to their higher
altitude. In case of combining CHAMP and GRACE the STDs reduce to 47.8
to 47.9 mm being also smaller than in the standard case. By using KBRR data
the STDs improve further down to 23.3 to 23.4 mm. This can be expected as
combining CHAMP and GRACE means to increase the number of observations,
and using KBRR data means to introduce high-quality relative measurements.
Compared to the standard case the biases increase up to approximately -8 mm,
however staying well below the STDs. Concerning the z-rotations the STDs be-
have similar as above for all cases with the only difference that they increase in
case KBRR observations are introduced. But then they still remain below the
level of the standard case. The biases of the z-rotations remain non-significant.
In summary, combining CHAMP and GRACE as well as adding KBRR data



CHAPTER 4. REFERENCE FRAME DETERMINATION 47

helps to improve the rotational stability around the z-axis.
In the fourth and last test group, ”Additional GPS orbit plane” in Table 4.2 the
benefit of an additional near-polar GPS orbit plane of five equally distributed
satellites is investigated whose Keplerian elements are a = 26600 km, e = 0.005,
i = 89o, Ω = 85o. Compared to the standard case the STDs of the translational
parameters in Z reduce slightly. Also the STDs of the z-rotations are reduced.
The biases in the z-translations and -rotations are not significant. Overall,
an additional near-polar GPS orbit plane would make the z-translations and
-rotations more stable but would not allow an accurate solution in the end.

The results of the basic simulations finally allow the conclusion that applying
the Integrated Approach of space geodesy it is possible to determine simultane-
ously all gravity field coefficients except for C10 as well as all components of a
geometric reference frame except for its z- translation and its rotation about the
z-axis. Even in the absence of any a priori constraints it is possible to resolve
simultaneously the geometric and the dynamic x- and y-components with daily
resolution. On the other hand, it follows that C10 as well as the z-translations
and z-rotations of the ground station network and the GPS orbit constellation
cannot be separated. This means there is a datum defect imminent to the
chosen configuration of two comprising its z-translation and its rotation about
the z-axis. An explanation might be that it is possible to shift the whole con-
figuration in z-direction and to rotate it about its z-axis without changing the
observations.
Furthermore, the following additional conclusions may be drawn. Averaging
over a longer period leads to nearly unbiased z-coordinates of the origins. Also
a perfect estimation of all the components of the origins apparently seems to
be possible in case the orbits would become a factor of 10 more accurate than
in current practice. Constraining the ground station coordinates removes the
rotational freedom about the z-axis but leaves the z-translations unresolved.
Extending the basic constellation by a GRACE-type satellite pair leads to im-
proved stabilities of the z-translations and the z-rotations. This improvement
is largely pronounced for the z-translations if KBRR data are used. An addi-
tional near-polar GPS orbit plane would not lead to a thorough elimination of
the deficiencies in the z-translations and -rotations.

Supplementary Simulations

Within a similar processing environment supplementary simulations are carried
out for a 30-day time span (June 2004) for investigating the stability of the es-
timated x- and y-translations. The procedure of evaluating the recoveries is the
same as in the case of the basic simulations. In this case none of the a priori
models used for simulating the GPS data is changed for the subsequent recover-
ies. The idea is to study the potential of recovering especially the translational
parameters depending on the Earth rotation rate. For that reason GPS data
are simulated for various Earth rotation rates starting at 1.0 revolutions per
sidereal day and going down to 1/128 revolutions by bisecting each value. Data
are simulated for a completely non-rotating Earth, too.
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The recovered translational components of the dynamic geocentre, the geomet-
ric geocentre, and the GPS orbits origin are shown in Fig. C.2 for the case of
a nominally rotating Earth (1.0 revolutions per sidereal day) and in Fig. C.3
for the case of a non-rotating Earth. For a nominally rotating Earth the re-
sult is comparable to the standard case of the basic simulations: the x- and
y-translations are very well resolved with less than a millimetre deviation but
the z-translation is very unreliable with amplitudes in the range of up to 10 cm.
In case of a non-rotating Earth, however, also the x- and y-translations become
not resolvable. As neither the a priori gravity field nor the a priori ground
station coordinates were subject to dedicated changes this is a strong evidence
that such dedicated changes, e.g. 6 cm in the case of the basic simulations,
cannot be resolved.
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Figure 4.2: Supplementary simulations: standard deviations of time series of
dynamic geocentre (circles), geometric geocentre (squares), and translations of
GPS orbits (crosses) vs Earth rotation rate.

In order to investigate the influence of the Earth rotation rate on the recovery
of the translations further recoveries for various Earth rotation rates as men-
tioned above are performed. The mean values and STDs of the resulting time
series are plotted in Figs. C.4 and 4.2, respectively. It can be recognised that
for Earth rotation rates of less than 1/8 revolutions per sidereal day the time
series of the resolved translations reveal significant biases and STDs of a few
centimetres. This means that none of the three translational components can
be resolved for such low Earth rotation rates. But for rotation rates of 1/8 rev-
olutions and upward biases and STDs reduce to the mm-level in case of the x-
and y-translations. In case of the z-translations, on the other hand, indeed the
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biases of the time series reduce down to zero but the STDs converge to around
5 cm meaning that the resolved z-component of the different origins remains
not reliable per day.

Based on these supplementary simulations the conclusion may be drawn that
beside the severe datum defect in the z-component of both translations and
rotations there is as well a hidden datum defect in the x- and y-translation at-
tenuated by Earth rotation. This means that Tx and Ty, the x- and y-translation
of the geometric frame, can be separated from C11 and S11 only because the
Earth is rotating. As will be shown in Chapter 6 C11 and S11 can be improved
at the expense of constraining Tx and Ty. Regarding the remaining parameters,
e.g. Rx, Ry, S21, and C21, no difficulties in resolving them are detected here.
Thus, they are assumed to be independently estimable in the context of this
work. The deeper reason of this possibility is certainly given by the fact that
any rotational defect is avoided as the ERPs are not estimated here.

Rectifying the Datum Defect

In order to carry out a TRF estimation following the Integrated Approach as
described in Section 4.2 it is indispensable to rectify at least the severe datum
defect of the translation in z-direction and the rotation about the z-axis revealed
by the basic simulations. Moreover, it may be useful also to remove the two
hidden defects of the x- and the y-translation. According to [Alt 02c] rectifying
the geometric datum defect in the context of space-geodetic TRF determination
can be achieved by constraining ground station coordinates (CC) or by imposing
so-called ”No-Net Conditions” (NN) on the normal equation.

• Constrained Coordinates (CC)

This method consists of introducing pseudo-observations into the NEQ system
that set the estimated station coordinates x̂S equal to their a priori values at
the level of a chosen STD. As already mentioned in conjunction with the basic
simulations this method has been used in operational GPS-RSO processing at
GFZ for many years in order to prevent a few stations with large estimated
corrections to their a priori coordinates to degrade the overall TRF solution.
Such could happen e.g. in case of antenna switches or changes in the multi-
path regime at specific ground stations. In view of the quality of the TRF
solution the drawback of constraining all coordinates of each station is that the
solution obtained is overconstrained because there are 3N pseudo-observations
introduced (if N is the number of ground stations involved) opposed to the
maximum datum defect of four caused by the coordinate transformation pa-
rameters Tx, Ty, Tz, and Rz. On the other hand, constraining only a subset
of gound stations lets considerable freedom to the estimated coordinates of the
remaining stations that could finally distort the whole network.

• No-net Conditions (NN)

In order not to overconstrain the overall TRF solution there is a need of getting
rid of exactly the inherent degree of freedom comprising three translations (Tx,
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Ty, Tz) and one rotation (Rz). This can be achieved by preventing the ground
station network as a whole from shifting in x-, y, and z-direction as well as
from rotating about the z-axis. In other words this means to force the frame to
perform a no-net translation in the chosen direction and a no-net rotation about
the specified axis. Such constraints can be imposed applying the NN method
as outlined in Appendix D based on [Alt 02c]. The idea is to impose for each
geometric datum defect a single suitable condition on the NEQ N = ATWA
in Eq. (2-30). For that reason the obtained TRF solution is called ”minimum-
constraints” ([Sil 01]) as only the minimum amount of constraints is introduced.
Technically, the necessary conditions are derived from an implicit similarity
transformation between the coordinates x̂S of the TRF stations that are to
be estimated and the coordinates xr of a set of reference stations. Thereby
the similarity transformation comprises only those transformation parameters
needed to account for the datum defect. According to Appendix D the similarity
transformation is then set up as

xr = [Tx Ty Tz]
T +R3(Rz)x̂S (4-17)

where

xr coordinates of a reference station network

x̂S coordinates of the TRF station network to be estimated

R3 matrix of rotation about the z-axis

Tx, Ty, Tz translation in x-, y-, z-direction, respectively

Rz angle of rotation about z-axis

The resulting normal equation system of the NN-conditions is given by

BTW tB (x̂S − x0) = BTW tB (xr − x0) (4-18)

with

B =
(

AT
t At

)

−1

AT
t (4-19)

x0 a priori coordinates of the TRF station network

W t weight matrix of Tx, Ty, Tz, Rz

The a priori station coordinates x0 change from iteration to iteration within
the iterative POD and parameter estimation procedure: they are given in the
first iteration by the TRF station network read in by the program (EPOS-OC),
and are then in the further iterations taken to be the estimated coordinates of
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the respective preceding iteration. For each ground station contributing to the
NN-conditions At contains the following three lines

At =



















...
...

...
...

1 0 0 −yi,0
0 1 0 xi,0
0 0 1 0
...

...
...

...



















(4-20)

where

i number of the contributing station

xi,0, yi,0 a priori coordinates of i-th contributing station

In Fig. 4.3 the principles of both the CC and the NN method of rectifying a
geometric datum defect are visualised.

Figure 4.3: Methods for rectifying a geometric datum defect: in case of con-
strained coordinates (left) each ground station can only variate within the cho-
sen a priori sigma; in case of no-net conditions (right) the network as a whole
is prevented to move, but not the individual stations.

As shown, CC conditions keep the estimated station coordinates bounded to
their a prioris but let the frame translate, rotate, and change its scale. In
contrast, NN-conditions prevent the network as a whole to move as specified by
the chosen conditions but let the single stations some freedom to move.
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Data Processing

Based on the prerequisites described in the preceding chapters data processings
following the Integrated Approach are carried out. This processing is mainly
subdivided into a data screening part resulting in an initial setup of integrated
processing environments and a part comprising a test programme of different
integrated runs. In order to obtain TRF parameters of daily resolution the
length of the satellite orbits covers exactly one day. This time interval is also
called ”arc length” or shortly ”arc”. The whole time span processed extends
from 2004/02/04 00:00:00 (JD2000 1494.5) to 2005/02/28 00:00:00 (JD2000
1885.5) resulting in nominally 392 days or arcs. Because of processing failures
due to singular normal equation matrices, CPU failures, or other reasons this
nominal amount of days can be reduced. Hereafter, ”run” is used as an abbrevi-
ated form of a processing consisting of per-day POD and parameter estimation
applying a specific set of models and a specific parameterisation, and covering
the whole time span indicated above. The computational effort in processing
such a long time span is quite considerable as the normal equation of each arc
contains between 5000 and 6000 parameters to be estimated, and the amount of
observations is on the level of 1,000,000 per day. Moreover, in case of applying
L3-ambiguity constraining each run has to be carried out more than once as
explained below. In sum, it takes approximately three hours on a PC for a
single arc to be performed.
After setting up an initial environment a test programme of various integrated
runs is carried out in order to study certain effects and eventually to improve
the time series of the estimated TRF parameters. For the purpose of efficient
referencing, each run is assigned a number of the format rr-nn-t, with ”rr”
denoting the release (4 or 5), ”nn” the test number, and ”t” the type (0: inte-
grated; 1: two-step (GPS); 2: two-step (LEO)). Thereby, in case of a two-step
processing, ”t” indicates the step: ”1” denotes the GPS-only part whereas ”2”
stands for the LEO-only part.

5.1 Models Used and Parameterisation

Due to several model upgrades and permanent developments of EPOS-OC the
whole chain of data screening and integrated test runs are carried out based
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on upgraded GRACE RL04 standards (RL04++, [Fle 10a]), and are repeated
based on GRACE RL05 standards ([Dah 12]). These standards apply for the
models used whereas the chosen parameterisation differs slightly from the offi-
cial GRACE releases. The parameterisations applied are summarised in Tables
G.1 and G.4. They are denoted ”RL04m” and ”RL05m” representing modified
versions of the official GRACE releases. A significant difference between RL05m
and RL04m not mentioned in the tables is the fact that in the RL05m processing
a method for handling the GPS ground stations L3-ambiguities as appearing
in Eq. (4-9) is applied that is equivalent to fixing L1- and L2-ambiguities to
integers. Precisely, this means that for double-differenced L3-ambiguities side
conditions, as mentioned in Section 2.3 are computed and introduced into the
NEQ system for least-squares parameter estimation (see Eq. (2-30)). The
method applied mainly follows a procedure outlined in [Ble 89] and [Ge 08]. As
this procedure is implemented outside EPOS-OC each run with L3-ambiguity
constraining has to be carried out twice. After a first run the side constraints
for the double-differenced L3-ambiguities are set up outside EPOS-OC. The
run is then repeated, with the constraints applied from that iteration onwards
that was reached by the first run. This procedure is inevitable due to EPOS-
OC-internal parameter numbering.

Models Used

The models used for the RL04m and RL05m processing are listed in Table
F.3. In case of RL05m they are identical with the GRACE RL05 standards
([Dah 12]). Specifically, concerning the modelling of orbit forces an overview of
the models used is given in Tables F.1 and F.2.
The models are state-of-the-art with those of GRACE RL05 being currently
the most recent ones. An exception might be the use of the old ROCK4 so-
lar radiation pressure model for GPS satellites that is currently the only one
implemented in EPOS-OC. Specifically, concerning the a priori TRF used it
should be noted that both ITRF2008 as well as IGS08 contain plate tectonic
movements of the ground stations, and thus they ensure a very close a priori
approximation of the station positions to physical reality.

Parameterisation

In Tables G.1 and G.4 the parameterisation chosen for the initial setup is spec-
ified that is basically determined by the RL04 and RL05 standards. The tem-
poral resolution of once per day for TRF parameters is due to the goal of this
work to derive variations of the dynamic frame and the geometric frame per day.
Concerning the auxiliary parameters a compromise is chosen between a good
adaptation of the parameterised models to physical reality on the one hand and
computational burden on the other. The difference between the RL04m and
RL05m parameterisations for the initial setup is the temporal resolution of the
empirical accelerations for the GRACE satellites. With 16 parameters per day
they are set up much denser compared to RL04m processing with only five in 24
h. To account for tropospheric signal delays of the GPS-ground measurements a
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quite dense parameterisation of 10 scaling factors per station is chosen resulting
in a temporal resolution of 2.4 h. As well a rather dense series of 17 polynomial
parameters and nine periodic parameters are chosen for modelling the empirical
KBRR coefficients. These deviations from the RL04m and RL05m standards
from RL04 and RL05, respectively, were found by extensive testing.
For establishing the weight model (2-24) per observation type a weight w is
assigned to each measurement according to

w = wii := fσ−2 (5-1)

with

f : real-valued factor per observation type

σ : a priori STD of the observation type

Thereby the unit-less factor f serves for additionally weighting each observation
type without changing σ. This weight w is entering the weight matrix W in
Eq. (2-30) which is defined as a diagonal matrix.
Concerning the test programme of RL04m integrated runs the differences in
parameterisation are listed in Tables G.2 and G.3. They differ regarding the
ITRF used, the absolute phase centre corrections (PCCs) for GPS transmitter
and ground receiver antennas, the handling of the gravity field coefficients as
well as of the ground station coordinates, and the resolution of the empirical
accelerations. For the weight model (5-1) the real-valued factor and the a priori
measurement STD are indicated. Concerning handling the ground stations
coordinates, ”CC” stands for ”Constrained Coordinates” and ”NN” for ”No-
net”-conditions as introduced earlier. Within the RL05m integrated processing
the runs differ in gravity field coefficients, ground station coordinates, in the
weight model, and in applying NN-conditions, c.f. Tables G.5 and G.6.

5.2 Initial Setup

Creating an initial setup, i.e., a basic processing environment for performing
integrated runs, is preceded by a screening of the GPS-ground data as well
as of the LEO onboard observations (GPS-SST, KBRR) for outliers. Thereby
improved initial values of the various estimated parameters are obtained, too.

Data Screening: GPS-ground

As a first step the GPS-ground data is cleaned from outliers by eliminating each
observation whose residual is larger than three times the STD of all residuals
of this data type. In order to prevent these observations to influence the LEOs’
data or parameters this is performed as GPS-only processing, i.e. merely by
processing the GPS ground stations plus the GPS satellites. Beside cleaned
data a consistent set of GPS satellite orbits and estimated clock parameters
result.
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Data Screening: GPS-SST, KBRR

Introducing the GPS orbits and clock parameters resulting from the preceding
step as fixed, LEO-only processings using the GRACE onboard data are carried
out. This data screening is done in two steps with the GPS-SST data cleaned
first by setting an elimination limit of three times the residuals’ STD as done
in the GPS-ground case. Subsequently, using the cleaned GPS-SST data the
KBRR observations are screened with a threshold of eight times the residuals’
STD. Thereby, the factor eight was determined empirically during the devel-
opment of the RL05 standards. Choosing the elimination limits as indicated is
based on experience aiming at retaining as much observations as possible but
eliminating gross outliers that are likely to distort some parameters.

Initial Integrated Run

The initial processing environment is finally obtained by merging the cleaned
GPS-ground, GPS-SST, and KBRR data as well as the various a priori and
background model files into a common environment. In view of the satellite
constellation the twin GRACE LEOs are added to the GPS satellites. For
RL04m processing the initial setup is given by run 4-00-0, see Table G.2, and
run 5-00-0 is the initial run for RL05m processing, c.f. Table G.5. The pa-
rameterisation of these runs is the nominal one summarised correspondingly in
Tables G.1 and G.4.

5.3 Computations

Integrated Processings

After the initial setup of the integrated processing being completed various test
scenarios are carried out. By changing only a few items, preferably only one,
at the same time it is tried to study certain effects and thereby improving the
obtained time series of TRF parameters. Correspondingly for the RL04m as
well as for the RL05m processing the specifications of the computations are
summarised in Tables G.2, G.3, and in Tables G.5, G.6. They also contain the
two-step processing and the SLR validation described below.

Two-step Processing

As already mentioned the commonly followed procedure for estimating TRF
parameters based on LEO satellite-to-satellite tracking data is the Two-step
Approach. There, in a first step only GPS-ground observations are processed
resulting in GPS satellite orbits and clock parameters, as well as ground station
coordinates. The GPS satellite orbits and clock parameters are subsequently
introduced into a second step where only the GPS-SST and the KBRR data
are used for estimating gravity field coefficients.
For the purpose of comparing the Integrated to the Two-step Approach also
two-step processing is carried out. This is done by splitting an integrated run
environment into its GPS and into its LEO part. As described above the GPS



CHAPTER 5. DATA PROCESSING 56

orbits and clock parameters of the GPS-only run are subsequently introduced
as fixed into the LEO-run with GPS ground stations excluded. Within the
RL04m processing such a two-step approach is given by run 4-04-1 representing
the GPS-only part and by 4-04-2 as the LEO run. In case of the RL05m
processing the corresponding runs are 5-02-1 and 5-02-2.

SLR Validation

Introducing SLR observations to the GRACE LEOs as well as to the GPS satel-
lites PRN 5 and PRN 6 is an excellent means of validating the resulting orbits
by an independent measurement technique. If added to the vector of observa-
tions (4-16) they have to be given a very low weight (5-1) in order to prevent
them from influencing the POD and parameter estimation. As is done for the
other observation types within such a run also for the SLR measurements the
observational residuals are calculated. Assuming the modern SLR technique to
deliver reliable range observations with a precision of a few mm those residuals
are well suited to indicate the orbits’ accuracy at the few mm-level.



Chapter 6

Discussion

In the following the results are presented stemming from the integrated runs car-
ried out as outlined in the preceding chapter. Correspondingly, for the RL04m
and the RL05m processing, runs 4-04-0 as well as 5-02-0 serve as reference for
all others as they represent unconstrained integrated solutions with only the
inherent datum defect rectified. Each of these runs is also performed as an
equivalent two-step approach denoted by -1 and -2 instead of the trailing -0,
c.f. Tables G.3 and G.5.
First of all, the time series of the estimated TRF parameters are shown for
run 5-02-0 followed by the time series of the resulting observational residuals.
Subsequently, results of the validation w.r.t. external sources are presented fol-
lowed by the outcome of the two-step processing 5-02-1 and 5-02-2. Finally,
some effects due to changing the parameterisation are discussed. The time se-
ries displayed in the sequel as well as the statistical measures given refer to the
parameters themselves as obtained according to (2-25) by updating the a priori
parameters p

0
by the estimated corrections d̂p.

The measures used to assess the quality of the resulting time series are either
the mean, the standard deviation (STD), or the root mean square (RMS) as
appropriate to the parameter in question. In case the expectation of a parameter
is zero a relatively small mean indicates that over the time span studied the
parameter is estimated without systematic errors. On the other hand, a small
STD of a time series reveals that the parameter is estimated reliably day by
day.
For a perfect comparison of the processing results the number of arcs processed
should be the same. Unfortunately, due to various reasons like CPU or in-
put/output errors or singular normal equation matrices a few runs failed. For
that reason, considering the full time span of 392 arcs for run 4-04-0 and run 5-
02-0, there are 359 and 382 arcs successfully finished, respectively. Concerning
the other runs within the corresponding processing group, RL04m or RL05m,
the number of arcs might again differ from these reference values. Of course, it
is desirable to have all results perfectly comparable, but in the end it is a minor
issue in the context of the experimental studies carried out and presented here.
The results to be presented below should anyway give clear evidence. It should
be noted that the time series of the reference frame parameters presented are
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cleaned from only a few, i.e. not more than five and in most cases none, large
outliers in order not to distort the derived statistical measures. Such proce-
dure is certainly allowed in the context of this work which does not strive for
developping an operational system but that is rather devoted to examine basic
characteristics of the Intergrated Approach. There is a wide range of reasons
for those outliers comprising undetected outliers among the observational data
as well as ill-modelled perturbation forces leading to erroneous satellite orbits.
Moreover, for the sake of not overcrowding the plots, the daily estimates con-
stituting the time series are drawn without error bars. Instead, the maximum
value of the STDs of the daily values is given where appropriate. If indicated in
a corresponding metric unit, non-metric measures like gravity field coefficients,
scale parameters or angles are rescaled to metric distance on the Earth sur-
face by multiplication with the mean Earth radius. All figures displayed below
within the text are reproduced in Appendix H.

6.1 TRF Parameters

For run 5-02-0 the estimated TRF parameters for both the geometric frame and
the dynamic frame are treated in the following.

Geometric Geocentre

Though tightly constrained to zero by NN-conditions imposed on Tx, Ty, and
Tz, each with a sigma of 0.1 mm, the components of the geometric geocentre
are plotted in Fig. H.2 for the purpose of completeness. Their means and
STDs of +0.23 ±0.33 mm, -0.12 ±0.38 mm, and +0.15 ±0.33 mm, respectively,
(Table I.1) indicate that the a priori ground station network follows well these
constraints evenly in each component.

Dynamic Geocentre

The time series of the dynamic geocentre components are displayed in Fig. 6.1
with the corresponding statistical values listed in Table I.3.
Overall, the time series of C11 and S11 are of quite good quality with corre-
sponding means of +1.20mm, +3.64 mm and STDs of 3.87mm, 4.21 mm. In
contrast, C10 is worse determined with a mean of +5.88 and a STD of 6.03 mm.
Not shown in Fig. 6.1, the maximum formal errors of the daily estimates are
0.95, 0.96, and 1.00 mm for C11, S11, and C10, respectively, indicating stochastic
significance.
The amplitudes of C11 and S11, mostly staying within a band of ±1 cm, are
consistent with the statement of [Don 97] that the integral geocentre variations
due to surface mass loads is within a level of 1 cm. None of the components
exhibits a clearly visible trend that would be unreasonable as in the course of
a year’s time span mass displacements on the Earth surface are expected to be
balanced. An interpretation of the clear bias in C10 is not tried as it certainly
coheres with the NN-condition imposed on Tz and the underlying a priori ITRF
as well as with the quality of the orbit modelling implemented in EPOS-OC.
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Figure 6.1: Dynamic Geocentre x-, y-, z-component per day.

As obvious from Table 6.1 the correlation coefficients between dynamic geocen-
tre components and the geometric geocentre translational components of run
5-02-0 reach values up to 0.304 meaning that there is a weak stochastic depen-
dence between the dynamic and the geometric geocentre. This is consistent
with the results of the simulations presented in Section 4.3 revealing that it is
not possible to separate the dynamic and the geometric geocentre. However,
imposing NN-conditions on all three translational components of the geomet-
ric geocentre in run 5-02-0 obviously mitigates the dependence between both
geocentres.

Scale of the Geometric Frame

In Fig. H.4 the time series of the geometric frame’s differential scale S − 1.0
is shown. It reveals a mean of +1.23 mm and a STD at 1.88 mm (Table
I.1). Considering also the amplitudes ranging between +5 and -5 mm the daily
solutions can be regarded as very reliable. This high quality gives evidence that
the geometric scale can be determined by a GPS-based processing method as
stated in [Col 11]. As the estimated scale is strongly dependent on the absolute
PCCs of the GPS antennas used, the solution presented here indicates a good
agreement of the adopted a priori TRF and the absolute PCCs introduced,
c.f. Table F.3. The slight oscillation exhibited by the series is not further
investigated.

Flattening of the Earth gravity field

For the flattening of the Earth’s gravity field (C20) the series of daily values is
displayed in Fig. H.3. It shows a resonable scatter for solutions of daily reso-
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lution as well as roughly a semi-annual oscillation. The mean is indicated in
Table I.5 and the maximum formal error of the daily estimates is 0.92·10−11.
A correlation coefficient of -0.210 w.r.t. the geometric scale S, c.f. Table 6.1,
reveals a slight negative dependency between these two parameters. Remem-
bering that C20 represents the negative polar flattening of the Earth gravity
field, c.f. Section 4.1, a lower value of C20 means an increased expansion of
the Earth body parallel to the equatorial plane that may be equivalent to some
extent to an increase in geometric scale. This relationship between C20 and the
geometric scale S is consistent with a negative correlation coefficient. On the
other hand, subject to further investigations, these two parameters seem to be
quite independently estimated.

Table 6.1: Correlation coefficients between time series of dynamic frame and
geometric frame parameters (run 5-02-0).

Tx Ty Tz S Rx Ry Rz

C11 -0.061 -0.092 -0.001 +0.031 +0.052 +0.009 +0.016
S11 -0.060 -0.304 +0.092 +0.107 +0.137 -0.028 +0.069
C10 +0.026 +0.076 -0.276 +0.001 -0.063 +0.008 -0.017
C20 +0.041 +0.267 -0.058 -0.210 +0.017 +0.057 -0.069
S21 -0.048 -0.050 +0.097 -0.006 +0.088 +0.068 -0.067
C21 -0.008 +0.068 +0.060 -0.100 +0.000 +0.007 -0.037
S22 -0.058 -0.113 +0.041 -0.053 +0.033 -0.030 +0.076

Orientation of the Geometric Frame

In Fig. 6.2 the geometric frame’s orientation parameters are plotted. The se-
ries are characterised by means and STDs of +0.63 ±5.47 mm for Rx, +1.75
±3.97 mm for Ry, and -0.12 ±0.33 mm in case of Rz (Table I.2). None of the
series exhibits a clear trend or a clear periodic signal. For Rz, following well
the NN-condition imposed, this is natural. In case of Rx and Ry this means
that the geometric frame is rotationally stable around the x- and the y-axis.
Compared to S21 and C21 (see below), Rx and Ry are much noisier. While
for the dynamic frame’s orientation the low scatter can be regarded as physi-
cal truth as detected by the highly accurate KBRR observations in case of the
geometric frame’s orientation the scatter rather reveals a comparatively higher
day-by-day fluctuation of the estimated GPS ground station network w.r.t. the
a priori one.

Orientation of the Dynamic Frame

The time series of the components of the dynamic frame’s orientation, given
by S21, C21, and S22, can be seen in Fig. 6.3. For the parameters indicated
in the above order the series’ means and STDs are +11.47 ±0.69 mm, -1.53
±0.61 mm, and -5764.76 ±0.54 mm (Table I.4). Each parameter is estimated
with stochastic significance as the maximum daily formal errors are 0.06, 0.06,



CHAPTER 6. DISCUSSION 61

R
x

[m
]

2004 2004.5 2005
-0.05

-0.025

0

0.025

0.05

R
y

[m
]

2004 2004.5 2005
-0.05

-0.025

0

0.025

0.05

5-02-0
5-02-1

Time [year]

R
z

[m
]

2004 2004.5 2005
-0.05

-0.025

0

0.025

0.05
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to metric distance on Earth surface).
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and 0.04 mm, respectively. Additionally, the absolute values of correlation
coefficients w.r.t. the geometric frame orientation components are below 0.088,
see Table 6.1, indicating a low correlation.
The sizes of S21, C21, and S22 indicate how strong the axes of the dynamic
frame deviate from those of the geometric frame. Thereby, S22 has the largest
absolute value among those three spherical harmonic coefficients. According to
Eq. (4-7) S22 is influenced by inhomogeneities of the Earth’s mass distribution
in the planes perpendicular to the z-axis. For that reason the large absolute
value of S22 indicates a non-uniform mass distribution perpendicular to the z-
axis that is much more pronounced than the inhomogeneous mass distributions
perpendicular to the x- and y-axis reflected by S21 as well as C21, respectively.
Concerning S21 and C21 it can be stated that the much larger absolute value of
S21 indicates larger inhomogeneities in mass distribution perpendicular to the
x-axis than perpendicular to the y-axis.
As already mentioned in Section 4.1 C22 is estimated as well but is not regarded
to be part of the dynamic frame. Therefore, this parameter is not treated here.

6.2 Observational Residuals

Though only indicating the internal accuracy the observational residuals as de-
fined in Section 2.3 are nonetheless important indicators of a solution’s quality.
For the various observation types used the number of observations as well as
the global RMS values are listed in Table 6.2.

Table 6.2: Statistics of GPS-ground, GPS-SST, and KBRR residuals.
Run GPS-ground GPS-SST KBRR

number global number global number global
of obs. RMS of obs. RMS of obs. RMS
(code, code phase (code, code phase
phase) phase)
[/] [cm] [cm] [/] [cm] [cm] [/] [µm/s]

4-04-0 345350253 66.14 0.72 13756589 43.86 0.18 6080582 0.25
5-02-0 359983114 46.29 0.61 14218306 36.51 0.17 6295760 0.19
5-02-1 366762779 46.08 0.67 - - - - -
5-02-2 - - - 14249234 37.53 0.54 6276459 0.19

GPS-ground

The daily RMS of code and phase residuals as well as the number of observa-
tions in case of GPS-ground data are shown in Fig. H.7. As is expected from
geodetic GPS receivers the residuals’ RMS per day is at the level of 50 cm in
the case of code and in the range of 5 to 7.5 mm for phase observations. With
roughly 900,000 to 1,000,000 measurements per day for both, code and carrier
phase on the one hand the dominance of the GPS ground data w.r.t. the other
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observation types becomes clear and on the other hand the high computational
burden of carrying out a processing following the Integrated Approach. The
larger RMS values for both code and phase observations of GPS-ground com-
pared to the corresponding RMS values of GPS-SST are most probably due to
remaining errors in the GPS orbits, to residual mismodelling of ionospheric and
tropospheric signal delays, and to less accurate receivers than those operated
onboard GRACE producing GPS-SST observations.

GPS-SST

In case of GPS-SST the time series are shown in Fig. H.8 incorporating both
GRACE-A and -B. Compared to the GPS-ground case the daily code RMS is
only slightly reduced to ca. 40 cm whereas the the phase residuals’ RMS goes
down to 2 mm and less revealing the high internal quality delivered by the POD
GPS receivers aboard the GRACE satellites. The amount of data per day in
sum for GRACE-A and -B reaches 40,000 at maximum.

KBRR

The series of the RMS of KBRR residuals is displayed in Fig. H.9. Being in
most cases at the level of 0.2 µm/s it exhibits a time-dependent behaviour
as well as a few peaks that are not investigated here. With maximally 17,280
measurements per day the amount of data might be reduced due to phase breaks
or other disturbances inside the GRACE satellites.

6.3 Validation

While the observational residuals indicate a solution’s internal accuracy it is
indispensable to compare the obtained results to external sources. This is done
for run 5-02-0 with the satellite orbits and the gravity field coefficients. The
satellite orbits are validated by SLR residuals, too.

Satellite Orbits

Orbits of the GPS satellites of high quality are the IGS final orbits ([IGS 12e]).
For that reason the GPS orbits derived by run 5-02-0 are compared to them.
In detail this is done by calculating for every satellite at each epoch the dif-
ference in coordinates for all three spatial components. Additionally a global
seven-parameter Helmert transformation is performed resulting in the same pa-
rameters of a similarity transformation as in the case of Helmert transformations
between ground station networks.
For those global Helmert transformations carried out per arc the time series
of the parameters in the CTS are displayed in Figs. H.10, H.11, and H.12.
Concerning Tx and Ty the time series show a stable behaviour with low biases
and amplitudes much below 2 cm for most arcs. Tz, too, is stable viewed over
the whole time span but has a significant mean and a higher STD than the
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other two components. Moreover, c.f. Table I.7, Tx and Ty are strongly cor-
related with the corresponding dynamic geocentre components C11 and S11 as
revealed by correlation coefficients of +0.760 and +0.816, respectively. This
suggests that a more fair comparison can be achieved by applying the dynamic
geocentre’s components to the translational components Tx, Ty, and Tz of the
global Helmert transformations. The corresponding RMS values of the transla-
tional parameters for both cases, i.e. without and with the dynamic geocentre’s
components applied, are displayed in Table I.9. As expected the RMS values
significantly reduce to 3.81, 3.41, and 9.71 mm with the components of the
dynamic geocentre applied.
The scale parameter can also be regarded as stable with amplitudes in a range
of roughly 0.5 ppb corresponding to 3.2 mm on the Earth surface. However, it
exhibits a small but significant bias of ca. -2.5 ppb (-16 mm arc). Such a bias
in scale can appear for several reasons including different gravity fields used for
orbit determination, the antenna PCOs and PCVs used, as well as the clock
parameters and carrier phase ambiguities estimated in the underlying solution
that are highly correlated with the scale.
Regarding the rotational parameters Rx, Ry, and Rz no systematic discrepan-
cies w.r.t. IGS final orbits are detected. They are all very stable with amplitudes
well below 0.0002” (6.2 mm arc) and do not show any significant correlation
with the dynamic frame’s orientation parameters, c.f. Table I.8.
Quite helpful, too, is the RMS of the 3D coordinate differences of all GPS satel-
lites at all epochs previous to the similarity transformation carried out using
the transformation parameters estimated by the Helmert transformation. The
time series of arc-wise RMS is shown in Fig. H.13. A level of about 6 cm indi-
cates a quite high quality of the GPS orbits derived by run 5-02-0.

Validating the twin GRACE satellites is done by comparison to JPL GNV1b
orbits. In this case the arc-wise RMS of the coordinate differences in the local
RTN-system (see Appendix A) is determined. The time series for the three
components are shown in Fig. H.14. As indicated in Table I.10 the RMS of the
transversal and of the normal component is at a level of 2 to 3 cm, and in case
of the radial component the RMS ranges at about 6 cm. A possible reason for
the comparatively higher RMS of the radial component might be the use of a
different radial offset for the GPS-POD antennas’ reference point when deriving
the JPL orbits.

Gravity Field Coefficients

The validation of the gravity field coefficients is accomplished by comparison
with corresponding time series stemming from external institutions.
In case of the dynamic geocentre components the corresponding time series
originate from the JIGOG project (weekly resolution; [Rie 11]) and from CSR
(Center for Space Research, Austin, Texas; monthly resolution; [Che 10]).
Within the JIGOG project the processed data are weekly normal equations
of global GPS solutions, weekly normal equations of GRACE global gravity
field solutions, as well as modelled Ocean Bottom Pressure. Thereby the global
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GPS solutions serve for covering the Earth’s surface, and the modelled Ocean
Bottom Pressure is used to cover the oceans. While the GRACE global gravity
solutions cover both land and sea they carry information only about the Earth
gravity’s spherical harmonic coefficients of degree two and higher. Considering
the GPS orbits being negligibly sensitive to variations of the Earth’s centre of
mass this means that none of the three input data sets contain direct and precise
measurements of geocentre motion. Overall, spherical harmonic coefficients of
surface loading up to degree and order 30 are estimated with weekly resolution
by a joint inversion of the above-mentioned three data sets. The geocentre
motion vector is finally derived as the offset between the centre of mass of the
entire Earth system and the centre of mass of the solid Earth (”CE”; assumed
to coincide with the centre of figure at a level of about 3%) from the estimated
surface loading coefficients of degree one. Its time series is denoted as ”JIGOG
(CE)” in Fig. 6.4.
In contrast to JIGOG the approach followed by CSR is at the observation level
making use of SLR observations to five geodetic satellites processed by dynamic
POD and parameter estimation. Introducing the station coordinates as fixed
the estimated parameters comprise an explicitly modelled 3D geocentre motion
vector along with gravity spherical harmonic coefficients from degree 2 to 5,
and parameters usually used in dynamic POD for the orbit perturbation force
models as well as for the SLR observation model. The resulting time series
of the geocentre motion’s components are denoted as ”CSR RL04” in Fig. 6.4
as most of the background models used in the processing are consistent with
GRACE RL04 ([Fle 10a]).
In Fig. 6.4 all three time series are plotted together with the values of run 5-



CHAPTER 6. DISCUSSION 67

02-0 as averaged per GPS week. While C11 fits very well to the other solutions,
S11 reveals some discrepancies at the level of +5 mm in the first half of the
time span covered. C10, too, shows fairly good agreement in the second half
irrespective of a bias of the order of about +5 mm w.r.t. the JIGOG solution
whereas the agreement is not so obvious in the first half. An explanation might
be the high correlation of the z-components of the dynamic geocentre as well as
of the global Helmert transformations of the GPS orbits w.r.t. IGS final orbits.

The degree-two gravity field coefficients are compared to the monthly SLR
solutions of CSR ([Che 11]). For the purpose of a fair comparison the estimates
of run 5-02-0 are averaged per month. Fig. 6.5 displays the comparison in case
of C20, and the comparison of S21, C21, and S22 is shown in Fig. 6.6.
In case of C20 a clear bias is visible that is most probably due to an unknown
K-band effect as will also be shown in Section 6.5. Beside this bias the time
series of run 5-02-0 reveals a much higher noise level compared to the CSR
time series as well as w.r.t. to run 5-03-0 where KBRR data is not used. Both
the bias as well as the higher noise level are caused by a shift and by a higher
amplitude, respectively, of the original time series with daily resolution of run
5-02-0 compared to the corresponding time series of run 5-03-0, as displayed
in Fig. 6.10. Concerning S21, C21, and S22 the time series have approximately
the same amplitude while revealing tiny biases. The S21 series are quite similar
whereas the other two parameters partly reveal different time-variable behavior:
C21 from roughly 2004.5 to 2005.0, S21 between 2004.35 and 2004.6.

SLR Residuals

Another measure suitable for validating orbits are the residuals of SLR ob-
servations that are introduced with very low weight into the differential orbit
adjustment. In this they do not influence the solution and act as an independent
quality measure assuming the SLR ground station network not being distorted.
As it may happen that there are some gross outliers within the SLR observa-
tions provided by the ILRS the obtained residuals are cleaned afterwards by
applying a threshold of 20 cm. The global RMS values of the SLR residuals
for GRACE-A, -B, PRN05, PRN06 thus derived are listed in Table I.11. For
the run 5-02-0 considered here they reveal a quite high orbit accuracy for the
GRACE LEOs with global RMS values of 3.71 and 3.34 cm. For the two GPS
satellites PRN05 as well as PRN06 the orbit accuracy is worse with 7.94 and
7.42 cm global RMS but still well below the 10-cm level.

6.4 Comparison with the Two-step Approach

As outlined by [Zhu 04] it is expected that a comparable two-step approach
delivers worse orbits and parameter time series compared to an integrated pro-
cessing. In order to illustrate this effect the results of the two-step processing
mentioned in the preceding chapter are discussed below. These are mainly
the results of runs 5-02-1 and 5-02-2. For the runs 4-04-1 and 4-04-2 results
concerning SLR residuals are used.
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GPS Part

First of all it can be seen that the internal accuracy for the GPS part 5-02-1
degrades slightly as revealed by the global RMS of phase residuals increasing
from 0.61 to 0.67 cm as listed in Table 6.2 and visible in Fig. H.7.
Evaluating the GPS orbits’ external accuracy is done by Helmert transforma-
tions w.r.t. to IGS final orbits. As expected there is higher scatter for the
two-step part 5-02-1 in terms of the time series STD for Tz, S, Rx, Ry, and
Rz as indicated in Table 6.3. This result is slightly disturbed by smaller scat-
ter for Tx and Ty. On the other hand, the results for Tx, Ty, and Tz are not
quite expressive because of the NN-conditions imposed on these parameters
during the runs (see Table G.5). The corresponding time series are displayed
in Figs. H.10, H.11, and H.12. On the other hand, the RMS values of 3D dif-
ferences, c.f. Fig. H.13, increase significantly to a level of seven to eight cm
exhibiting a degraded orbit accuracy, too.

Table 6.3: STDs of parameters of global Helmert transformations between GPS
orbits (Integrated (’Run’) vs IGS final).

Run Tx Ty Tz S Rx Ry Rz

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5-02-0 4.79 5.43 7.60 0.46 1.67 2.16 1.45
5-02-1 4.27 5.20 9.56 0.47 1.86 2.60 2.01

The effect of degraded orbit accuracy in terms of GPS SLR residuals, as revealed
by Table I.11, is only visible for run 4-04-1 with the global RMS values increasing
from 5.54 and 5.52 cm to 6.02 and 5.83 cm for PRN05 and PRN06, respectively.
In contrast, the two-step approach astonishingly leads to slightly reduced global
RMS values for PRN05 and PRN06 in case of run 5-02-1. A potential reason
for these smaller RMS values is the quite large difference in the number of SLR
observations used between release 04 and release 05 processing as well as the
different models used for absolute PCCs of the GPS ground station antennas
(see Table F.3).
A decline in quality is also visible for the geometric frame’s parameters as
plotted in Figs. H.2, H.4, and 6.2. The visible increase in time series scatter is
underlined by the statistical measures given in Tables I.1 and I.2 indicating, as
expected, significantly higher STDs for the two-step approach.

LEO Part

Concerning the GPS-SST phase residuals a strong increase in the level of arc-
wise RMS is detected, see Fig. H.8, that is underlined by the global RMS grow-
ing from 0.17 to 0.54 cm (Table 6.2). For the KBRR residuals no significant
change occurs meaning that the relative orbit accuracy in the GRACE satel-
lites’ transversal direction is at the same level as in the case of the integrated
processing. A clear degradation comes out regarding the SLR residuals. Their
global RMS rises from 3.71 to 3.98 cm and from 3.34 to 3.72 cm for GRACE-A



CHAPTER 6. DISCUSSION 69

and -B, respectively.
The effects on the gravity field coefficients are visible in Figs. 6.1, H.3, and 6.3.
From Tables I.3, I.4, and I.5 the changes in the time series’ STDs are obvious.
In terms of increased STD there is a quite pronounced degradation in case of the
dynamic geocentre’s components and a rather tiny one for the dynamic frame’s
orientation parameters. However, C20 represents an exception revealing a STD
improving from 0.242E-09 to 0.213E-09.

6.5 Effects Studied

After having presented a reference solution following the Integrated Approach
some alternative solutions are discussed in this section. In that way the reasons
for choosing the parameterisation of run 5-02-0 as well as some deficiencies
should be clarified.

Sensitivity to Observation Types

In order to evaluate the influence of the different observation types on the esti-
mated TRF parameters various weighting schemes for GPS and KBRR obser-
vations have been tried. An alternative approach to find an optimal weighting
scheme is the method of variance component estimation that is not applied here.
Below, only those schemes are presented that turned out to be most promising.
First of all the idea is to adapt the a priori sigmas used in the weighting scheme
of the initial setup to the RMS of a posteriori residuals. Second, by means
of the factor f , see Eq. (5-1), the relative weighting between the observation
types is steered additionally. For that reason a priori STDs as well as factors
f are chosen as indicated in Tables G.2 and G.5 for runs 4-02-0 and 5-01-0,
respectively. Each GPS-SST observation, especially for phases, is thus given
double weight compared to GPS-ground data. This is justified because GPS-
SST measurements are less influenced by residual ionospheric errors, because
the POD receivers onboard the GRACE LEOs are of very high quality, and
because the LEOs’ orbits are highly sensitive to the gravity field coefficients of
low degree.
It should be emphasised that only the cumulative effect of the modified weight-
ing model can be evaluated as the weighting is changed here for all three ob-
servation types simultaneously. Doing so for both RL04m as well as for RL05m
processing there are clear effects seen in the dynamic geocentre components.
For RL04m processing, i.e. runs 4-01-0 and 4-02-0, the STDs slightly increase
for the x- and y-component but become significantly reduced from 12.54 to 8.48
mm for the z-component, c.f. Table I.3 and Fig. H.18 for visual inspection. As
will become clearer below, this positive effect on C10 is due to the higher rel-
ative weighting of the GPS-SST measurements. In case of RL05m processing
(runs 5-00-0, 5-01-0) there is not only a similar improvement in C10 from 9.87
to 6.00 mm, see Table I.3; the STDs of C11 and S11 are significantly reduced,
too, as is obvious from Fig. 6.7.
In order to fully exploit the potential of its high precision the KBRR data is
assigned a factor of 50 found empirically to yield best time series for C20. With
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run 4-03-0 a RL04m processing is given that is assigned a five times higher
weight factor f for KBRR compared to run 4-02-0. These two runs also differ
in the model applied for GPS absolute phase centre corrections. As the phase
centre corrections mainly affect the geometric scale it is the difference in KBRR
weighting that influences the dynamic geocentre and C20. The positive effect
on C20 is seen in Fig. 6.8 revealing a clearly reduced scatter of the time series
for 4-03-0. However, the higher weight for KBRR leads to slightly increased
STDs of the dynamic geocentre components, c.f. Table I.3.
In case of RL05m run 5-03-0 differs from run 5-02-0 only by completely ex-
cluding KBRR observations being equivalent to assigning them zero weight.
Concerning the dynamic geocentre there is clear improvement in the time se-
ries’ STDs in all components as obvious from Table I.3 with the drawback of an
increased bias of +8.93 mm in C10. This means that KBRR does not contribute
to determining the dynamic geocentre. As visible from Fig. 6.9 and from Ta-
ble I.4 the components of the dynamic frame’s orientation parameters strongly
degrade revealed by increased STDs.
The resulting time series of C20, however, is contradictory. On the one hand, as
displayed in Fig. 6.10 the day-to-day scatter clearly increases revealing the im-
portance of KBRR observations for accurately deriving gravity field coefficients
of degree two and higher. On the other hand, appearing as a positive effect, the
mean of the time series reduces so far that the bias w.r.t. the CSR SLR solution
diminishes as shown by Fig. 6.5. For that reason it can be concluded that the
bias visible in case of high-weighted KBRR is an effect of the K-band instru-
ment. Finally, by comparing the outcome of runs 5-03-0 and 5-04-0 the effect of
excluding KBRR as well as not estimating degree-two gravity field coefficients
on the dynamic geocentre can be studied. The statistical measures listed in
Table I.3 indicate that there is no significant change neither in the means nor
regarding the STDs. The value used for C20 in run 5-04-0 is -4.841652E-04
which is taken as a priori in the runs where degree-two gravity field coefficients
are estimated.
In summary, it can be stated that precisely estimating the dynamic geocentre
components is achieved by GPS-SST observations, and precisely estimating the
degree-two gravity field coefficients is accomplished by KBRR data.

Constraints on Ground Station Coordinates

As outlined in Section 4.3 inherent to the Integrated Approach there is a severe
as well as an attenuated datum defect, and there exist the CC as well as the
NN methods to rectify them.
By assessing runs 4-00-0 and 4-01-0 the CC-method and the NN-method can
be compared. In case of run 4-00-0 the CC-method is set up as to constrain
each ground station coordinate to its a priori value with a STD of 10.0 cm.
Contrarily, for run 4-01-0 NN-conditions with a sigma of 0.1 mm are imposed
on the geometric frame’s parameters Tz and Rz. Clearly revealed by Fig. 6.11
the NN-conditions help to drastically improve the C10 time series.
This is also underlined by the statistical measures listed in Table I.3. While
there is negligible change in mean and STD in the C11 and S11 series the mean
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for the z-component reduces from +43.82 to +14.78 mm and the STD from
59.31 to 12.54 mm.
Next, the effect of additionally rectifying the hidden datum defect in Tx and
Ty is investigated. This is done in case of RL04m processing by runs 4-03-0
and 4-04-0, and by runs 5-01-0 and 5-02-0 for the RL05m case. In both cases,
as perceptible from Figs. H.24 and 6.12, there is lower scatter for C11 and S11
being very pronounced for 5-02-0.
Considering the mean values in case of 4-04-0 S11 improves down to a negligible
bias of +0.05 mm while C11 becomes worse with +3.59 mm. In case of 5-02-
0 there is improvement in the means for both C11 and S11. Concerning C10

there is no significant change in either case as the two added NN-constraints
are expected to influence only the x- and the y-component.
As a result of these tests it can be concluded that, in contrast to the CC-method,
NN-conditions on Tz and Rz help to improve C10, and that further improvement
is achieved for C11 as well as S11 by additionally imposing NN-conditions on
Tx and Ty.

Constrained GPS Orbits

Finally, the special role of the GPS orbits within the Integrated Approach is
studied. This is accomplished by constraining them as done in the two runs
4-05-0 as well as 5-05-0.
In case of run 4-05-0 no GPS orbits are adjusted but IGS final orbits are in-
troduced as fixed being equivalent to constraining them with infinitely high
weight. Here, beside constraining the GPS orbits the aspect of orbit quality
has an effect as the IGS final orbits are currently the most accurate available.
The GPS-related parameters that are estimated here are receiver and transmit-
ter clock corrections as well as ambiguities and tropospheric scaling factors. A
remarkable improvement in C10 results with the bias reducing from +12.84 to
+2.59 mm and the STD from 9.73 to 4.75 mm whereas C11 and S11 become
degraded (Table I.3 and Fig. 6.13).
In run 5-05-0 the GPS orbits are adjusted but their orbit force models are kept
constrained to the a priori parameters according to Table G.6. This approach
is similar to introducing IGS final orbits as fixed since the GPS orbits derived
by integrated processing (run 5-02-0) are in quite good agreement with IGS
ones concerning the RMS of 3D differences (Fig. H.13). By evaluating run
5-05-0 considerable effects on the dynamic geocentre components appear as is
obvious from Fig. 6.14. In contrast to the case of fixed IGS final orbits there
is significant degradation in C10 underlined by an increased STD from 6.03
to 8.47 mm (Table I.3). On the other hand the time series of C11 and S11
significantly improve evidenced by reduced mean values and clearly smaller
STDs. The validation w.r.t. JIGOG and CSR shown in Fig. 6.15, too, shows
better agreement in the x- and y-component than in case of run 5-02-0 (Fig. 6.4).
These results are consistent with the considerable correlations detected between
C11 and S11 and correspondingly the translational x- and y-component of the
Helmert transformations w.r.t. IGS final orbits (Table I.7). I.e., C11 and S11
become more independently estimated and less affected by a residual global
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translation of the constrained GPS constellation.
In summary, these two tests highlight unfavourable correlations between the
dynamic geocentre and the satellite constellation of the GNSS used. On the
one hand, introducing high-quality IGS final orbits as fixed leads to an exceed-
ingly improved time series of the geocentre’s z-component. This gives clear
evidence of poor modelling of the orbit dynamics, in particular of the solar
radiation force, of the GPS satellites in case of the Integrated Approach due to
deficient capabilities of EPOS-OC, the POD and parameter estimation software
applied. On the other hand, completely fixing the orbits causes degraded geo-
centre components in X and Y. Contrarily, by not constraining too tightly the
GNSS orbit force model in the adjustment process reveals that the geocentre’s
x- and y-component become improved because of mitigated correlations with
the residual translations of the GNSS constellation.

Time [year]

C
1

0
[m

]

2004 2004.5 2005
-0.015

-0.01
-0.005

0
0.005

0.01
0.015

C
1

1
[m

]

2004 2004.5 2005
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

CSR RL04
JIGOG (CE)
5-05-0

S
1

1
[m

]

2004 2004.5 2005
-0.015

-0.01
-0.005

0
0.005

0.01
0.015

Figure 6.15: Effect of constrained GPS orbits (constrained parameters; 5-05-0
weekly averaged): validation of Dynamic Geocentre components with external
time series.



Chapter 7

Conclusions

Within this work parameters constituting a geodetic TRF with daily resolution
is determined applying the Integrated Approach of space geodesy as proposed
by [Zhu 04] covering the time span extending from 2004/02/04 to 2005/02/28.
Thereby use is made of the combined constellation of GPS satellites as well as
the GRACE LEOs and a set of GPS ground stations selected from the IGS
network. The space-geodetic observations used comprise GPS-ground mea-
surements as well as GPS-SST and KBRR measurements taken onboard the
GRACE satellites. In order to determine the dynamic as well as the geometric
part of the TRF gravity harmonic coefficients up to degree and order two, posi-
tions of GPS ground stations, and several auxiliary parameters are estimated.
The datum defect inherent to the Integrated Approach is clarified by means of
simulations to consist of undefined translations of both the geometric and the
dynamic geocentre, and of an undefined rotation of the ground station network
about the z-axis. By imposing no-net translation conditions on all translational
parameters of the ground station network as well as a no-net rotation condition
on its rotation about the z-axis this datum defect is rectified. Concerning the
parameters constituting the dynamic frame all of them are estimated, and for
the geometric part all those not constrained by the no-net conditions. In par-
ticular, for the dynamic frame all parameters of its origin and its orientation as
well as the flattening of the Earth gravity field are estimated stochastically sig-
nificantly and only weakly correlated with the free parameters of the geometric
frame. With the datum defect rectified the free parameters of the geometric
frame left are its scale as well as its x- and y-rotation.

Evaluating the parameter time series obtained from the Integrated Approach
with appropriate no-net translation and no-net rotation conditions imposed it
turns out that the results are more accurate than a corresponding two-step
approach except for C20. In terms of standard deviation of the time series
this effect is clearly seen for all three spatial components of the dynamic geo-
centre. There is reduced scatter, too, for the orientation parameters of both
the dynamic as well as the geometric TRF. A subsequent validation of the de-
rived GPS orbits reveals 3D orbit difference RMS values per day on the level
of 6 cm. Comparing the derived gravity field coefficients with external sources
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shows quite good agreement, e.g. on the level of roughly 5 mm and less for
the dynamic frame’s origin components, but not perfect coincidence. This, on
the other hand, cannot be expected due to the totally different approaches in
determining the parameters of the dynamic frame. Concerning the geometric
frame it can be concluded that the no-net conditions work as expected yielding
very stable x- and y-rotations as well as a reliable and precise scale at the level
of a few mm.
Additionally, several effects studied in detail exhibit the influence of the rela-
tive weighting of the various observation types involved, the effect of different
approaches to rectify the datum defect, and the interaction of estimated gravity
field coefficients and the GPS orbits. In case of the weighting of observations it
is clearly shown that the origin of the dynamic frame is determined by the GPS-
SST data taken onboard the GRACE satellites whereas K-band range-rate data
measured between both low Earth orbiters is responsible for accurately deriving
the gravity field coefficients of degree two. Concerning the different methods
in fixing the datum defect the superiority of the no-net conditions over simply
constraining all ground station coordinates to their a priori values is evidenced.
Especially it turns out that it is very helpful also to suppress the hidden datum
defect in x- and y-translation in order to improve the x- and y-component of the
dynamic frame’s origin. Constraining the GPS satellites’ orbit force models re-
veals further strong correlations between the translational x- and y-components
of the gravity field and those of the GPS constellation. Introducing high-quality
IGS final orbits as fixed detects a deficiency in estimating the z-component of
the dynamic origin possibly due to non-optimal modelling of the GPS satellites’
orbit forces inside the orbit determination software EPOS-OC.

Overall, at the current stage the Integrated Approach of [Zhu 04] is too op-
timistic as revealed by the validation w.r.t. parameter time series of external
sources exhibiting significant offsets or larger amplitudes of the time series pro-
duced by integrated processing. This drawback, on the other hand, sketches
a path for further investigations aiming at improving the Integrated Approach
of space geodesy. First of all remaining correlations should be investigated
that appear to exist between the geometric TRF, the dynamic TRF, the satel-
lite orbits, and the models used to describe orbit perturbation forces as well
as measurement errors. Above all an improved modelling of the GPS orbit
forces is certainly quite promising for improving the accuracy of the TRF’s
parameters, in particular of the dynamic geocentre’s z-component by improv-
ing the model of the solar radiation force. Extending the Integrated Approach
by a combination with SLR-tracked satellites is certainly helpful for improving
the reliability of the dynamic geocentre, of C20, and the geometric scale. Fi-
nally, additionally estimating ERPs would certainly help to mitigate remaining
short-term errors of the background ERP series used and in this to improve the
orientation parameters of both the geometric as well as the dynamic TRF.
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Appendix A

Coordinate Systems

The main coordinate systems used throughout this work are:

• CIS

This is the Conventional Inertial System, see [Pet 10], which the equations of
motion (2-6) are valid in.

• CTS

This is the Conventional Terrestrial System which moves and rotates with the
Earth and which the ground station coordinates are referred to.

The transformation between the CIS and the CTS is accomplished as follows
([See 03, 2.1.2.3]):

xCTS = SNPxCIS

xCIS = (SNP )TxCTS (A-1)

with SNP being a product of three orthogonal matrices performing the follow-
ing rotations:

S polar motion, Earth rotation
N nutation
P precession

• RTN

This is the moving local triad attached to the satellite as visualised by Fig. A.1.
Using the satellite’s position and velocity vectors xS and ẋS , respectively, its
axes are defined as follows:

eR =
xS

|xS |

eN =
xS × ẋS

|xS × ẋS |

eT = eN × eR (A-2)
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Figure A.1: The moving local triad RTN.

This means that eR (”radial”) points radially into the direction averted from the
central body, eN (”normal”) is perpendicular to the plane erected by the satel-
lite’s position vector xS and its velocity vector ẋS , and eT (”transversal”) com-
pletes a right-handed coordinate system. In general eT is only approximately
tangential w.r.t. the trajectory because xS is not necessarily perpendicular to
the orbit’s tangent.



Appendix B

Orbit Forces

Indicated are the respective accelerations ẍS of the satellite. The corresponding
force is obtained by the well-known relationship FS = mS ẍ

S with mS being
the satellite’s mass.

• Gravitational attraction of the Earth

ẍSg,E |CIS = (SNP )T ẍSg,E |CTS

= (SNP )T ∇Vg,E(r, φ, λ)|CTS

= (SNP )T ∇

[

GME

aE

N
∑

n=0

(

aE
r

)n+1

·

·
n
∑

m=0

Pnm(sinϕ) (Cnm cos(mλ) + Snm sin(mλ))

]

(B-1)

c.f. [Tor 01], with

S polar motion, Earth rotation

N nutation

P precession

ẍSg,E |B acceleration of satellite S due to Earth gravitation

expressed in the TRS B

Vg,E gravitational potential of the Earth

n,m degree, order

GME geocentric gravitational constant, see [Pet 10, 1.2]

aE equatorial radius of the Earth, see [Pet 10, 1.2]

Pnm associated Legendre functions

Cnm, Snm spherical harmonic coefficients

r geocentric radial distance of satellite S

ϕ geocentric latitude of satellite S

λ geocentric longitude of satellite S
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• Gravitational attraction ẍSg,M of the Moon

This perturbation force is modelled according to [Fer 77] the same way as the
Earth’s gravitational attraction by treating the Moon as an expanded body.
The force is thereby computed in the system of selenographic coordinates and
then transformed into the CIS.

• Gravitational attraction of Third Bodies

The gravitational attraction is considered for the Sun as well as the planets
Venus, Mercury, Mars, Jupiter, Saturn, Uranus, and Neptune. Modelling these
celestial bodies as point masses the gravitational attraction ẍSg,B caused by body
B reads as

ẍSg,B = GMB

(

xB − xS

|xB − xS |3
−

xB

|xB|
3

)

(B-2)

with

xS geocentric position vector of the satellite

xB geocentric position vector of the disturbing body

MB mass of the disturbing body

• Atmospheric drag

The perturbation force due to atmospheric drag is neglected in case of GPS
satellites, in case of the GRACE satellites it is directly measured.

• Solar radiation pressure

The formulas for the perturbation force caused by solar radiation pressure acting
on GPS satellites are given in [Fli 92] and [Fli 96]. Corresponding perturbation
forces acting on the GRACE satellites are not modelled but measured directly.

• Atmospheric tides (attraction plus loading)

This perturbation force is considered according to [Bia 06] as

ẍSat = ∇

(

4πGaE
∑

l

1 + k′l
2l + 1

(

aE
r

)l+1
∑

m

qlm(ϕ, λ, t)

)

(B-3)

with

qlm(ϕ, λ, t) =
1

g
[∆Clm(t) cosmλ + ∆Slm(t) sinmλ]Plm(sinϕ)

∆Clm,∆Slm harmonic coefficients of the atmospheric surface pressure

(temporal variations)

Plm(sinϕ) associated Legendre functions

G gravitational constant

aE semi-major axis of the Earth gravity field model



APPENDIX B. ORBIT FORCES 84

l,m degree, order

k′l load Love number

(r, ϕ, λ) spherical coordinates of a point outside the Earth’s surface

t mean sidereal time

g mean acceleration of gravity

• Ocean and solid Earth tides, Ocean pole and solid Earth pole tide

The formulas for these perturbation forces are given in [McC 04] and [Pet 10].

• Empirical accelerations

ẍSemp,j = SS
emp,j sin(nu) + CS

emp,j cos(nu) (B-4)

with

SS
emp,j , C

S
emp,j sine, cosine amplitude

j spatial component in the RTN-system (Appendix A)

corresponding to j = 1, 2, 3

u ω + v

ω argument of perigee

• General Relativity

The formulas for these perturbation forces are given in [Pet 10, 10.3]. They
comprise the effects of Schwarzschild, Lense-Thirring, and deSitter.



Appendix C

Results of Simulations
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Figure C.1: Basic simulations: time series of dynamic geocentre (circles), ge-
ometric geocentre (squares), and translations of GPS orbits (crosses) for the
standard case (no constraints).

85



A
P
P
E
N
D
IX

C
.
R
E
S
U
L
T
S
O
F
S
IM

U
L
A
T
IO

N
S

86

××××××××××
×
××

××
×××××××

×××
×
××××

Year A.D.

Z
[c

m
]

2004.42 2004.44 2004.46 2004.48 2004.5

-10

0

10

×
×××××

××××
×
×××××××××××

××××××××Y
[c

m
]

2004.42 2004.44 2004.46 2004.48 2004.5

-0.1

0

0.1

×××××××××××××××
×××××××

××××××××X
[c

m
]

2004.42 2004.44 2004.46 2004.48 2004.5

-0.1

0

0.1

Figure C.2: Supplementary simulations: time series of dynamic geocentre (circles), geometric geocentre (squares), and translations of
GPS orbits (crosses); Earth rotation rate: 1 revolution/sidereal day.
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Figure C.3: Supplementary simulations: time series of dynamic geocentre (circles), geometric geocentre (squares), and translations of
GPS orbits (crosses); Earth rotation rate: 0 revolutions/sidereal day.
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(squares), and translations of GPS orbits (crosses) vs Earth rotation rate.



Appendix D

No-net
Translation/Scale/Rotation
Conditions

The basis for NN-conditions is a similarity transformation between a set of
position coordinates xr of N stations of a reference TRF and a set x of posi-
tion coordinates to be estimated, c.f. [Alt 02b] and [Alt 02c]. Considering the
general case of arranging all seven transformation parameters, the coordinate
transformation looks like

xr = S
(

[Tx Ty Tz]
T +R3(Rz)R2(Ry)R1(Rx)x

)

(D-1)

=: F (x, t)

with

t = [Tx Ty Tz S Rx Ry Rz]
T

and Rk(α) being an elementary rotation matrix describing the rotation about
the k-axis given as

R1(α) =







1 0 0
0 cosα sinα
0 − sinα cosα







R2(α) =







cosα 0 − sinα
0 1 0

sinα 0 cosα







R3(α) =







cosα sinα 0
− sinα cosα 0

0 0 1






(D-2)

Assuming small rotation angles Rx, Ry, Rz the linearisation w.r.t. the trans-
formation parameters results in

xr = F (x, t)
.
= x+Atdt (D-3)
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with

t = t0 + dt

= [0 0 0 1 0 0 0]T + [dTx dTy dTz dS dRx dRy dRz]
T (D-4)

At =



















...
...

...
...

...
...

...
1 0 0 xi,a 0 zi,a −yi,a
0 1 0 yi,a −zi,a 0 xi,a
0 0 1 zi,a yi,a −xi,a 0
...

...
...

...
...

...
...



















(D-5)

xi,a, yi,a, zi,a : approximate coordinates of i-th station

In At the columns refer to the individual transformation parameters and the
lines refer to a station’s x-, y-, and z-coordinates as appearing in the order
shown above.
In order to achieve a no-net change between x and xr, i.e. no-net translation
(NNT), no-net scale (NNS), and no-net rotation (NNR), the transformation
parameters are forced to vanish at the level of a chosen standard deviation σk
(no-net conditions):

t = 0 ∼ (σk) (D-6)

with

k : k-th parameter in t (k = 1,. . . ,7)

This is accomplished by solving for t by means of an unweighted least-squares
procedure based on the linearised system (D-3):

t =
(

AT
t At

)

−1

AT
t (xr − x)

=: B (xr − x)

The condition (D-6) is then added to an unconstrained least-squares problem
(with only station coordinates x estimated for convenience) reading as

A (x− x0) = do ∼ C =: σ2W−1 (seeEq. (2− 23))

B (xr − x) = 0 ∼ Ct =:W−1
t

where

x0 : vector of a priori coordinates

W t =









σ−2
1 0

. . .

0 σ−2
7









In matrix form this results in
(

A
B

)

(x− x0) =

(

do
B(xr − x0)

)

∼

(

W 0
0 W t

)

(D-7)
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or in short form:

Ac dx = doc ∼ W c (D-8)

From the combined system of observation equations the associated normal equa-
tion system

(

ATWA+BTW tB
)

(x− x0) = ATWdo+

+BTW tB (xr − x0) (D-9)

follows by simply adding the normal equations as well as the right-hand sides
of both the original system and the system of no-net conditions.



Appendix E

Observation Equations and
Partials

Observation Equations

• GPS-ground

For a specific pair of a transmitting satellite ’S’ and a ground station receiver
’G’ the original L1/L2 observations in metric unit [m] as preprocessed read as:

CS
G,Li(tG) = ρSG(tG, tG − τ) + cδtG − cδtS + TGT0 + ILi +

+δiono,Li + δρrel + δρPCO,Li + δρPCV,Li (E-1)

ΦS
G,Li(tG) = ρSG(tG, tG − τ) + cδtG − cδtS + TGT0 − ILi +

−δiono,Li + δρrel + δρPCO,Li + δρPCV,Li + λLiN
S
G,Li (E-2)

with

ρSG = |xG(tG) + ∆xG,ARP +∆xG,load − xS(tG − τ)| (E-3)

and

C code delay observation

Φ fractional carrier phase observation

S GPS satellite (transmitter)

G GPS ground station (receiver)

Li GPS signal (i = 1,2)

c speed of light ([Pet 10])

δtG clock offset w.r.t. GPS time of G

δtS clock offset w.r.t. GPS time of S

tG epoch of signal reception at the ground station

T0 a priori tropospheric signal delay (model)

TG scaling factor of tropospheric signal delay at G

ILi ionospheric signal delay of first order of signal Li

δiono,Li ionospheric signal delay of second and higher order
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of signal Li

δρrel relativistic signal delay

δρPCO,Li PCO range correction of signal Li (sum of G and S)

δρPCV,Li PCV range correction of signal Li (sum of G and S)

λLi wavelength of signal Li

NS
G,Li integer phase ambiguity for signal Li

xG geocentric coordinate vector of the marker of G

xS geocentric coordinate vector of the centre of mass of S

τ one-way signal travel time

∆xG,ARP ARP offset vector of G

∆xG,load displacement of the marker of G due to loading

Using the first-order relation (c.f. [Teu 98])

IL2 =
f2L1
f2L2

IL1

with

fLi frequency of signal Li (i = 1,2)

and introducing

CL3,1 :=
f2L1

f2L1 − f2L2
CL3,2 :=

f2L2
f2L1 − f2L2

the L3 ionosphere-free LC is formed as

ΦS
G,L3(tG) := CL3,1Φ

S
G,L1(tG)− CL3,2Φ

S
G,L2(tG)

=

(

f2L1 − f2L2
f2L1 − f2L2

)

(

ρSG + cδtG − cδtS + TGT0 + δρrel
)

+

+

(

−CL3,1IL1 + CL3,2
f2L1
f2L2

IL1

)

+

+CL3,1

(

δρPCO,L1 + δρPCV,L1 − δiono,L1 + λL1N
S
G,L1

)

−CL3,2

(

δρPCO,L2 + δρPCV,L2 − δiono,L2 + λL2N
S
G,L2

)

= ρSG + cδtG − cδtS + TGT0 − δiono,L3 + δρrel +

+δρPCO,L3 + δρPCV,L3 +NS
G,L3 (E-4)

using

δρPCO,L3 := CL3,1δρPCO,L1 − CL3,2δρPCO,L2

δρPCV,L3 := CL3,1δρPCV,L1 − CL3,2δρPCV,L2

δiono,L3 := CL3,1δiono,L1 − CL3,2δiono,L2

NS
G,L3 := CL3,1λL1N

S
G,L1 − CL3,2λL2N

S
G,L2
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It has to be noted that NS
G,L3 is of metric unit, and it is no longer an integer

value. The L3 ionosphere-free LC is formed analogously for code observations.
The relations finally read as:

CS
G,L3(tR) = ρSG + cδtG − cδtS + TGT0 + δiono,L3 + δρrel +

+δρPCO,L3 + δρPCV,L3 (E-5)

ΦS
G,L3(tR) = ρSG + cδtG − cδtS + TGT0 − δiono,L3 + δρrel +

+δρPCO,L3 + δρPCV,L3 +NS
G,L3 (E-6)

The linearisation of the observation equations w.r.t. the unknown parameters
is done as follows:

ΦS
G,L3(tG)

.
= ΦS

G,L3(tG)|0+ <

(

∂ρSG
∂xG

)

0

,∆xG > +

+

(

∂ΦS
G,L3

∂δtG

)

0

∆δtG +

(

∂ΦS
G,L3

∂δtS

)

0

∆δtS +

+

(

∂ΦS
G,L3

∂TG

)

0

∆TG +

(

∂ΦS
G,L3

∂NS
G,L3

)

0

∆NS
G,L3 (E-7)

where

∆xG correction to a priori coordinates of G

∆δtG correction to a priori value of δtG

∆δtS correction to a priori value of δtS

∆TG correction to a priori value of TG

∆NS
G,L3 correction to a priori value of NS

G,L3

The partial derivatives are obtained by straightforward differentiation:
(

∂ρSG
∂xG

)

0

=
(

−uSG

)

0

(

∂ΦS
G,L3

∂δtG

)

0

= c

(

∂ΦS
G,L3

∂δtS

)

0

= −c

(

∂ΦS
G,L3

∂TG

)

0

= T0

(

∂ΦS
G,L3

∂NS
G,L3

)

0

= 1

with

uSG unit vector pointing from G to S

It should be noted that the partial derivatives ∂ΦS
G,L3/∂δtG as well as ∂ΦS

G,L3/∂δt
S

as stated above possess merely formal meaning. They should not be used for
numerical computations because they are approximately 108 times larger than
the other partial derivatives as their magnitude is that of c.

The linearisation is done analogously for code observations.
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• GPS-SST

Without the need to account for tropospheric signal delays the L3 observa-
tions respectively for code and phase observations between S and the LEO ’L’
are obtained analogously to the GPS-ground case with all terms bearing the
corresponding meaning:

CS
L,L3(tR) = ρSL + cδtL − cδtS + δρrel + δρPCO + δρPCV (E-8)

ΦS
L,L3(tR) = ρSL + cδtL − cδtS + δρrel + δρPCO + δρPCV

+NS
L,L3 (E-9)

where

ρSL = |xL(tL) + ∆xL,ARP − xS(tL − τ)| (E-10)

The linearisation is done the same way as for GPS-ground measurements and
is not repeated here.

• KBRR

The KBRR observation ρ̇KB is derived from the nominal unbiased K-band range
observation ρKB between both satellites, defined as (c.f. [Kim 00])

ρKB(t) =
√

< x12(t), x12(t) >

with

t measurement epoch

x12(t) = xL2(t)− xL1(t)

xLi(t) geocentric position vector of LEO i (i = 1, 2)

by derivation w.r.t. time and adding a polynomial P according to [Kim 00] to
account for several biases:

ρ̇KB(t) :=
d

dt
(ρKB(t)) + P (P1, P2, C0, S0, v̇(t), u(t), t)

:=
1

ρKB

< ẋ12(t), x12(t) > +

+ P1 + 2P2t + C0v̇(t) cosu(t) − S0v̇(t) sinu(t) (E-11)

with

t measurement epoch

v̇(t) mean anomaly rate

u(t) argument of latitude

P1 polynomial model: range-rate bias

P2 polynomial model: range-acceleration bias

C0 periodic model: range bias cos amplitude

S0 periodic model: range bias sin amplitude
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The linearisation is accomplished by the usual expansion into a Taylor series as

ρ̇KB
.
= ρ̇KB|0 +

∂ρ̇KB

∂P1

|0∆P1 +
∂ρ̇KB

∂P2

|0∆P2 +

+
∂ρ̇KB

∂C0

|0∆C0 +
∂ρ̇KB

∂S0
|0∆S0 (E-12)

with the partial derivatives derived by straightforward differentiation, c.f.
[Kim 00]:

∂ρ̇KB

∂P1

= 1
∂ρ̇KB

∂P2

= 2t

∂ρ̇KB

∂C0

= v̇(t) cosu(t)
∂ρ̇KB

∂S0
= −v̇(t) sinu(t) (E-13)

• SLR

In the context of this work the SLR observations are only used for validating the
satellite orbits derived by the Integrated Approach, and thus they do not enter
the parameter estimation. For this reason their observation equations merely
comprise the distance ρSGS between a SLR ground station and a retro-reflecting
satellite as well as a few non-estimated corrections. The proper observations
used are one-way travel times τSGS,1 of the laser signal between the SLR ground
station ’GS’ and the LRR mounted on the respective satellite ’S’. They are
derived from the originally measured two-way travel times τSGS,2 according to

τSGS,1 = 1

2
τSGS,2 (E-14)

The observation equations then read as

τSGS,1 =
1

c
ρSGS + T0 + δρrel (E-15)

with

ρSGS = |xGS(tLRR) + ∆xGS,LRP +∆xGS,load

−(xS(tLRR) + ∆xSLRR)| (E-16)

and

GS SLR ground station

S LRR-equipped satellite

c speed of light ([Pet 10])

T0 a priori tropospheric signal delay (model)

δρrel relativistic range correction (model)

xGS geocentric coordinate vector of the marker of GS

xS geocentric coordinate vector of the centre of mass of S

∆xGS,LRP LRP offset vector

∆xSLRR LRR offset vector

∆xGS,load displacement of the marker of GS due to loading

tLRR epoch of signal reflection at the LRR of S

As the parameters appearing in the above observation equation will not be
estimated, a linearisation is obsolete.
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Partial Derivatives of o w.r.t. satellite position and velocity

The partial derivatives of the observations contained in o w.r.t. a satellite’s
position and velocity, i.e. ∂o/∂xS and ∂o/∂ẋS , are necessary for determining
the partial derivatives ∂o/∂p

D
in Eq. (2-10). For the various observation types

they read as follows using the same notations as for the observation equations:

• GPS-ground

∂ΦS
G,L3

∂xS
=

∂CS
G,L3

∂xS
=

∂ρSG
∂xS

= uSG

∂ΦS
G,L3

∂ẋS
=

∂CS
G,L3

∂ẋS
=

∂ρSG
∂ẋS

= 0 (E-17)

• GPS-SST

∂ΦS
L,L3

∂xS
=

∂CS
L,L3

∂xS
=

∂ρSL
∂xS

= uSL

∂ΦS
L,L3

∂ẋS
=

∂CS
L,L3

∂ẋS
=

∂ρSL
∂ẋS

= 0 (E-18)

• KBRR

∂ρ̇KB

∂xL1
=

1

ρKB

(

ẋ12 −
ρ̇KB

ρKB

x12

)

∂ρ̇KB

∂xL2
= −

∂ρ̇KB

∂xL1
∂ρ̇KB

∂ẋL1
=

1

ρKB

x12
∂ρ̇KB

∂ẋL2
= −

∂ρ̇KB

∂ẋL1
(E-19)
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Table F.1: Models used for orbit forces (RL04++).
GPS GRACE

Force Model Reference Model Reference

Gravitation

Earth gravity EIGEN-GL04S1 (n ≤ 120) [För 07] EIGEN-GL04S1 (n ≤ 120) [För 07]
Lunar gravity Ferrari 77 (n ≤ 4) [Fer 77] Ferrari 77 (n ≤ 4) [Fer 77]
Third bodies Planetary and lunar ephemeris: Planetary and lunar ephemeris:

JPL DE405 [JPL 12a] JPL DE405 [JPL 12a]
Atmospheric tides Biancale&Bode [Bia 06] Biancale&Bode [Bia 06]
Ocean tides FES2004 [Lya 04] FES2004 [Lya 04]
Ocean Pole tide IERS2003 [McC 04] IERS2003 [McC 04]
Solid Earth tides IERS2003 [McC 04] IERS2003 [McC 04]
Solid Earth Pole tide IERS2003 [McC 04] IERS2003 [McC 04]
Short-term non-tidal
atmospheric and oceanic
mass variations AOD1B (GRACE RL04) [Fle 07] AOD1B (GRACE RL04) [Fle 07]

Surface forces

Air drag negligible - measured -
Solar radiation pressure ROCK4 [Fli 92], [Fli 96] measured -
Earth albedo negligible - measured -

Others

Empirical forces amplitudes for cos, sin - amplitudes for cos, sin -

General relativistic effects IERS2010 [Pet 10, 10.3] IERS2010 [Pet 10, 10.3]
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Table F.2: Models used for orbit forces (RL05).
GPS GRACE

Force Model Reference Model Reference

Gravitation

Earth gravity EIGEN-6C (n ≤ 200) [För 11] EIGEN-6C (n ≤ 200) [För 11]
Lunar gravity Ferrari 77 (n ≤ 4) [Fer 77] Ferrari 77 (n ≤ 4) [Fer 77]
Third bodies Planetary and lunar ephemeris: Planetary and lunar ephemeris:

JPL DE421 [JPL 12b] JPL DE421 [JPL 12b]
Atmospheric tides Biancale&Bode [Bia 06] Biancale&Bode [Bia 06]
Ocean tides EOT11a [Sav 12] EOT11a [Sav 12]
Ocean Pole tide IERS2010 [Pet 10] IERS2010 [Pet 10]
Solid Earth tides IERS2010 [Pet 10] IERS2010 [Pet 10]
Solid Earth Pole tide IERS2010 [Pet 10] IERS2010 [Pet 10]
Short-term non-tidal
atmospheric and oceanic
mass variations AOD1B (GRACE RL05) - AOD1B (GRACE RL05) -

Surface forces

Air drag negligible - measured -
Solar radiation pressure ROCK4 [Fli 92], [Fli 96] measured -
Earth albedo negligible - measured -

Others

Empirical forces amplitudes for cos, sin - amplitudes for cos, sin -

General relativistic effects IERS2010 [Pet 10, 10.3] IERS2010 [Pet 10, 10.3]
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Table F.3: A priori and background models used.
RL04++ RL05

Application Model Reference Model Reference

A Priori Models

Earth gravity EIGEN-GL04S1 [För 07] EIGEN-6C [För 11]

Station coordinates ITRF2008 [Alt 11] IGS08 [IGS 12b]

GPS initial elements igs rapid [IGS 12a] igs final [IGS 12a]

GPS tropospheric signal delay GMF-E [Boe 06a] VMF1 [Boe 06b]
(c.f. description past table) (c.f. description past table)

Background Models

GPS ground stations - [IGS 12g] - [IGS 12g]
ARP offset vectors

GPS absolute phase centre
corrections
- ground antennas igs08 1604 woGLO final [IGS 12c] igs05 1473 [Schm 07]
- GRACE POD antennas custom PCV masks - custom PCV masks -

derived from GPS-SST residuals derived from GPS-SST residuals
resolution: azim.[o] x elev.[o] 5o × 2o 1o × 1o

Earth Orientation Parameters IERS2003 [McC 04] IERS2010 [Pet 10]

Planetary and lunar ephemeris JPL DE 405 [JPL 12a] JPL DE 421 [JPL 12b]

SLR tropospheric signal delay Mendes&Pavlis [Men 04] Mendes&Pavlis [Men 04]

GPS ionospheric signal delay - - IGS ionospheric maps [IGS 12d]

GPS and SLR
relativistic signal delay IERS2010 [Pet 10, 11.2] IERS2010 [Pet 10, 11.2]

Solid Earth tides loading IERS2003 [McC 04] IERS2010 [Pet 10]

Solid Earth pole tide loading IERS2003 [McC 04] IERS2010 [Pet 10]
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A priori models for GPS tropospheric delays

The computation of the a priori tropospheric delay T0 of GPS signals according
to GMF-E and VMF1 is done in detail as follows. In the context of this work
”GMF-E” as well as ”VMF1” not only imply merely a mapping function but
also the computation of the dry and the wet zenith delays. Both GMF-E and
VMF1 have in common formula (F-1) for computing the total tropospheric
delay T0 as well as formula (F-2) of the mapping function fm:

T0 = (fm(ad, bd, cd, e) + ∆hd) T
z
d + fm(aw, bw, cw, e) T

z
w (F-1)

with

fm(a, b, c, e) =
1 + a

1+
b

1+c

sine+ a

sine+ b

sine+c

(F-2)

∆hd =
h

1000

(

1

sin (e)
− fm(at, bt, ct, e)

)

(F-3)

and

T z
d : dry zenith delay

T z
w : wet zenith delay

e : elevation of signal direction

∆hd : height correction ([Nie 96])

at = 2.53 · 10−5

bt = 5.49 · 10−3

ct = 1.14 · 10−3

The two sets of coefficients (ad, bd, cd) as well as (aw, bw, cw) determining the
mapping of the dry and the wet zenith delay, respectively, are explained further
below.

• Dry zenith delay

For both GMF-E and VMF1 the dry zenith delay is determined according to
[Saa 73] as

T z
d =

0.0022768 p

1− 0.00266 cos (2ϕ)− 0.28 · 10−6 h
(F-4)

where

ϕ : geodetic latitude

h : geodetic height above sea level in metres

p : total atmospheric pressure in hPa
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• Wet zenith delay

In case of GMF-E the wet zenith delay is computed following [Dav 84] as

T z
w =

0.0022768pwv

0.99734 + 0.00532 sin2 ϕ− 0.28 · 10−6 h

(

0.053 +
1277

T

)

(F-5)

with

T : temperature in Kelvin

pwv : partial pressure of water vapour in hPa

For VMF1 the wet zenith delay at height h of the station is calculated as

T z
w = T z

w(horo)e
horo−h

2000 (F-6)

with

horo : orography height

and T z
w(horo) interpolated from a grid provided at [IGG 12a].

• Mapping function coefficients

The a-coefficients ah and aw are computed differently for GMF-E and VMF1.
In case of GMF-E they are respectively determined as

a = a0 +A cos

(

2π
doy − 28

365.25

)

(F-7)

with

a0 =
9
∑

n=0

n
∑

m=0

Pnm(sinϕ)[Anm cos (mλ) +Bnm sin (mλ)]

A =
9
∑

n=0

n
∑

m=0

Pnm(sinϕ)[A′

nm cos (mλ) +B′

nm sin (mλ)]

doy : day of year

Pnm : associated Legendre functions

The coefficients Anm, Bnm, A′

nm, B′

nm are given in the sample source code
[IGG 12b]. In case of VMF1 ah and aw are interpolated from a grid provided
through [IGG 12a]. The b- as well as the c-coefficients bh, bw, ch, cw are the
same applying either GMF-E or VMF1:

bh = 0.0029

bw = 0.00146

ch = c0

{[

cos

(

2π
doy − 28

365.25
+ ψ

)

+ 1

]

c11
2

+ c10

}

(1− cosϕ) (F-8)

cw = 0.04391

where

c0 = 0.062

(ψ, c10, c11) =

{

(0, 0.001, 0.005) on northern hemisphere
(π, 0.002, 0.007) on southern hemisphere
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Table G.1: Overview of nominal parameterisation (RL04m).
Parameter type Items estimated Spatial components Temporal resolution

TRF

Earth gravity field coefficients (C/S)nm - 1/day
Station coordinates xS X, Y, Z (CTS) 1/day

auxiliary dynamic

initial elements xS0 X, Y, Z (CTS) 1/day

GPS solar radiation pressure correction of a priori model
bias global 1/day
scale global 1/day

Empirical accelerations
- GPS periodic model -

- cosine amplitude T, N 1/day
- sine amplitude T, N 1/day

- GRACE periodic model -
- cosine amplitude T, N 5/day
- sine amplitude T, N 5/day

Accelerometer calibration bias R, T, N 5/day
scale R, T, N 5/day

auxiliary geometric

GPS clock corrections δtR, δt
S - per epoch

GPS ambiguities NS
R - per session

GPS tropospheric scaling factors TR - 10/day
empirical KBRR coefficients polynomial model

- bias (P1) - 17/day
- acceleration (P2) - 17/day
periodic model
- bias cosine amplitude (C0) - 9/day
- bias sine amplitude (S0) - 9/day
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Table G.2: Characteristics of integrated processings carried out (RL04m; ’CC’: constrained coordinates, ’NN’: No-net conditions).

Run ITRF GPS (C/S)nm xS Empirical Weight model for observations
4-nn-t abs. PCCs accelerations weight = f/σ2

nn: test no. n = 0 n = 1, 2 f, σ
t: type
0 (integrated) model model a priori a priori resolution GPS-ground GPS-SST KBRR
1 (2-step, GPS) used used sigma sigma C: code, P: phase
2 (2-step, LEO) [cm] [cm] [cm] GPS GRACE [/], [cm] [/], [cm] [/], [µm/s]

CC

4-00-0 RL04++ RL05 10 10 10 1/d 5/d C: 1, 100.0 C: 1.0, 70.0 1.0, 0.3
P: 1, 1.0 P: 1.0, 0.7

NN:
Tz,Rz

4-01-0 RL04++ RL05 0 ∞ 0.01 1/d 5/d C: 1, 100.0 C: 1, 70.0 1, 0.3
P: 1, 1.0 P: 1, 0.7

4-02-0 RL04++ RL05 0 ∞ 0.01 1/d 5/d C: 1, 70.0 C: 20, 45.0 10, 0.3
P: 1, 0.7 P: 2, 0.14
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Table G.3: Characteristics of integrated processings carried out (RL04m; continued; ’NN’: No-net conditions).

Run ITRF GPS (C/S)nm xS Empirical Weight model for observations
4-nn-t abs. PCCs accelerations weight = f/σ2

nn: test no. n = 0 n = 1, 2 f, σ
t: type
0 (integrated) model model a priori a priori resolution GPS-ground GPS-SST KBRR
1 (2-step, GPS) used used sigma sigma C: code, P: phase
2 (2-step, LEO) [cm] [cm] [cm] GPS GRACE [/], [cm] [/], [cm] [/], [µm/s]

NN:
Tz,Rz

4-03-0 RL04++ RL04++ 0 ∞ 0.01 1/d 16/d C: 1, 70.0 C: 20, 45.0 50, 0.3
P: 1, 0.7 P: 2, 0.14

NN:
Tx,Ty,Tz,Rz

4-04-0 RL04++ RL04++ 0 ∞ 0.01 1/d 16/d C: 1, 70.0 C: 20, 45.0 50, 0.3
P: 1, 0.7 P: 2, 0.14

4-04-1 RL04++ RL04++ 0 0 0.01 1/d - C: 1, 70.0 - -
P: 1, 0.7 - -

4-04-2 RL04++ RL04++ 0 ∞ - - 16/d - C: 20, 45.0 50, 0.3
- P: 2, 0.14

fixed IGS final orbits

NN:
Tz,SC,Rz

4-05-0 RL04++ RL04++ 0 ∞ 0.001 - 16/d C: 1, 70.0 C: 20, 45.0 50, 0.3
P: 1, 0.7 P: 2, 0.14
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Table G.4: Overview of nominal parameterisation (RL05m).
Parameter type Items estimated Spatial components Temporal resolution

TRF

Earth gravity field coefficients (C/S)nm - 1/day
Station coordinates xS X, Y, Z (CTS) 1/day

auxiliary dynamic

initial elements xS0 X, Y, Z (CTS) 1/day

GPS solar radiation pressure correction of a priori model
bias global 1/day
scale global 1/day

Empirical accelerations
- GPS periodic model -

- cosine amplitude T, N 1/day
- sine amplitude T, N 1/day

- GRACE periodic model -
- cosine amplitude T, N 16/day
- sine amplitude T, N 16/day

Accelerometer calibration bias R, T, N 5/day
scale R, T, N 5/day

auxiliary geometric

GPS clock corrections δtR, δt
S - per epoch

GPS ambiguities NS
R - per session

GPS tropospheric scaling factors TR - 10/day
empirical KBRR coefficients polynomial model

- bias (P1) - 17/day
- acceleration (P2) - 17/day
periodic model
- bias cosine amplitude (C0) - 9/day
- bias sine amplitude (S0) - 9/day
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Table G.5: Characteristics of integrated processings carried out (RL05m; ’NN’: No-net conditions).
Run (C/S)nm xS Weight model for observations
5-nn-t weight = f/σ2

nn: test no. n = 1 n = 2 f, σ
t: type
0 (integrated) GPS-ground GPS-SST KBRR
1 (2-step, GPS) a priori sigma a priori sigma C: code, P: phase
2 (2-step, LEO) [cm] [/], [cm] [/], [cm] [/], [µm/s]

NN:
Tz,Rz

5-00-0 ∞ ∞ 0.01 C: 1, 100.0 C: 1, 70.0 1, 0.3
P: 1, 1.0 P: 1, 0.7

5-01-0 ∞ ∞ 0.01 C: 1, 70.0 C: 20, 45.0 50, 0.2
P: 1, 0.7 P: 2, 0.14

NN:
Tx,Ty,Tz,Rz

5-02-0 ∞ ∞ 0.01 C: 1, 70.0 C: 20, 45.0 50, 0.2
P: 1, 0.7 P: 2, 0.14

5-02-1 0 0 0.01 C: 1, 70.0 - -
P: 1, 0.7 -

5-02-2 ∞ ∞ - - C: 20, 45.0 50, 0.2
- P: 2, 0.14

5-03-0 ∞ ∞ 0.01 C: 1, 70.0 C: 20, 45.0 -
P: 1, 0.7 P: 2, 0.14

5-04-0 ∞ 0 0.01 C: 1, 70.0 C: 20, 45.0 -
P: 1, 0.7 P: 2, 0.14
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Table G.6: Characteristics of integrated processings carried out (RL05m; continued; ’NN’: No-net conditions).
Run (C/S)nm xS Weight model for observations
5-nn-t weight = f/σ2

nn: test no. n = 1 n = 2 f, σ
t: type
0 (integrated) GPS-ground GPS-SST KBRR
1 (2-step, GPS) a priori sigma a priori sigma C: code, P: phase
2 (2-step, LEO) [cm] [/], [cm] [/], [cm] [/], [µm/s]

constrained GPS orbits: initial elements X0 ∼ 1[cm]
solar radiation pressure scale ∼ 10−3[/]

bias ∼ 10−11[m/s2]
empirical accelerations T,N ∼ 10−10[m/s2]

NN:
Tx,Ty,Tz,Rz

5-05-0 ∞ ∞ 0.01 C: 1, 70.0 C: 20, 45.0 50, 0.2
P: 1, 0.7 P: 2, 0.14
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Figure H.1: Dynamic Geocentre x-, y-, z-component per day.
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Figure H.2: Geometric Geocentre x-, y-, z-component per day.
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Figure H.3: Flattening of Earth gravity field per day.
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H.2 Observational Residuals
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Figure H.7: Statistics of GPS-ground observations per day.
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Figure H.8: Statistics of GPS-SST observations per day.
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H.3 Orbit Comparisons
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Figure H.10: Comparisons of GPS orbits to IGS final orbits per day: translational parameters of global HT.
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A
P
P
E
N
D
IX

H
.
R
E
S
U
L
T
S
:
P
L
O
T
S

126

R
x

["]

2004 2004.5 2005
-0.0004

-0.0002

0

0.0002

0.0004

R
y

["]

2004 2004.5 2005
-0.0004

-0.0002

0

0.0002

0.0004
5-02-0
5-02-1

Time [year]

R
z

["]

2004 2004.5 2005
-0.0004

-0.0002

0

0.0002

0.0004

Figure H.12: Comparisons of GPS orbits to IGS final orbits per day: rotational parameters of global HT.
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Figure H.13: Comparisons of GPS orbits to IGS final orbits per day: RMS of 3D position differences previous to transformation.
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Figure H.14: Comparisons of GRACE orbits to JPL GNV1B orbits per day: RMS of position differences in R-, T-, N-direction (from
above; run 5-02-0).
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H.4 Validation
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Figure H.15: Validation of Dynamic Geocentre components with external time series (5-02-0: weekly averaged; CSR: monthly solution;
JIGOG (CE): weekly solution.
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Figure H.16: Validation of C20 with external time series (5-02-0: monthly averaged; CSR: monthly solution).
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Figure H.17: Validation of S21, C21, and S22 with external time series (5-02-0: monthly averaged; CSR: monthly solution).
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H.5 Effects Studied
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Figure H.18: Effect of observational weighting: modified weight model for GPS-ground, GPS-SST, KBRR; Dynamic Geocentre x-, y-,
z-component per day.
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Figure H.19: Effect of observational weighting: modified weight model for GPS-ground, GPS-SST, KBRR; Dynamic Geocentre x-, y-,
z-component per day.
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Figure H.20: Effect of observational weighting: modified weight model for GPS-ground, GPS-SST, KBRR.
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Figure H.21: Effect of excluding KBRR observations (5-03-0).
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Figure H.22: Effect of excluding KBRR observations (5-03-0).
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Figure H.23: Effect of constraints on ground station coordinates: CC (4-00-0) vs NN(Tz,Rz) (4-01-0); Dynamic Geocentre x-, y-,
z-component per day.
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Figure H.24: Effect of constraints on ground station coordinates: NN(Tz,Rz) (4-03-0) vs NN(Tx,TyTz,Rz) (4-04-0); Dynamic Geocentre
x-, y-, z-component per day.
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Figure H.25: Effect of constraints on ground station coordinates: NN(Tz,Rz) (5-01-0) vs NN(Tx,TyTz,Rz) (5-02-0); Dynamic Geocentre
x-, y-, z-component per day.
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Figure H.26: Effect of constrained GPS orbits: totally unconstrained (4-04-0) vs fixed IGS final orbits (4-05-0); Dynamic Geocentre
x-, y-, z-component per day.
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Appendix I

Results: Statistics

The referencing of the runs is done by assigning a number of the format ”rr-
nn-t” with

rr : release no. (4 or 5)

nn : test no.

t : type (0: integrated; 1: two-step (GPS); 2: two-step (LEO))

I.1 TRF Parameters

Table I.1: Statistics of Geometric Frame’s components time series: translations
and differential scale.

Run Tx Ty Tz S − 1.0

Mean STD Mean STD Mean STD Mean STD
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

4-04-0 +0.12 0.20 -0.03 0.21 -0.10 0.19 +1.34 1.79
5-02-0 +0.23 0.33 -0.12 0.38 +0.15 0.33 +1.23 1.88
5-02-1 +0.30 0.42 -0.06 0.44 +0.14 0.48 +1.09 2.15

Table I.2: Statistics of Geometric Frame’s components time series: rotations.
Run Rx Ry Rz

Mean STD Mean STD Mean STD
[mm] [mm] [mm] [mm] [mm] [mm]

4-04-0 +0.37 2.73 +2.32 2.87 -0.17 0.26
5-02-0 +0.63 5.47 +1.75 3.97 -0.12 0.33
5-02-1 +0.90 8.32 +2.07 4.71 -0.15 0.40

145
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Table I.3: Statistics of Dynamic Geocentre’s components time series.
Run C11 S11 C10

Mean STD Mean STD Mean STD
[mm] [mm] [mm] [mm] [mm] [mm]

4-00-0 +1.78 4.32 +1.79 4.80 +43.82 59.31
4-01-0 +1.82 4.33 +1.79 4.81 +14.78 12.54
4-02-0 +1.84 4.66 +0.81 4.90 +13.34 8.48
4-03-0 +2.11 4.73 +0.61 4.92 +12.88 9.69
4-04-0 +3.59 4.11 +0.05 3.54 +12.84 9.73
4-05-0 -0.11 5.68 -0.22 5.54 +2.59 4.75
5-00-0 -0.16 8.09 +1.01 8.31 +10.92 9.87
5-01-0 -2.31 7.30 +4.62 7.51 +5.92 6.00
5-02-0 +1.20 3.87 +3.64 4.21 +5.88 6.03
5-02-2 +2.91 8.91 +1.91 7.55 +6.64 8.42
5-03-0 +2.29 3.58 +1.63 3.65 +8.93 5.46
5-04-0 +2.34 3.51 +1.55 3.79 +8.96 5.42
5-05-0 +0.40 2.67 +1.32 3.31 +5.58 8.47

Table I.4: Statistics of Dynamic Frame’s orientation x-, y-, z-components time
series.

Run S21 C21 S22

Mean STD Mean STD Mean STD
[mm] [mm] [mm] [mm] [mm] [mm]

4-04-0 +11.51 0.88 -1.85 0.75 -5765.04 0.43
5-02-0 +11.47 0.69 -1.53 0.61 -5764.76 0.54
5-02-2 +11.43 0.73 -1.53 0.63 -5764.77 0.56
5-03-0 +11.42 2.51 -2.43 2.72 -5764.88 1.44

Table I.5: Statistics of C20 time series.
Run Mean STD

[E-04] [E-04]

4-02-0 -4.841648752 0.000003072
4-03-0 -4.841648672 0.000002545
4-04-0 -4.841648665 0.000002549
5-02-0 -4.841648349 0.000002420
5-02-2 -4.841648646 0.000002129
5-03-0 -4.841651546 0.000002287
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I.2 Orbit Comparisons

Table I.6: Parameters of global Helmert Transformations between GPS orbits
(Integrated (’Run’) vs IGS final).

Run Tx Ty Tz S − 1.0 Rx Ry Rz

[mm] [mm] [mm] [ppb] [mas] [mas] [mas]

Mean

5-02-0 -0.85 +4.54 +11.61 -0.226 +0.056 -0.008 +0.052
5-02-1 -1.65 +1.26 +11.76 -0.228 +0.052 -0.009 +0.042

STD

5-02-0 4.79 5.43 7.60 0.073 0.054 0.070 0.047
5-02-1 4.27 5.20 9.56 0.074 0.060 0.084 0.065

RMS

5-02-0 4.86 7.07 13.87 0.238 0.078 0.070 0.070
5-02-1 4.57 5.34 15.15 0.239 0.079 0.084 0.077

Table I.7: Correlation coefficients between time series of dynamic frame ori-
gin parameters and translational parameters of global Helmert transformations
between GPS orbits (Integrated (5-02-0) vs IGS final).

Tx Ty Tz

C11 +0.760 +0.016 -0.031
S11 -0.032 +0.816 -0.021
C10 -0.033 -0.070 +0.370

Table I.8: Correlation coefficients between time series of dynamic frame orien-
tation parameters and rotational parameters of global Helmert transformations
between GPS orbits (Integrated (5-02-0) vs IGS final).

Rx Ry Rz

S21 +0.074 +0.051 -0.001
C21 -0.027 -0.104 -0.050
S22 -0.072 +0.068 -0.040
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Table I.9: RMS of time series of translational parameters (Tx, Ty, Tz) of global
Helmert transformations between GPS orbits (Integrated (5-02-0) vs IGS final).

Application
of C11, S11, C10 Tx Ty Tz
to Tx, Ty, Tz [mm] [mm] [mm]

- not applied 4.86 7.07 13.87
- applied 3.81 3.41 9.71

Table I.10: RMS of time series of position differences between GRACE orbits
(Integrated (5-02-0) vs JPL GNV1b).

Radial Transversal Normal
[mm] [mm] [mm]

GRACE-A 63.0 25.2 29.6
GRACE-B 59.6 22.2 23.9
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I.3 Observational Residuals

Table I.11: Statistics of SLR residuals; cutoff limit for outlier removal: 20.0 cm.
Run GRACE-A GRACE-B PRN05 PRN06

Number of observations
[/] [/] [/] [/]

4-04-0 22626 20790 3101 2664
4-04-1 - - 3095 2571
4-04-2 27751 25731 - -
5-02-0 20698 19151 2591 2316
5-02-1 - - 2615 2293
5-02-2 25723 23879 - -

Global RMS
[cm] [cm] [cm] [cm]

4-04-0 3.60 3.86 5.54 5.52
4-04-1 - - 6.02 5.83
4-04-2 4.41 4.77 - -
5-02-0 3.71 3.34 7.94 7.42
5-02-1 - - 7.92 7.31
5-02-2 3.98 3.72 - -
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