

 Karlsruhe Reports in Informatics 2014,1
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

ModelJoin

A Textual Domain-Specific Language

 for the Combination of Heterogeneous Models

Erik Burger, Jörg Henß, Steffen Kruse, Martin Küster,

Andreas Rentschler, Lucia Happe

 2014

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

ModelJoin
A Textual Domain-Specific Language

for the Combination of Heterogeneous Models

Erik Burger, Jörg Henß, Ste�en Kruse, Martin Küster,

Andreas Rentschler, Lucia Happe

January 21, 2014

Karlsruher Institut für Technologie

Fakultät für Informatik

Bibliothek

Postfach 6980

76128 Karlsruhe

Contents

1 Introduction 5
1.1 Motivation . 5

1.2 ModelJoin Resources . 6

1.3 Structure of this document . 6

2 Example 7

3 The ModelJoin DSL 10
3.1 Concept . 10

3.2 Abstract Syntax . 12

3.2.1 Join . 12

3.2.2 Keep Statements . 14

3.2.3 Renaming . 18

4 Technical Realisation 19
4.1 Concrete Syntax . 19

4.2 Work�ow . 22

4.3 Generation of the target metamodel . 22

4.3.1 Construction of the target metamodel 23

4.3.2 Annotations in the target metamodel 23

4.4 Transformation Generation (QVT-O) . 24

4.4.1 Overview . 24

4.4.2 Generation of Code for the ModelJoin Operators 27

5 Related Work 28

6 Limitations and Future Work 30
6.1 Limitations of the language . 30

6.1.1 Nesting of Joins . 30

6.1.2 Joining over References . 30

6.2 Editability . 31

6.3 Re-Use of Target Metamodels . 31

List of Figures

2.1 Metamodel of the Eclipse Library . 7

2.2 Metamodel of the Movie Database . 8

2.3 Joined metamodel for query 1. 9

2.4 Joined metamodel for query 2. 9

3.1 The work�ow of models and metamodels in ModelJoin (from [9]) 11

3.2 Result set after a natural join and left outer join 13

3.3 Example for the Theta Join . 14

3.4 Result set after left outer join and keep attributes 15

3.5 Example for keep subtype . 17

4.1 ModelJoin Work�ow . 22

4.2 Example: A class in the generated metamodel with annotations 26

6.1 Example for joining over references . 30

1 Introduction

1.1 Motivation

In model-driven development, information is often spread across instances of multiple meta-

models. These metamodels represent di�erent aspects of the domain of interest, so it is possible

that several instances of di�erent metamodels, called heterogeneous instances in the following,

represent a single entity in the domain of interest. If an MDD developer wants to make these

semantic correspondences explicit, and integrate the information from heterogeneous instances

into an integrated model, she or he has the following choices:

1. Modify the existing metamodels and instances, e.g. by introducing references between

the metamodels.

2. Create a new metamodel that combines the desired information and migrate the instances.

3. Establish a mapping by a linking or a “glue” metamodel.

All these mentioned alternatives have serious drawbacks. Changing existing metamodels

(1.) means that instances will have to be migrated and existing tooling has to be adapted.

Furthermore, the semantic correspondences between the metamodels have to be determined

and expressed by the new modeling concepts that are introduced during the modi�cation

of the metamodels. Creating a new metamodel (2.) also requires the de�nition of model

transformations or migration scripts that convert existing instances; furthermore, it leads to a

duplication of information in the existing models and the new models. Replacing the existing

metamodels with a new, integrated metamodel is also not advisable since it would break the

compatibility to existing tools and instances. Introducing a mapping or “glue” metamodel (3.)

leaves the original metamodels unmodi�ed, but also requires that the semantic correspondences

are expressed as instances of this new model. If the instances are modi�ed, the mappings

have to be co-evolved, which can either be done manually, which causes additional e�ort, or

automatically by model transformations, which are also hard to maintain.

To address these problems, we have created the ModelJoin approach, which automates

the process of integrating information from heterogeneous metamodels and displays them

as instances of a custom metamodel. To avoid the shortcomings of the approaches (1.)–(3.)

mentioned above, ModelJoin was developed with the following requirements:

• The approach is non-invasive, i.e., existing metamodels and instances do not have to be

modi�ed.

• No model-transformations and metamodels have to be speci�ed manually.

6 INTRODUCTION

• The information need can be speci�ed declaratively in a textual concrete syntax (TCS)

query language.

• Queries can be modi�ed and executed rapidly.

ModelJoin has been implemented prototypically using the modeling tools of the Eclipse
Modeling Framework (EMF)1, Xtext, Xtend, and QVT-O. The prototype o�ers a textual editor

with syntax highlighting and content assist. It is available publicly and can be installed using

the setup guide in the SDQ Wiki (see next section).

1.2 ModelJoin Resources

Since ModelJoin is an open source project, you can access the sources by checking out from

the SVN repository. For issue tracking, a JIRA project exists which is also publicly accessible.

There is also a page in the public SDQ wiki where details about the installation of ModelJoin

can be found. See Table 1.1 for the URLs.

1.3 Structure of this document

This technical report is structured as follows: In chapter 2, we motivate the ModelJoin approach

using a simple example. The ModelJoin DSL and its textual syntax are described in chapter 3,

followed by chapter 4, which contains the documentation of the ModelJoin implementation

prototype. Related work in the MDSD area is mentioned in chapter 5. The report concludes

with a discussion of limitations and future work in chapter 6.

1http://www.eclipse.org/modeling/emf/

Wiki http://sdqweb.ipd.kit.edu/wiki/ModelJoin

SVN https://svnserver.informatik.kit.edu/i43/svn/code/MDSD/

user: anonymous / password: anonymous

JIRA http://www.palladio-simulator.com/jira/browse/MJ

Table 1.1: ModelJoin Resources

http://www.eclipse.org/modeling/emf/
http://sdqweb.ipd.kit.edu/wiki/ModelJoin
https://svnserver.informatik.kit.edu/i43/svn/code/MDSD/
http://www.palladio-simulator.com/jira/browse/MJ

2 Example

In this chapter, we will motivate the ModelJoin approach with a simple motivating example. It

is based on the library metamodel
1

commonly used as an example metamodel in Eclipse. This

metamodel represents a simpli�ed library, basically consisting of items and persons. Its purpose

is both the management of circulation and the cataloging of library stock items. Typical library

stock items are books and videocassettes. The metamodel is depicted in Figure 2.1.

As a complementary model source, we created a metamodel inspired by the well known

Internet Movie Database (IMDb)
2

that is shown in Figure 2.2. Its purpose is to collect information

about movies like title, year, and the cast. Furthermore, users of the IMDb can vote a numerical

score for each movie.

Figure 2.1: Metamodel of the Eclipse Library

We think that this is a typical situation: Metamodels taking two di�erent perspectives have

an overlap and represent the same entities. The information stored in di�erent models might be

1http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.emf/org.eclipse.emf/examples←↩
/org.eclipse.emf.examples.library/?root=Modeling_Project

2http://www.imdb.com

http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.emf/org.eclipse.emf/examples/org.eclipse.emf.examples.library/?root=Modeling_Project
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.emf/org.eclipse.emf/examples/org.eclipse.emf.examples.library/?root=Modeling_Project
http://www.imdb.com

8 EXAMPLE

Figure 2.2: Metamodel of the Movie Database

useful in combination, but cannot be combined easily. State-of-the-art approaches require the

writing of a transformation from the two metamodels to a (newly designed) third metamodel,

which demands a lot of knowledge and e�ort. Integrating the metamodels using a decorator

approach is an alternative way, but also requires a lot of e�ort.

In our example scenarios, users might also want to combine the information represented

in both systems in a uni�ed view. The classes Film and VideoCassette are good candidates for

joined instances as they describe related entities and have a common attribute. Furthermore,

the di�erent kinds of persons and their roles can be used for information integration. The

selection of instances based on attributes of writers or casts are typical use cases for queries to

both theses models.

1 natural join imdb.Film with library.VideoCassette as jointarget.Movie {

2 keep attributes imdb.Film.year

3 keep attributes library.AudioVisualItem.minutesLength

4 }

Listing 1: Simple natural join (import statements omitted)

The �rst query resulting from both metamodels, seen in Listing 1, is joining the Film and

VideoCassette classes on the common attribute title. As a speciality in this query, the attribute

minutesLength is pushed down from the supertype AudioVisualItem representing a kind of

metamodel refactoring possible in the ModelJoin language. Furthermore, the attribute year is

retained from the class Film. The resulting metamodel should only contain one class with the

attributes title, year, and minutesLength, as seen in

On the instance level, the result model will contain elements of type jointarget.VideoCassette
whose attribute year comes from the IMDb and whose attribute minutesLength comes from the

library. Only those elements will be present that have both an entity in IMDb and in the library

with the same title.

9

Movie
title:EString
year:EInt
minutesLength:EInt

Figure 2.3: Joined metamodel for

query 1.

Movie
title:EString
year:EInt

MediaItem
minutesLength:EInt

Vote
score:Eint

votes

0..*

Figure 2.4: Joined metamodel for query 2.

1 theta join imdb.Film with library.VideoCassette as jointarget.Movie

2 where library.Videocassette.cast->forAll (p | imdb.Film.figures->playedBy->exists (a | p.

firstname.concat(" ") .concat(p.lastName) == a.name)) {

3 keep attributes imdb.Film.year

4 keep outgoing imdb.Film.votes as type jointarget.Vote {

5 keep attributes imdb.Vote.score

6 }

7 keep supertype library.AudioVisualItem as type jointarget.MediaItem {

8 keep attributes library.AudioVisualItem.minutesLength

9 }

10 }

Listing 2: Theta join with condition (import statements omitted)

The second query (Listing 2) is a more complete version of the �rst query. In addition to

the �rst query, references to the vote class and the supertype AudioVisualItem are maintained.

Furthermore, the attributes score and minutesLength are kept for these additional classes. For

the class AudioVisualItem a renaming to MediaItem is performed and the supertype relation

between AudioVisualItem and VideoCassette is preserved. The resulting metamodel is shown in

Figure 2.4.

Thewhere-clause works as a �lter on the instance level. It is expressed as an OCL query whose

context is given by the joined elements. In the example, it selects those videocassettes whose

casts have a corresponding actor (with the same name). Note that we need a concatenation of

�rst and last names since Persons have a single attribute name in the IMDb metamodel, but

a firstName and a lastName in the library metamodel. We have chosen a simple example for

the sake of brevity here; of course, the conditions can have arbitrary complexity and are only

limited by the expressive power of OCL.

3 The ModelJoin DSL

In this chapter, we will present the domain speci�c language (DSL) of ModelJoin.

3.1 Concept

The ModelJoin DSL has been created with the purpose of being similar to the Structured Query

Language (SQL) of relational databases. We exploit several analogies to relational databases and

relational algebra to make the semantics of ModelJoin better understandable. We assume that

most users are familiar with the concept of queries in relational databases. The core concepts

of relational databases such as database schema, tables, can be roughly mapped to concepts

of MOF, such as classes, objects, attributes and so on. We will use the terminology of Ecore

since the technical realization of ModelJoin is based on Ecore. Although Ecore is not a 100%

implementation of MOF and uses a slightly di�erent terminology, it is a widely used standard

and can be seen as a reference implementation of MOF.

The analogies to relational databases which are used in our approach can be seen in Table 3.1:

A model conforms to a metamodel in a similar way that tables conform to database schemata.

A tuple can be compared to an object, since several tuples form a table in the same way that

several objects form a model. Features of an object such as attributes or references correspond to

columns of a relational table. Finally, a query on a database is similar to a model transformation.

While in SQL, the statements in the query directly in�uence the database schema of the result,

model transformations usually require a pre-de�ned target metamodel.

Existing query languages for Ecore such as EMFQuery
1

also o�er a textual syntax that is

inspired by SQL. They are however limited in the sense that the result set of such a query

1http://www.eclipse.org/modeling/emf/?project=query, http://wiki.eclipse.org/EMF%5C_Query2Home

relational concept Ecore concept

database schema metamodel

table model

table row (tuple) object/instance

column feature (attribute/reference)

query model transformation

Table 3.1: Analogy between relational concepts and MDD concepts

http://www.eclipse.org/modeling/emf/?project=query
http://wiki.eclipse.org/EMF%5C_Query2Home

CONCEPT 11

user

theta join MM1::A with MM2::A’ as A

where A.name == B.name + "\’"

keep outgoing A’::b’, A::c

ModelJoin query

writes

.ecore

metamodels

instance of

.xmi

models

references

query
execution

.ecore

target

metamodel

.xmi

result model

input

input output

o
u
tp

u
t instance of

Figure 3.1: The work�ow of models and metamodels in ModelJoin (from [9])

can only contain a subset of the set of instances that the query operates on, i.e., they are only

selectional. It is not possible to create projectional queries that only retrieve speci�c properties

of the underlying instances. More speci�cally, these query languages are lacking the concept

of joins from relational algebra. This may be due to the fact that projectional queries on models

require the de�nition of additional metamodels: When a SQL query containing joins is executed,

the table schema of the result is determined by the select-statements in the query. Since the

Ecore equivalent of a schema is a metamodel, according to Table 3.1, the metamodel of the

result set of a projectional query is de�ned by the query itself. This means that the result set

of a query execution contains instances of newly created metamodel, and the execution of a

query would include a model-to-model transformation. Thus, a query language on models that

supports projectional operators has to de�ne the target metamodel and the properties of the

instances of the result set.

In the prototypical implementation of ModelJoin as described in chapter 4, a new target

metamodel is created upon every execution of the ModelJoin expression. The principle can

be seen in Figure 3.1. This way, it is guaranteed that the model-to-model transformation,

which is also generated, conforms to the target metamodel and produces the right result set.

Theoretically, the result set of a ModelJoin execution could also consist of instances of a pre-

de�ned metamodel, if this metamodel contains all the necessary elements that are determined

by the parts of the ModelJoin expression. (This problem can be generalized to a compatibility

relation between metamodels, using a change classi�cation for metamodel evolution [5, 11]).

The intent behind ModelJoin was, however, not to develop yet another query language

which o�ers only selectional operators. Instead, ModelJoin can be used to combine information

from heterogeneous instances and only contain desired information, as de�ned by the user of

ModelJoin. ModelJoin can also be used to de�ne user-speci�c views on the underlying models,

just like SQL queries can be persisted as views in a database. This mechanism can be applied

in view-centric development approaches [9] that rely on a de�nition language for views on

model-based data.

ModelJoin is also not a full-�edged transformation language. It cannot be used for arbitrary

12 THE MODELJOIN DSL

kinds of model-to-model transformations, since its operations limit it to the projectional

combination of models.

3.2 Abstract Syntax

A ModelJoin expression consists of join-, where-, and keep-expressions.

3.2.1 Join

The Join is the central concept of the ModelJoin DSL. The primary intention for joins is the

merging of classes from di�erent metamodels, which represent the same concept or have

semantic overlaps. The join can, however also be used for analysis of elements from one

metamodel, similar to joins in relational algebra. It is also possible to join a class with itself.

3.2.1.1 Natural Join

If two classes are joined with a natural join, common attributes of both source classes that are

join-compatible are used as the join condition. Two attributes ful�l join-compatibility if they

are of equal name and type, and have the same cardinalities. For each of these attribute pairs,

an attribute of the same name and type has to exist in the target class.

For all instance pairs of the source classes that have equal values in these join-compatible

attributes, a instance exists in the result set of the join.

In contrast to SQL, the natural join does not degenerate to the Cartesian product if no common

attributes are found. Instead, no elements are added to the result set, and no requirements

on the target class apply. A further di�erence to SQL is behaviour regarding the attributes in

the target class. No attributes except the join-compatible attributes are added to the target

metamodel automatically; if desired, this has to be de�ned by a keep attributes statement

(see subsubsection 3.2.2.1).

Example We will use a simple example based on the motivating scenario of chapter 2, where

video cassettes from a library and �lm items from the IMDb are joined into a Movie element.

The metamodel of the result set is displayed in Figure 2.3 on page 9. The interesting lines of the

query and the result set are displayed in Figure 3.2: In the left column, there are three instances

of the class Film in the IMDB metamodel; in the right, there are two intances of the library

class VideoCassette. These two classes share the join-compatible attribute title, which is also

present in the join target class Movie.
In the result set, instances are created if there are instances in both source sets (IMDB and

library). In the example, this is the case for the elements st1 and st8.

3.2.1.2 Outer Join

The layout of the target class for the outer join is similar to that of the natural join: common

join-compatible attributes must exist in target class. On the instance level, a new instance is

ABSTRACT SYNTAX 13

Query header, example with Natural Join:

natural join imdb.Film with library.VideoCassette as jointarget.Movie {

Query header, example with Left Outer Join:

left outer join imdb.Film with library.VideoCassette as jointarget.Movie

trek1:Film

title = “Star Trek I”
year = 1979

trek7:Film

title = “Star Trek VII”
year = 1994

trek8:Film

title = “Star Trek VIII”
year = 1996

st1:Movie

title = “Star Trek I”

st8:Movie

title = “Star Trek VIII”

st7:Movie

title = “Star Trek VII”

on

st1:VideoCassette

title = “Star Trek I”
minutesLength = 132

st8:VideoCassette

title = “Star Trek VIII”
minutesLength = 111

onon

onon

IMDB instances joined instances library instances

(only left outer join)

Figure 3.2: Result set after a natural join and left outer join

created for each instance in the respective source models, i.e., the �rst model in case of a left

outer join, and the second model in case of a right outer join. The instance is created regardless

of a matching instance in the other source model.

In the example in Figure 3.2, this is the case for the Film instance st8: A Movie element of the

same name is created although there is no corresponding element in the library.

3.2.1.3 Theta Join

The θ-join o�ers the usage of arbitrary conditions for the join. The execution creates the

Cartesian product of the input instances and then �lters the set with the where-condition of

the theta join. In the current implementation of ModelJoin, OCL can be used as a constraint

language, since the QVT-O engine is used to execute the transformation.

The natural join can be seen as a special case of the theta join. The theta join does not respect

common join-compatible attributes, so no attributes are added to the target class by default. If

desired, this has to be made explicit by a keep attributes statement.

14 THE MODELJOIN DSL

1 theta join imdb.Film with library.VideoCassette as jointarget.Movie

2 where library.Videocassette.cast->forAll (p | imdb.Film.figures->playedBy->exists (a | p.

firstname.concat(" ") .concat(p.lastName) == a.name)) {

3 keep attributes imdb.Film.year

4 keep outgoing library.Videocassette.cast as type jointarget.Person {

5 keep attributes library.Person.firstName

6 keep attributes library.Person.lastName

7 }

8 }

st1:VideoCassette

title = “Star Trek I”

bill:Person

firstName = “William”
lastName = “Shatner”

st1:Movie

title = “Star Trek I”

trek1:Film

title = “Star Trek I”

bill:Person

firstName = “William”
lastName = “Shatner”

kirk:Figure

name = “James T. Kirk”

wshatner:Actor

name = “William Shatner”

castcastfigures

playedBy

onon

on

IMDB instances joined instances library instances

Figure 3.3: Example for the Theta Join

Example We extend the example of Listing 2 to illustrate the semantics of the Theta join. In

Figure 3.3, the elements trek1:Film and st1:Videocassette are joined under the condition that all

persons in the cast of a videocassette have a corresponding element in the IMDb instance (e.g.,

to distinguish several versions of a �lm).

3.2.2 Keep Statements

The keep expressions can be compared to the select statements of SQL since they de�ne which

features of the input objects should be contained in the target objects. Keep statements are

nested inside join expressions or other keep expressions. In the concrete syntax of ModelJoin,

we have made the nesting explicit with curly braces.

Since an outer join may have created objects in the target metamodel, it is always possible

that no value for a feature exists, if the feature is contained in the “right” source class. Thus, all

features in the target metamodel must have a lower cardinality of zero, so that valid instances

of the target class that participates in an outer join can be created.

ABSTRACT SYNTAX 15

left outer join imdb.Film with library.VideoCassette as jointarget.Movie {

keep attributes imdb.film.year

keep attributes library.film.minutesLength

}

trek1:Film

title = “Star Trek I”
year = 1979

trek7:Film

title = “Star Trek VII”
year = 1994

st1:Movie

title = “Star Trek I”
year = 1979
minutesLength = 132

st7:Movie

title = “Star Trek VII”
year = 1994
minuteslength =

on

st1:VideoCassette

title = “Star Trek I”
minutesLength = 132

onon

IMDB instances joined instances library instances

Figure 3.4: Result set after left outer join and keep attributes

3.2.2.1 Keep attributes

The keep attributes statement determines which attributes of either a left or right source class

are set in the target instances. These attributes are required to exist in the target metamodel.

Since the keep attributes can be invoked on elements that participate in a left outer

join, it is necessary to set the lower bound of all attributes in the target metamodel to 0. An

example can be seen in Figure 3.4: The element st7:Movie was created by a left outer join. Since

there is no matching element in the library instances, the attribute minutesLength cannot be

set. To avoid having to set the element to a default or null value, the unsettable feature of EMF

can be used, since it explicitly models the fact that a value has not been set (which is di�erent

from setting the value to null).

3.2.2.2 Aggregations

ModelJoin supports aggregation of attributes, similar to the aggregate functions in SQL with the

GROUP BY statement. Currently, �ve aggregation types for numerical attributes are supported:

sum(), avg(), min(), max(), and size().

The aggregation in ModelJoin groups the elements by a certain reference. In the example, the

votes for �lms are represented in the IMDB metamodel as single elements. With the aggregate

operator, a new attribute averageRating can be introduced that gathers the average rating for a

�lm.

16 THE MODELJOIN DSL

natural join imdb.Film with library.VideoCassette as jointarget.Movie {

keep aggregate avg(score) over Film.votes as Movie.averageRating

}

3.2.2.3 Calculated attributes

Calculated attributes are attributes whose value is computed in some form from other properties

of the source models. In the prototypical implementation, they are speci�ed using OCL.

The calculate attributes operator is the most generic way of specifying attributes in the

target metamodel. The keep attribute operator and the aggregation operator can be simulated

by a calculated attribute with an equivalent OCL expression.

Calculated attributes are not the same as derived attributes in EMF: The value of a derived

attribute in a target model depends on other values in the target models, is not persisted

(transient) and computed every time the attribute is accessed (volatile). Calculated attributes, in

contrast, depend on values in the source models and are computed during the execution of the

model transformation. In the target models, these attributes are non-transient and non-volatile.

Example In the following example, the calculated attribute topratings shows the number of

users that have given a movie the highest rating (10 points).

natural join imdb.Film with library.VideoCassette as jointarget.Movie {

keep calculated attribute imdb.Film.votes->select(v|v.score==10)->size()

as Movie.topratings:EInt

}

3.2.2.4 Keep outgoing/incoming reference

The keep outgoing/incoming reference statement is used to include linked instances in the

result set. This requires that the type/source of the reference also has to be mapped to an

element in the target metamodel so that the instances can be created respectively.

In the example of Figure 3.3, the keep outgoing statement is used to include the reference

cast in the target metamodel. Since the class Person is not created by any other statement in

the ModelJoin expression, the class is created in the target metamodel during the execution of

the keep outgoing statement.

3.2.2.5 Keep supertype

The keep supertype statements are used to de�ne an inheritance hierarchy in the target

metamodel. With a supertype statement, the supertype relation of a class that is joined or

created through keep outgoing/incoming statement and one of its superclasses can be added in

the target metamodel. If the class does not exist yet, the keep supertype statement will create it.

ABSTRACT SYNTAX 17

A C B

A′ B′CA CB

on on

κref κref

left source
metamodel

target
metamodel

right source
metamodel

Figure 3.5: Example for keep subtype

In order to keep the automatisms in ModelJoin small, features such as attributes and references

are not moved to a superclass automatically if they were contained in the superclass in the

original model. The elements that are contained in the target superclass have to be made

explicit with appropriate keep attribute/reference statements.

In the example of Listing 2 on page 8, the supertype AudioVisualItem is kept and renamed

to MediaItem. The attribute minutesLength has been added explicitly to the class by the keep

attribute statement in line 8 of the query.

3.2.2.6 Keep subtype

If instances of a subtype of, e.g., the source class that participates in a natural join are mapped

to instances of the target metamodel, the most special subclass in the target metamodel is

instantiated.

The keep subtype operator cannot be invoked on classes that participate in a join statement,

since this would lead to ambiguous results.

Example An ambiguous case can be seen in Figure 3.5: If the ModelJoin expression is executed

on two join-compatible instances of A′ and B′ respectively, the class of the resulting element is

unclear; it could be either CA or CB. To resolve this problem, the semantic of the keep subtype

operator could be changed to either take the left or the right argument as type in ambiguous

cases, which would, in our opinion, be counter-intuitive. One could also generate a new

class CAB which inherits from both CA and CB, but this would lead to the generation of many

additional classes if there are several keep subtype statements, because the Cartesian product

of all subclasses would have to be generated. For these reasons, we have decided to allow the

keep subtype operator only on not-joined classes.

natural join a.A with b.B as jointarget.C {

keep subtype a.A’ as jointarget.CA

keep subtype b.B’ as jointarget.CB

}

18 THE MODELJOIN DSL

3.2.3 Renaming

The join and keep operators contain an AS clause for the de�nition of the name of the elements in

the target metamodel. If the rename statement is omitted, the elements in the target metamodel

are named after the respective element in the source metamodel. In case of a join, the name of

the left element is chosen as the name for the target element.

4 Technical Realisation

4.1 Concrete Syntax

package edu.kit.ipd.sdq.mdsd.mj.xtext

language Xtext

The concrete syntax of ModelJoin has been implemented using Xtext. The syntax de�nition

is depicted in Listing 3.

1 grammar edu.kit.ipd.sdq.mdsd.ModelJoin with org.eclipse.xtext.common.Terminals

2 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

3 generate modelJoin "http://www.kit.edu/ipd/sdq/mdsd/ModelJoin"

4

5 Grammar:

6 (imports+=Import)*
7 (target+=Target)

8 (joinExpr+=JoinExpr)*;

9

10 JoinExpr :

11 (NaturalJoinExpr | LeftOuterJoinExpr | ThetaJoinExpr) ’as’ targetType=CpxID

12 (’{’

13 (keepAttributesExpr+=KeepAttributesExpr)?

14 (keepAggregatesExpr+=KeepAggregateExpr)?

15 keepExpr+=KeepExpr*
16 ’}’)?

17 ;

18

19 NaturalJoinExpr:

20 ’natural’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[ecore::EClass|CpxID]

21 ;

22

23 LeftOuterJoinExpr:

24 ’left’ ’outer’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[ecore::EClass|CpxID]

25 ;

26

27 ThetaJoinExpr:

28 ’theta’ ’join’ left=[ecore::EClass|CpxID] ’with’ right=[ecore::EClass|CpxID] ’where’

condition=STRING

20 TECHNICAL REALISATION

29 ;

30

31 KeepExpr :

32 (KeepTypeExpr | KeepOutgoingExpr | KeepIncomingExpr)

33 (’{’

34 (keepAttributesExpr+=KeepAttributesExpr)?

35 (keepAggregatesExpr+=KeepAggregateExpr)?

36 keepExpr+=KeepExpr*
37 ’}’)?

38 ;

39

40 KeepTypeExpr :

41 KeepSuperTypeExpr | KeepSubTypeExpr

42 ;

43

44 KeepSuperTypeExpr :

45 ’keep’ ’supertype’ superType=[ecore::EClass|CpxID]

46 (’as’ ’type’ targetSuperType=CpxID)?

47 ;

48

49 KeepSubTypeExpr :

50 ’keep’ ’subtype’ subType=[ecore::EClass|CpxID]

51 (’as’ ’type’ targetSubType=CpxID)?

52 ;

53

54 KeepOutgoingExpr :

55 ’keep’ ’outgoing’ outgoing=[ecore::EReference|CpxID]

56 (’as’ ’type’ targetOutgoing=CpxID (’as’ ’reference’ targetReference=CpxID)?)?

57 ;

58

59 KeepIncomingExpr :

60 ’keep’ ’incoming’ incoming=[ecore::EReference|CpxID]

61 (’as’ ’type’ targetIncoming=CpxID (’as’ ’reference’ targetReference=CpxID)?)?

62 ;

63

64 KeepAttributesExpr :

65 ’keep’ ’attributes’ attribute=[ecore::EAttribute|CpxID] (’,’ attributes+=[ecore::

EAttribute|CpxID])*
66 ;

67

68 KeepAggregateExpr :

69 ’keep’ ’aggregate’ aggregate+=KeepAggregate (’,’aggregate+=KeepAggregate)*
70 ;

71

72 KeepAggregate:

CONCRETE SYNTAX 21

73 KeepNumericalAggregate | KeepCollectionAggregate

74 ;

75

76 KeepNumericalAggregate :

77 aggregateKind=NumericalAggregateKind’(’value=[ecore::EAttribute|CpxID]’)’

78 ’over’ context=[ecore::EReference|CpxID] ’as’ targetAttribute=CpxID

79 ;

80

81 KeepCollectionAggregate :

82 aggregateKind=CollectionAggregateKind (

83 ’(’value=[ecore::EAttribute|CpxID]’)’ ’over’ context=[ecore::EReference|CpxID]

84 | ’(’value=[ecore::EReference|CpxID]’)’

85) ’as’ targetAttribute=CpxID

86 ;

87

88 enum NumericalAggregateKind :

89 SUM=’sum’ | AVG=’avg’ | MIN=’min’ | MAX=’max’

90 ;

91

92 enum CollectionAggregateKind :

93 SIZE=’size’

94 ;

95

96 WhereExpr :

97 ’true’

98 ;

99

100 Projection :

101 star=’*’

102 | id=ID

103 | cId=CpxID

104 ;

105

106 Import:

107 ’import’ importURI=STRING

108 ;

109

110 Target:

111 ’target’ targetURI=STRING

112 ;

113

114 CpxID : ID (’.’ ID)+;

115

116 PackageQualifiedID : ID (’::’ ID)* ’::’ (CpxID|ID) ;

22 TECHNICAL REALISATION

generated at compile time

generated at runtime

ModelJoin
Query

Input

Metamodels

Input

Metamodels

Input

Metamodels

references

Input

Models

Input

Models

Input

Models

«instance of»

Metamodel

Synthesis

Model-

to-model

Transformation

references

Target

Metamodel

Transformation

Generation

Transformation

Execution

Join Result

«instance of»

Figure 4.1: ModelJoin Work�ow

Listing 3: ModelJoin Xtext Concrete Syntax

4.2 Workflow

In Figure 4.1, the work�ow for the execution of a ModelJoin expression is depicted. The user

writes a ModelJoin query that references input metamodels. Upon save, the work�ows generate

the target metamodel and the QVT transformation. To execute the ModelJoin query with actual

instances of the input metamodels, the user has to launch an Eclipse Run Con�guration and

point it to the .xmi �les that contain the input instances.

4.3 Generation of the target metamodel

package edu.kit.ipd.sdq.mdsd.mj.metamodel.generator

language Java

The metamodel generator is implemented in plain Java.

Since both the transformation generation and the metamodel generation need to know the

relations from the input metamodels to the target metamodel, the ModelJoin query would

have to be parsed twice to calculate the relation. Since this would lead to duplicate code and

redundant parsing of the query, we decided to annotate the target metamodel with tracing

information.

GENERATION OF THE TARGET METAMODEL 23

Structural Primitives join keep super-/subt. keep reference keep (calc.) att./aggr.

Create package x x x -

Create class x x x -

Create attribute x - - x

Create reference - - x -

Create data type - - - x

Create enum - - - x

Non-structural Primitives

Add super type - x - -

Table 4.1: Operations used for the metamodel synthesis

4.3.1 Construction of the target metamodel

We use an operator-based approach for building the target metamodel from a ModelJoin query.

Each statement of a ModelJoin query is therefore translated to a set of operations necessary to

re�ect its semantics.

We build upon the set of metamodel operations introduced by Hermansdörfer et al. [20].

Table 4.1 gives an overview on the subset of operations that are used for synthesizing a joined

metamodel. For each operation, corresponding statements are marked by an x. Some operations

are only executed when the source elements of a statement are of speci�c types.

The required operations are extracted from the query by recursively traversing the statement-

tree. The extraction is described in Algorithm 1. Starting from the join statements the nested

keep expressions are translated to metamodel operations. Each kind of operation is stored in a

separate set.

As �rst step, all Create Package and Create Class operations are performed. Furthermore,

data types, enums and literals are created.

As next step, the Add Super Type operations are performed to de�ne a hierarchy of classes.

As last step, based on the hierarchy, the references and attributes are added. Starting from the

topmost set of classes, it is checked which references and attributes can be added to the class.

When an operation is encountered that is meant to create an attribute or reference already

present in a superclass, it is discarded as it is subsumed by the superclass.

4.3.2 Annotations in the target metamodel

During the generation of the target metamodel, the metamodel generator extracts information

from a ModelJoin expression such as which elements of the source metamodel were joined to

an element of the target metamodel, which was the attribute for the join condition, etc. The

information is stored in the target metamodel using EAnnotation elements which reference the

elements in the source metamodels directly. Thus, the generated target metamodel will contain

24 TECHNICAL REALISATION

name/source reference details

sourceModels the source metamodels of the

ModelJoin query

should be attached to the root

package

createdBy – operator: the type of operator

that caused the creation of the

element (naturaljoin, thetajoin)
classTrace the single source element –

classTrace.le� the left source element if the op-

erator is a join

–

classTrace.right the right source element if the

operator is a join

–

isJoinAttribute an attribute that was part of the

join condition; in case of sev-

eral attributes, an annotation for

each attribute is created

–

whereCondition – ocl: the OCL expression

Table 4.2: Annotation types in the generated metamodel

references to the source metamodels in its EAnnotation elements.

EAnnotations have a name (called source in EMF), an element that they refer to (reference),
and can contain additional information details in key/value pairs. Since EAnnotations are not

typed, we introduce naming conventions for the di�erent annotation types (see Table 4.2).

4.4 Transformation Generation (QVT-O)

package edu.kit.ipd.sdq.mdsd.mj.transformation.generator

language Xtend2

4.4.1 Overview

The model-to-text transformation generation is implemented in Xtend2. It takes the annotated

target metamodel as input and generates QVT-O text using Xtend’s template mechanism. The

transformation generation does not need the original Xtext query since all information that is

necessery for generation can be determined from the annotations (see Table 4.2).

For each operation type, the Xtend2 template generates two sections in the QVT-O trans-

formation: First, a section in the main() method in which the appropriate model elements are

selected and connected by a map statement; second, the de�nition of the mapping itself.

TRANSFORMATION GENERATION (QVT-O) 25

Algorithm 1 Operation extraction algorithm

1: Set o := {} . The set of operations

2: procedure process�ery

3: for j : joins do
4: processJoin(j)

5: end for
6: end procedure

7: procedure processJoin(Join j)

8: o← CreatePackage(j.target.package)) . Create class operations

9: o← newCreateClass(j.target)
10: o← newCreateAnnotation(”classtrace.left”, j.target, j.left) . Create annotations

11: o← newCreateAnnotation(”classtrace.right”, j.target, j.right)
12: o← newCreateAnnotation(”createdBy”, j.type)

13: features ← getJoinFeatures(j) . Create joinFeatures

14: for f : features do
15: o← newCreateType(f .type)
16: o← newCreateFeature(j.target, f .type, f .name)
17: o← newCreateAnnotation(”joinattribute”, f)

18: end for
19: processKeeps(j)

20: end procedure

21: procedure processKeeps(Expression e)

22: for k : e.keeps do
23: processKeep(k, e)

24: end for
25: end procedure

26: procedure processKeep(KeepSupertypeExp/KeepSubtypeExp kse, Expression context)

27: o← newCreatePackage(kse.target.package) . Create super/sub class operations

28: o← newCreateClass(kse.target)
29: o← newCreateAnnotation(”classtrace”, kse.target, kse.source) . Create annotations

30: o← newCreateAnnotation(”createdBy”, ”superType”/”subtype”)

31: o← newCreateSuperType/CreateSubType(kse.target, context.target)
32: end procedure

33: procedure processKeep(KeepReferenceExp kre, Expression context)

34: o← newCreatePackage(kre.target.package) . Create super class operations

35: o← newCreateClass(kre.target)
36: o← newCreateAnnotation(”classtrace”, kre.target, kre.source) . Create annotations

37: o← newCreateAnnotation(”createdBy”, kre.type)
38: if kre is KeepOutgoingExp then
39: o← newCreateFeature(context.target, kre.target, kre.name)
40: else
41: o← newCreateFeature(kre.target, context.target, kre.name)
42: end if
43: end procedure

44: procedure processKeep(KeepAttributesExp kae, Expression context)

45: o← newCreateType(kae.type)
46: o← newCreateFeature(context.target, kae.type, kae.name)
47: end procedure

26 TECHNICAL REALISATION

Movie
title:EString
year:EInt

Source edu.kit.ipd.sdq.mdsd.mj.classTrace.le�
References Film

Source edu.kit.ipd.sdq.mdsd.mj.classTrace.right
References VideoCassette -> AudioVisualItem

Source edu.kit.ipd.sdq.mdsd.mj.createdBy

Details
Key operator
Value le�OuterJoin

Figure 4.2: Example: A class in the generated metamodel with annotations

Algorithm 2 Metamodel generation algorithm

1: procedure generateMetaModel

2: for pacOp : o.�lter(CreatePackage) do
3: pacOp.perform;

4: end for

5: for classOp : o.�lter(CreateClass) do
6: classOp.perform

7: end for

8: for superTypeOp : o.�lter(CreateSuperType) do
9: superTypeOp.perform

10: end for

11: featureOps = o.�lter(CreateFeature) . Create features

12: for i=0..targetModel.classDepth do
13: classes = targetModel.classes.�lter(level==i);

14: for class : classes do
15: for createFeatureOp : featureOps.�lter(target==class) do
16: if !class.allSuper.features.contains(f) then
17: createFeatureOp.perform

18: end if
19: end for
20: end for
21: end for

22: for annotationOp : o.�lter(CreateAnnotation) do . Create annotations

23: if model.contains(annotationOp.target) then
24: annotationOp.perform

25: end if
26: end for
27: end procedure

TRANSFORMATION GENERATION (QVT-O) 27

4.4.2 Generation of Code for the ModelJoin Operators

4.4.2.1 Natural and Outer Joins

The natural and outer joins are executed by forming the cartesian product of the source objects

and then �ltering the elements in the when-clause of the mapping statement. The when-clause

realises the join-compatibility condition of subsubsection 3.2.1.1.

Since the mapping is invoked on the “left” elements of the natural join with the “right”

elements as a parameter, the QVT mapping table only contains entries from the left elements

to the target elements. In later operations, however, it is necessary to check for the relation

of target elements to all source elements (including the “right” elements). For this reason, an

additional helper mapping is generated which only sets the mapping from the a source element

to the target element. The mapping, e.g. naturalJoin_update_VideoCassette, is invoked at

the end of a natural join mapping.

4.4.2.2 Theta Join

The theta join works in quite a similar way as the natural and outer joins, except for the fact

that the when-condition of the mapping is extracted from the annotation. In the theta join

expression, OCL is used as the language in the where-condition. Like in SQL, the class names

of source classes can be used in the OCL expression. During the transformation generation,

the quali�ed names of the classes are replaced by the respective variables or self.

4.4.2.3 Keep outgoing/incoming reference

For the keep outgoing and incoming operators, a distinction must be made depending on

whether the instance at the other end of the link has already been mapped an instance in

the target model. If the instance has already been mapped, then the link is updated with

the existing instance; otherwise, a new instance is created and linked. For each of these

two cases, a mapping is generated in the QVT-O �le, e.g. update_keepOutgoing_cast and

update_keepOutgoing_and_create_cast.

4.4.2.4 Keep (calculated) attribute/aggregate

Keep attribute operators are translated into inout mappings which update existing instances

of the target class by setting the attribute value to either the value of the source instance (keep

attribute) or to an OCL expression (keep calculated attribute).

The mapping for aggregations is a special case of a calculated attribute with pre-de�ned

OCL operations for the aggregation functions.

5 Related Work

Approaches related to ModelJoin in the area of model-driven software development can be

classi�ed according to the three central concerns as follows:

1. Approaches for the synthesis of metamodels

2. Approaches for the synthesis of models

3. Approaches for the creation and evaluation of queries on models

Since an important aspect of ModelJoin is the creation of a large number of artifacts on the �y,

we further looked at whether each aspect is treated in a static or dynamic manner, depending

on whether use of prede�ned or hard coded artifacts or implicit or generated artifacts is made.

A lot of work is done in the area of model synthesis to enable collaborative modeling, for

example in the use of version control systems for models. The aim is to calculate the di�erence

between versions of models and to merge models of di�erent versions – both for MOF-based

models ([1]) and for EMF, like the di� and merge algorithms of EMF Compare [8]. Another

common task for model synthesis is the handling of metamodel evolution. Here, models

are synthesized or “updated” to restore syntactic or semantic conformance [20, 13]. These

approaches are commonly static in nature and (in contrast to ModelJoin) rely on the fact that

the treated models are related – by either stemming from the same base model or conforming

to di�erent versions of the same metamodel.

The Epsilon Merging Language [23] supports the merging of models from di�erent meta-

models like ModelJoin. In contrast to ModelJoin, it requires the target metamodel to be created

manually before merging rules can be de�ned. Thus the approach is static.

The VirtualEMF project [14] introduces virtual models as a run-time solution for adapting

one model or potentially merging models from numerous sources. While the merged models are

created on the �y and on demand at run-time, in contrast to ModelJoin, the merged metamodel

and a weaving model have to be de�ned beforehand and are not generated. We see our approach

to be complementary, as both artifacts could be generated using our approach.

The EMF Facet project [15] provides a mechanism to extend an existing metamodel and

conforming models with new elements, without changing the original artifacts. The approach

is thus related to both the synthesis of metamodels and models. In contrast to ModelJoin

however, it does not integrate two di�erent metamodels.

In general, the join operator represents in part a special form of model transformation and

is (as it is declarative) especially related to declarative transformation languages like QVT

Relations [26] and ATL [21]. Yet in contrast, it is speci�cally tailored to easily and quickly de�ne

views on two similar metamodels. This imposes restrictions (see ??) but in turn no prede�ned

target metamodel is required as is needed for general-purpose transformation languages. The

29

general purpose languages should be used for cases too complex for ModelJoin; here ModelJoin

can still serve as a good starting point.

The EMF-Inc�ery framework [17] tackles the problem of interconnecting heterogeneous

models without setting hard links between their metamodels. Instead, incremental queries are

executed to calculate derived features of EMF models. The approach also features a caching

mechanism but is not completely non-intrusive, since the source metamodels have to be

modi�ed by adding the derived features.

The ModelJoin approach is related to the �eld of model composition [19, 6] and aspect-

oriented modelling (AOM), which also include view-based modeling techniques [22]. Other

approaches include Kompose [16], AMW [2] and GGT [7]. These tools merge arbitrary meta-

models in a similar way to ModelJoin via a composition rule set, but require the de�nition of a

linking or “glue” model between the source metamodels.

Other approaches for the management of heterogeneous models use a central, �xed meta-

model as a hub; bidirectional transformations have to be speci�ed for all metamodels that are

to be supported: The OSM approach [3] has been implemented in KobrA [4]. More tool-driven

approaches include ModelBus [18], which is focused on the interoperability of heterogeneous

modeling tools, and DuALLy [25], which uses higher-order transformations based on ATL for

architectural description languages.

6 Limitations and Future Work

6.1 Limitations of the language

6.1.1 Nesting of Joins

In the current version of ModelJoin, it is not possible to nest join operations. For example, the

following query would select all actors that have appeared as �gures in a �lm and, and join it

with the users in the library:

natural join library.Person with

{natural join imdb.Actor with imdb.Figure}

It is not possible to write this in one single query in ModelJoin at the moment. To acquire the

desired result, the inner natural join would have to be executed separately; then, a query that

uses the library metamodel and the generated target metamodel of the �rst query as source

metamodels can be written. We plan to support this feature in upcoming versions of ModelJoin.

6.1.2 Joining over References

The natural and outer join operators are de�ned over attributes; it is currently impossible to join

over references. A join over a reference would have the join condition that the same element is

linked to the classes that should be joined. This is shown in an example in Figure 6.1: If class A
and B are joined over the reference ref, it would require that there are identical instances linked

to instances of A and B. Since A and B can be part of distinct source models, the classes at the

end of ref may also be distinct, like the classes A′ and B′ in the example.

Thus, a join over a reference would require that the classes at the end of the references are

either identical or have also been joined, so that the identity of the instances can be determined.

A B

A′ B′
ref ref

onref

on

Figure 6.1: Example for joining over references

EDITABILITY 31

In future work, we plan to include a join operator for joining over references. In the execution

algorithm, the reference-joins will be computed after other joins, since it is a precondition that

the classes at the end of the reference are identical or have been joined.

6.2 Editability

The queries that are speci�ed with ModelJoin are read-only. In the course of the Vitruvius

research project [10, 24], an extension to ModelJoin is being developed that extends it by a

facility for editing and synchronisation. In Vitruvius, ModelJoin is used for the rapid, on-

the-�y de�nition of customized view types, in a similar way that SQL queries can be stored

as views. If such a view type is to be persisted for future usage, the generated artefacts (such

as metamodels, tracing information and transformations) can be used as a starting point for

editable, synchronized views.

In a multi-metamodel scenario, which we aim to support with ModelJoin, editability of these

views only makes sense if the instances of the source metamodels are also synchronized with

each other, and not only the views with the metamodels. This is due to two reasons: First, we

consider synchronization of views via a central model (or a set of models) superior to direct

synchronization between views for reasons of complexity. Second, since we support view

types with a multi-metamodel projectional scope, it is possible that, for example, one �exible

view type a�ects instances of Metamodels M1 and M2, while another �exible view type a�ects

instances of M2 and M3. To keep the central set of models consistent, it is necessary to have

synchronization even for those instances that are not directly a�ected by a �exible view type.

6.3 Re-Use of Target Metamodels

A ModelJoin query always contains su�cient information to generate the target metamodel

from it. In the current implementation of ModelJoin, the target metamodel is always generated

during the execution of a query. Although this guarantees that the generated transformations

always �t to the target metamodel, it has the disadvantage that the generated metamodels

cannot be re-used for further purposes, such as further model transformations, specialized

editors, or vizualizations of the models. Even in the special case that a metamodel is joined

with itself, the target metamodel is not identical to the source metamodel, but depends on the

structure of the ModelJoin query.

Since the target metamodel is dependent from the query, even small changes in the query lead

to a new version of the target metamodel, although the target metamodel of the previous version

of the query would be a valid metamodel for the result set of the current query. To determine

whether the changes between two metamodels invalidate the instances of the previous version

of the metamodel, we have created a conformance check [12], which is based on the metamodel

evolution tool Edapt [20] and the rule-based engine DROOLS
1
.

1http://www.jboss.org/drools/

http://www.jboss.org/drools/

32 LIMITATIONS AND FUTURE WORK

The conformance check is not integrated in ModelJoin yet. To integrate it, the ModelJoin

work�ow (Figure 4.1) could be extended by a conformance check after the Metamodel Synthesis
step. The check would have to be connected to a metamodel repository that stores the possible

target metamodels. Upon generation of a target metamodel, the conformance checker decides

whether an existing metamodel can be used as the target metamodel and passes this information

to the transformation generator. The join result is then created as an instance of the metamodel

from the repository rather than an instance of the newly generated metamodel.

Bibliography

[1] Marcus Alanen and Ivan Porres. “Di�erence and Union of Models”. In: “UML 2003” – The
Uni�ed Modeling Language, Modeling Languages and Applications 6th International Con-
ference, San Francisco, CA, USA, October 20–24, 2003, Proceedings. Ed. by Perdita Stevens,

Jon Whittle, and Grady Booch. Vol. 2863. Lecture Notes in Computer Science. Berlin/Hei-

delberg: Springer Verlag, 2003, pp. 2–17. isbn: 978-3-540-20243-1.

[2] Atlas Model Weaver. url: http://www.eclipse.org/gmt/amw/.

[3] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Modeling:

A Practical Approach to View-Based Development”. In: Evaluation of Novel Approaches
to Software Engineering. Ed. by Leszek A. Maciaszek, César González-Pérez, and Stefan

Jablonski. Vol. 69. Communications in Computer and Information Science. Berlin/Hei-

delberg: Springer, 2010, pp. 206–219. isbn: 978-3-642-14819-4.

[4] Colin Atkinson et al. “Modeling Components and Component-Based Systems in KobrA”.

In: The Common Component Modeling Example. Ed. by Andreas Rausch et al. Vol. 5153.

Lecture Notes in Computer Science. Berlin/Heidelberg: Springer, 2008, pp. 54–84. url:

http://dx.doi.org/10.1007/978-3-540-85289-6_4.

[5] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “Model-based Performance Prediction

with the Palladio Component Model”. In: Proceedings of the 6th International Workshop
on Software and Performance (WOSP2007). ACM Sigsoft, Feb. 2007.

[6] Jean Bézivin et al. “A Canonical Scheme for Model Composition”. In: Model Driven
Architecture – Foundations and Applications. Ed. by Arend Rensink and Jos Warmer.

Vol. 4066. LNCS. Springer Berlin / Heidelberg, 2006, pp. 346–360. isbn: 978-3-540-35909-8.

url: http://dx.doi.org/10.1007/11787044_26.

[7] Bouzitouna, Salim and Gervais, Marie-Pierre and Blanc, Xavier. “Model Reuse in MDA”.

In: Proceedings of the International Conference on Software Engineering Research and Prac-
tice (SERP’05). Las Vegas, USA, June 2005.

[8] Cédric Brun and Alfonso Pierantonio. “Model Di�erences in the Eclipse Modelling

Framework”. In: UPGRADE The European J for the Informatics Professional IX.2 (2008),

pp. 29–34. url: http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf.

[9] Erik Burger. “Flexible views for rapid model-driven development”. In: Proceedings of
the 1st Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling.

VAO ’13. Montpellier, France: ACM, 2013, 1:1–1:5. isbn: 978-1-4503-2070-2. url: http:

//doi.acm.org/10.1145/2489861.2489863.

http://www.eclipse.org/gmt/amw/
http://dx.doi.org/10.1007/978-3-540-85289-6_4
http://dx.doi.org/10.1007/11787044_26
http://www.cepis.org/upgrade/files/2008-II-pierantonio.pdf
http://doi.acm.org/10.1145/2489861.2489863
http://doi.acm.org/10.1145/2489861.2489863

34 Bibliography

[10] Erik Burger. “Flexible Views for View-Based Model-Driven Development”. In: Proceedings
of the 18th international doctoral symposium on Components and architecture. WCOP ’13.

Vancouver, British Columbia, Canada: ACM, 2013, pp. 25–30. isbn: 978-1-4503-2125-9.

url: http://doi.acm.org/10.1145/2465498.2465501.

[11] Erik Burger and Boris Gruschko. “A Change Metamodel for the Evolution of MOF-

Based Metamodels”. In: Proceedings of Modellierung 2010. Ed. by Gregor Engels, Dimitris

Karagiannis, and Heinrich C. Mayr. Vol. P-161. GI-LNI. Klagenfurt, Austria, Mar. 24–26,

2010. url: http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf.

[12] Erik Burger and Aleksandar Toshovski. “Di�erence-based Conformance Checking for

Ecore Metamodels”. In: Proceedings of Modellierung 2014. GI-LNI. To appear. Vienna,

Austria, Mar. 19–21, 2014.

[13] Antonio Cicchetti et al. “Automating Co-evolution in Model-Driven Engineering”. In:

Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing
Conference. EDOC ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 222–231.

isbn: 978-0-7695-3373-5. url: http://dx.doi.org/10.1109/EDOC.2008.44.

[14] Cauê Clasen, Frédéric Jouault, and Jordi Cabot. “VirtualEMF: A Model Virtualization

Tool”. In: Advances in Conceptual Modeling. Recent Developments and New Directions. Ed.

by Olga De Troyer et al. Vol. 6999. LNCS. Springer Berlin / Heidelberg, 2011, pp. 332–335.

isbn: 978-3-642-24573-2. url: http://dx.doi.org/10.1007/978-3-642-24574-9_43.

[15] EMF Facet. url: http://www.eclipse.org/facet/.

[16] Franck Fleurey et al. “A Generic Approach for Automatic Model Composition”. In:

Models in Software Engineering. Ed. by Holger Giese. Vol. 5002. LNCS. Springer Berlin /

Heidelberg, 2008, pp. 7–15. isbn: 978-3-540-69069-6. url: http://dx.doi.org/10.1007

/978-3-540-69073-3_2.

[17] Ábel Hegedüs et al. “Query-Driven Soft Interconnection of EMF Models”. In: Model
Driven Engineering Languages and Systems. Ed. by Robert France et al. Vol. 7590. Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, 2012, pp. 134–150. isbn: 978-3-

642-33665-2. url: http://dx.doi.org/10.1007/978-3-642-33666-9_10.

[18] Christian Hein, Tom Ritter, and Michael Wagner. “Model-Driven Tool Integration with

ModelBus”. In: Workshop Future Trends of Model-Driven Development. 2009.

[19] Christoph Herrmann et al. “An Algebraic View on the Semantics of Model Composition”.

In:Model DrivenArchitecture- Foundations andApplications. Ed. by David Akehurst, Régis

Vogel, and Richard Paige. Vol. 4530. Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2007, pp. 99–113. isbn: 978-3-540-72900-6. url: http://dx.doi.org/10.10

07/978-3-540-72901-3_8.

http://doi.acm.org/10.1145/2465498.2465501
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1007/978-3-642-24574-9_43
http://www.eclipse.org/facet/
http://dx.doi.org/10.1007/978-3-540-69073-3_2
http://dx.doi.org/10.1007/978-3-540-69073-3_2
http://dx.doi.org/10.1007/978-3-642-33666-9_10
http://dx.doi.org/10.1007/978-3-540-72901-3_8
http://dx.doi.org/10.1007/978-3-540-72901-3_8

Bibliography 35

[20] Markus Herrmannsdörfer, Sander D. Vermolen, and Guido Wachsmuth. “An extensive

catalog of operators for the coupled evolution of metamodels and models”. In: Pro-
ceedings of the Third international conference on Software language engineering. SLE’10.

Berlin/Heidelberg: Springer, 2011, pp. 163–182. isbn: 978-3-642-19439-9. url: http :

//www4.in.tum.de/~herrmama/publications/SLE2010 _ herrmannsdoerfer _ catalog _

coupled_operators.pdf.

[21] F. Jouault and I. Kurtev. “Transforming models with ATL”. In: Satellite Events at the
MoDELS 2005 Conference. Vol. 3844. LNCS. Berlin: Springer Verlag, 2006, pp. 128–138.

url: http://doc.utwente.nl/61719/.

[22] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. “Aspect-oriented multi-view model-

ing”. In: Proceedings of the 8th ACM international conference on Aspect-oriented software
development. AOSD ’09. Charlottesville, Virginia, USA: ACM, 2009, pp. 87–98. isbn:

978-1-60558-442-3. url: http://doi.acm.org/10.1145/1509239.1509252.

[23] Dimitrios Kolovos, Richard Paige, and Fiona Polack. “Merging Models with the Epsilon

Merging Language (EML)”. In: Model Driven Engineering Languages and Systems. Ed. by

Oscar Nierstrasz et al. Vol. 4199. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2006, pp. 215–229. isbn: 978-3-540-45772-5.

[24] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric engineering with

synchronized heterogeneous models”. In: Proceedings of the 1st Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling. VAO ’13. Montpellier, France:

ACM, 2013, 5:1–5:6. isbn: 978-1-4503-2070-2. url: http://doi.acm.org/10.1145/24

89861.2489864.

[25] I. Malavolta et al. Providing Architectural Languages and Tools Interoperability through
Model Transformation Technologies. Tech. rep. 1. Jan. 2010, pp. 119–140.

[26] Meta Object Facility (MOF) 2.0 Query/View/Transformation Speci�cation. Object Manage-

ment Group. January 2011. url: http://www.omg.org/spec/QVT/1.1/.

http://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://www4.in.tum.de/~herrmama/publications/SLE2010_herrmannsdoerfer_catalog_coupled_operators.pdf
http://doc.utwente.nl/61719/
http://doi.acm.org/10.1145/1509239.1509252
http://doi.acm.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://www.omg.org/spec/QVT/1.1/

	2014,1_Titelbl.pdf
	modeljoin_techreport.pdf
	1 Introduction
	1.1 Motivation
	1.2 ModelJoin Resources
	1.3 Structure of this document

	2 Example
	3 The ModelJoin DSL
	3.1 Concept
	3.2 Abstract Syntax
	3.2.1 Join
	3.2.2 Keep Statements
	3.2.3 Renaming

	4 Technical Realisation
	4.1 Concrete Syntax
	4.2 Workflow
	4.3 Generation of the target metamodel
	4.3.1 Construction of the target metamodel
	4.3.2 Annotations in the target metamodel

	4.4 Transformation Generation (QVT-O)
	4.4.1 Overview
	4.4.2 Generation of Code for the ModelJoin Operators

	5 Related Work
	6 Limitations and Future Work
	6.1 Limitations of the language
	6.1.1 Nesting of Joins
	6.1.2 Joining over References

	6.2 Editability
	6.3 Re-Use of Target Metamodels

