

 Karlsruhe Reports in Informatics 2014,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Using a Context Knowledge Base for the

Verification of Vehicle Test Processes

Richard Mrasek, Jutta Mülle, and Klemens Böhm

 2014

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Using a Context Knowledge Base for the
Verification of Vehicle Test Processes

Richard Mrasek1, Jutta Mülle1, and Klemens Böhm1

Karlsruhe Institute of Technology
Institute for Program Structures and Data Organization

76131 Karlsruhe, Germany
{richard.mrasek|jutta.muelle|klemens.boehm}@kit.edu

Abstract. Diagnostic frameworks in the vehicle production domain are
important to guarantee the quality of the outcomes of the manufacturing
process. Recently, the test processes in these frameworks are becoming
more complex due to the use of a large amount of components and elec-
tronic devices in modern vehicles. To achieve high quality test processes
we take a model checking approach to check that the test processes com-
ply with relevant requirements. We have analyzed the requirements for
vehicle test processes and the relevant context information for verifica-
tion. We use this information to create a context knowledge base, con-
taining information about the components and their relationships and
constraints of our application domain, i.e. vehicle test processes. Our goal
is to automatically verify test processes, specified in different notations,
with a model checking approach. The requirement rules are dynamically
generated at verification time from the context knowledge base. The ap-
proach is evaluated with actual test processes of our industrial partner.

1 Introduction

1.1 Motivation

Diagnostic frameworks are workflow management systems (WfMS) that plan
and coordinate the testing and end of line manufacturing of, e.g., vehicles. The
dagnostic frameworks execute test processes and invoke manual or automatic
activities that either test a component or put the component into service, e.g.,
configuration of the software [28]. The process designers need to model for each
new vehicle project a series of process schemata. Until now only minor focus has
been set on these industrial test processes as an application field for workflow
technique and theory. With this work we want to show that business process
verification techniques can be used to increase the quality of test processes in an
automotive domain. Each process schema needs to fulfill a set of requirement
rules, similar to compliance rules ([15], [17]). For example, a requirement rule
states that before task X another task Y has to occur. If one of these rules is
violated an unwanted behaviour occurs and can lead to a deadlock or a compo-
nent not tested properly. To this end, we will verify test processes against a set

of requirement rules. To apply an automatic verification technique,in particular
model checking, we need to specify the requirements in a formal language like
a temporal logic [22]. The specification in a temporal logic is error-prone and
not feasible for domain experts untrained to formal specification. To this end,
graphical modeling languages (Compliance Rule Graphs [20], BPMN-Q [3]), and
specification-pattern based approaches, e.g., [10] and [24] has been proposed. In
our application domain a large amount of short and relatively similar rules exist.
Only few different types of requirements are relevant, but the configuration of
the requirement rules depends on the context of the testing process. For example,
some requirements only hold for a specific vehicle project or only when the test
process is executed at a particular test station in the factory. We want to present
an approach that is capable of verifying a testing process against domain-specific
requirement rules.

1.2 Challenges

Most of the requirement rules are context-sensitive, i.e., only apply under specific
context situations of the test process. The knowledge about the requirements
is distributed in different departments and by different employees. A central
documentation is missing and most requirements merely exist in the mind of
individual process modelers. The relevant context information is missing a cen-
tral documentation. The information is described either as XML files, in textual
form, or exists in several databases.

Additionally, we are dealing with a highly heterogeneous environment. The
factories are located in several countries on four continents. The process models
use different notations to describe the process schema depending on the factory
and the development framework used.

1.3 Contributions

With the help of our industrial partner we have analyzed the requirements for
vehicle test processes and the relevant context information for verification. We
use this information to create a context knowledge base, containing information
about the components and their relationships and constraints of our application
domain, i.e. automotive test processes. Our goal is to automatically verify test
processes, specified in different notations, with a model checking approach. The
requirement rules are dynamically generated at verification time from the context
knowledge base. The approach is evaluated with actual test processes of our
industrial partner.

2 Scenario

After manufacture the test process has to check for each vehicle produced if all of
its Electronic Control Units (ECU) function correctly, and has to put the ECUs
into service. To check an ECU, a number of test routines, in the following also

called tasks, need to be executed. The tasks can either be automatic or require
a factory worker (manual task). Hundreds of tasks need to be executed for each
vehicle. For example, for the vehicle series A6/A7 more than 2700 tasks are
specified and need to be tested.
Test processes plan and schedule the test routines. Each routine communicates
with exactly one component of the vehicle. The components are arranged in a
Master-Slave relationship, see Figure 1. The test processes are executed at a
specific station in the factory called process place. For each vehicle project and
each process place at least one test process exists.

Example 1. A vehicle of the A6 series is tested at process place VP2. To this end,
the test process (A6 VP2) is executed by the WfMS. The WfMS invokes tasks
that the ECU automatically executes or the task is presented to a worker. One
of these tasks, namely task x, checks if the injection system works properly. For
this purpose test routine x communicates with the ECU of the engine MOT .

3 Notations

In this section we want to introduce the notations used in this paper, i.e. Petri
Nets as formal model of a workflow used for verification, and CTL as language to
specify requirements to be verified. Due to lack of space we limit the definitions to
a minimum. For a more detailed introduction see one of the standard literature,
e.g., [11] and [8].

A Petri net is a directed bipartite graph with two types of nodes called places
and transitions. It is not allowed to connect two nodes of the same type.

Definition 1 (Petri net). A Petri net is a triple (P, T, F)

– P is a set of places
– T is a set of transitions (P ∪ T = ∅)
– F ⊆ (P × T) ∪ (T × P) is a set of arcs

We say that p ∈ P is an input place of t ∈ T if (p, t) ∈ F and an output
place if (t, p) ∈ F . •t denotes the set of input places of t and t• the set of output
places. A mapping M : P → N0 maps each p ∈ P to a positive number of tokens.
We call this distribution of tokens over places (M) a state of the Petri net. A
transition t ∈ T is activated in a state M if ∀p ∈ •t : M(p) ≥ 1. A transition
t ∈ T in M can fire, leading to a new state M ′ with:

M ′(p) =


M(p)− 1 if p ∈ •t
M(p) + 1 if p ∈ t•
M(p) else

Task ECU Master
* 1 * 1

Fig. 1. Relationship between Routine, ECU and Master

We call the set of states reachable from a start state M0 of a Petri net its state
space.

CTL (Computation Tree Logic) is a temporal logic to specify requirements.
Automatic model checking algorithms exist to efficiently verify CTL require-
ments [7]. The formal syntax of CTL is given as follows:

Definition 2 (Computation Tree Logic:). Every atomic proposition p ∈ AP
is a CTL formula. If φ1 and φ2 are CTL formulas⇒ ¬φ1, φ1∨φ2, φ1∧φ2, AXφ1,
EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1 U φ2] are CTL formulas.

AP is in our application domain an equation of tokens in one or more places.
The operators always occur in pairs: A path operator (A or E) and a temporal
operator (X,G,F or U). A means that the formula holds in all succeeding execution
paths, E means that at least one execution path exists,
X means that the formula holds in the next state, G means that formula holds in
all succeeding states, F means that the formula holds in at least one succeeding
state, and [φ1 U φ2] means that φ1 holds until φ2 is reached.

4 Requirements

Our overall goal is to establish a verification tool for vehicle test sequences which
is easy to use, easily adaptable to new vehicle variants and adequate for flexible
test process execution. To this end, we have hold a series of interviews with the
engineers of our industrial partner developing the diagnostic programs and the
test schedules.

Using this information we have extracted different types of requirements of
a test process, see Section 4.1 and the knowledge about the context influencing
the test process and its requirements.

First, we have analyze which kinds of requirements a testing process needs
to fulfill. Next we build a knowledge base that contains the information about
our application field which is required for verification. In Section 4.2 we describe
the requirements on the knowledge base.

4.1 Requirements of a Testing Process

R1 Syntactical Correctness
The test process should be syntactically correct and comply to the naming con-
ventions for tasks of the company.

R2 Installed ECUs
The ECUs are only installed at specific process place. When a test task tries to
communicate with a ECU that is not installed at a specific process place, either
a direct error occurs or even worse, an error occurs indirectly in subsequent tasks.

R3 Connections of the ECUs

Each ECU opens a connection to one of two transport protocols (UDS or KWP-
2000) supported. Each transport protocol can handle 10 open connections in
maximum at the same time. In total 14 connections in maximum can be open
at the same time.

R4 Task Conditions
Some tasks depend on the occurrence of other tasks in the process, e.g., they
can not be run in parallel or need to occur in a certain sequential order.
Table 1 contains the different types of task conditions that can occur.

Table 1. Task and ECU Conditions

Req. Name Description

R4.1 Sequential before If a task A is in the testing process a task B has
to occur before A.

R4.2 Optional Sequen-
tial before

If both, A and B, occur in the testing process,
B has to occur before A. B can completely be
missing

R4.3 Sequential after The occurrence of task A leads to the occurrence
of task B.

R4.4 Non-Parallel Tasks A and B are not allowed to occur in parallel.

R5.1 Access Each ECU c can only be accessed/tested by one
task at the same time.

R5.2 Master Each ECU c should never be accessed in parallel
with its master ECU cm or any other component
c2 with the same master ECU.

R5.3 Non-Parallel Some ECU c1 should never be tested in parallel
with an ECU c2.

R5.4 Close Connection The connection to an ECU c needs to be closed
by a certain task Ac.

R5 Component Conditions
Additionally to the conditions on the tasks, other conditions regarding the ECUs
exist, see Table 1. These conditions hold for each task that communicates with
the respective ECU.

4.2 Requirements of the Knowledge Base

R6 Context-Dependent
The knowledge base should contain contextual information of the test processes.
First, the requirements of the test processes depend on the vehicle, i.e. on the
components built in the vehicle, which have to be tested. The components are
determined by the vehicle type and the concrete configuration of the produced
vehicle. Second, the requirements of the test processes can be different depen-
dent on the specific process place the component is tested. Third, there exist

dependencies between the test tasks, see Subsection 4.1.

R7 User-Friendly Specification of the Requirements
Test engineers should be supported to specify the requirements in a comfortable
way. To this end, the structure of the knowledge base should support the view
of these experts and not require sophisticated experience with formal modelling.

R8 Use of Existing Documents and Information
Defining the requirements should use as much information available from pre-
vious steps of the production life cycle. Information about the vehicle and its
components, which have to be tested, arises during the production design and
production planning. This should be used for filling the knowledge base.

5 Knowledge Base

This section describes the generation and construction of the knowledge base.
The knowledge base has the goal to allow to generate automatically require-
ments for checking testing sequences. In order to manage knowlege about test-
ing sequences in automotive industry we have developed a knowledge base in
cooperation with the testing experts of our partner company, see [23]. Figure 2
shows the entity-relationship model of the structure of our knowledge base.

The knowledge is organized in three submodels of context information about
text sequences. One submodel contains the test sequence objects and depen-
dencies between the test sequences. Another submodel comprises the vehicle
components with variants described as options of the component configurations.
A further submodel describes the factories and locations where the testing se-
quences are executed, so-called process places. Dependencies between the sub-
models relate these contexts and complete the overall structure of the knowledge
base.

In the industrial setting envisioned here, it is necessary to verify hundreds
of requirements per process, in short time. In our setting, the requirements are
dynamically generated from this knowledge base at the time of verification, see
Section 6. In particular, the requirements describe sequential and parallel or-
dering constraints that certain tasks need to fulfill. In cooperation with our in-
dustrial partner, we use real industrial processes that specify the sequential and
parallel ordering of testing tasks of an automobile right after its assembly. These
processes are the ones that a German automobile manufacturer does carry out
in its factories worldwide. The processes are described in OTX notation (Open
Test sequence eXchange) [13], a standard to specify testing workflows.

The industrial partner has provided us with 50 processes. They contain be-
tween 6 and 813 elementary tasks, arranged in up to 14 parallel lanes. The
processes are executed at different test stations, so-called process places, in the
factories. For each place, each vehicle series and each factory, process designers
need to specify a process by hand. A new vehicle variation again requires a mod-

Factories

Assembly Lines

Process Place

Ressources

ECU

Vehicle Project

Vehicle Options

Tasks

Temporal Rule

Factories and LocationsVehicle ComponentTesting Sequences

1

n

1

n

1

n

nn

n

n

n

1

n

1n

n

n

n

n

n

n

n n

Fig. 2. Simplified Database Schema of the Knowledge Base [23]

ification of the process. The processes for the same place are quite similar in size
and complexity. We have collected the requirements which the testing processes
have to fulfill by interviews and have used the results to construct the respective
knowledge base.

Example 1 illustrates the outcome of such an interview.

Example 2. For an automobile, different testing tasks need to be executed. Each
task uses physical components of the testing environment. A task has an iden-
tifier that describes the purpose of the task. Two tasks on the same component
must not be executed in parallel. Before certain tasks can be executed, another
task has to validate if the component is ready and usable. When a process stops
using a component, it must close the connection to it before the process can
terminate.

6 Verification

The only input parameter of our verification program is the path to the test
process file. We accept files in the notation of SIDIS Pro, Prodis.Automation and
OTX. If a file is not in OTX notation we transform it to OTX in a preprocessing
step. Next, the context information regarding the process place and the vehicle
project are extracted from the test process.

Our program consists of two modules: First, the Data-Reconciliation and,
second, the Model-Checking. Figure 3 shows the architecture of the verification
system.

OTX

Transformation

SIDIS Pro
Prodis.

Automation

Data
Reconciliation

Verification

Petri Net CTL

MC AlgorithmResult

Knowledge
Base

Petri Net CTL

MC Algorithm

Model Checking

Fig. 3. Architecture of the verification process

6.1 Data Reconciliation

First, the syntactical correctness of the OTX process is tested. To this end, our
program validates the test process against the XML schema of OTX. Addition-
ally, we check each task if it complies to the naming conventions of the company
(R1).

Then, we check if the task, components and their resources are available
in the context of the test process. To this end, we query the Knowledge Base
and evaluate if the elements of this context match the elements used in the test
process.

6.2 Model Checking

To check the complex requirements we need to consider the actual execution
traces of the test process, i.e., we follow a model checking approach. To enable
the verification of a OTX process by model checking techniques we first need
to transform the process into a formal structure, in our case Petri Nets. To
transform the OTX process we transform each element of the process into a
subnet and combine the nets. Our approach is similar to the transformation of
a BPEL process to a Petri Net of [12] and [25].

Figure 4 shows the pattern for a task, i.e. a test routine. The state In marks
that task A is activated and ready for execution. If a task execution starts the
transition start fires and a token is created in the places run-A, C-A and P-A.
The actual execution of the task is represented by run-A. C-A is the place of
the component with which A communicates, and P-A is the bus protocol that is
used by A (either UDS or KWP2000 [28]). At the runtime of the verification
the program queries the knowledge base to get the protocol which is used by
task A.

A model checking algorithm requires the representation of the requirements in
a formal language, e.g., in a temporal logic like CTL. Defining requirements with

In start run-A

Component C-A

Protocol P-A

complete Out

Fig. 4. The Pattern for a Task A

CTL is error-prone and complicated for end-users. Therefore, [10] has introduced
a set of property specification patterns to allow the specification on a higher,
more user-friendly level. We map the entries of the knowledge base to these
property specification patterns and use the transformation from [10] to transform
our requirements into CTL formulas.

Requirement R3 corresponds to the absence pattern, with global scope, see
Table 2. The event arises if the protocol states contain more tokens than their
capacity allows. The capacity is dynamically read from the knowledge base.
UDS and KWP2000 determine the number of tokens in the related places of
the Petri Net.

The requirement R4 concerns the occurrences of a task, i.e. the run-States
in the Petri Net. First, we query the knowledge base about the requirements of
the tasks and align this list with the tasks in the test process. Then, we map
each entry to a pattern according to its type, see Table 2.

For requirement R5 we collect a list of all related requirements in the test
process. We use the knowledge base to get the master component C − M of
component C and the non-parallel relationships. For each component C a spe-
cific task close-C closes the connection to the component C. Table 2 shows the
mapping of the component conditions to CTL.

7 Evaluation

For our verification we first show that we fulfill the functional requirements,
see Subsection 7.1. Thus our tool is able to verify industrial test processes in a
feasible time. However, this is not sufficient because the tool could only find false
positives and do not fit the needs of the process developers in practice. To this

Table 2. Pattern and CTL Formula for each Requirement Type

Req. Pattern CTL

R3.1 Absence, Globally AG(¬(UDS > 10))

R3.2 Absence, Globally AG(¬(KWP2000 > 10))

R3.3 Absence, Globally AG(¬(UDS + KWP2000) > 14))

R4.1 B precedence A,
Globally

A [¬run-A > 0 W run-B > 0]

R4.2 Absence A, Before
B

A [(¬run-A > 0 ∨
AG (¬run-B > 0)) W run-B > 0]

R4.3 A response to B,
Globally

AG (run-A > 0→ AF (run-B > 0))

R4.4 Absence, Globally AG (¬(run-A > 0 ∧ run-B > 0))

R5.1 Absence, Globally AG (¬(C > 1))

R5.2 Absence, Globally AG (¬(C > 0 ∧C-M > 0))

R5.2 Absence, Globally AG (¬(C > 0 ∧C-2 > 0))

R5.3 C response to
close-C, Globally

AG (C > 0→ AF (close-C > 0))

Requirements
0

100

200

300

Duration
0

10

20

Tasks
0

200

400

600

ECUs
0

50

100

Parallel Tasks
0

2

4

6

·104

Fig. 5. Characteristics of the Evaluated Processes

end, we perform an empirical evaluation to analyze how our tool is used by the
current engineers developing the diagnostic test schedules. This report gives an
overview about the empirical evaluation planned, see Subsection 7.2. The results
of the evaluation will be published in a coming publication.

7.1 Functional Evaluation

We have evaluated our system with 40 testing processes used by our industrial
partner in practice. The processes describe the testing of three different vehicle
series (AU57x, AU48x, AU64x) corresponding to the model series A4, A5, A6,
A7 and A8. The processes are executed at 14 different testing stations in the
factory. Figure 5 denotes the number of analyzed requirements for the processes,
the combined duration of the verification, the number of tasks/ECUs and the
number of parallel tasks of the 40 processes. The line shows the minimum and

maximum, the box spans from the first quartile (Q25) to the third quartile (Q75),
the red line marks the median. Figure 5 shows that the box for the parallel tasks
and the duration is getting smaller leading to a position near to bottom. This
is due to the fact that the number of parallel tasks is growing exponentially
with the number of tasks. The number or parallel tasks yields an increase in the
overall duration. The duration for 75% of the cases is lower than 3.6s and even
for the worst case is shorter than 30s on a standard PC.

The results show that the majority of the processes do not comply with the
naming conventions (R1). Violations concerning the ECUs installed (R1) and
connections to the ECUs (R3) do not occur in our processes analyzed. In total,
55 violations of task dependencies (R4) and component dependencies (R5) have
been detected by verifying the 40 processes.

7.2 Empirical Evaluation

To evaluate our presented approach we developed a questionnaire for our indus-
trial partner from the auto mobile industry. With the questionnaire we want to
test three major attributes of our developed system: process quality, generality
and Usability.

Process Quality: Have the system be successful in increasing the quality of the
testing processes. To this end we ask for the time reduction of the development
task, the number of false positive thus the number of reported violation in the
process that are actual not problematic, the number of false negative thus the
number of undetected rule violation in the process and we ask for the overall
quality improvement of our tool.

Generality: Can the System be used in a different context within the company.
For example, is the system general enough to be used in another factory possibly
in a different country. We also ask if the specification form is general enough to
cover all requirements.

Usability: Can the system be used in an intuitive way. Is the help of a technical
person necessary for using the system?

For the usability we will use the Standard System Usability Test (SUS) [5].
SUS is a 10 item test thatis scored on a 5-point scale of strength of agreement
or disagreement. The SUS has the advantage that it is technology-agnostic thus
it can be used in different application domains. Due to the wide usage of the
SUS-Test, a meta-test and guidelines exist to interpret the results [5].

Participants As participants in our study we will involve domain experts, i.e.
employees of the test process department of our partner company.

8 Related Work

8.1 Compliance Checking

Recently, compliance checking of business processes has become an active re-
search field [16]. Companies need to comply with standards and contractual
obligations. Besides the semantic differences (usually compliance rules focus on
regulation while ours capture technical aspects) our requirements of test pro-
cesses can be seen similar to compliance rules. Some important research topics
arise with the question of compliance and requirement checking. This research
topics include the user-friendly specification of the requirement rules, the al-
location of a requirement rule to a process schema, the management of the
requirements and the verification of a process with such rules.

8.2 Specification

The direct specification in a temporal logic formalism like CTL is error-prone
and not usable in practice for a user without experience in formal specification.
To this end, different approaches have been developed to support the users in
the specification task. Most business processes are modeled in a graph-based
modeling language like BPMN, YAWL [2] or Petri Nets [1]. Thus many ap-
proaches base on a graphical graph-based approach for specification. [6] extends
the BPMN notation with new elements that directly represent LTL operators.
BPMN-Q [3] extends BPMN with new edge types that represent sequential or-
dering between tasks. Compliance Rule Graphs [20] allow a visual specification
in a graph-based formal language. In our application field only a relatively small
amount of requirement types exist. The current instances depend on the rela-
tionship between the requirement types and contextual information of the test
processes, which are checked. Thus a graphic modeling is not applicable. Another
approach to support the users with the specification is the use of specification
patterns. [10] introduces the property patterns for specifying concurrent systems.
[24] extends the pattern system to PROPEL (PROPerty ELucidation) to cover
different variations of the property patterns. [9] uses a question tree to allow
specifying PROPEL patterns. In our application field most of the requirements
are dependent on the relationships between the test tasks and the environmen-
tal objects of test processes as well as on the typical requirement types of our
application domain (which are contained in the knowledge base). The modeling
of each individual requirement (even in a more user-friendly graphic notation or
in a pattern based approach) would be time-consuming and impractical for most
of the requirements for a test process.

8.3 Allocation and Management

[26] builds an ontology for the domain of compliance management. In contrast
to our approach, our knowledge base is dedicated to vehicles, test environments
for vehicles and specific compliance rules for this appliaction area. The actual

requirements used for verification are generated from the relationships of the ap-
plication domain and do not focus on domain knowledge in general. Managing
compliance rules includes the task of allocating the rules to the business pro-
cesses. [14] clusters the compliance rules to the business processes using potential
relevant activities. We dynamically generate only those requirements relevant for
the test process, using the knowledge base, directly before verification.

8.4 Verification

We want to check if a business process bp complies with the rules given. [21] uses
an approach that checks if the event log L (a set of execution traces each related
to a particular case) complies with the temporal rules. In our case, there exist
violations of rules, that are not related to an event during the process execution.
Therefore, it is not part of the log and, thus, analyzing the logs is not able of
detecting it. For example, it is not possible to recognize a violation of a non-
parallel rule in the log of a process. Therefore, we use a model checking approach
for verifying the processes. Most high-level process languages lack the direct con-
struction of the state space required for a model-checking approach. To this end,
a transformation to a formal language like Petri Nets is required. [19] gives an
overview of transformations from BPMN, YAWL and WS-BPEL to Petri Nets.
Our approach is similar, mainly to the approach of [12]. Beside the detection of
compliance violation in existing processes (compliance by detection) it is possible
to already use compliance rules during modeling of the process (compliance by
design) [18]. This can be achieved by semi-automatic synthesizing approaches.
[27] uses requirements in the notation of PROPOLS (an extended version of the
property specification patterns [10]) to semi-automatically generate a WS-BPEL
process schema. [4] uses compliance rules in the notation of LTL to synthesize
process templates. Our knowledge base can be used to allow a compliance by
design approach and is not limited to compliance by detection.

9 Conclusions

To verify a test process we need to specify the requirements the process must
hold. Our approach consists of a knowledge base with information about the
requirements and contextual information relevant for the requirements as well as
of a set of types of requirements which are typical for vehicle test processes. This
allows to generate concrete requirement rules tailored to a certain test process.
Following these steps we have achieved, that users can specify the context of
test processes in a user-friendly way filling the knowledge base. The structure
of the knowledge base represents objects of the environment of test processes,
i.e. components of the vehicle, test routines of the components, required and
disposable resources for testing, the organisation of the physical test lines in the
factory, and the relationships between these objects.

We successfully have developed a contextual knowledge base that allows to
store information about the diagnostic sequences and their environment. Also,

we have developed an automatic transformation to generate on the fly formal
specifications of the requirements tailored to a certain test process model from
the knowledge base. Our tool developed is able of verifying the test processes of
these requirements.

Moreover, we provide evidence that workflow verification methods like Petri
Net model checking can be used to increase the quality of industrial testing
processes. Our work clearly shows that beyond classic application domains new
ones can benefit from the business process community and their research activity.
Further work has been done on improving the verification step to allow applying
it to real-world test processes. In future work, we will use the knowledge base as
source for requirements to adapt and generate new test processes and variants.

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems and Computers 08(01), 21–66 (1998)

2. van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

3. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic 5240, 326–341 (2008)

4. Awad, A., Goré, R., Hou, Z., Thomson, J., Weidlich, M.: An iterative approach to
synthesize business process templates from compliance rules. Information Systems
37(8), 714–736 (2012)

5. Bangor, A., Kortum, P.T., Miller, J.T.: An Empirical Evaluation of the System
Usability Scale. International Journal of Human-Computer Interaction 24(6), 574–
594 (2008)

6. Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The Role of Visual Tools in a
Web Application Design and Verification Framework: A Visual Notation for LTL
Formulae. In: Lowe, D., Gaedke, M. (eds.) Web Engineering, Lecture Notes in
Computer Science, vol. 3579, pp. 557–568. Springer Berlin Heidelberg (2005)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (Apr 1986)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT press (1999)
9. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and

accessible property specifications. In: Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering. pp. 208–218. SIG-
SOFT ’06/FSE-14, ACM, New York, NY, USA (2006)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Second Workshop on Formal Methods in Software Prac-
tice. pp. 7–15. ACM (1998)

11. van Hee, K.M., et al.: Workflow management: models, methods, and systems. The
MIT press (2004)

12. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: Aalst, W.,
Benatallah, B., Casati, F., Curbera, F. (eds.) Business Process Management, Lec-
ture Notes in Computer Science, vol. 3649, pp. 220–235. Springer Berlin Heidelberg
(2005)

13. ISO, Geneva, Switzerland: Road vehicles – Open Test sequence eXchange format
(OTX). ISO 13209 (2012)

14. Kabicher, S., Rinderle-Ma, S., Ly, L.T.: Activity-Oriented Clustering Techniques
in Large Process and Compliance Rule Repositories (2011)

15. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-
aware compliance checking of business process models. In: Conceptual Modeling–
ER 2010, pp. 332–346. Springer (2010)

16. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On Enabling Compli-
ance of Cross-organizational Business Processes. In: Int’l Conference on Business
Process Management 2013. Lecture Notes in Computer Science (LNCS), Springer,
Germany (August 2013)

17. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2), 335–361 (2007)

18. Lohmann, N.: Compliance by design for artifact-centric business processes. Infor-
mation Systems 38(4), 606–618 (2013)

19. Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business
processes–a survey. Transactions on Petri Nets and Other Models of Concurrency
II pp. 46–63 (2009)

20. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Goeser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: SeaFlows Toolset - Compliance Verification Made Easy for Process-
aware Information Systems. In: Proc. CAiSE’10 Forum - Information Systems Evo-
lution. pp. 76–91. No. 72 in LNBIP, Springer (2010)

21. Ramezani Taghiabadi, E., Fahland, D., Dongen, B.F., Aalst, W.M.: Diagnostic
Information for Compliance Checking of Temporal Compliance Requirements. In:
Salinesi, C., Norrie, M., Pastor, O. (eds.) Advanced Information Systems Engineer-
ing, Lecture Notes in Computer Science, vol. 7908, pp. 304–320. Springer Berlin
Heidelberg (2013)

22. Schlingloff, H., Martens, A., Schmidt, K.: Modeling and model checking web ser-
vices. Electronic Notes in Theoretical Computer Science 126, 3–26 (2005)

23. Schneider, T.: Specification of testing workflows for vehicles and validation of man-
ually created testing processes (in German). Master’s thesis, University of Karl-
sruhe (May 2012)

24. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: an approach
supporting property elucidation. In: Proceedings of the 24th International Confer-
ence on Software Engineering. pp. 11–21. ICSE ’02, ACM, New York, NY, USA
(2002)

25. Stahl, C.: A Petri net semantics for BPEL, Technical Report 188. Humbold-
Universität zu Berlin (2005)

26. Syed Abdullah, N., Sadiq, S., Indulska, M.: A Compliance Management Ontol-
ogy: Developing Shared Understanding through Models. In: Ralyté, J., Franch,
X., Brinkkemper, S., Wrycza, S. (eds.) Advanced Information Systems Engineer-
ing, Lecture Notes in Computer Science, vol. 7328, pp. 429–444. Springer Berlin
Heidelberg (2012)

27. Yu, J., Han, Y.B., Han, J., Jin, Y., Falcarin, P., Morisio, M.: Synthesizing service
composition models on the basis of temporal business rules. Journal of computer
science and technology 23(6), 885–894 (2008)

28. Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik–Protokolle,
Standards und Softwarearchitektur. Vieweg+ Teubner 4 (2010)

	2014,2_Titelbl.pdf
	TechReport-2014-02.pdf
	Using a Context Knowledge Base for the Verification of Vehicle Test Processes

