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"The poetry of the earth is never dead."
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Abstract
Along plate boundaries, major earthquakes cause repeatedly high damage, and sadly,

human losses. Moreover, recent major earthquakes illustrate the social and economical
importance of seismic hazard analyses and risk mitigation, which require, among other
things, detailed information on the underlying structure of the earth crust. The analysis of
seismic observations leads to knowledge about faults and stresses within the earth’s crust,
however, only the determination of earthquake source mechanisms can reveal information
within the seismogenic zone of the crust, limiting what is known about the deep crust.

Recent observations suggest that non-volcanic tremor occurs in the transition zone be-
tween the seismogenic zone, and the creeping asthenosphere below. Thus, tremor has the
potential to shed light on dynamic regions in the earth crust which have been difficult to
study before. The emergent phase arrivals, low amplitude waveforms, and variable event
durations make detection and location of tremor a non-trivial task. Due to the difficul-
ties associated with an automated detection of tremor and the need for precise source
locations, the present thesis focuses on the detection and localization of tremor.

I employ a new method to identify tremor in large datasets using a semi-automated
technique. The method first reduces the data volume with an envelope cross-correlation
technique, followed by a Self-Organizing Map (SOM) algorithm to identify and classify
event types. The method does not rely on a priori information such as event templates
and is capable of identifying tremor bursts of variable duration, assuming some variation
in tremor amplitude within the length of the noise window (420 sec). Moreover, the
sensitivity of the method can be adjusted by a set of normalization factors. I apply the
semi-automated detection algorithm to a newly acquired data set of waveforms from a
temporary deployment of 13 seismometers near Cholame, California from May 2010 to
July 2011. In the 13-month time period the method detects 2606 tremor events with a
cumulative signal duration of nearly 55 hours and in the first three weeks tested detection
accuracy of 79.5%.

Furthermore, I present a new tremor localization method based on time-reversal imag-
ing techniques. The modified TRI method searches for phase coherence over a short time
period instead of the maximum amplitude of a superpositioned wavefield. The advan-
tage of the modified TRI method is the independence of amplitude and the inclusion of
temporal information, making the method more robust. Moreover, in theory the modified
TRI method does not rely on any a priori information such as phase arrival times given a
high enough signal to noise ratio. A synthetic test shows that the modified TRI method is
capable of locating a double-couple source and the successful localization of a recorded
M 1.4 earthquake indicates a feasible application to real data. However, rebroadcasted
S-phase pulses reveal a shift of more than one wavelength at the determined source posi-
tion, evidencing inaccuracies of the velocity model and causing large uncertainties in the
frequency band of 1 - 5 Hz. The uncertainties can be decreased significantly by tapering
around the S-phase pulse with a 3 s long cosine taper in the seismogram. In order to locate
tremor, I apply the modified TRI method with the tapering technique to a 34 individual
LFE events within tremor episodes. To evaluate the calculated source positions I use the
stacked LFE family locations by Shelly and Hardebeck (2010) for reference, indicating
reasonable individual LFE source locations.
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1. Introduction

Instead of a static entity, the earth is a dynamic system that has been studied for a long
time. Mantel convection inside the earth drives plate motion in the earth crust.At the edge
of the moving crustal plates, friction induces stress and strain within the crust, which is
often released by earthquakes. Along plate boundaries, especially along subduction zones,
major earthquakes cause repeatedly high damage, and sadly, human losses. Furthermore,
the increasing earth population and the growth of densely populated areas due to ur-
banization raise seismic risks worldwide, especially close to major fault systems. Some
examples of seismic high risk areas include the densely populated area around Cascadia
subduction zone, the north Anatolian fault near Istanbul, and the subduction zone be-
neath Japan. Recent major earthquakes such as the M9.0 Tohoku earthquake in Japan in
2011 and the M7.0 earthquake in Haiti illustrate the social and economical importance of
seismic hazard analyses and risk mitigation.

A profound knowledge about the dynamics of an earthquake and detailed information
of the underlying structure of the earth crust plays an important role in seismic hazard
analyses. With the application of different geophysical methods, geodetic observations,
and analyses of in-situ rock samples, scientists have gathered valuable information about
the earth structure and developed many dynamic earthquake rupture models. In particu-
lar, the analysis of seismic observations lead to knowledge about faults and stresses within
the earth crust. However, the determination of earthquake source mechanisms reveal only
information within the seismogenic zone of the crust and thus less is known about the
deep crust.

The seismogenic zone defines the area in the earth crust, which is capable of initiating
earthquakes by brittle failure. Recent observations suggest that a previously unknown
phenomena, non-volcanic termor, occur in the transition zone between the seismogenic
zone, and the creeping asthenosphere. The recently discovered examples of non-volcanic
tremor in subduction zones and deep strike-slip settings occur therefore likely below the
seismogenic zone and thus have the potential to shed light on dynamic regions in the earth
crust. Tremor is more difficult to study than earthquakes are, because of the low signal-to-
noise ratio (SNR). By determining the physical conditions such as the depth, temperature,
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1. Introduction

mineralogy and metamorphic state in which tremor occurs it may be possible to extract
information about the conditions that are essential for tremor and thereby learn about the
source process (Rubinstein et al., 2010). Therefore, "from a hazards perspective, near-
real time tremor detection and location may serve in forecasting the threat of megathrust
earthquakes (Rogers and Dragert, 2003) by inferring the temporal and spatial extent of
the possible loading of the seismogenic zone" (Wech and Creager, 2008). Due to the
difficulties associated with an automated detection of tremor and the need for precise
source locations, the present thesis focuses on the detection and localization of tremor.

The thesis is structured as follows: chapter 1 gives a brief introduction to tremor and
the tectonic setting and geology at the San Andreas Fault. Next, I present a new method
to identify tremor in large datasets using a semi-automated technique based on neural
networks and cross-correlation. The technique and the results are presented in chapter 2,
which is based on the publication of Horstmann et al. (2013). In the second half of the
thesis, I introduce a modified time reversal imaging technique to locate tremor in chapter
3. Finally, I summarize the main results and give a outlook on future work in chapter 4.

1.1. Tectonic tremor

In contrast to volcanic tremor that has been observed at volcanoes for decades, tremor
in subduction zones and strike slip setting is a newly discovered phenomena. In order to
distinguish both, such tremor is named as tectonic tremor or non-volcanic tremor (NVT).
However, the source of tremor at volcanoes result from fluid transport through cracks and
crevices. Non-volcanic tremor is not though to directly result from fluid flow through
cracks, because the harmonic signature in the frequency band observed in volcanic tremor
is not present in non-volcanic tremor. Thus, non-volcanic tremor is generated by a dif-
ferent source mechanism, which is supported by other evidence (Rubinstein et al., 2010).
For the sake of simplicity, I refer in the following to non-volcanic tremor simply as tremor.

Since Obara (2002) first observed tremor along the southwest Japan subduction zone,
tremor has been detected in many other subduction zones, such as Cascadia (Rogers and
Dragert, 2003; McCausland et al., 2005), Costa Rica (Brown et al., 2009; Walter et al.,
2011), Alaska (Peterson and Christensen, 2009) and Mexico (Payero et al., 2008). Many
studies have also shown that tremor occurs outside of subduction zones; for example,
Nadeau and Dolenc (2005) detected tremor along the San Andreas fault, a transform
plate boundary, and Peng and Chao (2008) observed tectonic tremor in Central Range in
Taiwan, an arc-continental type collision environment.

The seismic signal of tremor is different than from regular earthquakes, as it is a long
-duration, low-amplitude signal with slowly emergent phase arrivals. The lack of distinct
body wave arrival phases and easily identifiable features makes it difficult to distinguish
it from cultural noise and is only recognized by the common shape of envelopes at widely
spaced stations (Brown et al., 2008; Rubinstein et al., 2010). Tremor also differs in the
spectral content from regular earthquakes. Compared to local earthquakes tremor has
much lower corner frequencies and thus it has often its main energy concentrated around
the 2-8 Hz band (Obara, 2002; Schwartz and Rokosky, 2007; Beroza and Ide, 2011; Zhang
et al., 2011). Furthermore, the duration of the tremor signal is highly variable. Active

2
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Figure 1.1.: Example of a tremor episode with a good signal-to-noise ratio filtered between
2-8 Hz. The figure shows the north component of 16 recorded seismograms
of the KABBA deployment in Cholame. The upper panel shows the spectro-
gram of the raw seismogram of station B072 in the frequency band of 0.1-25
Hz. Please note the main energy of the tremor signal concentrated in the
frequency band of 2-8 Hz.

periods of tremor lasted for a week or more, while individual tremor episodes ranges from
short bursts of a few seconds up to several tens of minutes or hours (Obara, 2002; Ryberg
et al., 2010; Beroza and Ide, 2011). An example of a tremor episode with a good SNR
recorded partially by the KABBA deployment in Cholame shows figure 1.1.

Tremor can occur spontaneously, in which case it is denoted as “ambient“ tremor, or it
can be “triggered“, by small stress changes. Triggered tremor can be excited by surface
waves of large distant earthquakes or other static or dynamic stress changes such as tidal
forces (Ghosh et al., 2009; Gomberg et al., 2008; Peng et al., 2008, 2009; Wang et al.,
2013).

Despite the missing distinct body wave phase arrival, tremor is believed to be dominated
by shear waves as the propagation velocity is similar to S- waves, which is supported by
observations of higher amplitudes on horizontal components and polarization analysis of
tremor revealing tremor consisting largely of shear waves (La Rocca et al., 2005; Wech
and Creager, 2007; Payero et al., 2008; Miyazawa and Brodsky, 2008).

3



1. Introduction

A remarkable discovery was the observation of low frequency events (LFE) within tremor
episodes by Shelly et al. (2006). LFE’s are small, slow earthquakes with short duration pre-
viously identified by Japan Meteorological Agency (JMA) (Katsumata and Kamaya, 2003;
Ide et al., 2007b; Brown et al., 2008). LFE’s occur in event families with similar wave-
forms, indicating that members of an individual family are located in close proximity to
each other. Shelly et al. (2007) searched for repeating LFE’s in Japan with a systematic
cross-correlation-based approach and showed that a significant portion of the tremor seis-
mograms could be explained by multiple occurrences of LFE’s. Moreover, the good SNR
of the master templates allowed for picking of S-phase and the application of a combi-
nation of cross-correlation and double-difference technique to locate event families more
precisely than previous studies (Shelly et al., 2006). However, in regions of low ampli-
tude tremor, such as the San Andreas Fault, the master templates have a much lower SNR.
Therefore, Shelly and Hardebeck (2010) stacked up to 400 LFE’s to obtain P- and S-phase
arrivals to locate individual LFE families.

Another interesting observation is the link of tremor to slow slip events (Rogers and
Dragert, 2003; Obara et al., 2004). Geodetic observations showed slow slip events, which
were accompanied by active tremor episodes and have a semi-regular recurrence intervals
of 13-16 months for example in Cascadia, which lead to the term episodic tremor and
slip (ETS) for the phenomena (Miller et al., 2002). Furthermore, studies have shown
that both tremor and slow slip events are related to shear slip on the plate boundary (Ide
et al., 2007a). Slow slip events rupture very slowly and take place over many hours/days,
and do not radiate observable seismic energy. Thus, Shelly (2010) suggested that tremor
could provide a method to indicate slip that is too small to be detectable geodetically.
In fact Smith and Gomberg (2009) find that a fairly large (~M5) slow slip event below
the seismogenic zone on the San Andreas Fault (SAF) near Parkfield would be undetected
geodetically.

1.2. Tectonic setting and geology

The SAF defines the plate boundary between the oceanic Pacific plate and the continen-
tal North American plate at a length of approximately 1300 km through California, USA.
The SAF features a extended fault system with a complex structure and reaches from the
Salton Sea in Imperial county in the south to Cape Mendocino in Humboldt county in the
north. From the south the SAF system strikes about N.60◦W and bends sharply to the
east just northwest of Los Angeles to a striking of N.35◦-40◦W, which is referred to as the
Big Bend reach of the fault (Wallace, 1990). The SAF and major faults in California are
illustrated in figure 1.2a).

The relative local movement of the oceanic Pacific plate and the continental North Amer-
ican plate is approximately 53mm per year in the southern Gulf of Mexico, from which the
SAF accommodates as much as 35 mm per year (DeMets and Dixon, 1999; Loveless and
Meade, 2011). Due to the northwest-southeast plate motion direction the SAF is a trans-
form fault with mainly right-lateral strike-slip motion, although individual fault branches
feature left-lateral strike-slip motion (e.g. Garlock fault), thrust faulting (e.g. San Fer-
nando fault zone), and even normal faulting is present in some places (Wallace, 1990).
Based on the seismicity and other properties, such as the slip rate or the probability of
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Figure 1.2.: Geometry of the San Andreas Fault. Figure a) shows the SAF system and major
faults in California. Image is taken and modified from Schulz and Wallace
(1997). Figure b) was taken from McBride and Brown (1986) and shows
seismic reflections across the SAF at the Parkfield segment and their possible
interpretation.

major earthquakes, the SAF is divided into different segments (Steinbrugge et al., 1960;
Aviles et al., 1987). Reoccurring ruptures of the segments in the past have caused major
earthquakes as for example the 1812 MW = 7.5 Wrightwood and 1857 Mw = 7.9 Fort
Tejon earthquakes (Sieh et al., 1989). Furthermore, paleoseismic studies by Weldon et al.
(2004) revealed 14 earthquakes with an average slip of 3.2 m along the central-southern
SAF within the past 1500 years with inhomogeneous spatial distribution and recurrance
intervals.

The thesis focuses on the region of the SAF around Cholame near Parkfield, which has
become well-known by the Parkfield Earthquake Prediction Experiment (Bakun and Lindh,
1985; Kanamori, 2003): moderate-sized earthquakes with M≈6 occurred at the Parkfield
segment in 1922, 1934, and 1966 and further studies revealed additional earthquakes in
1857, 1881 and 1901 in the same area. The fairly regular time interval of approximately
22 years and similarities in the pattern of foreshocks in 1934 and 1966 led to the prediction
of a moderate-sized earthquake in the area occurring around 1988, which finally happened
16 years later in June, 2004. Despite the failure of the prediction, many interesting results
on seismicity, velocity structures, wave propagation characteristics, and fault slip patterns
have been obtained from the data of the experiment and today the area around Parkfield
is well instrumented.

Parkfield is situated in the 35 km long Cholame valley on a relatively straight section of
the SAF with right-lateral strike-slip motion. The Parkfield segment marks the the tran-
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sition zone between two segments of the fault and is accompanied by seismic activity
(Unsworth et al., 1997). On the one hand, the creeping central segment of the SAF to the
north which releases the stress by a constant slip rate of 25-30mm per year at the surface
and by a longterm slip rate of 31-35mm per year at depth of the fault (Titus et al., 2005;
Rolandone et al., 2008; Tong et al., 2013). Uniquely, the strike-slip motion occurs nearly
aseismically as fault creep over a distance of about 170 km. On the other hand, the portion
south of Parkfield is locked, and little fault movement or seismicity since the Fort Tejon
earthquake in 1857 have been observed at the locked Fort Tejon earthquake segment to
the south (Harris and Archuleta, 1988).

The basement bedrock beneath Parkfield is very different on each side of the fault. The
Pacific plate in the southwest is composed mainly of oceanic crust. Its basement rock is
Salinian granite, which is overlain by Quaternary and Tertiary sediments (Unsworth et al.,
1997). On the other side of the SAF to the northeast is the Francisean basement rock, a
heterogeneous assemblage that consists largely of dismembered sequences of graywacke,
shale, and lesser amounts of mafic volcanic rocks, thin-bedded chert, and rare limestone.
The sedimentary and volcanic Francisean rocks were formed in a marine environment and
are probably Late Jurassic and Cretaceous in age (Wallace, 1990). A detailed characteri-
zation of minerals has been carried out by Solum et al. (2006) on in-situ samples directly
from the fault zone at 3 km depths which were obtained at the San Andreas Fault Observa-
tory at Depth (SAFOD). SAFOD is part of the EarthScope initiative (www.earthscope.org)
and a borehole was drilled into the hypocentral zone of repeating M≈2 earthquakes on
the SAF (Hickman et al., 2004).

Deep seismic reflection analysis by McBride and Brown (1986) revealed a 5km wide
and 10 km deep flower structure of the SAF at the surface, shown in figure 1.2b). Fur-
thermore, the crustal thickness confined by the Moho discontinuity is determined for the
Parkfield area between a depth of 25 km and 30 km (McBride and Brown, 1986). The
absence of coherent reflectors suggests a zone of heavily fractured material in the fault
zone (Unsworth et al., 1997). Moreover, a direct evidence for a fractured low velocity
zones provides fault-zone guided waves within a wedge of low seismic velocity material
along the fault (Li et al., 1990; Lewis and Ben-Zion, 2010).

The different geological units at both sides of the fault and the damaged rock in the
fault zone differ in their properties, which impacts to the seismic wave propagation veloc-
ities. Moreover, anisotropy in the the crust of the Parkfield segment has been observed,
influencing the wave propagation as well (Cochran et al., 2006; Liu et al., 2008).

The SAF is nearly vertical strike-slip fault and both, shallow seismicity as well as tremor
below the seismogenic zone of the fault, accommodate shear displacement. In the present
work, I account for the velocity contrasts across the fault by using a 3D velocity model of
Thurber et al. (2006), particular at the localization of tremor in chapter 3.
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2. Tremor detection

2.1. Introduction to tremor detection

The emergent phase arrivals and low amplitudes make automated tremor detection a
difficult task. In attempts to overcome difficulties associated with detection, a variety of
detection methods have been developed, many of which are based on one of two tech-
niques: 1) a cross-correlation of envelope waveforms (Obara, 2002) or 2) searching for
low-frequency earthquakes (LFEs) (Katsumata and Kamaya, 2003). Additional techniques
which do not rely on cross-correlation of envelopes or templates include those used by
Brudzinski and Allen (2007), Ghosh et al. (2009) and Walter et al. (2011).

Three of the most common methods include a method by Brudzinski and Allen (2007)
based on an increase of the mean amplitude values, a method by Wech and Creager (2008)
analyzing network coherence with envelope cross-correlation, and a method by Shelly
et al. (2007) which uses a template matching, cross-correlation technique. Brudzinski and
Allen (2007) use the mean amplitude values of filtered data as an indicator for tremor
activity. They calculate a time series of the mean value of continuous waveform envelopes
on an hourly basis. The time series is restricted to data recorded during the night hours
in order to avoid high amplitude cultural noise. They neglect time windows with a high
ratio between the maximum and mean values in order to reduce the influence of large
noise transients. After applying a moving average and normalizing the time series, peaks
in the time series are identified as tremor. The method is computationally efficient and
can therefore be performed rapidly on large datasets without requiring a dense network
of stations. However, the disadvantage of their method is that the amplitude of tremor
activity must be significantly higher than the recorded noise, and must increase the mean
amplitude envelope over a timespan of one hour in order to be detected.

In contrast to the single station method by Brudzinski and Allen (2007), Wech and
Creager (2008) introduced a method analyzing network coherence through epicentral re-
liability and spatial repeatability. They first calculate envelope functions for 5-minute time
windows that are low-pass filtered between 1 and 8 Hz. Next, they use a grid search over
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2. Tremor detection

all possible source locations based on S-wave lag times calculated from the correlation val-
ues of the envelope functions. Source locations with estimated epicentral error estimates
exceeding 5 km are rejected. Tremor activity is then detected when at least 2 locations
occur within a 0.1 x 0.1 degree area per day. The advantage of the method is its ability to
detect and locate tremor at the same time, and that it provides robust results even when
an individual station has a poor signal-to-noise ratio. A limitation of the method is that it
is restricted to detection of extended tremor episodes.

Shelly et al. (2007) introduced a different detection method using LFEs in combination
with a template matching, cross-correlation technique. The set of LFEs from a number
of different event families function as master templates in the detection algorithm which
then identifies tremor events in continuous waveform data. The advantages of the method
are that it is very precise in event time determination and it can be applied using individ-
ual stations. The shortcoming of the method is the required a priori knowledge of the
master event templates which restricts detection to LFEs which correlate highly with the
defined templates. Brown et al. (2008) modified the LFE template technique to overcome
the disadvantage of requiring a priori knowledge of the master templates by eliminating
the requirement that master templates be predefined. They remove the need for using
predefined master templates by applying a running auto-correlation technique to identify
the event families and average the repeating events to create master templates. However,
the method is computationally expensive and thus difficult to apply to large datasets.

Here I introduce a new method using a neural network algorithm based on frequency
content and motion products of tremor waveforms. The fundamental advance of the
method is that it does not rely on master templates and is not based on any assumptions
about a minimum signal length. Many tremor detection methods employ a minimum time
window length, limiting event detection to those tremor episodes with duration exceeding
the minimum window length (e.g., Wech and Creager (2008)). Removing such restrictions
on duration permits the detection of a wider range of event types than present methods,
thereby increasing the potential for discovering tremor at different depths within the fault
zone. Detecting tremor at shallow depths, particularly in subduction zones, could have
potential implications for seismic and tsunami hazard; therefore, methods capable of de-
tecting a wider variety of events have the potential to advance our understanding the role
of tremor in fault slip. By detecting a larger variety of events, I increase the observa-
tions available for analysis and interpretation, and advance our understanding of tremor
sources. Here, I describe a new method for tremor detection, while the detailed analysis
of the tremor will be the subject of forthcoming work. The method detects tremor in an
automated fashion, however, calibration of the method is required for use with a specific
data set, so I refer to the method as "semi-automated."

The chapter is structured as follows: I first present the data set and methods description
in sections 2.2 and 2.3, followed by a method performance evaluation in section 2.4 using
a three-week test data set. Finally, I apply the method to over one year of continuously
recorded waveform data to identify all tremor events within that time span.
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Figure 2.1.: Station distribution used in my analysis, including the temporary KABBA ar-
ray, the permanent HRSN stations, and station PKD. Three sites contain a
mini-array of three stations each, spaced approximately 150 m apart.

2.2. Dataset

The data set consists of continuous broadband recordings of 13 STS-2 seismometers
from the KArlsruhe BroadBand Array (KABBA) at a sampling rate of 200 sps. The surface
stations were deployed along the Cholame segment of the San Andreas fault at seven sites
within a 20 km by 25 km area centered on the town of Cholame (figure 2.1). The highest
amplitude tremor identified in previous studies occurs directly beneath Cholame (Nadeau
and Guilhem, 2009; Shelly and Hardebeck, 2010; Ryberg et al., 2010). In contrast to the
area around Parkfield, the area near Cholame lacks dense station coverage. The KABBA
array was designed to supplement the seismic network south of Berkeley High Resolution
Station Network (HRSN) to better record the vigorous tremor occurring here. The station
installation at three of the seven sites consist of mini-arrays of three stations each spaced
approximately 150 meters apart. The stations recorded continuously from May 2010 to
July 2011. In addition to the KABBA broadband surface stations, I use seven borehole
stations from the HRSN and one additional broadband surface station from the Berkeley
Digital Seismic Network (BDSN). The HRSN stations GHIB, EADB, FROB, VCAB, VARB,
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Figure 2.2.: Data availability for the complete data set. White space denotes missing data
or data with malfunctioning components, while time periods marked in gray
are used in the analysis.

MMNB and JCSB are located north of the KABBA broadband array near Parkfield and
record at a sampling rate of 250 sps. Station PKD of the BDSN network is also located north
of the KABBA array, and records continuous data at a sampling rate of 100 sps. Additional
data exists from Northern California Seismic Network (NCSN) surface stations however,
I do not use them, as selected stations provide us with the widest range of azimuthal
coverage using the least number of stations possible in order to optimize the computational
efficiency. A complete list of stations is provided in table 2.1 and an overview of the data
availability is shown in figure 2.2.

2.3. Methods

In this section, I outline the individual steps of the semi-automated detection method.
I first detail the data reduction step which reduces the volume of continuously recorded
data (section 2.3.1) to enhance the computational performance. Second, I describe the
data classification steps required to prepare the data input for the neural network, or
Self-Organzing Map (SOM) clustering algorithm (section 2.3.2). Next, I present the SOM
clustering, including the determination of the signal classes (section 2.3.3). Finally, I
describe the post-processing steps that reduce the number of earthquakes and false picks
in the signal classes, which may occur if the adjustable sensitivity of the algorithm is set
to be high (section 2.3.4).
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Station Latitude
(deg. N)

Longitude
(deg. W)

Elevation start date end date

KIT A1 35.665945 -120.293227 510m 24-May-2010 02-May-2011
KIT A2 35.795039 -120.360526 375m 24-May-2010 31-Jun-2011
KIT A3 35.664648 -120.137173 387m 24-May-2010 31-Jun-2011
KIT10 35.688881 -120.247177 599m 24-May-2010 05-Jan-2011
KIT11 35.716370 -120.222643 619m 24-May-2010 11-May-2011
KIT12 35.782349 -120.218689 581m 25-May-2010 31-Jun-2011
KIT13 35.711880 -120.393730 448m 24-May-2010 31-Jun-2011
GHIB 35.832249 -120.347282 330m 24-May-2010 31-Jun-2011
EADB 35.895222 -120.422623 224m 24-May-2010 31-Jun-2011
FROB 35.910950 -120.486877 231m 24-May-2010 31-Jun-2011
MMNB 35.956501 -120.496002 480m 29-May-2010 31-Jun-2011
JCSB 35.921169 -120.433998 299m 24-May-2010 31-Jun-2011
VCAB 35.921619 -120.533920 555m 24-May-2010 31-Jun-2011
VARB 35.926079 -120.447052 177m 29-May-2010 31-Jun-2011
PKD 35.945171 -120.541603 583m 24-May-2010 31-Jun-2011

Table 2.1.: Complete list of stations, their positions, and data availability.

2.3.1. Data reduction

Our dataset contains roughly 14 months of continuous recordings on a maximum of 21
stations, including both the temporary KABBA array and permanent stations. The goal of
the data reduction step is to keep time periods with potential seismic events while reducing
the data volume as much as possible. In the following, the term ’seismic event’ refers to
both tremor and earthquakes, which are assumed to be of unknown type until they are
classified by the method. The data reduction step uses a cross-correlation technique similar
to that applied by previous studies; however, here the cross-correlation is not designed to
detect or classify seismic events exclusively. Instead, portions of a continuous time series
are classified using the SOM clustering.

I start by searching for time windows containing coherent signals across the station ar-
ray. I first filter the waveforms between 2 and 8 Hz, as the signal to noise ratio for tectonic
tremor for my dataset is highest in the 2-8 Hz band (Obara, 2002; Schwartz and Rokosky,
2007; Beroza and Ide, 2011). Second, the envelope of each trace is calculated and dec-
imated to 0.2 sps, following which, the envelopes of individual components are stacked
for each station. Third, I perform a cross-correlation of waveform envelopes between each
station and a designated master station. The cross-correlation step is repeated using each
station once as a master station. I do not remove the instrument response, as it is flat
within the frequency band of interest and, removing it would increase the computational
time. Moreover all cross-correlations are normalized and based on smoothed envelopes,
which removes the influence of different amplitudes and reducing the effect of phase
shifts. I tested different time window lengths and the time step to determine the most
effective time window length. A trial-and-error comparison of hand-picked time windows
and time windows picked by the automated method indicates that a 520 second window
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determined retained time windows shown as gray boxes. The bottom pan-
els show the normalized waveforms filtered between 2 Hz and 8 Hz and the
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and 5 second time step optimally removes noise while retaining the highest number of the
seismic events. The inter-station distance divided by a speed of 3 km/s is the maximum
permitted time lag between peak correlation values, reducing the influence of infrasound
events and noise while still detecting S-waves from shallow sources close to the stations.
After averaging the cross-correlation values for each time window and each master station
over all station pairs, I then select the maximum mean cross-correlation value, producing
a mean coefficient function over time. I retain event windows for which the coefficient
function exceeds the mean correlation value by a threshold of 0.1 for at least 30 seconds.
The threshold was determined by testing values on a a one-week test data set from 24th
of May to 14th of June, 2010. I determine by visual inspection which values retain the
majority of events, while best reducing the data volume. I merge windows separated by
less than 300 seconds into a single event window. Doing so may preserve extended tremor
episodes which may have been otherwise fragmented into separate time windows. Visual
examination of the tremor episodes recorded in my data set suggests that tremor episodes
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do not typically last longer than approximately 100 seconds, hence I use a generous value
of 300 seconds to bridge time windows. One could use a longer inter-window time, how-
ever, doing so increases the cost of computational time during the SOM processing.

Figure 2.3 shows exemplary a 2 hour time period on the 24th of May, 2010, visual-
izing the data reduction step. The bottom panels show the filtered waveforms and the
envelopes. The top panel shows the mean cross-correlation coefficient and indicates the
threshold value with a green dashed line. The retained time windows are marked as gray
boxes.

2.3.2. Data preparation

The data preparation steps outlined here prepare the data for input into the Self Or-
ganized Map (SOM) algorithm (Kohonen, 2001), which is available as a Matlab toolbox
(Vesanto, 2000). The data preparation is not essential to the clustering algorithm, but is
included to enhance the detection algorithm’s performance, including adjusting the sensi-
tivity of the algorithm. The goal of the SOM is to group time series data with distinguishing
features. The SOM algorithm may use any similar feature, such as frequency content in a
particular band or polarity, to classify the data. The larger the feature differences between
various types of signals, the more effectively they distinguish those signals. Below, I de-
scribe the pre-conditioning steps and the feature selection and calculation. The main data
pre-conditioning steps entail reducing the effects of noise and calculating and normaliz-
ing the feature values used by the SOM algorithm. I first describe the noise reduction in
section 2.3.2.1, followed by trace alignment in section 2.3.2.2. I then explain the feature
calculation in section 2.3.2.3 and, finally, I describe the feature vector normalization in
section 2.3.2.4.

2.3.2.1. Noise Reduction

To remove the influence of noise and to enhance signal amplitudes for the feature cal-
culation, I implement a noise reduction technique introduced by Martin (2001), which is
based on minimum statistics and employs spectral subtraction methods. The noise reduc-
tion step improves the detection result, thereby increasing the sensitivity of the detection
algorithm. The technique assumes that the power spectral density of a given signal quickly
decays to the background noise level over time. It tracks the minimum spectral amplitude
value in a moving time window larger than the signal length and in narrow frequency
bands, using the tracked values as an estimated minimum noise level. A mean noise
level estimation is then calculated by multiplying the minimum noise estimation with a
bias compensating factor, which is based on the variance of the spectral amplitude in that
given frequency band (Martin, 1994). Assuming that noise and signal are statistically
independent and additive, one may remove noise by subtracting the mean noise estima-
tion from the original spectra. The phase spectra are not modified, thereby permitting a
transformation back to the time domain, with the noise removed.

The algorithm applies a short-time Fourier transform with a moving time window length
of 0.6 seconds and 0.3 second overlap in which the power spectra are recursively smoothed.
For example, let Mk,l denote the power spectrum for a given frequency bin l within some
time window k. The smoothed power spectrum is given by Pk,l = α ·Pk−1,l+(1−α) ·Mk,l,
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Figure 2.4.: A) Power spectral density (PSD) for one narrow frequency bandpass centered
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2 - 8 Hz during a tremor episode including individual tremor bursts (yellow
stars). (C) Noise reduced trace after subtracting the mean noise estimation.
The trace in C has lower noise amplitudes than the trace in B, enabling the
SOM algorithm to perform better.

where α represents an updating factor that controls the influence of previous time win-
dows. The updating factor α is typically set between 0.9 and 0.95 (Martin, 1994). Here, I
use a value of 0.9.

A requirement of the noise reduction method is that the time window used to track the
minimum noise level must be longer than the expected observed signal (Martin, 1994).
Tremor episodes consist of successive energy bursts which may last up to several minutes.
The time window for the noise reduction must be larger than the longest observed tremor
signal in order to bridge to the next minimum containing only noise. However, the shorter
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the time window, the more accurate the estimation of the noise level. I reviewed longer
tremor episodes in my test dataset and tested various window lengths and found a max-
imum of 420 seconds an optimum duration. The disadvantage of using such a long time
window becomes apparent when considering cases where the noise level is monotonically
increasing. For example, the noise level is calculated for a given sample from the time
window spanning 420 seconds prior to the sample. If the noise level constantly increases,
the current estimation of the minimum noise level in a given window occurs at the be-
ginning of the window. However, the noise estimation is subtracted from the sample at
the end of the time window. Thus, the noise level is underestimated. Consequently, the
noise level estimation will be underestimated at a time lag approximately equal to the time
window length. However, even in the extreme case of monotonically increasing noise, the
noise reduction will reduce the noise amplitude leading to a better signal-to-noise ratio
and therefore an enhanced tremor signal.

Figure 2.4 illustrates the functionality of the technique. Panel B shows the original
time series recorded at station KIT10 with a 2-8 Hz bandpass filter applied exhibiting
multiple tremor bursts. The same tremor bursts highlighted in B are enhanced in C after
applying the noise reduction. The enhanced signal will be more easily recognized by the
SOM algorithm. Note that the power spectral density (PSD) shown in figure 2.4 reflects
a narrow frequency band centered at 7 Hz. Therefore, some tremor bursts which are not
obvious in the PSD can be seen in the waveforms in B and C.

2.3.2.2. Trace alignment

The goal of the SOM algorithm is to cluster specific data features independent of the
signal duration. Specifically, I want to be able to detect short tremor bursts, as well as
longer episodes. Therefore, in order to cluster features of the same signal recorded at
individual stations, all traces must be corrected for moveout. I calculate an individual
moveout correction for each of the time windows retained by the data reduction step
discussed in section 2.3.1. I then align traces according to the moveout before inputting
them into the SOM. I determine the moveout between station pairs by cross-correlating
envelopes that have been smoothed over 15 samples with a master station.

In order to allow greater flexibility and account for the current noise conditions at the
individual stations, any of the stations may serve as the master station. I determine the
moveout used to align the traces from the offset associated with the maximum of the cross-
correlation function. Preliminary inspection of the data showed a number of infrasound
events (see example in section 2.4.1, figure 2.14, as well as a discussion of the feature
calculation of infrasound events). Setting a maximum permissible time difference allows
us to remove infrasound events with much lower propagation velocities, while retaining
most other seismic events. For each time window, I choose the master station for which
the envelope correlation coefficients are on average higher than the other stations.

2.3.2.3. Feature Calculation

Once I prepare the data for input into the SOM by reducing the effects of noise and
aligning the traces, I calculate the features on which the event detection is based. Any
characteristic of a time series which varies with signal source is well-suited for use in
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SOM clustering. Such characteristics may include: polarity, frequency-wavenumber, and
complex seismic trace properties. I term such particular characteristics as “features" after
Köhler et al. (2010), and calculate multiple feature values continuously throughout the
time series. I combine all feature values into a feature vector for each window where the
feature values are calculated. For an extended discussion on features, including various
types and their interdependence, I refer the reader to Köhler et al. (2010).

Determining what features work best for a given data set requires testing the features for
uniqueness using a sample data set. I perform a preliminary test of the SOM algorithm on
a three-week long sample data set that contains both tremor and earthquakes. The sample
data set was taken from the beginning of the measurement period, spanning the period
from 24th of May to 14th of June, 2010. I use waveforms from the temporary deployment,
as well as from permanent stations installed locally near the Parkfield segment of the
San Andreas fault (table 2.1). The sample data set contains noise, tremor events, and
local and regional earthquakes, and is therefore suited for testing the method. In the
subsequent text, I refer to the three-week long test data set discussed here as simply the
test data set. Example tremor events are shown in figures 2.11 and 2.12, and an example
earthquake recording is shown in figure 2.13. Systematic tests using various features
of tremor episodes indicate that two features are capable and sufficient to distinguish
tremor signals from regional earthquakes and noise: 1) spectral amplitudes in five narrow
frequency bands calculated via a Stockwell transform (Stockwell et al., 1996), and 2)
combined horizontal to vertical component motion products (Jepsen and Kennett, 1990).

The five frequency bands used for the first feature include the main energy band of
tremor, namely the 2-8 Hz band, as well as the 15-30 Hz and 0.5-1.5 Hz bands. The 2-8
Hz band is subdivided into three equally sized bands. The 15-30 Hz band is useful for dis-
tinguishing tremor from noise, and the 0.5-1.5 Hz band is useful for discriminating tremor
from regional and teleseismic earthquakes. The high-resolution spectral amplitudes are
calculated using a Stockwell transform and then averaged over the given frequency bins
(Stockwell et al., 1996). The Stockwell transform produces the time-frequency distribu-
tion of a signal using a moving Gaussian window that is scalable for different frequencies.
Compared to a short-time Fourier transform, the Stockwell transform retains better time
resolution, similar to wavelet transformations.

The second feature I calculate consists of combined motion products. Combined motion
product values differ widely for different seismic phases; thus, they are ideal for use within
the SOM algorithm. White (1964) defined two motion product detectors, HV and HiV
having a 90◦ phase shift:

PN = uN · uD PE = uE · uD (HV ) (2.1)

QN = H(uN ) · uD QE = H(uE) · uD (HiV ) (2.2)

where uN , uE and uD are the displacements in the North, East and vertical directions.
H(uN ) denotes the Hilbert transform of uN . Jepsen and Kennett (1990) used both HV
and HiV detectors to define combined motion products:

PNE =
√
P 2
N + P 2

E and QNE =
√
Q2
N +Q2

E . (2.3)
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They define a wave classification parameter PQabs using the combined motion products,
where PQabs = PNE ∗ abs(QNE). For a rectilinear polarized wavefield, PQabs is used to
discriminate between vertically and horizontally polarized S-waves, with expected PQabs
values of > 0.25 and < 0.25, respectively. Waves with 2-dimensional motion, such as
Love or Rayleigh waves, are expected to have PQabs values greater than 0.25. The PQabs
parameter exhibits large increases during earthquake and tremor episodes, while main-
taining low values for noise. PQabs is therefore a useful parameter for distinguishing
seismic events from noise. I also use it to distinguish the clusters identified by the SOM
algorithm containing seismic signals, which I discuss in detail in section 2.3.3.1.

As discussed above, I use five frequency bands for the spectral density calculation and
one combined motion product, for a total of six values per time interval, per station. I
first decimate the time series to 50 sps after applying a lowpass filter with a 20 Hz corner
frequency to avoid aliasing effects. I then calculate the six feature values at the sample
rate of the decimated time series, with the exception of the upper frequency. The upper
frequency band feature is calculated from the time series decimated to 100 sps, which then
has a lowpass filter applied with a corner at 40 Hz. The decimated and filtered time series
of the upper frequency band is also resampled to 50 sps. I then create feature vectors
for an individual station by taking the average value of each feature over 0.5 second time
intervals, in order to optimize the balance between computational cost and accuracy. The
feature vectors from each individual station are combined into a single feature vector for
the entire array. For example, a feature vector would consist of 60 feature values per time
interval for a 10 station array.

2.3.2.4. Feature vector normalization

The input for the SOM algorithm is the feature vectors. The SOM clustering algorithm
is based on Euclidean distances of the feature values comprising the feature vectors in
a high-dimensional parameter space (Vesanto and Alhoniemi, 2000). In order to weight
all features equally, it is critical to normalize all feature values to the same range, i.e.,
between 0 and 1. I use an extended softmax normalization to normalize feature values.

The softmax normalization is defined as

Xnorm =
1

1 + e−Xscaled
, with Xscaled =

Xorg −mean(Xorg)

std(Xorg)
, (2.4)

where Xorg are the original feature values (Pyle, 1999, pp. 271-274, 355-359). The main
benefits of the softmax normalization over a standard normalization are the ability to re-
duce the influence of extreme values without neglecting them and regulate the detection
sensitivity of the method. By inserting two scaling factors within the softmax normaliza-
tion, I can define the extended softmax normalization as follows:

Xnorm =
1

1 + e−Xscaled
with Xscaled =

Xorg − Fmean ·mean(Xorg)

Fstd · std(Xorg)
, (2.5)

where Fmean and Fstd are the scaling factors that determine the range of the scaled fea-
ture values. Adjusting the Fmean and Fstd parameters are what allows one to adjust the
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Figure 2.5.: Graphic description of extended softmax normalization: transformation from
Xscale to Xnorm: a) Solid line: original softmax normalization; b) dashed
line: Fmean ∗mean(Xorg) = 1 and Fstd = 1; c) dashed dotted line: Fmean ∗
mean(Xorg) = 1 and Fstd = 0.5.

sensitivity of the detection algorithm for a given a dataset. The scaling factors Fmean and
Fstd influence the transformation behavior of the data set to a normalized data space, and
can be used to carve out small but important differences which would be lost using the
standard softmax normalization. At the same time, bigger, yet less important differences
in the data values can be down-weighted.

Our dataset contains over one year of data, making calculating the mean and standard
deviation of Xorg for all feature vectors for the entire time period computationally expen-
sive. Nevertheless, applying the same normalization to the entire data set is critical in
order to cluster events that may occur widely spaced in time during the study period. As
one does not know the range of feature values a priori, the Fmean and Fstd scaling factors
must be determined empirically using a sample data set. I therefore calibrate my algo-
rithm using the same three-week representative test data set used for the feature selection
in section 2.3.2.3. I calculate the mean (mean(Xorg)) and standard deviation (std(Xorg))
of the feature values for the three-week time period, and use those values to normalize the
entire data set. I manually pick tremor events during the three-week period and determine
the best Fmean value based on a comparison of manually picked events and those picked by
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the SOM. I start by normalizing my data set with a range of Fmean and Fstd values and run
the SOM for each of the F-value pairs. I evaluate which of the F-value pairs corresponds to
the highest number of accurately picked events compared to the hand-picked events. The
F-values deemed best from the comparison are then used for the entire dataset, assuming
similar characteristics amongst earthquakes and tremor over the entire time period.

Figure 2.5 illustrates the normalization. If the factors Fmean and Fstd are set to one for
the regular softmax normalization (black line), the normalization scales nearly linearly for
values close to the mean value, and tapers off asymptotically to zero and one for values far
from the mean. The portion of the curve that scales linearly is controlled by the standard
deviation scaling factor, Fstd. When Fstd 6= 1, as in the case of the extended softmax
transformation, then the curvature of the non-linear region scales asymptotically to both
zero and one. The factor Fmean is used to shift the linearly-scaled region of the normalized
data to the position in the feature dataset where it best discriminates between noise and
seismic signals. Increasing the Fmean value has the effect of offsetting the scaled data to a
value above zero; in the case of the red and green curves shown in figure 2.5, the inflection
point of the curves are shifted to a value of one. The most important benefit of using the
extended softmax normalization is the capability to regulate the sensitivity of the detection
method via the scaling factors Fmean and Fstd. Higher or lower values for Fmean and Fstd
translate to higher or lower detection sensitivity. One must keep in mind, however, that
with increased sensitivity comes an increased number of false detections. Given their
importance, section 2.3.2.5 contains an extended discussion on the determination of F-
values. Table 2.2 indicates the optimal values for my data set to achieve the desired level
of sensitivity.

feature Fmean Fstd
2-4 Hz frequency band 0.5 0.5
4-6 Hz frequency band 0.5 0.5
6-8 Hz frequency band 0.5 0.5
15-30 Hz frequency band 8.0 1.5
0.5-1.5 Hz frequency band 2.5 1
PQabs 1.8 0.6

Table 2.2.: Fmean and Fstd values determined by a comparison of manually and SOM de-
tected events for the test data set. The values shown are the normalization
values used for the remaining data set in the extended softmax normalization
(equation 2.5.)

2.3.2.5. Normalization factor determination

In section 2.3.2.4 I introduce the extended softmax normalization, where I briefly dis-
cuss the possibility of shifting the range of linear normalization to the optimal position in
the feature dataset for discriminating between noise and different seismic signals. One can
change the range of linear normalization by changing the Fmean and Fstd factors. Here, I
discuss determining the Fmean and Fstd values in greater detail. The optimal F-values are
not known a priori, because the range of feature values is not known a priori, requiring
manual determination or in other words a calibration of the method for a certain dataset.
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Figure 2.6.: Normalization factor values for PQabs feature. The color coding corresponds
to the Fstd values shown in the legend.

As mentioned in section 2.3.2.4, I use a test dataset containing three weeks of seismo-
grams with multiple tremor episodes, in order to determine the optimal F -values. I start
by comparing manually picked time windows with SOM picked time windows to deter-
mine a measure of the detection accuracy. I repeat the process and detection accuracy
estimation, each time changing the F -value pairs, while performing a grid search of the
best F -values for an individual feature. The values corresponding to the highest accuracy
empirically determine the values for Fmean and Fstd.

I face a trade-off between detection accuracy and sensitivity. Figure 2.6 shows the SOM
performance for various Fmean and Fstd values for the PQabs feature value normalization.
By choosing a lower Fmean value, the number of correctly detected signals increases, as
does the number of incorrectly detected signals. As a result, the detection accuracy is lower
than for higher Fmean values. The grid search depicted in figure 2.6 shows that values of
Fmean = 1.8 and Fmean = 0.6 provide an optimal balance between sensitivity and accuracy.
Table 2.2 summarizes the values for other features. Table 2.3 shows the calculated mean
and standard deviation values used in the extended softmax normalization in equation 2.5
for each station and feature.
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feature 2-8 Hz 15-30 Hz 0.5-1.5 Hz PQabs
value Fmean Fstd Fmean Fstd Fmean Fstd Fmean Fstd

KIT A1 3.17 17.08 4.69 27.08 5.44 7.39 9.85 7.27
KIT A2 5.68 21.88 2.47 20.03 11.08 29.03 10.93 7.80
KIT A3 2.98 9.57 6.66 18.05 2.59 7.66 9.42 7.56
KIT10 1.90 6.70 1.62 3.98 6.70 6.06 9.29 6.10
KIT11 1.47 4.83 0.53 1.09 2.72 2.69 7.14 5.73
KIT12 0.78 1.53 10.46 24.99 1.31 1.39 6.76 6.12
KIT13 2.84 12.51 4.12 12.06 6.81 7.01 9.54 6.83
GHIB 7.08 19.49 1.13 2.65 4.47 4.70 12.22 7.99
EADB 3.21 8.75 1.14 2.41 3.62 3.15 10.95 7.53
FROB 3.54 15.55 1.57 7.57 3.87 3.90 9.97 7.52
MMNB 2.26 10.35 0.97 2.77 5.18 4.94 8.94 6.87
JCSB 1.82 8.66 1.05 3.55 0.53 0.50 8.24 5.26
VCAB 8.33 31.35 5.74 25.71 5.46 5.17 13.45 9.42
VARB 1.30 6.23 1.07 2.05 0.53 0.88 6.88 5.42
PKD 0.73 3.29 0.26 0.69 3.72 3.28 4.02 4.73

Table 2.3.: Fmean and Fstd values used in the extended softmax normalization for each
feature and station (in equation 2.5). KIT A1, A2, and A3 represent the mini-
arrays for stations KIT01 - KIT09.

2.3.3. SOM clustering algorithm

Following feature normalization, the feature vectors are ready for input into the SOM
clustering program (Vesanto, 2000). The SOM is an unsupervised learning method that
clusters data into groups with similar feature values. Following feature input, the algo-
rithm first determines the number m of so-called prototype vectors in an N-dimensional
parameter space with the heuristic formula (Vesanto, 2000)

m = 5 ·
√
X, (2.6)

where N is the number of feature values for each time window (e.g., the number of compo-
nents comprising the feature vectors for an individual station) and X the number of feature
vectors ~xi(i = 1, ..., X). The prototype vectors ~mn(n = 1, ...,m) form a two-dimensional
grid with a hexagonal structure, where each prototype vector has the same dimension
as each of the feature vectors, and is connected to the six nearest neighboring vectors.
After the grid is randomly initialized in the parameter space, the algorithm updates the
prototype vectors and moves them toward the feature vectors during an iterative training
period. I use the batch training mode (Vesanto, 2000), in which the prototype vectors in
each learning step t are moved based on the equation

~mn(t+ 1) =

n∑
j=1

hcm(t) ~xj

n∑
j=1

hcm(t)

. (2.7)
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Figure 2.7.: SOM after training: The SOM can be seen as a regular two-dimensional grid
of prototype vectors (black stars connected by a mesh) initialized in a 3-D
data space in this example. Red, blue and green points represents the data
set. Each component of an individual data vector (shown here as X, Y, and Z)
represents a feature. The color code of the data points indicates the clustering
result.

The Gaussian neighborhood function hcm(t) can be expressed by

hcm(t) = exp−d
2
cn/2σ

2
t , (2.8)

where σ2t denotes the neighborhood radius at learning step t and dcn = ||rc− rn|| is the 2D
distance between the prototype vectors mn and mc on the map grid. The term mc denotes
the prototype vector to which the feature vector xj is linked. At the end of the training
period, the grid is spread to the data cloud. The data cloud is composed of the feature vec-
tors, and it approximates the probability density function of the input data. This process
is also known as vector quantization (Köhler et al., 2010). Once the grid position in the
parameter space has been calculated, each data point is linked to the nearest prototype
vector. I illustrate an example of a dataset with three features in figure 2.7. Data (feature
values) are shown by the colored dots, the prototype vectors as black stars, and the grid is
indicated by black lines. Following the grid formation, a hierarchical clustering algorithm
clusters the SOM prototype vectors (Vesanto and Alhoniemi, 2000). The algorithm itera-
tively determines appropriate clusters based on the average distances between prototype
vectors within existing clusters; however, the user may set an acceptable minimum and
maximum number of clusters. The optimal number of clusters is then chosen by evaluat-
ing the Davies-Bouldin index (DB index) introduced by Davies and Bouldin (1979). The
DB index is a metric for evaluating the appropriate number of clusters based on the dis-
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Figure 2.8.: SOM clustering: visualization of the SOM of the data shown in figure 2.7 after
training. a) shows the U-matrix with the distance to the neighboring prototype
vectors indicated by the color code. Based on the distances of the prototype
vectors a hierarchical clustering algorithm determines clusters which are vi-
sualized in b). The color code indicates the determined clusters and matches
with the color code of the clustered data in figure 2.7.

tance between cluster members, and between cluster centers. For a given number n of
clusters, the DB index is calculated by

DB index =
1

n

n∑
1

max
j 6=i

{
Di +Dj

dij

}
, (2.9)

where n is the number of clusters, dij the distance between cluster centroids i and j, and
D the average distance to the cluster centroid. The DB index has a minimum value when
the clusters are most compact and widely spaced. All of the above mentioned aspects of
the clustering algorithm, including the DB index, are contained within the SOM toolbox
as described by Köhler et al. (2009, 2010).

Figure 2.8 visualizes the SOM from figure 2.7 and shows the "unified distance matrix"
(U-matrix) and the clustering result. The U-matrix in figure 2.8a represents each prototype
vector by seven hexagons and indicates the distance in the data space to each of the six
neighboring prototype vectors with the outer hexagons while the seventh hexagon in the
middle displays the averaged distance. In this case shown, the DB index determines an
optimum of the three clusters. Figure 2.8b shows the cluster composition.
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Figure 2.9.: Minimum and maximum number of permitted clusters: circle size corresponds
to number of correctly detected events, color code indicates the detection
accuracy.

In practice, I restrict the range n for which the DB index is evaluated in order to avoid
using an inappropriate number of groups. Based on the number of different signals I
expect to be present in the continuous data (noise, tremor, earthquakes, infrasound), I
empirically determine the appropriate range of numbers of clusters necessary. I thereby
attempt to prevent the algorithm from mixing different signals in one cluster that I want
to distinguish. I use the test data set to evaluate the appropriate maximum and minimum
number of clusters. Figure 2.9 illustrates the influence of the number of clusters on the
detection accuracy, as well as the number of accurate detections found by the SOM in
the three-week data set. The detection accuracy varies only marginally (±2%) when the
minimum allowed number of clusters is greater than four, and the maximum allowable
number of clusters is greater than 8, suggesting that the number of clusters has little in-
fluence on the detection accuracy (figure 2.9). The method detects the largest number of
events when the minimum number of clusters is 8 or 9. The detection accuracy increases
by approximately 1 percent if the minimum number is set to 7 or 10. However, the num-
ber of detected signals decreases significantly when the minimum number of clusters is
less than 8. One might argue based on figure 2.9 that the best minimum value ranges
from 19 to 20. However, analyses of various normalization factor values show a general
trend of decreased detection accuracy when using such a high minimum number of clus-
ters. I therefore use 8 as the minimum number of clusters because the SOM detects the
largest number of events with a minimum loss in detection and accuracy for the remain-
ing dataset. A similar argument holds for the maximum number of clusters. I choose a
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maximum value of 20 to allow greater flexibility in the number of clusters. Therefore, the
DB index falls within the range of 8 and 20 clusters.

2.3.3.1. Signal class determination

The SOM groups the data points into clusters, but these clusters do not have an a priori
association with any particular signal type (e.g. tremor, earthquake, noise). Therefore,
the user is free to determine the signal cluster of interest. Here, the algorithm identifies
the content of the clusters, and I manually classify the groups of clusters into “classes". I
designate three main classes into which the various clusters determined by the SOM are
sorted. Two of the classes contain seismic signals, and the third class contains noise. I
label these classes as S1, S2, and N (seismic signal classes 1 and 2, and noise). Clusters
containing seismic signals are identified by isolating classes with high PQabs values. The
PQabs feature is able to discriminate between noise and seismic signals for all features
values, making it a robust tool for identifying seismic events. Examination of the test data
set indicates that normalized PQabs � 0.5 for seismic signals, and PQabs < 0.5 for noise
signals. I therefore designate a cluster as belonging to one of the two seismic classes if the
following two criteria are met: 1) mean PQabs ≥ 0.5 at a minimum of three stations and
2) average PQabs ≥ 0.5 on all borehole stations. I impose the additional requirement for
borehole stations in order to avoid classifying infrasound events as tremor.

I use the frequency features to further group the seismic signals into two classes (S1
and S2). Class S1 contains tremor and small local earthquakes, and class S2 contains
regional, and larger local earthquakes. Similar to tremor signals, earthquake signals also
have values of PQabs > 0.5. Although the PQabs feature is similar between the two types
of signals, the spectral characteristics of teleseismic and regional earthquakes differ from
tremor in the low-frequency band (0.5-1.5 Hz). I identify clusters containing regional and
larger local earthquakes using the mean spectral amplitude values in the lower frequency
band; events with (normalized) mean spectral amplitude exceeding 0.6 at a minimum of
three stations comprise the class S2. The remaining clusters of seismic events comprise
class S1 (tremor and local earthquake) class. Unfortunately, the spectral characteristics of
small local earthquakes are similar to those of tremor, and there is no definitive cutoff value
which can discriminate between the two. Additionally, visual inspection shows similar
spectral energy of tremor and local earthquakes in the 10 Hz to 15 Hz band. I initially
tried using a feature in the 15-50 Hz band in an attempt to differentiate local earthquakes
from tremor. The spectral amplitudes in the 15-50 Hz band also did not differ significantly
enough to cluster local earthquakes into separate groups. I therefore use an additional
post-processing step to distinguish the small local earthquakes from tremor event in the
S1 class (section 2.3.4.1). I describe an estimation of what fraction of the signal grouped
into the S1 class is comprised of local earthquake signal in sections 2.4.3.1 and 2.4.3.5.

Finally, I discard all detected time windows less than 4 seconds in length and merge time
windows separated by less than 30 seconds in the S1 class. I compile the beginning and
end of the resulting time windows in my tremor catalog. Table 2.4 summarizes the criteria
used to sort the SOM detected time windows into the three user determined classes.
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Class Class description mean PQabs 0.5− 1.5 freq. band
S1 Tremor, small local earthquakes > 0.5 < 0.6

S2 Earthquakes (large local, regional) > 0.5 > 0.6

N Noise < 0.5 -

Table 2.4.: Criteria used for grouping SOM clusters into the respective classes

2.3.4. Post-processing

Following the SOM clustering and sorting into the S1, S2, and N classes, the S1 class
still contains a number of false detections (noise and small local earthquakes). The goal
of the post-processing step is to identify false detections and non-tremor seismic signals,
and move them into the N and S2 classes respectively. The post-processing step consists
of two parts: 1) the first part sorts the earthquakes remaining in the S1 class into the S2
class, and 2) the second part sorts noise (false detections) into the N class. I label the
two parts earthquake post-processing and noise post-processing, respectively. The noise
post-processing step is optional, and may be implemented depending on the sensitivity set
by the user (adjustable via the Fmean and Fstd parameters discussed in section 2.3.2.4).

2.3.4.1. Earthquake post-processing

Because the amplitude/frequency characteristics of small local earthquakes are not dis-
similar enough to that of tremor to be discriminating, some local earthquakes are grouped
into class S1. The earthquake post-processing step identifies earthquakes in class S1 and
moves them into class S2. I first apply a short term average / long term average (STA/LTA)
trigger to S1 class time windows that are less than 30 seconds in length to identify impul-
sive earthquake arrivals. I use a STA/LTA trigger based on the algorithm described by
Allen (1982) with a STA-window length of 0.5 seconds and a LTA-window length of 30
seconds. I set the weighting factor C2 from Allen (1982) between the two terms of the
characteristic function to 6, and the threshold constant C5 to 5.5. The two terms of the
characteristic function are sensitive to changes in amplitude and frequency, respectively,
while the C5 constant sets the threshold for event declaration. I apply the algorithm to
the Z-component and declare an earthquake when the STA/LTA threshold is reached on at
least three stations within a 6-second time window.

The second part of the earthquake post-processing compares the remaining time win-
dows in the S1 class to the ANSS catalog (Advanced National Seismic System, 2012).
The detection algorithm presented here does not determine origin times for the detected
events; therefore, I compare the results by calculating travel-times from the earthquake
epicenter to the center of the KIT array. I estimate the time window in which a cataloged
event should occur by calculating upper-bound and lower-bound travel times using a range
of seismic velocities between 4.4 and 6.6 km/s. I account for both P- and S-wave velocities
for cases where only the S-wave is detected. Additionally, I extend the time window of the
expected earthquake by 30 seconds for two purposes: to compensate for uncertainties in
the travel path, and to account for the range of arrival times for epicenters which are in
close proximity to the array. The range of 4.4 to 6.6 km/s was chosen quasi-empirically
(based on realistic values) to maximize earthquake detection by increasing the tolerance
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for error in the travel time estimation without making the time windows so large that I
might have erroneously included coincidental tremor events. I count an earthquake as
detected if it occurs within the calculated time window. I limit the earthquake catalog to
the area bounded within the latitude and longitude ranges of 32◦ N and 38◦ N, and 123.3◦

W and 113.3◦ W. Additionally, I consider only earthquakes with a calculated peak ground
velocity (PGV) > 1400 nm/s at the station array. I calculate the PGV following van der Elst
and Brodsky (2010), using log10 PGV = −2.29+0.85M −1.29 log10 r where M represents
the magnitude and r represents the hypocentral distance in km.

I assume the ANSS catalog is complete for larger earthquakes. And, I apply the STA/LTA
detection algorithm to time windows of less than 30 seconds in length to identify small
events missing from the catalog. If no catalog information is available, one could apply the
STA/LTA trigger to all time windows. The STA/LTA detection alone decreases the correctly
classified tremor by approximately 10%, while also increasing the number of earthquakes
in the S1 class by approximately 10%. I provide a quantitative assessment of the detection
algorithm performance using the earthquake post-processing step in section 2.4.3.5.

2.3.4.2. Noise post-processing

The noise post-processing step moves noise events falsely classified into classes S1 or
S2 into class N. The false classification of noise events results from the sensitivity of the
algorithm, which can be adjusted via the Fmean and Fstd parameters discussed in section
2.3.2.4. There is an inherent trade-off between accuracy and sensitivity in the detection al-
gorithm, however higher sensitivity enables the detection of more lower amplitude tremor
events. For cases where a high sensitivity is desired the optional noise post-processing step
detects and removes the majority of false picks, increasing the detection accuracy. The ba-
sis for the noise post-processing step is the assumption that events have a similar shape at
different stations, while uncorrelated noise bursts do not. Thus, the noise post-processing
consists of the following steps: 1) calculating a smoothed envelope for all traces in the
time windows selected by the SOM, 2) cross-correlating the envelopes and calculating a
mean coefficient of the three best cross-correlation coefficients, and 3) discarding time
windows with an average coefficient below 0.8.

I implement additional steps to determine the time window for which the envelope
correlation is calculated to account for possible misalignment of traces. In detail, I extend
first the detected time window by two percent of the time window length at the beginning
and end. To account for short time windows, I also add three seconds at the beginning and
end of each signal. The extension is necessary as sometimes the detected time windows
are only fraction of an extended tremor signal.

Second, I calculate the envelopes within the extended time windows for each Z-component
trace, and smooth the envelopes with a window of 0.6 percent of the time window length.

Third, I calculate the cross-correlation coefficient between all combinations of envelopes,
using each station once as a master station. I permit a 4-second time-lag between the en-
velopes in the cross-correlation. The 4-second time lag is meant to account for cases
where alignment between traces is incorrect. An example of where signal misalignment
could occur is at a noisy station or where multiple events in short succession are recorded
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Figure 2.10.: Flow chart of the method: neglected data within the reduction step in section
2.3.1 are sorted in the noise class N, while potential signals are kept and pre-
pared in section 2.3.2, which entail the noise reduction, alignment of traces
and the feature calculation and normalization. Then, the remaining data
gets classified into the three classes within the SOM clustering algorithm in
section 2.3.3. Afterwards, the optional post processing step in section 2.3.4 is
sorting out misclassified tremor to the earthquake class with a STA/LTA trig-
ger and noise to the class N with the help of an envelope cross-correlation.

at various source-station geometries. The alignment described in section 2.3.2.2 is then
sensitive to the bigger event with the higher amplitudes leading to a larger moveout for
other events contained within the same window.

After calculating the cross-correlation values, I average the three highest cross-correlation
coefficients for each master station and select the highest average cross-correlation coef-
ficient for each detected time window. Whether or not the noise post-processing step ac-
cepts or rejects an event is based only on three station values, i.e., the minimum number
of stations required for event detection. Finally, I neglect time windows with an average
cross-correlation value below 0.8.

All parameter values described in section 2.3 are summarized in table 2.5 and figure
2.10 provides a flow chart of the method.
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Data reduction (section 2.3.1)
Filter bandpass 2 Hz - 8 Hz
Data decimation 0.2 sps
Cross-correlation time window length 520 s
Cross-correlation time window step 5 s
Cross-correlation max. lag interstation distance / 3 km

s
Correlation coefficient threshold 0.1
Signal merging period 300 s
Noise reduction (section 2.3.2.1)
Fourier transform time window length 0.6 s
Fourier transform time window step 0.3 s
Smoothing factor α 0.9
Minimum tracking time window length 420 s
Trace alignment (section 2.3.2.2)
Envelope smoothing 15 samples
Cross-correlation max. lag interstation distance / 3 km

s

Feature calculation (section 2.3.2.3)
Data decimation 50 sps
Time window length for feature averaging 0.5 s
SOM clustering algorithm (section 2.3.3)
Minimum number of clusters 8
Maximum number of clusters 20
Signal class determination (section 2.3.3.1)
PQabs threshold 0.5
Amplitude threshold for the 0.5 Hz - 1.5 Hz band 0.6
Minimum station number 3
EQ post-processing (section 2.3.4.1)
STA-window length 0.5 s
LTA-window length 30 s
C2 6
C5 5.5
Minimum station number with detections 3
Time window length for connecting detections at dif-
ferent stations

6 s

Time window extension 30 s
PGV threshold 1400 nm/s
Noise post-processing (section 2.3.4.2)
Cross-correlation value averaging 3 best stations
Mean cross-correlation value threshold 0.8

Table 2.5.: Summary of parameter settings of the method discussed in section 2.3 (specific
sub-sections are listed in the headers of the left column).
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2. Tremor detection

2.4. Results

In this section, I evaluate the performance of the tremor detection algorithm using test
data set referenced in section 2.3 to determine the best parameter settings. I first discuss
three examples of detected waveforms in order to illustrate the capabilities and limitations
of the method (section 2.4.1) and visualize the SOM exemplary for the data of 24th of May,
2010 (section 2.4.2). Next, I present tremor and earthquake detection statistics, including
correct, false, and missed detections (section 2.4.3.1). I find that the method detects
tremor reliably for a signal-to-noise ratio (SNR) >3, and performs optimally when at least
10 stations are used (section 2.4.3.3). Additionally, to evaluate the method’s effectiveness,
I compare the performance of my method to an implementation of Wech and Creager
(2008) method (section 2.4.3.2). Furthermore, a comparison of the earthquake detections
with the ANSS catalog gives a detection accuracy of approximately 90% (section 2.4.3.5).
Finally, I show in section 2.4.4 that the method detects 2606 tremor events (spanning over
55 hours) within the 14-month data collection period.

2.4.1. Tremor waveforms
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Figure 2.11.: Example of a tremor episode exhibiting a good signal-to-noise ratio. De-
tected tremor is shown in green, and noise is shown in white.

Although tremor waveforms share characteristics, such as a long-duration (seconds to
tens of minutes) and a lack of distinct phase arrivals, individual tremor episodes vary
greatly in their appearance (e.g., duration, number of high amplitude pulses or tremor
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Figure 2.12.: Example tremor waveforms with low signal to noise ratio. The figure illus-
trates the performance of the SOM clustering algorithm at the SNR detec-
tion threshold. Due to local noise conditions, tremor is often only visible
on a subset of stations. Data are filtered between 2 - 8 Hz. Color code
indicates the clustering result following the post-processing step: detected
tremor (green), noise (white), and tremor detected by the SOM and rejected
by the noise post-processing step (red). The color coded clustering result
is shifted in time at different stations illustrating the trace alignment deter-
mined by the algorithm. The unusual moveout for KIT A1, A2, and A3 shows
the failing of the trace alignment step, although the method still detects the
tremor. A probable event at 570 seconds is not detected, likely due to erro-
neous moveout correction within the trace alignment step.

bursts, maximum amplitude, etc.). In this section, I show three examples of detected
tremor waveforms as well as an earthquake and infrasound event to illustrate the capabil-
ities and limitations of the method.

Figure 2.11 shows an example waveform from 3rd of July, 2010, filtered between 2 and
8 Hz. Time windows highlighted in green indicate windows designated as tremor and
white indicates background noise. The tremor episode between 750 to 980 seconds has
a median SNR of ∼3 based on root-mean-square (RMS) value in contrast to the much
lower amplitude tremor around 180 seconds (SNR of ∼1.5). The SOM method does not
provide estimates of source location; however, the detection method of Wech and Creager
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Figure 2.13.: Example tremor waveforms with low signal to noise ratio followed by a small
earthquake. Data are filtered between 2 and 8 Hz. Color code indicates the
clustering result following the post-processing step: detected tremor (red),
earthquake (yellow), and noise (white). The bottom panel shows the nor-
malized feature values for the PQabs feature and the lower frequency band
for station PKD.

(2008) provides an estimate of tremor locations. For the episode shown in figure 2.11, the
average epicentral location is 35.64◦N ± 0.30◦, 120.59◦W ± 1.07◦, with a depth of 19.16
km ± 13.54 km. The event location had horizontal errors on the order of 30 km. The
epicentral location is outside the boundary of figure 2.1, and is therefore not shown.

Given my emphasis on greater detection sensitivity (i.e., a higher number of detections)
in my current algorithm settings, I also obtain a number of false detections. The tremor
signal shown in figure 2.12 has a low SNR of ∼1.8, and is difficult to recognize even by
visual inspection. Figure 2.12 illustrates the performance of the method near the detection
threshold. Both figures 2.11 and 2.12 show waveforms where the detected tremor bursts
are not obvious on all stations, often due to local noise; All traces are shown to illustrate
the performance of the method even if noisy data are present. The post-processing step
(correctly) rejects the first time window originally identified as a tremor event (highlighted
in red), while retaining the remaining tremor windows highlighted in green. Furthermore,
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Figure 2.14.: Example infrasound event waveforms, filtered between 2 and 8 Hz. White
background color indicates the classification as noise as the clustering re-
sult. The top panel displays a spectogram of the raw waveforms recorded at
station KIT 01, showing most infrasound energy concentrated between 1-10
Hz. The bottom panel shows the normalized feature values for the PQabs
feature and the lower frequency band for station PKD. Note the large move-
out between the stations.

the algorithm misses a probable tremor event around 570 seconds, likely due to misaligned
traces. Figure 2.11 and 2.12 show time shifted traces to illustrate the trace alignment
determined by the algorithm. Misaligned traces could occur at a station with a low SNR
or where multiple events occur in short succession. Either case would lead to different
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moveouts within the same time window.

In addition to the previous two tremor waveform examples, figure 2.13 displays a low
signal to noise tremor signal as well as a detected earthquake. The upper panels in figure
2.13 show the waveform data, filtered between 2 Hz and 8 Hz for selected stations. The
bottom panel documents the normalized values for the PQabs feature and the lower fre-
quency value between 0.5 Hz and 1.5 Hz. During the seismic events, the PQabs feature
values are increased, while the lower frequency band values are only increased during the
earthquake. The difference in the normalized amplitude in the lower frequency band is
used by the SOM to distinguish between tremor and earthquakes, although, in this partic-
ular example the earthquake was classified by the STA/LTA trigger in the post-processing
step.

Figure 2.14 shows an example of an infrasound event to illustrate the misclassification
problematic. The bottom panel documents the increase of the PQabs feature values during
the infrasound wavetrain, which leads the SOM to misclassify infrasound events as tremor.
The large move-out between the stations indicates the low propagation speed in air.

2.4.2. SOM clustering

A strength of the SOM is its ability to visualize the data of a high dimensional data space,
since the topology of the data is preserved by the trained map. As described in section
2.3.3 the SOM consists of prototype vectors, which approximates the probability density
function of the input data after the training process. Thus, the distances between the
prototype vectors allow insight into the composition of the input data and the clustering
process.

Data analysis occurs on a daily basis, therefore a SOM is trained and clustered for each
24-hour time period. This section describes the SOM clustering analysis for the 24th of
May, 2010 which is the first day of the dataset and concludes the tremor example in figure
2.12.

Figure 2.15a shows the U-matrix of the trained SOM. The color code shows the distances
between each prototype vector and the neighboring 6 prototype vectors. The reddish color
indicates a separation of the input data within the multidimensional parameter space and
thus possible cluster boarders. The hierarchical cluster algorithm separates the data in
up to 20 different clusters, which are analyzed by the Davies-Bouldin index. The DB
index, plotted in figure 2.15c, has a global minimum at 11 clusters, implying that 11 as an
optimal number of clusters and is hence chosen by the algorithm. The cluster membership
of each prototype vector of the SOM for each of the 11 clusters is displayed in figure
2.15b. The color code indicates the class affiliation of each cluster after applying the signal
determination step described in section 2.3.3.1. The particular example here indicates one
tremor class S1 shown in red, a small earthquake class S2 shown in yellow, and 9 noise
classes displayed in white, which are later merged to noise class N. The majority of data
classified as noise also reflects the high sensitivity of the data reduction step described in
section 2.3.1.

Another interesting visualization providing some insight in the signal class determina-
tion is the distribution of feature values for the different classes shown in figure 2.16. The
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Figure 2.15.: Clustering of the SOM exemplary for data of 24th of May, 2010. The U-
matrix in figure a) shows the distances between the prototype vectors in
the data space, which is the basis for the clustering algorithm. The Davies-
Bouldin Index in figure c) indicates 11 as an optimal number of clusters.
The cluster membership of the prototype vectors for 11 clusters are shown in
figure b). Cluster 1 is determined as a tremor class, cluster 2 as earthquake
class and clusters 3-11 as noise classes.

color code indicates the three classes S1, S2, and N, and triangles denote the average val-
ues for each class. For example, within the PQabs feature, the values for the noise class are
low with an average value of ∼ 0.25, while the tremor class and earthquake class consist
of higher values around 0.7. Furthermore, the distinctive high values around 0.8 at the
lower frequency band of 0.5 to 1.5 Hz of the earthquake class S2 are clearly visible. The
three frequency bands between 2 Hz and 8 Hz also show also higher values for the tremor
class S1 and the earthquake class S2 compared to the noise class N. The values depend on
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Figure 2.16.: Distribution of the feature values for different classes. Tremor class is shown
in red, earthquake class in yellow, and the combined noise classes in black.
Triangles indicate the average value.

the amplitude of the signals within the seismograms and thus of the signal-to-noise ratio,
which is varying for each day. Please note that the absolute number of data points within
each class is not indicated by the figure as the distribution curve is normalized to one.

2.4.3. Performance evaluation

2.4.3.1. Comparison to manually detected events

Using the feature and normalization parameters outlined in the methods section, I com-
pare the detected event time windows to manually picked events in a three-week test data
set from the beginning of the deployment, May 24th to June 14th. The manual picking,
thus the manual detection and classification of earthquakes and tremor was performed by
careful inspection of the raw and filtered waveforms. A correct detection is defined when
a time window picked by the algorithm overlaps with a manually picked event. In some
cases, the semi-automated method defines an event time window that is visibly shorter
than the duration of a tremor episode. Detected time windows separated by more than
30 seconds are considered as individual events. While events separated by less than 30
seconds are grouped into a single event.
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Figure 2.17.: Detection performance for the test data set. Tremor events shown in red,
earthquakes in yellow, and noise in brown. Cluster composition of S1 class,
S2 class, and rejected events within the noise class. Class S1 contains 101
tremor events, 5 earthquakes, and 21 noise windows resulting in a detection
accuracy of 79.5%. Class S2 contains 17 tremor events, 174 earthquakes,
and 2 noise events. Class N contains 59 tremor events, 10 earthquakes, and
70 noise time windows. Of the 174 earthquakes (class S2), 48 have been
identified and moved from class S1 using the ANSS catalog , and 105 with
the STA/LTA algorithm (hatched area).

Figure 2.17 shows the composition of classes S1, S2, and N. The events shown in class
N consist only of those events which were moved from class S1 following the noise post-
processing step; the events classified originally as noise by the SOM are not included. In
total, the SOM and post-processing steps correctly detect 101 tremor events and obtains 26
false detections (5 earthquakes and 21 noise events) in class S1, equivalent to a detection
accuracy of 79.5%. Class S2 consists of 174 earthquakes, 17 tremor and 2 noise events,
corresponding to a 90.2 % detection accuracy. During the earthquake post-processing, the
STA/LTA algorithm moves 105 earthquakes and 8 tremor events from class S1 into class
S2. The comparison with the ANSS catalog shifts 48 earthquakes from class S1 to class
S2, as well as 9 tremor events. The hashed area in class S2 represents the events moved
from S1 to S2 in the earthquake post-processing step.

Figure 2.18 plots the detected event date versus event length for the three-week-long
test data set. Roughly two-thirds of the detected events in classes S1 and S2 are shorter
than one minute. The longest tremor signal has a duration of 13 minutes, but I note that
the method often divides tremor episodes into separate events. The top panel of figure
2.18 indicates the events in class S1 detected by the algorithm after applying the post-
processing steps. The middle panel (2.18B) shows the time windows in class S2 and the
bottom panel (2.18C) the events in class N which are rejected by the noise post-processing
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Figure 2.18.: Method performance on the test data set. (A) detected event time windows
of class S1 plotted according to date and detected event length. Marker
type denotes event type: tremor (circles), earthquakes (triangles), and noise
(squares). Of a total of 127 automatically detected events, 101 are correctly
detected tremor (green), and 26 are falsely detected (red) based on a com-
parison with manually picked events. Detection accuracy is 79.5%, and the
sum of detected time windows is 141 minutes. (B) events in class S2 and
(C) events moved from class S1 by the noise post-processing step.

step. Seventy time windows rejected by the post-processing step are removed correctly
(green squares), while 69 manually picked events (i.e., correctly detected events) are
removed (red circles and triangles). Of the 139 rejected time windows, 101 windows
are shorter than 30 seconds (figure 2.18B). The noise post-processing step rejects events
mostly due to alignment failure (section 2.3.2.2), high noise conditions, and/or detection
of a small fraction of a signal.

2.4.3.2. Comparison to Wech and Creager [2008] Method

I compare the SOM method results for the three-week-long test data set with another
commonly implemented detection algorithm developed by Wech and Creager (2008), re-
ferred to here as WECC. I implement the WECC method as it has been successfully applied
for tremor detection in Cascadia, and is most comparable to my method as it detects more
extended coherent tremor episodes rather than single LFEs. The WECC method calculates
the cross-correlation of the envelopes of all station pairs within a 5-minute time window.
Next, the method performs a grid search over all potential source-locations, searching
for the S-wave lag times in order optimize the cross-correlation. There are a number
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Method Number of
detections

Manual classification Detection
accuracy

tremor EQ noise
WECC 245 54 160 31 22%

WECC with STA/LTA 81 34 38 9 42%
SOM S1 class 127 101 5 21 79.5%

Table 2.6.: Results of the WECC method applied to the test data set. The results of the
SOM method from section 2.4.3.1 are displayed in the last line for comparison.

SOM classification
class S1 class S2 post-eval. Detected events

missed by the SOM
WECC 34 4 10 6
WECC with STA/LTA 25 3 4 2

Table 2.7.: Tremor detected by the WECC method compared to SOM detection method.
Number of tremor events correctly detected (’class S1’), detected events in-
correctly classified as earthquakes (’class S2’), events discarded by the post-
evaluation step (’post. eval.’), and correctly detected events missed by the
SOM (’missed by the SOM’).

of adjustable parameters in the WECC method, namely cross-correlation window length,
cross-correlation value threshold, and minimum number of stations for location. I tested
different parameter settings finding that a time-window length of 300 seconds with a 150
second time step worked best for my data set. I only use observations with a maximum
cross-correlation coefficient exceeding 0.5, and require a detection on a minimum of 5
stations.

One shortcoming of the WECC method is that it detects earthquakes and other coherent
signals without any means of distinguishing such signals from tremor. Therefore, it is
necessary to implement a post-processing step as well. Similar strategies to those used
with the SOM may be adopted for distinguishing earthquakes and tremor identified by
the WECC algorithm: one option is to use a STA/LTA trigger to exploit the distinct phase
arrivals of an earthquake. A second strategy is to use a remote station to distinguish
earthquakes from lower amplitude tremor. A third possibility is the use of an earthquake
catalog. Here I use the same strategy as the post-processing step described in section
2.3.4.1, namely, and STA/LTA trigger paired with the comparison of an earthquake catalog.
However, I now set the C5 constant from Allen (1982) to a value of 1.5.

I applied the WECC method to the test data set with and without the optional STA/LTA
trigger. The method without the STA/LTA detects 245 events and only 54 are tremor
according to my analyst picks. Of the 245 events, 160 are local and regional earthquakes,
and 31 events are noise (see table 2.6). The STA/LTA reduces the detected events to 81,
34 of which are tremor events, 38 earthquakes, and 9 noise events, leaving a detection
accuracy of 44%. In comparison, the SOM method detects 101 tremor events in the same
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time period. Changing the parameter settings for the WECC method to adjust for higher
detection sensitivity not only leads to an increase in detected tremor events (approximately
80), but also to an exponential increase in false detections (over 500).

A direct comparison of the algorithms is difficult given that the SOM may detect multiple
tremor events (i.e., multiple time windows) within the 5-minute time window used by the
WECC method. Therefore, I compare each detected tremor event by the WECC method
directly with the detection result of the SOM method. Of the 34 tremor events detected
by WECC, 25 were detected by the SOM method and correctly classified in class S1, 3
tremor events were missclassified as earthquakes by the SOM, 4 were thrown out by the
SOM post-evaluation step, and 2 were not detected (see table 2.7). However, the SOM
identifies an additional 76 tremor events that were not identified by WECC. Thus, 101
tremor events were correctly identified by SOM compared to just 34 identified by WECC.

A reason for the discrepancy may be the limitation that the WECC method requires
spatial and temporal clustering. The advantage of the WECC method is its ability to locate
and detect tremor at the same time and its computational efficiency. However, the SOM
method detects more tremor events with a higher accuracy since it uses characteristics of
the waveforms to classify different event types.

2.4.3.3. Influence of noise

Furthermore, I determine the influence of signal to noise ratio on the detection accuracy.
Using the test data set with manually detected events, I define a detection completeness by
dividing the number of automatically and correctly detected events by the total number of
manually detected events, regardless of the difference in time window length. I calculate
the detection completeness for bins of events with a similar SNR. The SNR is calculated
by dividing the RMS amplitude of an event time window by the RMS amplitude of a
noise window. The SNR is computed at each station on the vertical (Z) component. The
individual noise window is manually selected. As the detection requires a minimum of
three stations, I assign the third highest SNR of all stations to an individual event.

Figure 2.19A shows the detection completeness vs. the SNR. I differentiate between re-
sults with and without the noise post-processing step included (blue and red respectively)
to show its influence. Note that the detection accuracy is lower if the noise post-processing
step is not implemented. In order to reduce the false detections without applying the post-
processing step, one could lower the detection threshold and increase the detection accu-
racy by choosing different normalizing parameters Fmean and Fstd. However, evaluating
the detection completeness of the method with and without the noise post-processing step
is instructive, as it allows us to understand how the noise post-processing step influences
detection accuracy.

Figure 2.19C indicates that for tremor, the method provides a detection completeness
of 96% for events with a SNR above 3. The detection completeness is approximately 80%
for signals with a SNR value of 2 or higher. However, it is important to note that the
majority of tremor have a signal to noise ratio less than 2. I also find that the noise post-
processing step may reduce the detection completeness in some cases. For example, events
missed by the detection algorithm with a SNR ∼ 3 are explained by failure of the noise
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Figure 2.19.: Mean detection accuracy of events for a given signal-to-noise ratio (SNR)
(dots). Squares indicate number of events within each SNR bin. Blue cor-
responds to results with the noise post-processing step included, and red
corresponds to results before the noise post-processing step is applied. A)
detection accuracy vs. SNR for all events, (B) detection accuracy vs. SNR for
earthquakes, and (C) detection accuracy vs. SNR for tremor. Event classifica-
tion is based on visual inspection. The y-axis indicates the detection accuracy
in percent (left) and the total number of events determined by manual de-
tection (right). Note that the results without the noise post-processing step
include more false picks, resulting in a lower detection accuracy.

post-processing step. The noise level similarly influences the detection completeness for
earthquakes. The influence of noise is minimal with a SNR > 3, although a small number
of undetected earthquakes with SNR > 3 result from poor trace alignment. The majority
of earthquakes have a SNR above 4.5 and are concentrated in the last bin.

2.4.3.4. Influence of the number of stations

I also determine the influence of the number of available stations used. In order to assess
how the number of stations affects the detection accuracy as well as the total number and
duration of detections, I employ a jackknife test. I run the detection algorithm using data
from a set number of 3 to 15 stations. For a given number of stations, I use a random
subset of the stations and repeat the analysis up to 250 times. I then calculate the mean
and standard deviation values for each subset of stations (figure 2.20). Figure 2.20A shows
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Figure 2.20.: (A) Detection accuracy, (B) number of correctly detected events, and (C)
detected signal length vs. the number of stations used. Crosses display
the result for the S1 (tremor) class, and dots indicate the results for the S2
(earthquake) class. Bars indicate the standard deviation within the averaged
value.

the detection accuracy, 2.20B the number of correctly detected events, and 2.20C the total
detected signal length vs. number of stations used. I perform the jackknife test for both
classes S1 and S2 (crosses and dots respectively). The figure shows consistently higher
accuracy for class S2 (∼ 90%) while the accuracy for the tremor class S1 increases from
50% for three stations to 80% for 15 stations. Using the minimum number of stations (3)
results in a detection of roughly 1/3 of all events with a high level of accuracy (90%) for
class S2, but with a poor level of accuracy for class S1 (50%). As the number of stations is
increased, the effects of noise at individual stations is reduced, particularly when borehole
stations are considered. Additionally, an enlargement of the station array increases the
spatial sensitivity to detect weak signals at the edges of the array.

I also test the influence of individual stations on the detection accuracy. I perform a
jackknife test for each omitted station, with each test consisting of 250 random samples
of (remaining) stations. I use the minimum number of occurrences for which any given
station is included (N) in the random sampling to calculate the average values for each
station over N samples (instead of 250). The jackknife test is performed in separate stages,

42



2.4. Results

−1
0
1
2

ch
an

ge
 in

de
te

ct
io

n
ac

cu
ra

cy
 (

%
)

Jackknife test: Code6_Jackknife_STALTA_2_*  mean values of station [with NumerOfNeglectedstations>0]

A

−5

0

5

ch
an

ge
 in

co
rr

ec
t

de
te

ct
io

ns

B

−10

−5

0

5

KIT
 A

1

KIT
 A

2

KIT
 A

3

KIT
10

KIT
11

KIT
12

KIT
13

PKD

GHIB
*

EADB*

FROB*

M
M

NB*

JC
SB*

VCAB*

VARB*

ch
an

ge
 in

de
te

ct
ed

du
ra

tio
n 

(m
in

)

C

Figure 2.21.: Comparison of mean performance values from the jackknife test. (A) devia-
tion from the mean detection accuracy value for each (neglected) station, (B)
deviation in the number of correctly detected events, and (C) the deviation
in detected signal length. Asterisks designate borehole stations. Negative
values (green) indicate improved accuracy when a station is included.

in which a successively larger number of stations are omitted. The effect of omitting a
specific station is shown in figure 2.21. Panel A displays the deviation from the mean
detection accuracy. Negative values (green) indicate a decrease in the detection accuracy
when a given station is omitted, indicating the importance of that particular station for
the overall detection accuracy. Positive values (red) suggest that a given station is less
important for performance accuracy. An asterisk is used to denote the borehole stations.

Figure 2.21 suggests that the stacked mini-array stations KIT A2 and KIT A1 have a
negative influence on the detection accuracy while KIT 10 improves the accuracy slightly.
Including all three stations in each of the mini-arrays decreases the number of correctly
detected events and the detected signal duration, likely due to noisy conditions at the
sites. Moreover, there is a clear difference between surface and borehole stations. Not sur-
prisingly, the borehole stations perform better than the surface stations. The test indicates
that the most valuable surface stations during the test dataset period are KIT11 and PKD,
and the most valuable borehole stations are FROB and VARB.
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Figure 2.22.: Earthquake detection results compared to the ANSS earthquake catalog. (A)
shows all earthquakes occurring within the test data period as circles. Circle
size corresponds to catalog magnitude. Earthquakes detected and classified
in the S1 class are shown in green, detected earthquakes classified in S2 are
shown in blue, detected events rejected by post-processing shown in yellow,
and undetected events shown in pink. (B) Earthquake magnitude vs. dis-
tance; the color code corresponds to (A). Distance is from the center of the
KIT array. Red solid line displays the PGV threshold of 1400 nm/s.

2.4.3.5. Comparison with the ANSS earthquake catalog

In order to test the sensitivity of the detection algorithm to seismic signals in general
(i.e. classes S1 and S2), I compare the detection results with the ANSS earthquake catalog
as described in section 2.3.4.1.

Cross-checking the events found by manual inspection with the events detected by the
SOM indicates that the SOM finds a total of 179 earthquakes within classes S1 and S2
(figure 2.17). A comparison with the ANSS catalog indicates that 135 of those events were
cataloged, and that 9 tremor events were falsely classified as earthquakes. The remaining

44



2.4. Results

44 events are not cataloged. Figure 2.22A shows the proportion of earthquakes from the
ANSS catalog detected by the SOM. The circle size corresponds to the catalog magnitude
and the circle color indicates the detection result: blue circles denote earthquakes detected
correctly and classified in class S2, green circles denote earthquakes detected within class
S1, yellow circles denote events initially detected and later rejected by the post-processing
step, and pink circles represent events not detected by the method.

Figure 2.22B shows the ability of the method to detect almost every earthquake above a
certain magnitude-distance threshold. Most of the earthquakes that occur within 150 km
are classified correctly as earthquakes by the STA/LTA algorithm within the earthquake
post-processing step. Most of the earthquakes incorrectly identified as class S1 that occur
at distances between 150 km and 350 km are moved to class S2 by the earthquake catalog
comparison described in section 2.3.4.1. Note that some small earthquakes occurring
at large distances are falsely marked as detected because they occur within the window
of a detected tremor event. I therefore apply the earthquake catalog comparison in the
earthquake post-processing only to earthquakes with a PGV > 1400 nm/s (indicated by
the solid red line in figure 2.22B). Figure 2.22B suggests that small earthquakes not in
the ANSS catalog that occur close to the stations are often discarded during the noise
post-processing step.

2.4.4. Analysis of the 14-Month Dataset

After quantitatively assessing the detection algorithm performance using the three-
week-long test data set, I apply the method to the entire 14 month dataset collected be-
tween the 24th of May, 2010, and the 30th of June, 2011, using parameters established
during calibration of the method. The parameter values are given in section 2.3.

The results for the complete dataset are plotted in figure 2.23. During the 13 month
long study period, the SOM detects some tremor almost every day. I find over 2606
tremor detections occurring in windows totaling over 55 hours, with an estimated de-
tection accuracy of 80%. Panel A shows the number of events detected in class S1 per day,
reflecting primarily tremor signal (figure 2.17). A tremor event in class S1 corresponds
to a time window separated by at least 30 seconds from the subsequent event window.
As mentioned in section 2.4.1, the method tends to split low amplitude tremor episodes
into several individual bursts; thus multiple detected time windows could be affiliated
with a single extended event. The estimated number of events per day, ranging between
0 and 61, reflect high amplitude tremor arrivals or ’bursts’ that may occur within longer
duration, low amplitude episodes. The gap in late December coincides with a drop in
the number of stations used, which is due to station outages. However, generally I do
not see a correlation between the number of stations used and the number of detections.
The nearly linear increase in cumulative signal duration shown in figure 2.23C suggests
a constant rate of seismic activity as well as a stable detection sensitivity over the study
period. There is an average of 6.5 events with a cumulative signal duration of 8.2 minutes
per day. There are days when the number of detections are much higher than average,
for example, in the beginning of September 2010 and at the end of January 2011. To
identify teleseismic or regional wave arrivals at the array, I estimate the peak ground ve-
locity (PGV). I find no evidence suggesting increase in detections is correlated with the
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Figure 2.23.: Detection results for the complete dataset: (A) detected tremor events per
day, (B) minutes of detected signal per day, and (C) cumulative signal dura-
tion (black curve). Panel C also shows the number of station used each day
(gray curve).

occurrence of large earthquakes (i.e., with high PGV). Moreover, visual inspection does
not suggest an increase in false detections for days with a higher than average number of
detections. Thus, the step increases in the cumulative signal duration likely reflect the true
behavior of ambient tremor. Similar observations of episodic tremor episodes in the area
are previously described by Nadeau and Dolenc (2005), Nadeau and Guilhem (2009), and
Shelly (2010).

2.5. Chapter conclusions

I present a new method for tremor detection based on a neural network approach. The
method identifies and distinguishes tremor, earthquakes, and noise based on frequency
content and horizontal to vertical component products. I initially use a waveform enve-
lope cross-correlation to reduce the data volume, and increase computational efficiency.
The method does not rely on a priori information such as event templates and is capable
of identifying tremor bursts of variable duration, assuming some variation in tremor am-
plitude within the length of the noise window (420 sec). Moreover, the sensitivity of the
method can be adjusted by a set of normalization factors, Fmean and Fstd.
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The method detects 2606 events within the continuously recorded dataset from May
2010 to July 2011. The tremor detection accuracy is nearly 80% for the SOM and post pro-
cessing steps, estimated by comparison to manual picks in a three week long test dataset.
I expect similar detection accuracy for the entire study period. A comparison of the earth-
quake detections with the ANSS catalog shows a detection accuracy of approximately 90%.
The event detection is based on a minimum of 3 stations. However, optimum detection
requires approximately 10 stations for the particular network configuration. And, the
overall best performance is achieved when 4 key stations (KIT11, PKD, FROB, and VARB)
are included in the analysis. One limitation of the method is that it generally detects only
a portion of the tremor episode, typically identifying high amplitude portions of a longer,
low amplitude tremor episode.

The method is in general very flexible and could be adjusted by supplementing further
features and/or by changing the detection sensitivity. Although I tested a variety of fea-
tures to discriminate tremor from noise in my dataset, the features determined to be most
discriminating may differ for other data sets. For example, including polarity as a feature
might be useful when observed tremor is polarized, such as examples shown by Wech
and Creager (2007). In addition, taking into account the energy in the frequency band
common to surface waves might help to identify and distinguish triggered tremor from
ambient tremor. The fundamental advance of the method is that it does not rely on master
templates and is not based on any assumptions about a minimum signal length. Removing
such restrictions permits the detection of a wider range of event types than present meth-
ods, thereby increasing the potential for discovering tremor at different depths within the
fault zone.

The method does not provide locations for the detected tremor, however, the method
could be useful to restrict the time period for a LFE search with a template matching
method. Other methods to locate tremor such as envelope triangulation could also be ap-
plied to the detected tremor periods or location with the time-reversal approach described
in chapter 3.
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3.1. Introduction to tremor localization

Despite the numerous observations of tremor, the lack of distinctive phase arrivals and
low amplitude signals makes locating tectonic tremor more challenging than locating
earthquakes. Since its discovery by Obara (2002) numerous methods to locate tremor
have been developed. They can be grouped mainly into three classes: methods based
on waveform envelopes, the use of stacked low frequency events (LFE’s), and methods
exploiting array techniques.

Waveform envelope based methods developed by Obara (2002) have also been used in
other studies (e.g., McCausland et al. (2005); Payero et al. (2008)). Such methods de-
termine arrival time differences for station pairs by cross-correlating the envelopes of the
seismic trace and using the time differences to obtained a source location by triangula-
tion. Alternatively, one can use the time differences in a grid search over possible source
locations (e.g., Kao and Shan (2004)). The advantages of the envelope based location
techniques are the speed and the semi-automated fashion of the methods. However, the
methods lack on precision determining arrival times precisely and require seismograms
with a good signal-to-noise ratio to produce stable results.

The discovery of LFE events within tremor episodes enabled new methods for location
which exploit event similarity, allowing stacking multiple events in order to enhance phase
arrivals. Shelly et al. (2006) showed that many LFE’s are multiplets which occur in event
families, allowing for stacking of multiple events. The improved signal-to-noise ratio of
the stacked events enables picking of P- and S-phases, making source locations calculated
with classical earthquake location algorithms possible. The disadvantage of the approach
is the need for a priori information of LFE master templates, multiple occurrence, and
the assumption that all stacked events occur at the same source location. Correlation of
coefficients between LFE’s in a given event family can be in average as low as 0.33, calling
the assumption of a similar source location into question (Shelly et al., 2007).

Other methods imply the use of array techniques to measure slowness and back azimuth
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and to partially exploit wave polarization, however a special station and array distribution
is needed (La Rocca et al., 2005, 2008; Ryberg et al., 2010; Fletcher and Baker, 2010).

On the other hand, the application and development of time-reversal-imaging (TRI)
methods has been steadily increasing. TRI methods back propagate the recorded and in
time reversed signals back into the medium at the recording position. The back propa-
gated wavefields interfere positively, thus creating a large amplitude at the original source
position, allowing one to locate and characterize the source (Anderson et al., 2011). The
general advantage of the TRI method is the potential to exploit of the full waveform with-
out any knowledge about the recorded signal such as phases. An overview of different TRI
methods can be found in Anderson et al. (2008), that have been successfully applied in the
field of non-destructive evaluation of materials to locate and characterize cracks (Ulrich
et al., 2006, 2007) and to estimate shear elasticity of materials (Brum et al., 2008). TRI
has been also used for locating land mines (Sutin et al., 2009), as well as in biomedical
imaging and therapy, such as tracking kidney and gallstones (Fink et al., 2003) and imag-
ing of human teeth (Santos and Prevorovsky, 2011). Furthermore, TRI has been applied to
the Earth in order to locate seismic sources, such as the 2004 Sumatra earthquake (Larmat
et al., 2006) and Lokmer et al. (2009) showed the ability to locate a synthetic vulcanic
tremor source, and Larmat et al. (2009) determined the ability to locate a long-lasting
tectonic tremor source in a synthetic study. Drawbacks to the application of TRI methods
to seismic data include the often sparse coverage of stations, the lack of deeper borehole
stations, and finally, inacuracies in the velocity model. In the case of tremor a very low
signal-to-noise ratio within the recorded signals adds to the problem.

Here, I apply a modified TRI method to seismic data recorded on the San Andreas fault
near Parkfield in order to locate individual LFE’s within tremor episodes. I further develop
the TRI method by introducing an imaging condition: instead of looking at individual
snapshots of the time-reversed wavefield for the biggest amplitude due to a constructive
interference, I search for phase coherence over a short time period with a matched filter
approach. The advantage of the modified TRI method is the independence of amplitude
and the inclusion of temporal information making it suitable for low amplitude signals
and sparse station configuration as is the case with tremor localization.

In the following, I first introduce the modified TRI method in the methods section 3.2,
followed by a description of the data in section 3.3. I will present my location results in
section 3.4, including synthetic tests performed to test the method, described in sections
3.4.1 and 3.4.2 and the application of the method to a recorded M 1.4 earthquake and
recorded LFE events within tremor episodes in sections 3.4.3, 3.4.4, and 3.4.5.

3.2. Methods
The fundamental premise of the time-reversal imaging technique is to locate seismic

signals using the constructive interference of rebroadcasted seismic waveforms. The tech-
nique propagates a time-reversed seismic signal recorded at discrete points at the surface,
back into the subsurface. Assuming a similar waveform of all rebroadcasted wave fields
at the source time and source origin, one can search for coherence of the wave fields in
time and space to obtain the source location and origin time where the constructive inter-
ference is a maximum. Figure 3.1 illustrates the technique schematically in three parts:
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Figure 3.1.: Schematic sketch of the method: time reversed seismograms (I), plot of the
curl field produced by back propagation (II) of the time reversed seismograms
from all receivers at an individual gridpoint. I search the curl field for peaks
in coherence by cross-correlating the functions of the curl fields at each grid
point in a moving time window (III). Velocity model orientation corresponds
to the coordinates described in Thurber et al. (2006) with positive y trending
Southeast.

the time reversal of the data (I), the back propagation into the subsurface (II), and the
evaluation of coherence in time and space (III).

In the first step I pre-process the seismograms of all three recorded components by
removing the instrument response to get the true ground motion and filtering the seis-
mograms between 1 Hz and 5 Hz. The frequency band is chosen based on two criteria:
firstly, the tremor observed near Cholame typically has its highest energy concentrated
in the 2 - 8 Hz frequency band (Obara, 2002; Schwartz and Rokosky, 2007; Beroza and
Ide, 2011). Secondly, some studies suggest that the high-frequency energy goes down
to 1 Hz (Shelly et al., 2007; Brown et al., 2008; Wech and Creager, 2008). I limit the
higher frequency to 5 Hz, as the computational demand for the back propagation calcu-
lation increases exponentially for higher frequencies. Furthermore, the back propagation
becomes more affected by the inaccuracies in the velocity model at higher frequencies due
to smaller wavelenghts. Next, I interpolate the sampling rate of the seismograms equal to
the time step used in the calculation of the back propagation. Afterwards, after rotating
the seismograms in the local coordinate system of the velocity model grid, the seismo-
grams are ready for rebroadcasting in the subsurface. Finally, I reverse the seismograms
in time to be able to use them in the back propagation calculation as source function.
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I use the staggered grid, finite-difference (FD) code of Bohlen (2002) and the 3D velocity
model of Thurber et al. (2006) to back propagate the prepared seismograms (figure 3.1
II). The calculation of elastic wave propagation employs an 8th order spatial Holberg FD
operator and perfectly matched layer (PML), to absorb the energy at the boundaries in my
model as described by Komatitsch and Martin (2007). I set the spatial dimension of the
PML to 15 grid points, the dominant frequency to 5 Hz, and the velocity near the boundary
to 3.5 km/s. I interpolate the velocity model to an even grid spacing of 100 m and add
the first layer 15 times to the top of my model to account for the PML absorbing frame.
The grid spacing is chosen based on the minimum shear wave velocity in my model and
the maximum frequency of the source signal to avoid grid dispersion due to an inaccurate
spatial sampling. According to the maximum P-wave velocity and the grid spacing, we set
the time step to 5 ms for the calculation of elastic wave propagation to fulfill the Courant-
Friedrichs-Lewy criterion (Courant et al., 1967) and ensure the stability of the FD code by
an accurate temporal sampling. During the calculation, I write out the relative curl field
energy amplitudes in my model every 50 milliseconds for each rebroadcasted seismogram,
gaining a time series of the curl field for each grid point (figure 3.1 III). The relative curl
field energy amplitudes are calculated within the FD code from the displacement after
Dougherty and Stephen (1988). I use the curl field, because much of the energy in tremor
bursts is contained in shear waves (La Rocca et al., 2009; Wech and Creager, 2007; Payero
et al., 2008; Miyazawa and Brodsky, 2008), and shear waves have higher amplitudes than
longitudinal waves .

In the final step, I search for coherence within the curl field in time and space. I do so
by a grid search which cross-correlates all combinations of the time series of the curl fields
in a sliding time window. To account for 180◦ phase shifts due to radiation patterns of
double couple sources, I take the absolute value of the cross-correlation value. Addition-
ally, I introduce a cross-correlation condition: if the local maximum correlation coefficient
between any two time series within the time window is lower than 0.5 times the global
maximum for either time series, I skip the calculation and set the cross-correlation value
to zero. The condition avoids numerical artifacts caused by division by zero, decreases the
computation time, and improves the result by avoiding artifacts, e.g. locally high cross-
correlation coefficients at random grid points. The cross-correlation is carried out in a
time window of 1.5 seconds and a time step of 0.1 seconds. Finally, I calculate a median
cross-correlation value at each grid point and within each time window and search for
the highest cross-correlation median value, which indicates the origin source position. I
allow the source position to be only in the sub-volume of the model which excludes the
absorbing layers and the receiver positions, thus I ignore the 15 grid points next the model
boundaries, and neglect the top 30 grid points.

Figure 3.2 exemplifies the result for one snapshot in time. The median cross-correlation
value distribution shows a clear maximum around gridpoint B2, interpreted as source
position. Gridpoints B1 and B3 exhibit a low coherence as documented by the functions
of the curl field.

I calculate a relative error of the determined source position by considering the positions
of the highest local maxima of median cross-correlation values in the model, i. e., the
calculated source location. I estimate the uncertainty of the solution by determining the
distances to the obtained source position of all cross-correlation maxima exceeding a value
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of 90 % of the global maximum throughout all calculated time steps. Thus, the spatial
range over which the maximum exceeds the 90 % value maximum along each coordinate
axes constitutes the relative error distance.

3.3. Dataset and FD model

I use seismograms from both permanent stations, and waveform data recorded during a
temporary deployment of 13 surface stations from the KABBA array at seven sites around
Cholame, California, forming the PERMIT array. The KIT labeled PERMIT stations are
equipped with STS-2 sensors and record continously at a 200 Hz sampling frequency from
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May 2010 to July 2011. Data from permanent stations include data from station PKD from
the Berkeley Digital Seismic Network (BDSN), station PHOB and PHF from the Northern
California Seismic Network (NCSN), and the borehole stations GHIB, EADB, FROB, VCAB,
VARB, MMNB and JCSB of the Berkeley High Resolution Station Network (HRSN) and
stations B072, B076, B078, B079 and B901 of the Plate Boundary Observatory (PBO).
The station distribution, shown in figure 3.3 covers approximately 50 kilometers of the
Cholame segment of the San Andreas Fault (SAF). Recent studies have shown that much
of most vigorous tremor activity occurs on the San Andreas Fault beneath Cholame, which
is why I focus my study here (Shelly and Hardebeck, 2010; Ryberg et al., 2010; Nadeau
and Guilhem, 2009).

I apply the coordinate system adopted by the 3D velocity model of Thurber et al. (2006)
for the finite difference calculation, with origin at 35◦57.60′ N and 120◦30.28′ W and a
Y-axis rotation from an azimuth 139.2◦. My model has 240 grid points in the cross-fault
direction (X-direction), 520 grid points in the fault parallel direction (Y-direction), and a
depth of 280 gird points corresponding to a dimension of 24 km x 52 km x 28 km and
a total number of 34,944,000 grid points. The upper left corner is located at -14km in
the x-direction and -2 km in the Y-direction in the Thurber coordinate system. The model
location and geometry is indicated as a blue box in figure 3.3.

The velocity model of Thurber et al. (2006) contains P-wave velocity vp value only, I
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therefore calculate the shear wave velocity vs and the density ρ assuming a Poisson solid.
The expression for vs is given by

vs =
vp√
3
. (3.1)

Brocher (2005) determined an empirical relationship between vp and ρ determined pri-
marily by velocity measurements on rock samples, boreholes, and seismic studies from
California, USA. The relationship is valid for 1.5 < vp < 8.5 km/s and is given by

ρ = 1.6612 · vp − 0.4721 · v2p + 0.0671 · v3p − 0.0043 · v4p + 000106 · v5p , (3.2)

with vp in km/s and ρ in g/cm3. I use equations 3.1 and 3.2 to calculate a shear wave
and density model from the P-wave model of Thurber et al. (2006) for use in the wave
propagation calculation during the rebroadcasting of the seismograms.

3.4. Results

The result section is structured as follows: first, I determine the performance of the
method in a 2D test in section 3.4.1. Due to computational reasons I restrict my calcu-
lation to a 2D cross section and use for my synthetic source a force in z-direction. The
enhanced computational performance allows us to determine the influence of noise in
the seismograms and velocity perturbations in my velocity model. Next, I show the func-
tionality of the method with a synthetic double couple source in section 3.4.2 and apply
my method to a recorded M 1.4 earthquake in section 3.4.3. Here, I show the velocity
model being a limiting factor, which can be compensated by tapering the S-phase in the
seismograms. Finally, I present the results for recorded tremor in section 3.4.4.

3.4.1. Synthetic 2D test with a single force

I start by testing the method with a simple synthetic velocity model, where I calculate
synthetic seismograms for a single force and calculate the source position with the time-
reverse imaging method. To speed up the calculations, I use the 3D wave propagation
code but only consider a 2D cross section at x=20km in my 3D model. Considering a 2D
cross-section allows us to limit my model to 40 grid points in the x-direction including
30 grid points in the absorbing layers. The model geometry is shown in figure 3.1 and
3.2. The enhanced computational time enables us to also test the influence of SNR of the
recorded seismograms and perturbations to the velocity model.

I use a single impulsive force in the z-direction as a source and distribute the receiver
positions randomly at the trace of the 2D cross section below the absorbing layer at the
surface. I place the synthetic source at coordinates x=20km, y=30km, z=8km and calcu-
late in a first step synthetic seismograms at the receiver positions in a forward calculation.

Next, I corrupt the synthetic seismograms in four cases with white noise, creating seis-
mograms with SNR of 5, 2.5, 1.66, and 1.25 for each receiver. Figure 3.4 shows exemplary
the waveforms with a SNR of 2.5. Moreover, I add Gaussian distributed perturbations of
10% and 20% of the median velocity value to the velocity model of Thurber et al. (2006).
Finally, I locate the source position based on the different subsets of seismograms and
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Figure 3.4.: Example of waveforms used in a synthetic test to evaluate the effects of noise
and velocity model perturbations. THe example shown in the figure is per-
turbed with white noise with a SNR of 2.5 and filtered between 2 and 5 Hz.
The seismograms are used for rebroadcasting in the subsurface.

velocity models and evaluate the maximum cross-correlation value and maximum artifact
value for each combination. An artifact value denotes a spuriously high values in the
cross-correlation coefficient that are certain unrelated to source effects.

Figure 3.5 shows the location result using the seismograms with a SNR of 2.5 and the
original velocity model (without perturbations). The color contours indicate the distribu-
tion of the median cross-correlation values inside the cross section for time window 82,
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Figure 3.5.: Median cross-correlation coefficient values in a cross section of figure 3.2 for
time window 82. White triangles show receiver positions, white circle indi-
cates the maximum value, and the white cross marks the synthetic source
location at 30 km horizontal distance and 8 km depth. Example with signal-
to-noise ratio of 2.5 and without velocity perturbation. The rebroadcasted
waveforms are shown in figure 3.4.

which corresponds to a time of 8.2s given the 0.1s time steps within the back propagation.
The highest cross correlation value is interpreted as source position, which differs 100 m
horizontally and 400 m vertically from the original source position. The compactness of
the color contours in the horizontal direction indicates a better horizontal resolution due
to the receiver distribution at the top of the model.

In contrast to the single snapshot shows figure 3.6 shows the temporal progress of the
cross-correlation values using the seismograms with a SNR of 2.5. The figure illustrates
the highest median cross correlation value at the determined source position and the max-
imum median cross correlation value at any non source position, i.e., the highest artifact
value, for all time steps. The maximum source cross-correlation value is almost 0.8 while
the maximum artifact value has a value of approximately 0.4. Thus, the determination of
the highest median cross-correlation value and thereby the source position has a ratio of
1.9.

Figure 3.7 summarizes the results of the noise test for different SNR levels within the
seismograms and the different velocity model perturbations. Figure 3.7 shows the max-
imum source value and the maximum artifact value for each combination of back prop-
agated seismograms with a given SNR and velocity perturbation. The maximum source
value decreases from roughly 0.9 to 0.3 with decreasing SNR as expected. The maximum
artifact value is approximately 0.4 and does not vary significantly with SNR. The results of
the test show that the source position is reliably recovered up to a maximum noise ampli-
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Figure 3.6.: Maximum value of the median cross-correlation coefficients in each time step.
Example with signal-to-noise ratio of 2.5 and without velocity perturbation.
Black stars mark artifacts (i.e., non-source values), red stars indicate the max-
imum cross-correlation value at the source position.

tude of 60% of the maximum median cross-correlation value. For lower SNR one would
need additional information to recover the source position, e.g. the stability of the max-
imum cross-correlation value in time. The different perturbations to the velocity model
have only a minor influence on the median cross-correlation value. A possible explanation
is that the perturbations have a zero mean, thus the travel time differences may average
each other out.

3.4.2. Synthetic test with a double couple source

In the previous section I used a force in z-direction as a source to calculate synthetic
seismograms. Thus the radiation pattern depends only on the dip of the ray-trace, as
the radiation pattern is cylindrically symmetric. I would like to verify that the method
is able to reliably recover the source location of a seismic event such as an earthquake
with a variable radiation pattern. I therefore generate synthetic seismograms of a double-
couple source and locate the synthetic earthquake using the TRI method. I use the 3D
velocity model previously described in section 3.3 (with no perturbations in the velocity
values) and evaluate the complete 3D model volume for both the forward modeling and
the rebroadcasting in the double-couple synthetic test. The fault plane and slip direction
of the double couple source is characterized by three angles, the dip, the strike, and the
rake. For the test I chose a strike of 0◦, a dip of 45◦, and 90◦ rake.

Figure 3.8 shows the median cross-correlation value distribution within the model vol-
ume for a snapshot at t = 7.9s in which the maximum cross-correlation value occurs. The
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Figure 3.7.: 2D synthetic test of of noise and velocity perturbations: Maximum of all me-
dian cross-correlation values over all time windows for different noise am-
plitudes and velocity perturbations. Symbols in color indicate the maximum
value (at the source position), gray symbols indicate the cross-correlation val-
ues of artifacts.

results depicted in figure 3.8 show cross-correlation values exhibiting a value of 0.3 con-
centrated around x=16 km and y=27 km. The maximum median cross-correlation value
of 0.97 occurs at x=16.3 km and y=27.5 km, and at a depth of 10.9 km, which is 100
meter more shallow than the original source position but does not differ in a horizontal
direction. The relative error (based on the 90% cutoff criterion discussed in section 3.2)
is ±400 meters horizontally and ±800 vertically.

3.4.3. Location of a M 1.4 earthquake

As a final test of the method, I use the TRI method to locate a cataloged M 1.4 earth-
quake occurring on the 23th of June, 2010 at 04:27:06 am. Figure 3.9 shows the recorded
seismograms filtered between 1 Hz and 5 Hz. Testing the method initially with real earth-
quake data instead of tremor data has three advantages: first, the SNR is better, second I
have a location obtained with ray-tracing methods to use for comparison, and third, the
spectra of the earthquake includes lower frequency energy than the tremor data. The
longer wavelengths at low frequencies decrease the demands on the accuracy of the veloc-
ity model and allow us to potentially constrain how important velocity model inaccuracies
may be. Given the lower frequency energy present, I filter the seismograms first between
0.5 Hz and 2 Hz as shown in figure 3.10.

Figure 3.11 shows the median cross-correlation value distribution within the model at
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Figure 3.8.: Hypocentral location of a double-couple source using TRI. Color code indi-
cates median cross-correlation value within the model volume. The center of
the black square marks the original source position, the black star indicates
the retrieved source location. Black triangles denote station positions and the
yellow line is the surface trace of the San Andreas Fault.

t=19.0 s, which includes the maximum median cross-correlation value of 0.56. The de-
termined source position is approximately 1 km east of the main San Andreas Fault at
X=15.3 km+1.7km

−2.1km, Y=24.8 km+0.2km
−0.8km, and 9.9 km+3.4km

−3.5km depth, which includes the 1.5 km
thickness of the absorbing layer on top of the model. For comparison Käufl (2012) ob-
tained the source location at X=13.33 km ± 0.2 km, Y=24.42 km± 0.2 km, and 12.4 km±
0.1 km in depth by using an 1D velocity model averaged from the 3D model of Thurber
et al. (2006) and the program Hypoellipse (Lahr, 1999). Käufl (2012) improved the lo-
cation result with the program Velest (Kissling et al., 1995) by determining station and
velocity model corrections for the 1D model. The improved location at X=10.7 km ,
Y=24.76 km and 11.5 km depth is denoted in figures 3.11 and 3.13. The difference be-
tween the determined source location with the modified TRI method and the Hypoellipse
solution is 2 km horizontally and 2.5 km in depth while the difference to the improved
location is 4.6 km horizontally and 1.6 km in depth. A possible explanation of the dif-
ference while using the same data set is the use of the 3D velocity model in this study,
whereas Käufl (2012) used an averaged 1D model, which compensates for the velocity
differences on both sides of the San Andreas Fault using station corrections. An additional
factor which may cause differences in the hypocentral solution is the elongated station
distribution in y-axis direction.

The maximum cross-correlation coefficient of 0.56 obtained using the modified TRI
method is lower than that obtained in the synthetic test in section 3.4.2, which could
be due to multiple reasons: First, the velocity model may not be accurate enough, second,
the SNR may be too low, and third, there might be only a small amount of shear wave
energy recorded at some stations due to the geometry of the radiation pattern. The seis-
mograms in figure 3.10 suggest that the second and third factors may not be the cause of
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Figure 3.9.: Waveforms of a M 1.4 earthquake recorded at 23th of June, 2010, filtered
between 1 and 5 Hz.

the lower cross-correlation coefficient, as there is a clear S-phase visible on each station.
In efforts to reduce spurious correlation values resulting from inaccuracies in the velocity
model, I taper the S-phases. I determine the S-phase arrival within the seismograms by
searching for the maximum vector amplitude on the horizontal components for each sta-
tion and taper with a three-second long cosine window around the maximum amplitude.
Figure 3.10 depicts the tapered waveform in the frequency band of 0.5 Hz to 2 Hz.

The location result using the tapered waveforms (shown in figure A.1 in the appendix
A) is nearly identical to that calculated using no tapering, differing by 0.4 km horizontally
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Figure 3.10.: Waveforms of a M 1.4 earthquake recorded at 23th of June, 2010, filtered
between 0.5 and 2 Hz. Complete waveforms shown in black, the tapered
S-phase signals used in the waveform rebroadcasting are shown in red.

and 1 km vertically. More interesting is the appearance of the curl field functions at the
determined source position, i.e., the grid point where the highest cross-correlation value
occurs (figure 3.12). The curl field from the S-phases pulses are partially shifted in time,
on the order of one wavelength at at the gridpoint with the maximum value. Therefore, the
S-wave pulses must be also shifted at other gridpoints. The implications of the maximum
cross-correlation values being shifted up to one wavelength are that the velocity model is
only spatially accurate to within one wavelength in the 0.5-2 Hz frequency band (e.g., the
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Figure 3.11.: Hypocentral location of a M 1.4 earthquake determined using seismograms
shown in figure 3.10, filtered between 0.5-2 Hz. Color code indicates the
median cross-correlation values within the model volume. The center of the
red square marks the solution of Käufl (2012) for comparison, the black star
indicates the retrieved TRI source location. Black lines show the determined
error range. Black triangles denote station positions and the yellow line
indicates the surface trace of the San Andreas Fault.

wavelength for a wave with 2Hz dominant frequency traveling at 4 km/s implies that the
location accuracy will not be less than 2 km for the particular source region and receiver
distribution).

I look now at the earthquake location in the 1-5 Hz frequency band, since it is the inter-
esting frequency band for tremor localization. Figure 3.13A shows the median curl field
cross-correlation value distribution at t=16.6 s (the source time). The maximum value
of 0.3 occurs at X=14.8 km+4.8km

−7.5km, Y=23.6 km+1.9km
−1.6km, and 7.7 km+4.1km

−3.7km depth, different by
1.55 km horizontally from the previous location in the lower frequency band. The un-
certainty in the location increased by factor of approximately 3, however, the extent of
the errorbars encompasses the previous location. The increased errors are expected, as
the higher frequencies and thus the shorter wavelengths contribute to location inaccuracy.
Consequently, the maximum median cross-correlation coefficient decreases to 0.3, as the
defocussing is up to multiple wavelengths in the new frequency band.

If I calculate the location using only the tapered S-phase, the result improves signif-
icantly. Figure 3.13B shows the median curl field cross-correlation values, this time at
t=12.3s. The overall maximum of 0.26 occurs at t=16.7 s, similar to the untapered
case. However the snapshot at t= 17.3 s better represents the median cross-correlation
value distribution of the high values close to the global maximum, and so I therefore
use it for illustration purposes. The determined source position is at X=14.6 km+1.4km

−2.3km,
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Figure 3.12.: Functions of the curl field at gridpoint X=15.3km, Y=24.8km and 9.8km
depth for the seismograms shown in figure 3.10. The gray dashed line de-
notes the position of the time window with the maximum median cross-
correlation coefficient. Red indicates the position of the separate rebroad-
casted tapered S-phase. Note the shifted positions of the S-phase pulses.

Y=25.2 km+0.5km
−0.3km, and 8.2 km+2.6km

−0.4km depth, which is in good agreement with the deter-
mined location in the lower frequency band. Thus, by tapering around the S-phase I
reduce the volume with high cross-correlation coefficients which may result from velocity
model inaccuracies or the presence of S-wave coda in the untapered waveforms. Please
note, that a more accurate velocity model would increase the maximum cross-correlation
coefficient at the source position to values significantly higher than the artifact values (see
section 3.4.1) and thus, the tapering around the S-phase would be unnecessary. The func-
tions of the curl field at the source position for the frequency band of 1-5 Hz are shown in
figure A.2 in appendix A.

Finally, figure 3.14 summarizes the earthquake location result in time for the four cal-
culated cases: both the tapered and untapered cases in the 0.5-2 Hz, and the 1-5 Hz
frequency bands. The figure clearly shows the decrease of the maximum median cross-
correlation value in the higher frequency band as well as the stable position of the maxi-
mum in consecutive time steps of approximately 5 seconds. The time period of 5 seconds
of the stable position partly arises from the moving time window of the cross-correlation
of the curl field functions. The time window with a length of 1.5 seconds covers a short
signal up to 3 seconds, thus the remaining 2 seconds of the stable position arises from
the temporally extended source signal, which demonstrate the advantage of the modified
TRI method over the ’classical’ TRI method. The modified TRI method includes the phase
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Figure 3.13.: Hypocentral location of a M 1.4 earthquake in the frequency band of 1 Hz
to 5 Hz using the complete seismograms (A) and using the tapered S-phase
only (B) (figure A.1 in the appendix A) ). The color code indicates the median
cross-correlation value of the curl field within the model volume. The center
of the red square marks the solution of Käufl (2012) for comparison, the
red star indicates the source location calculated here. The black lines show
the estimated error range. Black triangles denote station positions and the
yellow lines indicate the San Andreas Fault surface trace.
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Figure 3.14.: Temporal progression of the curl field cross correlation values (top) and the
corresponding implied source location (bottom three panels) of the M 1.4
earthquake. Colored lines indicate two varying frequency bands and the
tapered (solid lines) vs. untapered waveforms (dashed lines). The upper
panel denotes the maximum median cross-correlation value and the lower
three panels show the position of the maximum within each time step. Black
dashed lines and the gray box indicate the location of Käufl (2012) for com-
parison. The middle two panels indicate a stable horizontal position of the
maximum correlation value in time.

information over a certain time period instead of only using the information of individual
time steps in ’classical’ TRI methods, which makes the modified TRI more robust in source
localization.

3.4.4. Location of a LFE event within a tremor episode

The previous section showed the ability of the modified TRI method to locate an recorded
M 1.4 earthquake, but also illustrated the inaccuracy of the velocity model used for the
rebroadcasting. The inaccuracy of the velocity model limits the precision of the location
result especially in the frequency band of 1-5 Hz, where tremor has its main energy. To
account for the limitations of the velocity model, I tapered a 3 second long cosine win-
dow around around the S-phase of the earthquake, which improved the location result
significantly.

In this section I apply the modified TRI method to a LFE within a tremor episode. The
low SNR of tremor makes the localization more challenging than the localization of an
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Figure 3.15.: Tremor episode recorded at 2nd of September, 2010, filtered between 1 and
5 Hz. Panel A shows the north component of the complete tremor episode.
The 25s long time window chosen for rebroadcasting is denoted by the red
dashed lines. Panel B shows the magnified detail around the time window
which includes a LFE event.

earthquake. Furthermore, the increased depths of the source locations entail longer travel
paths where velocity values may be less accurate, and lead to a worse source-receiver
geometry.

Figure 3.15A shows a tremor episode recorded on the 2nd of September 2010. A 25 s
long time window around a LFE at the end of the episode is indicated by red dashed lines.
The waveforms of the LFE are shown magnified in Panel B. Please note the figure shows the
waveform of only 15 selected stations. Other stations were neglected in the analysis due to
data gaps and poor SNR. Before rebroadcasting to the subsurface I tapered the waveforms
around the maximum value, or the most probable value of the S-phase of the LFE. Due to
the poor SNR of tremor at most of the stations, a visual inspection of the automatically
determined tapering window is necessary. In some cases the tapering window has to be
moved to another position, if a transient noise burst causes the maximum amplitude. The
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Figure 3.16.: Waveforms of a LFE event recorded at 2nd of September, 2010, filtered be-
tween 1 and 5 Hz. Complete waveforms shown in black, the tapered S-phase
signals used in the waveform rebroadcasting shown in red. The time window
is indicated in the tremor episode shown in figure 3.15 by red dashed lines.

waveforms of all components as well as the tapered waveforms are shown in figure 3.16.
The tapered phases used for rebroadcasting are shown in red.

The hypocentral location result is shown in figure 3.17. The red star marks the calcu-
lated source location, the black lines denote the errorbars. The black triangles show the
station distribution and the yellow lines indicate the San Andreas Fault surface trace. The
determined source location is at X=11.7 km+4.3km

−3.7km, Y=33.3 km+1.5km
−0.6km, and 22.8 km+1.8km

−5.7km
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Figure 3.17.: Hypocentral location of a LFE event within a tremor episode in the frequency
band of 1 Hz to 5 Hz using the tapered S-phase only. The waveforms of
the tremor episode are shown in figure 3.15 and the waveforms used for
rebroadcasting are shown in figure 3.16. The color code indicates the median
cross-correlation value of the curl field within the model volume. The center
of the red square marks the solution of Shelly and Hardebeck (2010) for
comparison, the red star indicates the source location calculated here. The
black lines show the estimated error range. Black triangles denote station
positions and the yellow lines indicate the San Andreas Fault surface trace.

depth, which includes the 1.5 km thickness of the absorbing layer on top of the model.
The maximum median cross-correlation value of 0.4 is about 0.1 higher than the maximum
median cross-correlation value of the located M 1.4 earthquake in the 1-5 Hz frequency
band described in section 3.4.3, likely due to the different number of stations used: while
for the localization of the M 1.4 earthquake in section 3.4.3 19 stations are used, only
15 stations could be used for the localization of the LFE event. The relationship between
number of stations and the maximum median cross-correlation coefficient is determined
in more detail in figure 3.21 in section 3.4.6. The errorbars in figure 3.17 are twice as
large compared to the errorbars of the location result of the earthquake in figure 3.13B).
Possible explanations are the greater depth of the LFE event (resulting in longer travel
paths), or a lower SNR within the seismograms.

We compare the determined source location with the results of Shelly and Hardebeck
(2010). Shelly and Hardebeck (2010) stacked up to 400 individual LFE’s from a LFE
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Figure 3.18.: Hypocentral location of a LFE event within a tremor episode in the frequency
band of 1 Hz to 5 Hz without tapering. The waveforms of the tremor episode
are shown in figure 3.15 and the waveforms used for rebroadcasting are
shown in figure 3.16. The color code indicates the median cross-correlation
value of the curl field within the model volume. The center of the red square
marks the solution of Shelly and Hardebeck (2010) for comparison, the red
star indicates the source location calculated here. The black lines show the
estimated error range. Black triangles denote station positions and the yel-
low lines indicate the San Andreas Fault surface trace.

event family to obtain P and S-phase picks and used them to locate the LFE event family
with triangulation. Thus, a direct comparison of both methods is inappropriate as the TRI
method locates individual LFE’s. However, the stacked LFE family location can serve as
a reference point. The stacked LFE event family source location of Shelly and Hardebeck
(2010) at X=11.63 km, Y=33.71, and 24.75 km depth (including the thickness of the
absorbing layer on top of the model) is indicated by a red square in figure 3.17. The
difference between both locations is 0.4 km horizontally and 2 km vertically.

A detailed look at the distribution of the median cross-correlation value in the fig-
ure 3.17 reveals mainly two spots with relatively high cross-correlation values that are
extended in the x-direction across the fault and causing the large uncertainty in the x-
direction. Once again, for a accurate velocity model one would assume high median
cross-correlation values centered around only one maximum as it is the case in the syn-
thetic test with a double couple source in section 3.4.2. Thus, the two regions with
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Figure 3.19.: Functions of the curl field at gridpoint X=11.7km, Y=33.3km and 22.8km
depth for the seismograms shown in figure 3.16. Red indicates the position
of the separate rebroadcasted tapered S-phase. The gray dashed line denotes
the position of the time window with the maximum median cross-correlation
coefficient for the rebroadcasted tapered S-phase.

high median cross-correlation values evidence the inaccuracy of the velocity model un-
der the assumption that the tapering windows are applied accurately. If we rebroadcast
the complete tremor waveforms without tapering around the LFE event the error range
is increased by a factor of 2 to 3 as it is also observed in the localization of the M 1.4
earthquake in the frequency band of 1-5Hz (see figure 3.13). The location result for the
rebroadcasted complete waveforms is shown in figure 3.18. The determined source posi-
tion is X=19.2 km +1.6km

−14.5km, Y=31.5 km+5.1km
−4.1km, and 26.7 km +0.6km

−11.3km depth, with a maximum
median cross-correlation coefficient of 0.33 at T=18.1s. The error range covers the source
position obtained with the tapered waveforms.

Figure 3.19 shows the source functions at gridpoint X=11.7 km, Y=33.3 km and 22.8
km depth, which is the source location indicated by the tapered waveforms. Red lines
indicate the source functions of the tapered waveforms, the gray dashed lines denote the
position of the time window where the maximum median cross-correlation coefficient of
0.40 occurs. The source functions of the complete waveforms are shown in black for
illustration purposes.
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Figure 3.20.: Hypocentral location of 35 LFE using the tapered S-phase only. Panel A
shows the plain view, panel B displays the vertical section in the X-axis and
depth section, and panel C shows the vertical section in the Y-axis and depth
section. The red stars indicate the determined source position, black lines
show the estimated error range. The small red dots mark the solution of
Shelly and Hardebeck (2010) for comparison and are connected with a gray
dashed line to the source positions determined here. Black triangles denote
all possible station positions and the yellow lines indicate the San Andreas
Fault surface trace. Please note, that the stations and number of stations used
is different for each LFE and therefore the individual station configuration of
each localization is not shown here. Furthermore, the depth axis includes the
thickness of the absorbing layer of 1.5km. The direction to north is indicated
by the black arrow in panel A.

3.4.5. Location of multiple LFE events

I apply the modified TRI method with tapering of the S-phases to 35 LFE’s from the
catalog of Shelly and Hardebeck (2010). The restricted number is caused by the limitation
of the computational time of the modified TRI method. The selection of the events is
based on two criteria: first, the LFE must have visibly higher amplitude on all stations
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start of time window X (km) Y (km) Z (km) Latitude
(deg. N)

Longitude
(deg. W)

hor.
diff.
(km)

vert.
diff.
(km)

1 2010-07-01 17:42:50 17.60+1.3
−9 37.00+3.5

−1.3 19.00+8
0 35.743 -120.221 6.11 -7.50

2 2010-07-01 17:42:50 17.60+1.3
−9 37.00+3.5

−1.3 19.00+8
0 35.743 -120.221 6.11 -7.50

3 2010-07-02 04:42:45 16.10 +4.3
−10.6 26.00+1.7

−1.4 24.50+2.5
−3.3 35.809 -120.313 3.20 -2.00

4 2010-07-02 13:59:20 6.40+0.4
−0.8 36.10+1.1

−0.3 23.80+2.5
−0.6 35.683 -120.322 5.57 0.05

5 2010-07-03 08:21:15 13.60+5.2
−1.9 39.00+1.3

−1.3 20.60+1.3
−2.2 35.706 -120.240 5.55 -3.65

6 2010-07-04 11:08:35 15.60+0.2
−8.8 34.30+0.6

−2.3 24.30+1.8
−2.1 35.750 -120.257 4.02 -0.45

7 2010-08-04 10:32:05 8.80+3.6
−1.5 43.80+0.8

−3.9 25.60+1.1
−8.4 35.645 -120.246 3.97 0.10

8 2010-08-04 10:40:00 10.10 +0
−0.1 44.90+0.3

−0.1 25.60+0.4
0 35.645 -120.227 2.37 -0.90

9 2010-08-06 00:35:25 14.40 +0
−3.7 42.80+2.6

0 17.70+4.7
0 35.685 -120.206 6.20 -8.80

10 2010-08-06 00:35:45 11.60+3.5
−8.4 48.40+1.5

−4.2 26.90+0.4
−8.1 35.630 -120.189 0.60 0.90

11 2010-09-02 10:31:40 7.00+6.5
−2.2 46.80+2.9

−4.5 27.10+0.2
−4.3 35.614 -120.239 5.73 0.60

12 2010-09-02 17:32:40 7.90+1.5
−0.1 37.20+0.3

−0.3 23.60+2.5
−1.5 35.685 -120.301 2.58 1.10

13 2010-09-02 19:27:40 11.70+4.3
−3.7 33.30+1.5

−0.6 22.80+1.8
−5.7 35.733 -120.297 0.42 -1.95

14 2010-09-10 02:29:05 12.90+0.1
0 40.90 +0

−1.3 24.00 +0
−1.2 35.689 -120.232 2.61 -2.50

15 2010-10-09 08:52:50 18.70+0.4
−10 41.30+3.5

−0.4 23.80+0.2
−7 35.720 -120.181 7.80 -2.70

16 2010-10-12 12:51:45 13.80+0.4
−0.3 28.40+0.1

−0.1 22.50+0.3
−0.1 35.779 -120.315 2.70 -1.75

17 2010-10-12 21:07:45 3.50+15.6
−0.3 32.80+9.7

−1.2 11.40+13.8
−5 35.689 -120.370 12.46 -15.10

18 2010-10-12 21:07:50 10.30+1.1
−0.3 39.30+0.1

−0.1 15.20+0.7
0 35.684 -120.266 3.50 -11.30

19 2010-10-22 14:31:30 20.20+0.6
−2.7 23.60+0.1

−0.7 23.70+0.7
−2.6 35.849 -120.296 7.69 -2.80

20 2010-10-26 12:17:15 4.10+10
−0.5 37.30+0.6

−1.9 18.90+0.5
−5.3 35.662 -120.332 6.38 -3.60

21 2010-11-07 02:45:45 11.40 +0
−5.1 37.10+6.4

−1.3 16.50+6.3
−4.9 35.706 -120.272 11.23 -10.00

22 2010-11-16 08:54:10 14.80+0.2
−5.5 43.20+3.7

−3.2 23.50+3.8
−5 35.684 -120.200 3.80 -3.00

23 2010-11-17 10:51:25 17.10+2
−1 33.50+1.2

−1.4 27.40+0.1
−4.2 35.764 -120.251 5.52 3.65

24 2010-11-17 10:57:55 9.60 +0
−1.3 41.00+0.5

−2.6 26.10+0.4
−3.7 35.669 -120.259 2.18 0.60

25 2010-11-24 11:26:15 14.10+3
0 16.30+0.6

−0.2 10.40+1.9
−3 35.863 -120.400 3.66 -15.35

26 2010-12-01 12:36:10 10.50+3.4
−5.1 44.90+0.7

−4.9 24.70 +2.2
−10.4 35.647 -120.224 2.24 -1.80

27 2010-12-01 12:39:15 13.00+2.7
−5.3 39.30+2.4

−3.3 25.10+2.2
−7.5 35.700 -120.243 3.95 -1.40

28 2010-12-28 14:46:35 13.10+0.3
−1.9 40.90+0.5

−0.5 23.30+3.3
−2.5 35.690 -120.231 3.31 0.05

29 2010-12-28 22:27:55 8.50+2.1
−0.4 44.50+0.3

−4.2 22.70+0.1
−10 35.638 -120.243 2.56 -0.55

30 2011-01-03 03:45:00 2.30+6.1
0 14.60+2.1

0 13.60+6.6
−8.9 35.805 -120.512 8.80 -7.40

31 2011-01-23 19:41:20 10.20+0.7
−2.6 42.20+2.3

0 21.10+1.5
−0.1 35.664 -120.246 0.98 -5.40

32 2011-02-03 01:42:45 7.80+4.1
−1.3 50.00 +0

−2.9 24.10+2.8
−1.4 35.597 -120.210 4.14 -2.40

33 2011-03-12 07:41:25 9.10+5.2
−0.5 49.90 +0

−9.9 22.10+5.2
−7.4 35.605 -120.199 7.43 -4.40

34 2011-04-04 21:05:55 7.00+4.2
−4.3 43.20+0.1

−3.2 17.80+0.7
−6.5 35.638 -120.265 4.06 -8.70

Table 3.1.: Determined source location of LFE’s with estimated error range in the local grid
coordinate system X,Y, and Z, and the corresponding latitude and longitude
values. Additionally the horizontal and vertical difference to the stacked LFE
family source locations of Shelly and Hardebeck (2010) are denoted.

that are used for the rebroadcasting so that the S-wave taper can be applied without
ambiguity. I assume a high median cross-correlation coefficient in the catalog of Shelly and
Hardebeck (2010) to be a proxy for a good SNR and search only for events with a median
cross-correlation coefficient > 0.5. Second, I want to locate LFE’s occurring throughout
the complete time span of the dataset, therefore I choose LFE’s based on the temporal
occurrence to account for different noise conditions at stations and data availability .

The values of the location results are listed in table 3.1 and the determined source
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3. Tremor localization

locations are visualized in figure 3.20. Panel A shows the plain view, panel B displays the
vertical section in the X-axis and depth section, and panel C shows the vertical section in
the Y-axis and depth section. The red stars indicate the determined source position, black
lines show the estimated error range. For reference, I also show the stacked LFE family
locations determined by Shelly and Hardebeck (2010), marked as small red dots in the
figure. I connect both solutions with a gray dashed line to illustrate the differences. The
yellow lines in panel A indicate the San Andreas Fault surface trace and the black triangles
denote all possible station positions. The stations and the number of stations used for
the localization of each LFE event is different and depends on the availability of data and
the SNR of the LFE in the seismogram. Thus the individual station configuration of each
localization is not denoted in the figure. The number of station used is listed in table 3.2.

The determined location of the LFE’s are mainly south of Cholame (Y ≥ 32 km) in a
depth between 20km and 27km. The bulk of horizontal uncertainty is mainly in the X-axis
direction and the events scatter in the X-direction around the SAF. The median uncertainty
amounts to 5 km in the X-direction, 2.6 km in the Y-direction, and 4.8 km in depth. For
reference, 18 events out of 30 have a horizontal difference less than 2km to the stacked
LFE family source locations of Shelly and Hardebeck (2010) in the y-direction, whereas
only 12 events differ less than 2 km in th X-direction. The average median difference in
the X-direction amounts to 2.7 km and 1.9 km in the Y-direction. The determination of
the depth is for location algorithms difficult due to geometrical reasons. Nevertheless, the
depths of the modified TRI method are comparable to the depths of the stacked LFE family
locations with a median difference of 2.6 km. In most cases the source locations of the
modified TRI method are more shallow than the source locations of Shelly and Hardebeck
(2010).

3.4.6. Relationship between location result and parameters

Next, I want to determine how parameters such as the median SNR of the LFE within
the seismograms, the number of station used, the maximum gap in azimuthal coverage
of the stations, and the distance to the nearest station influence the location result of the
modified TRI method. The SNR is calculated here by the maximum signal amplitude di-
vided by the maximum noise amplitude. The quality of the location result is a difficult
quantity to assess. Location quality could be measured by a comparison to source loca-
tions obtained by different methods, or by the size of the error of the determined source
location. Comparing my locations to those estimated by Shelly and Hardebeck (2010)
is not an appropriate approach, because they determine locations of event stacks, and I
determine the location of individual LFE’s. I therefore chose the range of the horizontal
uncertainty as a proxy for the quality of the location result. The parameter values are
displayed in table 3.2 and depicted in figure 3.21.

Figure 3.21 A)-D) shows the different parameters over the range of horizontal uncer-
tainty. The colored stars denote the values of the localization of an individual LFE. The
gray line indicates the best fit and the number in red gives the corresponding coefficient of
determination, the R2 value. The R2 value is based on the residuals to the best fit line and
hence indicates how well the data fits a regression line. A R2 value of 1 reflects a purely
linear relationship whereas a value of 0 indicates a horizontal line as best fit.
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Figure 3.21.: Statistical analysis between the location result and different parameters such
as the maximum gap in azimuthal coverage, nearest station distance, me-
dian SNR in the seismograms, number of stations used, and the maximum
median cross-correlation coefficient in the model. The quality of the location
is indicated by the horizontal uncertainty. Stars indicate the values of the
localization of individual LFE’s shown in figure 3.20. Gray dashed line dis-
plays the line of best fit, the red number gives the corresponding coefficient
of determination (R2 value).

Panel A indicates a very weak relationship between the maximum of azimuthal station
coverage as the stars seem to scatter around the trend of the line, although, the R2 value
of 0.082 is low. Not surprisingly, the horizontal uncertainty is increasing with an increas-
ing gap.
Panel B shows the influence of source-station distance. The R2 value of 0.080 indicates
a weak trend of short source-receiver distance is decreasing with horizontal uncertainty.
However, one must keep in mind that the influence of a single station decreases with the
increase of the number of stations.
Panel C suggests that the median SNR of the LFE’s in the seismograms, seem to have little
effect on the quality of the location result as suggested by the distribution of the stars in
panel C and the R2 value of 0.011. A reason is probably the tapering of the S-phase, which
removes the noise outside the tapering window. Nevertheless, one would expect at most
only a weak relationship as a strength of the modified TRI method is the search for phase
coherence rather than the search for the maximum amplitude within the superposition of
the wavefields.

75



3. Tremor localization

start of time window num.
of stat.

SNR azimuth.
gap (deg.)

nearest
station
(km)

max.
x-corr.
coeff.

1 2010-07-01 17:42:50 13 1.41 110.73 1.5 0.35
2 2010-07-01 17:42:50 16 0.93 110.73 1.5 0.35
3 2010-07-02 04:42:45 12 0.98 133.67 1.5 0.39
4 2010-07-02 13:59:20 11 1.07 179.25 2.1 0.31
5 2010-07-03 08:21:15 12 1.50 103.50 0.3 0.34
6 2010-07-04 11:08:35 19 1.50 120.46 4.6 0.27
7 2010-08-04 10:32:05 16 1.29 189.56 2.2 0.36
8 2010-08-04 10:40:00 12 0.99 218.50 3.8 0.37
9 2010-08-06 00:35:25 15 1.18 180.30 2.9 0.35
10 2010-08-06 00:35:45 9 1.18 245.03 5.7 0.59
11 2010-09-02 10:31:40 16 0.88 234.64 4.7 0.21
12 2010-09-02 17:32:40 16 0.93 112.08 1.8 0.41
13 2010-09-02 19:27:40 15 1.18 125.39 4.4 0.40
14 2010-09-10 02:29:05 14 1.13 129.50 0.7 0.39
15 2010-10-09 08:52:50 8 0.98 151.60 2.7 0.60
16 2010-10-12 12:51:45 11 1.24 145.44 3.1 0.56
17 2010-10-12 21:07:45 10 0.86 113.85 2.2 0.49
18 2010-10-12 21:07:50 13 1.10 128.01 1.0 0.50
19 2010-10-22 14:31:30 9 1.24 176.38 2.5 0.57
20 2010-10-26 12:17:15 9 1.14 147.75 2.2 0.72
21 2010-11-07 02:45:45 15 1.28 148.72 1.2 0.33
22 2010-11-16 08:54:10 17 1.21 177.46 2.4 0.37
23 2010-11-17 10:51:25 15 1.23 97.62 2.2 0.40
24 2010-11-17 10:57:55 19 1.27 157.40 1.4 0.36
25 2010-11-24 11:26:15 10 1.13 156.73 1.3 0.35
26 2010-12-01 12:36:10 14 0.83 199.59 2.6 0.54
27 2010-12-01 12:39:15 14 1.18 116.67 2.8 0.34
28 2010-12-28 14:46:35 14 1.00 178.42 2.7 0.28
29 2010-12-28 22:27:55 14 1.24 211.11 5.0 0.36
30 2011-01-03 03:45:00 9 1.23 201.84 4.0 0.35
31 2011-01-23 19:41:20 11 1.10 215.98 5.4 0.50
32 2011-02-03 01:42:45 16 1.06 268.57 5.8 0.33
33 2011-03-12 07:41:25 7 1.13 203.09 5.0 0.71
34 2011-04-04 21:05:55 17 1.25 240.57 1.7 0.34

Table 3.2.: Number of stations used, median SNR of the LFE’s within seismograms, max-
imum gap in azimuthal station coverage, the distance from the determined
source to the nearest station, and maximum median cross-correlation coeffi-
cient within the model for each located LFE.

The value distribution in Panel D suggests that the number of stations used does not effect
the horizontal error range. With the result indicated by panel A and B one could argue
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Figure 3.22.: Relationship between horizontal uncertainty and horizontal distance to the
solution of Shelly and Hardebeck (2010). Stars indicate the values of the
localization of individual LFE’s shown in figure 3.20. Gray dashed line dis-
plays the line of best fit, the red number gives the corresponding coefficient
of determination (R2 value).

that the distribution of the stations is more important than the number of stations.

Furthermore, I want to determine if the maximum median cross-correlation coefficient is
indicative of the location quality and thus panel E) in figure 3.21 plots the the maximum
median cross-correlation coefficient against the horizontal uncertainty. The majority of
the source locations with different horizontal uncertainty have a maximum median cross-
correlation value around 0.4, which results in a low R2 value of 0.03. Thus, the maximum
median cross-correlation coefficient is not eligible as proxy for the quality of the location.

Panel F in figure 3.21 shows a clear relationship between the number of station used and
the maximum median cross-correlation coefficient, which is supported by the R2 value of
0.487. The decrease of the maximum median cross-correlation coefficient with increasing
number of stations used is a result of the inaccuracy of the velocity model and or the
tapering. The degrees of freedom decrease with an increasing number of stations and it
becomes more difficult for the algorithm to find a grid point that optimizes the coherence
between all rebroadcasted wavefields.

The low R2 values evidence that the influence of single parameters on the quality of
the location result is only marginal to non-existent. A possible explanation would be that
the quality of the location result is dependent on a combination of parameters. Therefore,
I determined for each located LFE a summed parameter value Ps which is calculated as
Ps = w1 ∗ P1 + w2 ∗ P2 + ...wN ∗ PN , where P denotes the parameters and w individual
weighting factors between 0 and 1. Moreover, the parameters are normalized to values
between 0 and 1 and parameters with a negative expected trend, such as the maximum
gap in azimuthal coverage, are calculated as 1-P. Within a grid search I searched for a
combination that optimizes the R2 value. The best result provides weighting factors of
0.3 for the SNR, 0.9 for the gap in azimuthal coverage, 0.5 for the number of stations,
and 1 for the minimum station distance. However, the resulting R2 value of 0.098 is low
and in the order of the R2 values for the maximum gap in azimuthal coverage and nearest
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3. Tremor localization

station distance as single parameters. Hence, there is no evidence that a combination of
the determined parameters is controlling the quality of the location result.

Other possible reasons that could affect the quality of the location result are the maxi-
mum amplitude in the seismograms which determines the position of the tapering window
and a velocity model which suffers from a inhomogeneous distribution of inaccuracies.

In figure 3.22 the relationship between horizontal uncertainty and the horizontal dis-
tance to the LFE family source locations of Shelly and Hardebeck (2010) is illustrated. The
figure indicates that the source locations with smaller horizontal uncertainty tend to better
agree with the stacked LFE family source locations of Shelly and Hardebeck (2010). Under
the assumption that both values indicate the quality of the source location, the increasing
trend with a R2 value of 0.165 is expected. However, figure 3.20 reveals that a majority of
source location are at the edge of the volume marked by the error range. Thus, the trend
in figure Shelly and Hardebeck (2010) can be explained by the increasing distance of the
maximum cross-correlation value to the median error range position.

3.4.7. Median error range source determination of multiple LFE’s

The maximum median cross-correlation value, which determines the source position,
scatters in the X-direction around the fault in figure 3.20. Furthermore, figure 3.22 sug-
gests in case of an increasing error range an increase of the distance to the LFE family
source solution of Shelly and Hardebeck (2010), which could be explained by the obser-
vation that the maximum median position occurs in most cases at the edge of the de-
termined error ranges. Moreover, the range between maximum cross-correlation values is
quite small and hence it is debatable how robust the global maximum value is determining
the source position or if it is over-interpreting the data.

Therefore, I introduce a different manner to determine the source position. Instead of
only considering the global maximum value and hence relying on one value, I now de-
termine the source position by taking multiple high cross-correlation values into account
based on the error range estimation. The error range estimation is determined by the
positions of all median cross-correlation value maxima exceeding 90% of the global maxi-
mum median cross-correlation value. Hence, the source position is now determined as the
median of the error extent, rather than a maximum correlation value which varies only
marginally to all values exceeding the 90% cutoff.

Figure 3.23 shows the new location results based on the median error extent source
determination. Compared to figure 3.20, the locations are more tightly clustered, and
centered around the SAF. The median distance to the LFE family source locations of Shelly
and Hardebeck (2010) is now 1.9 km in X-direction, 1.1 km in Y-direction, and 3.7 km in
depth. The horizontal differences have been decreased significantly, whereas the vertical
difference has increased slightly and the locations are now on average more shallow. The
determined source position of each individual LFE is denoted in table B.1 in the appendix.

The median error extent source determination has the advantage of being based on
multiple values instead using only one value, thus it is expected to be more robust. The in-
creased compactness of the new source locations as well as the decrease of the horizontal
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Figure 3.23.: Hypocentral location of 35 LFE’s determined by the median error range us-
ing the tapered S-phase only. Panel A shows the plain view, panel B displays
the vertical section in the X-axis and depth section, and panel C shows the
vertical section in the Y-axis and depth section. The red stars indicate the
determined source position, black lines show the estimated error range. The
small red dots mark the stacked LFE family solution of Shelly and Harde-
beck (2010) for reference and are connected with a gray dashed line to the
source positions determined here. Black triangles denote all possible station
positions and the yellow lines indicate the San Andreas Fault surface trace.
Please note, that the stations and number of stations used is different for
each LFE and therefore the individual station configuration of each localiza-
tion is not shown here. Furthermore, the depth axis includes the thickness
of the absorbing layer of 1.5km. The direction to north is indicated by the
black arrow in panel A.

distance to the stacked LFE family source locations of Shelly and Hardebeck (2010) sup-
port the expectation. However, in cases where the error range is near to model boundaries
the determination of the source position can be erroneous. As an example, let us consider
a case in which high cross-correlation values occur in shallow depths of 15 km. Assuming
a real source depth of 25 km, the error range and thus high cross-correlation values must
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3. Tremor localization

also occur in depths of 35 km, which is exceeding the model dimensions. In such case, the
depth of the source position might be erroneous due to the extension of the model. In fact,
the more shallow average source positions in figure 3.23 might be caused by this issue.

3.4.8. Localization of individual LFE family members

Shelly and Hardebeck (2010) stacked up to 400 individual LFE’s to increase the SNR
and to obtain a family source location. However, due to the low amplitude character of
tremor and hence low cross-correlation values at individual stations, the individual source
locations are not expected to be identical and it is unclear how large the differences are.
As the modified TRI method is capable of locating individual LFE’s, the section shows
the individual source location of LFE family members, evaluated by both the maximum
median cross-correlation value and the median of the error range.

Within the located 34 LFE’s in section 3.4.5 and 3.4.7 12 LFE’s are classified as members
of the same LFE family by Shelly and Hardebeck (2010). Figure 3.24 shows once more
the locations, which are determined by the maximum median cross-correlation coefficient.
The source location scatter includes some outliers. However, the majority of the error
range covers the LFE family source location of Shelly and Hardebeck (2010). The median
distance between both source locations is 1.95 km in X-direction, 2.18 km in Y-direction,
and 2.85 km in depth.

Figure 3.25 shows the source locations determined by the median of the error range.
The source locations are more compact and apart from three outliers, all determined
source locations are in a depth between 20 km and 26 km. The median distance between
both locations is 1.25 km in X-direction, 2.25 km in Y-direction and 5.1 km vertically. Com-
pared to the source locations determined by the maximum median cross-correlation value,
the average horizontal distance decreased while the vertical distance increased as it was
observed in chapter 3.4.7.

Both figures show a variation of the individual LFE source locations compared to the
determined LFE family location. However, a differentiation between artificial scattering
due to uncertainties within the modified TRI locations and real perturbations within the
source location is impossible to distinguish. A estimation of the maximum scattering based
on the error range gives a cubic volume with 15 km edge length, which may be too large
for a meaningful estimation.

3.5. Chapter conclusions

In this chapter, I present a modified TRI method as a new method for tremor localization.
Instead of searching for a superposition maximum amplitude at individual time snapshots
as within classical TRI methods, the modified TRI method searches for phase coherence
over a short time period between the rebroadcasted wavefields. Thus, the advantage of the
TRI method is the independence of amplitude and the inclusion of temporal information,
which makes the modified TRI method more robust and suitable for low amplitude signals
and sparse station configuration as is the case for tremor localization. Moreover, in theory
the method does not rely on any a-priori information such as phase arrival times if the
signal to noise ratio is high enough.
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Figure 3.24.: Hypocentral location of 12 LFE family members determined by the maxi-
mum cross-correlation value. Panel A shows the plain view, panel B displays
the vertical section in the X-axis and depth section, and panel C shows the
vertical section in the Y-axis and depth section. The red stars indicate the
determined source position, black lines show the estimated error range. The
small red dots mark the stacked LFE family solution of Shelly and Harde-
beck (2010) for reference and are connected with a gray dashed line to the
source positions determined here. Black triangles denote all possible station
positions and the yellow lines indicate the San Andreas Fault surface trace.
Please note, that the stations and number of stations used is different for
each LFE and therefore the individual station configuration of each localiza-
tion is not shown here. Furthermore, the depth axis includes the thickness
of the absorbing layer of 1.5km. The direction to north is indicated by the
black arrow in panel A.

A synthetic test demonstrates the ability to reliably locate a double couple source at the
defined source position with a horizontal uncertainty of 400 m and a vertical uncertainty
of 800 m based on a 90% cutoff criterion. Moreover, a 2D synthetic test shows the source
location differs only ±100 m horizontally and ±400 m vertically for signals with a SNR in
the seismograms of down to 1.6. For lower SNR one has to include additional information

81



3. Tremor localization

x 
in

 k
m

de
pt

h 
in

 k
m

Y in km

5

10

15

45 40 35 30

5 10 15 20

25

1020304050

50

5

10

15

20

25

X in km

20 15 10 5
Y in km

A

B C

N

Figure 3.25.: Hypocentral location of 12 LFE family members determined by the median
of the error range. Panel A shows the plain view, panel B displays the vertical
section in the X-axis and depth section, and panel C shows the vertical section
in the Y-axis and depth section. The red stars indicate the determined source
position, black lines show the estimated error range. The small red dots mark
the stacked LFE family solution of Shelly and Hardebeck (2010) for reference
and are connected with a gray dashed line to the source positions determined
here. Black triangles denote all possible station positions and the yellow
lines indicate the San Andreas Fault surface trace. Please note, that the
stations and number of stations used is different for each LFE and therefore
the individual station configuration of each localization is not shown here.
Furthermore, the depth axis includes the thickness of the absorbing layer of
1.5km. The direction to north is indicated by the black arrow in panel A.
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such as the temporal and spatial stability of the maximum median cross-correlation value.
Furthermore, perturbations of the velocity model in the order of 20% do not affect the
location result. However, the tested velocity perturbations have zero mean, and could
potentially average each other out.

The method successfully locates a recorded M 1.4 earthquake both in the frequency
band of 0.5-2 Hz and in the frequency band of 1-5 Hz. However, the maximum median
cross-correlation coefficient value decreases to 0.3 for the higher frequency band, in which
tremor has its highest SNR. Furthermore, a test with only rebroadcasted S-phase pulses
reveals a shift of more than one wavelength at the determined source position, evidencing
inaccuracies of the velocity model and causing the low cross-correlation values. The loca-
tion result can be improved significantly by tapering around the S-phase pulse with a 3 s
long cosine taper in the seismogram, which reduces the uncertainty in the location result.

The larger uncertainties compared to the synthetic tests and associated with real data
are due to multiple reasons. First, in my analysis I use the 3D P-velocity model of Thurber
et al. (2006), which is interpolated to 0.1 km grid spacing from a more sparse distribution
of velocity values on the order of 2 - 20 km between the values. Taking into account the
low resolution of structures within the original velocity model and the frequency band of
2-8 Hz used, it is unlikely that complex travel paths of the coda can not be reconstructed.
Moreover, I derive from the P-wave model a S-wave velocity model and a density model by
assuming a Poisson ratio of 1.75 and use an experimental determined relationship between
vp and density ρ from Brocher (2005). Considering the branches of the SAF in the center
of the model volume causing highly clastic rock with a wide range of vp/vs ratios and the
different geological units on both sides of the fault, both conversions are associated with
a high degree of uncertainty. Furthermore, the calculation of wave propagation is done
under the assumption of an isotropic and elastic medium, which represents an idealized
case. And finally, noise within the seismograms influence the location result as well.

Therefore, the localization of low amplitude tremor is accompanied with large uncer-
tainties. To obtain feasible results, I apply the tapering techniques to LFE events. Thus,
the modified TRI method locates an individual LFE within a tremor episode with an un-
certainty of approximate 8 km horizontally and 8.5 km in depth. By comparison, the
method of Wech and Creager (2008) provides an estimation of the tremor episode loca-
tion in figure 2.11 with an horizontal uncertainty range of 30 km. Other methods which
located individual LFE’s have location errors on the order of 10 km or more (Payero et al.,
2008). In addition, the determined source positions are in good agreement with the LFE
family source position determined by Shelly and Hardebeck (2010), who stacked up to
400 individual LFE’s to improve the SNR and obtain precise LFE family locations. The dif-
ference between both location is 0.4 km horizontally and 2 km in depth. In total I locate
34 individual LFE’s with an average uncertainty for the individual determined LFE source
locations of 5 km in X-direction, 2.6 km in Y-direction, and 4.8 km in depth.

Furthermore, I determine the influence of individual parameters to the location result.
I find only a very weak impact of the maximum in azimuthal coverage and the distance
from the determined source to the nearest station on the horizontal uncertainty of the
determined location. The number of stations and the median SNR in the seismograms
do not show a explicit trend indicating any significant influence on the location result.
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Moreover, the value of the maximum median cross-correlation coefficient is not a proxy
on how well a source location is determined. However, I find a clear relationship between
the value of the maximum median cross-correlation value and the number of stations used
for rebroadcasting the recorded seismograms. The maximum median cross-correlation
value decreases with an increased number of stations, which is a result of inaccuracies of
the velocity model due to the decrease of freedom when using an increased number of
stations.

Due to the uncertainties associated with the velocity model, anisotropy, and noise in
the seismograms, the range between local maxima of cross-correlation values is in the
order of 0.05 and hence not a definitive indicator of a particular gridpoint marking the
source location.. Thus, determining the source position by searching for the highest me-
dian cross-correlation coefficient and relying on only one value may over-interpret the
data. Therefore, I introduce a different manner to determine the source position in the
modified TRI method, which is based on the 90% cutoff criterion of the error estimation
and hence on multiple maxima: the source position is defined by the median of the error
extent instead of the maximum median cross-correlation value. The technique improves
the robustness of the location result by making it more conservative, and provides a more
compact source location result. Furthermore, the determined source positions are in better
agreement with the stacked LFE family source locations of Shelly and Hardebeck (2010)
with an average horizontal distance of 2 km. However, the technique introduces a sys-
tematic bias at source positions near model boundaries, which is likely the reason why the
depths are in general more shallow compared to the source positions determined by the
maximum median cross-correlation value and by Shelly and Hardebeck (2010). A detailed
analysis of the effect is subject of future work.

Finally, I show the determined source position of 12 individual LFE’s, which are classi-
fied as one LFE family and therefore located at the same position by Shelly and Hardebeck
(2010). The source locations of the modified TRI method show increased scatter, how-
ever, it is impossible to differentiate between perturbations of the source position and
inadequateness of the method.

In summary, the modified TRI method locates individual low amplitude LFE’s with
higher precision compared to other methods which also locate individual LFE’s and in
theory without the knowledge of a priori information. However, the inaccuracies of the
velocity model demand the the application of a cosine tapering window. Moreover, the re-
broadcasting of individual recorded seismograms is computational demanding and hence
the localization is computational time consuming. The median error extent source location
is a promising approach, in fact, preliminary tests suggest a successful application to un-
tapered LFE’s. However, the right choice for the cutoff value and analysis of the potential
bias are subject of forthcoming work.
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Tremor is characterized by long-duration, low-amplitude, and slowly emergent phase ar-
rivals. While classic earthquake detection and location algorithms exploit the short-term
amplitude change at phase arrivals, the lack of distinct phase arrivals makes tremor detec-
tion and localization a difficult task. I introduce a new semi-automated method for tremor
detection in chapter 2 and present a new method for tremor localization in chapter 3.

The tremor detection is based on a neural network approach and the method identifies
and distinguishes tremor, earthquakes, and noise based on frequency content and horizon-
tal to vertical component products. To increase computational efficiency, the data volume
is reduced first using a waveform envelope cross-correlation. The method does not rely on
a priori information such as event templates and is capable of identifying tremor bursts of
variable duration, assuming some variation in tremor amplitude within the length of the
noise window (420 sec). Moreover, the sensitivity of the method can be adjusted by a set
of normalization factors, Fmean and Fstd.

The fundamental advance of the method is that it does not rely on master templates
and is not based on any assumptions about a minimum signal length. Removing such
restrictions permits the detection of a wider range of event types than present methods,
thereby increasing the potential for discovering tremor at different depths within the fault
zone.

The performance of the method is tested with a three week long test data set, indicating
a tremor detection accuracy of nearly 80% for the SOM and post processing steps by com-
parison to manual picks. I expect a similar detection accuracy for continuously recorded
dataset from May 2010 to July 2011, in which the method detects 2606 tremor detections
occurring in windows totaling over 55 h. A comparison of the SOM earthquake detections
with the Advanced National Seismic System (ANSS) catalog shows a detection accuracy
of approximately 90%.

Furthermore, the influence of SNR and number of stations used is determined in the
test data set period. The event detection is based on a minimum of 3 stations, however, I
find an optimum detection performance with approximately 10 stations for the particular

85



4. Thesis summary and perspective

network configuration. Analysis of the influence of individual stations shows that KIT11,
PKD, FROB, and VARB are the most valuable stations during the test dataset period. I
find a detection completeness of 96% for tremor events with a SNR above 3, decreasing to
approximately 80% for tremor signals with a SNR value of 2 or higher.

The method is tested against the tremor detection method of Wech and Creager (2008),
indicating both a higher sensitivity and a better accuracy. However, the method of Wech
and Creager (2008) provides a automated detection whereas the SOM needs a calibration
of the normalizing factors for each dataset.

The SOM method is in general very flexible and could be adjusted by supplementing
further features and/or by changing the detection sensitivity. Additional features such
as polarity might be useful when tremor is polarized as observed in Cascadia (Wech and
Creager, 2007). Moreover, taking into account the amplitude of the frequency band of
surface waves may help to identify and distinguish between triggered and ambient tremor.
Due to the calibration of the method, a parameter analysis is mandatory to determine an
optimum normalizing values for each feature. Furthermore, a sensitivity test of individual
parameters is necessary in case of a potential additional features, and a multi dimensional
parameter analysis is not trivial. Saltelli et al. (2008) describes numerous methods and
strategies, which has been developed to fulfill the task. However, a implementation of a
clever parameter sensitivity analysis is a remaining task.

The tremor localization is based on time-reversal imaging techniques. I present a mod-
ified TRI method which searches for phase coherence over a short time period instead of
the maximum amplitude of a superpositioned wavefield. The advantage of the modified
TRI method is the independence of amplitude and the inclusion of temporal information,
which makes the modified TRI method more robust. Moreover, in theory the modified TRI
method does not rely on any a priori information such as phase arrival times given a high
enough signal to noise ratio.

I show using synthetic tests that the modified TRI method is capable of locating a double
couple source at the modeled source position with an uncertainty of 400 m horizontally
and 800 m vertically. Moreover, the test indicates that the modified TRI method can locate
signals with a SNR down to 1.6.

The modified TRI method successfully locates a recorded M 1.4 earthquake. However,
rebroadcasted S-phase pulses reveal a shift of more than one wavelength at the determined
source position, evidencing inaccuracies of the velocity model and causing low median
cross-correlation values around 0.3. Thus, the location result has large uncertainties of for
example 13 km in the X-direction, which can be decreased significantly by tapering around
the S-phase pulse with a 3 s long cosine taper in the seismogram reducing the uncertainty
to 3.7 km in X-direction.

The low amplitude character of tremor adds to the problem of the inaccurate veloc-
ity model. In order to locate tremor, I apply the tapering technique to a 34 individual
LFE events within tremor episodes. The location results are associated with an average
uncertainty of 5 km in X-direction, 2.6 km in Y-direction, and 4.8 km in depth. Further-
more, I use Shelly and Hardebeck (2010) LFE family locations as a reference to show that
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locations are reasonable with a median difference between both locations of 2.7 km in
X-direction, 1.9 km in Y-direction, and 2.6 km in depth.

Furthermore, I determine the influence of individual parameters to the location result.
The maximum azimuthal coverage and the determined source and the nearest station only
weakly influences the horizontal uncertainty. The number of stations used and the median
SNR in the seismograms do not show a systematic impact on the horizontal uncertainty.
Moreover, the value of the maximum median cross-correlation coefficient can not be used
as a proxy on how well a source location is determined, however, I find a decreasing
relationship between the number of stations used and the value of the maximum median
cross-correlation value.

The low maximum median cross-correlation coefficient and the small range of coeffi-
cient values result from a combination of factors, including uncertainties of the velocity
model, anisotropy, and noise in the seismograms. Thus, determining the source position
by searching for the highest median cross-correlation coefficient and relying on only one
value may over-interpret the data. Therefore, I introduce a additional source determina-
tion manner based on the 90% cutoff criterion of the error estimation. The source position
is defined by the median of the error extent, which is based on the position of multiple
maxima. The technique improves the robustness of the location result and the locations
agree better with the stacked LFE family locations of Shelly and Hardebeck (2010) with an
average horizontal distance of 2 km. However, source positions near the model boundaries
might be subject to a bias.

Some remaining issues retain open and are interesting subject of forthcoming work,
such as the impact of a potential bias and the right choice of the cutoff value of the
median error extent source determination. In fact, preliminary tests suggest a successful
application of the median extent source determination to untapered LFE’s. Furthermore, a
weighting scheme for different stations and a S-wave velocity model derived by a flexible
vp/vs ratio may improve the location results.
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Appendix

A. Localization of a M1.4 earthquake: additional figures

Section 3.4.3 describes the localization of a M1.4 earthquake in two different frequency
bands. Additionally to the material presented in section 3.4.3 I show here in figure A.1
the waveforms used for rebroadcasting in the frequency band of 1-5 Hz and the curl field
functions at the determined source position in figure A.2.

B. Table of location result for multiple LFE’s

In section 3.4.7 I locate 34 LFE’s based on the median error extent. The determined
source location of LFE’s in the local grid coordinate system X,Y, and Z, and the corre-
sponding latitude and longitude values are given in table B.1.
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Figure A.1.: Waveforms of a M1.4 earthquake recorded at 23th of May, 2010, filtered be-
tween 1 and 5 Hz. Complete waveforms shown in black, the tapered S-phase
signals used in the waveform rebroadcasting shown in red.
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B. Table of location result for multiple LFE’s
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Figure A.2.: Functions of the curl field at gridpoint X=14.8km, Y=23.6km and 7.6km
depth for the seismograms shown in figure A.1. The gray dashed line denotes
the position of the time window with the maximum median cross-correlation
coefficient. Red indicates the position of the separate rebroadcasted tapered
S-phase.

99



Appendix

start of time window X (km) Y (km) Z (km) Latitude
(deg. N)

Longitude
(deg. W)

hor.
diff.
(km)

vert.
diff.
(km)

1 2010-07-01 17:42:50 13.75±5.15 38.10±2.4 23.00±4 35.713 -120.245 2.13 -3.50
2 2010-07-01 17:42:50 13.75±5.15 38.10±2.4 23.00±4 35.713 -120.245 2.13 -3.50
3 2010-07-02 04:42:45 12.95±7.45 26.15±1.55 24.10±2.9 35.789 -120.339 0.15 -2.40
4 2010-07-02 13:59:20 6.20±0.6 36.50±0.7 24.75±1.55 35.679 -120.320 5.83 1.00
5 2010-07-03 08:21:15 15.25±3.55 39.00±1.3 20.15±1.75 35.715 -120.226 6.22 -4.10
6 2010-07-04 11:08:35 11.30±4.5 33.45±1.45 24.15±1.95 35.730 -120.300 0.42 -0.60
7 2010-08-04 10:32:05 9.85±2.55 42.25±2.35 21.95±4.75 35.662 -120.248 2.21 -3.55
8 2010-08-04 10:40:00 10.05±0.05 45.00±0.2 25.80±0.2 35.644 -120.227 2.48 -0.70
9 2010-08-06 00:35:25 12.55±1.85 44.10±1.3 20.05±2.35 35.665 -120.212 4.34 -6.45
10 2010-08-06 00:35:45 9.15±5.95 47.05±2.85 23.05±4.25 35.625 -120.220 2.92 -2.95
11 2010-09-02 10:31:40 9.15±4.35 46.00±3.7 25.05±2.25 35.632 -120.227 3.78 -1.45
12 2010-09-02 17:32:40 8.60±0.8 37.20±0.3 24.10±2 35.689 -120.295 1.88 1.60
13 2010-09-02 19:27:40 12.00±4 33.75±1.05 20.85±3.75 35.732 -120.292 0.37 -3.90
14 2010-09-10 02:29:05 12.95±0.05 40.25±0.65 23.40±0.6 35.693 -120.237 3.13 -3.10
15 2010-10-09 08:52:50 13.90±5.2 42.85±1.95 20.40±3.6 35.681 -120.210 2.87 -6.10
16 2010-10-12 12:51:45 13.85±0.35 28.40±0.1 22.60±0.2 35.779 -120.315 2.74 -1.65
17 2010-10-12 21:07:45 11.15±7.95 37.05±5.45 15.80±9.4 35.705 -120.275 5.68 -10.70
18 2010-10-12 21:07:50 10.70±0.7 39.30±0.1 15.55±0.35 35.687 -120.262 3.44 -10.95
19 2010-10-22 14:31:30 19.15±1.65 23.30±0.4 22.75±1.65 35.845 -120.307 6.81 -3.75
20 2010-10-26 12:17:15 8.85±5.25 36.65±1.25 16.50±2.9 35.694 -120.297 1.70 -6.00
21 2010-11-07 02:45:45 8.85±2.55 39.65±3.85 17.20±5.6 35.673 -120.275 9.10 -9.30
22 2010-11-16 08:54:10 12.15±2.85 43.45±3.45 22.90±4.4 35.667 -120.220 1.33 -3.60
23 2010-11-17 10:51:25 17.50±1.5 33.30±1.3 25.15±2.05 35.767 -120.249 5.96 1.40
24 2010-11-17 10:57:55 8.95±0.65 39.95±1.55 24.45±2.05 35.672 -120.272 3.07 -1.05
25 2010-11-24 11:26:15 15.60±1.5 16.50±0.4 9.85±2.45 35.871 -120.386 3.00 -15.90
26 2010-12-01 12:36:10 9.65±4.25 42.80±2.8 20.60±6.3 35.657 -120.246 1.38 -5.90
27 2010-12-01 12:39:15 11.70±4 38.85±2.85 22.45±4.85 35.696 -120.257 3.93 -4.05
28 2010-12-28 14:46:35 12.30±1.1 40.90±0.5 23.70±2.9 35.685 -120.237 2.78 0.45
29 2010-12-28 22:27:55 9.35±1.25 42.55±2.25 17.75±5.05 35.657 -120.250 1.45 -5.50
30 2011-01-03 03:45:00 5.35±3.05 15.65±1.05 12.45±7.75 35.816 -120.478 5.63 -8.55
31 2011-01-23 19:41:20 9.25±1.65 43.35±1.15 21.80±0.8 35.651 -120.245 1.89 -4.70
32 2011-02-03 01:42:45 9.40±2.5 48.45±1.35 25.10±1.8 35.617 -120.207 2.19 -1.40
33 2011-03-12 07:41:25 11.45±2.85 44.95±4.95 21.00±6.3 35.653 -120.215 2.27 -5.50
34 2011-04-04 21:05:55 6.95±4.25 41.65±1.65 14.90±3.6 35.649 -120.277 4.22 -11.60

Table B.1.: Determined source location of LFE’s based on the median error extent in the
local grid coordinate system X,Y, and Z, and the corresponding latitude and
longitude values. Additionally the difference to the source locations of Shelly
and Hardebeck (2010) are given.
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