
Metrics for Evaluating Service Designs Based on SoaML

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | abeck} @kit.edu

Abstract—In the context of service-oriented architectures,
quality attributes, such as loose coupling and autonomy, have
been identified that services should fulfill. In order to influence
services with regard to these quality attributes, an evaluation is
necessary at an early development stage, i.e. during design
time. Existing work mostly focuses on a textual description of
desired quality attributes, formalizes metrics that require more
information than available during design time, or bases on a
theoretical model that hampers the practical applicability. In
this article, quality indicators for a unique categorization, loose
coupling, discoverability and autonomy are identified. For
each quality indicator formalized metrics are provided which
enable their measurement and application on service
candidates and service designs based on the Service oriented
architecture Modeling Language as standardized language for
modeling service-oriented architectures. To illustrate the
metrics and to verify their validity, service candidates and
service designs of a campus guide system as developed at the
Karlsruhe Institute of Technology are evaluated.

Keywords-service design; soaml; evaluation; metric; quality
attribute; quality indicator

I. INTRODUCTION

With the shift to service-oriented architectures, goals
concerning the information technology (IT) of companies,
such as an increased flexibility, are expected to be attained.
In order to support this attainment, quality attributes have
been identified, services within a service-oriented
architecture as building-blocks [28] should fulfill.
Widespread quality attributes are loose coupling, unique
categorization, discoverability, and autonomy [3, 6, 8, 11,
15, 28].

Since the design of services heavily influences the
services and thus their quality attributes, it is necessary to
perform the design phase with care. The quality attributes of
services have to be determined during design time and based
on this evaluation the service designs have to be revised if
necessary. For this purpose, the quality attributes have to be
described in a way that the IT architect can comprehensibly
apply them on service designs. This requires a formalization
of the quality attributes and additionally an involvement of a
standardized language for service designs that can be used in
real-world projects. The Service oriented architecture
Modeling Language (SoaML) [20] has evolved as
increasingly accepted and employed language to model
service-oriented architectures, respectively their elements.

Thus, we claim quality attributes being measureable on
service designs based on SoaML or comparable languages.
This enables their application without additional
interpretation or transformation effort.

In existing work either a textual description of quality
attributes or the formalization of metrics that measure certain
aspects is focused. Textual descriptions are introduced by Erl
[3], Reussner et al. [6], Josuttis [7], Engels et al. [8], Cohen
[10], and Maier et al. [11, 12, 13]. They introduce a
comprehensive set of quality attributes that should be
considered when developing services. However, due to the
textual descriptions, an application of these quality attributes
is hampered and requires a prior interpretation. Each of the
described quality attributes covers a lot of different aspects.
Some of these aspects are already relevant during design
time and others are only of interest in subsequent phases,
such as the implementation phase. The IT architect has to
analyze the quality attributes and identify relevant and
measurable quality indicators first. Then he has to interpret
them so that they can be applied on a modeled service
design. Other work, as introduced by Perepletchikov et al.
[14, 15, 16], Humm et al. [9], Rud et al. [17], Hirzilla et al.
[18], and Choi et al. [19] focus on the formalization of
metrics. Some of these formalizations base on theoretical
models. This hampers the application on service designs that
have been modeled using a standardized and widespread
modeling language, such as SoaML, for a prior mapping of
the different concepts is required. Additionally, the metrics
are mostly abstractly and conceptually described which
requires a prior interpretation again. For example concepts,
such as “number of clients”, are used and the IT architect has
to interpret if services or operations are meant and if
duplicates should be counted or not. This interpretation may
result in mistakes and consequently wrong evaluations.
Finally, the metrics are often not related to widespread
quality attributes that support the attainment of goals
concerning the IT. Metrics that are not related to these
widespread quality attributes are not motivated.

In this article, we derive quality indicators for the quality
attributes unique categorization, loose coupling,
discoverability, and autonomy. These quality attributes were
chosen for they contain a representative set of aspects that
can be measured during design time as shown in [1]. The
quality indicators are derived directly from common and
widespread descriptions of quality attributes in order to
preserve the relation of the quality indicators to quality

attributes and thus motivate their measurement. Additionally,
each quality indicator is formalized in form of metrics using
the notation as introduced by Perepletchikov [13] in order to
enable a comprehensible measurement. The formalization is
adjusted to the elements of service candidates or service
designs and their elements in SoaML. This allows a direct
application of the quality indicators and their formalizations
without any interpretation effort and thus reduces potential
interpretation mistakes.

To illustrate the metrics and their validity, they are
exemplarily applied on service candidates and service
designs for a service-oriented system that guides students
across the campus of the Karlsruhe Institute of Technology
(KIT) called KITCampusGuide. This system has its origin in
the NEST system, a service-oriented surveillance system
developed at the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation [37, 38, 39]. As
requirement, the services of the KITCampusGuide are
expected to fulfill the quality attributes unique
categorization, loose coupling, discoverability, and
autonomy. The service candidates as preliminary services
and the final service designs are modeled using SoaML.

The article is organized as follows: In Section 2, the
fundamentals in the context of modeling service candidates
and service designs using SoaML and the evaluation of
services are presented. Section 3 introduces the derived
quality indicators and their formalizations. The quality
indicators are exemplarily applied on service candidates and
service designs of the service-oriented KITCampusGuide.
Section 4 concludes the article and introduces suggestions
for future research.

II. FUNDAMENTALS

This article focuses on the evaluation of service designs.
This requires a prior understanding of the concept of a
service design that is introduced in the following section.
Afterwards existing work in the context of evaluating
services is analyzed with regard to their application on
service designs. Finally, the existing work is discussed which
constitutes the motivation for this article.

A. Modeling Service Designs

In order to analyze existing work with regard to their
applicability for evaluating service designs, in the following,
the service design artifact and its elements in SoaML are
introduced. According to Erl [4, 5] and the Rational Unified
Process (RUP) [24] for Service-Oriented Modeling and
Architecture (SOMA) [21, 22, 23], the design process
consists of two phases, the identification phase and the
specification phase.

1) Identification Phase: The first phase, the
identification phase, focuses on the determination of so-
called service candidates [25]. They represent preliminary
services as an abstract group of capabilities the service
provides. A service candidate includes operation candidates
as capabilities of the service candidate and preliminary
operations. Additionally, the dependencies between service
candidates are modeled. They describe that an operation
candidate within a certain service candidate requires an

operation candidate of another service candidate. In SoaML,
service candidates are modeled using the Capability element
in form of a stereotyped UML class. The operation
candidates are added as UML operations. Dependencies can
be modeled with usage dependencies in UML. The
application of the Capability elements for service candidates
is also confirmed by IBM. Within RUP SOMA, IBM uses
its proprietary UML profile for modeling service candidates,
the UML 2.0 profile for software services [33]. However, in
newest work [34] they demonstrate the modeling of service
candidates on the basis of SoaML which correlates with our
understanding. The following Figure illustrates a set of
service candidates and their dependencies.

Figure 1. Modeling service candidates

2) Specification Phase: During the second phase, the
specification phase, for each of the service candidates that
constitute the basis for the implementation phase detailed
service designs are created [26]. According to Erl [4, 27]
and IBM [21, 22], a service design consists of a specified
service interface that describes the service and a
specification of the service component that fulfills the
functionality. Latter includes the provided and required
services and the internal logic in form of an orchestration of
required services.

For modeling a service interface in SoaML the
ServiceInterface element is provided that can be modeled
using a stereotyped UML class. It includes a description
about participating roles as UML Parts, realizes a UML
interface that contains the provided operations, and uses
another UML interface that includes operations a service
consumer has to provide in order to receive callbacks.
Additionally, the interaction protocol can be specified that
describes the order of operations for gaining a valid result.
The interaction protocol can be described using a UML
Activity that is added as OwnedBehavior. Within this
Activity, for each participating role a Partition is added
containing the operations of the according UML interfaces.
Figure 2 shows a service interface in SoaML. According to
this service interface, the described service provides one
operation called operation1. The service consumer has to
provide one operation callbackOperation1 in order to receive
a callback. The interacting roles are referred to as provider
and consumer. The interaction protocol determines that for a
valid result first the operation1 has to be called that is
provided by the service. Afterwards, the callbackOperation1
of the service consumer is called by the service provider.

«Capability»
Service Candidate 1

+ Operation Candidate 1()
+ Operation Candidate 2()

«use»«use»

«Capability»
Service Candidate 2

+ Operation Candidate 3()
+ Operation Candidate 4()

«Capability»
Service Candidate 3

+ Operation Candidate 5()
+ Operation Candidate 6()

Figure 2. Modeling a service interface

Since each of the operations within the interfaces include
messages being exchanged, a specification of these messages
is necessary. For this purpose, the MessageType element is
provided by SoaML that extends the UML data Type. It
represents a document-centric message and can contain other
data types. The following figure shows an excerpt of the
message types required within the service interface above.

Figure 3. Modeling message types

The service component as part of the service design
describes the component that fulfills the functionality of a
service. For this purpose in SoaML the Participant element
exists. It describes an organization, system, or software
component. The service component is modeled using a
stereotyped UML component. For each provided service, a
ServicePoint is added to the service component that is typed
by the describing ServiceInterface. Similarly, for each
required service, a RequestPoint is specified that is also
typed by the according ServiceInterface. The following
figure illustrates a service component in SoaML.

Figure 4. Modeling a service component

 The internal logic is modeled using one UML Activity
for each operation that is performed by the service
component. The Activity is added as OwnedBehavior and
named after this operation. It contains one UML Partition for
each ServicePoint and RequestPoint. If an operation of a
required service is called, a CallOperationAction is added to
the according Partition. For receiving callbacks an
AcceptEvent is used. If the service component performs
functionality by itself, i.e. functionality that is not provided
by an external service, an OpaqueAction is added to the
Partition that represents the ServicePoint.

B. Evaluating Services

According to Boehm [29] and McCall et al. [30], within
the Factor Criteria Metrics (FCM) quality model, the
software quality as factor can be broken down into several
criteria that can be further be described by metrics. When
considering the flexibility, maintainability etc. as factor, the
quality attributes considered within this article, such as loose
coupling, can be thought of as criteria. Since the criteria are
not measurable, they have to be further refined into metrics
that equal quality indicators as introduced by the
International Organization for Standardization (ISO) [31].
Thus, in order to evaluate service designs with regard to
quality attributes that have been identified as criteria for
services of high quality, quality indicators have to be
determined and formalized as metrics. Within existing work
either a description of quality attributes or metrics that
enable the measurement of quality indicators are focused.

1) Description of Quality Attributes: In [3, 4], Erl
introduces a comprehensive set of design principles and
design patterns for services that can be thought of as quality
attributes. The design principles are described in detail,
however only textual information is provided. Quality
indicators that enable an evaluation of service designs with
regard to quality attributes are not introduced. Only some

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :
«interface» RequiredOperations

provider :
«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) :
CallbackOperation1Response

callbackOperation1

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String
+ attribute2 : String

«MessageType»

Operation1Response

+ success : Boolean

*

«dataType»

DataType2

+ attribute3 : String
+ attribute4 : String

*

«Participant»
ServiceComponent«ServicePoint»

serviceName :
ServiceName

«RequestPoint»
serviceName2 :
ServiceName2

«RequestPoint»
serviceName3 :
ServiceName3+

operation1

: serviceName : serviceName2 : serviceName3

internal operation

operation2

operation3

callbackOperation1

callbackOperation2

so-called service characteristics are described that represent
the impact of the design principles. However, these service
characteristics are mostly not directly measurable and an
explanation how to evaluate service designs with regard to
these service characteristics is missing. Also some of these
characteristics can only be evaluated if implementation
details and deployment information are available.

For the Rational Unified Process for Service Oriented
Modeling and Architecture (RUP SOMA), IBM lists quality
attributes that have to be considered [21, 22, 23]. However,
the quality attributes are only listed and considered as
important, but a detailed description about these attributes
and how to measure them is not provided likewise.

Engels et al. describe in [8] a method to design an
application landscape and focus on the development process.
Necessary steps to derive services from a prior analyzed
business are explained and during the design phase several
quality attributes are named. Also in this case, the quality
attributes are only described textually. Quality indicators or
metrics are not included. Similarly, Reussner et al. [6],
Josuttis [7] and Maiers et al. [11, 12, 13] introduce quality
attributes for services within service-oriented architectures.
Also in this work, the textual description is focused and
quality indicators or metrics are missing.

2) Formalized Metrics: Other work focuses on the
formalization of metrics to evaluate services. Perepletchikov
et al. [14, 15, 16] introduce metrics to measure cohesion and
coupling of services. The metrics base on an extension of
the generic software model of Briand [32]. Rud et al. [17]
show metrics for measuring the granularity of services and
Hirzialla et al. [18] focus on the flexibility. Choi et al. [19]
measure the reusability of services. All this work has in
common that it is not mainly meant for evaluating service
designs as introduced in the section before. In some cases
information about the implementation of the service or its
deployment is required. The metrics that concentrate on the
design of services and the information available during this
time base on own notations and own understandings about
how to design a service. For using the metrics on a common
and standardized language, such as SoaML, first the used
concepts within the metrics have to be transferred into
representations within the formalized service designs. For
this, a prior interpretation of the metric and a detailed
understanding about the used concepts is necessary in order
to correctly apply the metric. Additionally, some of the
introduced metrics are not related to common and
widespread quality attributes which hampers their incentive.
to measure them.

C. Discussion

As illustrated above, SoaML provides all necessary
elements to model service designs. However, SoaML does
not provide any information about how to design services
with certain quality attributes. On the other side, work in the
context of quality attributes and formalized metrics is mostly
not directly applicable due to the fact that the textual
descriptions are too abstract. Furthermore, the formalized
metrics are often not related to widespread quality attributes
and they use concepts and understandings of service designs

that have to be mapped onto elements of concrete languages
first. This step requires an interpretation of the metrics and
may include interpretation mistakes. Thus, in this article the
quality attributes and their textual descriptions are used for
deriving quality indicators and formalized metrics that can be
applied on a formalized service design based on SoaML. The
metrics are described by means of a similar notation as
introduced by Perepletchikov et al. [14]. Due to the direct
derivation of quality indicators from quality attributes and
the usage of SoaML, the motivation why to measure them is
given and a direct application without any interpretation
effort is enabled.

III. METRICS FOR EVALUATING SERVICE DESIGNS BASED

ON SOAML

In order to evaluate service designs based on SoaML,
quality indicators have to be identified that give the IT
architect hints about the current value of the quality
attributes. In this article, the four quality attributes of a
unique categorization, loose coupling, discoverability, and
autonomy are considered. These quality attributes mostly
require information that is available during design time
compared to quality attributes, such as statelessness and
idempotence, which require additional information [1].

To illustrate the quality indicators, in this article the
human-centered environmental observation domain is
considered. This domain refers to the network-enabled
surveillance and tracking system as introduced by the
Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation [38, 39]. Currently, at the Karlsruhe
Institute of Technology (KIT) the KITCampusGuide, a
system to provide a guide for students, lecturers and guest, is
developed. A person can ask for another person or a room on
the campus of the university using mobile devices, such as a
mobile phone, and the KITCampusGuide calculates the
route. The following figure shows the KITCampusGuide in
action. A requirement for the KITCampusGuide is to create
services for this scenario that fulfill the quality attributes of a
unique categorization, loose coupling, autonomy and
discoverability as introduced in [2]. This is why this scenario
is chosen to illustrate the quality indicators and their
formalizations.

Figure 5. KITCampusGuide in action

Mobile Phone

Michael GebhartTarget Go!

Since some of the quality indicators require knowledge
about the functional terms used within this scenario, the
domain is modeled using an ontology based on the Web
Ontology Language (OWL) [35]. As modeling tool Protégé
[42] is applied. For illustrating the ontology we choose a
notation that is similar to the OntoGraf in Protégé. Each
concept is depicted by a rectangle and the relations between
these concepts are represented by lines between these
rectangles. In order to provide the name of the concepts and
relations in various languages, the translations are added as
labels. A suffix specifies the language, such as “@de” for
German. The following figure shows an excerpt of the
domain model for the human-centered environmental
observation.

Figure 6. Excerpt of the domain model

 For identifying quality indicators, the descriptions of the
quality attributes are analyzed and aspects that can be
measured within a service design are extracted. Each of these
aspects represents a quality indicator. Afterwards, for each
quality indicator a formalized metric is created. This
formalization uses elements of a service design which
enables its direct applicability. To interpret the value of the
metric correctly, a scale is assigned. An exemplarily
application of the metric on a service design of our scenario
helps to illustrate the metric and verifies its validity.

A. Unique Categorization

Erl [3], Cohen [10], Engels et al. [8], and Maier et al.
[12] introduce approaches for a unique categorization. The
categorization has its origin in splitting different and
bundling similar kinds of functionality. Thus, the unique
categorization corresponds to the concept of cohesion [3].
Common categories are entity services that are responsible
for managing business entities, task services that provide
mostly process-specific functionality beyond the scope of
one business entity, and utility services for cross-cutting

technical functionality. This categorization can be broken
down into different aspects that represent quality indicators.

1) Division of Business-Related and Technical
Functionality: According to Reussner et al. [6],
functionality that changes in different time intervals, such as
business-related and technical functionality, should be split
into several modules, in this case services because this
increases their maintainability. Business-related
functionality refers to the logic of the business domain,
whilst technical functionality includes cross-cutting
technical functionality, as for instance functionality of
logging systems or security systems. The division of these
different kinds of functionality categorizes services into
entity and task services on the one side and utility services
on the other side.

On the basis of service candidates the division can be
verified by means of the contained operation candidates.
Appropriate knowledge about the purpose of these operation
candidates assumed, the following metric can be formalized.

	
	 	
|	 	|

In case of service designs, instead of the operation candidates
the operations of the realized interface are considered.

	
	 	

	 	

The metrics are only valid if there exists any operation
candidate respectively operation. Within the metrics, the
following variables and functions are used.

TABLE I. VARIABLES AND FUNCTIONS USED FOR DBTF

Element Description

DBTF Division of Business-related and Technical Functionality

sc service candidate: the considered service candidate

s service: the considered service that is provided or
required, represented by an ServicePoint or RequestPoint
in SoaML

BF(oc)

Business Functionality: operation candidates providing
business-related functionality out of the set of operation
candidates oc

BF(o) Business Functionality: operations providing business-
related functionality out of the set of operations o

OC(sc) Operation Candidates: operation candidates of the
service candidate sc

SI(s) Service Interface: service interface of the service s. In
SoaML it is the type of the ServicePoint or RequestPoint
s.

RI(si) Realized Interfaces: realized interfaces of the service
interface si

O(i) Operations: operations within the interface i

| oc | Number of operation candidates oc

| o | Number of operations o

Target
(Ziel@de)

Coordinates
(Koordinaten@de)

Map Excerpt
(Kartenausschnitt@de)

Map
(Karte@de)

Route with Map
(Route inklusive Karte@de)

Route
(Route@en)

Person
(Person@de)

Employee
(Mitarbeiter@de)

Student
(Studierender@de)

Room
(Raum@de)

Position
(Position@de)

Current Position
(Aktuelle Position@de)

has
(hat@de)

begins top
left at

(beginnt oben
links bei@de)

consists of
(besteht aus@de)

consists of
(besteht aus@de)

has
(hat@de)

has
(hat@de)

refers to
(bezieht sich auf@de)

ends bottom
right at

(endet unten
rechts bei@de)

subclass

Thus, the metrics return values from 0 to 1, which have

an order. Accordingly, the results are interpreted within the
ordinal scale. The following table shows the interpretation of
values for DBTF.

TABLE II. INTERPRETATION OF VALUES FOR DBTF

Value Interpretation

0 Only technical functionality is provided

Between 0
and 1

Both business-related and technical functionality is
provided

1 Only business-related functionality is provided

According to this table, for DBTF a value of 0 or 1 is

desired because these values represent a division of business-
related and technical functionality. A value between 0 and 1
should be avoided. The following figure depicts one service
candidate and one interface realized by a service interface.
The former includes both operation candidates with
business-related and technical functionality. The latter
includes only business-related functionality. Thus, the design
of the service candidate should be revised, whilst the design
of the interface follows the criteria for a service that can be
uniquely categorized. This circumstance is also confirmed by
the metric DBTF. For the service candidate a value of 0.5
and for the service interface a value of 1 is returned.

Figure 7. Example for division of business-related and technical

functionality

2) Division of Agnostic and Non-agnostic Functionality:
In order to increase the reusability of services, agnostic
functionality that is agnostic should be divided from non-
agnostic functionality [3]. Agnostic functionality is highly
reusable and not process-specific, whilst non-agnostic
functionality is less reusable and mostly process-specific. A
usage of non-agonstic functionility in several processes is
not expected. The division of this functionality results in the
distinction of agnostic services, such as entity services, and
non-agnostic services, such as task services.

Similarly to the division of business-related and technical
functionality, on the basis of service candidates the division
of agnostic and non-agnostic functionality can be evaluated
by considering the operation candidates. Equivalently to

DBTF, the following metric measures the ratio of operation
candidates providing agnostic functionality to all operation
candidates.

	
	 	
|	 	|

If service designs are supposed to be evaluated, instead of
the operation candidates the operations of the realized
interface are used within the metric.

	
	 	

	 	

The metrics are only valid if there is at least one

operation candidate respectively one operation provided.
Variables and functions that are used additionally to those
introduced for DBTF are listed below.

TABLE III. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description

DANF Division of Agnostic and Non-agnostic Functionality

AF(oc)

Agnostic Functionality: operation candidates providing
agnostic functionality out of the set of operation
candidates oc

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

The metrics return values from 0 to 1. Also in this case,
the results are interpreted within the ordinal scale.

TABLE IV. INTERPRETATION OF VALUES FOR DANF

Value Interpretation

0 Only non-agnostic functionality is provided

Between 0
and 1

Both agnostic and non-agnostic functionality is provided

1 Only agnostic functionality is provided

In order to increase the unique categorization, a value of

0 or 1 is desired. The following figure shows a service
candidate with both agnostic and non-agnostic operation
candidates. In order to increase the reusability, these
operation candidates should be divided. This is also
confirmed by the value 0.5 that is returned for DANF.

Figure 8. Example for division of agnostic and non-agnostic functionality

3) Data Superiority: If a service manages a certain
business entity, this service should be explicitly managing
this entity. For example, if a service is responsible for
creating, deleting or changing a business entity, no other
service should provide similar functionality. This concept is

«Capability»
Personnel Administration

+ Get Employee‘s Room()
+ Start Enterprise Service Bus Logging() Technical

Business-Related

«ServiceInterface»

CampusGuide

«interface»
CampusGuide

+ getRouteWithMap(: GetRouteWithMapRequest) :
GetRouteWithMapResponse

+ startNavigation(: StartNavigationRequest) :
StartNavigationResponse

Business-Related

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position() Non-Agnostic

Agnostic

called data superiority [8]. According to Erl [3] and Cohen
[10], a service that fulfills the data superiority corresponds
to an entity service.

On the basis of service candidates, the business entities
managed by the contained operation candidates have to be
assumed and compared with the business entities managed
by operation candidates of other services. Optimally, there
should be no overlap.

	 1 	
	 ∩ \	

	 	

On the basis of service designs the metric can be formalized
as follows.

	 1 	

	 ∩

\	

	

TABLE V. VARIABLES AND FUNCTIONS USED FOR DS

Element Description

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLSC All existing service candidates

ALLS All existing services

MBE(oc) Managed Business Entities: business entities that are
managed by operation candidates oc

MBE(o) Managed Business Entities: business entities that are
managed by operations o

The metrics require that at least one business entity is
managed by the service candidate respectively service. The
metrics return values from 0 to 1. Based on the ordinal scale
the results can be interpreted as follows.

TABLE VI. INTERPRETATION OF VALUES FOR DS

Value Interpretation

Less than 1 No data superiority regarding the managed business
entities

1 Data superiority regarding the managed business entities

For the metrics a value of 1 is desired. The following

figure shows three service candidates that manage business
entities. Assumed that there exist no other service candidates,
for the service candidate Personal Management the value of
DS is 1 because it manages explicitly the business entity
Employee. For the service candidates Facility Management
and Room, the value of DS is 0, for both manage the same
business entities. In order to increase DS, the IT architect
should consider a merger of these service candidates.

Figure 9. Example for data superiority and common business entity usage

4) Common Business Entity Usage: Additionally, the
provided operations should use common business entities
[PR+07] for ensuring that, for instance, an entity service
focuses on one business entity only. This means that the
business entities that are used as input parameters within
operation candidates respectively operations should either
be identical or should be dependent. A business entity
depends from another business entity if it cannot exist for its
own. This concept is comparable to the composition within
UML [43].

On the basis of service candidates the common business
entity usage can be evaluated using the operation candidates
and their propably used business entities. First, all used
business entities of the operation candidates and the within
one operation candidate mostly often used business entities
are determined. From these two sets of business entities the
biggest set of common, i.e. depending business entities is
created. Afterwards, the operation candidates that use these
business entitites are identified and related to all operation
candidates.

	 	

	 ,
,

	

	|	 |

On service designs, the operations within the realized

interface instead of operation candidates are used.

	

	

,

,

	

	

	 	 	

The metrics require that there exists at least one operation

candidate respectively one operation. Within these metrics,
the following additional variables and functions are used.

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

Business Entity „Room“

Business Entity „Employee“

Business Entity „Room“

«Capability»
Room

+ Update Room()

TABLE VII. VARIABLES AND FUNCTIONS USED FOR CBEU

Element Description

CBEU Common Business Entity Usage

CMP(be1, be2) Composition: biggest set of business entities out of
be2 that depend on business entitites be1

UBE(oc) Used Business Entities: business entities that are
used within operation candidates oc as input

UBE(o) Used Business Entities: business entities that are
used within operations o as input

MOUBE(oc) Mostly Often Used Business Entities: business
entities that are mostly often used within one
operation candidate out of operation candidates oc

MOUBE(o) Mostly Often Used Business Entities: business
entities that are mostly often used within one
operation out of operations o

OCUBE(oc, be) Operation Candidates Using Business Entities:
operation candidates out of operation candidates oc
that only use business entities out of be

OUBE(o, be) Operations Using Business Entities: operations out
of operations o that only use business entities out of
be

The metrics return results from 0 to 1. The interpretation
is listed below based on the ordinal scale.

TABLE VIII. INTERPRETATION OF VALUES FOR CBEU

Value Interpretation

Less than 1 There exist operation candidates respectively operations
that use non-common business entitites

1 All operation candidates respectively operations use
common business entitites

For CBEU a value of 1 is desired because this value

represents the case that all operation candidates or operations
use common business entities. Applied on Figure 9, the
service candidate Facility Management contains one
operation candidate that uses the Room entity and one
operation candidate that uses the Person entity as input.
Since a room can exist without a person and vice versa, the
metric returns a value of 0.5. A merge of the service
candidate Room with the service candidate Facility
Management as already proposed to improve the data
superiority quality indicator would increase the value for
CBEU. An optimal value could be achieved if the two
contained operation candidates would be divided into two
different service candidates.

B. Discoverability

Since reusability of existing functionality is one major
aspect when establishing a service-oriented architecture,
services are required to be discoverable. The discoverability
is already positively influenced by a unique categorization.
However, there are other aspects, such as naming
conventions, which have to be considered. These aspects
constitute quality indicators that influence the
discoverability.

1) Functional Naming: The first quality indicator
focuses on the functional naming of the created artifacts.
According to Josuttis [7], in order to understand the
functionality a service provides, the description of a service
has to follow functional terms that have been determined for
the considered domain. This means that the elements of a
service, such as its interface, the roles, and the operations,
have to be named after functional terms as they are
determined within a domain model. Thus, the functional
naming of a service can be further broken down into a
functional naming of its externally visible artifacts, i.e. of
the service interface, the roles, the operations, the
parameters and the data types.

Since the service candidates are mainly meant to describe
the architecture, i.e. the services and their dependencies in an
abstract manner, the naming of artifacts constitutes a quality
indicator only of interest on the basis of service designs.
Thus, the following metrics for evaluating the functional
naming are only measurable on service designs. The metrics
determine the ratio of functionally named artifacts compared
to all artifacts. For evaluating the functional naming of the
service interface, the following metric can be formalized:

	 	
	 	
|	 |

The metrics for evaluating the functional naming of roles,

operations, parameters, and data types can be formalized
equivalently.

	 	
	 	

	 	

	 	
	

	 	

	 	
	

	 	

	 	

	

	 	

TABLE IX. VARIABLES AND FUNCTIONS USED FOR FNSI, FNR, FNO,
FNP, AND FNDT

Element Description

FNSI Functional Naming of Service Interface

FNR Functional Naming of Roles

FNO Functional Naming of Operations

FNP Functional Naming of Parameters

FNDT Functional Naming of Data Types

FN(me) Functional Naming: set of functionally named elements
out of the set of modelling elements me

P(o) Parameters: parameters of the operations o and in case of
messages the contained parameters

DT(p) Data Types: used data types (recursively continued) of
parameters p

R(si) Roles: roles of service interface si

Each of the metrics is only valid if there is at least one
role, one operation, one parameter, respectively one data
type specified within the considered service design.
Otherwise, the metric cannot be applied. As result, values
from 0 to 1 are returned. The interpretation based on the
ordinal scale is shown below.

TABLE X. INTERPRETATION OF VALUES FOR FNSI, FNR, FNO, FNP,
AND FNDT

Value Interpretation

Less than 1 There are elements that are not functionally named

1 All elements are functionally named

For the metrics FNSI, FNR, FNO, FNP, and FNDT, a

value of 1 is desired. For example, based on the domain
model as depicted in Figure 6, the FNO for the
CampusGuide in Figure 7 is 0.5, for the term navigation is
not part of the domain model. The IT architect has to decide
if the term is functional and was accidently not added to the
domain model. In this case the domain model should be
revised. Otherwise the name of the operation should be
changed. Thus, this metric does not only evaluate service
designs. It also helps IT architect to validate the prior created
domain model.

2) Naming Convention Compliance: The second quality
indicator for the discoverability addresses the compliance
with naming conventions. According to Maier et al. [13],
the compliance with naming conventions increases the
discoverability of a service. Typical naming conventions are
the usage of the english language, verbs possibly followed
by nouns for the names of operations, and upper case letters
at the beginning of the name of service interfaces and data
types. These naming conventions are necessary to create
consistently named artifacts.

Similarly to the functional naming, this quality indicator
is only of interest for service designs. The quality indicator
can be further broken down into a naming convention
compliance of the service interface, the roles, the operations,
the parameters, and the data types. The metrics are similarly
formalized to the metrics for the functional naming and
determine the ratio of artifacts named regarding naming
conventions to all artifacts. The metrics are only defined if
the particular artifacts, i.e. the service interface, the roles,
provided operations, used parameters, and data types are
specified. Otherwise the metrics cannot be applied on the
considered service design.

	 	
	 	
|	 |

	 	
	 	 	

	 	

	 	
	

	 	

	 	
	

	 	

	 	

	

	 	

TABLE XI. VARIABLES AND FUNCTIONS USED FOR NCCSI, NCCR,
NCCO, NCCP, AND NCCDT

Element Description

NCCSI Naming Convention Compliance of Service Interface

NCCR Naming Convention Compliance of Roles

NCCO Naming Convention Compliance of Operations

NCCP Naming Convention Compliance of Parameters

NCCDT Naming Convention Compliance of Data Types

NCC(me) Naming Convention Compliance: set of elements out of
the set of modelling elements me that follow specified
naming conventions

The metrics return values from 0 to 1, interpreted on the
basis of the ordinal scale.

TABLE XII. INTERPRETATION OF VALUES FOR NCCSI, NCCR, NCCO,
NCCP, AND NCCDT

Value Interpretation

Less than 1 There are elements that do not follow naming
conventions

1 All elements follow naming conventions

The following figure depicts an interface realized by a

service interface and the evaluation regarding naming
conventions. According to this figure and the available
information, the NCCSI is 0, NCCR is 0.5, NCCO is 0.5,
NCCP is 0.75, and NCCDT is 0. Thus, the IT architect
should revise the service designs and especially the names of
the artifacts in order to increase the discoverability of the
resulting service.

Figure 10. Example for naming convention compliance

3) Information Content: The service interface describes
a service from an external point of view for potential service
consumers. According to Erl [3], the extent of this
information influences the discoverability of a service.

Transferred to SoaML, a service interface should contain
as much information as possible. This means that the service
interface, the contained roles, the realized interface, the used
interface and the interaction protocol should be formalized.
As metric the extent of the information content can be
described as follows:

	 	
5

TABLE XIII. VARIABLES AND FUNCTIONS USED FOR IC

Element Description

IC Information Content

EX(e) Exists: returns 1 if the element e exists, else 0

IP(si) Interaction Protocol: interaction protocol of the service
interface si

UI(si) Used Interfaces: used interface provided by the service
consumer

As result, values from 0 to 1 are returned. The
interpretation based on the ordinal scale is shown in the
following table. For IC a value of 1 is desired for this value
represents the case that all possible information is available
within the service design.

TABLE XIV. INTERPRETATION OF VALUES FOR IC

Value Interpretation

Less than 1 Within the service design not all possible information is
available

1 All possible information is available

For example, the information content, thus the metric IC

for the service interface depicted in Figure 10 is 0.8. The
value of IC can be increased and maximized by adding the
interaction protocol to the service interface.

C. Loose Coupling

The loose coupling focuses on the reduction of
dependencies between services within a service-oriented
architecture and represents one of the most widespread
aspects. A loose coupling promotes the scalability, fault
tolerance, flexibility, and maintainability of the architecture
[6, 7, 8, 16, 20]. Once a service requires another service to
fulfill its functionality, a certain kind of coupling exists.
However, in order to decrease the coupling, the following
aspects can be considered that represent quality indicators for
a loose coupling.

1) Asynchronity: According to Josuttis [7] and Maier et
al. [11], long-running operations should be performed
asynchronously. This means that the service consumer is
being informed when the service provider has performed the
called operation. This decouples the service consumer from
the service provider during the execution of the operation.

In SoaML the communication mode is determined during
the specification phase, i.e. this quality indicator can be
evaluated on the basis of service designs. Within the
interaction protocol, the IT architect can decide whether to
provide an operation synchronously or asynchronously. For
this purpose the attribute “IsSychronous” of the
CallOperationActions within the Activity that represents the
interaction protocol can either be set true or false. Thus, to
determine this quality indicator the rate of long-running
operations that are also asynchronous has to be measured.

		 		
	 ∩ 	

	 	

TABLE XV. VARIABLES AND FUNCTIONS USED FOR ASYNC

Element Description

ASYNC Asynchronity

ASO(ip) Asynchronous Operations: asynchronous operations
within the interaction protocol ip

LRO(o) Long Running Operations: long-running operations out
of the set of operations o

The metric is only valid if there is at least one long-
running operation. The following table shows the
interpretation of the values based on the ordinal scale. The
metric returns values from 0 to 1.

«ServiceInterface»

Raum

«interface»

Room

+ create(: CreateRequest) : CreateResponseMessage
+ Update(: UpdateRequest) : UpdateResponse

Consumer :
«interface» RoomRequester

provider :
«interface» Room

«use»

«interface»

RoomRequester

«MessageType»

CreateRequest

«dataType»

ROOM

+ number : Integer
+ building : String
+ name : String

«MessageType»

UpdateResponse

+ success : Boolean

«MessageType»

UpdateRequest

«MessageType»

CreateResponseMessage

+ success : Boolean

Service Interfaces
are Named in
English

Names of
Operations Start
with Lower Case
Letter

No „Message“ at
the end of a
Message

Names of Roles
Start with Lower
Case Letter

Names of Data
Types Start with
Upper Case
Letter Followed
by Lower Case
Letters

TABLE XVI. INTERPRETATION OF VALUES FOR ASYNC

Value Interpretation

Less than 1 There are long-running operations that are not provided
asynchronously

1 All long-running operations are provided asynchronously

The following figure shows the interaction protocol for

the service interface depicted in Figure 10. Assumed that the
Update operation is a long-running operation, ASYNC
returns 0 as Update is not provided asynchronously.

Figure 11. Example for asynchronity

2) Common Data Types Complexity: The usage of
common data types across several services increases the
coupling between them. If a service provider aspires to
change the data types used by provided services, all other
services that require this service have to be adapted too.
Thus, Josuttis [7] advises to only use common data types if
they are simple data types, such as String or Integer.
Otherwise, the services should use own data types and the
infrastructure should handle the transformation.

For this purpose, in SoaML the service designs have to
be considered. The used parameters within the operations of
a certain service and the contained data types should not be
identical to the data types used by other services. A typical
way to avoid this issue is to create identical data types,
however within different UML packages for each created
service. The following metric measures the ratio of common
and simple data types to all used data types. For an optimal
value, either there is no common data type or all commonly
used data types are simple. The metric is only valid if the
required artifacts, such as operations and data types, exist
within the service design.

	 			

∩

	\	

	

TABLE XVII. VARIABLES AND FUNCTIONS USED FOR CDTC

Element Description

CDTC Common Data Types Complexity

SDT(p) Simple Data Types: simple data types within the
parameters pt

The metric CDTC returns values from 0 to 1. The
interpretation based on the ordinal scale is shown in the
following table.

TABLE XVIII. INTERPRETATION OF VALUES FOR CDTC

Value Interpretation

0 There are no common data types used

Between 0
and 1

There are common and complex data types used

1 The commonly used data types are simple

The optimal value is represented by 0 or 1. A value

between 0 and 1 should be avoided.
3) Abstraction: To decrease the coupling between

service consumer and service provider, a service consumer
should be able to use provided functionality without
knowledge about the internal behavior of the service
provider. This enables the invocation of functionality
without knowledge about the implementation and an easier
replacement of the implementation or the service provider.
According to Erl [3], Josuttis [7] and Maier et al. [11], the
operations should be designed in an abstract manner and
should hide internal details. Thus, the quality indicator can
be broken down into two quality indicators: First, the
operations provided by the service should be abstract, i.e.
the name and their purpose should be abstract. Additionally,
the used parameter should be abstract, i.e. implementation
details should not be exchanged when invoking an
operation.

Thus, in SoaML the first quality indicator focuses on the
operation of the interface that is realized by the service
interface. The abstract operations are related to all provided
operations. The second quality indicator regards the
parameters that are used within the operations. The metric
measures the ratio of abstract parameters to all parameters.

	 			
	 	

	

		 				
	

	

Interaction Protocol

: provider : consumer

create

Update

IsSynchronous = True

IsSynchronous = True

TABLE XIX. VARIABLES AND FUNCTIONS USED FOR AO AND AP

Element Description

AO Abstraction of Operations

AP Abstraction of Parameters

A(o) Abstract: set out of operations o that are abstract

A(p) Abstract: set out of parameters p that are abstract

For AO and AP values from 0 to 1 are returned that can
be interpreted on the basis of the ordinal scale as follows.

TABLE XX. INTERPRETATION OF VALUES FOR AO AND AP

Value Interpretation

Less than 0 There exist operations respectively parameters that are
not abstract

1 All operations respectively parameters are abstract

According to the table above, a value of 1 is desired for
both metrics because this represents that all operations
respectively parameters are abstract which promotes the
loose coupling. The following figure shows an interface that
is realized by a service interface. One of the provided
operations is not abstract, thus the value for AO is 0.5. The
value of AP is 0.4 for five parameters are specified and only
two of them are abstract.

Figure 12. Example for abstraction

4) Compensation: According to Josuttis [7] and Engels
et al. [8], in order to undo operations of a service that
perform state-changing functionality, appropriate
compensation operations should be provided. This enables
the application of this service within transaction contexts,
which requires an undo even if other services are the reason
for a failure.

This quality indicator can already be measured on the
basis of service candidates. For every operation candidate
that represents a state-changing operation, an appropriate
compensating operation candidate should exist. The metric
first determines operation candidates that are not mainly
compensating and change a state. Afterwards, out of this set
the operation candidates are identified for those a
compensating operation candidate exists. This set is related
to the set of all non-compensating and state-changing
operation candidates.

		 			
	 	 		

	

On the basis of service designs, instead of operation

candidates the operations within the realized interface are
considered.

	 			

	

	 	

TABLE XXI. VARIABLES AND FUNCTIONS USED FOR CF

Element Description

CF Compensating Functionality

NC(oc)
Non-Compensating: non-compensating operation
candidates out of the set of operation candidates oc

NC(o)
Non-Compensating: non-compensating operations out of
the set of operations o

SC(oc)
State Changing: operation candidates out of the set of
operation candidates oc that provide state-changing
functionality

SC(o)
State Changing: operations out of the set of operations o
that provide a state-changing functionality

CFP(oc)
Compensating Functionality Provided: operation
candidates out of the set of operation candidates oc a
compensating operation candidate exists for

CFP(o)
Compensating Functionality Provided: operations out of
the set of operations o a compensating operation exists
for

The metric CF returns values from 0 to 1. The
interpretation on the basis of the ordinal scale is shown
below.

TABLE XXII. INTERPRETATION OF VALUES FOR CF

Value Interpretation

Less than 0 There exist state-changing operation candidates
respectively operations without compensating operations
candidates respectively operations

1 For all operation candidates respectively operations that
provide state-changing functionality a compensating
operation candidate respectively operation exists

«ServiceInterface»

Employee

«interface»
Employee

+ getRoom(: GetRoomRequest) : GetRoomResponse
+ startProtocolOfESB(: StartProtocolOfESBRequest) :

StartProtocolOfESBResponse Not Abstract

Not Abstract

«MessageType»

GetRoomRequest

«dataType»

Employee

+ lastname : String
+ firstname : String
+ dbName : String

«MessageType»

StartProtocolOf
ESBResponse

+ success : Boolean

«MessageType»

GetRoomResponse

«dataType»

Room

+ number : Integer
+ building : String
+ name : String

«MessageType»

StartProtocolOf
ESBRequest

+ esbUsername : String
+ esbPassword: String

Not Abstract

For the service interface depicted in Figure 10 the value
of CF is 0.5 because for Update there exists a compensating
operation, the Update operation itself. However, for the
create operation there is no compensating operation. In order
to increase the value of CF and thus the loose coupling, a
delete operation should be added that enables the deletion of
a prior created room.

D. Autonomy

The autonomy of a service addresses its independence
from other services [3, 7]. For increasing the autonomy of a
service dependencies to other services have to be reduced.
For the autonomy the following quality indicators can be
identified.

1) Service Dependency: According to Erl [3], the direct
dependencies to other services should be decreased. If a
service depends from other services also its reliability,
performance and predictability is influenced by these
services.

In SoaML the direct dependencies can be evaluated on
the basis of the usage dependencies between service
candidates and the RequestPoints within service components.
Both represent the dependencies of a service to other
services in order to fulfill its functionality.

|	 |

	 	

TABLE XXIII. VARIABLES AND FUNCTIONS USED FOR SD

Element Description

SD Service Dependency

RS(sc) Required Services: service candidates the service
candidate sc depends on

SCT(s) Service Component: service component of the service s

RS(sct) Required Services: services the service component sct
depends on

SD returns values from 0 to unlimited. The interpretation
is based on the absolute scale.

TABLE XXIV. INTERPRETATION OF VALUES FOR SD

Value Interpretation

0 the service candidate or the functionality fulfilling
service component depends on no other service candidate
respectively service

n (n > 0) the service candidate or service component requires n
other services to fulfill its functionality

For a maximal autonomy the value of SD should be 0.

However, especially in the context of service-oriented
architectures the reuse of existing functionality should be
considered, which decreases the autonomy. Additionally, for
improving other quality attributes, such as the unique
categorization, the autonomy often has to be reduced too.

The following figure shows a service component that
provides the service CampusGuide. Due to the five
RequestPoints, the metric SD for CampusGuide returns 5.0.

Figure 13. Example for service dependency

2) Functionality Overlap: According to Erl [3], a clear
specification of the functional boundary of a service
increases its autonomy. This means that the functionality of
a service should not overlap with functionality of other
services. Background of this requirement is that an overlap
often results in dependencies between these services. In
order to use functionality of a certain service, due to the
overlap, also the functionality of the other services is
necessary. Thus, the service with overlapping functionality
can only be used together with other services. For avoiding
functionality overlaps, services should be normalized [4].

The functionality overlap can be determined both on
service candidates and service designs. For evaluating a
service candidate its operation candidates have to be
compared with the operation candidates of other service
candidates. Afterwards, the set of operation candidates that
provide redundant functionality are related to all provided
operation candidates.

«Participant»
Campus
Guide

Component«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination:
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map:
Map

+

: campus
Guide

: employee

getRoom

getRouteWithMap

: room

get
Coordinates

: position
Determination

determine
Position

: route
Determination

determine
Route

: map

Determine
Map Excerpt

get
Map

Merge Map
and Route

	 , \	 	 	

|	 	|

On the basis of service designs, the functionality overlap

is determined by means of the operations within the realized
interface.

	 , 	 	\	 	

	 	

TABLE XXV. VARIABLES AND FUNCTIONS USED FOR FO

Element Description

FO Functionality Overlap

RF(oc1,
oc2)

Redundant Functionality: operation candidates out of the
set of operation candidates oc1 with redundant
functionality to the operation candidates oc2

RF(o1, o2) Redundant Functionality: operations out of the set of
operations o1 with redundant functionality to the
operations o2

The metrics return values from 0 to 1. The following

table shows the interpretation of the values based on the
ordinal scale.

TABLE XXVI. INTERPRETATION OF VALUES FOR FO

Value Interpretation

0 The operation candidates respectively operations of the
considered service candidate or service do not provide
functionality that overlaps with functionality of other
service candidates or services

Between 0
and 1

The operation candidates respectively operations of the
considered service candidate or service provide
functionality that overlaps with functionality of other
service candidates or services

1 The operation candidates respectively operations of the
considered service candidate or service provide only
functionality that overlaps with functionality of other
service candidates or services

Based on the service candidates depicted in Figure 9, the

following figure shows a service candidate with functionality
overlap. The metric returns 0.5, for half of the provided
operation candidates overlap with functionality provided by
the Facility Management service candidate.

Figure 14. Example for functionality overlap

IV. CONCLUSION AND OUTLOOK

In this article we presented metrics for evaluating service
designs based on SoaML. The approach uses the textual
descriptions for quality attributes as introduced in existing
work and analyses these quality attributes with regard to

quality indicators, which are measureable on service
candidates as preliminary services and fully specified service
designs. The concept of a service design was derived from
existing development processes. For each of the quality
indicators formalizations were given that reuse the concepts
of service candidates and service designs and their
specification in SoaML. This enables the application of the
formalization and thus the determination of the quality
indicators on modeled service designs without additional
interpretation effort.

The identification of quality indicators and their
formalizations help IT architects to comprehensibly evaluate
service designs with regard to common and widespread
quality attributes. In this article the quality attributes of a
unique categorization, loose coupling, discoverability, and
autonomy were considered. Other quality attributes and
potential quality indicators were informally introduced in [1].
The usage of SoaML as language to model service
candidates and service designs enables the integration of the
metrics into existing development tools. SoaML represents
an emerging standard for modeling service-oriented
architectures. Its availability as XMI [45] enables the usage
in any UML-capable development tool.

To illustrate the metrics, service candidates and service
designs of a service-oriented campus guide system as it is
developed at the Karlsruhe Institute of Technology (KIT),
called KITCampusGuide, have been introduced. Well-
chosen excerpts of service candidates and service designs for
this scenario were used to apply the metrics and thus to show
their validity. The metrics were applied in practice to design
services for the KITCampusGuide with a unique
categorization, loose coupling, discoverability, and
autonomy. Currently, the metrics also applied for the domain
campus management in order to create a catalog of services
for universities and their administrative processes according
to the Bologna Process [36] with same quality attributes. In
this context especially the compliance with naming
conventions and the usage of a common domain model for a
functional naming are of interest. Additionally, the metrics
are applied at the Personalized Environmental Service
Configuration and Delivery Orchestration (PESCaDO)
project [40, 41], a project co-funded by the European
Commission. Also in this case, service designs are supposed
to be created that verifiably fulfill the four introduced quality
attributes.

Additionally to the identification and formalization of
metrics, we work on integrating the metrics into
development tools in order to further support the IT architect
during the design phase. A more detailed formalization based
on the Object Constraint Language (OCL) [44], as already
demonstrated in [1], enables the embedding of well-chosen
metrics into UML tools and thus an automatic evaluation of
service designs. For this purpose, additional semantic
information may be necessary. Hence, we are also working
on a determination and formalization of this additional
information. Furthermore, we work on an integration of the
metrics into existing development processes. The metrics are
supposed to support the IT architect in creating service
designs with certain quality attributes by identifying service

«Capability»
Student Administration

+ Request Campus Map()
+ Determine Person‘s Current Position() Functionality Overlap

designs flaws [2]. If service design flaws could be
determined, appropriate action alternatives that may result in
improved service designs are provided to the IT architect.
These action alternatives help the IT architect to revise the
service designs with regard to certain quality attributes.

REFERENCES
[1] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,

“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[2] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[3] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[4] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[5] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[6] R. Reussner, W. Hasselbring, Handbuch der Software-Architektur,
dpunkt.verlag, 2006. ISBN 978-3898643726.

[7] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[8] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[9] B. Humm, O. Juwig, “Eine normalform für services”, GI Informatik
2006, Dresden, Germany, October 2006, pp. 99-110.

[10] S. Cohen, “Ontology and taxonomy of services in a service-oriented
architecture”, Microsoft Architecture Journal, 2007.

[11] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Lose kopplung – warum das loslassen verbindet“, SOA-Spezial,
Software & Support Verlag, 2009.

[12] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Die soa-service-kategorienmatrix“, SOA-Spezial, Software &
Support Verlag, 2009.

[13] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, T. Winterberg,
„Was macht einen guten public service aus?“, SOA-Spezial, Software
& Support Verlag, 2009.

[14] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Cohesion metrics for predicting maintainability of service-oriented
software”, Seventh International Conference on Quality Software
(QSIC 2007), 2007.

[16] M. Perepletchikov, C. Ryan, K. Frampton, Z. Tari, “Coupling metrics
for predicting maintainability in service-Oriented design”, Australian
Software Engineering Conference (ASWEC 2007), 2007.

[17] D. Rud, S. Mencke, A. Schmietendorf, R. R. Dumke,
„Granularitätsmetriken für serviceorientierte architekturen, MetriKon,
2007.

[18] M. Hirzalla, J. Cleland-Huang, A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[19] S. W. Choi, S.D. Kimi, “A quality model for evaluating reusability of
services in soa”, 10th IEEE Conference on E-Commerce Technology
and the Fifth Conference on Enterprise Computing, E-Commerce and
E-Services, 2008.

[20] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[21] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: January 04, 2011]

[22] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[23] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: January 04, 2011]

[24] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[25] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[26] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[27] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[28] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[29] B. Boehm, Characteristics of Software Quality, Elsevier Science Ltd,
1978. ISBN 978-0444851055.

[30] J. McCall, P. Richards, and G. Walters, “Factors in software quality –
volume 1”, 1977.

[31] ISO/IEC, “ISO/IEC 9126-1:2001 software engineering: product
quality – quality model”, 2001.

[32] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software-
engineering measurement”, IEEE Transactions on Software
Engineering, Vol. 22, No. 1, 1996.

[33] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: January 04, 2011]

[34] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[35] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[36] European Commission, “The bologna process - towards the european
higher education area”, http://ec.europa.eu/education/higher-
education/doc1290_en.htm, 2010. [accessed: January 04, 2011]

[37] M. Gebhart, J. Moßgraber, T. Usländer, and S. Abeck, „SoaML-
basierter entwurf eines dienstorientierten beobachtungssystems“, GI
Informatik 2010, Leipzig, Germany, October 2010, pp. 360-367.

[38] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[39] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system”, 2009.

[40] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[41] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[42] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[43] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[44] OMG, “Object constraint language (OCL)”, Version 2.2, 2010.
[45] OMG, “XML metadata interchange (XMI) specification”, Version

2.0, 2003.

