
Architecture of and Migration to
SOA’s Presentation Layer

Stefan Link1, Fabian Jakobs1, 2, Ludwig Neer2, Sebastian Abeck1

1 Cooperation & Management, Universität Karlsruhe (TH), 76128 Karlsruhe
2 CAS GmbH, 76131 Karlsruhe

{ link | jakobs | abeck }@cm-tm.uka.de, { fabian.jakobs | ludwig.neer }@cas.de

Abstract. Service-oriented architectures (SOA) enable enterprises to quickly
respond to changing business requirements. Since there are human users
interacting with SOA by, for example, entering data or making decisions, user
interfaces are an integral part of the architecture. In this article the state-of-the-
art concepts and relevant standards related to the presentation layer of service-
oriented architectures are described. In a case study it is shown how to migrate
an existing presentation component of a customer relationship management
(CRM) system to SOA.

Keywords: Service-oriented Architectures, Service-oriented Approach, Web
Services for Remote Portlets, Presentation Layer, Portal, Portlets, Migration

1 Introduction

The service-oriented paradigm allows the providing of abstract software functionality
through services that can be flexibly composed to support business processes. A
service-oriented architecture (SOA) enables the integration of existing applications by
providing their functionality as services. Thereby the value of existing software assets
is improved, redundancy in IT infrastructure can be avoided and a quick reaction to
changes in business processes becomes possible [14]. To yield these benefits and to
support the service-oriented paradigm, SOA can be divided into several logical layers
(see Fig. 1.): The bottom layer of the SOA reference model is the application and
data layer which comprises the existing (legacy) systems. Those systems can
abstractly be seen as functional components. From the SOA perspective it does not
matter if these legacy systems are internally monolithic or multi-tier architectures.
SOA integrates and thereby leverages these systems by exposing their functionality as
reusable services. At the process and integration layer of SOA the services provided
by the application layer are mapped to the IT-supported parts of business processes.
Assembling services in order to accomplish business logic and business processes is
called orchestration. [7] defines orchestration as "the implementation of a business
related workflow owned by a single entity through the combination of business
relevant services". Processes themselves realized by orchestration exhibit a service
interface [10].

mailto:%7D@cm-tm.uka.de

2 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

Service-Oriented Architecture

Presentation
Layer

Process &
Integration
Layer

Services

Orchestration Orchestration
Choreography

User
Interface

Application &
Data Layer

Functional
Component

Functional
Component

Business Process

Fig. 1. Reference Model of SOA

These orchestration service interfaces can be invoked by the presentation layer in
different ways. On the one hand they can be invoked directly by a user interface
residing on the presentation layer, on the other hand it is possible to integrate a task
management system between the process and integration layer and the presentation
layer [13]. A task management system assigns different tasks to the responsible users
or roles and hence allows for long running processes in which multiple users or
organizational units are involved.

In this article we focus on the internal architecture of SOA’s presentation layer and
the interface to the end user and do not further investigate the connection to the
process layer. The central questions dealt with by this article are:

• How to apply the service-oriented approach to the presentation layer?
• What are possible technologies and standards used on SOA's presentation layer?
• How to migrate existing user interfaces to SOA’s presentation layer?

Based on these questions this article is organized as follows: First the service-oriented
approach is introduced and applied to the presentation layer of SOA. Next a
classification of presentation services is given. Portlets and portals as state-of-the-art
standards for use on the presentation layer of SOA are focused upon in chapter 4 and
chapter 5 introduces the Web Services for Remote Portlets (WSRP) standard as one of
the most relevant standards found on the presentation layer of SOA. Chapter 6
presents our approach to migrate presentation components to SOA and chapter 7
outlines how we implemented the migration process by presenting a case study. As
this article provides an overview of the state-of-the-art on the presentation layer of
SOA we will point out the related work we consulted in chapter 8 and finally in
chapter 9 postulate interesting research tasks we found.

Architecture of and Migration to
SOA’s Presentation Layer 3

2 Service-Oriented Approach for the Presentation Layer

The benefits of a service-oriented approach like loose coupling, interoperability and
reusability are based on a basic interaction model involving three primary parties [3]:
the service provider, the service consumer and the service registry. The interaction
between these three parties is often referred to as the “find-bind-execute” paradigm.
The service-oriented approach has been successfully applied to the application layer
of SOA. Functionality which is implemented by e.g. a legacy application is provided
through a service interface and thereby made accessible to service consumers as
shown in Fig. 1. The mentioned benefits of the service-oriented approach are also
appealing for the presentation layer because quick changing business processes
require adjustable, interoperable and flexible user interfaces. Hence there is the need
for a well-defined service interface on the presentation layer [6]. Furthermore the
find-bind-execute paradigm has to be applied to the presentation layer, meaning the
service provider, the service consumer and the service registry have to be identified
for the presentation layer.
We distinguish presentation services [5] from business services as described further in
the next section. On the presentation layer the find-bind-execute paradigm is
implemented by the following three parties:

• Presentation Service Provider: Provides presentation components as services. As
on the application layer there usually are several service providers offering
presentation services specified to different purposes.

• Presentation Service Consumer: Invokes one or more presentation services in
order to integrate them into a specific context like e.g. a control panel. There can
be several presentation consumers on the presentation layer, each of which serves a
certain business purpose.

• Presentation Service Registry: All presentation services made available by
service providers are listed and can be found by service consumers. Service
registries can be thought of as company-wide or even as world-wide.

To be able to identify these parties on the presentation layer, the reference model of
SOA shown above has to be refined. Fig. 2 concentrates on the presentation layer
showing a refined reference model where the mentioned service interface is presented
providing the foundation for achieving interoperability and reusability on the
presentation layer. The presentation container acts as a presentation service consumer
and invokes several presentation services which are based on presentation
components. So these presentation components are provided by one or more
presentation service providers and are integrated to SOA through a service interface.
In order to find the adequate service, the presentation service consumer can search the
presentation service registry. It offers a service interface as well through which
services are discovered by the presentation service consumer. For this reason the
service interface provided by the service registry is not presentation- but business-
oriented. We denoted this service interface on the business service layer.

4 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

Service-Oriented Architecture

Presentation
Layer Presentation

Container

Presentation Services

Presentation
Component

Business Services
Process & Integration Layer
Application & Data Layer

Presentation
Component

Fig. 2. Refined Model of SOA’s Presentation Layer

3 Presentation Services

Figure 2 shows that there are different types of services integrated to SOA to serve
different purposes. One has to distinguish between presentation and business services.
As [5] points out presentation services provide a user interface and thereby allow for
direct interaction between the human user and the service. This interaction is the key
difference to traditional business services. Some sources therefore refer to these
services as interaction services [4]. A business service focuses on processing data
without any human interaction. This service follows the request-response model by
receiving a request, processing it and generating a response on a programmatic level.
It thereby generates a business value that is used in direct machine-to-machine
communication.

A presentation service does not process any business-related data and thus
generates no business value. It enables human users to interact with business services
by providing e.g. markup fragments which can be aggregated by presentation
containers like, for example, a portal. The presentation services act as a gateway
between the business services and the user. Usually a business process is supported by
more than one single business service and thereby may need more then one
presentation service. A portal is one typical possibility to involve human users with
business processes [10]. It contains portlets representing the user’s interface to the
business processes.

4 Portals and Portlets

A presentation service may provide for example markup fragments. The markup
fragments have to be aggregated in a broader context like a portal [11]. From a
technical perspective, a portal provides a container for aggregating content from
various applications for presentation to the end user. The user does not recognize the
different applications and s/he does not care how the content or functionality is
provided. S/he wants to use one single interface which should be adjustable to her/his

Architecture of and Migration to
SOA’s Presentation Layer 5

needs. A portal is one possible solution as it usually is a Web-based application acting
as gateway between human users and a range of different business services. The user
can customize it in look and feel while it further supports the single sign-on approach
for security [2]. From the user’s perspective a portal is a customizable working space
granting access to and integrating all applications needed with a single login.

Within a portal, several portlets are aggregated. They can each be seen as a user
interface to an application and they are running inside a portal page along with any
number of similar portlets. Portlets are defined as self-contained pluggable user
interface components which are managed by a container (the portal) [1]. They process
requests and generate dynamic content. For example if a user pushes a button or some
other sort of event-triggering element of the user interface, the portlet processes this
request and generates the adequate content to be displayed to the user.

A portlet can be implemented in very different ways. Some are standard-based
(e.g. JSR 168) while others are proprietary to the portal which hosts them. Each of
these portlets generates fragments of mark-ups which the portal aggregates to create a
complete page that is presented to the user. Finally a portlet provides the functionality
a presentation service is based on. If a portlet is developed following a portlet
standard it can certainly be applied to any portal implementing this standard but yet
this portlet would still be limited to one portal framework meaning that it does not
support interoperability or loose coupling and hence does not comply with the
service-oriented approach. Thus, there is a need for a platform- and framework-
spanning portlet standard.

5 Web Services for Remote Portlets

Web services support the service-oriented approach in SOA enabling interoperability
between different systems based on the use of open standards [15]. Therefore the
Organization for the Advancement of Structured Information Standards (OASIS)
adopted another Web service protocol for aggregating content and interactive Web
applications from remote sources named Web Services for Remote Portlets (WSRP).
With WSRP it is possible to integrate portlets from different (remote) service
providers without concern to the implementation and provision of the portlet itself.
There is one well-defined Web service interface where the portlet can be invoked. So
if e.g. a company needs to implement a new business process with human interaction,
it can first look for an adequate presentation service in a service registry.

If successful, there is no need to implement the user interface on one’s own. In this
way the service-oriented approach is applied to the presentation layer of the SOA.
Before presenting the architecture suggested by WSRP, the main actors defined by the
WSRP standard have to be introduced (compare with the find-bind-execute
paradigm):

• WSRP Producer: Provides at least one portlet which can be customized by a
consumer who integrates the portlet to her/his portal. The producer itself is
implemented as a Web service. If the producer provides more than one portlet, it

6 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

often provides a portlet runtime (a so called portlet container) in order to manage
the portlets.

• WSRP Consumer: Implemented as a Web service client like, for example, a
portal that is able to invoke the Web services via WSRP. WSRP supports n:m
relations between providers and consumers. Thereby it is for example possible for
a consumer to support business process flows integrating several portlets from
different producers. As the portlets are provided as services, the consumer provides
proxies to access the needed portlets.

• WSRP Portlet: Is very similar to a standard portlet. The main difference is found
in the access to the portlet. The WSRP portlet is provided through a WSRP
producer and is accessed remotely through the interface defined by that producer.
Unlike a portlet, a WSRP portlet cannot be accessed directly but instead must be
accessed through its parent WSRP producer.

Service-Oriented Architecture

Portlet
Layer

Web Services (Business)

Portal
Layer

Web Services (Presentation)

Portlet Container
Portlet 1 Portlet 2

WSRP Consumer

WSRP Producer

Portal

Process & Integration Layer
Application & Data Layer

Fig. 3. WSRP Architecture on Presentation Layer of SOA

Fig. 3 extends the reference model of a SOA with the architectural specifications of
WSRP. The WSRP standard defines a set of interfaces that all WSRP producers have
to implement. The standardization of these interfaces allows WSRP-compliant portals
to interact with remotely running portlets. There are two required and two optional
interfaces forced by WSRP specification in order to enable a standardized
communication between WSRP consumer and WSRP producer:

• Service Description Interface (required): Through the service description
interface, a WSRP producer offers its portlets to the WSRP consumers. The WSRP
consumer uses this interface to discover which portlets the producer offers.
Additionally this interface is used if the consumer needs additional metadata about
the producer itself. This metadata e.g. contains information if the producer requires
registration or if a cookie has to be initialized before interacting with a consumer.

• Markup Interface (required): This interface enables a consumer to interact with
a remotely running portlet. As the portlets are used as services the consumer uses

Architecture of and Migration to
SOA’s Presentation Layer 7

this interface to perform all actions necessary concerning the input of the human
user. If for example a user submits a form (markup) from the portal page, the
resulting response is created by delivering the appropriate markup. It might also be
necessary for the portal to receive the latest markup of the portlet (user clicks e.g. a
refresh button). The portlet then delivers the markup according to its current state.

• Registration Interface (optional): With this interface WSRP allows for an in-
band mechanism for registration. This registration enables the provider to come up
with a customized behavior and appearance for the portlet which differs from the
standard appearance of the portlet. This mechanism further allows for a role-based
interaction, e.g. each role is allowed to see different portlets. behavior and
appearance.

• Portlet Management Interface (optional): A portlet hosted by a portlet container
has a life cycle. It is instantiated, executed and finally destroyed. With the portlet
management interface the WSRP consumer obtains access to the life cycle of the
remotely-running portlet. The consumer then has the ability to customize a portlet's
behavior or even destroy an instance of a remotely-running portlet.

Following the WSRP standard the service-oriented approach can be implemented on
SOA’s presentation layer. Further, WSRP provides the means to address another task
concerning service-orientation. As SOA is widely accepted as a future software
architecture, one has to consider possibilities of migrating existing legacy applications
to all layers of SOA. The migration of presentation components is one task which has
to be dealt with.

6 Migration to SOA’s Presentation Layer

With the advancements of integration technologies it is possible to integrate existing
applications in SOA, e.g. via Web services. As emphasized in the introduction, it is
necessary for a company to be able to adjust to quickly changing demands of the
customers. The establishment of SOA as a flexible and adjustable architecture to
support such rapidly changing business processes is a strategic goal. Whereas SOA is
the future architecture, existing systems have to be migrated towards SOA. The
migration process from an existing IT application infrastructure to SOA is very work
intensive so one has to think about how a migration process can be performed with
minimal influence on the day-to-day business [6]. It is reasonable to strive for a
smooth migration which is defined as a migration process where an application
component remains applicable in both the old and the new software architecture at
each point of time in the migration process. There are several advantages of such a
smooth migration [9, 12]:

• Often substantial investments have been made to develop legacy applications and
thereby it is economically not an option to just abandon them.

• During the migration process business has to go on. It is impossible for an
enterprise to stop selling its products and services for several months just for the
purpose of re-organizing its internal software systems.

8 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

• As the documentation of legacy software usually is poor, the software itself is the
only place where business logic is “documented”.

Another benefit of a smooth migration is that providers offer third party modules for
these legacy applications. Each of them has to be taken into account if the migration
is economically advantageous or not. Until the legacy application is shut down, their
modules remain usable.

A smooth migration on the presentation layer has, according to the above
definition, to provide presentation components applicable in both the old and the new
software architecture. SOA, with the use of WSRP on the presentation layer, is our
chosen architecture to migrate to because of its many advantages. As preconditions to
the suggested migration concept, we assume that the architecture which is to be
migrated is not a Web application but a traditional client-server application. So the
main tasks concerning migration on the presentation layer are to first extend the
legacy software architecture to be able to integrate and invoke portlets and then to
provide the existing presentation components as portlets. This provision is done by an
iterative process consisting of three basic steps:

1. Identify a reusable presentation component of the legacy client.
2. Duplicate the presentation component using portlet technology.
3. Integrate this portlet back to the legacy client.

The first step is a thorough analysis of the legacy client. Reusable presentation
components must be identified and examined if these components can be used to
build useful presentation-oriented Web services for SOA. Another important point is
to check if the component can be technically implemented using portlet technology.
Since portlets are based on standard Web technologies such as HTML, CSS or
JavaScript, not everything that could be done in the legacy client running on a local
system can be done in a portlet. Portlets, for example, cannot directly use services of
the user’s local operating system. This results in a sorted list of components suitable
for the migration process. The order of this list is influenced by the estimated cost and
the expected benefit of the migration of this component.

Next, the user interface component must be implemented as a portlet. Traditional
presentation components of Web applications tend to have a very ineffective usability
in terms of user feedback and response times [8]. To achieve acceptance by users of
the legacy client, the new portlet should at least reach the same level of usability as
the legacy client provided. Current trends in Web application development (e.g.
AJAX [16]) try to solve these issues by transferring some of the user interface code as
JavaScript into the client and communicate asynchronously between Web browser
and server.

The portlet can now be used in any WSRP capable portal but reusing it in the
legacy client needs some initial work. The client must be extended to display portlets
along with the present user interface. This extension can be split into three
components, which have to be added to the client:

• Portal Controller: Acts as a WSRP consumer and is responsible for establishing
the communication with the WSRP provider. It further establishes the
communication to the legacy presentation components via the client controller.

Architecture of and Migration to
SOA’s Presentation Layer 9

• Portal Plugin: This component is needed to display the aggregated markup
fragments of the invoked portlets to the user.

• Client Controller: Permits the legacy client to communicate with the embedded
portlets. With this extension in place the legacy client can benefit from all
published portlets of the SOA.

Fig. 4 shows the migration scenario. The central integration point in this architecture
is the portlet container. Each user interface component that can be implemented as a
portlet can immediately be integrated into the portal and the modified legacy client.
The advantage of this approach is based on the fact that after each step in the
migration process a fully functional system is available. The legacy client’s
presentation components are migrated step by step.

Legacy Architecture

Application & Data
Layer

Presentation Layer
Service-Oriented Architecture

Portlet Layer

Web Services (Business)

Portal Layer

Web Services (Pres.)

Portlet Container

Portlet 1 Portlet 2

WSRP Producer

Portal

Process & Integration Layer
Application & Data Layer

Presentation Container

Miscellaneous

WSRP Consumer

Functional
Component

Portal
Plugin

Present.
Component

Portal
Controller

Client
Controller

Fig. 4. Migration Scenario

7 Case Study: Migration of a CRM client

This exemplified migration process is now demonstrated on a client of a customer
relationship management (CRM) system. This CRM system has been in use for
several years. It is based on Delphi and has to be migrated according to the approach
described in the last chapter.

The first step to take is to analyze the existing client in order to identify a reusable
presentation component. The CRM system provides among other features a calendar
component. This component is needed in the future client and therefore has to be
migrated. As the calendar component will be implemented as a portlet, one has to

10 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

make sure that the usability of the calendar portlet is at least equal to the old one. We
managed to achieve an excellent usability with the AJAX framework qooxdoo [17].
Qooxdoo provides most of the basic functions needed to implement a calendar as
Web application like to drag and drop dates. While implementing the calendar portlet
we encountered several problems we had to solve. Most of them were based on the
fact that a portlet may run amongst several others within a portal and is not aware of
its neighbor portlets:

• Persistence of state: If the user decides to reload the whole page the state of the
portlets using AJAX is lost because this state is stored in JavaScript variables
which are reset if the portlet is reloaded. In this case we used the portal’s session
context to keep the state of the AJAX portlets consistent.

• Common namespace: Portlets do not only share the space on a portal page, they
also share a common namespace in a common JavaScript context. All global
apparent classes, methods or variables can unintentional be modified by different
portlets. This problem gets worse if one thinks about a portlet running in several
instances. The solution comes with a unique portlet identifier with which every
hyperlink, form etc. is extended. This way one can for example determine in which
instance a hyperlink was clicked.

• Asynchronous communication: Within a portal every request sent from a portlet
is relayed through the portal itself. Further a portal always answers a request from
a portlet by sending the whole page anew so the benefit of asynchronous
communication is lost. We solved this problem by implementing a servlet running
parallel to a portlet and sharing its session data. Servlets are able to send requests
unchanged to their client and therefore qualify as a solution for this problem.

Afterwards the existing client had to be extended to be able to use the new portlets.
We extended the Delphi client by integrating a Web browser component and used it
as runtime environment for the portlets. Further we used the API of the Web browser
to manipulate the pages document object model (DOM) or to deploy our own
JavaScript functions. Finally we followed the approach presented in [18] and were
able to asynchronously call Web services with AJAX.

8 Related Work

The reference model of SOA (see Fig. 1) that was the starting point of this article can
be found in different publications, which cover the presentation layer as follows:

• Erl [7] agrees with that view on SOA but does not address the presentation layer.
• Arsanjani [3] addresses the presentation layer as a “future layer” which has to be

taken into account in order to implement solutions based on the increasing
convergence of standards like WSRP.

• Caste [5] focuses attention on the presentation layer demonstrating the architectural
design given by the WSRP standard.

The two most important publications related to the migration aspects of an SOA are:

Architecture of and Migration to
SOA’s Presentation Layer 11

• Lewis et al. [12] introduce the benefits of a SOA and point out, that migration to a
SOA is neither easy nor automatic. They agree with [9] that for many organizations
it is impossible to walk away from investments made with existing legacy
applications and to redevelop the needed functionality as services from scratch. A
migration process called “The Service-Oriented Migration and Reuse Technique”
(SMART) is provided. SMART collects input information about the legacy system
and after performing several activities it outputs a service migration strategy. The
strategy is thereby residing on a high business level and finally recommends e.g.
which components of the legacy application can be derived from services.

• Hasselbring and Reussner [9] start from the same initial situation: there is a legacy
system which cannot be abolished and, therefore, has to be migrated to SOA. They
present an architecture pattern called Dublo (Duplication of business logic). We
based our solution on the Dublo approach whose basic idea is that business logic is
formulated in a new business logic tier and a legacy adapter for access by the new
business logic to the existing legacy business logic is written. This adapter is used
to access the database so it is only accessed via the existing legacy code. A new
presentation layer is added which manages new business logic implemented to the
new business logic tier.

9 Conclusion and Outlook

The application of the service-oriented approach to SOA’s presentation layer enables
enterprises to easily adjust or redesign user interfaces to quickly changing business
processes. Instead of redeveloping the user interface each time when new
requirements have to be met, the user interface is rearranged through a new
composition of presentation services. As shown the WSRP standard supports this
service-oriented approach by giving the architectural means to provide presentation
components as services. Yet, one still has to compose these presentation services
manually. As on the application layer, business process modeling languages help to
almost automatically derive an executable code from a business process model,
making it preferable for developing user interfaces. Several constraints like the
usability or the convenience of the user interfaces have to be taken into account. We
understand that one possible approach could be to use an existing modeling language
like BPMN and to add information concerning the user interface already at design
time. In order to be able to add this information it must be investigated if the given
elements of a modeling language are sufficient or if it becomes inevitable to extend
the meta-model of the according modeling language.

The approach we presented enabled us to migrate existing presentation components
to portlets and to use them within both the legacy and the new service-oriented
architecture. Migration is and will become more and more important within the next
years as the introduction of a service-oriented architecture within enterprises becomes
a strategic goal. Considering the heterogeneous IT systems which are in use today it is
unlikely that a common, general and still applicable migration process can be derived.
Therefore it is all the more reasonable to develop individual migration strategies as a
source of the basics for new migration projects.

12 Stefan Link, Fabian Jakobs, Ludwig Neer, Sebastian Abeck

References

1. Asif Akram, Rob Allan, Rob Crouchley: WSRP Reincarnation of Service Oriented
Architecture, CCLRC Daresbury Laboratory, e-Science Centre of Excellence, University of
Lancaster, UK http://www.grids.ac.uk/eSC/AllHands2005/AHMCD/papers/436.pdf

2. Asif Akram, Dharmesh Chohan, Xiao Dong Wang, Xiaobo Yang and Rob Allan: A Service
Oriented Architecture for Portals Using Portlets CCLRC e-Science Centre, CCLRC
Daresbury Laboratory Warrington WA4 4AD, UK
http://www.grids.ac.uk/eSC/AllHands2005/AHMCD/papers/406.pdf

3. Ali Arsanjani: Service-Oriented Modeling and Architecture, IBM developer works, 2004.
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

4. Wolfgang Beinhauer, Thomas Schlegel: User Interfaces for Service Oriented Architectures,
July 2005, http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_
for_Service_ Oriented_Architectures.pdf

5. Bryan Caste: Introduction to Web Services for Remote Portlets, IBM Developerworks 2005
http://www-128.ibm.com/developerworks/webservices/library/ws-wsrp/

6. Kishore Channabasavaiah and Kerrie Holley: Migrating to a service-oriented architecture
http://www.cytetech.com/documents/SOA-IBM.pdf, White Paper IBM, April 2004

7. Thomas Erl: Service-Oriented Architecture: Concepts, Technology and Design, Prentice Hall
PTR, ISBN 0-13-185858-0 August 04, 2005.

8. Jesse James Garret: A New Approach to Web Applications, Technical Essay, 2005
http://adaptivepath.com/publications/essays/archives/000385.php

9. Wilhelm Hasselbring, Ralf Reussner: The Dublo Architecture Pattern for Smooth Migration
of Business Information Systems: An experience report, Proceedings of 26th International
Conference on Software Engineering (ICSE 2004), IEEE Computer Society Press, Mai 2004
http://ieeexplore.ieee.org/iel5/9201/29176/01317434.pdf

10. Frank Leymann: Web Services - Distributed Applications without Limits, Business,
Technology and Web, Leipzig, 2003.

11. Jeff Linwood, Dave Winter: Building Portals with the Java Portlet API, ISBN: 1-59059-
284-0, 2004 http://chronos.org/alphawiki/attach?page=Portlets%2Fportlet.pdf

12. Grace Lewis, Ed Morris, Liam O’Brien, Dennis Smith, Lutz Wrage: SMART: The Service-
Oriented Migration and Reuse Technique, September 2005, Technical Note
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05tn029.pdf

13. Frank Leymann, Dieter Roller, M.-T. Schmidt: Web Services and business process
management. In: IBM Systems Journal (2002) 41, S. 198-211.

14. James McGovern, Sameer Tyagi, Michael Stevens, Sunil Mathew: Java Web Services
Architecture, IBM Developer Book, Juli 2003
http://java.sun.com/developer/Books/j2ee/jwsa/

15. Arthur Ryman: Understanding Web Services, July 2003, IBM Technical Article
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0307_ryman/
ryman.html

16. Jesse James Garret: A new approach to Web applications, essay from adaptive path,
February 2005 http://adaptivepath.com/publications/essays/archives/000385.php

17. The qooxdoo AJAX framework: http://www.qooxdoo.org
18. Ahmet Sayar, Galip Aydin, Marlon Pierce, Geoffrey Fox: Integrating AJAX Approach into

GIS Visualization Web Services, AICT-ICIW'06
http://ieeexplore.ieee.org/iel5/10670/33674/01602302.pdf?isnumber=&arnumber=1602302

http://www.grids.ac.uk/eSC/AllHands2005/AHMCD/papers/436.pdf
http://www.grids.ac.uk/eSC/AllHands2005/AHMCD/papers/406.pdf
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_%20for_Service_%20Oriented_Architectures.pdf
http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_%20for_Service_%20Oriented_Architectures.pdf
http://www-128.ibm.com/developerworks/webservices/library/ws-wsrp/
http://www.cytetech.com/documents/SOA-IBM.pdf
http://adaptivepath.com/publications/essays/archives/000385.php
http://ieeexplore.ieee.org/iel5/9201/29176/01317434.pdf
http://chronos.org/alphawiki/attach?page=Portlets%2Fportlet.pdf
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05tn029.pdf
http://java.sun.com/developer/Books/j2ee/jwsa/
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0307_ryman/%20ryman.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0307_ryman/%20ryman.html
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.qooxdoo.org/
http://ieeexplore.ieee.org/iel5/10670/33674/01602302.pdf?isnumber=&arnumber=1602302

