
Model-Driven Development of Human Tasks for Workflows

Stefan Link1, Philip Hoyer1, Thomas Schuster2, Sebastian Abeck1
1Cooperation & Management, Universität Karlsruhe (TH), Germany

2FZI Forschungszentrum Informatik, Germany
{ link | hoyer | abeck } @ cm-tm.uka.de, schuster@fzi.de

Abstract

In order to increase efficiency, enterprises support
their business processes by information technology
(IT). The majority of business processes requires hu-
man interaction. By means of human interaction the
complexity of the supporting IT grows. Model-driven
approaches to software development are a promising
solution to be able to cope with this complexity. Ac-
cording to these approaches all aspects of the devel-
oped software are captured in models and automati-
cally transformed to source code of the desired plat-
form. Currently there is still a lack of precise models
for capturing necessary aspects of human interaction.
Hence there is still a lot of manual development and
configuration work to do to enable humans to perform
a task within IT supported business processes. In this
article we demonstrate an approach to model human
tasks for business processes and propose an extension
to Service-Oriented Architecture (SOA) to support the
execution of human tasks. A case study fortifies the
applicability of this approach.

1. Introduction

In order to stay competitive, enterprises try to align
their business processes with IT. Business processes
which can be completely supported by IT are focused
by this article and short referred to as workflows. As
during the execution of workflows an interaction by a
human performing a task may be necessary, the human
interaction part has attracted interest of both research-
ers and industry recently. Integrating humans to a
workflow is accompanied by additional requirements
not only concerning the definition of the workflow
itself but also the execution environment [1]. If a
workflow comprises human tasks, a user interface is
needed. Also the human tasks have to be controlled to
ensure proper execution. Consequently, the underlying
software architecture has to provide the means to sup-

port human tasks [2]. As complexity of workflow de-
velopment grows by integrating humans, complexity of
the supporting IT rises as well [3]. The great variety in
platforms, operating systems and devices are just a few
aspects that cause the present complexity. Hence, new
approaches to software development and software
architectures arise to cope with that complexity.

With Model-Driven Architecture (MDA) [4], the
modeling of a software system gains additional values.
The abstraction through models allows for a better
overview to the whole software system and to over-
come heterogeneity and complexity [5]. Models are
used as basis for transformation to source code [3]. To
provide automatic transformations to source code of
any desired platform is one of the main goals of MDA.
Therewith, a high flexibility in software development,
a shortened software development time and an in-
creased software quality can be achieved [7].

Human tasks have to be dealt with as integral part
of workflows [1]. Yet integrating human tasks to
workflows still demands a high manual development
and configuration effort. Although many details con-
cerning human tasks, like the role which is qualified to
execute a task, are available in the early stages of a
software development process, due to insufficient
means, these details are unfortunately only captured in
an informal manner [8]. Thus, instead of an automated
transformation as aimed by MDA, manual transforma-
tion and configuration steps have to be executed. Be-
sides the effort, these manual steps often lead to error-
prone software with significant quality losses [5, 6].

With Service-Oriented Architecture (SOA), a prom-
ising approach to overcome heterogeneity of existing
software systems and for a flexible alignment of busi-
ness and IT has evolved. Hence, SOA additionally has
to cope with the execution of human tasks. For in-
stance, there has to be some kind of service-like soft-
ware component monitoring and ensuring the execu-
tion of human tasks. As many vendors still use their

own process languages and individual software com-
ponents to execute human tasks, a common approach
for SOA has to be established.

In summary there is the need for a means to capture
manifold aspects of human tasks on a modeling level
to reduce complexity and error-proneness at the same
time, while increasing the flexibility and quality of the
developed workflows. On the other hand a SOA sup-
porting human tasks is necessary.

In this article, we therefore present an extension of
the Unified Modeling Language (UML) [9] enabling a
platform-independent and easy to use modeling of
human tasks. The developed models are executable and
can be transformed to source code of any desired plat-
form. This increases portability significantly. To prove
the applicability of our approach, we present a case
study transforming the developed models to source
code for deployment on an extended SOA, which al-
lows the execution of human tasks.

Accordingly, the remainder of this paper introduces
the state of the art in the context of model-driven de-
velopment focusing human tasks in section 2. In sec-
tion 3 an extension to UML is presented and put into
practice by a case study. Necessary extensions for SOA
to handle human tasks are discussed in section 4 fol-
lowed by a conclusion and outlook on future work in
this area closing the body of this paper.

2. Related work

UML and the Business Process Modeling Notation
(BPMN) [10] are just two of many well known model-
ing languages. Both languages can be used to model
workflows as Wohed et al. state in [8, 11]. UML activ-
ity diagrams and BPMN both support most of van der
Aalst’s workflow control-flow patterns [12]. To be
able to examine common modeling languages regard-
ing their abilities to specify data-flows or resource-
related aspects, Russel et al. in [13] present 43
workflow resource patterns. Based on these 43 patterns
they point out that both UML [8] and BPMN [14] are
not sophisticated enough to allow a detailed modeling
of data-flows or resource-related aspects like the inter-
action of a resource “human” and the data which is
manipulated by a human. Although the usage of con-
structs like pools, partitions or lanes allow for an allo-
cation of resources to actions within UML and BPMN,
no further thorough resource-modeling of a role-model
or escalation pattern for instance is possible.

To enable a complete modeling of workflows with
human tasks in BPMN or UML, several approaches to
enrich the languages’ metamodels have been presented.

Kalnins und Vitolins [15] propose a comprehensive
UML profile, which allows for modeling resources and
human tasks. Therefore they extend the stereotype
CallBehaviourAction by a new stereotype CallHuman-
Task and add a partition called Performer. The parti-
tion’s “represents” attribute references a class with
stereotype OrgUnit or Position. Although explicit
modeling of resources is possible, no improvement
supporting the workflow resource patterns is achieved.

Großkopf presents in [16] an extension of BPMN
via its future metamodel BPDM (Business Process
Definition Metamodel) aiming for a better support of
the resource-perspective in BPMN. He extends activi-
ties by three further attributes and an association “as-
sists” between activity and actor (resource). With this
extension a better support of workflow resource pat-
terns is given but as BPDM is still a proposal no tool
support for this extension is available.

To execute workflows in a service-oriented fashion,
within SOA mostly Web service compositions are used
[26]. The prominent execution language for these
compositions is the Business Process Execution Lan-
guage (BPEL). BPEL focuses consciously on the exe-
cution of workflows without human interaction. Since
the aspect of human interaction is still very important
for most workflows, several vendors like IBM or Ora-
cle include proprietary BPEL elements in their execu-
tion platforms to support human tasks. Using these
proprietary elements, workflows specified with BPEL
lose their interoperability and portability and cannot be
deployed on another vendor’s BPEL execution plat-
form any longer. Facing this problem, IBM and SAP
released a joint white paper named BPEL4People [1].
Meanwhile two separate specifications BPEL4People
[18] and Web Service Human Task (WS-HumanTask)
[19] have been released for standardization by the
Organization for the Advancement of Structured In-
formation Standards (OASIS). While BPEL4People
addresses integration of human tasks to workflows
using the new “PeopleActivity”, WS-HumanTask is
independent from BPEL. It on the one hand provides
XML syntax for modeling human tasks and notifica-
tions and on the other hand an API for accessing hu-
man task instances from a client or the lifecycle of
newly created task instances. An evaluation of
BPEL4People and WS-HumanTask conducted by
Russel and van der Aalst in [20] using their Workflow
Resource Patterns shows a fair support.

A different approach to use human interactions in
BPEL processes is provided by Thomas, Parci et al.
[2]. They use the concepts described in the [1], provide
XML syntax to define human tasks and integrate them

into BPEL processes. As stated in this article, their
approach requires an architectural extension with a
component “People Activity Manager”, which coordi-
nates task instances

3. Model-driven development of human
tasks for workflows

3.1 Motivating example

In this section we motivate, how a modeling of hu-
man tasks can be supported and what benefit for soft-
ware development yields from this approach. Since our
approach makes use of MDA concepts, we use UML
as recommended modeling language. A simple exam-
ple workflow serves as case study: In the context of a
university, a student’s registration for an exam should
be processed electronically to speed up the registration
process. The workflow “Process Examination Registra-
tion” is depicted by the UML activity diagram in figure
1. Developed during analysis phase, this diagram,
compassing the following activities, is the starting
point of the software development process [21]:

1. The student’s registration is pre-validated by a
system to check if the student has all necessary
prerequisites like other exams etc.

2. A staff member re-validates the registration re-
garding criteria which the system can not tech-
nically validate.

3. The registration is stored for further processing.
4. A denial / confirmation email is send.

The second activity “Check Registration” is a human
task [7]. It has to be performed by a human person in
the role “Staff Member”. Regarding this human task,
there are much more details which should be captured
during the analysis phase in a formal way. For in-
stance, who is in charge of this human task, to whom it
is to be escalated to if a staff member does not validate
a registration after a certain period of time etc. Any-
how, existing UML modeling elements are not ade-
quate to capture these details [8]. Currently, they have
to be captured in some informal way, for instance on a
sheet of paper or in a text file. Hence, escalation steps,
notification paths etc. have to be configured in error-
prone and expensive manual steps during the imple-
mentation phase. To be adaptable to domain specific
needs, UML provides a lightweight extension mecha-
nism called UML profiles [10]. With UML profiles the
UML’s metamodel can be extended to specify new
stereotypes needed for a certain purpose. Consequently
we present an UML profile named Human Task Profile
which allows modeling of human interaction aspects.

3.2 UML profile for human tasks

We decided to build our profile on the UML use
case diagram, as it is designed for modeling human-
system interaction. Most of the stereotypes of a UML
use case diagram like Use Case or Actor representing a
role have only few attributes which can be specified.
To be able to be more precise in modeling human
tasks, first of all the stereotype Use Case is extended
by three additional stereotypes: Task, Notification and
Reassignment (cf. figure 2). The human task “Check
Registration” can then be specified as Use Case of
stereotype Task. A Task has additional attributes like
“delegation” to specify to whom the task is delegated,
if not processed correctly. Stereotype Notification can
be used to model a message e.g. via e-mail. With ste-
reotype Reassignment it is possible to model an
escalation path. For instance, if a human task is not
executed within two days by the role “Staff Member”,
it may be reassigned to the user “Supervisor”.

Therefore, roles like “Staff Member” representing
one or several persons have to be assigned to the hu-
man task. The use case diagram knows only one
stereotype Actor with no further possibility to refine
this stereotype. However, enterprises usually follow a
more complex organizational structure. Thus the
stereotype Actor is extended by an abstract stereotype
OrgEntity and OrgEntity by User, Role and Group. If
there is a completely different organizational structure,
the stereotype Query allowing specifying expressions
for any kind of user directory can be used.

Figure 1. Exemplary workflow

Additionally it is necessary to assign Task to Role,
thus an Association is needed. It expresses whether a
role is the owner of the human task, the supervisor etc.
The stereotype Association is therefore extended by an
abstract GenericRole and several concrete stereotypes,
as figure 2 displays. Stereotype Owner is used to spec-
ify the role in charge, Recipient is used to model a user,
which has to be informed, if the state of a human task
is changed e.g. from “active” to “complete”.

To be able to use all new stereotypes for a precise
modeling during analysis phase, a one-time setup of
the Human Task Profile in a development tool is nec-
essary. With modern development tools like IBM’s
Rational Software Architect (RSA) [22], the imple-
mentation of a UML profile is straightforward. Addi-
tionally, these tools allow for adding one’s own shape
images to new stereotypes simplifying the usage and
distinction of all new stereotypes. Having implemented
the Human Task Profile, it can be used in any software
development project to specify human tasks in a more
precise manner. Figure 3 depicts the new Human Task
Diagram developed with RSA. It can be easily under-
stood by business analysts and other stakeholders. In
particular, it can be modeled during the analysis phase
without any technical expertise of the target platform.

An additional benefit of the Human Task Profile
comes with a better support of the 43 workflow pat-
terns [13] (cf. section 2). Unlike with plain UML, an
additional 8 workflow patterns like the “Escalation”
pattern as figure 3 shows can now be modeled.

The Human Task Diagram is one result of the analy-
sis phase. It does not contain or refer to any technical
or platform-related details. Hence it could be imple-
mented in Java, .NET etc. and deployed on different
software architectures like a SOA for instance. In terms

of MDA, a Human Task Diagram is a Platform Inde-
pendent Model (PIM). As there are similar escalation
steps or notification paths for different human tasks, a
Human Task Diagram can be used as a template and
reused many times, saving configuration and develop-
ment effort. Having captured all available information,
this PIM has to be transformed to a Platform Specific
Model (PSM) and enriched with more technical details.
This is done during the following design phase by a
domain expert.

Figure 3: Human Task Diagram

3.3 Transformation to source code

With MDA, transformations need a source model
and a platform model in order to create a specific target
model. The source and the target model are instances
of corresponding metamodels, as a Human Task Dia-
gram is an instance of the UML metamodel extended
by the Human Task Profile. To transform a Human
Task Diagram to a human task expression language,

Figure 2. Human task profile with custom shape images

the metamodel for this language is needed. Sticking to
our development tool RSA, we develop the PSM’s
metamodel with the Eclipse Modeling Framework
(EMF) [23]. For XML-based languages, an Ecore
model can automatically be generated from an appro-
priate XML schema. The corresponding EMF model is
an instance of an Ecore model, which is compatible
with the Essential Meta Object Facility (EMOF) [24].
Therefore, our approach is compliant to MDA, which
suggests MOF on the metameta layer.

The presented model-driven approach can be used to
execute transformations to any kind of expression
language for human tasks. Yet, as pointed out in sec-
tion 2, there is no standardized human task expression
language available. Web Service Human Task (WS-
HumanTask) [19] is one promising candidate provid-
ing XML syntax based on [1]. It can be used to capture
all details of human tasks like the assigned roles, the
state of a human task etc. Whether the overall business
process is defined in BPEL or any other language is of
no concern to WS-HumanTask. Thus, a portable and
interoperable specification of human tasks is possible.
WS-HumanTask requires, as its name implies, the
presence of a Web service based architecture, as pre-
sented in section 4. Consequently we use WS-
HumanTask as PSM. Figure 4 provides an overview to
all used models and transformations.

Figure 4: Models and Transformations

Finally, the necessary transformation rules for the

PIM-to-PSM transformation have to be implemented.
Note that this setup has, as implementing the Human
Task Profile, only to be done once. Using the Rational
Transformation Framework (RTF) provided with RSA,
the transformations are written in plain Java and
packed together as an Eclipse plug-in. From the MDA
viewpoint, the use of a special transformation language
like QVT [28] might be more adequate. However, by
using RTF, the transformation itself can be used as an
extension to the already existing UML-to-SOA trans-
formation provided by IBM [27]. Therefore, we

achieve a transformation from UML to e.g. BPEL and
with our extension additionally to WS-HumanTask.
The transformation rules transfer all model elements
from the PIM like the Group “Staff Member” or the
Task “Check Registration” (cf. figure 3) to the PSM.
The following exemplary transformation rule trans-
forms the stereotype Role to an EMF model using the
WS-HumanTask Ecore model as metamodel.

Having executed the transformation, a domain ex-

pert is able to add further platform-related details to the
PSM. This enrichment is done on the modeling layer,
so there is no need to do any implementation work in
the source code. After the domain expert has finished
her work, the next phase of the software development
process can be started. Since this is the implementation
phase [21], usually there would be a lot of implementa-
tion work to do, especially concerning human tasks.
However, the implementation effort is reduced to seri-
alizing the EMF Model to XML. This equals the trans-
formation from PSM to the Platform Specific Imple-
mentation (PSI) and results in WS-HumanTask XML
source code, representing all details concerning human
tasks. Figure 6 depicts our approach at a glance.

Currently no WS-HumanTask reference implemen-
tation is available so far. To get our case study up and
running, we implemented another set of transformation
rules to IBM’s task expression language [17]. This
language is similar to WS-HumanTask and supported
by IBM’s Process Server [29].

4. Extended Service-Oriented Architecture

In section 3 a model-driven approach to develop
human tasks for workflows has been presented. To be
able to deploy the corresponding process specification
on an execution environment, the underlying software
architecture has to support the execution of human
tasks in workflows. SOA for instance needs besides a
process engine that executes workflows in terms of

Actor src = (Actor) context.getSource();
TGenericHumanRole target = (TGenericHumanRole)
 context.getTargetContainer();

TFrom tFrom = fac.createTFrom();
TGrouplist tGrouplist = fac.createTGrouplist();
TLiteral tLiteral = fac.createTLiteral();

Stereotype st = src.getAppliedStereotype(
 "HumanTaskProfile::Group");
List groups = (List) src.getValue(st, "group");

tGrouplist.getGroup().addAll(groups);
tLiteral.getMixed().add(
 pac.getDocumentRoot_Groups(), tGrouplist);
tFrom.setLiteral(literal);
target.setFrom(from);

Web service orchestrations, an additional component to
manage human tasks during runtime [3, 26]. Further,
this “task manager” component has to be used in a
service-oriented manner. Consequently, it needs to
provide two interfaces: One for the process engine
calling the task manager to e.g. create new instances of
human tasks. A second one is needed by a presentation
component like, in the context of SOA, a Web-based
portal [26]. With this second interface, the Web portal
is able to request a user’s current task list or to control
the processing of a human task instance.

Additionally, the task manager has to map human
tasks to different organizational structures as discussed
in section 3.A. To resolve abstract roles associated to
human tasks as modeled with the Human Task Dia-
gram (cf. figure 3), a mapping to concrete persons like
“Jon Smith” has to be done. Therefore, the task man-
ager invokes a Web service interface to an identity
manager Web service as presented in [25]. With both
new components in place, the human task specifica-
tions can be deployed on SOA and the corresponding
workflows can be executed. Based on an abstract
model of SOA as presented in [26], two additional
components, the task manager and identity manager
are presented in figure 5.

Figure 5. Extended SOA for human tasks

Using WS-HumanTask with an extended SOA has

two major advantages. First, WS-HumanTask allows
for a service-oriented specification and execution of
human tasks according to the SOA approach. It does
not concern about any platform or technical details.
Therefore, it follows similar goals as SOA, like over-
coming the present heterogeneity of IT or achieving
platform independence. For instance, as long as the
process engine uses WS-HumanTask to invoke the task
manager, the internals of the process engine are of no
importance. Thus, a flexible IT support is achieved.

Second, using SOA as execution environment for
workflows additionally helps reducing the present

complexity of IT support as stated at the beginning.
With SOA a consistent integration of existing func-
tional components is possible.

5. Conclusion and Future Work

In this article we were able to demonstrate that a

model-driven development of human tasks for
workflows is feasible and applicable to common soft-
ware development processes. Using our UML profile
named Human Task Profile, a tool-supported modeling
of human tasks is possible. Furthermore, the developed
models can automatically be transformed to source
code of any desired platform. Capturing human tasks
throughout a modeling process leads to a reduced de-

Figure 6. Case study at a glance

velopment effort and an increased software quality.
Additionally, the Human Task Profile allows a better
support of Russel’s common workflow patterns [13]
unlike UML without the profile. We followed a soft-
ware development process and demonstrated the bene-
fit of specifying all details of human tasks with models.
In the analysis phase the business analyst is now able
to capture many details without any regard to technical
or platform-specific details. Thus, he can focus on
optimizing the workflows and properly specifying
human tasks. In a following design phase, a domain
expert may add technical details without regard to the
overall business process. The implementation phase is
reduced to an execution of two transformation proc-
esses from PIM to PSM and PSM to PSI.

Besides modeling human tasks, there are further re-
quirements to support human interaction. If a human
has to interact with an IT system, a user interface is
needed. The development of a graphical user interface
for instance in correlation with the abstract description
of a human task, as given in the Human Task Diagram,
has not been examined by this article. An approach to a
model-driven development of graphical user interfaces
can be found in [7]. To achieve a complete model-
driven development of human interaction in
workflows, we will investigate a combination of both
approaches as our next step.

6. References

[1] M. Kloppmann, D. Koenig et al.: WS-BPEL Extension
for People. Joint White Paper by IBM and SAP, July 2005
[2] J. Thomas, F. Paci et al.: User Tasks and Access Control
over Web Services, IEEE International Conference on Web
Services, 2007
[3] T. Stahl, M. Völter: Modellgetriebene Software-
entwicklung, 1st edition, dpunkt Verlag, 2005.
[4] J. Mukerji and J. Miller: “MDA Guide Version 1.0.1,”
OMG, 2003.
[5] B. Hailpern and P. Tarr, “Model-driven development:
The good, the bad, and the ugly,” IBM Systems Journal, vol.
45, no. 3, 2006.
[6] G. Cernosek and E. Naiburg: “The Value of Modeling,”
IBM Developerworks, June 2004.
[7] S. Link, T. Schuster, et al.: “Focusing Graphical User
Interfaces in Mo-del-Driven Software Development”. Proc.
of 1st IEEE Conference on Advances in Computer Human
Interaction, Martinique, February 2008
[8] N. Russell, W.M.P. van der Aalst et al.: On the Suitability
of UML 2.0 Activity Diagrams for Business Process Model-
ling. Proceedings of the 3rd Asia-Pacific Conference on
Conceptual Modelling, 2006.
[9] Unified Modeling Language (UML), Version 2.1.1:
Superstructure, OMG Standard, 2007.

[10] Object Management Group: Business Process Modeling
Notation Specification. OMG Final Adopted Specification,
February 2006.
[11] P. Wohed, W. van der Aalst et al.: Pattern-based Analy-
sis of the Control-flow Perspective of UML Activity Dia-
grams, 2004
[12] W. van der Aalst, A. ter Hofstede et al.: Workflow
Patterns. Distributed and Parallel Databases, 14(3), S. 5-51,
July 2003
[13] N. Russell, A. ter Hofstede et al.: Workflow Resource
Patterns. BETA Working Paper Series, WP 127, Eindhoven
University of Technology, 2004.
[14] P. Wohed, W. van der Aalst et al.: On the Suitability of
BPMN for Business Process Modelling. 4th International
Conference on Business Process Management (BPM), Sep-
tember 2006
[15] A. Kalnins, V. Vitolins: Use of UML and Model Trans-
formations for Workflow Process Definition. Communica-
tions of the 7th International Baltic Conference on Databases
and Information Systems, 2006.
[16] A. Großkopf: An Extended Resource Information Layer
for BPMN, Hasso-Plattner-Institute for IT Systems Engineer-
ing, University of Potsdam, 2007.
[17] M. Keen, O. Bahy et al.: Human-Centric Business Proc-
ess Management with WebSphere Process Server V6, IBM
Redbook, October 2006.
[18] A. Agrawal, M. Amend et al.: WS-BPEL Extension for
People (BPEL4People), version 1.0, 2007.
[19] A. Agrawal, M. Amend et al.: Web Services Human
Task (WS-HumanTask), version 1.0, 2007.
[20] N. Russell, W. van der Aalst: Evaluation of the
BPEL4People and WS-HumanTask Extensions to WS-BPEL
2.0 using the Workflow Resource Patterns. BPM Center
Report BPM-07-10, 2007.
[21] I. Sommerville: Software Engineering. 7th edition,
Pearson Education Limited, 2004.
[22] U. Wahli, L. Ackermann et al.: Building SOA Solutions
Using the Rational SDP, IBM Redbook, April 2007.
[23] B. Moore, D. Dean et al.: Eclipse Development using
the Graphical Editing Framework and the Eclipse Modeling
Framework. IBM Redbook, February 2004.
[24] Object Management Group: Meta Object Facility
(MOF) Core Specification. OMG Available Specification,
Version 2.0, January 2006.
[25] C. Emig, F. Brandt et al.: Identity as a Service - Towards
a Service-Oriented Identity Management Architecture, 13th
EUNICE Open European Summer School and IFIP TC6.6,
Twente / Netherlands, July 2007.
[26] D. Liebhart, SOA goes real, Hanser Verlag, 1st edition,
2007, ISBN 978-3-446-41088-6
[27] D. Gorelik. Transformation to SOA: Part 3. UML to
SOA. IBM Developer Works, January 2008
[28] Meta Object Facility (MOF) 2.0 Query / View / Trans-
formation (QVT) Specification, Final Adopted Specification,
OMG Standard, 2005.
[29] IBM WebSphere Process Server, http://www-
306.ibm.com/software/integration/wps/

