

 Karlsruhe Reports in Informatics 2013,13
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

FACTS: A Framework for Anonymity towards
Comparability, Transparency, and Sharing

Extended Version

Clemens Heidinger, Klemens Böhm, Erik Buchmann, and Kai Richter

 2013

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

FACTS: A Framework for Anonymity towards
Comparability, Transparency, and Sharing

Extended Version

Clemens Heidinger, Klemens Böhm, Erik Buchmann, and Kai Richter

Karlsruhe Institute of Technology (KIT), Germany

Abstract. In past years, many anonymization schemes, anonymity no-
tions, and anonymity measures have been proposed. When designing
information systems that feature anonymity, choosing a good approach
is a very important design choice. While experiments comparing such
approaches are enlightening, carrying out such experiments is a com-
plex task and is labor-intensive. To address this issue, we propose the
framework FACTS for the experimental evaluation of anonymization
schemes. It lets researchers implement their approaches against interfaces
and other standardizations that we have devised. Users can then define
benchmark suites that refer to those implementations. FACTS gives way
to comparability, and it includes many useful features, e.g., easy sharing
and reproduction of experiments. We evaluate FACTS (a) by specifying
and executing a comprehensive benchmark suite for data publishing and
(b) by means of a user study. Core results are that FACTS is useful for
a broad range of scenarios, that it allows to compare approaches with
ease, and that it lets users share and reproduce experiments.

Keywords: Privacy, Anonymity, Evaluation, Benchmarking

1 Introduction

In the recent past, many anonymization approaches have been proposed, i.e., an-
onymity notions, anonymization schemes (subsequently referred to as ’schemes’),
and measures for their evaluation. It is difficult to compare them and to decide
when to use which scheme. It is hard to answer important questions, e.g.:
– Given a data set, a scheme, and an attack, how much information can the

attack disclose?
– Given a data set and a set of queries, which scheme maximizes query accuracy

while offering, say, Differential Privacy?
We see three dimensions that must be considered when comparing approaches,

namely attacks, measures and benchmarks:
Attacks. Schemes have to make assumptions on the data set to be anon-

ymized, and on the capabilities required to break anonymization. This allows
to state if and to which degree the schemes give protection. Example 1 intro-
duces our running example. In order to ease presentation, we use well-known
approaches with well-researched vulnerabilities.

Example 1: Each row in Table 1a describes one individual. The data set
contains attributes (quasi-identifiers) which might allow to identify a person
(“Zip”, “Age” and “Sex”). It further has a sensitive attribute (“Disease”). Ta-
ble 1b shows how a k-Anonymization scheme has transformed this data. This
transformation cannot shield from attacks that disclose the sensitive attribute
value for an individual. This is because, for all tuples with the same values
of identifying attributes, the value of the sensitive attribute is the same. How-
ever, k-Anonymization implicitly assumes that there is no correlation between
quasi-identifying and sensitive attributes. The so-called homogeneity attack can
exploit this to break the anonymization of Table 1b. Another scheme is required;
see for instance Table 1c for an anonymization outcome with l-Diversity. �

Table 1: Examples for Anonymization.

(a) Original data set.

Zip Age Sex Disease

13053 28 F Lupus

13053 29 F Lupus

13068 21 M AIDS

13053 23 F AIDS

(b) Outcome with k-Ano-
nymity (k = 2).

Zip Age Sex Disease

130* [28, 29] F Lupus

130* [28, 29] F Lupus

130* [21, 23] * AIDS

130* [21, 23] * AIDS

(c) Outcome with l-Diversity
(k = l = 2).

Zip Age Sex Disease

130* [21, 28] * Lupus

130* [23, 29] F Lupus

130* [21, 28] * AIDS

130* [23, 29] F AIDS

[23] has shown that any scheme that preserves some utility has to rely on
assumptions. Attacks in turn exploit such assumptions. This may result in new
schemes to shield against them, i.e., we observe a stream of new attacks and
countermeasures, for many scenarios. We say that approaches belong to the same
scenario if they share certain basic requirements. For example, in scenario data
publishing of microdata (Spub) one releases modified data sets without any means
to undo these modifications. With scenario database-as-a-service (SDaaS) in turn,
a requirement is to have de-anonymization mechanisms for authorized individ-
uals. Besides Spub and SDaaS there are many more scenarios, e.g., statistical
databases (Sstats) and data mining (Smining). [13] alone describes 28 schemes of
Spub and Sstats proposed until the year 2009. Since then, many more schemes
have been proposed, e.g., [7], [24], [26], and [37]. Differential Privacy [11] for
example assumes independent database records – [24] then describes an attack
exploiting dependencies between records, together with a respective new scheme.
To find out if a scheme can be used in a certain real-world context, it is important
to test the anonymized data against such attacks.

Measures. Besides formal proofs of anonymity and complexity analyses,
quantitative measures are needed to assess the applicability of a scheme for real-
world applications. An example is the probability that the anonymity of a data
set can be broken if it has been anonymized with a certain scheme. Regarding

performance, it is interesting to know if there is an optimal scheme that can
anonymize a certain data set in reasonable time, or if a heuristic scheme is
needed. Further measures consider data quality and query accuracy – we address
them later in this article. However, the sheer number of schemes, attacks, and
application requirements makes it hard to identify the best scheme for a given
setting. Making the right choice is important to account for high-level privacy
requirements, cf. [4].

Benchmarks. Schemes may be related in that they aim at the same kind
of protection, e.g., against linking values of sensitive attributes to individuals.
However, related schemes typically have been evaluated with different experi-
ments. For example, [29] uses the UCI Adult data set, while the related scheme
[37] uses an IPUMS census data set: One cannot compare their measurements
of data quality or of query accuracy.

Example 2: Queries on non-anonymized data sets may need to be modified
to be executed on the anonymization output. Query-processing techniques then
must be tailored to schemes. With our running example, the query SELECT *

FROM Table 1a WHERE Age BETWEEN 22 AND 28 needs to be modified so that
values of “Age” map to the generalized intervals in Table 1b. Different measures
for the loss of accuracy exist. To have experiments that are comparable, not only
the data must be identical, but also those modifications of the queries and the
accuracy measures. �

The three dimensions of evaluation problems described above call for a frame-
work that supports a detailed comparison of schemes based on the requirements
of real-world applications. Designing such a framework is challenging, given the
wide variety of possible attacks, measures and benchmarks. Although in this
paper we limit examples and discussions to Spub and SDaaS, we strive for a
framework that also works for other scenarios, e.g., Sstats and Smining. In this
context, the heterogeneity of scenarios is challenging. For instance, data quality
is not important for SDaaS, but for Spub, it is.

In this paper, we propose FACTS, a Framework for Anonymity towards
Comparability, Transparency, and Sharing. It allows to compile benchmarks
together with the implementations of schemes and of attacks, data sets, query-
processing techniques etc. When designing FACTS, we have devised standards
for the anonymization application, namely for interfaces that researchers propos-
ing new approaches must implement and for data they must provide. Users can
then define, share, update, and execute benchmarks for anonymization that refer
to the standards. FACTS addresses comparability, as Example 3 illustrates.

Example 3: An author of a query must implement two methods whose inter-
faces are given by FACTS: one for the query on anonymized data sets, another
one for the query on the original data. In Spub, this allows to measure the loss of
query accuracy (cf. Example 2). In SDaaS, it allows to quantify the performance
costs of decrypting query results and to verify that results are the same as with-
out encryption. �

In order to ease comparing approaches, FACT supports technical features
such as the reproducibility of experiments, collaboration amongst researchers,
the understandability of experimental results, and workability, i.e., the explo-
ration of the effect of evaluation parameters. For example, FACTS supports
understandability by generating and storing charts depicting experiment results
together with the respective benchmark suites. This allows to link a chart to, say,
the exact input data sets, parameters, and implementations, to make its compu-
tation transparent. Because new attacks keep appearing, FACTS has a central
repository of benchmarks, and users can specify new benchmarks to include
new attacks. The modular design of FACTS aims at composing and modifying
benchmarks with ease and at reusing previous work as much as possible.

Our evaluation is twofold. On the one hand, we have developed various bench-
marks, including one for Spub and one for SDaaS. On the other hand, we report on
a user study with 19 participants that has continued for three months. The eval-
uation shows that FACTS addresses its objectives well, e.g., FACTS standards
allow to compare approaches fairly by enforcing compliance with benchmarks.
We have implemented the framework and the benchmarks in full and make ev-
erything available under a free license on our website [1]. The vision is that
over time it will become common among anonymization researchers to refer to
suitable benchmarks.

Paper Outline Section 2 describes our terminology, our running example in more
detail, and the evaluation of approaches of the anonymization research area.
Section 3 describes our framework. Section 4 describes the features and use
cases. Section 5 evaluates. Section 6 concludes.

2 Background

2.1 Terminology and Examples

Anonymization. Our understanding of the term anonymity is broad and in-
cludes approaches such as encryption, see below. Three important anonymiza-
tion scenarios are:
Data Publishing of Microdata (Spub) A data publisher makes anonymized

data available to the public. Anonymization aims at protecting the privacy
of individuals while transforming data as little as possible.

Statistical Databases (Sstats) A data publisher makes anonymized results of
statistical queries on data on individuals available. Anonymization aims at
protecting the privacy of individuals while query results are highly accurate.

Database-as-a-Service (SDaaS) Users create an anonymized/encrypted da-
tabase and let an honest-but-curious provider store it and execute queries.
Users can revert anonymization and access the original data. Anonymization
lets only authorized users access the original data. [31] gives an overview of
privacy and security implications.

Any scheme takes an original data set as input, with original values in its cells.
With Sstats, a set of functions that operate on the data is input as well. Schemes

generate an anonymization output. With Spub and SDaaS, this output is the en-
tire anonymized data set, with Sstats it is anonymized query results. Any scheme
seeks to protect against a certain kind of disclosure of sensitive information. The
protection model states which information to protect. Anonymity notions state
characteristics the output of or the information processed by schemes must have.
An anonymity notion may refer to a certain protection model, i.e., any scheme
compliant with the notion protects the information specified by the protection
model. Adversaries execute attacks that try to break the protection. Adversary
models describe the adversary, i.e., her capabilities and her background knowl-
edge. An anonymity notion may include a reference to an adversary model: A
scheme complies with the anonymity notion iff the adversary of the referenced
adversary model cannot get to the information it aims to protect. Finally, ano-
nymity is given if a scheme protects the information specified by the protection
model against adversaries as defined by the adversary model. Thus, schemes
such as pseudonymization or partitioning [2] can offer “anonymity” according to
this definition.

Example 4: With Spub, the original data sets contain quasi-identifying and
sensitive attributes. An assumption is that each tuple belongs to one individual.
A protection model is that any sensitive attribute value must not be linked to the
respective individual. The anonymity notion k-Anonymity [35] specifies the fol-
lowing rule for anonymization output: For any tuple, there are at least k−1 other
tuples with the same values for the quasi-identifying attributes. Sk-Anonymity, a
scheme for k-Anonymity, with k set to 2, computes the output in Table 1b.
It generalizes original values, to build so-called QI blocks. This anonymization
however cannot protect from adversary Alice who wants to disclose the disease
Bob has. The adversary model is that Alice has knowledge about individuals,
as follows. Alice knows that Bob is in the database, lives in a zip-code area be-
ginning with 130, and is 21 years old. She concludes that Bob has AIDS. That
is, she executes the so-called homogeneity attack [30]. We refer to it as AHG.
l-Diversity [30] protects against AHG, see Table 1c. �

Experiments. ’Approach’ is our generic term for any new concept an anonym-
ization researcher might propose. Approaches include schemes, attacks, query
processing, and measures. Next to anonymity, schemes may have further goals:
With Spub, a goal is to maximize data quality for subsequent analyses. For Sstats,
the data set is hidden, and the user can enter a given set of statistical queries – a
goal is to maximize the accuracy of their results. For SDaaS, a goal is to maximize
performance of query processing. In general, researchers strive to find schemes
that are good regarding a combination of goals, as quantified by measures. Mea-
sures used in the literature are anonymity, data quality, query accuracy, and
performance. For instance, anonymity measures quantify to which degree an ad-
versary can break the anonymization, i.e., disclose the information specified in
the protection model, and data-quality measures quantify how much the an-
onymized data set differs from the original one. An experiment to evaluate an
approach has experiment parameters, at least an original data set and a measure.

With our terminology, a benchmark is a set of experiments. A benchmark suite
bundles benchmarks with schemes that use them, and contains their parameters
and runs such bundles. It yields measure values, i.e., values from the respective
experiments as output. One benchmark may be used in several suites. We differ-
entiate between benchmark specification and benchmark execution with suites.
This is because one might have an interesting benchmark, e.g., containing a new
data set, but might not have a scheme using it. In general, we see two user roles:
researchers and users. Researchers are inventors/implementors of an approach.
Users deploy approaches. They do not necessarily know the inner structure of
the approach they use. A researcher can also be a user.

Example 5: Continuing Example 4, we illustrate how the measure of [29]
(we refer to it as MAnon-Dist) quantifies the threat posed by AHG. MAnon-Dist

is the maximum distance between (a) any distribution of values of the sensitive
attribute of a QI block in the anonymized data set and (b) the distribution of
values of the sensitive attribute of the original data set. AHG can conclude that
an individual has a sensitive attribute value if the distance is large, as we now
explain. Experiment e quantifies anonymity with MAnon-Dist:

e = { original data set: Table 1a, anonymity measure: MAnon-Dist }

Benchmark B contains e as the only experiment, i.e., B = {e}. Benchmark
suite B runs B for two schemes.

B = { (experiment: e ∈ B, scheme: Sk-Anonymity, parameters: {k = 2}),
(experiment: e ∈ B, scheme: Sl-Diversity, parameters: {k = 2, l = 2}) }

B executes and generates Tables 1b and Table 1c as the anonymization out-
put. For Table 1b, the distributions (a) are {Lupus, Lupus} and {AIDS, AIDS}.
For Table 1c, the distributions (a) are {Lupus, AIDS}, both times. Distribution
(b) is {Lupus, Lupus, AIDS, AIDS}. The distributions (a) for Table 1b have
a greater distance to distribution (b) than the distributions (a) for Table 1c.
MAnon-Dist thus calculates a higher degree of disclosure for Table 1b. �

2.2 Schemes and their Evaluation

In this subsection we classify work on anonymization into work on protection
models, on anonymity notions, on schemes, and on measures. We focus on work
that we explicitly refer to later in the paper.

Protection Models

There are several protection models, e.g., record linkage, attribute linkage, and
table linkage: The adversary must not identify the record of an individual, as-
sociate an attribute value with an individual, or know if an individual is in the
anonymization output. Another protection model is the probabilistic one: The an-
onymization output should provide the adversary with little information beyond
her background knowledge. [13] systematically describes these four protection
models for Spub and Sstats.

Anonymity Notions

Anonymity Notions for Spub and Sstats. There are many anonymity notions
for Spub and Sstats. [13] explicitly describes 15 such notions proposed until the
year 2009. Since then, many more notions have been proposed, e.g., [7] and [24].
Anonymity Notions for SDaaS. We classify the related work of SDaaS into
the four protection models of [13]. The anonymity notion introduced in [3] is
privacy constraints stating which pairs of attribute values that occur together
in a tuple an adversary is forbidden to learn. This belongs to protection model
attribute linkage. The anonymity notion proposed in [20] is an indistinguisha-
bility concept for databases, Ind-ICP. An adversary must not be able to tell an
anonymization of a database d apart from one of a variation of d where values of
each column have been permuted. The anonymization output must satisfy this
indistinguishability requirement at all times for any input database. This notion
is an instance of the probabilistic one.

Schemes

Schemes for Spub and Sstats. There are numerous schemes, e.g., Mondrian
and Datafly for Spub or ε-Differential Privacy by adding noise for Sstats. [13]
describes these and other schemes proposed until the year 2009, 28 in total.
Since then, many more schemes have been proposed, e.g., [7], [26], and [37].
Schemes for SDaaS. [17] proposes “Databases as a Service” (DaaS) where an
external service stores databases and executes queries. [17] and [33] propose to
use encryption to protect from adversaries. [16] proposes to execute SQL over
encrypted data and to speed up query execution with index attributes. [21]
and [22] propose to generate an index on encrypted databases for equality and
range queries. [10] proposes to outsource a B+ tree as an index structure. Three
schemes [3,9,18] fragment data – this qualifies as anonymization by our broad
definition. [3] stores data fragments in two databases hosted by two providers
that do not cooperate. [9] extends this to an arbitrary number of fragments.
In [18] we describe a scheme tailored to a specific use case which fragments a
database into four parts. In [19], a base scheme generalizes the scheme of [18]
to work with any database and we further propose three enhanced schemes for
better performance here.

Anonymity Measures

Anonymity Measures for Spub. Most proposals identify a new attack and
then have custom measures tailored to the attack. [30] for example counts the
number of tuples with a homogeneous QI block with AHG.
Anonymity Measures for SDaaS. Publications here use their own or no an-
onymity measure. For example, the measure of [8] raises alarm if the adversary
can disclose one or more values in one row of the anonymization output. The
measure quantifies the probability of the adversary guessing correctly if attribute
values occur in the same row. [19] uses a variation of the measure of [8] for the
threat that comes with one of its four schemes. [22] and [21] study an adversary

who knows which attribute values are mapped to which index values. With poor
anonymization, and one index value mapped to exactly one attribute value, the
adversary would know which attribute value the index value is for. Their ano-
nymity measures thus are the variance and the entropy of possible original values
of index values.

Data-Quality Measures

There are a few data-quality measures for Spub and Sstats such as the share of
values generalized. [13] describes the measures systematically. For SDaaS there
are no data-quality measures. Namely, quality is always 100 percent for autho-
rized users and 0 percent for non-authorized ones.

Query-Accuracy Measures

One query-accuracy measure frequently used with Spub and Sstats is as follows:

Definition 1 (Measure MQuery-Acc-Avg). Let Q be a set of queries, and let
δrel be the relative error of executing a query q ∈ Q on the original data set, com-
pared to the anonymization output. MQuery-Acc-Avg now is δavg = 1

Q ·
∑

q∈Q δrel

[13] describes this and other measures for Spub and Sstats.

Performance Measures

Performance measures are the canonical ones, e.g., execution times of queries,
schemes, or attacks.

2.3 Comparability Problem

In this subsection we describe the status quo of comparison efforts with anon-
ymization for our scenarios.

Regarding Spub, the survey [13] alone lists 15 anonymity notions and 28
schemes. With Sstats, there also is much activity since Differential Privacy [11]
has been proposed. Several schemes comply with it, see [12]. Even though Differ-
ential Privacy is a probabilistic scheme, attacks are possible, e.g., [24]. Thus, one
might want to measure the success of attacks with experiments here as well. The
high number of publications makes it hard to decide for a specific task which
scheme is compatible with its adversary model and its protection model and is
best regarding anonymity, data quality, query accuracy, or performance.

With both Spub and Sstats, [24] observes that many articles only give incom-
plete adversary models. [24] further notices that authors often do not state a
protection model that they aim to address. This makes comparability hard. With
SDaaS, only few schemes comply with anonymity notions that specify protection
models, see Tables 2a and 2b. For the publications that do specify anonymity
notions, only two notions are reused. Publications create new experiments that

do not compare with related work. For example, [21] conducts extensive and
insightful experiments but only compares to a baseline that retrieves the entire
database with each query. We conclude that there is little comparison effort in
the area.

Table 2: Comparability with SDaaS.
(a) Anonymity notions.

[3] [20]
Record Linkage
Attribute Linkage X X
Table Linkage
Probabilistic Attack X

(b) Schemes.

Anonymity
Notion

Anonymity
Measure

[17] � �
[33] � �
[16] � �
[22] � X
[21] � X
[10] � �
[3] [3] �
[9] [3] �
[18] Ind-ICP �
[19] (base scheme and two of
three enhanced schemes)

Ind-ICP �

[19] (one of the enhanced
schemes)

� X

Problem 1. The research area of anonymity requires support for the evaluation
of approaches in different contexts regarding different criteria and for comparing
approaches to each other with ease.

3 FACTS

We now present FACTS, our framework for easy comparability for anonymiza-
tion research. In this section we give an overview, describe the key concepts, and
say how to implement benchmarks.

3.1 Overview

FACTS is a framework for easy comparison of anonymization approaches. A
core issue when designing FACTS has been to come up with class models of
approaches. Class models are our standardizations of behavior and of processes
in the context of anonymization. In FACTS, researchers provide implementa-
tions of class models, by implementing them against interfaces we, the designers
of FACTS, have specified. Researchers further have to comply with the stan-
dards class models specify for data generation. Users configure benchmarks and
benchmark suites within FACTS that refer to these implementations. Bench-
mark suites bundle all data, i.e., data sets, the implementations of class models,
and experiment results. FACTS stores everything in a central repository. Users

can execute benchmark suites to compare the state of the art with ease. The idea
is that users who are experts of an anonymization sub-domain create benchmark
suites for approaches where a comparison is interesting.

3.2 Aspects

FACTS covers four aspects. First, users define benchmark suites, i.e., the speci-
fication which approaches to compare based on which data, parameter settings
etc. Benchmark suites refer to implementations of class models. We have defined
class models as the second aspect, and there are class models of schemes, attacks,
and queries. The third aspect is that FACTS executes these class models and
performs the benchmarking. FACTS stores all results and protocols of executing
benchmark suites in a repository, this is the fourth aspect. See Figure 1.

Fig. 1: FACTS – Overview.

3.3 Benchmarks

We now describe how to realize benchmarks by means of the four aspects.

Aspect A1: Input In this aspect, a user configures benchmark suites. Stan-
dardized interfaces and data representations ensure that all input plays well
together, e.g., the scheme knows how to access the input data set. Benchmark
suites refer to one or more experiments. An experiment has the following pa-
rameters:
1. An original data set D.
2. A scheme anon, possibly with parameters, referred to as params(anon).
3. An attack attack . It may have parameters, referred to as params(attack).
4. A set of queries Q where each query q ∈ Q may have parameters params(q).
5. A measure M.

Users may omit (3) or (4) if the experiment does not make use of attacks or
queries, e.g., experiments on the performance of schemes.

Aspect A2: Class Models Class models let researchers model approaches
with a set of interfaces they need to implement and standardized formats of the
data they need to generate. For example, there is an interface for attacks that
lets researchers make background knowledge explicit, and methods accessing
such background knowledge return it in a format standardized within FACTS.
This for example allows authors of anonymity measures to use the knowledge.
Our evaluation will show that the FACTS interfaces are on the one hand suf-
ficiently generic and, on the other hand, specific enough to make comparisons
indeed easier. Further, FACTS allows to compose complex schemes, attacks,
and queries from so-called operations. Operations can be used individually, or
they can be combined by means of so-called macros. Operations and macros
allow to encapsulate and combine logical operations such as encryption or ran-
domization, to reduce the necessary implementation work.

Aspect A3: Execution This aspect performs the benchmarking, with mea-
surements. FACTS instantiates the implementations of class models of As-
pect A2 with the data of Aspect A1. That is, FACTS runs the schemes, attacks,
and queries. Experiments are logged, including time, date of execution, and the
input data set.

Aspect A4: Data This aspect stores all data, i.e., benchmark suites (A1), the
class models and their implementations (A2), and the measurement results
and execution logs (A3). FACTS stores all data sets and implementations of
approaches for later runs of the same suite. This is transparent to the users;
FACTS takes care of the data storage. For instance, users and researchers do not
need to know the schema of the database or other internals of the framework.
They do not need to concern themselves with logging or with the storage of
implementations. They only have to comply with a few standardizations for
data generation. One example of such a standardization is that a user has to
provide a name for a benchmark suite.

Documentation. For specifics of the implementation, e.g., interfaces, we refer
to the documentation on the FACTS website [1].

Implementation and User Involvement. We have implemented the frame-
work in Java. We store the repository in an Oracle database and use Hibernate
for the object-relational mappings. Users and researchers can download a run-
time package (RTP) and configure it against a repository. For Aspect A1, users
configure new benchmark suites by invoking RTP methods. For A2, researchers
implement new approaches by extending respective Java classes. The reason why
we use Java is that it is turing-complete and researchers can implement complex
approaches with it: For example, with SDaaS, queries need to decrypt query re-
sults, and plain SQL instead of Java would not work. Regarding A3, users start
the execution of benchmark suites by invoking respective methods of the RTP.
Users can access benchmark results in logs with many convenience methods. Two
examples are method getOriginalDatasets to retrieve the original data set of

a benchmark, and method getAnonymizationRuntime to retrieve the execution
time of its scheme. Another method of the RTP allows to store any information
related to the first three aspects in the repository, i.e., new benchmark suites,
new implementations of class models, and benchmark results. Users can search
the repository with various methods, e.g., search for a benchmark suite by name.

Anonymity Benchmarks Anonymity measures quantify how well an adver-
sary can guess the original value represented by an anonymized one. We now
describe how the four aspects realize anonymity benchmarks. Benchmarks for
data quality, query accuracy, or performance are similar.

Aspect A1: Input Users configure the benchmark suite with this aspect. List-
ing 1 has the respective method calls for FACTS initialization. FACTS provides
implementations of the methods, and users just invoke them. First, users spec-
ify the input data set D, e.g., import D from a file (Lines 1-3). Next, the user
sets up a new experiment with D (Line 4-5). The user must further specify the
scheme anon (Line 6) and the attack attack (Line 8) and link them to the ex-
periment and the benchmark suite (Lines 7 and 9). M finally is an anonymity
measure (Line 10). If M just analyzes the anonymization output, attack may
be a so-called null attack from our repository which does not do anything. If
the threat stems from analyzing query strings or query results, the user must
specify a set of queries Q in addition.

1 CSV csv = new CSV(new File(inputData));
2 Dataset input = csv.importDataset ();
3 Datasets original = new Datasets ().add(input);
4 m = benchmarkSuite.createMeasurement ();
5 m.setInputDatasets(original);
6 AnonymityClassModel anon = new anon();
7 m.setAnonymityClassModelImplementation(anon);
8 AttackClassModel attack = new attack ();
9 m.setAttackClassModelImplementation(attack);

10 m.setMeasure(M);

Listing 1: Configuration of anonymity benchmarks.

Aspect A2: Class Models A researcher implements anon by extending a spe-
cific class. He must specify (i) the name of the scheme, (ii) the name and type
of its parameters, (iii) an informative text in natural language, and (iv) an
implementation of anon. If researchers do not specify either of (i)-(iv), FACTS
reports an error. The anonymity class model requires the result of the anonym-
ization to be AnonymizedDataset objects. To fill them with content, FACTS
provides a generic input method. It lets the researcher specify the original value
for a certain anonymized value.
Researchers implement attack attack by extending another specific class. They
must implement the following interfaces for preconditions of the attack, back-
ground knowledge, and for attack results.
preconditions Preconditions are rules that have to be fulfilled in order for

attack to work. Examples are that at least 20 GB of RAM is available, or
that the original data set has at least 1000 tuples.

backgroundKnowledge Background knowledge are data sets used during
attack . Currently, some papers only describe it roughly, but no concrete
data sets are given. This interface lets the researcher explicitly declare back-
ground knowledge so that it can be retrieved and used in comparisons at
any later point in time. The data sets it generates can be some existing
data set, or it can compute the background knowledge from the original
data set. Example 6 illustrates the latter.

Example 6:

1 public void backgroundKnowledge(Dataset original , Dataset anonymized ,
Dataset preconditions , Parameters p, OperationAssembler

knowledgeLogic)
2 {
3 Attribute a = original.getAttribute ("tag");
4 a.setAggregate(AggregateType.COUNT);
5 a.setGroupByAttribute(true);
6 Dataset knowledge = original.aggregateSelect(a);
7 knowledgeLogic.addOperation(new NullOperation (), knowledge);
8 }

The definition of the interface backgroundKnowledge (Line 1) has the orig-
inal data set as one parameter. As the implementation of the interface, the
researchers use FACTS methods implemented by us to compute a count of
each value of the attribute named “tag” of the original data set (Lines 3-6).
Another FACTS method returns the result to the framework (Line 7). �

attack Attack results are the guesses of the adversary which original values lie
behind the cells of the anonymization output. The interface lets researchers
access the background knowledge. The result of this method must consist
of the same number of Dataset objects as there are AnonymizedDataset

objects. In case an attribute is not important for attack , the implementation
inserts an empty value which M then ignores.

With its interfaces, FACTS makes preconditions, background knowledge, and
attack results available at a well-known location and available for later refer-
ence. The rationale is to give way to interesting comparability features.

Example 7: It is interesting to get the background knowledge of all attacks in a
benchmark suite and compare it. Listing 2 shows the method calls necessary to
get to this knowledge. FACTS provides these methods. First, a user retrieves all
measurements of a benchmark suite (Line 1) and iterates over them (Line 2).
Each measurement has a reference to the implementation of an attack class
model. This implementation is now linked with the measurement, and one can
retrieve it with method getAttackImplementation(). When implementing the
class model, the researchers must also implement an interface that explicitly
declares background knowledge. Method getKnowledgeDatasets() retrieves
this knowledge. �

1 Collection measurements = benchmarkSuite.getMeasurementsAsCollection ();
2 for (Measurement m: measurements) {
3 Datasets knowledge = m.getAttackImplementation ().getKnowledgeDatasets ()

;

4 }

Listing 2: Getting all background knowledge of a benchmark suite.

Our approach that an attack outcome is one guess for each cell of the original
data set is sufficiently general. With record-linkage attacks for example, the
attack can store which individual described by the original data set it corre-
sponds to, in each cell of the attack-result data set. The implementation of a
measure needs to know how to interpret the values in attack-result data sets,
i.e., measures and attacks have to know the specifics of each another. In other
words, anonymity measures only make sense with certain attacks, but typically
not all of them. By having as many cells for the guesses of the adversary as
there are original values, FACTS lets the authors of measures and of attacks
implement a broad range of approaches.

Aspect A3: Execution Listing 3 features the execution of a benchmark; it is a
continuation of Listing 1. We, the FACTS implementors, have implemented the
methods for benchmark execution, and a user just calls them. While executing
the methods, FACTS refers to anon, attack , and M. Line 1 runs the scheme
anon, which produces the anonymized data set anon(D). Next, Line 2 executes
attack . Finally, Line 3 executesM, which accesses the values guessed by attack
and compares them to the original values specified during anonymization anon.

1 m.runAnonymization ();
2 m.runAttack ();
3 m.runMeasure ();

Listing 3: Execution of anonymity benchmarks.

FACTS uses the design pattern “Inversion of Control” (IoC) to execute class
models. This pattern decouples the execution of a task from its implementa-
tion: With FACTS and anonymity benchmarks, IoC ensures that class models
do not contain any code for benchmarking or other run-time tasks. For exam-
ple, researchers implementing attack do not need to ensure the execution of
anon: It is the responsibility of FACTS to inject the proper data sets at run-
time at the respective interfaces. This requires a systematic identification and
implementation of the execution processes in our context. One example of an
execution process is that, with attacks, FACTS first evaluates preconditions, it
then computes background knowledge, before it starts the actual attack.

Aspect A4: Data This aspect stores all background knowledge and attack re-
sults, all anonymization and attack class models and their implementations,
and all benchmark results. FACTS produces anonymity logs and attack logs, as
follows. Logs are stored in a relational database. We have devised and imple-
mented various convenience methods to access logs. Anonymity logs protocol
the selected implementation of the anonymization class model, its parameters,
and references to the input data set and to the anonymization output data
set. Attack logs protocol attack class models with their parameters, anonym-
ity measures and their values, and references to all data sets (input data set,
anonymized data set, background knowledge, and attack results).

4 Features and Use Cases

In this section, we describe important features of our framework, namely com-
parability, reproducibility, workability, collaboration, and understandability, to-
gether with respective use cases. These use cases will form the basis of our
evaluation in the next section.

Feature 1 (Comparability). Comparability means quantifying anonymity, data
quality, query accuracy, and performance of approaches. This is to decide which
approach is best for a given real-world problem.

FACTS gives way to comparability by means of benchmarks.

Use Case (Ubenchmark). FACTS lets users define, update, and access bench-
marks for anonymization. For anonymization approaches that are related, e.g.,
approaches that aim for the same protection model, a user creates a benchmark
suite that compares them, together with attacks and queries, under a set of mea-
sures. When a researcher proposes a new attack, users can update benchmark
suites to include it, or create new ones.

Feature 2 (Reproducibility). Reproducibility lets unbiased third parties repeat
and verify experiments.

Experts in their respective scientific fields have stressed the importance of re-
producibility. For example, [5] states that more research is necessary to get to
good experiment tools. FACTS supports reproducibility use cases such as the
following one:

Use Case (Ucommittee). Authors of a new scheme, attack, or query-processing
technique add an implementation of their approach to the FACTS repository
and to a benchmark suite. They use this benchmark suite to evaluate their
technique. A respective conference committee can later retrieve the benchmark
suite. The committee can rerun measurements without difficulty and award a
reproducibility label.

Feature 3 (Workability). Workability lets one explore effects of modifications
of evaluation parameters.

Workability allows to evaluate if an approach achieves good results solely because
experiment parameters were chosen to its advantage. Parameter values however
may be hidden in an implementation. It can be hard to identify and to vary
them subsequently. FACTS addresses this:

Use Case (Uworkability). Alice is developing a new approach. FACTS requires
Alice to specify the parameters with interfaces she has to implement, be it for an-
onymization, attacks, or queries. Bob now wants to evaluate this new approach.
He retrieves and changes parameters of any benchmark with the approach. To
this end, he can use FACTS methods that we have already implemented. He
does not need to search for parameters in the code. This lets Bob observe how
parameters affect benchmark results with ease.

Feature 4 (Collaboration). Collaboration within the community allows for
faster development of new approaches.

In publications, details such as the concrete data set, initialization or termination
procedures and the values of parameters are not always given [36]. This makes
it hard for researchers to build upon existing work, i.e., when implementing a
new approach by reusing some of the implementation of an existing one.

Use Case (Usharing). FACTS gives way to sharing of operations. Suppose that
researchers have developed a new scheme for SDaaS that protects against ad-
versaries trying to find out the order of tuples. The authors search the FACTS
repository and find an operation which randomizes a data set. It might have
been developed for schemes of Spub originally.

Another use case of collaboration is to let the community assist in solving a task:

Use Case (Uassistance). A user wants to find out if her data set can be anon-
ymized such that her quality criteria are met. The community helps her to find
suitable schemes. For example, suppose that Alice wants to outsource her data
to a SDaaS provider. She wants to know if there exists an anonymization that
allows executing certain queries in under one second on her data set. Alice cre-
ates a benchmark suite with her data set and queries. Other users can retrieve
it and add schemes and query-processing techniques.

Feature 5 (Understandability). Understandability lets one grasp with ease
how experimental results have been computed.

Given an experimental result such as a diagram, it can be hard to understand
how exactly it has been computed, e.g., why one value is larger than another
one: For example, there may be several (parametrized) schemes and attacks,
operating on different background knowledge. A use case for understandability
(but also for reproducibility and collaboration) is as follows:

Use Case (Udiagram). Researcher Carl is developing a new scheme. He uses
FACTS to implement it and creates a new benchmark suite with performance
experiments. Carl wants to graph anonymization performance, to find settings
where the scheme is slow. His workflow is to implement the scheme, generate the
graph, and to refine the implementation. FACTS lets Carl implement this work-
flow. It lets Carl attach code to his benchmark suite that generates diagrams,
such as the following one:

1 GNUPLOT gnuplot = suite.createPlot ();
2 gnuplot.addPlotOption (" title", "set title ’PERFORMANCE_ANO ’");
3 gnuplot.addPlotOption (" styleData", "set style data histogram ");
4 log.exportAllAnonymizationRuntimes(suite , gnuplot);

FACTS features implementations of all methods of the listing, and Carl can
just call them. Line 1 creates the FACTS representation of a gnuplot diagram.
Lines 2 to 3 configure the plot. For example, Line 3 configures that a histogram
is the graphical representation of the data. We have left out other lines of code
for gnuplot configuration to ease presentation. Finally, Line 4 instantiates the
gnuplot template with the anonymization run-times of Carl’s benchmark suite.
The result is a gnuplot file which generates a diagram.

The conventional way for Carl to realize his workflow in turn has two steps:
to run measurements and to read measurement values into a file with a pro-
gram that plots results. This results in more effort because Carl must initialize

the steps manually for each new optimization. Further, the information which
diagram belongs to which version of Carl’s code might get lost if Carl is not
very careful with documentation. With FACTS in turn, plots are tied to runs
of a benchmark suite. This preserves the information which diagram belongs
to which experiment (Understandability). FACTS generates plots with every
run of a benchmark suite (Reproducibility). FACTS separates the schema of
a diagram (class GNUPLOT) from data (class Log) and stores them separately in
the repository, for later reuse, e.g., to share the schema of an informative graph
and to use it for different approaches (Collaboration).

Our final use case is to simplify benchmarks for understandability:

Use Case (Usimplify). Tony has a large data set with activities of his waste-
management business. He wants his business associate Silvio to access the data,
but conceal it from the authorities. This is a SDaaS scenario and requires an-
onymization. However, Silvio complains that certain queries are slow. Tony lets
Christopher evaluate which data the problem occurs with. To this end, Christo-
pher gradually reduces the data set size and measures query-execution times.
With FACTS, he can use methods already implemented to retrieve an evalua-
tion data set, to reduce its size, and to start measurements. Christopher observes
that processing is slow if a certain client is in the data set. Tony is now able to
eliminate the problem, once and for all.

Discussion FACTS is applicable for use cases of many anonymization scenarios.
With the current implementation, input and output has to be relational data.
Our evaluation will show that FACTS is general enough to be applicable for
the very different scenarios Spub and SDaaS. Data from many other scenarios,
e.g., association-rule mining of shopping carts, search histories, location-based
services, social networks, or statistical databases, can be represented as rela-
tions. Further diversification might require slight changes to implementations
and interfaces for scenario-specific use cases. Generic use cases, e.g., performance
comparisons, should work as is.

5 Evaluation

We evaluate FACTS by means of an exploratory study. We declare success if
FACTS allows to model state-of-the-art schemes, attacks, and measures, and if
FACTS allows to execute and to compare them by means of benchmark suites.
Further, we seek confirmation that the framework indeed has the features we
have identified earlier.

The evaluation of our framework is twofold. First, we have devised a bench-
mark suite Bpub to compare schemes of the scenario Spub systematically. We
have evaluated the use cases Ubenchmark and Udiagram with it. Second, we
have conducted a user study to evaluate how well FACTS realizes reproducibil-
ity and collaboration. We reenact the use cases Uassistance and Ucommittee with
this study. The study has also given us a further instance of Ubenchmark and a
benchmark suite, BDaaS, for scenario SDaaS. We stress however that our main

contribution is not one specific benchmark suite but the idea of a framework to
build and share such suites. Our website [1] holds supplementary material of the
evaluation.

For Bpub and BDaaS, we first describe our evaluation setup, followed by re-
sults.

5.1 Bpub: Benchmark for Scenario Spub

In this subsection we present a benchmark suite for Spub. It tests well-known
anonymity notions and schemes against data-quality, query-accuracy, and per-
formance measures. It further tests the success of two attacks and measures
anonymity.

Evaluation Setup The benchmark suite consists of the following data set,
schemes, attacks, queries, and measures:

Dataset Our data set is the UCI adult data set1 from a census in the US in
1994. Many studies on anonymization use it, e.g., [25], [27], or [30]. We use the
attributes age, workclass, education, and sex as the quasi-identifying attributes
and occupation as the sensitive attribute.

Schemes Our schemes are Datafly [34] and Incognito [25]. We run the schemes
such that they comply with the anonymity notions k-Anonymity [35], l-
Diversity [30], and t-Closeness [27]. Table 3 lists the respective parameter values.
Parameter values are the same as in the evaluations of [27] and [30].

Table 3: Parameters for the schemes.
Scheme Parameters
k-Anonymity k ∈ {2, 4, 6, 8}
l-Diversity l ∈ {2, 4, 6, 8}
t-Closeness t ∈ {0.15, 0.20}

We run each scheme once per anonymity notion and parameter. We use the im-
plementations of UT Dallas2 and integrate them into FACTS with the adapter
design pattern [14].

Attacks Our attacks are the homogeneity attack AHG [27] and the functional-
dependency attack AFD [37]. With the latter, anonymity has not been mea-
sured before to our knowledge, only data quality and performance. Thus, this
should give way to new insights. We have implemented both attacks against

1 http://archive.ics.uci.edu/ml/datasets/Adult
2 http://cs.utdallas.edu/dspl/cgi-bin/toolbox/

http://archive.ics.uci.edu/ml/datasets/Adult
http://cs.utdallas.edu/dspl/cgi-bin/toolbox/

the FACTS attack class model. We have executed each attack on each anon-
ymization output.
With both attacks, one kind of background knowledge is the information which
exact values of quasi-identifying attributes individuals have. As far as we know,
all existing studies in Spub assume that an adversary has this information avail-
able for all individuals. Experiments have shown that the homogeneity attack
is effective with this assumption [30]. Here, we relax it and let AHG only know
the values of quasi-identifying attributes of every 100th individual. With the
more recent attack AFD, we do not loosen up this assumption because AFD was
not tested with experiments at all yet. Here, however, we use other functional
dependencies than previously tested: Our functional dependency is (workclass,
education, sex) → occupation. [37] uses some quite unrealistic functional de-
pendencies such as race → marital-status.

Queries Our set of queries is the same as with the evaluations of [28,29,38].
Measures Our measure for anonymity is the threat to disclose the sensitive
attribute value of an individual. We refer to this as MAnon-Generic. We have
implemented two instances of this measure. The first one (MAnon-Generic with
avg) computes the share of disclosed tuples over the total number of tuples. The
second one (MAnon-Generic with max) yields 1 if there has been one disclosure.
For example, if AHG finds one QI block with just one value for the sensi-
tive attribute, MAnon-Generic with max returns 1. We apply the two measures
on each anonymization output for both attacks AHG and AFD. Our measure
for data quality is the Global Certainty Penalty measure [15] that quantifies
the information loss with generalization. Our measure for query accuracy is
MQuery-Acc-Avg. Our measure for performance compares the absolute run-times
(i) of each scheme and (ii) of each attack on the various anonymized data sets.

We have executed the benchmark suite on a machine with two octo-core
CPUs with 2.9 GHz per core and 24 GB RAM.

Results

Comparability: Anonymity. It is interesting to learn which scheme can best with-
stand adversaries AHG and AFD. Our measurements show that Incognito with
l = 2 offers best anonymity against AFD. MAnon-Generic with max is 0. This is
because AFD cannot use functional dependencies to link the respective sensi-
tive attribute value to any individual. However, with all other parameter values
tested, we observe disclosure. We can thus confirm vulnerability of schemes of
Spub initialized with many parameters. With AHG in turn, we do not observe any
disclosure for any parameter values. We for our part conclude that homogeneity
attacks are not as dramatic a threat with realistic background knowledge.

Understandability: Linking results to their experiment. Benchmark suite Bpub
includes code that generates many diagrams to test use case Udiagram. It illus-
trates the computation of measure values. FACTS has drawn the diagrams to
reduce our evaluation effort. Figure 2 is one example. For this paper only, we

slightly modified the respective FACTS-generated diagram to make it more com-
pact. It makes a step towards understandability too: The figure has an identifier
which allows us to find it within Bpub and to link the experiment parameters to
it.

 0.01

 0.1

 1

 10

 100

c=3,l=4

c=3,l=6

c=3,l=8

k=2
k=4

k=6
k=8

l=2 l=4 l=6 l=8 t=0.15
t=0.2

R
u

n
ti

m
e

[h
]

HG Attack
FD Attack

Fig. 2: Performance of attacks AHG and AFD against the output of several
Datafly schemes.

5.2 BDaaS: User Tasks for Anonymization, Query Processing, and
Attacks

In this subsection we present a user study to evaluate how well FACTS realizes
reproducibility and collaboration.
We now describe the user study that was realized as an instance of use case
Uassistance and has led to the development of benchmark suite BDaaS. We have
specified three tasks with Uassistance: (1) Anonymize specific data sets in a SDaaS

scenario and produce anonymization output, (2) develop query-processing tech-
niques for each anonymization (cf. Example 2), and (3) attack the anonymization
output of other study participants. In a user experiment, we have let participants
solve these tasks. After the solutions were handed in, we have verified their repro-
ducibility (Ucommittee). We have further compared the different solutions with
performance and anonymity measures (Ubenchmark).

Evaluation Setup. Our experiment consists of three phases where users solve
different tasks with FACTS. After the three phases were completed, we handed
out a user survey regarding FACTS. It is available on our website [1]. We de-
signed the survey with care so as to not enforce positive results with the way
of asking questions. Likert-scale questions did not follow patterns, i.e., positive
answers have been sometimes to the left, sometimes to the right. Further, our
participants answered the survey anonymously, and they knew that we could

not trace negative answers back to them. We now describe the tasks, followed
by a description of the participants, and incentives. Our three tasks are:

Task 1 Folksonomies [32] let users annotate digital objects with free-text la-
bels. For example, with Last.fm, users annotate music, with Flickr photos.
Folksonomies contain data that is sensitive regarding privacy. A user study [6]
confirms that users see a significant benefit in being able to control who is
allowed to see which data. Schemes let users only access data when the data
creators have given the respective authorization. Thus, the first task is to de-
velop schemes for CiteULike folksonomies of varying size.

Task 2 Users issue queries against folksonomies for various reasons, e.g., per-
sonal organization or communication with other users. We have identified seven
types of common folksonomy queries [19]. For example, one type of query is
“retrieve all tags applied to a specific object”. BDaaS includes parameters suit-
able for each of these seven query types for each CiteULike folksonomy data
set. To continue the example, BDaaS computes the most frequent object as one
of the query parameters for each data set. This is because the most frequent
object results in a large query result and thus a long query-processing time.
This is an interesting extreme case that should be included in a meaningful
benchmark. Thus, the second task is to develop fast processing techniques for
each query type given and its parameters.

Task 3 The frequency of attribute values in folksonomies follows a power-law
distribution. With improper anonymization, this leaves room for statistical at-
tacks [8]. BDaaS specifies as the adversary model someone with statistical back-
ground knowledge. BDaaS computes this knowledge from the original data sets
and makes the frequency of values of each attribute of the original data set
available to an adversary. Thus, the third task of BDaaS is develop attacks
against the schemes developed in Task 1, given this adversary model.

Participants. We have let 19 students of computer science with a database
background solve the tasks. We divided the students into four groups where
three groups had five members and one group had four members. We instructed
them in the fundamentals of (i) database anonymization, (ii) query processing
on anonymized data, and (iii) statistical attacks. To test their understanding
regarding (i) to (iii), we issued assignments to them. Two of originally 21 stu-
dents did not pass them, and we did not let them participate in the subsequent
evaluation.

Incentives. The participants joined the experiment as part of a practical
course. Their main incentive for participation was to pass the course. To do
so, participants had to earn points. Completion of the three tasks (i)-(iii) had
earned them points. We had issued bonus points if participants committed their
implementations of FACTS class models to the repository, or if they had devel-
oped and shared FACTS operations. Bonus points were not required to pass the
course.

Results

Comparability with BDaaS One outcome of the study has been the FACTS bench-
mark suite BDaaS. We have imported the data set, queries, and adversary model
(along with the data representing statistical background knowledge) from a pre-
vious research project of ours [19] into FACTS. BDaaS thus allows us to compare
the approaches of students in an evaluation setup actually used in research. We
have observed that FACTS allows us, the conductors of the study, to compare
approaches with ease. We justify this claim in different ways. (1) The final result
of queries on the anonymization output does always equal that of the queries
on the respective original data set, for all approaches by different participants.
(2) The same set of queries executes for each approach. In the past years, we
had lectured this practical course without FACTS. There have been many com-
parison tasks that were cumbersome without the standardizations. Participants
had submitted query-processing techniques that returned fewer result tuples,
and they had used other query parameters than what we had specified. With
FACTS, (1) its benchmarking checks correctness of results, and (2) always runs
the same queries.

Reproducibility with BDaaS We evaluate reproducibility by letting participants
upload solutions and then letting them rerun them.

Our first indicator for reproducibility is if participants are able to execute ap-
proaches without errors. We say that schemes are without error if they produce
an anonymization output. We say that query-execution techniques are without
error if they terminate, and if they compute the correct result for all queries. We
say that attacks are without error if they write their guesses for original values
for each anonymized cell in the proper place for FACTS, and anonymity mea-
sures compute. A scheme writing only zeros to all cells would thus be error-free,
but query execution based on it would fail. To evaluate if participants were able
to reproduce the results of approaches by other participants, we have asked re-
spective questions in the survey about the total number of schemes, queries, and
attacks that participants had executed, and for how many of them participants
have observed no errors. By means of answers to these questions, we have cal-
culated the share of error-free executions, cf. Table 4. Our apriori expectations
have been that the values are close to our measurements. The numbers reflect
that one group has had errors with queries and attacks with our benchmark runs.
The values calculated with the survey are lower, but relatively close to ours. We
speculate that users not updating implementations from the FACTS repository
and reporting results for non-final versions of solutions are responsible for the
difference. Further, not all groups had executed every approach of every other
group: It is possible that participants had executed the three error-free groups
less often than the one with errors. All in all, we conclude from these observa-
tions that FACTS allows users to run approaches from the FACTS repository
without difficulty and that FACTS standardizations allow to observe implemen-
tation errors that would be in the way of (fair) comparisons and reproducibility
otherwise.

Our second indicator for reproducibility is if measurement values from several
experiment runs on varying platforms lead to similar results. To do this com-

Table 4: Reproducibility: Error-Free Executions.
Approach Study Answers Our Measurements
Schemes 85 % 100 %
Query-Processing
Techniques

68 % 75 %

Attacks 61 % 75 %

parison, we could rely on our execution of BDaaS and the executions of BDaaS by
each group. We did observe similar results. For example, all performance mea-
surements have had Group 4 as the fastest before Group 1 and Group 3 and have
reported errors for Group 2. Results are not identical however because execution
times depend on the computational power of clients.

We state that there is reproducibility with three of four groups (Ucommittee)
because we were able to execute all of their approaches without error, and our
measurement results were similar to theirs. We thus see strong indications that
FACTS does allow for reproducibility.

Collaboration with BDaaS We have evaluated collaboration by means of ques-
tions in the survey about operations. Question Q11 was about the number of
operations developed: 10 participants answered that their group had developed
one or more operation, while 7 answered that their group had not developed
any operation. Further, we have asked participants with Question Q12 if they
think that their operations are generic, i.e., how many of them can be used with
other approaches in their opinion. We calculated an average share of generic
operations of 55 percent (answer for Q12 divided by answer for Q11, ignoring
zero answers). Participants agreed that the concept of sharing operations within
a community can save development time: To the respective question the mean
value for answers was 3.84 on a Likert scale of 5 points (1 = strongly disagree, 5
= strongly agree). Further, participants agreed that operations are a good way
to structure code: To the respective question of the survey the mean value was
3.79. These results indicate that users deem operations helpful for anonymiza-
tion scenarios. Participants did not disagree to the statement of Question Q15
that schemes, queries, and attacks are so complex that sharing operations does
not make sense because they are not applicable to more than one approach. The
mean value for answers to this question was 3.13. Some users stated in free-text
comments that they were not aware of how operations might help with their
complex tasks. Our conclusions is that we possibly need better documentation
of how operations can help: For example, each group did use encryption and
could have used the respective operation in the repository.

5.3 Current Restrictions

In this subsection, we state problems that we have encountered during evaluation
or that we have learned from study participants. An example for a feature we

see missing looking at other anonymization scenarios than Spub and SDaaS is to
have interfaces giving access to the history of query results within attacks. This
would be needed to evaluate schemes referring to Sstats. We see making FACTS
fit for Sstats part of our future work. Regarding implementation, turning FACTS
into a cloud-based service is future work. This and a physical platform to run
experiments would give way to better usability. This is because it would free
users from downloading a run-time package, and they could issue service calls
instead. Finally, we tried to make it easy to integrate implementations of existing
approaches (“black boxes”) into FACTS. This works when existing approaches
fulfill some requirements which we discuss now. Regarding anonymization, an
important property is that FACTS stores the original values for each cell of
the anonymization output. The relation is important for certain experiments re-
garding, say, data quality. External code often does not store this relation. Then
it cannot be integrated into FACTS without modifying it. Regarding measures
that rely on extra information produced during anonymization, one would need
to adapt the framework as well. An example are measures with Spub that ana-
lyze the generalization hierarchy – the less generic the data, the better. For Spub

we have developed a DataPublishingDataset which allows to store hierarchy
information, and we have developed respective measures. We plan to develop a
more general solution for storing and accessing extra information. Further, an
ontology for comparability, e.g., which measure works with which attack, is fu-
ture work as well. Right now we let users take care of compatibility and assume
that users only bundle approaches which are compatible in benchmark suites.

6 Conclusions

Nowadays, a broad variety of anonymization approaches exists. We observe that
requirements, goals, adversary models, implementations, or evaluation parame-
ters are publicly available only for a few of them. It is very difficult to answer
which approach is best regarding anonymity, data quality, query accuracy, and
performance. To deal with this situation, we have proposed a framework, FACTS,
that allows to compare anonymization approaches with ease. Researchers can im-
plement their approaches within FACTS against so-called class models. We have
systematically devised interfaces of class models that ease comparing and bench-
marking approaches. Besides comparability, FACTS has other useful features,
e.g., to support researchers in the documentation and presentation of experi-
ment results. Our evaluation shows that FACTS allows to define comprehensive
benchmark suites for anonymization scenarios, and that it addresses user needs
well. Our vision is that FACTS will give way to a higher degree of comparability
within the research area.

References

1. http://facts.ipd.kit.edu/.

http://facts.ipd.kit.edu/

2. J. Abramov, A. Sturm, and P. Shoval. A Pattern Based Approach for Secure
Database Design. In Proceedings of the Advanced Information Systems Engineering
Workshops, pages 637–651, 2011.

3. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Mot-
wani, U. Srivastava, D. Thomas, and Y. Xu. Two Can Keep A Secret: A Distributed
Architecture for Secure Database Services. In Proceedings of the Conference on In-
novative Data Systems Research (CIDR), pages 186–199, 2005.

4. M. Barhamgi, D. Benslimane, S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cup-
pens, M. Mrissa, and H. Taktak. Secure and Privacy-Preserving Execution Model
for Data Services. In Proceedings of the International Conference on Advanced
Information Systems Engineering (CAiSE), volume 7908, pages 35–50, 2013.

5. P. Bonnet, R. Johnson, D. Koop, T. Kraska, R. Müller, D. Olteanu, P. Papotti,
C. Reilly, D. Tsirogiannis, C. Yu, J. Freire, S. Manegold, D. Shasha, M. Bjø rling,
W. Cao, J. Gonzalez, J. Granados, N. Hall, S. Idreos, and M. Ivanova. Repeatability
and workability evaluation of SIGMOD 2011. ACM SIGMOD Record, 40(2):45–48,
2011.

6. T. Burghardt, E. Buchmann, J. Müller, and K. Böhm. Understanding User
Preferences and Awareness: Privacy Mechanisms in Location-Based Services. In
Proceedings of the International Conference on Cooperative Information Systems
(CoopIS), pages 304–321. Springer, 2009.

7. J. Cao and P. Karras. Publishing microdata with a robust privacy guarantee.
Proceedings of the VLDB Endowment, 5(11):1388–1399, 2012.

8. A. Ceselli, E. Damiani, S. De Capitani Di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Modeling and Assessing Inference Exposure in Encrypted Databases.
ACM Transactions on Information and System Security (TISSEC), 8(1):119–152,
2005.

9. V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati. Combining Fragmentation and Encryption to Protect Privacy in
Data Storage. ACM Transactions on Information and System Security (TISSEC),
13(3):1–33, 2010.

10. S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati.
Efficient and Private Access to Outsourced Data. In Proceedings of the Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 710–719.
IEEE, 2011.

11. C. Dwork. Differential Privacy. In Proceedings of the International Colloquium on
Automata, Languages and Programming, Part II (ICALP), pages 1–12. Springer,
2006.

12. C. Dwork. Differential Privacy and the Power of (Formalizing) Negative Thinking.
Principles of Security and Trust, 7215:1–2, 2012.

13. B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data pub-
lishing: A survey of recent developments. ACM Computing Surveys, 42(4):1–53,
2010.

14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

15. G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with
low information loss. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 758–769. VLDB Endowment, 2007.

16. H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL Over Encrypted
Data in the Database-Service-Provider Model. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 216–227. ACM, 2002.

17. H. Hacigümüş, S. Mehrotra, and B. Iyer. Providing Database as a Service. In
Proceedings of the International Conference on Data Engineering (ICDE), pages
29–38, 2002.

18. C. Heidinger, E. Buchmann, M. Huber, K. Böhm, and J. Müller-Quade. Privacy-
Aware Folksonomies. In Proceedings of the European Conference on Research and
Advanced Technology for Digital Libraries (ECDL), pages 156–167. Springer, 2010.

19. C. Heidinger et al. Efficient and secure exact-match queries in outsourced data-
bases. World Wide Web, pages 1–39, 2013.

20. C. Henrich, M. Huber, C. Kempka, and R. Reussner. Secure Cloud Computing
through a Separation of Duties. Technical report, Karlsruhe Institute of Technology
(KIT), 2010.

21. B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional
range queries over outsourced data. The VLDB Journal, 21(3):333–358, 2012.

22. B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for Range
Queries. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 720–731. VLDB Endowment, 2004.

23. D. Kifer and A. Machanavajjhala. No Free Lunch in Data Privacy. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages 193–
204. ACM Press, 2011.

24. D. Kifer and A. Machanavajjhala. A Rigorous and Customizable Framework for
Privacy. In Proceedings of the Symposium on Principles of Database Systems
(PODS), pages 77–88. ACM Press, 2012.

25. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient Full-Domain
K-Anonymity. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 49–60. ACM, 2005.

26. C. Li and G. Miklau. An adaptive mechanism for accurate query answering under
differential privacy. Proceedings of the VLDB Endowment, 5(6):514–525, 2012.

27. N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Privacy Beyond k-
Anonymity and l-Diversity. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 106–115. IEEE, 2007.

28. T. Li and N. Li. Injector: Mining Background Knowledge for Data Anonymization.
In Proceedings of the International Conference on Data Engineering (ICDE), pages
446–455. IEEE, 2008.

29. T. Li and N. Li. On the Tradeoff Between Privacy and Utility in Data Publishing.
In Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 517–526. ACM, 2009.

30. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-Diversity:
Privacy Beyond k-Anonymity. In Proceedings of the International Conference on
Data Engineering (ICDE), 2006.

31. V. Manousakis, C. Kalloniatis, E. Kavakli, and S. Gritzalis. Privacy in the Cloud:
Bridging the Gap between Design and Implementation. In Proceedings of the
Advanced Information Systems Engineering Workshops, pages 455–465, 2013.

32. I. Peters. Folksonomies: Indexing and Retrieval in the Web 2.0. Walter de Gruyter,
2009.

33. E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing Secure Indexes for
Encrypted Databases. In Proceedings of the Conference on Data and Applications
Security (DBSec), pages 54–68. Springer, 2005.

34. L. Sweeney. Achieving k-Anonymity Privacy Protection Using Generalization
and Suppression. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems (IJUFKS), 10(5):571–588, 2002.

35. L. Sweeney. k-Anonymity: A Model for Protecting Privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS), 10(5):557–
570, 2002.

36. P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal
processing. IEEE Signal Processing Magazine (SPM), 26(3):37–47, 2009.

37. H. Wang and R. Liu. Privacy-preserving publishing microdata with full functional
dependencies. Data & Knowledge Engineering (DKE), 70(3):249–268, 2011.

38. X. Xiao and Y. Tao. Anatomy: Simple and Effective Privacy Preservation. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 139–150, 2006.

	2013,10_Titelbl.pdf
	FACTS.pdf
	FACTS: A Framework for Anonymity towards Comparability, Transparency, and Sharing

