
Supporting Service Design Decisions

Michael Gebhart, Marc Baumgartner, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | baumgartner | abeck} @kit.edu

Abstract— In the context of service-oriented architectures,
services are expected to fulfill certain service characteristics,
such as loose coupling or high autonomy. When designing new
services, several decisions have to be made, such as how to
group capabilities into services, that influence these
characteristics. Existing development processes focus on the
description of necessary steps to create services and do not
explicitly describe detailed design decisions and their impact
on the service characteristics. In this paper, an approach is
introduced to determine this impact in order to support the
design decisions. The approach is applied to design services of
a service-oriented surveillance system with comprehensible
service characteristics.

Keywords-service design; design decision; support; soaml

I. INTRODUCTION
Services within service-oriented architectures are

expected to fulfill certain service characteristics, such as
loose coupling or high autonomy. These characteristics are a
prerequisite that the goals that are associated with the shift to
a service-oriented architecture, such as increased flexibility
of the information technology (IT) and better alignment with
the business [1, 2, 19], can be attained.

The development of new services requires their design,
which includes their identification and specification. The
identification phase focuses on the determination of required
services and their capabilities. During this phase, these
services are called service candidates and the capabilities are
called capability candidates [1, 2, 3, 6]. The subsequent
specification phase refines the prior service candidates and
results in one final service design for each service. A service
design constitutes the basis for the implementation phase and
represents the essential information of a service: It describes
the provided service interface, the service component that
realizes the service logic, and potentially required services in
form of required service interfaces [1, 13, 20]. The
formalization of this information results in a service design
model. When designing services, i.e. when identifying and
specifying them, several design decisions have to be made,
such as how to group capability candidates into service
candidates or how to name a service. Each of these design
decisions influences the services and thus their
characteristics. Hence, it is necessary to make each of these
decisions with care and keep their impact on the service
characteristics in mind.

However, existing development processes in the context
of service-oriented architectures, as introduced by Erl [1],
Engels et al. [2], the Rational Unified Process [14] for
Service-Oriented Modeling Architecture (RUP SOMA) [3, 4,
5], and the Service Oriented Architecture Framework
(SOAF) [6], only describe the steps that are necessary to
create services at a high level of abstraction, such as the
identification of capability candidates. More detailed design
decisions that have to be made when performing these steps
are not explicitly emphasized. Work, as introduced by Erl [1,
7], Engels et al. [2], Reussner et al. [8], Josuttis [9], Maier et
al. [10, 11, 12], and SoaML [13], focuses on service
characteristics a service should follow. However, the authors
of this work do not address which design decisions within
the development process impact these characteristics. Thus,
the impact of each decision when designing services on the
service characteristics has to be presumed. Additionally, if a
specific service characteristic is supposed to be fulfilled best,
it is unknown, which steps have to be performed with special
diligence.

In this paper, we introduce an approach to determine the
impact of design decisions on the characteristics of services
in order to support making them. For this purpose, design
decisions, as they appear in existing development processes,
are associated with service attributes that are affected if a
decision is made. A service attribute represents a service
characteristic without its concrete value, such as coupling or
autonomy and a decision influences the correlating service
characteristic, i.e. whether the coupling is loose or tight. The
association between design decisions and service attributes
helps to raise awareness of the impact of design decisions
and to keep their impact in mind when making a decision.
Also if a service has to be designed with a specific
characteristic, the design decisions that affect the correlating
attribute and thus have to be performed with special
diligence can be identified.

To illustrate our approach, services of a service-oriented
surveillance system are designed bearing the surveillance
system N.E.S.T. of the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [21, 22] in
mind. The services are designed with respect to loose
coupling, high autonomy, unique classification, and high
discoverability as desired service characteristics. The design
is performed according to existing development processes.
Preliminary service candidates and final service designs are
created with the Service-oriented architecture Modeling

Language (SoaML) [13], because it is a standardized UML
profile [23] and metamodel for describing and formalizing
service-oriented architectures. Though SoaML is a very new
UML profile and metamodel and still under development, it
is becoming increasingly accepted and employed.

The paper is organized as follows: Section 2 presents the
related work in the context of development processes,
service characteristics, and formalization of service designs.
In Section 3, the entire approach is introduced and
exemplarily applied to design services of the service-oriented
surveillance system. Section 4 concludes the paper and offers
suggestions for future research.

II. RELATED WORK
Erl [1], Engels et al. [2], the Rational Unified Process

[14] for Service Oriented Modeling and Architecture (RUP
SOMA) [3, 4, 5], and the Service Oriented Architecture
Framework (SOAF) [6] introduce development processes for
the development of services in the context of service-
oriented architectures. The processes have the general
abstract phases in common: They start with an analysis of the
requirements, followed by the design consisting of an
identification of the required services in form of service
candidates and the subsequent specification of concrete
services resulting in a service design for each service [1, 7].
A service design includes a description of the provided
service interface, the component realizing the internal service
logic, and the required services. According to Service
Component Architecture (SCA) [20], the realizing
component is defined as service component. A service
design is formalized as service design model. However, a
common language to formalize a service design is not
applied within the development processes. After the design
phase, the services are realized, i.e. implemented, tested, and
deployed. The processes describe the required tasks that have
to be performed during the identification and specification
phase, such as analysis of existing assets or identify service
candidates. However, concrete design decisions that have to
be made or different action alternatives that can be chosen
are not provided. Also the impact of the tasks on the
characteristics of the resulting services is missing. In [7], Erl
describes service principles that have to be considered during
the identification and specification. However, how to create
services with certain characteristics is not explained. We use
the processes as a guideline for building services and see the
phases and tasks as valid and useful. Based on these
processes, we identify detailed design decisions that have to
be made and associate them with service attributes in order
to support the design decisions with respect to the resulting
service characteristics. Additionally, we agree with the
notion of a service design and use it as artifact to associate
design decisions with service attributes.

Erl [1, 7], Engels et al. [2], Reussner et al. [8], Josuttis
[9], Maier et al. [10, 11, 12], and SoaML [13] introduce
service characteristics that a service should follow, such as
loose coupling or high discoverability. However, this work
focuses on a textual description of these characteristics and
does not address how to design services in order to fulfill
them. In [1], Erl associates the characteristics with the

abstract identification and specification phases. However, the
service characteristics are not assigned to detailed design
decisions. Thus, design decisions that have to be performed
with special diligence during the abstract phases in order to
create a service design with certain characteristics are
unknown. We see these characteristics as valid and reuse
their descriptions in order to derive design attributes that can
be used to associate design decisions with service attributes.

The Service-oriented architecture Modeling Language
(SoaML) [13] is a standardized UML profile [23] and
metamodel from the OMG for describing and formalizing
service-oriented architectures. Various modeling elements
enable the description of entire service-oriented architectures
and single services in detail. There exist elements within
SoaML that correlates with service candidates and final
service designs. The element ServiceInterface represents a
service interface. It realizes a technical interface that
describes the provided operations and can use a technical
interface that describes the operations the service consumer
has to provide to receive callbacks. Additionally, a
ServiceInterface can include an OwnedBehavior as
interaction protocol that describes interactions between the
service consumer and provider for a valid result. The service
component is represented as Participant. A Participant
provides services as ServicePoints that are typed by the
provided ServiceInterface. Required services are added as
RequestPoints, each typed by the required ServiceInterface.
A Participant can also include an OwnedBehavior that
describes the internal logic. Even though SoaML is currently
only available as preliminary beta version, due to its
compliance to the understanding of service candidates and
service designs and its increasing acceptance and
employment, we chose SoaML as formalization for service
candidates and service designs. Additionally, we use this
formalization to associate design decisions with service
attributes in order to support design decisions.

III. SUPPORTING SERVICE DESIGN DECISIONS
The approach to support design decisions is based on the

association of design decisions that have to be made with
service attributes. A service attribute represents a service
characteristic without its value, such as coupling or
autonomy. On the one hand, every design decision
influences the resulting service design, i.e. elements are
added or change. On the other hand, the characteristics of a
service are influenced by the service design, i.e. its elements.
Thus, a decision impacts a service characteristic and can be
associated with a service attribute. To establish this
association, the elements of service designs are used as
connecting elements. Since a service attribute refers to a
service as a whole, first, each service attribute has to be
broken down into design attributes that refer to certain
elements of a service design. Afterwards, design decisions
that have to be made can be analyzed associated with these
design attributes using the elements affected within a service
design. The approach is illustrated in Figure 1 including one
example in the context of high discoverability as service
characteristic.

A. Evaluable Design Attributes

To derive evaluable design attributes that refer to
elements of a service design instead to the service as a
whole, the textual descriptions of common and widespread
service characteristics are analyzed and the evaluable criteria
to fulfill these characteristics are identified. To exemplify the
approach, the service characteristics loose coupling, high
autonomy, unambiguous classification, and high
discoverability are chosen. For each of them one design
attribute with their preferred characteristic in SoaML and
thus the affected elements in SoaML are determined. It is
only necessary to identify the affected elements specific for
the considered design attributes. The derivation itself is not
the focus of the paper and therefore not further explained.

According to SoaML [13], a criterion for loose coupling
is that the operations mostly use message style parameters
instead of Remote Procedure Call (RPC) style. We define
this criterion as design attribute “Parameter Style”. It refers
to the parameter types of the operations within the provided
technical interface of a ServiceInterface.

In [1, 7], Erl describes that high autonomy requires the
provided capabilities of a service to be not redundant to
capabilities provided by other services. This criterion is
defined as design attribute “Capability Redundancy”. In
SoaML, it refers to operations within Capability elements,
that represent service capability candidates.

According to Erl [1, 7], Engels et al. [2], Reussner et al.
[8], and Maier et al. [10, 11, 12], a service should be
unambiguously classifiable. This includes that all capabilities
of a service candidate should either be only responsible for
managing the data of business entities that equals entity
services in Erl [1, 7], or keep business logic that does not
include the management of business entities that equals task
services. These different kinds of logic should never be
mixed. We define this criterion as design attribute “Entity /
Task Classification”. It refers to the operations within
Capability elements.

Finally, according to Erl [7], a service is more
discoverable, if the service itself, its provided operations, and
the included parameters and parameter types follow
conventions, such as naming conventions. We define this
criterion as design attribute “Convention Compliance”. It
refers to the name attribute of a ServiceInterface in SoaML
and the name attributes of operations, parameters, and
parameter types within its provided technical interface.

B. Design Decisions during Service Identification
In the following, services of a service-oriented

surveillance system are designed according to Engels et al.
[2] combined with approaches, as introduced in Erl [1], RUP
SOMA [3, 4, 5], and SOAF [6]. This example is used to
identify a set of design decisions that have to be made. Each
decision is associated with affected elements of a service
design and subsequently associated with design attribute,
thus service attribute. This enables the support of the design
decision and thus a systematically design of the services.

The development process starts with the analysis of the
business that is supposed to be supported. The scenario starts
with a visitor entering a building. The visitor registers at the
reception, and the reception takes a photo and asks the
personnel administration to check the visitor’s identity.
Afterwards, it requests the role of the visitor at the personnel
administration. Depending on the role, the allowed and
forbidden areas are determined and returned to the visitor in
form of a map. In a next step, the reception requests the
security department to surveil the visitor in order to ensure
that the visitor only accesses allowed areas. For this purpose,
the security department again requests the role at the
personnel administration and determines allowed and
forbidden areas. Afterwards, it requests the current position
of the person at the facility management based on the photo
taken at the reception. The Facility management observes all
persons within a building using cameras. In a next step, the
current position is compared with the areas. If it is within a
forbidden area, the alarm is set off. Otherwise, the
surveillance is continued. When the visitor de-registers at the
reception, the reception stops the surveillance.

According to this scenario description, the business
services as displayed in Figure 2 can be determined. They
are modeled as use cases with the performing roles as actors
as introduced in Engels et al. [2]. For each business service a
realizing business process exists that can also be created
considering existing systems if desired [17]. Figure 3 shows
the relevant business processes using BPMN [24].

Afterwards, the services have to be identified, i.e. service
candidates as preliminary services equipped with capability
candidates are created. All tasks and pools except the task
“Take Photo” and the visitor pool are expected to be IT-
supported. Since the services are expected to reflect the
business, each business service that is fully or partially IT-
supported is transformed into a service candidate that
realizes the business service. Additionally, each activity that
is invoked across pools using message flows is added as
capability candidate.

Receive Visitor Surveil Person

Manage
Personal Data

<<include>>

<<include>>

Reception

Personnel
Administration

Security Department

Observe Person

<<include>>

Facility Management

<<include>>

Figure 2. Business services and performing roles

Service Attributes
(Discoverability)

Design Attributes
(Naming Conventions)

Service Characteristics
(High Discoverability)

Service Design Elements
(Name Attribute of ServiceInterface)

Service Design Decisions
(How to name the service?)

Influences

Impacts Correlates to

Broken down

Refers to
Figure 1. Approach to support service design decisions

In SoaML a service candidate is represented as a

Capability element with operations representing the
capabilities. The derived services are displayed in Figure 4.

Now, the IT architect decides to revise these service

candidates. Here, the first design decisions have to be made
or revised.

How to group the capability candidates into service
candidates?

Since this design decision influences the operations of
Capability elements in SoaML, the design attributes
“Capability Redundancy”, and “Entity / Task Classification”
are affected by this decision. Thus, the IT architect is made
aware of the impact of this decision. He knows that this
decision influences the classification and coupling of the
services. In this case, the design decision can even be refined
in more detailed design decisions. For these design decisions
a decision tree can be specified that shows the different
action alternatives.

Should a specific capability candidate be moved into another
specific service candidate?

The following action alternatives can be identified: No
move, a move into a new service candidate, or a move into

an existing service candidate. For the latter case, each service
candidate can be seen as action alternative. It is important to
notice that each action alternative that is identified has to
result in a valid state, i.e. in a set of service candidates that is
valid and functional correct. For example, a decision
“remove capability candidate?” may result in a state with
incomplete functionality. The decision tree for the
exemplarily decision, whether to move the capability
candidate “Get Role” is illustrated in Figure 5.

To make this decision, the different action alternatives

can be evaluated. The impact of the alternatives on each
service candidate is displayed in the following table. For
each design attribute, it is displayed whether it improves,
gets worse or does not change.

TABLE I. IMPACT ON DESIGN ATTRIBUTES

Service Candidate Capability
Redundancy

Task / Entity
Classification

Move into new service candidate

Surveil Person

Observe Person

Manage Personal Data

Move into Surveil Person

Surveil Person

Observe Person

Manage Personal Data

Move into Observe Person

Surveil Person

Observe Person

Manage Personal Data

According to these results, the IT architect decides for the

alternative to move the capability candidate “Get Role” into
a new service candidate. This move improves the
classification, because now, the service candidate “Manage
Personal Data” is split into two services: One that provides
complex tasks, such as the check of identity (task service),
and one that provides data access (entity service). This
decision was comprehensibly made by the association of
design decisions with service attributes. The added service
candidate is named “Manage Personal Data 2”. The naming
of service candidates is not important at the identification
phase. Similarly, another design decisions during the
identification phase can be identified and made using the
same approach:

Personnel Administration

R
ec

ep
tio

n

Visitor

S
ec

ur
ity

 D
ep

ar
tm

en
t

Register

Check
Identity

Take
Photo

Surveil
Visitor

Stop
Surveillance

Surveil
Person

Assign
Areas

Get
Current
Position

Compare
Position

with Areas

Within Allowed Area?

yes

Alarm
no

Facility Management

Stop Surveillance

Get
Role

Assign
Areas

Return Areas De-Register

Get
Role

Figure 3. Business processes

Surveil Person

Manage
Personal Data

<<include>>

Observe Person

<<include>>

<<Capability>>
Manage Personal Data
+ Check Identity()
+ Get Role()

<<Capability>>
Manage Personal Data
+ Check Identity()
+ Get Role()

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<Capability>>
Observe Person

+ Get Current Position()

<<Capability>>
Observe Person

+ Get Current Position()

<<use>> <<use>>

<<MotivationRealization>>

<<MotivationRealization>>

<<MotivationRealization>>

Figure 4. Derived service candidates

Move
Capability?

No Move

Into New
Service Candidate

Into Existing
Service Candidate

Surveil Person

Observe Person
Figure 5. Decision tree

Should a specific IT-Supported activity be added as
capability candidate into a specific service candidate?

For example, in this case, the activity “Assign Areas” could
be provided as own capability candidate as proposed in [15].
Then, this functionality could be shared across several
service consumers and only needs to be implemented once.
However, this would also result in a new service that has to
be provided on an organizational level. This results in the
following conclusion: Since each change concerning the
service candidates and its capability candidates influences
the services that have to be provided and maintained by the
business, decisions that are made during the service
identification phase directly influence the business, i.e. the
provided services, its roles or responsibilities. Thus, each
decision has to be made after consultation with the business
analyst. The revised service candidates are illustrated in the
Figure 6.

Further design decisions during the identification phase can
be supported in a similar way and are therefore not
considered.

C. Design Decisions during Service Specification
In a next step, the identified service candidates are

specified. This includes the specification of the provided
service interface and – if the service has to be implemented
and is not reused by existing applications or service
providers – the service component and required services are
specified. Also during the specification phase, several design
decisions have to be made that can be supported by the
association with service attributes. We exemplify a subset of
design decisions by specifying the service candidate “Surveil
Person”. In a first step, a ServiceInterface is created that
exposes the service candidate and realizes an interface
containing the capability candidates as operations. The first
design decision is:

How to name the service?

In this case, the name attribute of a ServiceInterface is
affected. Also the design attribute “Convention Compliance”
refers to the name attribute of a ServiceInterface. With this
association, the IT architect is made aware that this decision
influences the discoverability of the service and that this task
has to be performed with special diligence if he targets a
high discoverability. Hence, the IT architect decides to name
the service as noun without spaces, “PersonSurveillance”. In

a next step, the provided operations that were derived from
capability candidates are revised:

How to name the operations?

Similarly to the decision before, this decision influences the
name attribute of an operation and thus can be associated
with the design attribute “Convention Compliance”. The IT
architect decides to rename the operations to “surveilPerson”
and “stopSurveillance” in order to increase the
discoverability of the service. The next decision is:

How to design the parameter types of the operations?

Also this decision influences the name attribute of parameter
types and thus the design attribute “Convention
Compliance”. Additionally, the choose between message
style and RPC style influences the design attribute
“Parameter Style”. With the association to design attributes,
the IT architect is made aware that this decision influences
the discoverability and coupling of a service. The IT
architect names the parameter types compliant to a particular
scheme and uses message styles in order to create services
with looser coupling.

Further design decisions during the specification phase
can be supported in a similar way and are therefore not
considered. Figure 7 shows the resulting service interface.

<<ServiceInterface>>
PersonSurveillance

<<interface>>
PersonSurveillance

+ surveilPerson(: SurveilPersonRequest) : SurveilPersonResponse
+ stopSurveillance(: StopSurveillanceRequest) : StopSurveillanceResponse

<<interface>>
SurveillanceCalling

<<Expose>>
consumer :

<<interface>> SurveillanceCalling

provider :
<<interface>> PersonSurveillance

+
Interaction Protocol

: provider : consumer

surveilPerson

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<use>>

stopSurveillance

<<MessageType>>
SurveilPersonRequest

+ <<Attachment>> photo : Picture

<<MessageType>>
SurveilPersonResponse

+ <<id>> surveillanceId : String

<<MessageType>>
StopSurveillanceRequest

+ <<id>> surveillanceId : String

<<MessageType>>
SurveilPersonRequest

+ <<Attachment>> photo : Picture

<<MessageType>>
SurveilPersonResponse

+ <<id>> surveillanceId : String

<<MessageType>>
StopSurveillanceRequest

+ <<id>> surveillanceId : String

<<dataType>>
Person

+ surname : String
+ forename : String

<<dataType>>
Person

+ surname : String
+ forename : String

<<MessageType>>
StopSurveillanceResponse
+ success : Boolean

Figure 7. Resulting service interface and parameter types

 <<Capability>>
Manage Personal Data
+ Check Identity()

<<Capability>>
Manage Personal Data
+ Check Identity()

<<Capability>>
Observe Person

+ Get Current Position()

<<Capability>>
Observe Person

+ Get Current Position()

<<use>>
<<Capability>>

Manage Personal Data 2
+ Get Role()

<<Capability>>
Manage Personal Data 2
+ Get Role()

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<Capability>>
Surveil Person

+ Surveil Person()
+ Stop Surveillance()

<<Capability>>
Assign Areas

+ Assign Areas()

<<Capability>>
Assign Areas

+ Assign Areas()

<<use>> <<use>>

Figure 6. Revised service candidates

IV. CONCLUSION AND OUTLOOK
In this paper, we presented an approach to support design

decisions that have to be made when creating a service
design. The approach is based on the association of design
decisions with service attributes over the service design
model. Since each design decision influences elements
within a service design model, the impact on service
characteristics can be determined. For this purpose, a
exemplarily set of service attributes was broken down into
design attributes that refer to elements within a service
design model. Afterwards, a subset of the design decisions
that have to be made during the creation of a service design
were identified. To model the service designs and to create
the association between design decisions and design
attributes, thus service attributes, SoaML from the OMG was
chosen, because SoaML represents an emerging standard for
modeling service-oriented architectures. Due to the usage of
SoaML as UML profile, our approach can be embedded in
existing and UML-capable development tools, because
SoaML is available as XMI [25].

The association of design decisions with design
attributes, thus service attributes helps IT architects to design
services more systematically. For each decision that has to be
made, now the IT architect knows which service attributes
are affected. On the one hand this raises awareness of the
influence a design decision takes on the final characteristic
of a service. So, the IT architect will make a design decision
with care. On the other hand, if two contrarily service
attributes are affected, the IT architect can directly decide
which attribute should be preferably optimized. Finally,
when a service should be created with certain characteristics,
the design decisions that have to be made with special
diligence are known.

To illustrate our approach, services of a service-oriented
surveillance system were designed. A subset of design
decisions that had to be made was associated with design
attributes, thus service attributes. This enabled us to design
the services systematically. Before a design decision was
made, the impact of this decision could be determined and
the awareness of the impact of this decision was raised.
Afterwards, the decision was made with respect to the
affected service attribute. Thus, each design decision was
comprehensibly made.

In our future work we plan to embed our approach into
existing development tools in order to further utilize the
support of service design decisions. Affected design
attributes should be automatically determined and the impact
of design decisions should be visualized for the IT architect.
The design decisions identified in this paper and their
association to design attributes will be used to list action
alternatives that may improve the service design. Our goal is
to support the entire design process of services based on
common and widespread service characteristics. The entire
approach will be applied to design services in the context of
campus management and for a currently developed human-
centered environmental observation system.

REFERENCES
[1] T. Erl, Service-Oriented Architecture – Concepts, Technology, and

Design, Pearson Education, 2006. ISBN 0-13-185858-0.
[2] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,

M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[3] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: May 10, 2010]

[4] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building SOA Solutions Using the Rational
SDP”, IBM Redbook, 2007.

[5] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: May 10, 2010]

[6] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An Architectural
Framework for Service Definition and Realization”, 2006.

[7] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[8] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[9] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[10] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Lose kopplung – warum das loslassen verbindet“, SOA-
Spezial, Software & Support Verlag, 2009.

[11] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[12] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[13] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version Beta 1, 2009.

[14] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[15] M. Gebhart and S. Abeck, “Rule-based service modeling”, 2009.
[16] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,

“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[17] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[18] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[19] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[20] Open SOA (OSOA), “Service component architecture (SCA), sca
assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: May 10, 2010]

[21] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[22] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system”, 2009.

[23] OMG, “Unified modeling language, superstructure”, Version 2.2,
2009.

[24] OMG, “Business Process Model and Notation (BPMN)”, Version 2.0
Beta 1, 2009.

[25] OMG, “XML metadata interchange (XMI) specification”, Version
2.0, 2003.

