
Study Progress Visualized in a Web Portal

Philip Hoyer1,2, Stefan Link1,2, Michael Gebhart1,2, Ingo Pansa2, Sebastian Abeck2

1Karlsruher Integriertes InformationsManagement (KIM)
Steinbuch Centre for Computing (SCC)

2Research Group Cooperation & Management,
 Karlsruhe Institute of Technology, Germany

{ hoyer | link | gebhart | pansa | abeck } @ kit.edu

Abstract. To improve the quality of research and teaching, the Karlsruhe Insti-
tute of Technology (KIT) set up a Web-based, service-oriented portal, support-
ing students and lecturers alike in their daily business. To narrow the gap be-
tween the user’s requirements and the supporting IT systems, existing distrib-
uted legacy applications have to be leveraged to provide common interfaces
that can be integrated as functional components to the portal. Since new re-
quirements continue to emerge, a systematic development approach for deriving
adequate interfaces and data schemas from requirements is taken. Therefore, we
propose a model-driven approach for deriving Web service interfaces and data
schemas based on requirements and exemplify our approach by extending the
portal with a new feature called “study progress”, which requires the integration
of additional distributed legacy applications.

Keywords: Distributed Legacy Applications, Social Community, Web Ser-
vices, Model-Driven Software Development

1 Introduction

Due to increasing competition between universities, at the Karlsruhe Institute of
Technology (KIT) one of the key targets is the improvement of the quality of research
and teaching [2]. Therefore, a Web-based, service-oriented portal, which is referred to
in this paper as KIT-portal, has been established to support students and teachers in
their daily business, ranging from registering for an exam to paying tuition fees (c.f.
[17]). Hence, functionality provided by several existing applications has been inte-
grated to the KIT-portal and can now be accessed in an efficient way.

As students represent a major part of the social community of a university, there is
a constant demand of supporting additional and new requirements via the KIT-portal.
For example, the students are very interested in being able to see their current study
progress at a glance. Hence, they wish to keep track of passed, failed or outstanding
examinations, they want to review their overall performance or they want to be in-
formed about the next possible steps in their studies. To support these business re-
quirements in the KIT-portal, the functionality of existing course and exam manage-
ment applications has to be reused and improved to provide the required overview.

2 Philip Hoyer, Stefan Link, Michael Gebhart, Ingo Pansa, Sebastian Abeck

Besides the challenge of integrating existing applications, the space for visualizing
study progress is limited due to the properties of the KIT-portal. Thus, a preliminary
analysis of possible visualization techniques has been performed [2], suggesting the
concept of tree maps [1] as an adequate visualization form meeting the given re-
quirements.

In this scenario, we present a model-driven approach focusing on the requirements
of students at our university, as, e.g., the visualization of the progress of a student.
Therefore, these requirements are aligned with the provided functionality of existing
distributed applications by using Web service interfaces. The required composition of
different Web service interfaces is formalized using UML activity diagrams. They are
transformed [9] into a service model [3] and in a last step transformed into Web ser-
vice interfaces using the Web Services Description Language (WSDL) [5] and data
schemas using the XML schema definition (XSD) [6].

The paper is structured as followed: Section 2 illustrates the model-driven ap-
proach for the study progress. Section 3 presents the most relevant related work in the
context of modeling workflows with the UML and the transformations into interfaces
for Web services. Section 4 concludes the paper and makes some suggestions for
future research work.

2 Service-oriented and Model-driven Development Approach

In this chapter, our model-driven software development process is discussed, using
the example of implementing a visualization of a student’s progress in his/her studies
for the KIT-portal. The development process starts with the definition of the require-
ments by means of a GUI sketch. The next step is to model the data types and the
workflow according to the defined requirements and the available legacy applications.
Afterwards, model-driven transformation techniques are applied, generating formal
interface descriptions by transforming the workflow modeled, by means of an UML
activity diagram into a service model. Finally, a second transformation step is used to
generate Web service interfaces and corresponding XML-based data types.

2.1 Defining the Requirements

The KIT offers its students the KIT-portal [17], where each student can access his/her
personal data and perform actions (e.g., to register for an examination) in a simple and
intuitive way. The KIT-portal integrates several existing applications in a service-
oriented manner using Web technologies and Web standards. At the KIT, several
applications are available, each storing and providing individual data for students.
However, none of the applications provides interoperable interfaces, hence preventing
an easy and straightforward service-oriented integration. An important step towards
service-orientation is the development of standardized and technology-neutral inter-
faces for accessing and manipulating the data provided by existing legacy applications
[11]. These interfaces and the corresponding adapter logic have to be developed to
allow the integration of existing applications.

Study Progress Visualized in a Web Portal 3

One feature of the KIT-portal to be developed is meant to facilitate a student’s over-
view of his/her passed, failed or outstanding examinations in a graphical and easily
understandable manner. Hence, several GUI sketches and prototypes were created
prior to starting the development process, to get the look-and-feel for an adequate
visualization form of the study progress. A modified version of a tree map provided
the most promising results [1]. In the modified tree map, all the learning modules of a
study course are visualized by rectangles using an equal width, but different height,
depending on the amount of credit points (c.f. European Credit Transfer System,
ECTS [18]) of the module. The same applies for the examinations allocated to a mod-
ule. In addition, each examination is color-coded depending on the current state or
result with regard to the student. For instance, a failed exam is colored red, whereas a
passed exam is colored in different green tones, according to the examination result.
Examinations that cannot be taken due to unfulfilled preconditions are colored grey,
etc. This way, students can check their progress at a glance.

Bachelor Computer Science

Computer Science
4 / 9 ECTS

Computer Science
4 / 9 ECTS

Mathematics
3 / 8 ECTS

Mathematics
3 / 8 ECTS

Economics
1 / 4 ECTS

Economics
1 / 4 ECTS

Computer Science I
2 ECTS / Grade 2,3

Computer Science I
2 ECTS / Grade 2,3

Computer Science II
2 ECTS / Grade 1,0

Computer Science II
2 ECTS / Grade 1,0

Computer Science III
2 ECTS

Computer Science III
2 ECTS

Computer Science IV
3 ECTS

Computer Science IV
3 ECTS

Linear Algebra I
2 ECTS / Grade 3,3

Linear Algebra I
2 ECTS / Grade 3,3

Higher Mathematics
4 ECTS

Higher Mathematics
4 ECTS

Linear Algebra II
2 ECTS

Linear Algebra II
2 ECTS

Basics of Economics
1 ECTS / 2,0

Basics of Economics
1 ECTS / 2,0

Advanced Economics
3 ECTS / Registered

Advanced Economics
3 ECTS / Registered

 Fig. 1: An early GUI sketch for the study progress tree map

Figure 1 shows an early GUI sketch of the study progress tree map for the study

course “Bachelor of Computer Science” consisting of three modules “Computer Sci-
ence”, “Mathematics” and “Economics”. This sketch provides the starting point for
realizing the technical solution that is aligned with the derivable requirements.

2.2 Analyzing and Designing the Workflow “Study Progress”

Based on the defined requirements we extracted from the GUI sketch, the needed data
objects for the study progress tree map, such as examination results or personal in-
formation about the student, are specified. In almost all cases, the data objects can
easily be derived from the native interface description of the legacy applications, or, if

4 Philip Hoyer, Stefan Link, Michael Gebhart, Ingo Pansa, Sebastian Abeck

such an interface is not present, from the database schema used by the underlying
application. Hence, the desired data objects are modeled as UML classes including
properties and associations.

Having analyzed and modeled the required data objects for implementing the tree
map, the next step is to design the workflow in a bottom-up way. During the execu-
tion of the workflow, several applications providing the required data are invoked and
finally an XML representation of the tree map is available. The workflow for visualiz-
ing the study progress is represented by a UML activity “StudyProgress” (c.f. figure
2). The input to the workflow is the login name from the KIT-portal (student’s univer-
sity e-mail address) only. The output is the tree map as a structured data type.

To specify the starting input and the final output of data, the activity has two Activ-
ityParameterNodes (“loginEmail”, “treeMap”) attached to it. The activity contains
several ActivityPartitions (“Study”, “Examination”), each representing a legacy ap-
plication to be invoked during the execution of the workflow. To invoke an applica-
tion, CallOperationActions are used and modeled (e.g., “GetStudentBaseData”,
“GetExaminationResults”, “GetCourseCatalog”). As a minor restriction, it is not
possible to invoke more than one application within one invocation. Therefore, each
CallOperationAction must be contained in exactly one ActivityPartition. However,
since one application can be invoked to retrieve different data sets, a UML Activity-
Partition can contain several different CallOperationActions.

The activity diagram is refined by specifying the type of data sent to or retrieved
from the invoked applications. The type of data sent to an application is modeled by
adding InputPins and/or ValuePins to the CallOperationAction. In contrast, Output-
Pins represent the data returned from an application. According to the UML Super-
structure [4], the UML Pin meta class is derived from the TypedElement and the
MultiplicityElement meta class by Generalization. The former enables the user to type
a Pin with a PrimitiveType (such as String, Integer, etc.) or one of the data objects
modeled earlier as a UML class. The latter allows the collection of complex data
structures in one invocation. The same applies for the two ActivityParameterNodes.

To represent the data flow between the invocations, we add ObjectFlows between
InputPins and OutputPins. The ObjectFlows also specify in which order the invoca-
tions must be executed. Additionally, if a typed InputPin does not have a matching
incoming ObjectFlow, the required data has to be collected in some other way. In
such a case, we need to model additional Actions, which return the required data and
provide an OutputPin for that. An example is the data of the current term that is
needed as an input parameter to get the student’s current study program and examina-
tion list. Thus, we add the Action “GetCurrentTerm”, which has no InputPins but one
OutputPin containing the current term as a String. The same applies for the student’s
matriculation number (“GetMatricNumber”), since the portal system only knows the
student’s university e-mail address, which has to be entered during the KIT-portal
login. Of course, the appropriate application which holds the data (in our case, the
accounting application) must be known in advance. Thus the application has to be
added as an ActivityPartition, if not present yet (e.g., “Account”).

With the use of an activity diagram, we have formalized how the data is processed,
which applications are invoked and in which order the invocations occur. Figure 2
shows a part of the final activity diagram labeled as “Analysis & Design Model”. Due
to space restrictions, Figure 2 only shows the upper part of the activity diagram.

Study Progress Visualized in a Web Portal 5

Fig. 2: Overview of our approach

6 Philip Hoyer, Stefan Link, Michael Gebhart, Ingo Pansa, Sebastian Abeck

2.3 Transformation to a Service Model

To generate standardized Web-based interface descriptions and data types, the next
step is to transform the model described in the previous chapter to a service model
[3], which, among other details, specifies the interfaces for each legacy application
and the study progress workflow itself.

The transformation rules are formalized in the transformation language “Queries,
Views, Transformation” (QVT) [7]. Since the transformation rules are described by
meta model elements, the transformation itself is independent from the concrete
model, and thus can be reused for other development projects.

The transformation uses the created model as the source and generates a target
model according to a set of transformation rules. Since each ActivityPartition repre-
sents an application, we transform the ActivityPartitions into a UML Interface. Each
CallOperationAction contained in the ActivityPartition results in an Operation of the
associated Interface. Finally, InputPins and OutputPins of the Action are converted
into Parameters of the Operation with the appropriate direction flag (in or out). It is
not required to transform the data types modeled as Classes. Still, the data types are
needed in the target model. The Classes representing the data types either can be
imported from the source model in the target model or copied one-to-one to the target
model. The same applies for the UML Activity and the containing Actions. The op-
eration Property of the CallOperationActions can now be associated with the gener-
ated Operations of the Interfaces. Finally, another interface “StudyProgressService”
and a containing Operation “executeStudyProgess” are generated, representing the
Activity “StudyProgress”. The Parameters for this Operation are generated according
to the ActivityParameterPins. In total, n + 1 interfaces are generated, whereby n cor-
relates to the number of invoked applications.

The middle part of Figure 2 shows the resulting target model, containing Interfaces
for each ActivityPartition and the Activity itself. Due to space restrictions, we omitted
most stereotypes in Figure 2 as specified in [3]. The grey dashed lines show some
exemplary transformations from the activity diagram model elements to model ele-
ments of the Service Model.

2.4 Transformation into Web Service Interface Descriptions

As the final modeling step, we transform the technology-neutral UML Interfaces from
the service model into WSDL [5] and the corresponding Classes to XML Schema [6].
The transformation rules are mainly straightforward. Each Service Interface is trans-
formed into an abstract part of a WSDL file with exactly one port type. The port type
contains the same number of operations as the UML Interface specified. The genera-
tion of the messages for the input and output of the Web service depends on the
WSDL style. Since it is most common and recommended by WS-I [16], we use the
style “document/literal-wrapped” [13]. For this style, each message acting as input or
output for a Web Service contains exactly one part, even if multiple UML Parameters
are specified as input or output. To distinguish between the Parameters, XML Schema
is used to build an RPC-like XML structure, using the operation name as the top
XML element and the names and types of the parameter as XML child elements.

Study Progress Visualized in a Web Portal 7

The data types specified as UML Classes are transformed to one XML Schema file
[6], containing all needed data types as complex types. The schema file is imported by
every WSDL file generated to have a common set of XML data types for different
Web services.

To also generate the concrete part of the WSDL file, the proposed service model
can be extended by using UML Components and attached Ports, as in [3, 10]. A Port
acts as WSDL bindings and refers to the generated Service Interfaces as provided
interfaces or if needed by composite components (like the StudyProgress) as required
interfaces.

2.5 Final Steps

To finalize the integration, the required Web services have to be implemented. The
generated WSDL files can be used to create skeletons for the implementation. For this
purpose, existing approaches are applied [9] that are already part of several develop-
ment tools. For the implementation of the Web services to integrate existing applica-
tions, Java or .NET is used.

The entire study progress process is also provided as a Web service. It is imple-
mented using the Business Process Execution Language (BPEL) [8], which can also
be generated from the UML activity diagram. For the sake of simplicity, we omitted
this part in the paper but will present it in a future work.

With the implementation of the Web services and the workflow, the entire Study
Progress workflow can be executed. Figure 3 gives the result of the engineered solu-
tion, showing a late prototype of the study process running in the KIT-portal.

Fig. 3: Visualization of the advanced prototype

8 Philip Hoyer, Stefan Link, Michael Gebhart, Ingo Pansa, Sebastian Abeck

3 Related Work

As our approach targets a wide area of different artifacts supporting a model-driven
development approach (GUI sketches, service model, WSDL and Web services),
there are several related studies.

Considering the overall development approach, starting with formal requirements
and leading to a set of executable code, Meijler, Kruithof et al. illuminate the advan-
tages of model-driven integration aligned with service-oriented principles [12]. An
integrated approach combining both top-down (requirements to software components)
and bottom-up (existing tool assets) approaches is proposed. Therefore, we decided
not to follow strictly a top-down development approach that would hamper the inte-
gration of existing applications, but to follow a combined middle-out approach ena-
bling the description of existing applications early in the transformation process.

The idea of visualizing hierarchically structured information in terms of tree maps
initially was published by Johnson and Shneiderman [1]. Based on their concepts,
Allerding, Buck et al. present an approach using tree map concepts and focusing the
requirements of students managing their studies [2]. Adapting their idea of visualizing
the study progress of a student, we used an early sketch of a tree map as input for a
model-driven development approach. The execution of integration projects following
a model-driven development approach based on Web service technologies is dis-
cussed in scientific and commercial communities alike.

Model-driven development of Web services has already been discussed in several
previous works, for instance in [3, 15, 16]. Based on these approaches, we focused on
capturing business requirements with models and mapping these models to existing
distributed legacy applications. Considering the integration of legacy applications
using Web services, a generic model for application integration is presented [11].
Since different legacy applications often use different formats and standards for de-
scribing their data schemas, a mapping of these different data schemas has to be real-
ized additionally. The proposed approach in [11] focuses the integration of several
different data schemas by implementing adapter components realized with Web ser-
vices. Within the special requirements of our scenario, not only the integration of
existing data schemas but also the integration of existing business logic is needed;
thus our approach considers the aspect of integration from a system-oriented direc-
tion.

Finally, the presented intermediate model for service descriptions (c.f. chapter 2.3)
is based on the work of Emig, Krutz et al. [3]. While the approach presented in [3]
targets towards a holistic and technology-independent possibility for describing ser-
vice interfaces of service-oriented components, we improved the proposed develop-
ment approach by the integration aspect of existing software assets. Similar to [3],
Johnson demonstrates the use of a technology-independent approach for describing
service-oriented software components [10]. An UML2.0 Profile as an extension to
existing modeling tools is proposed, although specific modeling elements are intro-
duced regarding the very special needs of the appointed vendor-specific tool chain.

Study Progress Visualized in a Web Portal 9

4 Conclusion and Outlook

In this paper, we outlined how a study progress as integration scenario of existing
distributed legacy applications can be realized using a model-driven development
approach. The visualized study progress allows students to see their status quo at a
glance. To provide the required functionality in a service-oriented manner, legacy
applications have been integrated via standardized Web service interfaces. First, the
necessary composition of functionality is modeled using UML Activity Diagrams.
Their application enables the usage of several existing UML modeling tools and al-
lows a formalized and visual description of the application logic and thus enables
domain experts to describe the integration process. To derive the Web service inter-
faces, automatic transformations are applied that help to avoid transformation errors
due to human interpretations. As the approach started by gathering user requirements
by means of a GUI sketch, we consider our solution user-aligned and a promising
enhancement of existing integration approaches. Due to the successful realization of
the study progress at the KIT, we plan to establish this development approach for
future works as an integrated course catalog and a library that require the integration
of various distributed legacy applications. With these features, we offer our students
as a social community further innovative functionality.

References

1. Johnson B., Shneiderman B: Tree-Maps: A Space-Filling Approach to the Visualization of
Hierarchical Information Structures, IEEE Computer Society Press,
http://hcil.cs.umd.edu/trs/91-06/91-06.html, October 1991.

2. Allerding F., Buck J., Freudenstein P., Klosek B., Höllrigl T., Juling W., Keuter B., Link
S., Majer F., Maurer A., Nussbaumer M., Ried D., Schell F.: Integriertes Service-Portal zur
Studienassistenz, Proceedings of the 38th GI Conference - Lecture Notes in Informatics,
München, Germany, Munich, 2008.

3. Emig C., Krutz K., Link S., Momm C, Abeck S..: Model-Driven Development of SOA
Services, Cooperation & Management, Universität Karlsruhe (TH), Internal Research Re-
port, 2008.

4. Object Management Group (OMG): Unified Modeling Language (OMG UML), Super-
structure Version 2.2. http://www.omg.org/cgi-bin/doc?formal/09-02-02

5. World Wide Web Consortium (W3C): Web Services Description Language (WSDL) Ver-
sion 2.0 Part 1: Core Language. http://www.w3.org/TR/wsdl20/

6. World Wide Web Consortium (W3C): XML Schema Definition Language (XSD) 1.1 Part
1: Structures. http://www.w3.org/TR/xmlschema11-1/

7. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0. http://www.omg.org/spec/QVT/1.0

8. Organization for the Advancement of Structured Information Standards (OASIS): Web
Services Business Process Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

9. The Apache Software Foundation: Code Generator Wizard - eclipse Plug-in,
http://ws.apache.org/axis2/tools/1_0/eclipse/wsdl2java-plugin.html

10. Johnston S.: UML 2.0 Profile for Software Services, IBM developerWorks
http://www.ibm.com/developerworks/rational/library/05/419_soa/, April 2005.

10 Philip Hoyer, Stefan Link, Michael Gebhart, Ingo Pansa, Sebastian Abeck

11. Harikumar A., Lee R, Yang H., Kim H., Kang B.: A Model for Application Integration
using Web Services, Proceedings of the Fourth Annual ACIS International Conference on
Computer and Information Science, July 2005.

12. Meijler T.D., Kruithof G., Beest N.: Top Down Versus Bottom Up in Service-Oriented
Integration: An MDA-Based Solution for Minimizing Technology Coupling, Lecture Notes
in Computer Science Volume 4294/2006.

13. Butek R.: Which style of WSDL should I Use, IBM developerWorks, 2003.
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/

14. Gronmo R., Skogan D., Solheim I., Oldevik J.: Model-driven Web Service Development.
International Journal of Web Services Research, Volume 1, Number 4.

15. Marcos E., Castro V., Vela B.: Representing Web Services with UML: A Case Study. 1st
International Conference on Service-Oriented Computing (ICSOC), Trento, Italy, Decem-
ber 2003.

16. Web Services Interoperability Organization: Basic Profile Version 1.2. http://www.ws-
i.org/Profiles/BasicProfile-1_2(WGAD).html

17. Karlsruhe Institute of Technology (KIT): The KIT study portal, http://studium.kit.edu

