
A Domain Ontology for Designing Management Services

Ingo Pansa1, Matthias Reichle2, Christoph Leist2, Sebastian Abeck1

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
1{pansa, abeck}@kit.edu

2{matthias.reichle, christoph.leist}@student.kit.edu

Abstract— Designing management systems based on service-
oriented principles is a pragmatic approach to handle the
challenges that distributed management is faced today. In
order to conform to service-oriented principles, the elements of
the management systems architecture – the management
services – have to be designed along domain-specific concepts.
Thus, modeling the domain IT Management becomes evident
within service-oriented development processes. Considering
existing approaches, domain modeling is not addressed
explicitly, thus hampering the construction of management
systems based on service-oriented principles. In this paper, we
propose an ontology for the specification of the domain IT
Management and present a refined development approach that
enables the application of the presented ontology. The
application of the ontology is demonstrated by designing
management services for a standardized Incident Management
Process.

Keywords-management service; ontology; domain model

I. INTRODUCTION
With the adoption of web-based dynamic IT services by

the business, management of distributed IT infrastructures
becomes an evident part of a service provider’s daily
operations [22, 32]. Defining, designing and implementing
management processes within the providers organization is
therefore necessary. Automating these management
processes is essential, as both reaction times can be limited
and recurring errors by technical personnel involved in these
processes are avoided [34]. Constructing a service-oriented
solution built upon loosely coupled, process-oriented and
reusable management services is desired. However, the
challenges in realizing this are numerous [17, 21, 22, 23, 31].
From the perspective of an IT infrastructure operator, IT
services are often created using a couple of different
computing systems running different applications,
interconnected by different networking technologies. In real
life scenarios, often some hundred different management
tools are utilized. Often these tools do not offer any
standardized interfaces hampering the automation of
management processes [24, 25].

In order to fully utilize the principles of service-oriented
computing within the domain of IT Management, a clearly
defined development process focusing the constructing of
reusable management services is needed. This development
approach has to consider both IT management standards and

aspects of how to design service-oriented software solutions
likewise. Although initial work discussing the application of
service-orientation to construct management systems exists
[6, 7, 21, 24, 25], little has been done to tackle this challenge
on a conceptual level by explicitly focusing on the
reusability and process orientation of flexible management
systems.

In this paper, we deliver contributions to the addressed
problems [2, 3] in that we clearly specify different aspects of
models for designing reusable management services. The
refined models are based on OWL ontology [4], enabling
both the definition of a meta model and the application of the
meta model to different management areas [36, 37].
Focusing an ontology-based definition of domain models not
only supports the construction of reference models that can
be shared among the scientific community [1, 9, 11, 14] but
also the construction of concrete management tool support
by the tool vendors [36, 37].

The remaining parts of this paper are structured as
follows: Section 2 introduces related work and provides the
background for applying ontological engineering for
designing service-oriented systems. In Section 3, we
introduce a refined development process for service-oriented
design embedding an ontology-based meta model. Section 4
presents the contribution of this paper: we specify the
conceptual meta model using an OWL ontology based on the
refined definition of the necessary abstract syntax. In Section
5, we demonstrate the application of a reference model for
designing management services for Incident Management
that are both reusable and aligned to the management
processes that they support. Finally, Section 6 concludes this
paper and gives an overview of the work that is currently
being done within our research group.

II. BACKGROUND AND RELATED WORK
Applying domain-driven techniques for designing

management services that address the challenges discussed
in [21, 22, 23, 32, 34], a revision of the approaches
contributing to service-oriented management systems [6, 7,
24, 25, 42] becomes necessary. As we currently observe a
shift towards web-based usage of dynamic IT Services
(“Cloud Computing”), this holds even more. Standards such
as ISO/IEC20000-1:2005 [19] only serve as a starting point,
but lack of a foundation that is based on formalism thus

impeding the efficient development of flexible management
systems.

As Erl [40] states, the analysis phase is the most
important step in the service-oriented software development
process towards well-designed services. Having a proper tool
support by utilizing according modeling languages greatly
influences the quality of the resulting analysis artifacts, as
models have several advantages compared to informally
defined analysis artifacts [12]. Following such structured
development processes, analyzing, defining and modeling
the domain for the desired information system serves as a
starting point [8, 15]. Explicitly considering a certain domain
greatly increases the possibility of engineered components to
be reused [39].

As stated in [10], development teams tend to suffer from
“UML fever” thus creating models that are too fine grained.
While this is certainly true in general, considering analysis
phases of typical development processes, both the support of
modeling languages and the ability to describe the
considered aspects in an intuitive way is desired likewise.
Several recent works [1, 16] propose the use of ontology [18]
for domain analysis mainly as a starting point leading to a
meta model and later to a domain model [20, 33, 35]. Other
authors [9, 13] even go one step further and use ontology as
meta model or domain model itself. To unify both UML and
ontology-based modeling within analysis phases, the OMG
currently considers the definition of an overall UML-based
meta model for ontologies, thus allowing to use several
concrete syntaxes for ontology definition [29].

In our approach, this is exactly what we intend to do by
utilizing the Web Ontology Language OWL [4].

III. DOMAIN-DRIVEN DESIGN
In order to be able to organize the different steps of a

complex service-oriented software development project,
different development process models have been proposed in
the past (e.g., [5]). Their goals range from easy-to-adopt
agile process to complex frameworks considering legal or
cultural backgrounds of the involved parties. Focusing
domain-driven design, several approaches have been
discussed. While it is not our intend to present yet another
development method, a basic understanding of the different
steps required within service-oriented software development
is required in order to comprehend and adopt the proposed
domain ontology.

A. Overall development process
On a very abstracted level, software development is

structured along different phases: based on requirements
elicitation [41], the (possibly) informally defined
requirements are analyzed and modeled using formally
defined modeling languages. Two concerns are primarily
considered within this analysis phase: structural analysis and
dynamic analysis. While structural analysis deals with the
definition of the domains, borders, stakeholders or objects,
the dynamic analysis focuses the interaction of the elements
that are identified within structural analysis. For both
structural and dynamic analysis exists a couple of different
models and modeling techniques, for which UML-based

approaches can be regarded as the ones mostly preferred by
software engineers. Due to the artifacts that are produced by
the overall development process, the considered analysis
phase is refined as service-oriented analysis. Different
approaches are proposed to define necessary steps and
development activities within service-oriented analysis [40].

Following service-oriented analysis, service-oriented
design focuses on the definition of prescriptive models that
clearly define the semantics of the to-be-implemented
artifacts in means of the underlying platform concept. As a
service-oriented software solution is desired, the underlying
platform concept is bound to the principles of service-
orientation (such as loose coupling, message-based
communication, clear business relation).

B. Models
Based on the hitherto discussed development process,

several models serve as a foundation to support the different
development tasks. As we focus the overall analysis and
design phases of the development process, we suggest no
further assumptions on how to model the different artifacts
that are produced during requirements elicitation. Typically,
UML Use Cases are used to sketch up the desired
functionality on a coarse granular level, supporting an
understanding of both customers and business process
analysts.

Focusing service-oriented analysis and service-oriented
design, the central artifacts that are produced within these
phases are domain models (analysis phase), service
candidate models (according to Erl [40] in analysis phase)
and service design models. To capture the overall
choreography that different involved partners in a complex
business scenario inhabit, business process models are used.

Due to the different semantics of each of the concrete
models, different modeling languages are used. In Fig. 1, an
overview of the different models and their interrelations is
presented.

Figure 1. Different models in analysis and design phases

Both domain models and the meta model are defined
using the Web Ontology Language (OWL) [4]. Although
OWL originally was intended to be useful for semantically
enriched resources in the World Wide Web, lately published
work highlights the advantages of using both OWL to define
project-specific analysis models and project-independent
meta models. Business process models capture dynamic
aspects of the structural elements that are modeled using
domain models, wherefore both domain models and business

Instance

Instance

Analysis Design

Service Interface
Model

SoaML Meta Model

Instance

Domain Model Service Candidate
Model

Management Process
Model

Domain Meta Model

Instance

Model
Transformation

Model Transformation

BPMN Meta Model

Model Transformation

process models are used to derive service candidate models.
Business process models can be defined using different
languages from which one of the most accepted is the
Business Process Modeling Language (BPMN), published
by the OMG [28]. Considering the definition of service
candidate or service interface models, we propose to utilize
SoaML [30]. This upcoming standard for modeling service-
oriented systems published by the OMG enables to define
several aspects of service-oriented systems. One of the most
interesting in our opinion is the concept of a service
candidate, that defines required but not yet fully specified
service capabilities. Based on the definition of service
candidates, service interfaces can be engineered focusing the
platform-specific requirements that service-oriented software
systems are build upon.

C. Model Transformations
As domain models capture the structural aspects of the

software system that is to be designed, using domain models
to define the dynamic aspects prevents the involved
stakeholders of defining the different elements with
divergent semantics. Focusing on domain models being
defined using OWL and process models being defined using
BPMN, a simple transformation scheme can be defined as
shown in Table 1.

TABLE I. DOMAIN META MODEL AND BUSINESS PROCESS META
MODEL

Domain meta model element Process meta model element

Management Area Pool

Management Participant Lane

Management Entity Data Object

Management Basic Activity Task

Management Composed Activity Sub-Process

Although the transformation is defined informally, it
proved that the process models we derived on the modeled
OWL ontologies were much more intuitive to understand as
they contained exactly the identified management
participants, their executed activities and their required
management entities.

IV. A DOMAIN ONTOLOGY
In addition to previous work we published so far [2, 3],

an approach based on formal domain models has several
advantages. Using OWL to define such formal semantics, in
this section we outline the definition of a domain ontology
based on our comprehensive abstract syntax.

A. Abstract syntax
The first step towards an ontology based on the

requirements defined in ISO/IEC20000-1:2005 [19] is to
gather the relevant vocabulary. In our previous work [2, 3]
we derived the key concepts of the IT Management domain
from the specification which are elaborated further with this

paper. As a result, we identified certain concepts that can be
used to model the IT Management domain in a functional
centric way, providing the basis for the design of reusable
and process oriented management services.

The central element of the domain is the Management
Area, which represents one of the thirteen management
processes like Incident Management or Change Management
described in [19]. It holds all other entities related to a
particular management process. Every Management Area
consists of so called Management Activity elements which
are used to denote a concrete activity performed to
accomplish management goals. There are two
specializations, namely Basic Management Activity and
Composed Management Activity. A Basic Management
Activity cannot be drilled down any further; it is atomic,
whereas a Composed Management Activity is used to
embody complex Workflows which consist of one or more
Management Activities. In addition to the concepts of
ISO/IEC20000-1:2005, we propose the modeling of
Management Capabilities. A Management Capability is an
abstract element that describes a certain capability which is
used in Management Activities to fulfill their tasks. They can
be refined to Provided Management Capability or Required
Management Capability, depending on whether it is
provided by a service e.g., a management tool or required by
an activity, thus playing a major role in integrating existing
functionality. To represent all necessary information required
by a management process, we use Management Entities.
Using the Management Participant concept, we model all
actors involved in activities that belong to a certain
Management Area. The last type of relevant information that
needs to be modeled is a flexible way to describe
requirements in regard of structure or handling of other
elements in the domain, therefore we use Management
Policies. One specialization of Management Policy is a
Management Entity Structure Policy which specifies the
structure an entity has to fulfill.

After identifying these basic concepts of IT Management,
we have a solid foundation on which the IT Management
ontology can be built on.

B. Ontology of the meta model
Using the OWL Web Ontology Language, we aim at a

more formal specification of the key concepts introduced
before. The specification heavily relies on the description of
relations between OWL classes and restrictions regarding the
validity of such relations between those elements.
Furthermore, we define necessary conditions that elements
of a specific class have to fulfill. Meta model elements (i.e.
OWL classes) are not only restricted through abstract super
classes but also inheritance of restrictions according to their
parent class in the hierarchy of the OWL classes (see Fig. 2).
Hereby, we obtain a framework describing how management
areas can be modeled in a way that conforms to the meta
model.

Figure 2. Taxonomy of IT Management

The associations between model elements are realized
with OWL Object Properties. Based on [19], we identified
six relations between model elements, where each one has an
inverse. The relations below are depicted in the following
style: relation (~inverse).

Analogous to the central element in the meta model
(Management Area) there is a corresponding central relation
between the elements. The contains (~isPartOf) Object
Property describes that a Management Area contains certain
other elements, specifically those are Management
Participant, Management Entity, Management Policy,
Management Activity and Management Capability. To
model information about various actors related to activities,
we introduce participatesIn (~hasParticipant). The fact that
activities rely on capabilities to reach management goals is
taken into account by the requires (~isRequiredBy) relation.
As stated above, Management Activities may make use of
Management Entities to gather or to store information.
Therefore we use an Object Property called operatesOn
(~isOperatedBy). The entity itself is described in detail using
a Management Entity Structure Policy that is bound to the
Management Entity by defines (~isDefinedBy). The sixth
pair of relations models the composition of Management
Activities. To represent the concept of composition, we use
isComposedOf (~isUsedBy).

Figure 3. OWL Restrictions for Management Area class

The relations introduced in the paragraph above in
conjunction with the key concepts identified earlier are now
used to further specify the demands we make on domain
models of IT Management. This is achieved through heavy

use of OWL Restrictions, which can be seen in the excerpts
of our OWL definition above (Fig. 3).

The Management Area element may hold the elements
depicted earlier but to be a valid Management Area in our
understanding it has to contain at least one Management
Activity as well as a corresponding Management Participant.
This results in the following OWL Restrictions for
Management Area.

Every individual inside or every class inheriting of the
Management Area class thus has to satisfy those
requirements. To specify the nature of Management
Activities, we restricted the members of the Management
Activity class as shown in Figure 4.

Figure 4. OWL Restrictions for Management Activity class

The code presented in Fig. 3 and Fig. 4 reflects the fact
that each Management Activity belongs to exactly one
Management Area and it has to have at least one participant.
Furthermore, we specified the necessity of a corresponding
Management Entity as well as one or more Management
Capabilities that are used by it. The last two statements say
that each activity is either a basic or a composed activity and
if it’s composed, it can only be used by another Management
Composed Activity.

All the other elements of the IT Management ontology
are formalized in the same manner, resulting in a rather
complex description of concepts and their interrelations in
the IT Management domain as seen in Fig. 5.

ManagementComposedActivity

ManagementBasicActivity

ManagementProvidedCapability

ManagementRequiredCapability

ManagementParticipant

ManagementEntityStructurePolicyManagementPolicy

ManagementActivity

ManagementEntity

ManagementArea

ManagementCapability

Thing

is-a

is-a

is-a

is-a

(contains some ManagementActivity)
 and (contains some ManagementParticipant)
 and (contains only
 (ManagementActivity
 or ManagementCapability
 or ManagementEntity
 or ManagementParticipant
 or ManagementPolicy))

(isPartOf only ManagementArea)
 and (isPartOf exactly 1 ManagementArea)
 and (hasParticipant some
ManagementParticipant)
 and (hasParticipant only
ManagementParticipant)
 and (operatesOn some ManagementEntity)
 and (operatesOn only ManagementEntity)
 and (requires some ManagementCapability)
 and (requires only ManagementCapability)
 and (ManagementBasicActivity or
ManagementComposedActivity)
 and (isUsedBy only ManagementComposedActivity)

Figure 5. Domain ontology for IT Management

Based on this meta model, we now intend to describe the
thirteen management processes mentioned in ISO/IEC20000-
1:2005.

V. DESIGNING MANAGEMENT SERVICES FOR INCIDENT
MANAGEMENT

The following application example is divided into two
parts: Part 1 deals with the definition of the domain ontology
for Incident Management while part 2 demonstrates the
design of concrete management services based on the
proposed domain ontology.

A. Ontology for Incident Management
The domain ontology for the specific Management Areas

is constructed by extending the OWL ontology of the meta
model following some basic rules, the most important one
being not to introduce classes directly under the Thing root
class. Hereby, all classes of the domain model are restricted
by the definitions of the meta model elements.

As a preparatory step, we need to identify the relevant
elements that are needed to model the desired management
process, which is described in detail in our previous works
[2, 3]. As an example, we identified the elements shown in
Table 2 for the Incident Management Process.

TABLE II. ELEMENTS FOR INCIDENT MANAGEMENT ONTOLOGY

Meta Model Element Domain Model Element

Management Area Incident Management

Management Participant Incident Manager, ServiceDeskEmployee,
Specialist

Management Entity

Entity dedicated to Incident Management:
Incident Record

Further entitites:
Known Error Record, Workaround Record,
Configuration Management Database
Record (CMDB Record)

Meta Model Element Domain Model Element

Management Activity

Record Incident, Determine Business
Impact, Prioritize Incident, Classify
Incident, Escalate Incident, Resolve
Incident, Inform Customer, Create Incident
Record, Update Incident Record

Management Policy Incident Record Structure Policy

The aforementioned elements now can be specified
through further restrictions in line with the ones being
specified at the meta model layer of the ontology. This leads
to a well described model of the Incident Management
Process according to ISO/IEC20000-1:2005 and valid in
respect of the meta model, as seen e.g., in the fragment of
our ontology below (Fig. 6), covering details of the
Management Area Incident Management. These restrictions
are added to the ones inherited through the hierarchy which
places Incident Management beneath Management Area.

Figure 6. OWL Restrictions for Incident Management area

For instance, we can see that Incident Management
contains an element called Create Incident Record that
actually is a Management Activity belonging to the said
Management Area. On the other hand the definition of
Create Incident Record contains the inverse of that
information as well as other relations to further elements.

(contains some CreateIncidentRecord)
 and (contains some
CreateIncidentRecordCapability)
 and (contains some IncidentRecord)
 and (contains some
IncidentRecordStructurePolicy)
 and (contains some RecordIncident)
 and (contains some ServiceDeskEmployee)

Figure 7. Domain ontology for Incident Management

By describing each element of Table 2 in the way seen
above, we achieve a domain ontology for Incident
Management forming a reference model according to Fig. 5.
Fig. 7 shows a graphical excerpt of the ontology for Incident
Management.

B. Incident Management Service Design
With the definition of ontology for Incident

Management, the design of management services supporting
automated management processes can be based on a solid
foundation that transforms functional requirements to
executable code. Following the overall development process
as presented in Section 3, in this section we briefly give an
overview of how to leverage the benefits of ontology-based
domain-driven software development focusing management
services.

Following the rules presented in [2] and taking into
account the domain-knowledge formally specified in the
OWL ontology, we are now able to construct management
services in a comprehensible and repeatable way using
SoaML [30]. One of the rules states that for every
Management Entity a SoaML Message Type object should
be created. Considering the Incident Management Process,
we identified only one element residing directly beneath the
Management Entity class in the OWL-hierarchy. Therefore
we model a SoaML Message Type with the name of Incident
Record and the structure defined in the Management Entity
Structure Policy referenced through the isDefinedBy Object
Property. Another principle we propose is to introduce a
SoaML Capability that groups all Management Capabilities
of the domain ontology that handle a single Management
Entity. This results in a SoaML Capability named Incident
Record Service which contains the operations according to
the Management Capabilities of the OWL ontology, namely
Create Incident Record, Read Incident Record and Update
Incident Record. By applying some more rules as the ones
we are able to present within the scope of this work, we are
able to identify the most important SoaML model elements
based on elements of our OWL ontology and their position

inside the hierarchy, which places every element of the
domain below one specific element of the meta model layer.

The SoaML results of the procedure described above can
be seen in Fig. 8 showing SoaML Capabilities and Service
Interfaces.

Figure 8. SoaML Capability and Service Interface reflecting domain

concepts

Through further steps the SoaML Service Interfaces can
be refined and finally realized by implementing Web
services using technologies like WSDL [38] or its semantic
annotated sibling SAWSDL [26] (see Fig. 9).

Figure 9. SAWSDL excerpt showing references to the domain ontology

IncidentRecord

IncidentRecordStructurePolicy

RecordIncident

DetermineBusinessImpact

PrioritizeIncident

ClassifyIncident

EscalateIncident

ResolveIncident

InformCustomer
CreateIncidentRecord ReadIncidentRecord UpdateIncidentRecord

ManagementArea ManagementEntity

IncidentManagmentArea

ManagementActivityManagementPolicy

ManagementComposedActivityManagementBasicActivity

has subclass

has subclass has subclass

ha
s
su
bc
la
ss

has subclasshas subclass

has subclass

……

isPartOf

isOperatedBy

has subclass

operatesOn

…

has subclass

<<ServiceInterface>>

IncidentRecordService

CreateIncidentRecord() : IncidentRecord
ReadIncidentRecord(ID : String) : IncidentRecord
UpdateIncidentRecord(Record : IncidentRecord)

<<Capability>>

IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

<<MessageType>>

IncidentRecord

IncidentRecordId : String
Priority : Integer

<<Expose>>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="IncidentRecordService"
[...]
xmlns:sawsdl="http://www.w3.org/ns/sawsdl">
[...]
<xsd:complexType name="IncidentRecord"
 sawsdl:modelReference="http://domp.cm-
tm.uka.de/ontologies/ITSMOntology#IncidentRecor
d">
 <xsd:sequence>
 <xsd:element name="IncidentRecordId"
 type="xsd:string"></xsd:element>
 <xsd:element name="Priority"
 type="xsd:int"></xsd:element>
 </xsd:sequence>
</xsd:complexType>
[...]

As the application example demonstrates, the semantics
of the modeled domain artifacts can be preserved into the
subsequent design steps. This finally helps to close the gap
between analysis and design phases thus lowering
development efforts in round trip engineering.

VI. CONCLUSION
For tackling the complexity that distributed management

is faced to today, the automation of management processes is
evident. Building management systems upon loosely coupled
management services strongly supports this approach.
However, several aspects have to be considered, as service-
oriented design and analysis is a creative software
development issue in which several different stakeholders
are involved. For being able to model requirements and
support the development process using model-based
transformation techniques, analyzing and understanding the
domain is essential. This paper addresses this situation and
delivers several contributions.

In Section 3, a refined development process for service-
oriented analysis and design was presented. The
development process is generic in a way that concrete
process models for software development are abstracted, but
yet essential roles, stakeholders and artifacts are defined. The
presented development process defined basic steps and
activities that utilize ontological engineering and therefore
served as a foundation for a concrete application of our
approach in further scenarios or projects. Section 4
introduced a formalized meta model of the domain IT
Management that served as a foundation for the definition of
a reference model for Incident Management. The presented
meta model focused problems that were previously
addressed by our research group [2, 3]. Using OWL to define
the domain ontology based on formal semantics not only
allows to construct tool support that directly guides involved
stakeholders during initial analysis or design activities but
also to consider service design quality by the application of
metrics suites. Section 5 demonstrated the application of the
development process. We showed that utilizing ontological
engineering supports the construction of management
services that align with certain design principles, of which
we mostly addressed in this paper the general requirement of
a clear process-alignment of designed services.

Considering the experiences that we made within the
development project, further work is necessary. Based on the
development method, the OWL-based domain meta model
and the OWL-based Incident Management reference model,
introducing automated metrics applications of concrete
service designs in regard of several service design quality
aspects seems to be possible. For instance, semantically
enriched service models would allow automated
classification based on the modeled management area
context, thus leading to possible better reusability if future
requirements are slightly changing. Considering the
evolution of the proposed ontology, both an ontology
repository and corresponding tools are necessary.

REFERENCES
[1] D. Gasevic, D. Djuric, and V. Devedzic, Model Driven Engineering

and Ontology Development, Springer, Heidelberg, 2006.
[2] I. Pansa, F. Palmen, S. Abeck, K. Scheibenberber, “A Domain-driven

Approach for Designing Management Services”,
SERVICECOMPUTATION2010, Lisbon, 2010.

[3] I. Pansa, P. Walter, K. Scheibenberger, and S. Abeck, “Model-based
Integration of Tools Supporting Automatable ITSM Processes”,
IEEE/IFIP Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010, Page(s): 99 – 102.

[4] World Wide Web Consortium (W3C), Web Ontology Language
(OWL), W3C Recommendation, 2004.

[5] A. Arsanjani, S. Gosh, A. Allam, T.Abdollah, S. Ganapathy, and K.
Holley, „SOMA : A method for developing service oriented
solutions,“ in IBM Systems Journal, Vol. 47 (3), pp. 377-396, 2008.

[6] G. Aschemann and P. Hasselmeyer, „A Loosely Coupled Federation
of Distributed Management Services“, Journal of Network and
Systems Management, Vol 9, No. 1, 2001.

[7] N. Anerousis, „An Architecture for Building Scalable, Web-Based
Management Services“, Journal of Network and System
Management, Vol. 7, No 1., 1999.

[8] G. Arango, Domain Analysis - From Art Form To Engineering
Discipline, ACM SIGSOFT Software Engineering Notes, Volume 14,
Issue 3, 1989.

[9] U. Aßmann, S. Zschaler, and G. Wagner, „Ontologies, Meta-models
and the Model-Driven Paradigm“, Ontologies for Software
Engineering and Software Technology (2006), pp. 249-273, 2006.

[10] A. E. Bell: Death by UML Fever, ACM Queue, Volume 2 Issue 1,
March 2004, 2004.

[11] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, „What are
Ontologies, and why do we need them?“, IEEE Intelligent Systems
and their Applications, Vol. 14, Issue 1, pp. 20-26, 1999.

[12] G. Cernosek, and E. Naiburg, „The Value of Modeling,“ IBM
Developer Works Whitepaper, 2004.

[13] V. Devedzic: Understanding Ontological Engineering,
Communications of the ACM, Vol. 45 (4), pp. 136-144, 2002.

[14] R. de Almeida Falbo, G. Guizzardi, and K. C. Duarte, „An
Ontological Approach to Domain Engineering“, Proceedings of the
14th international conference on Software engineering and
knowledge engineering (SEKE2002), 2002.

[15] X. Ferré, and S.Vegas, „An Evaluation of Domain Analysis
Methods“, In 4th CAiSE/IFIP8.1 International Workshop in
Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD99), 1999.

[16] T. Stahl, M. Völter, S. Efftinge, and A. Haase, Modellgetriebene
Softwareentwicklung, dpunkt.verlag, 2007.

[17] S. D. Galup, R. Dattero, J. J. Quan, and S. Conger, „Information
Technology Service Management: an emerging area for academic
research and pedagogical development“, Proceedings of the 2007
ACM SIGMIS CPR conference on Computer personnel research: The
global information technology workforce, pp.52, 2007.

[18] T. Gruber, „A translation approach to portable ontology
specifications“, Knowledge Acquisition, Vol. 5, Issue 2, pp. 199-220,
1993.

[19] ISO/IEC20000-1:2005, Information technology – Service
management – Part1: Specification, International Standards
Organization (ISO), 2005.

[20] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W.
Retschitzegger, W. Schwinger, and M. Wimmer, „Lifting
Metamodels to Ontologies“, Lecture Notes in Computer Science,
Volume 4199/2006, pp. 528-542, 2008.

[21] P. Kumar, „Web Services and IT Management“, ACM Queue,
Volume 3 Issue 6, 2005.

[22] V. Machiraju, C. Bartolini and F. Casati, „Technologies for Business-
Driven IT Management“, in Extending Web Services Technologies:
the Use of Multi- Agent Approaches, Kluwer Academic, 2004.

[23] A. Moura, J. Sauve and C. Bartolini, „Research Challenges of
Business-Driven IT Management“, 2nd IEEE/IFIP International
Workshop on Business- Driven IT Management, pp.19-28, 2007.

[24] C. Mayerl, F. Tröscher, and S. Abeck, „Process-oriented Integration
of Applications for a Service-oriented IT Management“, The First
International Workshop on Business-Driven IT-Management,
BDIM’06, pp. 29-36, 2006.

[25] C. Mayerl, T. Vogel and S. Abeck, „SOA-based Integration of IT
Service Management Applications“, 2005 IEEE International
Conference on Web Services (ICWS 2005), 2005.

[26] World Wide Web Consortium (W3C): Semantic Annotations for
WSDL and XML Schema, W3C Recommendation, 2007.

[27] Organization for the Advancement of Structured Information
Standards (OASIS), Reference Model for Service Oriented
Architecture, Version 1.0, OASIS, August 2006.

[28] Object Management Group (OMG), Business Process Model and
Notation BPMN, Version 2.0, OMG,Januar 2011.

[29] Object Management Group (OMG), Ontology Definition Metamodel
(ODM). Version 1.0, OMG, Mai 2009.

[30] Object Management Group (OMG), Service-oriented architecture
Modeling Language (SoaML) - Specification for the UML Profile
and Metamodel for Services (UPMS), FTF Beta 1, OMG, April 2009.

[31] G. Pavlou, „On the Evolution of Management Approaches,
Frameworks and Protocols: A Historical Perspective, Journal of
Network and Systems Management“ Springer New York, Vol. 15,
Issue 4, pp. 425- 445, 2007.

[32] J. Sauvé, A. Moura, M. Sampaio, J. Jornada and E. Radziuk, „An
Introductory Overview and Survey of Business-Driven IT
Management“, 1st IEEE/IFIP International Workshop on Business-
driven IT Management (BDIM 2006), 2006.

[33] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras, „Model Driven
Engineering with Ontology Technologies“, Lecture Notes in
Computer Science, Volume 6325/2010, pp. 62-98, 2010.

[34] V. Tosic, „The 5 C Challenges of Business-Driven IT Management
and the 5 A Approaches to Addressing Them“, The First IEEE/IFIP
International Workshop on Business-Driven IT Management, 2006.

[35] M.-N. Terrasse, M. Savonnet, E. Leclercq, T. Grison, and G. Becker,
„Do We Need Metamodels AND Ontologies for Engineering
Platforms?“, Proceedings of the 2006 international workshop on
Global integrated model management, 2006.

[36] J. E. López De Vergara, V. A. Villagrá, J. Berrocal: Semantic
Management: advantages of using an ontology-based management
information meta-model, Proceedings of the HP Openview University
Association Ninth Plenary Workshop (HP-OVUA'2002), 2002.

[37] J. E. López De Vergara, V. A. Villagrá, J. Asensio, J. Berrocal:
Ontologies Giving Semantics to Network Management Models, IEEE
Network, Vol. 17, pp. 15-21, 2003.

[38] World Wide Web Consortium (W3C), Web Service Description
Language (WSDL) Version 2.0 Part1 Core Language, W3C
Recommendation, 2007.

[39] J. Wang, J. Yu, P. Falcarin, Y. Han, and M. Morisio, „An Approach
to Domain- Specific Reuse in Service-Oriented Environments“,
Proceedings of the 10th international conference on Software Reuse:
High Confidence Software Reuse in Large Systems, 2008.

[40] T. Erl: SOA, Principles of Service Design, Prentice Hall, 2008.
[41] B. Bruegge, and A. H. Dutoit, Object-Oriented Software Engineering

Using UML, Patterns and Java, Pearson Education, 2009.
[42] G. Tamm and R. Zarnekow, „Umsetzung eines ITIL-konformen IT-

Service-Support auf der Grundlage von Web-Services“,
Wirtschaftsinformtik 2005, pp. 647-666, 2005.

