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1. Introduction

Transition metals are those elements which reside within the d-block of the Periodic Table.1 The
inclusion of the d-orbitals into the valence electronic structure of transition metals leads to an
exhibition of many new and interesting properties usually not present in main group chemistry.
One of the most important features of transition metal complexes is their ability to form highly
coordinated complexes. Simply speaking, the reason transition metals form such complexes is
that the partially filled d-shell is not the most stable electronic configuration. However, it is the
partially filled d-orbitals which introduce many of the interesting properties of transition metals.
This leads to many transition metal complexes having a magnetic moment, which can be exploited
in work on single molecule magnets [2–4]. Also, many transition metal complexes can take part in
redox reactions because many of their oxidation states are stable. This property is seen in many
biochemical reactions, such as electron transport by photosystem I and II in photosynthesis [5].
Most importantly, transition metal complexes act as catalysts for many chemical reactions [6–8].

A catalyst is an entity which reduces the energy barrier of the reaction and hence, speeds up
the reaction. In the field of catalysis we must distinguish two individual categories: homogenous
and heterogenous. Heterogenous catalysis is defined as a catalytic system where the reactants
and products are in a different phase to the catalyst, i.e., solid-phase catalyst and gaseous-phase
reactant. It is the most common form found in industrial applications (e.g., Haber-Bosch process,
sulphuric acid production, Fischer-Tropsch process), in part due to the simplicity of separating the
reactants and products from the catalyst [8]. On the other hand, homogenous catalysis is defined
as a catalytic system where the reactants and products are in the same phase as the catalyst, i.e.,
both in liquid-phase and miscible. It has also become more prevalent in industry (e.g., Wilkinson’s
catalyst, Wacker process), in part because of a higher specificity of the catalyst to the reaction [8].
However, homogenous catalysts also introduce an additional problem with the need for a separation
step of the catalyst and the products [8]. Many homogenous catalysts contain a transition metal,
e.g., RhCl(PPh3)3 used for the hydrogenation of alkenes, RuCl2(P(C6H11)3)(CHPh) used for the
reorganisation of alkene substituents etc. A lot of interest has been given to the development
of homogenous catalysts as their increased specificity provides a means to tune the catalyst and
optimise performance, which is achieved for transition metal complexes by exchanging and/or
modifying the ligands. To this end, characterisation of the complexes through spectroscopy is
essential and as catalytic activity can be linked to the underlying electronic structure, specifically
electronic spectroscopy. X-ray spectroscopic methods have been proven to be a powerful tool in
the study of catalysts [9–16].

X-ray spectroscopy provides an element specific tool which probes the local nature of the chemical
environment around the absorbing atom [17]. The element specificity of X-ray spectroscopy arises
because X-ray spectroscopy probes transitions from or to core electronic states. These are usually
not involved in bonding and therefore, can be considered to be more atomic in nature. In this
respect the energies of the core states will then be primarily determined by the charge of the
nucleus. X-ray spectroscopy covers a variety of techniques which utilise the X-ray region of the

1The IUPAC definition of a transition element is an element containing an incomplete d-shell [1] and therefore,
excluding the d10 elements.
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1. Introduction

electromagnetic spectrum. Here, we will only mention the two main X-ray spectroscopic methods
which probe the electronic structure: X-ray absorption and X-ray emission spectroscopy. X-
ray absorption spectroscopy measures the intensity of the absorption of an X-ray photon by the
absorber. It excites an electron originating in a core orbital into an unoccupied or continuum
electronic state. X-ray emission measures the intensity of the emission of an X-ray photon by the
process of an electron from a higher occupied state filling a core hole. Therefore, it provides a
probe for the occupied electronic states of a complex. The combination of both absorption and
emission spectroscopic methods enables, in part, a picture of the electronic states (both occupied
and unoccupied) within the complex to be constructed.

In catalytic complexes this information on the electronic structure can then be related to the
catalytic activity and any modification of the catalyst and the subsequent change in catalytic
activity can be related to the changes in the electronic structure probed through X-ray spectro-
scopy. This might enable a process of ligand optimisation through understanding how the ligands
affect the catalytic activity. However, a purely experimental approach to X-ray spectroscopy has
limitations. In X-ray absorption spectroscopy, only the extended X-ray absorption fine structure
(EXAFS) region of the spectra can be used to directly extract structural information [17, 18].
The X-ray absorption near edge structure (XANES) region at lower energies can only be analysed
and information gathered through the use of model complexes (which are well characterised) for
comparison [19, 20]. Hence, information on the electronic structure cannot be directly inferred
from the spectra. However, the field of quantum-chemistry provides another tool with which to
extract more information from the experimental spectra.

Quantum-chemistry provides a tool which enables us to calculate the electronic structure of a
molecule. Many of the methods that are available make it possible to simulate the electronic
spectra of molecules and thus, interpret the experimental spectra by assignment to electronic
transitions in the calculated spectra.

Within this thesis we only consider iron complexes. Many industrial processes, such as the
Monsanto process, Grubbs catalysis or carbon–carbon bond formation, use expensive and rare
transition metals as their catalysts (Rh, Ir, Ru, Pd etc.). However, in nature we often observe
catalytic processes using the more abundant transition metals, such as iron, in the reduction of
atmospheric nitrogen to ammonia [21] or in the oxidation of H2 by hydrogenases [22]. Along with
this observation of iron catalysts in nature, the abundance of iron as a raw material also makes
it attractive for the development of new catalysts because it is cheap. This is especially import-
ant in industry where large-scale processes are considered and the costs need to be minimised.
However, development of catalysts needs tools to allow an informed design for a specific purpose
and improved efficiency. To this end, we focus on X-ray spectroscopy at the K-edge, absorption
or emission from or to the 1s orbital, respectively. Experimentally, the K-edge has the advantage
that it requires “hard” X-rays, which enable in situ measurements [16,23]. In situ measurements
have the benefit of not requiring any sample preparation and the data can be collected under
the catalytic reaction conditions. Such X-ray spectroscopic measurements on iron catalysts are
present in the literature. For example, in reference [24] X-ray absorption spectra helped elucidate
the oxidation state and that the palladium not the iron atom was the active site of the catalyst.
In another paper they followed and elucidated information about the Michael addition reaction
by iron catalysts using X-ray absorption techniques [12]. These studies illustrate how important
a tool X-ray spectroscopy is in catalyst research.

This work is organised as follows. Chapter 2 discusses the available electronic spectroscopic
methods and introduces X-ray spectroscopy. Chapter 3 elaborates on the calculation of the os-
cillator strengths in an origin-independent formalism, which are essential for the calculation of
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K-edge X-ray spectra. Chapter 4 reviews the available methods in quantum-chemistry for solving
the electronic Schrödinger equation, with a focus on the available methods for the calculation
of X-ray spectra. Chapter 5 considers other aspects of the calculations, such as the basis set;
exchange–correlation functional choice for (time-dependent) density functional theory; inclusion
of relativistic effects and the comparability of results between programs.

After having introduced the discussion of computational aspects, we turn to the calculation of X-
ray spectra of iron complexes. We have considered well-known complexes, ferrocene and carbonyl
complexes. First, chapter 6 considers a test set of ferrocene derivatives. Within the chapter we
calculated the X-ray absorption and X-ray emission spectra and thus, interpret the experimental
observations. Chapter 7 concludes our applications by calculating the X-ray absorption spectra
for a set of five iron carbonyl complexes. Finally we end this work with the inclusion of a summary
in both English and German (chapters 8 and 9, respectively) with a short conclusion at the end.
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2. Excited States in Chemistry

In chemistry, we are primarily concerned with molecules, their properties, and their reactivity.
Quantum mechanics postulates that a molecule can be described through its wave function,
Ψ(R, r). It depends on the nuclear coordinates of the system R = (R1,R2,R3, . . . ,RN), and the
electron coordinates r = (r1, r2, r3, . . . , rn). The wave function contains all information about the
molecular system and a physical observable of the system corresponds to an operator acting on the
wave function. The total energy of a system can be determined using the molecular Hamiltonian
operator Ĥmol. Therefore, using the time-independent Schrödinger equation, the energy levels of
the system can be determined,

ĤmolΨ
tot
m (R, r) = Etot

m Ψtot
m (R, r), (2.1)

where Etot
m is the total energy for the system with the wave function Ψtot

m . The molecular Hamilto-
nian operator contains five terms,

Ĥmol = T̂N + T̂e + V̂NN + V̂Ne + V̂ee

= −
N∑
I

~2

2MI

∇2
I −

n∑
i

~2

2me

∇2
i +

1

2

N∑
IJ

ZIZJe
2

4πε0|RIJ |
−

N∑
I

n∑
i

ZIe
2

4πε0|RI − ri|
+

1

2

n∑
ij

e2

4πε0|rij|
,

(2.2)

where T̂N and T̂e are the kinetic energies of the nuclei and the electrons, respectively, and V̂NN , V̂Ne
and V̂ee are the potential energies for the nuclear–nuclear repulsion, nuclear–electron attraction
and electron–electron repulsion, respectively. MI is the mass of nucleus I, me is the mass of an
electron, ZI is the charge of nucleus I and e is the charge of the electron. Finally, |RIJ | = |RI−RJ |
is the distance between nucleus I and nucleus J and |rij| = |ri−rj| is the distance between electron
i and electron j.

To simplify this full molecular Schrödinger equation, the Born-Oppenheimer (BO) approximation
is usually applied. This states that because the nuclei are much more massive than the electrons,
they can be considered stationary with regard to the electrons. As a consequence, one can employ
a separation of variables where the total wave function is then expressed as a product of a nuclear,
χN(R) and an electronic wave function, Ψ

(R)
n (r),

Ψtot
m (R, r) = χN(R)Ψ(R)

n (r) (2.3)

Here the electronic wave function is obtained by solving the Schrödinger equation for fixed positions
of the nuclei,

ĤeΨ
(R)
n (r) = E(R)

e,n Ψ(R)
n (r), (2.4)

where E
(R)
e,n is the electronic energy of the electronic wave function Ψ

(R)
n (r) and Ĥe is the electronic

Hamiltonian,
Ĥe = T̂e + V̂NN + V̂Ne + V̂ee. (2.5)
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2. Excited States in Chemistry

The electronic wave function still has a parametric dependence on the nuclear coordinates because
of the operator V̂Ne in the electronic Hamiltonian. Solving the electronic Schrödinger equation to
determine the electronic wave function and the energy of the ground and possibly excited states
is the central task of quantum chemistry. The approximations that have been developed to this
end will be discussed in chapter 4.

The nuclear wave function χN(R) describes the motion of the nuclei and only depends on the
nuclear coordinates. However, to calculate the total energy of the system, both the nuclear
and electronic wave functions have to be considered and so we need to solve the full molecular
Schrödinger equation (2.1) of which we can substitute in equations (2.3) and (2.5) and get(

T̂N + Ĥe

)
χN(R)Ψ(R)

n (r) = Etot
m χN(R)Ψ(R)

n (r), (2.6)

which can be simplified to an equation only dependent on the nuclear wave function,(
T̂N + Ê(R)

e,n

)
χN(R) = Etot

m χN(R). (2.7)

In chemistry we are in many cases interested in the electronic ground-state properties of the mo-
lecules, and so usually solve the electronic Schrödinger equation (equation (2.4)) for the electronic
ground-state only. However, when considering spectroscopic properties, knowledge of the excited
states is also required. Such a situation is the calculation of electronic spectroscopy. For the cal-
culation of electronic spectra, one considers the transitions between the different electronic states.
In the following sections we will discuss different types of electronic spectroscopy.

If we consider absorption spectroscopy, the main transitions occur from the ground state to an
excited state. This evolution of the ground state to the excited state induced by the interaction
with electromagnetic radiation can be described using the time-dependent Schrödinger equation,

Ĥ(t)Ψ(r, t) = i~
dΨ(r, t)

dt
. (2.8)

This equation must be solved for a molecule interacting with an external electromagnetic field.
However, solving this equation directly is very expensive as the time evolution of the high-
dimensional wave function must be calculated. Therefore, time-dependent perturbation theory
is applied instead [25]. We can rewrite the time-dependent Hamiltonian as,

Ĥ(t) = Ĥe + Ĥext(t) = Ĥ0 + Ĥ1(t), (2.9)

where Ĥext(t) is the operator pertaining to the time-dependent perturbation. Assuming that we
know how to find the solution for the time-independent contribution, we need only account for the
time-dependent perturbation, which is assumed to be small in comparison to the time-independent
contribution.

One example of a time-dependent perturbation is an electromagnetic field that oscillates in time
and space. Through the use of time-dependent perturbation theory, one can derive Fermi’s golden
rule [25,26], which describes the probability of seeing a transition between the ground and the nth

excited state,

Γ0n(ω) ∝ |T0n|2δ(ω − ω0n), (2.10)

where ω is the angular frequency of the incident radiation and ω0n is the angular frequency required
for a transition from the ground state to the nth state, with ~ω0n = (En − E0) = E0n. Two parts

6



2.1. Ultra-Violet–Visible Spectroscopy (UV-Vis)

of Fermi’s golden rule determine whether the transition occurs: the term δ(ω − ω0n), which will
only be non-zero when the frequency of the electromagnetic radiation matches the frequency gap
between the ground and an excited state, and the transition moment T0n between the ground and
nth excited state, which has the form [26,27],

T0n =
e

me

∑
i

〈Ψ0| exp(ik · ri)(p̂i · E) + i
g

2
exp(ik · ri)(k × E) · ŝi|Ψn〉, (2.11)

where E is the polarisation vector of the electromagnetic field and k is its wave vector, p̂i is the
momentum operator, g is the electron g-factor and ŝi is the spin operator of electron i. Finally,
Ψ0 is the ground-state (electronic) wave function and Ψn is the (electronic) wave function of the
nth excited state. The transition moment contains the time-independent part of the external
perturbation. It determines the probability of observing a transition between states by including
how the electromagnetic radiation connects the states. The normal convention is to introduce the
dimensionless oscillator strengths in place of the transition probability,

f0n =
2me

e2E0n

|T0n|2. (2.12)

The dimensionless oscillator strength is proportional to the absorption cross section that can be
observed in experiment.

The lowest energy transitions between electronic states, determined using the electronic Schrödinger
equation, correspond to transitions observed experimentally when using visible and ultra-violet
electromagnetic radiation and belongs to the technique UV-Vis spectroscopy. The higher energy
transitions correspond to transitions observed experimentally when using X-ray radiation.

2.1. Ultra-Violet–Visible Spectroscopy (UV-Vis)

UV-Vis spectroscopy primarily utilises light in the wavelength region of 250 nm to 800 nm, even
though the UV-region extends down to 10 nm. Light in this wavelength region interacts with the
valence electrons in a molecule and excites them to the lowest unoccupied excited states.

Experimentally, UV-Vis is a very common tool used in characterising molecules, as the production
of the correct wavelengths is relatively simple and can be housed in a simple apparatus. Commonly
it is used as a fingerprint method [28–30] because each molecule will have specific transition
wavelengths. But this is not the only use of UV-Vis spectroscopy, which has a wide range of
applications, for example, following the progress of a reaction [31–34] and determining the number
of species involved in a reaction [35].

In terms of a molecular system, the wavelengths used in the UV-Vis region of the electromagnetic
spectrum are large; usually larger than the “size” of the considered molecule. This means that
the electronic state only “sees” a constant electric field and none of the spatial oscillations in the
electromagnetic radiation. This enables an approximation to the oscillator strengths (2.12) to be
made. A Taylor expansion of exp(ik · ri), describing the spatial oscillations, is performed and
we approximate it as exp(ik · ri) ≈ 1. Using this approximation, we can express the oscillator
strength using the electric-dipole operator (velocity representation), µ̂p, as

f0n =
2me

e2E0n

(E〈Ψ0|µ̂p|Ψn〉)2, (2.13)

where,

µ̂p =
e

me

∑
i

p̂i. (2.14)
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2. Excited States in Chemistry

When considering the possibility of a transition, a transition will only be observed if the dipole
matrix element is non-zero, i.e., 〈Ψ0|µ̂|Ψn〉 6= 0.

To determine whether this transition matrix element is non-zero, selection rules are most com-
monly used. The atomic selection rules are initially derived by evaluating the matrix element
〈φn1,l1,ml1

|µ̂|φn2,l2,ml2
〉 for the hydrogen-like atomic orbitals. Upon evaluation of the integral, only

atomic orbitals with ∆l = ±1, ∆n ≥ 0 and ∆ml = 0,±1 provide a non-zero value for a dipole
transition. However, the atomic selection rules can only be strictly applied to atoms where spher-
ical symmetry is present. For molecules the atomic selection rules can provide an idea of the
probability of a transition, but due to distortion of the atomic orbitals these selection rules are no
longer strictly adhered to. On the other hand, if a molecule possesses strict point group symmetry,
the probability of a transition occurring with dipole intensity for the molecule can be evaluated.
An example would be to assess the probability of a d–d transition occurring in a transition metal
complex with an octahedral Oh or a tetrahedral Td point group. Each molecular orbital belongs
to an irreducible representation (irrep) of the point group and for Oh symmetry the molecular
orbitals containing a d-orbital contribution belong to the T2g and Eg irreps, whilst for Td they
belong to the T2 and E irreps. The product of two irreducible representations transforms as other
irreducible representations of the point group. One of these irreps must pertain to the symmetry
of the dipole operator (T1u and T2 for Oh and Td, respectively) for a dipole transition to be allowed,

ForOh Eg × T2g = T1g + T2g, (2.15)

ForTd T2 × E = T1 + T2. (2.16)

Therefore, we can see that a dipole transition between the d-orbitals will not occur in a molecule
with Oh symmetry, but will occur in Td symmetry. A note here is that this only follows if the point
group symmetry is strictly adhered to. In reality molecules might be distorted and so transitions
may occur with dipole intensity that are formally forbidden by selection rules. Moreover, the
presence of spin-orbit coupling can relax the selection rules.

An important variant of UV-Vis absorption spectroscopy is circular dichroism (CD) [36, 37]. It
considers the interaction of left and right-handed circularly polarised light with a molecule and
the difference in the absorption of the left and right-handed circularly polarised light provides
information normal UV-Vis spectroscopy does not. However, this difference in intensity cannot be
described using the dipole approximation anymore. Therefore, we must include more terms from
the multipole expansion, specifically the magnetic-dipole and electric-quadrupole. The intensity
within the CD spectra then comes from the interference between either the magnetic-dipole and
the electric-dipole or the electric-quadrupole and the electric-dipole terms.

CD in the UV-Vis wavelength region has many applications. First one must distinguish that two
types of CD are available: natural and magnetic. For natural CD (NCD) the molecule has to
possess chirality, otherwise both the left and right-handed circularly polarised light will interact
equally. For a chiral molecule the left and right-handed circularly polarised light will interact
differently with the R or S-enantiomer. Therefore, NCD provides a method for differentiation of
enantiomers within a solution. With the increase in interest in biological systems [38,39] and the
mimicking of these [40,41], the capability to differentiate between enantiomers is very important.
This is also important when considering reactions that produce chiral products and allows for the
determination of the selectivity of the reaction mechanism [42–44] and hence, the enantiomeric
excess of the final product. A final note on NCD is that it has also been used to study the chirality
of interactions. An example is shown in reference [45] where an achiral chromophore has a chiral
interaction with a metal complex.
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2.2. X-ray Spectroscopy

Magnetic CD (MCD) measures the absorption of left and right-handed circularly polarised light
of a non-chiral molecule in a magnetic field. For a difference in the absorption to occur, a molecule
must contain unpaired electrons, which orient within the magnetic field. One of the uses of MCD
is the capability to follow a change of spin state within a complex [36].

The UV-Vis spectra usually have very broad peaks which can provide difficulties with the in-
terpretation. This problem arises, in part, due to the valence electronic structure having many
discrete states which are very close in energy and which many have allowed transitions in the
spectra as well as coupling of vibrations to the electronic transitions and the environment effects
(such as solvent interactions). A secondary consideration is that the valence states are also deloc-
alised over several atoms as they are the bonding/anti-bonding states. Therefore, the information
which can be extracted is non-specific to an atom within the molecule. If we use higher energy
wavelengths within the electromagnetic spectrum, such as X-rays, we start exciting core electrons,
which are element specific.

2.2. X-ray Spectroscopy

X-ray spectroscopy is concerned with transitions involving core electronic states. It has become a
widely used tool, even though experimentally it is more difficult to measure, due to the requirement
of synchrotrons to produce X-rays of sufficient intensity and tuneable wavelengths [46]. A wide
variety of techniques have been developed utilising X-ray sources to enable a large variety of
information to be attained about a molecule, such as absorption and emission.

With the increase in energy of the electromagnetic radiation, the approximation to Fermi’s golden
rule, equation (2.10), is no longer sufficient. In experiment, peaks are present which cannot be
attributed to dipole intensity alone. The reason the dipole approximation was considered valid in
UV-Vis spectroscopy is that the wavelength is usually large compared to the “size” of the molecule.
Therefore, the molecule only sees a constant electromagnetic field during its interaction. X-rays
have a much shorter wavelength, which can become comparable to the dimensions of the molecule.
Therefore, it “sees” the oscillations in the electromagnetic field and higher-order interactions must
be included within Fermi’s golden rule to describe all peaks present in the experimental spectra.

As mentioned, two of the methods used in X-ray spectroscopy are absorption and emission, which
involve the excitation from the ground state or a relaxation from an excited state, respectively.

2.2.1. X-ray Absorption Spectroscopy (XAS)

XAS measures the absorption of X-rays by a molecule taking it from the ground state to an excited
state via the excitation of a core electron. One of the major benefits of XAS is that the energy of
a core electron is unique to an element [17], providing site specific information. Usually the core
electronic states are not involved in any bonding. Therefore, XAS provides very local information.

X-ray absorption spectra are defined by the edge which is probed. An edge is defined as the energy
required to excite a core electron into the continuum. This energy required to eject the core electron
is specific to an element and for each element there are different core orbitals available and hence,
different edges. The nomenclature for the different edges available within XAS experiments stems
from the principle quantum number of the initial state. The highest energy edge for an element is
the K-edge, which considers excitations from the 1s core orbital. The next edge category available
is the L-edge, which can be separated into three individual L-edges. The L1 edge considers
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2. Excited States in Chemistry

excitations from the 2s core orbital. The L2 and L3 edges consist of transitions from the 2p1/2

and 2p3/2 orbitals, respectively. The splitting of the 2p L-edge is due to the presence of spin–orbit
coupling when l ≥ 1. The size of the splitting and the ratio of the intensities at each edge does
provide information on the spin–orbit coupling present [47]. As the principle quantum number
increases, the label for the edge moves to the next letter, i.e., M for n=3; N for n=4 and so on.
Figure 2.1 shows the edges available up to n=3.

Due to the different energies of the edges, they utilise different wavelength ranges in the X-ray
spectrum. One usually distinguishes two categories for X-rays: hard and soft. Experimentally the
distinction between the soft and hard X-rays is made by a difference in the equipment which must
be used. A hard X-ray is defined as a wavelength which requires the use of crystals within the
apparatus, whereas soft X-rays can be manipulated using gratings. However, hard and soft X-rays
also provide specific advantages. Soft X-rays, due to having lower energy, have a low penetration
depth and hence, require special sample preparation, such as large concentrations of the absorb-
ing atom and thin samples. Soft X-ray spectroscopy is particularly important for characterising
surfaces. Hard X-rays have a high penetration depth and allow for in situ measurements [16,23].
Nevertheless, the edges probed by soft X-rays have their own advantages over those probed by
hard X-rays. The K-edge of transition metals utilise hard X-rays, which have the advantages
already mentioned, but the main transitions are the 1s → np transitions. These final p-states
usually reside close to the ionisation edge or within the continuum. However, the K-edge also
contains low intensity transitions before the edge which are 1s→ nd transitions. Due to the weak
intensity and usually very broad peaks, the information available on the d-states is limited. On
the other hand the L2/3 edges are composed of strong 2p→ nd transitions and are very sensitive
to changes in the valence orbital composition. This enables detailed information to be determined
about the complex, such as the amount of back-bonding present in a complex [48] or presence of
multiple valence states [49]. However, for the first row transition metals the L-edge uses soft X-rays
and therefore, the problems previously mentioned are encountered. For the second and third row
transition metals the L-edge can be used in situ [50] as the energies required are very large and
therefore hard X-rays must be used. In the heavier elements (second row) we also start observing
the M-edges [51]. However, the M4/5 edges are not used until the f-block elements [52, 53] where
the 3d → nf transitions are observed. A final consideration of the different edges is the lifetime
of the final state, which is the primary source of the broadening observed in the spectra. In the
K-edge very large broadening is observed due to the very short lifetime of the 1s core-hole [54],
which can hide features. The lower energy edges have a longer lifetime of the core-hole states and
therefore, a smaller broadening in the spectra. The reduced broadening seen in the L2/3 edges
compared to the K-edge is part of the reason of their high sensitivity to changes in the valence
electronic structure.

Up to this point we have only considered the edges available within one element, specifically a
transition metal. In a transition metal complex one can further distinguish between the edges
on the transition metal and the edges of the ligands. The ligand and metal edges both provide
complimentary information in determining characteristics of a transition metal complex. However,
ligand edges are often very complicated to interpret due to the presence of several atoms of the
same element which will all absorb at the same or similar energies. Nevertheless, information can
be extracted from the ligand edges on the characteristics of the covalent bonding between the
ligand and metal [55–58]. Within a transition metal complex, usually only one transition metal
atom is present and therefore, the metal edges are more unique. However, there are cases where
multiple metal atoms are present, which makes the interpretation more complicated, especially if
metal-metal bonds are involved, see chapter 7 for an example.
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2.2. X-ray Spectroscopy

Figure 2.1.: Diagrammatic representation of the absorption edges found in an element for up to
n=3
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The X-ray absorption spectra can then be split into two regions which both provide specific
information with regards to the absorber. This is shown in figure 2.2 for the K-edge. X-ray
absorption near edge structure (XANES) is the lower energy region and includes the edge and any
features up to approximately 50 eV above the edge [9]. XANES also has a sub-region which is
identified as the pre-edge region, which consists of any features in the spectrum that occur before
the edge. For example, in the K-edge of a transition metal complex these pre-edge peaks are the
1s → 3d dipole-forbidden transitions. Extended X-ray absorption fine structure (EXAFS) is the
region of the spectra greater than 50 eV above the edge.

Figure 2.2.: The separate regions of the K-edge spectra. The XANES region includes all features
up to approximately 50 eV above the edge and any features occurring before the

edge, also separated into a sub-region called the pre-edge. The EXAFS region
contains all features greater than 50 eV above the edge.

EXAFS is used to obtain structural information around the absorbing atom. It probes excitations
to continuum states, which can be discussed in terms of the scattering of the electron by the
nearest neighbour atoms. Using a Fourier transform of an EXAFS spectrum, the nearest neighbour
distances and coordination number (within 20%) of the absorbing atom can be extracted [17,18,59].
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The XANES region contains excitations to well defined unoccupied states before the edge (pre-
edge) and the post-edge consists of multiple scattering events. Quantum-chemistry provides a way
to interpret the pre-edge directly in terms of the electronic structure. However, experimentally the
pre-edge features are primarily interpreted through the use of model complexes as a fingerprint
technique [19,20]. Such studies have shown that the pre-edge peaks are determined by a number of
factors in the environment of the absorbing atom. For instance, they can be used to determine the
oxidation state of the absorber along with its symmetry and coordination environment [19,60–63].

In the discussion of the K-edge spectra, we mentioned the presence of 1s→ nd transitions. These
transitions are dipole-forbidden by atomic selection rules, however they can be explained when
going to higher-order transition moments through the transition having quadrupole intensity. The
atomic selection rules for a quadrupole transition can once again be determined by evaluation of
the transition matrix element, 〈φn2,l2,ml2

|Q̂|φn2,l2,ml2
〉, for hydrogen-like atomic orbitals. Upon

evaluation of the integral, only atomic orbitals with a ∆l = 0,±2 and ∆ml = 0,±1,±2 provide
a non-zero value for a quadrupole transition. However, when dealing with molecules the atomic
selection rules can not be rigorously applied and symmetry provides a better indication, if the
molecule has a point group symmetry. Therefore, if we take the case of a molecule which belongs to
the octahedral point group Oh, the s-orbital belongs to the A1g irrep and the d-orbitals to the T2g

and Eg irreps. The quadrupole operator also belongs to the d-orbital irreducible representations.
Now the product of the irreducible representation of the s-orbital and the d-orbitals are calculated,

ForOh A1g × T2g = T2g, (2.17)

A1g × Eg = Eg. (2.18)

Therefore, a quadrupole transition can occur between an s- and a d-orbital according to symmetry.
With regards to the quadrupole intensity present within the X-ray spectra, there has been a lot
of interest in separating the dipole and quadrupole transitions experimentally, without the use
of computational methods. Using linearly polarised light with an oriented sample was found to
provide a means to perform this separation. The dipole transitions are isotropic and will be
present at all angles, however, the quadrupole transitions are angle dependent. Therefore, by
changing the angle of the incident radiation with respect to the oriented sample, the percentage
of the transition attributed to quadrupole intensity can be deduced through the decrease in the
intensity of the peak at the different angles [61,64].

2.2.2. X-ray Emission Spectroscopy (XES)

XES occurs after the absorption process and involves one of the higher energy electrons “dropping”
into the core hole left by absorption. Therefore, it is a two-step process. For XES one may also
define edges which are dependent on the location of the core hole and on the electronic state that
the electron filling the core hole originates from. Here we will focus on the naming convention
when the core hole resides in the 1s orbital (K-edge). Figure 2.3 shows the transitions and their
labels (Siegbahn notation) that can be observed in such an experiment.

For a first row transition metal we can define three main edges available in X-ray emission. The
lowest energy edge is the Kα in which the electron originates from the 2p orbitals. As mentioned
for X-ray absorption, spin–orbit coupling is important for the 2p states and we can define a Kα1

and Kα2 edge for the 2p3/2 and 2p1/2, respectively. The next edge is the Kβ1,3, where the electron
originates from the 3p orbitals. The final edge is the Kβ2,5 edge, also termed as valence-to-
core (V2C) emission, where the electron originates from the valence orbitals in transition metal
complexes. Each edge has found uses within the literature. The Kα edges have been used to
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Figure 2.3.: Diagrammatic representation of the emission edges found in an element for up to
n=3
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Figure 2.4.: The process of XES. Absorption of a photon into the continuum, followed by the
transition of an electron in the occupied states to the unoccupied core-state,

emitting an X-ray photon to dissipate its energy. Here a Kβ2,5 transition is shown.
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distinguish between molecules with the same absorber atom, e.g. nitrogen, where the 2p orbitals
are involved in bonding [65]. The Kβ1,3 is used to normalise emission spectra and has also been
shown to be an indicator of the spin state of a molecule (high or low spin) [66]. Finally, the
Kβ2,5 edge has been shown to provide information on the nature of the bound ligand [67] as well
as determining the interactions between an absorbing atom and its surrounding atoms [68, 69].
An important note when considering X-ray emission is that each transition that occurs within
the spectra has a different peak broadening as the final state, and therefore the lifetime, of each
transition is unique.

X-ray emission has an inherent problem. The molecular system is trying to dissipate the increase
in its energy from the initial excitation, and two alternative pathways are present: non-radiative
and radiative. The non-radiative pathway, also termed as Auger emission, is the major pathway
for energy dissipation. The process involves the transfer of energy to another electron, which is
now ejected into the continuum and the non-ejected electron decays into the core-hole. Radiative
emission (fluorescence) is the minor pathway where the decaying electron emits a photon. In X-ray
emission we measure the intensity of the emitted photon, which can then provide information on
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the electronic state the electron originated from. However, with radiative decay being the minor
pathway, the photon flux in X-ray emission is small compared to a unit of absorption and very
sensitive detectors are required.

2.2.3. Resonant Inelastic X-ray Scattering (RIXS)

RIXS is a spectroscopic method which employs the principles of X-ray absorption and X-ray
emission spectroscopy to measure the inelastic scattering of photons by a molecular system. The
first step in RIXS is the absorption of an X-ray photon by the ground state to form the core ionised
state (final state of XAS pre-edge peaks but intermediate state here) with the core electron now
residing in the valence shell. Due to instability of the core ionised state, an electron “falls” down
from a higher energy state to fill the core hole. This process is depicted in figure 2.5 for the
example of the K-edge. The intermediate state formed is 1s13dn+1, and the final state measured
shown here is 2p53dn+1, the same as when measuring the L-edge of a transition metal.

Figure 2.5.: The process of RIXS. Going from the initial state through absorption to the
intermediate state, which then decays into the final state through emission.
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The full RIXS plane consists of three axes, the incident photon energy Ωabs, the emitted photon
energy Ωem and the energy transfer Ωabs − Ωem. The energy transfer axis then pertains to the
increased energy of the final state relative to the ground state. The most common plots used are
the energy transfer versus the incident energy [70,71]. Plotting over one axis and integrating the
intensities of the peaks along that axis provides insights into different properties of the electronic
states of a molecular system or may provide the original spectra done from a conventional XAS
or XES measurement (for more information on the different axis and plots that can be formed,
see reference [70]).

RIXS has been used for many purposes, the primary being the increase in lifetime resolution of XAS
[12, 72], see below. Also polarisation-dependent RIXS has been employed to separate excitations
within crystal structures [73–75]. For more information on RIXS see references [70, 71,76,77].

High Energy Resolution Fluorescence Detection XANES (HERFD-XANES)

HERFD-XANES is a variant of RIXS, where the resolution of conventional XAS measurements
is significantly improved, showing more detail in the spectra [78, 79]. To carry out a HERFD-
XANES measurement one tunes the emission detector to a specific energy, such as the Kβ1,3

line, of the complex and then scans over the incident energy. The absorption spectrum is then
plotted as function of the emission intensity, which varies with the changes in the absorption of
the incident energy. This reduces the lifetime broadening of the peaks because the final state
has a longer lifetime than the intermediate state (i.e., the final state of XAS). In conventional
K-edge absorption measurements the broadening is usually so large because the final state has an
extremely short lifetime [11,80]. For more information on HERFD-XANES, see chapter 6.

2.2.4. Chiral Variants of X-ray Spectroscopy

The element specificity of X-ray spectroscopy has lead to the development of several variants
which enable the study of other local properties of molecules. As for UV-Vis spectroscopy, circular
dichroism (CD) can also be observed in XAS. The use of circularly polarised light at the X-ray
wavelengths can provide more detailed information on the local environment of the absorber. One
distinguishes two types of circular dichroism experiments available in X-ray spectroscopy: natural
(NCD) and magnetic (MCD).

For both types of CD, a measure of the difference in absorption between left and right-handed
circularly polarised light is the Kuhn dissymmetry factor,

g = 2
(IL − IR)

IL + IR
, (2.19)

where IL is the intensity of absorption for left-handed circularly polarised light and IR is the
intensity of the absorption for right-handed circularly polarised light and the intensity I is related
to the oscillator strength f0n by an unknown constant factor. The magnitude of the Kuhn dis-
symmetry factor is an indicator of the size of the effect. So far, the largest effect has been seen
for X-ray magnetic circular dichroism (XMCD), up to 10−1 for XMCD and is a couple of orders
of magnitude smaller for XNCD [81].

The intensity in XNCD measurements arise from the electric-dipole–electric-quadrupole inter-
ference term, and it has also been determined that this is the only term which will contribute
to an XNCD spectra due to time reversal rules for the electronic properties [82]. The electric–
dipole–magnetic-dipole interference term will not contribute to XNCD due to the magnetic-dipole
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selection rules (∆l = 0 and ∆n = 0). For XMCD the intensity of the transitions is due to the
electric-dipole term.

XMCD measures the interaction of circularly polarised light with a complex in a magnetic field
and was the first of the two variants to be detected and used in 1987 by Shutz et al. [83]. An
advantage XMCD has is that the magnetic field induces the chiral effect and the reversal of the
magnetic field reverses the sign of the absorption. This entails that only either left or right-handed
circularly polarised light is needed, not both [81]. As the production of circularly polarised light in
the X-ray wavelengths of sufficient intensity was problematic, this reduced the size of the problem
as only one form was needed.

The size of the absorption difference in XMCD has several determining factors, of which one of
the largest is relativistic effects, primarily spin-orbit coupling. Moreover, a larger problem arises
in relating the XMCD spectra to the magnetic properties of the molecule, such as the magnetic
moment, which is related to the number of unpaired electrons or the local magnetic moment of the
initial state. Therefore, a set of rules was derived that allow the absorption difference to be related
to these properties of the molecular system and are stated as magneto-optical sum rules [84–88].
The veracity of these sum rules was verified at the L-edge for transition metals [89].

Here, we must also mention that not all the absorption edges provide the same information in
XMCD spectra as they probe different final states. An interesting example is that of the K-edge
(1s → np), which for transition metals, the final states usually reside in the continuum or are
very diffuse. This infers that the data which can be extracted is different from that of any lower
energy edge. However, for transition metal complexes the L2/3-edges are mainly used, due to the
dipole transitions being to the nd states, which determine most of the magnetic properties of the
complex [90]. Moreover, the preference for the L2/3-edge is not only due to the final state probed,
but also the magnitude of the observed absorption differences. Spin-orbit coupling plays a role in
the magnitude of these effects and as it is negligible in both the 1s state and the final p-states at
the K-edge [91], whilst these are very far from the nucleus, they are significant at the L2/3-edge
in the initial 2p-states as well as non-negligible in the final d-states [47].

X-ray natural circular dichroism (XNCD) measures the interaction of circularly polarised light with
a complex in its natural state that possesses chirality and was believed to be first observed several
years later than XMCD by Siddons et al. in 1990 for cobalt and its compounds [92]. However, this
observation was later disputed as not a true observation of XNCD due to the use of elliptically
polarised light [93]. Nevertheless, the presence of a natural circular dichroism effect in the X-ray
wavelengths was believed possible [94] and the main restriction was the experimental apparatus
until 1996 [81]. Not long after 1996, the first unambiguous measurement of XNCD was made
by Goulon et al. for the LiIO3 crystal [95]. One of the problems faced in XNCD measurements
is that the intensities tend to be small. This is due to the electric-dipole–electric-quadrupole
interference term, which also vanishes in most systems. To observe XNCD a crystal must have a
structure which has chirality and, therefore, the interference term does not disappear, such as the
LiIO3 crystal which is gyrotropic. Most observations made of a significant XNCD effect were not
performed at the K-edge, only the L-edge [93]. However, Stewart et al. measured a large XNCD
effect at the K-edge of a chiral cobalt complex, which was chosen due to a large pre-edge feature
in the normal absorption spectra [96]. Although these measurements were made, the amount of
literature in which XNCD has been used is minimal. Nonetheless, interest is still present with a
paper published on the presence of an XNCD effect observed in a copper crystal (CsCuCl3) in
2008 [97]. For more information, we refer to two review articles on the optical activity of X-rays,
one by Goulon et al. [98] and one by Rogalev et al. [99].
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The next chapter will cover in more detail the calculation of the intensities for electronic spec-
troscopy, of which many of the ideas and some of the details have been introduced within this
chapter.
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In the previous chapter the importance of electronic spectroscopy for the determination of many
properties of molecules was highlighted. Specifically for X-ray spectroscopy, the use of purely
experimental techniques is limited. The spectroscopic methods are often relegated to a fingerprint
technique, in which comparison with model complexes is essential [19, 20, 60, 63, 100]. With the
advent of theoretical methods for the prediction of X-ray spectra it becomes possible to interpret
the experimental spectra without the use of model complexes [65, 67, 68, 101–104]. However, to
attain even more information from X-ray spectra it is essential that further development of the
theoretical methods is carried out [105].

Many theoretical methods have been developed to calculate excitation energies for electronic
spectroscopy which will be discussed in more detail in chapter 4. Calculating only the excitation
energies is, however, not enough for interpreting the spectra, as not all calculated transitions will
actually contribute to the spectra. To predict the full spectra the calculation of intensities for
each transition is also necessary.

To derive the equations needed for calculating the intensities we revisit the theory of interaction
of electromagnetic radiation with a molecule. The electromagnetic radiation consists of time-
dependent external electric and magnetic fields and can be expressed through the scalar potential
φ(r) and the vector potential A(r, t) as,

φ(r, t) = 0 (3.1)

A(r, t) = −A0 E cos(k · r − ωt), (3.2)

where A0 is the amplitude of the wave, ω is the angular frequency, k is the wave vector which points
in the direction of propagation, k = |k|, and E is the polarisation vector that is perpendicular to
the direction of propagation. From these scalar and vector potentials one obtains the oscillating
electric and magnetic fields,

E(r, t) = −∇φ(r, t)− 1

c

∂A(r, t)

∂t
= A0k E sin(k · r − ωt) (3.3)

B(r, t) = ∇×A(r, t) = A0(k × E) sin(k · r − ωt). (3.4)

These are then considered as a time-dependent perturbation and included with time-dependent
perturbation theory (for details, see reference [25]). Fermi’s golden rule can be derived as a result,
which describes the probability of a transition occurring when the energy, ~ω, of the external field
is equal to an energy gap, ~ω0n = (En − E0), between the ground state and an excited state of
the molecule,

Γ0n(ω) =
πA2

0

2~c2
|T0n|2 δ(ω − ω0n). (3.5)

Where Γ0n(ω) is the transition probability at a given wavelength, c is the speed of light. Here the
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transition moment, T0n, is introduced,

T0n =
e

me

∑
i

〈
0
∣∣ exp(ik · ri) (p̂i · E) + i

g

2
exp(ik · ri) (k × E) · ŝi

∣∣n〉, (3.6)

where e and me are the charge and mass of an electron, respectively, p̂i is the momentum operator,
g is the electron g-factor, ŝi is the spin operator, Ψ0 is the ground-state wave function and Ψn is
the nth excited state wave function.

Instead of the transition moment, one commonly introduces the dimensionless oscillator strength,

f0n =
2me

e2E0n

|T0n|2. (3.7)

Calculating the matrix elements in equation (3.7) is in principle possible, but is cumbersome and
in general not feasible. The required integrals are difficult to compute analytically (for a possible
approach, see reference [106]), and because of the dependence on the wave vector k, the operator
in T0n is different for each excitation. Usually, a Taylor expansion of exp(ik · ri) is performed,
and the most common approximation is to include only the first term, exp(ik · ri) ≈ 1. This
is sufficient for typical molecules and wavelengths in the ultraviolet or visible range where the
wavelength is large compared to the molecular size. This approximation is termed as the dipole
approximation and has been discussed in the previous chapter. This approximation corresponds
to assuming that the oscillating electric field is constant over the whole molecule.

However, for the short wavelengths used in hard X-ray spectroscopy this approximation is not
adequate and higher-order terms need to be included, i.e.,

exp(ik · ri) = 1 + i(k · ri)−
1

2
(k · ri)2 + · · · . (3.8)

The failure of the dipole approximation becomes apparent for the K-edge of transition metal com-
plexes. In this case the edge itself consists of 1s→ 4p transitions, which are dipole allowed. The
pre-edge features consist of excitations from the 1s core orbital to valence-states. For transition
metal complexes the lowest unoccupied valence-states contain metal 3d orbitals. Such transitions
are dipole-forbidden, but nevertheless have an experimentally observable intensity in the spectrum.
Thus it becomes necessary to go beyond the dipole approximation.

For the calculation of hard X-ray spectra, the Taylor expansion has previously been extended to
the first order-terms [107], which were found to be origin-dependent in the presence of a dipole
contribution to the intensity. To counteract this dependence on the origin, a scheme was proposed
to minimise the higher-order contributions to the intensity with respect to the dipole contribu-
tion. This method moves the origin for each excitation to the point at which the higher-order
contributions are minimised. Usually, this is equivalent to placing the origin at the atom where
the excitation occurs. However, if there are very small dipole contributions compared to the quad-
rupole, then the origin is placed at unfeasibly large distances from the molecule and the resulting
intensity is significantly affected [108]. Moreover, this scheme will also fail in situations where
the excitations are delocalised over different atomic centres, such as for metal K-edge spectra in
polynuclear transition metal clusters or for ligand edge spectra.

When considering a physical observable there should be no dependence on the origin of the system.
Thus, a theoretical framework needs to be devised for the calculation of origin-independent oscil-
lator strengths. Within this chapter we will outline a theory for calculating oscillator strengths
that are origin-independent.
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3.1. Multipole Expansion

As a starting point for the theory of origin-independent oscillator strengths, the Taylor expansion
of equation (3.8) is inserted into the transition moment, given in equation (3.6). In this we can
separate the terms depending on their order in the wave vector k,

T0n = T
(0)
0n + T

(1)
0n + T

(2)
0n + · · · (3.9)

From here the next step is to consider the form of the transition moment for each order of k.

3.1.1. Zeroth Order: Electric Dipole

For zeroth order in the wave vector we have

T
(0)
0n =

e

me

∑
i

〈
0
∣∣p̂i · E∣∣n〉 = E ·

〈
0
∣∣µ̂p∣∣n〉, (3.10)

where µ̂p is the electric-dipole operator in the velocity representation.

µ̂p =
e

me

∑
i

p̂i (3.11)

The velocity representation for the operator can be converted to the more common length repres-
entation by using the commutator,

[ri,α, Ĥ0] =
i~
m
p̂i,α , (3.12)

which provides the relationship for the electric-dipole transition moment (for more details, see
Appendix A of reference [27]), 〈

0
∣∣p̂i,α∣∣n〉 = −iE0n

m

~
〈
0
∣∣ri,α∣∣n〉. (3.13)

For exact eigenfunctions of the Schrödinger equation the length and velocity representations are
equivalent and switching between them has no effect on the final result. This is however, not the
case for approximate solutions obtained in a finite basis set. We will return to this point in section
3.4.

Using equation (3.13), one obtains,〈
0
∣∣µ̂p∣∣n〉 = − i

~
E0n

〈
0
∣∣µ̂∣∣n〉, (3.14)

where we introduced the electric-dipole moment operator in the length representation

µ̂ = e
∑
i

r̂i. (3.15)

Thus, for the zeroth-order contribution, we arrive at

T
(0)
0n = T

(µ)
0n = −i

E0n

~

(
E ·
〈
0
∣∣µ̂∣∣n〉). (3.16)
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3. Origin-Independent Intensities

3.1.2. First Order: Electric Quadrupole and Magnetic Dipole

In the first order in k, we find

T
(1)
0n =

i e

me

∑
i

〈
0
∣∣(k · ri)(p̂i · E)

∣∣n〉+
i eg

2me

∑
i

〈
0
∣∣(k × E) · ŝi

∣∣n〉. (3.17)

The matrix elements in the first term can be split into one term that is symmetric and one that is
antisymmetric with respect to interchanging the wave vector k and the polarisation vector E via〈

0
∣∣(k · ri)(p̂i · E)

∣∣n〉 =
1

2

〈
0
∣∣(k · ri)(p̂i · E) + (k · p̂i)(ri · E)

∣∣n〉
+

1

2

〈
0
∣∣(k · ri)(p̂i · E)− (k · p̂i)(ri · E)

∣∣n〉. (3.18)

From the symmetric first term and using Einstein’s convention of implicit summation over repeated
Greek indices, which we use to label the Cartesian components x, y, and z, we obtain

T
(Q)
0n =

i e

2me

∑
i

kαEβ
〈
0
∣∣ri,αp̂i,β + p̂i,αri,β

∣∣n〉 =
i

2
kαEβ

〈
0
∣∣Q̂p

αβ

∣∣n〉 (3.19)

Once more, by using the commutator,

[ri,αri,β, Ĥ0] =
i~
m

(p̂i,αri,β + ri,αp̂i,β) , (3.20)

the matrix elements in the velocity representation can be related to those in the conventional
length representation, and one arrives at

T
(Q)
0n =

E0n

2~
kαEβ

〈
0
∣∣Q̂αβ

∣∣n〉, (3.21)

where
Q̂αβ = e

∑
i

ri,αri,β (3.22)

is the operator of the electric-quadrupole moment in the length representation. In contrast to
many other authors [107,109], a traceless version of the quadrupole tensor is not introduced here.
The traceless definition arises from the expansion of 1/|r| that is often introduced in the context
of intermolecular interactions, whereas in the case of an expansion of the exponential exp(ik · r)
considered here the definition of equation (3.22) is more natural. Nevertheless, because the wave
vector k and the polarization vector E are orthogonal, the diagonal elements of the electric-
quadrupole transition moments do not enter here and it would, therefore, be possible to alter
their trace without consequences.

For the antisymmetric second term, we can use that (k · ri) and (p̂i · E) commute because k and
E are orthogonal and then apply the vector identity

(a · c)(b · d)− (b · c)(a · d) = (a× b)(c× d) (3.23)

to obtain,

T
(m′)
0n =

i e

2me

∑
i

〈
0
∣∣(k · ri)(p̂i · E)− (k · p̂i)(ri · E)

∣∣n〉
= i

e

2me

∑
i

〈
0
∣∣(k × E)(ri × p̂i)

∣∣n〉 = ic (k × E)
〈
0
∣∣m̂′∣∣n〉, (3.24)
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3.1. Multipole Expansion

with the (spin-independent) orbital magnetic-dipole moment operator

m̂′ =
e

2mec

∑
i

(ri × p̂i). (3.25)

Thus, this antisymmetric term T
(m′)
0n adopts the same form as the last, spin-dependent term in

equation (3.17),

T
(ms)
0n = i

e

2me

∑
i

(k × E)
〈
0
∣∣g ŝi∣∣n〉 = ic (k × E)

〈
0
∣∣m̂s

∣∣n〉, (3.26)

with the spin magnetic-dipole operator is

m̂s =
e

2mec

∑
i

g ŝi. (3.27)

Combining the two contributions, we arrive at the magnetic-dipole transition moment,

T
(m)
0n = i

e

2me

∑
i

(k × E)
〈
0
∣∣(ri × p̂i) + g ŝi

∣∣n〉 = ic (k × E)
〈
0
∣∣m̂∣∣n〉, (3.28)

and the total magnetic-dipole moment operator,

m̂ =
e

2mec

∑
i

[
(ri × p̂i) + g ŝi

]
. (3.29)

Altogether, the first-order transition moments consist of an electric-quadrupole and a magnetic-
dipole contribution, i.e.,

T
(1)
0n = T

(Q)
0n + T

(m′)
0n + T

(ms)
0n = T

(Q)
0n + T

(m)
0n . (3.30)

3.1.3. Second Order: Electric Octupole and Magnetic Quadrupole

In second order in k, we find,

T
(2)
0n = − e

2me

∑
i

〈
0
∣∣(k · ri)(k · ri)(p̂i · E)

∣∣n〉− eg

2me

∑
i

〈
0
∣∣(k · ri)(k × E) · ŝi

∣∣n〉. (3.31)

In a similar fashion as for the first-order term above, the matrix elements in the first term are
split into a part that is symmetric and one that is antisymmetric with respect to interchanging
the polarisation vector E with one of the wave vectors k,〈

0
∣∣(k · ri)(k · ri)(p̂i · E)

∣∣n〉
=

1

3

〈
0
∣∣(k · ri)(k · ri)(p̂i · E)

+ (k · ri)(k · p̂i)(ri · E) + (k · p̂i)(k · ri)(ri · E)
∣∣n〉

+
1

3

〈
0
∣∣2(k · ri)(k · ri)(p̂i · E)

− (k · ri)(k · p̂i)(ri · E)− (k · p̂i)(k · ri)(ri · E)
∣∣n〉. (3.32)

For the symmetric first term, we obtain

T
(O)
0n = − e

6me

∑
i

kαkβEγ
〈
0
∣∣ri,αri,β p̂i,γ + ri,αp̂i,βri,γ + p̂i,αri,βri,γ

∣∣n〉
= −1

6

∑
i

kαkβEγ
〈
0
∣∣Ôp

αβγ

∣∣n〉, (3.33)

23



3. Origin-Independent Intensities

with the operator of the electric-octupole moment in velocity representation

Ôp
αβγ =

e

me

∑
i

(
ri,αri,β p̂i,γ + ri,αp̂i,βri,γ + p̂i,αri,βri,γ

)
. (3.34)

Using the commutator,

[ri,αri,βri,γ, Ĥ0] =
i~
m

(p̂i,αri,βri,γ + ri,αp̂i,βri,γ + ri,αri,β p̂i,γ) , (3.35)

these matrix elements in the velocity representation can be converted to those in the conventional
length representation,

T
(O)
0n = i

E0n

6~
kαkβEγ

〈
0
∣∣Ôαβγ

∣∣n〉, (3.36)

with the octupole operator in the length representation given by

Ôαβγ = e
∑
i

ri,αri,βri,γ. (3.37)

Again this definition differs from that given elsewhere [109], as the traceless form is not introduced.
In fact, for the expansion of the exponential exp(ik · r) it turns out that introducing such a
traceless definition here is not possible because only the terms depending on the trace of the
octupole moments, Ôααβ, will contribute to the isotropically-averaged oscillator strengths later
on. In contrast, when describing intermolecular interactions starting from an expansion of 1/|r|,
these terms are zero and do not appear.

After some algebra, the antisymmetric part of equation (3.31) can be expressed as

T
(M′)
0n = − e

6me

∑
i

(k × E) ·
〈
0
∣∣(k · ri) · (ri × p̂i) + (ri × p̂i)(k · ri)

∣∣n〉
= − e

6me

∑
i

(k × E)α kβ
〈
0
∣∣ri,β (ri × p̂i)α + (ri × p̂i)α ri,β

∣∣n〉
= − c

2
(k × E)α kβ

〈
0
∣∣M̂′

αβ

∣∣n〉, (3.38)

with the (spin-independent) orbital magnetic-quadrupole operator [109,110],

M̂′
αβ =

e

2mec

∑
i

2

3

(
ri,β(ri × p̂i)α + (ri × p̂i)αri,β

)
. (3.39)

Note that this operator is not symmetric with respect to interchanging α and β.

The remaining spin-dependent part of equation (3.31) is given by

T
(Ms)
0n = − eg

2me

∑
i

(k × E) ·
〈
0
∣∣(k · ri) · ŝi∣∣n〉

= − c
2

∑
i

(k × E)α kβ
〈
0
∣∣M̂s

αβ

∣∣n〉 (3.40)

with the spin contribution to the magnetic-quadrupole operator

M̂s
αβ =

e

2mec

∑
i

g
(
ri,β ŝi,α

)
. (3.41)
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3.2. Origin-Dependence of Transition Moments

Finally, the full magnetic-quadrupole contribution is obtained by adding the orbital and spin
contributions to obtain

T
(M)
0n = T

(M′)
0n + T

(Ms)
0n = − c

2
(k × E)α kβ

〈
0
∣∣M̂′

αβ + M̂s
αβ

∣∣n〉. (3.42)

Altogether, the second-order transition moments consist of an electric-octupole and a magnetic-
quadrupole contribution, i.e.,

T
(2)
0n = T

(O)
0n + T

(M′)
0n + T

(Ms)
0n = T

(O)
0n + T

(M)
0n . (3.43)

3.2. Origin-Dependence of Transition Moments

In summary, we can approximate the transition moment of equation (3.6), with the terms up to
second order of the multipole expansion, which results in five contributions.

T0n = T
(µ)
0n + T

(Q)
0n + T

(m)
0n + T

(O)
0n + T

(M)
0n (3.44)

In table 3.1 the equations derived in section (3.1) are collected for each order in k.

Table 3.1.: Overview of the different contributions appearing in the multipole expansion of the
transition moments of equation (3.6) up to second order.

order electric magnetic

0 T
(µ)
0n = −i

E0n

~
∑
α

Eα
〈
0
∣∣µ̂α∣∣n〉 –

1 T
(Q)
0n =

E0n

2~
∑
αβ

kαEβ
〈
0
∣∣Q̂αβ

∣∣n〉 T
(m)
0n = ic

∑
α

(k × E)α
〈
0
∣∣m̂α

∣∣n〉
2 T

(O)
0n = i

E0n

6~
∑
αβγ

kαkβEγ
〈
0
∣∣Ôαβγ

∣∣n〉 T
(M)
0n = − c

2

∑
αβ

(k × E)α kβ
〈
0
∣∣M̂αβ

∣∣n〉

If we restrict our considerations to a spin–orbit coupling free framework in the absence of static
external magnetic fields, the wave function can always be chosen as a real function. In this case, the
electric transition integrals,

〈
0
∣∣µ̂α∣∣n〉, 〈0∣∣Q̂αβ

∣∣n〉, and
〈
0
∣∣Ôαβγ

∣∣n〉, as defined here are always real.
Moreover, for the magnetic transition moments, the spin contributions can be neglected because
for states with a multiplicity larger than zero (i.e., for S > 0) the different MS-components of
the multiplet will be degenerate [111,112] and the components with +MS and −MS provide spin
contributions to the magnetic transition moments that cancel each other. Therefore, these spin
contributions,

〈
0
∣∣m̂s

α

∣∣n〉 and
〈
0
∣∣M̂s

αβ

∣∣n〉, will not be considered further in the following. The

remaining orbital contribution to the magnetic transition integrals,
〈
0
∣∣m̂α

∣∣n〉 and
〈
0
∣∣M̂αβ

∣∣n〉,
are then purely imaginary. As a consequence, we notice that the zeroth-order and second-order
transition moments are purely imaginary, whereas the first-order transition moments are purely
real. This holds both for the electric and for the magnetic contributions.

As stated earlier, the higher-order transition moments are origin-dependent. In the following, we
investigate how these individual contributions to the transition moment change with respect to
the position of the origin of the coordinate system.
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3. Origin-Independent Intensities

3.2.1. Electric Transition Moments

First, we consider the electric-dipole transition moment for a system where we have shifted the
origin from O to O + a, which corresponds to a shift in the coordinates, r, to r − a. Then the
integral in equation (3.16) becomes,

〈
0
∣∣µ̂α(O + a)

∣∣n〉 = e
∑
i

〈
0
∣∣ri,α − aα∣∣n〉

=
〈
0
∣∣µ̂α(O)

∣∣n〉− eN aα〈0|n〉 =
〈
0
∣∣µ̂α(O)

∣∣n〉, (3.45)

As a is a constant, it can be moved outside the integral in the second term. Then this term is
just an overlap integral between the ground state and the excited state, which is always zero.
Consequently, the electric-dipole transition moment is origin-independent.

Next, we include this shift of the origin into the electric-quadrupole transition moment, and obtain

〈
0
∣∣Q̂αβ(O + a)

∣∣n〉 = e
∑
i

〈
0
∣∣(ri,α − aα)(ri,β − aβ)

∣∣n〉
= e

∑
i

〈
0
∣∣ri,αri,β − ri,αaβ − ri,βaα + aαaβ

∣∣n〉
=
〈
0
∣∣Q̂αβ(O)

∣∣n〉− aβ〈0∣∣µ̂α∣∣n〉− aα〈0∣∣µ̂β∣∣n〉, (3.46)

Again, the fourth term is a constant multiplied by an overlap integral that is zero. However,
the second and third term contain an electric-dipole matrix element, which may not be zero.
Therefore, the magnitude of the change of the electric-quadrupole matrix element is dependent on
the size of the electric-dipole contributions multiplied by the shift in the origin of the coordinate
system.

Finally, we have to consider the effect of a shift in the origin on the electric-octupole transition
moment,

〈
0
∣∣Ôαβγ(O + a)

∣∣n〉 = e
∑
i

〈
0
∣∣(ri,α − aα)(ri,β − aβ)(ri,γ − aγ)

∣∣n〉
=
〈
0
∣∣Ôαβγ(O)

∣∣n〉
− aγ

〈
0
∣∣Q̂αβ(O)

∣∣n〉− aβ〈0∣∣Q̂αγ(O)
∣∣n〉− aα〈0∣∣Q̂βγ(O)

∣∣n〉
+ aαaβ

〈
0
∣∣µ̂γ∣∣n〉+ aαaγ

〈
0
∣∣µ̂β∣∣n〉+ aβaγ

〈
0
∣∣µ̂α∣∣n〉. (3.47)

Again, one term arises that is only dependent on the overlap between the initial and final state.
All the other terms will include either ri,α or ri,αri,β. These correspond to a shift in one or two
of the axis of the coordinate system multiplied by either an electric-quadrupole or electric-dipole
matrix element, respectively. Therefore, the magnitude of the change in the electric-octupole
matrix element with respect to a change in the origin of the coordinate system, is dependent on
the electric-quadrupole and electric-dipole transition moments.

Thus, the electric-quadrupole and electric-octupole transition moments are only origin-independent
if all lower-order electric transition moments vanish. The above expressions hold both for the
length and velocity representations. A note here is that these equations are employing the non-
traceless definition of the higher order moments as given in section 3.1. If a traceless definition is
used, these equations will differ for all terms with two or more equivalent indices.
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3.2.2. Magnetic Transition Moments

For the magnetic-dipole transition moment, a shift of the origin of the coordinate system results
in, 〈

0
∣∣m′α(O + a)

∣∣n〉 =
e

2mec

∑
i

〈
0
∣∣((ri − a)× p̂i)α

∣∣n〉
=

e

2mec

∑
i

〈
0
∣∣(ri × p̂i)α∣∣n〉− e

2mec

∑
i

〈
0
∣∣(a× p̂i)α∣∣n〉

=
〈
0
∣∣m′α(O)

∣∣n〉− εαβγaβ e

2mec

∑
i

〈
0
∣∣p̂i,γ∣∣n〉

=
〈
0
∣∣m′α(O)

∣∣n〉− εαβγaβ 1

2c

〈
0
∣∣µ̂pγ∣∣n〉

=
〈
0
∣∣m′α(O)

∣∣n〉+
i

2
εαβγaβ

E0n

~c
〈
0
∣∣µ̂γ∣∣n〉, (3.48)

where εαβγ is the Levi-Civita tensor. Thus, a term depending on the electric-dipole moment in
the velocity representation arises. This can be converted into the length representation using
equation (3.13). The origin-dependence of the magnetic-dipole transition moments vanishes if the
electric-dipole transition moment is zero.

Finally, for the magnetic-quadrupole transition moment the origin-dependence is given by [110,113]〈
0
∣∣M′

αβ(O + a)
∣∣n〉 =

e

2mec

∑
i

2

3

〈
0
∣∣(ri,β − aβ)((ri − a)× p̂i)α + ((ri − a)× p̂i)α(ri,β − aβ)

∣∣n〉
=

e

2mec

∑
i

2

3

〈
0
∣∣ri,β(ri × p̂i)α + (ri × p̂i)αri,β

∣∣n〉
− e

2mec

∑
i

2

3

〈
0
∣∣ri,β(a× p̂i)α + (a× p̂i)αri,β

∣∣n〉
− e

2mec

∑
i

2

3

〈
0
∣∣aβ(ri × p̂i)α + (ri × p̂i)αaβ

∣∣n〉
+

e

2mec

∑
i

2

3

〈
0
∣∣aβ(a× p̂i)α + (a× p̂i)αaβ

∣∣n〉
=
〈
0
∣∣M′

αβ(O)
∣∣n〉− e

2mec

∑
i

2

3

〈
0
∣∣εαγδaγ(ri,β p̂i,δ + p̂i,δri,β)

∣∣n〉
− 4e

6mec

∑
i

aβ
〈
0
∣∣(ri × p̂i)α∣∣n〉+

4e

6mec

∑
i

εαγδ aβaγ
〈
0
∣∣p̂i,δ∣∣n〉

=
〈
0
∣∣M′

αβ(O)
∣∣n〉− e

2mec

∑
i

2

3

〈
0
∣∣εαγδaγ(ri,β p̂i,δ + p̂i,δri,β)

∣∣n〉
− 4

3
aβ
〈
0
∣∣m′α(O)

∣∣n〉+
2

3c
εαγδ aβaγ

〈
0
∣∣µ̂pδ∣∣n〉 (3.49)

While the third and fourth term, depending on the electric-dipole and magnetic-dipole transition
moments, respectively, are already in their final form, the second term still has to be rewritten to
arrive at known transition moments. To this end one uses (for details, see supporting information
of reference [27])〈

0
∣∣εαγδaγ(ri,β p̂i,δ + p̂i,δri,β)

∣∣n〉 =
〈
0
∣∣εαγδaγ(ri,β p̂i,δ + p̂i,βri,δ)

∣∣n〉
+ aβ

〈
0
∣∣(ri × p̂i)α∣∣n〉− δαβ aγ〈0∣∣(ri × p̂i)γ∣∣n〉. (3.50)
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The second term then contains a contribution from the electric-quadrupole transition moments and
two terms containing the magnetic-dipole transition moments. With equation (3.50) substituted
into equation (3.49), we arrive at the final equation for the origin-dependence of the magnetic-
quadrupole matrix elements,〈

0
∣∣M′

αβ(O + a)
∣∣n〉 =

〈
0
∣∣M′

αβ(O)
∣∣n〉− e

2mec

∑
i

2

3

〈
0
∣∣εαγδaγ(ri,β p̂i,δ + p̂i,βri,δ)

∣∣n〉
− e

2mec

∑
i

2

3
aβ
〈
0
∣∣(ri × p̂i)α∣∣n〉+

e

2mec

∑
i

2

3
δαβ aγ

〈
0
∣∣(r × p̂)γ

∣∣n〉
− 4

3
aβ
〈
0
∣∣m′α(O)

∣∣n〉+
2

3c
εαγδ aβaγ

〈
0
∣∣µ̂pδ∣∣n〉

=
〈
0
∣∣M′

αβ(O)
∣∣n〉− 1

3c
εαγδaγ

〈
0
∣∣Q̂p

βδ(O)
∣∣n〉+

2

3c
εαγδ aβaγ

〈
0
∣∣µ̂pδ∣∣n〉

+
2

3
δαβ

(
a ·
〈
0
∣∣m′(O)

∣∣n〉)− 2aβ
〈
0
∣∣m′α(O)

∣∣n〉. (3.51)

Again, the electric-dipole and electric-quadrupole transition moments in the velocity representa-
tion can be converted to the length representation to finally arrive at〈

0
∣∣M′

αβ(O + a)
∣∣n〉 =

〈
0
∣∣M′

αβ(O)
∣∣n〉

+
i

3

E0n

~c
εαγδaγ

〈
0
∣∣Q̂βδ(O)

∣∣n〉− 2i

3

E0n

~c
εαγδ aβaγ

〈
0
∣∣µ̂δ∣∣n〉

+
2

3
δαβ

(
a ·
〈
0
∣∣m′(O)

∣∣n〉)− 2aβ
〈
0
∣∣m′α(O)

∣∣n〉. (3.52)

Here, we notice that upon shifting the origin, the magnetic-quadrupole transition moment gen-
erates all lower-order contributions, i.e., terms depending on the electric-dipole and electric-
quadrupole transition moments as well as on the magnetic-dipole transition moments.

3.3. From Transition Moments to Oscillator Strengths

The multipole expansion of the full transition moments T0n can now be inserted into equation (3.7)
to obtain an expression for calculating the oscillator strengths,

f0n =
2me

e2E0n

∣∣T (0)
0n + T

(1)
0n + T

(2)
0n + · · ·

∣∣2
=

2me

e2E0n

∣∣T (µ)
0n + T

(Q)
0n + T

(m)
0n + T

(O)
0n + T

(M)
0n + · · ·

∣∣2. (3.53)

Here different truncations can be employed, such as the dipole approximation, where only the
zeroth order term is retained. In this case we arrive at the well-known equation in which the
oscillator strength is proportional to the squared absolute value of the electric-dipole transition
moments. This approximation is commonly employed in UV-Vis spectroscopy.

Here, we are interested in cases where the dipole approximation is insufficient to describe the
spectra, such as for K-edge XAS of transition metal complexes. In these situations, higher order
terms have to be included, and the currently used approach is to truncate after the first order in
the expansion,

f0n ≈
2me

e2E0n

∣∣T (0)
0n + T

(1)
0n

∣∣2. (3.54)
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3.3. From Transition Moments to Oscillator Strengths

However, these terms are dependent on the choice of the origin of the coordinate system and the
resulting oscillator strength is origin-dependent [107].

To obtain an origin-independent formulation, we return to equation (3.53) and realise that the
squared absolute value results in a sum of products of multipole transition moments. These
products are of different orders in the wave vector k, as is illustrated in figure 3.1. Hence, it seems

Figure 3.1.: Schematic illustration of the different terms arising from the squared absolute value
in equation (3.53). The entries in the table indicate the order of the different terms
in the wave vector k. We retain all terms up to second order, as indicated by the red

line.
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T
(M),∗
0n 2 3 3 4 4

logical to retain all terms up to a given order in k in the expression for the oscillator strengths
instead of truncating the multipole expansion of the transition moments. By collecting terms that
are of the same order, the oscillator strengths can be expressed as

f0n = f
(0)
0n + f

(1)
0n + f

(2)
0n + · · · (3.55)

where

f
(0)
0n =

2me

e2E0n

∣∣T (0)
0n

∣∣2 (3.56)

f
(1)
0n =

2me

e2E0n

2Re
(
T

(0),∗
0n T

(1)
0n

)
= 0 (3.57)

f
(2)
0n =

2me

e2E0n

[∣∣T (1)
0n

∣∣2 + 2Re
(
T

(0),∗
0n T

(2)
0n

)]
, (3.58)

where the star denotes complex conjugation. Because T
(0)
0n is purely imaginary and T

(1)
0n is real, their

product is also purely imaginary and the first-order contribution f
(1)
0n vanishes. In the following,

we will retain all terms up to second order and it turns out that the resulting approximation for
the oscillator strengths is independent of the choice of the origin.
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3. Origin-Independent Intensities

3.3.1. Origin-Independence of Oscillator Strengths

Starting from the definitions of T
(0)
0n , T

(1)
0n , and T

(2)
0n in equations (3.16), (3.17), and (3.31), respect-

ively, one can easily see that their origin dependence is given by

T
(0)
0n (O + a) = T

(0)
0n (O), (3.59)

T
(1)
0n (O + a) = T

(1)
0n (O) + i(k · a)T

(0)
0n (O), (3.60)

T
(2)
0n (O + a) = T

(2)
0n (O) + i(k · a)T

(1)
0n (O)− 1

2
(k · a)2 T

(0)
0n (O). (3.61)

Therefore, the zeroth-order contribution to the oscillator strengths f
(0)
0n , i.e., the expression ob-

tained in the dipole approximation, is obviously origin-independent. For the second-order contri-
bution, we have

f
(2)
0n (O + a) =

2me

e2E0n

[∣∣T (1)
0n (O + a)

∣∣2 + 2Re
(
T

(0),∗
0n (O)T

(2)
0n (O + a)

)]
=

2me

e2E0n

[∣∣T (1)
0n (O)

∣∣2 + 2Re
(

i(k · a)T
(0)
0n (O)T

(1),∗
0n (O)

)
+ (k · a)2

∣∣T (0)
0n (O)

∣∣2
+ Re

(
T

(0),∗
0n (O)

[
2T

(2)
0n (O) + 2i(k · a)T

(1)
0n (O)− (k · a)2 T

(0)
0n (O)

])]
= f

(2)
0n (O), (3.62)

and find that this contribution is independent of the choice of the origin. In fact, this can be
shown for each order in the wave vector, that the oscillator strength will be origin-independent if
all terms of the same order are included. For the proof, see Appendix C in reference [27].

3.3.2. Second-Order Oscillator Strengths

After having established an origin-independent definition of the different approximations to the
oscillator strengths, we will now turn to deriving explicit expressions. Considering only the zeroth-
order contribution corresponds to the dipole approximation, in which the dipole oscillator strengths
are given by

f0n ≈ f
(0)
0n = f

(µ2)
0n =

2me

e2~2
E0n

∣∣E · 〈0∣∣µ̂∣∣n〉∣∣2 =
2me

e2~2
E0n

(
Eα
〈
0
∣∣µ̂α∣∣n〉)2

. (3.63)

Since the first-order contributions vanish, the next step to go beyond the dipole approximation
is to include all second-order contributions. Thus, the oscillator strengths can be approximated
as the sum of the dipole (zeroth-order) oscillator strengths and the quadrupole (second-order)
oscillator strengths,

f0n ≈ f
(0)
0n + f

(2)
0n =

∣∣T (0)
0n

∣∣2 +
∣∣T (1)

0n

∣∣2 + 2Re
(
T

(0),∗
0n T

(2)
0n

)
. (3.64)

We will refer to this approximation as the quadrupole approximation. For the quadrupole oscillator
strengths, we can insert the individual multipole transition moments, and obtain five different
terms,

f
(2)
0n =

2me

e2E0n

[∣∣T (Q)
0n

∣∣2 +
∣∣T (m)

0n

∣∣2 + 2Re
(
T

(Q),∗
0n T

(m)
0n

)
+ 2Re

(
T

(µ),∗
0n T

(O)
0n

)
+ 2Re

(
T

(µ),∗
0n T

(M)
0n

)]
= f

(Q2)
0n + f

(m2)
0n + f

(Qm)
0n + f

(µO)
0n + f

(µM)
0n . (3.65)
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First, there are three contributions arising from products of first-order transition moments, an
electric-quadrupole–electric-quadrupole contribution,

f
(Q2)
0n =

me

2e2~2
E0n

(
kαEβ

〈
0
∣∣Q̂αβ

∣∣n〉)2

, (3.66)

a magnetic-dipole–magnetic-dipole contribution,

f
(m2)
0n =

2mec
2

e2E0n

∣∣∣(k × E)α
〈
0
∣∣m̂α

∣∣n〉∣∣∣2 =
2mec

2

e2E0n

(
(k × E)α Im

〈
0
∣∣m̂α

∣∣n〉)2

, (3.67)

and a cross-term, the electric-quadrupole–magnetic-dipole contribution,

f
(Qm)
0n = −2mec

e2~

(
kαEβ

〈
0
∣∣Q̂αβ

∣∣n〉)((k × E)α Im
〈
0
∣∣m̂α

∣∣n〉). (3.68)

These three contributions have been considered previously in the calculation of the quadrupole
oscillator strengths in reference [107]. In addition, two additional contributions have to be included
in order to collect all terms that are of second order and to arrive at an origin-independent
approximation. These are the electric-dipole–electric-octupole contribution,

f
(µO)
0n = − 2me

3~2e2
E0n

(
Eα
〈
0
∣∣µ̂α∣∣n〉)(kαkβEγ 〈0∣∣Ôαβγ

∣∣n〉), (3.69)

and the electric-dipole–magnetic-quadrupole contribution,

f
(µM)
0n =

2mec

e2~

(
Eα
〈
0
∣∣µ̂α∣∣n〉)((k × E)α kβ Im

〈
0
∣∣M̂αβ

∣∣n〉). (3.70)

Now we choose the wave vector as k = kex along the x-axis and the polarisation vector as E = ey
along the y-axis. Consequently, (ex × E) becomes the unit vector ez along the z-axis. This is no
loss of generality, as the molecule can still have an arbitrary orientation in the coordinate system.
Using

k =
E0n

~c
, (3.71)

the different contributions to the oscillator strengths become

f
(µ2)
0n =

2me

e2~2
E0n

〈
0
∣∣µ̂y∣∣n〉2

(3.72)

f
(Q2)
0n =

me

2e2~4c2
E3

0n

〈
0
∣∣Q̂xy

∣∣n〉2
(3.73)

f
(m2)
0n =

2me

e2~2
E0n

[
Im
〈
0
∣∣m̂z

∣∣n〉]2

(3.74)

f
(Qm)
0n = − 2me

e2~3c
E2

0n

〈
0
∣∣Q̂xy

∣∣n〉Im〈0∣∣m̂z

∣∣n〉 (3.75)

f
(µO)
0n = − 2me

3e2~4c2
E3

0n

〈
0
∣∣µ̂y∣∣n〉〈0∣∣Ôxxy

∣∣n〉 (3.76)

f
(µM)
0n =

2me

e2~3c
E2

0n

〈
0
∣∣µ̂y∣∣n〉Im〈0∣∣M̂zx

∣∣n〉. (3.77)

These oscillator strengths refer to an experimental setup in which the incident radiation has a
well-defined polarisation and in which the molecules have a fixed orientation with respect to the
radiation.

Using the expressions derived in section 3.2 the origin-dependence of the individual terms can be
determined. Then it can be seen that in the total oscillator strength up to second-order the terms
dependent on the shift of the origin cancel and the total oscillator strength is origin-independent
for the oriented sample. For the proof, we refer to reference [27].
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3.3.3. Isotropic Averaging of Oscillator Strengths

In many cases, the molecules are not oriented with respect to the incident radiation in experiments.
Instead, the measurement is performed in either solution or for a powdered solid, where the
molecules can either freely rotate or are randomly orientated, respectively. To arrive at final
expressions for the oscillator strengths in these situations, we need to perform an average over all
possible orientations of the molecule.

The expressions for performing this averaging are derived, for instance, in reference [109] (see in
particular chapter 4.2). For the isotropic averages of tensors with two, three, and four Cartesian
indices, one finds

〈Txx〉iso =
∑
αβ

〈iαiβ〉iso Tαβ (3.78)

〈Txyz〉iso =
∑
αβγ

〈iαjβkγ〉iso Tαβγ (3.79)

〈Txxyy〉iso =
∑
αβγδ

〈iαiβjγjδ〉iso Tαβγδ, (3.80)

where the isotropic averages of the Cartesian unit vector i = ex, j = ey, and k = ez are given by

〈iαiβ〉iso =
1

3
δαβ , (3.81)

〈iαjβkγ〉iso =
1

6
εαβγ , (3.82)

〈iαiβjγjδ〉iso =
1

30
(4δαβδγδ − δαγδβδ − δαδδβγ) . (3.83)

For all other tensor components, such as, e.g., 〈Txy〉iso or 〈Txxy〉iso, the isotropic averages are zero.

Using these expressions, we obtain for the isotropically averaged electric-dipole–electric-dipole
contribution to the oscillator strengths,

〈f (µ2)
0n 〉iso =

2me

3e2~2
E0n

∑
α

〈
0
∣∣µ̂α∣∣n〉2

=
2me

3e2~2
E0n

〈
0
∣∣µ̂∣∣n〉2

. (3.84)

Similarly, for the electric-quadrupole–electric-quadrupole contribution, we find

〈f (Q2)
0n 〉iso =

me

60e2~4c2
E3

0n

∑
αβγδ

(
4δαγδβδ − δαβδγδ − δαδδβγ

)〈
0
∣∣Q̂αβ

∣∣n〉〈0∣∣Q̂γδ

∣∣n〉
=

me

20e2~4c2
E3

0n

[∑
αβ

〈
0
∣∣Q̂αβ

∣∣n〉2 − 1

3

(∑
α

〈
0
∣∣Q̂αα

∣∣n〉)2
]
. (3.85)

We note that this is identical to the expression in reference [107], were a traceless definition of the
quadrupole moment is used. For the magnetic-dipole–magnetic-dipole contribution, the isotropic
average is,

〈f (m2)
0n 〉iso =

2me

3e2~2
E0n

∑
α

Im
〈
0
∣∣m̂α

∣∣n〉2
=

2me

3e2~2
E0n

(
Im
〈
0
∣∣m̂∣∣n〉)2

. (3.86)

The isotropic average of the electric-quadrupole–magnetic-dipole contribution to the oscillator
strengths,

〈f (Qm)
0n 〉iso = − me

3e2~3c
E2

0n

∑
αβγ

εαβγ
〈
0
∣∣Q̂αβ

∣∣n〉〈0∣∣m̂γ

∣∣n〉 = 0 (3.87)
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turns out to be zero because
〈
0
∣∣Q̂αβ

∣∣n〉 =
〈
0
∣∣Q̂βα

∣∣n〉. Finally, for the electric-dipole–electric-
octupole contribution to the oscillator strengths, we obtain

〈f (µO)
0n 〉iso = − me

45e2~4c2
E3

0n

∑
αβγδ

(
4δαβδγδ − δαγδβδ − δαδδβγ

)〈
0
∣∣µ̂δ∣∣n〉〈0∣∣Ôαβγ

∣∣n〉
= − 2me

45e2~4c2
E3

0n

∑
αβ

〈
0
∣∣µ̂β∣∣n〉〈0∣∣Ôααβ

∣∣n〉, (3.88)

where we used the symmetry of the octupole moments with respect to the exchange of indices,
and for the electric-dipole–magnetic-quadrupole contribution,

〈f (µM)
0n 〉iso =

me

3e2~3c
E2

0n

∑
αβγ

εαβγ
〈
0
∣∣µ̂β∣∣n〉 Im

〈
0
∣∣M̂γα

∣∣n〉. (3.89)

Note again that the magnetic-quadrupole transition moments are in general not symmetric or
antisymmetric with respect to the interchange of the two Cartesian indices, i.e.,

〈
0
∣∣Mαβ

∣∣n〉 6=
±
〈
0
∣∣Mβα

∣∣n〉.
In total, there are five contributions to the isotropically averaged oscillator strengths up to
second order. Note that the individual contributions to the oscillator strength are still origin-
dependent. Only by taking the sum of all five contributions does the oscillator strength become
origin-independent.

3.3.4. Origin-Independence of Isotropic Oscillator Strengths

Now we have arrived at the final expressions for the oscillator strength. Even though this already
follows from the results of section 3.3.1, we want to verify that the total oscillator strength to second
order is origin-independent for an isotropic sample. We will consider the origin-dependence of each
term individually. The starting point is to insert the origin-dependence of the matrix elements
derived in section 3.2. The electric-dipole–electric-dipole term is origin-independent and the first
equation to consider is the electric-quadrupole–electric-quadrupole contribution to the oscillator
strengths. The resulting equation is

〈f (Q2)
0n (O + a)〉iso =

me

20e2~4c2
E3

0n

[∑
αβ

(〈
0
∣∣Q̂αβ(O)

∣∣n〉− aβ〈0∣∣µ̂α∣∣n〉− aα〈0∣∣µ̂β∣∣n〉)2

− 1

3

(∑
α

〈
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〈
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]
= 〈f (Q2)
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[
3
∑
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〈
0
∣∣µ̂α∣∣n〉〈0∣∣Q̂αβ(O)

∣∣n〉
−
(
a ·
〈
0
∣∣µ̂∣∣n〉)(∑

α

〈
0
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∣∣n〉)]
+

me
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E3
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[
2a2
〈
0
∣∣µ̂∣∣n〉2

+
2

3

∑
αβ

(
a ·
〈
0
∣∣µ̂∣∣n〉)] (3.90)
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For the magnetic-dipole–magnetic-dipole contribution, we get

f
(m2)
0n (O + a) =

2me
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∣∣µ̂∣∣n〉)] (3.91)

Here, we used the identity εαβγεαδε = δβδδγε − δβεδγδ. For the electric-dipole–electric-octupole
contribution, we obtain

f
(µO)
0n (O + a) = − 2me

45e2~4c2
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(3.92)
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and for the electric-dipole–magnetic-quadrupole contribution, we have

f
(µM)
0n (O + a) =f
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0
∣∣µ̂∣∣n〉× 〈0∣∣m̂∣∣n〉)] (3.93)

Upon inspection of the terms describing the origin-dependence for each contribution to the total
oscillator strength, it can be seen that terms in different contributions cancel and that then the
total oscillator strength is only dependent on the terms with no dependence on a.

3.4. Implementation into the ADF Program Package

To test the outlined approach on real molecular systems, the implementation into a computational
program package is required. The theory presented here for the origin-independent calculation of
quadrupole oscillator strengths is applicable in combination with any quantum-chemical method
that is capable of providing excited states, either via a time-independent formulation or with
response theory. Here, we select TD-DFT which has become an important tool in computational
X-ray spectroscopy in the past years [114–117]. The theory will be discussed in more detail in
chapter 4. We implemented the calculation of second-order oscillator strengths into the TD-DFT
module [118–120] of the ADF program package [121,122].

Within the ADF program package atomic units are used, which means that me, e, ~ are all equal
to 1. The electric oscillator strengths, f (µ2), f (Q2) and f (µO) (equations (3.84), (3.85) and (3.88)),
contain integrals which are calculated directly within the ADF program package and so no further
considerations need to be made. However, for the magnetic transition moments, ADF does not
calculate directly the integrals present in equations (3.86) and (3.89). For the magnetic-dipole
transition moment, ADF calculates the integrals

〈
0
∣∣r ×∇

∣∣n〉. From these, we can obtain the
magnetic dipole transition moments (in atomic units) as.

〈
0
∣∣m̂∣∣n〉 =

1

2c

〈
0
∣∣r × p̂∣∣n〉 =

1(−i)
2c

〈
0
∣∣r ×∇

∣∣n〉, (3.94)
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where we used that in atomic units,

p̂ = −i∇. (3.95)

The imaginary part is then,

Im
〈
0
∣∣m̂∣∣n〉 =

−1

2c

〈
0
∣∣r ×∇

∣∣n〉. (3.96)

Here, a pre-factor of −1
2c

is required to convert the integral calculated by ADF to the one in equation
(3.86).

The same is required for the magnetic-quadrupole transition moments, where the calculated in-
tegrals in ADF are

〈
0
∣∣rβ(r×∇)α+(r×∇)αrβ

∣∣n〉. From this, the magnetic quadrupole transition
can be calculated as, 〈

0
∣∣M̂γα

∣∣n〉 =
1

3c

〈
0
∣∣rβ(r × p̂)α + (r × p̂)αrβ

∣∣n〉
=

1(−i)
3c

〈
0
∣∣rβ(r ×∇)α + (r ×∇)αrβ

∣∣n〉, (3.97)

and its imaginary part is,

Im
〈
0
∣∣M̂γα

∣∣n〉 =
−1

3c

〈
0
∣∣rβ(r ×∇)α + (r ×∇)αrβ

∣∣n〉. (3.98)

Again, a pre-factor is needed, −1
3c

. Finally, the calculated integrals and their pre-factors can
be substituted into the oscillator strength. The magnetic-dipole oscillator strength becomes (in
atomic units),

〈f (m2)
0n 〉iso =

2

12c2
E0n

(〈
0
∣∣r ×∇

∣∣n〉)2

, (3.99)

and the electric-dipole–magnetic-quadrupole cross-term oscillator strength becomes (in atomic
units),

〈f (µM)
0n 〉iso =

−1

9c2
E2

0n

∑
αβγ

εαβγ
〈
0
∣∣µ̂β∣∣n〉 〈0∣∣rβ(r ×∇)α + (r ×∇)αrβ

∣∣n〉. (3.100)

All the theory presented thus far considers the case of having exact eigenfunctions available,
but additional difficulty arises in approximate calculations using finite basis sets. In this case,
the length and velocity representations of the electric transition moments will differ. The two
representations converge to the exact result at different rates and will only be identical with an
infinite basis set.

For the (origin-independent) zeroth order contribution, the electric-dipole, the choice of represent-
ation is not as important, especially when a large basis set is used. But the choice of representation
is important for the second-order contributions as the origin-dependent terms need to cancel. For
the magnetic transition moments, the electric-dipole and electric-quadrupole transition moments
in the velocity representation arise when shifting the origin. Therefore, for the electric multi-
pole transition moments to cancel with those of the magnetic contributions, these terms must
also be in the velocity representation. Otherwise any differences between the length and velocity
representations will manifest as a small origin-dependence in the total oscillator strength.

Therefore, in the implementation, the electric-dipole oscillator strength is calculated in the length
representation, but all higher-order contributions are calculated with the velocity representation.
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A note here is that when calculating the higher-order moments a large basis set is usually required
to achieve suitable convergence in the magnitude of the oscillator strengths (see chapter 5). There-
fore, there are usually only small differences in the values of the matrix elements in the length
and velocity representation.

3.5. Validation of Theory

3.5.1. Computational Details

For the calculation of X-ray absorption spectra in the following, we have employed the scheme of
Stener et al. [123] to allow only excitations from the relevant core orbital (see also Refs. [124–129]
for related schemes). For the Cl K-edge in TiCl4, only excitations from the 1s orbital of one
of the chlorine atoms were considered, while a frozen core was used for the other three chlorine
atoms in order to obtain a localized core hole [124]. For the Fe K-edge in vinylferrocene, only
excitations from the iron 1s orbital were included. All molecular structures were optimized using
the BP86 exchange–correlation functional [130, 131] and ADF’s TZP basis set. The TD-DFT
calculations were performed using the BP86 functional and the TZ2P basis set and employed a
fine numerical integration grid (integration accuracy 8). All calculations were performed with the
scalar-relativistic zeroth-order regular approximation (ZORA) [132–135].

3.5.2. Results

To illustrate the origin-independent calculation of quadrupole intensities in X-ray absorption spec-
troscopy (XAS) using the theory derived above and to verify our implementation, we consider two
test cases. As the first example, we use titaniumtetrachloride TiCl4 (see figure 3.2a for the molecu-
lar structure) and calculate the Cl K-edge XAS spectrum. This example was considered earlier
in Refs. [107, 123, 136]. For such ligand K-edge spectra, the pre-edge peak transitions are dipole-
allowed, and the second-order contribution to the oscillator strength should be small compared to
the dipole contribution.

Figure 3.2.: Molecular structures of the model systems considered for the calculation of X-ray
absorption spectra. (a) Titaniumtetrachloride (TiCl4) and (b) Vinylferrocene. The

orientation of the molecules within the coordinate system is also indicated.

For the lowest-energy Cl K-edge excitation, the different contributions to the isotropically aver-
aged oscillator strengths are calculated using equations (3.84)–(3.89), and are listed in Table 3.2
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3. Origin-Independent Intensities

for different choices of the origin. In addition, we included the oscillator strengths calculated us-
ing the approximation of reference [107], i.e., considering only the electric-dipole–electric-dipole,
electric-quadrupole–electric-quadrupole, and the magnetic-dipole–magnetic-dipole contributions
[cf. equation (3.54)] as well as the full second-order oscillator strengths f

(0)
0n + f

(2)
0n [cf. equa-

tion (3.64)].

The most natural choice for the origin is the chlorine atom from which the 1s-electron is excited.

In this case, the electric-dipole–electric-dipole contribution f
(µ2)
0n to the oscillator strength is sev-

eral orders of magnitude larger than all the second-order contributions, and the approximation of
reference [107] gives results that are identical to the full second-order oscillator strengths. In this
example, the scheme suggested in reference [107] to choose the origin such that the sum of the

electric-quadrupole–electric-quadrupole f
(Q2)
0n and the magnetic-dipole–magnetic-dipole contribu-

tions f
(m2)
0n is minimised leads to an almost identical choice of the origin. Thus, this scheme is

appropriate here.

The situation changes if the origin is not placed at the chlorine atom. To demonstrate this, we

moved the origin to the titanium atom. Now, the electric-quadrupole–electric-quadrupole f
(Q2)
0n

and the magnetic-dipole–magnetic-dipole contributions f
(m2)
0n increase significantly and become

several times larger than the dipole oscillator strength f
(µ2)
0n . As a consequence, within the ap-

proximation of reference [107] the oscillator strength increases by more than a factor of two when
shifting the origin from the chlorine to the titanium atom. However, also the magnitudes of
electric-dipole–electric-octupole and the electric-dipole–magnetic-quadrupole contributions, f

(µO)
0n

and f
(µM)
0n , increase and since these have a negative sign, they exactly cancel the increase of f

(Q2)
0n

and f
(m2)
0n . Thus, the full second-order oscillator strength remains unchanged.

In addition, we also shifted the origin away from the molecule by larger amounts. In particular, we
used shifts of 10 Å, 50 Å, and 100 Å along the negative x-direction. Here, a similar observation can

be made. The electric-quadrupole–electric-quadrupole, f
(Q2)
0n , and the magnetic-dipole–magnetic-

dipole, f
(m2)
0n , contributions increase substantially, and for a shift of 100 Å, the oscillator strength

within the approximation of reference [107] is four orders of magnitude larger than for the origin
at the chlorine atom. On the other hand, when including the electric-dipole–electric-octupole and
the electric-dipole–magnetic-quadrupole contributions, the full second-order oscillator strengths
are unchanged, even though the individual contributions differ.

As a second example, we consider vinylferrocene, which is a ferrocene molecule bearing a vinyl
substituent at one of the cyclopentadienyl rings (see figure 3.2b for the molecular structure).
Here, we consider the Fe K-edge XAS spectrum and specifically the lowest-energy (pre-edge peak)
excitation, which is a 1s→ 3d transition. In unsubstituted ferrocene, this pre-edge peak excitation
is dipole-forbidden, for symmetry reasons, and its oscillator strength is solely due to the second-
order contributions. In this case, the electric-quadrupole–electric-quadrupole and the magnetic-
dipole-magnetic-dipole contributions become origin independent (see section 3.2), whereas the

remaining second-order contributions f
(µO)
0n and f

(µM)
0n vanish. However, in vinylferrocene this

symmetry is lost and the lowest-energy transition gains a small dipole oscillator strength (for a
detailed discussion, see chapter 6).

The oscillator strengths and their contributions calculated for the lowest-energy Fe K-edge excit-
ation using different choices of the origin are shown in Table 3.3. First, the most natural choice
for the origin is the iron atom. In this case, the electric-dipole–electric-dipole and the electric-
quadrupole–electric-quadrupole contributions to the oscillator strength are comparable in size.
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3.5. Validation of Theory

Table 3.2.: X-ray absorption oscillator strength for TiCl4, calculated for the lowest-energy
transition at the Cl K-edge (excitation energy 2755.6 eV). The total isotropically
averaged oscillator strength and its different contributions are given for different

positions of the origin of the coordinate system.

origin O O + a O + a O + a
Cl atom Ti atom ax = −10 Å ax = −50 Å ax = −100 Å

〈f (µ2)
0n 〉iso 4.57 · 10−4 4.57 · 10−4 4.58 · 10−4 4.57 · 10−4 4.58 · 10−4

〈f (Q2)
0n 〉iso 6.04 ·10−10 7.24 · 10−4 1.09 · 10−2 3.65 · 10−1 1.35

〈f (m2)
0n 〉iso 6.61 ·10−13 1.21 · 10−3 1.80 · 10−2 3.58 · 10−1 2.23

〈f (µO)
0n 〉iso −8.94 · 10−7 −3.23 · 10−4 −4.89 · 10−3 −2.46 · 10−1 −6.03 · 10−1

〈f (µM)
0n 〉iso −9.88 · 10−7 −1.61 · 10−3 −2.40 · 10−2 −4.77 · 10−1 −2.97

〈f (µ2)
0n + f

(Q2)
0n + f

(m2)
0n 〉iso 4.57 · 10−4 2.39 · 10−3 2.94 · 10−2 7.24 · 10−1 3.58

Full 〈f (0)
0n + f

(2)
0n 〉iso 4.55 · 10−4 4.55 · 10−4 4.55 · 10−4 4.55 · 10−4 4.55 · 10−4

The remaining contributions are orders of magnitude smaller. Therefore, the oscillator strength
calculated with the approximation of reference [107] is identical to the full second-order oscillator
strength.

To investigate the dependence on the origin, we shifted the origin far away from the molecule
using a shift of 100 Å in the negative x-direction, a shift of 100 Å in the negative z-direction, and
a shift of 50 Å in both the negative x-direction and the negative z-direction. In all three cases, the
electric-quadrupole–electric-quadrupole and the magnetic-dipole–magnetic-dipole contributions,

f
(Q2)
0n and f

(m2)
0n , increase by several orders of magnitude compared to the calculation in which

the origin is placed at the iron atom. As a result, the oscillator strengths calculated with the
approximation of reference [107] also increase by up to five orders of magnitude. However, at the
same time the two remaining second-order contributions, i.e., the electric-dipole–electric-octupole
contribution f

(µO)
0n and the electric-dipole–magnetic-quadrupole contribution f

(µM)
0n , assume large

negative values and exactly cancel the increase of f
(Q2)
0n and f

(m2)
0n such that the total second-order

oscillator strength remains origin independent.

Finally, we used the scheme suggested in reference [107] for fixing the origin of the coordinate

system, i.e., we chose the origin such that the sum of f
(Q2)
0n and f

(m2)
0n is minimised. In the

situation considered here, where the electric-dipole–electric-dipole and the electric-quadrupole–
electric-quadrupole contributions to the oscillator strengths are of similar size, this scheme moves
the origin away from the iron atom. The resulting shift is given in the caption of the last column
of Table 3.3. As a consequence, the oscillator strength within the approximation of reference [107]
decreases by ca. 30 %. Again, this decrease is compensated for if the remaining second-order
contributions are included. Thus, the scheme of reference [107] can lead to a spurious decrease
of the oscillator strength in some cases. Previously, we found that this problem is even more
severe in cases where the electric-dipole–electric-dipole contribution to the oscillator strength is
significantly smaller than the quadrupole oscillator strength [108]. However, if all second-order
terms are included consistently the quadrupole oscillator strengths become origin-independent and
no special placement of the origin is necessary.
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3. Origin-Independent Intensities

Table 3.3.: X-ray absorption oscillator strength for Vinylferrocene, calculated for the
lowest-energy transition at the Fe K-edge (excitation energy 7051.3 eV). The total

isotropically averaged oscillator strength and its different contributions are given for
different positions of the origin of the coordinate system.

origin O O + a O + a O + a O + a
Fe atom ax = −100Å az − 100 Å ax = −50 Å ax = +0.128 Å

az = −50 Å ay = +0.195 Å
az = +0.007 Å

〈f (µ2)
0n 〉iso 2.55 · 10−6 2.55 · 10−6 2.55 · 10−6 2.55 · 10−6 2.55 · 10−6

〈f (Q2)
0n 〉iso 3.09 · 10−6 8.63 · 10−2 7.30 · 10−2 4.47 · 10−2 1.28 · 10−6

〈f (m2)
0n 〉iso 1.14 ·10−12 2.29 · 10−2 9.04 · 10−2 5.87 · 10−3 1.56 · 10−7

〈f (µO)
0n 〉iso −1.71 · 10−8 −7.83 · 10−2 −4.24 · 10−2 −4.23 · 10−2 6.33 · 10−7

〈f (µM)
0n 〉iso −1.52 · 10−8 −3.09 · 10−2 −1.21 · 10−1 −8.19 · 10−3 9.83 · 10−7

〈f (µ2)
0n + f

(Q2)
0n + f

(m2)
0n 〉iso 5.64 · 10−6 1.09 · 10−1 1.63 · 10−1 5.05 · 10−2 3.99 · 10−6

Full 〈f (0)
0n + f

(2)
0n 〉iso 5.61 · 10−6 5.61 · 10−6 5.61 · 10−6 5.61 · 10−6 5.61 · 10−6

3.6. Conclusions

Herein, we have derived origin-independent expressions for calculating XAS intensities beyond
the dipole approximation. In particular, we have shown that for a consistent formulation, it is
necessary to retain all contributions to the oscillator strengths that are of the same order in the
wave vector. This differs from the previous approach [107], in which the multipole expansion
was truncated for the transition moments. Here, two additional contributions to the second-order
(quadrupole) oscillator strengths arise, which are cross-terms depending on products of electric-
dipole and electric-octupole transition moments and of electric-dipole and magnetic-quadrupole
transition moments, respectively. Thus, the origin-dependence of the sum of electric-quadrupole–
electric-quadrupole and magnetic-dipole–magnetic-dipole contributions pointed out earlier [107]
is not a fundamental limitation of the use of the multipole expansion.

We have applied this approach for the calculation of origin-independent oscillator strengths to
two test cases, TiCl4 and vinylferrocene. It can clearly be seen that the oscillator strengths no
longer depend on the placement of the origin if we include the electric-dipole–electric-octupole
and electric-dipole–magnetic-quadrupole cross-terms. Nevertheless, the results shown here do not
invalidate any results obtained with the scheme shown in reference [107]. Our results confirm
that if the origin of the coordinate system is placed at the atom where the core excitation occurs,
the two additional second order terms become negligible and both methods provide comparable
results.

However, with the theory presented here the placement of the origin need no longer be considered.
Moreover, calculations will not suffer the problems of the origin placement scheme proposed in
reference [107] that when a small dipole contribution is present, the origin of the coordinate system
might be placed far away from the origin of the excitation. Moreover, it enables the calculation of
spectra for complexes where the excitation orbital is delocalised over several atoms, without the
need to transform to localised core orbitals.
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3.6. Conclusions

Our approach, though shown here using TD-DFT, is not restricted to TD-DFT and can be used
in conjunction with any method where the calculation of intensities is required, as long as the
method can provide the required transition moments. Moreover, it is not restricted to XAS spec-
troscopy, but is also applicable for calculating XES intensities, for instance using the approach of
reference [137] (see chapter 4). Finally, we note that it becomes necessary to go beyond the dipole
approximation not only for short wavelengths, such as those employed in hard X-ray spectro-
scopy, but also for extended molecular systems. Therefore, for describing the optical response in
an extended nanostructure in the visible spectrum, it becomes necessary to go beyond the dipole
approximation as well. Thus, the origin-independent formalism derived here will also be essential
for predicting optical properties of nanostructured materials, such as metamaterials [138].
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4. Theoretical Approaches to X-ray
Spectroscopy

Quantum-chemistry has developed many approximations for solving the electronic Schrödinger
equation, which was introduced in chapter 2. Within this chapter we will first introduce the basic
concepts of the two main strategies of quantum-chemistry. Next, we will consider the methods
available for the calculation of X-ray spectra and discuss their benefits and limitations.

4.1. Methods for the Calculation of the Ground Electronic
State

4.1.1. Wave Function-Based Quantum-Chemistry

The problem we are trying to solve is to find the ground-state electronic energy and wave function
of a molecular system. This requires solving the time-independent electronic Schrödinger equation,

ĤeΨ
(R)
n (r1, r2, . . . , rn) = E(R)

e,n Ψ(R)
n (r1, r2, . . . , rn), (4.1)

where the electronic Hamiltonian Ĥe has been introduced in equation (2.5). Solving the Schrödinger
equation analytically is only possible for some one-electron systems. Therefore, approximate meth-
ods have to be devised. This section follows the theory as outlined in reference [139]. A suitable
starting point for approximating the ground state is the variational principle. The variational
principle states,

E0 ≤ 〈Ψ̃|Ĥ|Ψ̃〉 (4.2)

where E0 is the ground state energy of the system and Ψ̃ is a normalised trial wave function. This
means that any choice of the trial wave function will always provide an energy greater than or
equal to the ground-state energy. Therefore, to find the ground state energy we can minimise the
expectation value of the energy,

E0 ≤ min(〈Ψ̃|Ĥ|Ψ̃〉) (4.3)

The ground-state wave function Ψ0 is the one for which the minimum is obtained. To apply the
variational principle, we have to choose a suitable form of the trial wave function.

Hartree-Fock (HF)

Hartree originally proposed to separate the many-electron wave function into a product of one-
electron functions and to use this as the trial wave function. This is called the Hartree product
Π,

Ψ̃(r1, r2, . . . , rn) ≈ Π(r1, r2, . . . , rn) = φ1(r1) · φ2(r2) · · · · φn(rn). (4.4)

43



4. Theoretical Approaches to X-ray Spectroscopy

The one-electron functions φi(r) have to be orthonormal, that is the overlap integral between
one-electron functions must equal 1 when i = j and 0 when i 6= j,

〈i|j〉 =

∫
φ∗i (r)φj(r)d3r = δij =

{
i = j 1
i 6= j 0

. (4.5)

The one-electron functions are what is often referred to as “orbitals”. The problem with the
Hartree product approximation to the wave function is that it treats the electrons as distinguish-
able particles, because a different orbital is assigned to each electron. However, all electrons are
identical and, therefore, indistinguishable and according to the Pauli principle the wave function
should change its sign on swapping any two electrons. As a consequence, the Hartree product does
not obey the Pauli principle and the wave function is different if two electrons are interchanged.

Hence, Fock proposed a modification to the idea of the Hartree product where an antisymmet-
risation operator is introduced,

Ψ̃(r1, r2, . . . , rn) = ÂΠ(r1, r2, . . . , rn) = Â(φ1(r1) · φ2(r2) . . . φn(rn)). (4.6)

The antisymmetriser Â can be written as a sum of permutation operators, Â =
∑

µ(−1)µP̂µ, where

P̂µ are all possible permutations of electrons and (−1)µ is the parity of permutation P̂µ. The an-
tisymmetrisation ensures that the Pauli principle is fulfilled. We can rewrite the antisymmetrised
Hartree product as a Slater determinant,

Ψ̃(r1, r2, . . . , rn) = A · Π(r1, r2, . . . , rn) (4.7)

= A(φ(r1) · φ(r2) . . . φ(rn))

= ΦHF (r1, r2, . . . , rn) =
1√
Nelec!

∣∣∣∣∣∣∣∣∣
φ1(r1) φ1(r2) · · · φ1(rn)
φ2(r1) φ2(r2) · · · φ2(rn)

...
... · · · ...

φn(r1) φn(r2) · · · φn(rn)

∣∣∣∣∣∣∣∣∣
where Nelec is the number of electrons. This form of the trial wave function now fulfils the Pauli
principle and is used in the HF method. HF is the most basic approximation to solve the electronic
Schrödinger equation used in quantum chemistry and also forms the basis of most wave function
methods.

To find the ground-state wave function, using the HF trial wave function, we first rewrite the
electronic Hamiltonian (see equation (2.5)) and separate it into one- and two-electron terms,

Ĥe =

Nelec∑
i

ĥi +
1

2

Nelec∑
ij

ĝij + VNN (4.8)

where VNN is the nuclear-nuclear repulsion and is constant for a fixed molecular geometry, ĥi
contains the kinetic energy of the electrons T̂e and the nuclear–electron attraction potential energy
V̂Ne. In atomic units, it is given by,

ĥi = −∇
2
i

2
−

N∑
I

ZI
|RI − ri|

. (4.9)

Finally, ĝij describes the two-electron interactions contained in the electron–electron repulsion

potential energy V̂ee and is (in atomic units) given by,

ĝij =
1

|ri − rj|
. (4.10)
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To evaluate the expectation value of Ĥe for the HF trial wave function the next step is to look
at the integrals of the HF trial wave function with the one- and two-electron operators of the
electronic Hamiltonian. First, for the one-electron operator ĥi one finds,

〈Π|ĥi|Π〉 = 〈φi(ri)φj(rj) . . . φn(rn)|ĥi|φi(ri)φj(rj) . . . φn(rn)〉 (4.11)

= 〈φi(ri)|ĥi|φi(ri)〉〈φj(rj)|φj(rj)〉 . . . 〈φn(rn)|φn(rn)〉
= 〈φi(ri)|ĥi|φi(ri)〉 = hi.

ĥi will only interact with orbital i and all the other integrals are overlap integrals which due to
orthonormalisation are equal to 1 for the non-permuted Hartree product. If a permutation operator
is applied to one of the Hartree products the integral is 0 because the one-electron functions are
orthogonal. Next is the two-electron operator ĝij with the non-permuted Hartree product,

〈Π|ĝij|Π〉 = 〈φi(ri)φj(rj)φk(rk) . . . φn(rn)|ĝij|φi(ri)φj(rj)φk(rk) . . . φn(rn)〉 (4.12)

= 〈φi(ri)φj(rj)|ĝij|φi(ri)φj(rj)〉〈φk(rk)|φk(rk)〉 . . . 〈φn(rn)|φn(rn)〉
= 〈φi(ri)φj(rj)|ĝij|φi(ri)φj(rj)〉 = Jij,

where ĝij will only interact with orbitals i and j and the integrals remaining are just overlap
integrals which equal 1. These integrals are the Coulomb integrals Jij. However, for ĝij, the
permuted Hartree product integrals give a non-zero value,

−〈Π|ĝij|P̂ijΠ〉 = −〈φi(ri)φj(rj)φk(rk) . . . φn(rn)|ĝij|φi(rj)φj(ri)φk(rk) . . . φn(rn)〉 (4.13)

= −〈φi(ri)φj(rj)|ĝij|φi(rj)φj(ri)〉〈φk(rk)|φk(rk)〉 . . . 〈φn(rn)|φn(rn)〉
= −〈φi(ri)φj(rj)|ĝij|φi(rj)φj(ri)〉 = −Kij.

The remaining overlap integrals are the same as the non-permuted situation and so the integrals
do not disappear when considering the two-electron operator. The integrals considering the case
when the electrons are permuted are the exchange integrals Kij. The higher-order permutations
of the Hartree product give zero values for the integrals. This set of rules for the evaluation of the
expectation values of Slater determinants are called the Slater-Condon rules.

Using the Slater-Condon rules, the energy expectation value of the trial Slater determinant can
be written as,

〈Ψ̃HF (r1, r2, . . . , rn)|Ĥe|Ψ̃HF (r1, r2, . . . , rn)〉 =

Nelec∑
i

hi +
1

2

Nelec∑
ij

(Jij −Kij) +VNN = E
(trial)
HF (4.14)

With a trial wave function and a way to calculate the energy of the wave function, we now need to
find the ground-state wave function by minimising the energy. The only variables present within
the wave function are the one-electron functions. Consequently, to minimise the wave function we
must find the optimum form of the one-electron functions, keeping in mind the orthonormality
constraints. Therefore we perform a constrained optimisation using a Lagrange equation,

L = E −
Nelec∑
ij

λij(〈φi|φj〉 − δij), (4.15)

where λij is a matrix of Lagrange multipliers. We must now find the point at which the first
derivative of L is zero. Therefore, we solve the equation,

δL = δE −
Nelec∑
ij

λij(〈δφi|φj〉 − 〈φi|δφj〉) = 0. (4.16)
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From equation (4.14) it is clear to see the energy of the wave function is dependent on the one-
electron functions. Therefore, we need to determine when a change in the orbitals leads to a zero
change in the energy. In equation (4.14), i is an index present in all terms and therefore, the
equation can be rewritten as

E =

Nelec∑
i

[
hi +

1

2

∫
φ∗i (r)(Ĵ − K̂)φi(r)dr

]
+ VNN (4.17)

where we define Ĵ and K̂ acting on φi(ri) as,

Ĵφi(r) =

Nelec∑
j

∫
φ∗j(r

′)ĝijφj(r
′)dr′φi(r), (4.18)

K̂φi(r) =

Nelec∑
j

∫
φ∗j(r

′)ĝijφi(r
′)dr′φj(r). (4.19)

The indices can be switched in this equation. With these equations we obtain δE,

δE =

Nelec∑
i

(∫
φ∗i (r)ĥiδφi(r)dr +

∫
δφ∗i (r)ĥiφi(r)dr

)
+ (4.20)

+
1

2

Nelec∑
i

(∫
φ∗i (r)(Ĵ − K̂)δφi(r)dr +

∫
δφ∗i (r)(Ĵ − K̂)φi(r)dr

)
+

+
1

2

Nelec∑
j

(∫
φ∗j(r

′)(Ĵ − K̂)δφj(r
′)dr′ +

∫
δφ∗j(r

′)(Ĵ − K̂)φj(r
′)dr′

)
.

As i and j run over all electrons and thus, all one-electron functions, the two-electron terms are
all counted double and therefore, the factor 1

2
is cancelled. Hence, equation (4.20) can be written

as,

δE =

Nelec∑
i

(∫
φ∗i (r)ĥδφi(r)dr +

∫
δφ∗i (r)ĥφi(r)

)
+ (4.21)

Nelec∑
i

(∫
φ∗i (r)(Ĵ − K̂)δφi(r)dr +

∫
δφi(r)(Ĵ − K̂)φi(r)dr

)
.

The operators in equation (4.21) can be combined and written as one operator, the Fock operator,

F̂ = ĥ+ Ĵ − K̂, (4.22)

and now δE can be written in terms of the F̂ ,

δE =

Nelec∑
i

(∫
φ∗i (r)F̂ δφi(r)dr +

∫
δφi(r)F̂ φi(r)dr

)
. (4.23)

We can substitute this expression for δE into equation (4.16),

δL =

Nelec∑
i

(∫
φ∗i (r)F̂ δφi(r)dr +

∫
δφ∗i (r)F̂ φi(r)dr)− (4.24)

Nelec∑
ij

λij

(∫
δφi(r)φj(r)dr − λij

∫
φi(r)δφj(r)dr

)
= 0.
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This equation has to be fulfilled for every possible δφi. Therefore, we arrive at the equation,

F̂ φi(r) =
n∑
j

λijφj(r). (4.25)

If the Lagrange multiplier matrix λij is diagonalised we form the canonical orbitals φ′i. The use
of the canonical orbitals then gives a one-electron eigenvalue equation,

F̂ φ′i(r) = εiφ
′
i(r), (4.26)

where εi is the one-electron (orbital) energy of function i. An important note here is that the
Hartree-Fock energy EHF is not equal to the sum of the orbital energies as there is no inclusion
of the nuclear–nuclear repulsion and the two electron-terms are counted twice.

Here we have described a situation where each electron is described by a different one-electron
function, as is the case for unrestricted Hartee-Fock (UHF), except a spin function must also
be included within UHF. For restricted HF (RHF), the two-electron integrals are counted differ-
ently, as all orbitals are doubly occupied and so only Nelec

2
one-electron functions are optimised.

Therefore, in RHF the energy is,

E = 2

Nelec/2∑
i

hi +

Nelec/2∑
ij

(2Jij −Kij) + VNN , (4.27)

as each orbital is occupied by two-electrons, the sum runs over Nelec

2
functions.

However, so far we have not considered the form of the one-electron functions. In practice, a basis
set is used and the one-electron functions are expanded as a linear combination of the different
functions within the basis set,

φi(r) =
∑
j

c
(i)
j χj(r) (4.28)

where χj(r) is a basis function (for more information see chapter 5). Moreover, the introduction
of the basis set into the Fock equation leads to the Roothaan-Hall equations,

FC = SCε, (4.29)

where C is the matrix of basis set coefficients, ε is a vector containing the orbital energies, S is
the overlap matrix between the basis functions and F is the Fock matrix with the elements,

〈χα|F̂ |χβ〉. (4.30)

With the introduction of the basis set, these matrix elements of the fock operator become,

〈χα|F̂ |χβ〉 = 〈χα|ĥ|χβ〉+
Occ.MO∑

j

MBasis∑
γδ

cγjcδj〈χαχγ|ĝij|χβχδ〉 − 〈χαχγ|ĝij|χδχβ〉, (4.31)

= 〈χα|ĥ|χβ〉+

MBasis∑
γδ

Dγδ〈χαχγ||χβχδ〉,

where cγj is the basis function coefficient for orbital j and Dγδ is the one-electron density matrix,

Dγδ =
∑
j

cγjcδj. (4.32)

For more information on the inclusion of an atomic basis set into the HF equations see reference
[139].
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Extensions of the HF Method

HF is a mean-field approach, which means the electrons see the potential field created by the other
electrons but only in an “averaged” way. Hence, HF neglects all electron correlation. To reclaim
the correlation energy lost by the approximations made in HF theory, wave function theories offer
a method for systematic improvement. To this end, the correlation is recovered by including
excited Slater determinants,

ΨCI(r1, . . . , rn) = CHFΦHF +
n∑
ia

Ca
i Φa

i +
n∑
ijab

Cab
ij Φab

ij . . . (4.33)

where the C’s are the coefficients of the respective Slater determinants, ΦHF is the HF determinant,
Φa
i is an excited Slater determinant where the electron from the occupied orbital i is in the virtual

orbital a and Φab
ij is a doubly excited slater determinant, where two electrons from the occupied

orbitals i and j are in the virtual orbitals a and b.

The first method using this approach is called configuration interaction (CI) theory and within
this method the HF orbitals are used as a basis for all determinants and only the coefficients of the
Slater determinants are optimised. The next step which may be taken is to also optimise the one-
electron orbitals of the Slater determinants. This is called complete active space self-consistent
field (CASSCF) method. However, CASSCF is too expensive if all orbitals are optimised within
the calculation and therefore, usually an active space is chosen which includes the required orbitals
to describe the system more accurately.

However, CI and CASSCF have an inherent problem in that they are not size-extensive. To
this end, coupled cluster (CC) theory was developed. This has a similar expansion as to CI
but a different (exponential) parametrisation is used to express the coefficients of the excited
determinants. The extra terms this parametrisation introduces are why coupled cluster theory is
size-extensive [139,140].

4.1.2. Density Functional Theory (DFT)

Though HF is the basis of many methods available in quantum chemistry, a different school of
methods have also developed and is classified as DFT. The discussion of DFT in this section
mainly follows that presented in reference [141]. The basic idea of DFT is that the molecular
system can be described by the electron density only instead of using the wave function. However,
the wave function and the electron density are intrinsically linked. Obviously, the electron density
is derived from the wave function,

ρ(r1) = Nelec

∫
|Ψ(r1, r2, . . . , rn)|2 dr2 . . . drn, (4.34)

where Nelec is the number of electrons and ρ(r1) is the electron density describing the probability
density of finding any electron in a volume element dr1. The number of electrons in the system
can also be calculated from the density,∫

ρ(r)dr = Nelec (4.35)

To set up an equivalent theory in terms of the electron density, it is necessary that also the wave
function is uniquely determined by the electron density. This was proven by Hohenberg and
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Kohn in the 1960’s [142]. The first Hohenberg-Kohn theorem states that the electron density ρ
determines the Hamiltonian and therefore, the ground-state wave function. Hence, the ground-
state energy can be expressed as a functional of the electron density as,

E[ρ] = Vne[ρ] + T [ρ] + Vee[ρ] =

∫
ρ(r)Vnuc(r)dr + F [ρ], (4.36)

where Vne[ρ] and Vee[ρ] are the nuclear–electron attraction and electron–electron repulsion poten-
tial energy functionals, respectively, T [ρ] is the kinetic energy functional, Vnuc(r) = − ZI

|RI−ri| is

the nuclear potential and where F [ρ] = T [ρ] + Vee[ρ] and is a universal functional of ρ.

So far we have only shown that we can use the electron density in place of the wave function. The
second Hohenberg-Kohn theorem provides a variational principle based on the electron density
[141], equivalent to the variational principle described at the beginning of section 4.1.1. This
constrained minimisation can be expressed through a Lagrange equation,

δ

δρ(r)

(
E[ρ]− µ

[ ∫
ρ(r)dr −N

])
= 0, (4.37)

where the constraint is that the density should still integrate to the number of electrons and µ is
the Lagrange multiplier. This leads to the condition,

µ = Vnuc(r) +
δF [ρ]

δρ(r)
, (4.38)

which is known as the Euler-Lagrange equation. This analysis involves a minimisation over all
V -representable densities, i.e., electron densities that are the ground-state of a local potential.
However, this poses a problem as the conditions for a density to be V -representable is unknown and
a physically reasonable density may not be V -representable. Levy suggested a way to circumvent
this problem [143]. The exact energy is the minimum of the expectation value of the N-electron
Hamiltonian over all (antisymmetrised) N-electron wave functions. As each wave function yields
a specific density we can split this minimisation into two parts. First over the wave functions,
then over the densities, that is

E0 = minρ

(
minΨ→ρ〈Ψ|T̂ + V̂ee|Ψ〉+

∫
Vnuc(r)ρ(r)d(r)

)
. (4.39)

This now means we can consider all N-representable densities, which is that the density represents
an antisymmetric N-electron wave function, and the conditions for this are known. The density
should everywhere be positive, integrate to the number of electrons and satisfy

∫
|∇ρ1/2|2d(r) <∞

for finite systems [141].

With this, the ground-state density and energy can be determined exactly if we have the exact
functional F [ρ]. However, we have the problem that the functionals Te[ρ] and Vee[ρ] are not known
in an analytically usable form. Therefore, in practice we must develop approximations to these
functionals. Kohn and Sham introduced orbitals, allowing for a more accurate calculation of the
kinetic energy albeit a small residual correction is still needed [144]. To this end, Kohn and Sham
expressed F [ρ] in equation (4.36) as,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (4.40)

where J [ρ] is the classical Coulomb repulsion of the density with itself,

J [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r − r′|
drdr′, (4.41)
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and Ts[ρ] is the kinetic energy of a system of non-interacting electrons with density ρ. Given
that the exact F [ρ] = T [ρ] + Vee[ρ] we can identify that the exchange–correlation energy Exc[ρ] is
defined as,

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (4.42)

Now we need to minimise the Kohn-Sham energy expression,

E[ρ] =

∫
ρ(r)Vnuc(r)dr + Ts[ρ] + J [ρ] + EXC [ρ]. (4.43)

This minimsation then gives the Euler equation

µ = Veff(r) +
δTs[ρ]

δρ(r)
, (4.44)

where the effective potential Veff(r) is,

Veff(r) = Vnuc(r) +
δJ [ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
(4.45)

This minimisation would still yield the exact electron density of the system if we could use the exact
functional Exc[ρ]. Therefore, the density of the non-interacting system with external potential
Veff(r) is exactly the same as the density of the real (interacting) system.

Now consider the electronic Hamiltonian for a system of non-interacting electrons in an external
potential Veff(r),

Ĥ = −
N∑
i

1

2
∇2
i +

N∑
i

Veff(ri). (4.46)

This is separable and, therefore, the exact wave function is a single Slater determinant constructed
from orbitals φi that are solutions to,(

− 1

2
∇2
i + Veff(r)

)
φi(r) = εiφi(r), (4.47)

where the density of the non-interacting system is simply,

ρ(r) =
N∑
i

|φi(r)|2, (4.48)

and the kinetic energy of the non-interacting system is given by,

Ts[ρ] =
N∑
i

〈φi| −
1

2
∇2|φi〉. (4.49)

In practice, the introduction of orbitals by Kohn-Sham theory introduces a need for a basis set
to describe the orbitals, as in HF theory. Therefore, the orbitals must be optimised with respect
to the coefficients of the basis set functions. Hence, we must solve a Fock matrix like problem for
the Kohn-Sham orbitals in analogy to (4.29). A final note on the practical use of DFT is that
integration can no longer be done analytically due to the introduction of fractional powers of the
electron density ρ in an approximation to Exc[ρ]. Therefore, numerical integration must be carried
out using a set of grid points.

We should emphasise that Kohn-Sham theory is formally exact if we have the exact exchange–
correlation functional. However, in practical calculations we must approximate the exchange–
correlation energy. The success of Kohn-Sham theory in DFT is that the differences being included
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4.1. Methods for the Calculation of the Ground Electronic State

in the exchange–correlation energy of the exact kinetic energy and the non-interacting kinetic
energy and the electron–electron repulsion with the Coulomb component are usually small and
can be modelled successfully using simple approximations.

Here, we have once more described a situation where each electron is contained within a different
one-electron function, within Kohn-Sham theory. This would be classified as unrestricted Kohn-
Sham (UKS), except we have neglected the description of spin. However, spin in DFT is not well
defined and we will not discuss it here. For a review looking at spin in DFT, see reference [112].

Approximations to the Exchange–Correlation energy

These are usually termed as exchange–correlation functionals as they provide the exchange–
correlation energy as a functional of the density. Now we can classify several “levels” of the
approximations to the exchange–correlation functional. This can also be classified on “Jacob’s
ladder”, where each class of functional has its own rung [145]. There are five main categories, the
first is called Local Density Approximations (LDA). Here, the energy is expressed as an integral
of a function of just the local density,

Exc[ρ] =

∫
F
(
ρ(r)

)
dr. (4.50)

The LDA exchange-correlation functionals assume that the local density can be treated as if it is
a uniform gas and therefore, a slowly varying function. The most common LDA functional used is
the S-VWN, which uses the slater Xα functional [146] for the exchange and the Vosko-Wilks-Nusair
(VWN) functional [147] for the correlation. For more specific information on the form of this LDA
functional see reference [139, 141]. Nevertheless, there are other LDA functionals available, such
as the correlation functional from Perdew [148]. These kinds of exchange–correlation functionals
have found a lot of use in physics calculations where extended systems, such as metals, are being
calculated as the approximation of the uniform gas is quite valid. However in molecules large
errors can be introduced by this approximation.

On the second rung are the Generalised Gradient Approximations (GGAs), where the integrand
also depends on the gradient of the density,

Exc[ρ] =

∫
F
(
ρ(r),∇ρ(r)

)
dr. (4.51)

Thus, GGA exchange–correlation functionals also include the first derivative of the electron dens-
ity. This then provides an improved description for cases where the approximation as a uniform
electron gas fails, such as a molecular system. However, the inclusion of the first derivative does
remove some of the important properties contained within the LDA functionals. The proposed
GGA’s then include constraints where those properties are kept and so the correct physics re-
mains [139]. There are many GGA exchange-correlation functionals available for use in quantum-
chemical programs, many of which are optimised with the calculation of specific properties in
mind, such as the KT3 [149,150] functional for NMR shieldings. The most commonly used GGA
functionals are the BP86 [130, 151] and PBE [152] functionals, although in the literature there
are a myriad of functionals available along with the options of changing and combining different
exchange and correlation functionals (for an overview see reference [153]).

The next step are so-called Meta-GGA’s which also consider higher order derivates,

Exc[ρ] =

∫
F
(
ρ(r),∇ρ(r),∇2ρ(r)

)
dr. (4.52)
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Meta-GGA exchange–correlation functionals build on the principles of the GGA functionals by
including higher-order derivatives within the exchange–correlation functional. We will not go into
detail here, but refer to references [139, 141]. Commonly found meta-GGA functionals are the
TPSS [154,155] functional and the Minnesota functionals (such as M06-L [156,157]).

Following this is to include a dependence on the occupied orbitals in the exchange–correlation
functional. The most important examples are the hybrid exchange–correlation functionals, which
add a fraction of exact exchange from the HF method,

Exc[ρ] =

∫
F
(
ρ,∇ρ(r)

)
dr + ξE0

X , (4.53)

where ξ is a coefficient between 0 and 1 and dictates the amount of exact exchange included.

Hybrid functionals can be made with any of the previously mentioned exchange–correlation func-
tional classes. The basic idea of hybrid functionals is that with the Kohn-Sham Slater determinant
we can include a portion of “exact” exchange calculated as in HF and include it in the exchange–
correlation functional. This percentage then replaces that percentage of exchange calculated by
the original exchange functional. Many hybrid functionals are available within quantum-chemical
program packages, with the most ubiquitous in the literature being B3LYP [158, 159]. However,
we also see hybrid functionals of other exchange–correlation functionals, such as PBE0 [160,161],
TPSS-H [154,155] or M06-2X [156,157].

The final class belongs to exchange–correlation functionals with a dependence on the virtual orbit-
als as well. These are usually referred to as double hybrid exchange–correlation functionals, which
not only include a contribution of exact exchange from HF methods but also include contributions
from more sophisticated wave function methods (e.g. MP2) [162,163],

Exc[ρ] =

∫
F
(
ρ(r),∇ρ(r)

)
dr + ξ1E

0
X + ξ2E

MP2
c . (4.54)

4.2. Time-Independent Methods for the Calculation of X-ray
Spectra

We introduced the concept of excited states and that knowledge of the excited states is required
for electronic spectroscopy in chapter 2 and considered the treatment of properties from a time-
dependent perspective. This lead to Fermi’s golden rule and expressions for the oscillator strengths.
We found that the solution of the time-dependent problem reduces to the solution of the time-
independent electronic Schrödinger equation for excited states. Therefore, we have two available
approaches to the calculation of electronic spectroscopy: time-independent and time-dependent.
We must note, both time-independent and time-dependent approaches are equivalent when con-
sidering the exact theory and only the introduction of the approximate wave functions gives rise
to differences. In a time-independent approach, the excited states are calculated explicitly. The
energy differences between ground and excited states then determine the transition frequencies
and the wave functions can be used to determine the oscillator strengths as described in detail in
chapter 3. With that, we can calculate the electronic spectrum of the molecule. Within the fol-
lowing sections we will introduce several time-independent approaches to the calculation of X-ray
spectroscopy.
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4.2.1. Configuration Interaction

The configuration interaction (CI) ansatz introduced in section 4.1.1 also provides access to excited
states. In the CIS method, only singly excited Slater determinants are included and the expansion
coefficients Ca

i are determined using the variational principle. This leads to the eigenvalue equation

AX = ωX (4.55)

where ω is the diagonal matrix of excitation energies, X the matrix of expansion coefficients and
the elements in A are given by

Aia,jb = (εa − εi)δijδab + 〈ij||ab〉, (4.56)

where εa and εi are the orbital energies and 〈ij||ab〉 are the two-electron Coulomb and exchange
integrals. The A matrix is then diagonalised to get the excitation energies. However, if core-
excited states are required in the calculation the way presented here is inefficient. In this case it
is possible to restrict the CIS calculation to only the core orbitals [123,164] (for more information
see section 4.4).

However, it has been noted that CIS excitations provide a poor agreement with experiment.
Consequently, the inclusion of a perturbative doubles correction to the ansatz was proposed by
Head-Gordon et al. [165, 166]. This yields a significant improvement of the calculated excitation
energies compared to experiment. The correction to the excitation energies ωCIS0n calculated with
CIS is

ω
CIS(D)
0n = −1

4

∑
ijab

(uabij )2

(εa + εb − εi − εj)− ωCIS0n

+
∑
ia

Ca
i v

a
i (4.57)

where

uabij =
∑
c

[〈ac||bj〉Cc
j − 〈ac||bi〉Cc

j ] +
∑
k

[〈ki||aj〉Cb
k − 〈ki||bj〉Ca

k ], (4.58)

vai =
1

2

∑
jkbc

〈jb||kc〉(Ca
i a

ca
jk + Cb

ja
cb
ik + 2Cb

ja
ac
ik ), (4.59)

and aabij are amplitudes taken from the MP2 method (for information on MP2 see reference [139]),

aabij = − 〈ia||jb〉
(εa + εb − εi − εj)

. (4.60)

In equation (4.57) the first term is termed the direct contribution and accounts for electron
correlation effects of the electron involved in the excitation, while the second indirect term accounts
for electron correlation effects between pairs of electrons not involved in the excitation [167].

4.2.2. ∆SCF

The ∆SCF method is considered as a method which takes into account many effects required in
the calculation of X-ray spectra. The principle of ∆SCF is that the HF wave function is optimised
for the ground state and the specific excited state. The transition energy is then,

E0n = En − E0, (4.61)
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and the intensity is calculated using the ground and excited state wave functions in the integrals
shown in chapter 3. However, a few problems arise within ∆SCF methods. The first is that the
wave functions are not orthogonal as they were individually optimised without constraints to be
orthogonal to one another. The second is that for each excitation the explicit excited state must
be calculated. In systems where many excitations are required this is cumbersome and can be
prohibitively time intensive. Although as mentioned ∆SCF methods have a few benefits. By
optimisation of the excited state wave function any orbital relaxation that occurs due to the core
hole is taken into account as well as the core-hole screening.

4.2.3. Static Exchange Method (STEX)

STEX is a derivative of the ∆SCF method. However, unlike the ∆SCF method, it calculates
multiple excitation energies in one calculation. STEX however, was originally formulated to allow
an improvement on time-dependent HF, as it allows for calculation of core electron excitations as
well as including the orbital relaxation which occurs upon excitation, which is neglected in TD-HF
[168,169]. The STEX method was developed and described by Ågren et al. in references [168,169]

The way this is accomplished is to use the optimised ionised wave function as the reference and
carry out the calculations using the relaxed orbitals, but include all the electrons present in the
ground-state wave function. We then describe the motion of the electron, which occurs upon
promotion, in the electrostatic field provided by the ionised wave function. The electrostatic field
is fixed with respect to the motion of the electron, but the method accounts for the exchange in
this interaction within the STEX Hamiltonian,

ĤSTEX = h+

n/2∑
i 6=j

(2Ji −Ki) + Jj +Kj, (4.62)

where the index j refers to the orbital with the electron removed and i runs over all other occupied
orbitals. This Hamiltonian refers to a restricted closed shell molecule, although it can also be
formulated for open-shell systems. An important note here is that this Hamiltonian must be
applied to the ionised wave function with the electron hole in the jth orbital.

We must also consider that these calculations are usually performed within an atomic orbital
(AO) basis set, where within the Hamiltonian we now include the one-electron density matrix D
(this enters within the Fock operator). These one-electron density matrices must be altered in
STEX due to the electron hole in the core orbital, as these are initially calculated for the closed
shell, fully occupied system. For a density matrix corresponding to the restricted doubly occupied
system, the modifications are made according to,

DJ
αβ = Dαβ −

1

2
cαjcβj, (4.63)

DK
αβ = Dαβ − 2cαjcβj, (4.64)

where α and β correspond to the AOs within the basis set and cαj is the coefficient of the AO
α in the vector of the molecular orbital j. The density matrix DJ

αβ and DK
αβ correspond to the

one-electron density matrices for the Coulomb and exchange terms, respectively.

To summarise, we can break the STEX procedure down into four steps:

(1) The optimisation of the ground-state and core-hole excited state wave function along with
the computation of the ionisation potential by ∆SCF procedures.
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(2) Computation of the STEX Hamiltonian matrix and, in the AO basis set, the modified core-
hole densities.

(3) Transformation of the STEX matrix by projecting out the occupied orbitals from the basis
set.

(4) Diagonalisation of the projected STEX matrix to yield eigenvectors and eigenvalues.

The excitation energies from this procedure are then simply calculated as,

En
exci = (EIon − EGS) +Xn, (4.65)

where En
exci is the excitation energy for excitation n, EIon and EGS are the total energies for the

ionised and ground-state wave function, respectively, and Xn is the STEX eigenvalue for excitation
n. It is also possible to calculate the transition moments with this method. The matrix elements,
for the electric-dipole oscillator strength are,

fn =
2

3
En

exci〈Ψ0|µ̂|Ψa
j 〉, (4.66)

where Ψ0 is the ground state wave function, µ̂ is the dipole operator and Ψa
j is the excited wave

function with an electron from orbital j in orbital a.

4.2.4. ∆DFT

∆DFT is the terminology we will use to denote an orbital difference method with DFT used
for calculating X-ray emission spectra. When calculating emission spectroscopy the process is
between occupied orbitals and normal response methods are not available for this purpose as
these probe transitions from occupied to virtual orbitals. Therefore, a simple method outlined by
Lee et al. [137] can be used for calculating emission spectra (see also refs. [170–172] and references
therein for earlier work).

In ∆DFT the transition energies are calculated simply as orbital energy differences from the
electronic ground state density,

E0n = εi − εj (4.67)

where εi/j are the orbital energies. The intensity calculations using ∆DFT then only require
calculating the integrals shown in chapter 3 between the occupied orbitals.

This method has been shown to be effective for the calculation of Kβ2,5 XES spectra of iron
complexes [21,67–69,137,173] even though the simplicity of the model neglects many effects. We
also use this methodology within our calculations of X-ray emission spectra in chapter 6.

4.2.5. Transition State Potential

The transition state potential method was originally proposed by Slater [146]. It follows the
very simple premise as that described in the ∆DFT method in that the transition energies are
calculated as simple orbital energy differences. However, the difference of the transition state
potential method is that the wave function is optimised for a partially excited state where half an
electron resides in the initial orbital and half in the final state. Therefore, the orbitals take into
account the partial relaxation due to the core hole [170]. This method has been applied mostly
with DFT [170,174–177] methods.
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4.3. Time-Dependent Methods for the Calculation of X-ray
Spectra

Time-dependent methods provide a way to calculate excitation energies using linear response
theory instead of explicitly calculating each excited state wave function as is done with the time-
independent methods. When using linear response theory, in an exact formalism, we are solving
for the linear response function,

〈〈µ̂α; µ̂β〉〉ω =
∑
n6=0

[〈Ψ0|µ̂α|Ψn〉〈Ψn|µ̂β|Ψ0〉
ω − ω0n

+
〈Ψ0|µ̂β|Ψn〉〈Ψn|µ̂α|Ψ0〉

ω0n − ω

]
, (4.68)

where 〈〈µ̂α; µ̂β〉〉ω is the polarisability of the molecule at wavelength ω and ω0n (~ω0n = (En−E0))
is the excitation frequency from the ground state to the nth excited state. This expression as stated
here is a sum over all the excited states and would therefore require the explicit calculation of all
the excited state wave functions. However, when using approximate wave functions we can solve
for the linear response equation directly. Thus, to find the excitation energies we find the poles
of the linear response function, when 〈〈µ̂α; µ̂β〉〉ω →∞.

The next sections will discuss the time-dependent methodology for DFT and HF as well as intro-
duce coupled cluster linear response methods and the complex polarisation propagator.

4.3.1. Time-Dependent DFT (TD-DFT)

The theoretical framework for the time-dependent generalisation of DFT was introduced by Runge
and Gross [178] and subsequently the TD-DFT response theory [179] was introduced. Since this
introduction time-dependent DFT has become a widely used method in the field of spectroscopy
[107, 126, 180–182]. It has a low cost to accuracy ratio compared to many other methods, such
as coupled cluster or HF, which means it can be applied to many systems not accessible with
high-level wave function methods and still provide reasonable results, in particular for transition
metal complexes [116,124,126,183–186].

Here we will introduce the most essential concepts and equations of time-dependent density func-
tional theory. There are multiple ways to derive the time-dependent density functional linear
response equations [179, 187, 188]. However, independent of the way chosen for the derivation we
end up with an electronic hessian E,

E =

(
A B
A∗ B∗

)
, (4.69)

where the elements of the matrices A and B are given by,

Aia,jb = δijδab(εa − εi) + 2〈φi(r)φb(r
′)|φa(r)φj(r

′)〉+ 〈φi(r)φb(r
′)|fXC |φa(r)φj(r

′)〉, (4.70)

Bia,jb = 2〈φi(r)φb(r
′)|φj(r′)φa(r)〉+ 〈φi(r)φb(r

′)|fXC |φj(r′)φa(r)〉, (4.71)

where εa are the Kohn-Sham orbital energies, 〈φi(r)φb(r
′)|φa(r)φj(r

′)〉 is the two-electron Cou-
lomb integral and

〈φi(r)φb(r
′)|fXC |φj(r′)φa(r)〉 =

∫∫
φi(r)φb(r

′)
[ δ2EXC [ρ]

δρ(r)δρ(r′)

]
φj(r

′)φa(r)d3rd3r′, (4.72)
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are the integrals over the exchange–correlation kernel. With some derivation we can finally arrive
at a matrix eigenvalue equation which we can solve to find the poles of the linear response equation
(4.68) and hence, the excitation energies,(

A B
A∗ B∗

)(
X
Y

)
= ω

(
1 0
0 −1

)(
X
Y

)
, (4.73)

where X and Y are eigenvectors and ω is the diagonal matrix of excitation frequencies (~ω0n =
(En − E0)).

We can introduce an approximation here, if the excitations are only very weakly coupled, called
the Tamm-Dancoff approximation [189] where the B matrix is set to 0 and we solve,

AX = ωX. (4.74)

This reduces the size of the problem by half and the loss in accuracy is most often outweighed by
the speed up of the calculation.

4.3.2. Time-Dependent HF (TD-HF)

Time-dependent HF will not be discussed in detail as the formalism presented for time-dependent
DFT is equivalent. The exchange–correlation functional term in the matrix elements of the re-
sponse equation (equations (4.70) and (4.71)) are not included [190] and the exchange integral
from HF replaces it. We also note that the Tamm-Dancoff approximation may be applied to
TD-HF. However, we are then solving the CIS equations mentioned in section 4.2.1.

4.3.3. Coupled Cluster Response Theory

Coupled cluster linear response was recently extended for the calculation of X-ray absorption spec-
troscopy [191,192]. However, the applicability of the method is limited due to the computational
costs of the coupled cluster methods. A further problem is encountered in the calculation of the
higher energy edges. With current implementations all excitations must be calculated and hence,
for the K-edge of simple molecules several hundred excitations must be calculated. This is time
consuming and unfeasible for many systems. A core-valence separation scheme can be introduced
to allow the isolation of excitations, such as only from the 1s orbital, however, this can introduce
convergence issues.

4.3.4. Complex Polarisation Propagator (CPP)

The complex polarisation propagator method was introduced by Patrick Norman et al. [193,194].
It is based on linear response theory and introduces a damping factor into the response function.

ααβ(−ω;ω) =
1

~
∑
n6=0

[〈Ψ0|µ̂α|Ψn〉〈Ψn|µ̂β|Ψ0〉
ω0n − ω − iγ

+
〈Ψ0|µ̂β|Ψn〉〈Ψn|µ̂α|Ψ0〉

ω0n + ω + iγ

]
, (4.75)

Therefore, the calculations automatically include the lifetime broadening. The inclusion of the life
time broadening allows for the calculation of intensities at energies which are off-resonance.The
method also has inherently in its definition a way to isolate and calculate over a specific wavelength
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range, meaning excitations at a specific edge of X-ray absorption can be calculated easily. Thus,
it has been applied to the calculation of X-ray absorption spectroscopy [195–198]. The formalism
may be applied to any method where we are solving the linear response equation (Equation (4.68)).
The CPP formalism is also easily adapted to the calculation of circular dichroism spectroscopy of
which its been applied extensively [197–200].

4.4. Restriction of the Excitation Matrix

When considering the calculation of X-ray absorption spectroscopy at a specific edge of a molecule
(e.g. K-edge or L-edge) a problem arises in that diagonalising the excitation matrix provides all
excitation energies. Usually, one solves for the lowest eigenvalues only. Thus, to calculate the
relevant excitations for the edge, several thousand excitations must be calculated. This is unfeas-
ible in most systems. Therefore, Stener et al. proposed a method to restrict the excitation matrix
to excitations from a subset of occupied orbitals which must be specified before the calculation
begins [123]. In practice, this is achieved by shifting all the non-specified orbitals, post–SCF,
to much lower energies (in ADF all non-specified orbitals are shifted to −1 × 10−6 Eh). Hence,
the lowest energy excitations now occur from the specified orbital and will now be the lowest
excitations.

There are also slight modifications to this scheme proposed. In ORCA [201] first the Pipek-Mezey
localisation procedure [202] is used to localise the core orbitals and then the localised orbitals are
used within the excitation calculation [107] and the excitation matrix is restricted in the same
manner as that described by Stener et al..
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Calculation of X-ray Spectra

When performing quantum-chemical calculations there are a variety of approximations to be
chosen from. The quantum-chemical methods available for the calculation of X-ray spectra have
been discussed in the previous chapter. Here, we will consider only the calculations of X-ray
absorption spectra with TD-DFT. However, there are still many choices to be made, such as the
basis set or the exchange–correlation functional, along with some technical parameters, such as
the integration grid or convergence thresholds in the SCF cycles. Within this chapter, we will
explore the effect of these choices on the final results and assess the effect, if any, of a change of
the technical parameters in the calculation.

To this end, we chose a set of test systems where differences between the molecules can also be used
to assess the overall effect of approximation choice. The complexes were ferrocene, acetylferrocene,
vinylferrocene, 1,1’-bis-diphenylphosphinoferrocene and 1,1’-bis-diisopropylphosphinoferrocene. The
goal of this comparison is to determine the best choices for the calculation of X-ray spectra of such
transition metal complexes, which will be used to calculate the results presented in chapters 6 and
7.

5.1. Choice of Basis Set

An important approximation in all quantum-chemical calculations is the use of a finite basis set.
The basis set is used to expand the molecular orbitals (MOs),

φi(r) =
∑
µ

C(i)
µ χµ(r), (5.1)

where C
(i)
µ are the expansion coefficients and χµ(r) is a basis function. The choice of basis set

determines the form of the functions χµ and also the number/type of functions available in the
expansion. In molecular quantum chemistry, the basis functions are usually atom-centred and
designed as to mimic atomic orbitals.

Basis sets are usually designated by their size relative to the minimum number of basis functions
required to describe a molecule. In a minimal (also known as single-ζ) basis set, there is one
basis function per occupied atomic orbital shell. For example, the hydrogen atom will only have
a single s function, while for a carbon atom, one uses a 1s and a 2s function as well as a set of
2p functions (i.e., 5 basis functions in total). A double-ζ basis set extends this and uses two sets
of functions per atomic orbital shell, i.e. [2s] for H and [4s2p] for C. Similarly, a triple-ζ and a
quadruple-ζ basis set use [3s] and [4s] for H and [6s3p] and [8s4p] for C, respectively. The extra
functions provide more flexibility to the basis set and may enable a combination of functions that
provide a better description of the MO’s than the minimal basis set.
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In addition, one may introduce polarisation functions. A polarisation function is an atomic func-
tion that has an angular momentum one higher than the highest angular momentum within the
standard basis set. For example the double-ζ basis set with one polarisation function on a hydro-
gen atom has two s functions and one set of p functions ([2s1p]). The inclusion of polarisation
functions is a requirement for the description of bonds in molecules.

5.1.1. Slater-Type Orbital (STO) Basis Sets

Within the ADF program package, which is used for some of the calculations performed, the basis
sets are described using Slater-type basis functions [139],

χζ,n,l,m(r, θ, φ) = NYl,m(θ, ψ)rn−1e−ζr (5.2)

where ζ is the exponential factor, n, l,m are the principal, angular momentum, and magnetic
quantum number, respectively, Yl,m(θ, ψ) are spherical harmonics and N is a normalisation factor.
r, θ and φ are spherical coordinates used to describe the position of an electron around the
nucleus the basis function is centred on. Slater-type functions have an exponential dependence
on the distance between the nucleus and the electron, which mimics the exact orbitals for the
hydrogen atom, but do not contain radial nodes. To include the radial nodes, linear combinations
of the Slater-type functions must be made. At the nucleus, when r = 0, Slater-type functions
have a cusp (derivative discontinuity) and at large r the tail decays exponentially.

In ADF, single-ζ to quadruple-ζ basis sets are available [203]. The exponents in the basis sets
have been determined through fitting to numerically calculated orbitals. However, for transition
metal complexes only those of triple-ζ or higher are available with the inclusion of polarisation
functions. Therefore, the basis sets which can be utilised in the calculations are TZP, TZ2P or
QZ4P. In the next two sections we will first consider the effect of the basis set on the calculated
transition energies, and subsequently the effect on the calculated intensities.

Energies of Transitions

First to consider is the effect of the choice of basis set on the calculated XAS transition energies
calculated with ADF [122, 204]. For the following tests, we used the BP86 exchange–correlation
functional [130, 131] and an integration grid size 4. To this end, we compare how the energies
change on an increase in basis set size from TZ2P to QZ4P. The calculated spectra for ferrocene,
acetylferrocene, vinylferrocene and 1,1’-bis-diphenylphosphinoferrocene are shown in figure 5.1. It
can be seen that the increase in the size of the basis set only has a minor effect on the excitation
energies, with a shift smaller than 0.1 eV to higher energies. If we consider the calculated ionisation
threshold (see table 5.1), i.e., the negative 1s orbital energy, the effect is slightly larger, with a
shift between 0.1 and 0.2 eV to higher energies.

For two of the complexes, acetylferrocene and vinylferrocene, a splitting of the peak observed in
the other complexes is seen (see chapter 6 for a detailed discussion). This allows for a closer look
at the effect of the basis set on the relative energies of the transitions. These are listed in table
5.2. Here the basis set size has no effect on the relative energies. Therefore we can conclude that
the relative energies are already converged with the TZ2P basis set. Increasing the size of the
basis set further only leads to a small shift of the absolute excitation energies, which is due to a
change in the Fe 1s orbital energy.
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5.1. Choice of Basis Set

Figure 5.1.: Calculated (TD-DFT/BP86) pre-edge regions of the Fe K-edge XAS spectra of four
ferrocene derivatives using either the TZ2P or QZ4P STO basis set.
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Table 5.1.: Negative orbital energies (DFT/BP86) of the Fe 1s orbital, calculated using the
TZ2P and QZ4P basis sets for five ferrocene derivatives. The negative Fe 1s orbital

energy equals the onset of the continuum states and can be identified with the
absorption edge.

Complex Basis set Ionisation Threshold (eV)
Fe(Cp)2 TZ2P 6931.144

QZ4P 6931.300

Fe(Cp)(CpAc) TZ2P 6931.589
QZ4P 6931.722

Fe(Cp)(CpVinyl) TZ2P 6931.244
QZ4P 6931.387

Fe(CpPPh2)2 TZ2P 6931.364
QZ4P 6931.503

Fe(CpPiPr2)2 TZ2P 6931.184
QZ4P 6931.393

Intensities of Transitions

The next consideration is the effect of the basis set on the calculated intensities, as the energies
of the transitions alone are not enough for an experimental assignment. Here, we calculate the
intensities using the origin-independent scheme presented in chapter 3. The intensities can be
separated into their constituent parts, electric-dipole and higher-order contributions, and each

61



5. Comparison of Approximations for the Calculation of X-ray Spectra

Table 5.2.: Relative energies for the splitting between the two lowest peaks - corresponding to
transitions into the dxz anti-bonding orbital - with the TZ2P or QZ4P basis sets for
acetyl- and vinylferrocene. The splitting is calculated as the difference between the

first and third calculated transitions.

Complex Basis set Relative Peak Energy (eV)
Fe(Cp)(CpAc) TZ2P 0.90

QZ4P 0.90

Fe(Cp)(CpVinyl) TZ2P 0.83
QZ4P 0.83

contribution’s basis set dependence has to be determined seperately.

Table 5.3 shows the effect of the basis set on the individual contributions to the intensities. The
intensities are also shown in the spectra in figure 5.1. The electric-dipole intensities have a very
small dependence on the basis set, with an increase two orders of magnitude smaller than the
summed intensity when going from TZ to QZ. The only exception is ferrocene, where the dipole
intensity vanishes. This means that the electric-dipole intensity can be considered converged when
using the TZ2P basis set.

The quadrupole contributions have a larger basis-set dependence, with a change only one order of
magnitude smaller than the intensity itself. Therefore, for the quadrupole contributions the QZ4P
basis set must be utilised to achieve a result closer to the basis set limit. This observation also
indicates that the higher-order intensity contributions converge slower with respect to the basis
set size than the electric-dipole contributions. Of course, this will only be relevant for situations
in which the quadrupole intensities provide a significant contribution to the total intensity.

5.1.2. Gaussian Type Orbital (GTO) Basis Sets

Within most quantum-chemical program packages, such as ORCA [201] or Turbomole [205, 206],
the basis sets are composed of Gaussian-type basis functions [139] of the form

χζ,n,l,m(r, θ, φ) = NYl,m(θ, ψ)rle−ζr
2

. (5.3)

Gaussian-type functions provide several benefits compared to Slater-type basis functions. The
major point is that two-electron integrals can be calculated analytically using GTOs, whereas
with STOs one has to resort to numerical integration. The main drawback of GTOs compared to
STOs is that they do not provide the correct shape of the function with respect to the exact atomic
orbitals. GTOs do not have the cusp at r = 0, but have a continuous derivative, which is zero at
r = 0. In addition, the tail of the function drops off too rapidly. Therefore, to describe a Slater-
type function it has been determined that at least three Gaussian functions are required [139].

For Gaussian basis sets there are several “families” available. Each family is constructed in its
own way, using a specific method for the optimisation of the exponents of the primitives. In ad-
dition, different strategies for contracting several primitives into one basis function are commonly
employed. However, the formulation of a general basis set that is capable of describing all prop-
erties accurately has not, so far, been found, even though when increasing the basis set size the
results should always converge to the same basis set limit. Therefore, many of the general basis
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Table 5.3.: Total intensities (i.e., sum of all the intensities of all excitations before the ionisation
threshold) of the calculated Fe K-edge XAS spectra for five ferrocene derivatives

calculated with the TZ2P or QZ4P basis set. Also included are the separated
summed dipole contribution and summed quadrupole contribution for analysis of the

basis set dependence of the different contributions. All intensities are given as
dimensionless oscillator strengths.

Complex Basis set Total Intensity Summed Dipole Summed Quadrupole
Fe(Cp)2 TZ2P 8.908·10−06 1.150·10−16 8.908·10−06

QZ4P 1.020·10−05 7.047·10−16 1.020·10−05

Fe(Cp)(CpAc) TZ2P 2.497·10−05 1.567·10−05 9.299·10−06

QZ4P 2.663·10−05 1.597·10−05 1.066·10−05

Fe(Cp)(CpVinyl) TZ2P 2.005·10−05 1.083·10−05 9.216·10−06

QZ4P 2.155·10−05 1.100·10−05 1.055·10−05

Fe(CpPPh2)2 TZ2P 1.292·10−05 4.020·10−06 8.901·10−06

QZ4P 1.429·10−05 4.089·10−06 1.020·10−05

Fe(CpPiPr2)2 TZ2P 9.471·10−06 7.803·10−07 8.691·10−06

QZ4P 1.084·10−05 8.797·10−07 9.963·10−06

sets, though able to provide good results for many situations, are optimised as to provide the best
result for a given property. For this reason a variety of Gaussian basis sets have been developed
of which the most commonly used ones belong to the Dunning, Ahlrichs, Jensens, Pople or ANO
basis set families. For more details on Gaussian basis sets we refer to reference [207]. Here, we
will use basis sets from the Ahlrichs family.

Once more we will first consider the effect of the basis set on the calculated transition energies, and
then the effect on the calculated intensities. The main basis sets used were the def2-TZVPP [208,
209] and the def2-QZVPP [210] basis set on all atoms. These are triple-ζ and quadruple-ζ basis
sets, respectively, both including two sets of polarisation functions. In addition, we considered the
CP(PPP) basis set on the iron atom with the TZVP basis set (a triple-ζ basis set including one
set of polarisation functions) on all other atoms [211] because such a combination has previously
been recommended for the calculation of Fe K-edge XAS spectra. The CP(PPP) basis set was
designed by Neese for the calculation of core properties and is focused on an improved description
of the core orbitals. It is based on the Ahlrichs double-ζ basis set in which the s functions are
uncontracted and extra tight s functions are added, along with the incorporation of d functions
from the triple-ζ basis set and an inclusion of additional diffuse functions, giving us on the iron
atom [17s7p3d1f] functions.

Energies of Transitions

We now need to determine the effect of the basis set size on the absolute transition energies for
GTO basis sets. Figure 5.2 shows that the choice of basis set has a significant effect on the energy of
the transition. The CP(PPP)+TZVP basis set combination provides the lowest absolute energies,
with an average shift to lower energies of 0.59 eV compared to the def2-TZVPP and 0.85 eV to the
def2-QZVPP basis set. If we consider the calculated ionisation threshold (see table 5.4) on going

63



5. Comparison of Approximations for the Calculation of X-ray Spectra

from the CP(PPP)+TZVP basis set to the def2-TZVPP basis set it shifts approximately 0.6 eV
to higher energies and by approximately 0.9 eV when going to the def2-QZVPP basis set. This
means that relative to the ionisation threshold, there are negligible differences in the transition
energies with the different basis sets.

Figure 5.2.: Calculated (TD-DFT/BP86) pre-edge regions of the Fe K-edge XAS spectra of four
ferrocene derivatives obtained using either the GTO basis sets CP(PPP)+TZVP,

def2-TZVPP or def2-QZVPP.
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Once more the splitting of one of the transitions in acetylferrocene and vinylferrocene can be used
to determine the convergence of the basis set with respect to the relative energies of the transitions.
In table 5.5, the splitting energies are listed for the three basis set options, CP(PPP)+TZVP, def2-
TZVPP and def2-QZVPP. For acetylferrocene, there are only changes of 0.01 eV on going from
the smallest to the largest basis set, but for vinylferrocene there is a difference of 0.09 eV. Thus,
even though these energy differences are small compared to the experimental accuracy, the use of
the def2-TZVPP basis set or larger is still recommended to provide converged relative energies.

Intensities of Transitions

As before, the calculated dipole-moment and higher-order contributions to the intensities have to
be analysed for convergence with respect to the basis set. Here, we consider both a change of
size and the number of polarisation functions in the basis set. As ORCA is employed here, the
calculated oscillator strengths are origin-dependent and only include the electric-dipole, electric-
quadrupole and magnetic-dipole contributions. The origin is placed at the centre of mass of the
molecule.

In table 5.6, the effect of the basis set on the individual contributions is given, while the spec-
tra in figure 5.2 show the total oscillator strengths. The electric-dipole intensities have a very
small dependence on the basis set, with a difference that is two orders of magnitude smaller
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Table 5.4.: Negative orbital energies (DFT/BP86) of the Fe 1s orbital, calculated using the
CP(PPP)+TZVP, def2-TZVPP and def2-QZVPP basis sets for five ferrocene

derivatives. The negative Fe 1s orbital energy equals the onset of the continuum
states and can be identified with the absorption edge.

Complex Basis set Ionisation Threshold (eV)
Fe(Cp)2 CP(PPP)+TZVP 6932.130

def2-TZVPP 6932.711
def2-QZVPP 6933.007

Fe(Cp)(CpAc) CP(PPP)+TZVP 6932.566
def2-TZVPP 6933.161
def2-QZVPP 6933.431

Fe(Cp)(CpVinyl) CP(PPP)+TZVP 6932.226
def2-TZVPP 6932.834
def2-QZVPP 6933.102

Fe(CpPPh2)2 CP(PPP)+TZVP 6932.335
def2-TZVPP 6932.957
def2-QZVPP 6933.217

Fe(CpPiPr2)2 CP(PPP)+TZVP 6932.222
def2-TZVPP 6932.845
def2-QZVPP 6933.099

Table 5.5.: Relative energies for the splitting between the tow lowest peaks - corresponding to
transitions into the dxz anti-bonding orbital - with the CP(PPP)+TZVP,

def2-TZVPP or def2-QZVPP basis sets for acetyl- and vinylferrocene. The splitting
is calculated as the difference between the first and third calculated transitions.

Complex Basis set Relative Peak Energy (eV)
Fe(Cp)(CpAc) CP(PPP)+TZVP 0.91

def2-TZVPP 0.91
def2-QZVPP 0.90

Fe(Cp)(CpVinyl) CP(PPP)+TZVP 0.93
def2-TZVPP 0.85
def2-QZVPP 0.84

than the intensity itself on going from def2-TZVPP to def2-QZVPP, but on changing from the
CP(PPP)+TZVP basis set the change is only one order of magnitude smaller than the total dipole
intensity. Nonetheless, this means that the electric-dipole intensity can be considered converged
with respect to the basis set already with the CP(PPP)+TZVP basis set.

The quadrupole contributions have a significantly larger dependence on the basis set. When we
go from CP(PPP)+TZVP to def2-TZVPP, the intensity decreases in the same order of magnitude
as the summed quadrupole intensity. In ferrocene, this is approximately a 5-fold decrease. On
changing from the def2-TZVPP to the def2-QZVPP basis set the changes in the intensity are
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smaller and are one order smaller than the total quadrupole intensity. However, this is still a
significant change when compared to that of the electric-dipole intensities with the same change
in basis set. This observation indicates that the higher-order intensity contributions converge
slower with respect to the basis set size than the electric-dipole contributions. Therefore, we
conclude that to achieve a result close to the basis set limit, the def2-QZVPP basis set must be
used for all calculations where the higher-order quadrupole contributions provide a non-negligible
contribution.

Table 5.6.: Total intensities (i.e., sum of all the intensities of all excitations before the ionisation
threshold) of the calculated Fe K-edge XAS spectra for five ferrocene derivatives

calculated with the CP(PPP)+TZVP, def2-TZVPP or def2-QZVPP basis set. Also
included are the separated summed dipole contribution and summed quadrupole

contribution for analysis of the basis set dependence of the different contributions.
All intensities are dimensionless.

Complex Basis set Total Intensity Summed Dipole Summed Quadrupole
Fe(Cp)2 CP(PPP)+TZVP 4.186·10−05 0.000 4.186·10−05

def2-TZVPP 7.809·10−06 0.000 7.809·10−06

def2-QZVPP 1.074·10−05 0.000 1.074·10−05

Fe(Cp)(CpAc) CP(PPP)+TZVP 6.030·10−05 1.632·10−05 4.398·10−05

def2-TZVPP 4.060·10−05 1.749·10−05 2.311·10−05

def2-QZVPP 4.134·10−05 1.710·10−05 2.424·10−05

Fe(Cp)(CpVinyl) CP(PPP)+TZVP 8.046·10−05 1.205·10−05 6.841·10−05

def2-TZVPP 2.508·10−05 1.271·10−05 1.238·10−05

def2-QZVPP 2.726·10−05 1.178·10−05 1.548·10−05

Fe(CpPPh2)2 CP(PPP)+TZVP 3.825·10−05 3.580·10−06 3.467·10−05

def2-TZVPP 2.765·10−05 4.676·10−06 2.298·10−05

def2-QZVPP 2.625·10−05 4.469·10−06 2.178·10−05

Fe(CpPiPr2)2 CP(PPP)+TZVP 1.527·10−05 7.550·10−07 1.452·10−05

def2-TZVPP 1.179·10−05 8.986·10−06 1.077·10−05

def2-QZVPP 1.011·10−05 9.200·10−07 9.193·10−06

At this point we have observed that the electric-dipole contributions to the intensity are, for the
most part, insensitive to our choice of basis set. As the quadrupole intensities have significant
differences, specifically when using the CP(PPP)+TZVP, we decided to look at the importance
of the polarisation functions in more detail. Ferrocene was chosen as a test case here because its
pre-edge peak contains only quadrupole intensity. Here three pairs of basis sets were compared
with differing amounts of polarisation functions. The calculated spectra are shown in figure 5.3.
If we first consider the basis set CP(PPP)+TZVP, the number of polarisation functions is severely
unbalanced, with many more present on the iron atom compared to the other atoms. In the spectra
an intensity much larger than that calculated with either the def2-TZVPP or def2-QZVPP basis set
is observed. When compared to a situation where the number of polarisation functions is balanced
for all atoms (CP(PPP)+TZVPPP) there is a decrease of the intensity by approximately four fold,
to an intensity that is much closer to that calculated using the def2-TZVPP and def2-QZVPP
basis sets. In addition, we consider other pairs of basis sets where the number of polarisation
functions is balanced, first looking at the Ahlrichs TZVP and TZVPPP basis sets. Here we see
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that with the TZVP basis set there is no observable intensity in the spectra, but on increasing
the number of polarisation functions to the TZVPPP basis set there is now an observable peak.
Therefore, it can be seen that the number of polarisation functions in the molecular basis set has
a significant impact on the calculated intensity in this case. However, when we consider the def2-
TZVP and def2-TZVPP basis sets, where the number of polarisation functions has been doubled
there is no significant change in the calculated intensity of the peak. On the other hand, if the
def2-TZVP and TZVP basis sets are compared there is a significant difference in the intensity.
The difference between these two basis sets is an added diffuse d function and the inclusion of an
f polarisation functions. These additional functions appear to be essential here.

When all comparisons are considered, the most important point to be seen is that the number of
polarisation functions present within the molecule should be balanced, otherwise the calculated
intensities may be significantly larger than those calculated with a larger basis set. However, if
the polarisation functions are balanced, there is no significant change in the calculated intensity
on a change in the number of polarisation functions. The Ahlrichs’ TZV basis set goes against
this observation, which can be attributed to a fewer number of d functions when compared to the
def2- basis sets. Finally, another important point so far not discussed is that the change in the
number of polarisation functions has no observable effect on the peak position, with changes that
are smaller than 0.1 eV.

Figure 5.3.: Ferrocene pre-edge spectra calculated using a variety of basis sets utilising different
numbers of polarisation functions.
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5.1.3. STO vs. GTO

The last consideration with respect to the choice of basis sets is how the use of a GTO or an
STO basis set affects the calculated spectra. In figure 5.4 the spectra calculated with comparable
size basis sets, but using either GTO or STO functions is shown. We can see that there are
many significant differences. However, a problem arises in indicating whether these differences
are due to other inherent differences within the programs or a consequence of the different basis
sets themselves. As the disentanglement between the effects of the basis set and the differences
between the program is not possible, conclusions as to the cause of the differences can not be
made. However, the knowledge of the differences between the results obtained with both GTO
and STO basis set functions is still necessary for the comparison of results.
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The first observation is that there is a significant change in the calculated transition energy, with
the GTO basis sets always providing a higher energy. The relative energies are almost identical
between the two basis sets. However, in the case of Fe(CpPPh2)2 the STO basis sets give a smaller
relative energy. Secondly, there are also large differences in the intensities. This is not readily
apparent in the case of ferrocene where the intensities are very similar between the STO and
GTO basis sets. But for acetylferrocene, vinylferrocene and 1,1’-bis(diphenylphosphino)ferrocene
the intensities are in general larger with the GTO basis set. In the case of acetylferrocene there is
also a reversal of the relative intensities, with the first peak being the most intense for the STO
basis sets and the second peak being the most intense for the GTO basis sets. This reversal is also
observed for vinylferrocene, though the intensity differences between the two peaks in the spectra
are smaller.

Figure 5.4.: Comparison of the STO and GTO basis sets of the same ζ for four ferrocene
derivatives.
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In conclusion, though we observe a shift in the absolute energies, both basis set types provide
relative energies in good agreement. The intensities have larger differences due to the basis set
function type used in the calculation. However, taking these differences into account both basis
sets provide qualitatively the same interpretation of the spectra. Note that the difference in
the absolute energies is a moot point as the spectra must be shifted to align with experimental
results due to the severe underestimation of the 1s core orbital energy when using DFT exchange–
correlation functionals (section 5.3 discusses more about the exchange–correlation functionals).

5.2. Program Comparison

In the calculations, three different quantum-chemical program packages have been used: ORCA,
ADF and Turbomole (TM). This was necessary because not every program package has every
functionality required in the scope of this work. If we are to make a valid comparison between
the results calculated with different programs a thorough evaluation of the differences that occur
is required. Therefore, we made a study of the differences in the results calculated with each
program for vinylferrocene. Within this study the effects of the convergence criteria were explored
along with the effect of method choice on the differences between the programs. The convergence
levels used are shown in table 5.7. The results presented are the average of the differences from
the first ten valence excitations calculated using time-dependent methods. Valence excitations are
calculated for this comparison instead of core excitations because Turbomole does not currently
have a method available for restricting the excitations to those only from the core orbitals.

Table 5.7.: The different convergence levels used for the program comparison. Convergence check
mode in ORCA, 0 means all convergence criteria are checked and 2 means the the
change in the total energy and the one-electron energy is checked (calculation is

converged if ∆Etot<TolE and ∆E1<1·103×TolE or the ratio of the total energy and
the one-electron energy becomes fixed).

Convergence SCF energy Threshold of Davidson residual Grid size Other
level threshold (Eh) density (RMS) threshold information

Standard 1 · 10−6 1 · 10−6 1 · 10−6 ORCA: 4 ORCA: Convergence
TM: m4 Check mode = 2

ADF: N/A ADF: Te Velde 4

Medium 1 · 10−8 1 · 10−8 1 · 10−6 ORCA: 4 ORCA: Convergence
TM: m4 Check mode = 0

ADF: N/A ADF: Te Velde 4

High 1 · 10−10 1 · 10−10 1 · 10−6 ORCA: 4 ORCA: Convergence
TM: m4 Check mode = 0

ADF: N/A ADF: Te Velde 4

Default 1 · 10−6 ORCA: 1 · 10−6 ORCA: 4 ORCA: Convergence
TM: 1 · 10−7 TM: 1 · 10−5 TM: m3 Check mode = 2
ADF: N/A ADF: 1 · 10−6 ADF: Te Velde 4

Unless otherwise stated, for ORCA and Turbomole all calculations used the def2-SVP basis set
with the RI-J approximation, using the def2-SVP/J auxiliary basis set. The HF calculations do
not utilise the RI-JK approximation. For the ADF calculations, a DZP basis set was used for all
excitation calculations, except that the TZP basis set had to be used for the iron atom, because a
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5. Comparison of Approximations for the Calculation of X-ray Spectra

DZP basis set is not available. In all ORCA and Turbomole calculations, the maximum dimension
of the expansion space used in the Davidson diagonalisation in the TD-DFT/TD-HF calculations
was set to 100, except for in the default calculations with ORCA where this was set to 150. Finally
the Tamm-Dancoff approximation (TDA) was used in ORCA and Turbomole for the calculation
of the excitations, or in the case of HF the equivalent approximation, configuration interaction
singles (CIS).

Table 5.8 shows the average differences from excitation energy calculations using HF, S-VWN or
BP86 calculated in both ORCA and Turbomole. As both programs utilise the same definition
for the total energy of the system we can also use this as a comparison between the programs.
On moving from HF to DFT the differences in the total energy of the system increases to a
maximum with BP86. However with a given exchange–correlation functional the differences are
almost constant with respect to the convergence criteria and the grid size used. The total energy
difference is more sensitive to the convergence criteria in HF, however, the differences are extremely
small (µEh) with the standard convergence criteria. For the average excitation energy differences
we see the opposite trend, with a decrease in the differences on using a DFT method. Using
DFT the differences are almost independent of the choice of functional, grid size and convergence
criteria. Even with HF the differences are two orders of magnitude smaller than the transition
energies and do not depend on the convergence criteria.

Importantly we must also consider the comparability of the calculated intensities between pro-
grams. The average dipole intensity differences are at least two orders of magnitude smaller than
the calculated average dipole intensity for all method options. The differences are also almost
independent of the choice of functional, grid size and convergence criteria. However, with HF
tightening the convergence criteria reduces the differences by an order of magnitude. Finally, we
consider the average differences in the calculated quadrupole intensity. In most calculations the
differences are an order of magnitude smaller than the average calculated quadrupole intensity.
Also, as for the average dipole intensity differences, the average quadrupole intensity differences
are almost constant with respect to the convergence criteria, grid size and exchange–correlation
functional choice. Once more, with HF a difference is seen on a change in the convergence criteria,
albeit small compared to the change in the average dipole intensity differences.

From these results we can conclude that the results obtained with ORCA and Turbomole are
directly comparable. At the default settings for both programs using the def2-QZVPP basis set
the differences are almost identical as to the other average DFT result differences, the exception
being that the difference in the quadrupole is slightly larger. However, the default convergence
settings are sufficient to provide results which can be directly compared.

Table 5.9 shows the average differences from excitation energy calculations using HF, S-VWN
or BP86 calculated in both ORCA and ADF. We must note that the largest difference between
the programs is the basis set. We shall first consider the average difference in the excitation
energies. The differences remain constant within a given methodology and, therefore, can be
considered independent of the convergence criteria and the grid size. Although, the differences
in the average excitation energies decrease on going from HF to DFT methods and a further
decrease on changing from the S-VWN to the BP86 exchange–correlation functional is observed
within the DFT methods. We must note that ADF calculates the HF integrals using density
fitting [212], which gives rise to the larger differences observed. The average differences in the
dipole intensities are constant with respect to the choice of exchange–correlation functional, grid
size and convergence criteria and are two orders of magnitude smaller than the average dipole
intensity. However, the HF average dipole differences are larger, but they are still one order of
magnitude smaller than the average dipole intensity for HF and are also mostly independent of
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Table 5.8.: Comparison of results from ORCA and Turbomole for different convergence criteria
and grid size using HF, S-VWN or BP86. Differences are averaged over the first 10

calculated valence excitations. The average excitation values for the different
methods range from 1.23 · 10−1 to 1.61 · 10−1 Eh, average dipole intensities range from
1.99 · 10−3 to 2.44 · 10−3 for DFT methods and 7.01 · 10−2 to 7.02 · 10−2 for HF and

the average quadrupole intensities range from 3.81 · 10−9 to 6.057 · 10−9 for DFT and
8.23 · 10−7 to 9.43 · 10−7 for HF.

Method Convergence Grid size ∆TotE (Eh) Average Average Average
level ∆Eexc (Eh) ∆Dipole ∆Quadrupole

HF Standard - -1.826·10−06 1.061·10−03 -1.519·10−04 9.763·10−08

Medium - -5.882·10−08 1.050·10−03 -3.541·10−05 1.191·10−07

S-VWN Standard Final grid 4 3.949·10−05 4.068·10−04 3.443·10−05 8.431·10−10

(434 Lebedev)

Medium Final grid 4 4.304·10−05 4.041·10−04 3.440·10−05 8.442·10−10

(434 Lebedev)

Final grid 3 -6.080·10−06 3.852·10−04 3.223·10−05 8.392·10−10

(302 Lebedev)

Final grid 5 2.064·10−05 4.116·10−04 3.412·10−05 8.431·10−10

(590 Lebedev)

High Final grid 4 4.279·10−05 4.044·10−04 3.435·10−05 8.442·10−10

(434 Lebedev)

BP86 Standard Final grid 4 3.172·10−02 3.664·10−04 3.609·10−05 8.238·10−10

(434 Lebedev)

Medium Final grid 4 3.173·10−02 3.542·10−04 3.665·10−05 8.234·10−10

(434 Lebedev)

Final grid 3 3.171·10−02 3.618·10−04 3.193·10−05 8.162·10−10

(302 Lebedev)

Final grid 5 3.180·10−02 3.648·10−04 3.645·10−05 8.244·10−10

(590 Lebedev)

High Final grid 4 3.173·10−02 3.542·10−04 3.667·10−05 8.234·10−10

(434 Lebedev)

Default Final grid 4 3.169·10−02 3.726·10−04 3.323·10−05 8.204·10−10

(434 Lebedev)

BP86 Default Final grid 4 3.177·10−02 3.683·10−04 3.039·10−05 1.179·10−09

/def2-QZVPP (434 Lebedev)

the choice of convergence criteria.

The final major comparable value is the calculated quadrupole intensities, and we can see that,
like the average dipole intensities differences they can be considered mostly independent of the
convergence criteria and grid size. However, there is a noted difference between the S-VWN and
BP86 results, nevertheless the differences are on the same order with both functionals. These
differences are one order of magnitude smaller than the average calculated quadrupole intensity
for the DFT methods. Once more the HF average differences are large, although still one order
of magnitude smaller than the average calculated quadrupole intensity and can be considered
constant with the choice of convergence criteria. The final column in table 5.9 shows the average
difference between sum of the intensity components calculated with ORCA and ADF, but these
will not be discussed further as their major contributor is the dipole intensity and, therefore, they
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have the same behaviour as the dipole intensities.

Table 5.9.: Comparison of results from ORCA and ADF for different convergence criteria and
grid size using HF, s-VWN or BP86. Differences are averaged over the first 10

calculated valence excitations. COM = Centre of Mass, Qζ = def2-QZVPP or QZ4P.
The average excitation values for the different methods range from 1.20 · 10−1 to

1.61 · 10−1 Eh, average dipole intensities range from 2.02 · 10−3 to 2.44 · 10−3 for DFT
methods and 6.08 · 10−2 to 7.01 · 10−2 for HF and the average quadrupole intensities
range from 3.98 · 10−9 to 6.77 · 10−9 for DFT and 9.42 · 10−7 to 9.95 · 10−7 for HF. The

average fµ+Q+m ranges from 2.02 · 10−3 to 2.45 · 10−3 for DFT methods and
6.08 · 10−2 to 7.01 · 10−2 for HF.

Method Convergence Grid size Average Average Average Average
level ∆Eexc (Eh) ∆Dipole ∆Quadrupole ∆fµ+Q+m

HF Standard -/Te Velde 4 2.186·10−02 9.118·10−03 -5.228·10−08 9.117·10−03

Medium -/ Te Velde 4 2.186·10−02 9.237·10−03 -5.211·10−08 9.237·10−03

(S-)VWN Standard Final grid 4/Te Velde 4 2.259·10−03 -4.966·10−05 -5.594·10−10 -4.968·10−05

(434 Lebedev)

Medium Final grid 4/Te Velde 4 2.256·10−03 -4.955·10−05 -5.584·10−10 -4.957·10−05

(434 Lebedev)

Medium Final grid 3/Te Velde 3 2.289·10−03 -4.216·10−05 -5.200·10−10 -4.218·10−05

(302 Lebedev)

Medium Final grid 5/Te Velde 5 2.232·10−03 -4.480·10−05 -5.496·10−10 -4.482·10−05

(590 Lebedev)

High Final grid 4/Te Velde 4 2.257·10−03 -4.961·10−05 5.584·10−10 -4.963·10−05

(434 Lebedev)

BP86 Standard Final grid 4/Te Velde 4 1.370·10−05 -5.908·10−05 -8.766·10−10 -5.911·10−05

(434 Lebedev)

Medium Final grid 4/Te Velde 4 4.300·10−06 -5.916·10−05 -8.776·10−10 -5.919·10−05

(434 Lebedev)

Medium Final grid 3/Te Velde 3 2.770·10−05 -3.792·10−05 -7.801·10−10 -3.795·10−05

(302 Lebedev)

Medium Final grid 5/Te Velde 5 -2.520·10−05 -5.095·10−05 -8.531·10−10 -5.098·10−05

(590 Lebedev)

High Final grid 4/Te Velde 4 4.300·10−06 -5.915·10−05 -8.776·10−10 -5.918·10−05

(434 Lebedev)

Default Final grid 4/Te Velde 4 1.370·10−05 -5.908·10−05 -8.766·10−10 -5.911·10−05

(434 Lebedev)

BP86 Default Final grid 4/Te Velde 4 1.370·10−05 -5.908·10−05 7.362·10−10 -5.911·10−05

(COM (origin)) (434 Lebedev)

BP86 Default Final grid 4/Te Velde 4 -4.742·10−04 2.262·10−04 -7.130·10−10 2.261·10−04

/(Qζ) (434 Lebedev)

From these results we can conclude that results obtained with ADF are comparable to those
obtained using ORCA and, therefore, also Turbomole. At the default settings using the quadruple-
ζ basis set we see a slight increase in the average differences of the excitation energies and the dipole
intensities. Nevertheless, the differences are still smaller than the average calculated intensity.
Therefore, we conclude that the default settings for the convergence criteria are sufficient for
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results which can be compared.

5.3. Comparison of Exchange–Correlation Functionals

With the knowledge of the comparability of results obtained using different programs, we can
compare the features of spectra calculated with different exchange–correlation functionals and
can consider functionals from different programs. We will use both the ORCA and ADF program
packages and calculate the spectra for ferrocene and acetylferrocene using the BP86 [130, 131]
and B3LYP [158, 159, 213] exchange–correlation functionals in both programs as examples of a
pure and a hybrid functional, respectively. In addition, we considered the LB94 [214] exchange–
correlation potential, which is designed to have the correct asymptotic form of the potential in
the outer region. With ADF, we also employed the SAOP [215, 216] potential, which also has
the correct asymptotic form, but which should provide a better description of the inner region
compared to LB94. The reason for the better description of the inner region of the potential in
SAOP is that the SAOP potential uses different potentials for the outer and inner regions so as
to correctly reproduce the shell structure of the exact potential. For all of these calculations the
def2-QZVPP [210] or QZ4P [203] basis sets were used in ORCA and ADF, respectively.

The XAS spectra calculated for ferrocene are shown in figure 5.5. It can be seen that with the
BP86 functional there is only one peak present before the ionisation threshold, and this qualitative
description holds in both programs. Quantitatively, there is a shift in absolute values (see section
5.1.3). The intensities are very similar and the BP86 spectra obtained with ORCA and ADF
can be considered equivalent. For the B3LYP spectra, one expects larger differences due to the
differences in the calculation of the HF exact exchange. Qualitatively, both programs again provide
the same picture. Quantitatively, a shift in absolute values is observed and closer to the ionisation
threshold larger differences can be seen. In relation to BP86, the relative energy to the ionisation
threshold of the first peak is increased to about 5 eV with both programs. This shift occurs
because the hybrid functional B3LYP gives an exchange–correlation potential that resembles the
exact asymptotic form in the outer region to some degree.

Now if we consider the asymptotically correct functionals LB94 and SAOP, an immediate difference
is observed in the spectra. More peaks are now present below the ionisation threshold, and upon
inspection one finds that these are excitations to Rydberg states. For LB94 the absolute energies
of the transitions are also much higher. Again in relation to the ionisation threshold the relative
energy of the first peak is increased compared to the BP86 spectra. For SAOP the absolute
transition energies are in the same range as those of the BP86 functional, but the energy of the
first peak is lower. In relation to the ionisation threshold, the relative energy has increased to
approximately 5 eV compared to the BP86 spectra, similar to the result obtained with B3LYP. In
this case instead of a region containing very few transitions after the first peak with B3LYP, SAOP
has transitions which, as in the case with LB94, correspond to Rydberg states. There are distinct
similarities between the spectra calculated with the SAOP and LB94 functionals for ferrocene,
with a very similar intensity distribution for the first two new peaks. In conclusion, the BP86
and B3LYP exchange–correlation functionals are adequate to calculate the spectra when Rydberg
states need not be considered. Although, if Rydberg states are important for the description of
the spectra then the LB94 or SAOP potentials must be employed. However, in the case of XAS,
the experimental measurements are usually performed in the solid state where the Rydberg states
are quenched. Therefore, the BP86 or B3LYP spectra provide an adequate description for the
calculation of XAS spectra.
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Figure 5.5.: Spectra of ferrocene calculated with TD-DFT using the BP86, B3LYP, SAOP and
LB94 exchange–correlation functionals within the ADF and ORCA program

packages using the QZ4P or def2-QZVPP basis set, respectively. Each functional is
plotted on the energy scale of the calculated absolute transition energies. The blue
line indicates the ionisation threshold (i.e., the negative Fe 1s orbital energy) of the

given functional for the calculation.
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This comparison is also considered for the substituted ferrocenes, where more features are present
in the spectra. In figure 5.6 the spectra for acetylferrocene are shown. The vinylferrocene spectra
will not be discussed here as they provide the same conclusions. Again for BP86 we see a qualitative
equivalency between the two programs. Quantitatively, the absolute energies provide the same
conclusions as for ferrocene, but the intensities, as discussed in the basis set comparison (see
section 5.1.3), reverse in which is the most intense peak between ADF and ORCA. On going to
the B3LYP spectra, once more the absolute energies and the relation to the ionisation threshold
are the same as for ferrocene. The biggest difference for B3LYP is that the relative energy of
the split transition is significantly increased and there are two distinct peaks approximately 4 eV
apart. This will be discussed in more detail in section 5.4. On moving to the LB94 and SAOP
functionals the first three transitions are identical to those calculated with the BP86 functional
and again, new peaks now appear before the ionisation threshold which correspond to Rydberg
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Figure 5.6.: Spectra of acetylferrocene calculated with TD-DFT using the BP86, B3LYP, SAOP
and LB94 exchange–correlation functionals within the ADF and ORCA program

packages using the QZ4P or def2-QZVPP basis set, respectively. Each functional is
plotted on the energy scale of the calculated absolute transition energies. The blue
line indicates the ionisation threshold (i.e., the negative Fe 1s orbital energy) of the

given functional for the calculation.
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states. In relation to the ionisation threshold the first peak once more is at lower energies compare
to the BP86 spectra. For SAOP the relative energy to the ionisation threshold is approximately 6
eV, and for LB94 approximately 8 eV. Again, we can conclude here that for the calculation of XAS
spectra the BP86 and B3LYP exchange–correlation functionals provide an adequate description
due to the quenching of the Rydberg states in the solid state experimental measurements, which
precludes the need for the SAOP and LB94 potentials.

It is commonly known that TD-DFT severely underestimates the absolute transition energies [117]
and that to compare to experiment requires a shift of the spectra [184]. This shift is found to be
constant for a given functional and basis set and is therefore systematic. Therefore, rather than
compare absolute energies it is more important to compare the relative energies of transitions
between complexes and internally, if a complex has more than one transition. In conclusion, the
four exchange–correlation functionals provide the same qualitative picture for the non-Rydberg
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transitions, with LB94, SAOP and BP86 providing almost identical relative energies between
complexes and internally. However, an improved description of Rydberg states is not necessary
for the calculation of the XAS spectra of interest here and therefore, the BP86 and B3LYP
exchange–correlation functional provide an adequate description of the molecular system for these
calculations.

5.4. Hartree-Fock Exchange

In section 5.3 a large increase of the relative energies was seen for acetylferrocene on the inclu-
sion of Hartree-Fock (HF) exchange into the functional. In experiment the splitting is 1.82 eV
(see chapter 6 for a detailed discussion), and with 0% HF exchange (BP86 exchange–correlation
functional/def2-TZVPP) the splitting was calculated as 0.85 eV and the inclusion of 20% HF
exchange (B3LYP exchange–correlation functional/def2-TZVPP) this was calculated as 3.64 eV.
Therefore, we will investigate the effect of the amount of HF exact exchange included in the
functional has on the relative energy between the peaks for the test system vinylferrocene.

In table 5.10 and figure 5.7 is shown the relative energy of the two peaks in the calculated spectra
with respect to the amount of HF exchange included in the B3LYP exchange–correlation func-
tional. All these calculations were carried out using the def2-TZVPP basis set in the ORCA
program package. For comparison, a time-dependent HF calculation is also included. Figure 5.7
shows a linear relationship between the calculated relative energy of the two peaks in the spec-
tra and the percentage of HF exchange included in the B3LYP functional until 50%. However,
between 50% and 75% the relative energy becomes 0 eV. This can be attributed to the orbitals
which comprise the two transitions becoming more localised. The transitions are comprised of
the dxz anti-bonding orbital and the cyclopentadienyl (Cp) π-orbitals, which conjugate to the π∗-
orbitals on the vinyl substituent leading to the observed splitting in the spectra. However, after
50% HF exchange inclusion in the B3LYP exchange–correlation functional, the conjugation of the
Cp orbital with the vinyl π∗-orbital disappears, providing the same transitions as those seen for
pure ferrocene. Although, in the time-dependent HF calculations there is a slight inclusion of a
vinyl π-orbital in the dxz anti-bonding orbital but it is not conjugated with the π-system of the
Cp rings.

Table 5.10.: Relative energies of the peaks in the TD-DFT calculated vinylferrocene spectra with
different percentage inclusion of HF exact exchange within the B3LYP functional.

%HF Exact Exchange Splitting Energy (eV)
0 0.84
5 1.37
10 2.07
15 2.84
20 3.64
50 8.91
75 0.00
100 0.00

100 (HF) 0.00
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Figure 5.7.: The effect of the amount of HF exact exchange included in the B3LYP functional on
the calculated relative energy of the peaks in the vinylferrocene spectra.

From these calculations we can conclude that HF exchange has a significant impact on the cal-
culated relative energies and that to reproduce the experimental relative energy a HF exchange
of approximately 7% would need to be included in the B3LYP exchange–correlation functional.
However, tuning the exchange–correlation functional to the desired result is not preferable and we
need to find an exchange–correlation functional that provides the correct relative energy. There-
fore, we also need a benchmark calculation using a high-level wave function theory method to find
how close we can get using quantum-chemical methods to the experimental result.

5.5. Relativistic Effects

As the excitations we are interested in are coming from the core orbitals, there is the question of
the importance of relativistic effects to the results. Here we will analyse the effect of relativistics
on the final results for four of the complexes discussed so far, calculated with both ADF and
ORCA. In ADF we will consider only the zeroth order regular approximation (ZORA) [217–221]
along with the use of scaled orbital energies within the TD-DFT calculations. In ORCA we will
also consider ZORA [222], but will also consider the Douglas-Kroll-Hess second order relativistic
Hamiltonian (DKH(2)) [223, 224]. Within these calculations we will then compare the calculated
absolute transition energies and absolute intensities along with the relative energies and relative
intensities (using the ferrocene results as a reference) which will enable us to come to a conclusion
on the importance of the inclusion of relativistic effects on the results.

The results calculated with ORCA are shown in table 5.11. We can see that the inclusion of
scalar relativistic effects significantly increases the absolute transition energy. If we consider first
the case when using the ZORA [222], the shift required to align to experiment is reduced from
181.72 to 30.96 eV. This can be attributed to a change in the energy of the 1s orbital [184].
Considering the calculated intensities, these in general increase slightly on the inclusion of the
relativistics. For DKH(2) [223,224] the absolute energies are also increased, but the shift required
for alignment is only decreased to 128.59 eV. With DKH(2) the intensities are also significantly
affected, with the quadrupole intensities increasing. This effect is most prominent for ferrocene,
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where only quadrupole intensity is present, but is also seen in the increase of the intensity for the
other complexes.

Table 5.11.: Energies and intensities calculated with TD-DFT (using ORCA) for four ferrocene
derivatives using the BP86 functional and the def2-QZVPP basis set in a

non-relativistic calculation, and inclusion of relativistic effects using the scalar
relativistic ZORA approximation or the scalar relativistic DKH(2) hamiltonian.

Non-Relativistic Scalar ZORA DKH(2)
Absolute Absolute Absolute Absolute Absolute Absolute

Complex Energy (eV) Intensity Energy (eV) Intensity Energy (eV) Intensity
Fe(Cp)2 6931.48 1.074·10−05 7082.24 1.581·10−05 6984.61 2.277·10−05

Fe(Cp)(CpAc) 6931.06 1.271·10−05 7082.44 1.234·10−05 6984.18 1.271·10−05

6931.97 2.303·10−05 7083.33 2.494·10−05 6985.07 2.882·10−05

Fe(Cp)(CpVinyl) 6931.25 1.053·10−05 7082.40 1.422·10−05 6984.37 1.979·10−05

6932.09 1.672·10−05 7083.22 1.767·10−05 6985.19 2.003·10−05

Fe(CpPPh2)2 6931.62 2.625·10−05 7086.42 2.915·10−05 6984.70 3.553·10−05

Table 5.12 shows the relative energies and intensities calculated with ORCA, always taking the
ferrocene complex from that methodology as the reference value. For ZORA there is a large change
in the relative energies, which does not follow experimental trends. In the extent of some of the dif-
ferences in the relative energies between complexes, such as 1,1’-bis(diphenylphosphino)ferrocene
and ferrocene, these values are erroneously large. In terms of the relative intensities we see in
general the same pattern as for the non-relativistic case, but the relative values are reduced. This
is primarily observed in the case of the first transition for acetylferrocene where the relative in-
tensity has the most discrepancy. This difference is due to the fact that this transition is primarily
dipole allowed, and the relativistic effects primarily affect the size of the quadrupole transitions.
That is, this transition’s intensity is not significantly altered by the inclusion of ZORA but the
intensity for ferrocene is, therefore giving this a much lower relative intensity.

For DKH(2) a similar trend is observed as to that for ZORA, except the increase in the quadrupole
intensities is even larger. Therefore, the transitions that are dominated by dipole contributions
will be, relative to the ferrocene, drastically reduced. The relative energies though are not affected
by the inclusion of DKH(2) and any changes compared to the non-relativistic case are negligible.

Table 5.13 shows the absolute values for the transitions calculated with ADF. On the inclusion
of ZORA [217–221] the absolute energies are increased, which means the shift required to align
with experiment is reduced from 183.39 to 58.84 eV. The absolute intensities only change in the
numbers one order of magnitude smaller than the total intensity. Within ADF there is also the
option to calculate the TD-DFT routine using scaled ZORA orbital energies, which is meant to
improve excitation energies calculated with ZORA. These results again differ only slightly for the
intensities, and the absolute energies are reduced by 61.75 eV (for ferrocene) compared to ZORA
and the shift required for alignment with experiment is increased to 120.59 eV.

More important are the relative values, which are shown in table 5.14 for the BP86 exchange–
correlation functional and which can be seen in figure 5.8 for both the BP86 and B3LYP exchange–
correlation functionals. The relative energies are in general reduced from the non-relativistic cal-
culations, although it is more significant for acetyl- and vinylferrocene than for diphenylferrocene.
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Table 5.12.: Relative Energies and intensities (using ferrocene as a reference) from experiment
and calculated with TD-DFT (using ORCA) for four ferrocene derivatives using the
BP86 functional and the def2-QZVPP basis set in a non-relativistic calculation, and
inclusion of relativistic effects using the scalar relativistic ZORA approximation or

the scalar relativistic DKH(2) Hamiltonian.

Experimental Non-Relativistic Scalar ZORA DKH(2)
Relative Relative Relative Relative Relative Relative Relative Relative

Complex Energy Intensity Energy Intensity Energy (eV) Intensity Energy Intensity
(eV) (eV) (eV) (eV)

Fe(Cp)2 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Fe(Cp)(CpAc) 0.04 0.80 -0.42 1.18 0.20 0.78 -0.43 0.56
1.52 1.02 0.49 2.14 1.09 1.58 0.46 1.27

Fe(Cp)(CpVinyl) 0.06 0.85 -0.23 0.98 0.16 0.90 -0.24 0.87
1.88 1.04 0.61 1.56 0.98 1.12 0.58 0.88

Fe(CpPPh2)2 0.08 0.54 0.14 2.44 4.18 1.84 0.09 1.56

Table 5.13.: Energies and intensities calculated with TD-DFT (using ADF) for four ferrocene
derivatives using the BP86 functional and the QZ4P basis set in a non-relativistic
calculation, and inclusion of relativistic effects using the scalar relativistic ZORA

approximation. Also included are results using scaled ZORA orbital energies for the
TD-DFT module.

Non-Relativistic Scalar ZORA Scalar ZORA+Scaled Orbitals
Absolute Absolute Absolute Absolute Absolute Absolute

Complex Energy (eV) Intensity Energy (eV) Intensity Energy (eV) Intensity

Fe(Cp)2 6929.80 1.020·10−05 7054.35 9.699·10−06 6992.60 9.530·10−06

Fe(Cp)(CpAc) 6929.37 1.181·10−05 7054.00 1.167·10−05 6992.25 1.162·10−05

6930.27 9.721·10−06 7054.66 9.244·10−06 6992.91 9.199·10−06

Fe(Cp)(CpVinyl) 6929.56 1.206·10−05 7054.28 1.166·10−05 6992.54 1.152·10−05

6930.40 9.495·10−06 7054.80 9.119·10−06 6993.06 9.089·10−06

Fe(CpPPh2)2 6929.84 1.429·10−05 7054.40 1.366·10−05 6992.66 1.349·10−05

The relative intensities are also insignificantly altered and the changes observed on going from
non-relativistic to ZORA calculations can be neglected. The use of the scaled ZORA orbital
energies also introduces only negligible differences.

In conclusion, in ADF we see that the inclusion of scalar relativistic effects in the TD-DFT
calculation of the X-ray spectra only affects the absolute energies and reduces the shift required
to align the calculated spectra with experiment. Although there is a slight decrease of the intensity
when using ZORA, this is systematic throughout all transitions as it is caused by the contraction
of the 1s orbital. Therefore, the differences in the relative intensities are negligible. However,
when we include relativistic effects in the TD-DFT calculations in ORCA we arrive at a different
conclusion. Once more a large effect is observed on the absolute transition energies, but there

79



5. Comparison of Approximations for the Calculation of X-ray Spectra

Table 5.14.: Relative Energies and intensities (using ferrocene as a reference) calculated with
TD-DFT (using ADF) for four ferrocene derivatives using the BP86 functional and

the QZ4P basis set in a non-relativistic calculation, and inclusion of relativistic
effects using the scalar relativistic ZORA approximation. Also included are results

using scaled ZORA orbital energies for the TD-DFT module.

Non-Relativistic Scalar ZORA Scalar ZORA+scaled orbitals
Relative Relative Relative Relative Relative Relative

Complex Energy (eV) Intensity Energy (eV) Intensity Energy (eV) Intensity
Fe(Cp)2 0.00 1.00 0.00 1.00 0.00 1.00

Fe(Cp)(CpAc) -0.43 1.16 -0.35 1.20 -0.35 1.22
0.47 0.95 0.31 0.95 0.31 0.97

Fe(Cp)(CpVinyl) -0.24 1.18 -0.07 1.20 -0.06 1.21
0.60 0.93 0.45 0.94 0.46 0.95

Fe(CpPPh2)2 0.04 1.40 0.05 1.41 0.06 1.42

Figure 5.8.: Calculated pre-edge XAS spectra of five ferrocene derivatives obtained
non-relativistically (left) and by considering scalar relativistic effects using the
ZORA approximation (right). Results are shown for the BP86 and the B3LYP

exchange–correlation functionals.

are also significant differences in the calculated intensities. The relative transition energies and
intensities also have large changes on the inclusion of relativistic effects. However, these changes are
not systematic, as with ADF, and the reason behind these differences is unclear. The largest effect
of the inclusion of relativistic effects is the stabilisation of the 1s core orbital and a contraction of
the size of the core orbitals, the transition intensities should decrease by a constant value as the
intensity matrix elements will be smaller due to a smaller overlap between the initial and final
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states. However, the intensities calculated in ORCA with the inclusion of relativistic effects do
not follow what is expected and currently we do not know the reason.

To the final conclusion of whether or not relativistic effects should be included in the TD-DFT
calculations of X-ray absorption spectra, we can see from the ADF calculations that the inclusion
is not necessary. A reason for the minimal effect of relativistic effects on the calculation of X-
ray absorption spectra is that X-ray absorption spectroscopy probes the valence orbitals, where
relativistic effects are negligible. Consequently, it is the valence orbitals which determine the
spectra, not the core orbital.

5.6. Summary

In section 5.1 we looked at the effect of the size of the basis set on the calculated X-ray spectra,
considering both STO and GTO basis sets. We found that in both cases the energies could be
considered converged with the use of a triple-ζ basis set. However, for the calculation of the
quadrupole intensities the quadruple-ζ basis set was required. Also, with the GTO basis sets
we saw the need to have a balanced number of polarisation functions present throughout the
entire complex because when unbalanced, the intensities were unfeasibly large when compared
with larger basis sets. Therefore, we conclude that the use of quadruple-ζ basis sets is essential
for the calculation of X-ray spectra as the intensities are important for the final comparison to
experiment.

As we use multiple quantum-chemical program packages in the next chapters, we had to determine
the comparability of the results obtained with each program. We discussed this in section 5.2
and can conclude that ORCA and Turbomole have differences much smaller than the calculated
values and that these values are constant with convergence level and grid size between either HF
or DFT methods. However, the differences change on going from HF to DFT methods. The same
conclusion can be reached for the results between ADF and ORCA. Although, the differences are
larger for the average excitation energies. However, from this comparison it can be seen that the
results between ADF, ORCA and Turbomole using DFT methods can be compared. The results
obtained using HF in ADF can be compared although consideration of the larger differences
between ADF and ORCA must be taken into account.

Section 5.3 considered the effect of the choice of exchange–correlation functional on the TD-DFT
calculated spectra. We conclude that for the calculation of X-ray spectra, which experimentally
are most often measured in the solid state, the non-asymptotically corrected BP86 non-hybrid
and B3LYP hybrid functionals provide an adequate description of the molecular system as the
Rydberg states are quenched in the experiment. However, if the inclusion of Rydberg states is
necessary then the use of the SAOP or LB94 functionals is recommended. From the observations
made here on the differences in the spectra on the inclusion of HF exchange into the exchange–
correlation functional, we also looked at the effect the amount of HF exchange included in the
functional has on the relative energies of vinylferrocene in section 5.4. We see a linear relationship
between the relative energies and the amount of HF exchange from 0% to 50%, after which the
splitting becomes 0 eV.

As we are concerned with performing calculations on transition metal complexes, the question of
the importance of relativistic effects also arises. Therefore, we assessed the effect of the inclusion
of relativistic effects within the TD-DFT calculations of the X-ray absorption spectra in both ADF
and ORCA for four ferrocene derived complexes in section 5.5. We found that the inclusion of
relativistic effects within the ADF calculations only had a minimal effect on the final results. The
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largest difference was in the calculated absolute energies, which reduced the shift of the energy
scale required to align the results with experiment. However, with the inclusion of relativistic
effects in the ORCA calculations significant differences in the calculated intensities are observed,
which do not comply with the expectations of the results on the inclusion of scalar relativistic
effects. From these tests we conclude that the inclusion of relativistic effects in the calculation of
the X-ray absorption spectra is not necessary.

We finally conclude that the best combination of approximations to use for the TD-DFT calcu-
lation of X-ray absorption spectra are the BP86 or B3LYP exchange–correlation functionals with
a quadruple-ζ basis set (def2-QZVPP/QZ4P) and without the inclusion of relativistic effects, as
these will provide at least a qualitative means of interpretation of the experimental spectra. These
calculations can be performed in either ORCA, ADF or Turbomole as the differences in the results
with each program have been analysed and are smaller than the calculated values for both the
intensities and the energies. However, currently only ORCA and ADF are capable of calculating
X-ray spectra by isolating the 1s core orbital excitations (see chapter 4 for more detail).
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X-ray spectroscopy at synchrotrons has become a widely used and powerful tool in studying many
chemical processes [9–16]. X-ray absorption spectroscopy in particular has found a firm footing
in analysing catalytic processes [24, 225–228] of transition metal complexes and has contributed
important insights into catalytic reactions and the underlying molecular mechanisms [12,72,229–
231]. To be specific to a catalytic centre of interest, such studies are typically performed at
the metal edge, i.e., core electrons of a central metal atom are excited. The extended X-ray
absorption fine structure (EXAFS) region can provide information on the geometric structure
around the metal centre (i.e., on the type, number and distance of coordinating atoms) [232–234]
and the X-ray absorption near edge structure (XANES) region of the XAS spectra currently
provides information on the qualitative oxidation state of the central metal atom [62,63,102,235],
but also contains information on the electronic structure of the complex. However, the sensitivity
to light atoms is generally limited to the nearest neighbour shell, while XAS is “blind” to changes
beyond the directly coordinating atoms [108, 236], changes in the electronic structure caused by
structural modifications in this second coordination shell can hardly be detected. Since XAS
investigations enable in situ studies under nearly any experimental condition without adopting
the system parameters to the experiment [237, 238], it would be highly desirable to overcome
these limitations. This would greatly increase the applicability of X-ray spectroscopy for studying
chemical processes in catalysis.

In K-edge XAS experiments, the first unoccupied states reached by the 1s electron after excitation
are metal d-states. However, as such a 1s → nd transition is dipole forbidden, the resulting
so-called pre-edge signals (pre-edge peaks) are of weak intensity [12]. If molecular complexes
and catalysts are considered, these pre-edge peaks contain detailed information about the lowest
unoccupied molecular orbitals (LUMOs). So far, the lifetime broadening of conventional K-edge
XAS experiments limits their applicability for probing these unoccupied states. On the other
hand, in L-edge XAS [239] a more intense 2p→ nd transition can be employed [240], but because
of the use of low energy radiation, in situ studies of catalytic reactions are not possible with this
technique. Therefore, a hard X-ray technique with better resolution of the final d-states than in
conventional XAS is required to probe the electronic structure of catalysts.

X-ray emission-based methods open new opportunities for chemical research at synchrotron sources.
They are based on the high energy resolution detection of the fluorescence radiation emitted by a
sample after irradiation with X-rays [70]. To achieve an appropriate resolution, a dedicated experi-
mental setup consisting of a high flux, high brilliance synchrotron X-ray source and a Rowland-type
spectrometer equipped with analyser crystals as shown in figure 6.1 is usually employed [70]. The
usage of analyser crystals in combination with a double crystal monochromator (DCM) allows
for the recording of X-ray absorption near edge structure (XANES) spectra by monitoring the
intensity of a selected fluorescence decay channel while sweeping the incident energy of the DCM
or the measurement of X-ray emission spectra (XES) by keeping the incident energy constant,
at a value above the edge, and sweeping the analyser crystals over a selected range of emission
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Figure 6.1.: Schematic representation of the experimental setup required for X-ray
emission-based spectroscopic methods. This setup can be employed both for

recording HERFD-XANES and V2C-XES spectra.

energies.

As long as non-local effects are absent, the described mode of recording XANES spectra is form-
ally equivalent to conventional XANES experiments [70], in which all fluorescence channels are
summed up to yield the total absorption cross section σabs =

∑
i σi. However, by selecting a

single fluorescence channel, an energy resolution smaller than the life time of the final state of the
absorption process can be reached [78,79]. This final state in the case of K-edge XANES spectra
is characterised by a 1s core hole and an additional electron in an empty electronic state. Experi-
ments using a setup as shown in figure 6.1 are called high energy resolution fluorescence detection
XANES (HERFD-XANES) [50,241,242]. They can be used to probe unoccupied electronic states
with a resolution not available in conventional XAS. In particular, this sharpens the very weak
signals of dipole-forbidden transitions.

It is therefore surprising that HERFD-XAS measurements have not been applied to overcome the
limitations of conventional XAS with respect to processes involving molecular complexes, like in
homogeneous catalysis. So far, HERFD-XAS has been applied mainly to heterogeneous catalytic
processes [11,16,241,243,244] and enzymatic systems [68,107,137,173,184,245,246]. In addition,
HERFD-XAS has been used to elucidate the structure of of protein models with iron centres
[228]. However, these complexes show structural differences already in the first coordination shell.
Nothing is known about the power of HERFD-XAS to resolve structural differences beyond the
nearest neighbour coordinating atoms and their influence on the electronic structure at the central
metal atom.

Herein, we want to bridge this gap by pioneering HERFD-XAS studies on transition metal com-
plexes, which show that this technique is even sensitive for substitution effects at ligands coordin-
ated to a metal centre, i.e., effects which are not accessible to conventional EXAFS analysis. As a
first target, we investigate changes in the electronic structure of ferrocene derivatives induced by
substituents at the cyclopentadienyl (Cp) rings. As indicated in figure 6.2, the ferrocene structural
motif remains unchanged throughout the study. Only the substituents are changed, which affects
the electronic structure at the iron centre.

Such ferrocene-derived compounds play an important role in catalysis [247–250], in particular in
bimetallic catalytic systems [24], as well as the preparation of switchable self assembling mono-
layers (SAMs) [251] and electronic compounds [252]. Consequently, ferrocene and its derivat-
ives [69, 240, 253, 254] as well as other metallocenes [253, 255, 256] have been studied extensively
with X-ray spectroscopic methods.
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Herein, we demonstrate that these subtle changes can be probed by HERFD-XANES and ex-
plained with TD-DFT calculations. The influence of substituting groups at the Cp ring on the
electronic structure has been studied both experimentally and theoretically [257–259]. However
these experimental studies are limited to soft X-ray absorption spectroscopy [240,254], which can-
not be used for in situ studies due to the low radiation energy and photoelectron spectroscopy [259]
or X-ray emission experiments [107] that only provide information about the occupied orbitals.
Here we demonstrate how the complementary information on unoccupied orbitals can be probed
with hard X-rays.

Figure 6.2.: Illustration of the model systems used to demonstrate the resolving power of
HERFD-XANES and V2C-XES with respect to changes beyond the first

coordination sphere.

The described experimental setup also allows for a second type of experiment. In a so-called
valence-to-core (V2C) XES experiment, the 1s electron is non-resonantly excited into the con-
tinuum far above the ionisation threshold, and the following radiative relaxation of a valence
electron into the core hole is detected. This valence electron originates from an occupied elec-
tronic state. While sweeping the emission energy, the different occupied states are thus probed
in a Kβ2,5 (V2C) emission experiment. The Kβ2,5 emission process is reduced by a factor of 500
and around 60 in intensity compared to the Kα and Kβ1,3 emission where the core hole is filled by
low-lying 2p and 3p electrons, respectively, but it is the only transition with sufficient sensitivity
to ligand effects [260]. As the occupied valence states are strongly determined by the chemical
environment of the central metal atom, this method is also sensitive to the identity of the lig-
ands as well as the geometry of the immediate ligand environment in catalytically active metal
complexes [67,68]. Figure 6.3 summarises the transitions of the two described methods.

Note that these two techniques provide complementary information [227]. By means of V2C-XES
and HERFD-XANES, details about both occupied and unoccupied electronic states, respectively,
are available under almost any experimental condition. For the interpretation of such X-ray
spectra, and for relating the observed transitions to the electronic structure, quantum-chemical
calculations are essential (for reviews, see, e.g., refs. [105, 115]). In many cases, already rather
simple approaches based on (time-dependent) density functional theory (DFT) [107,116,137,173,
184,261] can guide the assignment and interpretation of X-ray spectra [21,69,262].

In addition to HERFD-XANES for probing unoccupied states, we also explore the sensitivity of

85



6. X-ray Spectroscopy of Ferrocene Derivatives

Figure 6.3.: Qualitative representation of the processes observed in HERFD-XANES (left) and
V2C-XES (right) within a molecular orbital picture. In HERFD-XANES, a core

electron is excited to unoccupied molecular orbitals and the intensity of the Kβ1,3

emission is measured, whereas in V2C-XES, the relaxation of an electron from an
occupied molecular orbital following the creation of a core hole is probed.

V2C-XES to changes in the occupied electronic structure caused by substitution within the second
coordination sphere. V2C-XES is becoming a popular tool in catalysis characterisation because
of its sensitivity to the composition within the first coordination sphere as well as the information
it provides on the occupied electronic states [21,67–69,137,173].

6.1. Results

6.1.1. Molecular Test Set of Ferrocene Derived Complexes

To compare the chemical sensitivity of HERFD-XANES and V2C-XES, in particular their ability
to detect changes in the electronic structure induced by substitutions in the second coordina-
tion shell, we consider ferrocene and complexes derived from it. The test set for this compar-
ison, shown in figure 6.4, consists of ferrocene ((a)FeCp2) and ferrocene derivatives containing
substituents on the cyclopentadienyl (Cp−) rings. In acetylferrocene ((f)Fe(Cp)(CpAc)) and in
vinylferrocene ((e)Fe(Cp)(CpVinyl)) this substituent contains a π-bond that is conjugated with
the cyclopentadienyl ring, whereas in 1,1’-bis-diphenylphosphinoferrocene (d)(Fe(CpPPh2)2) and
in 1,1’-bis-diisopropylphosphinoferrocene ((c)Fe(CpPiPr2)2) there are phosphine substituents at
both cyclopentadienyl rings. Decamethylferrocene ((b)Fe(Cp*)2 replaces all hydrogens of the Cp
rings with methyl groups. In addition, ferrocenium ((g)[FeCp2]+) is included within the test set.
Note that in all seven complexes, the first coordination shell around the iron atom is identical,
whereas the different substituents are part of the second coordination sphere. The optimised
molecular structures as obtained from DFT calculations are shown in figure 6.5.

The starting point for the discussion of the electronic structure of the ferrocene derived complexes
is to consider the molecular orbital (MO) diagram of the relevant orbitals of the unsubstituted
ferrocene. The MO diagram obtained from density functional theory (DFT) calculations is shown
in figure 6.6.

For HERFD-XANES we must consider the unoccupied orbitals and the lowest energy transition
would be to the LUMO, which is the doubly degenerate e1g orbital 1 and is the anti-bonding

1Even though the calculations are performed for the more stable eclipsed conformation (D5h symmetry) of ferro-
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Figure 6.4.: Test set of ferrocene-derived compounds (a)-(g) subjected to HERFD-XANES and
V2C-XES measurements and (TD-)DFT calculations.

Figure 6.5.: Optimised molecular structures of the lowest-energy conformers of complexes (a)-(g).

combination of the Fe dxz- and dyz-orbitals with the p-orbitals of the Cp ligands.

For V2C-XES we must consider the occupied molecular orbitals of ferrocene in figure 6.6 (see
also the discussion in ref. [69]). The highest occupied molecular orbital (HOMO), e2g, and the
HOMO−1, a1g, are combinations of the remaining iron d-orbitals, namely of the dx2−y2 and dxy
orbitals, and of the dz2 orbital, respectively, with the cyclopentadienyl π-orbitals. The MOs at
lower energies are composed primarily of the cyclopentadienyl π-orbitals followed by cyclopentadi-
enyl σ-orbitals at even lower orbital energies. For the occupied orbitals with e1u or a2u symmetry

cene, we follow the common convention of using orbital labels referring to the staggered conformation [6]
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6. X-ray Spectroscopy of Ferrocene Derivatives

Figure 6.6.: Molecular orbital (MO) diagram of ferrocene focusing on the occupied valence
orbitals. The ordering of the orbitals as well as the isosurface plots of the MOs have

been obtained from a DFT calculation using the BP86 exchange–correlation
functional.

(i.e., those with the same symmetry as the Fe p-orbitals and the electric-dipole operator) there
are also small contributions from the iron p-orbitals [69]. The occupied e1g orbital is the only
one of the occupied orbitals within the relevant energy range shown here that has large d-orbital
contributions. In fact, this e1g orbital is the bonding combination of the iron dxz and dyz orbit-
als with cyclopentadienyl π-orbitals, whereas the unoccupied e1g orbitals discussed above is the
corresponding anti-bonding combination.
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6.1.2. Interpretation of the HERFD-XANES Spectra

To begin with, we will discuss the results obtained using HERFD-XANES. First a comparison of
conventional transmission mode XANES with the corresponding HERFD-XANES spectra recor-
ded at the Kβ1,3 main line of ferrocene (a), Fe(CpPPh2)2 (d), and Fe(Cp)(CpAc) (f) are shown in
figure 6.7, which indicate the resolving power of the HERFD-XANES measurements and provides
grounds for considering the chemical sensitivity of HERFD-XANES.

Figure 6.7.: Comparison of conventional (dashed line) and HERFD-XANES (solid line) spectra
for complexes (a), (d) and (f). The enlarged pre-edge peak region is shown on the

right; the spectra have been shifted for clarity.

Although significant differences in the electronic structure are expected due to the acetyl or the two
diphenylphosphino substituents, hardly any effects are observed in the conventional transmission
XANES spectra. In the HERFD-XANES spectra, the net signal broadening is reduced from
approximately 5 eV to 1.5 eV. This reveals significant differences in the 1s → 3d pre-edge peak
region around 7113 eV as well as for the region around 7121 eV, which can now be used for detailed
comparison with calculations.

The pre-edge peak at 7113.2 eV in the XANES spectrum of ferrocene can be assigned to the
dipole-forbidden transition from the Fe 1s orbital to the e1g orbitals in the MO diagram (see
figure 6.6). Changes in these lowest unoccupied orbitals are induced by different substituents on
the Cp ligands, which can be identified by comparing the HERFD-XANES pre-edge peaks. Only
the high resolution of these spectra allows for a deconvolution, and the isolated pre-edge peaks of
(a)-(g) are depicted in figure 6.8. The positions and relative intensities of the isolated pre-edge
peaks are summarised in Table 6.1.

To complement the experimental results and to allow for an assignment of the observed pre-edge
peaks to unoccupied molecular orbitals, we have performed TD-DFT calculations [107, 123, 184],
using both the non-hybrid BP86 exchange–correlation functional [130,151] and the B3LYP hybrid
functional [158,159]. The calculated spectra are included in figure 6.8, and the unoccupied orbitals
corresponding to these pre-edge peak transitions are depicted in figure 6.9.

For ferrocene (a), the LUMO is degenerate and there is only a single pre-edge peak with a weak
quadrupole intensity caused by the 1s→ e1g transition (see figure 6.9) [27,108,253]. We note that
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6. X-ray Spectroscopy of Ferrocene Derivatives

Table 6.1.: Positions and relative intensities of the isolated HERFD-XANES pre-edge peaks
compared to the TD-DFT calculations (BP86/def2-QZVPP and

B3LYP/def2-QZVPP). The peak positions are given as energy differences relative to
the pre-edge peak in ferrocene and the relative intensities are normalised to the

ferrocene pre-edge peak. For the calculated intensities, the percentage of
electric-dipole contribution to the intensities is also included

Complex Experimental TD-DFT/BP86 TD-DFT/B3LYP
Erel Rel. Int. Erel Rel. Int. Erel Rel. Int.

(a) Fe(Cp)2 0.00 1.00 0.00 1.00(0%D) 0.00 1.00(0%D)
(b) Fe(Cp*)2 0.07 0.84 0.02 0.96(0%D) 0.04 0.99(0%D)
(c) Fe(CpPiPr2)2 0.04 0.66 −0.05 0.94(10%D) −0.03 0.93(7%D)
(d) Fe(CpPPh2)2 0.08 0.54 0.14 2.44(39%D) −0.01 1.01(1%D)
(e) Fe(Cp)(CpAc) 0.04 0.88 −0.42 1.18(73%D) −0.01 0.90(10%D)

1.52 1.02 0.49 2.14(34%D) 3.23 1.91(53%D)
(f) Fe(Cp)(CpVinyl) 0.06 0.85 −0.23 0.98(34%D) 0.00 0.95(2%D)

1.88 1.04 0.61 1.56(51%D) 3.56 0.88(70%D)
(g) [Fe(Cp)2]PF6 −1.63 0.33 −1.59 0.26(1%D) −2.24 0.30(1%D)

0.42 0.52 0.42 1.31(29%D) 0.60 1.17(29%D)

the TD-DFT calculations provide identical results for the eclipsed and the staggered conformation.
For Fe(Cp*)2 (b) the LUMO is unchanged since the methyl substituents have very little effect on
the intensity and energy of the calculated pre-edge peak, which agrees with the experimental
spectra. For the phosphine-substituted ferrocenes, Fe(CpPiPr2)2 (c) and Fe(CpPPh2)2 (d), the
position of the experimentally observed pre-edge peak agrees with the one in ferrocene, but its
intensity decreases. Although great care was taken in the experiment to avoid particles size and
self-absorption effects, they cannot be fully excluded since no angle dependent measurements
were carried out. The effect of different isomers can be excluded as they do not affect the energy
levels. For Fe(CpPiPr2)2, the calculations show that the degeneracy of the LUMO is only slightly
lifted. The substituents cause a small distortion of the two LUMO orbitals (see figure 6.9), which
leads to a splitting of ca. 0.1 eV. However, this does not affect the calculated pre-edge peak
intensity. For Fe(CpPiPr2)2, both BP86 and B3LYP provide almost identical results. On the
other hand, for Fe(CpPPh2)2 the p-orbitals of the phenyl rings mix with those of the Cp rings in
the BP86 calculations, resulting in very delocalised orbitals. Altogether, there are ten unoccupied
orbitals that contribute to the calculated pre-edge peak (two examples are included in figure
6.9). This mixing lifts the symmetry of the LUMO orbitals and introduces large electric-dipole
contributions. Thus, a significant increase of the calculated pre-edge peak intensity is found in the
BP86 calculation. However, this increase does not agree with the experimental observation. On
the other hand, with the hybrid B3LYP functional the corresponding orbitals are localised either
on the Cp rings or on the phenyl rings. In this case, only two orbitals that resemble the LUMO
in ferrocene contribute to the pre-edge peak, and the calculated intensity is similar to the one in
Fe(CpPiPr2)2. By combining the experimental and computational results, we can conclude that
in Fe(CpPPh2)2 the phenyl rings do not contribute to the LUMO.

For Fe(Cp)(CpVinyl) (e) and Fe(Cp)(CpAc) (f) two pre-edge peaks, which are split by 1.82 eV
and 1.48 eV, respectively, are observed in the experimental spectra with an intensity ratio of 1:1.22
and 1:1.16 respectively. From these values as well as figure 6.7, it is evident that the resolution of
these two transitions is only possible by HERFD-XANES. A similar splitting has been observed
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Figure 6.8.: Left: Normalised, isolated pre-edge peaks from the experimental HERFD-XANES
spectra of complexes (a)-(g). Right: Pre-edge peaks from TD-DFT calculations with

BP86/def2-QZVPP (black dash-dotted line) and B3LYP/def2-QZVPP (grey solid
line) (0.7 eV FWHM).

previously in L-edge spectra of Fe(CpAc)2, where a value of 1.12 eV is found [240]. This splitting
can be understood with the help of our TD-DFT calculations. The p-orbitals of the acetyl and
vinyl substituents interact with one of the LUMO orbitals, resulting in the two orbitals shown in
figure 6.9. As these are not symmetric anymore, the intensity of the transitions to these orbitals
increases and is now dominated by the electric-dipole contribution. On the other hand, the other
orbital (see figure 6.9) is perpendicular to the substituent p-orbitals and remains unchanged. The
transition to this orbital only has a small quadrupole intensity. Even though BP86 and B3LYP
provide a very similar orbital picture, the splitting between the two pre-edge peaks is too small
with BP86, whereas it is overestimated with the B3LYP hybrid functional.

Finally, in ferrocenium (g) there is a vacancy in the e2g orbital, which is occupied in ferrocene.
Therefore, in the HERFD-XANES spectrum the first pre-edge peak appears 1.6 eV lower in energy
than in ferrocene. The second pre-edge peak, which is due to the transition to the unoccupied
e1g orbital, is shifted by ca. 0.4 eV to higher energies. This is qualitatively reproduced by the
TD-DFT calculations, but these underestimate the intensity of the first pre-edge peak and predict
a too large intensity for the second pre-edge peak. However, the treatment of excitations in open-
shell molecules within (TDDFT) is problematic and cannot account for multiplet effects [263–265],
which might be important for ferrocenium [254].
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6. X-ray Spectroscopy of Ferrocene Derivatives

Figure 6.9.: Isosurface plots of the unoccupied molecular orbitals probed by the pre-edge peak
transitions as obtained from TD-DFT calculations with BP86/def2-QZVPP (left)

and with B3LYP/def2-QZVPP (right). In cases where more than one orbital
transition contributes to one excitation, the corresponding linear combination of
unoccupied orbitals is shown. In the BP86 calculations for Fe(CpPPh2)2 (d) ten
individual excitations to different unoccupied orbitals contribute to the pre-edge

peak, of which only two are shown here
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6.1.3. Interpretation of the V2C-XES Spectra

Figure 6.10 shows the experimental HERFD-XANES spectra (left) and V2C-XES spectra (right)
for this set of molecules. The HERFD-XANES spectra have been discussed in detail earlier in
section 6.1.2. Of particular interest are the pre-edge peaks which are very sensitive to subtle
changes in the electronic structure at the iron centre. These pre-edge peaks have been highlighted
in figure 6.10. However, all the V2C-XES spectra of the ferrocene derivatives appear identical
to those of ferrocene. Even in ferrocenium (g), where the increased oxidation state of the iron
centre leads to significant changes in the pre-edge region and shifts the ionisation edge to higher
energies in the HERFD-XANES spectra, the V2C-XES spectrum remains qualitatively unchanged,
although shifted to higher energies. For a detailed comparison of the V2C-XES spectra of ferrocene
and ferrocenium, which differ in the oxidation state of the iron atom, we refer to reference [69].
In the following, we will focus on the Fe(II) complexes (a)–(f). Here, we leave out Fe(Cp*)2, (b),
because its spectra are identical to those of ferrocene.

Figure 6.10.: Experimental HERFD-XANES spectra (left) and V2C-XES spectra recorded at an
excitation energy of 7300 eV (right). The labels (a) and (c)-(g) refer to the

ferrocene derivatives as listed in figure 6.4.

The differences observed in the HERFD-XANES spectra of the other complexes arise from per-
turbations of the e1g orbital due to the presence of the substituent group as discussed in the
previous section. In acetyl- and vinylferrocene, the anti-bonding π*-orbital of the substituent in-
teracts with one of the degenerate e1g orbitals and splits it into two orbitals appearing at different
energies. Consequently, two distinct peaks are observed in the pre-edge region. This assignment
of the HERFD-XANES pre-edge peaks is shown in the upper part of figure 6.11 for ferrocene
and vinylferrocene. With these results in mind, it can be expected that such substituents on the
cyclopentadienyl rings will lead to significant perturbations of the occupied MOs as well.

The background-corrected experimental (left) and calculated V2C-XES spectra (right) of ferrocene
(a) and the substituted ferrocenes (c)–(f) are compared in figure 6.12. For the experimental
spectra, the deconvolution of the spectra is included in the figure. There are five peaks in the
deconvolution of the experimental spectra, with those at higher energies (i.e., between ca. 7105
and 7108 eV) having the largest intensities. The positions, intensities, and widths of the peaks as
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Figure 6.11.: Calculated pre-edge HERFD-XANES (top) (0.7 eV FWHM) and V2C-XES
(bottom) (1.5 eV FWHM) spectra for ferrocene (left) and vinylferrocene (right).
The calculated spectra are shown for both BP86 (black solid line) and B3LYP

(blue dashed line). For the BP86 calculation, the individual transitions are
included as red sticks. Alongside the calculated spectra, the corresponding MO

diagrams, as obtained from a DFT calculation with the BP86 exchange–correlation
functional, are shown. In the MO diagram of ferrocene, the orbitals belonging to

the same irreducible representations as the dipole operator (e1u and a2u) are
highlighted in blue, whereas the e1g orbitals are highlighted in red. All other

orbitals do not contribute significantly to the spectra and are shown in grey. The
same colours are used for the corresponding orbitals in vinylferrocene.

94



6.1. Results

extracted from this deconvolution are listed in table 6.2. We note that for ferrocene our results
are consistent with those of ref. [69], with some deviations for the peaks at lower energies, which
can be attributed to the different procedures used for subtracting the tail of the Kβ main line.
The two intense peaks at higher energy can be fitted with a FWHM of about 3 eV, while the
peaks at lower energies are significantly broader and show a FWHM of up to 6 eV.

Comparing the experimental spectra in figure 6.12 (top left), there is no observable difference
between the experimental spectra of ferrocene and the different substituted ferrocenes. This is
confirmed when inspecting the positions and intensities extracted from the deconvolution given in
table 6.2. For the two peaks at ca. 7105 and 7108 eV the differences in the peak position are in all
cases below 0.2 eV, which is within the experimental uncertainty. Slightly larger shifts occur for
the lower energy peaks in some cases, especially for the third peak. However, this peak is rather
weak and the shifts might be artefacts of the deconvolution. The intensities are very similar for all
(substituted) ferrocenes as well. For the substituted ferrocenes the intensity of the highest-energy
peak is decreased by up to ca. 15 %, while the intensity differences are even smaller for all other
peaks. Finally, difference spectra comparing the substituted ferrocenes (c)–(f) to ferrocene are
included in figure 6.12 (bottom). In all cases, these difference spectra only show a negative feature
at ca. 7108 eV, corresponding to the decrease of the intensity of this peak. However, the difference
spectra show no indication for shifts of peaks or for a significant broadening of individual peaks.

The calculated V2C-XES spectra are included in figure 6.12 (top right) and show a good agreement
with experiment. In particular, the intensity patterns are reproduced satisfactorily. This holds
both for the calculations with the BP86 and with the B3LYP exchange–correlation functional. The
only difference between the two functionals is a shift of the lower energy peaks. Comparing the
calculated energies and intensities to those extracted by deconvoluting the experimental spectra
(see table 6.2), this good agreement of theory and experiment is confirmed. For the positions of
the peaks at lower energies, B3LYP provides a better agreement with errors below 0.3 eV, whereas
BP86 overestimates the energies of these peaks by up to 1.5 eV. Nevertheless, both functionals
agree for the relative intensities of all peaks, and for both functionals the calculated intensities
match those extracted from the experimental spectra with errors below 10–15 %. The only ex-
ceptions are the intensities of the third peak at ca. 7101 eV, which are calculated significantly
smaller than those extracted from the deconvolution of the spectra. This good agreement of the
experimental and calculated spectra shows that the rather simple computational methodology
applied here is adequate for an assignment of the V2C-XES spectra (see section 6.3.2).

To answer the question why the changes in the electronic structure due to substitution at the
cyclopentadienyl ring are observable in HERFD-XANES but not in V2C-XES, we have to assign
the V2C-XES spectra and relate the observed transitions to the underlying electronic structure. As
a starting point, we consider the calculated spectrum of ferrocene, shown in figure 6.11 alongside
the corresponding MO diagram. The two peaks at ca. 7108 eV and at ca. 7105 eV can be assigned
to transitions from the occupied e1u and a2u orbitals, respectively, to the Fe 1s core orbital. These
occupied e1u and a2u orbitals have the same symmetry as the dipole operator (i.e., they belong
to the same irreducible representation) and the corresponding transitions are, therefore, dipole-
allowed. They gain intensity through the admixture of Fe p-orbitals to the occupied e1u and a2u

orbitals. For the second occupied e1u-orbital, corresponding to a transition at 7104.4 eV, the Fe
p-orbital contribution is negligible and the corresponding intensity almost vanishes. The occupied
e1u and a2u orbitals, which correspond to these dipole-allowed transitions, are highlighted in blue
in figure 6.11.

As discussed above, the occupied e1g orbital is the only orbital in the considered energy range
that has significant d-orbital contributions. However, the transition from the occupied e1g orbital
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6. X-ray Spectroscopy of Ferrocene Derivatives

Figure 6.12.: Experimental (left) and calculated (right) V2C-XES spectra (1.5 eV FWHM) for
the (substituted) ferrocenes (a) and (c)-(f). For the experimental spectra, the tail

of the Kβ main line has been subtracted, and the deconvolution of the
experimental spectrum is also included. The V2C-XES spectra calculated with

DFT are shown both for the BP86 (black solid lines) and the B3LYP (blue dashed
line) exchange–correlation functionals. The bottom left spectra shows the

experimental difference spectra using ferrocene as a reference.
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Table 6.2.: Energies (Erel, in eV), intensities (Rel. Int.), and full width at half maximum
(FWHM, in eV) extracted from the deconvolution of the experimental spectra

compared to the energies and intensities predicted with DFT calculations using the
BP86 and B3LYP exchange–correlation functionals. All energies are given as shifts
relative to the highest energy peak in ferrocene at 7107.94 eV, and intensities are

normalised to the one of this peak.

Complex Experimental DFT/BP86 DFT/B3LYP
Erel Rel. Int. FWHM Erel Rel. Int. Erel Rel. Int.

(a) Fe(Cp)2 0.00 1.00 2.87 0.00 1.00 0.00 1.00
−3.05 0.63 3.45 −2.66 0.65 −2.91 0.63
−7.44 0.29 4.83 −6.63 0.10 −7.34 0.10
−12.54 0.34 4.60 −11.31 0.28 −12.44 0.27
−16.96 0.51 5.90 −15.46 0.40 −16.78 0.38

(f) Fe(Cp)(CpAc) 0.20 0.91 2.78 0.12 0.96 0.11 0.97
−2.86 0.58 3.42 −2.57 0.66 −2.84 0.64
−7.25 0.22 4.56 −6.55 0.10 −7.29 0.09
−12.42 0.28 4.52 −11.21 0.27 −12.35 0.26
−16.91 0.44 5.91 −15.39 0.39 −16.73 0.37

(e) Fe(Cp)(CpVinyl) 0.17 0.84 3.02 0.10 1.02 0.11 1.02
−2.99 0.57 3.62 −2.71 0.62 −3.00 0.59
−7.22 0.25 5.01 −6.59 0.10 −7.31 0.09
−12.51 0.35 5.19 −11.24 0.26 −12.37 0.25
−16.95 0.42 5.55 −15.48 0.39 −16.82 0.37

(d) Fe(CpPPh2)2 −0.01 1.03 2.96 −0.03 0.98 −0.03 0.98
−2.88 0.55 3.11 −2.56 0.63 −2.83 0.61
−6.48 0.30 5.76 −6.46 0.10 −7.19 0.10
−12.76 0.41 5.70 −11.29 0.26 −12.43 0.25
−17.35 0.46 6.01 −15.41 0.39 −16.74 0.37

(c) Fe(CpPiPr2)2 0.09 0.94 3.08 −0.07 0.99 −0.08 0.99
−2.90 0.61 3.48 −2.62 0.61 −2.90 0.59
−7.27 0.27 5.14 −6.63 0.11 −7.37 0.11
−12.55 0.33 4.74 −11.35 0.25 −12.48 0.24
−16.96 0.40 5.31 −15.43 0.38 −16.75 0.36
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to the 1s core orbital is dipole-forbidden and thus only has quadrupole intensity. Consequently, it
is orders of magnitude weaker than the dipole-allowed transitions from the occupied e1u and a2u

orbitals. Nevertheless, by analogy with the corresponding unoccupied e1g orbital probed in the
HERFD-XANES spectra, the occupied e1g orbital might also be sensitive to substitutions at the
cyclopentadienyl ligands. Therefore, it is highlighted in red in figure 6.11. For all other occupied
orbitals in this energy range the transitions to the Fe 1s core orbital are dipole forbidden and
their intensities are negligible. These orbitals are shown in grey in figure 6.11. Note that the two
peaks at lower energies (i.e., at ca. 7092.5 eV and at ca. 7096.5 eV) are due to transitions from
cyclopentadienyl σ-orbitals and are not included in figure 6.11.

For the ferrocene derivatives featuring π-substituents at the cyclopentadienyl ring (i.e., acetyl-
and vinylferrocene), we expect significant changes to the occupied MOs. First, we consider vinyl-
ferrocene (e), for which the HERFD-XANES (top) and V2C-XES (bottom) spectra are included
in figure 6.11, alongside the corresponding MO diagram. In this MO diagram, we indicate the
connection to the corresponding orbitals in ferrocene and use the same colours introduced above
(i.e., orbitals corresponding to dipole-allowed transitions in ferrocene are shown in blue, whereas
orbitals corresponding to quadrupole transitions in ferrocene are shown in red). The substitution
at the cyclopentadienyl ring makes a large impact on all of the occupied orbitals and compared to
ferrocene, all relevant orbitals are perturbed. First, the degeneracy of the e1u orbitals is lost due
to mixing with the substituent π-orbitals, and it is split into two orbitals separated by ca. 0.6 eV.
Therefore, there are now two distinct transitions contributing to the highest energy peak in the
V2C-XES spectrum, resulting in a slight broadening of the calculated peak. Second, the occu-
pied a2u orbital interacts with orbitals of the substituent and is split into two orbitals. However,
the splitting is significantly smaller in this case, but none of these changes are observable in the
spectrum because the occurring splitting of less than 1 eV is smaller than the resolution of the
spectrum.

In the HERFD-XANES spectra, the sensitivity to the π-substituents is due to their effect on
the unoccupied e1g orbital. For the V2C-XES spectra, a similar splitting of the corresponding
occupied e1g orbital is found in the calculations. Indeed, the occupied e1g orbital splits into two
occupied orbitals in vinylferrocene and the resulting e1g-like orbitals both have significant dipole
intensity. These become observable as a contribution to the calculated spectra, but their intensity
is still four times smaller than the one of the unperturbed e1u-like orbital. Therefore, the e1u peak
dominates in this region and hides this splitting of the occupied e1g orbital. The only change to the
calculated spectrum is a slight broadening of the peak, which cannot be resolved in experiment.

Finally, we note that while for the calculation of the HERFD-XANES spectra we found that the
splitting between the two unoccupied e1g-like orbitals is extremely dependent on the choice of the
functional, this is not the case of the corresponding occupied orbitals. Here, the splitting between
the occupied e1g-like orbitals calculated with BP86 and B3LYP only differ by approximately
0.1 eV.

For acetylferrocene (b), the second example of a ferrocene bearing a π-substituent at the cyclo-
pentadienyl ring, a similar picture is obtained. The assignment of the calculated spectra to MOs
is shown in figure 6.13. Here, the occupied orbitals introduced by the π-substituent appear at a
lower energy and interact with the occupied a2u orbital. This leads to a splitting of ca. 0.7 eV for
the transition corresponding to the second peak (i.e., the one at ca. 7105 eV) in the V2C-XES
spectrum, resulting in a slight broadening of this peak. However, as for vinylferrocene, this broad-
ening is not resolved in the experimental spectrum. The occupied e1u orbitals are only slightly
affected (with a splitting smaller than 0.1 eV) and the quadrupole transition from the occupied e1g

orbital to the 1s core orbital does not gain significant dipole intensity by mixing with substituent
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Figure 6.13.: Calculated pre-edge HERFD-XANES (top) (0.7 eV FWHM) and V2C-XES
(bottom) (1.5 eV FWHM) spectra for acetylferrocene. The calculated spectra are

shown for both BP86 (black solid line) and B3LYP (blue dashed line). For the
BP86 calculation, the individual transitions are included as red sticks. Alongside
the calculated spectra, the corresponding MO diagrams, as obtained from a DFT

calculation with the BP86 exchange–correlation functional, are shown for both
ferrocene and acetylferrocene.

π-orbitals.

For Fe(CpPPh2)2 and Fe(CpPiPr2)2, in which phosphine substituents have been introduced at the
cyclopentadienyl rings, the pre-edge peaks in HERFD-XANES spectra are unchanged [108] (i.e.,
the substituent orbitals do not alter the unoccupied e1g orbital significantly). The same observa-
tion can be made for the occupied orbitals probed in the V2C-XES spectra. For Fe(CpPiPr2)2, the
assignment of the calculated spectra is shown in figure 6.14. Here, the occupied orbitals corres-
ponding to intense transitions in the V2C-XES spectrum appear at almost the same energies as in
ferrocene. However, there are many additional occupied orbitals originating from the substituents.
Some of these gain a small intensity by mixing with occupied orbitals with contributions at the
iron atom, but these are small compared to the intense transitions from the occupied e1u- and
a2u-like orbitals. For Fe(CpPPh2)2, there is an even larger number of occupied orbitals within the
relevant energy range, but the overall picture is very similar and none of the additional occupied
orbitals affects the V2C-XES spectrum.
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Figure 6.14.: Calculated pre-edge HERFD-XANES (top) (0.7 eV FWHM) and V2C-XES
(bottom) (1.5 eV FWHM) spectra for diisopropylferrocene. The calculated spectra
are shown for both BP86 (black solid line) and for B3LYP (blue dashed line). For

the BP86 calculation, the individual transitions are included as red sticks.
Alongside the calculated spectra, the corresponding MO diagrams, as obtained

from a DFT calculation with the BP86 exchange–correlation functional, are shown
for both ferrocene and diisopropylferrocene.

In summary, while for the examples considered here the substituents at the cyclopentadienyl
ring(s) do affect the occupied orbitals, these differences cannot be resolved in the experimental
V2C-XES spectra. In some cases, occupied orbitals that are degenerate in ferrocene are split, but
the splitting is smaller than 0.6 eV. In other cases, in particular for the occupied e1g orbital in
vinylferrocene (corresponding to a quadrupole transition in ferrocene), the splitting is larger, but
is hidden by more intense dipole-allowed transitions at similar energy.

To estimate the experimental resolution required to detect these differences, the calculated spec-
tra plotted using different broadenings for the individual transitions are shown in figures 6.15
together with the corresponding difference spectra. With a FWHM of 3.0 eV, corresponding to
the experimental spectra reported here, only a very small broadening of the most intense peak
can be observed in the difference spectra. This becomes more pronounced when decreasing the
FWHM, but only with a FWHM of 1.0 eV do indications for the splitting of some transitions
appear in the difference spectra. Finally, for a FWHM of 0.5 eV these additional transitions can
be identified as separate peaks in the calculated spectra.
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Figure 6.15.: Calculated V2C-XES spectra plotted using Gaussian broadening with varying
Full-Width Half-Maximum and the corresponding calculated difference spectra

compared to ferrocene.
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6.2. Conclusions

In conclusion, we could show how HERFD-XANES spectroscopy is able to reveal electronic trans-
itions in the pre-edge peak region of K-edge XAS spectra, which are sensitive to substituents at
the cyclopentadienyl ligand of ferrocene compounds. Application of the HERFD technique thus
makes metal K-edge spectroscopy as sensitive to electronic changes as L-edge XAS, but using hard
X-rays. We also considered the chemical sensitivity of the valence-to-core region of the XES spec-
tra, with the aim of observing differences in the occupied orbitals comparable to those observed
in the unoccupied orbitals in the HERFD-XANES spectra. While for HERFD-XANES, we have
shown that the pre-edge peaks are sensitive to such changes, this is not the case for V2C-XES.

To understand this different chemical sensitivity, the experiments have been complemented with
DFT calculations, which allow for an assignment of the transitions to molecular orbitals. For
the calculation of V2C-XES spectra, the simple ∆DFT approach of ref. [137] already provides
a good agreement with experiment. In contrast to the TD-DFT calculations of the HERFD-
XANES spectra, these calculations are less sensitive to the choice of the exchange–correlation
functional and the calculations are in quantitative agreement with experiment. On the other
hand, the calculations of the HERFD-XANES spectra do not provide a quantitative agreement
with experiment. Nevertheless, they still allow for a reliable assignment of the observed pre-
edge peaks and make it possible to identify the unoccupied molecular orbitals probed by these
transitions.

The pre-edge peaks in HERFD-XANES can be assigned as dipole-forbidden transitions to unoccu-
pied d-orbitals. In particular, for the LUMO in ferrocene, one of the degenerate e1g orbital splits
into two e1g-like orbitals in acetyl- and vinylferrocene because of mixing with the substituent’s
π-orbitals. On the other hand, the V2C-XES spectra are dominated by dipole-allowed transitions
originating from occupied ligand orbitals, with small Fe p-orbital contributions. These orbitals
are less affected by substituents beyond the first coordination shell. Even though a splitting of the
occupied e1g orbital occurs due to substitution with an acetyl or vinyl group, it is not observable
in the V2C-XES spectra. The increased intensity of the split e1g-like orbitals are still significantly
smaller than the dipole-allowed transition corresponding to the unperturbed e1u-like orbital.

For resolving the differences in the occupied orbitals caused by substitutions beyond the first
coordination shell, it would be necessary to increase the resolution of experimental V2C-XES
spectra. In principle, this would be possible by using analyser crystals with a higher intrinsic
resolution due to applied Bragg reflection, but at the price of reduced flux. However, even in
this case, the lifetime broadening of the 1s core hole would still limit the experimental resolution.
Since in HERFD-XANES the lifetime broadening of the 1s core hole is removed to a large extent,
the resolution of V2C-XES would always be less than in HERFD-XANES.

While the specific results discussed here apply only to the considered example of substituted
ferrocenes, we expect some observations to be more general. First, the pre-edge region in K-
edge XAS spectra of transition metal complexes contains in most cases only the dipole-forbidden
transitions to metal d-orbitals. These will in general be very sensitive to substitution, both for
directly coordinated ligands and possibly also beyond the first coordination shell. Therefore,
with the possibility to resolve such subtle changes in these orbitals, with HERFD-XANES, these
measurements provide a very sensitive analytical tool. On the other hand, the V2C-XES spectra
are dominated by dipole-allowed transitions originating from orbitals with contributions from
metal p-orbitals. Thus, changes in occupied metal d-orbitals will hardly be detectable because the
corresponding transitions are much weaker. We note that a smaller sensitivity of XES compared
to XAS to structural changes has also been observed for the nitrogen K-edge of alanine peptides

102



6.3. Methodology

in solution [266].

To conclude, we have shown that HERFD-XANES provides a probe sensitive enough to determine
changes within the electronic structure due to substitutions in the second coordination sphere
and that combining the experiment with TD-DFT calculations an understanding of these changes
within the electronic structure can be reached. However, the V2C region of XES cannot distinguish
these changes in the electronic structure due to substitution in the second coordination shell, at
least for the substituted ferrocenes considered here.

Thus the sensitivity of the pre-edge in HERFD-XANES provides unique opportunities for studying
the electronic structure of transition metal complexes and for overcoming the current limitations
of XAS. Therefore it can be considered as a tool of very high potential for the element specific
in situ investigation of substituent effects at coordinating ligands on the electronic structure of
transition-metal complexes. Even though V2C-XES is less sensitive to changes in the second
coordination shell, it provides information on the occupied electronic states. In this respect it is,
therefore, complementary to HERFD-XANES. Moreover, V2C-XES can still be a useful tool for
distinguishing different oxidation states of transition metal centres, as shown here for ferrocene
and ferrocenium, and for determining the identity and geometrical arrangement of the ligands
in the first coordination shell. Therefore, both HERFD-XANES and V2C-XES can help provide
explanations of catalytic activity, with HERFD-XANES providing these at the electronic level.

6.3. Methodology

6.3.1. Experimental

The HERFD-XANES and V2C-XES experiments were performed by Matthias Bauer (TU Kaiser-
slautern) at beamline ID26 at the European Synchrotron Radiation Facility [267]. For a detailed
description of the methodology used (experimental set up, measurement procedures, etc.), please
see the supporting information of reference [108] for the HERFD-XANES measurements and the
methods section of reference [268] for the V2C-XES measurements.

6.3.2. Computational

Geometry optimisations of the molecular complexes were performed with the quantum chemical
program package ADF2010.01 [122,269,270] using the density functional BP86 [130,151] with the
TZP basis set. For complexes where different stable conformers exist, all were optimised and the
lowest energy structures were used for the following calculations. For all considered compounds,
the ground-state is the low-spin state (S = 0). For the lowest energy conformations see figure 6.5.

Calculated XAS spectra always refer to these lowest energy structures, but almost identical results
are obtained for the other possible conformers. The XANES spectra are then calculated for
these structures with the ORCA program package [201] and the ADF2012 program package [122,
204, 270] using time-dependent density functional theory (TD-DFT). Within ORCA, Ahlrichs’
def2-QZVPP basis set [209] was used, while within ADF the QZ4P Slater-type orbital basis
set was utilised. The results presented in section 6.1.2 are obtained with ORCA, whereas the
results in section 6.1.3 are obtained with ADF. To judge the sensitivity of our results to the
exchange correlation functional, we employed both the BP86 non-hybrid functional [130, 151]
and the B3LYP hybrid functional [158, 159]. To selectively target core excitations, the TD-DFT
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calculations were restricted to excitations originating from the Fe 1s orbital (restricted-channel
approximation) [123, 124, 184]. Such restricted-channel TD-DFT calculations have been applied
extensively for K-edge XAS spectra of transition metal complexes [107,116,186,245,271,272].

However, TD-DFT systematically underestimates the excitation energies of core excitations [184].
Therefore, for comparison with experiment the energy scale must be shifted. In ORCA the shifts
are 181.97 eV and 151.08 eV and in ADF the shifts are 183.39 eV and 152.62 eV for the BP86
and B3LYP functionals, respectively. These shifts are chosen such that the energy of the pre-edge
peak in ferrocene agrees with experiment. While these shifts are rather large, they do not affect
the relative position of the peaks. For Fe K-edge XAS, it has been demonstrated previously that
despite the large absolute errors, the selective TD-DFT approach used here can provide relative
excitation energies and intensities with an accuracy that allows for a direct comparison with
experiment [184]. The relative excitation energies are determined by the valence orbitals and,
therefore, not affected significantly by errors in the description of the core orbital. The largest
part of the shift in the absolute excitation energies is due to the neglect of relativistic effects for the
1s core orbital. Including scalar relativistic effects, in the ADF calculations, with the zeroth-order
regular approximation (ZORA) [132,133] reduces the shifts to 58.84 eV for BP86 and to 27.51 eV
for B3LYP, but does not change the overall spectra.

With the BP86 non-hybrid functional, all relevant excitations are transitions from the Fe 1s orbital
to a single unoccupied orbital. In this case, these orbitals are shown in figure 6.9. With the B3LYP
hybrid functionals, some excitations are combinations of several such transitions. In these cases,
figure 6.9 shows the corresponding linear combination of unoccupied orbitals. This is possible here
because all excitations originate from the Fe 1s orbitals. All orbital isosurface plots in figures 6.6,
6.9, 6.11, 6.13 and 6.14 were prepared with Molekel [273] and use an isosurface value of +/- 0.025
atomic units.

For the calculation of XES spectra we use the ADF2012 program package [122, 204, 270] and
we follow the work of Lee et al. [137] (see also refs. [170–172] and references therein for earlier
work). This is a frozen orbital, one-electron ∆DFT approach which uses orbital energy differences
between occupied orbitals, ε1s − εi, to model the X-ray emission energies. Even though it is the
simplest possible approximation for the calculation of XES spectra, it has been shown to work
reliably for V2C-XES spectra of transition metal complexes [67–69, 116, 137, 172]. We employed
the QZ4P basis set and used both the non-hybrid exchange–correlation functional BP86 and the
hybrid functional B3LYP.

The calculated V2C-XES spectra were shifted by 182.86 eV and 148.82 eV for BP86 and B3LYP,
respectively, where these shifts are chosen such that the energy of the highest energy V2C-XES
peak in ferrocene agrees with experiment. As discussed above for the XAS spectra, the largest
contributions to these shifts originate from the neglect of relativistic effects, the neglect of core-hole
relaxation, and the errors in the exchange–correlation functional. If scalar-relativistic corrections
are included via the ZORA approximation, the shifts are reduced to 58.36 eV for BP86 and
23.79 eV for B3LYP, but the overall V2C-XES spectra do not change.

For calculating the intensities in ADF of both the XANES and V2C-XES spectra, we adopted the
origin-independent approach described in chapter 3. However, for the V2C-XES spectra the initial
and final state in the transition moments are now the Fe 1s core orbital and the other occupied
orbitals. However, in ORCA this method for the oscillator strengths is not implemented and only
the electric-quadrupole and magnetic-dipole contributions are calculated. These contributions are
origin-dependent. Therefore, to address this problem, Neese and co-workers proposed to choose
the origin such that the sum of quadrupole and magnetic dipole contribution is minimised [107].
However, we found that in cases where the dipole contribution is non-zero, but very small compared
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to the quadrupole contribution, this procedure places the origin far away from the molecule, which
is not physically reasonable as it leads to a very slow convergence of the multipole expansion.
Therefore, we placed the origin at the iron atom in all our calculations and used the non-origin
adjusted results given by ORCA.
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Carbonyl Complexes

Transition metal carbonyls play an important role in many scientific areas. The binding of CO to
enzymatic centres is often crucial in their biological activity [274] and they also play an important
role in catalytic processes such as the Fischer-Tropsch process [275–279]. These processes are
often not based on iron, even though the Fischer-Tropsch process has been documented to occur
with iron [280, 281]. Nevertheless, iron carbonyl complexes are of interest and several studies
look into their catalytic properties [282–286]. Such work is mostly motivated by the desire to
replace expensive catalysts based on rare elements such as ruthenium or platinum by cheap iron
catalysts. Most of these catalytic reactions are due to the ease of the (photo-)dissociation of a
carbonyl ligand in the iron carbonyl complexes [285–287]. Due to their importance they have also
been studied spectroscopically [286,288].

The transition metal carbonyl complexes are also important from a different perspective. They are
a text-book example in inorganic chemistry for transition metal complexes obeying the 18 electron
rule. The metal centre(s) coordinates to a set of ligands which will provide enough electrons to
fill the valence shell [7]. Therefore, they also provide a basis for introducing the concept of metal-
metal bonding, which may occur upon an incomplete valence shell [6,8]. We can understand and
interpret many properties of complexes through their electronic structure. In the simplest case
this is expressed through the use of and molecular orbital diagrams. Experimentally, electronic
spectroscopy offers a method of probing the electronic structure. Specifically, X-ray spectroscopy
offers a local probe of the electronic structure, with X-ray absorption probing the unoccupied
electronic states and X-ray emission probing the occupied electronic states.

However, high-energy electronic spectroscopy has been mostly neglected with regards to iron
carbonyl complexes. X-ray absorption measurements, widely used in catalyst characterisation,
are also sparse in the literature, with only a few examples in the last years [239,289–292]. Though
these papers report X-ray spectra, their primary purpose is not the investigation of the spectra
themselves but the spectra are used to answer a different question, such as the cause of dark
channels in the measured spectra in solution [239] or to follow reaction dynamics [289].

Here, we will investigate the HERFD-XANES spectra with regards to their interpretation and
the presence of any correspondence in the spectra between the different iron carbonyl complexes.
HERFD-XANES is used due to its high-resolution which provides a more detailed pre-edge struc-
ture and therefore, as shown in chapter 6, more information on the electronic structure of the
complexes. For this we will use a test set of five iron carbonyl complexes consisting of iron penta-
carbonyl, diiron nonacarbonyl, triiron dodecacarbonyl, iron tricarbonyl cyclooctadiene and diiron
tetracarbonyl dicyclopentadiene for which the Lewis structures are shown in figure 7.1. These
experimental spectra were measured by Matthias Bauer (TU Kaiserslautern).

Before we go any further, we review results from calculations already published for the iron
carbonyls. Fronzoni et al. published calculations of the X-ray absorption spectra for a series of
transition metal complexes, which included Fe(CO)5. They used CIS to calculate the transition
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Figure 7.1.: Lewis structures of the five iron carbonyl complexes considered in this work.
a) Fe(CO)5, b) Fe2(CO)9, c) Fe3(CO)12, d) Fe2(CO)4Cp2 and e) Fe(CO)3C8H12
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7.1. Revisiting the Electronic Structure of Fe(CO)5

energies and employed the dipole approximation for the intensities [293]. However, as previously
mentioned in chapter 3, the dipole approximation is usually not sufficient for the calculation of K-
edge transition metal spectra where 1s→ 3d transitions are observed. Therefore, these results may
not include all relevant excitations for the interpretation of the X-ray absorption spectra at the
K-edge. Also multiple scattering calculations have been performed for comparison to experimental
spectra [291,292].

Though the literature available on the calculation of X-ray absorption spectroscopy is limited,
many computational studies consider iron carbonyl complexes. For Fe(CO)5, there are has been
interest in its molecular structure and the accuracy of available methods in reproducing the struc-
ture from X-ray diffraction experiments [294, 295]. However, there are not many papers consid-
ering the electronic structure, but reference [296] used computations to help understand several
properties of Fe(CO)5. Compared to Fe(CO)5, the literature available on the bi- and triiron
carbonyl complexes is extensive. Once again a lot of studies focus on the molecular structure
of Fe2(CO)9 [180, 294, 297, 298] as well as its photodissociation [180]. The interest in the mo-
lecular structure largely stems from the question of whether or not a metal-metal bond exists
between the two iron centers [299–302]. Within many of these studies the calculated electronic
structure of Fe2(CO)9 is used to aid in the determination. Finally, Fe3(CO)12 has been stud-
ied extensively in terms of its molecular structure, both experimentally [303–306] and theoret-
ically [294, 295, 297, 307, 308]. As in the case of Fe2(CO)9, many of the theoretical studies also
consider the underlying electronic structure of the metal cluster to aid in understanding the bond-
ing characteristics.

As mentioned earlier, we will also consider two substituted iron carbonyl complexes. Substituted
iron carbonyl complexes are considered important for studying interactions between two reactive
metal sites [309] as well as altering reactivity [310, 311]. Therefore, the literature available on
the character of substituted iron carbonyl complexes is extensive [310–314]. Nevertheless, the
substituted iron complexes presented here are not commonly considered in literature [309,315–318].

In the first section of this chapter we will discuss the electronic structure and HERFD-XANES
spectrum of Fe(CO)5 and use TD-DFT calculations to interpret the spectrum. The second section
considers the HERFD-XANES spectra of the bi- and trimetallic iron carbonyl systems along
with their interpretation using TD-DFT calculations. The third section discusses the substituted
iron complexes and the interpretation of their HERFD-XANES spectra. Finally, we present the
conclusions. The computational methods used within this work is given at the end of this chapter.

7.1. Revisiting the Electronic Structure of Fe(CO)5

First, we consider the simplest iron carbonyl complex Fe(CO)5, which has a trigonal bipyramidal
structure with D3h symmetry. As a starting point for the discussion of Fe(CO)5, we will consider
a schematic representation of its molecular orbital (MO) diagram, see figure 7.2. In the D3h point
group the d-orbitals of the iron atom belong to three irreducible representations (irreps). The iron
dz2 orbital belongs to the totally symmetric A′1 irrep, whereas the dxy, dx2−y2 and dxz, dyz pairs
belong to the two degenerate irreps E ′ and E ′′, respectively. These combine with the carbonyl
ligand orbitals of the same symmetry. The carbonyl σ-orbitals belong to the irreps 2A′1, A′′2 and
E ′′, whilst the carbonyl π-orbitals belong to the irreps A′2, A′′2, 2E ′ and 2E ′′. From these we can
expect the A′1 d-orbital to interact with the A′1 σ carbonyl orbitals. The A′1 carbonyl orbitals are
composed of the σ-bonding orbitals that are formed by the p-orbitals pointing along the carbonyl
bond axes. These interact with the iron dz2 orbital to form a bonding and an anti-bonding
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combination of ligand and metal orbitals with A′1 symmetry. The E ′′ d-orbitals will interact with
only the E ′′ π-orbitals of the carbonyls, whereas the E ′ d-orbitals can interact with both σ and
π carbonyl orbitals as they both have orbital combinations with the correct symmetry. This can
be seen in the unoccupied orbitals of the E ′ symmetry in figure 7.2 where there is some minor
inclusion of a σ carbonyl orbital on the carbonyl ligand with no π contributions, whereas all other
carbonyl ligand orbitals are the π-orbitals. Using the character table we can determine whether
an X-ray transition from the iron 1s to these orbitals will have dipole or quadrupole intensity.
Transitions to the A′1 and E ′′ MOs are only quadrupole allowed, whereas those to E ′ MO’s are
both quadrupole and dipole allowed.

Figure 7.2.: A schematic molecular orbital diagram of Fe(CO)5 constructed from density
functional calculations. (Isosurface plots of the orbitals have been obtained with
BP86, but the unoccupied orbitals are arranged in the energetical order in which

they appear within the B3LYP calculations.

The first five unoccupied orbitals contain all five d-orbitals of the iron atom and will be the main
contributors to the pre-edge spectra at the iron K-edge. Figure 7.3a contains both the calculated
and experimental spectra of Fe(CO)5. Therein, the experimental spectrum has three distinct
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peaks, labeled A, B and C. Previous experimental X-ray absorption spectra of Fe(CO)5 at the
K-edge of iron show only one peak in the pre-edge spectra [239,289]. This clearly shows that the
use of HERFD-XANES reveals more detail in the experimental spectra. Within the experimental
spectra we can assign both peaks A and B to the pre-edge. However, peak C, with a significant
increase in intensity compared to peaks A and B, is most likely due to dipole-allowed transitions
to Rydberg states.

Now we turn our attention to the calculated spectra. Qualitatively, BP86 provides a spectrum
with one intense peak and B3LYP provides a spectrum with three distinct features with lower
intensities. Therefore, (qualitatively) we can conclude that the B3LYP exchange–correlation func-
tional provides results that are more accurate to the experimental spectrum for this complex. To
further understand the differences between BP86 and B3LYP we must consider the transitions
that make up the spectra. The peak in the BP86 spectrum contains twelve contributing trans-
itions lying very close together. If we were to consider an MO diagram constructed solely from
the BP86 calculation the ordering of the MO’s would be different to that shown in figure 7.2,
with the lowest energy MO being the E ′′ followed by the A′1 and then several orbitals later the
E ′. However, the energy difference between the two lowest energy orbitals is smaller than 0.1 eV
and the difference between the first and last orbital is only 2.3 eV. Thus, once broadening of the
peak due to the core hole lifetime is taken into account we only see the one peak in the calculated
spectrum.

The peaks in the B3LYP spectrum are well separated with the contributions to each peak well
defined. The lowest energy transition is to the A′1 orbitals followed by transitions to the two de-
generate representations E ′′ and E ′. The distinct peaks can be attributed to the energy separation
of the transitions with the difference between A′1 and E ′′ being 1.7 eV and the difference between
the first and last transition being 5.4 eV.

Peak A in the B3LYP spectrum consists of transitions to the anti-bonding A′1 orbital composed
of the iron dz2 orbital and the carbonyl σ-orbitals. Peak B contains the transitions to both de-
generate symmetry representations E ′′ and E ′ (in that order), respectively, containing the other
four d-orbitals of the iron atom. The isosurface plots of the (combinations of unoccupied) orbitals
observed in these peaks are shown in figure 7.4. These agree with the unoccupied orbitals ob-
tained with BP86 (shown in the MO diagram in figure 7.2). However, as the spectrum obtained
with B3LYP shows a better agreement with experiment, the orbital ordering extracted from the
B3LYP spectrum has been used in the MO diagram of figure 7.2. Table 7.1 shows the dipole and
quadrupole contributions to the intensities of the transitions, separated into the transitions that
contribute to the peaks. We can see that the contributions for Fe(CO)5 follow what is expected
from symmetry considerations: Peak A (A′1) is composed entirely of quadrupole intensity and
peak B (E ′′ and E ′) has a small dipole contribution due to the transition into the E ′ orbitals.

7.2. Bi- and Trinuclear Iron Carbonyls Fe2(CO)9 and Fe3(CO)12

For Fe2(CO)9, the experimental and calculated spectra are shown in figure 7.3b. There are three
observable features in the experimental spectrum labelled A, B and C. Previously published K-
edge spectra for Fe2(CO)9 show only one distinct peak in the pre-edge spectrum, again showing
the capability of HERFD-XANES. Within the experimental spectra we can assign both peaks A
and B to the pre-edge. However, peak C is once again most likely due to transitions to Rydberg
states. Therefore, we will focus on peaks A and B in the following. If we compare the spectrum to
the one of Fe(CO)5, we immediately see that the pre-edge features have a much higher intensity
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Figure 7.3.: X-ray absorption spectra of Fe(CO)5, Fe2(CO)9 and Fe3(CO)12 calculated with the
BP86 and B3LYP exchange–correlation functionals and the experimental results.
For the calculated spectra the blue vertical line indicates the ionisation threshold

(i.e. the negative of the energy of the 1s core orbital).
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Table 7.1.: The percentage of dipole and quadrupole contributions to the transition intensity for
the most intense transitrions in the calculated B3LYP spectra.

Complex Peak %Dipole %Quadrupole
a) Fe(CO)5 A 0.0 100.0

B-1 0.0 100.0
B-2 25.2 74.8

b) Fe2(CO)9 A 96.3 3.7
B 100.0 0.0

c) Fe3(CO)12 A-1 92.7 7.3
A-2 78.0 22.0
B-1 95.4 4.6
B-2 88.8 11.2

d) Fe(CO)3C8H12 A 87.1 12.9

e) Fe2(CO)4Cp2 A-1 82.6 17.4
A-2 96.0 4.0
B-1 97.6 2.4
B-2 91.5 8.5
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Figure 7.4.: Isosurface plots of the unoccupied orbitals probed by the pre-edge transitions as
obtained from TD-DFT calculations with B3LYP/QZ4P, separated and sorted into
the peaks they contribute to for Fe(CO)5, Fe2(CO)9 and Fe3(CO)12. All plots shown
are linear combinations of orbital contributions (see Computational Methodology).
Only the unoccupied orbitals corresponding to the major contributions to the peak
intensity are shown here. Shown below the unoccupied orbitals are the isolated iron
orbital contributions to them, in which only the part of the orbitals that is within a
radius of 1 Å around the iron atoms is included. The coloured dots indicate the iron

atom (1s orbital) from which the transition originates.
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and that all three peaks are shifted to higher energies.

First, we compare the spectra calculated with both the BP86 and B3LYP exchange–correlation
functionals. BP86 calculates a spectrum with only two distinct features before the ionisation
threshold, whereas B3LYP calculates three distinct features, which correlates more accurately
with what is observed in experiment. Therefore, we will only discuss the B3LYP results in the
following. The isosurface plots of the (combination of) unoccupied orbitals that are probed with
a significant intensity contribution are plotted in figure 7.4. To highlight the contributions of the
iron orbitals, figure 7.4 also includes isosurface plots that only cover a radius of 1 Å around the
iron atoms. These plots show that peak A is comprised of transitions to the anti-bonding σ∗-
orbital of the metal-metal bond, which is composed of the dz2 iron orbitals. The two excitations
are an excitation from each core orbital to a combination of unoccupied orbitals. Both Fe(CO)5

and Fe2(CO)9 have the same point group and the major transitions is to an orbital with the major
iron contribution being the iron dz2 orbitals. Thus, why is peak A in Fe2(CO)9 shifted to higher
energies and why does it have a much larger intensity than its counterpart in Fe(CO)5? The main
reason for the large increase in intensity is that even though the molecular point group is the same,
the symmetry of the iron centres has been reduced. In Fe2(CO)9 neither lie in the horizontal mirror
plane and the lowest energy dz2 combination belongs to the A′′2 irrep. Therefore, the corresponding
transition becomes dipole-allowed. This is seen in table 7.1, where for the transitions in peak A
mostly dipole contributions to the intensity are seen. The change in energy of the peak can be
rationalised by a combination of factors: In Fe2(CO)9 the dz2 orbitals now interact with the π∗

ligand orbitals, which pushes it to higher energies. At the same time the change in the ligand field
of the iron centre from a pentagonal bipyramidal to an octahedral ligand field (where the dz2 is
not involved in the bonding of the ligands) lowers the energy. In addition, the interaction of the
two dz2 orbitals from the iron centres increased the energy of the transition to the anti-bonding
dz2-dz2 orbital.

Peak B has a more complicated assignment. From the isosurface plots in figure 7.4 we can see
that one of the iron atom orbitals is a dz2 and the other belongs to the degenerate pair of dxz and
dyz iron orbitals. The second transition is a mirror image of the first with the phase of the dz2
reversed. The transitions originate from the iron atom upon which the dxz/yz-like orbital resides.
Therefore, this can be considered a linear combination of transitions which occur from both the
A and B peaks of Fe(CO)5.

Finally we consider Fe3(CO)12 where the experimental and calculated spectra are shown in figure
7.3c. The experimental spectrum once more has three observable features which we have labelled
A, B and C, and we focus on the pre-edge peaks A and B. If we compare the spectrum to the one
of Fe2(CO)9 we can see that the features shift to lower energy and that the intensity of peak A
is slightly reduced while peak B has a larger intensity. Now we consider the calculated spectra.
Again, we will only discuss the B3LYP spectrum, which show a better agreement with experiment
and in the following consider only peaks A and B. The isosurface plots of the (combination of)
unoccupied orbitals that are probed with a significant intensity contribution are plotted in figure
7.4, along with the corresponding iron orbital contribution. Peak A has four main contributing
transitions. The first two transitions are from the two Fe2(CO)8 core orbitals to σ∗ anti-bonding
orbitals between the Fe2(CO)8 backbone and the Fe(CO)4 moiety. The next transition originates
from the 1s orbital of the Fe(CO)4 group to a completely anti-bonding orbital where all three
possible metal-metal bonds are out of phase. The final transition also originates from the 1s of
the Fe(CO)4 group, but goes to an orbital which resembles a σ∗-orbital between the Fe(CO)4

group and the Fe2(CO)8 and has a possibility of σ-like interactions between the iron centres
of the Fe2(CO)8 backbone. Peak B contains three main transitions, in which orbitals from the
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Fe2(CO)8 backbone are the main contributor. The first two transitions are to σ∗ anti-bonding
metal-metal bond orbitals of the backbone, with only ever a small orbital inclusion from the third
iron centre. The third and final major contributing transition is to an orbital with a possible
bonding interaction between the iron centres of the Fe2(CO)8 backbone.

To understand the changes in spectral intensity observed we must first consider the symmetry of
the molecule. Compared to Fe(CO)5 and Fe2(CO)9 the molecular point group has been reduced
from D3h to C2v. This reduction in symmetry provides more possibilities for a dipole-allowed
transition. Hence, the increase in intensity of peak B can be expected. However, the slight
decrease in intensity of peak A compared to peak A of Fe2(CO)9, is not so easy to rationalise. If
we look at the percentage contributions of the transition intensities to the peak shown in table
7.1 we can see that the main intensity contribution for all transitions is dipole. On the other
hand, the amount of quadrupole intensity contribution to the peak has also increased relative to
Fe2(CO)9. The peaks also shift to lower energies than in Fe2(CO)9 and the reason is clear when
we consider the molecular orbitals. On the introduction of the Fe(CO)4 group to the Fe2(CO)8 a
third set of d-orbitals are introduced which can interact with the σ/σ∗-orbitals of the Fe2(CO)8

backbone. When one of the d-orbitals interact it then splits these two orbitals into three orbitals
and thus, shifting the first available unoccupied orbitals to lower energies. Therefore, the features
in the pre-edge are shifted to lower energies.

From all the observations discussed it becomes clear how the introduction of a second iron centre
affects the electronic structure. A large part of the differences can be explained through a reduction
of the symmetry of the individual iron centres and hence, their individual electronic structures.
Moreover, we can see a correspondence between peak A of Fe(CO)5 and Fe2(CO)9 in that they
both consist of iron dz2 orbitals. A subsequent correspondence can be made to peak A of Fe3(CO)12

in that this peak consists only of σ∗-orbitals, the same as for peak A of Fe2(CO)9.

7.3. Substituted Iron Carbonyl Complexes

However, the pure iron carbonyl complexes are not the only complexes of interest. Therefore, we
will also consider the effect of substitution of one or more carbonyl groups on the pre-edge X-ray
absorption spectra and thus, also the electronic structure.

Fe(CO)3C8H12 is a single iron atom complex where two of the CO groups in Fe(CO)5 have been
changed for a cyclooctadiene. In figure 7.5 we show the spectra of Fe(CO)3C8H12 as well as
Fe(CO)5 for comparison. In the experimental spectrum of Fe(CO)3C8H12, we observe one pre-
edge feature which has a large intensity increase as well as a shift to higher energies compared
to Fe(CO)5. The calculated BP86 spectrum shows one peak with a large intensity, while B3LYP
leads to two distinct features. In terms of the experiment both provide the correct picture with
one high-intensity peak. However, due to the previous observations for the pure carbonyls, we
will only discuss the B3LYP results. We must note that neither exchange–correlation functional
reproduces the energy shift, only the intensity increase.

To understand what changes occur on substitution of the two carbonyl groups for the C8H12,
we consider the isosurface plots of the unoccupied orbitals that are probed with a significant
intensity contribution. These are plotted in figure 7.6 along with the corresponding isolated iron
contribution. Peak A of Fe(CO)3C8H12 contains a dxz/yz like orbital, which is the anti-bonding
orbital between the iron and the C8H12 group. Therefore, we can infer that the substitution of the
C8H12 reduces the energy of one of the dxz/yz orbitals, because in Fe(CO)5, the transitions to these
orbitals were in the second pre-edge peak. The apparent loss of degeneracy of the dxz/yz orbitals
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7. X-ray Absorption Spectroscopy of Iron Carbonyl Complexes

Figure 7.5.: X-ray absorption spectra for Fe(CO)5 and Fe(CO)3C8H12. Top: experimental
spectra; middle: BP86 calculated spectra; bottom: B3LYP calculated spectra.
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7.3. Substituted Iron Carbonyl Complexes

Figure 7.6.: Isosurface plots of the unoccupied orbitals probed by the pre-edge transitions as
obtained from TD-DFT calculations with B3LYP/QZ4P, separated and sorted into
the peaks they contribute to for Fe(CO)3C8H12 and Fe2(CO)4Cp2. All plots shown
are linear combinations of orbital contributions (see Computational Methodology).
Only the unoccupied orbitals corresponding to the major contributions to the peak
intensity are shown here. Shown below the unoccupied orbitals are the isolated iron
orbital contributions to them, in which only the part of the orbital that is within a

radius of 1 Å around the iron atoms is included. The coloured dots indicate the iron
atom (1s orbital) from which the transition originates.
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7. X-ray Absorption Spectroscopy of Iron Carbonyl Complexes

can be explained through the bonding/anti-bonding interaction. Only one of the two orbitals will
be in the right orientation to interact with the π-orbitals of the C8H12 group and thus, will have
its energy altered. However, the energy shift observed in experiment is not reproduced, so we
cannot analyse this shift further. Nevertheless, the large increase in intensity can be explained.
We can see that in table 7.1 the primary intensity contribution is now the electric-dipole. This
can be attributed to the almost complete loss of symmetry upon coordination of the C8H12, which
means that any restriction to whether or not the dipole transition will occur is relaxed and thus,
we observe dipole intensity.

We also considered a bimetallic substituted iron carbonyl system, Fe2(CO)4Cp2, where five of the
CO groups in Fe2(CO)9 have been replaced with two cyclopentadiene groups (one on each iron
atom). Figure 7.7 shows the experimental and calculated spectra of Fe2(CO)9 and Fe2(CO)4Cp2.
In the experimental spectrum of Fe2(CO)4Cp2 we observe two distinguishable pre-edge features,
labelled A and B. Compared to the spectrum of Fe2(CO)9 no significant shift in the peak posi-
tions is observed, however there is a significant increase in the intensity of both features. Now we
consider the calculated spectra. BP86 only provides one peak with a very large intensity, whereas
B3LYP provides three discernible peaks, which correlates more accurately with the experimental
observations. Therefore, we will only discuss the B3LYP spectra in the following. In the B3LYP
spectra we will only consider the first two calculated peaks, labelled A and B in figure 7.7. To
this end, the isosurface plots of the unoccupied orbitals that are probed with a significant in-
tensity contribution are plotted in figure 7.6 along with the corresponding isolated iron orbital
contribution.

Peak A is comprised of four transitions, two from each core orbital. The first two transitions are
to orbitals which have a dxz/yz-like appearance and an anti-bonding σ* of the metal-metal bond,
along with anti-bonding characteristics for one of the iron atoms with the accompanying Cp ring
π-orbitals. The final two transitions are once again to dxz/yz-like orbitals with an anti-bonding
character with the Cp ring π-orbitals, except rotated by approximately 90 degrees around the Cp
ring. Peak B of Fe2(CO)4Cp2 also contains four main transitions, two from each core orbital. The
first two transitions are to orbitals with significant anti-bonding characteristics between a dxz/yz-
like orbital and the Cp ring π-orbitals on one of the irons. However unlike in peak A, the other
iron atom has a dz2-like appearance. The final two transitions have a dx2−y2/xy-like appearance for
the iron orbitals and from figure 7.6 appear to be anti-bonding orbitals for the metal-CO bonds.

The large increase in the intensity of both pre-edge peaks in relation to the pre-edge peaks of
Fe2(CO)9 can be explained through the decrease in the symmetry of the complex. The same as
was observed for Fe(CO)3C8H12. We can see in table 7.1 that the intensity is mainly due to dipole
contributions. However, as the Fe2(CO)9 peaks were also primarily composed of dipole transitions,
only the loss of symmetry and thus, relaxation of the selection rules for the dipole mechanism can
account for the increase in the intensity.

In conclusion, we can see that substitution of carbonyl groups for a group containing π-orbitals
reduces the symmetry and thus, the intensity of the spectra increases. Also the inclusion of
π-orbital containing substituents lowers the energy of the dxz/yz-like orbitals so that now these
comprise the peaks present in the pre-edge spectra, not the dz2-like orbital combinations which
dominated the pure iron carbonyl complex spectra.
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7.4. Conclusions

Figure 7.7.: X-ray absorption spectra for Fe2(CO)9 and Fe2(CO)4Cp2. Top: experimental
spectra; middle: BP86 calculated spectra; bottom: B3LYP calculated spectra.
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7. X-ray Absorption Spectroscopy of Iron Carbonyl Complexes

7.4. Conclusions

To investigate the capability of HERFD-XANES spectroscopy to determine new information about
the electronic structure of iron carbonyl complexes, we performed calculations on three pure and
two substituted iron carbonyl complexes using both the BP86 and B3LYP density functionals.
These were then compared to experiment, in order to assign the experimental spectra and to
extract information on the electronic structure.

First, we found that the iron carbonyl spectra are better reproduced by B3LYP than by BP86
where BP86 provides transitions too close in energy. This underestimation of energy differences
between transitions was also observed in the ferrocene systems discussed in chapter 6. However,
while B3LYP does provide a better result in comparison, the results are still not quantitative,
with relative energies between complexes very different from experiment and relative intensities
not being reproduced. Therefore, the calculated spectra can only be used to obtain a qualitative
understanding. This calls for the development of more accurate wave function-based methods that
are applicable to multi-nuclear transition metal carbonyls.

For the pure iron carbonyl complexes, we have seen that the first pre-edge peak in the mono-,
bi- and trimetallic iron carbonyl complexes is comprised of dz2-like orbitals. In Fe2(CO)9 and in
Fe3(CO)12, these are the anti-bonding σ∗-orbitals of the metal-metal bonds. Also we observe a
general trend of the energy changes for the lowest energy peak (peak A) on going from a mono-
to a bi- and then a trimetallic system, even if the relative energies between the complexes are
not correctly predicted by B3LYP. Nevertheless, the trend in the intensities of peak A between
complexes in the experimental spectra is reproduced.

Peak B has a slightly more complicated explanation. However, though no correspondence was
seen between Fe(CO)5 and Fe2(CO)9, a clear correspondence in the orbitals of the transitions was
seen between Fe2(CO)9 and Fe3(CO)12 for this peak and it can be assigned to mixed iron d-orbital
contributions with σ/σ∗ interactions.

Finally, we looked at the effect of substitution of carbonyl ligands for ligands containing a π-
system on the X-ray absorption spectra and thus, the electronic structure of the iron carbonyl
complexes. For this two structures were used, Fe(CO)3C8 H12 and Fe2(CO)4Cp2. Comparable with
experimental results, in the calculations we saw an increase in the intensity of the spectra and we
were able to attribute this to the lowering of the symmetry of the complex. This loss of symmetry
then leads to an increase in dipole intensity, which provides the increased overall spectral intensity.
Moreover, the inclusion of the π-system lowered the energy of specific d-orbitals, namely dxz/yz-
like orbitals, which then became the main components of the pre-edge transitions. Therefore, no
direct correspondence could be made between peak A of either complex with their reference pure
iron carbonyl complex. However, the transition in Fe(CO)3C8H12 can be related to a transition
in peak B of Fe(CO)5 and a correspondence between the lower intensity transitions of peak B in
the spectra of Fe2(CO)4Cp2 could be made with the main transitions in peak B of Fe2(CO)9.

To conclude, we have shown that HERFD-XANES can provide information on the electronic
structure of iron carbonyl complexes, and that a clear correspondence can be seen on going from
mono- to bi- and trimetallic systems for the major transitions in the peak. Moreover, we have
shown that substitution of carbonyl groups with a π-orbital containing substituent will lower the
energy of dxz/yz orbitals. This capability of tuning the electronic structure of the iron atom has
implications for optimising the effect of catalysts through altering their electronic structure.
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7.5. Computational Methodology

Geometry optimisations of the molecular complexes were performed with the ADF2012 program
package [122, 204, 270] using the density functional BP86 [130, 151] with the TZP basis set. The
initial structures for a)-c) were obtained from reference [6]. For all considered compounds, the
ground state is the low-spin state (S = 0).

The XANES spectra for the iron carbonyl complexes were then calculated using time-dependent
density functional theory (TD-DFT). To selectively target core excitations, the TD-DFT calcula-
tions were restricted to excitations originating from the Fe 1s orbitals [123,124]. Such restricted-
channel TD-DFT calculations have been applied extensively for K-edge XAS spectra of transition
metal complexes [107,116,186,245,271,272]. The effect of the exchange–correlation functional was
judged by performing the calculations with both the non-hybrid functional BP86 and the hybrid
functional B3LYP [158, 159]. The QZ4P Slater-type orbital basis set was applied in all TD-DFT
calculations. We must note that all calculations are run without the inclusion of symmetry and
that this results in localised core orbitals for the bi- and trimetallic systems.

The BP86 spectra were shifted by 180.62 eV and the B3LYP spectra by 150.08 eV for comparison
to experiment. These shifts are chosen such that the energy of the first peak in the calculated
spectrum of ironpentacarbonyl agrees with the first peak in the experimental spectrum. While
these shifts are rather large, they do not affect the relative position of the peaks. For Fe K-edge
XAS, it has been demonstrated previously that despite the large absolute errors, the selective TD-
DFT approach used here can provide relative excitation energies and intensities with an accuracy
that allows for a direct comparison with experiment [184]. The intensity of the spectra with
complexes containing more than one core excitation centre in the calculation of the spectra were
divided by the number of iron atoms included in the calculation to normalise the spectra.

It has previously been argued [107], that for molecules with equivalent core orbitals it is necessary
to localise the core hole before performing the TD-DFT calculation. However in the calculations
presented here no delocalisation of the core orbitals was observed and therefore, localisation of
the core orbitals was not required.

All orbital isosurface plots in figures 7.2, 7.4 and 7.6 were prepared with Molekel [273] and use an
isosurface value of +/-0.025 atomic units. With the B3LYP hybrid functionals, some excitations
are combinations of several orbital transitions. Figure 7.4 and 7.6 shows the corresponding linear
combination of unoccupied orbitals. This is possible due to the excitations originating from the
same localised Fe 1s core orbitals.
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8. Summary

In this thesis we have discussed both theoretical developments for the calculation of X-ray spectra
and application of quantum-chemical methods to the calculation and interpretation of experi-
mental X-ray spectra. In the applications we focused on the use of high-resolution measurements
which provided more detail in the experimental spectra.

The first project considered the calculation of the HERFD-XANES spectra of a test set of ferrocene
derivatives (Chapter 6), where the structure within the first coordination shell is unchanged and
only in the second coordination shell are modifications introduced. The HERFD-XANES spectra
showed marked differences in the pre-edge region for some of the ferrocene derivatives. This
demonstrated that HERFD-XANES can probe changes in the electronic structure induced by
structural changes beyond the first coordination shell. We used TD-DFT to simulate and interpret
the pre-edge features within the HERFD-XANES spectra. Using the combination of TD-DFT and
HERFD-XANES we were able to identify that introduction of a π-orbital containing substituent
to the cyclopentadienyl ring introduced a second peak within the spectra. However, TD-DFT did
not provide a quantitative interpretation of the spectra, only a qualitative interpretation of the
HERFD-XANES spectra. Nevertheless, this was sufficient to demonstrate that HERFD-XANES
provides a sensitive probe of electronic structure changes in transition metal complexes.

The second project was the derivation and implementation of an origin-independent formulation
for the calculation of oscillator strengths (Chapter 3). This arose due to the observation of the
origin-dependence of the oscillator strengths in our first project (where only the electric-dipole,
magnetic-dipole and electric-quadrupole terms are included). We found that one must consistently
include all terms of the same order in the wave vector to achieve an origin-independent formulation
and in this case, two additional terms are required (electric-dipole–electric-octupole and electric-
dipole–magnetic-quadrupole).

Within the third project we considered the calculation of the V2C-XES spectra of the ferrocene
derivatives test set (Chapter 6). We explored the sensitivity of the V2C-XES region in comparison
to the HERFD-XANES experiments to changes in the electronic structure. We calculated the
V2C-XES using a simple ∆DFT methodology and thus, interpreted the experimental spectra.
We observed that the V2C-XES spectra are not sensitive to electronic structure changes because
any changes that occur are hidden by the intense dipole-allowed transitions in the spectra. We
also note that the simple ∆DFT methodology employed provides calculated spectra in excellent
agreement with experiment.

Finally, we considered the HERFD-XANES spectra of five iron carbonyl complexes and whether
they could provide new insights into the electronic structure of the iron carbonyl complexes
(Chapter 7). Once more we find that HERFD-XANES provides more detailed information on
the electronic structure of transition metal complexes and the changes that occur upon changes in
the ligand field than conventional XANES measurements. With the use of TD-DFT in conjunction
with the experimental spectra we were able to determine correlations between transitions observed
in the mono-, bi- and trimetallic species and interpret the changes in the electronic structure that
occur upon substitution of carbonyl ligands. However, as before we can only obtain a qualitative
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interpretation with TD-DFT.

To conclude, within this thesis we have shown that HERFD-XANES provides a sensitive probe to
electronic structure changes in transition metal complexes and that with the use of TD-DFT we
can obtain a qualitative interpretation. We also considered V2C-XES spectra and their calculation
using ∆DFT, and though V2C-XES provides useful information it is not as sensitive as HERFD-
XANES to the underlying electronic structure. However, the methods utilised in the calculation of
the X-ray spectra only provide a qualitative interpretation. More work must be done on developing
theoretical methods to attain a quantitative interpretation of the experimental spectra.

Therefore, future research on this subject has several areas which must be explored. The first is
to test more exchange–correlation functionals. However, to know if the results from a functional
provide an improved calculated spectrum we need a benchmark calculation, e.g. one using a
higher-level wave function method, such as approximate coupled cluster methods. The second
area is to include environment effects into the calculation. All calculations presented within this
work only consider the isolated molecule, whereas all experimental measurements for X-ray are
either in the solid state or solution. The final area is to consider more sophisticated approaches to
the calculation of X-ray spectra, in particular for X-ray emission (not only considering a higher-
level wave function method). Here, we have simulated both absorption and emission separately
and as one-photon problems. However, X-ray emission is actually a process which should be
described as a two-photon process (using quadratic response), whilst absorption must occur first
before the emission process can occur. This would open up possibilities for a quantum-chemical
simulation of other X-ray spectroscopic methods as well, specifically RIXS.
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9. Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Entwicklung theoretischer Methoden für die Berech-
nung von Röntgenspektren, sowie die Anwendung quantenmechanischer Methoden zur Interpreta-
tion experimenteller Röntgenspektren. In den Anwendungen standen hochauflösende Messungen
im Vordergrund, die mehr Details in den experimentellen Spektren aufweisen.

Gegenstand des ersten Projekts war die Untersuchung des Einflusses von Liganden bei höch-
energieaufgeliste fluoreszenz-detektiate Röntgen-Nahkanten-Absorptions-Spektroskopie (HERFD-
XANES-Spektroskopie) anhand eines Testsatzes aus Ferrocenderivaten (Kapitel 6), bei welchen
die Struktur innerhalb der ersten Koordinationssphäre unverändert bleibt und nur die zweite
Koordinationssphäre geändert wird. Die HERFD-XANES-Spektren zeigen Unterschiede kurz vor
der Kante für manche der Ferrocenderivate. Dies zeigt, dass HERFD-XANES Strukturänderungen
außerhalb der ersten Koordinationssphäre detektieren kann. Für die Berechnung der HERFD-
XANES-Spektren wurde Zeitabhängige Dichtefunctionaltheorie (TD-DFT) verwendet. Durch die
Verbindung von TD-DFT und HERFD-XANES konnte gezeigt werden, dass die Einführung von
Liganden mit π-Orbital am Cyclopentadienyl-Ring einen zweiten Peak im Spektrum erzeugen. Die
Verwendung von TD-DFT erlaubt keine quantitative, sondern nur eine qualitative Interpretation.
Dies reicht jedoch aus um zu zeigen, dass mit HERFD-XANES eine genaue Untersuchung von
Änderungen in der elektronischen Struktur von Übergangsmetallkomplexen möglich ist.

Das zweite Projekt beschäftigte sich mit der Herleitung und Implementierung einer vom Ursprung
unabhängigen Formulierung für die Berechnung von Oszillatorenstärken (Kapitel 3). Dieses Pro-
jekt ergab sich aus dem ersten Projekt, bei dem vom Ursprung abhängigen Oszillatorenstärken
beobachtet wurden. Ursache hierfür ist die Tatsache, dass nicht alle Terme für die Berechnung der
Oszillatorenstärke berücksichtigt werden. Wir konnten zeigen, dass jeweils alle Terme gleicher Ord-
nung berechnet werden müssen, damit die Formulierung vom Ursprung unabhängig wird. Konkret
müssen daher die beiden zusätzlichen Terme aus elektrischem Dipol-elektrischem Oktupol sowie
elektrischem Dipol-magnetischem Quadrupol berücksichtigt werden.

Das dritte Projekt beschäftigte sich mit der Berechnung von Valenz-zu-Rempf Röntgenemissions-
Spektroskopie (V2C-XES-Spektren) des Ferrocen-Testsatzes (Kapitel 6). Hierbei wurde die Em-
pfindlichkeit der V2C-Region mit den HERFD-XANES-Untersuchungen bezüglich Änderungen
in der elektronischen Struktur verglichen. Die V2C-XES-Berechnungen erfolgten mithilfe eines
einfachen ∆DFT-Ansatzes. Wir fanden, dass die V2C-XES-Spektren nicht empfindlich bezüglich
Änderungen der elektronischen Struktur sind, da die Änderungen hinter den intensiven, dipol-
erlaubten Übergängen versteckt bleiben. Es muss betont werden, dass es sich bei der Fehlerquelle
nicht um den ∆DFT-Ansatz handelt, da mit diesem gute Übereinstimmungen mit experimentellen
Daten erhalten wird.

Das vierte Projekt beschäftigte sich mit HERFD-XANES-Spektren von fünf Eisen-Carbonyl-
Komplexen und mit der Frage, ob diese tiefere Einblicke in die elektronische Struktur von Eisen-
Carbonyl-Komplexen generell liefern können (Kapitel 7). Auch in diesem Projekt konnten wir zei-
gen, dass HERFD-XANES sehr detaillierte Informationen für die elektronische Struktur von Über-
gangsmetallkomplexen bereitstellt, während konventionelle XANES-Spektren nicht ausreichend
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Informationen liefern. Durch die Verwendung von TD-DFT in Verbindung mit den experimentel-
len Spektren konnten wir eine Korrelation zwischen Übergängen in mono-, bi- sowie trimetallischen
Verbindungen nachweisen und die Änderungen bei Substituierung der Carbonyl-Liganden inter-
pretieren. Durch die Verwendung von TD-DFT kann auch hier keine quantitative, sondern nur
eine qualitative Auswertung erfolgen.

Im Rahmen der vorliegenden Arbeit konnte gezeigt werden, dass HERFD-XANES eine sehr em-
pfindliche Methode zur Untersuchung von Übergangsmetallkomplexen darstellt und mit TD-DFT
ein qualitatives Verständnis erreicht werden kann. Im Gegensatz dazu stehen V2C-XES-Spektren,
die hilfreiche Informationen bereitstellen können, jedoch nicht so empfindlich wie HERFD-XANES
in Bezug auf Änderungen in der elektronischen Struktur sind. Da die verwendeten Ansätze nur
eine qualitative Interpretation erlauben, stellt die Entwicklung von Methoden, die eine quantitat-
ive Interpretation ermöglichen, einen wichtigen Beitrag dar.

Zukünftige Arbeiten müssen sich daher mit unterschiedlichen Bereichen beschäftigen. Zunächst
sollten mehrere DFT-Funktionale getestet werden. Um abschätzen zu können, ob ein neues Funk-
tional tatsächlich ein verbessertes Spektrum liefert, muss mit genauen, wellenfunktionsbasier-
ten Methoden, zum Beispiel genäherten Coupled-Cluster-Methoden, verglichen werden. Darüber
hinaus wurden alle vorgestellten Berechnungen für isolierte Moleküle durchgeführt. Daher sollten
Umgebungseffekte in den Rechnungen berücksichtigt werden, da die experimentellen Arbeiten in
Lösungen oder am Festkörper durchgeführt wurden. Letztendlich müssen verbesserte Ansätze für
die Berechnung von Röntgenspektren entwickelt werden, insbesondere nicht die Verwendung von
linearer, sondern quadratischer Antworttheorie, da es sich bei Röntgenemission um einen Zwei-
Photonen-Prozess handelt. Eine solche Weiterentwicklung eröffnet darüber hinaus Möglichkeiten
für quantenchemische Berechnungen weiterer Röntgenspektren, insbesondere RIXS.
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A. List of Abbreviations

Ac Acetyl

ADF Amsterdam Density Functional

ANO Atomic Natural Orbital

AO Atomic Orbital

BO Born-Oppenheimer

CAS-SCF Complete Active Space Self Consistent Field

CC Coupled Cluster

CD Circular Dichroism

CI Configuration Interaction

CIS Configuration Interaction Singles

CIS(D) Configuration Interaction Singles with Perturbative Doubles

Cp Cyclopentadienyl

CPP Complex Polarisation Propagator

DCM Double Crystal Monochromator

DFT Density Functional Theory

DKH Douglas-Kroll-Hess

EXAFS Extended X-ray Absorption Fine Structure

FWHM Full Width Half Maximum

GGA Generalised Gradient Approximation

GTO Gaussian Type Orbital

HERFD High Energy Resolution Fluorescence Detection

HF Hartree-Fock

HOMO Highest Occupied Molecular Orbitals

irrep Irreducible Representation

LDA Local Density Approximation

LUMO Lowest Unoccupied Molecular Orbital

MCD Magnetic Circular Dichroism
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A. List of Abbreviations

MO Molecular Orbital

NCD Natural Circular Dichroism

Ph Phenyl

RHF Restricted Hartree-Fock

RI Resolution of Identity

RIXS Resonant Inelastic X-ray Scattering

SOMO Singly Occupied Molecular Orbital

STEX Static Exchange

STO Slater Type Orbital

TD-CC Time-Dependent Coupled Cluster

TD-DFT Time-Dependent Density Functional Theory

TD-HF Time-Dependent Hartree-Fock

TM Turbomole

UHF Unrestricted Hartree-Fock

UKS Unrestricted Kohn-Sham

UV-Vis Ultra-Violet–Visible Spectroscopy

V2C Valence-to-Core

XANES Xray Absorption Near Edge Structure

XAS X-ray Absorption Spectroscopy

XES X-ray Emission Spectroscopy

XMCD X-ray Magnetic Circular Dichroism

XNCD X-ray Natural Circular Dichroism

ZORA Zeroth Order Regular Approximation
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(2012).

[107] S. DeBeer George, T. Petrenko, and F. Neese, Inorg. Chim. Acta 361, 965 (2008).

[108] A. J. Atkins, C. R. Jacob, and M. Bauer, Chem.-Eur. J. 18, 7021 (2012).

[109] L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press,
Cambridge, 2nd edition, 2004.

[110] E. B. Graham and R. E. Raab, Proc. R. Soc. Lond. A 430, 593 (1990).

[111] R. McWeeny, Spins in Chemistry, Dover Publications, Mineola, N.Y., 2004.

[112] C. R. Jacob and M. Reiher, Int. J. Quantum Chem. 112, 3661 (2012).

[113] E. B. Graham and R. E. Raab, Proc. Roy. Soc. Ser. A 456, 1193 (2000).

[114] N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009).

[115] N. A. Besley and F. A. Asmuruf, Phys. Chem. Chem. Phys. 12, 12024 (2010).

[116] M. Roemelt, M. A. Beckwith, C. Duboc, M.-N. Collomb, F. Neese, and S. DeBeer, In-
org. Chem. 51, 680 (2012).

[117] F. Neese, Coordin. Chem. Rev. 253, 526 (2009).

[118] S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends, Comput. Phys. Commun. 118,
119 (1999).

139



BIBLIOGRAPHY

[119] J. Autschbach and T. Ziegler, J. Chem. Phys. 116, 891 (2002).

[120] J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. 116,
6930 (2002).

[121] Theoretical Chemistry, Vrije Universiteit Amsterdam, Adf, Amsterdam Density Functional
program, URL: http://www.scm.com.

[122] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen,
J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001).

[123] M. Stener, G. Fronzoni, and M. de Simone, Chem. Phys. Lett. 373, 115 (2003).

[124] K. Ray, S. DeBeerGeorge, E. Solomon, K. Wieghardt, and F. Neese, Chem.-Eur. J. 13, 2783
(2007).

[125] T. Tsuchimochi, M. Kobayashi, A. Nakata, Y. Imamura, and H. Nakai, J. Comput. Chem.
29, 2311 (2008).

[126] N. Schmidt, R. Fink, and W. Hieringer, J. Chem. Phys. 133, 054703 (2010).

[127] A. Kovyrshin and J. Neugebauer, J. Chem. Phys. 133, 174114 (2010).

[128] W. Liang, S. A. Fischer, M. J. Frisch, and X. Li, J. Chem. Theory Comput. 7, 3540 (2011).

[129] K. Lopata, B. E. Van Kuiken, M. Khalil, and N. Govind, J. Chem. Theory Comput. 8, 3284
(2012).

[130] A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[131] J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

[132] E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 99, 4597 (1993).

[133] E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. 101, 9783 (1994).

[134] E. van Lenthe, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 105, 6505 (1996).

[135] E. van Lenthe, A. Ehlers, and E.-J. Baerends, J. Chem. Phys. 110, 8943 (1999).

[136] S. DeBeer George, P. Brant, and E. I. Solomon, J. Am. Chem. Soc. 127, 667 (2005).

[137] N. Lee, T. Petrenko, U. Bergmann, F. Neese, and S. DeBeer, J. Am. Chem. Soc. 132, 9715
(2010).

[138] R. Merlin, P. Natl. Acad. Sci. USA 106, 1693 (2009), PMID: 19188589.

[139] F. Jensen, Introduction to Computational Chemistry: Second Edition, Wiley-Blackwell, 2nd
edition edition, 2006.

[140] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure Theory, John Wiley
& Sons, Chichester, 2000.

[141] P.-O. Widmark, editor, European Summerschool in Quantum Chemistry 2011, Lund Uni-
versity, 2011.

[142] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[143] M. Levy, P. Natl. Acad. Sci. USA 76, 6062 (1979), PMID: 16592733.

[144] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

140



BIBLIOGRAPHY

[145] J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).

[146] J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).

[147] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

[148] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

[149] T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003).

[150] T. W. Keal and D. J. Tozer, J. Chem. Phys. 121, 5654 (2004).

[151] J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

[152] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[153] C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).

[154] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401
(2003).

[155] V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129
(2003).

[156] Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

[157] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

[158] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[159] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

[160] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

[161] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

[162] Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).

[163] S. Grimme, J. Chem. Phys. 124, 034108 (2006).

[164] N. A. Besley, Chem. Phys. Lett. 390, 124 (2004).

[165] M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).

[166] M. Head-Gordon, D. Maurice, and M. Oumi, Chem. Phys. Lett. 246, 114 (1995).

[167] F. A. Asmuruf and N. A. Besley, Chem. Phys. Lett. 463, 267 (2008).
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[206] R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett. 162, 165 (1989).

[207] J. G. Hill, Int. J. Quantum Chem. 113, 21 (2013).
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