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Abstract

The Standard Model of particle physics describes the properties and fundamental
interactions of matter. The theory has been tested by countless measurements and has
proven to be a robust model. Yet, there exist hints on physics beyond the Standard
Model. Deviations between experimental measurements and theoretical predictions
or observations like the within the Standard Model unexplainable matter-antimatter
asymmetry in the universe demand more precise measurements and searches.
The constituents of matter are leptons and quarks, the latter form bound states

called hadrons such as the proton, neutron, or mesons. In this thesis, a measurement of
the decay of a neutral B meson into a φ meson and an exited K∗ meson (B0→ φK∗)
is presented. In the Standard Model this transition is described via a single one-loop
diagram, a higher order amplitude in the perturbation theory.
CP violation, an asymmetry in the behavior of matter and antimatter, is a result

of interference effects and requires at least two contributing amplitudes. Therefore,
no CP violation is expected within the Standard Model in B0 → φK∗ transitions.
Any potential physics beyond the Standard Model could however contribute with a
second amplitude to the transition that could result in a measurable deviation from the
expectation. Measuring asymmetries that are sensitive to CP violation in the decay
probes the Standard Model and indirectly constrains the possible parameter space for
physics beyond the Standard Model.

In the B0→ φK∗ system, K∗ denotes contributions from scalar (S-wave, spin J = 0),
vector (P-wave, J = 1), and tensor (D-wave, J = 2) components from (Kπ)∗0, K∗(892)0,
and K∗2(1430)0, respectively. As the φ is a vector meson, the pseudoscalar B0 decays into a
vector–scalar, vector–vector, or vector–tensor state. Conservation of angular momentum
results in up to three polarizations (longitudinal, parallel, and perpendicular) for these
decays, thus providing several quantities that are potentially sensitive to deviations
from the Standard Model expectation. Using a partial wave analysis, which exploits
the different angular distributions of the S-, P-, and D-wave component, the branching
fraction BJ , the longitudinal (perpendicular) polarization fraction fLJ (f⊥J), the relative
phase of the parallel (perpendicular) amplitude φ‖J (φ⊥J) to the longitudinal amplitude,
the strong phase differences δ0J between the S-wave and the P- and D-wave, and a
number of parameters related to direct CP violation in all these quantities are measured.
In total, 26 parameters are measured.

The analysis was performed using the full Belle data sample, consisting of an integrated
luminosity of 711 fb−1 containing (772 ± 11) × 106 BB pairs collected at the Υ(4S)
resonance at the KEKB asymmetric-energy e+e− collider. The Υ(4S) resonance decays
into a B-meson pair and the subsequent decay products are detected and recorded by
the Belle detector.
Several new and improved methods have been applied with respect to previous

Belle measurements. Neural networks have been employed to obtain an observable
that discriminates between signal and the dominating background from e+e− → qq̄
(q ∈ {u, d, s, c}) events. A nine-dimensional maximum likelihood fit was used to perform
the final parameter extraction. For this fit, a tool has been developed to obtain a reliable
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measure of dependence among the observables in multivariate data sets. Furthermore,
a method that can improve the computation time of numeric integrations in partial
wave analysis and amplitude analyses in general by orders of magnitude was developed.

The obtained results are summarized in Table 1 and supersede all previous Belle
results for the P-wave component B0 → φK∗(892)0. The analysis also provides the
first measurement related to the S- and D-wave components B0→ φ(Kπ)∗0 and B0→
φK∗2(1430)0, respectively, at Belle. The results are consistent with other measurements
from the BaBar collaboration and improve the uncertainties on all parameters related
to the S- and P-wave components. Naive expectations predict a dominant longitudinal
polarization in the decay, which is confirmed in B0→ φK∗2(1430)0 decays but in conflict
with the result obtained in B0 → φK∗(892)0 decays. All parameters related to CP
violation, which are listed in the bottom half of the table, are consistent with zero and
the absence of CP violation.

φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter J = 0 J = 1 J = 2
BJ (10−6) 4.3± 0.4± 0.4 10.4± 0.5± 0.6 5.5+0.9

−0.7 ± 1.0
fLJ · · · 0.499± 0.030± 0.018 0.918+0.029

−0.060 ± 0.012
f⊥J · · · 0.238± 0.026± 0.008 0.056+0.050

−0.035 ± 0.009
φ‖J (rad) · · · 2.23± 0.10± 0.02 3.76± 2.88± 1.32
φ⊥J (rad) · · · 2.37± 0.10± 0.04 4.45+0.43

−0.38 ± 0.13
δ0J (rad) · · · 2.91± 0.10± 0.08 3.53± 0.11± 0.19
ACPJ 0.093± 0.094± 0.017 −0.007± 0.048± 0.021 −0.155+0.152

−0.133 ± 0.033
A0
CPJ · · · −0.030± 0.061± 0.007 −0.016+0.066

−0.051 ± 0.008
A⊥CPJ · · · −0.14± 0.11± 0.01 −0.01+0.85

−0.67 ± 0.09
∆φ‖J (rad) · · · −0.02± 0.10± 0.01 −0.02± 1.08± 1.01
∆φ⊥J (rad) · · · 0.05± 0.10± 0.02 −0.19± 0.42± 0.11
∆δ0J (rad) · · · 0.08± 0.10± 0.01 0.06± 0.11± 0.02

Table 1: Summary of the 26 parameters measured in the B0→ φK∗ system. The first
error is statistical and the second due to systematic uncertainties.

The results of the measurement in B0→ φK∗ decays have been published in

M. Prim et al. (Belle Collaboration),
“Angular analysis of B0→ φK∗ decays and search for CP violation at Belle”,
Physical Review D 88, 072004 (2013).

The tool for measuring dependence in multivariate data sets has been published in

M. Feindt and M. Prim,
“An algorithm for quantifying dependence in multivariate data sets”,
Nuclear Instruments and Methods in Physics Research A 698, 84 (2013).
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Zusammenfassung

Das Standardmodell der Teilchenphysik beschreibt die Eigenschaften und fundamenta-
len Wechselwirkungen von Materie. Die zugrunde liegende Theorie wurde in unzähligen
Messungen getestet und hat sich als äußerst robust erwiesen. Dennoch existieren Hin-
weise auf Physik jenseits des Standardmodells, welche weitere Präzisionsmessungen und
Suchen erfordern. Beispielsweise kann innerhalb des Standardmodells die beobachtete
Asymmetrie von Materie und Antimaterie im Universum nicht erklärt werden und es
gibt Abweichungen zwischen einzelnen experimentellen Messwerten und theoretischen
Vorhersagen.

Die Bausteine der Materie sind Leptonen und Quarks. Letztere gehen gebundene
Zustände ein, welche Hadronen genannt werden. Dazu gehören unter anderem Protonen,
Neutronen und alle Mesonen. Diese Doktorarbeit befasst sich mit einer Messung des
Zerfalls eines neutralen B-Mesons in ein φ-Meson und ein angeregtes K∗-Meson (B0→
φK∗). Im Rahmen des Standardmodells wird ein solcher Übergang durch ein einzelnes
Ein-Schleifen-Diagramm beschrieben, welches eine Amplitude höherer Ordnung in der
Störungstheorie darstellt.

Die Asymmetrie im Verhalten von Materie und Antimaterie wird als CP -Verletzung
bezeichnet und ist eine Folge von Interferenzeffekten, die zwei beitragende Amplituden
voraussetzen. Daher wird im Rahmen des Standardmodells keine CP -Verletzung in
B0→ φK∗-Übergangen erwartet. Jede mögliche Form von Physik jenseits des Standard-
modells könnte jedoch mit einer weiteren Amplitude beitragen und in einer messbaren
Abweichung vom Erwartungswert resultieren. Die Messung von Asymmetrien, welche
sensitiv auf CP verletzende Effekte sind, testet das Standardmodell und schränkt da-
durch indirekt den möglichen Parameterraum für Physik jenseits des Standardmodells
ein.
Im B0 → φK∗-System bezeichnet K∗ Beiträge von skalaren (S-Welle, Spin J = 0),

vektoriellen (P-Welle, J = 1) und tensoriellen (D-Welle, J = 2) Komponenten, welche
bezeichnet werden durch (Kπ)∗0, K∗(892)0 und K∗2(1430)0. Das φ ist ein Vektorme-
son und folglich zerfällt das pseudoskalare B0 in Vektor-Skalar-, Vektor-Vektor- und
Vektor-Tensor-Zustände. Die Drehimpulserhaltung resultiert in bis zu drei möglichen
Polarisationen (longitudinal, parallel und senkrecht) für den Zerfall und damit auch
in einer Vielzahl von Größen, die potentiell sensitiv auf Abweichungen gegenüber
der Standardmodell-erwartung sind. Mit Hilfe einer Partialwellenanalyse, welche die
unterschiedlichen Winkelverteilungen von S-, P- und D-Welle ausnutzt, können das
Verzweigungsverhältnis BJ , der Anteil der longitudinalen (senkrechten) Polarisation
fLJ (f⊥J), die relative Phase zwischen der parallelen (senkrechten) und longitudinalen
Amplitude φ‖J (φ⊥J), die starke Phasendifferenz δ0J zwischen S-Welle und P- und
D-Welle, sowie weitere Parameter, die sensitiv gegenüber direkter CP -Verletzung in den
genannten Größen sind, gemessen werden. Insgesamt wurden 26 Parameter gemessen.

Die vorgestellte Analyse wurde mit dem gesamten vom Belle-Detektor aufgezeichneten
Datensatz durchgeführt. Dieser entspricht einer integrierten Luminosität von 711 fb−1

bzw. (772 ± 11) × 106 BB Paaren und wurde auf der Υ(4S)-Resonanz am KEKB-
Beschleuniger, einem e+e−-Kollider mit asymmetrischer Energie, aufgezeichnet. Die



Υ(4S)-Resonanz zerfällt in B-Meson-Paare, deren Zerfallsprodukte wiederum vom Belle-
Detektor aufgezeichnet werden.

Die Analyse verwendet neue und verbesserte Methoden gegenüber bisherigen Messun-
gen am Belle-Detektor. Um eine einzelne diskriminierende Observable zu konstruieren,
die zwischen Signal-Ereignissen und dem dominanten Untergrund aus e+e− → qq̄
(q ∈ {u, d, s, c})-Ereignissen trennen kann, wurden neuronale Netzwerke verwendet. Die
abschließende Parameterschätzung erfolgte mit Hilfe eines neundimensionalen Maximum-
Likelihood-Fits. Es wurde ein Verfahren entwickelt um ein verlässliches Maß für die
Abhängigkeiten der verschiedenen Observablen untereinander zu erhalten. Weiterhin
konnte ein Verfahren entwickelt werden um die numerische Integration in Partialwellen-
und Amplitudenanalysen im Allgemeinen um einige Größenordnungen zu beschleunigen.

Die Ergebnisse der Analyse sind in Tabelle 1 zusammenfasst und ersetzen für die P-
Wellen-Komponente B0→ φK∗(892)0 alle bisherigen Ergebnisse der Belle-Kollaboration.
Die Analyse liefert weiterhin die erste Messung der S- und D-Wellen Komponenten B0→
φ(Kπ)∗0 und B0 → φK∗2(1430)0 am Belle-Experiment. Die Ergebnisse sind konsistent
mit anderen Messungen der BaBar-Kollaboration und verbessern die experimentellen
Unsicherheiten in Bezug auf die S- und P-Wellen-Komponente. Naiv erwartet man eine
dominante longitudinale Polarisation im Zerfall, was für B0→ φK∗2(1430)0 gezeigt wurde,
aber im Widerspruch zu den Ergebnissen für B0→ φK∗(892)0 steht. Die Parameter in
der unteren Tabellenhälfte sind sensitiv auf CP -Verletzung und konsistent mit Null
bzw. keiner CP -Verletzung.

φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter J = 0 J = 1 J = 2
BJ (10−6) 4.3± 0.4± 0.4 10.4± 0.5± 0.6 5.5+0.9

−0.7 ± 1.0
fLJ · · · 0.499± 0.030± 0.018 0.918+0.029

−0.060 ± 0.012
f⊥J · · · 0.238± 0.026± 0.008 0.056+0.050

−0.035 ± 0.009
φ‖J (rad) · · · 2.23± 0.10± 0.02 3.76± 2.88± 1.32
φ⊥J (rad) · · · 2.37± 0.10± 0.04 4.45+0.43

−0.38 ± 0.13
δ0J (rad) · · · 2.91± 0.10± 0.08 3.53± 0.11± 0.19
ACPJ 0.093± 0.094± 0.017 −0.007± 0.048± 0.021 −0.155+0.152

−0.133 ± 0.033
A0
CPJ · · · −0.030± 0.061± 0.007 −0.016+0.066

−0.051 ± 0.008
A⊥CPJ · · · −0.14± 0.11± 0.01 −0.01+0.85

−0.67 ± 0.09
∆φ‖J (rad) · · · −0.02± 0.10± 0.01 −0.02± 1.08± 1.01
∆φ⊥J (rad) · · · 0.05± 0.10± 0.02 −0.19± 0.42± 0.11
∆δ0J (rad) · · · 0.08± 0.10± 0.01 0.06± 0.11± 0.02

Tabelle 1: Übersicht aller 26 gemessenen Parameter im System B0→ φK∗. Der erste Feh-
ler ist statistischen Ursprungs, der Zweite bildet systematische Unsicherheiten
ab.
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Die Ergebnisse der Messung in B0→ φK∗-Zerfällen wurden veröffentlicht in

M. Prim et al. (Belle Collaboration),
“Angular analysis of B0→ φK∗ decays and search for CP violation at Belle”,
Physical Review D 88, 072004 (2013).

Das Verfahren zur Messung von Abhängigkeiten in multivariaten Datensätzen wurde
veröffentlicht in

M. Feindt and M. Prim,
“An algorithm for quantifying dependence in multivariate data sets”,
Nuclear Instruments and Methods in Physics Research A 698, 84 (2013).
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1 Introduction
The theory known as the Standard Model of particle physics describes the properties
and fundamental interactions of matter. Certain experiments like the measurement
of the anomalous magnetic moment of the muon, match the theoretical predictions
with a precision of up to eleven digits [1]. Yet, a deviation has been observed with the
available experimental and theoretical precision; being just one of many examples that
indicate some physics beyond the Standard Model.
On the one hand, scientists are developing new models to explain deviations or

unexpected observations. On the other hand, they are improving the experimental
measurements to constrain these models. These days the ATLAS and CMS experiments
at the Large Hadron Collider are, besides their search for the Higgs boson, pushing the
energy frontier to a new level and aiming for direct observation of physics beyond the
Standard Model. Other experiments pursue a complementary approach. Measurements
like those of the anomalous magnetic moment of the muon are aiming for an indirect
evidence of new physics by pushing experimental results to highest precisions.
The B-factory experiments Belle and BaBar have been and are still among the

precision experiments in flavor physics, an important part of the Standard Model.
B-factories provide a unique environment for measurements of B-mesons and the
related electroweak properties of the Standard Model. Belle [2, 3] and BaBar [4, 5]
measurements led to the confirmation of combined violation of charge-conjugation C
and parity-transformation P in the B-meson system. The measurement of CP violation
allows to distinguish between matter and antimatter. According to the CPT theorem,
all Lorentz-invariant local quantum field theories are invariant under the combined
transformation of CP -conjugation and time-reversal T . Therefore, CP violation allows
to establish an arrow of time. The violation of CP symmetry is further assumed to be
one of the necessary requirements to explain the observed matter-antimatter asymmetry
in the universe [6]. Therefore the study of the smallest things may help to understand
the biggest things.

This thesis presents an analysis of B0→ φK∗ decays with data collected at the Belle
experiment, located at the Japanese High Energy Accelerator Research Organisation in
Tsukuba, Japan. The properties of the decay are measured with an angular analysis and
in addition, direct CP violation in the decay is studied; both providing experimental
results that are sensitive to the influence of possible physics beyond the Standard Model.
The studied decay is a rare decay that is not expected to have a significant CP -violating
asymmetry. However, it is sensitive to the possible influence of physics beyond the
Standard Model that could result in sizable and measurable effects.
Chapter 2 briefly reviews the Standard Model of particle physics and gives a more

detailed introduction into the theoretical concepts that are important for the study
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1 Introduction

of B0→ φK∗ decays. Chapter 3 summarizes the experimental setup, consisting of the
KEKB accelerator and the Belle detector. The methods that have been applied in the
analysis are described in Chapter 4. The chapter includes existing methods as well as
newly developed methods. The experimental reconstruction of the decay is described
in Chapter 5, whereas the maximum likelihood fit model, the core component of the
analysis, is discussed in Chapter 6. The results of the measurements are presented in
Chapter 7. A summary and concluding remarks are given in Chapter 8.
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2 Theoretical Principles
In this chapter the theoretical principles of the Standard Model of particle physics are
summarized. A brief introduction into the CKM matrix and direct CP violation will be
given. Furthermore, the polarization of B meson decays and the idea of a partial wave
analysis will be discussed in detail as it is the foundation for the analysis presented in
this thesis.

2.1 The Standard Model of Particle Physics
The Standard Model (SM) of particle physics is the agreed common theory of particle
physics. The core principles of the SM are dating back several decades, even as some
predictions have not been measured and proven by experiments until recently. Over the
decades, dozens of physicists have received the Nobel Prize for work related to the SM,
not only theorists, but also experimentalists measuring its properties and inventing new
instrumentation for these measurements.
The SM describes the properties and fundamental interactions of matter. The

interactions are known as the strong, weak, and electromagnetic force. Gravitation,
although being a fundamental force, is not part of the SM since it interacts on completely
different scales as the other three. The SM is a quantum gauge theory with three local
groups

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.1)

where C denotes the color charge of the strong interaction, L the left chirality of
the weak interaction and Y the hypercharge of the electromagnetic interaction. The
electromagnetic and weak interactions have been unified by the Glashow-Weinberg-
Salam (GWS) model [7–9] in the 1960’s to the electroweak theory, whereas the strong
interaction has been first described in the 1970’s by Gross, Wilczek, and Politzer [10–13]
and is known as quantum chromodynamics (QCD).
All interactions have in common that the forces are mediated by bosonic exchange

particles, the gauge bosons, which couple to the charge of the fermionic matter particles
and, if charged, self-couple. The matter particles are divided into quarks and leptons,
where quarks have color, weak, and electromagnetic charge and interact with all three
forces. Leptons only have weak and electromagnetic charge, thus do not interact with the
strong force. Neutrinos even lack the electromagnetic charge and their only interaction
is by the weak interaction. The mediators of the strong, weak, and electromagnetic
interaction are the gluons, W± and Z0 bosons, and the photon, respectively. The W±

and Z0 bosons are also referred to as charged and neutral currents. An overview of the
particles in the SM of particle physics and the gauge bosons is given in Figure 2.1.

3



2 Theoretical Principles

Figure 2.1: Overview of the particles in the Standard Model of particle physics. Three
generations (columns) of quarks and leptons are the constituents of matter,
whereas the photon, gluons, and W± and Z0 are the mediators of the
electromagnetic, strong, and weak interaction, respectively. The Higgs
boson is the gauge boson related to the Higgs mechanism that gives mass
to the particles. Taken from Reference [14].

The GWS model describes the electroweak interactions as spontaneously broken
symmetry groups

SU(2)L ⊗ U(1)Y → U(1)EM, (2.2)

which are broken by the Higgs mechanism [15] that generates the masses of the W±

and Z0 boson as well as the masses of the fermions. The Higgs boson related to this
mechanism, has been discovered recently [16, 17] by the ATLAS and CMS experiments
at the Large Hadron Collider. It completes the electroweak part of the SM, nearly
thirty years after the discovery of the massive W± and Z0 gauge bosons [18–20] by the
UA1 and UA2 collaborations and about fifty years after the GWS model pointed out
the direction.
All fermions have related anti-particles, with conjugated charges, e. g. the positron

e+ being right handed and having positive electrical charge. The quarks are not free
particles, but as a consequence of QCD, form bound states called hadrons, such as the
proton, neutron, or B mesons. The decay channel of the B meson studied in this thesis
is B0→ φK∗, the decay of a B0 meson into a φ and K∗ meson. This decay is illustrated

4



2.2 The CKM Matrix

in Figure 2.2, by a Feynman diagram. Each line and vertex in a Feynman diagram is
directly related to the underlying theory. Feynman diagrams provide understanding of
a process without the necessity of doing all mathematical calculations.

K∗

φ

d

b̄

W+

ū, c̄, t̄

g

s̄
s

s̄

d

B0

Figure 2.2: Feynman diagram of the decay B0→ φK∗.

A detailed and more mathematical introduction into the SM of particle physics
and quantum field theory can be found in Reference [21] or many other textbooks.
Particle properties are regularly summarized and updated by the particle data group
in the review of particle physics [22] which also includes a summary of the theoretical
concepts [22, chap. 9 and 10].

2.2 The CKM Matrix
The top left vertex in Figure 2.2, related to the b → u, c, t transition under emission
of a W+ boson, is a flavor-changing charged-current process. Such a transition is
possible as the mass eigenstates of the quarks, as shown in Figure 2.1, do not coincide
with the weak eigenstates of the quarks. Otherwise, only transitions within the same
generation of quarks would be possible. In the SM, this is realized by a rotation matrix
for the down-type quarks. This principle was first introduced by Cabibbo [23], for two
generations of quarks, and later extended by Kobayashi and Maskawa [24] to three
generations. The matrix is know as the CKM matrix and relates the weak eigenstates
of the down-type quarks to their mass eigenstates byds

b


weak

=

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


ds
b


mass

(2.3)

The CKM matrix is complex and supposed to be unitary if there are no more than
three generations of quarks. With three generations, there exists an irreducible complex
phase in this matrix. The CKM element Vij appears at every charged current vertex
with i and j being the flavor of the related quarks, whereas the complex-conjugated
element V ∗ij appears at the corresponding vertex of the CP -conjugated process. Without
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the irreducible complex phase Vij = V ∗ij would be satisfied for all elements. The phase
leads to Vij 6= V ∗ij and is the only mechanism in the SM to explain CP violation.
Kobayashi and Maskawa realized this long before the third generation was known.
There exist different parametrizations of the CKM matrix, of which the Wolfen-

stein parametrization [25] is the most natural one. This parametrization provides a
representation for the hierarchical structure of the CKM matrix and the irreducible
complex phase is related to the elements Vtd and Vub. Therefore, a sizeable CP violation
in transitions involving b quarks was expected. After the phase was measured to be
non-zero by Belle [2] and BaBar [4] in 2001, CP violation in the neutral B meson system
was established; resulting in the Nobel prize for Kobayashi and Maskawa in 2008. This
mechanism is however not strong enough to explain the observed matter-antimatter
asymmetry in the universe.

A more detailed review of the CKM matrix formalism, the Wolfenstein parametriza-
tion, and experimental results on the determination of the individual matrix elements
can be found in Reference [22, chap. 11].

2.3 CP Violation
The complex phase in the CKM matrix can manifest itself in three different types of CP
violation: CP violation in the decay also called direct CP violation, CP violation in
mixing, and CP violation in the inference between mixing and decay or mixing-induced
CP violation. The latter two, as their name indicates, involve neutral meson mixing
and are not studied in this thesis.
Direct CP violation is the only source of CP violation in charged meson decays

and can also occur in neutral meson decays. It occurs if the total amplitudes of the
CP -conjugated processes are different, i. e.∣∣∣Āf̄/Af ∣∣∣ 6= 1, (2.4)

where f (f̄) is a label for the transition from initial to final state I → f (Ī → f̄).
The total amplitude of such transitions, as they are studied in decay processes, can be
written as a coherent sum of the contributing decay amplitudes:

Af =
∑
j

|aj| ei(δj+φj) (2.5)

and
Āf̄ =

∑
j

|aj| ei(δj−φj), (2.6)

where j runs over the contributing amplitudes with magnitude aj, δj is an associated
CP conserving phase of the amplitude, and φj an associated CP violating phase that
enters with opposite sign into Af and Āf̄ . An asymmetry related to CP violation can
be defined as

ACP =
Γf̄ − Γf
Γf̄ + Γf

=

∣∣∣Āf̄/Af ∣∣∣− 1∣∣∣Āf̄/Af ∣∣∣+ 1
∝ 2

∑
i,j

|aiaj| sin(δi − δj) sin(φi − φj), (2.7)
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where Γf is the decay width and f the same label as before, δi − δj is known as the
strong phase difference between two contributing amplitudes, and φi − φj as the weak
phase difference. The weak phase difference originates from the complex phase of the
CKM matrix elements which enters with opposite sign into Af and Āf̄ . The strong
phase difference originates from hadronic effects, e. g. from rescattering of intermediate
on-shell states. Since the strong interaction is invariant under CP transformation, the
strong phase is equal for Af and Āf̄ . From Equation 2.7 the three necessary conditions
for direct CP violation can be seen; at least two contributing decay amplitudes with
non-vanishing strong and weak phase differences.
In the SM, negligible CP violation is expected in charmless B0→ φK∗ decays. The

decay is dominated by the amplitude of the loop process shown in Figure 2.2. In models
beyond the SM, new particles could appear in virtual loops in the Feynman diagram.
Such new contributing amplitudes could result in significant deviations from the SM
expectation and therefore can provide answers to cosmological problems.
A more detailed review on the CP violation formalism, the other two types of CP

violation, the related neutral meson mixing formalism, and an overview of experimental
results can be found in Reference [22, chap. 12].

2.4 Polarization in B Meson Decays

Depending on the decay channel of a B meson, e. g. in decays to two vector mesons
(vector–vector) or a vector and a tensor meson (vector–tensor), the daughter particles
might be polarized and not decay isotropically. The polarization of such decays is
related to the strong interaction. From polarization studies one may therefore gain
a deeper understanding of QCD. The naive expectation based on the factorization
approach [26] predicts a longitudinal polarization fraction fL close to unity for charmless
B meson decays. An overview of the latest results on longitudinal polarization fractions
in charmless B meson decays is shown in Figure 2.3. For many decay modes, the
measured polarization fraction deviates from the naive expectation.

Of particular interest for this work are the measurements of the longitudinal polariza-
tion fraction in B0→ φK∗(892)0 decays. The Belle and BaBar collaboration measured
it to be fL = 0.45± 0.05± 0.02 [28] and fL = 0.494± 0.034± 0.013 [29], respectively.
These measurements deviate from the naive expectation, whereas BaBar measured
fL = 0.901+0.046

−0.058 ± 0.037 [29] in B0→ φK∗2(1430)0 decays, which is consistent with the
factorization approach. One aim of the analysis presented in this thesis is to provide an
improved measurement of polarization in B0→ φK∗ decays, including B0→ φK∗2(1430)0

decays, with data from the Belle experiment.
Polarization measurements, using flavor-specific B0 → φK∗ decays, can further be

used to distinguish the CP -even and -odd fraction in B0/B0→ φ(K0
Sπ

0)∗ decays. This
decay channel can be used for time-dependent measurements of mixing-induced CP
violation in b→ (ss)s transitions, which is beyond the scope of this thesis.
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Polarizations of Charmless Decays 

Longitudinal Polarization Fraction (fL) 
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Figure 2.3: Longitudinal polarization fraction in different charmless B meson decays as
of June 2013. Provided by the Heavy Flavor Averaging Group (HFAG), see
also Reference [27].

A more detailed review on polarization in B meson decays can be found in Refer-
ences [30] and [26]. A detailed description for B0→ φK∗ decays will also be derived in
the subsequent section.

2.5 Partial Wave Analysis
The technique of partial wave analysis is employed to measure the polarization in
the decay B0 → φK∗. The flavor-specific decay B0 → φK∗ with φ → K+K− and
K∗ → K+π− is used, where K∗ denotes contributions from scalar (S-wave, spin J = 0),
vector (P-wave, J = 1), and tensor (D-wave, J = 2) components from (Kπ)∗0, K∗(892)0,
and K∗2(1430)0, respectively. As the φ meson is a vector meson, the pseudoscalar B0

decays into a vector–scalar, vector–vector, and vector–tensor state for S-, P-, and
D-wave, respectively. The partial wave analysis uses the different mass and angular
distributions of the three contributing channels B0 → φ(Kπ)∗0, B0 → φK∗(892)0, and
B0 → φK∗2(1430)0 to distinguish among them and determine the polarization in the
vector–vector and vector–tensor decay.

The polarization in the two flavor-specific decays B0 → φ(K+π−)∗ and B0 →
φ(K−π+)∗ is measured simultaneously to determine a number of parameters related to
direct CP violation. Throughout this thesis, the inclusion of the charged-conjugated
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2.5 Partial Wave Analysis

mode is implied unless otherwise stated.
The K+π− invariant mass is studied below 1.55GeV, as the LASS model [31], used

to parametrize the S-wave contribution and described below, is not valid above this
value. Furthermore, no significant contribution from K∗ states beyond 1.55GeV is
observed [32].
Following, the helicity formalism is introduced to describe angular distributions.

Furthermore, the parametrization of the K+π− invariant-mass distribution for the
S-, P-, and D-wave is described. Finally, the combined model of mass and angular
distribution of partial waves, which is applied for the parameter extraction, is derived.

2.5.1 Angular Distribution
The angular distribution in the B0→ φK∗ system with φ→ K+K− and K∗ → K+π− is
described by the three helicity angles θ1, θ2, and Φ, which are defined in the rest frame
of the parent particles as illustrated in Figure 2.4. The angle Φ is defined as the angle
between the decay planes of the K∗ and φ meson in the B rest frame. The angle θ1 (θ2)
is defined as the angle between the direction of the K∗ (φ) meson and the K+ daughter
in the K∗ (φ) rest frame.

Figure 2.4: Definition of the three helicity angles given in the rest frame of the parent
particles for the B0→ φK∗ decay.

As derived in Reference [33], due to angular momentum conservation, the partial
decay width for a two-body decay of a pseudoscalar B meson into particles with spins
J1 and J2 is given by

d3Γ
d cos θ1d cos θ2dΦ ∝

∣∣∣∣∣∑
λ

AλY
λ
J1 (θ1,Φ)Y −λJ2 (−θ2, 0)

∣∣∣∣∣
2

, (2.8)

where Y m
l are the spherical harmonics, the sum is over the helicity states λ, and Aλ is

the complex weight of the corresponding helicity amplitude. The parameter λ takes
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all discrete values between −j and +j, with j being the smaller of the two daughter
particle spins J1 and J2. As the φ is a vector meson, J2 = 1 in the following, whereas
J1 = 0 for (Kπ)∗0, J1 = 1 for K∗(892)0, and J1 = 2 for K∗2(1430)0. The partial decay
width of each partial wave with spin J ≡ J1 is therefore

d3Γ
d cos θ1d cos θ2dΦ ∝

∣∣∣∣∣∑
λ

AJλY
λ
J (θ1,Φ)Y −λ1 (−θ2, 0)

∣∣∣∣∣
2

, (2.9)

with AJλ being the complex weight of the corresponding helicity amplitude of the partial
wave with spin J .

The helicity basis is not a basis of CP eigenstates. Polarization measurements are
often performed in the transversity basis [30] of CP eigenstates with the transformation
AJ±1 = (AJ‖ ± AJ⊥)/

√
2 for two of the amplitudes. In this basis, the longitudinal

polarization AJ0 and the parallel polarization AJ‖ are even under CP transformation
while the perpendicular component AJ⊥ is CP -odd. Throughout this thesis, A is
used for B0 and Ā for B̄0 related complex weights of the helicity and transversity
amplitudes. Furthermore, depending on the context, either of the two bases is used with
λ = −1, 0,+1 or λ = 0, ‖,⊥. Where necessary, the basis used is explicitly stated. The
complex weights are defined using polar coordinates AJλ = aJλe

iϕJλ and apply the same
implicit definition of the basis; e. g. a2⊥ would be the magnitude of the perpendicular
D-wave component in the transversity basis.

2.5.2 Mass Distribution
The K+π− invariant-mass spectrum MKπ is studied to distinguish among different
partial waves. To parametrize the lineshape of the P- and D-wave components as a
function of the invariant mass m, a relativistic spin-dependent Breit–Wigner (BW)
amplitude RJ [34] is used:

RJ(m) = mJΓJ(m)
(m2

J −m2)− imJΓJ(m) = sin δJeiδJ , (2.10)

where the convention
cot δJ = m2

J −m2

mJΓJ(m) (2.11)

is applied. For spin J = 1 and J = 2, the mass-dependent widths are given by

Γ1(m) = Γ1
m1

m

1 + r2q2
1

1 + r2q2

(
q

q1

)3

, (2.12)

Γ2(m) = Γ2
m2

m

9 + 3r2q2
2 + r4q4

2
9 + 3r2q2 + r4q4

(
q

q2

)5

, (2.13)

where ΓJ is the resonance width, mJ the resonance mass, q the momentum of a daughter
particle in the rest frame of the resonance, qJ this momentum evaluated at m = mJ ,
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and r the interaction radius. This parametrization of the mass-dependent width uses
the Blatt–Weisskopf penetration factors [34].
The S-wave component is parametrized using Kπ scattering results from the LASS

experiment [31]. It was found by LASS that the scattering is elastic up to about
1.5− 1.6 GeV and thus can be parametrized as

R0(m) = sin δ0e
iδ0 , (2.14)

where
δ0 = ∆R + ∆B, (2.15)

∆R is representing a resonant contribution from K∗0(1430)0 while ∆B is denoting a
non-resonant contribution. The resonant part is defined as

cot ∆R = m2
0 −m2

m0Γ0(m) , (2.16)

where m0 and Γ0 are the resonance mass and width, and Γ0(m) is given by

Γ0(m) = Γ0
m0

m

(
q

q0

)
. (2.17)

The non-resonant part is defined as

cot ∆B = 1
aq

+ bq

2 , (2.18)

where a is the scattering length and b is the effective range.
The amplitude MJ(m) for the partial wave with spin J is obtained by multiplying

the lineshape with the two-body phase space factor

MJ(m) = m

q
RJ(m). (2.19)

The K+K− invariant-mass spectrum MKK is the same for the three contributing
partial waves. The φ lineshape is parametrized by a relativistic spin-dependent BW with
spin J = 1. In the following, the explicit dependence of the mass-angular distribution
on the MKK distribution is omitted. In the analysis itself, the MKK distribution is
taken into account and details are discussed in Chapter 6.

2.5.3 Mass-Angular Distribution
The mass distribution is combined with the angular distribution to obtain the partial
decay width

d4Γ
d cos θ1d cos θ2dΦdMKπ

∝ |M (MKπ, cos θ1, cos θ2,Φ) |2 × FMφK
(MKπ) , (2.20)
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where FMφK
(MKπ) is a phase space factor that takes into account the three-body

kinematics in B0→ φK+π−. As no resonant charmless structure is expected in the φK+

invariant-mass distribution, a constant amplitude is assumed in the φK+ invariant mass
MφK that can be computed for each value of MKπ following the section on kinematics
in Reference [22] as

F (m) = 2m
[
m2

max(m)−m2
min(m)

]
, (2.21)

with m2
max (m2

min) being the maximum (minimum) value of the Dalitz plot range of the
φK+ invariant mass MφK at a given MKπ value m.
The matrix element squared |M (MKπ, cos θ1, cos θ2,Φ) |2 is given by the coherent

sum of the corresponding S-, P-, and D-wave amplitudes AJ as

|M (MKπ, cos θ1, cos θ2,Φ) |2 = |A0 (MKπ, cos θ1, cos θ2,Φ)
+A1 (MKπ, cos θ1, cos θ2,Φ)
+A2 (MKπ, cos θ1, cos θ2,Φ) |2,

(2.22)

where the explicit dependence ofM on (MKπ, cos θ1, cos θ2,Φ) is omitted for readability
in the following. Each partial wave for a given spin J is parametrized as the product of the
angular distribution from Equation (2.9) and the mass distribution from Equation (2.19).
For the S-, P-, and D-wave,

A0 (MKπ, cos θ1, cos θ2,Φ) = A00Y
0

0 (θ1,Φ)Y 0
1 (−θ2, 0)×M0(MKπ), (2.23)

A1 (MKπ, cos θ1, cos θ2,Φ) =
∑

λ=0,±1
A1λY

λ
1 (θ1,Φ)Y −λ1 (−θ2, 0)×M1(MKπ), (2.24)

and

A2 (MKπ, cos θ1, cos θ2,Φ) =
∑

λ=0,±1
A2λY

λ
2 (θ1,Φ)Y −λ1 (−θ2, 0)×M2(MKπ) (2.25)

is obtained, respectively. Overall, the seven complex helicity amplitudes contributing to
these formulas can be parametrized by 14 real parameters (28 if B0 and B0 are measured
independently).
The normalized partial decay width can be defined as

d4Γ
d cos θ1d cos θ2dΦdMKπ

= (1 +Q)× |M+|2 + (1−Q)× |M−|2

2N × FMφK
(MKπ) ,

(2.26)
whereM+ [M−] is the matrix element for B0→ φ(K+π−)∗ [B0→ φ(K−π+)∗], Q is ±1
depending on the charge of the primary charged kaon from the B meson, and N is the
overall normalization given by

N = 1
2

∫
|M+|2 × FMφK

(MKπ) d cos θ1d cos θ2dΦdMKπ

+1
2

∫
|M−|2 × FMφK

(MKπ) d cos θ1d cos θ2dΦdMKπ.
(2.27)
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By averaging the normalization over B0 and B0, a simultaneous fit with a single
reference amplitude of fixed magnitude, which defines the relative strengths of the
amplitudes, can be performed. If both final states are normalized independently, each
with its own reference amplitude, and CP violation is observed, the interpretation of
whether CP violation is in the reference amplitudes or all other amplitudes would be
ambiguous.
Using these notations, the final set of parameters used in the analysis presented in

this thesis can be defined. For the matrix element M+, the weights are defined as
AJλ = a+

Jλe
iϕ+
Jλ and, forM−, as ĀJλ = a−Jλe

iϕ−
Jλ . Here a±Jλ is defined as

a±Jλ = aJλ(1±∆aJλ) (2.28)

and ϕ±Jλ is given by
ϕ±Jλ = ϕJλ ±∆ϕJλ, (2.29)

where one CP -conserving and one CP -violating parameter is used per magnitude and
phase. For J = 0 only λ = 0 is possible, whereas, for J = 1 and J = 2, three values
λ = 0, ‖ and ⊥ are allowed.

As reference phase ϕ00 = 0 is chosen, as the system is invariant under a global phase
transformation. This effectively reduces the 28 parameters by one. Of the remaining
27 parameters, 26 can be measured in the B0→ φK∗ system with K∗ → K+π−. These
26 parameters can be used to define a more common set of parameters shown in
Table 2.1, which are used in the review of polarization in B decays in Reference [30].
For each partial wave J , parameters such as the longitudinal (perpendicular) polarization
fractions fLJ (f⊥J), the relative phase of the parallel (perpendicular) amplitude φ‖J
(φ⊥J) to the longitudinal amplitude, and the strong phase difference between the partial
waves δ0J and a number of parameters related to CP violation are defined. The 27th

parameter, ∆ϕ00 = ∆φ00 = 1
2 arg(A00/Ā00), could only be measured in a time-dependent

analysis of CP violation in B0/B0→ φ(K0
Sπ

0)∗ decays that is beyond the scope of this
thesis, so ∆ϕ00 is fixed to zero. Furthermore, a10 is fixed as it has the largest relative
magnitude among all amplitudes and chosen as the reference amplitude. Fixing a10
does not decrease the number of free parameters as the absolute magnitude, defined by
the signal yield, remains a free parameter in the fit. Overall, 26 real parameters are left
to be determined.

In the previous Belle analysis [28], a twofold phase ambiguity was observed in the decay
of B0→ φK∗(892)0; this is a fourfold ambiguity if B0 and B̄0 are measured independently,
as the sets (φ‖J , φ⊥J ,∆φ‖J ,∆φ⊥J) and (2π − φ‖J , π − φ⊥J ,−∆φ‖J ,−∆φ⊥J) solve all
angular equations. Even the interference terms in |M|2 are invariant under such
transformation if the sign of the strong phase δ0J is flipped. However, the mass
dependence of δ0J is unique: it either increases or decreases with increasing K+π−

invariant mass. The ambiguity is solved for B0 and B0 using Wigner’s causality
principle [35], which states that the phase of a resonance increases with increasing
invariant mass.
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φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter Definition J = 0 J = 1 J = 2

BJ 1
2(Γ̄J + ΓJ)/Γtotal B0 B1 B2

fLJ
1
2(|ĀJ0|2/

∑
|ĀJλ|2 + |AJ0|2/

∑
|AJλ|2) · · · fL1 fL2

f⊥J
1
2(|ĀJ⊥|2/

∑
|ĀJλ|2 + |AJ⊥|2/

∑
|AJλ|2) · · · f⊥1 f⊥2

φ‖J
1
2(arg(ĀJ‖/ĀJ0) + arg(AJ‖/AJ0)) · · · φ‖1 φ‖2

φ⊥J
1
2(arg(ĀJ⊥/ĀJ0) + arg(AJ⊥/AJ0)− π) · · · φ⊥1 φ⊥2

δ0J
1
2(arg(Ā00/ĀJ0) + arg(A00/AJ0)) · · · δ01 δ02

ACPJ (Γ̄J − ΓJ)/(Γ̄J + ΓJ) ACP0 ACP1 ACP2

A0
CPJ

|ĀJ0|2/
∑
|ĀJλ|2−|AJ0|2/

∑
|AJλ|2

|ĀJ0|2/
∑
|ĀJλ|2+|AJ0|2/

∑
|AJλ|2

· · · A0
CP1 A0

CP2

A⊥CPJ
|ĀJ⊥|2/

∑
|ĀJλ|2−|AJ⊥|2/

∑
|AJλ|2

|ĀJ⊥|2/
∑
|ĀJλ|2+|AJ⊥|2/

∑
|AJλ|2

· · · A⊥CP1 A⊥CP2

∆φ‖J 1
2(arg(ĀJ‖/ĀJ0)− arg(AJ‖/AJ0)) · · · ∆φ‖1 ∆φ‖2

∆φ⊥J 1
2(arg(ĀJ⊥/ĀJ0)− arg(AJ⊥/AJ0)− π) · · · ∆φ⊥1 ∆φ⊥2

∆δ0J
1
2(arg(Ā00/ĀJ0)− arg(A00/AJ0)) · · · ∆δ01 ∆δ02

Table 2.1: Definitions of the 26 real parameters that are measured in the B0 → φK∗
system. Three partial waves with spin J = 0, 1, 2 are considered in the
K+π− spectrum. The amplitude weights AJλ and ĀJλ are defined in the text.
The extra π in the definition of φ⊥J and ∆φ⊥J accounts for the sign flip of
AJ⊥ = −ĀJ⊥ under CP transformation.

2.5.4 Triple-Product Correlations
From the measured weights AJλ, one can also calculate the triple-product correlations.
These quantities have been given in the previous Belle analysis [28] and are used in other
polarization measurements. The triple-product correlations do not contain additional
information with respect to Table 2.1, but are an alternative representation. The T -odd
quantities

(−)

A0
T,J = Im(

(−)

AJ⊥
(−)

A∗J0) (2.30)
and

(−)

A
‖
T,J = Im(

(−)

AJ⊥
(−)

A∗J‖) (2.31)

from Reference [36] and the corresponding asymmetries A0/‖
T,J between B0 and B0 are

sensitive to T -odd CP violation in a given decay channel with spin J .
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3 The Belle Experiment
This chapter is going to describe the technical setup without which this thesis would
not have been possible. The KEKB accelerator and the Belle detector at the Japanese
High Energy Accelerator Research Organisation (KEK) in Tsukuba, Japan, provide an
excellent environment to study flavor physics and are both briefly described below.

3.1 KEKB Accelerator
The KEKB accelerator was an asymmetric-energy e+e− collider. It operated at a
center-of-mass energy of

√
s = 10.56 GeV, which corresponds to the mass of the Υ(4S)

resonance. The Υ(4S) resonance is a bound state of a b and b quark, with a mass
about 20MeV above the threshold for BB pair production. It decays almost exclusively
into B0B0 or B+B− meson pairs. Therefore, KEKB is called a B factory.

Figure 3.1: Schematic layout of the KEKB accelerator. Taken from Reference [37].

The accelerator consisted of two storage rings with a circumference of about 3 km and
was located 11m below surface. A schematic layout of the KEKB accelerator is shown
in Figure 3.1. The electrons (positrons) have been accelerated in a linear accelerator
and stored in bunches in the High Energy Ring (HER) and Low Energy Ring (LER)
with an energy of 8GeV and 3.5GeV, respectively. The storage rings had a single
intersection point with a crossing angle of 22mrad. The bunches from HER and LER
did collide in this interaction region (IR), around which the Belle detector was built.
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The asymmetric energy of the KEKB accelerator results in a Lorentz boost of the
center-of-mass system of βγ = 0.425 along the e−-beam direction in the laboratory
reference system. The Lorentz boost causes a spatial separation of the decay vertices of
the two B mesons from the Υ(4S) decay. Before decaying, both B mesons cover a short
distance, their decay length, in the detector. The decay length difference ∆z between the
vertices gets increased by the boost and reaches experimentally accessible distances of
about 200 µm, which can be translated into a decay time difference ∆t = ∆z/βγc. One
of the design goals of KEKB was to enable measurements of the decay time difference
and allow for time-dependent measurements of B mesons.
Another design goal of the KEKB accelerator was to achieve an instantaneous

luminosity of L = 1.0 × 1034 cm−2s−1, which corresponds to a production rate of
approximately 10 BB pairs per second. The KEKB accelerator exceeded the design
luminosity and did set various world records with peak luminosities as high as L =
2.1× 1034 cm−2s−1. These records were achieved by improvements in the operation and
accelerator design, such as the installation of crab cavities, special superconducting RF
cavities that rotate the bunches to cause head-on collisions at the interaction point.
During the operation of KEKB as a B factory for the Belle detector from October

1999 to June 2010 more than 1 ab−1 of integrated luminosity was delivered. The Belle
detector recorded 711 fb−1 at the Υ(4S) resonance. In addition, samples at different
center-of-mass energies have been recorded. For example, 121 fb−1 have been recorded
at the Υ(5S) resonance and 79 fb−1 below the Υ(4S).

Since its shutdown in 2010, KEKB is upgraded to the Super-B factory SuperKEKB
with an up to 40 times increased instantaneous luminosity for the Belle II experiment.
As of 2013, commissioning is planned for 2015.

A detailed description of the KEKB accelerator design and operation is given in
References [37–39].

3.2 Belle Detector
The Belle detector is a multi-purpose magnetic spectrometer built around the interaction
region of the KEKB accelerator and covers a solid angle of 4π. It was initially designed
for high precision time-dependent measurements but served also as an excellent place
to study rare B meson decays, charm physics and flavor physics in general.
In Figure 3.2 a schematic side view of the Belle detector is shown. The detector

consists of several subdetectors to detect and identify charged and neutral particles. A
superconducting solenoid provides a magnet field of 1.5T. A silicon vertex detector (SVD)
is located around the beam pipe and used for charged track and vertex reconstruction
in combination with the central drift chamber (CDC). The measurement of dE/dx
in the CDC, an array of aerogel Čerenkov counters (ACC) and an arrangement of
time-of-flight scintillation counters (TOF) is used for particle identification of charged
tracks. Electromagnetic showers are detected in the electromagnetic calorimeter (ECL)
composed of CsI(Tl) crystals. An extreme forward calorimeter (EFC) out of BGO
crystals is located close to the interaction region to increase the angular coverage and
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Figure 3.2: Side view of the Belle detector with the different subdetectors. Taken from
Reference [40] and adapted.

serves as a beam monitor and luminosity measurement device. Inside the iron support
structure, which is used as yoke for the solenoid to return the magnetic flux and as
absorber material, resistive plate counters are installed to detect K0

L mesons and identify
muons (KLM). The signals from the different subdetectors are collected by a multi-level
trigger and data acquisition (DAQ) system.

Since 2010, also the Belle detector is under a ongoing upgrade process. Nearly
all detector components are removed and replaced by improved systems with better
performance and radiation hardness, to keep up with the increased luminosity of
SuperKEKB. As of 2013, commissioning of the Belle II [41] detector is planned for 2015.

In the next sections a brief description of the individual components of the Belle
detector is given. The description starts from the innermost component and provides
references to a series of technical publications that contain more detailed information.
The coordinate system is chosen such that the z-axis points in direction of the electron
beam. The polar angle θ is measured with respect to the z-axis and the rφ-plane is
chosen perpendicular to the z-axis.
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3.2.1 Beam Pipe
The beam pipe surrounds the interaction point, the crossing of the high and low energy
storage rings. It is designed as double-wall beryllium cylinder, see Figure 3.3, with an
inner radius of 20mm and an outer radius of 23.5mm. To reduce Coulomb scattering
in the beam pipe, a limiting effect on the z-vertex resolution, each wall is only 0.5mm
thick. The 2.5mm gap between the walls is used for active cooling with helium gas
as the beam pipe is exposed to beam induced heating effects of a few hundred Watt.
The outer cylinder is covered with a 20 µm thick gold foil to reduce background from
synchrotron radiation.

Figure 3.3: Longitudinal and cross section of the beryllium beam pipe enclosing the
interaction point as used from 1999 to 2003. Taken from Reference [40].

The described configuration was used from 1999 to 2003 and replaced during the
SVD upgrade process. The radii of the beam pipe used from 2003 to 2010 were reduced
such that the inner radius is 15mm.
A detailed description of the beam pipe is given in Reference [40].

3.2.2 Silicon Vertex Detector
To achieve one of the design goals, the measurement of time-dependent CP violation in
neutral B-meson decays, an excellent vertex resolution is required. The Lorentz boost
of the KEKB accelerator increases the decay length difference of the two B mesons to
about 200 µm. The silicon vertex detector (SVD) provides a spatial resolution for the
z-vertex position of about 100 µm and allows for precision measurements.
The SVD configuration used from 1999 to 2003, referred to as SVD1, consists of

three layers of double-sided silicon strip detectors (DSSD), see Figure 3.4. The DSSDs
are depleted pn-junctions and passing charged particles create electron hole pairs along
their trajectory that drift to the n+ and p+ strips on the DSSD surface. The n+ and
p+ strips are aligned perpendicular and parallel to the beam direction, respectively. In
combination they provide a measurement of charged tracks in rφ and z direction. The
innermost layer is mounted as close as possible to the beam pipe with a radius of 30mm,
followed by layer two and three with a radius of 45.5mm and 60.5mm, respectively.
The SVD1 covers a polar angle of 23◦ < θ < 139◦.

18



3.2 Belle Detector

Figure 3.4: Detector configuration of the SVD1 used from 1999 to 2003. Taken from
Reference [40].

Figure 3.5: Detector configuration of the SVD2 used from 2003 to 2010. Taken from
Reference [42].

The detector was upgraded in 2003 with an improved version, referred to as SVD2,
consisting of four layers equipped with DSSDs, see Figure 3.5. During the upgrade the
beam pipe was replaced and its diameter reduced to decrease the distance from the
interaction point to the first detector layer. The four layer radii of the SVD2 are 20,
43.5, 70 and 80mm. The angular coverage was also improved and covers a polar angle
of 17◦ < θ < 150◦. The upgrade improved the z-vertex resolution for decays with low
momentum tracks by about 20% with respect to the SVD1.
A detailed description of the different silicon vertex detectors used in the Belle

detector is given in References [40, 42, 43].

3.2.3 Extreme Forward Calorimeter
The extreme forward calorimeter (EFC) extends the polar angle coverage of the detector
with respect to the electromagnetic calorimeter. The EFC covers a polar angle of
6.4◦ < θ < 11.5◦ in the forward direction and 163.3◦ < θ < 171.2◦ in the backward
direction. It detects electrons and photons and further serves as beam monitor for the
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KEKB accelerator and luminosity measurement device for the Belle detector.
Due to its proximity to the interaction region and its location in the extreme forward

and backward direction, it is exposed to very high levels of radiation. Bismuth germa-
nium oxide (BGO) (Bi4Ge3O12) is used for the crystals to fulfil the requirements on
radiation hardness. The scintillation light is collected by photo diodes. The arrangement
of the BGO crystals is shown in Figure 3.6 and approximately such that each crystal
points towards the interaction point.

Figure 3.6: An isometric view of the BGO crystals of the forward and backward EFC
detectors. Taken from Reference [40].

A detailed description of the EFC is given in Reference [40].

3.2.4 Central Drift Chamber

The central drift chamber (CDC) provides measurements of the trajectories of charged
particles. The trajectories are bend in the 1.5T magnetic field and from their curva-
ture a momentum measurement of the reconstructed tracks is possible. Further, the
measurement of specific energy loss of charged particles by ionisation, dE/dx, provides
information that can be used for particle identification.
The CDC is constructed as cylindrical wire drift chamber with an asymmetry in

z-direction to account for the Lorentz boost of the center-of-mass system of the collision.
It is about 2.4m long with an inner radius of 83mm, an outer radius of 888mm and
covering a polar angle of 17◦ < θ < 150◦. The geometry details are shown in Figure 3.7.
The CDC has 12 cylindrical superlayers, each containing between three and six axial or
small-angle stereo layers, and three cathode strip layers. In total, the CDC has 8400
drift cells, each having 8 negatively biased field wires providing an electrical field that
surrounds a positively biased sense wire. The cell structure and the arrangement are
shown in Figure 3.8.
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Figure 3.7: Geometry of the CDC. The lengths in the figure are in units of mm. Taken
from Reference [40].
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Figure 3.8: Cell structure and arrangement of wires in the CDC. Taken from Refer-
ence [40].

The CDC is filled with a gas mixture of 50% helium and 50% ethane. The low-Z
gas mixture minimizes the effect of multiple Coulomb scattering and has further the
advantage of a small photo-electric cross-section, reducing the synchrotron radiation
background. The large ethane fraction allows for a good dE/dx measurement.

Charged particles passing the CDC ionise the gas along their trajectory and electron
and ions drift towards anode and cathode wires, respectively. Close to the wires, due
to the strong electric field, an avalanche effect occurs that amplifies the electric pulse
detected by the sense wires. The axial layers provide a position measurement in the
rφ-plane for measurement of the transverse momentum, whereas the small-angle stereo
layers provide additional z-position information. Track finding algorithms described in
Reference [44] combine the position measurements to reconstructed tracks. The tracks
can further be combined with hits in the SVD to improve the momentum measurement.

The amplitude of the electric pulse in the hit wires is also used to measure the energy
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loss of the charged particle. The dE/dx distribution is described by the Bethe-Bloch
formula (see Reference [22, chap. 30]) that depends on the velocity of a particle.
Consequently, the dE/dx measurement allows to distinguish among different charged
particles as the velocity depends on the particle momentum and mass. The dE/dx
measurement provides good separation between kaons and pions up to particle momenta
of p ≈ 1.5 GeV.
A detailed description of the CDC is given in References [40, 45].

3.2.5 Aerogel Čerenkov Counter
The aerogel Čerenkov Counter (ACC) is a detector for providing information on particle
identification, in particular to separate kaons from pions. It is sensitive to a momentum
range of 1.2 GeV < p < 3.5 GeV and thus complementary to the dE/dx measurement
in the CDC and the time-of-flight measurement by the TOF, described in the next
section.
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Figure 3.9: Arrangement of the ACC in the Belle detector. Taken from Reference [40].

Charged particles that pass a medium with a velocity larger than the speed of light
in the medium cmedium radiate a cone of Čerenkov light, similar to the supersonic cone
of a supersonic aircraft. The speed of light in the medium is related to the refractive
index n of the medium by cmedium = cvacuum/n. For a particle with mass m, momentum
p and velocity β, Čerenkov light is emitted if

n >
1
β

=

√√√√1 +
(
m

p

)2

. (3.1)

The material of the ACC is chosen such that for momenta p > 1.2 GeV pions, electrons
and muons emit Čerenkov light, whereas the velocity of heavier kaons and protons with
the same momenta is below the threshold velocity. The ACC is a threshold counter and
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does not image the cone of the Čerenkov light, which would provide further information
as it is related to the particles velocity.

The ACC threshold counters cover a polar angle of 17◦ < θ < 127◦ and are installed
in the barrel and forward endcap region, see Figure 3.9. The refractive index of the
silica aerogel is 1.010 ≤ n ≤ 1.030 and depends on the polar angle. Each module is
arranged such that it points toward the interaction region and the Čerenkov light is
detected by fine-mesh photomultipliers.
A detailed description of the ACC is given in References [40, 46].

3.2.6 Time-of-Flight Counter
The time-of-flight (TOF) detector system measures the time that a particle needs to
travel from the interaction point to the TOF module. In practice, the time difference
to the bunch crossing, known with high precision from the accelerator, is measured. In
combination with a momentum measurement this allows to deduce the particle mass.
The mass m of a particle is related to the measured time-of-flight T by

m = p

c

√(
cT

L

)2
− 1, (3.2)

where p is the momentum of the particle, measured in the CDC and SVD, and L the
helical distance travelled by the particle from the interaction point to the TOF module.

The TOF system is sensitive to momenta p < 1.2 GeV and complementary to the ACC
as it provides information on the separation of kaons from pions in lower momentum
ranges. Due to its good time resolution of about 100 ps the TOF is also used as timing
signal for the trigger system.
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Figure 3.10: Layout of a TOF detector module. Taken from Reference [40].

The TOF modules are plastic scintillation counters with attached photomultiplier
tubes, see Figure 3.10. The modules are installed in the barrel region in a radial distance
of 1.2m with respect to the interaction point and cover a polar angle of 34◦ < θ < 120◦.
A detailed description of the TOF is given in References [40, 47].
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3.2.7 Electromagnetic Calorimeter
The electromagnet calorimeter (ECL) measures the energy and position of electrons and
photons. In electromagnetic showers, cascades of bremsstrahlung and pair production
processes, the energy of the particles is absorbed in the ECL. The ECL is made of
8376 scintillating cesium iodide crystals doped with thallium, CsI(Tl), as wavelength
shifter and read out with photodiodes. The crystals provide a good energy resolution,
typically (1− 2)%, from a few dozen MeV up to about 4GeV, thus covering the full
energy range relevant for the Belle experiment. The large number of crystals provides a
good position resolution and covers a polar angle of 12◦ < θ < 155◦, except a small gap
between the barrel and endcap regions for construction reasons. The geometry of the
ECL and the arrangement of the ECL crystals is shown in Figure 3.11.

Figure 3.11: Geometry and arrangement of the CsI(Tl) crystals in the ECL. Taken from
Reference [40].

The measurement in the ECL is also used to contribute to the particle identification.
The ratio of deposited energy to momentum of a charged track is close to unity for
electrons, whereas it is smaller for others. Further, the shower shape of hadrons differs
from those of electrons.
A detailed description of the ECL is given in References [40, 48].

3.2.8 Superconducting Solenoid Magnet
The superconducting solenoid magnet has a cylindrical volume of 3.4m in diameter and
4.4m in length. It provides a 1.5T magnetic field and covers all detector components
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except the KLM, which is located outside in the iron support structure. The iron
support structure also serves as a return path for the magnetic flux.

The superconducting coil is made of a niobium-titanium-copper (NbTi/Cu) alloy, that
is stabilized by aluminium. The cryostat uses liquid helium to achieve superconducting
temperatures. The magnet has a nominal current of 4400A and stores an energy of
35MJ. The layout of the magnet and a cross-section of the coil is shown in Figure 3.12.

Figure 3.12: Layout of the Magnet and cross-sectional view of the coil. Taken from
Reference [40].

A detailed description of the superconducting solenoid is given in Reference [40].

3.2.9 K0
L and Muon Detector

The K0
L and muon detector (KLM) is located in the iron support structure of the Belle

detector. It is designed to identify muons and long-lived neutral kaons. The KLM is
composed of alternating layers of 4.7 cm thick iron plates from the support structure
and superlayers of resistive plate counters (RPC) that detect the charged particles. The
barrel (endcap) contains 14 iron layers and 15 (14) RPC superlayers, and covers a polar
angle of 20◦ < θ < 155◦.
The layout of a RPC superlayer is shown in Figure 3.13. Each superlayer has two

RPC modules, that consist of two glass-electrodes with a high bulk resistivity (1010 Ωcm)
and a gas filled gap. A charged particle passing the gap initiates a streamer in the
gas that creates a local discharge of the plates. The discharge induces a signal on the
external read out strips in φ and θ direction that are used to record location and time
of the ionization.
The iron absorbers in the KLM provide 3.7 interaction lengths, with an additional

0.8 interaction lengths from the ECL, of material to convert K0
L mesons into showers of

ionising particles. The KLM measures only the shower direction and thus the K0
L flight

direction. As it provides no energy measurement the KLM mainly is used as a veto
system. Showers that can not be matched to an extrapolated track from the CDC are
likely due to long-lived neutral hadrons.
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Figure 3.13: Cross section of a RPC superlayer in the KLM detector. Taken from
Reference [40].

The KLM is also used for particle identification of weakly interacting muons. With
sufficient momentum, muons pass all other detector components, only deflected by
multiple scattering, and penetrate several layers of the KLM. Reconstructed tracks
from the CDC that can be matched to a series of hits in the KLM are very likely from
muons.
A detailed description of the KLM is given in References [40, 49].

3.2.10 Trigger and Data Acquisition System

The data acquisition (DAQ) and storage of the data from the Belle detector is controlled
by the trigger system. The trigger system has to decide on the basis of fast signals from
the detector components whether an event is kept and recorded or discarded. Events of
interest are hadronic Υ(4S) decays, e+e−→ qq̄ (q ∈ {u, d, s, c}) continuum events, two
photon processes, e+e−→ τ+τ−, Bhabha scattering, and others. Discarded are events
from synchrotron radiation, interactions from the beam with residual gas in the beam
pipe or events caused by cosmic rays.

At a peak luminosity of L = 2.1×1034 cm−2s−1 the summed rate of signal (background)
processes is about 200Hz (600Hz). The trigger system is a multi-level system. In
the first layer information from the subdetectors is collected online and it is decided
whether an event is passed to the next level, that runs fast track finding algorithms.
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If reconstructed tracks originate from the interaction region, an event is kept. The
efficiency for hadronic events is more than 99%, while the data rate is reduced by a
factor two at this level. The final level processes the data offline and performs the full
events reconstruction and particle identification. Further, a set of minimal selection
criteria is applied before the data is stored for analysis.

A detailed description of the trigger and DAQ system is given in References [40, 50–52].

3.2.11 Illustration of a Reconstructed Event
To illustrate the interplay of the individual detector components a reconstructed event
is shown in Figure 3.14 and 3.15 from two different perspectives.

10 cm

Figure 3.14: Projection of a reconstructed event, recorded on 23rd March 2005, on the
xy-plane with a signal candidate (orange tracks) that is associated with a
high signal probability.
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10 cm

Figure 3.15: Projection of a reconstructed event, recorded on 23rd March 2005, on the
xz-plane with a signal candidate (orange tracks) that is associated with a
high signal probability.

The event contains a reconstructed B0 → φK∗ candidate that is associated with
a high signal probability. The individually reconstructed tracks of the decay chain
B0 → φK∗ → (K+K−)(K+π−) are highlighted in orange, whereas the black tracks
originate from the other B meson in the event. Measured drift times in the CDC
are illustrated by red and blue circles along the tracks, whereas the detector response
in the ACC, TOF and ECL is illustrated by differently colored bars. Only detector
components inside the solenoid are shown.
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3.3 Data samples
Data

This analysis uses the full data sample of 711 fb−1 recorded at the Υ(4S) resonance.
The data sample corresponds to (772± 11)× 106 BB pairs, referred to as BB events.
The remaining events in the data sample are from e+e−→ qq̄ (q ∈ {u, d, s, c}) events,
refereed to as continuum events.
Further, this analysis uses the data sample of 79 fb−1 recorded below the Υ(4S)

resonance, referred to as off-resonance data. The center-of-mass energy of these events
is below the BB threshold, thus only e+e−→ qq̄ (q ∈ {u, d, s, c}) events contribute.

Simulated Data

The analysis procedure was established using Monte-Carlo (MC) simulated events.
The program packages EvtGen [53] and Pythia [54] are used to simulate the decay
processes, while the detector response is simulated using GEANT3 [55]. The PHOTOS
package [56] is used to take into account final state radiation. The simulated decays
are generated according to known branching fractions and all cross sections are scaled
according to the integrated luminosity recorded by Belle.
The statistics of continuum e+e−→ qq̄ (q ∈ {u, d, s, c}) and inclusive b→ c events

corresponds to four times the data statistics. These samples are referred to as the four
streams of continuum and BB MC. In addition, a MC sample of inclusive b→ s decays
with 50 times the statistics in data is used and referred to as rare MC.

Signal events are either simulated as three-body phase space decay B0→ φK+π− or
via the intermediate states B0→ φ(Kπ)∗0, B0→ φK∗(892)0, and B0→ φK∗2(1430)0 for
S-, P-, and D-wave, respectively. In total, several million simulated signal events are
used and have been produced for this analysis. The different samples are generated
with various polarizations, each corresponding to multiple times the statistics in the
data sample. The samples are e. g. used to implement and test the event reconstruction
and study reconstruction efficiencies.
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4 Analysis Methods and Tools
In this chapter a brief introduction into the concept of the maximum likelihood (ML)
method is given, which is used to obtain the physical results presented in this thesis.
Two problems in the context of ML, namely calculation of normalization integrals
and dependencies among observables, and developed solutions are discussed. Further,
an alternative approach for error propagation is presented. Finally, details on the
continuum suppression, a technique to address the dominant background in the analysis
presented in this thesis, are given.

4.1 Maximum Likelihood Method
A common method to extract an estimator for a set of parameters of interest ~µ from an
observed distribution of events is the ML method or fit. Given a model f(~x; ~µ), with ~x
being a set of observables in the data, the parameters ~µ are optimized such that the
model becomes most likely for the observed data distribution. The model could e. g.
be a distribution predicted by theory or an empirically determined distribution from
simulated or real data.
Usually, the model is chosen to be a probability density function (PDF) P(~x; ~µ),

which is defined to be positive and normalized to unity over the allowed range of ~x for
all possible parameters ~µ, i. e.

∀~µ :
∫
P(~x; ~µ)d~x ≡ 1. (4.1)

Models can involve an additional set of nuisance parameters ~ϑ beside the parameters of
interest. For a model P(~x; ~µ; ~ϑ) derived from theory such nuisance parameters could
e. g. be the detector resolution or external parameters from other measurements.

The likelihood L(~µ; ~ϑ) is defined as the PDF evaluated at a measured data point ~xj:

L(~µ; ~ϑ) = P(~xj; ~µ; ~ϑ). (4.2)

For an ensemble of N independent data points, the likelihood of the ensemble is the
product of the individual likelihoods for each measured data point:

L(~µ; ~ϑ) =
N∏
j=1
P(~xj; ~µ; ~ϑ). (4.3)

In practice, the logarithm of the likelihood function L(~µ; ~ϑ) is used for numerical
reasons and the minimum of the negative log-likelihood function is searched to obtain
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the most likely estimator for the parameters of interest ~µ. A data distribution might
also consist of several components, such as signal and background; each with its own
model. Furthermore, the number of expected events in an ensemble can be a parameter
of interest which requires an extension of the likelihood function. Altogether this can
be taken into account by the log-likelihood function of an unbinned extended ML fit, as
it is used in this analysis and given by

L(~µ; ~ϑ) = lnL(~µ; ~ϑ) =
N∑
j=1

ln
{
Nc∑
i=1

NiPi(~xj; ~µ; ~ϑ)
}
−

Nc∑
i=1

Ni, (4.4)

where Nc is the number of different components in the data set, Ni is the expected
number of events for the ith component, and Pi is the PDF for the ith component.
The main problem of the ML method is the choice of the correct model. If e. g. a

quadratic distribution f(x) = x2 is fitted with a linear model f(x) = a · x, the ML
estimator of the slope parameter a will not provide any useful information nor will
the model be able to describe the data distribution. If no model can be derived from
theory, it is a common practice to derive a model from the data distribution itself;
either by using non-parametric histograms from, e. g., simulated data or by determining
a parametric description.
In this analysis the negative log-likelihood function is minimized using the MI-

NUIT [57] algorithm in the RooFit [58] package of the ROOT framework [59]. The
RooFit package provides a large set of PDFs that can be used to build a model for
experimentally observed distributions and can be extended by analysis specific PDFs.
Furthermore, it provides functionality to normalize PDFs and visualize fit results.
The ML estimators are ideal estimators in the limit of infinite statistics. They are

consistent, meaning that they give the correct value in the limit of infinite statistics,
and efficient, meaning that the variance of the estimated value is minimal.
A derivation of the ML method from basic principles and the properties of a ML

estimator can be found in Reference [60] or most textbooks on statistics and data
analysis. A review on the ML method and basic concepts of probability and statistics
can be found in Reference [22, chap. 35 and 36].

Multidimensional Maximum Likelihood Fit

In the case, that the dimension of the set of observables ~x in Equation (4.4) is greater
than one, the ML fit becomes a multidimensional ML fit. The ML method has no
constraints on the dimension of ~x as long as a corresponding multidimensional model is
given. Again, theory might partially provide a model for signal distributions (as it is
shown in Section 2.5.3), but often distributions need to be derived from data.
Given a three-dimensional set of observables ~x = {x, y, z}, a common method to

describe the three-dimensional PDF is a product of marginal distributions
P(~x; ~µ) = P(x; ~µx)P(y; ~µy)P(z; ~µz), (4.5)

where P(i, ~µi) is the marginal distribution of observable i in ~x and ~µi are the parameters
sensitive to this observable. This procedure is valid for independent observables. Indeed,
Equation (4.5) is the definition of independence among observables.
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If the observables are not independent a more sophisticated model is required (see
e. g. Section 6.2). Using conditional PDFs is one method to construct multidimensional
models. Assuming a dependence between x and y the model can be written as

P(~x; ~µ) = P(x|y; ~µx)P(y; ~µy)P(z; ~µz), (4.6)

with the conditional PDF P(x|y; ~µx) being normalized such that

∀y, ~µx :
∫
P(x|y; ~µx)dx ≡ 1. (4.7)

For an n-dimensional set of observables ~x, there exist (n2−n)/2 possible dependencies
among the observables. Constructing a parametric conditional PDF can become a
complex task even for n ≥ 2. Using non-parametric multidimensional histograms
requires exponentially increasing amounts of statistics with increasing n. Assuming m
bins per dimension, the multidimensional histogram would have mn bins in total. To
reduce the uncertainties on such a non-parametric distribution, as it can be derived e. g.
from simulated data, each bin has to have sufficient statistics which typically requires
a multiple of mn events to be simulated. Again, this can easily become a complex
problem for n ≥ 2.
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4.2 Optimization of Numeric Integration
The normalization integrals in Equation (2.27) require a four-dimensional numeric
integration, which is computationally intensive, to normalize the PDF. As the weights
inM are adjusted during an ML fit, this operation needs to be performed thousands of
times. Such integrations can however be optimized dramatically when certain conditions
are satisfied.
The integration over a simple matrix element |M|2 with two amplitudes Ai(~x)

(i = 0, 1) depending on observables ~x and their complex weights Ai = aie
iϕi∫

|M|2d~x =
∫
|A0 · A0(~x) + A1 · A1(~x)|2d~x, (4.8)

can be expanded to∫
|M|2d~x = a2

0

∫
|A0(~x)|2d~x+ a2

1

∫
|A1(~x)|2d~x

+2a0a1 cos ∆ϕ
∫

Re{A0(~x)A∗1(~x)}d~x

−2a0a1 sin ∆ϕ
∫

Im{A0(~x)A∗1(~x)}d~x,

(4.9)

with ∆ϕ = ϕ0 − ϕ1. Given n amplitudes Ai, one always obtains n integrals over Ai
squared and (n2 − n)/2 integrals over the real and imaginary parts of the product of
two amplitudes, respectively. If the amplitudes Ai have no free parameters, all integrals
become constant as only the weights are adjusted.
In the context of the signal model, derived in Section 2.5.3, there are n = 7 helicity

amplitudes, resulting in 49 constant integrals, as parameters like resonance masses,
interaction radii and other similar quantities are fixed. These integrals are computed
once with high precision and then are used on demand, thereby significantly reducing
the amount of CPU time. This method is several orders of magnitude faster than a
numeric integration in each iteration of the fit.
For cross-checks, a comparison between this optimized approach and the numeric

integration was performed. This exercise confirmed the validity of the approach but
required several days of CPU time.
The same technique can also be used to improve the computation of projection

integrals onto one dimension d in ~x for a fixed value of xd. In a typical projection
plot, hundreds of (dim ~x− 1)-dimensional integrations are necessary per plot, normally
requiring several hours of CPU time. These integrals can be computed in parallel on a
large scale cluster and stored. If loaded on demand, the improvement in speed is again
several orders of magnitude.
A thread-safe implementation of this method has been developed that integrates

into the RooFit [58] package but is not limited to it. It has become part of a software
collection that is available within the Belle collaboration and has become part of the
Belle II software stack. The user is required to implement the integrand, whereas on
demand computation, serialization and deserialization of the results, and other technical
issues are treated automatically.
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4.3 Quantifying Dependence in Multivariate Data
Sets

In a multidimensional ML fit it is crucial to use conditional PDFs where necessary and
the product of marginal distributions where possible. For this analysis a method was
developed to quantify the dependence among observables in a multivariate data set,
thus providing guidance during the model building process. The content of this section
has also been published in Reference [61]:

M. Feindt and M. Prim,
“An algorithm for quantifying dependence in multivariate data sets”,
Nuclear Instruments and Methods in Physics Research A 698, 84 (2013).

Linear Correlation Coefficient

The linear correlation coefficient r (see e. g. Reference [60]), also known as the Pearson’s
correlation coefficient, can be used to describe the linear dependence between two
observables x and y. For a given sample of N events, it can be computed from the data
by

r =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑
i=1

(xi − x̄)2

√
N∑
i=1

(yi − ȳ)2

, (4.10)

where
x̄ = 1

N

N∑
i=1

xi and ȳ = 1
N

N∑
i=1

yi (4.11)

correspond to the sample mean in x and y. By construction, the possible values of
r are within the interval [−1, 1], where r = 1(−1) corresponds to 100% (anti-)linear
dependence and r = 0 corresponds to no linear dependence.

In Figure 4.1a a distribution of two observables generated randomly from a Gaussian
normal distribution with no linear dependence is shown, whereas in Figure 4.1b a
distribution with linear dependence is shown. It is not possible to conclude from the
absence of linear dependence that two observables are independent. In Figure 4.1c a
distribution is shown where x and y follow a circular distribution, i. e. x = R · cosφ
and y = R · sinφ. The linear correlation coefficient computed for this sample is zero.
This limitation of the linear correlation coefficient should be kept in mind when

testing whether two observables are independent. Analyses involving observables from
angular distributions can have distributions similar to the circular example with small
correlation coefficients. Those distributions are not necessarily independent.

Projections in Subranges

A common practice to understand dependencies between two observables is the investi-
gation of projections of one observable in subranges of the other. In Figure 4.2 three
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Figure 4.1: Distributions of two observables x and y, randomly generated from a Gaus-
sian normal distribution with (a) no and (b) 70% linear dependence. In (c)
an example of x and y being circular distributed is shown. The marginal
distributions P(x) and P(y) of the observables x and y are shown above
and right of the scatter plot, respectively.

examples of this method are given, using the same data sets as in Figure 4.1.
In case of independent observables, the three projections show similar distributions.

This method however does not allow to conclude independence in general. One has to
be aware of symmetry axes in the original distribution. By choosing only two subranges
with y > 0 and y < 0 instead of three, Figure 4.2c would lead to two similar distributions.
Using an adequate number of subranges avoids this problem in practical applications.
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Figure 4.2: Normalized projections on observable x in three different subranges of
observable y for the three data sets (a), (b) and (c) shown in Figure 4.1.

Although this method reveals strong dependencies, it requires further statistical
tests such as for example a Kolmogorov-Smirnov-Test (see Reference [60]) to judge
whether two similar distributions are statistically compatible or not. Each pair of
observables, with projections of one in n subranges of the other, requires (n2 − n)/2
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comparisons. Given m observables and the (m2 −m)/2 possible dependencies among
them, the total number of comparisons becomes large and requires a reliable automatic
procedure. Sorting different dependencies among different observables according to
their importance is also not a simple task.

Hypothesis Test for Independence

What is actually desired to solve the original problem, namely to make a reliable
statement on whether two distributions are independent or not, is a robust hypothesis
test for independence. To describe such a test, the concept of Copulas, introduced in
1959 by Sklar for description on how a joint distribution function couples to its margins,
is used. Sklar’s theorem states:
Let S be a joint distribution function with margins F and G. Then there exists a

copula C such that for all x,y in R,

S(x, y) = C(F (x), G(y)). (4.12)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
RanF × RanG. Conversely, if C is a copula and F and G are distribution functions,
then the function S defined by Equation (4.12) is a joint distribution function with
margins F and G.

Sklar’s theorem and more details on copulas can be found for example in Reference [62].
A special copula is the unit copula C(u, v) = u × v, which connects the marginal
distributions of independent observables, as can be seen by comparison to Equation (4.5).

An algorithm to perform a robust hypothesis test for two observables x and y being
independent in a given data set with N events is given by the following steps:

1. Determine the probability integral transforms u = F (x) and v = G(y) of observ-
ables x and y. First sort the data in x and y. The values of u = I/N (v = J/N),
where I (J) is the index of x (y) in the sorted range, are then within the interval
[0, 1]. This is sometimes referred to as flattening the distribution.

2. Create a n× n histogram H(u, v) with bins of equal size and fill it with all events.
The number of bins n should be chosen such that N/n2 is large enough (& 25).
H(u, v) corresponds to the empirical copula density.

3. In each bin of H(u, v), if x and y are independent, e = N/n2 entries are expected
and the statistical uncertainty can be approximated by σe =

√
N/n2 if the binning

was chosen as suggested in step 2.

4. Compute the χ2 =
n∑
i=1

n∑
j=1

(hi,j−e)2

σ2
e

, where hi,j is the content of the (i, j)th bin of

H(u, v).

5. The probability of the data being consistent with a flat hypothesis and thus x
and y being independent observables follows a χ2 distribution with n2 − (2n− 1)
degrees of freedom. By construction, the number of degrees of freedom is reduced
by (2n− 1) due to the flatness of the two marginal distributions.
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In short, the algorithm performs a test of H(u, v) being consistent with the constant
density c(u, v) = ∂2C(u,v)

∂u∂v
expected from the unit copula. The algorithm is able to

identify any linear or non-linear dependence. The probability of the hypothesis can
easily be compared among different pairs of observables in a multivariate data set
with more than two observables. It also can be translated into the unit of standard
deviations significance for the hypothesis that x and y are dependent (see the section
about significance tests in Reference [22, sec. 36.2.2]). Examples of the resulting
deviations from a flat distribution for the histogram H(u, v) are shown in Figure 4.3
for the data sets shown in Figure 4.1.
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Figure 4.3: Deviation in units of σe for the histogram H(u, v) from a flat distribution
for the three data sets shown in Figure 4.1. The axis labels correspond to
the untransformed (original) values of x and y, which allow for a simpler
interpretation than the values in u and v. The resulting probability p for
the distribution being consistent with a flat distribution, thus independent,
and its transformation into significance s in units of standard deviations for
being dependent is given below each figure.

The algorithm is very robust and delivers reliable results as it is based on rank
statistics, no matter whether observable values are located on a small interval or reach
over several orders of magnitude.

Another feature of this algorithm is the fact that its output scales with the size of the
data set. A dependence might be negligible for low statistics but significant for higher
statistics. Imagine for example a chessboard like distribution. Neither the algorithm
nor the maximum likelihood fit will be sensitive to this dependence with low statistics
and a simple product of marginal distributions will describe the data. With increasing
statistics this dependence will become more and more significant as the size of the bins
decreases. Also the fit model will have to be adjusted once the dependence reaches a
certain level.
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4.3 Quantifying Dependence in Multivariate Data Sets

CAT - A Correlation Analysis Toolkit

The methods described in this section are implemented in a correlation analysis toolkit
(CAT) that is licensed under the GPLv3. It is available online at the location given in
Reference [63] and briefly described in Reference [61].

CAT performs all described methods and some others in a fully automatic procedure,
requiring only the multivariate data set as input. Further, a correlation report file
is automatically generated that provides all the results. Given the results from the
hypothesis test for independence, an experimentalist can make a reliable statement on
the dependence of observables in a given data set.
In practice it is recommended to start with e. g. a simulated signal or background

data sample with about the same statistics as expected in real data. If dependencies
with more than 5σ significance are detected, they definitely should be modeled with
conditional PDFs or treated somehow differently. Dependencies with more than 3σ
should be studied in more detail, e. g. by increasing the simulated data statistics. If
the dependence becomes more significant it is necessary to validate in toy studies if
neglecting the dependencies introduces a bias on the analysis. Dependencies below 3σ
significance are usually not visible in projections in subranges and are likely due to
statistical fluctuations. Thus assuming independence is a valid assumptions.
Increasing the simulated data statistic to e. g. 100 times the statistic of real data

should be avoided. Dependencies occurring with this statistic are negligible for the
analysis on real data statistic. Further, it might be questionable if the simulation has
the proper level of accuracy to describe the dependence to that detail.

Part of the CAT package is also an example that creates a multivariate data set with
six partially dependent observables. The observables are generated from uniform U or
Gaussian G distributions. The observables are defined as:

1 : a = U(0, 1) 4 : d = U(a, 1)
2 : b = G(0, 1) 5 : e = r × cosφ
3 : c = a× b 6 : f = r × cosφ

with r = G(0.7, 0.15) and φ = U(0, 2π). In Figure 4.4a the matrix of linear correlations
coefficients among the six observables is shown, whereas in Figure 4.4b the significance
for dependence is shown in units of standard deviations. The hypothesis test reveals
all dependencies with more than 8σ whereas the linear correlation coefficient deviates
from zero only for the pairs of observables (1, 4) and (2, 3). The yellow colored 2.32σ
dependence between the pair (1, 2) is a typical example of a statistical fluctuation.
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Figure 4.4: Matrices of (a) linear correlation coefficients and (b) significance for depen-
dence in units of standard deviations for the six observables described in
the text.
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4.4 Error Propagation
The 26 real parameters in Table 2.1 are calculated from the amplitude weights obtained
in the ML fit. The uncertainties of some, such as the phases, are rather easy to calculate
by using Gaussian error propagation and the correlation matrix of the fitted parameters,
as described in Reference [60, chap. 4.9]. Although the derivatives, required for the
Gaussian error propagation, can always be calculated even if the task may become
complicated for certain quantities. A simple and robust method to obtain the correctly
propagated statistical uncertainties applies toy based error propagation and avoids
calculation of analytic derivatives.

1. Generate a vector ~R of n random Gaussian numbers with mean zero and width
one, where n is the number of fitted parameters.

2. Rotate the vector of random numbers, such that they have the same correlation
as the fitted parameters by:

a) Decompose the correlation matrix C of fitted parameters, using Cholesky
decomposition [60, chap. 3.6], to obtain a matrix U , which is defined as
UTU = C.

b) The vector of rotated random numbers ~RC is then given by ~RC = UT ~R.

3. Scale each rotated random number i in ~RC by multiplying it with the corresponding
statistical uncertainty σi, where σi is the square root of the ith diagonal element
in the covariance matrix of the ML fit.

4. Add the obtained vector of rotated and scaled random numbers to the nominal
ML fit result. The obtained result differs from the nominal result by a random
value that is consistent with the expectation from the statistical uncertainty.

5. Use the obtained result to calculate all parameters of interest, which, again, differ
randomly from the values calculated using the nominal fit result.

6. Repeat the steps 1 to 5 to obtain a distribution for each parameter of interest.
The distributions follows a Gaussian distribution and the width corresponds to the
statistical uncertainty of the given parameter. Typically, 1000 to 10000 repetitions
are sufficient to obtain a smooth distribution that can be fitted with a Gaussian
distribution with negligible uncertainty on the width.

In case of asymmetric statistical uncertainties, the scaling in step 3 can be done
separately with the lower (higher) statistical error for random numbers below (above)
zero. The distribution in step 6 can then be fitted, using an asymmetric Gaussian
function, to determine the lower (higher) width independently and to obtain the
propagated lower (higher) parameter uncertainty.
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4.5 Continuum Suppression

4.5.1 Event Shapes

The major background in this analysis originates from e+e− → qq̄ (q ∈ {u, d, s, c})
processes. The quark pairs produced in the e+e−-annihilation fragment into light
hadrons and give rise to the dominant source of background, referred to as continuum
background.

In these continuum events, the light quark pairs are created back-to-back in the center-
of-mass frame and their kinetic energy corresponds almost to the accelerator energy.
The hadrons produced in the fragmentation have only small momentum perpendicular
to the quark flight direction, thus resulting in a jet-like and spatially confined structure.
This is in contrast to BB events from e+e−→ Υ(4S)→ BB processes. The mass of the
BB meson pair corresponds almost to the beam energy, therefore it is created nearly
at rest in the center-of-mass frame. The pseudoscalar B mesons have spin 0 and thus
their decay products have no preferred direction, resulting in an isotropic distribution
of spherical shape. The event shapes for continuum and BB events are illustrated in
Figure 4.5.

Figure 4.5: Illustration of the event shapes for continuum (left) and BB (right) events.
Light quark pairs in continuum events are produced back-to-back and give
rise to a more jet-like structure, whereas BB events have a spherical shape.
Taken from Reference [64].

Different quantities can be used to characterize the event shape and describe the
event topology. Below the quantities used in this analysis are described in detail.
They are further combined in an artificial neural network to construct a more powerful
discriminant, which is used in the analysis and described in Section 4.5.2.
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B Meson Flight Direction with Respect to the Beam

The Υ(4S) is a vector meson with spin 1 and its decay into two pseudo-scalar B mesons
with spin 0 requires conservation of angular momentum. In the center-of-mass frame,
the polar angle cos θB of correctly reconstructed B meson candidates with respect to
the beam axis follows a 1− cos2 θB distribution. For random combinations of tracks in
continuum events the distribution is uniform. In Figure 4.6a the | cos θB| distribution
of BB and continuum events is shown.
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Figure 4.6: Distribution of (a) | cos θB|, (b) | cos θThrust|, and (c) F for MC simulated
BB (red) and continuum (black) events.

Thrust

The thrust T is defined as

T = max
~T

=

∑
i
|~pi · ~T |∑
i
|~pi|

, (4.13)

where ~pi is the momentum of the ith final-state particle in an event and ~T is the thrust
axis, defined as the direction that maximises the sum of the longitudinal momenta of
particles. Final-state particles are the stable decay products that are measured in the
different detector components, described in Section 3.2. The concept of thrust was
originally introduced to quantify jets at high energy experiments, back in the 1980s [65].

An observable that can be used to distinguish between continuum and BB events is
| cos θThrust|, where θThrust is the angle between the thrust axis of the reconstructed B
candidate and the thrust axis of all remaining particles in the event. For BB events
the | cos θThrust| distribution is expected to be uniform as the isotropically distributed
particles in the event have random thrust axes. For the jet-like continuum events it
is more likely that the thrust axes are collinear. If the reconstructed B candidate is
combined by particles of one jet the | cos θThrust| distribution is peaking towards 1. The
| cos θThrust| distribution of BB and continuum events is shown in Figure 4.6b.
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Fox-Wolfram Moments and Modified Fox-Wolfram Moments

The kth Fox-Wolfram moment Hk and the kth normalized Fox-Wolfram moment Rk are
defined as

Hk =
∑
ij

|~pi||~pj|Pk (cos θij)
E2

vis
and Rk = Hk

H0
, (4.14)

where Pk denotes the kth Legendre polynomial, ~pi (~pj) is the momentum of the ith (jth)
final-state particle, θij is the opening angle between the momenta of the ith and jth

particle and Evis is the sum of the measured energy in the event. The Fox-Wolfram
moments have been introduced to describe event shapes in e+e−-annihilations [66, 67].

In the study of charmless B decays, the Belle Collaboration introduced modified Fox-
Wolfram moments [68, 69], sometimes also referred to as Super-Fox-Wolfram moments,
which are a refinement of the Fox-Wolfram moments. The summation over the ith and
jth particle momenta in Equation 4.14 is not taken over all final-state particles in the
event. Instead, the summation is taken over the final-state particles of the reconstructed
B candidate, denoted by the superscript “s”, or over the remaining final-state particles
in the event, denoted by the superscript “o”. The possible combinations give rise to
three groups of modified Fox-Wolfram moments Rso

k , Roo
k and Rss

k .
The moments Rso

k and Roo
k can be used to distinguish between continuum and BB

events. The momentsRss
k as well asRso

1 andRso
3 are generally excluded due to correlations

with Mbc and ∆E, two observables used in this analysis and a multitude of other
analyses at the Belle experiment. Additional improvement is achieved by performing
the calculation of Rso

k in categories that represent the quality of reconstructed events
based on the missing mass in the event.
The different moments have linear dependence among each other and are combined

using a Fisher discriminant [70] to obtain a single discriminating observable F with
values from 0 (for jet-like continuum events) to 1 (for spherical BB events). The
distribution of F is shown in Figure 4.6c.

4.5.2 Artificial Neural Network
The three discriminating observables | cos θB|, | cos θThrust|, and F are further combined
to a super-discriminant CNB using an artificial neural network that can handle also
potential non-linear dependence among the three observables. The neural network
is realised with the NeuroBayes package [71, 72], which provides, beside the training
of neural networks itself, advanced algorithms for preprocessing and regularization of
input data. The package makes internal use of the Bayes theorem [73] and has proven
its performance and robustness at various high energy physics experiments and in
industrial applications.
The training of the neural network was performed with MC simulated continuum

events for background and MC simulated B0 → φ(K+π−)∗ events for signal (see also
Section 3.3). The signal events were simulated unpolarized as a sum of B0→ φ(Kπ)∗0,
B0 → φK∗(892)0, and B0 → φK∗2(1430)0 decays with relative strengths given by the
latest branching fraction measurements in Reference [22].
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The observables used as input variables to the network are given in Table 4.1. The
input variables are sorted by their rank, their power to separate between signal and
background after the preprocessing was performed. The added significance is a measure
of how much this input variable adds to the separation of the network between signal
and background, whereas the individual significance is a measure of how good the
variable itself separates. Zero individual significance implies identical distributions
for signal and background. The global correlation is a measure of how strong the
variable is correlated to others. Large values typically result in low values for the added
significance, except for one variable that is ranked high. The total significance and
total correlation to target are measures for the networks ability to separate between
signal and background. Again, zero significance or zero correlation corresponds to the
inability of the network to separate among them. A definition of significance can be
found in the section about significance tests in Reference [22, sec. 36.2.2].

Rank Variable Added (σ) Individual (σ) Global correl. (%)
1 F 292.67 292.67 73.8
2 | cos θB| 51.59 94.36 15.0
3 | cos θThrust| 46.90 247.77 73.5

Total signi.: 300.86σ Total correl. to target: 69.81%

Table 4.1: Input variables of the neural network. Rank, variable name, added and
individual significance of the variable, and global correlation are listed for
each variable. Below, total significance of the network and correlation of the
network output to the target (signal) are given.

The preprocessing applied in this analysis flattens the input distribution and trans-
forms it to a Gaussian with mean zero and width one. Other types of preprocessing exist
for example for discrete input variables or input variables with missing values. A global
preprocessing is applied which accepts only variables with at least 3σ added significance
in the training and decorrelates and rotates the input variables to improve the network
training. Control plots from the preprocessing during the neural network training are
given for F , | cos θB|, and | cos θThrust| in Figure 4.7, 4.8, and 4.9, respectively.
The resulting CNB distribution of signal and background events on the training

sample is shown in Figure 4.10a. In many analyses, the network output is used to
reject background events by requiring it to be larger than a certain “cut” value, i. e.
CNB > cut. More sophisticated use of the information in the network output can be
made by including it as an additional observable in a multidimensional ML fit. Typically,
a soft cut is performed on CNB and the remaining events are transformed to a new
observable

C ′NB = log
(
CNB − cut
1− CNB

)
, (4.15)

where C ′NB tends to have a Gaussian-like shape that can usually be described analytically
by a sum of Gaussian functions. An exemplary distribution of C ′NB is shown in
Figure 4.10b with a requirement of CNB > −0.9 applied.
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Figure 4.7: Flattened distribution of F (top) shown as individual contribution from
signal (red) and background (black), purity of the flattened distribution
per bin (middle), and purity transformed to Gaussian with mean zero and
width one (bottom), again shown as individual contribution from signal
(red) and background (black). Values exceeding ±3 in the bottom figure
are given as over- and underflow entries.
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Figure 4.8: Flattened distribution of | cos θB| (top) shown as individual contribution
from signal (red) and background (black), purity of the flattened distribution
per bin (middle), and purity transformed to Gaussian with mean zero and
width one (bottom), again shown as individual contribution from signal
(red) and background (black). Values exceeding ±3 in the bottom figure
are given as over- and underflow entries.
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Figure 4.9: Flattened distribution of | cos θThrust| (top) shown as individual contribution
from signal (red) and background (black), purity of the flattened distribution
per bin (middle), and purity transformed to Gaussian with mean zero and
width one (bottom), again shown as individual contribution from signal
(red) and background (black). Values exceeding ±3 in the bottom figure
are given as over- and underflow entries.
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Figure 4.10: Distributions of (a) the network output CNB and (b) the transformed
network output C ′NB with a requirement of CNB > −0.9 applied in (b) for
signal (red) and background (black).
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5 Reconstruction and Selection
This chapter addresses the reconstruction of B0 mesons and the applied selection criteria.
It further discusses different background contributions and the reconstruction efficiency
of signal events. Finally, a control channel for different cross-checks throughout the
analysis is introduced.

5.1 Event Reconstruction and Selection
The B0 meson candidates are reconstructed in the exclusive decay chain B0→ φK∗ →
(K+K−)(K+π−). The reconstruction takes the reconstructed charged tracks and combines
them to φ and K∗ candidates, which are further combined to B0 candidates. The applied
selection criteria are chosen to include as many candidates as possible in the final ML
fit. The reconstruction and selection was developed and optimized with MC simulated
data events. Below, a summary of each step of the reconstruction chain is given.

Charged Tracks

The charged tracks are required to have a transverse (longitudinal) distance of closest
approach to the interaction point of less than 0.1 (4.0) cm. Information from the CDC,
ACC, and TOF subdetectors, described in Section 3.2, are combined in a likelihood-ratio
and provide a particle identification (PID) quantity for each track.

φ Mesons

The φ meson candidates are reconstructed using two oppositely charged tracks with a
K+K− invariant mass requirement of MKK < 1.05 GeV. The requirements on the PID
quantity for these two tracks provide a kaon identification efficiency of 95% with an
associated pion misidentification rate of 26%.

K∗ Mesons

The K∗ meson candidates are reconstructed using two oppositely charged tracks with
a K+π− invariant mass criterion of 0.7 GeV < MKπ < 1.55 GeV applied. The PID
requirement for the K+ track candidate has a kaon identification efficiency of 90%
with an associated pion misidentification rate of 28%, whereas the PID requirement for
the π− candidate has a pion identification efficiency of 98% with an associated kaon
misidentification rate of 9%.
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5 Reconstruction and Selection

B0 Mesons

The φ and K∗ candidates are combined to B0 meson candidates. Two quantities are
used for the B0 selection: the beam-energy-constrained mass

Mbc =
√

(E∗beam)2 − (p∗B)2 (5.1)

and the energy difference
∆E = E∗B − E∗beam, (5.2)

where E∗beam is half of the beam energy, and p∗B and E∗B are the momentum and energy
of the B0 candidate in the center-of-mass frame, respectively. Candidates in the region
5.24 GeV < Mbc < 5.29 GeV and −150 MeV < ∆E < 150 MeV are retained for further
analysis. The Mbc range is divided into two regions: a sideband for candidates in
the subrange 5.24 GeV < Mbc < 5.26 GeV and the nominal fit region in the subrange
5.26 GeV < Mbc < 5.29 GeV.

In 17% of all signal events, more than one B0 candidate passes all selection criteria. In
that case, all tracks of one candidate are constrained to originate from a common vertex
within the interaction region. The candidate with the smallest χ2 for this hypothesis
is kept. This requirement selects the correct candidate with a probability of 64%,
according to MC simulations.
Two more selection requirements, on the neural network output CNB and on the

helicity angle cos θ1, are further applied to reject background events as described in the
next section.

5.2 Background Studies
Combinatorial Background

The selected sample of B0 candidates is dominated by background candidates from
e+e− → qq̄ (q ∈ {u, d, s, c}) events, in which random combinations of tracks pass all
selection criteria and fake a signal candidate. The neural network output CNB, described
in Section 4.5.2, must satisfy the criterion CNB > 0, which rejects 86% of this continuum
background and retains 83% of the signal.

Another background component, with a small fraction of about 2% of the continuum
background, arises from random combination of tracks in BB events. These events
follow a similar distribution as the continuum background events in all observables and
are indistinguishable in data. In Figure 5.1a the Mbc distribution of MC simulated data
events is shown and illustrates the dominating background from continuum events and
the small contribution from BB events. Hereinafter, the sum of both components is
referred to as combinatorial background.

Self-Crossfeed Background

In some signal events, the B0 candidate is reconstructed only partially with one or more
tracks originating from the other B meson in the event. The wide K+π− invariant mass
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window of 0.7 GeV < MKπ < 1.55 GeV allows for random combinations that still pass
the criterion. As about 70% of all tracks in a BB event are pions, it is most likely that
a random π− track from the other B meson is used to reconstruct the signal candidate.
Typically, the momentum in the lab frame of such random π− is smaller than the K+

momentum which results in the K+π− system being dominated by the K+ momentum.
Therefore, these self-crossfeed (SCF) events tend to peak in the region of high cos θ1
values, as illustrated in Figure 5.1b. A part of the SCF events can be rejected, see next
section, and the remaining events are treated as a systematic uncertainty.
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Figure 5.1: Distributions of MC simulated data events in (a) Mbc and (b) cos θ1. In (a)
and (b) the requirement CNB > 0 is applied, yet the continuum background
is still dominating. In (a) the requirement on cos θ1 < 0.75 is applied. In
(b) correctly reconstructed signal events are not shown as their distribution
depends on the polarization andMbc > 5.27 is required to enrich the peaking
background contributions. The vertical line in (b) indicates the cos θ1 < 0.75
requirement.

Peaking Background

Certain B meson decay chains can fake signal events. The inclusive b→ c and b→ s
MC samples with four and 50 times the statistics expected in data, respectively, are
used to study such decays. The branching fractions in the MC simulation have been
scaled to match the latest measurements from Reference [22]. Below, an overview is
given containing either decay chains that have the same final state or one misidentified
track. Decay chains with more than one track being misidentified have been found to
be negligible.
Two decay modes,

1. B0→ D−s K+→ (φπ−)K+→ ([K+K−]π−)K+

2. B0→ f0(980)K∗(892)0 → (K+K−)(K+π−)
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show a clearly peaking structure in at least the Mbc, ∆E, and MKK distribution with
a statistically significant amount of events expected from MC simulations. However,
the B0→ D−s K+ mode is a series of two-body decays and peaks sharply near 0.8 in the
cos θ1 distribution, as can be seen in Figure 5.1b. A requirement of cos θ1 < 0.75 is
applied to reject the peaking component entirely as well as the majority of SCF events;
both can be seen in Figure 5.1a. The requirement further rejects a large part of the
combinatorial background.
The B0 → f0(980)K∗(892)0 mode denotes any contribution from a broad scalar

component in the K+K− distribution that could originate from either f0(980), a0(980),
or non-resonant K+K−. This mode can not be vetoed and is included as an additional
component in the ML fit. There is no statistically significant contribution expected
from K∗ states other than the K∗(892)0 but the possibility is checked as a systematic
uncertainty.
Five decay modes,

1. B0→ φφ→ (K+K−)(K+K−)

2. B0→ φρ0 → (K+K−)(π+π−)

3. B0→ f0(980)π+π−→ (K+K−)π+π−

4. B0→ φf0(980)→ (K+K−)(π+π−)

5. B0→ φf0(980)→ (K+K−)(K+K−)

that could be identified as possible peaking backgrounds, are all unobserved and only
upper limits on their branching fractions are given in Reference [22]. Assuming these
upper limits to be branching fractions, no statistically significant contribution that
would effect the ML fit is expected from MC simulations. Due to one misidentified track,
all modes show displaced peaks in at least the ∆E distribution and peak either several
MeV above or below the signal. This depends on the mass difference of the different
particle hypotheses. These modes are not included in the ML fit but are studied as a
possible systematic uncertainty.

5.3 Reconstruction Efficiency
The general detector acceptance and the selection requirements described in the previous
sections affect the reconstruction efficiency. Whereas for observables such as Mbc the
true distribution has a negligible width and the observed distribution is only smeared by
the detector resolution, the distributions of the mass-angular observables MKπ, cos θ1,
cos θ2, and Φ require a more detailed study.

The signal distributions in the four mass-angular observables are broad and depend
on the polarization of the B0 → φK∗ system. For a B0 → φK+π− three-body phase
space decay with uniform angular distributions, the averaged reconstruction efficiency
is found to be (28.3 ± 0.1)%, according to MC simulation. In general, for a given
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partial wave with spin J and non-uniform acceptance, the reconstruction efficiency
εreco,J depends on the observed mass-angular distribution and can be obtained only after
the polarization was measured. For the partial wave amplitudes AJ in Equations (2.23)
to (2.25), one can compute εreco,J using

εreco,J =
∫
α (MKπ, cos θ1, cos θ2,Φ) |AJ |2∫

|AJ |2
= n

d
, (5.3)

where α (MKπ, cos θ1, cos θ2,Φ) is a four-dimensional acceptance function and the nu-
merator n is the integral over the phase space with the acceptance included and is given
by

n =
π∫
−π

+1∫
−1

+1∫
−1

mB0−mφ∫
mK+mπ

α|AJ |2dMKπd cos θ1d cos θ2dΦ, (5.4)

where mB0 , mφ, mK , and mπ are the nominal particle masses from Reference [22] that
limit the MKπ phase space. The explicit dependencies of α and AJ are omitted for
readability. The denominator of Equation (5.3), d, is given by the integral over the full
phase space with a uniform acceptance

d =
π∫
−π

+1∫
−1

+1∫
−1

mB0−mφ∫
mK+mπ

|AJ |2dMKπd cos θ1d cos θ2dΦ. (5.5)

The four-dimensional mass-angular acceptance function α (MKπ, cos θ1, cos θ2,Φ) is
modeled by the product of the four properly normalized one-dimensional efficiency
functions. In Figures 5.2 to 5.5 the efficiency as a function of MKπ, cos θ1, cos θ2, and
Φ is shown for a MC simulated B0→ φK+π− three-body phase space decay, which is
generated with uniform angular distributions. The efficiency distribution in MKπ is
parametrized using a second-order polynomial function. The efficiency as a function of
cos θ1 is parametrized by a forth-order polynomial function for cos θ1 < 0.75 and zero
above. The efficiency as a function of cos θ2 and Φ is found to be uniform.

Polynomial functions with at least two orders higher than described above have been
used to parametrize the efficiency as function of each observable, but the corresponding
coefficients have been found to be consistent with zero within their statistical uncertainty.
A possible flavor dependence in the parametrization, i. e. a difference due to the charge
of the primary kaon between B0 → φK+π− and B0 → φK−π+ samples, has also
been studied, but was found to be smaller than the statistical uncertainty of the
parametrization obtained on the joined samples.

To further cross-check the validity of the acceptance function being modeled as product
of one-dimensional functions, two-dimensional products are studied. The expected
two-dimensional efficiency ε1D×1D from the product of one-dimensional functions is
compared to the efficiency obtained from a two-dimensional histogram ε2D−Hist, using
the MC simulated B0→ φK+π− three-body phase space sample.

The deviation σeff of the expected two-dimensional efficiency in units of the statistical
uncertainty of the two-dimensional histogram σ2D−Hist is given by

σeff = ε1D×1D − ε2D−Hist

σ2D−Hist
. (5.6)
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Figure 5.2: Efficiency as a function of MKπ with (a) generated (black marker) and
observed (blue marker) distribution of events as a function of MKπ and (b)
resulting efficiency (black marker) and parametrized acceptance function
(blue line).
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Figure 5.3: Efficiency as a function of cos θ1 with (a) generated (black marker) and
observed (blue marker) distribution of events as a function of cos θ1 and (b)
resulting efficiency (black marker) and parametrized acceptance function
(blue line).

For the six possible two-dimensional combinations of the four mass-angular observables,
the deviations are shown in Figure 5.6 with an equidistant binning. For cos θ1 the study
is limited to the region of cos θ1 < 0.75. The mean of deviations is consistent with zero
for all six combinations. The χ2 of the deviations can be computed as

χ2 =
ni∑
i

nj∑
j

(σ(i,j)
eff )2, (5.7)

where σ(i,j)
eff is the content of the (i, j)th bin. Using the number of bins ni × nj as
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Figure 5.4: Efficiency as a function of cos θ2 with (a) generated (black marker) and
observed (blue marker) distribution of events as a function of cos θ2 and (b)
resulting efficiency (black marker) and parametrized acceptance function
(blue line).
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Figure 5.5: Efficiency as a function of Φ with (a) generated (black marker) and observed
(blue marker) distribution of events as a function of Φ and (b) resulting
efficiency (black marker) and parametrized acceptance function (blue line).

degrees of freedom, the significance of the hypothesis is less than 1σ for all combinations
that the distribution of the expected efficiency from the product of one-dimensional
functions is different from the efficiency of the two-dimensional histogram, except for
the combination of MKπ and cos θ1, shown in Figure 5.6a. The significance is 3.2σ and
dominated by a single bin in the bottom right and becomes 1.1σ if this bin is removed
from the χ2.
Overall, the product of one-dimensional efficiency functions provides a reasonable

model of the four-dimensional mass-angular acceptance function. Uncertainties on this
model will be included as systematic uncertainties.
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Figure 5.6: Deviations of the two-dimensional efficiency calculated from the product
of one-dimensional functions from the actual two-dimensional efficiency
in units of the uncertainty of the efficiency. In (a) to (f) the six possible
two-dimensional combinations of the four mass-angular observables MKπ,
cos θ1, cos θ2, and Φ are shown.
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5.4 Control Channel
Certain differences between the MC simulation and data can be estimated from a control
sample. Control channels are typically channels with higher statistics than the signal
channel and a high purity, thus providing a sample to compare the MC simulation of
the control channel directly with its corresponding data. As a control channel the decay
B0→ J/ψK∗(892)0 → (µ+µ−)(K+π−) was selected, where the φ meson was replaced by
a J/ψ meson with respect to the signal channel.
The J/ψ candidates are reconstructed using two oppositely charged tracks with an

µ+µ− invariant mass requirement of 3.085 GeV < Mµµ < 3.110 GeV. The K∗(892)0

candidates are reconstructed using two oppositely charged tracks with a K+π− invariant
mass criterion of 0.85 GeV < MKπ < 0.95 GeV applied. For the kaon and pion track
candidate from K∗(892)0, the same PID requirements as for the K∗ mesons in the signal
channel are applied. For the muon candidates the PID is required to be consistent
with a muon hypothesis. The energy difference of the B0 candidates, combined from
J/ψ and K∗(892)0 candidates, is required to be −20 MeV < ∆E < 20 MeV and the
beam-energy-constrained mass must satisfy the criterion 5.24 GeV < Mbc < 5.29 GeV.

In Figure 5.7 the normalized Mbc distribution of the selected B0 candidates is shown.
The data distribution is nearly background free as no combinatorial background from
continuum events is expected due to the tight selection around the narrow J/ψ peak.
The only expected background is from self-crossfeed and combinatorial background in
B→ J/ψX inclusive events. The distribution of such J/ψ inclusive MC simulated data
events, with 50 times the statistics expected on data, is in excellent agreement with the
observed data distribution. In the region Mbc > 5.27 GeV, 9599 events are selected on
data with a purity of (96.98± 0.01)%, according to MC simulations. Thus, the control
sample corresponds to about 10 times the statistic expected for the signal channel.
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Figure 5.7: Normalized Mbc distribution of J/ψ inclusive MC simulated data events and
data with the selection requirements for the control channel applied.

With the requirement Mbc > 5.27 GeV applied, the distribution of CNB is compared
for the J/ψ inclusive MC simulated data events and data in Figure 5.8a. An excellent
agreement between MC simulation and data is seen, indicating no differences between
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5 Reconstruction and Selection

MC simulation and data which affects the continuum suppression network. To estimate
possible differences between MC simulation and data due to the CNB > 0 requirement
applied on the signal channel, the ratio of selected events on MC simulation and data is
compared for different requirements on CNB in Figure 5.8b. The ratio of selected events
is consistent with one, indicating no systematic difference between MC simulation and
data due to this requirement. The statistical uncertainty on this comparison will be
treated as a systematic uncertainty.
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Figure 5.8: Comparison of CNB using J/ψ inclusive MC simulated data events and data.
In (a) the normalized CNB distribution is shown and in (b) the ratio of
selected events on MC simulation and data for different requirements on
CNB being larger than a certain value is shown.

The control sample will be used for other cross-checks and systematic studies described
in the following chapters of this thesis.
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6 Maximum Likelihood Fit Model
In this chapter the model used in the ML fit is described in detail. After a brief and
general comment on the parametrization, the individual components of the ML are
explained.

6.1 General Parametrization
Following Equation (4.4), an unbinned extended ML fit is used to extract the 26
parameters related to polarization and CP violation defined in Equations (2.28) and
(2.29), and denoted ~µ in the following. All remaining parameters, such as those related to
PDF shapes, are denoted by ~ϑ. Three components (Nc = 3) are included in the fit model:
the signal decay B0 → φK∗ (i = 1), peaking background from B0 → f0(980)K∗(892)0

decays (i = 2), and combinatorial background (i = 3). The corresponding yields
Ni are floated parameters. Each event j is characterized by a nine-dimensional set
of observables ~xj = {Mbc,∆E,C ′NB,MKK ,MKπ, cos θ1, cos θ2,Φ, Q}, with the beam-
energy-constrained mass Mbc, the energy difference ∆E, the transformed continuum
network output C ′NB, the invariant mass of the φ candidate MKK , the invariant mass of
the K∗ candidate MKπ, the three helicity angles cos θ1, cos θ2 and Φ, and the charge
Q = ±1 of the primary kaon from the B meson, denoting the B meson flavor.

If not stated otherwise, the PDF Pi(~xj; ~µ; ~ϑ) for a given component i is constructed
as a joint PDF of the distributions of the observables in ~xj. With a few exceptions,
explained below, no significant linear or non-linear dependence among the fit observables
has been found, using the method described in Section 4.3. The dependencies have
been studied on MC samples and cross-checked on the control sample for the signal
and peaking background components, as well as on sideband data and off-resonance
data for the combinatorial background component.

6.2 Signal Component
The signal PDF for B0→ φK∗ is determined on MC simulated data events and cross-
checked on the control sample. In the final fit, the shape parameters ~ϑ are fixed to the
values determined on MC simulation, except for some corrections described below.

Mbc and ∆E

The Mbc distribution is modeled with a double Gaussian function. The ∆E distribution
is modeled with the sum of a Gaussian and two asymmetric Gaussian functions. In
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6 Maximum Likelihood Fit Model

addition, the mean of the ∆E distribution is parametrized by a linear function of Mbc,
to take into account a significant linear dependence between Mbc and ∆E.
The distribution on MC simulated data events and the signal PDF are shown in

Figure 6.1 for the Mbc and ∆E distribution. The linear dependence is illustrated by
projections of the ∆E distribution in six bins with equal statistics of Mbc in Figure 6.2.
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Figure 6.1: Signal distribution of MC simulated data events (black marker) for (a) Mbc
and (b) ∆E. The signal PDF is shown as red dashed line.

The linear dependence and the conditional PDF are confirmed by ML fits to the
control sample on MC simulated data events and data events. The only difference
observed is due to the ∆E resolution, for which a scale factor s = 1.124 ± 0.062 is
derived by comparing data and MC simulated events in the control sample. The scale
factor is applied to the signal model on data.

C′NB and MKK

The C ′NB distribution is parametrized by a sum of two asymmetric Gaussian functions.
The φ candidate mass MKK is modeled by a relativistic spin-dependent BW (see
Equation (2.10)) convolved with a Gaussian function to account for resolution effects;
the BW parameters can be found in Table 6.1.
The distribution on MC simulated data events and the signal PDF are shown in

Figure 6.3 for the C ′NB and MKK distribution.
As shown in Section 5.4, the agreement between data and MC simulation for the

C ′NB distribution is excellent and no correction is needed. The MKK resolution (about
1MeV) differs slightly between MC simulation and data. To account for this difference,
it is derived directly from the sideband data in which a clear φ peak is present, see also
Section 6.4.
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6.2 Signal Component
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(c) 5.279 GeV < Mbc ≤ 5.280 GeV

−0.04 −0.02 0.00 0.02 0.04
∆E (GeV)

0

100

200

300

400

500
Ev

en
ts

 / 
( 0

.0
06

 G
eV

 )

(d) 5.280 GeV < Mbc ≤ 5.281 GeV
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(e) 5.281 GeV < Mbc ≤ 5.283 GeV
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(f) 5.283 GeV < Mbc ≤ 5.290 GeV

Figure 6.2: Projection of the signal distribution of MC simulated data events (black
marker) for ∆E in six bins of Mbc. The Mbc bin widths are given below
each figure. The signal PDF is shown as red dashed line. From (a) to (f)
the central position of the peak is shifted from right to left by about 10MeV
and illustrates the linear dependence betweenMbc and ∆E. With respect to
Figure 6.1b, the x-axis has been limited to the interval −50 MeV ≤ ∆E ≤
50 MeV to highlight the behavior.
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6 Maximum Likelihood Fit Model

φ f0(980)
Parameter J = 1 J = 0
mJ (MeV) 1019.455± 0.020 965± 10
ΓJ (MeV) 4.26± 0.04 · · ·
r (GeV−1) 3.0± 1.0 · · ·
gπ (MeV) · · · 165± 18
gK (MeV) · · · (4.21± 0.33)gπ

Table 6.1: Parameters used for the φ resonance are taken from Reference [22], except for
r, for which an assumption based on the values found in Kπ scattering (see
Table 6.2) is made. Typically, values for r obtained in scattering experiments
for mesons are in the order of 3 GeV−1. For f0(980), values obtained by the
BES collaboration [74] are used.
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Figure 6.3: Signal distribution of MC simulated data events (black marker) for (a) C ′NB
and (b) MKK . The signal PDF is shown as red dashed line.

MKπ, cos θ1, cos θ2, Φ, and Q

The model for MKπ, the helicity angles, and Q is given by Equation (2.26), which is
multiplied with the experimentally derived acceptance function α (MKπ, cos θ1, cos θ2,Φ)
to obtain the mass-angular signal PDF. The resonance parameters used for the different
partial waves are given in Table 6.2.

No figures of the mass-angular distribution and PDF are shown as the distribution is
not known a priori from MC simulations but has to be determined on data. However,
in Figure 6.4 the mass-angular shapes of the S-, P-, and D-wave component are shown
in projections on the observables without the correction of acceptance effects. Two
exemplary polarizations, pure longitudinal polarization fL = 1 and pure perpendicular
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6.2 Signal Component

polarization f⊥ = 1, are selected to illustrate the sensitivity of the angular observables
to the polarization of the S-, P-, and D-wave component.
Neglecting possible resolution effects in the mass-angular PDF was found to have a

negligible effect, according to MC simulations, and is further discussed as a systematic
uncertainty.
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Figure 6.4: Illustrations of (a) MKπ, (b) cos θ1, (c) cos θ2, and (d) Φ shape for the signal
component. The normalization of the y-axis is arbitrary in all figures, but
all angular distributions are normalized to the same value for comparison.
In (a) the MKπ lineshape of the S-, P-, and D-wave component is shown
together with the incoherent sum. In (b) the angular distribution of cos θ1
is illustrated for the S-, P-, and D-wave component, with two exemplary
polarizations for P- and D-wave. The figure also illustrates the relation
between the spin of the partial waves and the number of roots of the spheric
harmonics. In (c) the cos θ2 and in (d) the Φ shape is shown. It does not
differ among partial waves but is sensitive to their polarization.
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6 Maximum Likelihood Fit Model

(Kπ)∗0 K∗(892)0 K∗2(1430)0

Parameter J = 0 J = 1 J = 2
mJ (MeV) 1435± 5± 5 895.94± 0.22 1432.4± 1.3
ΓJ (MeV) 279± 6± 21 48.7± 0.8 109± 5
r (GeV−1) · · · 3.4± 0.7 2.7± 1.3
a (GeV−1) 1.95± 0.09± 0.06 · · · · · ·
b (GeV−1) 1.76± 0.36± 0.67 · · · · · ·

Table 6.2: Resonance parameters for S-, P-, and D-wave components. The parameters
mJ and ΓJ for the P- and D-wave are taken from Reference [22], and
interaction radii and S-wave parameters are taken from Reference [29], which
includes updated values with respect to Reference [31].

6.3 Peaking Background Component
The peaking background PDF for B0 → f0(980)K∗(892)0 is also determined on MC
simulated data events and all shape parameters ~ϑ are fixed in the final fit.

Mbc, ∆E and C′NB

The Mbc, ∆E and C ′NB distributions are parametrized by the same model as the signal
component. The same linear dependence between Mbc and ∆E is present and the same
scale factor for the ∆E resolution is applied on data.

The distribution on MC simulated data events and the peaking background PDF are
shown in Figure 6.5 for the Mbc and ∆E distribution. The C ′NB distribution is shown
in Figure 6.6a.

MKK

The MKK distribution of the f0(980) candidates is modeled with a Flatté function [75].
The resonance parameters are given in Table 6.1. Due to the extremely broad nature of
the scalar resonance, the distribution is not convolved with a resolution function.
The available inclusive b → s MC sample does not properly simulate the coupled-

channel nature of the Flatté function. Instead, a non-coupled single BW resonance,
with the pole position below the K+K− threshold, is simulated. The two distributions
are similar but the Flatté function is broader and has more events for higher values of
MKK .

The distribution on MC simulated data events and the peaking background PDF are
shown in Figure 6.6b for the MKK distribution. For fits on MC simulated data events,
the simpler BW model is used as fit function to avoid discrepancies, whereas on data
the Flatté function is used. In general, the uncertainties on the nature of the broad
scalar component are studied as a systematic uncertainty.
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Figure 6.5: Peaking background distribution of MC simulated data events (black marker)
for (a) Mbc and (b) ∆E. The peaking background PDF is shown as blue
dash-dotted line.
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Figure 6.6: Peaking background distribution of MC simulated data events (black marker)
for (a) C ′NB and (b) MKK . The peaking background PDF is shown as blue
dash-dotted line.

MKπ, cos θ1, cos θ2, Φ, and Q

The MKπ distribution is parametrized by a relativistic spin-dependent BW for K∗(892)0,
using the same parameters as the signal component. The angular distribution of the
peaking B0 → f0(980)K∗(892)0 decay, which is a pseudoscalar to scalar–vector decay,
is given by Equation 2.8. The resulting distribution is uniform in cos θ2 and Φ, and
proportional to cos2 θ1, which is corrected for detector acceptance effects. For Q a
uniform distribution is used.

The distribution on MC simulated data events and the peaking background PDF are
shown in Figure 6.7 for the MKπ, cos θ1, cos θ2, and Φ distribution.

67



6 Maximum Likelihood Fit Model

0.8 1.0 1.2 1.4
MKπ (GeV)

0

100

200

300

400

Ev
en

ts
 / 

( 0
.0

17
 G

eV
 )

(a)

−1.0 −0.5 0.0 0.5 1.0
cos θ1

0

50

100

150

Ev
en

ts
 / 

( 0
.0

5 
)

(b)

−1.0 −0.5 0.0 0.5 1.0
cos θ2

0

10

20

30

40

50

60

Ev
en

ts
 / 

( 0
.0

5 
)

(c)

−2 0 2
Φ (rad)

0

10

20

30

40

50

60
Ev

en
ts

 / 
( π

/
2
0 

ra
d 

)

(d)

Figure 6.7: Peaking background distribution of MC simulated data events (black marker)
for (a) MKπ, (b) cos θ1, (c) cos θ2, and (d) Φ. The peaking background PDF
is shown as blue dash-dotted line.

6.4 Combinatorial Background Component

The combinatorial background PDF is determined directly from sideband data and
cross-checked with the off-resonance data. Further, MC simulated data events are used
to cross-check that the combinatorial background in the nominal fit region is consistent
with the one in the sideband region. By deriving the model directly from sideband
data, the need of corrections for possible differences between MC simulation and data
is avoided.

The 2% contribution due to the combinatorial background from BB events, which is
present in the sideband data but missing in the off-resonance data, has no significant
effect on the shape parameters and was also cross-checked with the MC simulated data
samples. The shape parameters ~ϑ determined on the sideband are fixed in the final fit,
except for one parameter c, that is described below.
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6.4 Combinatorial Background Component

Mbc and ∆E

The combinatorial background PDF follows an empirically determined shape for the
Mbc distribution, given by

f(Mbc) ∝Mbc

√√√√1− M2
bc

E∗2beam
exp

[
c

(
1− M2

bc
E∗2beam

)]
, (6.1)

where c is a free parameter. This function was first introduced by the ARGUS Col-
laboration [76]. The ∆E distribution is parametrized by a first-order polynomial
function.

The distribution on sideband data events and the combinatorial background PDF are
shown in Figure 6.8 for the Mbc and ∆E distribution. The parameter c, as determined
on the sideband, is not fixed in the nominal fit region but floated. Figure 5.1a illustrates
the Mbc distribution, which differs between the sideband and the nominal fit region
due to the kinematic constraints.
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Figure 6.8: Distribution of sideband data events (black marker) for (a) Mbc and (b)
∆E. The combinatorial background PDF is shown as black dotted line.

C′NB and MKK

The C ′NB distribution is parametrized by a sum of two asymmetric Gaussians. To account
for background that contains real φ candidates and a non-resonant component, theMKK

distribution is parametrized by the sum of resonant and non-resonant contributions.
Similar to the signal component, the resonant contribution is parametrized with a
relativistic spin-dependent BW and convolved with the same resolution function as the
signal component. The non-resonant component is described by a threshold function as

f(MKK) ∝ arctan
(√

(MKK − 2mK)/a
)
, (6.2)
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6 Maximum Likelihood Fit Model

wheremK is the K± mass that determines the K+K− threshold, and a is a free parameter.
The distribution on sideband data events and the combinatorial background PDF

are shown in Figure 6.9 for the C ′NB and MKK distribution.
Due to the presence of a clear φ peak in these events, the MKK resolution on data

events (about 1 MeV) can be determined from the sideband data and used for the signal
component. This avoids possible systematic uncertainties from differences between the
resolution on MC simulated data events and data events.
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Figure 6.9: Distribution of sideband data events (black marker) for (a) C ′NB and (b)
MKK . The combinatorial background PDF is shown as black dotted line.

MKπ, cos θ1, cos θ2, Φ, and Q

The MKπ distribution is parametrized by a sum of resonant and non-resonant com-
ponents. The resonant component from K∗(892)0 is modeled with a relativistic spin-
dependent BW using the same parameters as the signal component. The non-resonant
contribution is parametrized by a fourth-order Chebyshev polynomial. A significant
non-linear dependence between MKπ and cos θ1 is found in the non-resonant component
of the combinatorial background. The resonant component in MKπ is uniform in cos θ1,
whereas the non-resonant contribution is parametrized by a fifth-order Chebyshev
polynomial, where the parameters depend linearly on MKπ. The cos θ2 distribution is
parametrized by a second-order Chebyshev polynomial and the distributions in Φ and
Q are uniform.

The distribution on sideband data events and the combinatorial background PDF are
shown in Figure 6.10 for the MKπ, cos θ1, cos θ2 and Φ distribution. The dependence
between MKπ and cos θ1 is illustrated by projections of the cos θ1 distribution in five
bins of MKπ in Figure 6.11.
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Figure 6.10: Distribution of sideband data events (black marker) for (a)MKπ, (b) cos θ1,
(c) cos θ2, and (d) Φ. The combinatorial background PDF is shown as
black dotted line.
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(d) 1.21 GeV < MKπ ≤ 1.38 GeV
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Figure 6.11: Projection of the distribution of sideband data events (black marker) for
cos θ1 in five bins ofMKπ. TheMKπ bin widths are given below each figure.
The combinatorial background PDF is shown as black dotted line.
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7 Measurement of B0→ φK∗
Decays

This chapter covers the validation of the analysis procedure as well as the branching
fraction, polarization, and CP violation results of the measurement of B0→ φK∗ decays.
After the results, systematic uncertainties of the measurement are discussed in detail.

7.1 Validation

The entire analysis of B0→ φK∗ decays is performed as a blind analysis, i. e. the entire
analysis procedure is validated and fixed before being applied to data, this process
is referred to as unblinding the data. Part of this validation are the cross-checks
of PDFs using the control sample and off-resonance data, as described in the last
chapter. The optimization of normalization integrals was cross-checked as described in
Section 4.2. The implementation of the angular distribution, described in Section 2.5.1,
was compared with the independent implementation in the EvtGen [53] package to
check for sign errors that could manifest e. g. as a phase shift of exactly π in the result.
Beside the checks of individual components, studies to check the robustness of the

entire ML fit have been performed. These studies include ensemble tests, fits using MC
simulated data events, and checks for multiple solutions.

7.1.1 Ensemble Tests

Ensemble tests are performed to validate a fit procedure and check for intrinsic problems.
For example, if the expected statistic of a data sample is too small to constrain a certain
parameter of the model or if two parameters are strongly correlated, the minimization
algorithm might stop in an error state and return some arbitrary result. Sometimes, the
stability of a ML fit is also limited in regions where parameters are close to or beyond
physical values. Such issues can be studied in an ensemble test before unblinding the
data and thus detected in advance.
In an ensemble test, the measurement is not performed on MC simulated data

events but on pseudo-experiments. Instead of a computationally intensive full detector
simulation, the data events are generated randomly from the PDF of the fit model. The
data events are then fitted with the fit model and the obtained result is compared to
the values that have been used to generate the data sample. The normalized deviation
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of a parameter x, also referred to as pull, and given by

pull = xgenerated − xfitted

σx,fitted
, (7.1)

should follow a Gaussian distribution with mean zero and width one. Typically,
several hundred pseudo-experiments are performed and the obtained pull distribution
is compared with the expectation.
Given 26 parameters of interest, the simulation of any possible combination of pa-

rameter values exceeds the available computational resources by far, even by using
pseudo-experiments. Therefore, different sets of parameters have been selected and
studied in an ensemble test. This includes sets with no assumptions about the param-
eters, sets with assumptions based on the previous measurements by Belle [28] and
BaBar [29], sets with non-negligible CP violation and without, and others. All these
ensemble tests did not shown any evidence for intrinsic problems of the fit model and
the result of one exemplary ensemble test is presented in detail.

In the ensemble test, 500 pseudo-experiments have been performed, no CP violation
was assumed and some arbitrary polarization was selected. The yield of signal events
was chosen according to expectations based on previous measurements. In Figure 7.1
the pull distributions of the 26 parameters defined in Equations (2.28) and (2.29), where
the parameter of the reference amplitude a10 was replaced by the signal yield Nsig, are
shown. In average, the mean and width of each distribution agrees with the expectation.
Some distributions show a slight deviation, this is however expected as 26 independent
parameters are regarded and thus some deviations have to be expected. A too good
agreement with the expectation would indicate some intrinsic problem. It was also
confirmed that with different seeds of the random number generator, these deviations
randomly occur in other parameters, as it is expected from a stochastic process.

7.1.2 Fits on MC Simulated Data Events
Whereas ensemble tests check for intrinsic problems of the fit model, fits on MC
simulated data events are a final check before unblinding the data. Problems due to
insufficiently modeled distributions or neglected dependencies among observables can
not be detected by an ensemble test.

For the fits on MC simulated data events, the four independent streams of continuum
and inclusive b → c MC, the inclusive b → s MC, and three-body B0 → φK+π−

phase space signal MC are used to prepare samples of MC simulated data events. The
B0→ φK+π− events are reweighted by assigning each event a weight

w = PDFPHSP (MKπ, cos θ1, cos θ2,Φ, Q)
PDFsig (MKπ, cos θ1, cos θ2,Φ, Q) , (7.2)

where PDFPHSP is the PDF describing the phase space distribution and PDFsig the
mass-angular signal PDF described in Section 6.2. By including the weights in the ML
fit, arbitrary polarizations can be generated from the phase space signal MC sample,
without the need of performing a full detector simulation.
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Figure 7.1: Pull distributions (black marker) of the 26 parameters of interest obtained
in an ensemble test. The fitted mean m and width σ of a Gaussian function
(blue solid line) are given in the top of each figure.
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The statistic is limited by the four streams of continuum and inclusive b→ c MC.
These samples are combined with inclusive b → s MC and reweighted signal MC
events. Again, different sets of parameters, similar to the ensemble tests, are used to
reweight the signal MC samples. On the prepared samples, the full analysis procedure
is tested: First, the combinatorial background PDF is derived in the sideband region
and afterwards the fit in the nominal fit region is used to determine the 26 parameters
of interest.

In Figure 7.2, the deviations of the 26 parameters with respect to their nominal value
are shown for one exemplary set of parameters on four independent samples. Again, the
fitted values agree with the expectation and indicate no problems in the fit procedure
on MC simulated data events.

7.1.3 Multiple Solutions
As a last check, the possibility of multiple solutions is studied. Due to the high
dimensionality of the parameter space, it is not guaranteed that the minimization
algorithm finds the global minimum of the negative log-likelihood function. Pseudo-
experiments are generated like in the ensemble tests and fitted with random starting
values 100 times. In about 30% of the fits, the global minimum is found. In the remaining
70%, the algorithm is trapped in a local minimum of the negative log-likelihood function.
The difference of the negative log-likelihood function at the global minimum and any
local minimum fulfills −2∆ lnL > 50, which excludes a local minimum by at least 7σ
significance.
This behavior of the fit function is further verified with fits on MC simulated data

events. Therefore, the fit on data is repeated 100 times with random starting values
and the best solution is selected by the lowest negative log-likelihood value. Within 100
repetitions, it was never observed that the global minimum was not found in studies
with pseudo-experiments or MC simulated data events; the lowest fraction observed
has been around 25%.
During the process of unblinding the data, the best solution was found as expected

in about 30% of all fits and all local minimums could be excluded.
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Figure 7.2: Fitted values (black marker) and errors of the 26 parameters of interest
obtained on four independent samples of MC simulated data events. The
true value used to reweight the samples is indicated by the blue dashed line.
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7.2 Results
After unblinding the data sample, a signal yield of Nsig = 1112± 40 events, a peaking
background yield of Npeak = 140± 19 events, and a combinatorial background yield of
Ncomb = 14522± 122 events are observed, where the errors are statistical only.
The fit fraction FFJ per partial wave is defined as

FFJ =
∫
α|AJ |2∫
α|M|2

=
∫
α|AJ |2∫

α|A0 +A1 +A2|2
, (7.3)

where AJ are the partial wave amplitudes from Equations (2.23) to (2.25), α is the
four-dimensional mass-angular acceptance function, described in Section 5.3, and the
integral is over the full phase space. The yield per partial wave NJ is given by

NJ = NsigFFJ (7.4)

and the branching fraction per partial wave BJ by

BJ = NJ

εJNBB
, (7.5)

where εJ is the product of the reconstruction efficiency εreco,J, defined in Equation (5.3),
times the daughter branching fractions and NBB is the number of BB pairs in the data
sample.

The fit fraction and branching fraction results are given in Table 7.1. The sum of fit
fractions is (97.2± 0.7)%, where the error is statistical only. This indicates the presence
of a net constructive interference among the partial waves.

φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter J = 0 J = 1 J = 2
FFJ 0.273± 0.024± 0.021 0.600± 0.020± 0.015 0.099+0.016

−0.012 ± 0.018
NJ (events) 303± 29± 25 668± 34± 24 110+18

−14 ± 20
εreco,J (%) 28.7± 0.1 26.0± 0.1 16.3± 0.1
εJ (%) 9.4± 0.1 8.5± 0.1 2.6± 0.1
BJ (10−6) 4.3± 0.4± 0.4 10.4± 0.5± 0.6 5.5+0.9

−0.7 ± 1.0

Table 7.1: Summary of the branching fraction results for the B0→ φK∗ system. The
branching fraction result for B0 → φ(Kπ)∗0 is quoted for MKπ < 1.55 GeV.
The first error is statistical and the second due to all systematics. The error
on εreco,J is due to MC statistics only. The error on εJ is due to MC statistics
and daughter branching fractions.

The results for the remaining parameters, related to polarization and CP violation
asymmetries, are summarized in Table 7.2. The results on B0→ φK∗(892)0 supersede
the previous Belle result [28].
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φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter J = 0 J = 1 J = 2
fLJ · · · 0.499± 0.030± 0.018 0.918+0.029

−0.060 ± 0.012
f⊥J · · · 0.238± 0.026± 0.008 0.056+0.050

−0.035 ± 0.009
φ‖J (rad) · · · 2.23± 0.10± 0.02 3.76± 2.88± 1.32
φ⊥J (rad) · · · 2.37± 0.10± 0.04 4.45+0.43

−0.38 ± 0.13
δ0J (rad) · · · 2.91± 0.10± 0.08 3.53± 0.11± 0.19
ACPJ 0.093± 0.094± 0.017 −0.007± 0.048± 0.021 −0.155+0.152

−0.133 ± 0.033
A0
CPJ · · · −0.030± 0.061± 0.007 −0.016+0.066

−0.051 ± 0.008
A⊥CPJ · · · −0.14± 0.11± 0.01 −0.01+0.85

−0.67 ± 0.09
∆φ‖J (rad) · · · −0.02± 0.10± 0.01 −0.02± 1.08± 1.01
∆φ⊥J (rad) · · · 0.05± 0.10± 0.02 −0.19± 0.42± 0.11
∆δ0J (rad) · · · 0.08± 0.10± 0.01 0.06± 0.11± 0.02

Table 7.2: Summary of the polarization and CP violation results for the B0 → φK∗
system. Parameter definitions are given in Table 2.1. The first error is
statistical and the second due to systematics.

All results on B0→ φ(Kπ)∗0, B0→ φK∗(892)0, and B0→ φK∗2(1430)0 are consistent
with BaBar measurements [29], with smaller errors for B0 → φ(Kπ)∗0 and B0 →
φK∗(892)0. The large longitudinal polarization fraction in the decay B0→ φK∗2(1430)0

is confirmed. Due to the requirement on cos θ1 and the large longitudinal polarization
in B0 → φK∗2(1430)0 a proportionally large drop in the efficiency with respect to the
other channels is observed, which results in larger statistical uncertainties on the related
parameters. In general, all parameters related to CP violation in the S-, P-, and D-wave
components are consistent with its absence.

The results on the triple-product correlations in B0→ φK∗(892)0 are summarized for
B0 and B0, together with the asymmetries, in Table 7.3. They are consistent with SM
predictions of no CP violation.

A0
T A

‖
T

B0 0.273± 0.039± 0.010 0.015± 0.029± 0.006
B0 0.210± 0.039± 0.014 0.050± 0.029± 0.011
A0/‖
T 0.13± 0.12± 0.02 −0.55± 0.60± 0.52

Table 7.3: Triple-product correlations obtained from the weights of the B0→ φK∗(892)0

partial wave, as defined in Section 2.5.4. The first error is statistical and the
second due to systematics.

The ambiguity in the phase parameters φ‖1 and φ⊥1 from the previous Belle mea-
surement is resolved. In Figure 7.3, a scan of the negative log-likelihood as a function
of φ‖1 and φ⊥1 is shown, each of which shows a single solution.
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Figure 7.3: Scan of the negative log likelihood as function of (a) φ‖1 and (b) φ⊥1. One
single solution is found for each of the two phases.

The distribution of data events and the projections of the ML fit function are
illustrated in Figures 7.4 to 7.10 for the observables Mbc, ∆E, C ′NB, MKK , MKπ, cos θ1,
cos θ2, and Φ in different regions. Combined figures for B0 → φ(K+π−)∗ and B0 →
φ(K−π+)∗, i. e. Q = ±1, are shown as no CP violation is observed and independent
figures would show statistically compatible distributions.
In certain figures, signal-enhancing requirements are applied; such requirements

applied for each observable areMbc > 5.27 GeV, −40 MeV < ∆E < 40 MeV, 1.01 GeV <
MKK < 1.03 GeV, and CNB > −3. Details on which requirements are applied in a
specific figure are given in the caption of each figure.

In Figure 7.4 and 7.5, the full data sample is shown by projections of each component
in the ML fit. The data distributions and the combined ML fit function are in excellent
agreement for all observables. In Figure 7.6 and 7.7, the signal-enhancing requirements
are applied. Again, the data distributions and combined ML fit function are in excellent
agreement. In Figure 7.8 the angular distribution of cos θ1 is shown for three regions
with enriched contributions of S-, P-, and D-wave component. In Figure 7.9 and 7.10,
the requirement Mbc < 5.27 GeV is applied to compare the data distribution with the
ML fit function in a region where only combinatorial background events are expected.
Also in this region, the ML fit function agrees with the distribution of data events.
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Figure 7.4: Projections onto the observables (a) Mbc, (b) ∆E, (c) C ′NB, and (d) MKK .
The data distributions are shown by black markers, whereas the combined
ML fit function, combinatorial background, peaking background, and signal
are shown by solid black, dotted black, dash-dotted blue, and red curves,
respectively.
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Figure 7.5: Projections onto the observables (a) MKπ, (b) cos θ1, (c) cos θ2, and (d) Φ.
The data distributions are shown by black markers, whereas the combined
ML fit function, combinatorial background, peaking background, and signal
are shown by solid black, dotted black, dash-dotted blue, and red curves,
respectively.
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Figure 7.6: Projections onto the observables (a) Mbc, (b) ∆E, (c) C ′NB, and (d) MKK

with signal-enhancing requirements (see text) applied. In each projection,
a signal-enhancing requirement on the other three observables is applied,
e. g. in (a) on (b), (c), and (d). The data distributions are shown by black
markers, whereas the combined ML fit function, combinatorial background,
peaking background, and signal are shown by solid black, dotted black,
dash-dotted blue, and red curves, respectively.
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Figure 7.7: Projections onto the observables (a) MKπ, (b) cos θ1, (c) cos θ2, and (d) Φ
with signal-enhancing requirements (see text) on Mbc, ∆E, C ′NB, and MKK

applied. The data distributions are shown by black markers, whereas the
combined ML fit function, combinatorial background, peaking background,
and signal are shown by solid black, dotted black, dash-dotted blue, and
red curves, respectively.
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(c) 0.8 GeV < MKπ ≤ 1.0 GeV
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(d) 1.30 GeV < MKπ ≤ 1.55 GeV

Figure 7.8: Projections onto the observables (a) MKπ and cos θ1 for the (b) S-, (c) P-,
and (d) D-wave range with signal-enhancing requirements (see text) on Mbc,
∆E, C ′NB, and MKK applied. In (b), (c), and (d) additional requirements
on MKπ are applied to enhance the contribution of the S-, P-, and D-
wave contribution. The requirements are given below each figure and are
illustrated by the arrows in (a). The data distributions are shown by black
markers, whereas the combined ML fit function, combinatorial background,
peaking background, and signal are shown by solid black, dotted black,
dash-dotted blue, and red curves, respectively.
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Figure 7.9: Projections onto the observables (a) ∆E, (b) C ′NB, and (c) MKK with the
requirement Mbc < 5.27 GeV applied. The data distributions are shown
by black markers, whereas the curve of the combined ML fit function is
congruent with the combinatorial background and shown by a solid black
line. The curves of peaking background and signal vanish in this region.
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Figure 7.10: Projections onto the observables (a) MKπ, (b) cos θ1, (c) cos θ2, and (d)
Φ with the requirement Mbc < 5.27 GeV applied. The data distributions
are shown by black markers, whereas the curve of the combined ML fit
function is congruent with the combinatorial background and shown by a
solid black line. The curves of peaking background and signal vanish in
this region.
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7.3 Systematic Uncertainties
The systematic uncertainties on the results presented in the last section are due to
various sources. In general, the systematic uncertainties can be split into two groups.
The first group contains uncertainties that enter only the calculation of the branching
fraction and are mainly related to uncertainties on the reconstruction efficiency. The
second group covers uncertainties on the polarization and CP violation parameters and
is rather decoupled from the first group.

7.3.1 Branching Fraction

Track Reconstruction Efficiency
Due to uncertainties in the reconstruction efficiency of charged tracks, 0.35%
uncertainty is assigned per charged track, which results in 1.4% total system-
atic uncertainty. These values have been estimated from a study, described in
Reference [77], of partially reconstructed D∗+ → D0π+→ (K0

Sπ
+π−)π+ decays.

PID Selection
Uncertainties on the PID requirements on kaons and pions due to MC simulation
and data differences are estimated from D∗+ → D0π+→ (K−π+)π+ samples [78].
The selection efficiencies for MC simulation and data are tabulated as a function of
track momentum and polar angle. Using MC simulated signal events, a correction
factor for the selection efficiency on data is determined from these tables per
partial wave:

εcorr,(Kπ)∗0 = (98.2± 3.3)%,
εcorr,K∗(892)0 = (98.2± 3.3)%,
εcorr,K∗2(1430)0 = (98.3± 3.4)%.

The correction factors are included in the reconstruction efficiencies εJ given in
Table 7.1. The uncertainty on the correction factor is taken as a systematic
uncertainty.

CNB Requirement
Possible differences in the efficiency on MC simulation and data due to the CNB
requirement are estimated from a comparison using the control sample. The ratio
of selected events is compared for MC simulations and data events and shown in
Figure 5.8b. The uncertainty of 0.7% on the requirement CNB > 0 is taken as a
systematic uncertainty.

MC Statistics
Limited MC statistics results in a 0.5% uncertainty on the absolute value of the
reconstruction efficiency and is taken as a systematic uncertainty.
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φ and K∗
2(1430) Branching Fraction

Uncertainties on the daughter branching fractions of φ→ K+K− and K∗2(1430)0 →
K+π− from Reference [22] are taken as a systematic uncertainty.

Number of BB Pairs
The uncertainty on the number of (772 ± 11) × 106 BB pairs results in a 1.4%
systematic uncertainty on the branching fraction.

The individual sources of systematic uncertainties are summarized in Table 7.4 per
partial wave, including the total uncertainty estimated by adding the individual errors
in quadrature.

φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Source J = 0 J = 1 J = 2
Track reconstruction efficiency 1.4 1.4 1.4
PID selection 3.3 3.3 3.4
CNB requirement 0.7 0.7 0.7
MC statistics 0.5 0.5 0.5
φ branching fraction 1.0 1.0 1.0
K∗2(1430) branching fraction · · · · · · 2.4
Number of BB pairs 1.4 1.4 1.4
Total 4.1 4.1 4.8

Table 7.4: Systematic errors (%) that enter only the calculation of the branching fraction.

7.3.2 Polarization and CP violation
PDF Parametrization

In the final ML fit, several parameters have been fixed. External inputs on
resonance masses, widths, and other parameters are given in Tables 6.1 and 6.2
together with their uncertainties. Besides these values, shape parameters of the
combinatorial background from the fit to data sideband as well as signal and
peaking background shape parameters from fits to MC simulated samples and
the control sample have been fixed.
All fixed parameters are varied one by one by ±1σ, with σ being their uncer-
tainty, and the differences with respect to the nominal fit result are added in
quadrature. The resulting error is assigned as a systematic uncertainty due to
PDF parametrization. For most parameters this uncertainty is dominated by the
uncertainty on the external inputs.

Resolution
The mass-angular PDF of the signal component, as well as for the other com-
ponents, neglects resolution effects in MKπ, cos θ1, cos θ2, and Φ, whereas they
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7 Measurement of B0→ φK∗ Decays

are included in the description of MKK . To estimate the systematic uncertainty
from neglecting resolution effects, pseudo-experiments are generated and fitted
with and without applying an additional Gaussian smearing with the resolution
derived from MC simulations to the pseudo-experiment data samples.
The relative difference is found to be at least of O(10−4) for all parameters and
thus negligible with respect to other systematic uncertainties. No systematic
uncertainty is assigned.

Efficiency Function
Uncertainties on the efficiency function are estimated by varying the efficiency
function parameters one by one by ±1σ. Differences between the efficiency
functions for B0 and B0 are found to be smaller than the statistical uncertainties
on the efficiency function. Again, the differences to the nominal fit result are
added in quadrature and taken as a systematic uncertainty.

Self-Crossfeed
The impact of the remaining SCF events, which have been neglected in the final
ML fit, is estimated by pseudo-experiments that are fitted with and without
adding additional SCF events from MC simulated signal samples. Signal samples
with a polarization corresponding to the measured results are used to address the
possibility of the SCF depending on the polarization. The amount of added SCF
events is chosen according to expectations from MC simulations. The mean of
the residual between fits with and without additional SCF events is found to be
consistent with zero and the width of the obtained residual distribution is taken
as a systematic uncertainty.

K+K− Shape
The MKK shape of the peaking background component is modeled with a Flatté
function and assumed to originate from resonant B0→ f0(980)K∗(892)0 decays. A
possible non-resonant contribution from B0→ K+K−K∗(892)0 decays is considered
as a source of systematic uncertainty.
The requirements Mbc > 5.27 GeV, −40 MeV < ∆E < 40 MeV, 0.985 GeV <
MKK < 1.010 GeV, CNB > −3, and 0.8 GeV < MKπ < 1.0 GeV enrich poten-
tial B0→ f0(980)K∗(892)0 candidates from below the φ peak. In Figure 7.11 the
projection onto the observablesMbc and ∆E is shown, where the enriching require-
ment on the shown observable is omitted. In Figure 7.12 the MKK requirement
is changed to 1.035 GeV < MKK < 1.050 GeV to enrich the peaking background
candidates from the region above the φ peak. Again, the enriching requirement
on the shown observable is omitted. In all figures the data distribution agrees well
with the fit model and does not indicate the presence of for example additional
non-resonant B0→ K+K−K∗(892)0 events that are expected to appear enriched
in the region above the φ peak. In this region, the signal component has, due
to the upper tail of the φ resonance, also a similar strong contribution as the
peaking background component.

90



7.3 Systematic Uncertainties

5.26 5.27 5.28 5.29
Mbc (GeV)

0

5

10

15

Ev
en

ts
 / 

( 0
.0

00
6 

Ge
V 

)

(a)

−0.1 0.0 0.1
∆E (GeV)

0

5

10

15

Ev
en

ts
 / 

( 0
.0

06
 G

eV
 )

(b)

Figure 7.11: Projections onto the observables (a) Mbc and (b) ∆E for a B0 →
f0(980)K∗(892)0 enriched region below the φ peak, see text for details
on the applied requirements. The data distributions are shown by black
markers, whereas the combined ML fit function, combinatorial background,
peaking background, and signal are shown by solid black, dotted black,
dash-dotted blue, and red curves, respectively.
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Figure 7.12: Projections onto the observables (a) Mbc and (b) ∆E for a B0 →
f0(980)K∗(892)0 enriched region above the φ peak, see text for details
on the applied requirements. The data distributions are shown by black
markers, whereas the combined ML fit function, combinatorial background,
peaking background, and signal are shown by solid black, dotted black,
dash-dotted blue, and red curves, respectively.

The fit model of the peaking background component is modified to allow for a
coherent sum of B0 → f0(980)K∗(892)0 and B0 → K+K−K∗(892)0 decays with
relative amplitude and phase between them. Taking into account the change in
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7 Measurement of B0→ φK∗ Decays

the number of degrees of freedom, negative log-likelihoods obtained from this
alternative fit and the nominal fit yield equally good solutions. However, the model
based on the coherent sum shows a very strong destructive interference, which is
also often observed in Dalitz analyses that include K+K− (see e. g. Reference [79]).
The nominal fit model is therefore chosen as default model and the difference
with respect to the alternative model is taken as a systematic uncertainty due to
general uncertainties on the nature of the scalar K+K− resonance. A model with
only B0→ K+K−K∗(892)0 is not considered as it shows a significant deviations
between the data and the fit model in the MKK region below the φ peak.

Peaking Background from other K∗ states
No contribution of peaking background from other K∗ states is expected according
to MC simulations. The requirements Mbc > 5.27 GeV, −40 MeV < ∆E <
40 MeV, 0.985 GeV < MKK < 1.010 GeV, CNB > −3, and MKπ > 1.05 GeV enrich
the contribution of e. g. B0→ f0(980)(Kπ)∗0 or B0→ f0(980)K∗2(1430)0 candidates.
In Figure 7.13 the projection onto the observables Mbc and ∆E is shown, where
the enriching requirement on the shown observable is omitted. No excess of
data events with respect to the nominal fit model is observed and no systematic
uncertainty is assigned.
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Figure 7.13: Projections onto the observables (a) Mbc and (b) ∆E for a B0 →
f0(980)(Kπ)∗0 and B0 → f0(980)K∗2(1430)0 enriched region, see text for
details on the applied requirements. The data distributions are shown
by black markers, whereas the combined ML fit function, combinatorial
background, peaking background, and signal are shown by solid black,
dotted black, dash-dotted blue, and red curves, respectively.

Peaking Background from other sources
Of the peaking background sources with one track being misidentified B0 →
φφ→ (K+K−)(K+K−) and B0→ φρ0 → (K+K−)(π+π−) are the most dominant
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ones, although no statistical significant contribution is expected according to MC
simulations, see Section 5.2.

The requirements 1.01 GeV < MKK < 1.03 GeV, CNB > −3, and −150 MeV <
∆E < −40 MeV (40 MeV < ∆E < 150 MeV) enrich potential B0→ φφ (B0→ φρ0)
candidates. In Figure 7.14 the projection onto Mbc is shown for both decay modes
and the data distribution is in excellent agreement with the expectation from the
combinatorial background component. No systematic uncertainty is assigned.
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Figure 7.14: Projections onto the observable Mbc for (a) B0 → φφ and (b) B0 → φρ0

enriched regions, see text for details on the applied requirements. The
data distributions are shown by black markers, whereas the combined ML
fit function, combinatorial background, peaking background, and signal
are shown by solid black, dotted black, dash-dotted blue, and red curves,
respectively.

K+K− Interference Effects
As the peaking background component B0→ f0(980)K∗(892)0 has the same final
state as the analyzed B0→ φK∗ signal, there exists the possibility of interference
effects between the S- and P-wave K+K− components f0(980) and φ, respectively.
These interference effects can be treated in a similar manner to those in the K+π−

invariant mass by combining the signal and peaking background amplitudes with
their corresponding angular distribution in the matrix element, thus leading to a
full partial wave analysis of B0→ (K+K−)(K+π−)∗ decays.

To estimate the systematic uncertainty from neglecting these interferences, the
interference term of B0→ f0(980)K∗(892)0 and B0→ φK∗(892)0 is added to the
matrix element. The interference terms of B0 → f0(980)K∗(892)0 with B0 →
φ(Kπ)∗0 and B0 → φK∗2(1430)0 are neglected as there is little overlap between
the amplitudes of these channels. The difference of this modified fit model with
respect to the nominal fit model is taken as a systematic uncertainty.
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7 Measurement of B0→ φK∗ Decays

The relative phase between the K+K− components of the S-wave and longitudinal
amplitude of the P-wave in this modified fit model is determined to be

ϕf0(980) − ϕφ,0 = (5.2± 0.3) rad, (7.6)

where the error is statistical only. The general uncertainties related to the
description of scalar K+K− resonances effects the center value of this phase
difference, therefore the modified fit model is not used as nominal fit model.
However, this study of systematic uncertainties shows that a full partial wave
analysis of B0→ (K+K−)(K+π−)∗ decays is in principle possible.

Charge Asymmetry
A charge bias in the reconstruction efficiency could effect the relative yield between
B0 and B0. It has been estimated for the analyses of D+ → K0

SK+ [80, 81] and
D+→ K0

Sπ
+ [82] decays and the procedure is described in the given References.

The bias is found to be consistent with zero, where the uncertainty of 1.2% in
this estimate is assigned as a systematic uncertainty.

A summary of the systematic uncertainties is shown in Table 7.6, except for those
uncertainties that have been found to be negligible and to which therefore no systematic
uncertainty has been assigned. The total uncertainty per parameter is estimated by
adding the individual errors in quadrature. All systematic uncertainties have also
been evaluated with respect to their effect on the triple-product correlations and are
summarized in Table 7.5.

Parameter PDF Eff. SCF K+K− Interf. Total
A0
TB0 0.003 0.003 0.003 0.002 0.008 0.010

A
‖
TB0 0.003 0.003 0.003 0.001 0.003 0.006

A0
TB0 0.004 0.001 0.006 0.000 0.012 0.014

A
‖
TB0 0.002 0.002 0.003 0.000 0.010 0.011
A0
T 0.009 0.006 0.014 0.003 0.015 0.023
A‖T 0.087 0.061 0.511 0.012 0.004 0.522

Table 7.5: Systematic errors (absolute values) on the triple-product correlations for
B0 → φK∗(892)0, as defined in Section 2.5.4. The uncertainties are due to
PDF parametrization, efficiency function, SCF, uncertainties on the K+K−
shape and K+K− interference effects.
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Parameter PDF Eff. SCF K+K− Interf. Charge Total
Nsig 25.8 1.4 2.9 10.7 0.8 · · · 28.1
FF0 0.021 0.002 0.002 0.003 0.002 · · · 0.021
ACP0 0.008 0.003 0.006 0.001 0.005 0.012 0.017
FF1 0.013 0.007 0.001 0.004 0.002 · · · 0.015
ACP1 0.004 0.002 0.003 0.002 0.016 0.012 0.021
FF2 0.017 0.005 0.001 0.001 0.001 · · · 0.018
ACP2 0.025 0.012 0.013 0.001 0.000 0.012 0.033
fL1 0.005 0.016 0.002 0.005 0.002 · · · 0.018
f⊥1 0.003 0.007 0.001 0.003 0.001 · · · 0.008
φ‖1 0.015 0.005 0.009 0.002 0.010 · · · 0.020
φ⊥1 0.014 0.005 0.013 0.004 0.037 · · · 0.042
δ01 0.078 0.018 0.006 0.007 0.011 · · · 0.081
A0
CP1 0.003 0.002 0.003 0.001 0.005 · · · 0.007
A⊥CP1 0.006 0.004 0.004 0.001 0.008 · · · 0.011
∆φ‖1 0.009 0.004 0.005 0.001 0.005 · · · 0.012
∆φ⊥1 0.008 0.005 0.012 0.001 0.010 · · · 0.018
∆δ01 0.006 0.004 0.006 0.001 0.001 · · · 0.010
fL2 0.011 0.006 0.003 0.000 0.000 · · · 0.012
f⊥2 0.008 0.003 0.003 0.001 0.000 · · · 0.009
φ‖2 0.138 0.072 1.314 0.009 0.017 · · · 1.323
φ⊥2 0.121 0.049 0.010 0.007 0.013 · · · 0.131
δ02 0.177 0.053 0.010 0.002 0.002 · · · 0.185
A0
CP2 0.008 0.001 0.002 0.000 0.000 · · · 0.008
A⊥CP2 0.077 0.020 0.030 0.010 0.002 · · · 0.085
∆φ‖2 0.254 0.062 0.979 0.010 0.017 · · · 1.014
∆φ⊥2 0.101 0.023 0.013 0.006 0.014 · · · 0.106
∆δ02 0.011 0.003 0.009 0.001 0.003 · · · 0.015
Nsig (%) 2.3 0.1 0.3 1.0 0.1 · · · 2.5
FF0 (%) 7.7 0.7 0.7 1.1 0.7 · · · 7.9
FF1 (%) 2.2 1.2 0.2 0.7 0.3 · · · 2.6
FF2 (%) 17.2 5.1 1.0 1.0 1.0 · · · 18.0

Table 7.6: Systematic errors (absolute values) on the physics parameters defined in
Table 2.1. The fit fraction per partial wave FFJ is defined in Equation (7.3).
In addition, the relative errors on parameters that enter the calculation
of the branching fraction are shown. The uncertainties are due to PDF
parametrization, efficiency function, SCF, uncertainties on the K+K− shape,
K+K− interference effects and charge asymmetry in the reconstruction.
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In summary, this thesis presents an angular analysis of B0→ φK∗ decays and search for
direct CP violation in these decays. The analysis was performed using the full Belle data
sample, consisting of an integrated luminosity of 711 fb−1 containing (772±11)×106 BB
pairs collected at the Υ(4S) resonance at the KEKB asymmetric-energy e+e− collider.
A partial wave analysis of the B0→ φK∗ system with φ→ K+K− and K∗ → K+π−

was performed to distinguish among S-, P-, and D-wave contributions from B0→ φ(Kπ)∗0,
B0→ φK∗(892)0, and B0→ φK∗2(1430)0, respectively. The analysis is the first four-body
final state partial wave analysis performed at the Belle experiment.

Several new and improved methods have been applied with respect to previous Belle
measurements. Neural networks from the NeuroBayes package have been employed to
obtain an observable that discriminates between signal and the dominating background
from e+e− → qq̄ (q ∈ {u, d, s, c}) continuum events. The final extraction of physics
parameters was achieved by a nine-dimensional maximum likelihood fit. Previous
analyses at Belle utilized only up to eight observables. A tool has been developed to
obtain a reliable measure of dependence among observables in multivariate data sets,
which has been used in the analysis and published in Reference [61]:

M. Feindt and M. Prim,
“An algorithm for quantifying dependence in multivariate data sets”,
Nuclear Instruments and Methods in Physics Research A 698, 84 (2013).

Furthermore, a method that can improve the computation time of numeric integrations
by orders of magnitude in partial wave and amplitude analyses in general was presented.

This analysis includes all interference effects among the different partial waves. The
branching fraction BJ , the longitudinal (perpendicular) polarization fraction fLJ (f⊥J),
the relative phase of the parallel (perpendicular) amplitude φ‖J (φ⊥J) to the longitudinal
amplitude, and the strong phase difference between the partial waves δ0J and a number
of parameters related to direct CP violation are measured for each partial wave. In
total 26 parameters are measured and summarized with their uncertainties in Table 8.1.
The obtained results supersede all previous Belle results [28] for B0 → φK∗(892)0.

The analysis also provides the first measurement related to the S- and D-wave com-
ponents B0 → φ(Kπ)∗0 and B0 → φK∗2(1430)0, respectively, at Belle. The obtained
results are consistent with other measurements [29] from the BaBar collaboration and
improve the uncertainties on all parameters related to the S- and P-wave components.
Naive expectations predict a dominant longitudinal polarization in the decay, which
is confirmed for B0 → φK∗2(1430)0 decays but in conflict with the results obtained in
B0 → φK∗(892)0 decays. All parameters related to CP violation are consistent with
its absence. The results of the presented measurement in B0→ φK∗ decays have been
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8 Conclusion

φ(Kπ)∗0 φK∗(892)0 φK∗2(1430)0

Parameter J = 0 J = 1 J = 2
BJ (10−6) 4.3± 0.4± 0.4 10.4± 0.5± 0.6 5.5+0.9

−0.7 ± 1.0
fLJ · · · 0.499± 0.030± 0.018 0.918+0.029

−0.060 ± 0.012
f⊥J · · · 0.238± 0.026± 0.008 0.056+0.050

−0.035 ± 0.009
φ‖J (rad) · · · 2.23± 0.10± 0.02 3.76± 2.88± 1.32
φ⊥J (rad) · · · 2.37± 0.10± 0.04 4.45+0.43

−0.38 ± 0.13
δ0J (rad) · · · 2.91± 0.10± 0.08 3.53± 0.11± 0.19
ACPJ 0.093± 0.094± 0.017 −0.007± 0.048± 0.021 −0.155+0.152

−0.133 ± 0.033
A0
CPJ · · · −0.030± 0.061± 0.007 −0.016+0.066

−0.051 ± 0.008
A⊥CPJ · · · −0.14± 0.11± 0.01 −0.01+0.85

−0.67 ± 0.09
∆φ‖J (rad) · · · −0.02± 0.10± 0.01 −0.02± 1.08± 1.01
∆φ⊥J (rad) · · · 0.05± 0.10± 0.02 −0.19± 0.42± 0.11
∆δ0J (rad) · · · 0.08± 0.10± 0.01 0.06± 0.11± 0.02

Table 8.1: Summary of the 26 parameters measured in the B0→ φK∗ system. The first
error is statistical and the second due to systematics.

published in Reference [83]:

M. Prim et al. (Belle Collaboration),
“Angular analysis of B0→ φK∗ decays and search for CP violation at Belle”,
Physical Review D 88, 072004 (2013).

Although this analysis is the final word from Belle on B0→ φK∗ decays, it provides
a baseline for measurements at the upcoming Super B-factory SuperKEKB and the
Belle II experiment. With an integrated luminosity of 50 ab−1, Belle II will be able to
perform similar analyses of the B0 → φK∗ system with φ → K+K− and K∗ → K0

Sπ
0,

which typically has an order of magnitude smaller experimental reconstruction efficiency
than K∗ → K+π−. The neutral final state allows for time-dependent measurements of
mixing-induced CP violation in b→ (ss)s decays.

Belle II will also enable a better understanding of the nature of the broad scalar K+K−
component in the four-body B0→ (K+K−)(K+π−)∗ final state. With 50 ab−1, the decay
chains B0 → f0(980)K∗(892)0 and B0 → a0(980)K∗(892)0, where f0(980) → π+π− and
a0(980) → η0π0, can be reconstructed and used to constrain the nature of the scalar
K+K− distribution. Furthermore, the increased statistics will allow performing analyses
similar to the presented one that include higher K+K− and K+π− invariant mass
regions. Searches for decays as for example B0→ f2(1270)K∗(892)0 or B0→ φK∗ decays
with F- and G-wave K∗ contributions as in B0 → φK∗3(1780)0 and B0 → φK∗4(2045)0,
respectively, will be possible.
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