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Abstract

In many real world applications data is collected in
multi-dimensional spaces, with the knowledge hidden in
subspaces (i.e., subsets of the dimensions). It is an open
research issue to select meaningful subspaces without
any prior knowledge about such hidden patterns. Stan-
dard approaches, such as pairwise correlation measures,
or statistical approaches based on entropy, do not solve
this problem; due to their restrictive pairwise analysis
and loss of information in discretization they are bound
to miss subspaces with potential clusters and outliers.

In this paper, we focus on finding subspaces with
strong mutual dependency in the selected dimension set.
Chosen subspaces should provide a high discrepancy be-
tween clusters and outliers and enhance detection of
these patterns. To measure this, we propose a novel
contrast score that quantifies mutual correlations in sub-
spaces by considering their cumulative distributions—
without having to discretize the data. In our experi-
ments, we show that these high contrast subspaces pro-
vide enhanced quality in cluster and outlier detection
for both synthetic and real world data.

1 Introduction

Clustering and outlier detection are two key data mining
tasks. They are widely used, such as in bioinformatics,
for detecting functionally dependent genes, in market-
ing, for customer segmentation, in health surveillance,
for anomaly detection, and so on. For these techniques
to work well, some kind of dependency between the ob-
jects in a given data space is required, i.e., high simi-
larity between clustered objects and high deviation be-
tween outliers and the residual data distribution.

Obviously, detecting clusters and outliers in uni-
formly random distributed spaces, e.g., considering a
data space with independent dimensions, does not make
sense at all. With more and more dimensions such ef-
fects tend to hinder data mining tasks, which is widely
known as the “curse of dimensionality” [6]. Not just
a fringe theoretical case, we observe this effect in prac-

tice, for example, in gene expression analysis where each
gene is described with very many expression values un-
der different medical treatments. In general, we observe
a loss of contrast between clusters and outliers in the
full space (all given dimensions) of the data, while the
meaningful knowledge is hidden in subspaces (i.e., sub-
sets of the dimensions) that show a high dependency
between the selected dimensions.

Recently, more attention has been placed on sub-
space clustering [3, 1, 20, 21] and subspace outlier de-
tection [2, 16, 22]. Both of these paradigms detect a set
of relevant dimensions for each individual cluster or oul-
tier. Hence, they are able to detect meaningful patterns
even if only few dimensions are relevant for the individ-
ual pattern. However, they all face a common problem
in the selection of subspaces. Each of the techniques
re-invents a very specific subspace selection scheme ac-
cording to the underlying cluster or outlier model. Only
few techniques have focused on general solutions to the
problem of subspace search designed for clustering [9, 5]
or outlier mining [27, 15]. In this work, we follow this
general idea of subspace search. We aim at a further
generalization for the selection of relevant subspaces.

More specifically, we aim at selecting high contrast
subspaces that potentially provide high contrast be-
tween clustered and outlying objects. Due to its gen-
erality this problem statement poses several open ques-
tions. First, it is unclear how to measure the contrast
of a given set of dimensions. Solutions based on cor-
relation analysis and entropy measures seem promising
but show major drawbacks w.r.t. pairwise analysis, dis-
cretization, and the empty space problem, as we will
explain later. Second, one requires robust statistics to
capture the mutual dependence of dimensions. Existing
solutions performing a pairwise analysis miss important
higher-order dependencies that can only be identified
when multiple dimensions are considered together. Fi-
nally, a subspace selection has to be performed in an
efficient manner in order to scale with the increasing
number of dimensions, i.e., an exponential search space.



We tackle all three of these challenges by our con-
trast measure. It is independent of any cluster or outlier
model and purely based on the statistical dependence
of data observed in a multi-dimensional subspace. Fur-
thermore, it is directly applicable to continuous data
and does not fall prey to the information loss by previ-
ous discretization techniques. It is designed to capture
mutual dependencies, and thus, quantifies the subspace
deviation from the condition of uncorrelated and inde-
pendent dimensions: “The larger the deviation from the
mutual independence assumption, the higher the con-
trast of a subspace.” Hence, we instantiate our measure
based on the analysis of cumulative distributions in dif-
ferent subspaces. Cumulative distributions have the ad-
vantage that they can be computed directly on empirical
data. Furthermore, we propose a scalable processing
scheme to select high contrast subspaces. Due to the
exponential search space we rely on an approximative
solution based on beam search.

Overall, our contributions are as follows: (a) a set
of abstract quality criteria for subspace search based on
contrast analysis, (b) our multi-variate contrast measure
based on cumulative distributions for continuous data,
(c) a scalable subspace search method applying our
contrast measure for subspace selection, and (d) quality
enhancement for both subspace clustering and outlier
mining as a result of high contrast.

2 Related Work

Pairwise measures and space transformations.
First, we discuss approaches that assess dependencies
between dimensions. Spearman correlation and modern
variants [24] are aimed at pairwise correlations. How-
ever, higher order interactions (i.e., mutual dependence)
among several dimensions can be missed. Similarly, di-
mensionality reduction techniques [19], including PCA,
are not aware of locally clustered projections; they only
measure the (non-)linear dependence between dimen-
sions, meaning that they consider one (global) projec-
tion, and may hence miss interesting local projections
containing subspace clusters and outliers. Our method,
on the other hand, is not limited to a pairwise assess-
ment and provides multiple projections for clustering
and outlier mining. It can cope with mutual dependen-
cies in arbitrary subspace projections.
Feature selection. Next, we consider methods for
unsupervised feature selection. Recent methods [11, 17]
perform iteratively a partitioning and feature selection.
They first partition the data (e.g., by EM clustering),
and then they evaluate feature subsets based on the
obtained clusters. Another approach [25] aims at
different feature subsets for different clusters. However,
it focuses on disjoint clusters and does neither allow

overlapping clusters nor outliers. Our method is more
general and is aware of outliers and overlap of clusters.
In general, feature selection differs from our approach
in major aspects. Current feature selection methods
are specifically bound to clustering. In contrast, our
method is more general and suitable for both cluster and
outlier mining in multiple subspaces. Most approaches
[11, 17] select a single projection of the data space,
which uncovers some certain cluster structure in the
data. These methods are limited to one subspace, while
we mine multiple possibly overlapping subspaces. Yet
keeping only one subspace may miss local projections
containing different subspace clusters [21].
Subspace search. We now discuss methods for se-
lecting relevant subspaces. They avoid the limitations
of the above paradigms, and focus on multiple projec-
tions with arbitrary dimensionality. Existing methods,
however, rely on discretization of continuous dimensions
[9, 27] or only work with binary data [28] and/or dis-
crete data [8].

ENCLUS [9] and PODM [27] detect subspaces with
low entropy and high interest, discretizing continuous
dimensions into equi-width bins in order to compute
the entropy measure. By requiring discretization, these
methods have unintuitive parameters, and are hence in-
herently susceptible to knowledge loss and to the curse
of dimensionality. To some extent, these limitations
have been tackled by HiCS [15], which works directly
on continuous data. It quantifies the differences between
the marginal and conditional distribution in a random
dimension of the considered subspace; by its random na-
ture it may hence might miss relevant subspaces. Fur-
ther, it is exposed to the curse of dimensionality w.r.t.
conditional distributions in high-dimensional spaces.

Our method, on the other hand, can reliably score
contrast, regardless of subspace dimensionality. Fur-
thermore, for each subspace we aim to find that permu-
tation of dimensions that yields optimal contrast.
Cluster and outlier detection in subspaces. Spe-
cific methods for clustering and outlier detection have
been proposed. However, they do not provide a general
notion of subspace selection. They select subspaces very
specifically to the underlying cluster [3, 1, 26, 20, 21] or
outlier [2, 16, 22] definitions. In contrast to all these
solutions, our goal is to design a contrast measure that
is applicable to subspace selection for different mining
paradigms. We show its instantiations to clustering and
outlier detection and evaluate its quality.

3 Basic Notions for Contrast Assessment

Given a database DB of size N and dimensionality
D, we want to measure the contrast of any lower
dimensional subspace S with dimensionality 1 ≤ d ≤



D. Our assessment is based on the full space of
all dimensions given by F = {X1, . . . , XD}. Each
dimension i is associated with a random variable Xi

that has a continuous value domain dom(Xi) = R.
We use the notion of density distribution pXi(xi) for
the projected database on dimension i. We write
pXi

(xi) as p(xi) when the context is clear. Any
non-empty subset S ∈ P(F ) is called a subspace of
DB. The dimensionality of S is denoted as dim(S).
W.l.o.g., {X1, . . . , Xd} is used as representative for any
d-dimensional subspace S in our analysis.

3.1 Contrast Assessment. As our general notion of
a contrast measure we have the following formalization:

Definition 3.1. Contrast Measure of Subspaces:

C : P(F ) \ {∅} → R

In general, the contrast score C(S) quantifies the
difference of S w.r.t. the baseline of d independent and
randomly distributed dimensions. In the following we
provide different instantiation of this contrast measure
and discuss formal properties of the instantiations. Let
us first formalize the independence baseline. For d
random variables X1, . . . , Xd, there are two types of
independence we are interested in.

Definition 3.2. Mutual Independence:
X1, . . . , Xd are mutually independent iff

p(x1, . . . , xd) = p(x1) · · · p(xd)

Definition 3.3. m-wise Independence:
X1, . . . , Xd are m-wise independent with m ≤ d iff
any subset {Xi1 , . . . , Xim} ⊆ {X1, . . . , Xd} is mutually
independent.

Please note that pairwise independence is modeled
as a special case of m-wise independence when m = 2.
However, pairwise analysis misses important higher-
order dependencies that can only be identified when
multiple dimensions are considered altogether. There-
fore, we focus on higher-order dependencies and their
contrast assessment. A subspace is referred to as uncor-
related if its dimensions are mutually independent. Our
goal is to design a contrast measure C that quantifies as
closely as possible the deviation of subspaces from un-
correlated ones. In other words, for a d-dimensional sub-
space S with dimensions {X1, . . . , Xd}, its contrast de-
pends on how much the difference between p(x1, . . . , xd)
and p(x1) · · · p(xd) is:

C (S ) ∼ diff (p(x1 , . . . , xd), p(x1 ) · · · p(xd))

Contrast of one-dimensional subspaces is undefined.
Thus, we restrict the contrast measure C to two- or
higher-dimensional subspaces. In the following, we pro-
pose three properties for a meaningful contrast assess-
ment based on the idea “deviating from uncorrelated
subspaces”:
Property 1 (Discriminative contrast scores): For sub-
spaces S1 and S2 such that dim(S1) = dim(S2), if S1 is
more correlated than S2 then C(S1) > C(S2).
Property 2 (Zero contrast score): C(S) = 0 if and only
if the dimensions of S are mutually independent.
Property 3 (Awareness of m-wise independence): If
the dimensions of S are m-wise independent but not
mutually independent then C(S) is small but not zero.
This is becausem-wise independence does not guarantee
mutual independence.

Furthermore, C should be directly applicable to
continuous data, i.e., we do not require discretization to
obtain the probability mass functions. Since discretiza-
tion causes knowledge loss, this property is mandatory.

3.2 Discussion of Properties. Looking at exist-
ing techniques, ENCLUS [9] instantiates the diff func-

tion by the well-known total correlation
∑d

i=1H(Xi)−
H(X1, . . . , Xd) where X1, . . . , Xd are discretized ver-
sions of the original dimensions. PODM [27] also
discretizes data and instantiates the diff function as∑

1
p(x1,...,xd)

where p(x1, . . . , xd) 6= 0. The instantiation

of HiCS [15] is done by averaging over multiple random
runs of the form diff (p(xi), p(xi |{x1 , . . . , xd} \ {xi}))
where Xi is picked randomly.

None of these techniques fulfills all properties
mentioned. Considering Property 1, the measure
of ENCLUS is unreliable because of the knowledge
loss caused by data discretization. Further, the use
of the joint probability mass function p(x1, · · · , xd)
also is problematic. In particular, H(X1, . . . , Xd) =
−
∑
p(x1, . . . , xd) log p(x1, . . . , xd) with p(x1, . . . , xd)

measured by the relative number of points in the re-
spective hypercube. For increasing d, most hypercubes
are empty and the non-empty ones most likely con-
tain only one data point each [2, 19]. Taking into
account that limx→0 x log x = 0, H(X1, . . . , Xd) ap-

proaches −
∑N

i=1
1
N log 1

N = logN . Hence, when d is
large enough and all Xi have a similar distribution (e.g.,
uniformly dense), any d-dimensional subspaces S1 and
S2 have very similar contrast: C(S1) ≈ C(S2). In
other words, the measure of ENCLUS produces indif-
ferent contrasts for high-dimensional subspaces. Thus,
it fails to satisfy Property 1, i.e., the most basic prop-
erty. PODM relying on data discretization and the joint
probability p(x1, . . . , xd) suffers the same issue. As for
HiCS, the random choice of Xi causes potential loss of



contrast as some attribute may not be tested against
the remaining ones. In addition, HiCS uses conditional
probability distributions with (d−1) conditions and ex-
poses itself to the same problem of empty space.

Considering Properties 2 and 3, since ENCLUS
works with discretized data that causes loss of knowl-
edge, it only satisfies these properties with a proper grid
resolution. Such a resolution is data-dependent. PODM
misses both Properties 2 and 3 since its measure just
relies on the joint probability, i.e., it does not measure
dependency. A zero contrast assigned by HiCS does not
imply uncorrelated spaces since there is no guarantee
that all dimensions are assessed against the others at
least once. Thus, HiCS does not meet Property 2. Fur-
thermore, HiCS does not aim at m-wise independence
and thus does not address Property 3.

4 Methodology

In order to address all three properties, we first intro-
duce a novel notion of mutual information, called Cu-
mulative Mutual Information (CMI ), which is instanti-
ated based on a new notion of entropy, called Cumula-
tive Entropy (CE ). We then verify that CMI addresses
Properties 1 to 3. Since CMI is dependent on the order
of subspace dimensions, we then devise an approach to
select a dimension permutation that approximates the
optimal CMI value for a given subspace. Due to space
limitation, all proofs for the following theorems will be
provided as an extended version of this paper.

4.1 Cumulative mutual information. Given con-
tinuous random variables X1, . . . , Xd, their cumulative
mutual information CMI (X1, . . . , Xd) is defined as:

d∑
i=2

diff (p(xi), p(xi|x1, . . . , xi−1))

Intuitively, CMI (X1, . . . , Xd) measures the mutual in-
formation of X1, . . . , Xd by aggregating the difference
between p(xi) and p(xi|x1, . . . , xi−1) for 2 ≤ i ≤ d.
Loosely speaking, it is the sum of the contrasts of
subspaces (X1, X2), . . . , (X1, . . . , Xi), . . . , (X1, . . . , Xd)
if we consider diff (p(xi), p(xi|x1, . . . , xi−1)) to be the
contrast of the subspace (X1, . . . , Xi). The reason for
using lower-dimensional subspace projections is to avoid
the empty space phenomenon. Since probability func-
tions are not available at hand and can only be esti-
mated, e.g., by data discretization, we aim at imple-
menting diff (p(xi), p(xi|x1, . . . , xi−1)) using cumulative
distributions. In this paper, we instantiate CMI by
means of CE and conditional CE that are based on
cumulative distributions. We demonstrate in Section
5 how these allow efficient contrast calculation without

discretizing data. Their definitions are given below:

Definition 4.1. The cumulative entropy for a contin-
uous random variable X, denoted hCE (X), is defined as:

hCE (X) = −
∫
dom(X)

P (X ≤ x) logP (X ≤ x)dx

Our notion of cumulative entropy is based on [10].
However, it is more general since it is not restricted
to non-negative random variables. Furthermore, we
extend the notion of CE to conditional cumulative
entropy and prove that it maintains some important
properties of traditional conditional entropy as follows:

Definition 4.2. The conditional CE of any contin-
uous random variable X knowing that some random
vector V ∈ RB (with B being a positive integer) takes
the value v is defined as:

hCE (X|v) = −
∫
dom(X)

P (X ≤ x|v) logP (X ≤ x|v)dx

The CE of X conditioned by V is:

EV [hCE (X|V )] =

∫
dom(V )

hCE (X|v)p(v)dv

Just like the usual conditional entropy, we de-
note EV [hCE (X|V )] as hCE (X|V ) for notational con-
venience. The conditional CE has two important prop-
erties given by the following theorems:

Theorem 4.1. EV [hCE (X|V )] ≥ 0 with equality iff
there exists a function f : dom(V ) → dom(X) such
that X = f(V ).

Theorem 4.2. EV [hCE (X|V )] ≤ hCE (X) with equal-
ity iff X is independent of V .

Under CE , diff (p(x), p(x| . . .)) is set to hCE (X) −
hCE (X| . . .). Therefore, CMI (X1, . . . , Xd) becomes:

d∑
i=2

hCE (Xi)−
d∑

i=2

hCE (Xi|X1, . . . , Xi−1)

where hCE (Xi|X1, . . . , Xi−1) is hCE (Xi|V ) with V =
(X1, . . . , Xi−1) being a random vector in dom(X1) ×
· · · × dom(Xi−1).

Regarding the three properties, similar to tra-
ditional mutual information, the more correlated
X1, . . . , Xd are, the smaller the conditional CE s are,
i.e., the larger is CMI . Thus CMI is able to capture
subspace correlation (Property 1). To illustrate this
property, we use the toy example in Figure 1. It depicts
the scatter plots, CDF plots, and plots of the function
−P (X ≤ x) logP (X ≤ x), namely −CDF log CDF ,
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Figure 1: Example of low and high contrast subspaces with different CMI s

of two subspaces S1 and S2 (CCDF means conditional
CDF). The blue lines stand for the marginal distribu-
tion of the corresponding dimension. The red lines fea-
ture the conditional distribution of one dimension ob-
tained by selecting a range of the remaining dimension
(gray strips). One can see that S2 has higher contrast
than S1 and hence, CMI (X3, X4)selected range = 4.344 >
CMI (X1, X2)selected range = 0.113. Further, even when
high-order conditional CE s may be impacted by the
curse of dimensionality, CMI still yields distinguish-
able contrast for high-dimensional subspaces due to its
member low-order conditional CE s. If X1, . . . , Xd are
m-wise independent, then CMI (X1, . . . , Xd) is low as
hCE (Xi)−hCE (Xi| . . .) vanishes for i ≤ m (Property 3).
However, we have proved that CMI = 0 iff X1, . . . , Xd

are mutually independent (Property 2).

Theorem 4.3. CMI (X1, . . . , Xd) ≥ 0 with equality iff
X1, . . . , Xd are mutually independent.

4.2 Choice of permutation. CMI can be used as
our contrast measure. However, CMI changes with
dimension permutations. In order to make our con-
trast measure permutation-independent we investigate
a heuristic search of the maximal contrast.

Our goal is to find a permutation that maximizes
the contrast of a given subspace S = {X1, . . . , Xd}.
Since CMI is permutation variant, there are d! possible
cases in total. Together with the exponential number of
subspaces, a brute-force approach is impractical. We

therefore apply a heuristic to obtain a permutation
that approximates the optimal one. In particular, we
first pick a pair of dimensions Xa and Xb (1 ≤ a 6=
b ≤ d) such that hCE (Xb) − hCE (Xb|Xa) is maximal
among the possible pairs. We then continue selecting
the next dimension Xc (c 6= a and c 6= b) such
that hCE (Xc)−hCE (Xc|Xa, Xb) is maximal among the
remaining dimensions. Likewise, at each step, assuming
I = {Xp1

, . . . , Xpk
} is the set of dimensions already

picked and R = {Xr1 , . . . , Xrd−k
} is the set of remaining

ones, we select the dimension Xri ∈ R such that
hCE (Xri) − hCE (Xri |I) is maximal. The process goes
on until no dimension is left. Denoting the permutation
obtained by our strategy as πopt, the contrast of S is
defined as CMI (πopt(X1, . . . , Xd)).

5 Algorithmic Approach

For a D-dimensional data set, there are 2D − 1 can-
didate subspaces to examine. The exponential num-
ber of subspaces makes a brute-force search impractical.
A scalable subspace exploration framework is required.
Moreover, the contrast measure must also permit effi-
cient computation. In this section, we first introduce
an approximate yet scalable levelwise subspace search
framework. We then proceed to discuss how to com-
pute our measure efficiently.

5.1 Scalable subspace exploration. Our aim is to
mine high contrast subspaces upon which subspace clus-



tering and outlier detection techniques are applied. To
tackle the exponential search space, we target at a pro-
cessing scheme that trades off accuracy for efficiency.
More specifically, we rely on the intuition that a high
contrast high-dimensional subspace likely has its high
contrast reflected in its lower-dimensional projections.
In the field of subspace clustering, there is an analogous
observation: Subspace clusters tend to have their data
points clustered in all of their lower-dimensional projec-
tions [3, 21]. One can then apply a levelwise scheme to
mine subspaces of contrast larger than a pre-specified
value. However, to facilitate parameterization of our
method, we avoid imposing direct thresholds on con-
trast scores produced by CMI .

Instead, we design a beam search strategy to obtain
efficiency. Starting with two-dimensional subspaces, in
each step we use top M subspaces of high contrast
to generate new candidates in a levelwise manner. A
newly generated candidate is only considered if all of
its child subspaces have high contrast. First, this
permits tractable time complexity. Second, interaction
among different subspace dimensionality is taken into
account and selected subspaces are ensured to have high
contrast. Third, we avoid redundancy, if T ⊆ S and S
has higher contrast than T then T is excluded from the
final result.

5.2 Efficient contrast computation. To compute
CMI , we need to compute CE and conditional CE .

Let X1 ≤ . . . ≤ Xn be i.i.d. random samples of the
continuous random variable X. Then hCE(X) can be
calculated as follows:

hCE(X) = −
n−1∑
i=1

(Xi+1 −Xi)
i

n
log

i

n

In contrast to this straightforward computation, it is not
as simple to calculate the conditional CE in an accurate
and efficient way. In the following, we first point out
that due to limited data, sticking to the exact formula
of conditional CE may lead to inaccurate results. We
then propose a strategy to resolve this while ensuring
that data discretization is not required.

First, w.l.o.g., consider the space [−1/2, 1/2]d

containing N limited data points. The d di-
mensions are X1, . . . , Xd. Our goal is to com-
pute hCE(X1|X2, . . . , Xd) using limited available
data. From Definition 4.2: hCE(X1|X2, . . . , Xd) =∫ 1/2

−1/2 · · ·
∫ 1/2

−1/2 h(X1|x2, . . . , xd)p(x2, . . . , xd)dx2 · · · dxd.

Further:

hCE(X1|x2, . . . , xd) = limε→0+ hCE(X1|x2 − ε ≤ X2 ≤
x2 + ε, . . . , xd − ε ≤ Xd ≤ xd + ε)

Taking into account that the total number of data
points N is limited, the expected number of points
contained in the hypercube [x2 − ε, x2 + ε] × · · · ×
[xd − ε, xd + ε], which is N(2ε)d−1, approaches 0 as
ε → 0+. For high-dimensional spaces, the prob-
lem is exacerbated as one faces the empty space phe-
nomenon. With empty hypercubes (or even hypercubes
of one data point), hCE(X1|x2, . . . , xd) vanishes. Hence,
hCE(X1|X2, . . . , Xd) becomes 0. We thus encounter a
paradox: If sticking to the exact formula of conditional
CE, we may end up with an inaccurate result. To allevi-
ate this problem, we must ensure to have enough points
for meaningful calculation. Therefore, we propose data
summarization by clustering.

Clustering summarizes the data by means of clus-
ters. Since the number of clusters is generally much
less than the original data size, we may have more data
points in each cluster. Hence, the issue of limited data
is mitigated. Assuming that a clustering algorithm A
is used on DS projected to {X2, . . . , Xd} resulting in
Q clusters {C1, . . . , CQ} (the support of Ci is |Ci|), we
propose to estimate hCE(X1|X2, . . . , Xd) by:

Q∑
i=1

|Ci|
N

hCE(X1|Ci)

If Q is kept small enough, we will have enough points for
a meaningful computation of hCE(X1|Ci) regardless of
the dimensionality d. As our cluster-based approach
does not rely on any specific cluster notion, it can
be instantiated by any method. To ensure efficient
computation of the contrast measure, we use the one-
pass k-means clustering strategy introduced in [23] with
k = Q. We obtain Q clusters summarizing the data. For
the parameter Q, if it is set too high, we may end up
with high runtime and not enough data in each cluster
for a reliable estimation of conditional CE . If it is
instead set to 1, i.e., no clustering at all, hCE(X1| · · · )
becomes hCE(X1), i.e., there is a loss of information. In
all of our experiments, we set Q = 10. Using clustering,
one can verify that the conditional CE is less than or
equal to its respective unconditional one.

6 Experiments

We compare CMI , to three subspace search methods:
ENCLUS [9], HiCS [15], and PODM [27]. As further
baselines we include random selection (FB) [18], PCA
[19], and pairwise correlation (PW) [24]. For CMI we
use M = 400 and Q = 10, unless stated otherwise. In
order to assist comparability and future research in this
area, we provide our algorithm, all datasets, parameters
and further material on our website.1

1http://www.ipd.kit.edu/~muellere/CMI/
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Figure 2: Subspace quality w.r.t. dimensionality

We evaluate how mining of high contrast subspaces
improves the result quality of outlier detection and
clustering techniques. Therefore, LOF [7] and DBSCAN
[12], two well-established methods, are used on top of
the tested approaches. For fair comparison, we use the
same parameter settings for both LOF and DBSCAN.

To ensure succinct sets of subspaces that allow for
post-analysis, only the best 100 subspaces of each tech-
nique are utilized for clustering and outlier detection.
Outlier detection results are assessed by the Area Un-
der the ROC Curve (AUC) as in [18, 15, 22]. Cluster-
ing results are evaluated by means of F1, Accuracy, and
E4SC as in [21, 14].

6.1 Impact of dimensionality. To illustrate that
CMI is robust w.r.t. increasing dimensionality of sub-
spaces, we evaluate it on a synthetic data set of 20 di-
mensions and 5120 instances, generated according to
[22]. In this data, subspace clusters are embedded in
randomly selected 2–10 dimensional subspaces. Addi-
tionally, 120 outliers are created deviating from these

clusters. Please note that in this experiment, we per-
form an exhaustive search without any pruning. Be-
cause of the large total number of subspaces (220 − 1),
we only experiment up to d = 10 to avoid excessive
runtime. We record maxAd−minAd

maxAd
where Ad is the

set of contrast scores of all d-dimensional subspaces.
For 2 ≤ d ≤ 10, minAd ≈ 0 (as there are uncor-
related d-dimensional subspaces) and maxAd 6= 0 (as
there are correlated d-dimensional subspaces with clus-
ters and outliers). Hence, ideally maxAd−minAd

maxAd
= 1

for 2 ≤ d ≤ 10. The results, plotted in Figure 2(a),
show that HiCS, ENCLUS, and PODM do not scale
well with higher dimensionality. In contrast, CMI is
more robust to dimensionality and yields discriminative
contrast scores even for high-dimensional subspaces.

6.2 Synthetic data: cluster and outlier mining.
Based on the method described in [22], we generate
synthetic data sets with 5120 data points and 20, 40, 80,
and 120 dimensions. Each data set contains subspace
clusters embedded in randomly chosen 2-6 dimensional
subspaces and 120 outliers deviating from these clusters.
Quality for outlier mining. The quality of subspaces
is evaluated by inspecting how the selected subspaces
enhance outlier detection compared to LOF in the full
space. The results are shown as Figure 2(b). Overall,
CMI outperforms the competing techniques and is
stable with increasing dimensionality. The performance
of LOF degrades with increasing dimensionality of data.
Similarly, FB [18] is affected by random choice of low
contrast projections. The pairwise method PW [24] and
PCA show worst performance, due to their inability to
measure contrast in multi-dimensional subspaces. As
subsequent evaluation confirmed this trend, we exclude
PW and PCA in the experiments below.
Quality for clustering. Here, subspace quality is
assessed by clustering results. DBSCAN is used as the
baseline method. Furthermore, for all methods tested,
we reduced redundancy in clustering output [4]. The
results in Table 1 show that CMI achieves best quality
and best scalability for increasing dimensionality. High
E4SC values of CMI indicate that it performs well in
selecting subspaces containing clusters and outliers.
Runtime vs. Dimensionality. Besides accuracy, we
are also interested in scalability w.r.t. runtime. In this
experiment, previous synthetic data sets are reused.
Since the tendency of all methods is similar in both
outlier detection and clustering, we only present the
runtime for outlier detection. We display in Figure 3(a)
the total time for completing the task, i.e., time for
mining subspaces (cf., Figure 3(b)) and time for outliers
mining. We can see that CMI scales better than our
competitors.



CMI HiCS Enclus Podm DBScan FB

20 dimensions
F1 0.96 0.96 0.72 0.75 0.65 0.67
Acc. 0.98 0.96 0.75 0.82 0.67 0.68
E4SC 0.92 0.75 0.42 0.36 0.19 0.27

40 dimensions
F1 0.93 0.88 0.65 0.72 0.54 0.61
Acc. 0.93 0.74 0.68 0.76 0.61 0.66
E4SC 0.89 0.73 0.27 0.34 0.21 0.23

80 dimensions
F1 0.94 0.83 0.62 0.68 0.57 0.61
Acc. 0.95 0.74 0.66 0.81 0.62 0.69
E4SC 0.86 0.57 0.22 0.34 0.24 0.25

120 dimensions
F1 0.94 0.86 0.52 0.61 0.55 0.63
Acc. 0.94 0.72 0.68 0.71 0.58 0.62
E4SC 0.87 0.64 0.18 0.23 0.21 0.19

Table 1: Clustering results on synthetic data sets

Dataset CMI HiCS Enclus Podm LOF FB

Thyroid 0.96 0.95 0.94 0.91 0.86 0.93
WBCD 0.95 0.94 0.94 0.87 0.87 0.87
Diabetes 0.73 0.72 0.71 0.69 0.71 0.72
Glass 0.82 0.80 0.80 0.78 0.77 0.78
Ion 0.83 0.82 0.82 0.78 0.78 0.79
Pendigits 0.98 0.95 0.94 0.86 0.94 0.93
Segment 0.94 0.84 0.88 0.89 0.76 0.86
Lympho 0.95 0.86 0.67 0.67 0.95 0.95
Madelon 0.60 0.59 0.51 0.56 0.59 0.59

Table 2: Outlier mining: AUC on real world data

Although FB does not spend much time for mining
high contrast subspaces, it clearly suffers from high over-
all runtimes. This is due to high-dimensional subspaces
that very likely have low contrast, and hence, induce
the costly detection of many false alarms. ENCLUS
and PODM also scale badly as their contrast mea-
sures are inefficient in terms of time complexity. Since
CMI prunes low contrast subspaces much better than
HiCS, it can avoid exploring many high-dimensional
subspaces. The inclusion of such subspaces on the
other hand causes the outlier score computation phase
of HiCS to be longer. In conclusion, CMI is faster than
all tested approaches and yields higher accuracy.

6.3 Evaluation on real world data. All real world
databases used in our experiments are from the UCI
Machine Learning Repository [13] and have been used
as benchmarks in recent publications [18, 20, 21, 15].
Quality for outlier mining. We evaluate the per-
formance of all subspace search methods with outlier
detection on real world data. We perform experiments
on 9 benchmark datasets, using the minority class as
ground truth for the evaluation of the detected outliers.
In some of these data sets, e.g., Pendigits, all classes
have identical support and we down-sample one class to
10% of its original size—a commonly used procedure in
outlier evaluation [18, 15, 22]. The results in Table 2
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Figure 3: Runtime w.r.t. dimensionality

show that CMI achieves the best AUC in all data sets.
In addition, we show the wall-clock runtimes in Table 3.
The overall conclusion is that our method provides the
best quality enhancement for LOF.

Dataset CMI HiCS Enclus Podm FB

Thyroid 17.33 27.54 49.32 48.11 53.60
WBCD 16.42 17.11 33.63 34.55 24.49
Diabetes 1.74 1.80 4.74 4.63 5.56
Glass 0.24 0.24 0.27 0.26 0.27
Ion 6.01 6.19 7.31 7.19 8.07
Pendigits 1368.23 1616.96 2153.09 2094.36 1854.56
Segment 101.23 107.99 225.46 218.34 150.80
Lympho 4.10 6.08 6.37 5.79 5.31
Madelon 23.45 25.82 315.22 304.57 232.48

Table 3: Runtime (in seconds) for outlier detection

Quality for clustering. As we show in Table 4, CMI
provides also the best quality improvement w.r.t. clus-
tering. It outperforms traditional full space DBSCAN
and existing subspace search methods that fail to iden-
tify clusters due to scattered subspace projections. In
contrast to the competing approaches, we achieve a clear
quality enhancement for both subspace clustering and
subspace outlier detection.



CMI HiCS Enclus Podm DBScan FB

Wisconsin Breast Cancer
F1 0.79 0.75 0.44 0.40 0.73 0.60
Acc. 0.77 0.72 0.69 0.67 0.71 0.69
E4SC 0.76 0.70 0.53 0.49 0.67 0.59

Shape
F1 0.82 0.77 0.76 0.74 0.55 0.76
Acc. 0.84 0.78 0.66 0.69 0.34 0.41
E4SC 0.71 0.64 0.58 0.63 0.38 0.44

Pendigits
F1 0.73 0.55 0.50 0.51 0.52 0.63
Acc. 0.81 0.75 0.66 0.64 0.68 0.77
E4SC 0.68 0.54 0.56 0.55 0.52 0.53

Diabetes
F1 0.71 0.53 0.25 0.15 0.52 0.58
Acc. 0.76 0.66 0.67 0.63 0.68 0.70
E4SC 0.65 0.34 0.11 0.07 0.52 0.52

Glass
F1 0.59 0.37 0.26 0.29 0.32 0.42
Acc. 0.68 0.54 0.52 0.55 0.32 0.44
E4SC 0.52 0.40 0.35 0.38 0.24 0.28

Table 4: Clustering: Quality on real world data

7 Conclusions

We proposed CMI , a new contrast measure for multi-
dimensional data. It is based on cumulative entropy
of subspaces and does not require data discretization.
Furthermore, it is not restricted to pairwise analysis,
captures mutual dependency among dimensions, and
scales well with increasing subspace dimensionality.
Overall, it is more accurate and more efficient than
previous subspace search methods. Experiments on
various real world databases show that CMI provides
improvement for both cluster and outlier detection.
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