A{])

Karlsruher Institut fur Technologie

Deriving
Goal-oriented Performance Models
by Systematic Experimentation

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultat fir Informatik
des Karlsruher Instituts flr Technologie (KIT)

genehmigte
Dissertation

von

Dennis Jakob Westermann
aus Karlsruhe

Tag der mundlichen Prifung: 25.10.2013
Erstgutachter: Prof. Dr. Ralf Reussner
Zweitgutachter: Prof. Dr. Hannes Hartenstein

Abstract

The performance (i.e., resource usage, timing behaviour, and throughput) of a system
influences the total cost of ownership (TCO) as well as the user satisfaction. Both are
highly business critical metrics for software providers. In the field of software per-
formance engineering, performance modelling approaches have been established that
allow performance engineers to evaluate design decisions with respect to performance
characteristics. However, when it comes to creating and maintaining performance mod-
els for software systems that are based on existing services and libraries, current perfor-
mance modelling approaches can require substantial effort. Often, the size of the soft-
ware systems, the heterogeneous technology stacks, and the fine-grained abstraction
level of the approaches make the resulting models extremely complex and thus limit
their acceptance among practitioners. Therefore, this thesis addresses the challenge of
performance prediction in scenarios that involve existing software systems. It proposes
a novel goal-oriented method for experimental, measurement-based performance mod-
elling. The method guides performance engineers in finding a suitable abstraction level
and supports the efficient derivation of performance models using automated statistical
model inference. Moreover, it can be combined with other modelling approaches in or-
der to limit the modelling effort of existing subsystems. We introduce (i) a language for
the specification and execution of automatable experiment series and (ii) present and
compare different strategies for the automated, adaptive generation of experimental de-
signs for statistical model inference. We validated the approach in a number of case
studies including standard industry benchmarks as well as a real development scenario
at SAP. In general, our approach allows performance engineers to efficiently create and
maintain accurate goal-oriented performance models of software systems that involve
complex, existing components.

1ii

Kurzfassung

Die Performance-Eigenschaften eines Software-Systems (Ressourcennutzung, Antwort-
zeitverhalten oder Durchsatz) beeinflussen sowohl die Betriebskosten als auch die Zu-
friedenheit der Nutzer. Beides sind duferst geschiftskritische Metriken fiir Software-
Anbieter. Im Bereich Software Performance Engineering haben sich Modellierungsan-
sitze etabliert, mit deren Hilfe Entwurfsentscheidungen beziiglich ihrer Performance-
Eigenschaften analysiert und bewertet werden konnen. Zur Erstellung und Wartung
von Performance-Modellen fiir bereits existierende Software-Systeme oder Software-
Komponenten ist bei den existierenden Ansétzen ein erheblicher manueller Aufwand
notwendig. Performance-Modelle fiir solche Systeme werden oft sehr komplex und da-
her in der Praxis selten erstellt. Griinde hierfiir sind die Grof3e und Komplexitit der Sys-
teme, die heterogenen Technologie-Landschaften und die fein-granulare Abstraktions-
ebene bei der Modellierung. Die vorliegende Arbeit adressiert daher die Herausforde-
rung Performance-Modellierung bestehender komplexer Software Systeme zu vereinfa-
chen. Die Arbeit fiihrt eine neue zielgerichtete Methodik zur experimentellen, messba-
sierten Performance-Modellierung ein. Performance-Experten erhalten durch die Me-
thodik eine Hilfestellung bei der Suche nach einer geeigneten Abstraktionsebene bei
der Modellierung. Des Weiteren unterstiitzt die Methodik das effiziente Ableiten von
Performance-Modellen durch die automatisierte Kombination von Messpunktbestim-
mung und statistischer Modellbildung. Dariiber hinaus kann die vorgestellte Methodik
mit existierenden Ansitzen kombiniert werden, um deren Vorteile zu nutzen und den-
noch den Modellierungsaufwand fiir bestehende Teilsysteme moglichst gering zu hal-
ten. In der Arbeit werden (i) eine Sprache und ein Framework zur Spezifikation und
Ausfiihrung von automatisierbaren Experiment Serien vorgestellt und (i1) verschiedene
Strategien fiir die automatisierte Generierung von Versuchspldnen zur messbasierten,
statistischen Modellbildung eingefiihrt und miteinander verglichen. Der Ansatz wurde
in einer Reihe von Fallstudien validiert. Es konnte unter anderem in einer industriellen
Fallsstudie bei der SAP AG gezeigt werden, dass Performance-Modelle fiir komple-
xe, bestehende Software-Systeme effizient und mit sehr guter Vorhersagegenauigkeit
abgeleitet werden konnen.

Acknowledgements

Besides the computer science knowledge, writing a dissertation requires inspiration,
confidence, will, motivation, and endurance. And while knowledge is something you
can teach yourself, the other factors are influenced by the people that back you up along
the way to the Dr.-Ing..

First of all, I’d like to thank my grandpa Rudolf that unfortunately couldn’t go the
whole way with me, but has been one of my major sources of will, confidence and
motivation. I dedicate this thesis to him and my beloved grandma Helene.

If I had to name a person without whom this work would not have been possible,
there would be only one answer: my long-time girlfriend, current fiancee and future
wife Jenny. Jenny, it is impossible to put in words your support and my gratitude.
Hence, I’ll leave it to the plain and true - I love you.

Furthermore, I'd like to thank my whole family and all my friends. Each of you
contributed in some way to this thesis, maybe without even knowing it.

Before I start to thank the numerous people which actively contributed to the content
of this thesis, I’d like to mention my uncle Roland which has been the only IT guy in
my circle of family and friends until I started to study computer science. He gave me
my first PC and fixed it a dozen times after I managed to crash it. I haven’t been a
natural talent with respect to computers. So, thanks for your patience and for being an
inspiring example.

Speaking of inspiration ultimately brings me to Ralf Reussner. I first encountered
Ralf as a student sitting in his lecture. Ralf is a remarkable teacher and drummed up my
enthusiasm for software engineering. I’d like to thank him for giving me the opportunity
to write this thesis and for being a great supervisor and mentor. Furthermore, I’d like to
thank Hannes Hartenstein for co-supervising my thesis and Walter Tichy and Sebastian
Abeck for agreeing to be part of my examination committee.

When you start your work as a PhD, it is very important that there are people around
you that steer you in a direction that is worth to be researched. In my case, Jens Happe
did a perfect job in this matter. Jens not only gave me a direction but also provided
guidance and support during my whole PhD time. Jens, I'm so thankful to have had
you (and to still have you) as a companion on the way to achieving ambitious goals.
Together with Jens, I worked in the magnificent LPE team at SAP Research. Thanks
to Alexander Wert, Christoph Heger and Roozbeh Farahbod for all your input, the

vii

fruitful discussions, your reviews, bearing my reviews, and always being there with
your support. And, of course, special thanks to Michael Hauck who served as my
sparring partner in the final writing phase of the thesis. Moreover, I owe my sincere
gratitude to all our students who contributed their piece to the puzzle of my thesis.
Especially Christian Heupel, Christian Weiss, Marius Oehler, Michael Faber, Pascal
Meier, Rouven Krebs, Tobias Pfeifer and Yusuf Dogan.

At SAP, I did my best to put research into practice and I'd like to give a special
thanks to Wolfgang Theilmann and Martin Moser for their great support and mentoring
in helping me to achieve this mission.

Unfortunately, I cannot write a direct word of thanks to each fellow of my PhD time.
However, at least I can try to name all of the great colleagues at SAP, KIT and FZI. It has
been a pleasure to work with you. Thanks to: Aleksandar Milenkoski, Andreas Friesen,
Andreas Klein, Andreas Rentschler, Anne Koziolek, Axel Spriestersbach, Benjamin
Klatt, Bernd Scheuermann, Bernhard Riedhofer, Christof Momm, Christoph Rath-
felder, Daniel Scheibli, Elena Kienhofer, Elmar Dorner, Erik Burger, Fabian Brosig,
Fouad ben Nasr Omri, Frank Schulz, Franz Brosch, Heiko Koziolek, Henning Groenda,
Hui Li, Johannes Stammel, Jorg HenB, Jorg Rech, Klaus Krogmann, Lucia Happe,
Markus Heller, Martin Kiister, Matthias Huber, Max Kramer, Michael Altenhofen,
Michael Kuperberg, Michael Langhammer, Mircea Trifu, Misha Strittmatter, Nikolas
Herbst, Nikolaus Huber, Petr Zdrahal, Philipp Merkle, Piotr Rygielski, Qais Noor-
shams, Ralph Benzinger, Robert Heinrich, Ruediger Winter, Samuel Kounev, Simon
Spinner, Steffen Becker, Steffen Kruse, Sylvia Scheu, Tatiana Rhode, Thomas Gold-
schmidt, Thorsten Sandfuchs, Vanessa Martin Rodriguez, Viktoria Firus, Wei Cheng,
Wolfgang Schwach, Zoltan Nochta, Zoya Durdik.

Last but not least, I'd like to thank all those people that I forgot to mention in this
acknowledgement and give a big thank you to No Budget Productions for shooting a
wonderful movie about my time as a PhD.

viii

Contents

Acknowledgements \4
1. Introduction 1
1.1. Research Questions o v i v v it 2
1.2. Existing Solutions L 5
1.3. Contributions L 6
1.4, Outline. e 9
2. Foundations 11
2.1. Software Performance Engineering 11
2.1.1. Performance Measurement 12
2.1.2. Web Performance Optimisation 16
2.2. Experimental Design L. 19
22.1. BasicTerms 19
2.2.2. Identifying Significant Main and Interaction Effects 20
2.3. Statistical Inference L Lo 25
2.3.1. Multivariate Adaptive Regression Splines (MARS) 26
2.3.2. Classification and Regression Trees (CART) 26
2.3.3. Genetic Programming (GP) 27
234, Krigingo 29

3. Deriving Goal-oriented Performance Models by Systematic

Experimentation 31
3.1. Scientific Challenges 32
3.2. Specifying Goal-oriented Performance Models 33
3.2.1. Purpose, Consumption, Construction 34
322, Examples 35
3.3. Systematic, Measurement-based Experimentation 40
3.3.1. Define Context 42
3.3.2. Understand Performance Behaviour 42
3.3.3. Derive Performance Model 45
3.3.4. Validate Performance Model 46

X

3.4. Discussion of Assumptions and Limitations 47

3.5. Summary and Contributions 48
. Automated Performance Evaluation Experiments 51
4.1. Scientific Challenges 52
4.2, OVEIVIEW . . . o v vttt e e e e 54
4.3. Experiment Definition and Execution 60
4.3.1. Experiment Specification Language 61
4.3.2. Automated Experiment Execution 68
433, Summary 69

4.4. Automated Combination of Experimental Design and Statistical Methods 70
4.4.1. Requirements 70
4.4.2. Automated Inference of Performance Prediction Functions 71
443, Summary 85

4.5. Validation 85
4.5.1. Simulated Functions 88
4.5.2. Enterprise Application Customisation 90
4.5.3. Java Virtual Machine Tuning 92
45.4. Evaluation 95
4.5.5. Threatsto Validity 96

4.6. Discussion of Assumptions and Limitations 97
4.7. Summary and Contributions Lo 98

. Industrial Case Study on Deriving Goal-Oriented Performance

Models 101
5.1, ConteXt e e e e e e e 101
5.2, Scenario e e 102
5.3. Execution e 103
5.3.1. DefineContext 103
5.3.2. Understand Performance Behaviour 109
5.3.3. Derive Performance Model 126
5.3.4. Validate Performance Model 140
5.4. Discussionof Results 142
5.5. Threatsto Validity 146
5.5.1. Internal Validity 146
5.5.2. External Validity, 146

5.6. Summary and Contributions 147

. Related Work 149

6.1. Measurement-based Performance Evaluation 149
6.1.1. Experimental Performance Evaluation 149

6.1.2. FunctionInference 153

6.2. Performance PredictionModels 156
6.3. Summary e e 161

. Conclusion 163
7.1, Summary e e e e 163
7.2. Benefits 165
7.3. Future Work 167

. Software Performance Cockpit 173
A.l. Motivation L e e e 173
A2, Goals 173
A.3. Architecture 174
A4, Exampleo 177

. Complete Results for Automated Experiment Selection Validation 181

. Prediction Functions of Industrial Cased Study 183
C.1. Prediction Function for Firefox 183
C.2. Prediction Function for Chrome 184
C.3. Prediction Function for Internet Explorer 186

X1

1. Introduction

Quality aspects such as performance, security, and maintainability play an important
role in software engineering. The performance (i.e., resource usage, timing behaviour,
and throughput) of a system influences the total cost of ownership (TCO) as well as
the user satisfaction which are highly business critical metrics [Bix10, Dix09, JN12,
Crol2]. In [LivO8], the founders of companies like PayPal and Hotmail report on the
large efforts they had to undertake in order to keep their first application versions re-
sponsive and make it scalable with the growing user base. To avoid these last-minute
efforts, it is essential to integrate performance evaluation into the overall software en-
gineering lifecycle and ensure early and continuous performance awareness [Jai91].
Williams and Smith [WSO03] estimate the possible financial benefit of continuous per-
formance consideration to be several million US-dollars in a business case for a medium
sized project.

However, evaluating the performance of a system is a complex task as it requires
detailed knowledge about the software itself, the platform on which the software runs,
and the methods and tools to assess and interpret performance metrics. Usually, per-
formance evaluations are conducted by performance analysts that team up with single
members of the corresponding development units [SMF"07]. The methods that are
applied to evaluate performance can be grouped in two categories: scenario-based load
and regression testing and performance modelling [WFP07]. While load and regres-
sion testing are mostly used to define and monitor quality gates for software develop-
ment, performance modelling is a suitable means to evaluate design decisions and get
a detailed understanding of a system’s performance characteristics early in the devel-
opment process. A performance model is an abstraction of the actual software system
that describes the performance behaviour depending on the system’s usage [SWO1].
For example, the results derived by a performance model can be used to answer what-
if questions like "What happens to performance if I change the values of configuration
parameter X and Y ?" or "What happens to performance if I use design pattern A instead
of B?".

Creating performance models for complex systems is a challenging task that is sub-
ject to ongoing research in the performance engineering field [Smi07, WFP07, Koz10].
Such complex systems are not developed from scratch but use existing services and li-
braries like middleware or legacy components, they comprise millions of lines of code

1

1. Introduction

designed and developed by multiple architects and hundreds of developers, and they are
subject to continuous change. Performance analysts have to identify which of the many
potential system components and parameters are performance-relevant. Moreover, they
have to ensure that they have all major sources of disturbance under control in order
to draw reliable conclusions. And ultimately, they have to quantify the relationship
between the performance-relevant parameters and the performance metric of interest
in order to provide this information to developers and architects. Classical model-
driven approaches (such as surveyed in [BDIS04] and [Koz10]) require much human
knowledge and effort to construct performance models of existing applications as they
require a detailed description of the internal system behaviour. Re-engineering ap-
proaches [Kro10] can help to reduce efforts but get complex when applied to heteroge-
neous technology stacks. A common issue of all performance modelling approaches is
the selection of the abstraction level. In most existing approaches, the abstraction level
is too fine-grained which indeed provides a lot of information and flexibility but which
makes the modelling process as well as the resulting models too complex [Smi07]. In
the scenarios that we address in this thesis, software architects or developers are in-
terested in the performance impact of very specific changes that do not require this
flexibility [Jai91, WFPO7]. In general, too much information and flexibility can some-
times lead to disinterest due to missing comprehensibility.

In this thesis, we introduce a novel method for experimental, measurement-based
performance modelling which guides performance engineers in finding a suitable ab-
straction level and which addresses the challenge of dealing with existing and evolv-
ing software systems more efficiently. In order to support the implementation of the
method, we introduce (i) a language for the specification and execution of automatable
experiment series and (ii) present and compare different strategies for the automated,
adaptive generation of experimental designs for statistical model inference. We vali-
dated the approach in a number of case studies including standard industry benchmarks
as well as a real development scenario at SAP. In the industrial case study at SAP, we
designed a performance model for enterprise web application front-ends. In general,
our approach allows performance engineers to efficiently create and maintain accurate
goal-oriented performance models of complex software systems.

1.1. Research Questions

In this thesis, we address three main areas:

e In the area of Performance Modelling, we aim at a better integration of perfor-
mance models in industrial software development and therefore finding ways
to deal with existing and evolving software systems more efficiently.

1.1. Research Questions

e In the area of Experimental Performance Evaluation, we aim at making the
process of defining and running performance evaluation experiments more ef-
ficient.

e In the area of Web Performance, we aim at increasing the performance aware-
ness of front-end developers in the design phase of enterprise web application

screens.

In the following, we briefly introduce the research questions that we approach in the
different areas. A detailed discussion of the scientific challenges is provided in each
chapter.

Performance Modelling The most recent overviews on achievements and outstand-
ing problems in the area of software performance modelling are provided by Woodside
et. al [WFPO7], Smith [SmiO7], and Koziolek [Koz10]. A common conclusion is that
although the modelling methods and tools have evolved and it has been proven that
the resulting models can provide accurate predictions for real-world software systems,
there is a need to ,,[...]| make Software Performance Engineering (SPE) more acces-
sible to software developers rather than requiring modelling gurus, and to make SPE
more likely to be adopted and used in development organisations.“ [Smi07]. Woodside
et al. [WFPO7] highlight the need for a convergence between measurement-based and
model-based approaches towards more practicable and maintainable performance pre-
diction models. A main challenge with respect to practical scenarios is to find proper
mechanisms for determining the performance behaviour of systems or parts of a system
(e.g. legacy systems or third-party components) that cannot be modelled formally (or
only with large manual effort). Moreover, the abstraction level of performance models
needs to be better aligned to the needs of software architects and developers [Jai91].
This can significantly reduce modelling efforts and increase the acceptance of perfor-
mance models among practitioners. In this thesis, we address the aforementioned prob-
lems in the context of modelling existing software systems and thus aim at answering
the following questions:

1. How to find a proper abstraction level for a performance model?
2. How to create and maintain performance models of existing software systems

efficiently?

Experimental Performance Evaluation In industrial practice, each performance
evaluation scenario differs from another in, for example, the system under test, the

1. Introduction

tools used to monitor the system, or the tools used to generate load. In order to ap-
ply an experimental, measurement-based approach we need to be able to control these
heterogeneous landscapes, i.e.,vary the values of input parameters and observe several
performance metrics [Jai91]. Given a specific test environment, we can theoretically
measure any point in the parameter space (i.e., any combination of input parameter val-
ues). Practically, this is impossible due to the huge amount of potential measurement
points (i.e., experiments) even for simple systems. Furthermore, in order to derive a
performance model based on experimentation, a large amount of different experiment
series have to be conducted. And, in order to maintain the models experiment series
have to be repeated on a regular basis. Thus, the efficient specification and automated
execution of experiment series is an essential challenge that needs to be addressed.
Generally, we need to approach the following research questions in the area of experi-
mental performance evaluation:

1. How to find a trade-off between the number of experiments and prediction accu-
racy?

2. What is a suitable abstraction level to deal with heterogeneous scenarios?

3. How to specify automatable performance evaluation experiments?

Web Performance In Chapter 5, we apply our approach in the web development do-
main. In this context, we address research questions in the area of Web Performance.
Work in this field is based on the observation that a major fraction of the end-to-end
response times of web applications is spent in the front-end [Sou07, Dix09]. Thus,
improving front-end performance is a critical task for responsive applications. In his
books [Sou07, Sou09], Steve Souders introduced a set of basic rules to optimize front-
end performance. Inspired by these rules, tools like WebPageTest [Mee] and others al-
low developers to detect and automatically resolve the most common problems. For the
development of web-based enterprise applications, companies often rely on JavaScript
libraries that provide a uniform appearance, as well as a set of Ul elements and utility
functions commonly used in this kind of applications. Besides the classical challenges
addressed by the guidelines and tools mentioned before, UI developers and designers
need to evaluate the impact of the design of a screen on front-end performance. This
involves questions like ,,How many columns and rows can I add to a table of type X
in my web application without violating performance requirements?* or ,,What is the
impact of back-end call Y on front-end performance?. Theoretically, these questions
could also be answered with the existing performance measurement and analysis tools.
However, practically the effort for applying measurement-based approaches to these

1.2. Existing Solutions

kind of questions is too high, which hinders the flexible, performance-aware construc-
tion and evaluation of screen designs. Moreover, the development of a screen’s design
is usually conducted before the screen is actually implemented (e.g. using wireframe
or mockup tools). As a consequence, early performance feedback (prior to implemen-
tation) is essential to drive the deployment of fast web applications [Fro13]. In order to
provide this early feedback, we need to answer the following questions:

1. How to predict the performance of web applications?

2. What are performance-relevant influences in enterprise web application front-
ends?

3. How to create a prediction model that captures all performance-relevant aspects
and predicts front-end performance based on the planned Ul design?

1.2. Existing Solutions

As discussed in the previous section, performance modelling needs closer integration
in industrial software development processes and thus ways to deal with existing and
evolving software systems more efficiently. In the following, we give a brief overview
of approaches that deal with this challenge.

Several approaches build upon established architecture-based performance mod-
elling methods (e.g. as surveyed in [BDIS04, Koz10]). Concerning the evaluation of
already existing components, the main focus of these approaches lies on (i) the deriva-
tion or extraction of appropriate architecture models and (ii) the estimation of resource
demands and other quantitative data needed to parametrize the performance models.
Approaches focusing on the first issue analyse call traces [BKKO09] or apply static
code analyses [KKR10] to extract models of software systems. Approaches focusing
on the second issue (e.g. [AW04, PSST06, SSNT08, TZV'08, KPSCD09, TDZN10,
HKHRI11]) use benchmarking and monitoring of systems to derive model parameters.
The general drawback of these approaches is that they are bound to the assumptions
of the underlying performance model [WFPO7]. For example, if a network connection
is modelled with FCFS scheduling, it won’t capture the effect of collisions on the net-
work. Another important issue is scalability. Creating architecture-based performance
models for large systems requires considerable effort and can become too costly and
error-prone as much work has to be done manually. For the same reason, many devel-
opers do not trust or understand performance models, even if such models are available.
Concerning legacy systems and third party software, the required knowledge to model a
systems architecture may even not be available at all, or the heterogeneous technology
stack makes modelling infeasible.

1. Introduction

Existing approaches that support an experimental, measurement-based performance
evaluation process focus on (i) the efficient specification of experiments, and (ii) the
(semi-) automated execution of experiments. However, none of the approaches sup-
ports the technology- and application-independent implementation of a holistic and
systematic approach to the performance analysis of software systems such as, for ex-
ample, defined by Jain [Jai91]. Existing experiment specification languages are often
bound to the corresponding experiment management system which in turn are in most
cases bound to a specific execution environment. Nimrod/G [AGKOO] is for example
a tool that allows performance analysts to conduct parametrised simulations in Grid
environments. While the corresponding specification language supports the definition
of input parameters and different types of value assignments, it also includes parts that
are very specific to the execution of simulation models in Grid environments (such
as task descriptions that are supposed to run on the selected node). ZEN [PFO5] is a
directive-based language which has the drawback that the experiment meta-information
is defined in the application source code. This limits its scope to studies where the
source code is available and easy to compile and deploy, as for every experiment a
recompilation and redeployment is conducted by the corresponding experiment man-
agement system ZENTURION [PF04]. Approaches such as presented by Woodside
et al. [WVCBO1], Wu et al. [WWO08] and Hauck et al. [HKHR11] apply experimen-
tal measurements to calibrate a prediction model that has been created in an upstream
manual step. Thus, these approaches are tied to a certain type of performance models
or a certain aspect of a software system. Another group of approaches [KM97, Wor05]
perform experimental analysis on data measured at system runtime. Although these ap-
proaches use the notion of experimentation, they lack the capability to systematically
control the execution of experiments based on experimental designs. Approaches from
other domains, such as the ZOO experiment management system [ILGP96], lack the
capability of specifying sophisticated experiment selection strategies for the automated
control of large sets of experiments.

1.3. Contributions

In the scope of this thesis, we proposed a novel method for experimental, measurement-
based performance modelling. In order to support the implementation of the method,
we introduced (i) a language for the specification and execution of automatable exper-
iment series and (ii) developed and compared different strategies for the automated,
adaptive generation of experimental designs for statistical model inference. Moreover,
we applied our method in an industrial case study at SAP, where we designed a perfor-

1.3. Contributions

mance model for enterprise web application front-ends. In the following, we discuss
the contributions of this work in more detail.

A Method for Experimental, Measurement-based Performance Modelling Our
novel method for experimental, measurement-based performance modelling includes
two main blocks: (i) a goal-oriented procedure for the specification of performance
models, and (ii) a process definition for the experimental derivation of goal-oriented
performance models. The explicit goal-oriented specification of a performance model
based on our Purpose, Consumption, Construction methodology, supports performance
engineers in finding an appropriate abstraction level and thus avoiding the construction
of too detailed, general purpose performance models. The experimental, measurement-
based process allows performance engineers to efficiently derive and maintain perfor-
mance models of complex software systems. Based on a well-defined test environment
and a set of initial assumptions on performance-relevant influences, performance engi-
neers start an iterative specification and execution of experiment series, in which exist-
ing assumptions are validated and new assumptions are derived. Once all performance-
relevant influences are understood and quantifiable, a second set experiment series is
conducted that aim at deriving prediction functions for the performance model. Finally,
the accuracy of the performance model is validated to ensure that the model is represen-
tative. In the scope of this thesis, we apply this method for the design of a performance
model of SAP enterprise web application front-ends.

A Language for the Specification and Execution of Automatable Experiment Se-
ries In order to support the method for experimental, measurement-based perfor-
mance modelling, we developed a novel experiment specification language for auto-
mated performance evaluations. Unlike other experiment specification languages, it
enables the definition of experiments independent of concrete domains, technologies
or applications which allows performance analysts to focus on the problem that is in-
vestigated. Moreover, it allows performance analysts to reuse experiment definitions
over multiple studies and share experiment meta-information and best practices in ex-
perimental design among each other. Another benefit of our language is the clear sep-
aration between experiment definition and automated experiment execution which fa-
cilitates the integration of the language in different experiment automation tools. In
the scope of this work, we also developed a framework that uses the language to au-
tomate the execution of experiments and to iteratively combine experimental design
and analysis. Moreover, the language and the framework allow researchers and engi-
neers to apply and compare different experimental design and analysis strategies. The
efficient specification and execution of performance evaluation experiments provides

7

1. Introduction

a basis for different performance engineering tasks. In this thesis, we applied the ap-
proach for deriving software performance models. In other case studies, it has already
been applied for automated exhaustive performance regression testing [WWHM13] or
to automatically detect performance anti-patterns [WHH13].

Automated, Adaptive Generation of Experimental Designs for Statistical Model
Inference We introduced an automated iterative process that combines experiment
selection, function inference and function validation in order to derive experimental
designs that optimize the trade-off between the number of executed experiments and
the accuracy of multidimensional performance prediction functions. Performance an-
alyst can flexibly introduce, combine, and evaluate different strategies for the three
process steps. In our work, we systematically applied and evaluated (i) different strate-
gies for automatically selecting new measurement points after each iteration, (ii) dif-
ferent validation strategies that allow us to automatically decide when to terminate the
measurements, as well as (iii) different statistical model inference methodologies that
make fewer assumptions about the underlying functional dependencies. We validated
the approach by applying the different combinations in two case studies using indus-
try standard benchmarks (SAP Sales & Distribution, SPECjbb2005). In general, the
best results have been achieved by the combination Adaptive Equidistant Breakdown
(AEB) measurement point selection, Dynamic Sector validation with Global prediction
error (DSG), and Multivariate Adaptive Regression Splines (MARS) model inference.
In the case studies our approach allows performance engineers to automatically derive
performance prediction functions with a mean relative prediction error of less than 20%
using only up to 10% of the potential measurement points.

Performance Model for Enterprise Web Application Front-ends In the course of
applying our method for experimental, measurement-based performance modelling in
an end-to-end industrial case study at SAP. We evaluated the impact of different screen
design alternatives on front-end performance for enterprise web applications devel-
oped with the JavaScript library SAP UI5 [SAP13b]. Based on the experiment results,
we derived a set of heuristics to handle the large design space for web application
screens. Moreover, we designed a performance model that allows estimating the im-
pact of screen designs on performance for the three major browsers (Internet Explorer,
Chrome, and Firefox). The derived performance model supports hundreds of UI de-
signers and developers at SAP in building responsive screens. It allows them to assess
the effect of different UI design alternatives on front-end performance prior to imple-
mentation and with minimal overhead. We validated the accuracy of the performance
model by comparing predictions to measurements for screens of two real-world en-

8

1.4. Outline

terprise web applications developed with the SAP UIS library. The results show that
we can predict the front-end performance for the screens of these applications with an
average prediction error of 11% across all studied browsers. Due to the automatically
executable experiments, our approach requires only limited manual effort for updating
a performance model to system changes (e.g. new versions of the browser or the Ul
library).

1.4. Outline

e Chapter 2 describes the basic terms and concepts from the main areas relevant
for this thesis. We give a short general introduction to software performance
engineering and a more detailed view on performance measurements and web
performance. We present the concept of experimental design and introduce a
set of state of the art designs for the identification of performance-relevant pa-
rameters and parameter interactions. Furthermore, we introduce the statistical
inference methods that have been applied in the context of this thesis.

e In Chapter 3, we introduce our method for deriving goal-oriented performance
models. We describe a conceptual part that suggest a procedure on how to
approach performance modelling in the context of a software development
organisation, and an engineering part that introduces a detailed process on
how to derive a performance model based on systematic, measurement-based
experimentation. We applied the process in an industrial case study presented
in Chapter 5.

e Chapter 4 describes our work that supports the implementation of the process
introduced in Chapter 3. We present an overview on our approach for auto-
matically executing and analysing experiments. We introduce a language for
the definition of automatable performance evaluation experiments as well as a
framework that allows to automatically run these experiments in different sce-
narios. Moreover, we provide a detailed description of the automated, iterative
combination of experimental design and statistical analysis in order to derive
multidimensional performance prediction functions. In multiple case studies,
we validate that the approach can be applied to real applications and provides
accurate results running only a relatively small set of measurements.

e In Chapter 5, we apply the method introduced in Chapter 3 using the strategies
and tools introduced and validated in Chapter 4 in an end-to-end industrial case

9

1. Introduction

study that we conducted in cooperation with performance analysts and devel-
opment groups at SAP. We provide a detailed description of how we derived
and validated a performance model of the SAP UIS5 JavaScript library for three
major browsers (Internet Explorer, Chrome, and Firefox). We discuss the ac-
curacy of the resulting performance models as well as the effort for creating

and maintaining the models.

In Chapter 6, we discuss state of the art approaches in the field of measurement-
based performance evaluation that are related to our work presented in Chap-
ter 4. Moreover, we discuss existing approaches in the field of performance
modelling that apply measurements in order to deal with the complexity of
modelling existing and frequently changing software systems, and compare
these approaches to the method introduced in this thesis.

Chapter 7 concludes this thesis. We summarise the most important scientific
contributions of our work as well as the benefits to software performance en-
gineering. Finally, we outline open questions and future research directions.

2. Foundations

In this chapter, we introduce the basic terms and concepts from the main areas relevant
for this thesis: software performance engineering, experimental design, and statistical
inference. In Section 2.1, we give a short general introduction to software performance
engineering and a more detailed view on performance measurements and web perfor-
mance. In Section 2.2, we present the concept of experimental design and introduce a
set of state of the art designs for the identification of performance-relevant parameters
and parameter interactions. Finally, Section 2.3 describes statistical inference methods
that have been applied in the context of this thesis.

2.1. Software Performance Engineering

The term Software Performance Engineering (SPE) [Smi81, Smi82] has been estab-
lished by Connie Smith in the early 80’s and was originally focused on the use of per-
formance prediction models to assess the performance behaviour of a software system
in the early stages of the software development cycle. The idea was to support software
architects in detecting and solving performance problems based on well-established
performance modelling techniques like queueing network models [Laz84, BGAMTO6],
stochastic petri nets [Mar95, BK02], and stochastic process algebras [Hil96, ABC10].
Since then, the field has evolved towards modelling approaches that hide the analyti-
cal models behind the domain-specific languages of software architects and developers
in order to simplify the modelling process [Smi86, UH97, Poo0O, Smi01, DRSSOI,
BDIS04, Smi07, Koz10]. Furthermore, Woodside et. al [WFP07] established a broader
definition of software performance engineering by including ,,[...] the entire collection
of software engineering activities and related analyses used throughout the software
development cycle, which are directed to meeting performance requirements.” They
group the field in measurement-based approaches like performance testing, diagnosis
and tuning, model-based approaches as introduced by Smith, and approaches that com-
bine measurements and modelling [WFP07]. The approach presented in this thesis sup-
ports software engineers in conducting measurement-based performance evaluations.
In the remainder of this section, we present the basics of performance measurement
which builds the foundation for our automated, experimental performance evaluation
approach introduced in Chapter 4. Moreover, we present the state of the art regard-

11

2. Foundations

ing software performance engineering in web development which is the area where we
conducted the industrial case study introduced in Chapter 3.

2.1.1. Performance Measurement

Performance measurement approaches can be grouped in active measurement and pas-
sive measurement [MAO1]. Passive measurement approaches instrument and/or mon-
itor a system in order to gather measurement data but do not add additional synthetic
load on the system. This approach is also known as real user monitoring, runtime moni-
toring, or real-time application monitoring [AR10]. For example, passive measurement
is used to track actual user behaviour and characterize workload or to monitor perfor-
mance metrics and get alerted when a problem occurs. Active measurement approaches
use measurement agents that simulate real user behaviour and observe the system’s be-
haviour under the controlled workload [MAO1]. As the approach presented in this the-
sis is an active measurement approach, we focus on this type in the remainder of this
section. In the following, we describe the main components in an active measurement
approach: Workload Generation, Data Collection, and Reporting.

Workload Basically, the term workload denotes either a real workload or a synthetic
workload [Jai91]. A real workload is one observed in a productive system. Thus, real
workloads are not repeatable and therefore generally not suitable for measurement-
based performance predictions. Synthetic workloads are models of real workloads
with similar characteristics. They can be applied repeatedly, are modifiable with-
out affecting operation, may be portable to different systems, and may have built-in
measurement capabilities [Jai91]. Furthermore, in literature workloads are grouped
in coarse-grained benchmarks and fine-grained benchmarks while building benchmark
hierarchies [KS00, MAO1, Jai91]. Thereby, the granularity of the property that can be
measured determines the granularity of the workload. A coarse-grained benchmark is
for example a benchmark measuring the performance of an e-commerce system. In
contrast, a benchmark measuring the CPU speed is considered as fine-grained.

Jain [Jai91] describes four major aspects that have to be considered when selecting
workload:

e Services Exercised: One should clearly distinct between System Under Test
(SUT) and Component Under Study (CUS) while taking into account the pur-
pose of the study. SUT denotes the complete set of components of a system.
CUS is a specific component of the SUT whose alternatives should be consid-
ered. Workload (as well as performance metrics) is determined primarily by

2.1. Software Performance Engineering

the SUT. Moreover, the workload should exercise all services provided by the
SUT.

e Level of Detail: After the SUT and the corresponding service interfaces have
been identified; the next step is to choose the level of detail for the service
request that should be generated. Jain lists the possibilities as follows: Most
frequent requests (e.g. the addition instruction to compare ALUs), frequency
of request types (e.g. instruction mixes), time-stamped sequence of requests
(e.g. trace of requests on a real system), average resource demand (based on
resource demand per request), and distribution of resource demands (e.g. if
there is a large variance in the resource demands).

e Representativeness: The test workload should match the real application. That
means the arrival rate, the total resource demands, and the resource usage
profile should be the same or proportional to that of the application.

e Timeliness: User behaviour often changes over time, so synthetic workloads
could become obsolete over time. Thus, it is important to monitor the user’s
behaviour on an ongoing basis.

To convert the logical description of the workload into actual load drivers that run the
tests, one needs to decide how to generate the load. Podelko [Pod05] categorizes the
approaches as follows:

e Record and Playback (Virtual Users): Record communication between two
tiers of a system and playback the automatically created script. The users sim-
ulated in such kind of tools are referred as virtual users. The real client systems
are not necessary to replay the scripts. That allows simulating a high number
of users. Instead, the most important factor is the protocol used between the
considered tiers.

e Record and Playback (GUI Users): The second record and playback approach
comprises tools that record all actions of a real user (e.g. mouse moving and
clicking). Thus, the communication between user and client GUI is recorded
and replayed. While this approach delivers real end-to-end times, the problem
is that one needs a machine for each user that has to be simulated. This makes
the approach infeasible for measurements where a large amount of users have
to be simulated.

2. Foundations

e Manual: In some cases the manual generation of workload might be a prag-

matic option. For example, when you need to simulate just one (or a few) user
and you do not want to install a tool or develop scripts. However, problems
with manual testing are that tests are not exactly reproducible, they cause high
effort, and thus are not feasible over longer periods or for multiple users.

Programming: The programming approach means that a special program is
developed to generate multi-user workload. Therefore, the API or the source
code of the system under test is used. In simple cases, this might be a time-
and cost-effective solution, if the programmer is familiar with the API of the
system under test. However, features like complex user scenarios or central-
ized test management and result analysis can drastically increase the effort to
develop and maintain such programs.

Custom Load Generation: This is a mixed approach as it combines some of
the above mentioned approaches. One could develop lightweight custom soft-
ware clients to create the workload but use powerful tools to manage them
and analyse the results [PSGO1]. Or one could develop programs that control
workload generation tools in order to automate measurements [WHHH10].

Data Collection There are several ways to gather the values of the performance met-

rics required for an analysis. Lilja [Lil05] groups them in four categories: Event-driven,

Tracing, Sampling and Indirect.

e Event-driven: Event-driven data collection techniques gather information when-

ever a certain event is triggered (e.g. a method is entered or a specific error
occurs).

Tracing: Tracing extends the event-driven techniques by adding additional
information on the system state when the event occurs (e.g. storing which
method called the method that is observed).

Sampling: In contrast to the event-driven techniques, sampling methods gather
information at fixed time intervals. When analysing sampled data, perfor-
mance analysts need to consider that events which only occur occasionally
might not be captured by this technique. However, data gathered via the sam-
pling method provides a good statistical summary of the system’s overall be-
haviour.

2.1. Software Performance Engineering

e Indirect: If a performance metric can not be measured directly, performance
analysts need to gather data based on which the target metric can be derived
or estimated. For example, when using cloud-based runtime environments,
direct system access to measure CPU consumption might not be available. In
such a case, performance analysts need to collect data that is available from
the outside (e.g. service response times [KPSCDO09]).

Usually, the data is recorded using either standard performance measurement tools or
instrumentation. Instrumentation is a methodology where code is inserted into the sys-
tem under test which gathers customized data. The benefits of instrumentation are
convenience (one can record exactly the data that is required), data granularity (com-
pared to standard tools one can measure at any detail level), and control (one can turn
selected measurement points on and off) [SWO1].

Reporting The data that has been collected during the execution of performance mea-
surements needs to be analysed and visualized in an appropriate way. Therefore, per-
formance analyst can use, for example, spreadsheet or charting software, advanced sta-
tistical analysis tools such as R [R F13], or self-coded reporting software. In the course
of this thesis, we mainly use box-and-whisker plots (short: box plots) to summarize
and display measurement data. Box plots have been introduced by Tukey [Tuk77] and
are a powerful means to illustrate the distribution of measurement data and to compare
different data sets. Figure 2.1 shows a box plot as well as the basic terms for its in-
terpretation [Nat12, Tuk77]. The horizontal axis represents the factor of interest while

8], Extreme Points

—— —> Upper Whisker

—> 75th Percentile

Response Variable

—> Median

—> 25th Percentile

—— —> Lower Whisker

Factor of Interest
Figure 2.1.: Box plot
the vertical axis represents the response variable (i.e., the performance metric). The

horizontal line within the box depicts the median of a data set. The box itself repre-
sents the middle 50% of the data points in the data set. The top and the bottom of the

15

2. Foundations

box represent the 75th and the 25th percentile which indicate that 75% or 25%, respec-
tively, of the data points are below this response variable value. The distance between
these two values is called the interquartile range (IQR). The upper whisker represents
the largest measured data point that lies between the 75th percentile and 1.5 * IQR
and the lower whisker represents the smallest measured data point that lies between the
25th percentile and 1.5 * IQR. The values above or below the whiskers are depicted as
extreme points and are usually outliers.

2.1.2. Web Performance Optimisation

In our industrial case study (see Chapter 5), we apply our approach in the context
of web applications. In recent years, several studies [Bix10, Dix(09], books [Sou07,
Sou09, Stel12], and tools [Mee, Yah] have been published under the umbrella of web
performance optimisation. Work in this field is based on the observation that a major
fraction of the end-to-end response times of web applications is spent in the front-
end [Dix09, Sou07]. In fact, an investigation of the top 10 U.S. web sites has shown
that all of these sites spend less than 20% of the total response time for retrieving the
HTML document [Sou07]. Hence, improvements in front-end performance are more
likely to significantly improve the end-user experience. In our case study presented in
Chapter 5, the front-end performance metric that we aim to improve is the CPU time
consumed by the browser process between the loading of a page is initiated (by typing
a URL or clicking a link) until the requested page is fully loaded. In the following,
we describe the basic tasks that have to be performed by a browser when a user re-
quests a page. Figure 2.2 shows a reference architecture that adheres to most modern
browsers [GGO0S5]. The main components of a browser are:

e User Interface: Includes all visible parts of the browser except the window that
shows the screens (e.g. address bar, tool bars, search field).

e Browser Engine: Provides a high-level interface to the rendering engine.
Moreover, it is responsible for loading URIs and simple browsing actions (e.g.
reload, forward, back).

e Rendering Engine: Creates the visual representation for a given URI. This
involves parsing HTML and XML documents, displaying embedded content
(e.g. 1mages), formatting contents according to the definition in Cascading
Style Sheets (CSS), as well as calculating the exact page layout.

2.1. Software Performance Engineering

User Interface
Browser Engine >

U

Rendering Engine

4 4 LRV

JavaScript
Interpreter

9JUD3]SISiad eieq

Networking Ul Backend

Figure 2.2.: Reference architecture for web browsers [GGO05]

e Networking: Implements the file transfer protocols (e.g. HTTP and FTP) and
caches for recently retrieved resources.

e JavaScript Interpreter: Executes the JavaScript code that is embedded in a web
page.

e XML Parser: Responsible for parsing XML documents into a Document Ob-
ject Model (DOM) tree.

e Display Back-end: Is coupled to operating system interfaces and provides
drawing and windowing primitives as well as a basic set of UI widgets and
fonts.

e Data Persistence: Stores data on disk. The data can be either user-related
settings and bookmarks, or web page specific information such as cookies,
caches or certificates.

With respect to front-end performance, the networking component, the rendering en-
gine, and the JavaScript interpreter are the most important components. The workflow
of the networking component is described in [Ost11] and starts as soon as the user

17

2. Foundations

requests a page. In the first step, the browser looks up the IP address for the given
domain in a recursive search through several caches (e.g. browser, operating system)
up to the name server of the domain. Then, the browser sends a HTTP request to the
web server and waits until the server responds with a permanent redirect which needs
to be followed or with an immediate HTML response. Next, the rendering engine starts
rendering the HTML document. In the course of that, the browser sends additional
requests to the web server in order to fetch the files that are embedded in the HTML
document (e.g. images, CSS style sheets or JavaScript files) and are not available in the
cache. For each of these files, the browser goes through the same steps as described for
the HTML file. When using, for example, the AJAX technology [Hol08], the browser
continues the communication with the server even after the page is fully rendered. In
that way information can be added dynamically without re-rendering the whole screen.
Examples for such asynchronous requests are online status updates on chat or social
networking websites.

The handling of these JavaScript request is done by the JavaScript engine (see for ex-
ample Google’s V8 engine [Goo13] or the SpiderMonkey engine of Firefox [Moz13b]).
The Java Script engine is also responsible for parsing and executing the JavaScript
code in the course of the rendering process. Whether JavaScript code is executed im-
mediately during the rendering process depends on its position in the HTML docu-
ment [W3C12a].

The rendering engine is the central component of the browser. The browsers that
we use in our industrial case study are built upon the following rendering engines:
Firefox uses Gecko [Moz13a], Chrome uses Webkit [App13] and Internet Explorer’s
rendering engine is called Trident [Mic13]. Figure 2.3 illustrates the basic workflow of
a rendering engine as described in [Garl1]. Once the contents of the requested page

Parsing HTML [:> Render tree |:> Layout of the If‘> Painting the

to construct construction render tree render tree
the DOM tree

Figure 2.3.: Basic workflow of a rendering engine [Garl1]

are loaded from the networking component, the HTML parser in the rendering engine
parses the HTML document and creates the DOM tree. Moreover, the CSS parser
extracts the style information specified within the HTML document and in external
CSS files in order to create a set of style rules.

Based on the DOM tree and the style rules, the rendering engine constructs the render
tree which contains the visual elements of a screen in the order in which they will be
displayed. Moreover, the render tree holds the visual attributes of the elements such as

18

2.2. Experimental Design

color and dimensions. Non-visual elements of the DOM tree will not be inserted in the
render tree (e.g. the head element or elements whose display attribute is set to none).

In the next step, the render tree is traversed to calculate and add layout information
(i.e., exact position and size). Each element in the render tree contains a layout method
which is invoked by its parent node. The layout process can either be triggered for the
entire tree (e.g. when a screen is initially loaded or resized) or only for those elements
that are to be updated (e.g. when additional dynamic content is loaded).

Finally, the render tree is traversed again and the paint method of each element in the
tree is called. This method uses the browser’s display back-end component (see Figure
2.2) to display the content on the screen. Like the layout process, the painting can be
global or incremental.

In order to help performance analysts in understanding what happens in the browser
between the time a user initiates the loading of a page (by typing a URL or clicking
a link) until the requested page is fully loaded, the W3C Web Performance Working
Group [W3C13] recently released a set of standards [Stel2]. These standards define
APIs that, when implemented by the browsers, provide detailed information on how
long each phase of the page-loading process takes. For a detailed description of the
timings, we refer to the specification document [W3C13].

2.2. Experimental Design

Jain [Jai91] states that ,,What maximum information means depends on the purpose of
the design and the analysis method which is used applied on the data.‘ In Chapter 4,
we introduce advanced experimental designs for deriving performance prediction func-
tions. In this section, we describe the basic terms and concepts used in experimental
design). Moreover, we introduce three classical experimental designs that we use in
the course of this thesis for identifying performance-relevant influences and interaction
effects.

2.2.1. Basic Terms

In this section, we introduce some terms and concepts of experimental design (a.k.a.
Design of Experiments (DOE)). Figure 2.4 shows the basic experimentation environ-
ment that we use in this thesis for our measurement-based approach.

The input parameters i; to i, (a.k.a. factors) and its potential values (a.k.a. levels)
can be controlled and can be subject to variation in an experimental design. The ob-
servation parameters o] to o, (a.k.a. response variable) are the parameters or metrics
that are observed when an experiment is executed. The experimental design consists of

19

2. Foundations

Measurement
Utilities

System Under
Test

Measurement
Environment

Figure 2.4.: Experiment environment

specifying the number of experiments, the number of repetitions for each experiment,
as well as the parameter value combinations for each experiment [Jai91]. Usually, the
experiment results are evaluated based on a linear model. According to [Nat12], for the
input parameters i; and i, such a linear model can be defined as follows:

01 = Po+Pri1 + Bair + Praitiz+ € 2.1)

Thereby, 0 denotes the observation parameter whose values are measure for a given
experiment which specifies the values of the input parameters i; and i>. The constant
value fy describes the offset value that is independent of the input parameters. The
terms f31i; and fB,i, describe the change in the value of 0| for which each of these input
parameters is accountable. These effects are also called main effects. Furthermore,
changes in the value of o; that are caused by the interaction of the input parameters i
and i, are denoted by the term B2i;i>. In general, effects that are caused by the interac-
tion of multiple input parameters are called interaction effects. Finally, € describes the
experimental error, and thus the deviation between the model and the measured values
which cannot be described by the other terms.

2.2.2. Identifying Significant Main and Interaction Effects

In the following, we present three classical experimental designs that are most fre-
quently used for identifying the important parameters and interaction effects between
parameters [Nat12, Jai91]. We also discuss the applicability of the designs in the con-
text of this thesis.

2.2.2.1. Experimental Designs

Full Factorial Designs Full factorial designs utilize every possible combination of

20

2.2. Experimental Design

values and parameters. Hence, the number of experiments n in a performance study
with k input parameters can be calculated as

k
n= Hnj
j=1

where n; is the number of possible values for the jth parameter [Jai91]. Usually, for
each parameter the highest (+1) and lowest (-1) values are used in the design. This
special kind of a full factorial design is called 2* design. Table 2.1 shows an example
2K full factorial design for three parameters (i.e., k = 3).

’Experiment‘ i ‘ i ‘ i3 ‘
1 -1 -1] -1
2 +1] -1 | -1
3 -1 +1] -1
4 +1 | +1 | -1
5 -1 -1 +1
6 +1 | -1 | +1
7 -1 41 +1
8 +1 | +1 | +1

Table 2.1.: 2 full factorial design for three parameters

For our experiments, we try to use only the high and low values in order to keep
the number of experiments small. However, especially for non-numeric values it is
sometimes not possible to determine the high and low values upfront. The advantage of
a full factorial design is that it examines all possible combinations and thus allows us
to find all parameter interactions. However, especially when the number of parameters
is large, the number of experiments that are to be executed can result in an overall
measurement time that is not feasible in real performance evaluation scenarios.

Fractional Factorial Designs If the number of experiments required by a full fac-
torial design is too large, a fractional factorial design might be an appropriate alterna-
tive [Jai91]. Fractional factorial designs are similar to full factorial designs. They are
also usually applied with high and low values and are represented in the form of a design
matrix. However, in fractional factorial designs there is not for every combination of
parameter values an experiment executed. Instead, a subset of the full factorial design is
chosen depending on the degree of interaction effects that should be detected [Nat12].

21

2. Foundations

The design generators create a full-factorial design for a subset of the input parameters
(e.g. for 2 out of 3). The values of the remaining input parameter are derived by the
design generator based on the values of the selected parameters for the full factorial de-
sign. Table 2.2 shows such an example design where the values for the third parameter
are set to iy x ip.

Experiment‘ i ‘ i ‘ i3 ‘

1 -1 -1 | +1
2 +1 | -1] -1
3 -1 +1] -1
4 +1 | +1 | +1

Table 2.2.: 23! fractional factorial design

Using this example design, one can derive all main effects using only half of the
experiments compared to a full factorial design. However, as the third column is used
for calculating the main effect of input parameter i3, we cannot derive an estimate
for the interaction i; x ip that is separate from an estimate of the main effect for is.
This overlapping of effects is called confounding or aliasing [Nat12].The degree to
which estimated main effects are confounded with interaction effects is described by
the resolution of a design. The higher the resolution of a design, the less confounded
is the design, but the more experiments are required. The most important resolution
levels are [Nat12]:

e Resolution III designs where main effects are confounded with two-parameter
interactions and thus only main effects can be estimated reliably.

e Resolution IV designs where no main effects are confounded with two-parameter
interactions, but two-parameter interactions are confounded with each other.
Thus main effects and some two-parameter interactions can be estimated reli-
ably.

e Resolution V designs where no main effect or two-parameter interaction is
confounded with any other main effect or two-parameter interaction, but two-
parameter interactions are confounded with three-factor interactions. Thus
all main effects and all two-parameter interaction effects can be reliably esti-
mated.

22

2.2. Experimental Design

While such designs can significantly reduce the number of experiments, they require
the assumption that interaction effects of a certain degree are negligible.

Plackett-Burman Designs If one can make the assumption that interaction effects are
completely negligible, Plackett-Burman designs can be very efficient designs to iden-
tify main effects [Nat12]. Compared to full factorial and fractional factorial designs, the
Plackett-Burman designs require fewer experiments. However, this efficiency comes
with the cost that interaction effects cannot be detected.

Table 2.3 gives an overview on the characteristics of the three experimental designs
introduced in this section. The four columns include the name of the experimental de-
sign, the number of experiments required for the experimental design, the effects that
can be detected by a design, and a classification for the number of parameters n for
which the design is usually applied.

Design | Experiments | Detectable Effects # Parameters
Full Main,
. 2" small
Factorial Interaction
Fractional —k Main,)
] 2") medium/large
Factorial partially Interaction
Plackett- .
n+1 only Main large/very large
Burman

Table 2.3.: Overview of experimental designs with n parameters and two values for each parameter

The classification for the number of parameters is kept on an abstract level as the
concrete number depends on the time it takes to execute a single experiment. This time
differs strongly between performance evaluation scenarios but has to be considered
when selecting an experimental design. Hence, when selecting an experimental design,
the performance analyst has to consider the interaction effects that should be detected
as well as the number of experiments that is executable in a reasonable amount of time.
The three designs are integrated in the SoPeCo framework (see Chapter 4), so that
a performance analyst can simply select and configure a proper design which is then
executed automatically by the framework.

23

2. Foundations

2.2.2.2. Analysis

In the course of this thesis, we use three techniques to analyse the measurement data
derived by the three experimental designs presented in Section 2.2.2.1: Box plots, two-
way interaction plots, and analysis of variance (ANOVA).

Box plots can be useful to test the distribution of the observed values (see also Section
2.1). Moreover, they can be used as a visual test to see if changing the value of an input
parameter has a significant effect on the values of a observation parameter.

Two-way interaction plots visualize all main effects and two way interactions for de-
signs with more than one parameter [HHO04]. The rows and columns are defined by the
Cartesian product of the parameters. The diagonal panels show box plots to illustrate
the main effect of a parameter. The off-diagonal panels show standard interaction plots.
Each point in a plot is the mean of the observation parameter conditional on the values
of the two parameters that are investigated. Each line in a plot connects the means for
a constant value of a trace parameter. If the lines for the two parameters run parallel,
there is no interaction effect between these parameters.

ANOVA is a method for comparing different samples against each other. The basic
idea behind ANOVA is to determine and compare the variation caused by random errors
within one sample and the variation between the samples. In our experiments, we
mainly apply Factorial ANOVA (i.e., we compare multiple input parameters where each
parameter has at least two values). In the following, we introduce Factorial ANOVA
based on an example with two input parameters A and B that is described in [Nat12].
For a detailed description of ANOVA we refer to [Jai91] and [Nat12]. Assuming we
have K measurements at each combination of I values of parameter A and J values of
parameter B, we define the following model:

y,-jk:m—l—ai—l—bj—i—(ab),-j—l—e,-jk 2.2)

The equation says that the kth measured value for the ith value of parameter A and the
jth value of parameter B is the sum of the following components: the common value
(grand mean m), the effect of the value for parameter A (q;), the effect of the value
for parameter B (b)), the interaction effect between A and B ((ab);;), as well as the
residual (e;). Table 2.4 summarizes the calculation of variations and forms the basis
for determining if the values of a parameter are significant.

The ratio of the mean square for the parameter or parameter interactions, respectively,
and the residual mean square follows an F distribution with degrees of freedom as

24

2.3. Statistical Inference

Source Sum of Squares DoF Mean Square Fy
A SSA =IKY (5. —73..)* I-1 MSA =SSA/(I—-1) MSA/MSE
B SSB=JKY(5, —7.)* J—1 MSB=SSB/(J—1) MSB/MSE

Interaction | SSI=KYY (3ij. — 5. — 3. —9.)2 | {=1)(J—1) | MSI=SSI/((I—1)(J—1)) | MSI/MSE

Residuals SSE =YY Y (Fijk —¥ij.)? LJ(K—1) MSE = SSE/(IJ(K — 1))

_ 1
T Y1 X Yijk

_ 1
V= ﬁ):l{:l Yo Yijk

_ 1
Vi = % Y1 ijk

_ b

YT IIK

I v vk
Y1 Xjo X1 Viji

Table 2.4.: Factorial ANOVA table for two input parameters [Nat12]

shown in Table 2.4. Hence, if the Fy value is significant at a given confidence level,
there is a significant effect present in the data that is caused by the parameter or the

parameter interaction, respectively.

2.3. Statistical Inference

Statistical inference is the process of drawing conclusions by applying statistics to ob-
servations or hypotheses based on quantitative data [HTF09]. The goal is to deter-
mine the relationship between input and output parameters observed at some system
(sometimes also called independent and dependent variables). Statistical inference of
performance metrics does not require specific knowledge on the internal structure of
the system under study. However, statistical inference can require assumptions on the
kind of functional dependency of input and output variables. The inference approaches
mainly differ in their degree of model assumptions. For example, linear regression
makes rather strong assumptions on the model underlying the observations (it being
linear) while the nearest neighbour estimator makes no assumptions at all. Most other
statistical estimators lie between both extremes. Methods with stronger assumptions,
in general, need less data to provide reliable estimates, if the assumptions are correct.
Methods with less assumptions are more flexible, but require more data. For our black-
box inference approach presented in Chapter 4, we focus on flexible methods with less

25

2. Foundations

assumptions about the underlying functional dependencies. In the following, we intro-
duce four methods that fulfill this characteristic and that have been applied in the course
of this thesis.

2.3.1. Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) [Fri91] is a non-parametric regres-
sion technique which requires no prior assumption as to the form of the data. The
method fits functions creating rectangular patches where each patch is a product of
linear functions (one in each dimension). MARS builds models of the form f(x) =
YX | ciBi(x), the model is a weighted sum of basis functions B;(x), where each ¢; is a
constant coefficient [Fri91]. MARS uses expansions in piecewise linear basis functions
of the form [x —]+ and [t — x]. The 4+ means positive part, so that

e —1] x—t ,ifx>t¢t
X — =
* 0 , otherwise

and

t—x] t—x ,ifx<t
— X —
* 0 , otherwise

The model-building strategy is similar to stepwise linear regression, except that the
basis functions are used instead of the original inputs. An independent variable trans-
lates into a series of linear segments joint together at points called knots [CWO00]. Each
segment uses a piecewise linear basis function which is constructed around a knot at the
value 7. The strength of MARS is that it selects the knot locations dynamically in order
to optimize the goodness of fit. The coefficients ¢; are estimated by minimizing the
residual sum-of-squares using standard linear regression. The residual sum of squares
is given by RSS = YN | (5 —¥)?, where y = zlvz yi» N is the number of cases in the data
set and y; is the predicted value.

2.3.2. Classification and Regression Trees (CART)

CART is a simple and popular method for tree-based regression and classification.
Tree-based methods partition the feature space into a set of rectangles, and then fit
a simple model in each one [HTF09]. Figure 2.5 illustrates an example with output
Y and input parameters X1 and X2. CART first splits the space into two regions, and
models the output parameter by the mean of Y in each region. Then one or both of these
regions are split into two more regions, and this process is continued, until a stopping
rule is applied. For example, in the left panel of Figure 2.5, there is a split at X1 =¢1.

26

2.3. Statistical Inference

Ry Rs
Figure 2.5.: Regression tree model [HTF09]

After that, the region X1 <1 is split at X2 = 2 and the region X1 > ¢1 is split at
X1 =13. Finally, the region X1 > #3 is split at X2 = r4. The result of this process is a
partitioning into the five regions R1,R2, ..., RS shown in the figure. The corresponding
regression model

5
FX) =Y cul{(X1,X2) € Ry}
m=1

predicts Y with a constant ¢,, in region R,, [HTF09]. The right panel of Figure 2.5
depicts a perspective plot of the prediction surface from the model above. The decision
when and where to split is based on the criterion minimisation of the sum of squares
Y. (yi — f(x;))? where the best ¢, is the average of y; in region R,,: ¢, = ave(y;|x; € R,,).
Finding the best pair of splitting variable and split point in terms of minimum sum of
squares is done via a greedy algorithm (see [HTFO09] for details). The implementation
that we use in our case studies is part of the rpart package [TAR11] of the statistic tool
R.

2.3.3. Genetic Programming (GP)

Genetic Programming (GP) aims at deriving computer programs or mathematical equa-
tions and is thus well-suited for symbolic regression [Koz93]. GP does not require any
assumptions about the input/output parameter dependency and optimizes the structure
of the equation simultaneously with the coefficients. It uses an iterative approach to
approximate an optimal solution [Koz93]. During each iteration (generation), the pop-
ulation, consisting of a certain number of individuals, evolves. This evolution is per-

27

2. Foundations

Sample data Random
o % responseTime 00 1. Initialization
[ms] (o]
1 70 492
oo
5 70 500
XY 4

Genetic Programming

2. Evaluation
‘ ° 3. Selection
0 ° ° ‘ 4. Reproduction

v
(xlﬂxza""xN) 5. Termination

N
f;esponseTime

Performance Curve
Figure 2.6.: Genetic programming

formed by reproducing, mutating and crossing-over individuals of the previous genera-
tion. Each individual represents a candidate solution and has a fitness value expressing
the quality of the solution. The aim is to maximize the fitness over many generations.
The individuals in GP are usually represented as tree structures and recombinations are
tree operations such as randomly exchanging subtrees between two trees. The GP al-
gorithm applied in this thesis is specially optimized for the inference of performance
prediction functions [FH12]. To improve the generalisation of the result models, the
GP algorithm further applies techniques to prevent overfitting. Figure 2.6 depicts the
idea of GP applied to software performance engineering [FH12]. In the first step, GP
is initialized with randomized data. After the initialisation, the genetic algorithm be-
gins to evolve the individuals. The evolution starts with an evaluation of individuals
by using the measurement data (Step 2). Then, the algorithm selects and reproduces fit
individuals (Step 3 and 4) and repeats steps 2-4 for a given number of iterations (gen-
erations). Finally, the algorithm terminates (Step 5) when a given termination criteria,
such as the desired accuracy level or runtime constraints, are fulfilled. The result of
the algorithm is a performance prediction function expressed through a mathematical
equation.

For example, the goal of the GP algorithm might be to find the function f(x,x3),
which predicts the dependent variable responseTime using provided measurement data.
Two input parameters x; and x; influence the responseTime. The algorithm receives
independent response time measurements with different input configurations (values

28

2.3. Statistical Inference

for x1, xp). To evaluate the fitness of each individual, the algorithm calculates the
averaged relative error based on the provided training data. New individuals are created
by recombining the genes (represented as trees) of two individuals. The trees comprise
operators (e.g. +, -, *, /) serving as inner nodes and constants and variables (here x1, x»)
serving as leaves. When the evolution of individuals finishes, the algorithm returns the
fittest individual representing the prediction function identified by the algorithm. The
exemplary individual in the centre of Figure 2.6 depicts one possible representation for
the curve (f (x1,x2) =2%x; +0.1 *x%) in the internally-used tree representation.

2.3.4. Kriging

Kriging is a generic name for a family of spatial interpolation techniques using gener-
alized least-squares regression algorithms [LHOS8]. It is named after Daniel Krige who
applied the method to a mineral ore body [Kri51]. Examples of Kriging algorithms
are Simple, Ordinary, Block, Indicator, or Universal Kriging. In [LHOS8], the authors
provide a comprehensive review of multiple Kriging algorithms as well as other spatial
interpolation techniques. Generally, the goal of spatial interpolations is to infer a spatial
field at unobserved sites using observations at few selected sites. According to [LHO8],
nearly all spatial interpolation methods share the same general estimation formula:

n

Z(X()) = le’Z(xi)
i=1
where the estimated value of an attribute at the point of interest xq is represented by
Z, the observed value at the sampled point x; is Z, the weight assigned to the sampled
point is A;, and the number of sampled points used for the estimation is represented
by n. Furthermore, the semivariance () of Z between two data points is an important
concept in geostatistics. It is defined as:

1

Y(xi,x0) = y(h) = Evar[z(xi) —Z(x0)]

where £ is the distance between point x; and x and y(h) is the semivariogram (com-
monly referred to as variogram)[LHOS].

Figure 2.7 shows an example variogram with an exponential variogram model. The
nugget (or nugget effect) is a contribution to variability without spatial continuity [Swi06].
The range is the distance where the model first flattens out and the sill is the value at
which the variogram model reaches the range.

The Kriging implementation [Peb04] that we applied in our experiments uses the
Ordinary Kriging algorithm to estimate unknown points. As described above the esti-

29

2. Foundations

sill

semivariance

nugget

FES

distance

Figure 2.7.: Sample variogram

mated values are computed as simple linear weighted average of neighboring measured
data points. The weights are determined from the fitted variogram with the condition
that they must add up to 1 which is equivalent to the process of reestimating the mean
value at each new location [DGL].

As in geostatistics the problems typically have two input parameters (the geo-coordi-
nates), we could not find an implementation of Kriging that allows more than two input
parameters. Hence, we decided to combine Kriging with Classical Multidimensional
Scaling (CMDS) [CCO00] in order to use the method for problems with more than two
input variables. Using CMDS we reduce the dimensionality of the input parameter
space from n to 2. The implementation [R D11] takes a set of dissimilarities and returns
a set of points such that the distances between the points are approximately equal to the
dissimilarities. We selected CMDS as although it reduces the dimensions it keeps the
distances between the different points which is an essential characteristic for combining
it with Kriging.

30

3. Deriving Goal-oriented Performance Models by Systematic
Experimentation

While existing performance modelling approaches have demonstrated the value of early
performance feedback, the effort to create and maintain the models is still large. Espe-
cially in practical scenarios where models have to integrate existing components such
as middleware, platforms, or third-party services, software vendors struggle to value the
return on investment (ROI) of performance modelling. The modelling approaches often
require information and flexibility which complicates the model construction. Such a
flexibility is not required in most cases. Stakeholders in the software development pro-
cess are usually interested in answering what-if questions that are important for their
design decisions.

Moreover, the success of performance engineering in practical scenarios depends
on the performance awareness of an organisation and how good performance engi-
neering is integrated in the software development process [SMF107]. For example,
Shopzilla.com did a complete re-development of their software and made performance
a design decision that has been considered during the whole software development cy-
cle [Dix09]. As a consequence, page views increased by 25%, conversion rate increased
from 7% to 12% and infrastructure costs have been halved.

In this chapter, we introduce our approach for goal-oriented performance modelling.
The approach consists of two parts:

e a conceptual part that suggest a procedure on how to approach performance
modelling in the context of a software development organisation, and

e an engineering part that introduces a detailed process on how to derive a per-
formance model based on systematic, measurement-based experimentation.

For the first part, the approach adopts the Why? How? What? model that has been
introduced by Sinek [Sin(09] in the field of inspirational leadership. This approach can
help to explicitly derive the goal of the performance model before the modelling process
actually starts. The core idea is to state the purpose of the performance model first. Why
do you need a performance model? If that purpose is clearly stated and project leads
belief in the Why, one can start looking into How a performance model can help to fulfil
the purpose. In this step, we suggest to adopt approaches like Design Thinking [Bro09]

31

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

or The Lean Startup [Riell] from the field of innovation building. Such approaches
can help to figure out what developers and architects actually need to develop faster
software. If there is a clear understanding about How a performance model can fulfill a
purpose, one can start to define What needs to be done in order derive this performance
model.

As a result of the first part, we get a specification of a goal-oriented performance
model. We define a goal-oriented performance model as an abstraction of a software
system which is specifically tailored to the needs of the stakeholders in a certain sce-
nario. To actually derive the models, we propose a measurement-based, experimental
process that neglects internal details of a system. Measurements are an established per-
formance evaluation methodology in practice. Hence, expertise and professional tools
are already available. Our experimental process leverages these tools and expertise and
provides guidance towards the derivation of a performance model. Moreover, each ex-
periment provides already valuable insights, independent of the resulting performance
model.

This chapter is structured as follows. Section 3.1 introduces the scientific challenges
in the field of performance modelling that we address with our approach. Section 3.2
describes the idea of goal-oriented performance models and provides a template for
specifying goal-oriented performance models. Moreover, two example scenarios are
provided for further illustration. In Section 3.3, we introduce our measurement-based,
experimental process for deriving goal-oriented performance models. The limitations
and assumptions of the approach are discussed in Section 3.4. Finally, Section 3.5
summarises the chapter and highlights the scientific contributions.

3.1. Scientific Challenges

The scientific challenges in the field of performance modelling that we address in this
chapter are as follows:

e How to find a proper abstraction level for a performance model? Perfor-
mance engineering in general and especially creating and maintaining perfor-
mance models always requires effort and expertise. Hence, software vendors
need to invest in creating and maintaining performance models. As this in-
vestment has to be made upfront (i.e., before the product is actually developed
or shipped to customers), its value is often unclear and not directly visible.
This is also a reason why the acceptance of performance modelling in prac-
tical communities is still low [SMF107]. Besides the size and complexity of
the software system that is subject to modelling, the selection of the abstrac-
tion level for creating a performance model is an important factor for the effort

32

3.2. Specifying Goal-oriented Performance Models

and thus the investment required to create and maintain a performance model.
Hence, it is subject to research to identify methodologies that support software
vendors in finding the balance between modelling effort and a clear return on
investment [Smi07].

e How to create and maintain performance models of existing software sys-
tems efficiently? Today’s software systems are usually built on existing soft-
ware (middleware, legacy applications, or third party components) and rarely
developed from scratch. Reflecting the influence of such existing and often
very complex components on the performance of the software that is under de-
velopment is a large challenge in the field of performance modelling [WFPO7].
While there are many established approaches for modelling a software sys-
tem that is built from scratch, those approaches face problems when it comes
to complex existing components. The approaches do not scale with respect
to size and complexity of software systems and thus they require consider-
able effort and can become too costly and error-prone as much work has
to be done manually. Concerning legacy systems and third party software,
the required knowledge to model the systems may even not be available at
all. Furthermore, companies continuously adapt their applications to chang-
ing market requirements and technological innovations which requires an effi-
cient way of maintaining the performance models during the software lifecy-
cle [SMF'07, WFP07, Smi07].

3.2. Specifying Goal-oriented Performance Models

The acceptance of software performance engineering in industry is not only a matter of
having proper modelling and analysis approaches. A significant factor for a successful
implementation is also the commitment of software vendors to integrate performance
engineering in the software development process and to explicitly provide resources for
such tasks [SMF107]. In order to get that commitment, we propose to specify a clear
goal using the procedure presented in this chapter. A clear and systematic specifica-
tion of the goal of a performance model, allows performance engineers to decide on a
proper abstraction level for model derivation which can limit the effort for creating and
maintaining performance models.

The proposed procedure arose from combining best practices described in litera-
ture of the performance engineering domain [SWOI, Jai91, BCR94] and other do-
mains [Sin09, Bro09, Riell], industrial experience reports [SMF"07, Dix09, JN12],
and our own experience gathered in the course of conducting different performance

33

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

projects at SAP (see for example Chapter 5). In the following sections, we provide a
description of how to apply the Why? How? What? approach [Sin09] in the context of
performance modelling, as well as two example specifications from the SAP context in
which we applied our overall approach.

3.2.1. Purpose, Consumption, Construction

The Why? How? What? model has been introduced by Sinek [Sin09] in the field of
inspirational leadership. The actual target group of the model are companies and people
that are in a leadership position. The basic idea of the approach is that if, for exam-
ple, one wants to start a successful company, create a successful product, or convince
other people of something, one should start with the Why. The Why defines the higher
purpose, e.g. what is the main driver of a company. The How says how this purpose
is fulfilled by the company. And finally, the What describes the product or service that
the company sells. In the following, we adopt this approach and map it to the per-
formance modelling domain, i.e., we define which information performance engineers
should gather in order to describe the why, how, and what of a performance model.
This approach can help to explicitly derive the goal of the performance model before
the modelling process actually starts and to identify the required abstraction level for
the actual performance modelling process.

Purpose (Why?)

The core idea is to state the purpose of the performance model first. Why do you need
a performance model? As the derivation and maintenance of a performance model re-
quires effort and commitment from several experts, it is very important to identify and
clearly state the benefits of having a performance model. It should become clear that,
for example, the performance model can help to reduce efforts of target stakeholders,
or to significantly increase product quality.

Consumption (How?)

If the purpose is clearly stated and project leads belief in the why, one can start looking
into how a performance model can help to fulfil the purpose. In this step, we suggest to
adopt approaches like Design Thinking or The Lean Startup from the field of innovation
building. Such approaches can help to figure out what developers and architects actu-
ally need to develop faster software. Defining the concrete needs of those stakeholders
that are supposed to consume the results provided by the performance model helps to
identify the required resources and limits the scope of the performance model. The
definition should include the concrete target stakeholders, the task that is supported

34

3.2. Specifying Goal-oriented Performance Models

by the predictions, the (sub-)system that should be modelled, the usage profiles that
are used as input to the model, and the level of desired prediction accuracy. In order
to further cut the modelling efforts to what is really needed for supporting the target
stakeholders in their tasks, it is important to specify in advance how the model should
be consumed by the stakeholders. This includes for example how the inputs for the
performance model are provided and how the results are presented to the stakeholder.
The simpler the model consumption, the less effort is put on the stakeholders and thus
it becomes more likely that the predictions are actually considered and lead to better
product quality.

Construction (What?)

If there is a clear understanding about how a performance model can fulfil a purpose,
one can start to define what needs to be done in order derive this performance model.
This includes the selection of the actual method for the derivation process. In order to
evaluate early lifecycle architectural design decisions, tools like the Palladio Compo-
nent Model or the approaches surveyed in [Koz10] might be appropriate. In scenarios
where large parts of the system that is to be modelled already exist, approaches like the
one presented in this thesis might be the best choice. Details on the model derivation
process proposed in this thesis are presented in Section 3.3.

3.2.2. Examples

In the following, we provide two example scenarios for how to specify goal-oriented
performance models using our Purpose, Consumption, Construction approach. The
first example deals with the effect of screen design on front-end performance and has
been implemented in an industrial case study at SAP which is introduced in detail in
Chapter 5. The second example illustrates the application of goal-oriented performance
models in the context of the development of data models using the Java Persistence API.

3.2.2.1. Effect of Screen Design on Front-end Performance

Purpose

In today’s web applications front-end performance contributes significantly to the over-
all user experience [Sou07] and thus affects business-critical metrics like conversion
rate. Often, performance problems are caused by flawed screen designs [Frol3].
Changing the design of a screen in late development cycles implies large efforts and
high costs. Hence, the effect of the screen design should be considered as early as pos-

35

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

sible. At SAP there are hundreds of developers using the SAP UIS5 JavaScript library to
build web application front-ends. Having a performance model that allows developers
to easily evaluate the performance of their screen design, would significantly reduce the
need for setting up and running performance tests by each individual developer. More-
over, it would significantly reduce the number of performance problems that are casued
by flawed screen designs. Hence, the efforts to construct and maintain the performance
model by an expert team are relatively small compared to the efforts that are necessary
to achieve the same test coverage without the performance model (i.e., each developer
needs to setup and run performance tests for each screen).

Consumption

The performance model should support developers in designing responsive web ap-
plication screens by warning them when the design contains potential performance
problems. Therefore, the model should predict the influence of different UI elements,
their configuration and their interference on performance. The focus of the model is
on screens developed with the SAP UIS5 library, influences of custom coding or other
libraries can be neglected. Furthermore, the model should be derived for a reference
client machine and current versions of the most common browsers (Internet Explorer,
Firefox, and Chrome). Thereby, it is important that the model reflects performance
influences accurately for the reference setup. The transferability to other machine sizes
or browser versions is neglectable. For the given scenario, we identified two potential
consumption channels: a web-based prediction tool and an integration in a screen de-
sign editor. The web-based tool allows designers to quickly evaluate different screen
designs by varying the screen configuration based on check boxes, sliders and input
fields. It is a valuable tool for making rough estimations about front-end performance
before actually starting the screen design. It helps answering questions like ,,How many
columns and rows can I add to a table of type X in my web application without vio-
lating performance requirements?* or ,,What is the impact of back-end call data size
on front-end performance?*‘. Moreover, the web-based prediction tool can be used in
developer trainings to clarify the impact of bad screen designs on front-end perfor-
mance. The second consumption channel is the integration of the prediction model in
a screen design editor used by developers to create SAP UI5 based web applications.
Having the prediction integrated in the editor allows us to give immediate feedback on
the expected performance while the screen is under development. Developers can get
a warning when the screen design does not meet SAP’s performance requirements and
detailed views.

36

3.2. Specifying Goal-oriented Performance Models

Construction

To derive the prediction model an experimental, measurement-based process is ap-
plied. The experiments are conducted using a screen generator software that allows
to generate screens with different SAP UIS library elements and configurations. The
performance of the generated screens is measured on the latest versions of the main
browsers on a test client machine.

3.2.2.2. Effect of Data Model Design on Application Throughput

Purpose

In data-centric applications, the data model can significantly limit performance and
scalability of the overall application. When developing the data model it is often un-
clear to developers, how different design decisions or usage profiles affect the applica-
tion’s performance. Setting up and running performance tests that are tailored towards
data model performance require special expertise and cause significant overhead for de-
velopers. Standard benchmarks such as provided by SPEC [SPE12] and TPC [TPC13]
do not test broad enough in order to enable a detailed understanding of performance
characteristics of a particular data model. SAP offers a Java-based cloud plattform on
which Independent Software Vendors (ISVs) can develop and run their applications. A
major component of this plattform is the persistence service that can be accessed using
the Java Persistence API (JPA). Supporting ISVs in developing scalable JPA-based data
model designs is an additional feature of the platform that helps SAP’s customers to run
their software faster and more efficient. Deriving a performance model that maps the
service usage (i.e., the design of the JPA data model and its expected usage profile) to
the expected performance and providing that information to the ISVs can have positive
effects on customer satisfaction and platform sales.

Consumption

The performance model should support developers in designing scalable JPA-based
data models by providing them information about the expected performance of the data
model under development. The performance characteristics of the data model should
be estimated for different reference workload types which represent common usage
patterns in business applications. Moreover, the performance model should only be
derived on the reference test platform. Instead of providing exact prediction numbers,
it is sufficient to provide relative estimates on the performance characteristics of dif-
ferent data model variants under different reference usage profiles. Developers can use
the feedback provided by the model to continuously track the performance impact of

37

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

@ Integrated Development Environment x]

| Person.java | | Performance |

import javax.persistence.*;

Persist: 25,33 ms
@Entity Remove: 17,92 ms

public class Person {

c P 0

o 1 1 1 1

@ld ®)
public Integer id; 3 Irs.ml Vo
public String lastName; o L
public String firstName; @ @l oo

) 0 10 20 30 40

Figure 3.1.: Immediate feedback in the IDE

changes applied to the data model, and to evaluate design alternatives with respect to
data model entities (e.g. distribution of attributes across entity classes) and entity usage
(e.g. number of parallel reads). We aim at two scenarios of developer support: (i) con-
tinuous tracking of the performance impact of changes applied to the data model, and
(i1) evaluating design alternatives with respect to data model entities. For the first usage
type, the performance feedback relates to the currently focused data model entity and
the performance values are updated when changes are applied to the software artefact.
Figure 3.1 sketches how this could look like in the IDE of the developer.

While the developer is developing the entity Person and adding additional attributes,
the performance feedback view on the right side of the figure shows how the changes
affect the average response time for persist and remove operations on this entity for a
predefined test workload.

In the second scenario, developers directly compare different implementation alter-
natives against each other in order to understand the performance characteristics of each
alternative. Figure 3.3 shows an example for this kind of feedback.

Figure 3.2 sketches the two implementation alternatives. The functional requirement
for the developer is to store 32 numbers in a Container entity. Alternative 1 implements
this requirement by adding 32 fields of type Long to the entity. Alternative 2 uses a list
field that can hold values of type Long. Figure 3.3 illustrates the performance feedback
view for that example. It shows the throughput that can be achieved for the insert,
update, remove, and persist operations using the respective alternative. In the example,
the throughput that can be achieved with Alternative 1 is 4 times higher than with Al-

ternative 2.

38

3.2. Specifying Goal-oriented Performance Models

Alternative 1 Alternative 2
<<Entity>> <<Entity>>
Container Container

+id:Long fe-- ~--1+id : Long

+ value01 : Long
+ value02 : Long

+ value32 : Long

+ values : List<Long>

Provides storage of 32
values of type java.lang.Long

Figure 3.2.: Two design alternatives

B List Attributes
reort [N
Update o
Remove N
Persist M
0 Z(LO 4(‘)0 6(‘30 8(‘)0 1 0‘00 1200

Operations / Second

Figure 3.3.: Evaluation of design alternatives

39

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

Construction

To derive the prediction model an experimental, measurement-based process is applied.
The experiments are conducted using a JPA benchmarking framework [WWHM13]
that allows us to automatically create, run and analyse tailored benchmark applica-
tions. The Benchmark Framework is parametrisable via information specified in a JPA
Benchmark Model (e.g. the characteristics of the data model that is to be tested). In the
construction step the modelled information is used to trigger the generation of code and
configuration files, and package the benchmark application to a deployable unit. In the
execution phase the benchmark application is deployed to the test platform for which
the performance model is to be derived. Having this framework in place allows us to ef-
ficiently experiment with different data model characteristics and derive a performance
model.

3.3. Systematic, Measurement-based Experimentation

To derive goal-oriented performance models, we propose a measurement-based, exper-
imental approach. The approach consists of the four basic steps depicted in Figure 3.4

1. Define Context: Includes all tasks that are necessary to set up the test environ-
ment and to prepare experimentation (e.g. finding and documenting known
issues and finding a proper reference system and performance metric).

2. Understand Performance Behaviour: An iterative process in which assump-
tions about performance-relevant influences are identified and tested. More-
over, proper heuristics and analysis methods for performance model derivation
are identified.

3. Derive Performance Model: Based on the knowledge gained in the previous
process step, a set of experiments is defined and executed in order to derive
the performance prediction functions of the performance model.

4. Validate Performance Model: Includes a comparison of the predictions made
by the performance model with measurements from a real systems in order
to further validate if the assumptions and heuristics are valid and all relevant
performance influences have been captured.

The process illustrated in Figure 3.4 is based on a method for experiment-based per-
formance model derivation introduced by Happe [Hap08]. As with the performance

40

3.3. Systematic, Measurement-based Experimentation

Performance Goal

)

Define Context

Test Documentation
Environment and Known Issues

A 4 A

Understand
Performance Behaviour

A

Proper Heuristics
and Analysis
Methods for

Model Derivation

Validated
Assumptions on
Relevant Influences

Derive
Performance Model

A

Prediction

Missin
Functions &

Influences

Validate
Performance Model

l |:| Activity

Validated Prediction Change of Activity
Functions

—— Flow of Artifact

Figure 3.4.: Process for deriving goal-oriented performance models

evaluation process described by Jain [Jai91], Happe highlights that the design of a per-
formance model should be driven by a specific goal that directs and limits the design
effort to the factors that are important for the specific scenario. To define the per-
formance goal properly, we propose to apply the template introduced in Section 3.2.
Another important characteristic of the process is its highly iterative nature around the
core activities. In the following, we provide a detailed description of the four process
activities that should be implemented by an experts team consisting of performance
analysts and domain experts.

41

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

3.3.1. Define Context

In the first step, the experts team needs to define the context of the experiments. This
includes the interpretation and the refinement of the information provided in the perfor-
mance evaluation template (see Section 3.2). All information and known issues in the
context of the performance evaluation scenario need to be gathered and properly docu-
mented. Another major task in this process step is setting up the test environment that
is to be used for running the experiments. The experts team has to prepare the hardware
and software used for the system under test as well as for supporting tasks like load gen-
eration and monitoring. Furthermore, in some cases an artefact generation component
needs to be developed (see Section 3.2). Based on the goal of the performance model,
the performance metrics that should be used for prediction have to be defined. Usually,
these are response time, throughput, or resource utilisation metrics [Jai91]. Ultimately,
the test environment has to expose an interface that allows the experts team to vary the
values of a set of input parameters and observe the values of a set of output parameters
(i.e.,the performance metrics of interest). In summary, the results of this process step
are as follows.

e A sound documentation of the performance evaluation goal and the known

facts and issues in the context of the evaluation scenario.

e A ready-to-use test environment that provides an interface for varying input
parameter values and observing performance metrics.

3.3.2. Understand Performance Behaviour
The goals of this activity are
a) to get a sound understanding of the basic performance characteristics of the
system under test, and
b) to minimize the parameter space for model derivation.
The first goal involves, for example, questions like:
e What are the performance-critical system components and parameters in the

scenario?

e Does the selected metric provide a sufficient description of the performance
characteristics of the system?

42

3.3. Systematic, Measurement-based Experimentation

e What are potential measurement biases and how to avoid or control them?

Once a proper measurement environment is in place and a basic understanding of the
performance-critical parameters has been established, the experts team needs to identify
how to minimize the parameter space for model derivation. Usually, the amount of
performance-critical parameters is too large to derive a single prediction function (see
also "curse of dimensionality"). Instead, proper abstractions and heuristics have to be
identified that limit the parameter space. Here, the following example questions are to
be answered:

e Which parameters can be neglected?

e What are reasonable boundaries for parameter values?

e Are their groups of parameters that can be measured in isolation?

e What are appropriate analysis methods to derive functional relationships be-
tween parameters?

To answer the questions introduced above, we propose the process illustrated in Fig-
ure 3.5.

Identify Assumptions In the first step of the process, performance analysts identify
a set of assumptions with respect to the relevant performance influences. This can be
done based on experience in the scenario context or documentation. In our industrial
case study presented in Chapter 5, we build upon a rich base of screens that have already
been available to identify potential contributors to front-end performance. Based on this
knowledge, we came up with a set of assumptions. For example, one assumption that
we test in Chapter 5 states: ,,The larger the number of Ul elements on a screen, the
lower the front-end performance.*

Define Experiments to Test Assumptions Once an initial set of assumptions has
been identified, the experts team defines a set of experiments that explicitly test the
assumptions and quantify the influences. For example, in our industrial case study we
defined experiments to capture the effect of different configurations of an UI element
on performance. To guide the experiment design and help performance analysts in
resolving the issues that come with this task, we propose to apply the SoPeCo approach
introduced in Chapter 4 of this thesis. Especially if multiple parameters are to be varied,
the number of required experiments may grow exponentially. This behaviour is known

43

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

System Under Documentation
Test and Known Issues

! !

Identify Assumptions

A

Set of Assumptions on
Relevant Performance
Influences

A 4
Define Experiments to
Test Assumptions

A

Set of Missing
Experiment Influences, Improper
Definitions Experimental Design

A 4
Run Experiments and
Analyze Results

l l :] Activity
Validated Proper Heuristics Change of Activity
Assumptions on and Analysis —> Flow of Artifact
Relevant Influences Methods for

Model Derivation

Figure 3.5.: Process for understanding performance behaviour

as curse of dimensionality [HTF09]. In this case, good experimental designs (such as
those proposed in Chapter 4.4) can help to keep the number of experiments manageable.

Run Experiments and Analyse Results Once the experimental designs have been
defined, performance experts can run the experiments and analyse the results. We use
the SoPeCo approach (see Chapter 4) to automate the experiment execution and to col-
lect the relevant data. To analyse the results, different techniques can be appropriate
depending on the experiments executed and the questions to be answered. If, for ex-
ample, performance analysts want to check if a certain parameter affects performance,
fractional factorial experimental designs (see Chapter 2.2) can be a proper choice. The
experiment results and the analyses may point out missing assumptions and influences
that need to be tested in further experiments.

44

3.3. Systematic, Measurement-based Experimentation

In summary, the results of the activities introduced in this section, which are part of
the overall process depicted in Figure 3.4, are as follows.

e A set of validated assumptions with respect to relevant performance influences
in the scenario.

e A set of heuristics and analysis methods that enable an efficient derivation of
a performance model.

3.3.3. Derive Performance Model

Based on the assumptions and heuristics that have been identified in the previous pro-
cess step, a set of experiments is defined that aims at deriving performance prediction
functions. The defined set of experiments is automatically executable and thus the con-
struction of the prediction function can be easily repeated if the system is updated or a
new parameter has to be added. The main question that is to be answered in this pro-
cess step is ,,How to combine the different experiment results into a single performance
model?** Therefore, we propose to implement the process illustrated in Figure 3.6.

Define Experiments for Model Derivation In the first step, the learnings from the
previous experiments are used to define the complete set of experiments that is nec-
essary to derive the required prediction functions. For example, in our industrial case
study we define an experiment for each performance-critical Ul element which derives
the functional relationship between the number of this UI elements on a screen and the

performance of the screen.

Run Experiments and Analyse Results In this step, the experiments are automati-
cally executed on the test environment. Moreover, the analysis results are checked for
any issues (e.g. failed measurements, too many outliers, performance behaviour differs
from assumption).

Construct Prediction Functions In order to construct the prediction functions of the
performance model, the experts team has to combine the functions derived by model
fitting, regression techniques, or machine learning (e.g. as introduced in Chapter 4.4.2)
with the assumptions and heuristics derived in the previous process step. In our indus-
trial case study (see Chapter 5), we come to the assumption that different UI elements
do not interfere with each other and thus their performance influence on the front-end
performance is additive. This assumptions heavily reduces the number of required

45

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

Proper Heuristics
and Analysis
Methods for

Model Derivation

. v

Define Experiments for
Model Derivation

Validated
Assumptions on
Relevant Influences

set of Improper
Experiment . .
Definitions Experimental Design

A 4
Run Experiments and
Analyze Results

Analysis
Results

A\ 4

Construct Prediction

Functions
l :] Activity
Prediction Change of Activity
Functions — Flow of Artifact

Figure 3.6.: Process for deriving performance model

experiments and allows us to construct the performance model by adding up the pre-
diction functions for each Ul element.

In summary, the result of the process step introduced in this section is a set of prediction
functions that support stakeholders in the software development process in conducting
the tasks stated in the performance evaluation goal.

3.3.4. Validate Performance Model

The prediction functions derived in the previous process step form a performance model
that captures the known assumptions and influences tested by the experiments. How-
ever, the model needs to be validated before it can be used in practice. The validation
aims at answering the following questions.

e Are the assumptions and heuristics good enough to derive an accurate perfor-
mance model?

46

3.4. Discussion of Assumptions and Limitations

e Are there any influences in the validation objects that have not been captured
by the performance model?

This validation is the final step in the process illustrated in Figure 3.4. The predic-
tions provided by the performance model have to be compared to measurements of a
real system as there is a good chance that some major influences are still missing. If
this is the case, further experiments have to be added and the prediction model has to
be refined.

Finally, the process results in a validated performance model that can be applied by
the target groups. In our case study (see Chapter 5), Ul designers and developers can
use the predictions provided by the performance model to asses front-end performance
of web applications for different browsers before the screens are actually implemented.

3.4. Discussion of Assumptions and Limitations

In the following, the limitations and assumptions of the general performance model
construction approach that is presented in this chapter will be discussed. As the perfor-
mance model construction builds upon the SoPeCo approach introduced in Chapter 4,
it inherits all the assumption and limitations described in Chapter 4.6. Additionally, we
see the following restrictions.

Number of Experiments In order to deal with the complexity of real-world software
systems, we use experiments to derive assumptions and heuristics that enable us limit
the number of experiments that are to be executed. For example, in the case study pre-
sented in Chapter 5, we could reduce the number of experiments due to the assumption
that different UI elements do not interfere with each other and thus are additive. If it is
not possible to limit the number of experiments, the approach might not be applicable
due to the curse of dimensionality [HTFO09] that occurs when too many parameters have
to be varied in combination.

Transferability of Models The performance models that are derived using the ap-
proach presented in this chapter are focused on a very specific goal. On the one hand,
this allows performance analysts to deal with the complexity of the systems and lim-
its the complexity of the resulting performance model. On the other hand, it reduces
the transferability of the performance model to other scenarios and goals. However,
in similar scenarios the measurement environment as well as some of the experiment
definitions can be reused to create a performance model.

47

3. Deriving Goal-oriented Performance Models by Systematic Experimentation

Also the fact that the performance model is only valid for the test system on which
it has been derived limits its transferability. However, as described in Section 5.4,
the capability to rerun experiments on different systems with minimal manual effort
compensates the restricted generality.

Availability of Model Inputs When conducting the experiments potential usage and
configuration parameter values are varied and used to derive a performance model.
While at the time of experimentation these values are set by the corresponding tools in
the measurement environment, they have to be accessible at the time when the perfor-
mance model is used for prediction. For example, in order to assess the performance of
the design of a web application screen, the developer has to provide the corresponding
design characteristics as an input to the model. These inputs can be provided manually
(e.g. via the web application introduced in Section 5.4) or automatically by a sup-
porting tool (e.g. the ,,what you see is what you get* editor also described in Section
5.4). In the course of the case study, we also tried to derive the inputs from a regular
source code editor by parsing the JavaScript code. However, this failed due to the vast
amount of potential representations of the same JavaScript code and the complexity of
the parser.

3.5. Summary and Contributions

In this chapter, we introduced a novel approach for software performance modelling
that aims at being tightly integrated in the software development process. We presented
a procedure for specifying goal-oriented performance models using the Purpose, Con-
sumption, Construction methodology, as well as an experimental, measurement-based
process for deriving performance models. Our measurement-based approach is close
to the industrial practice and thus more likely to be applied by practitioners than other
approaches.
The contributions of this chapter are

e A goal-oriented procedure for the specification of performance models.

e A process definition for the experimental derivation of goal-oriented perfor-
mance models.

In summary, the approach allows performance analysts to efficiently derive and main-
tain goal-oriented performance models of complex software systems. Based on these
models developers, software architects or administrators can asses the performance im-
pact of their design decisions with only minimal overhead. The goal-oriented specifi-

48

3.5. Summary and Contributions

cation of the models increases the probability of creating a performance model that is
actually adopted in development organisations. The iterative and measurement-based
nature of the experimental derivation of performance models helps to deal with com-
plex software systems as many tasks can be supported or automated by an appropriate
experimentation infrastructure (see Chapter 4).

49

4. Automated Performance Evaluation Experiments

The overall goal of this thesis is to provide a practical means to performance analysts
that helps them in constructing performance models of software systems. In Chap-
ter 3, we introduced our overall approach for deriving goal-oriented performance mod-
els based on systematic experimentation. In this chapter, we introduce an approach to
support performance analysts in deriving such goal-oriented performance models effi-
ciently. Figure 4.1 illustrates the basic idea of the approach that has been introduced in
Chapter .

M Performance
Utilities
Effects
System Under -
Test . .

Relationship

Measurement Systematic Experimentation
Environment Experimentation Goal

Figure 4.1.: Experimental performance evaluation

We assume that a measurement environment is in place that allows us to vary the
values of a set of input parameters and observe the values of a set of output parame-
ters. The parameters can either belong to the system under test or to a measurement
utility such as a benchmark application, a monitoring tool or a load driver. In the fol-
lowing, we refer to a concrete measurement environment that has a defined set of input
and observation parameters as performance evaluation scenario or just scenario. Our
systematic experimentation approach enables performance analysts to define a set of
experiments based on the input and observation parameters. An experiment is defined
as a concrete valuation of input parameters for which the values of one or many ob-
servation parameter are gathered. Moreover, we define an experiment series as a set of
experiments derived by an experimental design [Nat12]. If, for example, the measure-
ment environment allows us to set the number of users simulated by a load driver and
observe the average response time for this users, the performance analyst could define
an experiment series that investigates the effect of a growing number of users on the
average response time of the system under test. Experiment series are executed and

51

4. Automated Performance Evaluation Experiments

analysed automatically. Depending on the goal of the experiment series, the perfor-
mance analyst gets information about the performance-relevance of input parameters,
interaction effects between input parameters or a description of the functional relation-
ship between a set of input parameters and an observation parameter of interest (such
as the functional relationship between the number of users and the average response
time).

This chapter introduces our approach to automatically execute and analyse exper-
iments that target a specific goal. The approach is called SoPeCo, named after the
Software Performance Cockpit framework that we developed to implement and derive
the contributions of this thesis. SoPeCo eases the definition of performance evaluation
experiments and combines experimental design and analysis in an automated, itera-
tive way which allows deriving goals efficiently. Another benefit of the approach is that
once the experiments are defined and the measurement environment is in place, one can
simply rerun the experiments whenever necessary (e.g. due to a new version of a com-
ponent in the measurement environment). The SoPeCo framework allows performance
analysts to apply the approach in different scenarios including different technologies
and tools. Based on the capabilities of the SoPeCo approach presented in this chap-
ter, we can automatically run systematic series of experiments to derive performance
models for complex software systems (see Chapter 3).

The chapter is structured as follows. In Section 4.1, we illustrate the scientific chal-
lenges when implementing an automated performance engineering approach. Section
4.2 provides an overview on the SoPeCo approach. In Section 4.3, we introduce a
language for the definition of performance evaluation experiments as well as an ar-
chitecture that allows to automatically run these experiments in different scenarios. A
detailed description of the automated, iterative combination of experimental design and
statistical analysis follows in Section 4.4. In multiple case studies, we validate that the
approach can be applied to real applications and provides accurate results running only
a small set of measurements (Section 4.5). Finally, Section 4.6 lists limitations of the
approach and Section 4.7 summarises the chapter.

4.1. Scientific Challenges

As described above, our approach is based on the assumption that we have an existing
test environment on which we can vary the values on input parameters and observe
several performance metrics. Theoretically, we can measure any point in the measure-
ment environment (i.e., any combination of input parameter values) . Practically, this is
impossible due to the huge amount of potential measurement points (i.e., experiments)
even for simple systems. Moreover, performance measurements are indeterministic,

52

4.1. Scientific Challenges

which requires the repeated execution of a single experiment in order to get statistically
stable results. Hence, each experiment that is required for a performance evaluation
is costly and endangers the practicability of the approach. The scientific challenges in
the field of measurement-based performance evaluations that arise from these circum-
stances are as follows:

e How to derive accurate prediction functions efficiently? Finding the trade-
off between accuracy and efficiency is the main research challenge when try-
ing to quantify the relationship between one or many factors and the response
variable. The number of potential measurement points is a function of the
number of factors and their levels which results in a space that is impossible
to measure completely. Moreover, real software systems usually do not show
a simple (e.g. linear) behaviour for this relationship. Hence, performance en-
gineering research needs to investigate what kind of models can be used to
quantify this relationship. Furthermore, smart experimental designs are re-
quired that provide enough and proper measurement data to fit these models
accurately and with the least number of measurement points possible.

e What is a suitable abstraction level to deal with heterogeneous scenar-
ios? In industrial practice, each performance evaluation scenario differs from
another in, for example, the system under test, the tools used to monitor the
system, or the tools used to generate load. How to cope with this variety of
technologies, tools and potential performance behaviours in a unified approach
is subject to research.

e How to specify automatable performance evaluation experiments? Per-
formance evaluation projects are often conducted over a certain period of time
until a problem has been fixed or a new release is tested. In most cases, the en-
vironment setup and the experiments that have been conducted are not clearly
documented [SMF*07]. However, especially these tasks require a lot of effort
and knowledge. Providing a means to document this knowledge and transfer it
between the stakeholders of different performance evaluation projects would
significantly improve productivity. The challenge is to define a language that
allows to reuse assets across a wide range of different performance evaluation
projects. Moreover, the language has to encapsulate all information necessary
to automatically execute and analyse experiments.

53

4. Automated Performance Evaluation Experiments

4.2. Overview

Based on the research challenges identified above, the main goals of the SoPeCo ap-
proach are

e simplifying and unifying the definition of performance evaluation experi-
ments,

e automating the execution of experiments based on a definition, as well as

e providing methods and heuristics that optimize the trade-off between result
accuracy and the number of required measurements

in different, heterogeneous real-world performance evaluation projects.

2

Scenario Definition

1l 2

Experiment Definition

!

Experiment Execution

O

Q Performance Analyst l I o

) Automated

O Activity Result Analysis
=) Change of Activity
[

Figure 4.2.: Overview on the SoPeCo approach

Figure 4.2 outlines the main activities in an experiment-based performance evalua-
tion and indicates how these activities are supported by the SoPeCo approach. Fol-
lowing this process, performance analysts can evaluate the performance properties of
complex systems by applying systematic experimentation in a goal-oriented way. Our
process for deriving goal-oriented performance models presented in Chapter 3, includes
the activities presented in this chapter in several steps. The SoPeCo framework (see
Section 4.3) allows performance analysts to capture important information and auto-
mate common tasks within this process. Based on the manual definition of a scenario
(Scenario Definition) and one or more experiments for that scenario (Experiment Def-
inition), the SoPeCo framework automatically executes the experiments (Experiment

54

4.2. Overview

Execution). The loop between the Experiment Execution and the Result Analysis activ-
ity (see Figure 4.2), reflects the iterative combination between these activities targeting
the automated derivation of experimental designs that optimize the trade-off between
result accuracy and the number of required experiments (see Section 4.4). After the re-
sults have been analysed, the performance analysts might need to adjust the scenario or
the experiment definitions and re-run the evaluation in order to improve the evaluation
results or get more insights.

Jain [Jai91] lists a set of common mistakes done by performance analysts within
these activities. To avoid these mistakes, he introduces a systematic approach consist-
ing of ten steps that guide analysts through a performance evaluation process (similar
process guidelines are defined in [MAO1] and [SWO1]). In the remainder of this sec-
tion, we describe how the ten steps defined by Jain are integrated in and supported by
our approach. For a detailed description of the ten steps we refer to [Jai91] .

Scenario Definition The Scenario Definition activity comprises all steps that need
to be done by a performance analyst before the actual experimentation begins. This
includes:

1. State goals and define the system: One main mistake in many performance
evaluation projects is that the goal is not set properly. Analysts often start
with gathering vast quantities of measurement data or building models that
are supposed to answer any design question. However, the proper way is to
consider carefully what the goals of the study are. Based on these goals the
performance analyst can define which components to include in the system
under test (SUT), which performance metrics to measure or which workloads
to choose. Once these decisions are made, the performance analyst can set
up the test environment which comprises the SUT, monitoring tools and load
generation tools. This is a manual task that has to be done by the performance
analyst together with the other stakeholders of the study (e.g. development
groups or system administrators). In our approach, we assume that the goals
are clearly defined and the test environment is ready-to-use.

2. List services and outcomes: Listing the services the SUT provides and the po-
tential outcomes of these services is a preparatory step for the next step which
is selecting the criteria based on which performance should be compared.

3. Select metrics: In performance evaluations metrics are usually related to tim-
ing behaviour, throughput and resource consumption [Jai91]. It is important
to select those metrics that help understanding the questions that need to be

55

4. Automated Performance Evaluation Experiments

answered in order to achieve a certain goal. Moreover, performance analysts
have to check whether these metrics can be monitored in the test environ-
ment. There might be cases where a metric cannot be monitored because the
overhead would be too high or the instrumentation of a system component is
too complex. Once the metrics are defined by the performance analyst, they
can be documented using the experiment specification language included in
the SoPeCo framework [WHF13] (see Section 4.3). In general, the language-
based definition of a performance evaluation scenario, as proposed in this the-
sis, has the advantages that (i) the information is captured in a structured way
and thus it is less likely that the analyst forgets to add important information,
(i1) the information can be reused in the definition of different experiments
possibly conducted by different performance analysts, and (iii) the informa-
tion can be processed automatically by a corresponding tooling. In the ex-
perimental design terminology the metrics are called response variables (see
Chapter 2.2.1).

4. Select workload: Depending on the goal of the performance evaluation dif-
ferent workloads can be selected by the performance analyst. For the success
of the study it is important that the workload is representative for the scenario
that is subject to evaluation. However, deriving and characterizing workloads
is out of the scope of this thesis. In the SoPeCo approach, we assume that
the performance analyst has identified a set of appropriate workloads and thus
also workload parameters that can be varied in the experiment series.

5. List parameters: As with the metrics, the performance analyst has to define
which parameters potentially affect performance and thus should be included
in the experiments. These parameters are either system parameters, such as
component configurations and feature selections, or workload parameters like
user request characteristics and instruction mixes. Like the metrics, the pa-
rameters are documented using the experiment specification language of the
SoPeCo framework [WHF13] (see Section 4.3). The list of parameters and
metrics might need to be adjusted after some experiments have been conducted
and analysed (see Figure 4.2).

Experiment Definition Once the scenario for the performance evaluation project is
properly defined, the performance analyst can start designing experiments. Mapped to

56

4.2. Overview

Jain’s systematic approach to performance evaluations [Jai91], the Experiment Defini-
tion activity comprises the following steps:

6. Select factors to study: For each experiment, the performance analyst has to
specify which input parameters should be varied and how. The performance
analyst specifies this information using the experiment specification language
included in the SoPeCo framework [WHF13] (see Section 4.3). The frame-
work provides several ways to express the possible values of a parameter (e.g.
a list of values or a range of values). Moreover, the language as well as the
framework are designed to enable the flexible introduction of new parameter
variation strategies.

7. Select evaluation technique: In this step, Jain lists three main techniques
for performance evaluation: analytical modelling, simulation, and measur-
ing. The performance analyst has to chose the one he wants to use for the
study. Although the SoPeCo approach could also be used for the efficient ex-
ecution of experiments based on simulation models, the focus of this thesis is
on measurement-based performance evaluations.

8. Design experiments: Depending on the complexity of the scenario, the design
of experiments (or experimental design) can be one of the most complex and
error-prone steps in a performance evaluation (see for example the list of com-
mon mistakes in experimental designs listed by Jain [Jai91]). In this step, it
has to be decided which experiments (i.e., one concrete valuation of input pa-
rameters) should be executed. The challenge for the performance analyst is to
select the values in a way that the experiments provide maximum information
and can be executed within a limited period of time. With our SoPeCo ap-
proach, we support the performance analyst in this task by providing a set of
sophisticated methods that dynamically create experimental designs for com-
mon performance evaluation questions (see Section 4.4):

a) What are the most performance-relevant factors?

b) Which factors interact with each other?

¢) What is the functional relationship between the levels of a list of fac-
tors and a response variable?

Using our approach, the performance analyst does not have to create the exper-
imental design. He only has to select one of the methods that we provide for

57

4. Automated Performance Evaluation Experiments

the respective question. These methods dynamically create the experimental
design based on the iterative application of measurements, statistical methods
and result validation (see Section 4.4). In the following paragraphs, we de-
scribe how this interaction between Experiment Execution and Result Analysis
is applied in the SoPeCo approach in order to answer the three questions stated
above.

Experiment Execution Usually the execution of an experiment is only triggering the
start of a measurement. Hence, Jain does not list this step in his systematic approach
to performance evaluation [Jai91]. However, in the SoPeCo approach the Experiment
Execution is the connector between the automated derivation of experimental designs
based on a strategy defined in the Experiment Definition and the Result Analysis ac-
tivity. That is, we shift tasks that are usually conducted manually by the performance
analyst to the automated Experiment Execution activity which makes this activity an
important part of the approach. In Section 4.3, we describe in detail how we automate
this step in the SoPeCo framework [WHHH10] and combine it with analysing the mea-
sured data and deriving smart, goal-driven experimental designs for different real-world
performance evaluation projects.

Result Analysis The Result Analysis activity includes the two final steps of Jain’s
systematic approach [Jai91].

9. Analyse and interpret data: This step requires the most experience and knowl-
edge as the performance analyst has to decide, for example, which methods to
choose to analyse data, when the results are good enough to draw conclusions,
or if there has been a mistake in the experiment definition. In our approach,
we automate many analysis and interpretation tasks based on a set of heuris-
tics. Hence, we support the performance analyst in making these decisions.
In addition, the SoPeCo approach analyses the data with respect to the ques-
tion which further experiments are likely to provide the maximum information
gain and thus dynamically creates the experimental design [WKH11]. More-
over, our analyses are usually black-box analyses, i.e.,without making strong
assumptions about the underlying functional dependencies. this increases the
range of scenarios in which our automated approach can be applied.

For the three main performance evaluation questions outlined in step 8, we
analyse and interpret the data as follows. For questions a) and b), we combine
existing experimental designs that are executed automatically. The problem
behind question c) is subject of research in this thesis. The space of poten-

58

4.2. Overview

10.

tial experiments spanned by the input parameters and their possible values is
growing exponentially with the number of parameters. Thus, it is even more
important to accurately quantify the functional relationship with the least pos-
sible amount of measurements. If the performance analyst has to do this with
existing approaches, he has to execute a set of experiments using a manually
predefined experimental design. Furthermore, he has to determine the under-
lying model, i.e.,the type of the relationship (e.g. a linear relationship), in
order to fit the model using the measured data as training data (see Chapter
2.3). In a next step, the analyst has to conduct additional measurements to
validate whether the model is accurate enough. If not, further experiments are
required to extend the training data for the model fitting process.

Executing these steps manually is not efficient (usually too many experiments
are executed that do not provide significant information gain), error-prone
(there might not be enough and suitable validation measurements so that a
bad model fit in a certain area might not be detected), complex (in real soft-
ware systems the underlying models are usually not trivial and do not follow
a certain rule), and finally causes a lot of effort (determining the model, run-
ning the measurements, analysing the data). In Section 4.4.2, we introduce an
approach that combines experimental design, statistical model inference and
model validation in order to derive the functional relationship between a list of
input parameters and a performance metric of interest. The approach iterates
automatically over the three tasks until a prediction function with a sufficient
accuracy has been derived. We developed and compared different algorithms
that derive experimental designs which efficiently fit a model (i.e.,using as few
experiments as possible). Moreover, we evaluated a set of statistical regression
and interpolation methods that make less assumptions about the underlying
functional dependencies and thus are able to represent a large set of functions.
This allows us to fit accurate prediction functions for real applications with-
out knowing any details about the internal behaviour of the application. The
automated, black-box inference of prediction functions [WHKF12] makes our
approach applicable to a large set of scenarios and frees the performance ana-
lyst from the manual tasks described above.

Present Results: This final step deals with the communication of the evalua-
tion results to the corresponding target groups. Although Jain [Jai91] already
mentions that it is important to present the results in an understandable way,
he basically means that one should avoid statistical jargon and plot correct

59

4. Automated Performance Evaluation Experiments

graphs. In our approach, we aim at going one step further and integrate the
evaluation results in the daily life of the stakeholders in the software develop-
ment process [Wes12]. In Chapter 3, we present an industrial case study where
we provide direct performance feedback to UI developers by integrating the
evaluation results in the design process of web application front-ends.

In the following sections, we provide a detailed introduction of our contributions that
support performance analysts in implementing the presented process.

4.3. Experiment Definition and Execution

Each performance evaluation project is different. Projects differ for example in their
goals, the system under test, the workload type, and the monitoring tools. However, as
described in the previous section, there are tasks that are common to all performance
evaluation projects (e.g. defining the parameters and metrics to study, triggering mea-
surements, gathering measurement data, analysing measured data). Hence, in order
to enhance reusability and automate common tasks, it is important to distinct between
those parts of a project that are scenario-specific and those that are to be conducted
for every experiment-based performance evaluation. Moreover, the commonalities be-
tween projects have to be expressed in a well-defined way in order to allow for knowl-
edge exchange between projects and provide a basis for automating tasks.

In this section, we present an approach for handling different projects in a unified
way. Section 4.3.1 introduces the abstract syntax of a language for the definition of
scenarios and experiments [WHF13]. The language can be used to describe exper-
iments for any performance evaluation project. When applied by a concrete syntax
(e.g. a graphical editor) it directs the performance analyst through the experiment
definition process and reduces the risk of making common mistakes (such as those
described by Jain [Jai91]). Moreover, it increases maintainability and reusability of
experiment definitions due to the specified semantics that allows other performance an-
alysts to comprehend existing definitions. Another benefit of such a language is that
it captures the information in a machine-readable form and thus provides the basis for
the automated execution of experiments described in Section 4.3.2. The capability to
automatically execute experiments independent of the actual performance evaluation
project [WHHH10, WHI11] is a basic prerequisite for the work presented in Chapter 3.
Without automation it would not be feasible to derive performance models for real-
world software systems based on experimentation (such as demonstrated in Chapter 5).
The large amount of experiments that need to be conducted would make a manual exe-
cution too time-consuming for the performance analyst.

60

4.3. Experiment Definition and Execution

4.3.1. Experiment Specification Language

This work introduces a novel experiment specification language [WHF13] that forms a
basis to capture information required to implement a systematic performance evaluation
process (such as described by Jain [Jai91] or Smith [SWO01]). Unlike other languages,
it enables the definition of experiments independent of concrete domains, technolo-
gies or applications which allows performance analysts to focus on the problem that
is investigated. Moreover, it allows performance analysts to reuse experiment defini-
tions over multiple studies and share experiment meta-information and best practices
in experimental design among each other. Another benefit of our language is the clear
separation between experiment definition and automated experiment execution which
facilitates the integration of the language in different experiment automation tools.

Section 4.3.1.1 outlines the requirements for the design of the language. Section
4.3.1.2 introduces the abstract syntax of the language in form of a UML diagram and
explains its design rationale. Section 4.3.1.3 provides an example SoPeCo experiment
definition.

4.3.1.1. Requirements

In this section, we outline the requirements that drive the design of the experiment
specification language.

Targeting Automated Experiment Execution The goal of the approach presented
in this thesis is to run goal-oriented performance evaluation experiments automatically.
Hence, we require a language that has the capabilities to express experimental designs
in way so that they can be automatically executed and analysed. For example, we need
to describe what parameters to vary in which way or how to analyse the measured data
to achieve a certain goal.

Supporting a Broad Range of Scenarios As we do not want to focus on evaluating
the performance only for a certain software domain, the language should not include
any domain-specific elements nor should it predefine a fixed set of goals, experimental
designs, or analysis strategies. Furthermore, it should be independent of the program-
ming language and the experiment automation tool used to implement the automated
experiment execution.

Flexible Extensibility The third requirement arises from the first two requirements.
As the language should be independent of a concrete automation tool implementation
and support the automated execution and analysis of experiments without explicitly

61

4. Automated Performance Evaluation Experiments

defining concrete strategies, we need to allow automation tool implementations to flex-
ibly adapt to concrete goals, domains, or scenarios. That means it is up to experiment
automation tool implementations to provide a set of parameter variation strategies, ex-
perimental design methods, or result analysis techniques. Hence, our language has
to provide an abstract syntax that sets the frame for an automated performance eval-
uation but is flexibly extensible by a concrete syntax implemented in an experiment
automation tool. As a result of this thesis, we provide a hosted version of the SoPeCo
framework [WHW ™ 13] that includes implementations of commonly used methods as
well as a concrete web-based syntax for the experiment specification language.

4.3.1.2. Abstract Syntax and Informal Semantics

Due to the requirements describe above, we decouple the generic abstract syntax, pre-
sented in this section, from a concrete implementation that would (i) provide the con-
crete syntax and additional semantics (e.g. concrete analysis strategies), and (i1) au-
tomate the experiment selection and execution (as realized by the SoPeCo framework
(see Section 4.3.2) in our approach). Thus, we also shift tasks like type safety and mis-
use checks to the experiment automation tool in order to keep the language independent
and flexibly extensible. We implemented the abstract syntax in XML format. However,
for the purpose of illustration we present it in the form of UML class diagrams.

In the following, we refer to a concrete performance evaluation project as a scenario.
According to the systematic performance evaluation process introduced in Section 4.2,
a clear definition of the scenario should be the first step of any performance evaluation.
Figure 4.3 shows the ScenarioDefinition as the root element of the abstract syntax.

ScenarioDefinition

MeasurementSpecification . MeasurementEnvironmentDefinition

name : String 1—‘ name : String & 1

description : String

Figure 4.3.: Scenario Definition

A ScenarioDefinition is identified by its name and should have a description.
In the description attribute the performance analyst can provide information concern-
ing the scenario set up and evaluation goals. Furthermore, a ScenarioDefinition
contains exactly one MeasurementEnvironmentDefinition and one or many Mea-

surementSpecifications.

MeasurementEnvironment: The measurement environment denotes the complete
set of systems and tools involved in the performance evaluation. This includes the
system under test as well as load generation tools or monitoring applications. In the

62

4.3. Experiment Definition and Execution

MeasurementEnvironmentDefinition the performance analyst defines the parame-
ters and metrics that can be controlled or measured by the measurement environment.

MeasurementEnvironmentDefinition ParameterDefinition
name : String
type : String
?1 0.* role : Parameter Role
ParameterNamespace [@——
name : String «enumeration»

" ParameterRole
t 0.. - INPUT
- OBSERVATION

Figure 4.4.: Measurement Environment Definition

We introduce the notion of namespaces in order to group parameters and allow for
duplicate parameter names in different contexts (e.g. a parameter CPUUtilisation for
different machines in the measurement environment) if needed (see Figure 4.4). Each
ParameterDefinition is contained in a ParameterNamespace which is structured
hierarchically. Besides the name, a ParameterDefinition has a description, a type
and a role. The ParameterRole indicates whether the parameter value can be con-
trolled (i.e., it is an input to the measurement environment) or measured (i.e., it is
observed by the measurement environment). The type can be specified by a textual
representation. For the purpose of general applicability, we do not introduce detailed
typing in the model as types are often technology-, domain- or application-specific (see
also Section 4.3.1.1). Hence, the concrete types have to be interpreted by correspond-
ing tooling that uses the language. The description field allows performance analysts to
specify additional semantics with respect to the parameter such as to which component
it belongs or what possible values are.

MeasurementSpecification: The MeasurementSpecification deals with the spec-
ification of experiments based on the scenario and the parameters defined in the Mea-
surementEnvironmentDefinition. Figure 4.5 illustrates the measurement specifi-
cation part of the abstract syntax. A MeasurementSpecification contains one or
many ExperimentSeriesDefinitions. We define an experiment series as a set of
experiments that are designed to answer a specific question. An experiment is defined
as one concrete valuation of all input parameters (a.k.a. factor level combinations in ex-
perimental design terminology [Jai91]). An ExperimentSeriesDefinition contains
all information necessary to automatically derive experiments that fulfil the purpose
of the experiment series. Possible purposes of an experiment series are, for example,

63

4. Automated Performance Evaluation Experiments

the identification of performance-relevant parameters, the identification of parameter
interdependencies, or the quantification of functional dependencies between input pa-
rameters and an observed performance metric.

. ConfigurationNode
MeasurementSpecification -
- Stri key : String
name: String value : String
‘o..*
.L_ExperimentSeriesDefinition
1. - -
name : String ExtensibleElement
’ name : String
1 - P " N\
ExperimentTerminationCondition f
1 -
ExplorationStrategy
1 o AnalysisConfiguration
1.* - 1 —
ParameterValueAssignment ParameterDefinition
Zt ConstantValueAssignment
value : String

DynamicValueAssignment

Figure 4.5.: Measurement Specification

Each ExperimentSeriesDefinition contains exactly one ExperimentTermina-
tionCondition, exactly one ExplorationStrategy, and one or many Parameter-
ValueAssignments. For the purpose of universality and extensibility, we do not in-
clude concrete implementations of these elements in the abstract syntax (see also Sec-
tion 4.3.1.1). If we would for example integrate the concrete ExplorationStrategy
elements in the abstract syntax, we would have to adjust the language for each new
ExplorationStrategy. Instead, we introduce a generic element that serves as an ex-
tension point and provides the information required by these concrete implementations.
This ExtensibleElement is identified by its name and can contain a list of key value
pairs for its Configuration (see Section 4.3.1.3). Please note that in a concrete syntax
(i.e., the view for the performance analyst), these extensions look like regular language
elements. Hence, the performance analyst does not have to specify the names of the
extensions or the configuration keys but selects existing extensions and specifies only
the values for the configuration.

64

4.3. Experiment Definition and Execution

e ParameterValueAssignment: Specifies the parameters that are to be con-
trolled in the experiment series and defines the possible values for each pa-
rameter. The possible values can either be defined via a ConstantValue-
Assignment or a DynamicValueAssignment. The ConstantValueAssign-
ment simply defines a fixed value which does not change throughout the exper-
iment series. The DynamicValueAssignment allows the performance analyst
to define different types of value assignment such as a linear variation rule
with a minimum value, a maximum value and a step size, or a simple comma
separated list of values. We use the ExtensibleElement to flexibly define
concrete value assignment strategies. For example, a dynamic value assign-
ment with name “Linear Value Assignment” will at runtime be resolved to
the implementation of Linear Value Assignment provided by its correspond-
ing plugin. Based on the list of ParameterValueAssignments in an Ex-
perimentSeriesDefinition one can calculate the size of the measurement
space (i.e., the number of potential experiments). The actual selection of an
experiment is part of the experimental design which is derived by an Explo-
rationStrategy.

e ExperimentTerminationCondition: Due to the stochastic nature of per-
formance measurements, all samples that we take for an experiment have
different values. This requires repeated sampling for an experiment in or-
der to minimize the effect of errors and outliers and derive statistically sig-
nificant results [Jai91]. The ExperimentTerminationCondition specifies
when enough repetitions for an experiment have been conducted. Examples
are a fixed number of repetitions, a certain time frame in which the experi-
ment is repeated, a certain confidence interval that has to be achieved, or a
combination of the aforementioned conditions. Similar to parameter value as-
signments, termination conditions are also defined by ExtensibleElements.
For example, a NumberOfRepetitions termination condition will be resolved
at runtime to a concrete implementation that is provided by an extension with
the same name.

e ExplorationStrategy: Specifies the strategy for exploring the input param-
eter space (i.e., the input parameter value combinations are selected). This
strategy can, for example, implement a simple one-at-a-time experimental
design [Natl2] or more sophisticated strategies such as those presented in
Section 4.4. In the latter case, the strategies use different analysis meth-

65

4. Automated Performance Evaluation Experiments

ods in order to derive goal-oriented, efficient experimental designs. Hence,
an ExplorationStrategy can contain multiple AnalysisConfigurations.
Both, the exploration strategies as well as the analysis methods are modelled as
an ExtensibleElement which allows performance analysts to flexibly bind
them to available implementations.

Based on the information described above, large parts of a performance evaluation
can be automated (see Section 4.3.2). However, it is subject to research to come up with
appropriate methods for automated experiment selection, experiment termination, and
experiment analysis methods that support performance analysts in evaluating complex
software systems. This work aims at facilitating these research activities by provid-
ing a common language that allows scientists and engineers to combine and compare
different methodologies in a unified and structured way (such as demonstrated in this
thesis).

4.3.1.3. Example

To demonstrate the usage and complete the description of the language, Figures 4.6
to 4.8 show an example of a scenario definition in form of a diagram. It contains
at least one representative instance for each abstract syntax element of the language
(enclosed in angle brackets, <<ElementClass>>). We use a representation that is
close to the abstract syntax in order to highlight the links to the previously introduced
language elements. For the SoPeCo framework, we developed a concrete syntax in
form of a web-based editor in order to improve the user experience for the performance
analysts [WHW T 13].

The example illustrates an experiment definition for a customisation project of an
SAP ERP 2005 application. In this project, a performance analyst addresses the prob-
lem of customizing an SAP ERP application installation to an expected customer work-
load. The workload of an enterprise application can be coarsely divided into batch
workload (background jobs like monthly business reports) and dialogue workload (user
interactions like displaying customer orders). This workload is dispatched by the ap-
plication server to separate operating system processes, called work processes, which
serve the requests [Sch06]. Among other tasks, such as sizing the underlying hardware,
the IT administrator of an SAP system has to allocate the available number of work pro-
cesses (depending on the size of the machine) to batch and dialogue jobs, respectively.
To support the IT administrator, the performance analyst has to find the optimal amount
of work processes required to handle the dialogue workload of a sales and distribution
scenario with the constraint that the average response time of dialogue steps should
be less than one second. In order to derive this information, the performance analyst

66

4.3. Experiment Definition and Execution

documents this scenario using our experiment specification language (see Figures 4.6
to 4.8) and runs an automated performance analysis based on this specification. Please
note that for illustration purposes we do not include the complete set of experiment
series and parameters required for a successful enterprise application customisation in
the example.

<<Scenario Definition>>
name = “SAP ERP 2005 Customization”
descr = “Experiments to derive a performance-optimized
configuration for SAP ERP 2005 on-premise installations.”

I
v Vv

<<Measurement Specification>>
name = “Dialogue Work Process Configuration”

<<Measurement Environment Definition>>

Figure 4.6.: Example for Scenario Definition

The measurement environment definition (Figure 4.7) contains two parameter names-
paces, one for the input parameters and one for the observation parameters. In this
example setup, the input parameters are (i) the number of active users in the sales and
distribution (SD) scenario (numSDUsers) and (ii) the number of work processes (WPs)
for dialogue workload (numDialogueWPs). The observed parameter is the average re-
sponse time for the dialogue steps (avgDialogueResponseTime).

The measurement specification (Figure 4.8) defines the experiment series that should
be conducted on the measurement environment in order to meet the scenario goal.
In the example, the performance analyst wants to infer a function that describes the
relationship between the two input parameters and the observation parameter (i.e.,
f(numSDUsers, numDialogueWPs) = avgDialogueResponseTime). Therefore, the ex-
periment series definition contains two dynamic value assignments that describe the
possible values for each input parameters. In the example, the values are specified via
a “Linear Variation” assignment which means that the parameter can take any value
between min and max in the defined step width (i.e., 3, 4, 5, and 6 for the number of di-
alogue work processes). The number of potential experiments in the experiment series
is 4 %30 = 120. Using an experiment termination condition, the performance analyst
determines that every experiment should be repeated 30 times. Moreover, the perfor-
mance analyst defines the “Random Breakdown” method as an exploration strategy.
This method runs iteratively, and randomly selects a fixed number of experiments in
each iteration (see Section 4.4.2.1). Moreover, it derives a prediction function based
on the data measured by the already executed experiments. Therefore, the Multivari-
ate Adaptive Regression Splines (MARS) [Fri91] method is defined using the analysis
configuration. As a last step in each iteration, the method validates whether the predic-

67

4. Automated Performance Evaluation Experiments

<<Measurement Environment Definition>>

<<Parameter Namespace>>

9 o ”
name = "1input

<<Parameter Definition>>
name = “numSDUsers”
> descr=“The number of active users for the
sales & distribution scenario.”
role= INPUT

<<Parameter Definition>>
name = “numDialogueWPs”
descr = “The number of application server
work processes that have been allocated to
handle dialogue workload.”
role = INPUT

<<Parameter Namespace>>
name = “observation”

<<Parameter Definition>>
name = “AvgDialogueResponseTime”
descr=“The average response time of all
executed dialog steps in a test scenario
role = OBSERVATION

Figure 4.7.: Example for Measurement Environment Definition

tion function is accurate enough. In the example, the performance analyst specifies that
the function is accurate enough if the mean relative prediction error on the validation
data is less than 20%. If this is the case, the exploration strategy terminates and the
execution of the experiment series is finished.

Based on the information provided in this example, the performance analyst can au-
tomatically run the experiments for customizing an SAP ERP application installation
to an expected customer workload. Moreover, he or his colleagues can reuse the speci-
fication for customizing the installations of other customers.

4.3.2. Automated Experiment Execution

Based on the information specified in the experiment definition, the SoPeCo framework
automatically executes and analyses a series of experiments. A description of the auto-
mated process as well as the basic architecture of the SoPeCo framework and its design
rationale [WHHH10, WH11] can be found in Appendix A.

68

4.3. Experiment Definition and Execution

<<Measurement Specification>>
name = “Dialogue Work Process Configuration”

\9 <<Experiment Series Definition>>
name = “Model Inference Series”

<<Experiment Termination Condition>>

9
name = “NumberOfMeasurements”

\% <<Configuration Node>>
key = “numMeasurements”; value = “30”

<<Dynamic Value Assignment>>
> name=“Linear Variation”
parameter = “input.numSDUsers”

<<Configuration Node>>
key = “min”; value = “1”

<<Configuration Node>>
key = “max”; value = “90”

<<Configuration Node>>
key = “step”; value = “1”

<<Dynamic Value Assignment>>
> name = “Linear Variation”
parameter = “input .numDialogueWPs”

<<Configuration Node>>
key = “min”; value = “3”

<<Configuration Node>>
key = “max”; value = “6”

<<Configuration Node>>
key = “step”; value = “1”

<<Exploration Strategy>>
name = “Random Breakdown”

<<Configuration Node>>
key = “desiredModelAccuracy”; value = “0 . 2”

<<Configuration Node>>
key = “numExperimentsPerlteration”; value = “5”

<<Analysis Configuration>>
name = “MARS”

Figure 4.8.: Example for Measurement Specification

4.3.3. Summary

We introduced a novel approach for automating software performance evaluations
in a wide range of scenarios. Our approach consists of an experiment specifica-
tion language [WHF13] and a framework for the automated execution of experiments
[WHHH10, WH11]. The experiment specification language is flexibly extensible and
provides all necessary information to execute the defined experiments automatically.
Moreover, the language supports performance analysts in defining proper experiments

69

4. Automated Performance Evaluation Experiments

and enables reuse among different stakeholders and performance evaluation scenarios.
In the following sections, we introduce and evaluate a set of strategies for the automated
combination of experimental design and statistical analyses that target at finding a good
trade-off between the number of experiments that are to be executed and the accuracy
of the analysis result.

4.4. Automated Combination of Experimental Design and Statistical
Methods

In the previous section, we introduced the basic experiment automation process of the
SoPeCo approach. In the following, we describe how we leverage this process to im-
plement advanced methodologies that support the performance analyst in efficiently
evaluating the performance of complex software systems [WKHI11, WHKF12]. We
combine experimental designs with statistical analysis methods in order to provide an
integrated solution to answer three main performance evaluation questions:

1. What are the performance-relevant parameters?

2. Which parameters interfere with each other?

3. What is the functional relationship between a set of parameters and a perfor-
mance metric of interest?

To support answering the first two questions, we integrated several state-of-the art
experimental design methods into the SoPeCo framework. Full factorial, fractional
factorial and Plackett-Burman designs are examples that are well-understood and often
applied for performance analyses [Jai91, JEO6]. In Chapter 2.2, we present these de-
signs and provide an overview that supports performance analysts in selecting a proper
design for a specific application scenario.

In Section 4.4.2, we introduce an approach to support performance analysts in an-
swering the third question. Following the goals of this thesis, the approach is designed
to meet the requirements listed in Section 4.4.1.

4.4.1. Requirements

Automating as much as Possible In order to support performance analysts in eval-
uating the performance of software systems efficiently we need to automate as many
tasks as possible. Furthermore, the automated execution of experimental designs is a

70

4.4. Automated Combination of Experimental Design and Statistical Methods

key prerequisite to keep the experiment-based approach presented in this thesis feasible
for real-world scenarios.

Limited Assumptions about System Under Test Statistical analysis methods can
require assumptions on the kind of functional dependency between input and output
variables. The methods mainly differ in their degree of model assumptions. For ex-
ample, linear regression makes rather strong assumptions on the model underlying the
observations, while the nearest neighbour estimator makes no assumptions at all. Most
other statistical estimators lie between both extremes. In general, methods with stronger
assumptions need less data to provide reliable estimates, if the assumptions are correct.
Methods with less assumptions are more flexible, but require more data (see also 2.3).
As we aim at a flexible approach that is applicable to a wide range of scenarios, we
focus on flexible methods with less assumptions about the underlying functional de-
pendencies.

Using a Minimum Set of Experiments Running a single experiment on a software
system in order to get performance measures takes time. Often it requires warm-up
runs, multiple repetitions to get stable numbers and clean-up procedures. Moreover,
when varying the values of multiple parameters in an experiment series, the ,,curse of
dimensionality* [HTFO09] leads very quickly to a parameter space that is not measurable
in a reasonable amount of time. Hence, approaches are required that gain maximum
information with as few experiments as possible [Jai91].

4.4.2. Automated Inference of Performance Prediction Functions

Inferring functional relationships from quantitative data is required in many disciplines.
Various regression and interpolation techniques exist that can be used to estimate the
value of an unknown point in a partially measured space [HTF09]. In the following,
we refer to the data based on which the relationship between parameters is inferred as
training set. Moreover, we refer to the data that is used to determine the quality of the
estimates as validation set. We assume that theoretically we can measure any point in
the parameter space. However, as this is in most cases not feasible, we have to provide
a means to decide which points we should add to the training and validation set in
order to derive an accurate prediction function. In general, the quality of the estimation
depends on four main factors:

Number of Known Points Usually, a larger number of known points increases the
probability to derive a good estimation.

71

4. Automated Performance Evaluation Experiments

Structure of Known Points At least as important as the number of known points is
the structure of the known points, i.e., if the space is covered properly. Having many
points from a certain area in the space, but none from other areas will most likely not
result in a good overall estimation. In order to achieve best results, the structure of the
points should be aligned to the combination of underlying functional relationship and
applied inference method.

Appropriateness of Inference Method The proper selection of an inference method
that is able to fit the underlying dependency is another crucial step when inferring func-
tional relationships from measurement data.

Deviation in Measured Values Due to the stochastic nature of performance measure-
ments, all samples that we take for a certain point in the parameter space have different
values [Jai91]. Hence, the value that we derive for a single point is always different
from the real value for this point. This deviation can influence the quality of estima-
tions.

The challenge addressed by the approach presented in this section is to find a trade-
off between automatically deriving an accurate prediction function and executing only
a minimal set of experiments. Moreover, the approach should be applicable to a large
set of scenarios and thus should not make too many assumptions about the functional
dependencies that are to be inferred. In particular, we answer the following questions:

1. What are appropriate statistical inference methods to derive performance pre-
diction functions without knowing the underlying dependencies?

2. What are appropriate strategies for automatically selecting measurement points
in a parameter space?

3. Which measurement point selection strategies and statistical inference meth-
ods are good or bad matches with respect to the trade-off between number of
measurement points and prediction accuracy?

4. How to derive prediction functions with sufficient accuracy using a minimal
set of measurements?

In the context of this thesis the value of a single measurement point is derived by an
experiment (see Section 4.3.1). The basic procedure of our approach for finding a good
trade-off between number of experiments and prediction accuracy is depicted in Figure
4.9.

72

4.4. Automated Combination of Experimental Design and Statistical Methods

[Not Acceptable Prediction Error]

Determine and . i Validate
Derive Prediction L.
Execute A Prediction
. Function .
Experiments Function

Figure 4.9.: Overview on automated, iterative function inference

[Acceptable
Prediction Error]

We use an automated iterative approach that executes new experiments until a pre-
diction function with sufficient accuracy has been inferred. Within one iteration the
following steps are executed. The first step is determining and executing a set of exper-
iments. We developed different strategies that decide which and how many experiments
are selected in each iteration (see Section 4.4.2.1). In the next step, a statistical analysis
is conducted to derive a prediction function based on the data measured so far. In Sec-
tion 4.4.2.3, we introduce multiple inference methods that meet the requirements of the
approach. Once the prediction function has been derived, it is automatically validated
against the data in the validation set using one of the strategies described in Section
4.4.2.2. The validation provides a prediction error metric for the inferred prediction
function. If this error is below a predefined threshold, the process terminates. If the
error is above the threshold, a new iteration is started.

Figure 4.10 illustrates the process by a simplified example with a single controlled
parameter. The underlying functional relationship between the controlled parameter
and the performance metric of interest follows an exponential model (as indicated by
the solid exponential curves in the graphs on Figure 4.10).

In the first step, the algorithm runs two experiments and adds the values #; and #,
to the training set (see Figure 4.10(a)). Then, a linear function is derived from the
data in the training set (dashed line in Figure 4.10(b)). In the next step, the prediction
function is validated. For this purpose, two more experiments are executed and the
values v; and v, are added to the validation set. Now, the measured values in the
validation set are compared to the predicted values for those points and the difference
between the measured and the predicted values is calculated (indicated by Ap and the
vertical dotted line in Figure 4.10(c)). As Ap is larger than the predefined threshold, a
second iteration is started running an additional experiment and adding the value #3 to
the training set (see Figure 4.10(d)). Based on the new training set, a stepwise linear
function is derived (dashed lines in Figure 4.10(e)). Finally, the new predictions are
compared to the measured values v1 and v2 in the validation set and the prediction
error Ap is calculated again (see Figure 4.10(f)). Now, the prediction error is smaller
than the predefined threshold and the algorithm terminates.

73

4. Automated Performance Evaluation Experiments

. ap

Vi

Metric of Interest
Metric of Interest
Metric of Interest

" ap

Vq
Controlled Parameter Controlled Parameter Controlled Parameter

(a) (b) ()

—+
iy
—+

iy
—+

iy

i
/I VZ

Metric of Interest

Metric of Interest

Metric of Interest
el

ty Y 7

oo — Vi

—+
iy
-
s
-
iy

Controlled Parameter Controlled Parameter Controlled Parameter

(d) (e) (f)

Figure 4.10.: Example for iterative function inference

In the remainder of this chapter, we introduce different methodologies and strate-
gies to implement and combine the three steps of the process. Moreover, we validate
the efficiency and prediction accuracy of the approach in different case studies (see
Section 4.5).

4.4.2.1. Experiment Selection Strategies

In the following, we describe three concrete experiment selection strategies that im-
plement the iterative process described above. The Random Breakdown algorithm se-
lects a number of random experiments in the whole parameter space. In contrary, the
adaptive strategies continuously split the parameter space in different sectors and se-
lect new experiments in those sectors that have the worst prediction accuracy. Thereby,
the Adaptive Random Breakdown algorithm randomly selects experiments within a sec-
tor, while the Adaptive Equidistant Breakdown algorithm follows an equidistant pattern
when selecting new experiments in a sector.

Random Breakdown The Random Breakdown algorithm randomly selects a number

of experiments in each iteration of the process outlined in Figure 4.9. The selected
experiments are always distributed across the whole parameter space. The algorithm is

74

4.4. Automated Combination of Experimental Design and Statistical Methods

formalized in Algorithm 4.1 and illustrated in Figure 4.11 using an example with two

controlled parameters.

Iteration 1 Iteration 2 Iteration n
Py P1 Py
° o o o 9, °

° o o © 00 g0

° ° ° °

If‘> ° % E> o E> :o ° ...o'

° o ° ° o.o. ..°

_— ——> L o0 —>
P, P, P,

Figure 4.11.: Example for Random Breakdown

Algorithm 4.1 Random Breakdown

1: err:=o0

22 T:={}

3: V= {vl,...,vn}

4: E:={ey,...,em}\V

5: Initialise configuration values €yaxpredErrs EexpPeriter

6: while err > €,,prearr NE # {} do
7: Ejter := EexpPeriter random experiments from £
8 Execute all experiments in Ej.,
9: T :=TUEj,.,
10: E:=FE\Ej,r
11: Build prediction function using 7
12: Predict points in V and calculate err
13: end while

At the beginning of the algorithm the training set 7" is empty. V is a predefined
validation set that contains n randomly selected validation experiments. The set of ex-
periments E from which the strategy can select candidates is defined by the number of
all possible experiments in the parameter space ey, ..., e, minus the experiments that
have been selected for the validation set V. The algorithm can be configured via two
parameters. &y, preqkrr 15 @ threshold that defines at which prediction error the algo-
rithm can terminate. This threshold allows performance analysts to adjust the trade-off
between prediction accuracy and number of executed experiments according to their
needs. Eqypperirer denotes the number of experiments that are to be executed in each it-
eration. Hence, it allows performance analysts to control the length of a single iteration.
In some cases it might be more efficient to execute more experiments before conduct-
ing an analysis while in other cases one wants to build the prediction models more
frequently. This mainly depends on the size of the parameter space, the time it takes

75

4. Automated Performance Evaluation Experiments

to get one measurement point and the time it takes to conduct an analysis. In the body
of the algorithm, a loop is executed until the prediction error is less than &, predErr
or all possible experiments have been executed. In each iteration of the 100p Eexpperirer
random experiments are selected, executed and added to the training set 7. Then, the
prediction function is derived based on the training set and the predictions are compared
against the data in the validation set V.

The benefit of the random breakdown strategy is its simplicity. Moreover, it is not
prone to local over-optimisations. However, it also does not optimize the structure of
the selected experiments with respect to the analysis. Hence, it is possible that a lot of
experiments are executed that do not provide much information gain. See Section 4.5,
for a detailed discussion.

Adaptive Equidistant Breakdown In contrast to the algorithm described above, the
Adaptive Equidistant Breakdown algorithm as well as the Adaptive Random Break-
down algorithm (described in the next paragraph) take the locality and the size of sin-
gle sector prediction errors into account when determining experiments for the next
iteration. Both adaptive algorithms split the parameter space in sectors depending on
the locality of the points with the largest prediction errors. We assume that a new ex-
periment in the area with the highest prediction error raises the accuracy of the overall
prediction function at most. Thus, only those sectors that have a prediction error larger
than the predefined threshold will be split into equidistant sub sectors and only in these
sub sectors new experiments will be selected.

In the following, we describe the algorithm in detail. First, we introduce some basic
data types, variables and functions followed by a listing of the algorithm (see Algorithm
4.2) and a figure illustrating the basic idea by an example (see Figure 4.12).

We define E = {€|¢ € F'} as a set of all possible experiments in a multidimensional
parameter space with normalized values F = [0..1]. Elements of E are declared as
€. Let the elements €; # é; be two positions describing the multidimensional space.
Function fiepser : E X E — E returns the center of the two given experiments which
is calculated by the element-wise arithmetic middle of the two vectors. This center is
again an experiment named €gppe,. Furthermore, function fiomers : E X E — E* re-
turns a set of all corner points of the embraced space given by €| and e, (i.e., E* C E).
A corner point is an experiment €., that contains only the minimal or maximal
possible value of an input parameter in a multidimensional space. In addition, let
errgecror € R describe the error of the prediction function in a multidimensional space
called sector that is defined by two corner points €.prner1 and €comer2. Furthermore,
S= {gcornerl X €corner2 X errsector’gc*ornerl € ENécorners € E Nerrsecror € R+} is defined
as the set of sectors in a multidimensional space. Q C § is a priority-controlled queue

76

4.4. Automated Combination of Experimental Design and Statistical Methods

which contains sectors where the error of the prediction function runs out of the ac-
ceptable threshold. The order of priority is based on errsecor. The training set 7 holds
the measurement results of the experiments used to create a prediction function. V is
the validation set used to calculate the prediction error. With respect to the contained
experiments Q, T, and V are mutually disjoint. The function f,.qi; : E — R creates
a prediction results for a specific experiment € based on the data in the training set 7.
The parameter €,,,preqerr € RT is predefined by the performance analyst and gives an
option to control the expected accuracy and thus the runtime of the iteration process. To
derive the validation set which is used to calculate the prediction error, the performance
analyst can choose between three strategies VS = {vs|vs € {DSL,DSG,RVS}}, where
DSL is the Dynamic Sector with Local scope, DSG is Dynamic Sector with Global
scope, and RVS is the Random Validation Set strategy (see Section 4.4.2.2 for a de-
tailed description of the validation strategies). For the sake of simplicity, we illustrate
only the DSL validation strategy in Algorithm 4.2 and Algorithm 4.3. In general, all
methods are based on the assumption that the prediction error of the derived function
for feener(€1,e2) is representative for the error in the spatial field embraced by €] and
22.

After setting the preconditions, the actual experiment selection starts with a loop over
Q in line 7 of Algorithm 4.2. Within this loop, those sectors with the highest error are
selected for further processing and stored in the set I (lines 8 to 15). Starting at line 16,
the algorithm iterates over the selected sectors and executes the experiments that define
the corners of the sector as well as the experiments that lies in the center of the sector
(lines 17 to 20). Furthermore, it calculates the prediction error errg,;,, for these sectors
(lines 21 and 22). If errgecror 1s greater than the defined €,,4,preqrrr, NEW sub sectors are
created to be measured in further iterations (lines 24-28). If the errg.c;or 1S less than
Emaxprederr and the validation strategy is one of the Dynamic Sector strategies (see also
Section 4.4.2.2), the current sector is used for validation (line 30). To provide faster
convergence against the underlying performance functions it brings significant advan-
tages to execute this breadth-first approach over all sectors with the same prediction
eITOr errsecror- It €nsures that the algorithm goes deeper in those areas with the highest
prediction faults. Since nearly all interpolation or regression techniques cannot abso-
lutely avoid the influence of new elements in 7" onto preliminary well predicted sectors,
the validation repository V is checked for negative effects in sectors that have been well
predicted before the last modifications (lines 33 to 41). If for any sector s in V the pre-
diction is not accurate enough, the sector is returned to Q and thus measured in more
detail in later iterations. We expect that the heuristic converges more efficiently if a new
measurement has only local effects on the interpolation function. Finally, all elements
from V are copied to T as the experiments have been executed before and thus the

77

4. Automated Performance Evaluation Experiments

Algorithm 4.2 Adaptive Equidistant Breakdown

1: €| := (1,1,...,1)
52 = (0,0,...,0)
€I sector <=
T:={}

V:i={}

Q:= {< Zlaé’%errsecmr >}

while O # {} do
1=}

. Sort Q descending by errgecror
10: repeat
11: Stmp1 = first sector in Q
12: Q= 0\ {simp1}
13: I:=TU{stmp}
14: Stmp2 := first sector in Q
15: until Stmp1-€FTsector > Stmp2-€¥sector

SANIN AN~

®

16: forall sin/ do

17: E:= fcorners(s'glys~52)

18: Execute all experiments in £ and add results to T’
19: Ecenter 1= fcenter(s-glys-EZ)

20: Fmeasured .= Measured value for € er
21: Tpredicted ~= fpredict (Ecenter)

22: erfsecror \= W

23: if errgecior > Emaxpreakrr then

24: for all ¢ in E do

25: Stmp =< €,€center; €T Tsector >

26: Q= QU {stmp}

27: T:=TU {< rmeasuredaé‘center >}
28: end for

29: else

30: V:i=VU{s}

31: end if

32: end for
33: forall sinV do

34: Fmeasured -= measured value for §.€.czer-
35: rpredicted = fpredict (Ecenter)
36: S.€FFsector -= M
. Vmeasured
37 if s.errsecior > Emaxpreaerr then
38: Vi=V\{s}
39: Q:=QU{s}
40: end if

41: end for
42: end while

78

4.4. Automated Combination of Experimental Design and Statistical Methods

43: for all sin V do

44: Feasured = measured value for s.€.opzer
45: Tr=TU {< rmeasuredagcenter >}

46: end for

data is available but not yet added to the training data (lines 43-46). Figure 4.12 illus-
trates the experiment selection process of the Adaptive Equidistant Breakdown strategy
based on two controlled parameters p; and p,;. The red points mark the experiments
that have been used in the training set. For the sake of readability, we do not show the

experiments used for validation.

Iteration 1 Iteration 2 Iteration n

Py Py Py
° ° °

> > e D

P, P> P,

Figure 4.12.: Example for Adaptive Equidistant Breakdown

The benefit of the strategy is the smart coupling between experiment selection, pre-
diction function derivation and validation. The fact that new experiments are selected
in those areas where the highest prediction error has been observed can result in a faster
convergence against the desired overall prediction accuracy defined by the performance
analyst. Moreover, the strategy is very economical with respect to the number of ex-
ecuted experiments. However, a drawback of the strategy is that the decision if the
points in a sector are represented accurately enough is based on a single center point
experiment which might lead to wrong conclusions. The Adaptive Random Breakdown
Strategy presented in the following paragraph aims at compensating this drawback by
selecting multiple random experiments for each sector.

Adaptive Random Breakdown Basically, the Adaptive Random Breakdown algo-
rithm is very similar to the Adaptive Equidistant Breakdown algorithm. It also takes
the locality and the size of single sector prediction errors into account when determin-
ing experiments for further iterations. The only difference to the Adaptive Equidistant
Breakdown algorithm is that instead of selecting only the center point of the sector, the
Adaptive Random Breakdown algorithm selects a given number of random experiments
within the sectors. Figure 4.13 illustrates the selection process based on two controlled

parameters.

79

4. Automated Performance Evaluation Experiments

Iteration 1 Iteration 2 Iteration n

Figure 4.13.: Example for Adaptive Random Breakdown

The frame of the algorithm as well as the basic data types and variables corre-
spond to Algorithm 4.2. The main difference in Algorithm 4.3 is that the function
Frandom : E x E — ER which returns n random experiments (EX C E) located in a sector
s replaces function feeper. Thus, the training set 7 and the validation set V' contain
the set of randomly selected experiments ER and the corresponding measured results
RM = {r,y|r,y € RT}. The predicted results are stored in an array R = {r,|r, € RT}.
The number of experiments that are selected in each iteration can be configured by the
performance analyst.

Compared to the Adaptive Equidistant Breakdown Strategy, more experiments are
selected within an iteration which can lead to a faster termination in critical sectors
(due to less necessary sector splits). However, that depends on the size of the parameter
space, the configured number of experiments per iteration, the applied inference method
and the complexity of the underlying function. In Section 4.5, we discuss the interac-
tion between the different combinations of problems, experiment selection strategies,
validation strategies and inference methods in detail.

4.4.2.2. Validation Strategies

The decision on how to derive the data for the validation of the prediction function
can be a crucial one for the automated experiment selection approach presented in this
thesis. As with the experiment selection for the training set, the number of experiments
and the structure of selected experiments determine the quality of the validation set.
However, while a larger validation set leads to better results, it also requires more time
to execute these experiments. As the number of executed experiments is the metric we
want to minimize in our approach, it is important to find and add those points to the
validation set that provide maximum information gain (i.e., which are most likely to
improve the prediction accuracy). In the algorithms introduced in Section 4.4.2.1, we
have already implicitly shown two strategies for adding experiments to the validation

80

4.4. Automated Combination of Experimental Design and Statistical Methods

Algorithm 4.3 Adaptive Random Breakdown
e =(1,1,...,1)

52 = (0,0, .. .,0)

Cl'lsector +— R

T:={}

Vi.={}

Q = {< 517527errsector >}

while Q # {} do
I:={}
: Sort Q descending by errsecror
10: repeat
11: Simp1 = first sector in Q
12: Q:= Q\{stmpl}
13: I::IU{stmp}
14: Stmp2 = first sector in Q
15 until Syp1.€r7secior > Stmp2-€Fsecror

AN T

Y % 3

16: forall sin I do

17: E = frorners(5.€1,5.€2)
18: Execute all experiments in £ and add results to T
19: ER .= fmndom(s.é'] ,S.gz)
20: RM := measured values for ER
21: RP = fyredict(EX)

R e \RM[i;gfo[in
22: ersector “= —ER.sife i
23: if errsecior > Emaxpreaerr then
24: for all ¢ in E do
25: Stmp =< €, ER errsector >
26: Q= QU {stmp}
27: T:=TU{<RM ER>}
28: end for
29: else
30: V:i=VU{s}
31: end if

32: end for
33: forall sinV do

34: RM := measured values for s.EX.
35: R = fpredict (ER)
Z_ERI.xize |RM[";\;RP["”

i= RM i
36: S.erFsector = EF size U
37: if errsecior > Emaxpreaer then
38: V:=V\{s}
39: 0:=QU{s}
40: end if

41: end for
42: end while

81

4. Automated Performance Evaluation Experiments

43: for all sin V do

44: RM := measured values for s.EX.
45: T:=TU{<RM ER>}

46: end for

set. In the remainder of this section, we introduce and discuss the validation strategies
applied in this thesis in more detail.

Random Validation Set In this strategy, a set of random experiments out of the whole
parameter space is used to determine the accuracy of the prediction model during the
automated iterative process depicted in Figure 4.9 . The size of the validation set can
be defined by a performance analyst. In each validation run, all experiment results in
the validation set are compared to the predicted values of the prediction model, and the
average relative prediction error is calculated.

The advantages of this strategy are that the validation experiments are distributed
across the whole parameter space and that the performance analyst can control the size
of the validation set and thus its significance. However, the disadvantages are that a
large validation set requires the execution of many experiments that cannot be used
for function building, it can cause long processing times of the validation step, and
due to the random selection of the experiments we might not get enough validation
experiments in those areas that are the most critical.

Dynamic Sector The Dynamic Sector validation is a strategy developed to further
improve the efficiency of the adaptive breakdown algorithms (see Section 4.4.2.1).
Thus, it is closely connected to the adaptive algorithms and can only be applied in
combination with one of these. The goal of the strategy is to minimize the measure-
ment overhead for the validation step but providing enough validation points in order
to confidently calculate the prediction error of the derived function. The strategy uses
only experiments that have been measured anyway during the breakdown of the param-
eter space by the respective algorithms. After a new experiment has been executed, the
strategy decides based on the prediction error in the corresponding sector whether the
new experiment result will be part of the validation set or training set. If the prediction
error of a sector is below a predefined threshold, the adaptive algorithms do not further
split the sector (as formalized in Algorithm 4.2 and 4.3). The experiments measured in
the course of this last split will not be added to the training set but to the validation set.
After each iteration of the adaptive algorithms, the strategy checks the prediction errors
of the sectors in the validation set. If a change in the model during an iteration causes
the prediction error in a sector to go above the predefined threshold, the experiment
results for this sector will be removed from the validation set and added to the training

82

4.4. Automated Combination of Experimental Design and Statistical Methods

set. Moreover, the sector is split in multiple sub sectors in order to execute more exper-
iments in the critical sector. Hence, the experiments that are part of the validation set
change dynamically based on the sector prediction errors at a certain point in time. The
validation terminates the overall measurement process if (i) all sectors have a prediction
error that is less than the predefined threshold (in the following referred to as Dynamic
Sector validation with Local prediction error scope (DSL)), or (ii) the average predic-
tion error of all sectors is less than the predefined threshold (in the following referred
to as Dynamic Sector validation with Global prediction error scope (DSG)).

The advantages of this strategy are that it requires no additional measurements in or-
der to build a validation set and that the size of the validation set grows with the number
of splits executed by the adaptive algorithms. As the number of splits is an indicator for
the complexity of the function that has to be predicted, we get more validation points
if we have to infer a more complex function. However, the fact that only those experi-
ments measured by the breakdown algorithm are used for the validation set implies that
the confidence of the calculated prediction error relies on the quality of the breakdown
algorithms.

4.4.2.3. Statistical Inference Methods

In this section, we introduce four analysis methods that can be applied in the presented
approach. It is not a goal of this thesis to develop a novel function inference method or
to compare all existing approaches and find the best one. Instead, we aim at demonstrat-
ing that our approach provides good results by integrating state of the art analysis meth-
ods. Furthermore, we want to demonstrate that the flexibility of the approach allows
to combine different experiment selection algorithms with different analysis methods.
This flexible combination of methods allows scientists and engineers to benchmark new
experimental design and analysis strategies against state of the art approaches. In the
course of this thesis, we focus on flexible analysis methods that make less assumptions
about underlying functional dependencies and thus are generally applicable to a large
set of scenarios. In the remainder of this section, we briefly introduce and discuss the
four analysis methods applied in the course of this thesis. A detailed description of the
methods is provided in Chapter 2.3. In Section 4.5, we apply the different combina-
tions of analysis methods and experiment selection strategies to several problems and
discuss which combinations are good and which are bad matches.

Multivariate Adaptive Regression Splines (MARS) Multivariate Adaptive Regres-
sion Splines (MARS) [Fri91] is an analysis method which has already been successfully
employed in software performance engineering [CW00, HWSK10]. MARS is a non-

83

4. Automated Performance Evaluation Experiments

parametric regression technique which requires no prior assumption as to the form of
the data. The method fits functions creating rectangular patches where each patch is a
product of linear functions (one in each dimension) [Fri91]. We selected this method
due to its general applicability and the good results that have been reported in existing
performance engineering literature.

Classification and Regression Trees (CART) CART is a simple and popular method
for tree-based regression and classification. Tree-based methods partition the fea-
ture space into a set of rectangles, and then fit a simple model in each one [HTF09].
CART has also been successfully applied in recent performance evaluation case stud-
ies [WAAT04, TDZN10]. Moreover, it is a very simple predictor that can analyse a
large data sets very quickly.

Kriging Kriging is a generic name for a family of spatial interpolation techniques
using generalized least-squares regression algorithms [LHOS]. It is named after Daniel
Krige who applied the method to a mineral ore body [Kri5S1]. Generally, the goal of
spatial interpolations is to infer a spatial field at unobserved sites using observations
at few selected sites. The underlying assumption that values that are closer to each
other are more likely to have a similar effect on the metric of interest is also true for
most performance evaluation studies which is why we decided to include Kriging in
the list of methods studied in the course of this thesis. Moreover, it demonstrates one
of the main benefits provided by the presented approach, which is the relatively simple
application and evaluation of analysis methods from other research fields into software
performance engineering.

As in geostatistics the problems typically have two input parameters (the geo-coordinates),
we could not find an implementation of Kriging that allows more than two input param-
eters. Hence, we decided to combine Kriging with Classical Multidimensional Scaling
(CMDS) [CCO00] in order to use the method for problems with more than two input
variables. We selected CMDS as although it reduces the dimensions it keeps the dis-
tances between the different points which is an essential characteristic for combining it
with Kriging.

Genetic Programming (GP) Genetic Programming (GP) aims at deriving computer
programs or mathematical equations and is thus well-suited for symbolic regression [Koz93].
GP does not require any assumptions about the underlying dependency and optimizes
the structure of the equation simultaneously with the coefficients. The GP algorithm
that we apply in the course of this thesis has been published by Faber and Happe [FH12]
and is specially optimized for the inference of performance prediction functions. This

84

4.5. Validation

example demonstrates another benefit of the approach which is that it allows to bench-
mark novel analysis methods against existing state of the art.

4.4.3. Summary

We introduced an automated iterative process that combines experiment selection, func-
tion inference and function validation in order to derive experimental designs that
optimize the trade-off between the number of executed experiments and result accu-
racy [WKHI11]. Our approach, which is integrated in the SoPeCo framework presented
in Section 4.3, allows performance analyst to flexibly introduce, combine, and evaluate
different strategies for the three process steps. The set of strategies that we presented
aim at fitting the functional dependency between a set of input parameters and a per-
formance metric of interest without making strong assumptions about the underlying
model. As a result, we get 32 possible combinations of strategies that we applied to
three case studies. The results of this evaluation are presented in the following section.

4.5. Validation

In this section, we evaluate and discuss the applicability, efficiency and accuracy of
the approach introduced in this chapter. The Software Performance Cockpit (SoPeCo)
introduced in Section 4.3 allows Performance Analysts to define and automatically exe-
cute performance evaluation experiments in different scenarios. Moreover, as presented
in Section 4.4, our approach enables the flexible combination of experiment selection
and data analysis strategies for the automated and efficient inference of performance
prediction functions (see Section 4.4.2).

We applied the approach in two real-world scenarios and a set of simulated functions
in order to answer the following questions.

Q1 Can we automatically derive accurate prediction functions in different scenar-
ios using only a small subset of all possible experiments and without making
assumptions on the underlying dependencies?

Q2 What are appropriate statistical inference methods to derive performance pre-
diction functions without knowing the underlying dependencies?

Q3 What are appropriate strategies for automatically selecting experiments in a
parameter space?

85

4. Automated Performance Evaluation Experiments

Q4 Which experiment selection strategies and statistical inference methods are
good or bad matches?

In general, we consider a method as good or appropriate if it yields a good trade-
off between the number of executed experiments and the accuracy of the prediction
functions. Hence, the metrics that we use in the case studies to compare the different
combinations against each other are the following.

Metric 1: The number of selected experiment (NE) compared to the possible number
of experiments spanned by the parameter space. We aim at generating an accurate
prediction model with only a minimal set of experiments.

Metric 2: The time it takes to execute NE experiments (ET) in hours (h) or days
(d). This metric is calculated as the product of the number of executed experi-
ments (NE) and the average execution time for a single experiment. The time for
analysing the measured data is not included in this metric. Moreover, we discuss
the ET metric only in the context of the real-world use cases.

Metric 3: The mean relative error (MRE) of the predictions (in %). To derive this
metric, we measured the complete set of possible experiments within the param-
eter space and used the measured data as the validation set. This validation set is
independent of the training and validation sets used during the derivation of the
prediction models. The validation sets used for this MRE metric aim at the gen-
eral validation of the approach, which is why measured all points in the parameter
space.

Metric 4: The mean relative error alone can sometimes cause misleading conclusions.
For example, in cases where a large (simple) part of a function is fitted very well,
the mean relative error can be under a certain threshold although there might be
an important area where the predictions are bad. That is why we also use the
metrics LT15, LT30, and Highest Error (HE) as an indicator for the reliability of
the predictions. The first two metrics define the percentage of predictions that
have a prediction error that is less than 15% (LT15) or 30% (LT30), respectively.
HE is the highest single point prediction error (in %) observed in the validation.

Based on these metrics, we discuss the results of our case studies. The following sub-
sections are structured as follows. In Section 4.5.1, Section 4.5.2, and Section 4.5.3 we
describe a case study using simulated functions and two real-world case studies. After
an introduction to each case study, we list the five best and worst performing combina-
tions of experiment selection algorithm, validation strategy and model inference tech-
nique (Comb). Moreover, we briefly comment the results. A detailed evaluation and

86

4.5. Validation

discussion of the overall results is then provided in Section 4.5.4. Table 4.1 gives an
overview on the abbreviations used in the result tables for the different methodologies.

Abbreviation Methodology
RB Random Breakdown
AEB Adaptive Equidistant Breakdown
ARB Adaptive Random Breakdown
RVS Random Validation Set
DSL Dynamic Sector Validation \w Local Scope
DSG Dynamic Sector Validation \w Global Scope
MARS Multivariate Adaptive Regression Splines
CART Classification and Regression Trees
Kriging Kriging
GP Genetic Programming

Table 4.1.: Abbreviations in result tables

The selection of the best five and the worst five entries in the tables is based on
a combined consideration of the aforementioned metrics. The goal of the evaluation
is to identify those combinations that provide a good trade-off between the number
of experiments and the prediction accuracy. Figure 4.14 illustrates the process that
we applied to select the best combinations. The threshold &z determines the mean
relative prediction error that is considered as acceptable by the performance analyst in
the respective scenario. For the scenarios presented in this section, we set &yrg = 30%
following standard performance literature [MAO1]. From all the combinations that
yield a MRE that is less than gygg, we select the five that required the least number
of experiments. For the five worst combinations we selected those that could not find
a trade-off (i.e.,very large number of experiments and/or very large prediction error).
Please note, that although we list only the top five and the worst five combinations
(for the sake of readability), we considered all results when deriving our conclusions.
The complete list of results can be found in Appendix B. Moreover, we also consider
the second threshold (eyg) depicted in Figure 4.14 in our discussion. The number of
required experiments determines the time it takes to derive a prediction function. If NE
gets too large, the required measurement time might render the approach inappropriate
for a certain scenario,

87

4. Automated Performance Evaluation Experiments

Number of
Experiments

e ® °
e ° . o
é
EMRE Mean Relative

Prediction Error

Figure 4.14.: Selecting the best combinations

4.5.1. Simulated Functions

In this case study, we test the approach against two functions that simulate typical per-
formance behaviour of software systems. The reason for this case study with simulated
functions is to test the approach in a clean environment where we know the function
that we try to fit and where we do not have to deal with fluctuating or misleading mea-
surement results. The goal is to later on identify those combinations that work in clean
environments but have problems when dealing with real world measurement data.

Context Table 4.2 shows the two functions that we selected for this case study.

Nr. Function

1 | fi(X) =0.025-exp(0.35-x0) +0.81 -x; +0.08 - x3 + 100

2 | f2(¥) =0.005-exp(0.999 - x0) +105.5 - (157%57)

+7.8 %2 4 e +0.58-x3 + 100

Table 4.2.: Simulation functions for function inference validation

For function f, we configured the domain for each of the three input parameters (x,
X1, x3) from 1 to 20 in steps of 1. Thus, the total number of possible experiments is
8000. For function f>, we configured the domain for each of the five input parame-

88

4.5. Validation

ters (xo, X1, X2, X3, x4) from 1 to 10 in steps of 1 which calculates to 10000 possible
experiments.

Results Table 4.3 and Table 4.4 outline the five best and worst performing com-
binations of experiment selection algorithm, validation strategy, and statistical model
inference method for the two simulated functions of this case study.

Top 5
Comb NE | MRE | HE | LT15 | LT30
AEB DSG MARS | 22 24 9.9 | 100.0 | 100.0
AEB DSG GP 22 5.3 | 149 | 100.0 | 100.0
AEB DSG CART | 22 8.8 |22.1 | 853 | 100.0
AEB DSG Kriging | 36 44 |24.1 | 972 | 100.0
ARB DSG MARS | 41 0.6 2.0 | 100.0 | 100.0

Worst 5

Comb NE | MRE | HE | LT15 | LT30

AEB DSL Kriging | 288 | 8.5 | 26.8 | 85.7 | 100.0
ARB RVS Kriging | 304 | 5.0 | 19.1 | 94.5 | 100.0
RBRVSGP | 314 | 2.6 | 123 | 100.0 | 100.0
ARBDSLGP |909 | 1.7 | 7.9 | 100.0 | 100.0
ARBRVSGP |[974 | 1.6 | 54 | 100.0 | 100.0

Table 4.3.: Results for function f; (Table 4.2)

Table 4.3 shows that for function f; in Table 4.2 the combination of Adaptive
Equidistant Breakdown (AEB) and Dynamic Sector validation with global error cal-
culation (DSG) performed very good with all statistical model inference techniques
and outperformed all other combinations of measurement point selection and valida-
tion strategy. For function f; in Table 4.2 the results are not that clear (see Table 4.4),
although AEB is still the dominating measurement point selection strategy. Especially
in combination with CART and MARS models, the Dynamic Sector validation with lo-
cal error calculation (DSL) performed as good as DSG when fitting function f,. When
looking at the five worst combinations for the two equations, the combination of Adap-
tive Random Breakdown (ARB) measurement point selection and Random Validation
Set (RVS) validation strategy does not seem to be efficient.

89

4. Automated Performance Evaluation Experiments

Top 5
Comb NE | MRE | HE | LT15 | LT30
ARB DSL CART | 103 | 109 | 48.8 | 73.1 | 96.8
AEB DSG MARS | 114 5.5 | 30.7 | 80.4 | 99.8
AEB DSL MARS | 114 5.5 | 30.7 | 80.4 | 99.8
ARB DSG MARS | 134 1.4 8.1 | 100.0 | 100.0
ARB DSL MARS | 134 1.4 8.1 | 100.0 | 100.0

Worst 5

Comb NE | MRE | HE | LT15 | LT30

ARB RVS CART | 603 99 432 | 774 | 983
ARB RVS GP 640 7.1 | 269 | 90.6 | 100.0
ARB RVS MARS | 1002 | 1.0 5.4 | 100.0 | 100.0
ARB RVS Kriging | 1002 | 12.6 | 432 | 644 | 94.6
ARB DSG CART | 3215 | 11.2 | 46.7 | 71.0 | 98.0

Table 4.4.: Results for function f, (Table 4.2)

4.5.2. Enterprise Application Customisation

This case study has already been introduced in Section 4.3.1.3. It describes a cus-
tomisation project of an SAP ERP 2005 application. In this project, a performance
analyst addresses the problem of customizing an SAP ERP application configuration
to an expected customer workload (see also [Sch06]). The workload of an enterprise
application can be coarsely divided into batch workload (background jobs like monthly
business reports) and dialogue workload (user interactions like displaying customer
orders). This workload is dispatched by the application server to separate operating
system processes, called work processes, which serve the requests [Sch06]. At deploy-
ment time of an SAP system the IT administrator has to allocate the available number
of work processes (depending on the size of the machine) to batch and dialogue jobs,
respectively. With the performance prediction function derived in this case study, we
enable IT administrators to find the optimal amount of work processes required to han-
dle the dialogue workload with the constraint that the average response time of dialogue
steps should be less than one second.

Context The system under test consists of the enterprise resource planning applica-
tion SAP ERP2005 SR1, an SAP Netweaver application server and a MaxDB database
(version 7.6.04-07). The underlying operating system is Linux 2.6.24-27-xen. The
system is deployed on a single-core virtual machine (2,6 GHz, 1024KB cache). To

90

4.5. Validation

generate load on the system we used the SAP Sales and Distribution (SD) Bench-
mark [SAP12]. This standard benchmark covers a sell-from-stock scenario, which
includes the creation of a customer order with five line items and the corresponding
delivery with subsequent goods movement and invoicing. Each benchmark user has
its own master data, such as material, vendor, or customer master data to avoid data-
locking situations [SAP12]. The performance metric of interest is the average response
time of dialogue steps (AvgResponseTime). The input parameters in this setup are (i)

e the number of active users (NumSDU sers) where the domain ranges from 60
to 150 and

o the number of work processes for dialogue workload (NumDialogueW Ps) var-
ied from 3 to 6.

Thus, we are looking for the function
f(NumSDU sers, NumDialogueW Ps) = AvgResponseTime. 4.1)

The full parameter space consists of 360 experiments. The range of values measured for
the AvgResponseTime is between 125 ms and 3500 ms. The execution of a single ex-
periment (including repetitions to control measurement noise) takes approximately one
hour, which means that in the worst case the IT administrator has to measure 15 days in
order to determine the optimal configuration. We do not aim at modelling the complete
ERP system and varying all potential configuration, workload and tuning parameters
of a system at once. Instead, the goal is to provide a practical automated evaluation
that helps the administrator to determine the optimal allocation of work process for a
given workload type and a given system configuration. In the process of enterprise ap-
plication customisation this is only one question among many others which is why it
is important to provide a flexible, automated approach that does not make assumptions
about underlying functional dependencies.

Results Table 4.5 shows the five best and worst performing combinations of our pre-
diction approach. Even the worst combination can derive a prediction model with an
acceptable prediction error while requiring only one fourth of the measurement points.
For the combinations that performed best, the result is even better. For the combination
of Adaptive Equdistant Breakdown (AEB), Dynamic Sector Global (DSG) and Genetic
Programming (GP) we were able to build a prediction model with an average relative
prediction error of 8.7% using only 21 measurement points. The Kriging method in
combination with AEB and DSG also performed very good with a relative prediction

91

4. Automated Performance Evaluation Experiments

error of only 6% and 38 required measurement points. Thus, applying our approach
can reduce the time necessary to derive an optimal configuration from 15 to one or two
days of measurement. Here, one can see that although we varied only two indepen-
dent parameters it is essential to provide efficient evaluation methods in order to derive
results in a reasonable time frame.

Top 5
Comb NE | ET | MRE | HE | LT15 | LT30
AEB DSG GP 21 | 21h | 8.7 |36.0 | 81.8 | 98.7
AEB DSG Kriging | 38 | 38h | 6.0 | 433 | 88.3 | 96.1
ARB DSGMARS | 38 | 38h | 7.3 | 31.8 | 89.6 | 98.7
AEB DSGMARS | 53 | 43h | 74 |31.7 | 87.0 | 98.7
AEB DSL Kriging | 54 | 54h | 2.8 | 38.8 | 94.8 | 98.7

Worst 5

Comb NE | ET | MRE | HE | LT15 | LT30

AEB RVS CART | 69 | 6Oh | 31.7 | 929 | 26.0 | 51.3
ARB RVS CART | 77 | 77h | 28.7 | 92.0 | 35.1 | 579
ARB DSG CART | 77 | 77h | 28.7 | 92.0 | 35.1 | 579
ARB DSL CART | 77 | 77h | 28.7 | 92.0 | 35.1 | 579
RB RVS CART 77 | 77h | 28.7 | 92.0| 35.1 | 579

Table 4.5.: Results for enterprise application customisation case study

4.5.3. Java Virtual Machine Tuning

The Java Virtual Machine (JVM) is one of the most important components when it
comes to performance tuning of a Java-based applications [Jam, Shi03]. However, get-
ting the best performance out of the JVM often requires detailed hand tuning of com-
mand line options with respect to heap sizes or garbage collection. In this case study,
we address the problem of tuning the parameters of a JVM to the special characteristics
of an application. The application that we use in our experiments is the SPECjbb2005
Java Server Benchmark [SPEO5]. The benchmark emulates a three-tier client/server
system (with emphasis on the middle tier) and exercises the implementations of the
JVM, JIT (Just-In-Time) compiler, garbage collection, threads, as well as some aspects
of the operating system [SPEOS]. The system modelled by the benchmark is a whole-
sale company, with warehouses that serve a number of districts. Customers initiate a set
of operations, such as placing new orders or requesting the status of an existing order.
Additional operations are generated within the company, such as processing orders for
delivery or entering customer payments [SPE0O5].

92

4.5. Validation

Context The system under test consists of the SPECjbb2005 benchmark (configured
to run with 10 warehouses), Java HotSpot(TM) Client VM (build 17.0-b17), and Mi-
crosoft Windows XP Professional Version 2002 SP3. The software runs on a stan-
dard desktop dual-core machine with 3 GHz per CPU and 3.5 GB RAM. The perfor-
mance metric of interest in this scenario is the average throughput of a benchmark run
(AvgT hroughput) measured in SPECjbb2005 bops (business operations per second).
The input parameters are as follows (see [Oral2] for a detailed description of the pa-
rameters):

e the heap size (HeapSize) where we configured the possible variation from 300
MB to 950 MB in steps of 25 MB,

e the garbage collector (GarbageCollector) implementation which is either Se-
rial GC, ParallelGC, or ConcMarkSweepGC,

e a boolean value that indicates whether biased locking (BiasedLocking) is en-
abled,

e the survivor ratio (SurvivorRatio) varied from 10 to 42 in steps of 8, and

o the new generation ratio (NewGenerationRatio) which is expressed in a share
of the total heap size ranging from 10% to 40% and varied in steps of 10%.

Thus, we are looking for the function

f(HeapSize,GarbageCollector, BiasedLocking, SurvivorRatio, 42)
NewGenerationRatio) = AvgT hroughput. '

The full parameter space consists of 3240 experiments. The range of values measured
for the AvgT hroughput is between 970 bops and 37000 bops. In this case study, the
execution of a single experiment takes approximately five minutes (including required
repetitions to control the measurement noise).

Results Table 4.6 outlines the five best and worst performing combinations in this
case study.

The results show that this case study was the most complex in terms of inferring a
prediction function without knowing the underlying model. Even the best combina-
tions have a highest prediction error (HE) of 300 to 400 percent. However, the overall

93

4. Automated Performance Evaluation Experiments

Top 5
Comb NE ET | MRE | HE | LT15 | LT30
RB RVS MARS 276 | 23h | 20.7 | 403.1 | 77.1 | 86.7
AEB RVS MARS | 342 | 29h | 20.3 | 3014 | 73.6 | 87.0
RB RVS Kriging 365 | 30h | 25.3 | 955.1 | 73.7 | 86.9
AEB DSG MARS | 1076 | 90h | 16.3 | 259.8 | 79.1 | 88.0
AEB DSL MARS | 1325 | 110h | 17.3 | 287.9 | 79.8 | 88.0

Worst 5

Comb NE ET | MRE | HE | LT15 | LT30

ARB DSG Kriging | 1001 | 83h | 73.0 | 964.0 | 46.7 | 65.0
ARB DSL Kriging | 1011 | 84h | 763 | 957.8 | 42.6 | 624
RB RVS GP 1388 | 116h | 26.9 | 485.3 | 47.3 | 74.9
ARB DSL MARS | 2027 | 16%h | 239 | 3844 | 70.2 | 853
AEB RVS CART | 3111 | 259h | 26.4 | 4325 | 68.8 | 82.3

Table 4.6.: Results for JVM tuning case study

error as well as the efficiency of the prediction models built by the first three combina-
tions is still acceptable, which demonstrates the robustness of these combinations. One
reason for the complexity of this scenario is that we included an enumeration variable
(GarbageCollector) and a boolean variable (BiasedLocking) where we do not neces-
sarily have monotonically increasing values which makes prediction harder for most
of the statistical analyses techniques. Moreover, the large highest error values are an
indicator that the granularity that we selected for the parameter variations was not fine-
grained enough. Obviously, there are areas in the parameter space where we did not
have enough information in order to build an accurate model. However, for these ex-
periments we had to limit the parameter space to 3240 measurement points as we had to
measure the full space upfront in order to compare the different strategies and validate
the results. The case study also demonstrates that it is an important precondition that the
performance analyst properly selects the input parameters and domains. Furthermore,
it is important to note that the high relative prediction errors occur only in experiments
where the measured throughput is low and the workload is high. In experiments with
such heavy workloads, the system can get unstable and other effects might disturb the
measurements. To avoid these situations, a performance analyst should conduct a set
of preliminary experiments that determine the point where the workload gets to heavy
for the given system configuration. Moreover, in such cases a rather small absolute de-
viation has a higher impact on the relative error metric (the range of values goes from

94

4.5. Validation

970 bobs to 37000 bops, the standard deviation of errors is for the RB RVS MARS
combination 2826 bobs).

4.5.4. Evaluation

In this section, we discuss the results of the case studies presented in Section 4.5.2 and
Section 4.5.3 as well as the conclusions that we can draw out of them. We start by eval-
uating the four statistical model inference techniques in isolation and then summarize
the results.

Classification and Regression Tree (CART) is a very fast method that built all the
prediction models in the case studies in milliseconds. The prediction results were good
for the simulated functions. However, in the real case studies the results were poor,
especially with respect to the reliability of the predictions. According to our experi-
ments, CART works best in combination with Adaptive Equidistant Breakdown (AEB)
or Random Breakdown (RB) measurement point selection and Random Validation Set
(RVS) validation. It does not work very well with the Dynamic Sector (DS) validation
strategies.

Genetic Programming (GP) achieved very good results in fitting the simulated func-
tions as well as in the enterprise application customisation scenario. However, it was
not able to efficiently derive a prediction function in the JVM tuning scenario. The
best results have been achieved in combination with AEB measurement point selection
and DSG or RVS validation, respectively. It did not work very well with the combi-
nation Adaptive Random Breakdown (ARB) and RVS. The biggest problem of the GP
approach is its runtime. In average, it took the approach approximately 20 minutes to
build a prediction model which adds up to a large amount of analysis time when using
in it in our iterative process (see Figure 4.9).

Kriging is in terms of runtime somewhere in the middle between CART and GP.
It becomes slower with increasing number of measurement points which is mainly
caused by the classical multidimensional scaling (CMDS) implementation that we run
before the actual prediction model is built using the Kriging implementation (see Sec-
tion 4.4.2.3). In general, the results of the simulated functions and in parts also the
results of the JVM tuning scenario have shown that our approach with the CMDS in
combination with Kriging is working and able to derive accurate prediction models.
However, the best results could be achieved in the enterprise application customisation
scenario, where we varied only two input variables and thus the dimension reduction

95

4. Automated Performance Evaluation Experiments

step has not been executed. In this scenario, Kriging has been a very efficient method.
Like GP, it worked best with the combinations AEB/DSG and AEB/RVS and delivered
the worst results with ARB measurement point selection.

Multivariate Adaptive Regression Splines (MARS) is the only method that achieved
very good results in all case studies. From a runtime perspective MARS was also able
to build prediction models within seconds (at least with the size of the training data
in our scenarios). It worked most efficiently in combination with AEB measurement
point selection and DSG validation. Good results have also been achieved with the
combinations AEB/RVS and RB/RVS. The worst results with ARB measurement point
selection.

In summary, MARS together with AEB measurement point selection and DSG valida-
tion has been the only combination that achieved very good results in all case studies.
Only for the enterprise application customisation case study, GP and Kriging performed
slightly better (but also in combination with AEB/DSG). CART turned out to be the
worst method, and is based on our experiences not suited for black-box inference of
Software Performance Curves. Kriging and GP are in general able to fit black-box
models and can be good alternatives to MARS. Especially, if there is only one or two
input parameters but a large number of measurement points Kriging can be an efficient
option. The main problem with GP is the time it takes to create a prediction model
which makes it not the perfect option for an iterative approach with repeated genera-
tion of prediction models. Regarding the measurement point selection algorithms and
validation strategies there is a clear tendency that AEB is the most efficient algorithm
that provides especially in combination with DSG and RVS validation the best results
independent of the analysis method. The prediction models derived by the simple RB
are in most cases very accurate and reliable. However, compared to AEB it required in
most cases more measurement points to build the model.

4.5.5. Threats to Validity

For the function inference approach presented in this section, we see the following
threats to validity:

Internal Validity

e Due to the large space of potential experiments and the complexity of the
studied software systems, we cannot measure all possible experiments in rea-

96

4.6. Discussion of Assumptions and Limitations

sonable time. Hence, we restricted the domains of the input parameters to a
space that is completely measurable. This restriction influences the results.

e We are also aware that the non-determinism of performance measurements can
cause false interpretations [GBEQ7]. For the different scenarios, we repeated
experiment executions until we reached a proper confidence interval for the
mean values.

e Most advanced analysis methods can be configured by different parameters.
This configuration of an analysis method influences the function fitting pro-
cess (e.g. in case of Multivariate Adaptive Regression Splines). In our case
studies, we applied the default configurations of the respective analysis method
implementation as we do not aim at an optimized solution.

External Validity

e To increase external validity we used real-world software systems in our vali-
dation case studies. The investigated benchmark applications represent a large
set of practical applications and it has been shown that our approach provides
good results independent of the considered system. However, the evaluation
results are not automatically transferable to all software systems. As described
in Section 4.5.4, the assumptions made by the analysis method have to match
the model that is to be fitted in order to be able to derive a good estimator.

4.6. Discussion of Assumptions and Limitations

In the following, the limitations and assumptions of the SoPeCo approach that is pre-
sented in this chapter will be discussed.

Test System Availability A precondition for the measurement-based approach of
this work is that a test system is available on which the experiments can be conducted.
This includes the system under test as well as additional software and tools required
to execute experiments. For example, our approach does not provide load drivers or
monitoring software. The focus of the SoPeCo approach is only on the experimentation
process. In contrast to other approaches, we abstract from the concrete scenario by
providing a flexible extension mechanism in our SoPeCo framework (see Section 4.3).

97

4. Automated Performance Evaluation Experiments

Parameter Availability We can only include those parameters in our experiments
that can be controlled by a piece of software or that can be measured at runtime without
adding too much overhead to the system. For example, it might not always be pos-
sible to measure the CPU utilisation of a system under test as this requires access to
the operating system or difficult sampling mechanisms [CGO5]. In such cases, other
metrics have to be used to achieve the goal of the performance evaluation. Kraft et
al. [KPSCDO09] use for example response time measurements to estimate CPU resource
demands.

Abstraction of Test System In most cases, experiments are not executed on the ac-
tual real-world system. Instead a dedicated test instance is used to run the experiments.
The test system is often a smaller abstraction of the real system. This has to be taken
into account when interpreting the experiment results and deriving conclusions.

Drawing Conclusions from Incomplete Data Another core assumption of our ap-
proach is that it is possible to draw proper conclusions from incomplete data. Hence,
we assume that it is possible to estimate a large set of unknown points correctly if the
subset of measured points and the analysis method is properly chosen.

4.7. Summary and Contributions

In this chapter, we introduced a novel approach for automating software performance

evaluations. The approach implements a systematic experimentation process and en-

ables performance analysts to run performance evaluations more structured, more effi-

cient, and in a more goal-oriented way. Moreover, the approach allows researchers and

engineers to apply and compare different experimental design and analysis strategies.
The contributions of this chapter are the following:

e An experiment specification language that forms the basis for capturing in-
formation required to conduct goal-oriented performance evaluation experi-
ments. The language supports a broad range of scenarios and allows for flexi-
ble scenario-specific extensions.

e A framework architecture that enables automated experiment execution based
on our experiment specification language. Key characteristics of the architec-
ture are the iterative combination of experimental design and analysis and the
flexible introduction and use of components.

98

4.7. Summary and Contributions

e A method that automatically classifies parameters in performance-relevant and
-irrelevant based on state of the art experimental designs.

e Combination and evaluation of multiple experimental design and statistical in-
ference techniques for deriving functional relationships efficiently and without
making assumptions on the underlying model.

The presented approach provides a basis for different performance engineering tasks.
In the remainder of this thesis, we demonstrate how the approach can be used for deriv-
ing software performance models. Moreover, the approach has already been applied for
automated exhaustive performance regression testing [WWHM13] or to automatically
detect performance anti-patterns [WHH13].

99

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

In this chapter, we present an end-to-end industrial case study that we conducted in
cooperation with performance analysts and development groups at SAP. We apply the
goal-oriented performance modelling approach introduced in this thesis in a real-world
context in order to demonstrate its applicability, accuracy and efficiency. Hence, we
aim at answering two main questions:

1. Can we derive an accurate performance model that solves a real-world prob-
lem?

2. What are the efforts to apply the approach in a real-world scenario?

The remainder of this chapter is organized as follows. We introduce the context and
the design of the study in Section 5.1. In Section 5.2, we present the scenario that
we address in the course of the study. Section 5.3 describes how we implemented the
process described in Chapter 3 using the methodologies introduced in Chapter 4. In
Section 5.4 we outline and discuss the results. In Section 5.5, threats to validity are
discussed and finally Section 5.6 summarizes the chapter.

5.1. Context

The study has been conducted at SAP AG [SAP13a], one of the largest providers of
enterprise software and software-related services worldwide. The stakeholders in the
study are coming from three different groups. The first group is the performance en-
gineering team of the research department of SAP, which includes the author of this
thesis. The second group is a team of performance analysts. The team acts as a service
team to development groups, and is the main contact for performance-related tasks in
the company. The third group is a team that develops an HTMLS5/JavaScript-based Ul
library named SAPUIS [SAP13b]. The library is used by other development groups to
build web application front-ends.

The stakeholders as well as the scenario of the case study arose from the context
in which this thesis has been created. Performance engineering research at SAP aims
at supporting software developers in avoiding or fixing performance problems while
minimizing the required efforts and expert knowledge. SAPs performance analysts

101

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

observed that very often the reason for bad front-end performance of enterprise web
applications is an overloaded design of the screen (e.g. too many Ul elements). Existing
approaches were not able to deal with the complexity of the involved technology, the
frequent changes in the system under test, or the large amount of developers that need
to be supported. This led to the application of our work in the scenario introduced in
the following section.

5.2. Scenario

For the development of web-based enterprise applications, companies often rely on
JavaScript libraries that provide a uniform appearance, as well as a set of UI elements
and utility functions commonly used in this kind of applications. At SAP, one of these
libraries is the HTMLS5/JavaScript-based Ul library named SAPUIS [SAP13b]. Besides
the classical challenges of web performance optimisation [Sou07, Sou09], UI develop-
ers and designers need to evaluate the impact of the design of a screen on front-end
performance. This involves questions like ,,How many columns and rows can I add to a
table of type X in my web application without violating performance requirements? or
,»What is the impact of back-end call Y on front-end performance?*. Theoretically,
these questions could also be answered with the existing performance measurement
and analysis tools. However, practically the effort for applying measurement-based ap-
proaches to these kind of questions is too high which hinders the flexible, performance-
aware construction and evaluation of screen designs. Moreover, the development of a
screen’s design is usually conducted before the screen is actually implemented (e.g. us-
ing wireframe or mockup tools). As a consequence, early performance feedback (prior
to implementation) is essential to drive the deployment of fast web applications.

In the presented case study, we applied our approach to derive a performance model
that predicts the expected performance of a screen. Based on the structure of the page,
the UI elements used, and the service calls, our performance model estimates the ex-
pected front-end performance for the three major browsers (Internet Explorer, Firefox,
Chrome). The predictions are used to give designers and developers early feedback
about the expected front-end performance of their design. The approach does neither
require that the application is implemented, nor that the developers conduct perfor-
mance measurements. See Chapter 3.2 for a detailed introduction of the scenario using
the proposed template for specifying goal-oriented performance models.

102

5.3. Execution

5.3. Execution

In this section, we describe how we derived a performance model for the scenario
described in Section 5.2. The construction of the performance model has been a joint
project of the research team, performance analysts, and SAPUIS library developers. In
the remainder of this section, we present the results from implementing the process
introduced in Chapter 3 (see 3.4).

5.3.1. Define Context

The first step of the process is to define the evaluation goal and the experimentation
landscape as well as to document the known issues in the context of the scenario.

5.3.1.1. Performance Evaluation Goal

To describe the performance evaluation goal, we follow the Purpose, Consumption,
Construction approach introduced in Chapter 3.2.

Purpose

In today’s web applications front-end performance contributes significantly to the over-
all user experience [Sou07] and thus affects business-critical metrics like conversion
rate. Often, performance problems are caused by flawed screen designs [Frol3].
Changing the design of a screen in late development cycles implies large efforts and
high costs. Hence, the effect of the screen design should be considered as early as pos-
sible. At SAP there are hundreds of developers using the SAP UIS JavaScript library to
build web application front-ends. Having a performance model that allows developers
to easily evaluate the performance of their screen design, would significantly reduce the
need for setting up and running performance tests by each individual developer. More-
over, it would significantly reduce the number of performance problems that are casued
by flawed screen designs. Hence, the efforts to construct and maintain the performance
model by an expert team are relatively small compared to the efforts that are necessary
to achieve the same test coverage without the performance model (i.e., each developer
needs to setup and run performance tests for each screen).

Consumption

The performance model should support developers in designing responsive web ap-
plication screens by warning them when the design contains potential performance
problems. Therefore, the model should predict the influence of different Ul elements,
their configuration and their interference on performance. The focus of the model is

103

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

on screens developed with the SAP UIS5 library, influences of custom coding or other
libraries can be neglected. Furthermore, the model should be derived for a reference
client machine and current versions of the most common browsers (Internet Explorer,
Firefox, and Chrome). Thereby, it is important that the model reflects performance
influences accurately for the reference setup. The transferability to other machine sizes
or browser versions is neglectable. For the given scenario, we identified two potential
consumption channels: a web-based prediction tool and an integration in a screen de-
sign editor. The web-based tool allows designers to quickly evaluate different screen
designs by varying the screen configuration based on check boxes, sliders and input
fields. It is a valuable tool for making rough estimations about front-end performance
before actually starting the screen design. It helps answering questions like ,,How many
columns and rows can I add to a table of type X in my web application without vio-
lating performance requirements?“or ,,What is the impact of back-end call data size
on front-end performance?“. Moreover, the web-based prediction tool can be used in
developer trainings to clarify the impact of bad screen designs on front-end perfor-
mance. The second consumption channel is the integration of the prediction model in
a screen design editor used by developers to create SAP UI5 based web applications.
Having the prediction integrated in the editor allows us to give immediate feedback on
the expected performance while the screen is under development. Developers can get
a warning when the screen design does not meet SAP’s performance requirements and
detailed views.

Construction

To derive the prediction model an experimental, measurement-based process is ap-
plied. The experiments are conducted using a screen generator software that allows
to generate screens with different SAP UIS library elements and configurations. The
performance of the generated screens is measured on the latest versions of the main
browsers on a test client machine.

5.3.1.2. Metric

The requirements for a metric that describes front-end performance are that 1) it relates
to the actual user experience, ii) it is measurable, iii) it is reproducible, iv) it is pre-
dictable, v) and it is influenced by the design of the screen. Previous measurements
at SAP have shown that more than 70% of the end to end response time for typical
enterprise web applications are spent in the browser. Standard web performance lit-
erature backs this assumption [SouO7]. This 70% of the end-to-end response time,
include all client-side activities performed by the browser. For example parsing activi-

104

5.3. Execution

ties, JavaScript execution, DOM construction, and rendering [Sou07, Sou09]. Recently,
the W3C Web Performance working group [W3C13] has published a standardisation
recommendation that defines an interface for web applications to access timing infor-
mation related to navigation and elements from the browser [W3C12b]. While the
metrics that can be derived by this information (e.g. DOM processing time or total
page load time) provide fine-grained insights in which browser tasks the time is spent,
none of these metrics fulfils the requirements stated above. The metrics either leave
parts out (e.g. the DOM processing time does not include the influence of back-end
connection establishment) or include influences, such as network latency, that are not
controllable and may disturb our measurements. Instead, we decided to use the browser
CPU time as an indicator for front-end performance. We define the browser CPU time
(short: CPU time) as the CPU time of the browser process consumed after a request
has been sent to the application server until the full web application is displayed (see
Figure 5.1). This includes all front-end activities performed by the browser and can be
considered as the fastest achievable front-end performance, as it excludes disturbances
caused by network latency and blocking requests. However, it is important to note that
although the browser CPU time is a proper metric to determine the impact of design
decisions on front-end performance and thus an excellent candidate for the prediction
scenario, it does not replace the measurement of other metrics when aiming at, for
example, optimizing the performance of an existing screen.

SoPeCo Client Backend

| |
| Page Configuration !

A
L4

|

|

Start Monitoring }
- |

|

|

Request Y

BuildPage

q-Response (Page)
FPage Rendering, JavaScript Interpretation, ... ‘—_|

Stop Monitoring ‘—_|

P Measured Data

_________________________________ -
1

SoPeCo Client Backend

Figure 5.1.: Browser CPU time metric

105

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

5.3.1.3. Test Environment
In order to execute the experiments, we used the following components (see Figure 5.2):

e A test client machine that has the browser versions installed for which the
performance models are to be constructed. Our experiments were performed
on a Lenovo Laptop with an Intel(R) Core(TM)2 Duo CPU T7300 @2GHz
processor, 4 GB RAM, and the Windows 7 Enterprise operating system. We
conducted all experiments on the three major browsers: Chrome 22.0.1229.94
(CH), Firefox 16.0.2 (FF) and Internet Explorer 9.9.0.8112.16421 (IE). More-
over, the client machine has to provide the capabilities (i) to control the
browsers (start, stop, call url) via a parametrizable interface and (i1) to monitor
the CPU time consumed by the browser between a request has been sent to
the server and the point where the complete screen is loaded and displayed.
Therefore, we installed a satellite component of the SoPeCo framework (see
Chapter 4.3), that uses the Java libraries Selenium and Sigar to perform these
tasks.

e Furthermore, a second machine is required that runs an instance of the SoPeCo
framework. This instance allows us to define, execute and analyse experiments
and handles the connection to the components on the test client.

e Finally, we need a web server that hosts a screen generator component. This
screen generator has to have the capability to create screens based on the pa-
rameters transferred via the url. For our experiments, we developed a screen
generator that creates SAPUIS based screens with the Ul element type mani-
festations and quantities given in the url (e.g. the url

mygen.org/?table.rows=>5&table.cols=5 &table.quantity=2

would create a screen with two tables both with five columns and five rows).

The SoPeCo instance transfers the information about the experiment (e.g. which
browser to use, how many repetitions, parameter values for screen generation) to the
test client. The test client prepares the experiment (e.g. killing all unnecessary pro-
cesses, starting the browser, constructing the url that defines the screen) and triggers
its execution by calling the url that transfers the screen specification to the screen gen-
erator component on the web server. The screen generator generates the HTML and
JavaScript files based on predefined code snippets. Then, the files that make up the
screen are transferred to the client browser, which starts the rendering process. Once
the screen is fully loaded, the experiment results are transferred back to the SoPeCo

106

5.3. Execution

<<device>>
Experimentation Server

<<device>>
Reference Test Laptop

<<web server>>
Apache Tomcat

<<device>>
Test Server

<<operating system>>

<<web server>>
Apache Tomcat

Windows 7 Enterprise
Qrifact>> D if: <<artifact>> D
SoPeCo <<artifact>>
SoPeCo Satellite Screen Generator

<<browser>>
Chrome, Firefox, IE

<<artifact>> D
Test Screen

Figure 5.2.: Experimentation landscape

instance. This loop is repeated for each screen that is tested in an experiment series.

Furthermore, each screen is measured multiple times as performance measurements
are of a stochastic nature and thus always include a certain error [Jai91]. To deal with
this error, measurements are usually repeated until a certain confidence band has been
reached that is considered as sufficient for the corresponding scenario. However, al-
though a larger number of repetitions means that the calculate mean value is more
stable, it also causes additional measurement time. As measurement time is in most
cases a limited resource, we have to find a trade-off between the accuracy and mea-
surement time. Therefore, we conducted a series of test runs with different screens and
calculated the 95% confidence intervals for the mean value using different sample sizes.
Figure 5.3 depicts an example that demonstrates how the confidence interval changes
when the number of repetitions is increased. The graph shows that the improvements in
the confidence band are getting smaller, with an increasing sample size. We decided to
conduct 50 repetitions for each run and remove the outliers so that we end up between
30 and 50 valid samples per experiment. This results in an average measurement time
of approximately 10 minutes for each experiment.

5.3.1.4. Known Issues

The following issues have been identified by the different stakeholders and should be
considered in the modelling process:

e Overloaded Screens: Developers sometimes tend to place too much informa-
tion on a single screen. This results in complex page structures and way too
many Ul elements. To render such screens, the browser requires multiple sec-
onds. Figure 5.4 shows a real example of such an overloaded screen.

107

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

108

Browser CPU Time (ms)

840

820 T

800

780

760

740

720

700

10 20 30 40 50

Number of Experiment Repetitions

Figure 5.3.: 95% confidence intervals for different sample sizes

e Nesting: Nested structures are created by layout containers in order to arrange

the Ul elements of a page. The analysis of screens with bad performance char-
acteristics has indicated that often a high nesting level has been responsible
for bad performance.

Data Transfer: Performance measurements on service calls have shown that
the amount of data that is transferred from the server to the client does not only
influence the network delay but also the browser CPU activity.

Configuration: A good example on how misconfiguration of a UI element can
affect front-end performance has been published in [Lep12]. There, a rotating
banner has been configured to load the images in parallel, instead of loading
the visible image first. This was one reason for the bad performance of the web
application screen. But also simple configuration options such as how many
visible columns and rows are added to a table can affect the performance of a
screen.

e Browser: The performance of the rendering engines of different browsers dif-

fers significantly [KH11]. Moreover, browser vendors strive to constantly im-

5.3. Execution

New Ocean Freight Export LCL $1 W
[Eerpul] | [EEavd] | el 1) | (] 1 [| [Folow val] | [Ehect [ontin | afuste Crarged] | [[eancel Document] | [Eustoms] | [Tacivaid] | [[5 Cosind] | [[Ehange Systemotunis] | [BubmitAS]] EIEICR
[Toelvery Details ' Torder Launch] [1e]
-
,,,,,,,,,,,,,, -’ B I

i | | [Sisetovse tumbe]] | [Fouse o] [Bostrcoad [E=)] [Regor]| [Ref_Nomper]\

;;;;;;

ppppppppp

eeeeeeee

Figure 5.4.: Overloaded screen

prove their performance. Hence, performance characteristics of screens might
change between different browsers and browser versions. Moreover, optimi-

sation effects such as caching can influence performance measurements and
have to be considered.

5.3.2. Understand Performance Behaviour

The next main block in the goal-oriented performance modelling process (illustrated
in Figure 3.4) is to get an understanding of the performance influences in the scenario.
In the following sections, we describe the assumptions that we defined with respect to
relevant performance influences (Section 5.3.2.1) as well as the experiments that we
conducted in order to test the assumptions (Section 5.3.2.2).

5.3.2.1. Initial Assumptions

Table 5.1 lists the assumptions that we investigated in order to get a profound under-
standing of the performance characteristics of SAP UI5-based web application screens.
The assumptions are based on the known issues outlined in Section 5.3.1.4 and address
the major aspects that vary from one web application to another: the number and type
of Ul elements used (A1, A2, and A3), the configuration of UI elements (A4), the type
and number of service calls (A5), and the structure of the screen (A6 and A7). Under-

109

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

ID Assumption
Al Performance worsens with an increasing

number of Ul elements on the screen.
A2 There is only a small subset of UI elements

that affects performance significantly.
A3 Different Ul elements do not interfere

with respect to performance.
Al For some UI elements the configuration
can affect performance.
AS The number of service calls and the amount of data that
is transferred by a service call affect front-end performance.
A6 Deeply nested structures have a negative effect
on the performance of a screen.
A7 The performance influence of a Ul element
depends on its placement in the layout structure.

Table 5.1.: Initial assumptions on relevant performance influences

standing and quantifying the effect of these influencing factors, allows predicting the
expected front-end performance of a web application.

5.3.2.2. Experiments to Test Assumptions

In this section, we present the experiments that we defined, executed and analysed in
order to test the assumptions on performance relevant influences. Moreover, we tested
how we can quantify the relevant influences in order to integrate them in a performance
model.

A1: Performance worsens with an increasing number of Ul elements on the
screen. In order to test this assumption, we executed a series of experiments where
we investigated how the CPU time changes if we only increase the number of Ul ele-
ments. Figure 5.5 displays the browser CPU time for a screen containing 1 to 5 tables
in all three major web browsers. Analysing the results we can make two main obser-
vations: the browser CPU time increases (almost) linearly with the number of tables,
i.e., each table requires the same amount of browser CPU time. The slope of the curve

110

5.3. Execution

3000
-—-CHROME
2500 FIREFOX /
-+=|NTERNETEXPLORER
é 2000
]
=
2 1500
o
g
3
2 1000 /
500
0

1 2 3 4 5
Number of Tables

Figure 5.5.: Browser CPU time for 1 to 5 tables in different browsers

is different for each browser, i.e., the front-end performance heavily depends on the
browser (and its version).

While in this first set of experiment series we placed only Ul elements of the same
type on a screen, Figure 5.6 illustrates the effect of combining different Ul elements. In
the depicted example, we varied the number of buttons from 0 to 500 and the number
of tables from 0 to 5. Again, we can observe the same behaviour as in the previous
experiments: CPU time increases almost linear (indicated by the smooth plane in the
three dimensional space).

In fact, we observed a similar behaviour for all Ul elements that we tested. Hence,
to quantify these influences we could derive the functional relationship between the
number and type of UI elements on the screen and the CPU time consumed by the
browser to display the screen. However, varying the quantity of all UI elements and the
potential combinations in a single experiment series would not be feasible due to the
exploding parameter space. Therefore, we need to test if we can apply heuristics that
allow us to limit the parameter space that is to be measured. Assumptions A2 and A3
aim at finding such heuristics.

A2: There is only a small subset of Ul elements that affect performance sig-
nificantly. In the previous series of experiments, we could observe that different Ul

111

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

1800
— 1600
1400
1200
1000

800

Browser CPU Time [ms

600

400

100

Number of Tables

200 300 400 0
500

Number of Buttons

Figure 5.6.: CPU time for button/table mixes (Firefox)

elements have a different influence on performance. Figure 5.7 illustrates these dif-
ferent influence. To derive the influence, we executed an experiment series where we
placed for each type of Ul element a single instance on a plain screen. The numbers
in Figure 5.7 are calculated by subtracting the CPU time for the plain screen from the
CPU time for the screen with the single UI element.

Furthermore, the slope for increasing, for example, the number of buttons has been
very small. Hence, we make the assumption that the performance influence of such
simple UI elements is quite small and thus does not need to be investigated in detail.
Figure 5.7 shows that the bulk of elements has a rather small impact. Hence, to simplify
the model construction process and to reduce the number of required measurements, we
make the assumption that UI elements that do not have a large influence can be regarded
as a group that we call simple Ul elements. To quantify the influence of a simple Ul
element, we define a single, fixed cost value for all the UI elements in this group. We
derive this cost value for each browser by measuring the performance costs introduced
by one representative (e.g. button) of those simple Ul elements group.

A3: Different Ul elements do not interfere with respect to performance. To fur-
ther limit the number of measurements that are to be conducted in the performance
model construction activity, we test the assumption that different UI elements do not

112

5.3. Execution

350,00
300,00
£ 250,00
£
£ 200,00
o}
[- %
© 150,00
3
3
£ 100,00
50,00
0,00 -
O ¥ & & N QO & 9 & 8 & & & & O N & &
& L F S & RO S & F & & P&
FLHEF TS Q& ETESLTE S T LN
NN & N L O Q\O &Qﬁo
SR S
d €
S
QNV‘
Ul Element

Figure 5.7.: CPU time cost for adding a single Ul element on a plain screen

interfere with respect to performance. If this assumption holds, the relationship be-
tween the performance influence of different UI elements would be additive. Thus,
we could derive the functional relationship between number of Ul elements and CPU
time separately for each UI element (i.e., without measuring all possible combinations)
and then simply add up the different functions. In order to test the assumption, we
conducted a set of experiment series using fraction factorial designs with resolution
5 (i.e.,main effects and two-factor interaction effects are not confounded (see Chapter
2.2.2.1)). We analysed the measurement results using Factorial ANOVA (see Chapter
2.2.2.2). Figure 5.8 shows the results for a selected set of Ul elements. The figure
shows for each factor and two-factor interaction, whether there is a significant main
or interaction effect, respectively. Thereby, the null hypothesis is always that there is
no significant effect. The 1 — p value indicates the probability that the hypothesis can
be rejected. The values in Figure 5.8 reveal that all main effects are significant with a
high probability. For the two-factor interactions the null hypothesis can not be rejected
with a significant probability. Hence, the results show that making the assumption that
different UI elements do not interfere with each other is valid and thus can be applied
when constructing the performance model. However, so far we used only UI elements
in its standard configuration when conducting our experiments. In the following, we in-
vestigate the performance influence of different configuration options of a Ul element.

113

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

Df Sum Sg Mean Sqg F value Pr (>F)
BUTTON 1 59914 59914 11.6077 0.000685 ***
RADIOBUTTONGROUP 1 708941 708941 137.3506 < 2.2e-16 ***
TABLE 1 7200617 7200617 1395.0510 < 2.2e-16 ***
DROPDOWN 1 360143 360143 69.7742 2.404e-16 ***
IMAGE 1 652397 652397 126.3956 < 2.2e-16 ***
BUTTON: RADIOBUTTONGROUP 1 13380 13380 2.5923 0.107724
BUTTON: TABLE 1 5 5 0.0010 0.974920
RADIOBUTTONGROUP: TABLE 1 9188 9188 1.7802 0.182455
BUTTON : DROPDOWN 1 7673 7673 1.4865 0.223068
RADIOBUTTONGROUP : DROPDOWN 1 1628 1628 0.3153 0.574562
TABLE : DROPDOWN 1 5684 5684 1.1013 0.294260
BUTTON : IMAGE 1 368 368 0.0712 0.789647
RADIOBUTTONGROUP: IMAGE 1 2325 2325 0.4505 0.502287
TABLE: IMAGE 1 1373 1373 0.2660 0.606171
DROPDOWN : IMAGE 1 327 327 0.0633 0.801427
BUTTON:RADIOBUTTONGROUP: TABLE 1 901 901 0.1745 0.676198
BUTTON: RADIOBUTTONGROUP : DROPDOWN 1 297 297 0.0575 0.810467
BUTTON: TABLE : DROPDOWN 1 1949 1949 0.3777 0.538999
RADIOBUTTONGROUP: TABLE : DROPDOWN 1 6998 6998 1.3559 0.244553
BUTTON : RADIOBUTTONGROUP : IMAGE 1 1 1 0.0002 0.989250
BUTTON: TABLE : IMAGE 1 5264 5264 1.0199 0.312815
RADIOBUTTONGROUP: TABLE : IMAGE 1 1 1 0.0002 0.988533
BUTTON : DROPDOWN : IMAGE 1 984 984 0.1907 0.662461
RADIOBUTTONGROUP : DROPDOWN : IMAGE 1 1804 1804 0.3495 0.554534
TABLE : DROPDOWN : IMAGE 1 3768 3768 0.7301 0.393078
BUTTON : RADIOBUTTONGROUP : TABLE : DROPDOWN 1 202 202 0.0391 0.843351
BUTTON:RADIOBUTTONGROUP : TABLE : IMAGE 1 66 66 0.0128 0.909891
BUTTON:RADIOBUTTONGROUP : DROPDOWN : IMAGE 1 6000 6000 1.1624 0.281240
BUTTON: TABLE : DROPDOWN : IMAGE 1 18 18 0.0034 0.953442
RADIOBUTTONGROUP: TABLE : DROPDOWN : IMAGE 1 3089 3089 0.5984 0.439374
BUTTON: RADIOBUTTONGROUP : TABLE : DROPDOWN : IMAGE 1 8967 8967 1.7373 0.187809
Residuals 928 4789913 5162

Signif. codes: 0 ‘***’ 0.001 ***’ 0.01 ‘*’ 0.05 '.” 0.1 Y’ 1

Figure 5.8.: ANOVA result for testing UI element additivity

A4: For some Ul elements the configuration can affect performance. Many Ul
elements provide different configuration options. For example, a developer can set the
number of columns and rows of a table, or the height, width and color of a button. While
some of these configuration options will not affect performance (such as the color of
a button), others are more likely to have a significant influence (e.g. the number of
rows in a table). In the following, we describe the experiment series that we conducted
in order to test this assumption and to quantify the influence of different Ul element
configuration parameters on performance. As an excerpt from the experiment series
that we conducted, we present the results for the UI elements table and image.
For the tables we investigated the following configuration parameters:

e Rows - the number of table rows
e COLS - the number of table columns

e EDIT - indicates if the fields of the table can be edited by the user

114

5.3. Execution

e SEL - indicates how rows of the table can be selected (one at a time, multiple

at a time, or none)

To determine which configuration parameters affect performance, we chose to apply

a full factorial design with the four parameters described above. Figure 5.9 shows the

result of the visual analysis.

ds$SEL
Multi —_—
None ——
Single

ds$EDIT

FALSE
TRUE

ds$COLS

1
20

ds$ROWS
.
20

e

1000 ds$CPU

1000 ds$CPU

1000 ds$CPU

1000 ds$CPU

/ / .
— el o ——
i 2, / B -
e H / [-
JI - T T T T T T T T
1 20 1 20 FALSE TRUE Multi None Single
ds$ROWS ds$COLS ds$EDIT ds$SEL

Figure 5.9.: Effect of table configuration parameters on CPU time

The box plots indicate for each configuration parameter whether its effect is signit-

icant or not. One can see that changing the row selection mode does not change the

consumed CPU time significantly. Making the table editable does also not affect CPU

time significantly. However, changing the number of columns and rows affects CPU

time significantly. When looking at the interaction plots for these two parameters one

can also see that there is a significant interaction effect between the number of rows and

the number of columns (i.e., the higher the number of columns in a table, the higher is

the effect of the number of rows on CPU time).

Moreover, we investigated how different cell types affect performance. Therefore,

we executed an experiment series were we placed a single table with a single column

115

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

on a plain screen and varied the type of the cells in the column. The cell types that we
investigated are TextField, TextView, Link, Rating, and Check. Figure 5.10 shows the
result of the experiment series in a boxplot.

I
j
o |
S - \
=
o © 7
o 1
» —_— 1
Browser .)
. N -
CPU Time [ms] - ' :
o j I .
] .
) : — : i
L 1
o .
o - T '
N~ l T ' —
|
| |
[¢]

TextField TextView Link Rating Check

Figure 5.10.: Effect of table cell types on CPU time

The results reveal that only the CPU time costs for the column with the Rating cell
type are significantly different from the CPU time costs for the other cell types.

In summary, the experiment series on understanding the effect of configuration pa-
rameters on the CPU time costs for displaying a table have shown that we need to
include the number of rows, the number of columns and the cell type in our prediction
function as these parameters significantly affect performance.

For the images, we investigated the following configuration parameters:

e Height - the visible height of the image
e Width - the visible width of the image

e Size - the data size of the image

Again, we conducted an experiment series using a full factorial design with two levels
(high and low) for each parameter and analysed the result using Factorial ANOVA. We
varied the parameters Height and Width between 100 px and 1000 px and the parameter
Size between 104 KB and 955 KB. Figure 5.11 shows the measurement results in a box
plot.

The plot reveals that the image size does not affect CPU time, while the height and
width of an image do affect CPU time. The ANOVA result shown in Figure 5.12
confirms the result of the visual analysis. There is a significant main effect for the con-
figuration parameters Height and Width on CPU time. Moreover, there is a significant

116

5.3. Execution

800
I

Browser ° °
CPU Time [ms]

== e I S| o e

=] L
o
< . .

T T T T T T T T
100/100/104 1000/100/104 100/1000/104 1000/1000/104 100/100/955 1000/100/955 100/1000/955 1000/1000/955

Height [px] / Width [px] / Size [KB]

Figure 5.11.: Effect of image configuration parameters on CPU time

Df Sum Sg Mean Sg F value Pr (>F)
HEIGHT 1 94010 94010 14.7908 0.0001552 ***
WIDTH 1 78409 78409 12.3362 0.0005338 **x*
SIZE 1 12298 12298 1.9349 0.1655600
HEIGHT:WIDTH 1 28471 28471 4.4794 0.0353721 *
HEIGHT:SIZE 1 421 421 0.0663 0.7970431
WIDTH:SIZE 1 1206 1206 0.1897 0.6635346
HEIGHT:WIDTH:SIZE 1 12 12 0.0019 0.9651640
Residuals 232 1474595 6356

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .7 0.1 ' ' 1

Figure 5.12.: Effect of image configuration parameters on CPU time (ANOVA)

interaction effect between these two parameters. The parameter Size does not affect
performance on a significant level. However, please note that although the image size
does not affect the CPU time metric that we use to build the front-end performance
model, it has to be considered carefully as it definitely affects the end-to-end response
time of a screen.

In summary, the assumption that some configuration parameters influence the per-
formance cost of a Ul element significantly can be considered as valid. In our case
study, we determined for each UI element that is not considered as simple (see experi-
ment results for assumption A2), which configuration parameters actually influence its
performance cost and how these costs can be quantified.

117

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

A5: The number of service calls and the amount of data that is transferred by
a service call affect front-end performance. In the previous experiments, we used
data that has been hard coded in the JavaScript source file. However, in real scenarios
the data usually comes from a back-end system. To retrieve this data from the back-end
system, OData [OAS13] and JSON [Cro13] are two common data representation alter-
natives for enterprise applications that are both supported by the investigated SAPUIS
library. In the following, we describe the experiment series that we conducted in order
to understand the effect of OData and JSON service calls on browser CPU time. For all
experiments, we used the publicly available Northwind service provided by odata.org
[OAS13]. The service is accessible via a REST interface and supports both, JSON and
OData format.

In the first set of experiment series, we investigated if the number of service calls
affects performance. Therefore, we conducted experiments where we systematically
increased the number of service calls executed by a screen. Figure 5.13 shows the
results for the two data formats.

1400

--JSON

1200 OData

[E
o
o
o

800

600

Browser CPU Time [ms]

400

200

1 3 5 7 9
Number Of Service Calls

Figure 5.13.: Effect of service calls on browser CPU time

The graph shows that for both data formats the CPU time increases with the number
of service calls. Although both service calls used the same query, there is a significant
difference in performance. We assume that the reason for this difference is that the

118

5.3. Execution

OData format requires much more data to describe the same content than the JSON
format.

In the next set of experiment series, we investigated whether the increase in CPU time
is actually caused by the number of service calls or by another metric. The metrics that
we investigate in the following experiment series are the following.

e CALLS: the number of service calls that are executed when a screen is loaded

e DATA: the total amount of data (in KB) that is transferred to the client (i.e.,
the sum of data transferred by each service call)

e RT: the total number of round trips between client and server in order to trans-
fer the data for all service calls on a screen

Table 5.2 lists the screens that we used in our experiment series for the OData calls.
Screens A to E contain a single service service call, while screens F to R contain differ-
ent combinations of the service calls from screen A to E. Hence, we test a broad set of
screens with different manifestations of the three metrics that we want to investigate.

SCREEN \ CALLS \ RT \ DATA \

A 1 10 | 599
B 1 5 146
C 1 84
D 1 34
E 2 10 | 292
F 6 16 | 304
G 4 12 136
H 8 24 | 273
I 12 36 | 408
J 16 48 544
K 20 60 | 680
L 24 72 816
M 2 4 168
N 8 336
O 12 | 504
P 8 16 | 672
Q 10 20 840

Table 5.2.: Screens used for OData service call experiments

119

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

The measurement results for the screens listed in Table 5.2 are illustrated as box plots

in Figure 5.14.

Browser
CPU Time [ms]

s | % . .
& ! E —
=] g T~ o
sS4 = — _ =
N ‘v*AL o
E" E
%* o o‘(‘v)* T‘L B
) . =0 = =
S E 4f@ -~
= . =5 =
= +
S 4 =
= —
T T T T T T T T T T T T T T T T T
A B C D E F G H | J K L M N O P Q

Screen

Figure 5.14.: Effect of service calls on browser CPU time (detailed)

When comparing the measured CPU times for the different screens, we can make the

following observations:

120

e The measured CPU time of screens B, C and D, reveal the influence of the

amount of data that is transferred by a service call. All three screens contain
the same number of service calls (1) and a similar number of round trips (2 to
5), but differ in the amount of data (B: 146 KB, C:84 KB, D:34 KB). One can
see that the CPU time correlates with the amount of data as screen B required
the most CPU time and screen D the least.

With respect to the number of service calls and the number of round trips,
the results do not reveal a significant influence on CPU time. To the contrary,
when we compare the measured CPU time for the screens E, F, N and I, we
can assume that the number of calls and the number of round trips do not affect
CPU time. All of the four screens transfer a similar amount of data while the
number of calls (2 to 12) and the number of round trips (8 to 36) vary signifi-
cantly between the four screens. Hence, if the number of calls or the number of
round trips would have an effect on performance, the measured CPU time for
the four screens should differ significantly. However, as illustrated in Figure
5.14, the measured CPU times for the four screens do not differ at a significant
level.

5.3. Execution

In summary, the measurement results revealed that the number of calls is not a suf-
ficient metric to describe the influence of OData-based service calls on front-end per-
formance. Instead, the total amount of data transferred by the service calls of a screen
is actually the metric that properly describes the influence of OData-based service calls
on front-end performance.

In the next set of experiment series, we analysed if we get the same results for JSON-
based service calls. Table 5.2 lists the screens that we used for the JSON calls. Screens
A to H contain a single service service call, while screens I to R contain different
combinations of the service calls from screen A to H. The measurement results for the

SCREEN | CALLS | DATA |

A 4
50
37

535
62
93

501

1071
99
95
93

8
16

8 32

16 64

186

279

372

RN == === =]=]=

O T|O|Zz 20| R|—=|~|ZEQ|mm I O|wm
O

Table 5.3.: Screens used for JSON service call experiments

screens listed in Table 5.3 are illustrated as box plots in Figure 5.15.
When comparing the measured CPU times for the different screens, we can make the

following observations:

e The number of round trips for the single service calls A to H is always one,
i.e., the JSON calls are not split in multiple round trips. Thus, we can skip the
number of round trips metric in further experiments.

121

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

i
Browser - o j ' o

900
I
o

800
|

700
o
1

o ' ' ' o o

R O R P I-Epr= n L
B = s

T T T T T T T T T
A B C D E F G H I J K L M N O P Q R

500 60
|

400
|

Figure 5.15.: Effect of JSON-based service calls on browser CPU time (detailed)

e The measured CPU time of screens A to H also indicate that the amount of

data that is transferred by a JSON-based service call does not affect browser
CPU time. Screens A to H contain the same number of service calls (1), but
differ in the amount of data (ranging from 4 KB to 1071 KB). One can see
that the CPU time does not correlate with the amount of data as screens A to
H require almost the same browser CPU time.

To test if the number of calls has a significant influence on browser CPU time,
we compare the measured CPU time of screens I, J and K. The three screens
consume nearly the same amount of data (between 93 KB and 99 KB), but
differ in the number of calls that are executed by the screens (I: 2, J:4, K:15).
When looking at the measurement results shown in Figure 5.15, one can see
that the CPU time consumed by screen K is significantly higher than the CPU
time consumed for screens I and J. Thus, we assume that the cause for the
higher CPU time for screen K is the higher number of calls.

In summary, the measurement results revealed that in order to describe the influence

of JSON-based service calls on the browser CPU time, it is sufficient to consider the

relationship between CPU time and the number of calls on a screen. The results of a

Factorial ANOVA analysis which are listed in Figure 5.16 confirm these assumptions.

Based on the findings of these experiment series, we assume that we can quantify the

influence of JSON-based service calls by deriving a prediction function that describes

the relationship between the total number of JSON-based service calls on a screen and
the browser CPU time.

5.3. Execution

Df Sum Sg Mean Sg F value Pr (>F)
CALLS 1 30258.9 30258.9 314.8829 1.772e-11 ***
DATA 1 70.6 70.6 0.7351 0.4047
Residuals 15 1441.4 96.1
Signif. codes: 0 ‘***/ (0.001 ‘**’ 0.01 **’ 0.05 *.” 0.1 Y ' 1

Figure 5.16.: ANOVA result for testing performance-relevant parameters of JSON-based service calls

A6: Deeply nested structures have a negative effect on the performance of a
screen. In this set of experiment series, we analysed the effect of nested structures
(e.g. nested tables and div containers) on browser CPU time. Nested structures are
usually created by layout containers in order to arrange the Ul elements of a page. For
example a Matrix Layout is mapped to an HTML table with rows and cells. In our
experiments, a nesting level of two conforms to two Matrix Layouts A and B where B is
contained in a cell of A. The analysis of existing applications suggested that especially
nesting is important. Nesting is critical if its width and height relate to the size of
the browser (also known as percent sizing). In other words, the layout is elastic as it
scales with the size of the browser window. Such scaling can be especially computation
intensive. Figure 5.17 shows the browser CPU time for Chrome, Firefox and Internet
Explorer for a critical nesting level varying from O to 14.

40000
35000 | ——CHROME - TRUE .
FIREFOX - TRUE /
30000
~INTERNETEXPLORER - TRUE /

25000

20000 /
15000

10000 /
5000 /

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Nesting Level (elastic)

Browser CPU Time [ms]

Figure 5.17.: Effect of critical nesting on browser CPU time

123

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

While critical nesting does not affect the browser CPU time in Internet Explorer and
Firefox, Chrome’s browser CPU time grows exponentially for a nesting level larger
than 10. As it is a general best practice to keep the critical nesting of a screen below 10,
and as only Chrome seems to have an issue with critical nesting, we decided to ignore
the nesting level when creating a performance model.

A7: The performance influence of a Ul element depends on its placement in the
layout structure. With the experiment series introduced in the following, we aim at
testing the assumption that the placement of the Ul element in the structure of the screen
affects its CPU time costs. Therefore, we need to understand the effect of placing a Ul
element in a leaf node compared to any other node in the UI tree. The placement may
affect the layout computation of the browser and thus can be important for browser CPU
time. In our experiments, we analysed the effect of three strategies for distribution:

1. all UI elements are placed in one leaf node of the UI tree (Leaf),

2. all Ul elements are equally distributed among all UI containers on the screen
(Round Robin), and

3. all UI elements are randomly distributed among all Ul containers (Random).

Figure 5.18 illustrates the results of the experiments. The results show only little vari-
ation between the different distribution strategies. Also the confidence intervals are
stable. This behaviour suggests that placement has no significant effect on browser
CPU time. Hence, we do not consider the placement of the UI elements when creating
the performance model.

5.3.2.3. Results

Based on the experiment series that we executed in order to test our initial assumptions
(see Table 5.1), we could improve our understanding of the front-end performance char-
acteristics of different SAPUIS-based Ul elements. The experiment series as well as the
results are properly documented and can be easily repeated if, for example, the perfor-
mance team wants to test the assumptions again for a new set of browser versions.
In summary, the systematic experimentation process led to the validated assumptions
listed in Table 5.4.

These validated assumptions, as well as the other findings from the conducted ex-
periment series form the input for the next process step which is the construction of a

124

5.3. Execution

900

800 N Leaf
" Round Robin
M Random

~
o
o

o]
o
o

Ul
o
o

Browser CPU Time [ms]
S
S

CHROME FIREFOX INTERNETEXPLORER

Figure 5.18.: Effect of UI element placement on browser CPU time

performance model. How we implemented this activity in the case study is presented
in the following section.

125

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

ID Assumption

Al Performance worsens with an increasing
number of Ul elements on the screen.

A2 There is only a small subset of UI elements
that affects performance significantly.

A3 Different Ul elements do not interfere

with respect to performance.
Al For some UI elements the configuration

can affect performance.

Depending on the type of service call,
A5 | either the amount of data (OData) or the number of calls (JSON)

affect front-end performance.

A6 Deeply nested structures have a negative effect

on the performance of a screen in some browsers.

A7 The performance influence of a Ul element is

independent of its placement in the layout structure.

Table 5.4.: Validated assumptions on relevant performance influences

5.3.3. Derive Performance Model

The performance model introduced in this section quantifies the relationship between
the construction of a web application screen and the browser CPU time for different
browsers. The model is created based on two inputs:

1. the assumptions and heuristics yielded from the experiments introduced in the
previous section, and

2. a set of additional experiments for the derivation of functional dependencies.

In the following, we define a performance model for web application screens as well
as a process to derive a concrete instance of this model for applications built using the
SAP UIS library.

If a screen S of a web application consists of the Ul elements ey, ...,e,, we write:
S=e-...-e, where - denotes the composition of Ul elements (e.g. a screen that consists
of tables, buttons, and text fields). Hence, when a Ul developer creates a screen S, he

126

5.3. Execution

evaluates e; - ... - ¢,. We assume this composition as associative and commutative (i.e.,
the UI elements can be arbitrarily placed on the screen).

Furthermore, we define ¢(S) as the front-end performance of screen S which is in
our case expressed as the browser CPU time consumed to load the full screen (see also
Section 5.3.1). Following the additivity and placement assumptions, we state that the
performance of the UI element composition is the sum of the performance values of the
individual UT elements (¢ (ey), ..., (e,)) and a constant offset (&s).

OS)=0¢(e1-...-en) +es=0(e1)+.... + P(en) + & S.D

The offset &5 describes the browser CPU time consumed to load an empty screen. This
includes for example the CPU time required to load the UI libraries and the CSS files
(i.e.,all components of a screen that are independent of a certain Ul element).

Depending on its properties py, ..., px (e.g. number of columns and rows of a table),
a Ul element e yields different front-end performance characteristics. We estimate the
performance value of Ul element e as

q)lypE(plv cee ;pk> (52)

Moreover, we derive an offset value &, for each UI element type that has a per-
formance relevant property. This offset value captures the basic performance costs of
a Ul element when a first instance is placed on a screen (e.g. caused by loading and
interpreting the JavaScript code that contains the sources for the Ul element).

In order to derive an instance of such a prediction model for the SAP UIS5 library and
the three major browsers, we followed our systematic process introduced in Chapter
3.3.3. In the following, we give a detailed description of how we implemented this
process in our industrial case study.

5.3.3.1. Define, Run and Analyse Experiments for Model Derivation

In this section, we describe the experiment series that we conducted in order to derive
the performance value estimators required for Equation 5.1. Leveraging the result of
the validated assumption that only a subset of all UI elements affects performance sig-
nificantly (see A2 in Table 5.4), we group them in simple types and complex types.
For the simple elements, we do not conduct a detailed evaluation of the properties. In-
stead, we just determine a general performance value estimator based on an experiment
series conducted with a representative element from this group. Examples for such
simple Ul element types in our study are buttons, text views, or labels.

As a result of the experiments conducted in the previous process step (see Section

127

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

5.3.2), we consider the following UI elements as complex: Table, RowRepeater, Im-
age, Toolbar, Shell, TabStrip, and Header. For each complex UI element, we derive
a prediction function that describes the relationship between the performance-relevant
parameters of a Ul element and the browser CPU time (i.e., we derive ¢y (p1, -, Pk)
for those properties that are considered as performance-relevant). In order to deal
with the large parameter space, we derive these multidimensional functions using the
Adaptive Equidistant Breakdown (AEB) exploration strategy in combination with a
Dynamic Sector validation with Local scope (DSL) and Multivariate Adaptive Regres-
sion Splines (MARS) analysis (see Chapter 4.4.2). This combination has been proven
to produce reliable estimators using only a small subset of potential experiments (see
Chapter 4.5). Figure 5.19 shows a screenshot of the SoPeCo UI, where the configura-
tion of the exploration strategy and the analysis strategy is displayed.

I ExperimeniSeries Configuration R aetelyjl= =@t 11 =l e

Exploration Strategy

g_AdﬁEtive Eq _uil:listant Breakdown | |
Max Number Of Experiments

Diminution Of \Validations 1.04

Dynamic Sector Accuracy Scope Loca

Accuracy Determination Method DynamicSector

Border Measurement Depth

Size Of Validation Set

Desired Model Accuracy 0.3

Max Exploration Time In Min

Analysis Strategy

| MARS |9

' observation BROWSER_CPU_TIME_RENDERING_MS i 3 !

Figure 5.19.: Configuration of parameter space exploration for function derivation

In the following, we describe the experiment series as well as the analysis results for
the simple element representative, the complex Ul elements and the screen offset. Like
in Section 5.3.2, we focus on the Firefox browser when describing the experiments and
results.

128

5.3. Execution

Screen Offset (g5): As a first step, we determine the CPU time consumed by the
browser to process the basic screen layout in which we place the different Ul element
types for our experiments. Therefore, we define and run an experiment that measures
an empty screen. As a result we get the screen offset €g = 420ms. Figure 5.20 shows
the distribution of the measured values in a box plot diagram. As discussed in Section
5.3.1, the variance is quite high, which is why we repeat each measurement at least 30
times.

I

350 400 450 500 550

Figure 5.20.: Range of measured values for screen offset

Simple Elements (¢siy.): To determine the estimator for the UI elements that we
consider as simple, we conduct an experiment series in which we use the Ul element
Button as a representative for this group. The only performance-relevant parameter of
simple elements is the number of elements placed on a screen. The parameter space for
this experiment is listed in Table 5.5.

’ Varied Parameter ‘ Variation

Button.Quantity | Linear: Min(1), Max(100), Step(1)
Total Number of Experiments: 100

Table 5.5.: Parameter space for derivation of @g;pze

To select the experiments for model fitting, we used our adaptive equidistant break-
down algorithm, which executed 9 experiments. As a result we got the linear function
shown in Equation 5.3 that describes the relationship between the number of buttons (or
in general simple UI elements) on a screen and the CPU time required by the browser
to display the screen.

CPU = 440+ 1.943456 « Quantity (5.3)

The coefficient of determination for the linear regression is R = 0.92. Figure 5.21
shows the 9 data points and the fitted function. The prediction error is in most cases
less than 5%.

129

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

690

5?0

Browser
CPU Time [ms]

590

450

0 o 4 6 80 100
#Buttons

Figure 5.21.: Linear regression for Button (i.e., SimpleElement) performance

To derive the offset value for simple elements (&g, 1), We calculate the CPU time
required for a single simple element using Equation 5.3 and subtract the offset of the
blank screen (&s). To determine @g;ypr., We subtract the the sum of the two offsets
Esimple + €s) from the linear function listed in Equation 5.3.

Table (¢7ap):

The first complex Ul element for which we derive a prediction function is the Table
element. The Table element is one of the most often used elements in enterprise appli-
cations, and in our study also the one with the highest impact on front-end performance
(see Figure 5.7). As aresult of the previous process step (see Section 5.3.2.2), we know
that three configuration parameters affect performance: the number of rows, the number
of simple columns (represented in the following by text field columns), and the number
of rating columns. Hence, in our experiment series we varied the parameters as listed
in Table 5.6. When selecting the ranges in which we vary the parameters, we consid-

’ Parameter ‘ Variation ‘
Table.Quantity Linear: Min(1), Max(5), Step(1)
Table.Rows Linear: Min(1), Max(30), Step(1)

Table.SimpleCols Linear: Min(0), Max(30), Step(1)
Table.RatingCols Linear: Min(0), Max(1), Step(1)
Total Number of Experiments: 9.300

Table 5.6.: Parameter space for derivation of @7,

ered in all experiment series that we do not create screens that are unlikely to occur in
practice (e.g. tables with more than one rating column) and that exceed a certain CPU
time (as we are not interested in predicting CPU time behaviour under extreme load sit-
uations). The step size is chosen to be as fine-grained as necessary in order to allow our
adaptive parameter space exploration algorithm to gather enough points in areas where
the prediction model needs more data to provide an accurate result (see Chapter 4.4.2).

130

5.3. Execution

When considering the parameters and the variation granularity shown in Table 5.6, the
potential parameter space for deriving a prediction function consists of 9.300 potential
experiments. However, using our automated combination of experiment selection and
statistical analysis allows us to derive prediction functions with only a small fraction
of these experiments (see Chapter 4.5). For the Table UI element, we could derive the
following multidimensional linear prediction function using only 52 experiments (i.e.,

0,56%).

CPU = 630.6861

—0.9837964 x Rows

—1.451458 x SimpleCols

—706.4417 % RatingCols

+5.741513 * Quantity

+0.005112995 % Rows * SimpleCols

+48.38323 « Rows * RatingCols

+46.90708 x SimpleCols x RatingCols

+ 1.603063 « Rows * Quantity

+3.421011 x SimpleCols * Quantity

+237.0174 x RatingCols x Quantity

—3.089817 * Rows * SimpleCols x RatingCols

+ 1.069729 x Rows * SimpleCols x Quantity

—12.56101 * Rows * RatingCols x Quantity

— 14.18982 x SimpleCols * RatingCols x Quantity

+0.9006174 x Rows * SimpleCols * RatingCols x Quantity
5.4)

The calculated coefficient of determination RZ, is 0.99 for the linear function shown
in Equation 5.4 which indicates that the prediction function fits the data well. In ad-
dition to the coefficient of determination, we validated the accuracy of the prediction
function already during its derivation using our iterative process introduced in Chapter
4.4.2. Figure 5.22 shows the residual plot from the generalized cross validation which
also confirms that the function provides accurate predictions. Finally, to determine the
offset value for table elements (€74p;.), We calculate the CPU time required for a single
table element using Equation 5.4 and subtract the offset of the blank screen (g5). To

131

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

21
o)
871 o
o
g | oo .
« oo
o

S o ° o
(n1_
§ ° °o 0°

o

%O— o o%o %
EO 00280 oo . o

=5 o o

| o

o
_ o o
oo o
o o
SI_ 120 09
T T T T T T
1000 2000 3000 4000 5000 6000
Fitted

Figure 5.22.: Residuals vs. fitted values for linear function on Table performance

determine ¢7,5;., we subtract the the sum of the two offsets 7,5, + €s) from the linear
function listed in Equation 5.4.

Image (¢rmae): To derive a performance prediction function for images, we vary the
parameters listed in Table 5.7. As our experiment series executed in the previous

’ Parameter ‘ Variation ‘

Image.Quantity Linear: Min(1), Max(10), Step(1)
Image.Width | Linear: Min(1), Max(1000), Step(10)
Image.Height | Linear: Min(1), Max(1000), Step(10)

Total Number of Experiments: 10.000

Table 5.7.: Parameter space for derivation of @pnqge

process step have shown that the size of an image does not affect browser CPU time (see
Section 5.3.2.3), we only include the performance-relevant configuration parameters
height and width in the prediction function. With the chosen variation granularity this
results in 10.000 potential experiments. However, due to our automated combination
of experiment selection and statistical analysis, we could derive the following MARS

prediction function using only 21 experiments (i.e., 0,21%).

CPU =483.5
+0.03131313 x max(0, Width — 505)

132

5.3. Execution

—0.04292929 % max(0, 505 — Width)

+0.026 x max(0,Height — 500)

—0.04387755 « max(0,500 — Height)

—0.9642857 « max(0, Quantity — 5)

—3.669643 « max(0,5 — Quantity)

+2.020202¢ — 05 * max(0, Width — 505) * max(0, Height — 500)
—7.070707e — 06 * max(0,505 — Width) * max(0,Height — 500)
—0.0001752216 * max(0, Width — 505) * max(0,500 — Height)
+5.462791e — 05 x max(0,505 — Width) « max(0,500 — Height)
+0.01189033 s« max(0, Width — 505) * max(0, Quantity — 5)
+0.01038961 * max(0, Width — 505) * max(0,5 — Quantity)
—0.001528571 x max(0, Height — 500) * max(0, Quantity —5)

+0.003160714 * max(0, Height — 500) * max(0,5 — Quantity)
(5.5)

The coefficient of determination for the derived MARS function is R* = 0.97. Figure
5.23 shows the residual plot from the generalized cross validation which also reveals
that the model fits the data well. To determine @j,40., We calculate the offset values

15
o
o
0 8
° o
o
(7]
© o o
=}
S o
7]
OO o
o
o o o
o
o
Te)
i o
e 140
old
T T T T T T
440 460 480 500 520 540

Fitted

Figure 5.23.: Residuals vs. fitted values for MARS function on Image performance

€/mage and &g and subtract the sum of the two values from the function outlined in
Equation 5.5 in order to get only the estimation for the performance costs of additional

images added to the screen.

133

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

RowRepeater (9rowrepearer): The next complex Ul element is called RowRepeater.
Besides the quantity of the RowRepeater, the number of rows that are displayed by a
RowRepeater have a significant effect on the performance of a screen. Hence, in our
experiment series to derive a prediction function for screens containing RowRepeaters,
we vary these parameters as listed in Table 5.8. As the number of potential appropriate

Parameter Variation

RowRepeater.Quantity | Linear: Min(1), Max(10), Step(1)
RowRepeater.Rows Linear: Min(1), Max(30), Step(1)
Total Number of Experiments: 300

Table 5.8.: Parameter space for derivation of @royrepeater

values for the two varied parameters is not very high, the parameter space consists of
only 300 potential experiments. However, running 300 experiments would take already
2 days. With our adaptive breakdown methodology, we derived the MARS function
shown in Equation 5.6 using only 86 experiments which could be executed in 12 hours.

CPU =1742.6767

+ 12.6454 « max(0,Rows — 9)

—25.48596 * max(0,9 — Rows)

+24.57518 * max(0, Quantity — 6)

—31.63405 * max(0,6 — Quantity)

+2.622546 « max(0,Rows — 9) x max(0, Quantity — 5)
—2.301101 * max(0,Rows — 9) x max(0,5 — Quantity)
—1.45611 xmax(0,9 — Rows) * max(0, Quantity — 8)
+2.422541 * max(0,9 — Rows) * max(0,8 — Quantity)

(5.6)

The coefficient of determination R? = 0.99 for the derived MARS function indicates a
good prediction accuracy. The residual plot (Figure 5.24) from the generalized cross
validation also shows that the model fits the data well. As with the other Ul elements,
we determine ProwRepearer by calculating the offset values €rowrepearer and € and sub-
tract the sum of the two values from the function outlined in Equation 5.6 in order to
get only the estimation for the performance costs of additional RowRepeater elements
added to the screen.

134

5.3. Execution

j |
o o
<
%
8_ o @ o
oog’
o ©O o
% 0(%00 00 o
ja ° 24 © o © o
2 so % o
o o 0.0 o o [
o o © [¢] o o
o /o o o, %o
o o o o°o o °
o o
o &C:)QS’ [o] o
o
8 (o}
] &
o
o
o)
12 T T T T T
600 800 ~ 1000 1200 1400
Fitted

Figure 5.24.: Residuals vs. fitted values for MARS function on RowRepeater performance

TabStrlp (¢TabStrip):

The TabStrip UI element does not have any performance-relevant

configuration parameters. We tested if the number of tabs has a significant influence on
CPU time, which is not the case as can be seen in the box plot depicted in Figure 5.25.
Hence, we varied only the number of TabStrips on a screen (from 1 to 5 in steps of 1)

550

Browser
CPU Time [ms]

500

450

#Tabs

Figure 5.25.: Influence of the number of tabs on browser CPU time

and derived the linear function shown in Equation 5.10.

CPU = 467.4+ 16 x Quantity

(5.7)

135

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

The coefficient of determination for the linear regression is R?> = 0.99. Figure 5.26
shows the five data points and the fitted function. To determine ¢74ps;/ip, We calculate

o o,
m7
[[)
Browser m
CPU Time [ms] © |
o
o
®7
<

1 2 3 4 5

#TabStrips

Figure 5.26.: Linear regression for TabStrip performance

the offset values €r4ps:ip and €s and subtract the sum of the two values from the linear
function in Equation 5.10.

Toolbar (¢7.0a;): The Ul element Toolbar does not have any performance-relevant
configuration parameters. Hence, we conducted an experiment series were varied only
the number of Toolbars on a screen (from 1 to 10 in steps of 1) and derived the linear
function shown in Equation 5.8.

CPU = 457.1333 +7.484848 * Quantity (5.8)

The coefficient of determination for the linear regression is R> = 0.94. Figure 5.27
shows the ten data points as well as the fitted function. As with the other UI elements,
we calculate the offset values €7,,54- and € and subtract the sum of the two values
from the linear function in Equation 5.8 in order to determine ¢7,0;pq;-

Header (¢xcuq.-) and Shell (¢s,.;): Header and Shell are UI elements that occur only
once on a screen. Moreover, none of their configuration parameters has a significant
influence on performance. Hence, ¢g.qq.r and @sp.;; are constant values derived by
simply measuring a screen that contains a Header or a Shell, respectively, and subtract
the screen offset € from the measured values. Figure 5.28 shows the measurement re-
sults for the two experiment screens in a box plot diagram. This results in the following
values for @geqder and Psperr:

¢Header =28 (59)

136

5.3. Execution

o
07
Yo}
o
=
Yo}
Browser
CPU Time [ms] |
o
S
<
o
,\7
< | o

2 4 6 8 10

#Toolbars

Figure 5.27.: Linear regression for Toolbar performance

o - ‘
S ‘ |
© ! !
Browser o 1
CPUTime[ms] @]|

400
!

T T
HEADER SHELL

Figure 5.28.: Measured browser CPU times for Header and Shell

Osheir =75 (5.10)

OData-based Service Call (¢op.s) In Section 5.3.2.2, we presented our experiment
series for understanding the performance influence of OData-based service calls. The
results revealed that the total amount of data that is transferred by the service calls
is the only service call parameter that affects front-end performance. Hence, to build
a prediction function for OData-based service calls and derive ¢opqrq, W€ consider
only this parameter. We use the measurement results (Figure 5.14) derived for the
screens listed in Table 5.2 as training data for the MARS analysis. The resulting MARS
function is listed in Equation 5.11.

1181.766
+2.317290 * max(0, DATA — 336)
2336814 % max(0,336 — DATA)
(5.11)

137

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

The coefficient of determination for the function is R?> = 0.97 and indicates a good pre-
diction accuracy. The residual plot derived by a generalized cross validation is depicted
in Figure 5.29 and confirms the quality of the MARS model.

;3
o
o —
«
(2]
§ o
327 o o
(/2]
& o o
o
o
1 o, o °
° o
o ° °
9,‘ ° 9 012
T T T T T
500 1000 1500 2000 2500
Fitted

Figure 5.29.: Residuals vs. fitted values for MARS function on OData-based service call performance

Finally, we calculate the offset value & and subtract it from the MARS function
shown in Equation 5.11 in order to determine @ppasq-

JSON-based Service Call (¢;son) In Section 5.3.2.2, we also presented our experi-
ment series for understanding the performance influence of JSON-based service calls.
In contrast to OData-based service calls the only parameter that affects the front-end
performance of a screen that includes JSON-based service calls is the number of calls
on the screen. Hence, to build a prediction function for JSON-based service calls and
derive @;son, we consider only this parameter. We use the measurement results (Figure
5.15) derived for the screens listed in Table 5.3 as training data for a Linear Regression
analysis. The resulting regression function is listed in Equation 5.12.

CPUtime = 440.9531 +9.147735 % CALLS (5.12)

The coefficient of determination for the function is R?> = 0.94 which indicates a good
prediction accuracy. Figure 5.30 shows the measured data points as well as the fitted
function. The plot also reveals that the function fits the data well. Like with the other
elements, we calculate the offset values €;505 and € and subtract the sum of the two
values from the linear function in Equation 5.12 in order to determine ¢;soy .

5.3.3.2. Construct Prediction Functions

In the previous section, we introduced the experiment series that we conducted in order
to derive the performance estimators ¢y pe(p1, - .., px) as well as the offset value for the

138

5.3. Execution

[¢]
o
e
[te)
Browser
CPU Time [ms]
o
4
[re)
O o

o o
o o]
918° °

5 10 15

#Calls

Figure 5.30.: Linear regression for JSON-based service calls

different Ul element types &,. and the screen offset value £g. Now, we can compose
these terms to a prediction function that predicts the browser CPU time for a screen
S as shown in Equation 5.1. As the function @;y,.(p1,...,pk) returns the performance
cost of a certain Ul element type in a particular configuration, we need to add up the
performance costs of the different configurations of each UI element type. Hence, we
define two additional variables: #7ype denotes the total number of UI elements of a
certain type on a screen, and #7'ypeCon figs denotes the number of different configura-
tions of a certain Ul element type on a screen. Equation 5.13 shows how we derive the
prediction functions in our scenario.

O (S) = e +min(1,#Simple) * (Esimpie + Psimpre (Quantity)),
#ImageConfigs

+min(1,#Image) * (€pnage + Z Otmage(Height,Width, Quantity))
i=1

+min(1,#Table) * (Erapie
#TableConfigs

+ Z Orapie #SimpleCols, #RatingCols, #Rows, Quantity))
i=1

+min(1,#RowRepeater) * (EgowRepeater

#RowRepeater

+ Z ORowRepeater(H#ROWS, Quantity))
i=1

+ min(1,#TabStrip) * (Erapstrip + OTabsirip(Quantity))
+ min(1,#Toolbar) * (Eootbar + PTootbar (Quantity))
+min(1,#Header) * Ogeader()

+ min(1,#Shell) * Qsper ()

+ min(1,#0Data) * §opaa(Data)
+min(1,#JSON) * ¢;s0n (#Calls)

139

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

(5.13)

Since different browsers show different behaviours with respect to front-end perfor-
mance, we derived the performance model shown in Equation 5.13 for three important
browsers (Firefox, Chrome, and Internet Explorer). We listed the concrete values and
functions for the corresponding implementations of Equation 5.13 in Appendix C. As
all experiments introduced in Section 5.3.3.1 and Section 5.3.3.2 have been defined
using our experiment specification language (see Chapter 4.3.1), we can automatically
run the same experiments for other browsers. Having this set of automatically exe-
cutable experiments has the benefit that it limits the effort for creating or updating the
functions for new browsers browser versions or Ul library versions.

5.3.4. Validate Performance Model

The constructed prediction function instances are abstractions of the real behaviour
that is based on assumptions, heuristics and statistical inference. Hence, it has to be
validated that the estimated performance values sufficiently reflect the behaviour of
real screens. The goal of our validation is to judge prediction accuracy and thus the
utility of our heuristics and the practicability of our approach. Therefore, we compare
our predictions with actual performance measurements.

We selected twelve real-world screens built with the SAP UIS library. Six screens
are taken from demo applications provided by the SAP UI5 development team. These
screens cover a broad spectrum of different manifestations of the two most important
control types in business applications, namely tables and service calls. The other six
screens are taken from a real application called Networking Lunch. Networking Lunch
is a social enterprise application where people can search for other people interested
in the same topic and setup a joint lunch meeting. Figure 5.31 outlines the content of
the twelve validation screens which is also the the input to our performance prediction

functions.
demol demo2 demo3 demo4 demo5 demob
1 ODataCall (10KB) 1 ODataCall (106KB) 1 0DataCall (72KB) |1 ODataCall (38KB) |1 ODataCall (542KB) 1 ODataCall (380KB)
1 Header 1 Table (55C,10R) 1 Table (4SC,10R) 1 AppHeader 2 Table (14SC,10R + 55C,1R) |1 Table (10SC,10R)
7 Simple 1 AppHeader 1 AppHeader 7 Simple 1 AppHeader 1 AppHeader
2 Simple 22 Simple 2 Simple 25 Simple
nwlunchl nwlunch2 nwlunch3 nwlunch4 nwlunch5 nwlunché
3 JsonCalls (4KB) 1 Shell 1 Shell 1 Shell 2 JsonCalls (1KB) 1 Shell
1 Shell 2 JsonCalls (1KB) 3 JsonCalls (1KB) 2 JsonCalls (2KB) 1 Shell 1 Table (2SC,1R)
2 RowRepeater (1R) 2 Tables (4SC,1R + 2SC,1R) |1 Table (3SC,1R) 1 RowRepeater (1R) |4 Simple 1 JsonCall (1KB)
1 Image (W:440,H:300) |12 Simple 2 RowRepeater (1R) |22 Simple 3 Simple
7 Simple 7 Simple

Figure 5.31.: Overview of the control types on the validation screens

140

5.3. Execution

We measured the browser CPU time of all screens on the same test client and with
the same browser versions for which we derived our prediction model. We also ensured
that the validation screens use the same version of the SAP UIS library as our screen
generator. Generally, the process for measuring the real screens was equal to the process
for measuring the generated screens during our experiments (see Section 5.3.1). To
make sure that we compare only the browser CPU times for processing the controls
that are added to the basic layout of an application, we also measured the offset values
for the two web applications, i.e.,we measured the browser CPU time consumed by a

blank screen in the corresponding application frame (€p). To determine the offset

validation

value for our predictions €p we add the difference between the offset value used

rediction’
for a blank screen construcpted by our screen generator (€p,,,,..,) and the offset value
measured for a blank screen in the validation application to the prediction offset value
EP iaaion- With this adjustment of the offset value, we avoid that influences like login
procedures or loading of additional libraries affect the prediction result.

To determine the prediction accuracy, we calculate the absolute prediction error (i.e.,
the difference between actual and predicted performance) in ms and the relative predic-
tion error in percent:
actual — predicted

error = *100%.
actual

Following standard literature [MAO1], we consider a relative prediction error of less
than 30% as acceptable.

Chrome Firefox InternetExplorer
Page Measured Predicted Abs. Error Rel. Error| Measured Predicted Abs. Error Rel. Error| Measured Predicted Abs. Error Rel. Error
nwlunchl 881 ms 1050 ms 169 ms 19% 934ms 1065 ms 131ms 14% 722 ms 763 ms 41 ms 6%
nwlunch2 1123 ms 1043ms -81ms 7% 952 ms 945 ms -7 ms 1% 760 ms 785 ms 25ms 3%
nwlunch3 1341ms 1194ms -147ms 11%| 1217ms 1251 ms 34 ms 3%| 1026 ms 900 ms -126 ms 12%
nwlunch4 952 ms 1026 ms 74 ms 8% 936 ms 1045 ms 109 ms 12% 795 ms 746 ms -49 ms 6%
nwlunch5 788 ms 851 ms 63 ms 8% 769 ms 687 ms -82ms 11% 650 ms 579 ms -71ms 11%
nwlunché 1067 ms 992 ms -75ms 7% 1019 ms 899ms -120ms 12% 830 ms 720 ms -111ms 13%
demol 646 ms 721 ms 75 ms 12% 523 ms 471 ms -52ms 10% 430 ms 402 ms -28 ms 7%
demo2 1018 ms 1189 ms 170 ms 17% 861 ms 972 ms 111ms 13% 695 ms 821 ms 126 ms 18%
demo3 1014 ms 1128 ms 114 ms 11% 842 ms 918 ms 76 ms 9% 735 ms 750 ms 15ms 2%
demo4 661 ms 758 ms 96 ms 15% 546 ms 536 ms -10ms 2% 495 ms 473 ms -22ms 4%
demo5 2058 ms 2057 ms -1ms 0% 1841ms 2123 ms 282 ms 15% 2045ms 2131ms 86 ms 4%
demo6 1482 ms 1702 ms 220 ms 15% 1503 ms 1719 ms 216 ms 14% 1356 ms 1633 ms 277 ms 20%

Figure 5.32.: Validation results

In Figure 5.32 we show the results for the twelve validation screens. The average
relative prediction error across all screens and browsers is 10% (i.e., an average ab-
solute prediction error of 82 ms). For 88% of the predictions, the relative prediction
error is less than 15% and there is no real outlier with an error higher than 30%. The
prediction accuracy is similar between all three investigated browsers (between 9% and
11% average error). Also between the two applications, we could not observe a general

141

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

difference with respect to prediction accuracy (average relative prediction errors are 9%
for Networking Lunch and 10% for the Demo Application).

For the screen demo6, we overestimate the CPU time in all three browsers relatively
high. The same is true for screen demo3 in the Firefox browser. These overestimations
are most likely caused by the estimation function for the OData service calls as these
contribute largely to the estimated overall CPU time for these screens. Hence, in or-
der to further improve the prediction accuracy of the performance model, we could run
further experiments to improve the regression function for OData calls. For the screen
nwlunchl, we also overestimate the CPU time in Chrome and Firefox, which in this
case is caused by the image predictions. Again, more training data can help to improve
these predictions in the future. However, in general the predictions are very accurate
and we do not tend towards a general over- or underestimation. We assume that the pre-
diction errors are in most cases cA “caused by the statistical nature of the measurement
results.

5.4. Discussion of Results

Based on the results and experiences gathered through the execution of the industrial
case study, we discuss in the following the questions stated at the beginning of this
chapter.

Can we derive an accurate performance model that solves a real-world problem?
The models that we derived for the front-end performance prediction in three different
browsers, have an average relative prediction error of 10% which can be considered as
very accurate (see also Section 5.3.3 for a detailed discussion of the model accuracy).
Having these models allows SAP to solve the problem that UI developers or designers
create web application screens without being aware of the influence of their design deci-
sions on front-end performance. The existing approach to deal with this problem is that
developers have to measure the front-end performance of their implemented screens in
order to ensure that the design meets SAP’s performance requirements. However, this
approach has several disadvantages:

e Measuring each screen causes a lot of overhead to the already tight schedules
in software development projects. Especially if developers are not familiar
with performance measurement tools and practices, the overhead is too large
and the screens are only rarely tested for performance.

e If a performance problem is caused by an inappropriate design of the screen,
the costs for fixing the problem in late development cycles can be very high. It

142

5.4. Discussion of Results

might be necessary to change the implementation of multiple screens to solve
an issue while still providing the same functionality or information.

e P
Firefox ~

[2] Web Application Starter Project

€& @ Ipeqkelsap.copB080/PerformancePredictor/ v G| |38~ Google A A& B~ =

RESEARCH SAP4
SAP UI5 Performance Predictor

Ia] ¢

Page Content (J Predictions ()

1n

© #ServiceCalls — — 2 2,800 M Firefox

M Intemet
Explorer

M Chrome

© #Tables | E—— 1

2,100

© #ApplicationHeaders

£
H
£
=
© #Panels e 0 2
S 140
© #DropDowns - 4 §
. B LS
O #TextFields - —— 4 8 o0
U #TextAreas e —— 0
0
O #TextViews e —— 0
U #Buttons - 0
U #Labels —_ 0
© #lnputFields EE—— 0
& #Toolbars r—— 0

Figure 5.33.: Front-end performance prediction tool

We identified two ways how UI developers can leverage the results provided by the
models to create responsive web application screens with only very limited overhead.
The first way is through a web application that allows to easily evaluate the front-end
performance of different design alternatives. Figure 5.33 shows a screenshot of the
web-based prediction tool.

Using the web interface, developers can provide the intended design of a screen and
get a prediction of the expected front-end performance for the three major browsers. It
is also possible to get a detailed pie chart for each browser that shows which UI ele-
ments and Ul element configurations contribute the most to the eventually bad perfor-
mance. The web application is hosted internally and provides an easy accessible means
for developers of SAP UIS based web application screens to assess if their screen design
meets SAP’s performance requirements. Moreover, it is used in developer trainings at
SAP in order to increase the performance awareness of developers.

143

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

The second way of using our performance models at SAP is the integration of per-
formance predictions in the SAP UIS5 UI editor tooling. The tool call SAP UIS App
Designer is a ,,what you see is what you get“editor for the development of SAP UI5
based web applications. The predictions can be integrated into the tool so that the
developers get an alert if their design does not meet the performance requirements.

We believe that the application of our performance models in the two presented ways
will improve the front-end performance of SAP’s SAP UIS based web application
screens. However, only an empirical study, which is out of the scope of this thesis,
could validate this causal relationship.

What are the efforts to apply the approach in a real-world scenario? The indus-
trial case study that has been presented in this chapter shows that it is possible to derive
an accurate performance model to predict the front-end performance of web application
screens. In the following we discuss the efforts necessary to implement the approach,
i.e., to create and maintain the performance models. These efforts are the metric that
we use derive a conclusion for the practical applicability. Although we did not conduct
a controlled experiment to track the actual efforts, we can provide rough estimates that
allows the reader to classify the necessary efforts.

In the following, we discuss the efforts necessary to implement the different usage
variants outlined in Table 5.9. To provide rough estimates on the efforts, we assign to
each variant whether its implementation is a matter of days, weeks or moths.

’ ID ‘ Variant ‘ Effort ‘
V1 Creating a model for a further UI library. months
V2 Creating a model for a further device. weeks
V3 Creating a model for a further browser. weeks

V4 | Updating the model for a new library version days

V5 | Updating the model for a new browser version | days

Table 5.9.: Usage variants

VIi: Creating a performance model for a further UI library. Often, software de-
velopment organisations use multiple libraries for the development of web application
screens. Extending the measurement environment to support a new library requires
already much less efforts than creating a performance model for a completely new sce-
nario. Most parts of the measurement environment can be reused (e.g. devices and
measurement tooling). Also many experiment definitions can be reused and automati-
cally executed for the new library. The largest efforts in that variant is the adjustment

144

5.4. Discussion of Results

of the screen generator for the new library and the verification if the assumptions and
heuristics defined for library A are also true for library B.

V2: Creating a performance model for a further device. Web applications have to
run on multiple devices with different characteristics (e.g. desktop, laptop, or tablet).
When testing the front-end performance of a web application, different client setups
should be considered. If a performance model has to be derived for a new device,
one main effort is the installation of the measurement tooling and the preparation of
the device to minimize factors that disturb measurements (e.g. Kkilling unnecessary
processes, configuring browsers). All the experiment definitions can be reused and
executed automatically. In some cases it might be necessary to adjust the domains of
some parameters due to the changed hardware capabilities. Another main effort is again
the verification if the assumptions and heuristics also hold for the new device.

V3: Creating a performance model for a further browser. If a performance model
should be derived for a new browser, the measurement environment has to be extended
in order to support the new browser (e.g. automatically control the browser via Sele-
nium, disable all disturbing browser configurations). While all the experiment defini-
tions can be reused and executed automatically, the assumptions and heuristics have to
be verified for the new browser.

V4: Updating a performance model for a new library version. If the version of
the UI library for which a performance model has already been derived is updated,
performance analysts can simply rerun all experiments and test if the assumptions and
heuristics are still valid. In case the library update includes new UI elements or new
configuration options, the screen generator has to be extended and the corresponding
experiments have to be defined or updated. As a side effect, the experiments can also
identify performance regressions introduced by library changes. In cases where the
library is developed in-house (such as the SAP UIS library at SAP), this is another
benefit of the approach that justifies the efforts.

V5: Updating a performance model for a new browser version. Besides the updates
caused by new library versions (V5), an update due to a new browser version is one
of the most frequently occurring task. As with V5, the manual efforts required to per-
form this task is kept at a minimum by our approach. Performance analysts can simply
rerun the defined experiments and verify if the assumptions and heuristics are still valid.

In summary, creating an initial performance model for a scenario requires some ef-
fort. However, as this effort is mainly in understanding the performance behaviour of
the system it is in most cases well worth to be spent. Moreover, our approach shifts
the efforts to a small team of performance analysts and domain experts while the large
bulk of developers can just leverage the results to evaluate performance with nearly no

145

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

effort. A big problem of most existing performance modelling approaches is the large
effort to maintain the models and update them due to frequent system changes. In our
approach, a model update is mainly automatically conducted by simply rerunning the
predefined experiments which has been a major argument for the performance analysts
at SAP to apply the approach in future. In general, the fact that our measurement-based
approach is close to the existing practice increased the acceptance and trust among
practitioners. As the performance analysts at SAP are going to adopt the approach for
their daily work, we conclude that the approach is efficient enough to be applied in
practice.

5.5. Threats to Validity

The results presented in Section 5.4 demonstrate that our approach can accurately pre-
dict the front-end performance of enterprise web applications and is efficient enough
to be applied in practice. However, it is important to note the threats to validity of our
approach in order to understand its applicability.

5.5.1. Internal Validity

The selection of the case study was given by the context in which the thesis has been
conducted. The author of the thesis has been employed by the research department of
SAP and the case study has been initiated by a trigger from SAP’s performance analysts
team that identified the need to support UI developers and designers in assessing the
performance effect of their screen designs. Moreover, the author of the approach has
been part of the team that executed the case study which can affect the quality of the
results in a positive way (Experimenters Bias).

5.5.2. External Validity

Small Validation Set The screens evaluated in Section 5.3.3 are only part of two
web applications. Both are very different in type and front-end performance. One
represents a typical enterprise web application for processing data, the other a social
enterprise application. Even though the predictions complied to measurement for the
presented web applications, a broader set of validation scenarios is required, to ensure
its general applicability.

Custom JavaScript Code Our prediction focuses on the influence of Ul elements
and service calls on front-end performance. This is a reasonable assumption for typical

146

5.6. Summary and Contributions

enterprise applications. However, developers often add custom JavaScript code to pro-
cess data, to create new controls or to change configuration. This custom code will add
to the browser CPU time and thus to front-end performance. While such custom code
played only a minor role in the web applications used for our model validation, it may
have huge effects on front-end performance in other cases. However, our goal is to give
early feedback on front-end performance, thus, we cannot consider such effects in our
prediction.

Single Library In our industrial case study at SAP, developers of web applications
usually use only the SAP UIS library to build a web application front-end. The library
encapsulates other common JavaScript libraries. In other development environments,
especially non-enterprise web application development, it is often the case that multi-
ple libraries are combined to develop the front-end code. Moreover, additional style
definitions can affect front-end performance in standard web sites [Sou07] which could
have been neglected for the enterprise web applications developed with the SAP UIS
library and the corresponding pre-defined styles.

No All-in-One Solution The purpose of the performance model derived in the course
of the case study is to help designers and developers of SAP UIS5 based web application
screens to assess the effect of different design alternatives prior to implementation.
However, the approach is no replacement for continuous performance tests to measure
and evaluate the actual performance of an application and avoid common performance
problems such as those described by Souders [Sou07, Sou09].

5.6. Summary and Contributions

In this chapter, we presented an industrial case study that we conducted at SAP. In
the case study, we applied our approach to derive a goal-oriented performance model
for predicting the front-end performance of SAPUIS-based web applications. The de-
rived performance models supports hundreds of UI designers and developers at SAP in
building responsive screens. Hence, we showed that performance analysts can derive a
performance model that solves a real-world problem using our approach. The average
relative prediction error of the derived performance model was below 10%. Due to
the automatically executable experiments, our approach requires only limited manual
effort for updating a performance model to system changes.
In summary, the contributions of this chapter are

e An industrial experience report on applying the approach introduced in this
thesis including a discussion of model accuracy and modelling efforts.

147

5. Industrial Case Study on Deriving Goal-Oriented Performance Models

e A performance model for front-end performance predictions that allows de-
velopers and designers of enterprise web applications to assess the effect of
different UI design alternatives on front-end performance prior to implemen-
tation.

148

6. Related Work

In this chapter, we present related research work in the field of software performance
engineering [SWO1, Smi07, WFP07]. Our approach contributes to two main areas:

1. measurement-based performance evaluation (Section 6.1), and

2. combining measurements with performance modelling (Section 6.2).

Accordingly, we group the related approaches discussed in this chapter. For each group
of related work, we define a set of criteria based on which we classify the existing
approaches and outline the distinction to the approach presented in this thesis.

6.1. Measurement-based Performance Evaluation

In this section, we discuss state of the art approaches in the field of measurement-based
performance evaluation that are related to our work presented in Chapter 4. Section
6.1.1 focuses on approaches that support experimental performance evaluation. In Sec-
tion 6.1.2 we present approaches that apply statistical inference methods to evaluate the
performance of software systems.

6.1.1. Experimental Performance Evaluation

The need for a systematic and holistic performance evaluation process has been first
described by Raj Jain in his book about the art of computer systems performance anal-
ysis [Jai91]. Jain emphasizes that proper experimental designs can help to reduce anal-
ysis costs and introduces a systematic process. Similar process definitions have been
introduced by Smith and Williams [SWO01] and Menasce and Almeida [MAO1]. In the
following, we discuss research approaches that deal with supporting the practical im-
plementation of such systematic processes by providing proper frameworks, tools and
methodologies for experimental performance evaluation.

Table 6.1 provides an overview on the discussed approaches by classifying them
based on the following criteria:

e [ExpDef] Indicates if the approach provides a means to define experiments in
a standardized way.

149

6. Related Work

e [Auto| Indicates if the approach supports the automated execution of experi-
ments.

e [FlexDes| Indicates if the approach allows performance analysts to flexibly
add new experimental designs.

e [Indep] Indicates if the approach is independent of a concrete technology or

scenario.
’ Approaches ‘ ExpDef ‘ Auto ‘ FlexDes ‘ Indep ‘
Thakkar [THHFOS] X v X v
Woodside [WVCBO1
oodside [WVCBO1], v Y X Y
Vetland [VW97]
Prodan [PF05, PF0O4] Ve v X X
Abramson [ASGH95, AGKO00] v v X X
Ioannidis [ILGP96] v X X v
Jung [JPSO7] X v X X
Miller [MCC™95],
tller [: v v X X
Karavanic [KM97]
Hauck [HKHR11] v v X X
Worringen [Wor(05] v v X X

Table 6.1.: Related work for experimental performance evaluations

In summary, none of the related approaches outlined in Table 6.1 can be classified in
the same way like the SoPeCo approach presented in Chapter 4 of this thesis. To the
best of our knowledge we are the first that enable the flexible introduction of experi-
mental designs for automated experiment executions in a wide range of scenarios.

In the following, we provide a description of the approaches listed in Table 6.1.
Thakkar et al. [THHFO08] provide a conceptual description of a framework that aims
at supporting performance analysts in deriving measurement-based performance mod-
els. The authors describe seven steps that are to be executed by the performance analyst
in the lifecycle of measurement-based performance modelling: test enumeration, test
reduction, environment setup, test execution, test transition, test analysis, and model
building. In order to reduce the required number of actually needed test runs the au-
thors suggest to use domain knowledge or statistical analyses technique s such as Main
Screen Analysis [YKM105] and two-way ANOVA [SMO05]. Moreover, the authors

150

6.1. Measurement-based Performance Evaluation

highlight the need for application-specific extensibility. The authors also estimate the
effort necessary to customize the framework to for other applications. However, the
authors remain open how to design such a framework and how their solution can be
actually customized to other applications. Moreover, the approach does not consider
the formal definition of experiments.

Woodside et al. [WVCBO1] and Vetland et al. [VW97] describe a workbench that
supports the automated execution of experiments to derive resource functions. A re-
source function describes the demands of a software component with respect to the
infrastructure that runs it, in dependence of the configuration and the usage of the com-
ponent. The authors use the resource functions to parametrise performance models.
The workbench allows performance analysts to define experiments based on a simple
language. Parameter variations can be, for example, specified in a list or in a sequence.
The workbench also executes the experiments automatically by calling test scripts that
trigger the measurement tools and the system under test. Finally, the results are stored
in a central repository and a function fitting component derives the resource functions
from the measured data. However, the approach lacks the capability to introduce ex-
perimental designs that optimize the trade-off between the number of experiments and
the accuracy of the resource function. Moreover, the workbench does not provide the
capabilities to add custom parameter types, parameter variations, or analysis methods.

ZEN [PF05] is a directive based experiment specification language that aims at sup-
porting performance analysts in specifying and controlling the execution of large num-
ber of experiments. ZEN defines four types of directives. Substitute and assignment
directives for the flexible specification of parameter values through string substitution
semantics or value assignments, respectively. Constraint directives to restrict the num-
ber of experiments and thus define the experimental design, and performance behaviour
directives to specify the performance metrics that are to be observed in an experiment.
The authors also provide an experiment management system called ZENTURIO [PF04]
that employs the ZEN language for performance studies of parallel applications on clus-
ter and grid architectures. The drawback of such a directive-based language is that the
experiment meta-information is defined in the application source code. This limits the
scope to studies where the source code is (i) available and (ii) easy to compile and
deploy, as for every experiment a recompilation and redeployment is necessary. More-
over, the reusability of experiment definitions is limited.

Nimrod [ASGH95] and its successor Nimrod/G [AGKOO] are tools that allow perfor-
mance analysts to perform parametrised simulations over networks of loosely coupled
workstations. Performance analysts describe experiments in a declarative plan file that
is then used to run experiments in parallel on a grid environment. The corresponding
specification language allows to define input parameters and different types of value

151

6. Related Work

assignments (such as value ranges). However, the language also includes parts that are
very specific to the execution of simulation models in grid environments. Moreover, the
tool does not support the definition of experimental designs and data analysis methods
that allow for more sophisticated experiment selection strategies.

loannidis et al. [ILGP96] introduced an experiment management environment called
Z00. Although the authors mainly developed the tool for the physical and life sciences
domain, they report on the very similar lifecycle of experimental studies in different
domains. And indeed, the architecture of their approach is very close to the architecture
described in this work. With respect to the experiment specification language, loannidis
et al. introduce a meta-schema that has to be used by a scientist to create a schema
for the experiment. It allows scientists to define parameters, parameter values and
relationships between parameters. However, the language lacks features to describe
properties for the automated control of experiments such as experimental designs and
analysis methods.

In [JPSO7], Jung et al. introduce an approach for the automatic instrumentation of
applications called Mulini that is based on AOP and code generation techniques. They
weave non-functional specifications into staging implementations in order to explore
large configuration parameter spaces. They apply their approach to bottleneck detection
of a reference application called RUBiS [OW209]. Mulini automatically monitors,
collects, and analyses a significant number of performance metrics in iterative staging
executions. For the bottleneck detection scenario, multiple tools and software have
been integrated, many different performance metrics have been measured, and a large
number of staging trials with changes of configuration parameters has been executed.
To achieve this, they used Mulini to generate the necessary workload drivers, monitors
and deployment scripts and to connect to monitoring utilities. While the approach of
Jung et al. allows the collection of large amounts of data and the evaluation of the
influence of different parameters, the authors neither perform any further analysis on
the collected data (such as symbolic regression or machine learning techniques) nor do
they optimise the number of required measurements using sophisticated experimental
designs.

Hauck et al. [HKHR11] provide an infrastructure for the definition and execution
of experiments that aim at deriving performance-relevant properties and behaviours
of the runtime environment of an application (e.g. operating system or virtualisation
software). The authors use the results of the measurements to enhance an existing
architecture-based performance model [BKR09]. Their approach, called Ginpex, in-
cludes a meta-model that allows performance analysts to define experiments and a set
of pre-defined experiment templates based on which executable experiment applica-
tions are generated. These experiment applications conduct automated performance

152

6.1. Measurement-based Performance Evaluation

measurements that automatically detect and quantify the performance-relevant param-
eters of the runtime environment. Unlike our approach, Hauck et al. focus on a very
specific scenario. Moreover, the experiment definition is closely coupled with the mea-
surement environment.

Miller et al. [MCC™"95] propose Paradyn, a tool for the automatic diagnoses of per-
formance problems. They apply dynamic instrumentation to control the instrumenta-
tion in search of performance problems. Paradyn starts looking for high-level prob-
lems for a whole application and, once the general problem is found, inserts further
instrumentations to find more specific causes. Karavanic and Miller [KM97] developed
an experiment management system for their work on performance problem diagnosis
based on different executions over the lifetime of an application. The authors introduce
a language that allows to specify the parameters that characterize an execution in a
Program Event. However, Karavanic and Miller focus on the detection of performance
problems from execution traces and do not measure parameter spaces systematically.

Worringen [Wor(05] also introduced an approach to manage and analyse the results of
experiment executions. The tool called perfbase supports the definition of experiments
in an XML file that conforms to a perfbase-specific document type definition (DTD).
The DTD allows performance analysts to specify experiment meta-information, like the
analysts name and data usage restrictions, as well as a description of parameters and
their types. However, as the goal of the approach is to extract experiment information
from past executions in order to search for performance problems in the historical data,
the tool lacks capabilities to define parameter value variations and experimental designs
for the systematic control and execution of experiments.

6.1.2. Function Inference

Inferring functional relationships from measured data using statistical analyses and ma-
chine learning techniques is a commonly applied methodology in a variety of disci-
plines [HTF09]. In the following, we present and classify research approaches that
deal with inferring functional relationships between the configuration and workload
parameters of a software system and a performance metric of interest (i.e., response
time, throughput, or resource utilisation). To classify the approaches, we apply the
following criteria:

e [ConExp]| Indicates if the approach uses controlled experiments to derive the
measurement data used for the function inference, i.e., if the configuration and
workload parameters are varied in a systematic way.

153

6. Related Work

e [MultDim] Indicates if the approach supports the inference of multi-dimensional
functions.

e [Opt] Indicates if the approach supports optimizing the trade-off between the
number of measurement points and the accuracy of the inferred function.

e [Assump]| Indicates to what extend the approach requires assumptions on the
kind of functional dependency (e.g. it being linear).

Table 6.2 provides an overview on the related research presented in this section.

Approaches ‘ ConExp ‘ MultDim ‘ Opt ‘ Assump ‘
Courtois [CWO00] v v v few
Reussner [RSPMO8] v X v many
Wang [WAAT04] X v X few
Nadeem [NYPFO06] v v v many
Pacifici [PSSTO06] X v X many
Kraft [KPSCDO09] v v X many

Table 6.2.: Related work for measurement-based function inference

Two of the presented approaches formed the starting point for our research, and in-
fluenced the methodologies presented in Chapter 4.4.2. One of them is the approach
introduced by Courtois and Woodside [CWO00], the other one is the approach intro-
duced by Reussner et al. [RSPMO98]. The approach of Courtois and Woodside is also
the only one that can be classified in the same way as our approach. In the following,
we give a detailed presentation of the two foundational approaches as well as other
related research.

Courtois and Woodside [CWO0O0] highlight the need for sophisticated experimental
designs to automatically infer performance prediction functions. The goal of their re-
search is to derive the resource demands of a software component by systematically
measuring performance metrics in dependence of configuration and input parameters.
The authors provide examples where simple linear regression techniques are not suf-
ficient to model the performance behaviour measured in a real software system. In
order to fit such complex functions without human intervention, they use their exper-
iment automation workbench [WVCBO01] in combination with the Multivariate Adap-
tive Regression Splines (MARS) [Fri91] method. Moreover, Courtois and Woodside
introduce a heuristic calculation for the accuracy of the resource function that is based

154

6.1. Measurement-based Performance Evaluation

on a measure provided by MARS as well as a heuristic strategy to select new experi-
ments with the goal to get a resource function with a certain target accuracy using as
few experiments as possible. The accuracy and the robustness that can be achieved
by the approach is demonstrated in two case studies. The methodology allows perfor-
mance analysts to automatically fit non-linear and even discontinuous functions while
considering the trade-off between the number of experiments and the accuracy of the
prediction model. The promising results described by Courtois and Woodside moti-
vated the research presented in this thesis. In our work, we extended their research
by providing a means to flexibly combine different strategies for the automated and
iterative experiment selection, function inference and function validation.

Reussner et al. [RSPM98] introduce an approach to benchmark and compare differ-
ent OpenMPI implementations. Their approach combines performance metrics with
linear interpolation techniques to assess the implementation’s overall performance be-
haviour. To maximise the information gain of subsequent experiments, they identify
those points with the (potentially) largest error in the current prediction model. While
this approach presents another starting point for our work, it is limited to the evaluation
of a single parameter and simple linear interpolation techniques that are not suited for
multi-dimensional scattered data.

Wang et al. [WAAT04] predict the performance of storage devices based on func-
tions that they derived using the Classification and Regression Tree (CART) [HTF09]
method. The approach allows to predict the performance of a device depending on
the input workload and does not require any knowledge of the device internals. The
input workload is described by four parameters: arrival time, logical block number,
request size in number of disk blocks, and read write type. To train the CART model
the authors used a set of real-world traces. Hence, the input parameters are not varied
systematically. In the presented case study the approach yields models with a median
relative prediction error between 15% and 47%. The authors conclude that the training
workloads play a critical role in model accuracy and highlighted the need for proper
synthetic workload generation techniques. Due to the promising results presented by
Wang et al. and the fact that CART does not require assumptions on the underlying
functional relationship, we decided to include CART in the list of methods for our
function inference approach.

An approach for the prediction of application execution times in grid environments
has been introduced by Nadeem et al. [NYPFO06]. The predictions are used to support
decision making with respect to the efficient usage of grid resources. The authors intro-
duce an experimental design that allows to extrapolate the prediction function derived
on a single grid resource to other grid resources. First, one experiment is executed
on each grid resource. Then, the fastest grid resource is chosen and a full factorial de-

155

6. Related Work

sign with all performance-relevant input parameter values of the application is executed
on this basis resource. The resulting measurement data is used as the training set for
the predictions. To minimize the number of experiments, the approach normalizes the
performance behaviour derived on the basis resource and assumes that the normalized
performance behaviour of an application for different input parameter values on differ-
ent grid resources are similar. Based on this assumption the training data for other grid
resources is simply calculated. The actual prediction is conducted via a lookup in the
training data or an estimation based on the nearest reference value. The optimisation of
the number of experiments that are to be executed is very specific to grid environments.
The authors do not try to minimize the number of experiments necessary to derive a
proper training set for prediction the application performance on a single grid resource.

Pacifici et al. [PSSTO06] introduce an approach for dynamic estimation of resource
demands by analysing multiple kinds of web traffic using CPU utilisation and through-
put measurements. They formulate and solve the problem using linear regressions. In
order to deal with practical issues that lead to unstable measurement data (e.g. insignif-
icant flows, colinear flows, background noise), the authors introduce mechanism like
flow rejection, flow combining, noise reduction and smoothing. The technique pro-
duces estimates with an accuracy of factor 2. However, the approach aims at fitting
resource demands dynamically from data observed at system runtime and thus differs
significantly from the systematic experimental function inference proposed in this the-
sis. The challenges that are to be solved by the approach of Pacifici et al. are rather on
how to prepare existing data for optimal function fitting than on systematically finding a
minimal set of measurement points for fitting a function with a certain accuracy target.

The approach presented by Kraft et al. [KPSCDO09], deals with the problem of deter-
mining resource demand functions for system where utilisation measurement is difficult
or unreliable, for example virtualised systems or third-party services. They apply a lin-
ear regression method and the maximum likelihood technique for estimating resource
demands of different workload classes based on response time measurements. While
especially the Maximum Likelihood methodology provided robust accurate results in
multiple scenarios, the approach requires assumption on scheduling strategies and the
general form of the distribution before starting the estimation activity. Furthermore,
the authors do not consider the trade-off between the number of measurements and the

accuracy of the estimation.

6.2. Performance Prediction Models

The use of performance prediction models to assess the performance behaviour of a
software system has been established by Connie Smith under the term Software Per-

156

6.2. Performance Prediction Models

formance Engineering (SPE) [Smi81, Smi82]. Since then a lot of research has been
conducted in this field and several authors surveyed the progress and defined out-
standing problems [Smi86, UH97, Poo00, Smi01, DRSS01, BDIS04]. The most re-
cent overviews are provided by Woodside et. al [WFP07], Smith [Smi07], and Kozi-
olek [Koz10]. A common conclusion is that although the modelling methods and tools
have evolved and it has been proven that the resulting models can provide accurate
predictions for real-world software systems, there is a need to ,,[...] make SPE more ac-
cessible to software developers rather than requiring modelling gurus, and to make SPE
more likely to be adopted and used in development organisations.“ [Smi07]. Woodside
et al. [WFPO7] highlight the need for a convergence between measurement-based and
model-based approaches towards more practicable and maintainable performance pre-
diction models. Our approach aims at filling this gap between research and practice
or between measurement-based and model-based performance evaluation, respectively.
A main challenge with respect to practical scenarios is to find proper mechanisms for
determining the performance behaviour of systems or parts of a system (e.g. legacy
systems or third-party components) that cannot be modelled formally (or only with
large manual effort). In the following, we focus on discussing performance prediction
approaches that also apply measurement-based techniques to reduce the manual mod-
elling effort. A more general discussion of model-based approaches is provided by
Balsamo et al. [BDIS04] and Koziolek [Koz10]. To classify the approaches we use the
following criteria (see also the research challenges outlined in Chapter 3.1):

e [ProcDef] Indicates if the approach contains a process definition that guides
practitioners through the modelling process.

e [ModExist| Indicates if the approach addresses the problem of efficiently mod-
elling already existing software systems.

e [Maint| Indicates if the approach addresses the problem of efficiently main-
taining performance models of existing software systems that are subject to
frequent changes.

e [ToolInd] Indicates if the approach is independent of a certain type of mod-
elling tool or technique.

e [ScenInd | Indicates if the approach is independent of a specific scenario.

Table 6.3 gives an overview on the approaches that are discussed in this section.
In general, none of the approaches can be classified in the same way as the approach

157

6. Related Work

presented in this thesis. The approach introduced by Avritzer et al. [AW04] is the
most related as it proposes a similar procedure for constructing performance models in
practice. In the following, we provide a detailed discussion of the related works.

Approaches ‘ ProcDef ‘ ModExist ‘ Maint ‘ ModInd ‘ Scenlnd ‘

—
vritzer v % % X %
[AW04]
Jin UTHLO7] | v X v v v
Wu [WWO08] | v X v v v
Kr
esmant v v X X X
[KKR10]
Mos [MMO2] Ve X
Sand
aneeep X v v X X
[SSN+08]
Th k
cresta X v v X X
[TDZN10]
o
and v v v X X
[TZVT08]

Table 6.3.: Related work for performance prediction models

Avritzer and Weyuker [AWO04] present an approach that uses performance measure-
ment results to build a simulation model for performance prediction. The introduced
process suggests a goal-oriented modelling approach. Based on systematic measure-
ments potential bottlenecks are identified and the according performance-relevant pa-
rameters are defined. To construct the prediction model, the authors propose the use of
state transition diagrams [CD94] for modelling the software system. The resulting state
transition models are then automatically transferred in a simulation model. The basic
process defined by the authors is similar to the process introduced in this thesis. The
work presented in this thesis could be used to support the performance analyst in con-
ducting the measurement required to build the simulation model in the process defined
by Avritzer and Weyuker. However, in complex software systems it might be hard for
performance analysts to create and maintain the manually constructed state transition
diagrams.

Jin et al. [JTHLO7] introduce an approach called BMM that combines benchmarking,
production system monitoring, and performance modelling. Their goal is to predict the
performance characteristics of real-world legacy systems that are subject to exorbitant
growth. In the planning phase of the presented process, the performance analyst has

158

6.2. Performance Prediction Models

to identify the factors that affect the applications’ performance. Moreover, the perfor-
mance analyst has to select a proper modelling method (e.g. analytical or simulation)
and build the model. Then, to calibrate the model goal-oriented production system
monitoring and test system benchmarking is conducted and the measured results are
correlated. The correlation aims at validating the measured data and removing or nor-
malising data peculiarity. After that, the model is validated in an iterative process until
a sufficient accuracy has been reached. While the approach supports performance an-
alysts in properly calibrating an existing performance model during system evolution,
it still requires the upfront definition of a performance model. Therefore, the approach
could be complemented by the approach presented in this thesis in order to further
reduce the manual efforts in building prediction models for already existing software.

Wu and Woodside [WWO08] present an approach similar to Jin et al. [JTHLO7] aiming
at calibrating existing performance models while the system evolves. The work of Wu
and Woodside specifically deals with two problems. The first is estimating service
demands that cannot be measured directly. The authors propose the use of Kalman
Filters [Jaz70], to estimate such hidden parameters. The second problem is to decide
automatically when a model is properly calibrated. To solve this issue they introduce an
extended version of a Kalman Filter that controls the model calibration loop and stops
when a certain condition is satisfied. However, as with the model calibration approach
of Jin et al. [JTHLO7], the performance analyst is not supported in building the initial
model of the existing software system.

Krogmann et al [KKR10] introduce an approach that uses a genetic search algorithm
to reverse engineer architecture-based performance models from existing source code.
The reverse engineered performance models are instances of the Palladio Component
Models (PCM) [BKRO09] and aim at supporting software architects in their design de-
cisions (e.g. by estimating the impact of using caches on performance). The approach
uses benchmarks to characterize the performance behaviour of different runtime envi-
ronments so that a single performance model can be used to predict the performance
on different runtime environments. To map the runtime environment capabilities with
the resource demands of the software components, Krogmann et al. use bytecode anal-
ysis. The benchmark that is executed on the runtime environment determines the per-
formance of Java bytecode instructions. To determine the resource demands of the
existing application components they use symbolic execution and a tool called By-
Counter [KKRO08] that identifies the bytecode instructions executed by the component.
While the authors validated that the approach can provide accurate predictions, it is
limited to Java-based applications and not suitable for heterogeneous environments.
Furthermore, deriving and maintaining the models for large software systems can re-
quire large manual efforts.

159

6. Related Work

Mos and Murphy [MMO2] introduce the COMPAS framework which targets the
identification of performance issues in component based software systems. COMPAS
is based on three modules. A monitoring module captures performance data by insert-
ing proxy components into the architecture of the target system. The gathered data
is then used by a modelling module that builds various UML models. These mod-
els are further enhanced by a performance prediction module that allows to simulate
and analyse the models. Based on this approach, Parsons and Murphy [PMOS] built a
framework for the detection of performance anti-patterns in component based systems.
In addition to the COMPAS framework, they use byte code analysis as monitoring tech-
nique. Although the approach simplifies the model building process, it is focused on
component-based applications that are developed from scratch using a rather homoge-
neous technology stack such as the Java Enterprise Edition platform [Oral3]. Hence,
porting the approach to a different scenario requires a lot of effort. Moreover, the de-
rived performance models can become very large and thus hard to calibrate and main-
tain in a real-world environment.

The CLUEBOX toolkit introduced by Sandeep et al. [SSNT08] supports performance
analysts in deriving performance prediction models by only analysing performance log
data gathered at runtime. The authors apply several machine learning techniques (e.g.
Principal Feature Analysis [LCZT07] and Random Forest [BreO1]) on runtime logs
to derive the performance-relevant parameters and the prediction model. Moreover,
the approach aims at reducing the effort for system administrators to identify the root-
cause of a performance anomaly. However, as the target scenario of this approach is
early performance anomaly detection on productive systems, it lacks capabilities to
create performance models that support, for example, software architects or software
developers in proactively evaluating design decisions.

Thereska et al. [TDZN10] present an approach that uses data gathered from a large
set of client installations to create a performance model. The goal of the model is
to help answering what-if performance questions with respect to a reconfiguration of
a client system (e.g. upgrading from Windows Vista to Windows 7 or doubling the
amount of memory). To create the models the authors apply the Classification and
Regression Tree (CART) [HTF09] technique in combination with a similarity search
algorithm. The CART model is trained with the large data set gathered from Microsoft
client installations. This is also the major limitation of this approach, as it is only
applicable on popular applications that are installed on many observable client systems
with different configurations.

Another approach that aims at creating performance models for answering what-if
deployment and configuration questions is introduced by Tariq et al. [TZV08]. Their
performance prediction tool called WISE includes an algorithm that learns the func-

160

6.3. Summary

tional dependencies between performance-relevant parameters and service response
times and represents these dependencies in a Causal Bayesian Network (CBN) [Pea00].
The training data is derived from traces that are obtained from existing installations.
Moreover, WISE provides a simple query interface that allows to describe what-if ques-
tion based on their scenario specification language. While WISE is applicable to a
larger set of scenarios than the approach introduced by Thereska et al. [TDZN10]., it
also lacks the capabilities to build prediction models in scenarios where the runtime
data is not available or not sufficient.

6.3. Summary

In this chapter, we introduced research that is closely related to the approach presented
in this thesis. We introduced the state of the art regarding (i) measurement-based perfor-
mance evaluation and (ii) performance modelling in combination with measurements.

In the field of measurement-based performance evaluation, we presented approaches
that showed the value of systematic, experimental processes and the importance of an
appropriate experiment specification language for a specific domain. However, none of
the presented approaches enables the flexible introduction of experimental designs for
automated experiment executions independent of the concrete scenario. Hence, the ex-
periment specification language and the corresponding framework presented in Chapter
4 extend the state of the art presented in this chapter. Moreover, we introduced state
of the art approaches with respect to the inference of performance prediction functions.
Two of the presented approaches [RSPM98, CWO00] formed the starting point for our
research, and influenced the methodologies presented in Chapter 4. We extended this
and the other related research work by systematically evaluating methodologies for the
automated, iterative combination of experiment selection, statistical model inference,
and model validation for the derivation of multidimensional performance prediction
functions.

Out of the existing performance modelling approaches [BDIS04, Koz10], we dis-
cussed those approaches in detail that deal with evaluating and modelling performance
of existing software systems. The main difference between our approach presented in
Chapter 3 and the state of the art approaches is the abstraction level on which the models
are derived. Existing approaches are in most cases extensions to classical architecture-
or simulation-based performance modelling and thus are bound to the abstraction level
and the capabilities of the underlying modelling techniques.

161

7. Conclusion

In this chapter, we conclude this thesis by summarising the main contributions and
validation results in Section 7.1, describing the benefits for performance engineers,
software developers and software development organisations in general (Section 7.2),
and finally introducing ideas and directions for future work in Section 7.3.

7.1. Summary

In this thesis, we presented a method for experimental, measurement-based perfor-
mance modelling. The implementation of the method required the definition, execution,
and analysis of a large number of experiment series. In order to support performance
engineers in conducting these tasks, we introduced (i) a language and a framework for
the specification and execution of automatable experiment series and (ii) presented and
compared different strategies for the automated, adaptive generation of experimental
designs for statistical model inference. The accuracy and the efficiency of our approach
has been validated in a number of case studies using standard industry benchmarks
such as SAP Sales & Distribution [SAP12] and SPECjbb2005 [SPEO5]. Furthermore,
we demonstrated the applicability of our approach in a real-world scenario, where we
derived a performance model that supports Ul designers and developers at SAP in de-
signing high-performance enterprise web application front-ends. In the following, we
give a brief summary of the main contributions and validation results of our work.

A Method for Experimental, Measurement-based Performance Modelling We
developed a performance modelling methodology that combines measurements with
statistical modelling in an iterative, experimental process. In order to find a suitable
abstraction level for the performance model, we proposed a goal-oriented specifica-
tion procedure that adopts existing best practices| BCR94, Jai91, SWO01, Hap08, Sin09,
Riel1]. The actual modelling process allows performance engineers to efficiently de-
rive and maintain performance models of complex software systems. Based on a well-
defined test environment and a set of initial assumptions on performance-relevant influ-
ences, performance engineers start an iterative definition and execution of experiment
series in order to understand and quantify all performance-relevant influences. Then,
a performance model is derived using statistical model inference and extensively vali-

163

7. Conclusion

dated. In the scope of this thesis, we applied this method for the design of a performance
model of SAP enterprise web application front-ends.

Language and Framework for the Specification and Execution of Automatable
Experiment Series To support performance engineers in conducting large amounts
of experiments, we developed a novel experiment specification language. In order to
find a suitable abstraction level for the design of the language and to ensure that the
language is independent of concrete domains, technologies or applications, we applied
it across a wide-range of different scenarios. In addition to the language, we developed
a framework that uses the specified experiment information to automate the execution
of experiments and to iteratively combine experimental design and analysis.

Automated, Adaptive Generation of Experimental Designs for Statistical Model
Inference The capabilities of the experiment specification language and the experi-
ment automation framework introduced before, allowed us to develop and compare a
set of strategies for the automated derivation of multidimensional performance predic-
tion functions. We designed an iterative process that combines experiment selection,
function inference and function validation in order to automatically derive experimen-
tal designs that optimize the trade-off between the number of executed experiments
and the accuracy of multidimensional performance prediction functions. We validated
the approach by applying the different combinations in two case studies using industry
standard benchmarks (SAP Sales & Distribution, SPECjbb2005). In general, the best
results have been achieved by the combination Adaptive Equidistant Breakdown (AEB)
measurement point selection, Dynamic Sector validation with Global prediction error
(DSG), and Multivariate Adaptive Regression Splines (MARS) model inference. The
case studies have shown that our approach allows performance engineers to automati-
cally derive performance prediction functions with a mean relative prediction error of
less than 20% using only up to 10% of the potential measurement points.

Performance Model for Enterprise Web Application Front-ends To demonstrate
the applicability of the overall approach in an end-to-end case study, we derived a per-
formance model for web application screens developed with the SAP UIS JavaScript
library. The industrial case study has been conducted in cooperation with performance
analysts and development groups at SAP. We validated the accuracy of the performance
model by comparing predictions to measurements for screens of two real-world enter-
prise web applications in three browsers (Internet Explorer, Firefox, and Chrome). The
results show that the approach is applicable to a real world scenario and that the derived

performance models can predict the front-end performance with an average prediction

164

7.2. Benefits

error of 11% across all studied browsers. Due to the automatically executable exper-
iments, our approach requires only limited manual effort for updating a performance
model to system changes (e.g. new versions of the browser or the UI library).

7.2. Benefits

The results of this thesis support three main roles: Performance Engineers, Software
Architects/Developers, and Researchers. In the following, we describe how each of
these roles benefits from our work.

Performance Engineers Our goal-oriented performance modelling method intro-
duced in Chapter 3, helps performance engineers to focus their modelling effort on
performance influences that are actually relevant for the consumers of the performance
model (e.g. software architects or developers). The close upfront communication be-
tween performance engineers and model consumers makes it more likely that the mod-
els are actually adopted in the software development process. Moreover, it helps per-
formance engineers in finding a suitable abstraction level for the performance models
and thus in avoiding to model too many unnecessary details.

Compared to existing architecture-based modelling approaches, there is no need to
re-engineer the internals of existing, complex software system (e.g. the rendering en-
gines of different browsers). This can save a lot of effort for performance engineers
when creating and maintaining performance models. Moreover, it allows performance
engineers to build performance models even for those systems where information about
the internal architecture and behaviour is not available at all (e.g. third-party software).

The experiment specification language as well as our framework to automate the exe-
cution of experiments presented in Chapter 4 support performance engineers in several
ways. The clear separation between technical tasks, and the experimentation and anal-
ysis process allows performance engineers to focus on understanding the performance
behaviour of the system. There is no need to write custom scripts to automate experi-
ment execution or gather measurement data. Moreover, they can share experiment spec-
ifications and knowledge in order to create a performance knowledge base [WFPO7].

Our methodology for automatically deriving experimental designs for fitting multi-
dimensional performance prediction functions helps performance engineers in deriving
more accurate functions with less effort and in less time. There is no need to manually
select the data points used for function fitting. Such a manual selection often leads to ei-
ther too many data points with little information gain or not enough data points in areas
where the analysis method requires more information in order to fit an accurate model.
The automated, iterative combination of experiment selection, function inference and

165

7. Conclusion

function validation, introduced and validated in Chapter 4, reduces the probability of
badly fitted areas and optimizes the trade-off between the number of experiments and
accuracy of the prediction function.

Software Architects/Developers Tailoring a performance model to the needs of the
stakeholders that consume the the information provided by the model as suggested in
Chapter 3, helps these stakeholders (usually software architects or developers) in get-
ting the information they actually need in the granularity they need it. It also helps
software developers to better understand the model output as well as the general value
of having a performance model. Often, the use of performance models can signifi-
cantly reduce the overhead for quality assurance which allows developers to design
better software with less effort (see for example our case study presented in Chapter 5).
Moreover, as performance models are usually applied in the design phase of a product,
performance problems can be detected early, and thus are easier to fix.

Researchers The framework that we introduced in Chapter 4 has been published as
an open source project [WHW " 13]. Researchers in the performance engineering com-
munity frequently conduct measurements and analyses. Examples are case studies for
their work, resource demand estimations for a modelling approach or running bench-
marks to demonstrate scalability of a developed system. There are already common sce-
narios that are used by a wide range of researchers e.g. the SPEC benchmarks [SPE12],
CoCoME [RRMPO08] or the Dell DVD Store [JM11]. However, controlling and ana-
lyzing these scenarios is done by each researcher every time anew, although it is often
the same procedure. If the components to control these scenarios (or any other kind of
application) as well as components for data analysis and data exports would be avail-
able as part of an open source project, researchers could benefit from the work of others
and save a lot of time when conducting measurements and thus focus on their actual re-
search. Hence, we provide a platform for interested researchers to cooperate and share
their work.

The flexible extensibility of our iterative approach for automatically fitting multi-
dimensional performance prediction functions (see Chapter 4), allows researchers to
compare different existing algorithms and analysis methods with minimal effort. More-
over, novel algorithms and analysis methods can be benchmarked against state of the
art methodologies using the same scenario (e.g. as shown in [FH12]).

In general, our work provides new capabilities to develop novel performance engi-
neering approaches that are based on executing large sets of experiment series. See
Section 7.3 for a number of examples.

166

7.3. Future Work

7.3. Future Work

In the following, we provide pointers for research extending the work conducted in this
thesis.

Experimental Function Inference In the scope of this thesis, we developed and com-
pared a set of experiment selection algorithms and analysis methods for deriving mul-
tidimensional performance prediction functions. However, as this set is not complete,
further algorithms and analysis methods can be developed and compared based on our
work. Moreover, the different algorithm/analysis combinations should be applied to
more case studies in order to get a better understanding on their suitability for different
performance evaluation scenarios.

Performance-Aware Development of Web Application Screens With respect to
our case study presented in Chapter 5, we plan the following enhancements in future
work. The derived performance model will be validated with more SAP UI5 based
applications and possibly extended with additional performance-relevant UI elements.
Moreover, the prediction function will be integrated in a web-based ,,what you see is
what you get* editor for SAP UI5 based applications and thus rolled out to a larger
group of developers. A future direction that requires more in-depth research is the
extension of the front-end performance predictions towards an end-to-end performance
feedback which includes network and back-end performance. Here, we might have to
combine our measurement-based performance modelling approach with simulation- or
architecture-based approaches.

Further Developer Feedback Scenarios In existing case studies, performance mod-
els are often used to evaluate architectural design decisions and thus, mainly targeting
software architects in the design phase. However, as we have shown in our industrial
case study, performance models can also be valuable during software development. At
SAP an additional developer feedback scenario has already been initiated that follows
the ideas presented in this thesis. There, the approach is applied to derive a performance
model that predicts the response time of database queries based on the structure of the
query and the size of the database. The model aims at providing immediate feedback to
developers of database queries with respect to the expected performance characteristics
of the query. In this context, several additional research challenges need to be solved.
As an example, it is subject to research how to determine the workload that is to be used
for model building as it has to be representative for a large set of applications. Another

167

7. Conclusion

example that is subject to research is how the workload used for model building can be
mapped to the workload that is provided by the developers as an input to the model.

A Generic Model For Developer Feedback Scenarios Once more experience in
building performance models for developer feedback has been gathered, one can start
to identify common objects and patterns across the scenarios and further simplify the
performance model construction process of such scenarios. We envision a generic
meta-model that allows performance engineers (in collaboration with domain experts)
to formally describe different domains (e.g. web application Uls or database queries).
This comprises the development artifact (e.g. a web page or a query) and its properties
(e.g. the type of stylesheet or type of database connection), individual elements of an
artifact (e.g. a button or select statement) and its properties (e.g. the maximum number
of buttons on a page or the expected number of rows returned by a select query), the
relationships between components (e.g. that tables or queries can be nested) as well as
the properties of the relationship (e.g. the maximum nesting depth). Moreover, perfor-
mance engineers can specify different execution platforms (e.g. the browser type or the
database version) for which he or she wants to derive the prediction functions. Based
on the resulting model instance, a set of standard experiment series can be derived by
a model to model transformation. In these experiment series, it is checked which el-
ements, relationships, and properties influence the performance metric of interest how
the parameters interact with each other. The automated generation of experiment series
definitions saves time and ensures that the most important aspects are considered by the
performance engineer.

Industrial Experience Reports The goal-oriented specification of performance mod-
els prior to the actual modelling process (proposed in Chapter 3) has been derived based
on our experience of applying performance modelling in an industrial context at SAP.
Many industry reports from applying approaches like Design Thinking [Bro09] and The
Lean Startup [Riel 1] have shown that early and continuous hands-on discussions with
target groups can increase the adoption of products and reduce development efforts. It
would be interesting to see more industrial experience reports on how a goal-oriented
procedure in the context of performance modelling can affect the adoption of the mod-
els among developers and the effort to create the models.

Combination with Architecture-based Performance Modelling In some scenarios,

it can be beneficial to combine our measurement-based modelling approach with exist-
ing architecture-based approaches like the Palladio Component Model (PCM) [BKRO09].

168

7.3. Future Work

In such approaches architectural models of a software system are annotated with per-
formance-relevant information such as resource demands and branching probabilities.
Then, the architectural models are transformed to analytical models, such as stochastic
Petri nets, stochastic process algebras, and queueing models [BHO7] or to discrete-
event simulations [PKO05, LBO05].

For the integration of architecture-based and measurement-based performance anal-
ysis, we assume that some parts of the system are already available (for example, 3rd
party services or software artefacts) and other parts are to be designed. Then, the per-
formance analysis could follow the process shown in Figure 7.1.

External Services
31 Party Artefacts

Performance \4

Data
Requirements Measurement

Software Components

Y 1

System Modelling Model Inference
System —L Statistical
Model Model
Integration
Complete
Performance I
Model
Prediction Legend
\L] workflow
—> Flow of Artefact
Performance - Change of Activity
Predictions

Figure 7.1.: Overview of integrating goal-oriented performance models with architecture-based ap-
proaches [WHW12]

Software architects specify the system’s components, behaviour, deployment, and
usage (System Modelling). This activity results in a System Model that describes the
newly developed parts as well as its usage. In order to consider the effect of existing
parts in performance analysis, we include them in the prediction model using the ap-
proach presented in this thesis. From a set of Measurements, we get Performance Data
of the system which is used for Model Inference. The resulting statistical performance
models have to be integrated with or made available in architecture-based prediction ap-
proaches (Integration). This step merges both model types and creates a common basis
for further performance analysis (Prediction). Based on the Performance Predictions,

169

7. Conclusion

software architects and performance analysts can then decide about design alternatives,
plan capacities, or identify critical components.

The presented process has already been applied in two case studies [HWSK10,
WHWI12]. A more detailed description of the technical integration is provided in
[WHW12].

Exhaustive, Tailored Performance Regression Testing The capability to effi-
ciently define and run a large set of experiments, is also valuable for performance
engineering tasks other than performance modelling. In performance regression test-
ing, the probability of actually observing an issue as well as the effort for identifying its
root cause is highly dependent on the number and quality of performance tests executed
on a regular basis [HHF13]. Applying a systematic, experimental approach can help to
increase the number and quality of performance regression test significantly. At SAP
our approach has already been applied to conduct systematic performance regression
tests for the persistence service of the SAP HANA Cloud platform [WWHM13]. Our
experimental approach helps performance engineers to identify performance-critical
test cases that can be automatically executed on a nightly basis. Figure 7.2 shows a per-
formance regression that we observed after having the automated tailored experiments
in place.

Feature #2883 Feature #2891
400

@
=

(=2}
=

N
=

N
=

OO0 froverrere e

Operations / Second

(2]
(2]
c

kel

=
©
o
@
o

O

o

— e

Figure 7.2.: Identified regression [WWHM13]

The graphs show the measured throughput for two experiments over a certain period
of time. The experiment on the left side executes a named query that retrieves all
instances of an entity in a certain data model. The experiment on the right side executes
a query that stores a number of instances of the same entity to the database. The graph
on the left side of Figure 7.2 shows that for this experiment a performance regression
of factor 4 has been introduced. As the tests run on a nightly basis, we have been
able to identify the root cause for the issue very quickly which happened to be an
update of the database version that has been conducted at that day. An interesting
observation is that the regression has only been observed in one test out of the set of

170

7.3. Future Work

experiments. The experiment shown on the right side of Figure 7.2 does, for example,
not show a performance regression. This observation underlines the assumption that
more and tailored performance tests increase the probability of detecting a performance
issue. Moreover, knowing the exact conditions under which a problem occurs and under
which not can be very helpful in fixing a performance issue.

Performance Problem Diagnosis In scenarios where an existing software system al-
ready contains performance and scalability issues, performance models might not help
to find the root cause of the problem. However, the capability of efficiently running a
large set of systematic experiments supports approaches that target such scenarios. Wert
et al. [WHH13, Werl3] introduce such an approach that uses the systematic experimen-
tation capabilities presented in this thesis, in order to detect performance and scalability
issues in existing software systems and identify the root cause. The approach is based
on the observations that particular performance problems share common symptoms,
and many performance problems described in literature are defined by a particular set
of root causes [WHH13]. Based on a hierarchical structure of performance problems,
their symptoms, and their root causes, the approach executes a series of systematic ex-
periments that first test for symptoms and then search for more specific performance
problems and their root cause.

Systematic Guidance in Solving Performance and Scalability Problems The ap-
proach introduced by Heger [Hegl3], applies the experimental, measurement-based
performance modelling approach presented in this thesis in order to (i) evaluate dif-
ferent solutions to a given performance problem and (ii) recommend the best solution
to a developer. The approach is illustrated by an example where a developer discov-
ered a software performance bottleneck manifested in the resource pool for database
connections [Heg13]. The known solutions of performance experts are (1) to increase
the amount of resources available in the connection pool, (2) to replace the connection
pool implementation, or (3) to reduce holding times of database connections. Based on
a generic evaluation plan for each solution, a set of systematic experiment series are ex-
ecuted for the specific scenario. In these experiment series, the influence of connection
pool parameters on performance is determined (1), prediction functions for alterna-
tive connection pool implementations are derived (2), and code statements that can be
moved to reduce holding times are identified (3). Finally, the results of the experiments
presented to developers which can make trade-off decisions if necessary.

171

A. Software Performance Cockpit

The Software Performance Cockpit (SoPeCo) [WHHH10, WH11, WHW*13] is a
framework that we developed to implement the approach presented in this thesis. It
allows performance engineers to define, execute and analyse experiment series very
efficiently. Moreover, it is designed to be flexibly adapted to different performance
evaluation scenarios and to flexibly add new experimental design and analysis strate-
gies.

A.1. Motivation

Today’s software often builds upon a large stack of runtime and middleware compo-
nents. Examples are virtual machines, operating systems, or browsers, as well as appli-
cation, messaging, or database servers. Moreover, applications run on different hard-
ware like desktop PCs, laptops, or mobile devices. Thus, performance analysts have to
assess data from various distributed locations and interfaces. Moreover, performance
analysts can choose from a wide range of sophisticated tools for instrumenting and
monitoring applications (e.g. Compuware dynaTrace [Com13] or NewRelic [New13]),
as well as for simulating usage behaviour (e.g. HP LoadRunner [HP13] or Apache
JMeter [Foul3]). As a result, test environments for performance evaluations are usu-
ally very heterogeneous. However, a performance analyst requires a unified view on
the measurement data in order to analyse them properly. In general, having a com-
mon interface to control and monitor the components of any test environment, allows
performance analysts to reuse automation and analysis strategies in different scenarios.

A.2. Goals

SoPeCo pursues the following goals:

e Automation: A typical performance evaluation project requires the execu-
tion of a large set of experiments. Manually triggering the measurements and
gathering the measured data is very time-consuming and inefficient. Hence,
SoPeCo aims at automating this process.

173

A. Software Performance Cockpit

e Separation of Concern: A typical scenario in scientific or industrial perfor-
mance evaluation projects is that the performance analyst spends a lot of time
setting up the test environment or looking for appropriate analysis or data vi-
sualisation tools. To enable the performance analyst to focus on the problem
to be studied, we target a clear distinction between the different tasks in the
performance evaluation process. This distinction facilitates that for example
the system administrator sets up the test Environment, a component expert
instruments a component, and a statistics expert provides an analysis method.

e Adaptability: The goals of performance evaluations are also very diverse.
While, for example, in some scenarios the performance analyst wants to iden-
tify a list of performance-relevant parameters, he might want to determine a
functional relationship between a set of parameters in other scenarios. To sup-
port these goals a variety of methodologies and strategies exist or are devel-
oped by scientists or engineers. For example, different goals require different
strategies to select experiments (i.e., the combination of input parameter values
to be measured), terminate them, or analyse their results. A goal of SoPeCo is
to facilitate the flexible introduction and use of such strategies by performance
analysts. Moreover, SoPeCo should allow scientists and engineers to easily
benchmark novel strategies against the state of the art.

e Reusability: Although test environments and evaluation projects are very di-
verse, there is still potential to reuse components and knowledge developed
by others. With SoPeCo, we aim at supporting reusability at different points
in the evaluation process. Examples are components that control or monitor
a certain piece of software, or appropriate analysis methods to solve a certain
problem type.

A.3. Architecture

Based on the objectives described above, we developed a framework architecture that
provides the basis for the practical implementation of the approach presented in this
thesis. Figure A.1 shows the basic architecture of SoPeCo.

The central component is the SoPeCo Engine which orchestrates the other compo-
nents and constitutes the main entry point for the application logic of the framework.
The Visualisation component, on top of the SoPeCo Engine, is the user-friendly
interface to the performance analyst that wants to conduct performance evaluation ex-
periments. The Persistence component is responsible for storing and loading exper-

174

A.3. Architecture

[

| Experiment Series : | IK

I Exploration Plugins L

{__ _-xploration Flugins | L Visualization

i

| L bk

| Parameter Variation Plugins 14~~~ ¢

o ____1 [; i
SoPeCo Engine : Measurement Environment |

] Controller |

i

| . bk

| Type Assignment Plugins |]

e

T Persistence

| . . i

| Analysis Plugins LL' dees

l:l Framework
Core Component
. I Framework
1 .
[P ——' Extension

Figure A.1.: SoPeCo Architecture

iment definitions, measurement data, and analysis results. In order to trigger an exper-
iment, the SoPeCo Engine passes the parameter values for this specific experiment to
the Measurement Environment Controller. As its name implies, this component
controls the execution of single experiments on the actual measurement environment.
This includes tasks like setting configuration parameters in the system under test, start-
ing the load driver, and gathering monitoring data via different channels. Hence, the
Measurement Environment Controller isthe interface between the generic and the
scenario-specific part of a performance evaluation.

The decision which experiments are to be executed on the measurement environment
is taken by an Experiment Series Exploration Plugin. These plugins implement
different experimental design strategies that select a set of experiments from the com-
plete experiment space spanned by the experimentation parameters and its values (see
Chapter 4.4). The strategies also decide on the order in which experiments are executed
and determine when an experiment series can be terminated.

The basic definition of a parameter (i.e., name, description, type, potential values)
depends on the scenario-specific measurement environment on which the experiments
are to be executed. As our goal is to provide a scenario-independent approach, we also
use an extension mechanism for the definition of parameter types and potential values.
Which values a single parameter can take, can be specified via the parameter varia-
tion strategies provided by different Parameter Variation Plugins. Examples are
a linear variation defined by a minimum value, a maximum value and a step size, or a
variation based on a set of values specified in a comma separated string. The Type As-

175

A. Software Performance Cockpit

signment Plugins map type names to source code objects which allows the flexible

introduction of new types if this is required by a specific measurement environment.

The interface that connects the framework to the scenario-specific measurement en-

vironment comprises the following actions:

e [nitializing Measurement Environment: When a new measurement environment

controller is registered at the framework its initialisation method is called. The
concrete action performed by this method depends on the concrete scenario. Pos-
sible actions are setting of tool configurations, starting monitoring software, or
generating test data.

Preparing Experiment Series: In this step, the controller prepares the measure-
ment environment for a series of experiments with a collection of value assign-
ments that remain constant in the series.The corresponding method call can for
example be used to set configuration parameters of system components or mea-
surement tooling components.

e Run Experiment: In this step, the conroller runs a single experiment on the mea-

surement environment. The parameter values that should be used in the exper-
iment are provided by the framework based on the experiment definition of the
performance analyst. The result of this method call is a list of measured values
for each observed performance metric.

Finalize Experiment Series: Once all experiments of an experiment series are
executed, this method is called by the framework to enable the measurement en-
vironment controller to clean up the measurement environment. Depending on
the scenario, this can for example include cleaning caches, reseting test data, or
stopping monitoring software.

In order to analyse the data derived by a set of experiments, the SoPeCo framework

provides different Analysis Plugins. These plugins provide, for example, methods

to determine statistical metrics such as a confidence level or methods to derive the

functional relationship between parameters. Moreover, the analyses can be used by

sophisticated exploration strategies (such as those presented in Chapter 4.4) in order to

support a specific evaluation goal.

The flexible architecture presented above has the following benefits:

176

1. It separates the scenario-specific measurement environment from the general
experimentation tasks.

A.4. Example

2. It allows researchers and engineers to implement and test novel experimental
design or analysis strategies.

3. It allows performance analysts to select a proper experimental design and anal-
ysis strategy for their specific experiment goal.

4. It allows performance analysts to run performance evaluation experiments au-
tomatically and repeatedly.

In the following section, we demonstrate the usage of the framework based on the
enterprise application customisation scenario introduced in Section 4.3.1.3.

A.4. Example

In this section, we continue the example introduce in Chapter 4.3.1.3. The goal of
the performance analyst is to derive a functional relationship between the number of
benchmark users, the number of work processes allocated to dialogue workload and
the average response time for dialogue steps. Using this function, the performance
analyst can derive the performance-optimal configuration for an SAP ERP application
installation in a customer-specific setup. Figure A.2 sketches out a sample instantiation
of the SoPeCo framework.

MARS
Analysis

Visualization

Full Exploration
Strategy

SAP ERP 2005

SAP Enterprise
Application
Customization
ME Controller

SoPeCo Engine

Variation

Persistence

Scenario-specific
Measurement Environment

1 o
| I
| N
| I
| N
| N
i I
| |
| i
| i
| i
| i
| i
| "
1 N
1 N
1 N
| I
| I
| I
| i
| I
| I
| Linear Parameter "
i i
| i
| i
| i
| i
| i
| "
1 N
1 N
| I
| I
| I
| N
| N
| I
| I
| N
| i
| I
| i
| i
| i
| i
1 N

SoPeCo Extensions SoPeCo Core

Figure A.2.: SoPeCo Example

The block to the right is the scenario-specific part which consists of a set of hard-
ware resources hosting the ERP application, a load driver that simulates user behaviour

177

A. Software Performance Cockpit

and a monitoring tool that measures different performance metrics (such as the average
response time of the dialogue steps). Moreover, the scenario-specific part contains a
Measurement Environment Controller implementation that acts as the connector
between SoPeCo and the measurement environment. The controller gets the values of
the input parameters for each experiment and triggers the respective components. If the
experiment Exp{numSDUsers=100; numDialogueWPs=5} should be executed on the
measurement environment, the controller configures the application server to allocate
5 work processes for dialogue workload and triggers the load driver to run with 100
simultaneous users. When the measurement is finished, the controller reads the mea-
sured response time from the log provided by the monitoring tool and returns this as
experiment result to the SoPeCo Engine. The SoPeCo Engine forwards the result to
the persistence component which stores it for example in database. The Full Explo-
ration Strategy and the Linear Parameter Variation shown on the left side
of Figure A.2 are two example SoPeCo extensions responsible for determining which
experiments to execute. The Linear Parameter Variation Plugin provides an it-
erator for numeric parameter values that is configured by the experiment definition of
the performance analyst which specifies for example that the number of users param-
eter can take values from 1 to 500 in steps of 1. The Full Exploration Strategy
is a simple experimental design strategy that triggers every possible combination of
input parameter values as experiment. Finally, the MARS Analysis extension derives
the functional dependency between the input parameters and an observed metric using
the Multivariate Adaptive Regression Splines [Fri91] technique. Using this function,
the performance analyst can derive the performance-optimal configuration for the cus-
tomer’s ERP application.

numSDUsers
p numSDUsers

numDialogWPs numDialogWPs

Figure A.3.: General Cutting Curve

Figure A.3 illustrates a straight-forward approach for the usage of the function in that
scenario.As the performance function

P = f(numSDU sers,numDialogW Ps)

178

A.4. Example

depends on two parameters, there is no single value defining the best configuration.
Instead, the optimum is defined by the cutting curve, which is calculated by fixing the
average response time (P) to the target threshold x (e.g. one second). In other words,
we calculate the function G as the cutting edge between P and the P = x plane where x
is the threshold we want to guarantee. The resulting function G = f(numDialogW Ps)
defines a convex set for numSDU sers > 0, numDialogW Ps > 0 and numSDU sers <=
G. Hence, every point < numSDU sers*,numDialogW Psx > within the convex set
represents a feasible configuration for the given average response time threshold.

179

B. Complete Results for Automated Experiment Selection Validation

181

CART
GP
Kriging
MARS

CART
GP
Kriging
MARS

CART
6P
Kriging
MARS

CART
GP
Kriging
MARS

B. Complete Results for Automated Experiment Selection Validation

Field Interpretation: Mean Relative Error/ Highest Error/ ge of Points with
AEB
RVS DSL DSG
0,038 /0.134/1/1/136 0,034 /0.110/1/1/307 0,088 /0.221/0.853175/1/22
0,022 /0.117/1/1/132 0,018 /0.074/1/1/216 0,053 /0.150/1/1/22
0,098 /0.275/0.797619/1/136 0,085 /0.268/0.857143/1/288 0,044 /0.241/0.972332/1/36
0,003 /0.009/1/1/136 0,004 /0.012/1/1/190 0,024 /0.099/1/1/22
AEB
RVS DSL DSG

0,090 /0.433/0.836066/0.9875/376
0,063 /0.315/0.921936/0.999219/376
0,117 /0.630/0.69477/0.934375/376
0,010 /0.051/1/1/376

RVS

0,317 /0.929/0.25974/0.513158/69
0,072 /0.328/0.883117/0.986842/61
0,022 /0.265/0.961039/1/61

0,080 /0.362/0.857143/0.986842/67

RVS

0.264 /4.325/0.688243/0.822751/3111
0.287 /3.819/0.422721/0.722222/874
0.817 /9.760/0.365079/0.626984/872
0.203 /3.014/0.735799/0.87037/342

0,162 /0.981/0.622951/0.8375/114
0,063 /0.487/0.939891/0.990625/502
0,091 /0.335/0.736924/0.99375/502
0,055 /0.307/0.80484/0.998437/114

AEB
DSL
0,205 /0.600/0.441558/0.723684/52
0,082 /0.416/0.883117/0.947368/49
0,028 /0.388/0.948052/0.986842/54
0,076 /0.313/0.857143/0.986842/50

AEB
DSL
0.273 /2.286/0.582563/0.690476/83
NaN
1.030/9.975/0.37963/0.694444/1001
0.173 /2.879/0.797886/0.87963/1325

Figure B.1.: Complete Results for Validation presented in Chapter 4.5

0,162 /0.981/0.622951/0.8375/114
0,150 /0.742/0.631538/0.821875/88
0,192 /5.575/0.601562/0.902344/501
0,055 /0.307/0.80484/0.998437/114

DSG

0,300 /0.816/0.285714/0.539474/50
0,087 /0.360/0.818182/0.986842/21
0,060 /0.433/0.883117/0.960526/38
0,074 /0.317/0.87013/0.986842/53

DSG

0.273 /2.286/0.582563/0.690476/83
NaN

0.868 /9.538/0.44709/0.698413/1001
0.163 /2.598/0.791281/0.87963/1076

RVS

0,036 /0.129/1/1/307

0,016 /0.054/1/1/974

0,050 /0.191/0.944664/1/304
0,003 /0.008/1/1/306

RVS

0,099 /0.432/0.773614/0.982812/603
0,071 /0.269/0.905543/1/640

0,126 /0.432/0.644028/0.946094/1002
0,010 /0.054/1/1/1002

RVS

0,287 /0.920/0.350649/0.578947/77
0,077 /0.269/0.883117/1/77

0,002 /0.081/1/1/74

0,083 /0.292/0.844156/1/75

RVS

0.271 /4.755/0.702774/0.828042/847
0.284 /3.326/0.482166/0.734127/1117
0.463 /8.965/0.668428/0.800265/834
0.195 /4.224/0.782034/0.875661/855

Error below 15% / Percentage of Validation Points with Prediction Error below 30% / Number of Executed Experiments

: NL3DF / Number of Possible Experiments: 8000

ARB
DSL
0,043 /0.183/0.968379/1/212
0,017 /0.079/1/1/909
0,057 /0.213/0.913043/1/214
0,002 /0.007/1/1/213

Scenario: NL5SDF / Number of Possible Experiments: 100000

ARB
DSL
0,109 /0.488/0.73146/0.967969/103
0,060 /0.369/0.931304/0.997656/182
0,097 /0.272/0.786885/1/508
0,014 /0.081/1/1/134

: SDBENCH / Number of Possible Experiments: 360

ARB
DSL
0,287 /0.920/0.350649/0.578947/77
0,069 /0.410/0.883117/0.973684/77
0,001 /0.043/1/1/76
0,083 /0.288/0.844156/1/74

Scenario: SPECBENCH / Number of Possible Experiments: 3240

ARB
DSL
0.259 /4.505/0.72391/0.846561/2126
0.221/2.695/0.655218/0.757937/1043
0.763 /9.578/0.428571/0.624339/1011
0.239 /3.844/0.702774/0.853175/2027

DSG

0,055 /0.160/0.992095/1/41
0,014 /0.058/1/1/120

0,091 /0.284/0.81746/1/41
0,006 /0.020/1/1/41

DSG

0,112 /0.467/0.710383/0.979688/3215
0,071 /0.225/0.899297/1/541

0,151 /0.587/0.574219/0.878125/527
0,014 /0.060/1/1/134

DSG

0,287 /0.920/0.350649/0.578947/77
0,071 /0.281/0.896104/1/66

0,006 /0.221/0.987013/1/71

0,073 /0.318/0.896104/0.986842/38

DSG

0.255 /4.272/0.698811/0.832011/1736
0.205 /4.056/0.557464/0.801587/1056
0.730 /9.640/0.466931/0.649471/1001
0.169 /2.416/0.764861/0.87963/1420

RB

RVS

0,043 /0.157/0.992095/1/220
0,026 /0.123/1/1/314

0,059 /0.172/0.992095/1/222
0,003 /0.007/1/1/218

RB

RVS

0,093 /0.527/0.819672/0.982031/291
0,059 /0.277/0.9516/1/391

0,163 /0.720/0.519531/0.874219/290
0,008 /0.039/1/1/290

RB

RVS

0,287 /0.920/0.350649/0.578947/77
0,086 /0.322/0.857143/0.986842/76
0,002 /0.071/1/1/74

0,083 /0.291/0.844156/1/74

RB

RVS

0.282 /4.845/0.714663/0.828042/698
0.269 /4.853/0.472919/0.748677/1388
0.253 /9.551/0.73712/0.869048/365
0.207 /4.031/0.771466/0.867725/276

182

C. Prediction Functions of Industrial Cased Study

In the following, we present the concrete values and functions used for predicting the
screens in Chapter 5. The corresponding general prediction function is described in
Equation 5.13 in Chapter 5.3.3.2.

C.1. Prediction Function for Firefox

£g = 420

Esimple = 18.3

Bsimple = 1.943456 « QUANTITY

Elmage = 15.3

Ormage = 48.2 +0.03131313 % max(0, WIDTH — 505)

—0.04293 % max(0,505 — WIDTH) +0.026 max(0, HEIGHT — 500)
—0.04387 % max(0,500 — HEIGHT) — 0.964 + max(0, QUANTITY — 5)
—3.669 % max(0,5 — QUANTITY) +0.00002 % max(0, WIDTH — 505)
«max(0,HEIGHT — 500) — 0.000007 * max(0,505 —WIDTH)
«max(0,HEIGHT — 500) — 0.000175 % max(0,WIDT H — 505)
xmax(0,500 — HEIGHT) 4 0.000055 x max(0,505 — WIDTH)
«max(0,500 — HEIGHT) 4 0.01189033 % max(0,WIDT H — 505)
«max(0, QUANTITY —5) +0.01038961 * max(0,WIDT H — 505)
«max(0,5 — QUANTITY) — 0.001528571 % max(0, HEIGHT — 500)
«max(0, QUANTITY —5) +0.003160714 + max(0, HEIGHT — 500)
«max(0,5 — QUANTITY)

Erupe = 210.5

183

C. Prediction Functions of Industrial Cased Study

OTapie = 0.9837964 x ROW S — 1.451458 * SIMPLECOLS
—706.4417 * RATINGCOLS + 5.741513 x QUANTITY
+0.005 * ROW S * SIMPLECOLS +48.38 x ROW S * RATINGCOLS

+46.907 x SIMPLECOLS x RATINGCOLS + 1.603 x ROW S * QUANTITY
+3.4xSIMPLECOLS « QUANTITY + 237+« RATINGCOLS x QUANTITY

—3.08%x ROWS « SIMPLECOLS * RATINGCOLS

+1.06 x ROW S « SIMPLECOLS « QUANTITY

—12.56101 * ROWS « RATINGCOLS « QUANTITY

—14.18982 « SIMPLECOLS « RATINGCOLS « QUANTITY
+0.9006174 « ROW S x« SIMPLECOLS x RATINGCOLS « QUANTITY
ERowRepeater = 322.77

OrowRepeater = 12.6454 % max(0,ROWS — 9)—

25.48596 * max(0,9 — ROWS) + 24.57518 x max(0, QUANTITY — 6)
—31.63405 * max(0,6 — QUANTITY) + 2.622546 * max(0, ROWS —9)
s« max(0, QUANTITY —5) —2.301101 % max(0,ROWS —9)

«max(0,5 — QUANTITY) — 1.45611 %« max(0,9 — ROWS)

«max(0, QUANTITY — 8) 4 2.422541 x max(0,9 — ROW)

«max(0,8 — QUANTITY)

Erabstrip = 474

Orapsirip = 16 QUANTITY

EToolbar = 371

Orootbar = 1.484848 x QUANTITY

PHeader =48

Oshers = 95
Oopata = 761.766 4 2.317290 max(O,DATA — 336)

—2.336814 % max(0,336 — DATA)
dyson = 20.9531 49.147735 « CALLS

C.2. Prediction Function for Chrome

&5 =300

Esimple = 6.3

184

(C.1)

C.2. Prediction Function for Chrome

Psimple = 0.6180106 * QUANTITY
Elmage = 9.95

Otmage = 0.0045 +« WIDTH +0.0076 « HEIGHT + 1.258 « QUANTITY
+0.000008 «*WIDTH x HEIGHT +0.001 *« WIDTH « QUANTITY
+0.001 « HEIGHT « QUANTITY

+0.0000048 « WIDTH « HEIGHT « QUANTITY

Eraple = 115.6

Oravte = 16.22777 % QUANTITY —2.94197 ROWS * SIMPLECOLS
—26.7864 x ROW S x RATINGCOLS

+2.818925« SIMPLECOLS x* RATINGCOLS

+20.47580 « ROW S « QUANTITY

+5.270141 « SIMPLECOLS « QUANTITY

+5.667817 * RATINGCOLS x QUANTITY

+2.03301 « ROWS « SIMPLECOLS x RATINGCOLS

+5.654935 « ROW S « SIMPLECOLS « QUANTITY

+57.29617 « ROW S « RATINGCOLS « QUANTITY

+2.364257 « SIMPLECOLS «* RATINGCOLS « QUANTITY
—1.638865 « ROW S x SIMPLECOLS x RATINGCOLS x QUANTITY
— 1335+« ROW S — 3.84« SIMPLECOLS — 158.6 x RATINGCOLS
ERowRepeater = 162.3

ORowRepeater = 401 +18.25758 + max(0, ROW S — 13)

—25.53951 % max(0, 13 — ROWS) + 46.31842 max(0, QUANTITY —5)
—70.33231 % max(0,5 — QUANTITY) +0.9303674 + max(0, ROWS —7)
«max(0, QUANTITY —5) —4.30947 * max(0,7 — ROWS)

«max(0, QUANTITY —5) — 1.20965 x max(0, 13 — ROWS)

«max(0, QUANTITY — 5) 4+ 4.669123 x max(0, 13 — ROWS)

«max(0,5 — QUANTITY) + 1.655087 x max(0,ROWS — 13)

«max(0, QUANTITY —4) — 4.809822 x max(0,ROWS — 13)

«max(0,4 — QUANTITY)

8TabStrip =171
Orapserip = 10.55% QUANTITY

EToolbar = 3

185

C. Prediction Functions of Industrial Cased Study

Orooibar = 3.912121 « QUANTITY

¢Header =185

Osherr = 261
Oopata = 258.621 4 1.300211 « DATA

@yson = 194.306 +5.295485 x CALLS
(C.2)

C.3. Prediction Function for Internet Explorer

g5 =280

Esimple = 6.95

Osimple = 1.55 % QUANTITY

Elmage = 29.2

Ormage = 0.00036 * WIDTH + HEIGHT +0.0062* WIDTH x QUANTITY
+0.006727862 « HEIGHT « QUANTITY

—0.000011«WIDTH « HEIGHT * QUANTITY —0.02«WIDTH
—0.01517278 x HEIGHT — 3.404207 « QUANTITY

Erable = 118.7

Orapie = 11.46970 x ROW S + 13.54278 x SIMPLECOLS

—28.058 *x RATINGCOLS + 8.214 % QUANTITY

—5.851 *x ROWS * SIMPLECOLS —7.10 % ROW S * RATINGCOLS
+11.96 % SIMPLECOLS %« RATINGCOLS — 13.57 «x ROW S « QUANTITY
—3.55%SIMPLECOLS « QUANTITY — 11.14 % RATINGCOLS *« QUANTITY
—2.072536 « ROW S * SIMPLECOLS % RATINGCOLS

+6.35768 « ROW S « SIMPLECOLS *« QUANTITY

+12.73665 * ROW S * RATINGCOLS « QUANTITY

—6.951127 %« SIMPLECOLS « RATINGCOLS * QUANTITY

+1.773920 %« ROW S % SIMPLECOLS * RATINGCOLS « QUANTITY

ERowRepeater = 132.1

186

C.3. Prediction Function for Internet Explorer

ORowRepeater = 214.93 +27.61191 x max(0,ROWS — 11)

—38.39952 % max(0, 11 — ROWS) + 47.56512 % max(0, QUANTITY — 4)
—48.72615 *max(0,4 — QUANTITY) +4.391978 x max(0,ROWS — 11)
s« max(0, QUANTITY —7) — 3.974507 % max(0, ROWS — 11)

«max(0,7 — QUANTITY) —2.163148 max(0, 11 — ROWS)

s« max(0, QUANTITY —9) +3.861891 + max(0, 11 — ROWS)

«max(0,9 — QUANTITY)

Erabstrip = 15.75

Orapsirip = 3.05 % QUANTITY

EToolbar = 8.5
(PToolbar =48xQUANTITY

(PH eader — 64

Osherr = 111
Oopata = 8-1403 +2.559657 x« DATA

dsson = 96.13+3.278756 % CALLS
(C.3)

187

List of Figures

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.17.

3.1.
3.2
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.

5.1
5.2.

Boxplot 15
Reference architecture for web browsers [GGO5] 17
Basic workflow of a rendering engine [Gar11] 18
Experiment environment L. 20
Regression tree model [HTFO9] 27
Genetic programming e e e e 28
Sample variogram L 30
Immediate feedback inthe IDE 38
Two design alternatives L. 39
Evaluation of design alternatives 39
Process for deriving goal-oriented performance models 41
Process for understanding performance behaviour 44
Process for deriving performance model 46
Experimental performance evaluation 51
Overview on the SoPeCo approach 54
Scenario Definition Lo oo 62
Measurement Environment Definition 63
Measurement Specificationo L 64
Example for Scenario Definition 67
Example for Measurement Environment Definition 68
Example for Measurement Specification 69
Overview on automated, iterative function inference 73
Example for iterative function inference 74
Example for Random Breakdown 75
Example for Adaptive Equidistant Breakdown 79
Example for Adaptive Random Breakdown 80
Selecting the best combinations 88
Browser CPU time metric 105
Experimentation landscape oL 107

189

List of Figures

190

5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.

5.17.
5.18.
5.19.
5.20.
5.21.
5.22.
5.23.
5.24.

5.25.
5.26.
5.27.
5.28.
5.20.

5.30.
5.31.
5.32.
5.33.

7.1.

95% confidence intervals for different sample sizes
Overloaded screen
Browser CPU time for 1 to 5 tables in different browsers
CPU time for button/table mixes (Firefox)
CPU time cost for adding a single Ul element on a plain screen
ANOVA result for testing Ul element additivity
Effect of table configuration parameters on CPU time
Effect of table cell typeson CPU time
Effect of image configuration parameters on CPU time
Effect of image configuration parameters on CPU time (ANOVA)
Effect of service calls on browser CPU time
Effect of service calls on browser CPU time (detailed)
Effect of JSON-based service calls on browser CPU time (detailed)
ANOVA result for testing performance-relevant parameters of
JSON-based servicecalls
Effect of critical nesting on browser CPU time
Effect of Ul element placement on browser CPU time
Configuration of parameter space exploration for function derivation . .
Range of measured values for screenoffset
Linear regression for Button (i.e., SimpleElement) performance
Residuals vs. fitted values for linear function on Table performance
Residuals vs. fitted values for MARS function on Image performance
Residuals vs. fitted values for MARS function on RowRepeater
performance
Influence of the number of tabs on browser CPU time
Linear regression for TabStrip performance
Linear regression for Toolbar performance
Measured browser CPU times for Header and Shell
Residuals vs. fitted values for MARS function on OData-based

service call performance,
Linear regression for JSON-based servicecalls
Overview of the control types on the validation screens
Validationresults L
Front-end performance predictiontool

Overview of integrating goal-oriented performance models with
architecture-based approaches [WHWI12]

123
123
125
128
129

. 130
. 132
. 133

List of Figures

7.2.

A.l.
A2
A3.

B.1.

Identified regression [WWHMI13] 170
SoPeCo Architecture 175
SoPeCoExample 177
General Cutting Curve e 178
Complete Results for Validation presented in Chapter4.5 182

191

List of Tables

2.1.
2.2.
2.3.

2.4.

4.1.
4.2.
4.3.
4.4.
45.
4.6.

5.1
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

6.1.
6.2.
6.3.

2K full factorial design for three parameters 21
23~! fractional factorial design 22
Overview of experimental designs with n parameters and two values for

eachparameter L 23
Factorial ANOVA table for two input parameters [Natl2] 25
Abbreviations inresulttables L Lo 87
Simulation functions for function inference validation 88
Results for function f; (Table 4.2) 89
Results for function f> (Table4.2) 90
Results for enterprise application customisation case study 92
Results for JVM tuning case study 94
Initial assumptions on relevant performance influences 110
Screens used for OData service call experiments 119
Screens used for JSON service call experiments 121
Validated assumptions on relevant performance influences 126
Parameter space for derivation of @gjppre - - - oL 129
Parameter space for derivation of @pupreo 130
Parameter space for derivation of @page - -o L 132
Parameter space for derivation of @rowrepeater - « -« -+« o o o oo 134
Usage variants e e 144
Related work for experimental performance evaluations 150
Related work for measurement-based function inference 154
Related work for performance prediction models 158

193

Bibliography

[ABC10]

[AGKOO0]

[Appl3]

[AR10]

[ASGH95]

[AWO04]

[BCRY94]

[BDIS04]

[BGAMTO6]

A. Aldini, M. Bernardo, and F. Corradini, A Process Algebraic Approach
to Software Architecture Design. Springer, 2010.

D. Abramson, J. Giddy, and L. Kotler, “High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid?” in
Proceedings of the 14th International Parallel & Distributed Processing
Symposium (IPDPS’00). IEEE Computer Society, 2000, pp. 520-528.

Apple, “The WebKit Open Source Project,” http://www.webkit.org/,
2013, last visited June 2013.

J. Allspaw and J. Robbins, Web Operations: Keeping the Data On Time.
O’Reilly Media, 2010.

D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: a tool for
performing parametrised simulations using distributed workstations,” in
Proceedings of the 4th IEEE International Symposium on High Perfor-
mance Distributed Computing, ser. HPDC *95. Washington, DC, USA:
IEEE Computer Society, 1995, pp. 112—.

A. Avritzer and E. J. Weyuker, “The Role of Modeling in the Performance

Testing of E-Commerce Applications,” IEEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 1072-1083, 2004.

V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question Metric
Approach,” in Encyclopedia of Software Engineering. Wiley, 1994.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based
Performance Prediction in Software Development: A Survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295-310, 2004.

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Com-
puter Science Applications, ser. Wiley-Interscience publication. Wiley,
2006.

195

Bibliography

[BHO7]

[Bix10]

[BK02]

[BKKO09]

[BKRO9]

[BreO1]

[Bro09]

[CCO0]

[CDY%4]

[CGO5]

[Com13]

196

M. Bernardo and J. Hillston, Eds., Formal Methods for Performance
Evaluation (Int. School on Formal Methods for Design of Computer,
Communication, and Software Systems, SEM2007), 2007.

J. Bixby, “Web Performance Today,” http://www.webperformancetoday.
com/2010/07/01/the-best-graphs-of-velocity/, 2010, last visited Novem-
ber 2012.

F. Bause and P. S. Kritzinger, Stochastic Petri Nets - An Introduction to
the Theory. Vieweg, 2002.

F. Brosig, S. Kounev, and K. Krogmann, “Automated Extraction of Pal-
ladio Component Models from Running Enterprise Java Applications,”
in Proceedings of the Ist International Workshop on Run-time Models
for Self-managing Systems and Applications (ROSSA 2009). In conjunc-
tion with Fourth International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS 2009), Pisa, Italy, October 19,
2009. ACM, New York, NY, USA, 2009.

S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems and
Software, vol. 82, pp. 3-22, 2009.

L. Breiman, ‘“Random Forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

T. Brown, Change by Design: How Design Thinking Transforms Organ-
isations and Inspires Innovation. HarperCollins, 2009.

T. F. Cox and M. A. A. Cox, Multidimensional Scaling, Second Edition.
Chapman & Hall/CRC, 2000.

S. Cook and J. Daniels, Designing object systems: object-oriented mod-
elling with Syntropy. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1994.

L. Cherkasova and R. Gardner, “Measuring CPU Overhead for 1/0 Pro-
cessing in the Xen Virtual Machine Monitor,” in USENIX Annual Tech-
nical Conference, General Track, 2005, pp. 387-390.

Compuware, “Compuware dynaTrace - Enterprise,” http://www.
compuware.com/application-performance-management/dynatrace-
enterprise.html, 2013, last visited June 2013.

Bibliography

[Crol2]

[Crol3]

[CWO00]

[DGL]

[Dix09]

[DRSSO1]

[FH12]

[Foul3]

[Friol]

[Fro13]

[Garll]

[GBEO7]

C. Crocker, “Real User Monitoring at Walmart,” http://minus.com/
msM8y8nyh/le, 2012, last visited November 2012.

D. Crockford, “Introducing JSON,” http://www.json.org/, 2013, last vis-
ited February 2013.

M. Courtois and M. Woodside, “Using Regression Splines for Software
Performance Analysis and Software Characterisation,” in Proceedings of
the 2nd International Workshop on Software and Performance (WOSP).
N. Y.: ACM Press, 2000, pp. 105-114.

M. J. De Smith, M. F. Goodchild, and P. A. Longley, Geospatial Analysis:
A Comprehensive Guide to Principles, Techniques and Software Tools.
Troubador Publishing.

P. Dixon, “Shopzilla Site Redesign - We get what we mea-
sure,” http://www.scribd.com/doc/16877317/Shopzillas-Site-Redo- You-
Get-What- You-Measure, 2009, velocity 2009, last visited November
2012.

R. R. Dumke, C. Rautenstrauch, A. Schmietendorf, and A. Scholz, Eds.,
Performance Engineering, State of the Art and Current Trends, ser. Lec-
ture Notes in Computer Science, vol. 2047. Springer, 2001.

M. Faber and J. Happe, “Systematic adoption of genetic programming for
deriving software performance curves,” in Third Joint WOSP/SIPEW In-
ternational Conference on Performance Engineering, ICPE’12. ACM,
2012, pp. 33-44.

A. S. Foundation, “Apache JMeter,” http://jmeter.apache.org/, 2013, last
visited June 2013.

J. H. Friedman, “Multivariate Adaptive Regression Splines.” Annals of
Statistics, vol. 19, no. 1, pp. 1-141, 1991.

B. Frost, “Performance as Design,” http://bradfrostweb.com/blog/post/
performance-as-design/, 2013, last visited March 2013.

T. Garsiel, “How browsers work,” http://taligarsiel.com/Projects/
howbrowserswork1.htm, 2011, last visited July 2013.

A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the 22nd annual ACM SIG-

197

Bibliography

[GGO5]

[Goo13]

[Hap08]

[Hegl13]

[HHO4]

[HHF13]

[Hil96]

[HKHR11]

[HolO8]

198

PLAN conference on Object-oriented programming systems and applica-
tions, ser. OOPSLA *07. New York, NY, USA: ACM, 2007, pp. 57-76.

A. Grosskurth and M. W. Godfrey, “A Reference Architecture for Web
Browsers,” in Proceedings of 21st IEEE International Conference on
Software Maintenance (ICSM). 1EEE Computer Society, 2005, pp. 661—
664.

Google, “V8 JavaScript Engine,” https://code.google.com/p/v8/, 2013,
last visited June 2013.

J. Happe, “Predicting Software Performance in Symmetric Multi-core
and Multiprocessor Environments,” Dissertation, University of Olden-
burg, Germany, 2008.

C. Heger, “Systematic guidance in solving performance and scalability
problems,” in Proceedings of the 18th international doctoral symposium
on Components and architecture, ser. WCOP *13. New York, NY, USA:
ACM, 2013, pp. 7-12.

R. M. Heiberger and B. Holland, Statistical Analysis and Data Display:
An Intermediate Course with Examples in S-Plus, R, and SAS. Springer,
2004, iISBN 0-387-40270-5.

C. Heger, J. Happe, and R. Farahbod, “Automated root cause isolation of
performance regressions during software development,” in Proceedings
of the 4th ACM/SPEC International Conference on Performance Engi-
neering, ser. ICPE "13. New York, NY, USA: ACM, 2013, pp. 27-38.

J. Hillston, A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

M. Hauck, M. Kuperberg, N. Huber, and R. Reussner, “Ginpex: deriv-
ing performance-relevant infrastructure properties through goal-oriented
experiments,” in 7th International Conference on the Quality of Software
Architectures, QoSA 2011 and 2nd International Symposium on Archi-
tecting Critical Systems, ISARCS 2011. Proceedings, 1. Crnkovic, J. A.
Stafford, D. C. Petriu, J. Happe, and P. Inverardi, Eds. ACM, 2011, pp.
53-62.

A. T. Holdener, Ajax: the definitive guide. O’Reilly, 2008.

Bibliography

[HP13]

[HTFO09]

[HWSK10]

[ILGP96]

[Jaiol]

[Jam]

[Jaz70]

[JEOO6]

[IM11]

[IN12]

HP, “HP Load Runner,” http://www8.hp.com/us/en/software-solutions/
software.html?compURI=1175451\#.UP-q7ydEHpw, 2013, last visited
June 2013.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data mining, Inference ,and Prediction, 2nd ed., ser. Springer
Series in Statistics. Springer, 2009.

J. Happe, D. Westermann, K. Sachs, and L. Kapovd, “Statistical Infer-
ence of Software Performance Models for Parametric Performance Com-
pletions,” in Research into Practice - Reality and Gaps, 6th International
Conference on the Quality of Software Architectures, QoSA 2010. Pro-
ceedings, ser. Lecture Notes in Computer Science, vol. 6093. Springer,
2010, pp. 20-35.

Y. E. Toannidis, M. Livny, S. Gupta, and N. Ponnekanti, “ZOO : A Desk-
top Experiment Management Environment,” in Proceedings of 22th In-
ternational Conference on Very Large Data Bases (VLDB), September
3-6, 1996, Mumbai (Bombay), India, T. M. Vijayaraman, A. P. Buch-
mann, C. Mohan, and N. L. Sarda, Eds. Morgan Kaufmann, 1996, pp.
274-285.

R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling, ser.
Wiley professional computing, W. P. Computing, Ed. Wiley, 1991.

L. Jamen, “Oracle(c) Fusion Middleware - Performance and Tun-
ing Guide,” http://docs.oracle.com/cd/E17904_01/core.1111/e10108/
toc.htm, last visited June 2013.

A. H. Jazwinski, Stochastic processes and filtering theory. —Academic
press, 1970, vol. 63.

L. K. John and L. Eeckhout, Performance Evaluation And Benchmarking.
CRC Press, 2006.

D. Jaffe and T. Muirhead, “Dell DVD Store,” http://en.community.
dell.com/techcenter/extras/w/wiki/dvd-store.aspx, 2011, last visited July
2013.

M. Jennings and D. Nolan, “Performance and Metrics on lone-
lyplanet.com,” http://velocityconf.com/velocityeu2012/public/schedule/
detail/26634, 2012, velocity 2012, last visited November 2012.

199

Bibliography

[JPSO7]

[JTHLO7]

[KHI11]

[KKROS]

[KKR10]

[KM97]

[Koz93]

[Koz10]

200

G. Jung, C. Pu, and G. Swint, “Mulini: an automated staging framework
for QoS of distributed multi-tier applications,” in Proceedings of the 2007
workshop on Automating service quality: Held at the International Con-
ference on Automated Software Engineering (ASE), ser. WRASQ ’07.
New York, NY, USA: ACM, 2007, pp. 10-15.

Y. Jin, A. Tang, J. Han, and Y. Liu, “Performance Evaluation and Predic-
tion for Legacy Information Systems,” in Proceedings of the 29th inter-
national conference on Software Engineering, ser. ICSE "07. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 540-549.

A. Kingsley-Hughes, “The BIG browser benchmark! Chrome
I5 vs Opera 11 vs IE9 vs Firefox 8 vs Safari 5,7 http:
/Iwww.zdnet.com/blog/hardware/the-big-browser-benchmark-chrome-
15-vs-opera-11-vs-ie9-vs-firefox-8-vs-safari-5/16041, 2011, last visited
November 2012.

M. Kuperberg, M. Krogmann, and R. Reussner, “ByCounter: Portable
Runtime Counting of Bytecode Instructions and Method Invocations,” in
Proceedings of the 3rd International Workshop on Bytecode Semantics,
Verification, Analysis and Transformation, Budapest, Hungary, 5th April
2008 (ETAPS 2008, 11th European Joint Conferences on Theory and
Practice of Software), 2008.

K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic Search
for Reverse Engineering of Parametric Behaviour Models for Perfor-
mance Prediction,” IEEE Transactions on Software Engineering, vol. 36,
no. 6, pp. 865-877, 2010.

K. L. Karavanic and B. P. Miller, “Experiment management support for
performance tuning,” in Proceedings of the 1997 ACM/IEEE conference
on Supercomputing (CDROM), ser. Supercomputing '97. New York,
NY, USA: ACM, 1997, pp. 1-10.

J. R. Koza, Ed., Genetic Programming, 3rd ed. Cambridge, Mass.: MIT
Press, 1993, vol. [1, book]:.

H. Koziolek, “Performance evaluation of component-based software sys-
tems: A survey,” Performance Evaluation, vol. 67, no. 8, pp. 634-658,
2010, special Issue on Software and Performance.

Bibliography

[KPSCDO09]

[Kri51]

[Kro10]

[KS00]

[Laz84]

[LBO5]

[LCZTO07]

[Lep12]

[LHO8]

[Lil05]

[LivO8]

[MAO1]

S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimat-
ing service resource consumption from response time measurements,’
in Proceedings of the Fourth International ICST Conference on Perfor-
mance Evaluation Methodologies and Tools, ser. VALUETOOLS 09,
2009, pp. 48:1—-48:10.

D. G. Krige, “A Statistical Approach to Some Basic Mine Valuation
Problems on the Witwatersrand,” Journal of the Chemical, Metallurgical
and Mining Society of South Africa, vol. 52, no. 6, pp. 119-139, 1951.

K. Krogmann, “Reconstruction of Software Component Architectures
and Behaviour Models using Static and Dynamic Analysis,” Ph.D. dis-
sertation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
2010.

U. Krishnaswamy and I. D. Scherson, “A Framework for Computer Per-
formance Evaluation Using Benchmark Sets,” IEEE Trans. Comput.,
vol. 49, no. 12, pp. 1325-1338, 2000.

E. D. Lazowska, Quantitative system performance: computer system
analysis using queueing network models. Prentice-Hall, 1984.

P. ’Ecuyer and E. Buist, “Simulation in Java with SSJ,” in Proc. of the
37th Conf. on Winter Simulation. WSC 2005, 2005, pp. 611-620.

Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature selection using princi-
pal feature analysis,” in Proceedings of the 15th international conference
on Multimedia. ACM, 2007, pp. 301-304.

M. Leptien, “Media Markt - Doch Bloed? Or how Artists
have gone over the edge,” http://webforscher.wordpress.com/tag/web-
performance/, 2012, last visited June 2013.

J. Liand A. D. Heap, A review of spatial interpolation methods for envi-
ronmental scientists. Canberra: Geoscience Australia, 2008.

D. J. Lilja, Measuring Computer Performance: A Practicioner’s Guide.

Cambridge University Press, 2005.

J. Livingston, Founders at Work: Stories of Startups’ Early Days.
Berkely, CA, USA: Apress, 2008.

D. A. Menasce and V. Almeida, Capacity Planning for Web Services:
metrics, models, and methods, 1st ed. Prentice Hall PTR, Oct. 2001.

201

Bibliography

[Mar95]

[MCC™95]

[Mee]

[Mic13]

[MMO2]

[Mozl13a]

[Moz13b]

[Natl2]

[New13]

[NYPFO06]

[OAS13]

[Oral2]

202

A. Marsan, Modelling with generalized stochastic Petri nets, ser. Wiley
series in parallel computing. Wiley, 1995.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B.
Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The para-
dyn parallel performance measurement tool,” Computer, vol. 28, no. 11,
pp- 3746, Nov. 1995.

P. Meenan, “WebPageTest,” http://www.webpagetest.org/, last visited
November 2012.

Microsoft, “MSHTML Reference,” http://msdn.microsoft.com/en-us/
library/aa741317.aspx, 2013, last visited July 2013.

A. Mos and J. Murphy, “A framework for performance monitoring, mod-
elling and prediction of component oriented distributed systems,” in
WOSP °02: Proc. of the 3rd international workshop on Software and
performance. New York, NY, USA: ACM, 2002, pp. 235-236.

Mozilla, “Gecko,” https://developer.mozilla.org/en-US/docs/Mozilla/
Gecko, 2013, last visited June 2013.

——, “Spider Monkey,” https://developer.mozilla.org/en/docs/
SpiderMonkey, 2013, last visited June 2013.

M. Natrella, NIST/SEMATECH e-Handbook of Statistical Methods,
C. Croarkin and P. Tobias, Eds. NIST/SEMATECH, 2012.

NewRelic, “New Relic,” http://newrelic.com/, 2013, last visited June
2013.

F. Nadeem, M. M. Yousaf, R. Prodan, and T. Fahringer, “Soft
benchmarks-based application performance prediction using a minimum
training set,” in Proceedings of the Second IEEE International Confer-
ence on e-Science and Grid Computing, ser. E-SCIENCE °06. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 71-.

OASIS OData Technical Committee, “Open Data Protocol,”
http://www.odata.org, 2013, last visited June 2013.

Oracle, “Tuning Garbage Collection with the 5.0 Java TM Vir-
tual Machine,” http://www.oracle.com/technetwork/java/gc-tuning-5-
138395.html, 2012.

Bibliography

[Oral3]

[Ostl1]

[OW209]

[Pea00]

[Peb04]

[PFO4]

[PFOS]

[PKO5]

[PMO8]

[PodO5]

[Poo00]

[PSGO1]

——, “Java EE at a Glance,” http://www.oracle.com/technetwork/java/
javaee/overview/index.html, 2013, last visited January 2013.

I. Ostrovsky, “What really happens when you navigate to a URL,” http:
/ligoro.com/archive/what-really-happens-when-you-navigate-to-a-url/,
2011, last visited June 2013.

OW?2 Consortium, “RUBIiS: Rice University Bidding Systems,” http://
rubis.ow2.org/, 2009, last visited November 2012.

J. Pearl, Causality: models, reasoning, and inference. New York, NY,
USA: Cambridge University Press, 2000.

E. J. Pebesma, “Multivariable geostatistics in S: the gstat package,” Com-
puters and Geosciences, vol. 30, pp. 683-691, 2004.

R. Prodan and T. Fahringer, “ZENTURIO: a grid middleware-based tool
for experiment management of parallel and distributed applications,”

Journal of Parallel and Distributed Computing, vol. 64, no. 6, pp. 693—
707, 2004.

——, “ZEN: a directive based experiment specification language for per-
formance and parameter studies of parallel scientific applications,” In-

ternational Journal of High Performance Computing and Networking,
vol. 3, no. 2/3, pp. 103—-121, 2005.

B. Page and W. Kreutzer, The Java Simulation Handbook. Simulating
Discrete Event Systems with UML and Java, 2005.

T. Parsons and J. Murphy, “Detecting Performance Antipatterns in Com-
ponent Based Enterprise Systems,” Journal of Object Technology, vol. 7,
no. 3, pp. 55-91, 2008.

A. Podelko, “Workload Generation: Does One Approach Fit All?” in Int.
CMG Conference. Computer Measurement Group, 2005, pp. 301-308.

R. Pooley, “Software engineering and performance: a roadmap,” in Pro-
ceedings of the Conference on The Future of Software Engineering, ser.
ICSE ’00. New York, NY, USA: ACM, 2000, pp. 189-199.

A. Podelko, A. Sokk, and L. Grinshpan, “Custom Load Generation,” in
Int. CMG Conference, 2001, pp. 179-184.

203

Bibliography

[PSSTO6]

[RDI11]

[R F13]

[Riell]

[RRMPOS]

[RSPM98]

[SAP12]

[SAP13a]

[SAP13b]

[Sch06]

[ShiO3]

204

G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dynamic esti-
mation of CPU demand of web traffic,” in Proceedings of the st Interna-
tional Conference on Performance Evaluation Methodolgies and Tools,
VALUETOOLS 2006, Pisa, Italy, October 11-13, 2006, ser. ACM Inter-
national Conference Proceeding Series, vol. 180. New York, NY, USA:
ACM, 2006.

R Development Core Team, “Classical (Metric) Multidimensional
Scaling,” http://stat.ethz.ch/R-manual/R-patched/library/stats/html/
cmdscale.html, 2011, last visited November 2012.

R Foundation, “The R Project for Statistical Computing,” http://www.r-
project.org/, 2013, last visited June 2013.

E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses, first edition ed.

Crown Business, 2011.

A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Common
Component Modeling Example: Comparing Software Component Mod-
els, ser. Lecture Notes in Computer Science, vol. 5153. Springer, 2008.

R. H. Reussner, P. Sanders, L. Prechelt, and M. Miiller, “SKaMPI: A De-
tailed, Accurate MPI Benchmark,” in Recent advances in parallel virtual
machine and message passing interface: 5th European PVYM/MPI Users’
Group Meeting, Liverpool, UK, September 7-9, 1998, ser. Lecture Notes
in Computer Science, V. Alexandrov and J. J. Dongarra, Eds., vol. 1497.
Springer-Verlag Berlin Heidelberg, 1998, pp. 52-59.

SAP, “SAP Sales and Distribution Benchmark,” http://www.sap.com/
campaigns/benchmark/appbmsd.epx, 2012, last visited November 2012.

——, “SAP AG,” http://www.sap.com/, 2013, last visited June 2013.

——, “UI Development Toolkit for HTMLS Developer Center,” http:
/Iscn.sap.com/community/developer-center/front-end, 2013, last visited
July 2013.

T. Schneider, SAP Performance Optimisation Guide: Analyzing and Tun-
ing SAP Systems. Galileo Pr Inc, 2006.

J. Shirazi, Java performance tuning - efficient and effective tuning strate-
gies. O’Reilly, 2003.

Bibliography

[Sin09]

[SMO5]

[SMF107]

[Smi81]

[Smi82]

[Smi86]

[SmiO1]

[Smi07]

[Sou07]

[Sou09]

[SPEOS5]

S. Sinek, Start with Why: How Great Leaders Inspire Everyone to Take
Action. Penguin Group US, 2009.

M. Sopitkamol and D. A. Menascé, “A method for evaluating the impact
of software configuration parameters on e-commerce sites,” in WOSP.
ACM, 2005, pp. 53-64.

J. Sankarasetty, K. Mobley, L. Foster, T. Hammer, and T. Calderone,
“Software performance in the real world: personal lessons from the per-
formance trauma team,” in Proceedings of the 6th international workshop
on Software and performance, ser. WOSP 07. New York, NY, USA:
ACM, 2007, pp. 201-208.

C. U. Smith, “Increasing Information Systems Productivity by Software
Performance Engineering.” in Int. CMG Conference, 1981, pp. 5-14.

——, “Software Performance Engineering.” in Int. CMG Conference,
1982, pp. 331-332.

——, “The evolution of software performance engineering: a survey,’
in Proceedings of 1986 ACM Fall joint computer conference, ser. ACM
’86. Los Alamitos, CA, USA: IEEE Computer Society Press, 1986, pp.
778-783.

——, “Origins of Software Performance Engineering: Highlights and
Outstanding Problems,” in Performance Engineering, ser. Lecture Notes
in Computer Science, R. Dumke, C. Rautenstrauch, A. Scholz, and
A. Schmietendorf, Eds. Springer Berlin Heidelberg, 2001, vol. 2047,
pp- 96-118.

——, “Introduction to software performance engineering: origins and
outstanding problems,” in Proceedings of the 7th international con-
ference on Formal methods for performance evaluation, ser. SFM’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 395-428.

S. Souders, High Performance Web Sites: 14 Steps to Faster-Loading
Web Sites. O’Reilly, 2007.

——, Even Faster Web Sites: Performance Best Practices for Web De-
velopers. O’Reilly, 2009.

SPEC Standard Performance Evaluation Corporation, “SPECjbb2005 -
Industry-standard server-side Java benchmark (J2SE 5.0).” http://www.
spec.org/jbb2005/, 2005, last visited June 2013.

205

Bibliography

[SPE12]

[SSNT08]

[Stel2]

[SWO1]

[Swi06]

[TAR11]

[TDZN10]

[THHFOS]

[TPC13]

[Tuk77]

[TZV'08]

206

——, “SPEC’s Benchmarks and Published Results,” http://www.spec.
org/benchmarks.html, 2012, last visited November 2012.

S. R. Sandeep, M. Swapna, T. Niranjan, S. Susarla, and S. Nandi,
“CLUEBOX: a performance log analyser for automated troubleshoot-
ing,” in Proceedings of the First USENIX conference on Analysis of sys-
tem logs, ser. WASL'08. Berkeley, CA, USA: USENIX Association,
2008.

S. Stefanov, “Book of Speed: The business, psychology and technology
of high-performance web apps,” http://www.bookofspeed.com, 2012,
last visited November 2012.

C. U. Smith and L. G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software, 1st ed. Addison-
Wesley Professional, 2001.

P. Switzer, Kriging. John Wiley and Sons, Ltd, 2006.

T. M. Therneau, B. Atkinson, and B. Ripley, “r-cran-rpart,” http://mloss.
org/software/view/115/, 2011, last visited June 2013.

E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel, “Practical perfor-
mance models for complex, popular applications,” in Proceedings of the
2010 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. ACM, 2010, pp. 1-12.

D. Thakkar, A. E. Hassan, G. Hamann, and P. Flora, “A framework for
measurement based performance modeling,” in WOSP ’08: Proceedings

of the 7th international workshop on Software and performance. New
York, NY, USA: ACM, 2008, pp. 55-66.

TPC, “Transaction Processing Performance Council,” http://www.tpc.
org/, 2013.

J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.

M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar, “An-
swering what-if deployment and configuration questions with wise,” in
Proceedings of the ACM SIGCOMM 2008 conference on Data commu-
nication, ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008, pp.
99-110.

Bibliography

[UH97]

[VW97]

[W3Cl12a]

[W3C12b]

[W3C13]

[WAAT04]

[Werl3]

[Wes12]

[WFP07]

P. Utton and B. Hill, “Performance prediction: An industry perspec-
tive,” in Computer Performance Evaluation Modelling Techniques and
Tools, ser. Lecture Notes in Computer Science, R. Marie, B. Plateau,
M. Calzarossa, and G. Rubino, Eds. Springer Berlin Heidelberg, 1997,
vol. 1245, pp. 1-5.

V. Vetland and C. M. Woodside, “A Workbench for Automation of Sys-
tematic Measurement of Resource Demands of Software Components,”

Transactions of the Computer Measurement Group, no. 92, pp. 42—48,
1997.

W3C, “HTMLS - A vocabulary and associated APIs for HTML and
XHTML (W3C Candidate Recommendation 17 December 2012),” http:

/Iwww.w3.org/TR/html5/webappapis.html\#scripting, 2012, last visited
June 2013.

——, “Navigation Timing,” http://www.w3.org/TR/navigation-timing/,
2012, last visited December 2012.

——, “Web Performance Working Group,” http://www.w3.0rg/2010/
webperf/, 2013, last visited June 2013.

M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger, “Storage device performance prediction with CART models,” in
Proceedings of the joint international conference on Measurement and
modeling of computer systems, ser. SIGMETRICS ’04/Performance ’04.
New York, NY, USA: ACM, 2004, pp. 412-413.

A. Wert, “Performance Problem Diagnostics by Systematic Experimen-
tation,” in WCOP ’13: Proceedings of the 18th international doctoral
symposium on Components and Architecture. New York, NY, USA:
ACM, 2013, pp. 1-6.

D. Westermann, “A Generic Methodology to Derive Domain-Specific
Performance Feedback for Developers,” in Proceedings of the 34th In-
ternational Conference on Software Engineering (ICSE 2012), Doctoral
Symposium, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012,
pp- 1527-1530.

M. Woodside, G. Franks, and D. Petriu, “The Future of Software Per-
formance Engineering,” in Future of Software Engineering (FOSE’07).
Los Alamitos, CA, USA: IEEE Computer Society, 2007, pp. 171-187.

207

Bibliography

[WHI1]

[WHF13]

[WHH13]

[WHHH10]

[WHKF12]

[WHW12]

[WHW13]

[WKH11]

208

D. Westermann and J. Happe, ‘“Performance cockpit: systematic
measurements and analyses,” in Proceedings of the second joint
WOSP/SIPEW international conference on Performance engineering,
ser. ICPE "11. New York, NY, USA: ACM, 2011, pp. 421-422.

D. Westermann, J. Happe, and R. Farahbod, “An experiment specifica-
tion language for goal-driven, automated performance evaluations,” in
Proceedings of the 28th Annual ACM Symposium on Applied Comput-
ing, ser. SAC "13. New York, NY, USA: ACM, 2013, pp. 1043-1048.

A. Wert, J. Happe, and L. Happe, “Supporting Swift Reaction: Automat-
ically Uncovering Performance Problems by Systematic Experiments,”
in Proceedings or the International Conference on Software Engineering
2013. Piscataway, NJ, USA: IEEE Press, 2013, pp. 552-561.

D. Westermann, J. Happe, M. Hauck, and C. Heupel, “The performance
cockpit approach: A framework for systematic performance evaluations,”
in Proceedings of the 2010 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, ser. SEAA *10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 31-38.

D. Westermann, J. Happe, R. Krebs, and R. Farahbod, “Automated infer-
ence of goal-oriented performance prediction functions,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2012. New York, NY, USA: ACM, 2012, pp.
190-199.

A. Wert, J. Happe, and D. Westermann, “Integrating software perfor-
mance curves with the palladio component model,” in Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering,
ser. ICPE "12. New York, NY, USA: ACM, 2012, pp. 283-286.

D. Westermann, J. Happe, A. Wert, R. Farahbod, and C. Heger, “Software

Performance Cockpit,” http://www.sopeco.org/, 2013, last visited July
2013.

D. Westermann, R. Krebs, and J. Happe, “Efficient Experiment Selec-
tion in Automated Software Performance Evaluations,” in Computer Per-
formance Engineering - 8th European Performance Engineering Work-
shop, EPEW 2011, Borrowdale, UK, October 12-13, 2011. Proceedings.
Springer, 2011, pp. 325-339.

Bibliography

[Wor05]

[WS03]

[WVCBOI]

[WWO8]

[WWHM13]

[Yah]

[YKM™T05]

J. Worringen, “Experiment Management and Analysis with perfbase,” in
IEEFE International Conference on Cluster Computing (CLUSTER 2005).
IEEE, 2005, pp. 1-11.

L. G. Williams and C. U. Smith, “Making the Business Case for Software
Performance Engineering,” in Proceedings of CMG, 2003.

C. M. Woodside, V. Vetland, M. Courtois, and S. Bayarov, “Resource
Function Capture for Performance Aspects of Software Components and
Sub-Systems,” in Performance Engineering, State of the Art and Current
Trends. London, UK: Springer-Verlag, 2001, pp. 239-256.

X. Wu and M. Woodside, “A Calibration Framework for Capturing and
Calibrating Software Performance Models,” in EPEW ’08: Proceedings
of the 5th European Performance Engineering Workshop on Computer
Performance Engineering. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 32-47.

C. Weiss, D. Westermann, C. Heger, and M. Moser, “Systematic perfor-
mance evaluation based on tailored benchmark applications,” in Proceed-
ings of the 4th ACM/SPEC International Conference on Performance En-
gineering, ser. ICPE "13. New York, NY, USA: ACM, 2013, pp. 411-
420.

Yahoo, “YSlow,” http://developer.yahoo.com/yslow/, last visited Novem-
ber 2012.

C. Yilmaz, A. S. Krishna, A. M. Memon, A. A. Porter, D. C. Schmidt,
A. S. Gokhale, and B. Natarajan, “Main effects screening: a distributed
continuous quality assurance process for monitoring performance degra-
dation in evolving software systems,” in /CSE, G.-C. Roman, W. G. Gris-
wold, and B. Nuseibeh, Eds. ACM, 2005, pp. 293-302.

209

