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Abstract

Electric vehicles (EVs) are a new type of flexible load in the power system. They
offer the ability to adapt the battery recharging process to a given objective.
Charging coordination of EVs can be performed with respect to technical,
economic or renewable energy integration objectives. The technical objectives
encompass peak load reduction and energy loss minimization, the economic
coordination objectives comprise cost minimization and profit maximization
problems. The integration of renewable energy sources can be addressed by EV
demand shifting that aims to balance the production of intermittent generators
against system load.

This thesis investigates the coordination potential of EV charging activity from
two perspectives: the individual demand side and, complementary to this, the
supply side incorporated by an EV fleet aggregator. The analysis of individual
behavior focuses on price-based charging coordination in the presence of op-
timally reacting EV-owners. The evaluation shows that charging coordination
can generate considerable savings and also increases the relative utilization of
volatile energy sources. Allowing for resale of stored energy to the power grid
can further increase savings, but is limited by battery wear conditions.

The examination of the supply side focuses on an EV aggregator aiming
to maximize the utilization of his renewable energy generation capacities by
employing the demand flexibility of the EV fleet accordingly. Since mobility
requirements need to be fulfilled, conventional controllable generators serve as a
back-up for EV supply in this case. The solutions of the mixed integer optimiza-
tion problem show that EVs provide considerable flexibility potential which can
be used to balance intermittent generation sources. Further results suggest that
EVs can cover more than 60% of their charging demand by renewable energy
sources in almost any scenario under investigation. The subsequent analysis
which applies a price-signal reflecting the scarcity of renewable generation
shows that static prices are prone to overcoordination and thus do not take
advantage of existing EV demand flexibility.

This work contributes to the field of Smart Grid research by adding new in-
sights regarding the value of charging control mechanisms that enhance the uti-
lization of renewable energy by EVs and reduce individual charging costs.
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Chapter 1

Introduction

The German "Energiewende" is an ambitious and groundbreaking initiative to
transform the current mainly fossil and nuclear fission based energy supply
of one of the foremost industrialized countries in the world to a sustainable
and predominantly renewable energy powered system. The "Energiewende"
thus addresses many facets of energy, and in particular electricity supply and
demand in order to achieve the target of 50% primary energy consumption
reduction in 2050 as compared to the value of 2008. This target encompasses an
increase of the share of renewable electricity to 80% of the yearly demand until
2050 (BMU, 2012b).

The goals of Germany are in tune with the intentions of the European Union
to dramatically reduce its carbon footprint, according to the goals formulated in
the Roadmap 2050. It states that greenhouse gas emissions are to be reduced by
80% until 2050 as compared to the year 1990. This goal also builds on a highly
decarbonized power system with a high share of renewable energy (ECF, 2010).

In order to address these goals all sectors of energy supply and consumption
must be examined with respect to their effectiveness, their carbon footprint, and
in particular their short and long run costs to society. In the German context,
the first steps of the transition were focused on the power system. Now other
sectors such as transport are increasingly being considered. In the near future
these yet still separated sectors will continue to build up interdependencies
as Electric Vehicles (EVs) are increasingly established as an alternative for
individual transportation. EVs are about three times more energy efficient1 than
conventional Internal Combustion Engine Vehicles (ICEVs), a circumstance that
provides substantial energy saving and emission reduction potentials (Pollet

1Average tank to wheel efficiency of EVs 66.5%, ICEV 15.1-17.8%. Primary energy efficiency is
dependent on EV power source.

1
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Figure 1.1: Primary energy consumption of Germany in TWh by sector (left) and by fuel
in the transport sector (right) for the year 2012 (AGEB, 2013).

et al., 2012). This potential can only be unlocked if predominantly renewable
energy sources are employed to charge the EVs. Another important aspect
of EVs is that they effectively reduce the dependency on oil from politically
unstable geographical regions and thus contribute to a higher energy supply
security (Sovacool and Hirsh, 2008; Kintner-Meyer et al., 2007).

The convergence of the transport and power sector can substantially increase
the energy efficiency of individual transport and reduce related carbon emis-
sions. Transportation accounts for 19% of the primary energy consumption of
Germany, whereas the power sector is responsible for the highest share with
27% or 1050 TWh in the year 2012 (cf. Figure 1.1). Energy demand in the trans-
port domain is covered to 93% by fossil fuels or their derivatives. At the end of
2012 more than 43 million light vehicles were registered in Germany, with about
30 million gasoline and 12 million diesel fueled vehicles (KBA, 2013). Electric
and hybrid vehicles have seen high growth rates of more than 30%-56% per year
but still constitute only a small share of the vehicle market. Nevertheless, the
ever increasing variety of models and lower end-consumer prices is starting to
positively affect the demand for EVs. The potential energy savings of a fully
electrified light vehicle fleet in Germany would amount to more than 200 TWh.
The effects of a wide-scale EV adoption are thus two fold: firstly, a higher pri-
mary energy efficiency is achieved and secondly, emissions are further reduced
if only renewable energy sources are used to supply the vehicles.
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1.1 Electric Vehicles for Demand Response in Smart
Power Systems and Markets

During the last decade Germany has witnessed an unprecedented increase in
renewable, and in particular volatile, generation capacity. Based on the security
provided by the Renewable Energy Act (EEG), which guarantees a fixed feed-in
tariff differentiated by generator type and its specific capital costs, the installed
capacity of wind-power and solar photovoltaics (PV) surpassed 29 GW for these
sources in 2012 (cf. Figure 2.1), BMU (2012a). In total more than 65 GW of renew-
able capacity are online as of 2012, at a total installed generation capacity of 172
GW in Germany (BNetzA, 2012). The formerly centralized power system thus
becomes more decentralized and requires an increasingly more flexible demand
side and more flexible generators to enable a safe and stable operation. Since a
main part of the renewable supply is intermittent and uncontrollable in its gen-
eration output, the demand side, and in particular EVs, need to coordinate their
charging activities in order to realize the full efficiency and emission reduction
potential.

The Smart Grid paradigm is one building block to enable the integration of
numerous decentralized generation and demand side resources. It enables an
efficient communication and control in the increasingly decentralized structures.
The Smart Grid can be understood as a combination of enabling ICT technolo-
gies (hardware, software, or practices) that jointly make the power delivery in-
frastructure - in particular the grid - more reliable, versatile, secure and more ac-
commodating for the integration of distributed and intermittent resources. This
will make the grid ultimately more useful to consumers (Sioshansi, 2011).

The Smart Grid thus has the potential to change the power system structure in
order to address one of the main demand side flaws of power markets: the lack
of real time metering and billing and related to this, the information and active
integration of the demand side in the price determination of power supply for
a given time interval (Stoft, 2002). In a decentralized system power flows be-
come bidirectional, which also requires communication between the distributed
resources to safely operate the grid. An active demand side, and in particular
demand response is crucial for an economically efficient and technically secure
operation of a power system with a high share of variable generation sources.
The value of demand response is higher in rather inflexible conventional gener-
ation structures as they are still prevalent in Germany (Strbac, 2008).

Flexible loads such as EVs offer the potential to participate as active demand
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resources in the balancing of the power grid, be it on a local or global level.
EVs are rather large loads, since they are comparable to the load of an aver-
age German household with respect to their yearly energy demand2. EVs are
already equipped with charging controllers that can implement different charg-
ing strategies given the available infrastructure. The possibilities of EV charging
coordination will thus further be investigated in this thesis.

1.2 Research Questions

Active demand side integration can be implemented in different ways. At the
center of this work are price based demand response programs and the assess-
ment of EV demand side flexibility for the integration of fluctuating renewable
energy generation sources in a smart grid environment.

1.2.1 Individual Economic Assessment of EV Charging
Strategies

At the core of price based demand response programs are variable price incen-
tives (Albadi and Elsaadany, 2008), implemented by e.g. a temporally varying
energy price. This enables EV-owners to decide to what extent they are willing
to adapt their demand according to their preferences. Following the basic spot
pricing concept of Caramanis et al. (1982), a variable pricing scheme based on
empirical price data of the German wholesale market is employed as the eco-
nomic basis of the following analysis. Given different goals or system operation
settings the variable price can function as a scarcity signal to adequately repre-
sent the availability of certain resources such as renewable power or distribution
grid capacity (Flath et al., 2013).

Existing analyses dedicated to the assessment of the economic viability of dif-
ferent price based charging strategies for EVs either focus on the provision of
ancillary services and in particular regulation services (Andersson et al., 2010;
Kempton and Tomić, 2005a; Sortomme and El-Sharkawi, 2011) or on the sys-
tem wide impact of large numbers of EVs with respect to the market outcome
(Sioshansi, 2012; Sioshansi and Miller, 2011; Goebel, 2013). The provision of reg-
ulation by EVs in a vehicle-to-grid (V2G) operation mode is analyzed and found

2Standard three person household yearly consumption in Germany: 3400 kWh. This corre-
sponds to a yearly driving distance of 17,600 km at 0.18 kWh/km and 93% charging efficiency
(BDEW, 2012).
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to be potentially profitable (Andersson et al., 2010; Kempton and Tomić, 2005a).
V2G though requires a reliable availability of EVs for power grid purposes and
needs to be performed under considerations of battery degradation parameters
(Peterson et al., 2010). Further technical analyses which focus on distribution
grid loss minimization and peak load reduction do only consider direct control
schemes or simplistic time-of-use (TOU) tariffs without performing an individ-
ual economic evaluation (Acha et al., 2010; Lopes et al., 2010).

In this complex environment of technical and economic interdependencies,
this work contributes by providing a predominantly individual economic
evaluation of different objectives for EV charging coordination. Given empirical
data for prices and the modeling of driving patterns and economically rational
EV-owners the following first research question (RQ) is addressed:

RQ 1 - Cost of Individual EV Charging: What are the individual electricity costs
of EVs following an uncoordinated, economically optimized, system load minimal or
wind-energy share maximizing charging strategy?

The investigation of this and related questions is performed in Section 4.2 by
implementing and solving linear optimization models that minimize the elec-
tricity costs incurred by an individual EV, given that the mobility requirements
are always fulfilled. Further analyses consider a more sophisticated representa-
tion of battery degradation costs in a comparable setting as above. In addition
the feed-in of energy into the power grid (i.e. V2G) is also considered and
evaluated with respect to its individual economic viability. The consequential
research question is thus:

RQ 2 - Economic Evaluation under Consideration of Storage Costs: What are
the individual costs, including battery degradation, of charging and discharging electric
vehicles employing a cost minimizing charging strategy while still fulfilling the given
mobility profile?

This analysis is described in detail in Section 4.3 and implements a quadratic
linear optimization objective function which is minimizing the resulting costs
by choosing lower price intervals for charging and by adjusting the power rate
at which charging occurs such that the overall individual costs including the
battery degradation costs are adequately accounted for. The constraints that
are considered include, as before, the fulfillment of the individual driving pro-
file of every EV in the optimization period, as well as the adherence to the EV
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and charging infrastructure specifications. Also the economic assessment is im-
proved with respect to the German power market regulation framework and
thus allows for a more realistic evaluation of the economic viability of wholesale
energy market based V2G charging strategies.

1.2.2 Renewable Energy Integration Potential of EV Fleets

Following the individual economic perspective, the demand flexibility poten-
tials of EV fleets and their capability to directly utilize fluctuating renewable
power sources need to be assessed. EVs charged with renewable power reduce
their lifetime emissions by at least 80% as compared to conventional vehicles
(Helms et al., 2010)3.

Since the demand of one EV is comparably small even to most decentral re-
newable generation sources, the capacity of several EVs needs to be bundled
by a coordination instance to make it accessible to the power system or the re-
spective market. For this task the role of the EV aggregator is introduced in
literature (Kempton and Letendre, 1997; Bessa and Matos, 2012). Most analyses
focus on the reduction of imbalances caused by volatile renewable generators
through EVs (Galus and Andersson, 2011; Druitt and Frueh, 2012; Goeransson
et al., 2010) and the potential of the vehicles to reduce emissions in large power
systems (Denholm and Short, 2006). In contrast to this there is little work that di-
rectly evaluates the flexibility potential of EV demand to respond to intermittent
generation patterns. In addition EV mobility patterns are mostly approximated
and not based on empirical input data as in the work at hand.

Given the context of an EV aggregator fleet and a fixed intermittent genera-
tion capacity over the analysis time frame, the following research question is
addressed:

RQ 3 - Scheduling for Renewable Energy Utilization: Which share of renewable
energy can be directly utilized by a fleet of EVs being scheduled according to differ-
ent renewable generation patterns in comparison to an uncoordinated charging strategy?

This question is analyzed in Section 5.2 by using a supply side centered mixed
integer optimization problem. The objective function of the EV aggregator is
to minimize the dispatch of a conventional controllable generator, given an in-

3Based on a life-cycle analysis including the emissions for the manufacturing of the vehicles.
Operative emissions for wind-power are 24 g CO2 / kWh as compared to coal-power with
750 g CO2 / kWh (UBA, 2011; Burkhardt et al., 2007).
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termittent generation profile of wind and/or solar source for the optimization
period of one week. Since the intermittent supply is inherently uncertain over
longer periods of time, the optimization is also performed under similar assump-
tions for a shorter optimization horizon of one day, but still for the consecutive
period of 51 weeks of the year.

The analysis establishes a benchmark for the ability of EV fleets to adapt their
demand to a volatile, but known, generation source while fulfilling mobility
requirements. This assumes hierarchical direct load control of the participating
EVs. Since not all EV-owners are likely to let the utility company control their
individual charging process, price based incentives as addressed in the previous
section are also evaluated as a means of charging coordination for the aggregator
following a decentral decision making paradigm. The corresponding research
question can thus be formulated as follows:

RQ 4 - Price Based Renewable Energy Utilization: Which percentage of renew-
able energy can be utilized by a fleet of EVs if charging is coordinated via a price signal
mapping the scarcity of these intermittent sources?

This question and an additional economic evaluation based on the wholesale
energy market prices of the resulting charging actions are addressed in Section
5.3. The approach employs an individual linear optimization model that, given
a variable price from the aggregator, minimizes the electricity costs of the EV-
owner. This part of the model corresponds with the approach in Section 4.2.
In the other part of the model the variable price calculation of the aggregator
based on the availability of renewable power, the availability of the vehicles and
the conventional back-up generator is performed. This conventional resource
ensures that all mobility requirements are fulfilled appropriately.

Chapter 5 thus provides insights on the ability of EVs to utilize renewable
power sources, possible charging coordination mechanisms and their incentives,
and an economic evaluation based on empirical price data of the German whole-
sale energy market.

1.3 Structure of the Thesis

The thesis is structured as follows (cf. Figure 1.2): Chapter 2 lays the foundations
for a comprehensive understanding of the power system structure, the current
and future developments with respect to the Smart Grid and demand response
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Figure 1.2: Overview of the thesis structure.

in the particular case of EVs. It also addresses previous work from the context
of EV charging coordination and its technical, renewable energy integration and
economic optimization centered objectives.

Chapter 3 characterizes the methodological background and the input data
that is employed for the simulation based analyses. Chapter 4 then provides
a demand side perspective and thus individual evaluation models and results
with a predominately economic focus, while Chapter 5 performs the potential
analysis with respect to the integration ability of renewable power by EVs and
an economic evaluation of resulting charging actions. Chapter 6 summarizes
the findings and provides conclusions that result from the evaluation. Finally
limitations of the analysis and future work opportunities are addressed.



Chapter 2

Towards Smart Power Systems and
Markets: Foundations

2.1 Introduction

The goal of this chapter is to capture the main context of the research questions
that are going to be addressed in Sections 4 and 5. Electric Vehicles are an in-
creasingly important part of the current and future power markets and systems.
In order to give a comprehensive description of their role, this chapter focuses on
the general development of power markets in Europe and especially Germany,
as well as the definition, the development and deployment of the Smart Grid
and its infrastructure. This will enable a more active demand response, a cru-
cial concept that is necessary to integrate the intermittent power sources into the
system, and a field in which EVs can subsequently play an important role.

2.2 Development of the Power System

Developments like the Smart Grid or Demand Response are a special and more
recent part of a long development of the power system since its large scale roll-
out starting in the end of the 19th century. Therefore this section will capture
some of the most relevant steps of this important evolution.

After groundbreaking electro-physical discoveries in the beginning and the
mid 18th century (e.g. by Alessandro Volta, Michael Farraday and James Clark
Maxwell), continuous development made electric power a new source of energy
in the urban centers of Europe and primarily the east coast of the United States
by the 1880s (Schwab, 2009). The prevailing technology at this time was Thomas
Edisons Direct Current (DC) System. Lighting and increasingly electric engines
were the main loads that had to be served by the DC power system. The elec-

9
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tric light system was competing with the gas powered infrastructure and could
provide better lighting while being less expensive and potentially less harmful
when malfunctions occurred. The convenience of turning electric appliances
simply on and off, and the less infrastructure demanding installation as com-
pared to other sources of energy, made, and still make electricity one of the most
important sources of energy in daily applications. This fact is due to the physical
properties of electricity and its high amount of "Exergy", i.e. the high amount of
usable energy for the foreseen application.

The DC power system was by design and mostly because of its physical con-
straints a local, or distributed system. Power was generated near to the load that
needed it, e.g. in factories for the manufacturing processes, or near or in the mid-
dle of communities that constituted the consumers. This was mainly due to the
fact, that with increasing distance from the generator, the losses in a DC system
increase. Due to the constraints of Ohms Law the resistance of a conducting ma-
terial will increase proportional to its length, given a fixed diameter (Tipler and
Mosca, 2008). So comparably short distances (i.e. less then 10 km) to the sources
were necessary to still deliver a significant part of the generated electricity to the
designated loads.

In contrast to this the AC or alternating current system significantly advanced
by Nikola Tesla and promoted by George Westinghouse had different proper-
ties. One of the most relevant differences to the DC system is the fact that not
all system components have to operate at the same voltage level. The voltage
level of 110 V which was standard in the United States at the time, would be
applied to all connected consumers, so appliances needed to be designed to op-
erate at this level. On the other side, this fact constrained the possibility to use
higher voltages for transmission of electric distances. The physical properties of
AC allowed to uncouple the transmission and distribution of electricity because
transmission could be done at higher voltages but lower currents which in turn
reduced the losses considerably. Supported by invention of the AC motor and
improved transformer design by Tesla, the AC system started to prevail against
the DC system, as higher powered stations and higher voltages were installed
to cope with the growing demand. AC bases systems finally became the world
standard being implemented in different fashions but mainly with a frequency
of either 50 or 60 Hz and a distribution system voltage of 220-240 or 110-120 volt
(El-Hawary, 2008).
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2.2.1 Power System Economics

As the power systems covered more and more load the individual power
stations were increasingly connected to each other by high voltage transmission
lines. This increased the quality and reliability of service and stepwise lead to
the highly interconnected systems that are in place today. The electricity grid is
a natural monopoly, as due to the subadditivity of the utilities cost-functions,
it does not make economic sense to install more than one connection to the
same load if its requirements are physically met (Erdmann and Zweifel, 2007).
Generation in turn can be allocated in a competitive market if transparent and
non-discriminatory access to the transmission grid is granted (Stoft, 2002). But
the prevailing solution in the starting times of the power infrastructure were
integrated utility companies, operating both generation and distribution of
electric energy. In some European countries, including Germany, integrated
utility companies were mostly owned by a local or federal governments, as
electricity was and still is perceived as an important strategic asset for the
economic development of a country (Krisp, 2007). In North America a private
sector owned integrated utility model was adopted including regulation by
federal institutions like the Federal Energy Regulatory Commission (FERC)
(El-Hawary, 2008). This operational model of the power system was profoundly
altered by the liberalization initiatives carried throughout the 1980s and 1990s
to in North America and Europe.

The liberalization of the power sector followed a general trend in which state
owned or highly regulated natural monopoly industries were stepwise deregu-
lated or restructured and subsequently privatized as for example, air lines, mail
and rail systems and more similar in structure to the power sector, telecommu-
nications. The general goal of the liberalization process was to

"..create new institutional arrangements for the electricity sector that pro-
vide long-term benefits to society and to ensure that an appropriate share
of these benefits are conveyed to consumers through prices that reflect the
efficient economic cost of supplying electricity and service quality attributes
that reflect consumer valuations."(Joskow, 2008).

The means by which this was to be, or should be achieved included the pri-
vatization of state-owned monopolies to create hard budget constraints and in-
centives for performance improvements, vertical separation of potentially com-
petitive segments (like generation, marketing and retail supply) from segments
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that would be continued to be regulated (transmission, distribution, system op-
eration). In addition a horizontal restructuring of the generation segment was
needed in order to create an adequate number of competing generators thus
mitigating market power of single generation firms. The creation of an indepen-
dent institution to run a wholesale spot energy and operating reserve market for
real time balancing of demand and supply and to organize system management
and operation, commonly referred to as the Independent System Operator (ISO)
was also necessary. Many countries, and several states in the U.S. adopted the
major institutions mentioned before, but there are still considerable differences
between the "textbook" model of market liberalization and restructuring and the
actual implementation in place (Joskow, 2008).

In Europe and especially in Germany market liberalization was initiated first
in the retail segment. This opened up the market for increased retail competi-
tion between suppliers, but initially left the conventional regional monopolistic
structure of the generation and transmission sector untouched. This changed
from 2005 on, as the required legal and later ownership unbundling of verti-
cally integrated utilities was gradually realized, following the requirements of
EU-regulation and the steps mentioned above.

Besides market restructuring, the political initiative to create a more sustain-
able power system and technological improvements by introducing and sup-
porting renewable generation technologies since the early 1990s continued to
alter the overall system properties. Renewable generation sources are predomi-
nantly distributed resources that mostly have an intermittent generation pattern
which cannot be controlled in its general output level, i.e. wind and solar gener-
ation. After the beginning of market liberalization in Germany in 1996 through
1998, the government increasingly supported the development of renewable en-
ergy by passing legislation which guaranteed new renewable generation a fixed
compensation per kWh produced, a feed in tariff that would cover for the in-
vestment and operation costs for each generator and some surplus. This law,
the Renewable Energy Act ("Erneuerbare Energien Gesetz", EEG) initiated an
unprecedented growth of distributed and renewable generation capacity in Ger-
many over the last decade, cf. Figure 2.1 (BMU, 2012a).

2.2.2 Towards the Green Power System

The installation of new renewable generation capacity was at first dominated
by wind-power. But as most of the more profitable sites in northern and east-
ern Germany were allocated, or not included for development due to political
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Figure 2.1: Development of renewable electricity generation and capacity in Germany
since 1990, BMU (2012a).

reasons, Photovoltaics (PV) increasingly contributed to the new capacity as in-
stallation prices dropped from 2006 on to the present day in 2013. Biomass and
especially Biogas contributed increasingly, reaching a level of 5.4 GW of installed
capacity at the end of 2011 (BMU, 2011). Wind-power topped 29 GW and PV
more than 25 GW in 2011 while installation rates for 2012 kept growing even
though the feed in tariff for PV was substantially lowered to slow down instal-
lations for reasons of cost control and grid stability, resulting in a installed PV
capacity of over 29.7 GW in mid-2012 (BSW, 2012). Through this increasing dy-
namic in the installation of renewable generation sources, Germany was able
to cover more than 20 % of its gross yearly power consumption by renewable
sources at the end of 2011 (BMU, 2012a). The German power sector is thus being
reshaped continuously by three major driving forces: the market liberalization
process which now focuses on a stronger connection and synchronization with
the surrounding countries, the dynamics of the renewable generation develop-
ment and by the stepwise nuclear phase-out until 2022.

These developments put a high pressure of the conventional power system ar-
chitecture. This architecture was defined by the needs of centralized integrated
utilities formed by the developments in the beginnings of the power system as
described above. The main structure relies on three general voltage levels, a high
voltage (HV) transmission and subtransmission network (including voltages be-
tween 35 - 110 kV, and 230 - 380 kV for Extra-HV), a medium voltage distri-
bution network (voltages of 1kV - 30 kV) for regional and shorter interregional
connection, and the low voltage network with 0.22-0.38 kV for the connection of
end-customers (Erdmann and Zweifel, 2007; El-Hawary, 2008).

The transmission and in particular the distribution networks were designed
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Figure 2.2: Structure and value chain of the conventional power system. (Own illustra-
tion and according to Valocchi et al. (2007))

to deliver the energy from the centralized power generation unit to the more or
less distant customers on the medium and low voltage network. This included
only a unidirectional flow of energy from the source to the consumer, cf. Figure
2.2. In this system distribution level companies would serve their customers
and also communicate a forecast of the expected load based on historic data
and weather conditions of their control region to the respective transmission
system operator (TSO) or independent system operator in the North American
power system. The TSO/ISO would then determine for at least one day ahead
for each 5-15 minute time interval of the next day, which load was expected and
would dispatch the available generation accordingly. This generation used to
be, and still is in large parts constituted by thermal power plants that can be
controlled in their output in order to follow the load in every time step. The
economic dispatch will be further addressed in section 2.5. Also the TSO or ISO
is operating the system and purchases ancillary services in order to guarantee a
stable system frequency of 50 Hertz (Hz) in Europe, or 60 Hz in the U.S.. This
is achieved by balancing system load and generation in every instant during
operation.

The general value creation chain and service delivery was organized accord-
ing to this centralized energy delivery paradigm. The vertically integrated util-
ities often combined several or all of these steps in their company, from gener-
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ation to transmission and distribution as well as sales, marketing and metering
of end-customers. In this architecture the customer was mainly passive and not
metered on a real time basis. As there was only a unidirectional power flow,
there also was only a mostly unidirectional information flow, from the utility to
the consumer, in general only for administration or billing purposes (Valocchi
et al., 2007). The mentioned drivers are increasingly altering the requirements
to the power system, which with a growing share of intermittent generation,
needs do become more flexible in balancing load and generation as it is cur-
rently capable of when relying on the conventional system structure. Balancing
requirements are mostly met by flexible generation units like combined cycle
gas turbines (CCGT) or pumped hydro generation that can respond with high
power change gradients to the requirements of the grid. These resources though
are limited in their availability, be they constrained by the geographic properties
of a country or the costs for keeping power plants on stand-by for renewable
generation drop-outs or sudden load changes that they have to balance. There-
fore, with increasing intermittent resources on the grid, a more flexible demand
side is technologically necessary and also economically required, (Stoft, 2002;
Ramchurn et al., 2012).

The development of the internet and its tremendous impact on nearly all sec-
tors of the economy and society also enables a different way to operate and co-
ordinate the power system. The increasingly distributed structure of generation
and incrementally added flexible demand resources need to be coordinated to
respond to fluctuations in the power grid. This requires an additional layer of
ICT infrastructure for communication between these resources and the TSO /
ISOs and with each other. Enabling communication and coordination between
distributed generation and demand resources and the conventional actors in
the power system can be facilitated by the infrastructure and the concept of the
"Smart Grid", which will be explained in the next section.

2.3 The Smart Grid Concept

The term "Smart Grid" is not consistently defined in the same way in Europe or in
the United States. Nevertheless there is a significant overlap of what this concept
means to both regions. In Europe the Smart Grid and the according initiative en-
vision a electricity network that must be (European Commission, 2006): Flexible
to fulfill customers needs, whilst responding to the challenges of a restructuring
and more decentralized power sector. Also it has to be accessible, meaning that
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it grants connections to all network users, in particular for renewable and high
efficiency local generation with low carbon emissions. The next core character-
istic is reliability, which assures security and quality of supply, consistent with
the demands of the digital age with resilience to hazards and uncertainties. The
last feature is an economically efficient network that can provide value through
innovation, efficient energy management and competitive markets (European
Commission, 2006).

In the U.S. the Smart Grid is perceived e.g. by the Department of Energy as:

A fully automated power delivery network that monitors and controls every
customer and node, ensuring a two-way flow of electricity and information
between the power plant and the appliance, and all points in between. Its
distributed intelligence, coupled with broadband communications and auto-
mated control systems, enables real-time market transactions and seamless
interfaces among people, buildings, industrial plants, generation facilities,
and the electric network. (Ramchurn et al., 2012)

In Germany, the definition of what the Smart Grid Concept encompasses are
close to the European perspective, in particular it is perceived as a system that in-
cludes and links intelligent generation devices, storage appliances and network
equipment by means of ICT. Its objective is a transparent and cost-efficient, as
well as secure and robust system operation and sustainable supply of electric
energy (DKE, 2010).

The Smart Grid can thus be seen as a combination of enabling technologies,
hardware, software, or practices, that collectively makes the power sectors elec-
tricity delivery infrastructure - the grid - more reliable, versatile, secure, more
accommodating and integrating for distributed and intermittent resources and
ultimately more useful to consumers (Sioshansi, 2011).

The focus is to some extent different for the U.S. and Europe, while the U.S.
has a stronger focus in enhancing, securing and renewing its power delivery in-
frastructure and a more active demand side, in Europe the focus is more on dis-
tribution level automation and integration of renewable energy and distributed
resources (Coll-Mayor et al., 2007). A more active demand side is pursued in
both concepts, as it is necessary for system stability and a more efficient mar-
ket operation. Also both concepts have a strong focus on the technology and its
implementation,(cf. Figure 2.3 for the ETP vision).
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Figure 2.3: The future network structure as defined by the European Technology Plat-
form SmartGrids, with a focus on virtual power plants and distributed resources (Euro-
pean Commission, 2006).

2.3.1 Benefits and Components of the Smart Grid

Following the different definitions the proposed benefits of the Smart Grid con-
cept are therefore: A higher reliability of the system, a higher demand side flexibility
and participation as well as the integration of distributed and renewable resources.
Reliability can be increased by installation of distribution level automation and
monitoring technologies, which enable to capture the system state already in lo-
cal and regional settings and allow the Distribution System Operator (DSO) to
identify and address impending outages earlier than before and quickly isolate
fault areas. Also local demand side management can be employed to support
system stability by balancing local intermittent supply. The ICT infrastructure
enables an information flow that was not existent before the introduction of the
Smart Grid concept. A self healing grid that recognizes faults, isolates and possi-
bly corrects them, can also be supported by this infrastructure (Ramchurn et al.,
2012).

Demand side management encompasses any coordinated actions to reduce
and shift loads in a systematic way that the power system can be operated more
stable and with less excess or peak capacity, Strbac (2008). This concept has so far
mostly been applied to rather large consumers in the past, like steel mills or sim-



18 Towards Smart Power Systems and Markets: Foundations

ilar large size industrial customers. The Smart Grid lowers the transaction cost
to address the large potential of shiftable load in the commercial and residen-
tial sector. A more flexible demand side enables local balancing of intermittent
supply, but can also increase overall system stability as now not only generation
levels can and need to be adjusted, but also load can be rescheduled to other
times in order to operate the system in a safe and possibly less resource inten-
sive way. In economic terms this would also enable a more efficient electricity
market, which presently has only a low or nearly zero elasticity on the demand
side. Thus the Smart Grid could address one of the general flaws of electricity
markets, the lack of real time metering and billing of demand (Stoft, 2002). The
first steps to the roll out of this technology are made in the residential sector in
different countries like e.g. Sweden and Italy that already replaced the majority
of residential metering systems by smart meters. Smart meters at the residential
level and substation automation equipment are the main technical components
of the Smart Grid in the distribution system.

These new metering systems allow every customer to monitor his own elec-
tricity consumption in real time and thus facilitate a response to changing system
and market conditions by enabling more informed choices about energy use in
general. In addition they can transmit the metering values in short time intervals
to the utility company or directly to the DSO. Although communication infras-
tructure like the internet is now being taken for granted, smart meters can be
also connected by other means (e.g. PLC, GSM) to the responsible actor, thus
allowing for a more robust operation scheme. This again highlights the need
for the deployment of standards for power driven communication applications,
like IEC-62051-54/58-59 for metering data, or IEC-61851 for EV-communication
(DKE, 2010). The vast amounts of metering data must be processed for opera-
tion and are also the basis for the financial settlement between the participating
parties.

But the information of these sensor and actor systems needs to be processed
and analyzed in a timely manner in order to allow for the mentioned system
stability benefits to emerge. New platforms for energy consumption monitoring
and management are thus required which can be provided and operated by new
roles in the energy market (DKE, 2010; Ipakchi and Albuyeh, 2009).

A highly intermittent power supply can also be facilitated by the means of
Smart Grid technology, as not only monitoring but the operational integration
of intermittent supply can be supported. This could be done by clustering dif-
ferent intermittent supply sources and storage devices to virtual power plants
(VPP) which can offer their electricity output in a more predictable fashion and
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Figure 2.4: Structure, generic value chain and information flow of the future power sys-
tem. Own illustration according to (Valocchi et al., 2007).

thus simplify system operation (Chalkiadakis et al., 2011). Residential customers
which also generate their own electricity, the so called "Prosumers" could also
participate in these clusters. This type of residential customer could also decide
to become more self sufficient by managing his own demand to map his inter-
mittent generation (Ramchurn et al., 2012; Sioshansi, 2011). Electric Vehicles are
potentially very important in this environment, as their demand flexibility can
be used to integrate intermittent sources. In addition they could also provide
short term back-up power to the residential area they are situated in, or even
participate in ancillary services markets in a V2G contract scheme of an Aggre-
gator contributing to a physical regional energy balance, cf. Figure 2.4. All these
developments are altering the traditional value chain of the power sector and
involve new (local) actors, like Aggregators, who can provide energy from their
DERs or bundle load and storage capacity so that a participation in the whole-
sale markets is possible and profitable in different application scenarios. The
structure of the future power system is thus clearly defined by a bidirectional
flow of energy enabled by a bidirectional flow of information and the according
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services (e.g. metering, energy management and DER bundling and resale), cf.
Figure 2.4.

2.3.2 Challenges of the Smart Grid

In order to harvest the proposed benefits of the Smart Grid there are a variety of
challenges in development of technology, standards and in particular regulation
that need to be addressed. Technology, plays the crucial role of an enabler, but
also imposes requirements for standardization in order to safely deliver the de-
sired results. In particular the different actors in the Smart Grid need to specify
standardized architectural concepts, data models and communication protocols
in order to achieve interoperability, reliability and security between and for ev-
ery single component connected to this "system of systems" NIST (2012); Arnold
(2011). In addition further evolution needs to be accounted for by extension
capabilities in the chosen protocols. These efforts need to be coordinated and
standards and accompanying regulation must enhance innovative and open so-
lutions in order not to introduce new market barriers to entrants in the power
sector. Organizations like the National Institute of Standards and Technology
(NIST) in the U.S. or the DKE /VDE in Germany (German Comission of Elec-
trotechnics and Information Technology in the Electrotechnical Society) in coor-
dination with IEC are focusing the respective efforts of numerous actors from
different industries and stakeholders.

The power sector used to be more conservative in its decisions as disruptions
in supply can be very costly and potentially dangerous for the economy and the
regions affected. Therefore most power systems have redundant components
and can also be operated above normal operation limits for a limited time. Also
the investment cycles and volumes are higher than in the IT-industry, as gener-
ation and transmission and distribution equipment needs to be operational for
several decades without severe failures during this time. Therefore the architec-
ture of the Smart Grid and the integration of ICT in the existing structures must
be designed and implemented with diligence taking into account the high secu-
rity and reliability requirements of the power system. Figure 2.5 shows a con-
ceptual reference diagram of NIST for the information networks and the general
connections that need to be established between different actors. Implementing
these structures is not a trivial task, as changes have to be done during ongo-
ing operations and standards for legacy equipment of all kinds need to be taken
into account. A reference model like this helps to create a common semantic
understanding and a common language for the diverse set of actors. In Figure
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2.5 it can also be observed, that there are various communication channels that
have different latency and security requirements, as for example system opera-
tion and generation control have as compared to residential metering data only
employed for billing.

Besides relevance to system critical operations, security and privacy need to
be considered from the very beginning in the design of the Smart Grid and its
systems. Security in this case mostly refers to cybersecurity, as the new con-
nectivity of generation or controllable loads opens up the possibility of unau-
thorized access and a following severe disruption of service and high negative
system impacts through coordinated cyber-physical attacks. Therefore cyberse-
curity in the power industry must not only cover the protection of information
systems from unauthorized, access, use, disclosure, modification or destruction
in order to provide confidentiality, integrity and availability. Cybersecurity for
the power industry must also address security measures for the legacy automa-
tion and communication systems, in addition to implementing management, op-
erational and technological procedures that account for the high reliability and
fail-safe requirements of the power system (NIST, 2012).
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Furthermore the privacy of residential and commercial customers needs to be
respected and enforced by Smart Grid standards and its infrastructure. Espe-
cially for the residential sector, smart meters allow for a more transparent analy-
sis and feedback of consumption behavior, but also enable utilities or third-party
entities that operate the energy management system in a location, to obtain very
sensible information about daily habits and usage profiles of certain appliances
employing techniques like NIALM (Non-intrusive Appliace Load Monitoring)
in a customers home (Zeifman and Roth, 2011). As stated before, non-authorized
entities could also gain access to this sensible data and apply similar profiling
techniques in order to enable further physical intrusion to the site, as one pos-
sible scenario, or the manipulation of meter data by the meter owner to lower
costs, being another. These problems need to be considered on one hand by reg-
ulation, which needs to provide a legal frame that enforces privacy protection
by default and on the other hand by technological measures like, secured hard-
ware and hierarchical access rights for metering data, which enable each entity
to obtain the level of detail of the data that it requires for its operations (Raabe,
2010; McDaniel and McLaughlin, 2009).

Finally maybe one of the most important challenges for regulators is to create
an environment and establish incentives so that private investments can initiate
a steady path of incremental transition to the Smart Grid (DoE, 2012; Appelrath
et al., 2012).

Even though the Smart Grid is predominantly defined by its technical prop-
erties, the requirements from and the implications for power markets are a very
important aspect of the Smart Grid concept. The communication and control
capabilities enable a variety of coordination paradigms, each with its advan-
tages and disadvantages for certain applications. The coordination of demand
resources can for example be guided only by technical requirements, or on the
other hand be organized by inclusion in a market based system, where demand
bids are included for price determination and market clearing. The Smart Grid
must enable Smart Markets that include locational system constraints and de-
mand side bidding from an considerably higher number of participants than it
is the case today in the exchange and pool-based markets. Regional energy mar-
kets could also be part of this solution (BNetzA, 2011).

The projected benefits of the Smart Grid predominantly result from its role as
an enabler. It enables the integration and real time control of distributed and
intermittent generation resources. It enables customers to learn more about their
energy consumption, general behavior and flexibility potential. It enables more
efficient power market transactions, not only from a technical perspective, but
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also from an economical perspective, as the demand side elasticity is strongly
increased, for the first time ever since the installation of power markets. The
Smart Grid offers the opportunity to lower transaction and coordination costs
in the system and empowering the concept of Demand Response, as will be ex-
plained in the next section.

2.4 Demand Response

Demand Response (DR) is a concept first introduced to power systems in the
1970s following the 1973 energy crisis. At the time the significant oil price shocks
lead to an increased awareness about energy consumption and energy efficiency.
The U.S. pioneered in the advancement of this concept by imposing strict pro-
grams for energy conservation and demand-side-management measures on its
integrated utilities at the time (Sioshansi and Vojdani, 2001). The programs had
their focus on increasing overall energy efficiency, hereby reducing overall de-
mand for energy, and on reducing peak load by enabling large industrial cus-
tomers to reduce or shift a significant part of their load in order to stabilize the
power system. The general load reduction would also contribute to a decrease
of needed installed capacity to secure supply at all times. But as demand still
varies over the course of every day in a system, and also varies in dependence
of weather and season, a considerable number of reserve and peaking gener-
ators, often with comparably higher variable costs are needed to allow for the
system to function properly. Demand Response is a crucial concept to increase
the efficiency of the power system and can be defined as:

"..all intentional electricity consumption pattern modifications by end-use
customers, that are intended to alter the timing, level of instantaneous de-
mand, or total electricity consumption." (Albadi and Elsaadany, 2008;
IEA, 2003).

Demand-Side-Management (DSM) is part of the more general concept of De-
mand Response and is mostly referred to with respect to the explicit measures
of utilities that were implemented for larger customers to contribute to techni-
cal system stability in a centrally controlled power infrastructure (Cooke, 2011).
The term is still employed for these measures, but is also used synonymously
for artifacts that in the following will be described as parts of Demand Response.
The potential of Demand Response in electricity systems has increased with the
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advent of the Smart Grid concept, as ICT is lowering the transaction costs to in-
clude a large portion of the available load flexibility, which until now could not
be integrated in the operation of the power system and the power market.

2.4.1 Advantages of Demand Response

The possible advantages of DR are manifold. Depending on its particular imple-
mentation an increase of demand side flexibility can help to reduce the genera-
tion reserves that are required to provide reliable supply. This is because peak
demand can be reduced by load shedding and shifting of customers who have
a higher flexibility and are willing, provided a certain reimbursement, to reduce
their load so that all other loads can be satisfied and the system balance remains
intact (Strbac, 2008). Depending on the power plant technology employed for
generation, DR can thus contribute to reduce overall emissions, as additional
coal or natural gas is not utilized for power generation.

Besides allowing for a higher utilization rate of available generation resources,
DR can also help to increase transmission and distribution network investment
and operation efficiency. DR on the transmission level could help to alleviate
market power of single generators at certain congested locations and so called
out-of merit dispatches of generators that serve loads in these areas, even if
more economic capacity is available outside (Strbac, 2008). In distribution net-
works DR can help to defer network investments in new capacity, increase the
amount of distributed generation that can be connected to the existing network,
relieve voltage-constrained power transfer problems, and congested substations.
Maybe one of the most important advantages of DR in the near future can be its
ability to support the integration of intermittent energy generation sources like
wind and solar. Without DR the power system balance in systems with high
intermittent generation ratios, needs to be provided by a certain amount of con-
ventional generation acting as a reserve to restore supply if sudden generation
reductions occur. DR can help to reduce a part of these reserve power plants as it
contributes to system balance by redistribution and reduction of the amount of
energy consumed. In contrast to generation reserves, DR can also call on flexible
loads to prepone their consumption which is especially valuable at times of high
intermittent generation and low general load and this way increases the share of
renewable energy used by demand (Strbac, 2008).

Besides the technical advantages for the power system, DR can contribute
to make the demand side in power markets more elastic in economic terms.
Ever since the introduction of market based systems for the allocation of gen-
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Figure 2.6: Demand and Supply in Normal Markets (I) and Capacity Constrained Mar-
kets (II) with Perfectly Inelastic Demand, adapted from (Sioshansi and Vojdani, 2001).

eration resources, the demand was considered to be fixed and given and had
to be served under nearly all circumstances (Kirschen, 2003). This leaves the
power market with only one side of the market capable to adapt to changes
in demanded quantities of energy: the generation side. In particular this also
meant that with increased demand, variable generation prices of the marginal
generation unit in uniform (or reference) price based markets would increase
significantly, as successively the demand would needed to be served by more
expensive, or less efficient generators. This dispatch order according to marginal
generation costs is commonly referred to as the merit order. Electricity markets
can thus be described as generation and transmission capacity constrained mar-
kets with a (perfectly) inelastic demand side. The difference between a normal
market with elastic demand and the power market with capacity constraints and
inelastic demand is sketched in Figure 2.6.

In normal markets (I), demand would react to price increases by reducing the
quantity purchased at this given price level (reduction of Q1-Q2), or increase
its demand if prices are reduced (increase from Q1 to Q2) taking into account a
moderate price increase. In the capacity constrained power market (II), supply
levels approaching the system capacity limits are very expensive to provide.
Even slight demand changes (Q1 to Q2) in this area can lead to considerable
price increases (e.g. P1 to P2). This is in particular caused by the inelastic
demand side which is not given the information about the actual price level for
generation, but instead is charged an average price rate accounting for most of
the normal variations in supply costs. This lack of information and in addition,
real time metering prevented the demand side to play an active role in power
markets so far. Systems to enable loads to react to variable generation prices
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and to meter them in real time have become increasingly more available and
less expensive through the development of ICT and especially through the
communication infrastructure of the internet. The demand side can thus be en-
abled by Smart Grid technologies like Smart Metering and automation to finally
play an active role in the power market, (Stoft, 2002; Sioshansi and Vojdani, 2001)

2.4.2 Demand Response Classification

Demand Response can be classified in two general categories: Incentive Based
Programs and Price Based Programs (Albadi and Elsaadany, 2008), c.f. Figure
2.7. The classical Incentive Based Programs rely on specific payments or rebates
to predominantly large customers to reduce demand on a predefined number of
days for a year or in case of system emergencies by allowing direct load control
through the utility or providing interruptible loads. Market Based Programs are
assessing demand reduction based on market prices for the particular energy
or capacity products. They cover different time scales from mid-term capacity
security to emergency and ancillary services (AS). Demand bidding can be im-
plemented e.g. in day-ahead markets. These bids are ordered with the lowest
bid being called first, similar to the generation merit order. All demand side
bids are being paid the marginal demand reduction bid price of the particular
time interval (IEA, 2003). In capacity market programs customers need to spec-
ify pre-defined load reductions when system contingencies arise. In ancillary
service markets, participants are allowed to bid on the spot market as operat-
ing reserves and must fulfill their bid if called upon incurring a penalty if nor
following the specified load reduction (Albadi and Elsaadany, 2008).

Price Based Programs for Demand Response are characterized by the fact that
they reflect the actual costs of energy provision to the customers, simplified like
in a Time-of-Use (TOU) scheme, or in a more detailed way in a Real-Time-Pricing
(RTP) measure. Price based programs are thus different to most of the incentive
based DR programs with regard to the fact that the actual decision to participate
in demand reduction or increase is not located with the offering utility or the
respective system operator, but with the individual customer. In a first step a
TOU scheme would encompass a two-part tariff with the same peak and off-
peak times for every day, charging a higher and lower rate, respectively. This
scheme is particularly advantageous to get consumers adapted to dynamic rates,
and to (manually) shift larger loads to off-peak times. It does not provide an
opportunity to dynamic reactions to system contingencies.
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Figure 2.7: Demand response program classification (Albadi and Elsaadany, 2008).

Critical-Peak-Pricing (CPP) and Extreme-Day-Pricing (EDP) in contrast can
map system contingencies and inform customers about upcoming shortages on
a day-ahead basis. CPP is incorporated by imposing rather high rates for partic-
ular hours of anticipated shortages, but still remaining in the other flat or TOU-
scheme for other hours. In the CPP, and EDP schemes whole days would be
declared to incur higher costs. These Price Based Programs can reflect the actual
generation costs in a better way, so that customers can choose to use less energy
or shift usage to other, cheaper time slots.

In economic terms Real-Time-Pricing (RTP) is the most efficient pricing strat-
egy, as it can almost always send the right price signals to the demand side,
for every hour, or even smaller time intervals in real time markets with e.g. 5
minute clearing intervals (Borenstein, 2005). Due to complexity residential cus-
tomers are more likely to face only hourly changes, being announced on a day-
or hour-ahead basis. RTP enables customers to make an informed decision about
their energy consumption, provided the basic knowledge about their consump-
tion patterns, and allows them to choose whether some of it can be shifted to
other times, enabling significant savings, but also on the other hand eliminat-
ing some of the subsidies to high peak load customers at peak times, that did
not have to face most of the costs they caused to the system. As RTP is capa-
ble of responding and mapping dynamic system conditions it is one of the main
concepts employed later in this analysis with respect to its application for EV
charging coordination.
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2.4.3 Demand Response Challenges

Even though DR has many benefits there are a number of challenges that need
to be addressed. They include technological, regulatory and social changes that
need to persist in the power system in order to allow for the full potential of DR
to unfold. One of the main technological challenges is the installation and correct
operation of real-time metering and automation systems. Smart Meters are one
possible solution to this challenge, but their metering information must be com-
municated to the different roles like Demand Side Aggregators, ISOs and RTOs
employing standardized and safe communication channels in order to allow for
real-time operation of the system. In particular the actual load reductions must
be documented in order to assess their impact economically. A fact which in
some classical DR programs based on standardized baselines (e.g. fixed demand
schedules) constituted a problem for correct assessment in the past (Sioshansi
and Vojdani, 2001).

Including a high number of new actors with flexible loads in the power sys-
tem, will increase the coordination complexity. Therefore standardized commu-
nication protocols and coordination mechanisms must be put in place in order
to allow for the DR potential to unfold. Especially the transaction costs for inte-
gration of flexible loads must be lowered so that DR can be also viable when
compared to conventional alternatives to address peak load and distribution
and transmission network congestion situations. This particularly means that
DR must be more competitive than generation and storage equipment that is
placed in congested areas (but might have low utilization rate), or the build up
of additional network infrastructure. Assessing the economic value has proven
itself to be quite challenging as its costs can not be defined as easy as in the case
of generation, but highly depend on the location and the predominant network
conditions. DR was proven to have more value in power systems that have
rather inflexible generators with an increasing share of intermittent resources.
In systems with a higher ratio of flexible generation, DR must be competitive to
these resources if network congestion is not a limiting factor (Strbac, 2008).

When rolled out DR can be implemented in different ways, most of them will
include a certain amount of automation technology which ensures a certain level
of demand shifting based on prespecified values or on the preferences set by the
respective customers. In the residential sector numerous field experiments show
that customers are able to change a significant part of their peak load (about 10
% on average), and reduce overall demand (about 3-5 %) even when only re-
lying on TOU tariffs and manual operation (Darby, 2001; Darby and McKenna,
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2012). Continued observations also imply that employing automation technol-
ogy according to user preferences in "set and forget" fashion will yield higher
peak load reductions, higher response rates and energy cost savings, but also
need to account for user acceptance of automation technology (Hammerstrom
et al., 2007). Educating customers about the benefits of DR when implemented
with automation technology that respects the preferences of the users is thus key
for a large scale adoption of this concept.

The Smart Grid concept has the potential to enable Demand Response at low
general implementation and transactions costs. This in turn will help to inte-
grate a higher share of intermittent generators, increase the system stability and
finally tackle one of the most important flaws of power markets: the low or non-
existing elasticity of the demand side. EV can be seen as a large resource for
Demand Response as they bring with them a quite high flexibility for a con-
siderable part of their overall demand. Power Markets will serve as the main
coordination mechanism to settle the increasingly flexible demand side and the
less controllable generation side and will thus be considered from a Smart Grid
perspective in the next section.

2.5 The Role of Power Markets

The main distinguishing features of electricity markets are driven by the physi-
cal features of this good: the necessity for instantaneous production at the very
moment of consumption, the rather expensive and to date insufficient capability
to store electricity efficiently, the cost differences associated with every type of
generation technology and production characteristics, and the natural monopoly
character of transmission and distribution grids, which already have been high-
lighted in section 2.2.1 (Kirschen and Strbac, 2004; Erdmann and Zweifel, 2007).
These properties have a profound effect of how power markets have to be orga-
nized1.

Electricity thus can not be treated like other commodities. Markets and trad-
ing mechanisms can help to generally allocate generation to satisfy demand re-
quirements, but are not fully capable to organize the real time operation of the
system as the market mechanism would have to determine valid clearing prices
at every instant of operation. Therefore Ancillary Services need to be provided
by the TSO to balance generation and demand forecast deviations for real time

1For a comprehensive description of power markets and their fundamental economics, please
consider (Kirschen and Strbac, 2004; Stoft, 2002).



30 Towards Smart Power Systems and Markets: Foundations

operations, Stoft (2002). These resources in turn can be allocated for larger time
intervals on a corresponding market. Other important specifics of power mar-
kets are that one particular generator cannot sell directly to a particular customer
as the produced power is fed into the power grid which is operated as one syn-
chronous entity. Following Kirchoff´s laws one customer (or sink) will always be
served by the physically nearest source (implying the lowest resistance during
transport), Kirschen and Strbac (2004). This load and generation pooling effect
displays high economies of scale, as the system only needs to provide sufficient
generation capacity to provide the overall system peak load, not all of the peak
loads at the same time, as these are randomly distributed and do not often coin-
cide.

The main determinants of power markets are the generation capacity and the
demand that it needs to cover. As described in section 2.2 most power systems
have been organized centrally with a focus on the requirements of the genera-
tion side. The demand side (in particular residential demand) often has been in-
flexible and uninformed about the costs caused by their electricity consumption
in the system. Due to this, demand is often inelastic to quite substantial price
changes occurring through adjustments in the structure of the generation side
at different system load levels. The centralized system architecture, imposed
in parts by the technical properties of electricity also fostered a centralized eco-
nomic allocation mechanism: pool markets, or power pools. With the increas-
ing liberalization of power markets other more decentralized architectures like
power exchanges have also been introduced to organize the provision of elec-
tricity in a economically efficient manner.

2.5.1 Pool vs. Exchange Markets

In a power pool, one entity like the TSO collects information from all generators
that are willing and certified to participate in the power provision of the power
pool area with respect to their marginal generation and start up costs, their
minimum run-times, their flexibility in generation output, no load costs and
availability times. These informations are provided in a complex bid format
by the generators. The system operator (SO) then computes the cost minimal
set of generators that are needed so serve the forecasted (and mostly passive)
load. The SO employs the Unit Commitment (UC) model, which also takes into
account transmission line limits and resulting power flows from the computed
solution in order to guarantee system stability. Usually the dispatch calculation
is performed in a day-ahead manner, thus allocating most of the generation
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Figure 2.8: Comparison of pool and exchange markets, adapted from Stoft (2002);
Kirschen and Strbac (2004).

needed for every hour of the next day. The complex bid formats for pool markets
encompass non-linear cost terms and operation constraints as well as additional
operation options for the provision of AS and in particular regulation energy.
This complex bid format has the advantage that the bulk power provision and
the provision of operating reserve and regulation that is needed on a short time
scale are co-optimized based on the same set of resources under consideration
of grid constraints. This allows for a technically well coordinated and efficient
operation, but also has negative implications resulting from the complexity of
the bid format. In particular side payments or "whole"-payments that are paid
to generators that are needed in certain load configurations, but are not awarded
their bid in the first UC-solution, open the possibility of untruthful individual
behavior in order to increase generator profits. In addition complex bid formats
mostly do not incorporate the possibility of active demand side participation
(Kirschen and Strbac, 2004). Power pools are thus advantageous for a technically
optimal operation of a power system, but have high centralized information
requirements which make it increasingly complex and possibly challenging
to apply their operation architecture in highly decentralized Smart Grid settings.

Power exchanges are a more decentralized coordination institution that build
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on (uniformly) determined prices to signal the scarcity of electricity for the re-
spective periods traded. Exchanges are centralized insofar as they provide a
reference price for the provision of electricity in a particular time frame. Several
exchanges can exist in parallel, but as power generation is mostly coordinated in
a clear regional context due to the natural monopoly characteristics of the power
grid, only one power exchange is operated in a region. Besides the allocation
of demand and supply on the power exchange on a short term (several weeks -
hours ahead of delivery) long term contracts, in particular futures and delivery
options can be traded (c.f. Figure 2.9). In parallel to this bulk power genera-
tion allocation the provision of ancillary service is organized e.g. in Germany
employing a reverse auction platform on which certified generators can submit
bids for positive and negative regulation products according to the amounts ex-
pected by the TSO.

Technical interdependencies between the different products of day-ahead and
ancillary service markets must be considered in the market design and its rules
in order to allow for an efficient system operation. In addition products must
be designed in such a way that particular generator types can bid accordingly
(e.g. inflexible base load plants that place block bids in the spot market). If these
interdependencies are not considered appropriately the market outcomes can
lead to additional redispatch costs and thus less efficient system operations up
to the point of a decreased reliability of supply (Stoft, 2002).

Figure 2.9 provides an overview of the general electricity markets and prod-
ucts in Germany. A considerable part of the bulk power generation is sold in
bilateral contracts for several years ahead, forming the futures market encom-
passing products with physical and financial fulfillment. These trades can, but
do not necessarily have to, be registered with the power exchange in Germany,
the European Energy Exchange (EEX). The EEX offers trading possibilities for
futures in a standardized manner, and also operates a spot market. Bids can be
placed from 14 days to 45 minutes before delivery for hourly products and block
products. The reference price determination takes place in a central call auc-
tion at noon on the day before delivery. This day-ahead auction and the resulting
prices for every hour of the next day thus represent most of the expectations
of all market participants about demand forecasts, renewable energy generation
and power plant availability. Corrections to this can be made in a continuous
intra-day auction until 45 min. before execution which allows to consider new
information and handle uncertainty efficiently (Kroneberg and Boehnke, 2010;
Grimm et al., 2008,?). Ancillary services are traded on a different platform that
has been harmonized with the trading times on the EEX, thus accounting for the
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Figure 2.9: Structure and time frame of the interdependent electricity markets in Ger-
many and their main products (Judith et al., 2011).

interdependence of short term (re-) dispatch decisions.
Power exchanges can produce economically more efficient outcomes than pool

based systems only if they are well designed and account for transmission con-
straints and interdependencies of the products traded (Cramton, 2003). They
provide adequate scarcity signals for the demand side and enable the participa-
tion of demand resources. Power markets need to consider a number of complex
interdependencies which need to be evaluated for every particular case individ-
ually. The next section will therefore address the concept of prices for power
systems control.

2.5.2 Prices for Power System Control

Employing prices as the central coordination element in power systems is a con-
cept first introduced in the seminal work of (Caramanis et al., 1982; Schweppe
et al., 1988). Even at this early stage of automation and only in the beginnings
of advanced telecommunication networks Caramanis et al. (1982) envisioned a
power system with a more dynamic demand side and economically efficient spot
prices. The concept of spot pricing encompasses the notion that for every given
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region or node, or more particular for every customer there is an optimal spot
price that is maximizing total welfare. The optimal spot price for real and reac-
tive power was thus defined as:

Pspot,opt = MC f uel + EBalQoS + TDQoS (2.1)

This spot price does not distinguish between different roles in the power
system, but represents the cost for the provision of or the revenue for generating
a specified amount of energy at a particular time and location. In conventional
power systems, this price is mainly determined by the marginal generation cost
which in turn depends on the fuel used by the marginal generator MC f uel in
the so called merit order of economic dispatch (c.f. Figure 2.10). In addition
to the generation costs, a price premium accounting for system stability and
in particular the energy balance EBalQoS ensuring the quality of supply in the
power system is paid. The energy balance component is zero as long as there
is surplus generation and line capacity available to cover additional demand.
If contingency situations arise, this mark-up is the difference between the
incremental value of electricity usage for the incremental customer and the
marginal fuel cost. The third mark up on the price is the transmission and
distribution quality of supply fee, TDQoS. The T&D fee varies in dependency of
the voltage situation and the line utilization factor. It can be negative or positive
as it depends on the current local grid situation. The T&D and the energy
balance mark up can be different for every customer. Deviations are likely
to be higher for lager customers, as they depend on grid architecture and the
individual load and thus the corresponding line losses and voltage levels also
vary (Caramanis et al., 1982). Without congestion and in perfect system balance
all customers would see the marginal fuel cost price. The spot pricing concept
thus also builds on the notion of uniform pricing for generation, but enhances
this widely recognized pricing regime by the notion of locally differentiated
discriminatory pricing that reflects the actual system status and contingencies.

Centralized structures still shape exchange and pool markets, and the demand
side still suffers under the two main demand side flaws: the lack of real time me-
tering and billing and the resulting lack of reaction to price changes (c.f. Chapter
2.4) as well as the lack of real-time power flow control to specific customers (not
permitting for the enforcement of bilateral contracts and making the TSO the
default supplier in real-time) (Stoft, 2002). In particular the first demand side
flaw can be ameliorated by smart grid technologies and applications and finally
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allow for the stepwise realization of the spot pricing concept incorporating an
active and informed demand side.

In order to inform the demand side and set incentives for Prosumers 2 to adapt
their consumption and change their role in the system to a net generator, the
valid spot prices for a time period must be communicated. Caramanis et al.
(1982) envisioned that spot prices should be determined in five minute intervals
which required the customers to have a constant real-time communication con-
nection with the utility in order to react to price changes. This is now technically
easy to implement and partly implemented in the determination of LMPs in real
time markets, but was visionary at the time. Since the metering and communi-
cation costs do not justify to put all customers on real-time spot pricing, approx-
imations on a daily and/or monthly basis of at least hourly changing prices (so
called predetermined prices) that reflect the general system cost structure are the
most viable solution for practical implementation of dynamic spot pricing. The
TOU-rates described earlier are the well known and now increasingly applied
tariff model for these predetermined prices.

According to (Schweppe et al., 1988) each customer is free to select his pricing
regime, as he must be able to assess whether he can adapt his demand behavior
in such a way that a participation is beneficial for him. Significant demand side
flexibility potential has been harnessed in the industrial sector, lower transaction
costs could further increase the contribution of the commercial and residential
sector for demand side flexibility. In addition new loads like EVs can substan-
tially contribute to the increase of overall demand elasticity.

Employing prices for power system control can be beneficial from an economic
perspective, nevertheless a purely price based system operation is likely to be
to slow to ensure the physical stability. Alvarado (2005) reconsiders the differ-
ent possibilities to control power systems by price signals. The most common
concept in this respect are LMPs which are often based on optimal power flow
calculations and incorporate main aspects of the spot price concepts postulated
above. In contrast to the spot concept LMPs nowadays do only incorporate a
passive demand side. Depending on the particular design of the power mar-
ket, Alvarado (2005) shows that for known generation costs, market participants
would converge to an optimal dispatch order without the need to be aware of
any congestion relief efforts of the system dispatcher. The assumptions made in
this approach do not consider strategic behavior (i.e. the execution of market
power) of generators, but show in principle that a price based dispatch could

2The term Prosumer refers to a consumer that can also generate energy and thus change his net
impact on the power grid (Ramchurn et al., 2012).
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Figure 2.10: General structure of the merit order in Germany, adapted from Sensfuss
et al. (2008).

be organized. When in turn the non-stationary cost structures of generators and
especially delays in response dynamics are considered, a delay in the system
output could lead to oscillations that could endanger system stability. Power
system control by prices is possible but needs careful consideration of the phys-
ical requirements if real time operation is envisioned. Before this considerable
parts of demand can be incentivized to adapt to main system contingencies and
resource availability.

Prices can also be employed to map the availability of renewable and fluctu-
ating generation in the power system. In Figure 2.10 the stylized structure of the
German generation merit order is depicted. Following Sensfuss et al. (2008) the
considerable increase in renewable generation production with very low vari-
able costs leads to lower costs for the particular hours with high renewable out-
put, which is e.g. the case for PV during noon. In Figure 2.10 this is depicted by
the shift from Demand 2 to Demand 1 as the energy quantity that is covered by
the conventional plants is reduced from Q2 to Q1. This well know merit order ef-
fect leads to lower wholesale power prices in the short run, but also might cause
capacity problems in the long run as more expensive but flexible units can not
recover their capacity costs only based on participation in the wholesale mar-
ket Cramton and Ockenfels (2012); Cramton and Stoft (2005). In the short run
(but also in the long run) more demand side flexibility is needed to stabilize the
system. EVs have the potential to make a substantial contribution in this sector
and will thus be analyzed with respect to their technical and demand response
characteristics in the next section.
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2.6 Electric Vehicles

Electric Vehicles (EVs) have a long history in the individual transport sector. In
the humble beginnings of motorized individual transport in the late 19th century
EVs were one out of three technologies for propulsion of motorized vehicles that
were deployed. The alternatives were steam powered vehicles and petrol driven
internal combustion engines. Advancements in technology, the higher energy
density of petrol as well as its relative low price changed the odds in favor of
the now conventional internal combustion engines (Larminie and Lowry, 2003).
Ever since then EVs have been prevalent in niche applications that did not re-
quire extensive range or had strict local emission regulations. Since the 1970s
and the oil crises, the development of EVs was given new attention, as different
technologies for personal transport, which did not depend on oil as an energy
source were gaining new momentum. But it was not until the 1990s that EVs
started to be more popular again with a prominent example on the streets being
the GM EV 1.

With an increasing public and political awareness for resource conservation
and the need to reduce greenhouse gas emissions, electric vehicles were coming
back on the streets after the year 2000. Rising fuel prices and significant ad-
vancements in battery technology, in particular for Ni-Mh and Li-Ion technolo-
gies enabled the development and large scale adoption of hybrid electric vehicles
(HEVs). This development continues nowadays with the introduction of plug-
in electric vehicles (PHEVs), which can be recharged by the power grid, but still
have a range comparable to internal combustion engine vehicles (ICEVs). The
last step, the deployment of full electric, or battery electric vehicles (EVs) is now
supported by political institutions nearly all over the world (IEA, 2011). Never-
theless one of the main drawbacks of this technology that needs do be addressed
is the high cost for energy storage.

2.6.1 EV Development and Opportunities

Electric vehicles are a crucial technology to reduce the general dependency on
oil and also help to reduce local emissions. In addition one of the most impor-
tant points in favor for electric vehicles, is that if they are powered by renewable
energy sources their operative CO2 emissions can be reduced to very low lev-
els. Transport energy consumption accounts for more than 53% of the world
oil consumption and transport related emissions account for 19% of the worlds
CO2 emissions (Garcia-Valle and Lopes, 2012). In Germany the transport related
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Figure 2.11: Emission comparison of conventional and electric vehicles in dependence
of power source used (Helms et al., 2010).

emissions account for 18.7 % of the CO2 emissions and are thus on a similar level
(UBA, 2012a). EVs can contribute to reduce these emissions, as more than 50%
of transport emissions are caused by light duty vehicles (Rodt et al., 2010). De-
pending on the source of energy, EVs can have a different carbon footprint, as
depicted in Figure 2.11.

When compared with regard to their life-cycle emissions, a battery electric ve-
hicle (BEV in Figure 2.11) causes only slightly less (more) CO2 emissions as a
comparable conventional gasoline (diesel) vehicle. This is due to the rather high
share of lignite and hard coal generation in the German power generation mix,
leading to a specific emission value of 538 g/kWh as of 2010 (UBA, 2012b). If
only coal generation would be employed to charge the vehicle, the emissions
would be nearly double as high as in the conventional case, rendering EVs with
power provided from coal generators as one of the worst alternatives with re-
spect to life-time emissions (Helms et al., 2010). When less emission intensive
generation sources are employed to provide the energy for driving emissions
can be reduced drastically. The reduction potential can clearly be seen in the
case of wind-power. Besides the emission reduction potential EVs have more
advantages but still also some challenges that need to be addressed. General
advantages of EVs are (also partly applicable to PHEVs and HEVs, according to
Naunin (2006)):

• No local emissions, which is beneficial for urban areas
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• Little or no CO2 emissions if renewable power sources are employed for
charging (cf. Figure 2.11)

• Less noise than conventional vehicles at speeds below 30-50 km/h
• Higher overall energy efficiency (more than 70%, tank to wheel) as com-

pared to 25% or less for conventional vehicles
• Ability to regenerate energy when braking, which also increases energy ef-

ficiency
• Electric engine has so called "instant" torque from the beginning, rendering

EVs with dynamic trip characteristics
• Lower per km energy costs than conventional vehicles at current prices
• Storage and demand flexibility potential for the power grid, which is in the

focus of this thesis.
There are still several drawbacks and challenges for EVs that need to be ad-

dressed, most of them due to the battery technology:
• Small range as compared to conventional vehicles
• High production/purchase costs due to expensive battery technology
• Lower energy density and higher weight
• Temperature sensitive storage technology
• Battery life time shorter than potential vehicle use
• Longer refueling times than conventional vehicles.

As considerable resources are devoted to battery technology development, the
main challenges of EVs are currently addressed step by step. These develop-
ments will be described in the following sections. Before this, a more detailed
description of the different classes of EVs and the definitions used in this work
will be given.

The term EV is not unambiguously defined and must be clarified for the con-
text of this work, cf. Figure 2.12. Electric Drive Vehicles (EDV) can be dis-
tinguished in supply line bound electric vehicles like trains, or trams and au-
tonomous or grid independent vehicles. The autonomous vehicles can be distin-
guished in solar powered vehicles, battery electric vehicles and hybrid electric
vehicles. Solar powered vehicles make the case for innovative modes of trans-
portation, but are not applicable in daily operations. Battery electric vehicles
which are sometimes also denominated full electric vehicles are EDVs which
obtain their propulsion energy from one or several batteries. In this work the
abbreviation EV will be used to refer to this sort of vehicles.

Hybrid electric vehicles have an additional energy source besides the electri-
cal storage element, which provides energy for propulsion. This energy source



40 Towards Smart Power Systems and Markets: Foundations

Institute of Information Systems and Management28 A. Schuller – R2V: Price Based Charging Coordination for EVs 23.01.2013

Electric Drive Vehicles
(EDV)

Autonomous Vehicles Supply Line Bound
Vehicles

Solar Powered
Vehicles

Battery Electric Vehicles
(BEV) / (EV)

Hybrid Electric Vehicles
(HEV)

Fuel Cell
Electric Vehicles

Gasoline Hybrid
Electric Vehicles

• Conventional
FCEV

• Plug‐In FCEV

• Conventional
HEV

• Plug‐In HEV

Figure 2.12: General EV classification, adapted from Larminie and Lowry (2003).

can either be a fuel-cell or a specific combination of a combustion engine and
a battery, which is considerably smaller than the battery of an EV. Both hybrid
vehicle types can be adapted to gain characteristics of an EV if the battery size is
increased and a possibility for recharging from the power grid is included into
their concept. These vehicles then belong to the class of plug-in hybrid electric
vehicles (PHEVs).

Besides the various technical concepts which reflect different levels of
drivetrain electrification and energy source, the different vehicle properties
with regard to range requirements are likely to lead to a differentiation of EV
application scenarios during the first phase of adoption. In order to enhance the
development of EVs and their technology, the German government appointed
a joint institution of involved stakeholders to coordinate the research & devel-
opment of vehicle components with a focus on battery technology, industrial
standards and processes, charging infrastructure and ICT based grid integration
(NPE, 2011b). The political goal for Germany is to have 1 million EVs and
PHEVs on the roads by 2020 (NPE, 2011b), cf. Figure 2.13. But as mentioned
before there are still drawbacks that have to be addressed, before this technology
will be able to keep its promises. The technological and economic challenges are
major aspects, but one must also consider the EV-user or customer as another
critical factor for success.
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Figure 2.13: Expected development of EV numbers for Germany, adapted from NPE
(2011b).

2.6.2 EV Mobility Requirements

When looking into socio-technical aspects of technology adoption that is bound
to considerable capital efforts for the individual, it can be seen that new tech-
nology is expected to recover its additional costs in rather short time horizons.
For fuel efficient vehicles studies conducted showed that customers expected
the savings to recover their costs in less then three years, even though the actual
payback periods could be more than double as long (Sovacool and Hirsh, 2008).
Besides high expectations with respect to fuel efficiency, which also depends on
the driving habits and behavior, the general usability of EVs must be quite sim-
ilar to conventional vehicles in order for them to be accepted. In this context
the limited range, as compared to conventional vehicles needs to be considered.
The term "range anxiety" was coined in this context, reflecting the intrinsic fear
of consumers to be forced to end a trip before their destination, or a lack of flexi-
bility in their driving distance due to insufficient battery capacity (Hidrue et al.,
2011; Turrentine, 1994). Additionally long charging times are also perceived as
being a hindrance for a flexible mobility behavior. This particular concern has
been addressed by manufacturers, as fast charging DC systems have been de-
signed that allow to increase the SOC of a vehicle to 80 % in 30 minutes (ABB,
2012).

As for the range requirements it can be observed in several studies with a fo-
cus on individual travel behavior, like the National Household Travel Survey
(NHTS) from the Department of Transportation (DOT) in the U.S., or the Mobil-
ity Panel Germany (MOP), that the average daily distances traveled can be ful-



42 Towards Smart Power Systems and Markets: Foundations

Institute of Information Systems and Management30 A. Schuller – R2V: Price Based Charging Coordination for EVs 26.02.2013

Figure 2.14: Average daily mileage distribution from Pearre et al. (2011), the solid line
indicates the number of days on which the respective mileage was exceeded.

filled by standard EVs with a driving range of 100 miles, or 160 km for a majority
of the cases. Further studies like Pearre et al. (2011) with individual GPS tracks
of several hundreds of conventional vehicles generate a similar impression. In
particular the daily mean driving distance observed in the NHTS survey is 29.1
miles (46.82 km) (NHTS, 2001). Pearre et al. (2011) observe a mean value of 32.6
miles (52.45 km) with a median value of 18 miles (28.96 km). These numbers are
visualized in Figure 2.14, where it can be seen, that the most common average
daily driving distance is between 12 - 16 miles (19.3 - 25.74 km). Also about 95%
of all average daily driving distances are below 100 miles / 160 km. What is also
addressed in Figure 2.14 is the number of days on which the respective maxi-
mum driving distance is surpassed, being represented by the solid black line.
One must read the line as for example for 100 miles of daily travel distance to be
surpassed about 23 days in one year in the sample of (Pearre et al., 2011). These
events are likely not be covered by full EVs unless more expensive models with
larger batteries are employed for driving. Following the results of the U.S. stud-
ies one can observe that most daily driving distances can be covered by EVs on
average. For individual driving profiles that have longer daily trips or that can
not adapt on 23 days of the year at maximum, EVs are not suitable. Adapting in
this context means that they stop for charging, or choose a conventional vehicle
for the respective trips. Thus (Pearre et al., 2011) conclude that EVs with a range
of 100 miles / 160 km are suitable for 31% of the drivers if they are willing to
make trip adaptations on 6 days in a year.

When we compare the daily average driving values from the U.S. studies with
the MOP from Germany we can observe a similar distribution of average daily
trip lengths, d.f. Figure 2.15. In this context it is important to emphasize that the
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Table 2.1: Comparison of average daily driving distances of different mobility studies.

[km] NHTS Pearre et.al. MOP
Mean 46.82 52.45 35.74
Median - 28.96 24.71
95% Quantile - 160.9 104.82
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Figure 2.15: Average daily trip length distribution for a representative sample of 6466
driving profiles from the MOP (BMVBS, 2008).

sample data in the mentioned studies is collected in different ways. The NHTS
is a survey based one day observation which is conducted for a high number of
samples. The GPS based study from Pearre et al. (2011) builds on a longitudi-
nal study of 470 vehicles being tracked for more than 50 consecutive days. The
MOP in turn is a weekly observation of a predefined representative panel being
repeated on a yearly basis. Nevertheless we can observe similar results when we
consider the general distribution of trips.

In particular we see in the MOP that the majority of average daily trips de-
picted in Figure 2.15 for a sample of 6466 driving profiles (all profiles with a clear
1:1 mapping between vehicle and driving profile), which is partly employed for
the simulation based analysis later in this thesis, is also below 100 km. The gen-
eral driving distances are lower in Germany, as 95% of the MOP sample drive
less than 105 km per day. It can be observed that 98.37% of the vehicles drive
less than 100 Miles or 160 km per day. The median value for trip lengths in the
MOP sample is 24.71 km, the mean value is 35.74 km. Following these empiri-
cal observations we can conclude that EVs are suitable for most driving needs.
In order to address the mentioned range anxiety EV designs can also consider
additional battery capacity for a "range buffer", or the user can determine a SOC
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value, that when undercut, must be recharged at the opportunity. Kempton and
Tomić (2005b) determine this range buffer to encompass 20 miles (32.18 km). Be-
sides the range requirements, the applicability of EVs does also highly depend
on their economic competitiveness. This is still a crucial factor affecting the de-
velopment of EV deployment.

2.6.3 EV System Costs

EVs are still more expensive than conventional cars, for small city cars the differ-
ence in price can be as high as 100%. This is mainly due to the high costs of the
storage components. When EVs are compared to other vehicle types, like diesel
and gasoline ICEVs, Hybrids or PHEVs and FCEVs with respect to their pro-
duction costs, one can see that they are one of the most expensive technologies,
(cf. Figure 2.16 with values from Mock et al. (2010) based on 2009 production
costs without learning curves.) Only FCEVs are more expensive due to lower
production numbers and high valued materials like rare earths that are needed
for the fuel cell components. The numbers presented refer to a mid-sized car
and do not consider marketing costs and profit margin, along with sales taxes.
Investment decisions concerning vehicles are not only made based on the initial
cost, but also on the expected fuel efficiency and the related costs for operation.
In this case the comparison with regard to the specific energy consumption per
kilometer shows that EVs have a considerable advantage to other technologies.
ICEVs have by design, as being thermal engines, a lower energy efficiency and
range between 0.57 to 0.74 kWh per km. This corresponds to an average con-
sumption of 6.5 - 8.4 l/100 km for gasoline and 5.8 - 7.5 l/100 km for diesel3.
Hybrid and PHEVs are more efficient as they increasingly combine the advan-
tages of both conventional and electric drive technology. The PHEV is listed in
this context with 0.32 kWh/km (3.6 l/100 km) and the EV with 0.18 kWh/km
(2.05 l/100 km), which is slightly higher than the average value from Table ?? of
0.151 kWh/km (1.73 l/100 km). The nearly three times higher efficiency of the
EV can thus contribute to make it economically viable, despite the high initial
investment.

A selection of available EVs produced in relevant numbers (at the time of writ-
ing of this document) shows (cf. Table??) that the average price is higher than
mentioned in Figure 2.16. When excluding such exclusive cars as the Tesla Road-
ster, the average retail price is about 31,700 Euro. For many models (i.e. the ones

3Assuming an energy value of 8.76 kWh/l of gasoline and 9.8 kWh/l of diesel (Erdmann and
Zweifel, 2007), p.183.



Towards Smart Power Systems and Markets: Foundations 45

Institute of Information Systems and Management32 A. Schuller – R2V: Price Based Charging Coordination for EVs 27.02.2013

13,015

13,415

17,415

17,815

24,365

33,25

109,765

0 20 40 60 80 100 120

Gasoline

Diesel

Gasoline ‐ Hybrid

Diesel ‐ Hybrid

PHEV

EV

FCEV

0,74

0,57

0,6

0,48

0,32

0,18

0,43

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Gasoline

Diesel

Gasoline ‐ Hybrid

Diesel ‐ Hybrid

PHEV

EV

FCEV

Production cost in € (thousand)

Specific energy consumption [kWh / km]

Figure 2.16: Construction costs of different vehicles types as of 2009 (top) and specific
energy consumption per km (bottom) (Mock et al., 2010).

from Renault) and additional battery leasing fee needs to be payed on top every
month which again adds to the operation costs of the owner, but brings a guar-
anteed life time for the battery and additional services. The battery size varies
with the class of the vehicle, most batteries are around 20-30 kWh as this value
represents a trade-off between the range requirements of the customers and the
costs that increase disproportionally with the size of the battery.

If we focus on the main advantage of EVs in economic terms, their low per km
costs, we see that when the price of energy for refueling is varied in a consid-
erable range (cf. Figure 2.17) between 0.05 - 0.65 Euro/kWh, EVs are the most
stable option with respect to operational cost control. For comparison the fuel
price range for gasoline and diesel is placed in the respective part of the kWh
price on the x-axis. Here we observe that EVs have per km costs of 0.045 Euro
for a common kWh price of 25 ct (the average retail electricity costs in Germany
for 2012 (BNetzA, 2012)), whereas conventional (gasoline) vehicles incur costs of
about 0.14 Euro per km at the lowest current price levels of 1.50 - 1.60 Euro/l.
Additional costs for maintenance are also lower for EVs, as they do not have as
many moving parts and the electrical engine is also a rather simple component
from its basic construction characteristics. Total cost of ownership analyses sup-
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Table 2.2: List of selected available full electric vehicles from serial production with
main properties and retail prices (January 2013).

Vehicle Range Specific Consumption Battery Capacity Retail Price
[km] [Wh/km] [kWh] [Euro]

Mitsubishi iMiev 150 135 16 29,300
Renault Zoe 210 105 22 20,600
Smart ForTwo ED 135 130 17.6 23,680
Ford Focus Electric 160 143 23 39,900
Nissan Leaf 160 150 24 33,990
Renault Fluence 185 118 22 25,950
Tesla Roadster 350 160 56 128,520
Tesla Modell S 335 179 60 53,769 a

Renault Kangoo 170 130 22 20,000
Toyota RAV 4 EV 160 261 41.8 38,307
Avg. Vehicle 201.5 151.1 30.4 41,401
a Assuming an exchange rate of 1.3 USD/EUR.

port the finding that without major battery failures EVs can be cost competitive
in the medium run. In particular this is likely when EVs are used more fre-
quently, which could be the case in a car-sharing system, where the initial high
capital costs are distributed over a higher number of users and longer distances
driven (Contestabile et al., 2011).

Besides these economic and technical aspects, cultural differences in the indi-
vidual valuation of a vehicle must be considered as an important factor for mass
adoption of EVs. This means that EVs need to be perceived not only as small,
economic "boxes" serving for mobility purposes, but need to have characteristics
that people with the respective cultural background find attractive for a vehi-
cle. In addition new application patterns for vehicles might also change the role
of EVs, as mobility is gradually advancing to become a service that is not only
being performed by one individual mean of transport, but by the one most suit-
able according to the preferences of the user. These inter-modal or multi-modal
mobility patterns combine different means of transport, like transit, high-speed
rail and car-sharing systems to deliver the best or most flexible trip itinerary.
The role of the EV could thus also change and not merely reproduce the usage
pattern of conventional vehicles, again contributing to a more resource efficient
individual mobility.

In the following sections the technical properties of EVs will be addressed in
more detail, with a focus on the different configurations of EVs, their storage
technology and cost as well as their active role and integration into the power
system.
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Figure 2.17: Energy related costs per km in dependence of kwh price for the main vehicle
types, based on the specific consumption values from above.

2.6.4 EV Drive Train Concepts

In the previous section a general classification of EDVs has been performed. In
this paragraph the essential technical architecture of different vehicle types is
explained in more detail. In particular the drivetrain concepts of conventional,
hybrid and plug-in hybrid, fuel cell and electric vehicles are compared with each
other. Further more technically interested readers are referred to (Husain, 2010)
and Appendix C.

The standard EV setup consists of a battery, a power converter which can work
in both directions as energy is regained through regenerative breaking when the
electric engine (EE) is working as a generator, and the according power electron-
ics for control. FCEV which are powered by hydrogen or reformed on board
from methanol. The hydrogen is used in the fuel cell stack to generate electricity
that is either used for driving, or is stored in the on board battery. In both cases
the battery is the only connection to the EE.

The combination of ICE with EE can be performed in different configurations.
The first is a series-hybrid, the simplest hybrid configuration, which is also em-
ployed for range extender vehicles like the Chevy Volt4. In this configuration the
ICE is used to supply the battery, which in turn, over the converter powers the
EE. A slightly different concept is the parallel-hybrid configuration. In this case
both the ICE and the EE are executing mechanical power over the gearbox on
the drive axle. This concept allows for a smaller ICE engine, which in turn can

4The Volt is not a pure serial hybrid, the ICE delivers direct mechanical power to the axle over
a planetary gear in certain driving situations, to increase the overall efficiency (Chambers,
2011).



48 Towards Smart Power Systems and Markets: Foundations

Table 2.3: Well to wheel primary energy efficiency for the discussed vehicle drive train
concepts, numbers according to (Pollet et al., 2012).

Vehicle Type Well to Tank Tank to Wheel Components Well to Wheel
EV 32-100% Charger 90%, Battery 92% , Inverter 96%, 21.3-66.5%

Engine 91%, Mechanical 92%
Average Efficiency 66.5%

Hydrogen FCEV 75-100% FC 51.8%, Inverter 96%, Engine 91%, 31.2-41.6%
Mechanical 92%
Average Efficiency 41.6%

Hybrid 82.2% Average Efficiency 30.2% 24.8%
Diesel 88.6% Average Efficiency 17.8% 15.8%
Gasoline 82.2% Average Efficiency 15.1% 12.4%

not be employed only to charge the battery while operating at the most efficient
conditions.

The battery components of the different hybrid concepts are scaled to enable
all electric ranges between 20-60 km. The more energy is charged from the power
grid, the larger the battery has to be dimensioned, if no other power source is
on board. The onboard generator can be realized in different ways: either the
peak power requirements are met by the generator (ICEV or FC) or additional
high power components like supercapacitors are added in order to provide peak
power, while smaller generators are operated for electricity generation in their
efficient operating points (Orecchini and Santiagneli, 2010).

Table 2.3 describes the overall efficiency values of the discussed drive train
concepts. The values support the per km consumption values presented in Sec-
tion 2.6.1. For EVs the primary energy efficiency highly depends on the power
source employed for charging. In the "worst" case of 32% overall grid efficiency
with thermal power plants and additional transmission and distribution losses
accumulate to a well to wheel efficiency ratio of only 21.3%, which is not consid-
erably higher than the overall value of diesel and gasoline vehicles with 15.8%
and 12.4% of efficiency respectively. In the best case of employing renewable
energy, with a 100% input, still 66.5% are used for mobility purposes. This is an
important improvement in comparison to conventional vehicles.

2.6.5 EV Storage Technology

Presently one of the most important parts of EVs and key to the overall techni-
cal and economic potential of this technology is the storage component. Electro-
chemical storage of electricity with batteries has been improved steadily over the
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Figure 2.18: Progression of improvements in energy density and cost of standardized
consumer "18650" lithium-ion cells (Reddy and Linden, 2011).

last decades. But it was not until 1993 when Sony introduced the Li-Ion Technol-
ogy for mobile electronic devices, when batteries became more competitive for
mobility applications again. Since then the learning and resulting cost reduction
effects have supported the development of traction batteries for PHEVs and EV
(Reddy and Linden, 2011). Figure 2.18 shows the improvements that have been
achieved for the Li-Ion technology on a cell level with respect energy density
and cost per kWh. From 1994 to 2002 costs were cut by 90% to 250$/kWh while
energy density was increased from 250 Wh/l to 450 Wh/l. This development
also helped to support the development of one of the most prominent recent
EVs, the Tesla Roadster, which employed exactly 6831 of these cells in its battery
pack. The energy density at the battery pack level is still high with 120 Wh/kg
and a specific power of 400 W/kg. As we will see later on in this section these
values are determining the performance characteristics of EVs.

Before the main technology which prevailed in current EVs, general charac-
teristics of batteries will be described. Batteries are devices that convert the
chemical energy contained in their so called "active" materials directly into elec-
tric energy by means of an electrochemical redox (oxidation-reduction) reaction
(Reddy and Linden, 2011). In these reactions electrons are transferred from one
material to another through an electric circuit. This process is more energy effi-
cient and not as limited as other thermal reactions like combustion by the Carnot
cycle as it is the case for ICE (and thermal power plants). While we often refer to
batteries as the energy storage unit, batteries combine a number of cells, which
represent the basic electrochemical unit of energy provision. Batteries combine
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the appropriate number of cells connected in series or parallel according to the
voltage and current requirements and also include monitors, controls (or other
ancillary components like fuses), terminals, markings and the case containing
the cell arrangement. The batteries considered in this thesis are secondary bat-
teries that can be recharged (accumulators), in contrast to primary batteries that
can not, or not efficiently be recharged.

Battery cells operate at a given voltage level, for Li-ion cells this value is be-
tween 3.7 - 4.2 V (cf. Appendix Table C.1). Connected in series the cells add
up to the battery voltage level of the respective application. For EVs the sys-
tem voltage level is usually higher than 60 V DC, reaching up to 400 V for EE
power levels below 100 kW (VDE, 2012). Batteries are characterized by spe-
cific indicators, some of the most important ones being: Charge capacity, energy
capacity, specific energy, energy density, specific power and number of deep cy-
cles (Larminie and Lowry, 2003). Further parameters, like charge efficiency, self-
discharge rates, battery geometry and temperature requirements also need to be
considered, but can be aggregated in the overall efficiency of the battery system
that is part of the respective EV.

The charge capacity or Amphour (Ah) capacity determines the amount of elec-
tric charge that a battery can provide. In particular this means that a Battery with
56 Ah could provide a current of 56 A for one hour, at the specified system volt-
age. The total amount of energy a battery can deliver depends on the amount
of charge and the system voltage. In order to obtain the more common energy
storage capacity in Watthours (Wh) we perform the following calculation:

EStored = VSystem ∗ Ah [Wh]5

The specific energy is the amount of electrical energy that can be stored for ev-
ery kilogram of cell or battery mass. The values for the cells are higher than
for the battery systems as all additional components necessary to form the bat-
tery do not increase the storage potential for a given number of cells. The energy
density is the amount of electrical energy stored per cubic meter of battery vol-
ume. For this normally the unit [Wh

m3 ] is employed, but as batteries in vehicles are
smaller than stationary systems also the unit [Wh

l ] is used6. The energy density
allows for an assessment of storage potential if the approximate value of avail-
able volume for the battery is known, and thus has a high impact on vehicle

5For a battery system voltage of 380 V we obtain: 380 V * 63.15 Ah = 23,997 Wh, which equals
about the 24 kWh storage capacity of the Nissan Leaf. Please observe that 1 Ah equals 3600
C (Coulomb).

61 m3 = 1000 l
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Figure 2.19: Ragone plot for several battery technologies, comparing power and energy
density and plotting requirements for EVs, adapted from (Kalhammer et al., 2007).

performance characteristics and design considerations. The specific power deter-
mines the amount of power per kg of battery. This value is a maximum that
should only be imposed on the particular battery for a short time, as otherwise
the efficiency decreases and battery lifetime is shortened. The power demand
depends on the loads like the EE of the vehicle and the driving energy demand.
These situations are usually characterized by dynamic variations in power draw
depending on the mode of operation. Battery systems can be designed to sup-
port high power requirements and high energy (storage) requirements. Usually
high energy batteries can store larger amounts of electricity, but can not supply
propulsion systems with peak power, as their specific power values are not as
high. In Figure 2.19, a "Ragone7" plot depicts the specific power densities vs. the
specific energy for battery chemistries that have been predominantly employed
for EVs.

The most common battery type used for vehicles is the lead acid battery. The
first electric vehicles were predominantly enabled by this technology, but their
rather low specific energy of 20-35 Wh/kg does not permit for an application

7A Ragone plot shows the specific energy or energy density of a battery system against the
specific power or power density on a log-log scale. This type of graph effectively shows the
influence of the discharge load (in this case, power) on the energy that can be delivered by a
battery (Reddy and Linden, 2011).
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Table 2.4: Comparison of battery performance parameters of main battery chemistries,
adapted from (Larminie and Lowry, 2003; Reddy and Linden, 2011).

Battery Technology Specific Energy Energy Density Specific Power Full Cycles
[Wh/kg] [Wh/l] [W/kg] (80% Discharge)

Lead Acid 20-35 54-95 250 800
Ni-MH 65 150 200 1000
Zebra 100 150 150 >1000
Li-ion 90-200 153 300 >2000

in modern EVs (cf. Table 2.4). Nickel cadmium batteries have a higher specific
energy and also have a higher lifetime but it was only with the Nickel-metal
hydride (Ni-MH) battery, that full hybrids like the Toyota Prius could become
competitive and economically viable. Ni-MH has quite a high storage capacity,
and is not affected by the so called "memory" effect, as Ni-Cd systems are. The
memory effect reduces the capacity of the battery over time, as the capacity is
approaching the withdrawn energy amount. Zebra batteries are sodium metal
chloride based storage systems, that have a solid electrolyte and operate at high
temperatures (320 ◦C) and have been employed in various EV prototypes, as the
performance characteristics are close to Li-ion batteries (DaimlerBenz, 1997).

Because of its favorable characteristics for high energy and high power appli-
cations the Li-ion battery is now the most prevalent storage system for mobile
applications. Besides the good energy density, Li-ion has a long shelf and cy-
cle life, that can exceed 2000 full 80% cycles, and a lower discharge rate than
other systems (Kalhammer et al., 2007). Disadvantages of the Li-ion technology
are its moderately high costs, problems with thermal runaway if overcharged
or crushed, requiring new procedures for emergency situations. Nevertheless
this storage technology still has potential for improvement as different cathode
materials are developed that increase energy storage capacity and reduce pro-
duction costs. Especially Li-air and Li-sulfur based chemistries are expected to
increase the specific energy to values well over 400 Wh/kg, more than doubling
the performance of current technologies (Gerssen-Gondelach and Faaij, 2012).

As battery systems have a limited lifetime, questions about the sustainability
of the application of Li-ion secondary batteries have to be answered. The known
lithium resources encompass about 13.7 million metric tons, with about 6 mil-
lion metric tons as reserves that are accessible considering current technology,
(Angerer et al., 2009; USGS, 2013). These resources are mainly concentrated in
Chile, China, Australia and Argentina, leaving room for political implications in
the future.
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Currently only about 25% of the mined lithium is used for battery manufactur-
ing. The most prominent other applications are glass and ceramics production
(37%), greases (11%), aluminium melting (7%) and various other applications
(25%). The highest increase is expected in the energy storage manufacturing
domain, with a focus on traction batteries for EVs. Depending on the prevail-
ing Li-ion battery chemistry, different amounts of lithium per kWh are required,
with current values between 150 and 260 g/kWh (Angerer et al., 2009). More im-
portant than the main battery chemistry is the demand due to hybridization and
electrification of vehicles that is anticipated. When following rather conserva-
tive adoption scenarios and a development to about 40% of hybrid and electric
vehicles until 2050 in the world-wide vehicle fleet (while considering demand in-
crease for the other application areas accordingly), the available reserves would
be depleted to about 59%. If a more radical scenario in which about 90% of the
vehicle fleet would be hybrids or EVs, the available reserves would be depleted
completely around the year 2045 (Angerer et al., 2009).

These estimates are subject to high uncertainty about future development in
lithium processing and demand, but are consistent with most sources in litera-
ture which often assume even longer availability of lithium resources. In partic-
ular (Andersson and Rade, 2001) assume that lithium will be available well be-
yond 2100, while already accounting for demand growth in the automotive sec-
tor. In any case it is emphasized that recycling of lithium from depleted batteries
or other applications is crucial to satisfy demand for a longer time. This in turn
means that design considerations must include a recycling possibility already in
today’s systems. In addition more resource efficient battery technologies must
be sought for and alternatives building on more prevalent and thus less costly
materials must be developed. Considering the current situation, Li-ion technol-
ogy seems to be a good first step for electric mobility, with a security of supply
for the next four decades. This leaves sufficient time to develop the mentioned
alternatives and leverage the experience from the Li-ion development path.

2.6.6 EV Storage Cost Development

Storage costs are key to the development of EVs and their successful application
on a large scale. Table 2.5 shows battery costs projections for Ni-MH, Zebra and
Li-ion systems adapted from (Kalhammer et al., 2007), for the years 2012-2017.
Current estimates support the presented values, (Lunz and Sauer, 2010; Hensley
et al., 2012), but suggest that the cost levels are rather on the higher end ranging
between 500 - 650 $/kWh or 370-480 e/kWh on the battery pack level.
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Table 2.5: Battery cost projections for 2012-2017 considering different scale effects from
increased production volumes, based on (Kalhammer et al., 2007).

Battery Cap. Module Cost Battery Cost Module Cost Battery Cost
[kWh] [e/kWh] [e/kWh] [e/kWh] [e/kWh]

Prod. Volume 20,000 Units 100,000 Units
Ni-MH
EV (Large) 40 237,04 284,44 192,59 231,11
EV (Medium) 25 318,52 397,78 259,26 311,11
PHEV 40 14 318,52 422,96 259,26 344,44
ZEBRA
EV (Large) 40 203,70 244,44 148,15 177,78
EV (Medium) 25 203,70 252,59 148,15 183,70
PHEV 40 14 203,70 270,37 148,15 195,56
Li-Ion
EV (Large) 40 211,11 253,33 144,44 171,85
EV (Medium) 25 281,48 351,85 192,59 240,74
PHEV 40 14 281,48 372,59 192,59 256,30

Table 2.5 presents the cost values for the three most common mobile storage
technologies, Ni-MH, Zebra and Li-ion under consideration of different scale
effects from increased production volumes. The cost values are based on em-
pirical data from manufacturer surveys encompassing expected learning effects
and increased production efficiency. It can be seen that an increase from 20,000
produced battery units per year to 100,000 units substantially reduces cost per
kWh, e.g. fro Li-ion from 351.85 e/kWh (475 $/kWh8) to 240.74e/kWh (325
$/kWh) for the medium sized EV with a capacity of 25 kWh. Batteries are build
from basic modules, which in turn contain the cells, thus additional cost for sys-
tem assembly are taken into account. These additional costs factor about 1.2 to
1.6 times to the module cost. One interesting finding according to (Kalhammer
et al., 2007), is that the per kWh cost for PHEVs and HEVs might be higher at the
system level, as the power electronics and additional package materials are still
required nearly with the same specifications. The absolute costs of the storage
system are still lower but only due to the smaller capacity.

The Ni-MH costs for the different battery sizes are in the range of the Li-ion
technology, but are not expected to decrease as rapid as Li-ion, as nickel re-
sources are expected to remain scarce. The Zebra battery is the cheapest option,
as the main materials in the battery are not as expensive as in the case of Li-ion
and Ni-MH. On the other hand Zebra batteries lead to heavier vehicles, which
again reduces potential range.

8Assuming an exchange rate of 1.35 USD per EUR, the average value for 2007.
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Figure 2.20: Storage cost development and competitiveness comparison of different ve-
hicles types in dependence of recent (2011) fuel prices, adapted from Hensley et al.
(2012). Exchange rate is 1.35 USD/EUR for comparability.

Analyses employing total cost of ownership approaches in order to determine
at which storage system costs EVs are going to be competitive with conventional
or hybridized vehicles suggest that with current battery costs over 370 e/kWh
(500 $/kWh) only HEVs are economically viable in the U.S. (cf. Figure 2.20). Un-
der the same TCO assumptions employed in the work of Hensley et al. (2012),
building on ANL (2012), Li-ion storage would be competitive in PHEVs in the
European, or in particular German context of 2011/12 (depicted by the respec-
tive area for the average diesel price in Figure 2.20). Here it must to be mentioned
that the investment costs for vehicles are higher in Germany, because of lacking
tax credits and the pricing policy of the manufacturers. This pricing policy leads
to the fact that similar EVs are priced at the same Euro price as the USD figure,
effectively increasing the cost by the exchange rate9.

As the general adoption of EVs is not as high as expected in most markets
without support mechanisms like tax credits, practitioners and OEMs are more
hesitant regarding the development of EVs. In addition large new battery manu-
facturing capacities have been added in the the years 2010-2013 which is likely to

9Prius Plug-In Price-Germany: 36,550 e(Toyota, 2013a), Prius Plug-In Price California: 32,000
USD (Toyota, 2013b).
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contribute to a price reduction for Li-ion technology in the near future, but will
also reduce the number of manufacturers that can continue to operate in spite of
high capital costs for the production lines that are not used to their full capacity
because of weaker demand. Besides the application only in vehicles new eco-
nomic opportunities could arise for used EV batteries, that are refurbished and
could be used in a stationary setting for grid support, arbitrage or ancillary ser-
vices. Williams (2012) considered different applications and suggest that most
of them are economically viable with current systems as the Chevy Volt battery.
Nevertheless some uncertainty about the reliability of Li-ion systems remains,
as cycle and calendar life assessment and experience increase only slowly.

2.6.7 EV Grid Connection

EVs need to be connected to the power grid in order to recharge. Grid inte-
gration encompasses two main concepts: first to the physical connection of the
vehicle with the power grid, and second, the communication and control ability
with the respective responsible party for charging coordination. This section is
committed to the first part, while Section 2.7 will address the second.

Ever since the first EVs came on the road, the proper connection type and later
charge mode are open issues. There have been a variety of different connector
types and charging modes that rely on various specifications for voltage and
current levels, mostly mapping the requirements of the geographic region the
vehicle is operated or manufactured in. In particular the different voltage char-
acteristics of e.g. the U.S. power grid and the European system had an influence
on these developments. Charging can be performed either conductive (i.e. using
cables and plugs) or inductive (employing an inductive coupling system without
physical connection) (Yilmaz and Krein, 2012). As the power grid specifications
for both charging methods are similar the focus will be on conductive charging
as it is the current standard for EV grid connection.

Charging can be performed in different modes and with different types of con-
nectors (cf. Figure C.3). In addition there are different power levels that are
specified for the respective charging modes. Charging modes refer to the speci-
fications and the infrastructure employed for charging. The modes also specify
charging currents and therefore for a given system voltage the power that can
be used (Van den Bossche, 2010). Charging levels refer to specific power levels.
This term is also more commonly used in the context of the U.S. power system,
where level 1 charging refers to a standard 120 V / 15 A residential socket with
1.8 kW maximum output. Level 2 charging refers to a dedicated infrastructure,
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Table 2.6: Overview of charging modes, levels, plugs and their specifications. Values for
cosφ = 1. Adapted from (Van den Bossche, 2010; ABB, 2012; Yilmaz and Krein, 2012).

Charging Charging Charging Voltage Phases Current Power
Mode Levels Plug [V] [#] [A] [kW]

Mode 1, 3

EU Standard CEE 7/Type 2 230 1 16 3.7
EU Semi-Fast Type 2 230 1 32 7.4
EU Semi-Fast Type 2 400 3 16 11.1
EU Semi-Fast Type 2 400 3 32 22.2
EU Fast Type 2 400 3 63 43.6

Mode 1, 2 US Level 1 Nema 5-20/Type 1 120 1 15 1.8
Mode 2, 3 US Level 2 Type 1 240 1 30 7.2

Mode 4 US Level 3 DC Type 4/CHAdeMO 50-500 - 100 50
EU Fast DC Type 2 Combo 500 - 140-200 70-100

but still in residential or commercial environments with a voltage of 240 V and
a current 30 A, providing up to 7.2 kW for charging purposes. Level 3 in turn
refers to external charger based DC charging systems.

The charging modes are specified as follows: Mode 1 is defined as charging by
a non-dedicated outlet with currents up to 16 A, i.e. a standard household socket
that has no protective elements special to the vehicle. For residential sockets so
called residual current devices (RCD) are in place for most electric installations,
providing protections against unwanted leaking currents, but as electricity in-
frastructure developed over the decades, there is a chance that in older dwellings
no appropriate protection is in place (Van den Bossche, 2010). With a proper RCD
in place, mode 1 standard socket charging is the most common charging option
with powers of 1.8 (US) - 3.7 kW (EU), cf. Table 2.6.

Mode 2 charging mostly refers to a charging connection of the EV to the AC
supply network that employs standard sockets, but provides an additional in-
cable control box with a control pilot conductor between the electric vehicle and
the plug or control box. This mode was primarily designed for application in the
U.S., enabling more secure charging at non-dedicated standard outlets. Mode
3 charging involves the direct connection of the EV with the AC network uti-
lizing dedicated EV supply equipment (Van den Bossche, 2010). According to
IEC Standard 61851-110 a control pilot protection is mandatory for the equip-
ment permanently connected to the grid and the EV. This charging mode enables
charging control and allows for a safe charging process that is continuously mon-
itored. Mode 4 is defined as the indirect connection of the EV to the AC grid, uti-

10 Electric vehicle conductive charging system - Part 1: General requirements.
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lizing an off-board charger where the control pilot conductor extends to equip-
ment permanently connected to AC supply. This refers to DC charging systems
that are directly connected to the battery system and allow for considerable high
charging powers of 50 kW and more, cf. Table 2.6.

The charging power determines the impact the demand of the EV has on the
grid. As depicted above in Table 2.6 the available power ranges between 1.8
- 43.6 kW. The EU standard outlets and residential connections allow charging
of the EV at rates up to 11.1 kW. Higher powers are restricted to public and
dedicated private charging stations with powers from 11.1 - 43.6 AC 11, or 50
kW DC. With the introduction of the Type 2 Combo system charging powers
up to 100 kW are possible, but must also be supported by the respective EVs.
Charging Coordination is very important if many EVs are clustered in an area
or if local and global grid support should be implemented. The ability of the EV
to communicate is therefore crucial and must also be enabled by the charging
infrastructure. Standard protocols like the ISO 1511812 are therefore developed
and enable the concepts that are further discussed for EV grid integration in the
next sections.

2.7 EV Charging Coordination

In order to harvest the demand flexibility of EVs within a DSM program, their
charging process needs to be coordinated. The coordination must occur with re-
spect to a given objective. In addition the coordination of demand requirements
can be performed within different communication and control architectures. The
main architectural concepts are decentralized and centralized control architec-
tures. These categories refer to the level on which the charging decision is made,
given an objective and constraints that need to be met given a certain scenario.
Figure 2.21 provides a basic classification of the two charging coordination ar-
chitectures under inclusion of the mixed hierarchical architecture. Following
the predominant centralized control paradigms of the traditional power system,
centralized charging control architectures build on scheduling procedures that
also consider the requirements of the individual charging jobs. These paradigms
often rely on planned schedules that are communicated to a central scheduling
instance, or assume that a direct load control (DLC) scheme is in place which
can be employed to organize the overall charging process such that in particular

11For 3-phases power is exemplary calculated as follows: P =
√

3 ∗ 400V ∗ 63A = 43.6kW
12Road vehicles – Vehicle to grid communication interface (ISO, 2012).
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Figure 2.21: EV charging coordination paradigms, adapted from (Malone, 1987).

technical constraints are met. The DSO and TSO are often assumed to be respon-
sible for this form of coordination as technical objectives need to be met for safe
and reliable power grid operations (Gonzalez Vaya and Andersson, 2012).

A centralized approach has advantages with respect to reliability of charg-
ing control and can be easily integrated into existing power system control
paradigms. But centralized control architectures require a high degree of in-
formation in order to allow for accurate planning by the central instance. Fur-
thermore central control architectures rely on increasingly complex optimiza-
tion procedures that do not scale very well in the number of participating units
(Li and Shahidehpour, 2005), as with every new vehicle additional constraints
are added to the optimization problem. There are many possibilities to reduce
the complexity for central coordination procedures or use faster computing al-
gorithms, including heuristics (e.g. genetic algorithms or simulated annealing
(Padhy, 2004)) or the division of problems into subsets which can be solved
easier. Nevertheless this control paradigm might not be very well received by
EV-owners as they do not retain control about the charging process of their ve-
hicle. In order to address the technical complexity and the increasingly more
decentralized structure of the power system, hierarchical charging coordination
approaches must also be considered.

Hierarchical coordination procedures can be a hybrid form that incorporate as-
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pects of both, centralized and decentralized control paradigms. They can incor-
porate centralized control and scheduling mechanisms, but in contrast to their
system wide counterpart, only address solutions for defined areas or parts of
the overall system. This divides the general optimization problem to a set of
interconnected but local, and in the best case optimal, solutions. In a more com-
pact setting this traditional approach is thus still applicable from a technological
perspective. The drawbacks with respect to the charging decision being dele-
gated away from the EV-owner are still prevalent. In this context the role of a
so called aggregator (cf. Chapter 3), an institution that aggregates the load and
thus also the load flexibility of numerous EVs in order to participate in the power
market, ameliorate distribution congestion (Galus et al., 2011), enhance grid sta-
bility through the provision of ancillary services or support the integration of
fluctuating renewable energy sources (Caramanis and Foster, 2009b), has been
extensively proposed as a hierarchical coordination instance.

Charging control in the hierarchical scenario can either follow a schedule
based or a price based coordination approach. In the price based scenario, a price
is determined either by the aggregator and communicated to his customer EVs,
or it can be determined in a special auction in which the particular EVs partici-
pate (Gerding et al., 2011). Price based mechanisms can incorporate the system
state, and in particular the regional technological constraints if they are designed
accordingly. Following the concept of spot pricing introduced earlier (cf. Section
2.5), prices that reflect local capacity constraints and resource availability enable
an efficient resource allocation. Prices can vary by location, a concept follow-
ing the nodal pricing paradigm or by time, and finally in both dimensions. The
hierarchical, price based approach will be one of the two main concepts under
investigation in this work.

Decentralized charging coordination builds predominantly on price based
mechanisms. Decentralized charging decisions enable vehicle owners or users to
decide when and according to which objective to organize the charging process.
The coordination mechanism must therefore incorporate the decisions made by
the individual EVs in order to allow for an effective and reliable operation of the
system while guaranteeing supply for the vehicles. In this category prices can ei-
ther be determined uniformly for all market participants, or discrimination with
respect to location and demand time takes place. Decentralized coordination re-
quires more exchange of information, but the number of necessary parameters
that need to be communicated is lower, as the decision problem size is confined
to one unit, e.g., one EV.

The different charging coordination architectures can not always be distin-
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guished sharply. Decentral charging decisions based on centrally communicated
uniform prices are one example for a mixed form of charging coordination. Hier-
archical and decentralized architectures are inherently combined if price signals
are calculated on a regional level by an aggregator, while vehicles still make the
decision on how to determine their individual charging schedule. The presented
classification is thus giving and overview of the general possibilities on how to
organize charging coordination. Considering a more abstracted perspective, this
classification can be employed for any resource allocation, including other flexi-
ble loads. The next sections provide an overview of the most relevant literature
with respect to charging coordination of EVs looking into primarily technical
and economic objectives and the integration ability of fluctuating renewable en-
ergy sources.

2.7.1 Technical Objectives

One of the main areas covered in literature of EV related research is looking
into technical questions in particular with a focus on the power grid integration
of EVs. Most of the work mentioned in this section also considers economic
constraints, but primarily pursues technical objectives under economic restric-
tions. Scholars investigating the respective questions in the context of the Smart
Grid stem from different professions, and provide insights on similar questions
from various perspectives. Traditional power systems engineering, as well as
electrical engineering and increasingly researchers from computer science and
economics investigated some of the following aspects with a technical focus.

One main branch of research is looking into the assessment of EV charging
load on the power grid on different voltage levels, with a particular focus on dis-
tributions grids. Topics in this domain include the investigation of transformer
loads following different charging strategies in given standardized distribution
grid structures, mainly with households as an inflexible base load. In this con-
text Optimal Power Flow (OPF) methods play an important role. Other main
objectives in this context are peak reduction and load shifting in order to mini-
mize distribution system losses and distribution equipment stress. In addition
voltage problems and reactive power provision or compensation in distribution
grid settings are investigated.

Analyses with respect to the impact of EVs on distribution system load per-
formed by Lopes et al. (2010) and Mets et al. (2010) show that controlled charging
schemes can help to integrate a higher number of EVs in the same distribution
system (52 % penetration rate in the coordinated as compared to 10% in the un-
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controlled case). In addition peak loads can be significantly reduced by 40 %
by coordinated charging. As system peaks are reduced so are losses in the dis-
tribution system by around 25% in the analyzed scenarios (Acha et al., 2010).
Analyses with respect to optimal charging rates in a residential context show
that charging coordination can improve voltage levels and balance phase load
in order to reduce transformer equipment wear and integrate higher numbers
of EVs, thus deferring costly line and distribution system upgrades, (Richardson
et al., 2010; Huang et al., 2012). Most coordinated charging approaches follow
the centralized of hierarchical control architecture with rather high information
requirements regarding the individual EV-user (Sundstrom and Binding, 2012).
Further investigations are looking into the interaction between distribution and
transmission systems and thus show that local load situations can be quite differ-
ent from overall system status and require different integration strategies (Gon-
zalez Vaya et al., 2012; Salah et al., 2013).

Besides the regional impact assessment there is also work looking into the
system wide impacts of EVs. In particular the impact of considerable EV pene-
tration rates on existing power systems and the corresponding unit commitment
models in the U.S. are at the center of attention, (Sioshansi et al., 2010; Sioshansi
and Denholm, 2010). These analyses are either looking into operational aspects
like additional CO2-emissions and costs in the European (Kiviluoma and Mei-
bom, 2011), or U.S. systems caused by the integration of EVs. Other analyses are
estimating the reductions in primary energy consumption enabled by EVs and
the effects on overall system load (Kintner-Meyer et al., 2007).

Another technical branch of research is focused on the storage and energy
feed-back aspect of EVs, known as vehicle-to-grid, (V2G). This notion intro-
duced by Kempton and Letendre (1997) has received a high level of attention. In
particular the question if a profitable participation of EV fleets, coordinated by
an aggregator, mostly in a direct control scheme has been addressed in different
settings. The necessary communication architecture has been assessed in Quinn
et al. (2010), the main application domain for V2G is the provision of ancillary
services, since regulation and spinning reserve products appear as the econom-
ically most stable options under consideration of high battery investment and
degradation costs, Tomic and Kempton (2007); Andersson et al. (2010); Galus
et al. (2010). In addition energy arbitrage under nodal and wholesale prices in
the U.S. and Germany have been investigated (Peterson et al., 2010).

These analyses show in particular that it can be profitable for EVs to provide
certain regulation and spinning reserve products, as both the U.S. and the Euro-
pean markets include capacity and energy payments for regulation market par-
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ticipants. Sortomme and El-Sharkawi (2011), Dallinger et al. (2011) also show
that the most profitable option to participate in regulation markets is the provi-
sion of negative regulation, which means that charging occurs at times when the
grid has surplus energy that needs to be withdrawn.
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Table2.7:Characteristicrelatedliteraturewithapredominantlytechnicalfocus.
TechnicalFocusMainObjective(RQ)Coordination

Approach
ModelScopeMainFinding

GridAncillaryRESEVTripDynamic
AuthorsConstraintsServicesUtilizationModelingPrices
Achaetal.(2010)Energyandemissioncostmini-

mizationthroughEVgridinte-
gration

centralyesno(yes)(yes)(yes)Lossesarereduced,30%EVpenetration
isnoproblem,emissionreductionsarenot
highduetoUKgenerationmix

Galusetal.(2010)Evaluateaggregatormanage-
mentmodelforprovisionof
ancillaryservices

hierarchical(yes)yesno(yes)noStatebasedshorttermsystemoperation
planingmustconsiderindividualtrippat-
ternsandresultingenergydemand

Galusetal.(2011)IntegratedassessmentofEV
chargescheduling

hierarchicalyesnonoyesnointegratedplanningmodelandscheduling
approachreducesoperativepeakloadfrom
Evs

Gonzálesetal.(2012)AssesmentofEVchargingon
transmissionanddistribution
level

central/de-
central

yesnono(yes)yesLocaldistributionsystemconditionsmust
beconsideredforchargingcoordination

Lopesetal.(2010)Distributiongridintegrationof
EVsunderdifferentcharging
strategies

centralyes(yes)(yes)nonoChargingcontrolallowsforhigherEVnum-
bers,voltagesupport,lossandpeakreduc-
tion

Saberetal.(2010)UnitcommitmentwithEVsus-
inganPSOapproach

centralnoyesnonoyesPSOsolvercanhelptosuccessfullyin-
tegratelargenumbersofdeterministically
availableEVs

Sandelsetal.(2010)AssessmentofEVaggregation
architecturesforASprovision

hierarchicalnoyesno(yes)noControlelectronicsshouldbelocatedin
EVs,negativeregulationisthemostcostef-
ficientoperationmode

Sortomme
et.al.(2011)

Assessmentofunidirectional
V2GforEVsparkedatwork

hierarchicalnoyesyes(yes)yesUnidirectionalcontrolledchargingisbene-
ficialforallstakeholders,noadditionalstor-
agecosts

Sundstromand
Binding(2012)

Chargingcostminimizationun-
derconsiderationofgridcon-
straintsandmarketbidformula-
tion

hierarchicalyesnonoyesyesdistributedopt.bydifferentrolescansup-
portvoltagelevels,whilekeepingcostlow.
Highinformationrequirements
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This operation strategy incurs no additional battery costs and can be profitable
in particular because of the capacity payments that are paid for being available
to the power grid at the contracted times. Positive regulation can also be slightly
profitable, but needs to consider additional investments in grid and commu-
nication infrastructure. In this context is has also been shown that frequency
regulation support can be performed by the vehicles (Lopes et al., 2010).

Table 2.7 provides an overview of different approaches in the technical do-
main. As there are vast amounts of at least partly relevant literature this table
provides a general overview of the main areas covered in in EV research with a
primarily technological perspective. The table provides an overview of the main
research objective addressed, the coordination approach (cf. 2.7) and the scope
covered by the model. The categories covered in the scope are the consideration
of technological grid constraints (e.g. voltage, power ratings, power flows), con-
sideration of ancillary services, the ability to integrate or support RES utilization.
In addition the categories trip modeling of EVs and the application of dynamic
prices are taken into account. Finally a short synopsis of the findings is given.

2.7.2 Renewable Energy System Integration

Making EVs more sustainable with respect to green-house-gas (GHG) emissions,
reducing fossil fuel dependency and assisting the power grid in the integration
of fluctuating renewable generation are some of the core advantages of charg-
ing coordination with a focus on higher utilization shares of renewable energy
(Richardson, 2013). The literature in this field is often intertwined with eco-
nomic and technical objectives. Most analyses are focusing on the coupling of
EV demand flexibility with intermittent renewable generation. Starting from
an overall power system perspective, assessments of EV charging load impacts
in systems with a high share of wind-power generation have been conducted,
e.g. in Pehnt et al. (2011); Short and Denholm (2006), where the impact of renew-
able sources (predominantly wind-power) on the merit order of the conventional
power plants or the integration ability of additional wind power capacity is as-
sessed. An analysis in the impact for the German case in 2030 was performed by
Dallinger and Wietschel (2012). They show that coordinated EV charging, based
on a variable pricing scheme and assuming responsive EV-owners can contribute
to balance intermittent generation.

Besides a cost assessment in different scenarios, the capability of EVs to re-
duce system-imbalance e.g. in the UK and Danish system have been analyzed
in Druitt and Frueh (2012) and Goeransson et al. (2010). Druitt and Frueh (2012)
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show that with a wind-power share covering 30% of the UK electricity demand,
one million EVs can supply about half of the balancing power required. With
higher EV adoption rates of up to 10 million vehicles, about 70-85 % of the bal-
ancing requirements can be met only by the vehicle fleet. Goeransson et al. (2010)
in turn show that emissions in the danish system can be reduced by PHEVs by
a coordinated charging pattern by 4.7% when vehicles have an overall demand
share of 20 %. Emission reductions in this case are due to more efficient thermal
generation, avoiding additional start ups and part load operation. Addidtional
analyses by Ekman (2011) show that coordinated charging and V2G capabili-
ties of 500,000 and 2.5 million vehicles in Denmark are capable to reduce AS and
system reserve requirements if wind-power generation covers 50 % of the danish
demand. In this case the authors also find that EVs can not provide the necessary
demand side flexibility alone, but still need additional controllable generation
for back up or other demand side flexibility options in order to reduce the excess
wind energy provided.

Other work with a focus on the V2G domain from Kempton and Tomic (2005)
shows that EVs can help to provide short term storage in the case of the U.S.
power system for up to two hours, but are not capable to serve as a medium term
energy storage which allow for a compensation of daily and weekly generation
shortages in wind-power production (assuming an installed capacity of 700 GW
wind-power and 38 % of the U.S. vehicle fleet being PHEVs that serve as an
operating reserve).

Another U.S. case analysis performed by Valentine et al. (2012) for the NY-
ISO area shows that coordinated charging according to wind power availability
improves system balance, but might slightly improve costs. This study shows
that coupling of EV load and wind-power infeed should not be performed in
a mandatory but that they should be treated as independent resources in pool
markets with unit commitment models. Markel et al. (2009) show that central-
ized charging coordination with respect to a renewable energy availability signal
from the utility can reduce ramp rates for conventional generation by 5 % when
a 5% EV adoption rate and 15% RES share of demand is assumed. In addition
they show that the communication requirements for centralized fleet control can
securely be covered by existing mobile communication infrastructure.

Relevant work with focus on the operative decisions of single actors in a re-
gional setting has been performed e.g. by Finn et al. (2012),Vandael et al. (2011)
and Galus and Andersson (2011). Finn et al. (2012) show that in the Irish case
DSM measures including EVs can increase the absolute share of utilized wind-
power for charging. Vasirani et al. (2011) propose a coalition formation approach
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to directly map the demand of EVs and the production of wind-generators in a
VPP. Galus and Andersson (2011) show that in the region of Zuerich EVs coor-
dinated by an aggregator can help to balance the production forecast error of
a 500 MW wind-farm. Vandael et al. (2011) present a hierarchical approach for
the reduction of local renewable energy balancing requirements in a distribu-
tion network setting. Their analysis shows that while the charging intentions
of the individual EVs are still met, imbalances can be reduced by up to 44% as
compared to the uncoordinated case.

Table 2.8 provides a short comparative overview of some of the main related
analyses. Charging coordination for renewable energy integration has been in-
vestigated in different settings, most of the reviewed papers were either focused
on balancing fluctuating renewable production, while considering technological
and economic constraints. As balancing of renewable energy production must
be performed on a short term basis most approaches assume centralized or at
least hierarchical control architectures. Balancing occurs for time intervals of 15
minutes, therefore the provision of ancillary services is only partly considered,
in particular primary regulation is thus not considered. Besides the assessment
of EV demand flexibility employment for RES integration, most approaches also
evaluate the changes in demand patterns based on the prevalent market model,
or on simple tariffs with respect to the economic impact of the demand shift.
Most papers assume that EVs are price responsive and have an automated charg-
ing control unit which acts on behalf and according to the preferences of the EV-
user. Nevertheless most studies only make basic assumptions about the trip be-
havior of the vehicles and rather focus on active inclusion of EVs into the power
grid. In this respect the work presented in this thesis enhances the existing anal-
yses as real-life driving profiles are employed for the assessment of EV charging
demand flexibility with respect to the renewable energy integration potential.
In addition this work also builds primarily on decentralized charging decisions,
employing dynamic pricing patterns as individual incentives. Thus it expands
the perspective of the mostly centralized approaches discussed previously in this
section.
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Table2.8:Characteristicrelatedliteraturewithafocusonintegrationofrenewableenergysources.
RESIntegrationMainObjective(RQ)Coordination

Approach
ModelScopeMainFinding

GridAncillaryRESEVTripDynamic
AuthorsConstraintsServicesUtilizationModelingPrices
Druittetal.(2012)Systemwidewind-imbalance

reductionthroughEVsinUK
centralnoyesyes(yes)yesEVscanreducebalancingrequirementsfor

wind-balancingby50%whilecharging
costsarelowered

Finnetal.(2012)EvaluationofDSM-signalsfor
maximumwindpowerusage
whilekeepingcostslow

decentral:
scheduling

nonoyes(yes)yesCostbasedminimizationstrategypromises
mostbenefitsintheanalyzedcase,wind
sharemaximizationleadstoslightlyhigher
costs

GalusandAndersson
(2011)

Balancingofwindgeneration
withlargePHEVfleetunder
considerationofgridtopologies.

hierarchicalyes(yes)(yes)yes(yes)TheMPCmodelenablestheaggregatorto
balancethewindin-feederrorfora500MW
windfarm

Göranssonet
al.(2010)

Comparisonofdifferentcharg-
ingstrategiesinthesystemof
Denmarkwithrespecttototal
emissions

central(yes)noyes(yes)noEmissionreductionsinwind-thermalsys-
temsareonlypossibleifEVsareactively
managed

KemptonandTomic
(2005b)

Assessmentofstorageoptions
andgridsupportbyEVs

(central)noyesyesnonoEVsarewellsuitedforregulation,canbe
usedforpeakpower,notformediumterm
storagetocompensateforRESshortages

Markeletal.(2009)Assessmentofchargingstrate-
giesfordirectRESutilization

centralnonoyesyesyesCoordinatedchargingcanreducepeaks,in-
creaseRESuse,communicationinfrastruc-
tureissufficientforcentralcontrol

Metsetal.(2012)Distributedchargingforwind
energyutilization

hierarchicalnonoyes(yes)yesWindenergyutilizationcanbedoubledby
thedistributeddecisionmechanismwitha
hierarchicalcoordinator

Valentineetal.(2011)Windenergybalancinganden-
ergypriceimpactofEVsinNY-
ISO

centralnonoyes(yes)yesEVscansupportwindintegrationandcon-
tributetolowerprices.Musttakewindpol-
icyisnotcostoptimal

Vandaeletal.(2011)ImbalancereductionwithEVs,
PVcasestudy

decentral:
economic

(yes)noyesnoyesThedistributedmechanismcouldreduce
balancingcostsby14-44%
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2.7.3 Economic Objectives

The last main group of relevant related work is concerned with the economic
evaluation of charging coordination in different market settings and the assess-
ment of allocation mechanisms from an economic perspective. The papers dis-
cussed in the following are thus primarily focused on operative economic objec-
tives with some considering technical and renewable energy integration aspects.

Employing the demand flexibility of EVs for the provision of AS was discussed
above, one of the main economic assessments for the general viability of the V2G
concept was performed in (Kempton and Tomić, 2005b). Based on data from
2003 an economic evaluation of the provision of regulation and spinning reserve
products in the CAISO market area shows that EVs, in particular those with a
high power connection can generate quite high profits mainly due to capacity
payments they receive.

This analysis is quite static and does not consider the dynamics of driving be-
havior. Work by Andersson et al. (2010) and Dallinger et al. (2011) (both assum-
ing an hierarchical aggregator approach) shows that when the daily variations
of prices and mobility patterns are considered, V2G activity is profitable only
for certain regulation products. In particular down or negative regulation (in
the European context negative secondary and tertiary reserve) can profitably be
implemented by EVs.

These analyses show that the capacity payment is a crucial part of the rev-
enue that can be generated by the individual EVs. As mentioned above these
approaches consider full availability and control of the participating vehicles. In
addition EVs are modeled as price takers, not influencing the price determina-
tion of regulation products. Following the analysis of Druitt and Frueh (2012),
Quinn et al. (2010) and the sources mentioned above, one can see that the com-
plete capacity requirements for regulation (and thus balancing) can be supplied
by less than 10% of the respective vehicle fleets, assuming all of them would be
electric, technically capable and willing to participate. V2G can thus be a prof-
itable option for the first movers and can even be performed without too high
battery degradation costs, (cf. (Peterson et al., 2010)), but will eventually not be
a viable option for all EV-owners over time.

Following this observation, the interaction of EVs adjusting their demand
(mostly without V2G operations) in accordance with economic signals emitted
from the power market is one of the main topics covered in literature. In par-
ticular the optimal operation of charging in the U.S. setting within the frame of
unit commitment (UC) based pool market models was investigated by Sioshansi
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(2012); Caramanis and Foster (2009a); Foster and Caramanis (2013). Sioshansi
(2012) compares two operation strategies, one that includes the demand require-
ments of 1% of the vehicle fleet of the ERCOT service area as PHEVs (~75,000 ve-
hicles) in the ISOs unit commitment model and a tariff based charging strategy
for TOU and RTP schemes. The results show that the charging costs in the cen-
tralized overall cost minimization UC scheme are lower than in the tariff based
scenario. In addition the analysis of the ERCOT case shows that RTP schemes
are efficient in communicating the marginal costs of power production to the
demand side, but cannot capture the non-convexities of generator start up costs
in a system with high shares of coal generation, leading to higher overall charg-
ing costs than in the other cases. The work of Caramanis and Foster (2009a)
shows that a load aggregator for vehicles can develop efficient charging control
strategies for his EV fleet, which allows for successful hedging in the day ahead
market but still permits to consider intra-day charging flexibility in the real-time-
market. This analysis shows that charging costs can be reduced by at least 20 %
as compared to uncontrolled charging, and that EVs can successfully resched-
ule their demand on a short term basis, under consideration of new information
about prices, grid constraints and in particular their own demand requirements.
When aggregators consider shorter optimization horizons and grid capacity con-
straints in their optimization calculus, results from Foster and Caramanis (2013)
show that charging costs can be reduced, and the demand flexibility of the vehi-
cles can also be employed in hour ahead energy and regulation products. This
shorter charging decision dispatch allows to choose the most appropriate com-
mitment of the available EV demand resources, and shows that accounting for
uncertainty in the power system state and the resulting prices needs further in-
vestigation in particular in the European (or German) market scenario.

Following the hierarchical and decentralized charging decisions based on day-
ahead and spot prices, the following approaches should be mentioned. Rotering
and Ilic (2010) are considering PHEVs in the Californian day-ahead market and
present optimal smart charging strategies based on dynamic programming, that
help to reduce daily energy costs by more than 50 %. In addition they analyze
a firm commitment in the regulation market which allows the vehicles to gener-
ate additional profits that outweigh the driving energy costs. For another case
in which EV owners perform arbitrage accommodation based on the respective
LMPs, Peterson et al. (2010), find that when battery degradation costs are consid-
ered in V2G operation strategies the annual profit per EV would range between
12-118 USD for historical price data from NYISO, PJM and ISO-New England
areas from 2003-2008. This work performs a benchmark analysis and compares
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the values from a perfect foresight scenario with a naive forecasting technique
building on a moving average of two weeks for the respective hours. When un-
certainty is accounted for in this manner, the annual profits decrease to values
of 6-72 USD. Energy arbitrage is thus only slightly profitable, but could be an
option if additional infrastructure for grid interaction would be available to the
vehicles, since the analysis builds on the assumption that EVs are not available
in the time between 8:00 a.m. - 4:59 p.m., a time that is most likely to incorporate
the daily peak prices.

Further Work from Verzijlbergh et al. (2012) compares different charging
strategies that are likely to be implemented by different actors and have been
described in the related work mentioned before. In particular charging strate-
gies from the perspective of an aggregator, the DSO and a wind-farm operator
are considered in the setting of the Dutch power system. The aggregator per-
forms a wholesale cost minimization to satisfy the demand of his customers at a
minimum cost level, the DSO in turn distributes load in order to minimize the
distribution system losses, and the wind-farm operator employs the charging
flexibility to reduce the imbalance between planned and actual production of
the wind-generators. In all cases a hierarchical or centralized control paradigm
is implemented. The results based on the Dutch case show, that in particular the
imbalance reduction strategy highly deviates from the load patterns of the tradi-
tional cost minimal and loss minimization approaches. The imbalance strategy
leads to highly accentuated peaks in the system that could in turn, if interaction
of fleets with differing objectives takes place, increase the overall system balanc-
ing costs or create additional stress on distribution system components. Besides
the technical comparison a basic cost assessment with respect to wholesale prices
shows, that the loss oriented strategy incurs the highest costs. Considering inter-
actions in the respective settings is thus an important aspect for the assessment
of charging strategies.

Flath et al. (2013) investigate how decentralized, cost minimizing charging
strategies can be improved by the concept of area prices. The study analyzes
how different charging strategies perform with respect to average costs and local
distribution grid load. Besides the cost minimizing optimal strategy, heuristics
that require less price and trip information based on specified price thresholds
and a charging strategy incorporating an "as late as possible" charging scheme are
also assessed. Results show that uniform pricing based on wholesale prices leads
to new peaks in the total load of the vehicle fleet, which could lead to overload
of distribution assets if the vehicles are regionally clustered.
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Table2.9:Characteristicrelatedliteraturewithaneconomicfocus.
EconomicFocusMainObjective(RQ)Coordination

Approach
ModelScopeMainFinding

GridAncillaryRESEVTripDynamic
AuthorsConstraintsServicesUtilizationModelingPrices
Anderssonet
al.(2010)

EconomicassessmentofEVsfor
regulationinSwedenandGer-
many

hierarchicalnoyesno(no)yesEVscanbeprofitableforregulationservice
provisioninGermany,mainlyduetocapac-
itypayments.

CaramanisandFoster
(2009)

Costminimizationforaggrega-
torunderconsiderationofday
ahead,realtimemarketandgrid
capacityconstraints

hierarchicalyes(yes)(no)noyesRollinghorizonoptimizationenablescost
minimalchargingforEVsunderrealisticUS
marketconditions

Flathetal.(2013)Evaluationofpricebasedcharg-
ingstrategiesunderdifferent
conditions

decentral:
economic

yesnonoyesyesIncludinglocationalpricecomponentsre-
flectinggridcapacityreducessystemload
andindividualcost

Gerdingetal.(2011)Evaluationofadistributedon-
linemechanismforEVcharging

decentral:
economic

yesnono(yes)yesOnlinemechanismenablesefficientdis-
tributedcoordinationwithlittleinforma-
tionrequirements

Goebel(2012)Assessmentofeconomicvalue
ofchargingcoordinationfor
PHEVs

hierarchicalnononoyesyesChargingcoordinationallowsforupto45%
reductionofchargingcosts

Petersonetal.(2010)EconomicsofEVenergyarbi-
tragefordifferentLMPs

decentral:
economic

(yes)nonoyesyesEnergyarbitrageatgivenLMPscenarios
canbeprofitable,butoverallreturnsarelow
givenbatterydegradation

RoteringandIlic
(2010)

Individualcostminimalcharg-
ingconsideringancillaryservice
provision

decentral:
economic

noyesno(yes)yesSmartchargingisbeneficial,butancil-
laryserviceprovisionallowsforadditional
profit(nopriceimpact)

Sioshansi(2012)ComparisonoftariffandUC
basedchargingofEVs

centralno(yes)noyesyesRTPcanleadtohighercostandemissions,
DLCperformsbetterintheERCOTsetting
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When an additional local price component reflecting the current load of the lo-
cal transformer is added the load peaks can be reduced by more than 80% while
average costs for charging only increase by 15%. This approach thus demon-
strates that EVs can be potentially coordinated very well by a dynamic pricing
scheme if they are price responsive, rational actors.

Work from (Vandael et al., 2011; Fan, 2012) and (Gerding et al., 2011) empha-
sizes the decentralized charging decision approach and also evaluates the mech-
anisms incorporated with respect to their economic or game theoretical proper-
ties. Important properties of a mechanism are its incentive compatibility, eco-
nomic and in particular pareto efficiency, budget-balancedness, individual ratio-
nality and strategic robustness, Steinle (2008).

These concepts from the algorithmic-mechanism design domain are important
in order to apply distributed decision processes in the critical infrastructure of
the Smart Grid. If charging decisions are made in a decentralized manner, mech-
anisms need to be designed to set incentives for the EVs to participate (rather
than not), thus making it individually rational to participate. Incentive compati-
bility reflects the fact that the information e.g. w.r.t. the demand of the individual
vehicle is communicated truthful to the mechanism, making this property one of
the most important ones if strategic decision behavior of EVs is considered. Most
approaches sketched in the previous section do not assume untruthful behavior
of EVs in order to address other explicit questions from the technical domain.

Fan (2012) is investigating a distributed (EV) demand response approach,
based on the idea of congestion pricing of communication networks. In par-
ticular a discriminatory pricing approach is presented which enables every EV
to act according to its individual willingness to pay for the charging rate in a
particular time slot. This pricing mechanism is shown to be capable to reduce
local load peaks while maintaining computational tractability.

Table 2.9 presents a selective overview of relevant related work with a
primary focus on economic assessment or objectives of charging coordination.
A considerable part of EV charging coordination literature is concerned with
the economic possibilities for the provision of ancillary services by EVs. Most of
these V2G approaches employ centralized or at least hierarchical control archi-
tectures in order to allow for a reliable provision of the contracted AS-products.
Some of them consider uncertainty aspects, or short term dispatch but the main
body of literature is considering day-ahead or longer optimization horizons.
Further analyses focusing only on the coordinated withdrawal of power from
the grid is increasingly build around decentralized, price based decision and
optimization mechanisms. These approaches rely on the individual to decide
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whether or not charging in a particular time frame is aligned with his budget
constraints and economic preferences. Technical attributes are mostly consid-
ered as constraints in most models, but an explicit economic evaluation with
respect to the real time utilization of renewable energy by EVs has not been
performed so far.

The literature reviewed in the previous sections showed that EV charging co-
ordination can be categorized in particular with respect to its objectives and its
control architecture. In the category with a predominantly technical focus V2G
and grid load (regional and system-wide) impacts are the main research area.
Work looking into the integration ability of renewable energy sources enabled
by EV demand flexibility is in particular focused on reducing imbalances stem-
ming from fluctuating generators, e.g. wind power, on a system and also on
regional scales under consideration of grid constraints. Short term storage ap-
plications are also discussed, but the coordination of EV demand flexibility by
dynamic price incentives is not covered very extensively. Work from the eco-
nomic domain focuses on the assessment of regulation market participation and
day-ahead wholesale market oriented charging. These approaches in turn do
not intensively investigate the effect of cost minimizing charging strategies with
respect to the utilization of fluctuating renewable energy sources. This thesis
is thus focusing on decentralized price based coordination of EV demand for
real time integration of renewable energy sources into the power system. The
following chapter provides the methodological frame and specifies the research
scenario of the analysis.



Chapter 3

Research Scenario and Methodology:
Price Based Charging for EVs

3.1 Introduction

Building on the foundations concerning the role and the value of demand re-
sponse and the possibilities of EV charging coordination in the previous chap-
ters, the following sections will describe the frame and the methods for the anal-
yses performed in this thesis. First the role of the EV aggegrator will be high-
lighted and the context within in the power market and the power system will
be described (cf. Section 3.2). Further on the employed methods, in particular
simulation based analysis in the context of power markets and the characteristics
of the empirical input data are specified (cf. Section 3.3). Section 3.4 completes
the description of the thesis context, as it outlines both, the development of the
research questions and subsequent analyses that constitute the basis of Chapters
4 and 5.

3.2 Research Scenario: The Aggregator

Following the description from Section 2.7 and its focus on the active role of EVs
in the power system, one of the main control architectures that is employed in
the subsequent sections as a basis for the analyses will be addressed in more de-
tail. Since Heydt (1983) and Kempton and Letendre (1997) introduced the notion
of EVs as active loads in the power system it became clear that a coordination in-
stance or in particular an intermediary would need to exist in order to bundle or
aggregate the technical capacity of a fleet of EVs. This enables their participation
in power markets and the respective grid balancing mechanisms. The simple
reason for this is that the capacity of one EV (energy and power) is too small
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to substantially affect system operation or to allow for participation in whole-
sale markets. Following the idea of the load aggregator (cf. Shahidehpour et al.
(2002)), merely an economic interest group that aggregates demand in order to
acquire better purchase conditions for electricity, the EV aggregator bundles the
technical and economic capacity of geographically concentrated EVs in order to
control or set incentives to harness the demand flexibility of the vehicles for grid
and economic purposes.

Other definitions of the aggregator role from Quinn et al. (2010) consider
"the Aggregator who collects BVs [EVs in order to] create a group to act as [a]
distributed energy resource (DER) as the critical entity to make the V2G concept
implementable." Further on "the Aggregator also provides [an] interface with
the independent system operator or regional transmission organization, i.e.
ISO/RTO whose responsibility is to operate and control the bulk power system,
and with the energy service providers (ESPs) who provide the electricity supply
to customers through the distribution grid." This particular perspective on
the aggregator role emphasizes the technical focus. The aggregator is thus
considered as "a new player whose role is to collect the BVs by attracting and
retaining them so as to result in a MW capacity that can impact beneficially
the grid." (Quinn et al., 2010). The definition that will be employed in this
work regards the aggregator as an entity that aggregates and satisfies load
from regionally concentrated EVs either by buying the respective electricity on
the power market or by incentivizing EVs to distribute their load such that a
contracted intermittent energy source (i.e. PV and wind-power) is balanced in
its generation.

The scenario context for this working definition of the aggregator role is
provided in Figure 3.1. The figure depicts the main relevant physical and
institutional layers that provide the frame for the analyses following in Chapter
4 and 5. The lower part shows the physical energy delivery layer incorporating
the basic voltage level structure of the power system. On the highest voltage
level large conventional and renewable capacities are connected, whereas on
the medium voltage level more dispersed and smaller generation capacities are
connected. The main focus of the following analyses will be on the medium and
in particular low voltage level. At this level the bulk demand of households and
in particular the corresponding EVs is concentrated. In addition decentralized
small scale generators, both controllable and non-controllable are also located
on this level. The main questions with respect to the coordination of demand
are addressed in this context.
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Figure 3.1: General research scenario and main participating roles: EVs coordinated and
incentivized by an Aggregator

Above the physical layer, the institutions that organize and provide the frame
for the allocation of energy are sketched. Note that the grid architecture and the
coordination institutions are not modeled in every detail, but the representation
is designed to clarify the relation of the main stakeholders instead. The technical
grid balance is provided by the TSO, who needs to be informed about the ex-
pected load in a particular region by the responsible balancing authority. Each
region can also balance demand and supply on a regional level. This can help to
reduce line losses and to reduce the effect of the variability of intermittent gen-
erators on the remaining power grid. The aggregator as described above has the
main task to supply her EV customers with the energy they request. For this pur-
pose she must buy the electricity on the power market or can contract individ-
ual, and in particular renewable generators. The aggregator can also contribute
to reduce local imbalances between predominantly intermittent supply and de-
mand by sending the according variable price incentives to his customers. If
they respond in a sufficient manner, or in particular respond in such a way as to
balance the contracted renewable capacity, the remaining regional system is less
destabilized by the given intermittent generation pattern. The absolute effect of
course depends on the interaction between the load from EVs, conventional in-
flexible load, and the overall generation pattern in the given region. In a first
step though, it is necessary to assess the demand response potential of EVs on
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an individual basis. The aggregator thus represents a hierarchical coordination
institution that provides (monetary) incentives for her customers to adapt their
charging load to achieve the given objective.

Tasks of the Aggregator

The aggregator has several tasks with respect to his customers and the power
grid which will be briefly addressed following the work from Bessa and Matos
(2012) and Richstein (2011). The detailed tasks will be described in more detail
in the respective model context in Chapter 4 and 5. The aggregator needs insight
into the demand that he is due to supply. Therefore, forecasting the demand of
EVs given certain assumptions about the energy requirements and plug-in times
at the grid is necessary. Demand forecasting can be performed on a rather strate-
gic (months to years) or an operative (hours to days) time scale. The focus of
this work will be on the latter and will thus assume a given fleet of EVs. De-
mand of EVs can be difficult to predict as not only the time but also the location
of the charging process can vary. Nevertheless, for a given fleet and prominent
charging locations like the home of the EV-owner and her work location, a clear
demand forecast based on empirical driving profiles can be performed. An indi-
vidual customer profile that is obtained over time will also improve the forecast
accuracy. The data basis that is employed for EV demand modeling in this work
is described in detail in Section 3.3.1.

In addition to the demand forecast, the supply forecast for intermittent and
variable renewable energy sources like wind-power and PV needs to be pro-
vided in order to allow for a coordination of flexible EV demand according to
the availability of these sources. Long term forecasts are highly uncertain, but
hourly or daily forecasts are well within acceptable error margins of less than
10% of the actual value. Short term forecasts below four to two hours can even
undercut the 5% value, (Kalogirou, 2001). The following analyses will assume
that renewable generation will be known in order to assess the flexibility po-
tential of the EV demand. Variation is nevertheless accounted for as the analy-
sis time frame is one year which encompasses considerable variation of wind-
power and PV outputs.

From an economic perspective an aggregator needs to attract EV-owners in or-
der to take advantage of scale effects and demand diversification when it comes
to procurement of electricity. This also encompasses the question which EV-
customers need to be attracted. This particular question will not be addressed,
instead the characteristics of several sociodemographic groups will be specified,
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such that a potential aggregator can decide which customers he should attract.
Once the customers are acquired the aggregator needs to assess their demand
requirements and provide appropriate charging coordination signals in order to
influence the load distribution of her customers. The main approach in this work
will be a decentralized decision of the EV, given a variable price signal that maps
the generation, grid or economic conditions for a defined time span.

Building on the previously specified inputs about demand characteristics, the
economic and technical constraints, the aggregator must match the expected de-
mand of his EV customers with the renewable generation capacity he contracted,
or acquire electricity on the power market in the respective time slots. In every-
day operations the deviations between the forecasted and actual values for gen-
eration can be considerable, such as the deviation of EV-demand that e.g. did
not respond to the incentives given by the aggregator. This deviation needs to
be balanced by other resources in the power system which, in most cases, will
lead to additional balancing costs. From an operative portfolio management and
risk reduction perspective the goal of the aggregator is thus to reduce these im-
balances. This can either be achieved by a more direct control of the EV-load,
given that customer energy requirements are always met, or that generation and
price responsive demand patterns are better forecasted. In addition the aggre-
gator could also consider to acquire further flexible load types that complement
the deviations she needs to address (see above). The demand flexibility potential
of EVs to adapt to a given intermittent generation pattern from wind-power and
or PV will thus be discussed in more detail in Chapter 5.

It can be observed that an aggregator has a complex set of tasks that she needs
to address in dependence of her economic objectives. Naturally not all of these
aspects can be covered in this work, but only the aspects related to the demand
flexibility potential and its economic evaluation.

The Aggregator Role: Fleet Manager

One of the most prominent aggregator roles that is accounted for in literature is
the role of a commercial or business EV-fleet manager (cf. Kempton and Tomić
(2005a), Guille and Gross (2009)). This application scenario has the advantage
that it substantially reduces the uncertainty about driving energy requirements
and recharging times and opportunities. This is due to the fact that the fleet
manager knows the trip schedules that are booked for the respective vehicles or
even determines the vehicle allocation. EVs in a commercial fleet are likely to
have well-known trip patterns and availability times at the power grid, which
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makes them a prominent candidate for hierarchical or centralized charging coor-
dination mechanisms. Fleets have the advantage that their charging times can be
well planned which can be crucial in V2G application scenarios. In addition the
distribution of vehicles is contained to a minimum as they are always concen-
trated in one or several parking lots allocated to the aggregator. This is an addi-
tional advantage that requires less infrastructure investments or line upgrades,
and depending on the scenario, facilitates the billing of the EV customers. Lit-
erature with a predominantly technical focus is thus primarily considering the
fleet manager aggregator as a central coordination instance, cf. Table 2.7.

The Aggregator Role: Retail-EV-Customer Aggregation

Another form of an aggregator is the retail customer EV aggregator. This is the
primary scenario in the work at hand. This role can be understood as a fleet
manager for private EV-owners who delegate charging to an EV aggregator or,
in order to maintain their decision flexibility, react to charging coordination sig-
nals communicated to them. The main difference to the commercial fleet is the
geographical distribution of the vehicles and the private and thus individual
ownership of the EVs. The EV-owners that are part of the retail aggregator fleet
have a high potential to contribute to demand side flexibility since the potential
number of responsive loads is very high at substantial EV adoption rates. The
customer basis can be incentivized to change its load pattern within the indi-
vidual flexibility of every vehicle without a centralized coordination instance, if
variable prices are employed as both, incentives, and scarcity signals of avail-
able renewable energy. This way every vehicle could optimize for itself, based
on private information that does not need to be disclosed to the coordination en-
tity e.g. the retail aggregator. In addition, the potential availability of EVs at the
owners home is also higher than in the case of a commercial fleet which is likely
to have a greater overall utilization ratio. The distributed decision based on price
incentives can achieve higher price sensitivities if automation technology is em-
ployed to support the customer charging decision (cf. Table 2.9). Nevertheless
this coordination model inherently will need a larger customer basis in order
to achieve high participation rates of EV-owners, and thus a reliable balancing
of the contracted intermittent generation. A price based evaluation of the de-
mand response potential will thus be investigated in Section 4.2 and in a slightly
adapted version in Section 5.3.
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The Aggregator Role: Locational Aggregation

The locational aggregator role is comparable to the fleet manager, but can be
distinguished by the fact that he does not own or operate the EVs, but merely
coordinates their charging process with other demand and supply resources in
this region. The region is clearly defined by either the grid topology or a single
metering point. Examples for a locational aggregator in a larger urban context,
with a clear technical optimization objective (V2G operations) can be found e.g.
in Galus and Andersson (2011) and in Section 2.7. The concept of the locational
aggregator is thus defined by the technical constraints which have to be consid-
ered for the proper integration of EVs into the power grid. The uncertainty about
the charging energy requirements in a certain area is not as high as in the retail
aggregator scenario, but EVs that regularly, or randomly change their charging
location can lead to substantial deviations in the expected energy demand. The
temporal assignment of EVs to locational aggregators is imperative from a tech-
nological perspective but is at the same time very complex in the legal frame, in
particular in Germany, where non-discriminatory access to the individually cho-
sen energy supply company must be guaranteed at publicly installed charging
infrastructure, (Pallas et al., 2010). Aggregators that only operate on a private
property e.g. a super-market parking lot, can address this issue in a different
fashion. In these scenarios customers could purchase power and also decide
whether they wish to participate in a charging control scheme or not. Depend-
ing on the particular location, the parking time of the vehicles and the travel
plans will not allow for any substantial charging flexibility, which in turn will
make charging coordination of regularly accessible EVs in the particular area
an important mechanism to stabilize and support the local power grid. Section
5.2 will address a locational aggregator concept, assuming full responsiveness
of EVs to minimize the deviation between a given fluctuating source and the
demand of the EV fleet.

3.3 Methodology - Simulation Based Analysis

Power markets are complex, adaptive systems in which the relation between
generation and demand has to be physically balanced at each point in time un-
der the consideration of the transactions and interdependencies between the par-
ticipants. Analytic methods are not sufficient for an in-depth analysis due to the
high complexity. Simulation based analysis in turn can provide insight into the
individual, but also in particular the interaction effects of particular roles in the
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power system under a set of valid assumptions. In addition, through recent de-
velopments of computational resources and optimization techniques, simulation
allows to model real world systems in an increasingly complex manner. Also
simulation based analysis does not require a physical set up and implementation
of the research scenario at hand, but can provide valuable insight about how the
real world system should be implemented and which interactions occur and - in
particular important in this work - which coordination mechanisms should be
implemented.

Simulation can be applied to study the features and determining parameters
of a system. A system can be defined to be "a collection of entities, e.g. people or
machines that act and interact together toward the accomplishment of some logical end."
(Kelton and Law, 2000). In the work at hand the system is in the widest sense
the power system, and in a more narrowed perspective the interaction of EVs as
flexible loads that pursue certain objectives like cost minimization or renewable
energy utilization.

Systems are characterized by the states that they can have. A state can be de-
fined as the collection of variables necessary to describe a system at a particular
time, relative to the objectives of a study. Systems in turn can be discrete or of
continuous nature. In discrete systems state variables change instantaneously
at separated points in time (e.g. simulation time steps). In continuous systems
the state variables change continuously with respect to time, which requires an
adequate formal representation (e.g. differential equations). Few systems in
everyday life are wholly discrete or wholly continuous, but since one type of
change predominates for most systems under study, a classification to one of
these classes will be possible (Kelton and Law, 2000).

Systems can either be studied by performing experiments in different relevant
set-ups with the actual system, or by experimenting with a model of the system.
The latter possibility is the most prominent one, as a physical experiment with
the system to be analyzed is often not possible, because it is too disruptive and
expensive to do, or even endangers the actual function of the system. Models
can also be distinguished by either being of physical nature or a mathematical
representation of the studied system or system part. Physical models are scaled
or real life models of the analyzed systems. Mathematical models instead, repre-
sent a system in terms of logical and quantitative relationships which are altered
in experiments in order to determine how the system modeled would react - if
the mathematical model is a valid representation.

After a mathematical model has been built it must be examined in order to un-
derstand how it can be used to answer the questions of interest about the system
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Figure 3.2: Steps in a simulation based analysis, according to Kelton and Law (2000).

it represents (Kelton and Law, 2000). Analytic solutions are exact in describing
the causal relationships of a system, but for more complex models they become
hard to compute or are even intractable. Given that an analytic solution is not
available, complex systems must be studied by employing simulation.

Simulations need to be designed according to the requirements of the studied
system and the validity of the obtained solution. Thus decisions about the
dynamic properties, the inclusion of uncertainty and the modeling of time in
the simulation must be made. A static simulation model maps a system at a
particular moment in time, or for which time is not important with respect to the
questions posed. A dynamic simulation represents a system as it evolves over
time and thus has a trajectory of different states that describe it. If a simulation
is deterministic it does not contain any probabilistic (i.e., random) components.
In deterministic models the output is determined by the input parameter set,
even if the solution is hard to obtain and takes long times to be computed. Many
models also require some degree of representation of random or unknown
events, which then makes them stochastic simulation models. Stochastic models
also lead to at least partly stochastic results or result sets that need to be assessed
accordingly. With respect to the representation of time, continuous or discrete
simulation are defined as were the respective systems before.

Following the description above, the simulation based analysis in this work
is a dynamic, discrete event based deterministic simulation mapping and
analyzing the individual objective of EVs and other relevant roles from the
power system.

The design of the simulation experiment mainly followed the process de-
scribed in Figure 3.2: Following the description of current work in Section 2.7
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the main problem and the research questions at hand were formulated. The data
necessary for the analysis was collected, in particular the driving profiles from
the German Mobility Panel (cf.(BMVBS, 2008)), generation and load data of dif-
ferent TSO-control zones in Germany as well as the energy wholesale prices for
the respective time period. The first conceptual models focused on the represen-
tation of the coordination instance and the sharpening of the relevant parameter
set. The first computer programs implemented in Java and employing an open
source linear optimization engine analyzed the individual cost reduction poten-
tial of EVs, given a variable price (cf. Appendix G for more details). After pilot
runs and the validation of the results, additional evaluation scenarios were de-
signed covering different charging strategies. For every part of the analysis the
production runs were performed and documented, before the output was ana-
lyzed, verified and partly published. Even though the process sketched above
contains all relevant steps, further refinements of the simulation tools were im-
plemented in order to allow for the improvement of result quality and analysis
processing time during the course of this thesis 1.

Besides the individual simulation based analysis a flexible and dynamic rep-
resentation of the power system context can be achieved by using Agent Based
Computational Economics (ACE) as a method (Weidlich and Veit, 2008). Agent
based systems are also increasingly used for the analysis of energy markets in or-
der to depict the relations between the market participants and to analyze events,
such as the Californian energy crisis (Sueyoshi and Tadiparthi, 2008), or to ex-
amine the economic integration of storage devices (Vytelingum et al., 2010). In-
dividual agents represent the respective participants with their individual pref-
erences, business strategies or goals, and decision processes depending on the
particular research question of interest. Formally, an agent is a software system,
which at the very least has the properties autonomy, (social) interaction, reac-
tivity, and proactivity (Wooldridge et al., 1995). Despite the already mentioned
advantages of agent based systems, their validity has to be critically tested and
confirmed with the help of empirical observations and statistical methods in or-
der to be able to draw consistent conclusions (Windrum and Fagiolo, 2007).

In the strict sense of the definition above the simulation based approach in this
work is not an agent based simulation, even though individual EVs are modeled
that interact to some extent, but in particular react to a given input.

1Following Captain Picards advice the repetition of simulation runs in various parameter con-
figurations provided much insight about the nature and the complexity of the problem at
hand.
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Figure 3.3: Driving profile deduction process based on data from the German Mobility
Panel, adapted from (Dietz et al., 2010).

3.3.1 Mobility Pattern Input Data

In order to adequately represent the mobility behavior of German drivers, em-
pirical data from the German Mobility Panel (MOP), (BMVBS, 2008), was em-
ployed to deduct valid driving profiles for EVs. Panel participants are randomly
selected, but representative households which (self-) report their complete mo-
bility behavior during one week. The weekly data sets are obtained from
weeks from September to January, with a majority originating from September
to November. This period was chosen in order to have representative data with-
out vacations and other special events such that an approximation for the overall
yearly mobility patterns can be obtained.

All trips within the mentioned weekly period are reported, this includes walk-
ing and any other form of mobility. In addition the purpose, length, daytime and
mean of transport are recorded. The panel data employed was collected between
1994 to 2007, amounting to an overall volume of 530,000 individual trips. This
considerable amount of trips needed to be consolidated and filtered in order to
obtain individual mobility profiles that can be attributed to a single person and
have been performed by using a conventional vehicle. Range restrictions result-
ing from the use of EVs are considered later in the simulation.
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Table 3.1: Summary statistics of the employed mobility profiles.
[km / Week] Min. 1. Qu. Median Mean CV 3. Qu. Max.

Employees 1.0 84.0 184.6 225.1 0.76 322.2 956.0
Retired 2.0 48.8 97.5 120.9 0.84 158.5 1034.0
Part-time Employees 1.0 61.4 121.3 159.2 1.31 209.5 1347.0
Unemployed 0.8 34.0 77.2 113.8 1.27 144.2 1993.0

Coefficient of variation: σ
µ

Table 3.2: Relative share of the sociodemographic groups in the Mobility Panel
and the German Population of 2007, BMVBS (2008).

Employees Part-Time Employees Retired Unemployed
Share MOP 40.3% 14.7% 28.0% 8.3%
Share Population 32.5% 11.9% 34.7% 10.3%

First the trip data was condensed based on person-IDs in order to obtain indi-
vidual driving profiles. In this stage 17,705 weekly profiles of individual persons
including only trips with a car can be obtained. Following the general filter pro-
cess described in Figure 3.3, persons that were on vacation, at a service station
or sick and have no valid driving permit were excluded from the data set. The
individual trip data was further validated, which included the exclusion of trips
that do not return to the home location or have invalid trip lengths and missing
values for speed, km and duration.

Further filtering based on sociodemographic criteria and in particular the em-
ployment status, leads to a group of 11,436 profiles of which the 1000 most re-
cent for every group were selected for further analyses in this work. The groups
are full-time employees, retirees, part-time employees and unemployed people, which
amount to more than 90% of the profiles in the mobility panel (cf. Table 3.2).
When considered as shares of the overall population the two groups of employ-
ees and retirees make up 67,2%. In addition these two groups have quite diverse
patterns in their mobility behavior, which is why most of the following analysis
will only employ these polar sociodemographic groups as a simulation input.

Table 3.1 provides the summary statistics for the employed 4000 driving pro-
files. It can be observed that the mean driving distance of employees is exceed-
ing the other sociodemographic groups considerably. Also the median for the
weekly travel distance is consistently higher with 184.6 km for employees as
compared to 97.5 km for retirees. Part-time employees in turn have the second
highest travel distances, whereas unemployed people (with some exceptions)



Research Scenario and Methodology: Price Based Charging for EVs 87

Average km per Day

N
um

be
r 

of
 P

ro
fil

es

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

30
0

(a) Daily distribution Employees

Average km per Day

N
um

be
r 

of
 P

ro
fil

es

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

30
0

(b) Daily distribution Retired

Average km per Day

N
um

be
r 

of
 P

ro
fil

es

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

30
0

(c) Daily distribution Part-time Employees

Average km per Day

N
um

be
r 

of
 P

ro
fil

es

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

30
0

(d) Unemployed

Figure 3.4: Distribution of daily driving distances for the four sociodemographic groups.

have the lowest travel distances. The comparison on a daily basis shows that all
groups have the majority of profiles with travel distances less than 50 km per day
(cf. Figure 3.4). This is consistent with the observations made earlier in Section
2.6.1 and Table 2.1 and in particular the distribution presented in Figure 2.15.
The selection of a subset of driving profiles might weaken the level to which the
results can be regarded to be representative for the whole population. But with
respect to the major sociodemographic groups the main aspects that characterize
a driving pattern (i.e. trip distance and frequency) are clearly addressed by the
selected subset.

Figure 3.5 depicts a comparison of the weekly driving distance distribution
within the four sociodemographic groups. In particular the distribution for ev-
ery 50 km interval is compared to the value of all 4000 profiles respectively. The
comparison shows that employees have a large share of profiles traveling more
than 300 km per week as compared to the overall population. Retirees and part-
time employees in turn are rather similar to the overall trip distance distribution.
The group of unemployed persons is different in the sense that it has a higher
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Figure 3.5: Comparison of weekly driving distance distribution of the four sociodemo-
graphic groups.

share of low distance profiles. Further individual details of the profile groups
will be addressed in the respective sections in Chapter 4 and 5.

The availability of charging equipment at locations that are visited regularly
(e.g. work or shopping places) in addition to the home location is an important
factor for a reliable operation of EVs. The different generic location types of the
vehicles can be derived from the trip purposes recorded in the mobility panel.
This enables an assessment of the potential availability for connection times with
the power grid and thus provides a frame for the analysis of the temporal de-
mand flexibility of EVs. In Figure 3.6 the availability of EVs at the home, work
and leisure locations, as well as the share of EVs that are driving is depicted for
employees and retirees over the course of one week.

It can be observed that employees are mainly characterized by the availability
at the home and work location. Nearly 60% of the employee EVs are available at
the work location during the week. Leisure activities and locations are not that
prominent and are concentrated on evenings and in particular the week-end, but
in overall less than 20% of the profiles can be found at these locations. What can
also be noticed is that no more than 20% of the employees are driving in one
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Figure 3.6: Availability at home, work and leisure locations for employees and retirees
over the course of the week.

period at a time. With respect to the availability of employee EVs for the power
grid, charging locations at home and work are thus able to cover most demand
requirements.

For retirees it can be observed that the difference between the availability at
the home location and all other locations is not that substantial. The driving be-
havior also varies as it is more distributed over the day and less concentrated as
in the case of employees. The availability of retirees at the home locations is con-
sistently around 80% or higher at any time of the day, which is a clear indicator
for high temporal flexibility regarding charging demand. The absolute demand
requirements are not as high as for employees which lowers their potential prac-
tical demand response impact. The next subsections will further elaborate on the
details of wholesale energy price and generation data employed.

3.3.2 Price Input Data

In order to allow for a realistic economic assessment of the different charging
coordination objectives, empirical price data from the German energy wholesale
market, the European Energy Exchange (EEX)2 was collected for 2007 and 2009.
The price data includes all hourly reference (i.e. mean) prices of the intraday
market of the respective period. Since the simulation employs a 15 minute time
resolution the prices during four intervals were set to the corresponding empir-
ical value, adapted by a scaling factor which will be explained in more detail in
the respective sections (cf. Sections 4.2.1, 4.3.2). If the optimization objective is
not only determined by the economic implications, but by the higher utilization
of fluctuating sources, the prices provide the basis to compare the costs resulting

2In the meantime European Power Exchange (EPEX): https://www.epexspot.com/en/

https://www.epexspot.com/en/
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Table 3.3: Summary statistics of the employed intraday wholesale energy price time se-
ries.

[EUR / MWh] Min. 1st Qu. Median Mean CV 3rd Qu. Max.

EEX (2007) 3.69 22.00 31.69 38.21 0.73 46.62 601.10
EEX (2009) -648.60 28.77 37.86 39.02 0.63 48.34 173.70

from the different strategies.
Table 3.3 provides an overview of the descriptive statistics of the empirical

price data. One of the main differences between 2007 and 2009 data is the fact
that starting from 2008, negative prices were introduced in the market in order to
allow for correct economic signals at times of high renewable generation and low
load. Negative prices occurred in particular in winter and transition weeks when
wind-power contributed a high total share, and load was low due to holidays or
week-ends. Due to the grid topology and increasingly problematic transmission
grid bottlenecks (Ilg et al., 2012), so called must-run units that locally stabilize
the power grid have to bid negative prices in order to be allocated and allow
for a secure operation of the power system from a technical perspective. These
negative prices provide incentives for flexible demand to shift its consumption
and even be compensated for it. For storage devices that operate on an arbitrage
strategy this instrument can be very profitable.

The price data was clustered in different data sets based on the TRY (Test Ref-
erence Year) climatic day type conditions in order to allow for a better charac-
terization of general patterns in the price levels. The TRY day types are dis-
tinguished mainly by the average temperature, leading to three main groups
encompassing winter, summer and transition days and are also employed to as-
sess the demand for thermal energy requirements (DWD, 2004). Winter days
have an average temperature of less than 5◦C, transition days between 5− 15◦C
and summer days above 15◦C. This classification enables a better detection of
seasonal price patterns that depend on intermittent generation and in particular
wind-power.

Figure 3.7 shows the price variation for summer, winter and transition weeks
for the year 2007. It can be observed, that the variation, and in particular the
extreme values, are less prominent in the summer weeks. Transition weeks have
more outliers than the other week and day types. Winter weeks in turn have
an overall higher price level and the highest range of price variation, often in
between 25 - 100 EUR/MWh for the year 2007. In extreme cases the wholesale
energy price reached the level of 600 EUR/MWh, a value more than ten times
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(a) Hourly price variation in summer weeks
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(b) Hourly price variation in transition weeks
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(c) Hourly price variation in winter weeks
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(d) Hourly price variation in all weeks

Figure 3.7: Variation of wholesale intraday electricity prices for the year 2007, distin-
guished by TRY day type, (EEX, 2007).

higher than even expensive hours served by peak generators. When compared
to 2009 the overall price level is slightly lower, but the tendency of the outliers
is less strong in the positive price direction. Negative prices in turn also reached
levels of more than 600 EUR/MWh in 2009, which favors flexible loads that have
the possibility to take advantage of these situations.

Figure 3.8 shows the different week types for 2009 and the respective hourly
price variation. Overall a similar general price pattern can be observed as for
2007, summer weeks have a slightly lower price level, whereas transition weeks
have the highest variation and winter weeks have a higher overall price level
with a notable variation bandwidth. Negative prices mostly occur on transition
and winter weekends which reflects the low load - high wind generation situa-
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(a) Hourly price variation in summer weeks
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(b) Hourly price variation in transition weeks

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●●

●

●●●

●●

●

●●

●

●●
●●

●

●

●●●
●

●

●●

●

●
●
●●●

●
●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●
●

−
20

0
−

10
0

0
10

0
20

0

Day of the week

[E
U

R
 / 

M
W

h]

Mon Tue Wed Thu Fri Sat Sun Mon

(c) Hourly price variation in winter weeks
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(d) Hourly price variation in all weeks

Figure 3.8: Variation of wholesale intraday electricity prices for the year 2009, distin-
guished by TRY day type, (EEX, 2009).

tions sketched above. In the analyses performed in Chapters 4 and 5 the prices
will partly be scaled to correspond to the end-consumer price level. This proce-
dure has implicit assumptions about the possible dimension of the variable price
and the absolute spread which will be addressed in the respective context of the
analysis.

3.3.3 Generation Input Data

The generation data employed for the analyses covers the wind-power genera-
tion time series from Germany in 15 minute resolution for the years 2007 and
2009. In addition PV generation, also in 15 minute resolution, is obtained from
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for all day types
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(b) 15 min. wind generation variation
for transition days

Figure 3.9: Wind-power generation variation for transitional and all day types for Ger-
many for 2007, (BDEW, 2008).
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(a) 15 min. wind generation variation
for all day types
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(b) 15 min. wind generation variation
for transition days
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(d) 15 min. PV generation variation for
summer days

Figure 3.10: Wind-power and PV generation variation for different day types from the
50 Hertz TSO-zone, (50-Hertz, 2010).
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Table 3.4: Summary statistics of the employed wind and solar generation data for the
years 2007 (Germany) and 2009 (50 Hertz TSO-zone).

Gen. Source Min. 1st Qu. Median Mean CV 3rd Qu. Max.

Wind (2007), [MW] 113.70 1608.50 3231.20 4513.60 0.86 6386.40 18380.50
Solar (2009), [MW] 0.02 0.29 1.707 59.26 1.57 89.50 460.48
Wind (2009), [MW] 1.24 555.41 1325.57 1788.72 0.91 2430.99 9080.81

the 50 Hertz TSO-zone for 2009. The data serves as empirical input in order to
evaluate the integration ability of different charging strategies and the potential
for real time utilization of these fluctuating energy sources. The wind generation
data sets are different in their regional resolution, as the data of 2007 covers all
of Germany, whereas the data for 2009 represents only the eastern part of the
country. The data for this part was selected as this region already has a consider-
able part of variable generation sources as compared to the load that is served in
this area. Therefore this can be viewed as a prototype for Germany´s envisioned
development.

Table 3.4 provides an overview of the main descriptive measures of the time
series employed. It can be observed that wind power has a substantial variation
bandwidth, ranging from a minimum of 113.7 MW for the whole country to a
maximum of 18380.5 MW in the same year. Most of the time the production is
below 6386.4 MW (the 75% quantile) with a mean of 4513.6 MW and a median of
3231.2 MW. The variation can also be observed in Figure 3.9 where the variation
on TRY transition days is compared with the overall typical day. The numerous
outliers show that a high amount of flexibility is required in the power grid in
order to address an ever increasing share of this generation source in the system.

The wind generation pattern is not very clear, the main trend that can be ob-
served is a smaller dip during the morning hours with a following slight increase
in the afternoon. But since the variation from the mean can be more than 300%
Figure 3.9 can only provide a general impression of the availability of wind-
power during a particular day type. The wind generation data of 2009 is similar
in its general pattern to the 2007 data, but even less distinctive. Only transition
days are similar to 2007, the overall trend is more linear, at least in the aggregate
representation. PV generation in turn has very clear diurnal generation patterns
(cf. Figure 3.10) that can also vary considerably but are more predictable in their
overall behavior. For the following analyses the main characteristics are the rela-
tive variation bandwidth of wind and PV generation, since the generation is also
scaled in order to assess the possible interaction with a given demand capacity
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of a fleet of 1000 EVs. The next subsection will sketch the development of the
research scenario and the main questions addressed.

3.4 Research Development

Following the notion that in a smart grid environment the flexibility and ability
to react to control or price signals will be crucial for system support and the in-
tegration of fluctuating renewable energy sources, first research questions arose
around the complex of microgrids and virtual power plants and their economic
characteristics. In a further specification, economic aspects of flexible loads and
in particular EVs in the context of local energy markets were part of first anal-
yses that laid the foundation for the thesis at hand, cf. (Schuller, 2010). Further
work that serves as a basis of this thesis developed as follows:

• While focusing on the assessment of individual economic decisions given a
variable pricing regime, parts of Chapter 4.2 were presented at the 2012
IEEE Innovative Smart Grid Conference in Washington, D.C., cf. (Schuller
et al., 2012).

• Following an economic assessment of V2G operations strategies of EVs per-
formed in (Dietz et al., 2011) Chapter 4.3 employs a new model including
non-linear battery degradation costs, also investigating the economic viabil-
ity of V2G in the context of the year 2007. This approach is currently under
revision at the IEEE Transactions on Power Systems Journal, cf. (Schuller et al.,
2013).

• In order to consider technical as well as economic aspects of the aggrega-
tor role introduced above, a first version of the benchmark model problem
formulation was presented at the 2013 IEEE Power Energy Society General
Meeting, cf. (Gottwalt et al., 2013). The model in Chapter 5.2 substantially
alters the modeling approach and in particular also considers the impact of
shorter optimization time horizons on the ability of an EV fleet to directly
match an intermittent generation source with its demand.

• Further work looking into the implications of the supply side employed a
uniform pricing approach, following the notion of a price signal that reflects
the scarcity of intermittent generation for a given time span. A similar re-
newable tariff was investigated in (Schuller and Ilg, 2011), but Chapter 5.3
substantially extends this analysis as it considers more complex fleets incor-
porating the four main sociodemographic groups from the MOP and actual
physical generation capacity constraints. Main parts of this chapter were
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presented at the 2012 IAEE European Energy Conference, cf. (Richstein et al.,
2012).

The next chapters will address the main research questions from an individual
demand perspective and further on from the supply side from the perspective
of an EV aggregator.



Chapter 4

Demand Side Assessment

4.1 Introduction

The demand side flexibility potential of EVs is a valuable resource for the power
grid in order to integrate a higher share of volatile generation sources and to
make the power market more responsive and economically efficient. In order
to activate this potential, incentives for EV-owners must be provided such that
demand shifting on an individual and decentralized basis can be implemented.
A decentralized coordination architecture leaves the decision whether charging
actions are altered due to price or other signals to the EV-owner. The following
sections will therefore investigate the behavior of economically rational and
thus highly price responsive EV-owners that receive a variable pricing scheme
(cf. Figure 4.1). This dynamic rate is designed to map the availability of e.g.
wind-power in the energy system. Other pricing options are designed to exactly
map the volatility of the wholesale power market and thus make the implicit
assumption that an EV aggregator will offer his customers dynamic prices,
which on average correspond to the recent end-customer level. EV-owners in
turn then perform an individual cost minimization for their operative electricity
(and later also storage) costs.

The first analysis in Section 4.2 will thus implement a simulation based anal-
ysis of individual EV-owners that follow a cost minimization approach, given a
variable pricing scheme either based on scaled empirical wholesale power mar-
ket prices of the year 2007 or the availability of wind power. In addition, further
charging strategies that aim to reduce the system peak load impact of EVs are
also evaluated in this context.

The second analysis in Section 4.3 adds the important notion of battery degra-
dation costs to the individual cost minimization objective and looks into a more

97
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Figure 4.1: Analysis scenario overview for the individual demand side assessment.

active participation of the EVs in the power grid. This in particular incorporates
a Vehicle-to-Grid (V2G) charging strategy which transforms the vehicle into a
short term energy storage unit that performs temporal energy arbitrage on the
power market. For both analyses similar empirical input data for the driving
patterns of the EVs and vehicle types are utilized. The same year (2007) is em-
ployed as a data basis for the wholesale market price data and the renewable
generation and grid load data inputs. This allows for a differentiated compari-
son of the respective charging strategies and the economic or renewable energy
integration implications they invoke.

4.2 Individual Economics: Linear Optimization
Model

As sketched above, the demand side in power markets needs to become more
active. EVs in particular have a high potential to increase the flexibility of the
demand side especially in power systems with high shares of fluctuating gener-
ation sources. The interaction of EVs with the power system can therefore benefit
both, the power system as it can take advantage of additional flexible loads to
increase system stability and the EV-owner to satisfy her individual charging
demand with a higher share of renewable energy. This in turn leads to a more
sustainable electric mobility as the dependence on fossil fuels is decreased and
emissions from conventional power plants are reduced.
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In order to realize the demand flexibility potential of EVs different objectives
of charging coordination can be pursued. As discussed above in Section 2.6,
the main objectives for charging coordination can be technical (e.g. loss min-
imization, or grid asset protection), emission reduction (e.g. direct utilization
or balancing of fluctuating generation) or of economic nature. In this section
an economic evaluation of five different charging strategies for individual
EVs is therefore performed. This analysis builds on the core assumption that
EV-owners react to incentives (or scarcity signals) such that they minimize their
individual costs, their impact on the grid or maximize their relative share of
wind-power in the electricity charged. In this context, the following research
questions are investigated:

RQ 1. - Cost of Individual EV Charging: What are the individual electricity costs
of EVs following an uncoordinated, economically optimized, system load minimal or
wind-energy share maximizing strategy?

RQ 1.1 - Share of Renewable Energy for EV Charging: Which average share
of renewable energy is utilized by a fleet of EVs with real life driving profiles which
coordinate their charging according to different economic and technical objectives?

RQ 1.2 - System Load Factor Evaluation: What is the resulting load factor for
the different strategies and in particular to what extent does charging occur on average
during times of low system load?

In order answer these questions a simulation based analysis with a minimiza-
tion objective is formulated as a linear optimization program as described in
(Schuller et al., 2012) and (Dietz et al., 2011). The main inputs of the model are
real life driving profiles of full-time employees and retired people (cf. Section
3.3.1), electricity prices or strict rank orders of other parameters like the load fac-
tor, (cf. 4.2.3) based on the yearly data of 2007, and the technical specifications
of the BMW Mini E, an exemplary EV with a rather high battery capacity, cf. Ta-
ble 4.1. The optimization is performed for every vehicle individually and must
consider constraints like the guaranteed fulfillment of the respective mobility
profile.

This work substantially builds on and extends (Schuller et al., 2012). The fol-
lowing sections will briefly describe the model input data (Section 4.2.1), the
formal model and its assumptions (Section 4.2.2), the charging strategies and
their objectives (Section 4.2.3), the results of the analyses (Sections 4.2.5 - 4.2.6)
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Figure 4.2: Employees: Exemplary driving profile for one week with the respective trip
distances.

and the conclusions drawn with respect to the research questions (Section 4.2.7).

4.2.1 Customer Data

The driving profiles employed in the simulation are extracted from more than
11,400 empirical profiles from the German mobility panel, a continuous study
of mobility behavior in Germany (1994 - 2007) (BMVBS, 2008), cf. also Chapter
3.3.1. The two modeled groups are full time employees and retired persons, which
represent about 60.5% of the German population of 2007 and around 75% of pri-
vate vehicle owners (BMVBS, 2008). The driving profiles of panel participants
are recorded for one week (cf. Figure 4.2, Section 3.3.1, and Appendix E). In ad-
dition to the driving distances, the purpose of the trip is also recorded. Purposes
of trips are, among others, trips to work, shopping, leisure or business related lo-
cations. This enables the modeling of different charging locations for EVs. In this
chapter, the charging infrastructure is only considered to be installed at the EV
customers home, which is likely to be the first and less infrastructure intensive
step for the introduction of electric mobility.

The profiles of employees and retirees have an average driving distance of 228.78
km and 119.31 km per Week, respectively. This is a driving distance that can
easily be driven with one or two battery charges of the Mini E with an operative
battery capacity of 31.5 kWh (cf. Figure 4.3) at the assumed consumption values.
When looking at the driving profiles in more detail, it is to be considered that
the standard deviation amounts to 180.03 km for employees and 100.23 km for
retired EV customers. Nevertheless approx. 90% of the profiles can be fulfilled
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Figure 4.3: Average driving distance and energy demand per week for employees and
retirees.

by the Mini E.
Other input data that is employed are the hourly average wind power feed-in

of Germany based on 15 minute data from (BDEW, 2008), the hourly total system
load for Germany obtained from (ENTSOE, 2007), and EEX intraday hourly spot
market prices for 2007 (cf. Section 3.3.2). The prices are scaled to represent the
average weighted value of 20.01 ct/kWh in order to reflect the appropriate end-
customer price level for this time period, similar to approaches in (Ahlert and
van Dinther, 2009; Ahlert, 2010). This scaling is performed in order to obtain a
realistic variable price profile. The approach has the implicit assumption that
all parts of the end-customer price scale with the same rate and thus could lead
to a slight overestimation of the possible electricity price spreads in a variable
tariff scheme. This issue is further discussed in Section 4.3 when the EVs are
considered as short term storage devices in the German power grid.

4.2.2 Optimization Model

The EV customer is modeled as a cost-minimizing entity which shifts his charg-
ing times to the time slots of lower prices or ranks according to the given (price)
signal. The model considers the trips as mandatory constraints that have to be
fulfilled. This means in particular that if the driving profile is feasible with the
specified EV all trips are accounted for. In addition, the maximum driving speed
of the vehicle the charging duration and the maximum battery capacity of the ve-
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Table 4.1: Technical specifications of the BMW Mini E
(BMW, 2009)

Parameter Description Value Unit
Power Consumption 0.14 (kWh/km)
Max Range 250 (km)
Top Speed 152 (km/h)
Maximum C-Rate 1

3 (1/h)
Full Charging Time (at 10.5 kW) 3 [h]
Storage Capacity (Usable) 35 (31.5) (kWh)
Charging Efficiency 93 (%)
Effective Charging Power 10.5 (kW)

hicle are considered. A first version of the model is first defined in (Dietz et al.,
2011). The model is extended with respect to the objective function in the fol-
lowing sections. In addition the existing building blocks concerning the battery
modeling are described for reasons of completeness.

Assumptions and Parameters

The model builds on the following assumptions about the behavior of the EV
customers and the availability of information which is employed for the opti-
mization approach and the time frame of the analysis:

• People continue to use EVs like ICE vehicles.
• Time variable tariffs with hourly changing prices or charging signals are

available to EV customers.
• Driving patterns and prices are ex-ante known for one week.
• EVs have an automated charging control device that calculates optimal

charging times.
• The fulfillment of the mobility profile is guaranteed, even when charging

times are shifted, under consideration of technical constraints.
• EVs are price takers and do not influence prices by their demand.
• EVs can only be charged at the owners home, and are plugged in as soon as

they arrive there.
• The battery of the EV has to be fully charged at the beginning and the end

of each week (SOC continuity).
• The optimization period is one week.
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Table 4.2: Model Parameters
Model Parameter Overview Symbol Unit/Domain
Usable capacity of the storage device C (kWh)
Min. number of time slots to fully charge νc (#)
Charging efficiency ηc (%)
Storage cost ψ (EUR/kWh)
Price per energy unit in time step t pt (EUR/kWh)
Charge parameter for time slot t ϕt (%)
Energy consumption in time slot t a dt (kWh)
Energy level of the battery at time t Lt (kWh)
Rank of hour t rt (1 - 8760)
Location of the EV zt (0: not at home

1: at home)
a dt = kilometers driven in time step t (km) · power consumption per km (kWh/km)

Mathematical Description of Simple Charging

The first and most straight forward charging strategy is Simple or (as further de-
noted) As Fast As Possible (AFAP) Charging. This strategy does not consider ex-
ternal factors, but only the demand implied by the driven distance and specific
energy consumption. The strategy thus recharges whenever this is possible (e.g.
the vehicle is at the home charging location) and can be formalized as follows:

ϕt =


1 : if SOCt +

C
νc ≤ C and zt = 1

C−SOCt
C
νc

: if SOCt +
C
νc > C and zt = 1

0 : otherwise

(4.1)

The costs resulting from this charging strategy are described as follows:

Cost =
T

∑
t=1

pt ·
C

νc ·ηc · ϕt︸ ︷︷ ︸
Electricity Costs

+
C
νc ·ψ · ϕt︸ ︷︷ ︸

Battery Usage Costs

(4.2)

Cost =
T

∑
t=1

pt ·
C

νc ·ηc · ϕt︸ ︷︷ ︸
Electricity Costs

(4.3)

The first term in the cost function in Equation 4.2 is due to the variable costs
that are incurred for the purchase of (driving) electricity. The second term repre-
sents the costs due to the usage of the battery storage. For the following analysis
storage costs that are due to the energy throughput in the battery are not con-
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sidered in the comparison of the operative costs between the different charging
strategies, as the energy amount is equivalent for all charging strategies in the
presented problem formulation. Thus the storage costs do not affect the oper-
ative and in particular electricity purchase costs, since they are similar for all
strategies (cf. Equation 4.3). The battery usage costs do vary between sociode-
mographic groups. Section 4.2.7 will discuss the resulting weekly costs for differ-
ent battery cost levels. In addition Section 4.3 will investigate the role of battery
degradation costs related to energy throughput and charging power in more de-
tail. The goals of this section is to provide insight on the individual operational
costs of different charging strategies that will be described in more detail in the
next paragraph.

Objective Function Smart Charging (SC)

The objective function of Smart Charging is to minimize the costs incurred, given
a price for each time step of the optimization horizon of one week.

min
ϕ
→ Cost =

T

∑
t=1

pt ·
C

νc ·ηc · ϕt︸ ︷︷ ︸
Electricity Costs

(4.4)

The term in the objective function corresponds to the operative formalization
of AFAP charging, but this time the objective function value is minimized. When
Smart Charging is compared with AFAP charging, the battery usage term can
be neglected without loss of generality, as the storage cost and the total energy
amount are the same for both strategies, assuming linear battery costs. The only
deviation between the strategies thus occurs for the energy costs. This difference
is caused by the shifting of charging times in the Smart Charging scheme. Other
costs, like investment costs for the vehicle, are not considered in this approach
since the focus is on operative decisions. Following the objective function the
constraints in the following paragraph also apply.

Constraints

Equation 4.5 states that the SOC of the battery can not be higher than the actual
capacity C and not lower than zero. The SOC is equal to the SOC in the previous
time slot plus the amount of energy that has been charged into the battery minus
the energy discharged for driving purposes. Equation 4.7 states that the amount
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of energy charged into the battery is equal to the demand during the simulation
period. This also implies that the battery is fully charged at the beginning and
end of each week in the analysis.

C ≥ Lt−1 +
C
νc · ϕt − dt︸ ︷︷ ︸

SOCt

≥ 0, ∀t ∈ [2, T]
(4.5)

C ≥ L1 +
C
νc · ϕ1 − d1︸ ︷︷ ︸
SOC1

≥ 0, t = 1
(4.6)

T

∑
t=1

C
νc · ϕt =

T

∑
t=1

dt, ∀t ∈ [1, T] (4.7)

pt,rt,dt,C,ηc,νc,ψ ≥ 0, ∀t ∈ [1, T] (4.8)

ϕt ∈ [0,1] and ϕt ≤ zt, ∀t ∈ [1, T] (4.9)

zt =

{
1 : EV at home within time step t

0 : otherwise
(4.10)

t ∈ [1, T] (4.11)

The simulation period is one week with T being 672 time slots, one time slot
for every 15 minutes in one week. The analysis time frame is one year, consisting
of 52 weeks and a total of 364 days, with data from 2007.

4.2.3 Charging Strategies

In the following section, five distinct charging strategies are assessed with
respect to their individual economic implications. The strategies are:

• AFAP charging which serves as a benchmark for uncoordinated charging
since it only seeks to recharge whenever possible in order to maximize
the available driving range. AFAP does not consider the system status,
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renewable energy availability or electricity prices for its charging decisions.

• Smart Charging (SC) initially minimizes the individual payment of the
vehicle given the variable hourly prices based on the EEX-spot prices of
2007 (cf. Equation 4.4). This strategy is further denoted as EEX and serves
as the best case benchmark of the individual costs incurred.

• SC with the objective to maximize the relative wind power share for each
time step t used for charging. This strategy shifts charging to time slots
of the highest relative availability of renewable energy, in particular wind
power, and is further denoted as WL, (wind-load). The formal objective of
this strategy is thus to maximize charging during time slots in which the
following ratio has the highest values:

PWindt

PLoadt

∀t ∈ [1, T] (4.12)

• SC with the objective to minimize the system load factor in each hour t in
which charging occurs is denoted as LF. This strategy shifts EV demand
distinctively to times with the lowest overall system load factor, thus corre-
sponding to the well known night or off-peak charging strategy often men-
tioned in related literature. The strategy seeks to minimize its average sys-
tem load factor, and thus shifts charging to time slots in which the following
ratio has the lowest values within the optimization horizon:

PLoadt

max PLoad2007

∀t ∈ [1, T] (4.13)

• SC minimizing the system impact while balancing for renewable energy
generation in the optimization period. Following the concept of the resid-
ual load, the Residual charging strategy has the objective to charge the EV
whenever the residual load in the optimization period is the lowest. The
residual load is defined as the total system load subtracted by the amount
of variable and uncontrollable generation. The residual load is therefore
the "net" load of the system that has to be covered by (conventional) con-
trollable sources. This charging strategy thus provides a signal for EVs to
charge only at a low overall load situation, or at times in which renewable,
and in particular wind, generation provides a high share of total load. This
strategy minimizes the following term for the charging time slots selected:
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the scaled EEX-price for week 37 which is further consistently employed for explana-
tions.

PLoadt − PWindt

max PLoad2007

∀t ∈ [1, T] (4.14)

AFAP and EEX charging are implemented following Equation 4.2 and the ob-
jective function formulated in Equation 4.4. In order to coordinate EV charging
according to the objectives of WL, LF and Residual, the objective function has to
be adapted accordingly. The next paragraph introduces the rank concept which
provides a possibility to set the required signals for EV charging coordination.

Rank Concept

A strict ascending order is created for all hours of 2007 with respect to wind
power availability, load factor and residual load situation (cf. terms 4.12, 4.13
and 4.14). For WL, this implies that for hours with a relative high wind power
availability the absolute rank assigned is low, which provides a signal for the EV
to maximize the wind power share utilized for charging. The same rank map-
ping procedure is also applied for the relative load factor and the related residual
load concept for every hour in the investigated period. The hourly ranks are then
assigned to each 15 min. time step t of the respective hour. This leaves the linear
optimization some room with respect to the explicit time slot it determines for
charging and enables a consistent economic evaluation, since the variable tariff
based on the EEX price also has a hourly resolution.

The variation of the hourly ranks and the EEX oriented hourly tariff are exem-
plary depicted for one week in Figure 4.4. The single days can clearly be differ-
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entiated in the EEX (mapped on the secondary axis) and LF regime (mapped on
the primary axis). It can be observed that for the depicted week the availabil-
ity of wind power on the weekend is rather low, expressed by higher ranks for
the respective hours, whereas in the middle of the week a relatively high share
of wind power with the respective lower ranks is available. This availability or
scarcity signal guides the objective of the individual linear optimization.

Objective Function Rank Smart Charging

min
ϕ
→ RankSum =

T

∑
t=1

rt ·
C

νc ·ηc · ϕt︸ ︷︷ ︸
i

(4.15)

The adaptation of the objective function employing the rank concept is based
on the replacement of the respective price pt by the corresponding rank rt as
assigned for each t by the process described above. Thus, the new objective
function can be reduced to the minimization of the weighted rank sum which
is determined by the rank factor. The equation is thus similar to the cost mini-
mization objective, but determined by the rank and thus the relative quality of
the time slots chosen for charging. The economic evaluation of rank charging
schedules is performed on the same basis as for the AFAP and EEX strategies.
This allows to assess the individual cost implications of the respective strategies.
Further implicit assumptions and a more detailed discussion of this evaluation
method are provided in Section 4.2.5.

The rank concept has the advantage that it can easily be mapped to a tariff
structure according to the individual revenue plan and situation of any EV ag-
gregator and thus also provides insight for the supply side on how EV-owners
can distributed their load based on the respective charging rate or signal.

The customer model in this chapter is only looking for the existing minima
but does not consider the absolute price level of a tariff scheme, as EV customers
are very likely to do in reality. Considering the assumed perfect foresight of the
relevant information for the optimization, the results that are presented in the
following section can be regarded as a best case benchmark for the described
simulation scenarios.

4.2.4 Scenario Setup

The simulation scenarios map five different charging schemes: AFAP charg-
ing, EEX charging, load-factor oriented charging (LF), wind-load ratio (WL) and
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residual load (Residual) oriented charging. The optimization is computed for
each of the 1000 profiles of employees and retired EV-customers, for all weeks of
the year 2007. Some profiles are not feasible with the Mini E, in particular if the
charging time required for the respective trips is too short to charge enough en-
ergy for the next trip or the trip distance is too long for the specified maximum
range of the vehicle. Such profiles are excluded from the following analysis in
order to have a consistent data basis. Nevertheless, for employees still 89.3% and
for retired EV-owners 93.7% of the profiles are feasible.

All charging strategies are evaluated according to the research questions for-
mulated above. This permits for a comparison in terms of economic aspects, grid
stability, or near "real-time" green power utilization rates. In order to enable an
economic comparison of the different charging strategies EV demand under the
LF, WL and Residual optimization strategies are assessed according to the cor-
responding EEX price of the respective charging time slots. Thus the different
strategies can be compared in economic terms on the same basis.

4.2.5 Results Employees

The results of the simulation for the employees are summarized in Table 4.3. With
respect to the relative share of renewable energy incorporated in the charging
demand (RQ 1), it can be observed that AFAP shows only about half of the uti-
lization rate of wind power as compared to WL. In fact the utilization ratio is
lowest for AFAP. WL in turn has an average utilization rate of 14.72% while it
shifts charging to periods with an average load of 62.01% (RQ 1.1). The EEX
strategy charges at an average wind share of 11.02% which is more or less in the
middle between AFAP and WL. Residual in turn is slightly more sustainable in
this respect than EEX as it has an average wind-power share of 11.89% during
its charging times.

EEX shifts charging to periods of lower load with an average load factor of
57.13% which is in between the optimal LF and the WL strategy. The load factor
for WL-charging is still considerably lower as in the AFAP case but shows that
the availability of wind power and the driving profile restrictions have an impact
on the system compliance of this strategy. AFAP charging again is the worst
performing strategy with respect to the system load impact, with an average
load factor of 77.89%.

The Residual charging strategy resembles the LF strategy, as it also charges at
low overall load situations while it still considers the availability of wind power.
In particular, this strategy performs charging when the system load is low, but
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Table 4.3: Employees - Result Overview for Different Charging Strategies
Parameter Description AFAP EEX LF Residual WL

Rel. Wind-Power Share 7.42% 11.02% 9.92% 11.89% 14.72%
Rel. Wind Increase to AFAP - 48.51% 33.69% 60.24% 98.38%
Average Load Factor 77.89% 57.13% 53.41% 54.09% 62.01%
Cost Comparison

Avg. Costs [Eur/ week] 8.42 2.32 3.04 3.03 4.31
Cost Diff. to EEX [Eur/ week] 6.10 - 0.72 0.71 2.08
Avg. kWh Costs [Eur/kWh] 0.244 0.067 0.088 0.088 0.125
Rel. Savings to AFAP - - 72.44% -63.89% 64.01% 48.81%

wind power generation substantial. This helps to balance the variable generation
pattern and, depending on the deployment scenario, can help to stabilize the
power system. Residual has a wind utilization share of 11.89% on average over
the year, which is substantially higher than the LF strategy. Nevertheless it has
the overall second lowest average load factor with 54.09%, with less than one
percent more than the in these terms optimal LF strategy. In addition, it can
be observed that the Residual load strategy utilizes even more wind-power than
the EEX strategy. It thus combines the advantages of off-peak charging while
maintaining a responsiveness to high wind power generation situations.

When the costs incurred by the different charging strategies (RQ 1.2) are com-
pared, it is interesting to observe that LF comes at 0.72 Eur., Residual at 0.71 and
WL at 1.98 Eur. higher cost per week as compared to charging in the EEX strat-
egy. The costs in this case are 2.32 Eur. per week, which yields a weighted av-
erage price of 0.067 Eur/kWh and represents the individual average minimum
payment per week in this sociodemographic group. AFAP in contrast does not
consider the variable price for its charging decisions and thus incurs the highest
average costs per week with 8.42 Eur. and a kWh price of 0.244 Eur/kWh. This
considerable difference can be explained by the charging times of AFAP, which
are predominantly in the late afternoon and evening hours, typically a time of
higher demand and thus prices (cf. Figure 4.13).

The LF strategy has a focus on global system stability, but does perform quite
well in economic terms, as times of low overall system load have lower prices.
The weekly average costs of LF are with 3.04 Eur. 63.89% lower than the pay-
ments in the AFAP case. Residual has a similar cost level as LF but performs
better with regard to the wind-power share that is used on average for charging.
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Figure 4.5: Employees: Charging demand for the SC strategies in relation to relative
wind power share (week 37).

Figure 4.5 exemplarily shows the results of one week. This week exhibits
rather volatile wind power in-feed and representative curves for both, average
load factor and EEX-prices. It can be observed that in the middle of the week
(area 1), on the night from Wednesday to Thursday, a high wind power in-feed
is used for charging for most of the 893 EVs with a total load of around 8,000 kW.
Other WL-charging occurs in the subsequent nights through Saturday morning.
Except from Sunday evening WL-charging does not occur anymore. In contrast
to this LF-charging can predominantly be observed in the night from Saturday
to Sunday, and thus, does not exhibit a high share of renewable energy (area
2). EEX-charging is using a higher share of wind power as it often starts with a
small delay after the wind power peak has occurred (c.f. right side of area 1 and
after the subsequent wind power peak).

Figure 4.6 shows EEX and LF charging in comparison to their determining
parameter in the same week as above: the scaled EEX-price and the system load
factor, both depicted on the secondary axis. The resulting load is assigned to
the primary axis. In this illustration, the resulting load patterns of the EVs can
clearly be attributed to the relative local minima of the objective value, being the
lowest prices in the EEX-case and the lowest system load factor in the LF case.
It can also be observed that even though they are often occurring during similar
time intervals LF and EEX charging do not always exactly coincide. This is an
explanation for the differing overall individual cost level described above.

The Residual load strategy and its load pattern for the exemplary week are
depicted in Figure 4.7 in comparison to the wind-power generation and the LF
strategy. Even though the similarity between these two strategies can clearly be
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Figure 4.6: Employees: Charging demand for the EEX and LF strategy in relation to
EEX-prices and load factor (week 37).

seen, in particular during the Sunday morning charging peak, the figure also
shows the difference between the strategies. Especially the charging peak of
Residual charging on Thursday morning shows the responsiveness to a higher
wind-power share in the system during situations of low load.

Figure 4.8 depicts the same week, but adds the perspective of the total sys-
tem load and the relative wind-power generation share to the picture. Also the
charging load of the EEX and WL strategy are compared to the load of the Resid-
ual strategy (charging load is consistently depicted with respect to the primary
axis). It can be observed that WL and Residual both have one of their main charg-
ing peaks during the mentioned time slots on early Thursday morning in this
week. WL also has additional peaks in the following nights whereas Residual
concentrates demand during the load minimum of the week on early Sunday
morning. EEX in turn can be observed to always charge during the early morn-
ing hours slightly after the minimum system load.

This example shows how each of the strategies EEX, WL and Residual consid-
ers the impact of wind-power for the coordination of its charging actions. EEX
charges during times of low prices during the night, but is also sensible to high
wind-power generation in particular during times of low load. Residual consid-
ers the system load factor and thus reacts even stronger to high-wind, low-load
situations. WL in turn maximizes the relative wind share at which charging oc-
curs but is also more likely to charge during medium or low load situations.
This can be observed e.g. for Tuesday afternoon, where only little charging oc-
curs even though the relative wind-power share maximum exists there. The
strategies thus all take full advantage of the demand flexibility of the EVs in or-
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Figure 4.7: Employees: Charging demand for the SC strategies (Residual, LF) in relation
to relative wind power share (week 37).
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der to fulfill their particular objective. As mentioned above one must be aware
that the strategies profit from the assumption of securely available information,
which leads to a substantial demand concentration. This concentration can be
problematic for the line and transformer capacity limits if EVs are concentrated
at one particular location.

In an overall comparison of the five strategies it is obvious that AFAP is a
simple to implement, but with respect to economic and renewable energy uti-
lization objectives, unattractive strategy with a low performance. EEX charging
in turn maps quite well on different objective criteria like wind-share and sys-
tem load. This appears reasonable since in times of high demand prices are high
and in times of high wind in-feed the prices are low, especially if demand is also
low during the particular time. The price-reducing effect of wind power on the
EEX-price was empirically shown and is commonly referred to as the merit or-
der effect (cf. (Sensfuss et al., 2008; Nicolosi, 2010)). Residual and LF charging in
turn emphasize the aspect of system peak avoidance but do not perform as well
in economic terms as EEX does. Residual appears to be a good compromise in
the direction of a higher wind-power share which is utilized for charging while
maintaining a reasonable cost level and at the same time avoiding overall system
peak and thus contingency situations.

4.2.6 Results Retired

For the retired EV customers the results are to some extent similar to the employ-
ees. The wind power utilization share is higher for all investigated strategies but
exhibits the same general performance order with AFAP having the smallest av-
erage wind-share. The utilized share of wind-power for AFAP is slightly higher
than in the employee case, but still below the average value of wind power of
7.98% for 2007. In the WL-charging strategy the wind-share is 15.57% and there-
fore higher as compared to the same value for employees. This can be seen as a
first indication of the substantially higher flexibility of retired EV-owners in com-
parison to employees, (cf. Table 4.4). In conclusion the charging strategies can be
ranked with respect to their wind-share as follows: WL, Residual, EEX, LF, and
finally AFAP1.

The system compliance of the LF is very high as the average load factor for
this strategy is only 52.09%, which is about 10% over the absolute minimum load
factor occurred in 2007 of 42.86%. At the same time retirees are able to charge in

1WL is the benchmark in this case, since the optimization criteria is to charge in periods of a
high wind-share.
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Table 4.4: Retired - Result Overview for Different Charging Strategies
Parameter Description AFAP EEX LF Residual WL

Rel. Wind-Power Share 7.51% 11.45% 10.50% 12.13% 15.57%
Rel. Wind Increase to AFAP - 52.46% 39.81% 61.51% 107.32%
Average Load Factor 77.71% 56.22% 52.09% 52.78% 61.66%
Cost Comparison

Avg. Costs [Eur/ week] 4.44 1.14 1.48 1.52 2.25
Cost Diff. to EEX [Eur/ week] +3.30 - +0.34 +0.38 +1.11
Avg. kWh Costs [Eur/kWh] 0.243 0.062 0.081 0.083 0.123
Rel. Savings to AFAP - 74.32% 66.66% 65.76% 49.32%
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Figure 4.9: Retired - Charging demand for the SC strategies in relation to relative wind
power share (week 37).

periods of a lower average load factor as compared to employees. With respect
to their system load impact the charging strategies can be ranked as follows: LF,
Residual, EEX, WL, and AFAP2. The Residual charging strategy again performs
well with respect to its average system impact and the average share of wind-
power employed for charging which increases the utilized wind share by 21.7%
as compared to LF while incurring only slightly higher costs of 2.7% in this case.

The absolute costs for all strategies are considerably lower for retirees as com-
pared to employees which can be clearly assigned to the fact that the overall driv-
ing distance is with an average of 119 km only about half as high as for employ-
ees. EEX is the cost benchmark at 1.14 Eur. per week. AFAP charging exhibits

2LF is the benchmark in this case, since the optimization criteria is to charge in periods of low
load.
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Figure 4.10: Retired - Charging demand for the EEX and LF strategy in relation to EEX-
prices and load factor (week 37).

the worst cost performance at with 4.44 Eur. per week. LF and Residual incur
higher costs than EEX with 1.48 and 1.52 Eur. per week on average. These val-
ues are still substantially below the level of 2.25 Eur. per week that is accounted
for in the WL strategy. The cost differences are also reflected in the kWh price
for the different strategies. They range from 0.062 Eur. per kWh (EEX) to 0.243
Eur. per kWh (AFAP). Besides the absolute cost level, the relative differences be-
tween employees and retriees on a relative level remain quite low. There is a clear
tendency for lower kWh prices for retirees but in the aggregate evaluation under-
taken in this section, the overall cost levels are still similar. An analysis further
investigating the load flexibility potential of retirees will follow in Chapter 5.

For comparison to the employees Figure 4.9 shows the relative wind power
share and the resulting load for retired EV-owners resulting from the coordinated
charging strategies. Similar to the employee results WL charging occurs mostly in
the night from Wednesday to Thursday, and the two following nights, as these
mark the periods with a wind power share of 10% or more. The peak load caused
by WL is only about 6000 kW for a total of 937 EV-owners which also indicates
that only about 60% of them are charging during this time slot. The following
demand in WL is not surpassing 4000 kW which shows that due to the shorter
distances and lower resulting demand, retired EV customers have a high degree
of flexibility in their charging time decisions. This flexibility leads to the interest-
ing, and potential problematic situation that nearly all of the retired EV customers
are charging in the night from Saturday to Sunday in the LF charging scheme,
thus creating a peak demand of over 9000 kW. This simultaneity problem is not
only confined to this strategy and will be discussed in the following section, as
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Figure 4.11: Retired: Charging demand for the SC strategies in relation to relative wind
power share (week 37).

it is partly a consequence of the assumptions of the model applied.
Figure 4.10 shows the resulting demand in the EEX and LF schemes in relation

to the load factor and the EEX-price of week 37. It can be observed that most of
the EEX demand occurs on Friday and Saturday morning. The EEX demand is
similarly delayed as in the case for the employees, a fact that can be accounted
to the lower price induced by lower demand in the night hours, coupled with a
higher in-feed of wind power.

Figure 4.11 shows the same week for the Residual charging strategy as above.
It can be observed that the resulting general load behavior is similar to the one
of the employees. The distinction between LF and Residual is more accentuated
for retirees. The particular difference is the charging peak occurring on early
Thursday morning with a maximum around 4000 kW in the Residual charging
strategy, whereas LF does not charge a significant amount during these time
slots. As mentioned above LF concentrates most of its charging activity on early
Sunday morning, the time of the system minimal load in this week.

When the resulting load of Residual is depicted in the context of the total sys-
tem load and the corresponding wind-power share in Figure 4.12, one can see
that the charging times, in particular on Thursday have a high overlap with the
WL strategy. EEX also has a similar charging pattern as in the employee case, but
can also concentrate its charging actions during Friday and Saturday morning.
This shows that on average retirees have the flexibility to charge only once per
week and can thus choose the optimal time slots with respect to their respec-
tive optimization objective. This increases their adoption potential under the
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Figure 4.12: Retired: Charging demand for the SC strategies in relation to relative wind
power share (week 37).

assumed conditions, but can in a more constrained setting with respect to the
quality of available information also lead to the problem of fully charged batter-
ies despite a higher availability of renewable power in later time intervals. The
following section will thus discuss the presented findings and challenges that
can result from them.

4.2.7 Conclusion

The results of the simulation for the smart charging strategies show that in com-
parison to uncoordinated AFAP charging the utilization of wind power can be
nearly doubled by the WL strategy and significant cost reductions of more than
70% are possible in the EEX strategy for both analyzed driver groups. All co-
ordinated charging strategies have a lower load factor than AFAP. These results
demonstrate the relevance of charging coordination for EVs. The Residual charg-
ing strategy offers an interesting combination of different optimization objec-
tives. It enables substantial savings of at least 64.01% as compared to AFAP,
while seeking to charge at times of low overall system load and still utilizes a
higher wind-power share than most of the other charging strategies.

The coordination approach based on ex ante known information can lead to
unwanted effects as EV customers jointly start shifting their charging times ac-
cording to the given objective criteria. This behavior in turn can lead to new
peaks in the power system especially when high power connection ratings (in
this approach 10.5 kW) are assumed and EVs are not spatially dispersed. High
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Figure 4.13: Overview of uncoordinated AFAP charging demand and charging signals
for one week (week 37)

peaks can be observed in Figure 4.5 to 4.12. In contrast to the SC strategies de-
mand is more distributed in the AFAP case since every EV-owner charges when
she arrives at home. Even though this demand is less concentrated it has a num-
ber of other drawbacks, like the high costs due to peak time charging and the
overall negative system impact due to a high load factor. In addition it was also
demonstrated above that AFAP is not suited to use a higher renewable energy
share in the case of wind-power. Figure 4.13 depicts the AFAP demand of em-
ployees and retirees in relation to the load factor, the EEX-price and the relative
wind power share. As AFAP demand is similar in every week one can observe
that with respect to the adoption of renewable, and in particular volatile sources,
AFAP will only fit by coincidence.

In order to address the high load concentrations in the coordinated charging
approaches, dynamic charging signals which are adapted according to the lo-
cal distribution network situation in addition to the availability of RES and low
energy prices could be introduced. Another approach to ameliorate the accen-
tuated peaks could be to lower the available charging powers. The effect of this
constrained grid connection is further analyzed in Section 5.3, where a supply
based perspective under consideration of physical generation constraints is fur-
ther investigated. For a real world deployment one needs to consider that not all
EV customers will have the same expectations about prices and the system state,
so that peaks are not likely to be that accentuated as observed in this analysis
which can be seen as a benchmark for what can be achieved in the presented
scenarios.
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Table 4.5: Overview of linear storage costs for Li-Ion batteries
with an assumed life time of 2200 full cycles.

Battery Costs Avg. Costs Avg. Cost
[Eur] p.y. [Eur] p.w.

Employees

0.1 [Eur/kWh] p.c. 179.21 3.44
0.2 [Eur/kWh] p.c. 358.43 6.89
0.4 [Eur/kWh] p.c. 716.86 13.78
Retired

0.1 [Eur/kWh] p.c. 95.07 1.83
0.2 [Eur/kWh] p.c. 190.15 3.65
0.4 [Eur/kWh] p.c. 380.30 7.31

The storage costs have not been accounted so far, as they are the same for the
analyzed strategies. Table 4.5 shows the battery storage costs incurred for the
average usage for the two groups under consideration of different usage costs
ranging from 0.1, 0.2 and 0.4 Eur/kWh per cycle (p.c.). The calculation assumes
2200 cycles for the lifetime of Li-Ion based batteries, which are predominantly
used for EVs. This in turn leads to specific battery replacement costs of 220, 440
and 880 Eur/kWh (Kempton, 2000) (disregarding non-linearities and possible
additional capital costs). The calculation considers the actual battery usage of
both groups. The storage costs are not attributable to the specific charging strat-
egy in this case, but more to external factors like operation environment temper-
ature and depth of discharge (DoD) depending on general usage patterns.

More recent work from (Bashash et al., 2011) and (Peterson et al., 2010) sug-
gests that DoD is only a proxy for the absolute energy throughput for a storage
device which in turn is identified as one of the main driving forces behind bat-
tery degradation. Nevertheless the different (linear) storage cost levels show that
if battery costs are not higher than 0.2 Eur/kWh, operational savings as reported
above represent a substantial benefit in particular for the employees.

Since high storage costs are still one of the main impediments of mass EV
adoption, the next section will explicitly consider them in the individual ob-
jective function of every EV and thus will improve the economic assessment
and evaluation of the particular value of battery friendly charging coordination
strategies.
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4.3 Individual Economics: Vehicle-to-Grid Model

Following the analyses in Section 4.2 with a focus on the ability of individual
EVs to coordinate their charging demand with respect to different optimiza-
tion objectives, this section extends the interaction of the EVs with the power
system, by assessing their short term storage capabilities in an economic manner.

Considering EVs as an active part of the power system was first done by
(Heydt, 1983) and further analyzed in (Kempton and Letendre, 1997; Kempton
and Tomić, 2005a). The latter studies introduced the term Vehicle-to-Grid (V2G),
which captures the EV’s ability to feed back electricity into the power grid
at times when this is required for grid support or economically beneficial to
perform arbitrage. It is shown that vehicles can achieve additional profits when
participating in primary and secondary regulation services in the Californian
energy market, as they are idle 96% of the time (Kempton and Tomić, 2005a).
Besides the possibility to directly participate in regulation markets, one of the
first steps for the integration of EVs into the power system is to coordinate
charging in such a way that it is beneficial for the EV-owner and the power grid.
This coordination can be achieved if EVs can employ smart grid technologies
to communicate their demand flexibility and participate in energy markets. In
contrast to existing studies (cf. Section 2.6), this section thus adds an individual
and predominantly economic perspective to the research area of EV charging
coordination.

Most models in literature consider driving behavior of EVs only based on gen-
eral assumptions about mobility habits. These either build on average statistical
data or on simplified assumptions of availability and plug-in rates. The follow-
ing analysis builds on the empirical data basis of the German Mobility Panel, a
mobility survey reflecting different sociodemographic groups (i.e. employees,
retired persons) to model mobility patterns as a basis for the analysis.

Given real-life driving profiles and a variable pricing scheme based on
German hourly wholesale electricity prices of 2007, the following research
questions are investigated:

RQ 2 - Economic Evaluation under Consideration of Storage Costs: What
are the individual costs, including battery degradation, of charging electric vehicles
employing a cost minimizing charging strategy while still fulfilling the given mobility
profile, for the sociodemographic groups of employees & retired?



122 Demand Side Assessment

RQ 2.1 - Economics of V2G under Consideration of Storage Costs: Which
additional profits can be generated for the two groups if electricity can be sold back to
the grid in a V2G operation strategy, while driving needs are still fulfilled and battery
degradation is accounted for?

The following analysis substantially builds on and extends (Schuller et al.,
2013). The analysis is structured as follows: Section 2 gives a brief overview
of context of the analysis, Section 4.3.2 specifies the simulation input data and its
sources. Section 4.3.3 and 4.3.4 define the simulation model with its parameters,
simulation assumptions, and the objective functions of different charging strate-
gies. Sections 4.3.5 - 4.3.7 present and discuss the simulation results and Section
4.3.8 concludes on the obtained results.

4.3.1 Vehicle-to-Grid: Related Work

Electric vehicles are part of two major systems – the individual transportation
sector and the power system (Blumsack and Fernandez, 2012). Consequently,
an active field of research with interdisciplinary questions from transportation,
electrical and mechanical engineering, chemical and material science and espe-
cially power system economics has developed. The impact of EVs on power sys-
tems and emissions has been investigated in several scenarios (Kintner-Meyer
et al., 2007), (Sioshansi and Miller, 2011). This work shows that local emissions
can be reduced significantly, and also global emissions can be reduced if charg-
ing demand is coordinated by the ISO (Independent System Operator) such that
cleaner generators such as natural gas are used to cover EV demand.

The flexibility in charging demand exhibited by EVs can be employed with
different objectives. The most relevant are distribution grid loss minimization,
cost minimization given a variable pricing regime, or direct market participa-
tion and system support through provision of regulation services and balancing
of renewable generation (Richardson, 2013). For the case of distribution loss pre-
vention, it was shown by Peças Lopes et al. (2009) and Acha et al. (2011) that
charging coordination will increase the utilization of grid resources and sup-
port a higher diffusion rate of EVs without the necessity of grid reinforcements.
In the particular residential distribution area case, the share of EVs integrated
could be increased from 10% to 52% of the households through charging coordi-
nation. Further analyses from Gonzalez Vaya and Andersson (2012) include the
transmission levels and assess different centralized and decentralized control
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approaches. Findings suggest that peak loads can be avoided, grid assets are not
overloaded, and generation costs can be reduced. Work of Flath et al. (2013) and
Gerding et al. (2011) shows that decentralized charging decisions based on little
information can also be successful to achieve efficient economic outcomes while
considering system constraints.

Concepts for aggregator architectures are presented in (Sandels et al., 2010;
Guille and Gross, 2009) and further analyzed in a regulation and V2G context by
(Andersson et al., 2010; Sortomme and El-Sharkawi, 2011; Bessa et al., 2012) and
(Ortega-Vazquez et al., 2012). Following the first general assessment of Kemp-
ton and Tomić (2005a), Andersson et al. (2010) show that for about 3-5% of the
respective vehicle fleets a participation in the German and Swedish regulation
markets would be profitable. Further work focusing on the wholesale market
participation and energy arbitrage by Peterson et al. (2010) shows that V2G can
be profitable, but does not yield very high revenues for EV owners and is not
competitive for storage periods longer than a day.

This analysis extends the literature by considering the individual economic
perspective of the EV owner. The general applicability of EVs based on a large
set of empirical data is assessed and the economic potential of different charging
strategies including a V2G operation scheme is evaluated.

4.3.2 Input Data

The three key empirical data sources for the simulation are electricity market
prices, driving behavior of the EV owners, and the EV specifications.

Price Data

The data for market prices used for the simulation corresponds to the hourly
intraday wholesale power price time series in 2007 from the European Energy
Exchange (EEX, 2007). In order to obtain a more illustrative economic analysis
at the end consumer level the price was adapted according to the average retail
rate of 20.12 ct/kWh for this year (BNetzA, 2008). The general data basis is thus
similar to Section 4.2, but as it will be described in more detail in the follow-
ing paragraph, the scaling approach was adapted in order to allow for a more
accurate representation of current regulation requirements.

The variable end consumer price has three main components that must be
considered: wholesale energy costs (reflected by the EEX-intraday prices with
an average value of 6.88 ct/kWh), grid and additional fixed fees (10.02 ct/kWh)
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Figure 4.14: Average end consumer price components and average net price employed
for the economic analysis.

and value added tax (VAT) of 19%, cf. Figure 4.14. The average retail rate in-
cludes the VAT, but as the possibility of energy arbitrage is investigated tax is
not supposed to have an impact on the arbitrage decision, since the tax amount
paid for consumption must be revenue neutral when the energy is sold back to
the power grid. Following this, the price level considered consists of the EEX-
price and the fixed fees, which cover the grid integration costs for the respective
customer. The average power price level of the time series is thus adapted to
16.90 ct/kWh, the average costs without sales tax. Since the payment for grid
and fees is fixed, both for selling and purchase of power, the decision whether
energy arbitrage and i.e. a V2G operation mode is chosen only depends on the
wholesale energy price and its spread. In particular, the grid and fees amount is
assumed to be reimbursed when electricity is sold back to the grid. This concept
is already partly in place in the so called avoided grid usage fee3 for generators.

The described price level thus reflects the average hourly dynamic end-
consumer prices of this year, without dynamic tax effects but including all fees.4

Mobility Data

The driving behavior builds on the same data set from the German Mobility
Panel (MOP) which is also employed above (BMVBS, 2008). The initial data set
provides 17,705 trip profiles (by all means of travel), after data cleansing and fil-
tering around 11,400 driving profiles could be used for the analysis (cf. Chapter

3cf. Paragraph 24 of the German Energy Act: http://www.gesetze-im-internet.de/
enwg_2005/__24.html

4Fees encompass: distribution, transmission, renewable energy and CHP subsidy, federal and
regional charges.

http://www.gesetze-im-internet.de/enwg_2005/__24.html
http://www.gesetze-im-internet.de/enwg_2005/__24.html
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Figure 4.15: Weekday and weekend cumulated driving distances of employees and re-
tired persons in the MOP.

3). A driving profile includes all car trips within a specified week of the year
made by a certain person. Assuming that vehicle owners will drive their EVs
in a similar way as they today drive their internal combustion engine vehicles
(ICEVs), this data is used for the simulation of EVs. The driving profiles have
been split according to two different sociodemographic groups of people: em-
ployees and retired people. For the analysis, the 1,000 most up-to-date profiles
of each group are employed. Figure 4.15 provides and exemplary overview of
the driving patterns of employees and retired persons, the groups with the most
contrasting driving behavior.

EV Specifications

The BMW Mini E again serves as the reference vehicle, which also enables a
general comparison with the results from other sections. Table 4.6 provides an
overview of the technical specifications like battery capacity, specific consump-
tion and charging rates. In addition to the technical vehicle specifications, pa-
rameters that determine the V2G interaction ability are also specified. In this
context battery degradation must also be considered. Following Peterson et al.
(2010) and Bashash et al. (2011) the main determinants of battery degradation
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Table 4.6: EV Specifications
Parametersa BMW

Mini E
Power Consumption [kWh/km] b 0.14
Max Range [km] 250
Top Speed [km/h] 152
Full Charging Time [h] c 3
Full V2G Discharging Time [h] c 3
Charging Specifications [V, A] 240, 48 (US)

230, 16/32 (DE)
Capacity [kWh] 35
Usable Capacity [kWh] d 31.5
Battery Type Li-ion
Charging Efficiency [%] e 93
Discharging Efficiency [%] e 93
a If not stated differently, parameter specifications are found in (BMW, 2009).
b Power consumption=

capacity
max range , average consumption value, independent of individual fac-

tors (e.g. driving style, speed, terrain).
c Assumption: full charging time = full discharging time.
d Assumption: depth of discharge (DOD) = 90%
e Assumptions about parameters based upon information provided in (Tomic and Kempton,

2007).

are the general energy throughput over the lifetime of the battery and the charg-
ing power or current expressed by the C-rate. A more detailed description of the
technical implications in the model is given in Section 4.3.4.

4.3.3 Model Definition

The following subsections describe the assumptions that are made, in addition
to the ones from Section 4.2 with respect to the optimization model and the simu-
lation implementation. The different charging strategies which only encompass
AFAP, EEX and a V2G strategy are formalized with their corresponding objective
functions and the necessary constraints that incorporate the technical restrictions
and scenario parameters.

Assumptions and Parameters

The following assumptions are made within the model setting. Unless stated
other the assumptions from Section 4.2.2 also apply here:

• The volatile component of end consumer electricity prices change propor-
tionally to wholesale electricity prices.
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• EV-owners can buy electricity at end consumer prices, sell at wholesale
prices and receive a grid feed reimbursement in this case.

• Driving patterns and electricity prices are ex-ante known for the optimiza-
tion horizon.

• Mobility has to be guaranteed, i.e., the battery is always charged such that
the next trips are possible.

• The additional load caused by the small number of charging EVs in our
study has no influence on electricity prices. EVs are price takers.

• EVs can only be connected to the power grid at the homes of the owners.
Therefore, charging and discharging (i.e. selling electricity) is only possible
when the EV is parked at home.

• When parked at home, EVs can always charge and discharge the battery at
any time within the technical constraints of the battery (including state of
charge (SOC)).

• The time frame of the analysis is one week with 15 min. time slots resolution
(T=672).

• The battery of the EV is charged to 75% at the beginning of the week and
has to reach the same level at the end of the week.

The assumptions are designed to represent the present and the near future
and are kept reasonably conservative with respect to the availability of charging
and discharging opportunities. Table 4.7 provides an overview of the model
parameters used in the subsequent analyses.

Charging Strategies

The simulation implements three different charging strategies: as fast as possible
charging, AFAP, Smart Charging, and Vehicle-to-Grid (V2G). In AFAP mode, the
EV immediately starts charging when connected to the grid and stops charg-
ing when either the battery is fully charged or when the EV gets disconnected
from the power grid (Equation 5.17). Smart Charging identifies the cost-optimal
charging times for the vehicle owner in order to complete her driving profile and
thus corresponds to the EEX charging strategy from Section 4.2. Vehicle-to-Grid
goes one step further than Smart Charging enabling the EV owner to sell elec-
tricity while still charging in a cost-minimal way. In both controlled charging
approaches, the charging and discharging time-steps and the amount of energy
charged and discharged during these time-steps are the decision variables of the
optimization problem. The formal description of the different strategies slightly
differs in this section in order to account for battery degradation costs and to
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Table 4.7: Model Parameters

Storage System and Infrastructure Parameters
Battery capacity SOC (kWh)
Charging efficiency ηc (%)
Discharging efficiency ηd (%)
Energy storage cost ψen (Eur/kWh)
Charge rate storage cost βcr (Eur/kWh)
Maximum charge amount per time slot ϕ (kWh)
Initial EV battery SOC SOCinit (kWh)
Terminal EV battery SOC SOCend (kWh)
Infrastructure Cost K f (Eur/week)
Market and Consumer Parameters
Price per energy unit at time t pt (Eur/kWh)
Energy consumption at time t dt (kWh)
Location of the EV at time t zt (binary)
Decision Variables
Charge parameter for at time t ϕt (kWh)
Net charging amount φ (kWh)
V2G parameter for at time t λt (kWh)
SOC level for at time t SOCt (kWh)

enable a more comprehensive model representation.

AFAP Charging

ϕt =


min{ϕt,SOC− SOCt} : if SOCt ≤ SOC

and zt = 1

0 : if zt = 0

(4.16)

zt =

{
1 : EV at home within time step t

0 : otherwise
(4.17)

The payment resulting from this strategy is the sum of energy charged in the
time slots that are predominantly determined by the arrival times at home, and
do not incorporate any economic decision-making rationale. The payment is
given in Equation 4.18 and consists of energy costs and battery degradation
costs.
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P =
T

∑
t=1

pt · ϕt︸ ︷︷ ︸
Energy
Costs

+ ϕ2
t · βcr︸ ︷︷ ︸

Power−related
Battery

Degradation

+ ϕt ·ψen︸ ︷︷ ︸
Energy−related

Battery
Degradation

(4.18)

Smart Charging

Smart Charging minimizes costs by choosing appropriate charging time slots.
In contrast to AFAP charging, it endogenously considers the degradation costs
resulting from higher charging powers, while the degradation resulting form
energy throughput remains the same as in the AFAP charging case. The payment
K f is a constant added to account for the Smart Charging infrastructure costs.

min
ϕ

T

∑
t=1

pt · ϕt + ϕ2
t · βcr + ϕt ·ψen + K f (4.19)

subject to, (∀t ∈ T):

SOCt ≥ 0 (4.20)

SOCt ≤ SOC (4.21)

ϕt ≤ zt · ϕt (4.22)

SOCt = SOCt−1 − dt + ηc · ϕt (4.23)

SOC1 = SOCinit − dt + ηc · ϕ1 (4.24)

SOCT = SOCend (4.25)

pt,dt,ηc,ηd, ϕt,λt,ψen, βcr ≥ 0 (4.26)

Equations 4.20 – 4.22 represent the properties of the SOC and the maximum
power rating which is used for charging. ϕt incorporates the maximum energy
amount that can be charged during one 15 minute time slot. Equations 4.23 –
4.25 account for continuous battery state transitions, initial and terminal SOC
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values.

Vehicle-to-Grid

The objective function for the V2G case extends the Smart Charging objective by
accounting for revenues that can be achieved from energy sales.

min
ϕ,λ

T

∑
t=1

pt · (ϕt − ηd ·λt) + ϕ2
t · βcr + ϕt ·ψen + K f (4.27)

Most constraints are similar to the Smart Charging case, with exception of the
following, incorporating the discharging capability and the net energy flow from
or to the battery:

SOCt = SOCt−1 − dt + ηc · ϕt − λt, ∀t ∈ T (4.28)

SOC1 = SOCinit − dt + ηc · ϕ1 − λ1 (4.29)

φt = ϕt − λt, ∀t ∈ T (4.30)

SOCT ≥ SOCend (4.31)

The investment costs for the EVs are not included in the analysis, since the
focus is on the comparison of the different charging strategies. Basic charging
infrastructure costs are not considered, as charging equipment is needed regard-
less of the charging strategy employed.

4.3.4 Scenario Setup

The simulation scenarios have been defined along the three main parameters
charging strategy, driving profile group and battery degradation cost. The values for
each parameter are as follows:

• Charging strategy: AFAP Charging, Smart Charging, Vehicle-to-Grid
• Driving profile group: employees, retired people
• Energy-related battery degradation cost: 0.05 Eur/kWh, 0.1 Eur/kWh, 0.2 Eu-

r/kWh
• Power-related battery degradation cots: 0.01 Eur/kWh, 0.02 Eur/kWh.
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Upgrades incorporating communication infrastructure, additional metering
and power electronics for the implementation of Smart Charging and V2G are
considered following the numbers provided by (Tomic and Kempton, 2007): For
AFAP charging no additional infrastructure costs are incurred, for Smart Charg-
ing the additional costs are 0.35 Eur/week and 1.27 Eur/week in the V2G case.
The different costs levels are due to additional communication infrastructure,
metering and power electronics required on top of the standard charging infras-
tructure.

The main parameters are closely interlinked when determining the saving po-
tential for each scenario. The charging strategies influence the timing of charging
periods and allow for load shifting to low price periods, but the overall benefit
potential is constrained by the time of presence at home and the capacity and
charging power of the EV. In order to address the uncertainty concerning battery
degradation costs two main factors to account for battery wear are employed.
First the overall energy throughput of the battery is a main factor of capacity
loss, as the number of lithium ions that can be intercalated is reduced through
irreversible chemical processes over time as described by (Peterson et al., 2010).
Second the charging power employed for charging is taken into account. Fol-
lowing the work presented by (Bashash et al., 2011), additional costs that are
incurred when the battery is charged at higher C-rates are assumed. A quadratic
term is incorporated in the objective function to reflect this degradation behavior.
This modification provides incentives for Smart Charging to avoid high charging
power levels.

Building on cost estimates of the California Air Resources Board’s (CARB)
Battery Technical Advisory Panel which considers scaling cost effects, vehicle
li-ion batteries could cost as little as 150 USD/kWh (108 Eur/kWh) and have a
life time of 2,200 (full) cycles (Kempton, 2000). This results in cost for battery
usage of around 0.05 Eur/kWh per cycle. Other storage cost assessments from
(Chen et al., 2009) consider costs to be in the range of 0.15-1.00 USD/kWh per
cycle (0.11 - 0.74 Eur/kWh p.C.), which is a rather high spread. More recent work
by Peterson et al. (2010) proposes values of 0.042 USD/kWh (0.03 Eur/kWh) at
the low end of the spectrum of battery degradation costs. In order to obtain a
more robust assessment three different energy degradation cost levels are used
in the following analysis: 0.05, 0.1 and 0.2 Eur/kWh.
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Table 4.8: Average weekly costs per vehicle in Euro.

Employees Retired
AFAP Smart V2G AFAP Smart V2G

11 kW charging power
No Degradation Costs 6.00 3.99 2.18 3.94 1.88 -0.36
ψen = 0.05, βcr = 0.01 7.76 5.46 4.70 5.07 2.48 1.27
ψen = 0.1, βcr = 0.01 9.47 6.42 5.23 6.19 3.04 2.38
ψen = 0.2, βcr = 0.02 12.94 9.49 9.67 8.44 4.17 4.08
3.6 kW charging power
No Degradation Costs 5.95 4.03 3.13 4.00 1.90 0.73
ψen = 0.05, βcr = 0.01 7.72 5.42 5.40 5.16 2.47 2.05
ψen = 0.1, βcr = 0.01 9.45 6.37 5.74 6.31 3.03 3.02
ψen = 0.2, βcr = 0.02 12.94 9.41 9.88 8.62 4.16 4.39

4.3.5 Results - Savings from Smart Charging

In order to concentrate the analysis on the impact assessment of driving pro-
files and battery degradation costs on the economic outcome, the BMW Mini E
is utilized as a reference vehicle with the driving profiles of the most contrast-
ing sociodemographic groups: employees and retired persons. In addition, the
available charging power is varied, incorporating the standard home socket out-
lets of 3.6 kW (one phase) and 11 kW (three phase) in Germany. This allows
the analysis of the most distinctive groups in a realistic setting. As a consider-
able number of parameters is varied the reference scenario is further denoted to
be the 11 kW case with the battery degradation parameters set to ψen = 0.1 EU-
R/kWh (energy-related degradation) and βcr = 0.01 EUR/kWh (power-related
degradation) for both groups.

Smart Charging reveals a considerable saving potential when compared to
AFAP charging. Table 4.8 shows the average weekly costs for every charging
strategy for both analyzed sociodemographic groups under consideration of dif-
ferent charging powers and battery degradation costs as well as infrastructure
costs.5

Smart Charging enables savings for employees of at least 32% compared to
AFAP charging. For retired persons in turn the relative savings are higher than
50% but the absolute costs per week and vehicle are not as high since the dis-

5Please observe that the full factorial of the parameter combination is simulated but only the
main bounding scenarios are reported for better insight.
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Figure 4.16: Weekly average cost savings including power and battery costs for the ref-
erence scenario with ψen = 0.1 EUR/kWh and βcr = 0.01 EUR/kWh for the different
charging strategies.

tances driven are considerably lower.6 It can also be observed that if the bat-
tery degradation costs are included, the absolute costs per individual vehicle can
more than double (from 6 to 12.94 EUR for AFAP and from 3.99 to 9.49 for Smart
Charging) as compared to the theoretical no degradation case for employees.

Depending on the available charging power, the driving profile group and to
some extent the battery degradation costs, the number of feasible profiles, i.e.
profiles whose mobility needs are completely fulfilled slightly varies for each
scenario. The cost values reported are thus average values per vehicle for the
corresponding scenario population. In order to enable a consistent economic
comparison the weighted average costs per vehicle for every charged kWh, split
into energy and battery related costs for the reference scenario, are depicted in
Figure 4.17.

It can be observed that for AFAP charging the energy costs are even higher
than the yearly average (cf. Figure 4.14) cost of the variable pricing scheme, i.e.
0.175 EUR/kWh vs. 0.169 EUR/kWh, whereas the battery costs are not exten-
sively higher than the energy degradation cost element. A lower charging power
in the 3.6 kW case slightly lowers the average cost levels as it distributes some of
the demand since it takes longer to charge a vehicle at this rate, which then occa-
sionally includes more low price time slots than in the 11 kW case. AFAP is thus
performing even poorer than a more evenly distributed average load charging
strategy as it concentrates load every day in periods of high prices. Therefore,
Smart Charging offers a substantial potential for cost reduction, even when the

6Employees have an average weekly driving distance of about 228 km whereas retirees only
travel 119 km on average per week.
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Figure 4.17: Effective energy costs including power and battery costs for the reference
scenario for different charging strategies and powers.

underlying spread of the wholesale price is not that high when compared to the
total electricity price.7 Hence, the savings from Smart Charging are potentially
higher as reported, since VAT proportionally increases the energy costs incurred,
the absolute VAT payments are lower in the Smart Charging case. In order to al-
low for a consistent comparison with the costs of the V2G operation mode, a net
cost assessment is performed.

4.3.6 Results - Revenue from Vehicle-to-Grid

The V2G charging strategy transforms the EV to a short term storage unit that
performs wholesale energy price arbitrage, while still fulfilling the projected
driving needs of the particular group. V2G can be particularly profitable as it
further reduces costs in relation to Smart Charging, and even leads to profits
when only the energy costs are considered. In particular the retirees can reduce
their total cost by at least 49% (cf. Table 4.8 and Figure 4.17). Employees can
further reduce their costs by V2G by at least 39% as compared to AFAP charging

7The overall charging amounts differ for AFAP as this charging strategy “overcharges” the
battery to always have the highest SOC possible, whereas Smart and V2G only charge to 75%
at the end of the week.
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Figure 4.18: Battery and energy cost variation for the reference scenario in dependence
of the charging strategy and charging power.

in the reference scenario.
In order to not only account for average price values but consider the dynamic

cost variation per week, Figure 4.18 compares the weekly average costs for the
different charging strategies. It can be observed that for AFAP the costs vary con-
siderably in the direction of higher energy prices, whereas in the case of Smart
Charging the cost variation is clearly confined. For V2G a similar energy price
level is observed as with Smart Charging, but the deviations to lower, or in the
case of retirees even to negative costs or profits can also clearly be seen. This is
partly due to the fact that in autumn 2007 the wholesale energy prices reached
considerably higher levels than most of the time before in this year. Battery
costs in turn show the opposite deviation behavior, as V2G activity increases,
they tend towards higher values. This is particularly the case for retirees that
perform V2G in the 11 kW case. This also shows that a higher charging power
enables the vehicles to generate higher profits as they can fully take advantage
of high and low price time periods.

Figure 4.19 exemplifies the aggregate load of both groups for the course of two
weeks (30 & 31, end of July) resulting from the different strategies. It can be seen
that AFAP has a regular load pattern that particularly peaks in the evenings, but
distributes the overall load such that the daily peaks can be lower than in the
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Figure 4.19: Exemplary aggregated load of both groups for the reference scenario during
the course of week 30 and 31 for the different charging strategies.

Smart and V2G cases. Smart Charging has similar load levels of around 1 MW
but can have higher coordinated peaks in order to take advantage of low price
periods. The battery costs and in particular the power costs have a high impact
on the aggregate charging load.

4.3.7 Results - Impact of Battery Degradation Costs

In order to not only account for operative electricity costs different levels of bat-
tery degradation costs associated with total energy throughput and the charging
rate intensity are considered. These considerations notably change the nature of
the overall economic outcome, as they can turn an operative profit in the V2G
retiree case back into a cost position. If battery costs and in particular energy
degradation costs are increased to 0.2 EUR/kWh, the battery costs even surpass
the energy costs (Figure 4.17 and Table 4.8). For energy-related degradation costs
of 0.05 EUR/kWh in turn the results show that operative V2G profits for retirees
and battery costs compensate each other.

The C-rate and the associated quadratic power cost representation following
the experimental evidence of Bashash et al. (2011) lead to considerably lower
average charging powers per vehicle in the different cost value scenarios. Table
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Table 4.9: Maximum average charging power per vehicle in kW.

11kW Ref. Case Employees Retired
AFAP Smart V2G AFAP Smart V2G

No Degradation Costs 1.15 8.21 10.66 0.47 6.28 9.77
ψen = 0.1, βcr = 0.01 1.15 3.73 7.28 0.47 2.57 7.83
ψen = 0.2, βcr = 0.02 1.15 2.46 4.68 0.47 1.62 4.73

4.9 shows the average individual charging powers for the respective charging
strategies.

AFAP charging has a very low average charging power as this number is av-
eraged over the complete group of feasible profiles, but at the same time less
vehicles are charging per time slot as compared to the other strategies. With
no degradation costs, employees fully take advantage of the available connec-
tion power, but when C-rate costs are increased the average maximum charging
power is considerably reduced from 8.21 kW to 3.73 kW and 2.46 kW respec-
tively for no, medium and high power costs. The same holds in relative terms
for retirees.

Figure 4.18 also indicates that energy-related battery degradation costs still
remain the main determining factor for V2G activity at the given electricity price
level. At the same time we can also observe that lower charging powers can
support the implementation of V2G as they limit the amount of C-rate related
battery degradation cost.

4.3.8 Conclusion

An individual economic optimization of charging times, minimizing the indi-
vidual power and battery degradation costs allows to substantially reduce the
overall costs of EVs by at least 32% for employees (from 9.47 to 6.42 EUR/Week)
and at least 51% for retirees (from 5.07 to 2.48 Eur/Week) in the reference sce-
nario when compared to the AFAP case. Electricity cost reductions under the
assumed hourly variable rates can be realized with higher charging powers, but
might be overcompensated by higher battery degradation costs and in particu-
lar power degradation costs in this case. A possible implementation of Smart
Charging must thus account for this interrelation.

Performing V2G and thus discharging activities based on the wholesale en-
ergy price variations can be profitable in particular for retirees with higher charg-
ing and discharging power outlets. With low energy storage costs, this could
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even lead to profits while driving needs are fulfilled. Employees could reduce
their total costs by 39%-45% on average per week as compared to AFAP, when
participating in V2G activities. The analysis shows that an endogenous consid-
eration of C-rate related costs leads to lower charging powers which can also be
beneficial for EV power grid integration. In addition the energy storage costs
still remain the main determinant for a profitable V2G implementation.

The analysis in this section also represents a benchmark for economic charg-
ing strategies under clear consideration of technical constraints. The dynamic
rate represents the actual fluctuation of the wholesale price while eliminating
tax and fixed fee effects on the charging decision. V2G is thus assessed under
the current regulatory framework in which generators and storage devices are
(partially) reimbursed their grid fee payments. Through the net cost approach
the reported savings of Smart Charging might be underestimated as the VAT is
calculated proportionally to the variable energy price. This shows that the regu-
latory framework is decisive for the assessment of different charging strategies.
It can be concluded that V2G can be profitable, but like stationary storage devices
might need additional regulatory incentives to represent a sustainable business
case in power markets with decreasing wholesale price spreads like Germany.

Further work could consider shorter optimization horizons in order to account
for price and trip uncertainty. In addition the 1:1 mapping of driving profiles to
vehicles can be relaxed in order to account for EV fleet or car sharing scenarios.
The implications of shorter optimization time horizons in conjunction with a
variable and intermittent supply base will thus be investigated from the supply
perspective in Chapter 5.

4.4 Discussion and Summary

Sections 4.2 and 4.3 investigated the potential of individual EV demand flexibil-
ity under similar assumptions but with slightly different input parameters. Both
analyses incorporate the individual optimization perspective of an EV-owner
that receives charging signals or in particular a dynamic price on a hourly basis
and reacts in such a way as to achieve the given objective. The most prominent
is the individual minimization of electricity costs for the resulting charging de-
mand. Section 4.2 first focuses on an individual comparison of charging strate-
gies that either aim to increase the average share of wind-power utilized for
charging, minimize the system impact by charging during times of low system
load (and thus load factor), or follow the already mentioned economic rationale
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of individual cost minimization.
Section 4.3 in turn focuses more on the individual economic implications if

battery degradation costs are accounted for and additional Vehicle-to-Grid op-
eration strategy is performed by the sociodemographic groups with the most
contrasting driving patterns and thus charging demand requirements, being em-
ployees and retirees. The results show in both cases that a smart and in particu-
lar cost minimizing strategy can help to reduce individual electricity costs by at
least 32%, with a potential of up to 77% as compared to the uncoordinated AFAP
strategy. Other objectives like the increased utilization of wind-power can also
be fulfilled effectively. A more detailed discussion and comparison in the next
paragraphs supports the notion that smart charging is indeed worthwhile.

Renewable Energy Utilization and Grid Implications

The charging strategies in Section 4.2 encompass four coordinated charging ap-
proaches. The strategies aim to maximize the average wind-share they use for
charging on a system scale (WL), minimize the system load factor during their
charging time (LF), minimize their system impact while reacting to the availabil-
ity of wind-power (Residual) and minimize their individual costs (EEX), respec-
tively. The last economically-centered strategy is also evaluated in Section 4.3
with the extension to sell energy back to the power grid, while still fulfilling mo-
bility requirements. The individual evaluation shows that the WL strategy can
double the relative wind share that is employed for charging for employees and
retirees the like. It can increase the adopted share from 7.43% to 14.72% for em-
ployees and from 7.51% to 15.57% for retirees. The costs it incurs with around
4.31 EUR per week for employees (2.25 EUR for retirees) is only about half the
weekly costs of AFAP, but nearly double as much than in the cost optimal EEX
strategy. The additional wind share thus comes at a higher price under these
conditions. As the share of renewable power increases continuously in Germany,
so will the average share; but the evaluation shows that additional coordination
can substantially contribute to make EVs more sustainable on an operative basis.
The individual reaction of rational and price responsive EV-owners can also be
detrimental to distribution grid equipment if only global system capacity con-
straints are considered. Nevertheless, the evaluation of the different charging
strategies allows for a good assessment of the effect of different coordination
objectives.

The LF and Residual charging strategy address the technological constraints
on a system level. They both aim to charge at times when system load is low.
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This leads to a concentration of charging during the nighttime and in particular
on Sunday mornings, since this is typically the time with the lowest load in the
system in regular weeks. LF charging thus resembles more a classical night-
charging strategy, while it takes advantage of the demand flexibility of EVs and
does not need to charge every night. The Residual strategy in turn distributes its
charging times predominantly to times when the residual load is low. This can
either be the case at times of high wind-power feed-in and specifically addresses
situations of low load and high wind-power generation which can be critical for
the power grid. Since the share of volatile generators is increasing, this strategy
provides a possibility to utilize the demand flexibility of EVs to take advantage
of possible excess wind generation while helping to stabilize the overall system.
The overall effect of the Residual strategy though is still essentially coined by
the regional distribution and in particular the number of responsive EVs in the
power system.

With respect to their wind power utilization LF and Residual are quite different.
LF only achieves an average share of 9.92% (10.50%) for employees (retirees).
Residual in turn achieves 11.89% (12.13%) for employees (retirees), a remarkably
higher value even though the costs per week (and per kWh) are nearly similar
with 3.04 (0.08) for LF and 3.03 (0.08) for Residual. This individual evaluation
thus shows that the Residual strategy is a promising alternative. It considers the
overall system load and at the same time the availability of renewable electricity
sources at a lower cost level than the wind centered charging strategy. In order
to account for the interrelation with the V2G strategy, the cost minimizing EEX
strategy will be discussed in the next paragraph.

The utilization of empirical driving profiles enables a realistic assessment of
the charging demand requirements resulting in a specific area, which can be
helpful for a more technologically focused analysis. The main differences be-
tween employees and retirees consist in their differing energy requirements, but
also in their availability at the home charging location. This can have interesting
implications for charging strategies that seek to take advantage of the respective
demand flexibility. The analyses in this chapter only assumed charging at the
home location of the EV, the resulting uncoordinated load patterns show that
the charging of retirees is more distributed over the day while it is more concen-
trated in the evening hours for employees (cf. Figure 4.13). This demonstrates
that while retirees have a higher charging time flexibility and a higher potential
availability at grid connection points, employees have a higher demand flexibil-
ity since they need more electricity for their driving. Employees are thus a more
constantly available flexible load, which at times of connections does not have
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the temporal flexibility as retirees have. Chapter 5 further investigates this rela-
tion with respect to the adoption of renewable energy. Further, more abstracting
analyses with respect to flexibility and its formalization can be found in Stroehle
et al. (2012).

Individual Economic Evaluation and Implications of V2G

The individual economic evaluation that is undertaken in the previous section
shows that, given a dynamic hourly pricing scheme that maps the price volatility
of the wholesale market, the ability to respond can be very beneficial for every
EV-owner. The main assumptions here are that such kind of rates are available to
end customers and that the bulk of the remaining demand stays inflexible such
that no significant demand shifting occurs that would affect the price formation
process. For the first years of EV availability the share of EVs on total load in
Germany will remain negligible, which supports this economic aspect of the cost
minimizing strategies.

The main input data and the analysis frame (i.e. the driving profiles and the
EV specifications) are similar for Section 4.2 and 4.3. The price input data is
also similar (EEX data from 2007), but is scaled differently. This enables only a
general comparison and shows the relevance of valid assumptions about the de-
velopment of the respective market parameters. Both analyses followed the idea
that EV-owners as private entities will pay the average household rate for the
respective year. The first implementation in Section 4.2 linearly scales the EEX
intraday price to a level of 20.01 ct/kWh. This calculation implicitly assumes
that taxes and regulated fees also scale with the same rate as the generation price
does. Since in reality the electricity price for end-customers is still highly deter-
mined by regulated price components, the analysis in Section 4.3 only assumes
that the wholesale component is volatile, and adds a fixed amount for fees and
energy taxes. In addition the VAT is omitted in the second analysis in order to al-
low for a consistent cost comparison in the case of the V2G strategy. Overall the
resulting individual cost values can not be simply compared but nevertheless an
assessment of relative savings and general tendencies can be performed.

The overall average cost level for employees in the first analysis is 2.32 EUR per
week and 0.067 EUR per kWh. In the second analysis the respective cost for no
battery degradation (the corresponding case) are 3.99 EUR per week and 0.138
EUR per kWh. The respective costs for retirees are 1.14 EUR per week (0.062 EUR
per kWh) and 1.88 EUR per week (0.138 EUR per kWh). Since the charging times
are nearly the same the resulting deviation between the two approaches mainly
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Table 4.10: Storage cost comparison between simple linear cost based and endogenously
defined values in EUR per week.

11 kW Ref. Case Employees Retirees
Storage Costs (EUR/kWh) AFAP Smart V2G AFAP Smart V2G
Endogenous (0.1/0.01) 3.47 2.43 3.05 2.25 1.16 2.74
Endogenous (0.2/0.02) 6.94 5.50 7.49 4.50 2.29 4.44
Exogenous Linear (0.1) 3.44 - 1.83 -
Exogenous Linear (0.2) 6.89 - 3.65 -

comes from the different scaling approach. For employees, the difference in the
average costs per week and per kWh is 71.92% and more than 100% respectively.
This shows the high sensitivity of the approach with respect to the variable price
inputs. The first analysis is more likely to overemphasize the variation of the
wholesale power price. Since the scaling encompassed all components of the
power price, this first approach is prone of overestimating the spreads that are
occurring on the end consumer level. The second analysis in turn is more accu-
rate in this sense, as the volatile components are smaller which in turn leads to a
higher average price level (as can be seen in the respective kWh price), but a less
accentuated peak price level. This can be observed as the AFAP price level in
the second case is lower at 6.00 EUR per week (employees) as compared to 8.42
EUR per week. Taken together it can be observed that the approach from Section
4.3 more accurately represents the current situation in the German power mar-
ket, while the approach in Section 4.2 enables a general characterization of the
different charging strategies.

Storage cost considerations are very important when it comes to the assess-
ment of charging strategies. In particular when a more active role of EVs in a
V2G operation strategy is pursued these parameters are the main determinants
of economic potentials. Storage costs were not considered in the initial anal-
ysis, but a simplified linear cost assumption supported the assessment of the
operative savings achieved by the different strategies in the correct context. The
second analysis in turn made the storage cost an endogenous part of the mod-
eling approach. The model can thus account for battery degradation resulting
from energy throughput (similar to, but not equal to the previous DoD consid-
erations) and charging power related degradation. These assumptions follows
evidence that higher charging powers are also detrimental to battery life time.

Table 4.10 provides a comparison between the basic linear storage cost as-
sumptions from Section 4.2 and the endogenously defined storage costs for sim-
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ilar cost parameters from 4.3. It can be seen that for the reference 11 kW charging
power case the linear storage costs and the endogenous cost are quite similar for
AFAP with 3.44 EUR per Week as compared to 3.47 EUR per week (0.1 EUR per
kWh energy related storage costs for employees). When the values are compared
for Smart Charging it can be seen that the values differ substantially. To a small
extent this is due to the assumptions about the terminal weekly SOC values of
the vehicles, which lead to an overall slightly lower energy throughput value for
Smart Charging. As the driving profiles and the consumption values are simi-
lar, this example shows that endogenously modeled battery costs can improve
the robustness of the economic results and enable a more reliable assessment
of the individual value of charging coordination.8 For retirees the cost devia-
tions between the two cost modeling approaches is substantial, which shows
that linear approximations, even when based on similar assumptions about en-
ergy throughput, are only a starting point for an accurate economic assessment
of storage costs for EVs.

In conclusion it can be said that storage costs are clearly driven by the re-
spective charging strategy of the EV, in particular it can be observed that higher
charging powers enable EV-owners to take advantage of the low price time in-
tervals. On the other hand higher charging powers are not always necessary to
fully take advantage of the economically beneficial time slots. This is due to the
fact that accurate trip and thus energy requirement information enable the EV
to shift its charging times in such a way that battery degradation costs are mini-
mized while mobility requirements are met. Following a V2G strategy based on
the wholesale market prices reduces the electricity costs or, in the case of retirees
even generates profits, if storage costs are lower than 0.05 EUR per kWh. Since
the assumptions under which the respective scenarios were investigated shape
the nature of the results, the main shortcomings and possible further extensions
of the analyses are discussed in the next paragraph.

Critique and Further Research Opportunities

Both analyses presented in this chapter can be regarded as an upper case bench-
mark with respect to the objectives of the different charging strategies. This is
mainly due to the assumption that trip, price, and renewable generation infor-
mation are available one week in advance. The incorporation of shorter opti-

8Please observe that for lower charging powers and in the case of the V2G strategy storage costs
also vary in the case of endogenous storage costs since the costs also depend on the charging
power applied by the vehicle.
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mization horizons is likely to deliver results that do not attain the same cost re-
duction or renewable energy utilization share as presented and discussed above.
On the other hand one must also consider that wholesale market prices which
are used above are well known and fixed in a day-ahead process in the German
electricity system. In addition many trip patterns, for instance of employees are
also fairly regular (e.g. trips to work and back), which suggests that the main
tendencies with respect to the individual economic implications or renewable
energy adoption rates are still valid. In Chapter 5 a shorter optimization hori-
zon will be investigated with a focus on its effect on the integration potential of
renewable energy in the charging demand of similar fleets as scrutinized above.

The demand patterns presented above in Section 4.2 can be problematic for the
power grid infrastructure on the distribution level if the EVs are concentrated in
a particular region. As was shown in Section 4.3 the reduction of individual
charging power can be a solution to this problem which has the benefit that it
can reduce power-related battery degradation costs. Information about trip re-
quirements is thus key to enable the EV to determine a charging schedule that
reduces grid impact and increases battery life. Further work could employ ad-
ditional local grid capacity signals in order to allow for an economically efficient
allocation of resources in this context. A possible approach is presented in Flath
et al. (2013).

The following chapter will address the supply side perspective of EV charg-
ing coordination and further elaborate on the role of the EV aggregator and his
possible optimization objectives.



Chapter 5

Supply Side Assessment

5.1 Introduction

After the individual evaluation of EV demand side flexibility and the resulting
individual economic implications in Chapter 4, this chapter will address the
perspective of the EV aggregator which has to supply his customer basis under
different scenario assumptions. The aggregator needs to take decisions about
which generation capacity from fluctuating renewable sources is needed in
order to guarantee a sufficient supply of his customers. In order to satisfy
the demand of his customers the aggregator can contract generators and in
particular renewable generators with variable output (cf. Figure 5.1). In order
to directly utilize the electricity delivered by his generators, he coordinates
the flexible demand of the EVs in such a way that the net deviation between
EV load and renewable generation is minimized. As the renewable generators
are contracted for longer time periods (e.g., one year) there are times in which
driving energy demand can not be postponed and thus requires a conventional
generator as a back up solution in order to guarantee the mobility of the
EV-owner.

The following sections will thus assess the overall ability of EVs in a given
fleet scenario to directly utilize and thus balance the fluctuating renewable gen-
eration from wind and PV. In Section 5.2 a direct load control approach will be
described which enables a general assessment of the flexibility of the given EV
fleets. As this direct load control approach is not likely to be accepted by a major-
ity of EV-owners, a decentralized, price based charging coordination mechanism
is evaluated in a comparable setting with respect to the renewable energy adop-
tion rates in Section 5.3. Other relevant impact factors that affect the charging
time and spatial flexibility for charging such as charging powers and locations,
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Figure 5.1: Analysis scenario overview for the optimal benchmark case.

different generation patterns, and combinations of fluctuating sources as well
as the driving profile properties are investigated in both scenarios. The follow-
ing sections thus expand the economic focus of Chapter 4 by a predominantly
technical evaluation of EV demand flexibility.

5.2 Renewable Energy Integration: Optimum
Benchmark Model

In order to assess the potential of EVs to adapt their charging demand accord-
ing to a given variable and intermittent generation source a scheduling based
centralized optimization approach is investigated in this section. This approach
enables a basic comparison between the decentralized decisions performed in
Section 4 and the theoretical optimum benchmark with respect to the direct uti-
lization potential of renewable energy.

The scenario analyzed is based on similar data sets and assumptions as
in the previous sections, and also emphasizes the supply side perspective of
an EV-Fleet-Aggregator in charge of several hundred EVs and physical gen-
eration capacities. In this context the following research questions are addressed:

RQ 3 - Scheduling for Renewable Energy Utilization Which share of renewable
energy can be directly utilized by a fleet of EVs being scheduled according to differ-
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ent renewable generation patterns in comparison to an uncoordinated charging strategy?

RQ 3.1 - Source, Charging Power, Location Sensitivity: Which effect do different
portfolios of renewable sources, in particular wind and solar, charging powers and
locations and driving profile characteristics have on the utilization ratio?

RQ 3.2- Shorter Optimization Horizon: What is the impact of a shorter optimiza-
tion horizon with respect to the driving profile energy requirements and the utilization
ratio of renewable energy?

The analysis is considering an EV fleet of several hundred EVs with the same
weekly empirical driving profiles of employees and retired persons employed in
Chapter 4. In addition, it is assumed that the vehicles can be controlled in their
charging behavior by an aggregator which covers their demand predominately
from intermittent sources (i.e. wind and solar) and a conventional generator
serving as a back-up to satisfy driving energy needs that can not be delayed. The
aggregator has the objective to minimize the utilization of conventional genera-
tion in order to reduce his variable costs for energy provision. At the same time
he is directly balancing intermittent resources which can contribute to a higher
system stability and reduce CO2 emissions.

The model employed in this section partly builds on joint work from Gottwalt
et al. (2013), but is evaluated in different settings and under consideration of
additional parameters. The results obtained do not consider uncertainty about
intermittent generation or trip occurrences. They represent a best case bench-
mark and thus a potential analysis for the employment of EV charging demand
flexibility to map intermittent generation patterns. By reducing the optimization
horizon to a daily schedule determination, the effect of less available informa-
tion will also be addressed to assess the impact of more accurate information for
longer time horizons.

Approaches addressing the direct control of EV charging with respect to the
availability of intermittent resources have also been investigated by (Markel
et al., 2009) and (Richstein et al., 2012). They either employ a direct renewable
energy charging signal or a variable pricing scheme based on renewable energy
availability. The renewable charging signal enables vehicles to reduce ramping
requirements for renewable generation balancing, whereas the uniform pricing
signal can lead to load concentrations but still allows for a higher adoption rate
than in the uncoordinated case (cf. Section 5.3). Other scheduling based ap-
proaches with deferrable loads like thermostats show good utilization patterns
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of intermittent sources on a daily basis (Subramanian et al., 2012), but do not
consider the special requirements of EVs. These analyses mostly demonstrate
the general feasibility of charging coordination or assess decentralized charging
decisions, but do not evaluate the ability of a fleet to balance a given generation
profile. This investigation will be performed in the following paragraphs.

5.2.1 Model Input

In order to assess the potential of an EV fleet to adapt its demand according to
an available renewable power source a centralized optimization approach, map-
ping the decision problem of an EV aggregator, is employed. For the analysis
it is assumed that the generation patterns and the individual trips are known
for the period of the optimization horizon. This makes the following model a
benchmark assessment of the charging flexibility of an EV fleet in the given con-
figuration. The optimization objective of the aggregator is to minimize the usage
of conventional generation capacity by adapting EV charging to the given gen-
eration, but always under the condition that all trips are fulfilled, and hence the
mobility needs of the drivers met. The technical implementation of the model
builds on Java and the IBM ILOG CPLEX 12.4 optimization suite.

Driving Patterns

The driving behavior for the benchmark assessment is based on the previously
employed profiles and sociodemographic groups, in particular the behavior of
full-time employees and retired persons is modeled. The data set builds on the
German Mobility Panel (MOP), as presented in Chapter 3. The profiles have
a time resolution of 15 minutes which is also chosen as the time interval for
the optimization process. The profiles have a time-horizon of one week. For
the analysis the same most recent 1000 driving profiles for each group as in the
analysis in Chapter 4 are utilized. Due to range restrictions of the specified EV
some of the profiles can not be fulfilled. In addition, the restriction of charging
only at the home location with the standard connection power of 3.6 kW also
reduces the number of viable profiles. This represents a conservative approach
to the assumption of charging infrastructure availability and will be addressed
in more detail in the result section. When a profile is referred to as viable, this
means that the profile can be fulfilled when charging takes place at the specified
power level without delay after arriving at a location. This charging strategy
thus corresponds to AFAP as introduced earlier. Any other controlled charging
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Figure 5.2: Weekly trip variation for employees and retired driving profiles.

strategy will likely encompass some delays, and will thus not charge the vehicle
as fast, but instead will employ the flexibility for the given objective.

Because of the restrictions in battery capacity and charging power the follow-
ing analyses are conducted with a sample of 846 vehicles of employees and 946
vehicles for retired persons in order to have the same data set in every scenario
for comparison. This already shows that a vehicle with 31.5 kWh, even though
it has quite a large battery can not cover all of the driving demand that occurs.
Nevertheless, it can be observed that for employees still 846 out of 1000 initial
profiles are viable, showing that for most purposes EVs are suitable. The di-
rect comparison between retirees and employees shows that employees have
very distinct driving needs, in particular on weekdays where most trips occur to
work and back in the morning and in the evening respectively. Profiles of retired
persons in turn have different patterns and beside their overall lower driving
distance during a week also have their travel maxima during the day (cf. Sec-
tion 4.3.2).

Figure 5.2 shows the range of variation of daily driving distances in km for
both profile groups. It can be observed that the median of the daily driving dis-
tances of employees is 20.0 km on average over the whole week. On weekdays
the median is 28.0 km whereas on weekends the median is only 6.0 km. This
is a distinct drop in driving distance on the weekend. The mean values for em-
ployees are similar in their relation, on weekdays the mean distance per day is
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36.8 km whereas on the weekend the mean distance is 20.5 km. There is a con-
siderable amount of variation in the daily driving requirements for employees
but 75% of the profiles travel less than 54.0 km a day demonstrating that EVs are
very well applicable even to more demanding mobility requirements.

For the retired profile group similar general patterns can be observed for
weekdays and weekends. The travel distances are considerably lower. The me-
dian for weekdays is only 8.05 km whereas the mean travel distance per week-
day is 17.8 km. On weekends the variation is even higher, the median is 1.8 km
and the mean 15.7 km. The 75% quantile with a value of only 22.0 km indicates,
that the distance requirements of retired persons are less demanding than the
ones of employees.

EV Specification

The EV specification builds on the values already presented in Section 4. The
specifications are chosen such that they accurately represent current and near
future vehicle technology. In particular the specifications similar to the BMW
Mini E are (cf. Table 4.1) employed to characterize a generic EV. The usable bat-
tery capacity is 31.5 kWh and the consumption per km is 0.15 kWh, as specified
in Table 5.3. This also enables a better comparison of the results obtained with
respect to the required charging times and the applicability to the given empir-
ical driving profiles. The charging powers that are assumed correspond to the
basic capabilities of nearly every German household which allow charging in
the range between 3.6 - 11 kW, following the specifications for EU Standard and
EU Semi-Fast given in Table 2.6.

Generation Data

The renewable generation data was obtained from the 50 Hertz TSO in 15 minute
resolution for the respective regulation zone consisting of eastern Germany and
the city of Hamburg. This data was chosen in order to represent the already high
share of volatile generation as compared to total load. For the utilized data set
of the complete year of 2009 this means that the average minimum load of 4 -
5 GW during the night, could already be surpassed by wind generation with a
generation maximum of 9 GW, (50-Hertz, 2010). The installed wind generation
capacity of the 50 Hertz TSO-zone was 10,571 MW at the end of 2009, whereas
photovoltaic (PV) generation only had an installed capacity of 975.1 MW. These
two intermittent renewable energy sources represent the largest share of renew-
able generation capacity in Germany, are highly variable, and only to a minor
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Figure 5.3: Monthly variation of the employed generation profiles for wind and PV in
2009.

Table 5.1: Summary statistics of the employed generation data.
Gen. Source Min. 1st Qu. Median Mean CV 3rd Qu. Max.

Wind [MW] 1.2 555.4 1326.0 1789.0 0.91 2431.0 9081.0
Percent of Max. [%] 0.01 6.12 14.60 19.70 - 26.77
Solar [MW] 1.0 22.8 80.3 111.5 0.92 182.8 460.5
Percent of Max. [%] 0.22 4.95 17.44 24.21 - 39.70

extent controllable. Therefore, as argued before it is important to employ avail-
able demand flexibility for balancing purposes. Figure 5.3 shows the range of
monthly generation variation for the complete year of 2009 for wind and solar
generation.

It can be observed that wind generation has a typical higher overall produc-
tion level in the winter and particular late autumn months. The variation level
of wind generation is higher than the one of PV, even in relative terms. Table
5.1 presents the summary statistics of the generation time series for 2009. The
minimal values are similarly low for both generation technologies, nevertheless,
the difference between the generation maximum and the quantile and mean val-
ues is considerably higher for wind power than for PV. In particular, PV has a
mean generation value (for the times with generation during the day) that is 4.13
times lower than the generation maximum. Both generation technologies show
seasonal generation characteristics, e.g., wind is more prevalent in the winter
and autumn months whereas PV has a clear overall maximum in the summer
months.

Figure 5.4 shows weekly generation patterns of the data employed for the
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Figure 5.4: Exemplary weekly generation profiles for wind (left) and solar (right) gener-
ation for winter, summer and intermediate weeks.

analysis for winter, summer and intermediate periods. PV has as a clear diurnal
cycle which makes it more predictable (on a large scale) than wind power gen-
eration, which in turn has no such clear cycles. The example of week 4 at the top
of Figure 5.4 indicates that there can be periods in which wind and PV both do
not generate sufficient energy for the projected energy needs of EVs for several
consecutive days. Other examples in turn show that wind can be to some extent
complementary to PV generation as in the case of week 37, where the generation
peak occurs during a dip in the PV generation output. In order to still guar-
antee that the mobility requirements of the EV-owners are met, an additional
controllable generator with minimum run time requirements is further assumed
to cover this mandatory demand.

The renewable generation data presented above is rescaled in this analysis in
order to map a hypothetical plant which is producing exactly as much electric-
ity over the whole year as required by the respective EV fleet. This way the
volatile characteristics of intermittent generation are represented by empirical
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Table 5.2: Benchmark Model Parameters
Parameter Description Symbol Unit/Domain
Charge amount of vehicle v in time slot [t− 1, t] ϕb (kWh)
Conventional generation in time slot [t− 1, t] gt,C (kWh)
Maximum generation in time slot [t− 1, t] gt,C (kWh)
Renewable generation in time slot [t− 1, t] gt,I (kWh)
Number of time slots T 15 min.
Number of vehicles V #
Consumption of vehicle v in time slot [t− 1, t] dt,v (kWh)
Battery state of vehicle v at time t SOCt,v (kWh)
Usable capacity of the storage device C (kWh)
Maximum charge amount in one time slot ϕ (kWh)
Charging efficiency ηc (%)
Charging availability vehicle v at time t zt,v {0,1}
b please observe that in contrast to sections 4.2 and 5.3 ϕ is not only in the range [0..1] but

characterizes an energy amount in kWh.

inputs and can be balanced by the coordinated demand of flexible EVs. The
formal scheduling model that is important for the EV-fleet of an aggregator (cf.
section 3.2) is therefore described in the next section.

5.2.2 Formal Description

The formal model in this section addresses the goal of an EV aggregator who
seeks to minimize the variable costs for provision of electricity to a given fleet
of EVs. This implies that for a given renewable generation profile the demand
of the EVs needs to be distributed in such a way that the deviation between
EV demand and renewable generation is minimized. In cases where renew-
able generation is not sufficient to fulfill the mobility energy requirements, a
conventional generator with a minimum run time of one hour is employed to
cover this demand. The time resolution of the simulation is 15 minutes and thus
similar to the analyses in Section 4 and the resolution of the generation data.
Further system dynamics within the 15 minute interval are not considered, all
individual charging actions are uniformly distributed over this time frame.

The charging control performed by the aggregator can be formulated as a
scheduling model that is minimizing the use of the conventional generation (cf.
Equation 5.1), while all driving energy requirements and technical constraints
of the vehicles and the generator are met. The model can be described as a
mixed integer linear program with knowledge of future renewable generation
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and driving requirements over the time horizon:

min
ϕ,SOC,gC,ramp,isOn

∑
t∈[1..T]

gt,C (5.1)

subject to the following constraints (t ∈ [1..T],v ∈ [1..V]):

gt,I + gt,C − ∑
v∈[1..V]

ϕt,v

ηc ≥ 0 (5.2)

SOCt,v = SOCt−1,v + ϕt,v − dt,v (5.3)

0≤ ϕt,v ≤ zt,v · ϕ (5.4)

0≤ SOCt,v ≤ C (5.5)

0.3 · gC · isOnt ≤ gt,C ≤ gC · isOnt (5.6)

isOnt ≤ isOnt−1 + rampt (5.7)

isOnt+i ≥ rampt ∀ i ∈ {1,2,3} (5.8)

isOn1 ≤ ramp1 (5.9)

SOCt,v, gt,C, ϕt,v ≥ 0 (5.10)

zt,rampt, isOnt ∈ {0,1} (5.11)

The continuous decision variables are ϕ for the amount of energy charged in a
time slot and gC for the energy that needs to be delivered by conventional gener-
ation. The integer decision variables are ramp, which maps the ramping decision
of the conventional generator and isOn for the description of the generator status
in each time slot.

Constraint 5.2 ensures that generation (renewable and conventional) must
cover the demand from EVs. Constraint 5.3 represents the fact that the SOC
of each EV is determined by the energy level from the previous time step, the
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additional charging amount in the current period and the demand in this pe-
riod (cf. parameter Table 5.2). Constraint 5.4 limits the charge amount per time
slot according to the maximum amount allowed by the physical line limits. The
next constraint (5.6) specifies that the conventional generation must be switched
on to be operated at least at 30% of nameplate capacity and is not allowed to
surpass this capacity, also implicitly determined by a maximum energy amount
that can be generated per time slot. Constraint 5.5 maps the maximum capac-
ity constraint for the individual battery. Constraints 5.7 and 5.8 account for the
requirement of the conventional generation which has to be switched on in the
last time slot if it is running in the current time slot. Otherwise it needs to be
ramped, to be on in this time slot. Constraint 5.8 assures that the generator will
stay switched on for another three time slots after being ramped. Constraint 5.9
secures that the conventional generation needs to be ramped in the first time slot.
Finally constraints 5.10 and 5.11 account for the non-negativity and integrity re-
quirements of the respective variables. The model presented in this section is
thus a mixed-integer linear optimization problem that solves the variable cost
minimization problem, given the empirical inputs specified above.

5.2.3 Results

The model was implemented and applied for 51 weeks of 2009 based on the
specifications presented in Table 5.3 and the input data described above. In par-
ticular, the base case scenario is the simulation of 876 EVs with driving profiles
of employees and 946 EVs with profiles of retired people respectively. These
numbers represent the number of feasible profiles from the 1000 most recent
driving profiles of the selected sociodemographic groups from the German Mo-
bility panel (cf. Section 5.2.1). The standard charging power of 11 kW and (only)
the home location are selected for the initial assessment with respect to the adop-
tion capabilities for wind power of the vehicles. For employees an initial energy
level of the battery of 20 kWh out of 31.5 kWh capacity and for the retired per-
sons 10 kWh from 31.5 kWh capacity were employed for the analysis. These
levels were selected to allow for a constant and more comparable number of ve-
hicles to remain part of the benchmark solution when parameters were adapted
in the sensitivity analysis performed below. In addition, these starting values
enable to charge substantial energy amounts also at the beginning of every op-
timization period and thus avoid simulation artifacts while ensuring continuity
over the weeks. As mentioned, the overall generation (wind, wind & solar, or
only solar) is scaled to fit the overall demand over the entire analysis period,
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which is 51 weeks of 2009. This corresponds to the scenario of an aggregator
which contracts one particular power plant for delivery over the period under
investigation. The next paragraphs will first characterize the uncontrolled charg-
ing demand of the specified fleets and will then present the result obtained from
coordinated charging.

Table 5.3: Base case specification of the weekly optimization problem.
Parameter Base Case Unit
Number of EVs - Employees 876 vehicles
Number of EVs - Retired 946 vehicles
Number of Time Slots 672 15-min. intervals
Battery Capacity 31.5 (kWh)
Charging Power 11 (kW)
Consumption 0.15 (kWh/km)
Initial SOC = End SOC 20/15/10a (kWh)
Scale Renewable Generation 100 % of vehicle demand
Conventional Generation Capacity 240 (kW)
Charging Possible Home location
Generation Source Wind power
a The kWh values are different in cases with differing optimization horizons.

Uncoordinated Charging

Uncoordinated or as previously mentioned AFAP charging, serves as a refer-
ence case for assessing the impacts of optimal smart charging. AFAP charging
only depends on the availability of charging infrastructure at a particular loca-
tion, the driving profile and its travel distances. In the following analysis the
charging locations home, work and leisure will be considered in order to map
different levels of available charging opportunities. The base case specified in
Table 5.3 encompasses only the most conservative assumption of charging at the
home location of the individual EV. Further it is assumed that the EV is always
plugged in at the time of arrival. In order to assess the general charging patterns
resulting from the driving energy demand, the battery of the EVs is assumed to
be fully charged in the AFAP case, as otherwise all vehicles would charge to the
maximum capacity in the first time slots of the week.

Figure 5.5 shows the charging load resulting from AFAP for employees and
retirees for the different charging locations for one week for the 11 kW case. It can
be observed that employees have very distinct load peaks when returning back
to their home in the afternoon and evening hours. During this time charging
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Figure 5.5: Charging load resulting from AFAP for employees and retirees with charging
infrastructure at the home, work and leisure locations for the 11 kW base case with wind
generation of week 4.

demand is highly concentrated. For retirees in contrast the charging demand is
lower in absolute and also in relative terms. The trips of this group and thus the
charging demand is more distributed during the day which leads to lower, and
less distinguished peaks. Additional charging opportunities for employees at
work redistribute their charging demand to two main, but overall lower, peaks
which also has an impact on their potential ability to charge more renewable
electricity from PV. Introducing charging opportunities at leisure locations does
not notably change the load characteristics of both groups as compared to the
home + work case. Interestingly it can be observed that a part of the retirees still
have work trips in their driving profile.

With respect to the direct utilization potential of renewable energy through
AFAP it can be observed, that the demand can fit by chance to the generation
from volatile sources (wind power in Figure 5.5), and also depends on the avail-
ability of charging infrastructure at the respective location of the EV. Following
the results described in more detail in the next section, AFAP can attain direct
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utilization rates of renewable energy between 41.24 - 45.37% over the analysis
time horizon for employees in the depicted wind (only) case. Retirees in turn
have a slightly higher utilization potential in the base case ranging from 49.27 -
52.86%. These values vary considerably with respect to the combination of re-
newable energy source employed for charging and the availability of charging
opportunities.

Optimal Smart Charging

Optimal smart charging refers to the charging strategy that results from the solu-
tions of the optimization problem formulated above in Section 5.2.2. This strat-
egy results in a considerable increase in the share of utilized renewable energy
in nearly all analyzed cases. For the base case of 11 kW home only charging with
wind power as the only source, it can be observed that the yearly RES adoption
share increases from 41.24% for AFAP to 84.00% for the optimal strategy for em-
ployees. For retirees one can see a similar result as the share of used renewable
energy from wind increases from 49.27% for AFAP to 79.70% in the optimal case.

Figure 5.6 depicts the used share of renewable energy per week for AFAP
and optimal charging for employees (left) and retirees (right) for every week
of the analysis time frame of 51 weeks. In addition to the two sociodemographic
groups also the different generation combinations are displayed. In particular an
even mixture of wind and PV (in terms of energy provided over the whole year)
and a PV only generator output are evaluated with respect to their utilization
shares by the EVs.

For employees which use wind power for charging one can observe that there
is a considerable number of weeks in which the complete driving energy de-
mand is covered by this intermittent source. In week 26 in turn it can be seen
that when there is shortage of supply at least 30% of the weekly demand is still
covered from wind power in the optimal case. Retirees exhibit a similar gen-
eral adoption pattern. For AFAP the general adoption level is higher which is
mainly due to the longer availability times at the charging location and the more
distributed demand pattern. For the second half of the year retirees show less
explicit peaks in their wind power adoption per week as compared to employ-
ees. This can be explained by a lower overall wind production which in the first
line leads to more conventional generation that is employed for charging. This
in turn leads to a higher share of driving energy demand that is being covered by
conventional generation due to the minimum run time constraints even though
some parts could have been satisfied by wind power. Figure 5.7 (top) shows
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Figure 5.6: Renewable energy adoption share for Employees and Retirees for AFAP and
the weekly optimization strategy for wind power (top), wind and PV (middle) and PV
(bottom) for the 11 kW home charging base case.

the distinct conventional generation blocks that are supplemented in the respec-
tive week to fulfill the driving energy requirements. Please observe that the two
groups are evaluated individually which in this case means that the generation
is scaled to the overall yearly demand of the respective group.

When wind power and PV generation are evenly mixed for supply, the over-
all utilization of renewable energy is stabilized on a high level, with a yearly
average of 85.95% of driving energy demand being covered for employees and
83.42% for retirees (cf. Figure 5.6). The AFAP values in this case are lower for
employees (36.84%) and higher for retirees (54.88%) than in the wind power only
case (cf. Table 5.4). The lower value for employees is due to the relative share
of generation that now comes from PV at midday, a time when the employees
are mostly not available to charge. The retirees in turn profit from this kind of
generation and thus increase their share of utilized renewable energy in the un-
controlled case.

When only PV is used as a generation source, it can be observed that the value
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Figure 5.7: Optimal smart charging load for Employees and Retirees in the weekly opti-
mization vs. generation from wind power (top), wind and PV (middle) and PV (bottom)
for the 11 kW home charging base case.

of the optimization is higher for employees which can use more than 80% of PV
generation during the weeks with a more ample production pattern for the time
from spring to autumn in the analysis time frame. The average utilization share
over the complete period is still lower with 65.98% than in the wind power case.
This is mainly due to the fact that employees are not at home when the daily
production maximum occurs. Figure 5.7 depicts the smart load and generation
patterns for a summer week (week 28, cf. generation patterns from Figure 5.4)
and shows that employees predominantly charge in the shoulder times of PV
generation but take full advantage of PV generation on the weekend. Retirees in
turn can take advantage of PV generation every day and thus achieve a higher
overall yearly value of 75.79% of their demand that is being covered. In the
displayed week the conventional generation is not needed at all.
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Table 5.4: Overview of RES average adoption shares for employees for the weekly op-
timization horizon depending on charging power, location and generation source com-
pared to the corresponding AFAP values.

Employees Home Home Home Home Home Home
Weekly + Work + Work + Work + Work

+ Leisure + Leisure
20 kWh AFAP Smart
3.6 kW
Wind 45.37% 52.45% 50.33% 83.70% 84.38% 84.38%
Wind + PV 37.37% 51.97% 55.10% 83.33% 86.96% 86.96%
PV 19.37% 35.20% 41.47% 61.30% 68.45%a 69.26%
7.2 kW
Wind 42.22% 49.99% 48.73% 83.95% 84.36% 84.39%
Wind + PV 36.81% 49.93% 53.64% 85.38% 85.38% 86.96%
PV 21.54% 34.85% 41.33% 64.54% 72.60% 72.88%
11 kW
Wind 41.24% 49.13% 48.20% 84.00% 84.40% 84.40%
Wind + PV 36.84% 49.34% 53.11% 85.98% 86.96% 86.96%
PV 22.60% 34.83% 41.03% 65.98% 72.75% 72.92%
a Please observe that this value was only obtained after the optimality level of the optimization

was reduced to 90% as otherwise no valid solution was obtained with the available computa-
tional resources.

Sensitivity Analysis

Important factors for the ability to use renewable generation have been altered
in the analysis in order to determine their impact on the results obtained. Be-
sides the observations described above, the impact of varying charging powers,
more charging locations the particular driving profile characteristics and the op-
timization horizon are discussed in this section.

For both analyzed groups three common charging powers were considered
for the analysis. The charging powers range from 3.6 kW to 11 kW three phase
outlet that is employed for residential and other, i.e. public charging locations
in Germany. Table 5.4 and 5.5 provide an overview of the optimal and AFAP
average utilization shares for the mentioned charging powers. For the base case
and the optimal charging strategy no significant change in the average yearly
value can be observed for employees and retirees. For the AFAP base case one
can see that lower charging powers lead to a slightly better utilization rate of
wind power as the vehicles charge for longer time intervals which potentially
have a higher availability of renewable power. This observation is similar for all
charging locations.

In addition to the charging power, the provision of additional charging op-
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Table 5.5: Overview of RES average adoption shares for retirees for the weekly optimiza-
tion horizon depending on charging power, location and generation source compared to
the corresponding AFAP values.

Retired Home Home Home Home Home Home
Weekly + Work + Work + Work + Work

+ Leisure + Leisure
10 kWh AFAP Smart
3.6 kW
Wind 52.86% 53.22% 50.55% 79.69% 79.70% 79.71%
Wind + PV 55.75% 56.29% 64.22% 83.42% 83.42% 83.42%
PV 38.88% 39.34% 52.49% 63.19%b 64.91% 66.32%
7.2 kW
Wind 50.22% 50.66% 49.09% 79.70% 79.70% 79.71%
Wind + PV 55.04% 55.64% 64.12% 83.42% 83.42% 83.42%
PV 40.78% 41.01% 53.85% 67.11%b 72.57% 72.84%
11 kW
Wind 49.27% 49.71% 48.52% 79.70% 79.70% 79.71%
Wind + PV 54.88% 55.47% 63.79% 83.42% 83.42% 83.42%
PV 41.59% 41.83% 54.21% 68.12%b 72.68% 72.84%
b Please observe that these values were only obtained after the optimality level of the optimization

was reduced to 95% as otherwise no valid solution was obtained with the available computa-
tional resources.

portunities was also part of the performed analysis. The base case location
(home) is complemented by additional charging opportunities at the work lo-
cation, which is most relevant for employees, and by charging at leisure loca-
tions (e.g. restaurants). Together the charging opportunities cover most of the
currently envisioned locations for public and commercial charging infrastruc-
ture. Additional charging infrastructure at work locations only slightly increases
the utilized share of wind power and the mixed portfolio for employees. For
the PV only case the additional charging opportunity notably increases the uti-
lized share from 65.98% in the base case to 72.92% in the home + work + leisure
case. The number of charging locations is not as important for retirees, but has
a higher relevance for employees in particular when PV generation is to be em-
ployed for charging. The relevance of additional locations increases again if a
shorter optimization time horizon is considered, as more charging options in-
crease the intraday flexibility and optimization potential. This is now analyzed
in more depth in the following paragraphs.
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Impact of a Shorter Optimization Horizon

The reduction of the optimization horizon has a substantial impact on the re-
sults obtained for both groups. The look-ahead horizon of one week is mainly
determined by the documentation frame of the empirical driving profiles. This
look-ahead period for the optimization is now adapted to one day. For this time
frame the assumptions regarding the availability of information about trips and
generation profiles are equal to the weekly analysis. This means in particular
that during the day there is no insecurity about the driving events and the gen-
eration from renewable sources. This represents real life conditions only to a
certain extent, but already incorporates considerably less assumptions about the
information that would be needed for a complete week. In addition, the reduc-
tion to a daily optimization horizon is common for optimization problems that
employ the variable day-ahead prices from the respective wholesale markets as
one of their main economic inputs. The day-ahead optimization can thus better
account for the planing uncertainty with regard to trips and in particular with
respect to volatile renewable generation as the week-ahead optimization. Trips
are very likely to be known one day in advance, even though there is always a
probability for spontaneous mobility requirements. Generation forecasts are also
substantially better for shorter time horizons. The following results thus show
what particular impacts result from the reduction of the optimization horizon.

Figure 5.8 shows the share of renewable energy used by employees (left) and
retirees (right) in every week of the analysis time frame, again in comparison to
the AFAP strategy in the 11 kW home charging base case. It can be observed
that optimal charging increases the share of renewable energy utilized for every
one of the three generation portfolios. Nevertheless, there is a notable difference
between the daily- and weekly-optimization average values. In particular, the
mean utilized renewable energy share over the year in the wind generation case
is reduced from 84% to 62.78% (cf. Table 5.6). The AFAP values in turn do
not change since the charging behavior is not altered to respond to additional
constraints.

For retirees the situation is similar in the wind generation case, the optimal
yearly average utilization values in the daily optimization only reach 64.37% vs.
79.70% (cf. Table 5.7). The value in terms of the improvements enabled by the
optimization under the specified assumptions is thus decreasing if less infor-
mation about future trips is available. This substantially reduces the flexibility
potential of EVs as a controllable load in the context of renewable energy inte-
gration. More regular generation patterns during the day increase the utilization
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Figure 5.8: Renewable energy adoption share for Employees and Retirees for AFAP and
the daily optimization strategy for wind power (top), wind and PV (middle) and PV
(bottom) for the 11 kW home charging base case.

level of renewable energy both for employees and retirees as compared to AFAP,
which can be seen for the generation portfolios incorporating PV. The utilization
share in the optimal case for wind and PV generation with 62.29% is still lower
than for the weekly optimization with a value of 85.58%. For PV the increase is
more prominent, but also lower than in the weekly optimization frame. Overall
it can be observed that retirees can again take better advantage of the intermit-
tent generation and in particular PV. The reduction of the optimization horizon is
reducing the load flexibility of EVs, but in particular the one of employees which
are now more constrained with respect to their possible charging times and thus
charge more often as it is necessary in the longer optimization time horizon.

Figure 5.9 shows the smart charging load of employees (left) and retirees
(right) in conjunction with the respective renewable and conventional genera-
tion source for the same summer week as discussed above (week 28). For em-
ployees in the wind generation only case it can be seen that the conventional
generator is used more frequently in order to cover the demand resulting from
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Figure 5.9: Optimal smart charging load for Employees and Retirees in the daily opti-
mization vs. generation from wind power (top), wind and PV (middle) and PV (bottom)
for the 11 kW home charging base case.

the daily charging cycles, in particular in the second half of the week. For retirees
a similar pattern depicting the minimum run time requirements of the genera-
tor, can be observed. For generation portfolios with more PV one can see that
the share of conventional generation increases during the night, but decreases
during the day. This is very distinctive in the case of retirees that only use PV as
a source. In this particular scenario almost no conventional generation is needed
anymore. For employees in turn the conventional generator is only used during
the night in this scenario. This also leads to the fact that employees charge more
from the conventional generator in order to fulfill the run time requirements and
thus have less demand that can be covered by PV. In addition, the battery energy
level constraints that need to be met also lead to a higher utilization of the con-
ventional generator.

For the daily optimization one can observe similar impact directions of in-
creasing charging powers. For AFAP higher charging powers reduce the uti-
lized share of renewable energy for both groups since charging is performed
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Table 5.6: Overview of RES average adoption shares for employees for
the daily optimization horizon depending on charging power, location
and generation source compared to the corresponding AFAP values.

Employees Home Home Home Home Home Home
Daily + Work + Work + Work + Work

+ Leisure + Leisure
15 kWh AFAP Smart
3.6 kW
Wind 45.37% 52.45% 50.33% 62.54% 63.45% 63.14%
Wind + PV 37.45% 52.04% 55.16% 59.43% 73.95% 74.08%
PV 19.37% 34.81% 41.47% 33.86% 63.09% 64.50%
7.2 kW
Wind 42.22% 49.99% 48.73% 63.02% 63.45% 63.14%
Wind + PV 36.87% 49.99% 53.69% 61.16% 73.95% 74.08%c

PV 21.73% 35.08% 41.54% 38.17% 64.81% 64.93%
11 kW
Wind 41.24% 49.13% 48.20% 62.78% 63.14% 63.14%
Wind + PV 36.90% 49.40% 53.16% 62.29% 74.08% 74.08%
PV 22.77% 35.04% 41.23% 40.11% 64.60% 65.00%
c Please observe that the optimal result numbers are rounded for the sake of clarity. This leads to

the fact that the slight differences in the numerical values are not apparent in this table.

Table 5.7: Overview of RES average adoption shares for retirees for the daily optimiza-
tion horizon depending on charging power, location and generation source compared to
the corresponding AFAP values.

Retired Home Home Home Home Home Home
Daily + Work + Work + Work + Work

+ Leisure + Leisure
10 kWh AFAP Smart
3.6 kW
Wind 52.86% 53.22% 50.55% 64.37% 64.37% 64.37%
Wind + PV 55.75% 56.29% 64.22% 77.61% 77.61% 77.62%
PV 38.88% 39.10% 52.29% 64.88% 71.80% 72.63%
7.2 kW
Wind 50.22% 50.66% 49.09% 64.37% 64.37% 64.37%
Wind + PV 55.04% 55.64% 64.12% 77.62% 77.62% 77.62%
PV 40.78% 41.21% 54.02% 66.24% 66.24% 66.50%
11 kW
Wind 49.27% 49.71% 48.52% 64.37% 64.37% 64.37%
Wind + PV 54.88% 55.47% 63.79% 77.62% 77.62% 77.62%
PV 41.59% 42.01% 54.37% 66.39% 66.39% 66.51%
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faster and thus potentially during times with less renewable generation. The
impact of additional charging locations is higher as it contributes to a notable
increase of utilized renewable energy. This effect is strongest for employees that
employ PV for their AFAP charging, with an increase of 21.9%, corresponding
to a doubling of the home only value (cf. Table 5.6). In the case of optimal daily
charging the charging power slightly increases the utilized share of energy. In
the case of employees the tendency is not monotonous, as the optimal share of
wind energy in the home charging location is higher for 7.2 kW (63.02%) as in
the 11 kW case (62.78%). For retirees the similar monotonous tendency can be
observed, that higher charging powers slightly increase the share of utilized re-
newable energy. A more distinctive impact is coming from the generation port-
folios that encompass PV. For these, one can observe that additional charging
infrastructure can increase the share of renewable energy only for employees,
whereas retirees remain on similar levels even when additional charging loca-
tions and higher charging powers are available. The sensitivity analysis for the
daily optimization horizon thus quantifies the importance of additional charg-
ing infrastructure at external locations in particular for employees with PV in
their generation portfolio.

Discussion and Computational Considerations

The various weekly and daily optimization scenarios presented in this section
were mostly performed under similar assumptions for the starting and end SOC.
For employees the start and end SOC values in the weekly analysis was chosen
to be 20 kWh, representing an SOC of 63.59%. This assumption and the similar-
ity of the starting and end SOC values enabled a continuous analysis over the
time frame of 51 weeks based on generation data from 2009. The value of 20
kWh was chosen in order to allow vehicles to charge already at the beginning of
the week if e.g., wind power would be available. Higher starting and end SOC
values in turn reduce this flexibility and lead to lower values than the ones pre-
sented above. For employees the start and end SOC value was consistently 10
kWh, corresponding to only 31.74% SOC. This rather low value was chosen in
order to allow for a full comparability of weekly and daily optimization results.
For employees in turn the start and end SOC value needed to be adapted to 15
kWh (47.61%) in order to still enable a consistent and comparable number of
feasible solutions in the daily optimization. This shows that the potential to inte-
grate renewable energy highly depends on the assumptions about the minimum
SOC level requirements that EV users demand. Higher SOC levels are likely
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Table 5.8: Overview of feasible solutions in the daily optimization case for employees.
Employees Home Home Home
Daily Opt. + Work + Work

+ Leisure
15 kWh Infeasible Days

3.6 kW 102 51 0
7.2 kW 51 51 0
11 kW 0 0 0

not to enable feasible solutions for a centralized optimization approach like the
one employed in this section. Also lower charging powers lead to additional
infeasible days in the daily optimization scenario.

Table 5.8 summarizes the number of feasible and infeasible days for the daily
optimization scenario for employees. The main differences with respect to the
number of feasible days stems from the available charging power and the num-
ber of charging locations. Generation sources in turn do not have an effect and
are therefore also not considered in this table. It can clearly be seen that addi-
tional charging locations enable more feasible daily solutions as they increase
the availability of the EV to fulfill the given constraints. Higher charging powers
have a similar effect as they enable the EV to recharge faster in the time slots that
are available, even only in the reference scenario with 11 kW charging power.

A closer look on the computation times and the nature of the infeasible days
for employees in the home charging case with wind and PV at 3.6 kW shows,
that the days that do not allow for a feasible solution are the same in every week.
In particular Wednesdays and Thursdays are not feasible for the given driving
profiles (cf. Figure 5.10), conventional generation and battery energy level speci-
fications. These days are characterized by additional trips on the early afternoon
by a part of the vehicles which leads to additional demand that can not be cov-
ered in the specified scenario. In this context it can also be observed that an
optimal solution is dependent on the requirements of the entire EV fleet and
thus cannot account for individual requirements. A possibility to obtain more
feasible solutions in the daily optimization scenario would be to characterize the
EVs by their daily driving energy requirements and thus vary the start and end
SOC condition in dependence of the respective range requirements.

What can also be observed in Figure 5.10 is that for higher charging powers
only Thursday remains infeasible in the daily optimization under the specified
conditions. In the particular example the computation times per day also in-
crease but remain on a negligible scale even for intraday operations. There are
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Figure 5.10: Computation times and feasibility per day for the employee home and home
+ work scenarios at 3.6 and 7.2 kW.

scenarios though, that did not behave in this way with respect to computation
times (cf. more details in Appendix G). In particular scenarios with retirees at 3.6
kW charging power and PV as the only generation source lead to considerable
computation times in the weekly as well as in the daily optimization. As noted
in Table 5.5 some of the reported values represent the 5% optimality gap solu-
tions, as the optimal solutions ran out of memory of the available computational
resources. This again gives practical evidence that centralized optimal solutions
can be hard to compute, even when resources are available, thus opening up the
case for decentralized coordination mechanisms.

5.2.4 Conclusion

The model presented in the previous sections evaluates the general ability
of EVs to utilize fluctuating renewable energy sources for charging, while
considering the mobility requirements of full time employees and retirees.
The model quantifies the ability of the EVs to adapt their charging demand in
such a way that the conventional generation that needs to be employed by the
EV fleet aggregator is minimized in the analysis time frame of one year. The
share of renewable energy from wind power that can be utilized on average
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by employees in the optimal base case is 84% as compared to 41.24% in the
uncoordinated AFAP charging approach. This is about twice of the initial
amount and shows the potential of EV demand flexibility. For retirees the
wind power utilization over the analysis time frame is increased from 52.86%
in the AFAP case to 79.70% in the optimal smart charging scenario. Retirees
already have a higher base level of utilized renewable energy which is mainly
due to their higher availability for charging at the home location in the base case.

When a mix of wind power and PV, or only PV is employed as a source for EV
charging, it can be observed that for both groups the equally mixed generation
portfolio of wind and PV is performing best with respect to the utilized share
of renewable energy. In particular, the highest values of the entire analysis
are achieved by this generation mix. For employees 85.38% (with a max. of
86.96%) of demand, and for retirees 83.42% of demand can be covered by this
renewable source-mix. AFAP also exhibits the highest utilization shares in this
case but the absolute improvement through the optimization is similar as in
the wind generation scenario. A PV only portfolio in turn has very different
adoption potentials. In particular employees only charging at home, can not
take advantage of this generation source in the AFAP case. This is incorporated
in a comparably low utilization share of 22.60%. For optimal smart charging in
turn this value can be increased to 65.98% for the home location.

Retirees can also increase their PV adoption share from 41.59% (AFAP) to
68.12% in the optimal case. The significant difference in the AFAP case between
retirees and employees results from the fact that retirees are more likely to be
available at the home charging location than employees. The AFAP share subse-
quently increases when additional charging locations are added. The effects of
additional charging locations are strongest in the PV case, wind and the mixed
portfolio do not profit from additional infrastructure as much as PV does, both
in the AFAP and optimal case. For smart charging it can be observed that adding
charging opportunities at the leisure location does not significantly increase the
RES adoption.

Higher charging powers do not have a high impact on the adoption share
of renewable energy in the optimal case, the only significant increase can be
observed for PV as a source and the switch from 3.6 kW to 7.2 kW. A further
increase to 11 kW does not yield any substantial improvement. This is the case
for both groups and shows that if information about trip behavior is available,
no high charging powers are required. For AFAP charging, lower charging
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powers lead to higher adoption rates, as the vehicle can, by chance, charge for a
longer time which can also incorporate times with higher renewable generation.

A shorter optimization horizon, in this case a period of one day, can approxi-
mate decisions with a high degree of information about planned trips and fluc-
tuating generation. The adoption share of renewable energy drops from 84%
to 62.54% for employees and 79.70% to 64.37% for retirees in the optimal wind
power case. The load pattern analysis shows that charging occurs more often
which leaves a considerable part of the inter day flexibility potential of the ve-
hicles untouched. The minimum battery energy level and the minimum run
constraints of the conventional source thus lead to less renewable energy that
can be utilized in the analyzed daily optimization setting.

Wind power is dominating the other portfolios in the daily setting for em-
ployees, if no additional charging locations are considered. Additional charging
opportunities in turn allow for a higher availability of the EVs for charging
with renewable sources and thus increase the adopted RES in most scenarios.
As observed before, PV profits most from additional charging locations for
employees. For retirees the optimal adoption share at the home location is al-
ready quite high (66.39%) as compared to employees (40.11%). Higher charging
powers only slightly increase the adoption share and only have a notable effect
for employees that are constrained in their charging locations.

Overall the presented results show that EVs have a considerable flexibility po-
tential that contributes to a better utilization of fluctuating renewable resources
and thus help to balance variations in the power grid. The particular effect on
local grid segments and the overall system must be assessed in a scenario which
considers the conventional load and its interactions with the EVs. This section
provides a sound assessment of the flexibility potential of EVs in a deterministic
upper benchmark case, while also investigating the effect of a shorter optimiza-
tion horizon. The presented central coordination approach is effective but also
depends on the scale and formulation of the optimization problem w.r.t. the
computation times. If in addition EV-owners are not willing to participate in a
direct load control program, individual incentives for shifting of charging de-
mand to times of higher RES availability are needed. A price based charging
coordination approach for individual RES adoption is therefore presented and
discussed in the next section.
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5.3 Renewable Energy Integration: Uniform Pricing
Model

Following the approach from Chapter 4 this section presents a price based
charging coordination approach which builds on individual price incentives
to achieve load shifting of EVs. In this particular case the objective of the
individual vehicle is to minimize its individual costs under consideration of a
hourly changing variable pricing scheme. Following the supply side perspective
in this chapter the interests of the EV aggregator are considered (cf. Section
3.2). In particular the aggregator has the objective to minimize the variable
costs for the provision of electricity for the EVs having a contract with him.
In order to achieve this, he communicates hourly variable prices reflecting
the availability of fluctuating renewable supply. Under the assumption that
individually rational EV-owners will respond to his price incentives this section
is addressing the following research questions:

RQ 4 - Price Based Renewable Energy Utilization: Which percentage of renew-
able energy can be utilized by a fleet of EVs if charging is coordinated via a price signal
mapping the scarcity of these intermittent sources?

RQ 4.1 - Sensitivities: What is the impact of differing maximum charging powers,
generation portfolios and EV driving patterns on the ability to use renewable energy for
charging?

RQ 4.2 - Individual Costs: Which individual costs do EV-owners incur on average,
given a full cost assessment of their renewable energy usage?

The questions are addressed by extending the individual simulation model
from Chapter 4 by a component that represents the aggregator and his pricing
decisions as well as a portfolio of intermittent renewable energy generators char-
acterized by empirical wind and solar generation data from Germany of 2009.
The generation data corresponds to the data presented in the previous section of
the benchmark problem formulation and thus enables a basic comparison of the
result characteristics. Related work with regard to charging coordination with
the goal to integrate fluctuating renewable energy sources has been discussed
above, in particular in Section 2.7 and Section 5.2. This chapter provides insight
about a decentralized, hierarchical charging approach that considers economic
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constraints but seeks to increase the direct utilization of fluctuating renewable
energy sources.

The findings of this section are mainly based on results from Richtstein &
Schuller (2012) which were presented at the 2012 IAEE European Energy Confer-
ence in Venice, Italy. The following sections will describe the model adaptations
for the aggregator scenario (Section 5.3.1), the input data and assumptions about
the scenario (Section 5.3.2), the results obtained with regard to the research ques-
tions (Sections 5.3.3 -5.3.7) and draw conclusions for the price based charging
coordination approach (Section 5.3.8).

5.3.1 Model Structure

The model structure is determined by the two main entities that are represented
(cf. Figure 5.11): An aggregator who publishes electricity rates (pt) for each time
slot (t) for the analysis period (time frame T, here one week), and several EVs
which then individually decide when to charge. The EVs follow the individ-
ual cost minimization approach presented in chapter 4.2. The simulation is per-
formed in a similar way as for the benchmark model: a weekly optimization is
repeated for 52 consecutive weeks, thus mapping an entire year of renewable
energy oriented EV charging with data from 2009. As before, the model specifies
similar starting and ending conditions for the relevant variables such as SOC,
thus enabling this continuous analysis.

The Aggregator

The decision of the aggregator on how to set the value of the electricity rate pt is
performed by a calibrated heuristic following the goal to match the demand of
the EVs with the intermittent renewable generation as closely as possible, given
individually optimizing price responsive EVs.

Two main variables are used by the aggregator to determine the electricity
rate pt: First, the amount of the current renewable generation in relation to the
renewable peak generation in the analysis time frame of one week (gt/gmax) is
employed as an indicator for relative renewable generation scarcity, following
the rationale applied in Chapter 4 to shift demand to the time slots with the
highest renewable generation share in relation to total load. Second, the gen-
eral availability of the EVs for charging at, i.e. the percentage of vehicles that
is connected in a given time slot t, is considered. This variable serves as an in-
dicator for potential demand, since it determines the upper bound of potential
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Table 5.9: Uniform Pricing Model Parameters

Parameter Description Symbol Domain
Operational battery capacity C (kWh)
Min. number of time steps to fully charge νc (#)
Charging efficiency ηc (%)
Storage cost ψ (EUR/kWh)
Price per energy unit in time step t pt (EUR/kWh)
Charge parameter for time step t ϕt (%)
Energy level of the battery at time t Lt (kWh)
Energy consumption in time step t a dt (kWh)
Location of the BEV zt (0: not at home

1: at home)
Total generation gt (kWh)
Intermittent generation gt,I (kWh)
Maximum gt,I , tεT gmax,I (kWh)
Renewable generation and availability costs pt,R (ct/kWh)
Conventional generation gt,C (kWh)
Conventional generation costs pt,C (ct/kWh)
Total load in time slot t lt (kWh)
a dt = kilometers driven in time step t (km) · power consumption per km (kWh/km)

demand in case that a considerable number of EV-owners decide to charge due
to relatively low prices. This parameter was introduced as a measure to account
for simultaneity effects of EV demand. The impact on the distribution of EV
demand is analyzed within the context of the results obtained.

The overall simulation process and structure are depicted in Figure 5.11. The
empirical driving profiles serve for the calculation of the EV charging availabil-
ity at the home location and also as main constraints for the formulation of the
individual cost minimization problem of the respective EVs. The aggregator in
turn generates a price based on the scarcity of renewable energy and the overall
availability at the home charging location. This price in turn serves as the main
input for the individual EVs to make cost minimal charging decisions. All non-
renewable demand resulting from these individual decisions it covered by the
conventional generation.

While relative generation abundance (i.e. a high gt,I/gmax∀t∈T,I) will result in
a lower price, times of high potential demand (i.e. a high at) will in turn balance
this effect and lead to higher total electricity prices. This relation which was
described above is formalized in the following expression:
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Figure 5.11: Simulation model structure and general interactions between the roles.

pt =


pt,C

gt,I
gmax,I

≤ 0.05

(1− gt,I

gmax,I
) + wa · at︸ ︷︷ ︸

pt,R

else , ∀t ∈ T (5.12)

For periods in which little or no renewable generation is available (i.e., if re-
newable generation drops below 5 % of its weekly maximum) the price is set to
the limit pt,C, to further discourage charging. The level of 5 % is chosen in order
to maximize the share of used renewable generation before relying on conven-
tional generation and thus follows the same economic rationale as in Section 5.2,
to minimize variable generation costs. Please observe that no further ramping
or minimum run time constraints are imposed on the conventional generation in
this particular case. This also supports a different economic evaluation approach
in which the individual charging costs are assessed by the hourly prices from the
European Energy Exchange (cf. Section 5.3.7).

The Individual Vehicles

The charging behavior of the vehicles is modeled using a linear optimization
program that was introduced earlier in Section 4.2 thus incorporating the "Smart
Charging Strategy" based on variable price incentives for every EV. The model
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constraints are consistently formulated as above: The state of charge of the bat-
tery needs to be in between 0 and the operational battery capacity at all times (Eq.
5.14). In addition the energy consumed corresponds to the energy that needs to
be recharged during each optimization period of one week (Eq. 5.16. Further it
is assumed that the battery of each EV is fully charged at the beginning of every
week, and consequently needs to be fully charged at the end of the week in or-
der to allow for a continuous evaluation over the course of 52 weeks of the year
2009. This potentially slightly reduces the flexibility of the vehicles to react to
high renewable energy generation availability but provides a more conservative
insight with respect to the mobility requirements of the EV-owners.

min
ϕt
→ Cost =

T

∑
t=1

pt · ϕt︸ ︷︷ ︸
Electricity Costs

(5.13)

C ≥ Lt−1 +
C
νc · ϕt − dt︸ ︷︷ ︸

SOCt

≥ 0, ∀t ∈ [2, T]
(5.14)

C ≥ L1 +
C
νc · ϕ1 − d1︸ ︷︷ ︸
SOC1

≥ 0, t = 1
(5.15)

T

∑
t=1

C
νc · ϕt =

T

∑
t=1

dt, ∀t ∈ [1, T] (5.16)

The objective function of each vehicle is to minimize the incurred charging
costs (Eq.5.13). These are determined by the amount of energy charged times
the electricity rate pt. Additional degradation costs are not considered in this
section, since the amount of energy charged by the vehicles is similar both for
AFAP and smart charging. For V2G operation strategies storage costs need to be
considered (cf. Section 4.3), for purely operational analyses this is not necessary
if only the electricity costs are considered. As the focus of this section is on
the price based charging coordination for renewable energy utilization the more
detailed implication of storage costs was already performed in section 4.3 for the
individual assessment.



Supply Side Assessment 177

ϕt =


1 : if SOCt +

C
νc ≤ C and zt = 1

C−SOCt
C
νc

: if SOCt +
C
νc > C and zt = 1

0 : otherwise

(5.17)

As a reference case uncoordinated AFAP charging is again included in the
analysis. Here it is assumed that vehicle owners charge as soon and as fast as it
is possible after they arrive at the charging location, which is realistic, since this
strategy minimizes the risk to have an empty or too little charged battery when
the vehicle is needed. In the model notation this behavior translates to equation
5.17.

5.3.2 Input Data and Assumptions

Similar to the analyses presented before this section describes the empirical in-
puts employed for the simulation based analysis. As most input parameters
were already described in more detail in the previous sections only the model
inputs deviating from the previous specifications are described in more detail.

Mobility Profiles

The driving profiles are consistently from the German mobility panel (BMVBS,
2008), the study that continuously collected data about the day-to-day mobility
behavior of German citizens from 1994 up until 2007. The driving profiles in-
clude all car trips within a specified week of the year that have been made by a
certain person. For each trip, the following information is provided: start, end,
duration, distance, average speed, and purpose of the trip. In this section the
1000 moste recent profiles of four demographic groups were chose for the anal-
ysis: employees, retired, part-time employed and unemployed. This expands
the previous investigations. From the respective 1000 profiles the subset that
could be fulfilled at the minimum charging power of 1 kW were subsequently
employed for this analysis. The customer portfolio of the aggregator is further
assumed to consist to equal parts of the four sociodemographic groups. In or-
der to reduce the computation times for the different parameter permutations
each simulation scenario is performed with 25 randomly chosen profiles for each
group. In addition a scaling factor is introduced in order to map the capacities
and demand requirements of a fleet of 1000 vehicles. For one scenario with a
predefined set of parameter combinations the profiles are kept constant in order
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Table 5.10: Electric Vehicle Specification, according to Nissan
(2013).

Specification Nissan Leaf
Battery Capacity [kWh] 24
Operational battery capacity (C) [kWh] 21.6
Maximum Speed [km/h] 145
Maximum Range[km] 160
Battery Type Li-Ion
Charging Efficiency (ηc) 93

to allow for comparable results.

Electric Vehicle Specifications

To ensure realistic assumptions about the modeled EVs, specifications from one
of the first mass-produced EVs are employed: the Nissan Leaf. However, some
simplifications needed to be made to accommodate for the linear limitations of
the employed individual EV model: Charging is assumed to be linear in time
(tFC,xkW = Cu

ηc∗xkW ), and equally discharging is assumed to occur linear in depen-
dence on the driven kilometers. The Nissan Leaf has a slightly smaller battery
than the vehicles considered in the analyses before, nevertheless the number of
feasible driving profiles is in a comparable range to the other sections.

Intermittent Generation

Wind and solar generation data are similar to Section 5.2 and obtained from the
German transmission system operator 50Hertz. The data is adjusted to account
for capacity built up during the year 2009. Please observe Table 5.1 for the sum-
mary statistics and characteristics of the employed data. The generation data
is available in 15 minute time steps, and similar to the benchmark case, scaled
down for the simulation such that the yearly production exactly accounts for the
yearly consumption of the EVs. As a result there are weeks with over and under
supply of intermittent renewable energy from wind power and PV. In the inves-
tigated base case scenario the resulting wind power capacity is slightly below
700 kW and for the PV scenario 1.1 MW of capacity are required in order to de-
liver the necessary electricity. This dimensioning approach for the generation of
the aggregator is further evaluated in section 5.3.8.
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Assumptions

The adapted model depends on several assumptions which result from the de-
terministic nature of the linear program. Many of them are similar to the as-
sumptions formulated in Section 4.2, but also summarize the distinct features of
this section:

• The time frame of one optimization is one week.
• The granularity of optimization is 15 minutes.
• The driving patterns are known ex-ante to the drivers for the week ahead.
• The electricity rates are published ahead of the time frame and are known

to the drivers.
• The driving profiles of the vehicle owners must be fulfilled.
• At the start and end of the time frame the battery needs to be fully charged.
• EVs can only be charged at home.
• When EVs are at home, there are no restrictions on charging, except EV

specifications (including maximum charging power and battery capacity).
• Driving behavior does not change as compared to ICEVs.
• The aggregated charging availability~a is known ex-ante to the broker.
• The production portfolio consists of uncontrollable renewable intermittent

energy sources and conventional generation which is immediately available
if necessary (i.e. there are no ramping constraints).

• Intermittent generation data ~gI for each time frame is known ex-ante to the
aggregator such that he can generate a variable price set for the optimiza-
tion period.

5.3.3 Base Case Evaluation

In this section the scenario setup and the results with respect to renewable en-
ergy utilization under consideration of variation of charging power, generation
portfolio and driver type are going to be presented. The economic impacts are
discussed in Section 5.3.7.

The base case serves as a reference for the different alterations of parameters
and is defined in such a way that it represents a fleet of EVs which is charac-
terized by its driving profiles, the allowed (constant) charging power and the
utilized renewable energy sources. This base case scenario is defined as follows:
the four different driver groups are evenly distributed, and each group accounts
for 25% of the 100 vehicles analyzed. The vehicles are restricted to a German
standard one-phase AC outlet of 3.6 kW for charging power and solely attempt
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to use wind power for their charging. The Fleet consists only of one type of
electric vehicle, the Nissan Leaf (cf. Table 5.10).

All further scenarios are evaluated with respect to their capability of direct
renewable energy utilization. This is quantified by the average percentage of
renewable energy utilized by the EVs in charging over the investigation period
of one year (further denoted as R%), calculated as the average relative value for
all time slots.

R% =
∑tεT(lt)−∑tεT(gt,C)

∑tεT(lt)
(5.18)

As presented in section 5.3.1 the variable pricing scheme communicated to
the EVs has two distinct parts. The first term (cf. Eq. 5.12) inversely maps
the availability of renewable energy in relation to the generation maximum of
the week under investigation. The second part introduces a weighting factor
accounting for the general charging availability and thus the increased potential
demand. This in turn is increasing the variable price in the same time interval.
As in the next paragraphs only the combined effect of the aggregated price signal
is evaluated, first the effect due to the two price components in the base case is
evaluated.

The simulation results show for the base case in which only the renewable
generation signal without the availability component is applied (Markel et al.,
2009), i.e. the lowest price is set for period with the highest production of renew-
able energy), that EV-demand is shifted extensively to times of higher renewable
energy availability. In this scenario the EV demand is considerably higher than
the available energy, as all vehicles concentrate their charging activities during
the favorable time slots, thus creating new coordinated peaks (cf. Figure 5.12).

When the charging availability of the EVs is accounted for, the EV-demand
becomes more distributed and has smaller peaks which still exceed the renew-
able generation (cf. renewable signal and base case in Figure 5.12) This charging
behavior shows that charging coordination of a substantial amount of vehicles
that reacts to the same distinct price information but in terms of capacity could
be served by a specified generator, can cause new undesired peaks. This shows
that a more individual feedback mechanism incorporating the remaining unused
capacity per time slot of renewable energy in the local distribution grid setting
should be further investigated.

The coordinated peak effect is exemplified in Figure 5.12 for one week of the
year 2009, but can be confirmed when looking at the rest of the analyzed data
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Figure 5.12: Wind generation and EV-consumption for one week (week 51) matching for
all driver groups as compared to the applied price signal at 3.6 kW

set (cf. Figure 5.13). There it can be seen that the renwable signal load is mostly
30-50% higher, or in extreme cases even double as high as the base case load
(cf. week 16). The average renewable energy utilization ratios for the differ-
ent charging strategies show that by chance the uncoordinated approach has a
higher ratio of 47.92% in contrast to the renewable generation signal strategy
which only accounts for 31.45% on average due to the occurred overcoordina-
tion of demand to renewable generation peaks. The base case performs slightly
better with a share of 40.32% of renewable energy utilized.

It can be observed that for the specified base case, coordination works "too
well" as all EVs use the same distinct information about wind power availabil-
ity, thus exceeding the available amount of renewable energy, whereas in other
time slots renewable energy is not used to its full potential. Following this ob-
servation different analyses investigating the impact of alteration of charging
powers, driver types, charging availability and generation portfolios on the per-
formance with respect to renewable energy integration and peaking behavior are
described in the next section.
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Figure 5.13: Comparison of the base case (red) and renewable signal loads (green) for
different weeks of the year 2009.

5.3.4 Impacts of Charging Power

The impact of charging power on EV demand and the resulting utilization of
wind power is substantial. Higher charging powers allow for shorter charging
times, thus increasing the available potential driving range. On the other hand,
lower charging powers enable a smother load pattern of EV demand, imply-
ing less stress on the grid and its local operating components. The investigated
charging power rates in this section are therefore 1, 2, 3.6 and 11.1 kW, covering
the most common power ratings which can be applied at any home charging
station or even simple one phase standard sockets. Higher charging rates are
not considered, as they are not likely to available in a private setting, but only
through public or commercial infrastructure.

As experienced in the base case, secure and common knowledge about re-
newable energy availability will cause additional demand concentration around
the projected renewable generation peaks. In this context the charging rate can
highly accentuate this grouping behavior, or if introduced as a constraint can
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Figure 5.14: Example of the impact of different charging power rates on wind power
consumption for week 51 matching for all driver groups.

ameliorate the effects of high coinciding demand patterns. This effect can be
observed in Figure 5.14 where the base case (charging at 3.6 kW) load is com-
pared to two settings with lower power ratings being 1 kW and 2 kW and the
respective generation for this particular week. It can clearly be seen, that higher
charging powers lead to over-accentuated peaks while utilizing less renewable
energy. The slow charging approach of 1 kW is best in this case to reduce the
concentration of EV demand while using a higher share of the available renew-
able sources. However this low charging rate represents a rationing of available
capacity.

In the 11 kW case only 25.96% of EV demand are satisfied on average over
the year from wind energy. For decreasing charging powers in turn it can be
observed that the utilization rate R% is increased from 40.32% in the base case to
50.14% in the 2 kW and up to 63.95% in the 1 kW slow charging case. Lower
charging powers contribute to a higher average utilization rate of renewable
energy, in particular because EV demand is better distributed around times of
higher wind power availability. Charging at lower rates is also more beneficial
for local substations and distribution equipment and prevents the need for grid
infrastructure expansion.

But these beneficial effects of lower charging powers come with constraints
with respect to the flexibility of EV-owners. As denoted in Table 5.11, it can be
seen that in the 1 kW case only about 57% of the employees in the original 1000
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Table 5.11: Effect of charging power variation on average driving range and
ratio of satisfied driving profiles per group.

Charging Power Employees Part-Time Retired Unemployed
1 [kW] 57% 76% 71.7% 76.5%
km/Week 175.61 133.06 101.01 91.26
2 [kW] 66% 80.4% 77.5% 81.4%
km/Week 205.88 140.80 108.22 98.21
3.6 [kW] 70.4% 83.7% 80.6% 83%
km/Week 217.95 148.06 114.21 100.54
11.1 [kW] 72.1% 84.8% 82% 83.8%
km/Week 220.34 150.68 115.77 101.62

profile data set can be charged such that their driving requirements are met. The
other groups still have a higher temporal flexibility and all have more than 70 %
of viable profiles in this scenario. As charging rates increase, the number of vi-
able profiles and the average weekly distance that can be traveled also increases.
In the best case when 11.1 kW can be used for charging this allows for 72.1% of
the employees to be charged accordingly. Other driver types have a viable amount
of profiles of at least 82%.

For this section it can be concluded that charging powers highly affect demand
peak patterns and thus the possible driving distances for the four different driver
groups. Also lower charging rates can contribute to a higher share of renewable
energy utilization in the given scenario while additionally reducing stress on
distribution equipment.

5.3.5 Impacts of Generation Portfolio

While wind power is one of the predominant renewable sources it is not the only
one with major contributions in the German energy system. Solar photovoltaics
(PV) is the second major renewable energy source when considering the installed
overall capacity (around 10 GW for 2009 (BNetzA, 2010)). Because of this and the
variability that it has in common with wind power it is also employed in the fol-
lowing analysis. The impact of three different generation portfolios is evaluated
with respect to the base case setting and variation of charging power. The results
show that for PV the average yearly R% is higher when considering the same
scenarios as before. The R% in the base case is with 55.88% substantially higher
than in the wind only case with an R% of 40.32%. The same results are obtained
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Table 5.12: Relationship between generation technology and
charging power with respect to R%

Generation 1 [kW] 2 [kW] 3.6 [kW] 11.1 [kW]
R%Wind 63.95% 50.14% 40.32% 25.96%
R%PV 68.6% 64.97% 55.88% 39.12%
R%Mix 75.45% 60.69% 49.86% 34.06%

if lower charging powers are considered. For the case of 1 kW the R% of PV is
still higher with 68.6% as compared to the value of 63.95% of wind power (cf.
Table 5.12).

PV is less volatile in its production patterns than wind and times when it is
surely not available can be mostly well defined. The generation pattern with a
peak at noon maps well onto the resulting load patterns of the EVs given the
renewable energy and availability dependent rate. This effect can be observed
for example in Figure 5.15 where the load resulting from employees and retired
drivers is mapped with the generation from PV. It can be seen that for these
exemplary weeks in August the charging load of employees and retired can be
more than satisfied. The other interesting pattern in this context is that retired
drivers are charging predominantly during the week, while employees charge
during morning and evening hours and especially on the weekend, when they
are likewise available during the daytime. PV generation thus does accentuate
the different charging availabilities of the individual groups and contributes to
a more distributed load pattern, which on average still utilizes more renewable
energy than a wind-only generation portfolio. The mixed generation portfolio
has an average R% of 75.45% over the whole year which is higher than in the PV
only case yielding 68.60% in the 1 kW scenario. The overall performance during
the course of 2009 of the mixed generation portfolio is depicted in Figure 5.16.

During this period it can be seen that especially in summer when PV produc-
tion is prevalent, the overall utilization of renewable power through the vehicles
can almost always be higher than 90% given the mixed portfolio. In this set-
ting the slightly complementary seasonal generation patterns of PV and wind
power are observed. For the impact of different and in particular in this case
intermittent generation sources, on the ability to be utilized by the EVs, it can
be concluded, that a differentiated generation portfolio in combination with the
given EV driver portfolio can better accommodate for a high share of renewable
energy. Higher average renewable shares can also be achieved by increasing the
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Figure 5.15: Charging from PV in Week 31 and 32 and resulting load patterns for em-
ployees and retired drivers
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Table 5.13: Renewable energy utilization rate for different driver groups and corre-
lation matrix (r) for similar demand patterns

R% Employees Part-Time Retired Unemployed
48.05% Employees 1.00 0.68 0.62 0.71
33.05% Part-Time 0.68 1.00 0.84 0.89
23.81% Retired 0.62 0.84 1.00 0.92
26.78% Unemployed 0.71 0.89 0.92 1.00

capacity of the available generation portfolio. But as this will also incur addi-
tional cost to a EV charging coordinator or aggregator the approach of parity in
demand and generation serves as a conservative baseline.

5.3.6 Impacts of Driver Type and Portfolio

The results of distinct simulation runs with similar prices for all groups show
that employees have the highest individual renewable utilization rate with
48.05%. Part-Time employees follow with 33.05%, whereas retired and unem-
ployed drivers only have utilization rates of 23.81% and 26.78% respectively, cf.
Table 5.13. Please observe that these values refer to the 3.6 kW base case setting
with wind generation.

The correlation analysis (cf. Table 5.13) provides insight with respect to the
similarity of the demand patterns of the different driver groups. The analysis
shows that employees have a substantially different load and underlying driv-
ing pattern which leads to a higher utilization of renewable energy in the base
case. Part-Time employees, retired and unemployed on the other hand are more sim-
ilar to each other in their load patterns. The lower R% for these groups also
results from the utilization of the same price for all groups. Part-Time employ-
ees, retired and unemployed drivers have a higher charging availability, which
does not vary that much as the one of employees. This in turn leads to the fact
that even as they would have a higher flexibility with respect to their charg-
ing times, they also choose the time slots in which generation is highest. As all
groups have the same price information this leads to the accentuated peaking
behavior observed in the previous sections. For the analysis in this section it can
be concluded that a differentiation of driver profiles leads to a higher R%, espe-
cially if more employees are added in the portfolio. This is due to their higher
demand as compared to the other groups, which, due to the restrictions of the
battery capacity of the EV, makes them recharge more often. This opens up the
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opportunity to use several time steps in which renewable energy is available,
whereas the other groups concentrate their small demand around singular mo-
ments in the optimization period. At the same time another conclusion must be,
that a different price for every group taking more advantage of the individual
flexibility must be implemented in order to improve the overall utilization of
renewable energy for driving.

5.3.7 Cost Evaluation

While the previous sections had the focus on the utilization rate of renewable
energy, this section is concerned with an individual cost evaluation of the charg-
ing strategies performed by the EVs. The load resulting from optimization of the
EVs according to the proposed tariff rate from expression (5.12) can be assessed
in economic terms at the actual production costs of the underlying technology
for renewable generation. This perspective enables a cost based assessment of
the charging decisions, and a comparison with current and planned dynamic
end-customer rates for electricity. The underlying assumption in the following
evaluation is that the average production costs (including capital costs, accord-
ing to (Sterner and Specht, 2010; BSW-Solar, 2012)) are fully passed on to the
EV-owner according to the (linearly scaled) proposed dynamic rate. This trans-
formation of the tariff raises the absolute levels, so that the mentioned direct pro-
duction costs are completely covered. The charging decisions are not affected by
the linear transformation, as the relative order or rank of the different time slots
remains the same and thus the chosen charging times.

At times in which renewable generation is not sufficient, conventional power
is acquired at EEX spot-prices for the respective time slots (EEX, 2011). At times
when renewable generation exceeds demand, it is sold at the EEX prices, but
only when EEX prices are non-negative. In addition to this generation or pro-
duction part, taxes and fees as of 2009 in Germany are added to reflect the total
costs at end-customer level for every kWh. This enables a cost based assessment
on an individual basis for EV-owners and a revenue assessment for renewable
energy EV aggregators. In addition to the generation and procurement costs,
the additional taxes and fees are accounted for. These are in particular the fixed
electricity tax, the CHP fee, the concession fee (granting communal distribution
grid access), grid fee (transmission and distribution), value added tax and the
EEG subsidy fee that is due for the non-renewable supply from the EEX. Thus
all costs at the end-consumer level under current German regulation are consid-
ered. Form a supply perspective the costs considered allow enable a strategic
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assessment. In the following paragraphs the base case scenarios with 3.6 kW
and the 1 kW are evaluated with respect to their incurred costs.

Table 5.14: Average end consumer cost split for the 3.6 kW case and different generation
sources for the cost minimal charging strategy.
[ct/kWh] \Scenario Wind PV Mix EEX EEX > 0
Production costs 8.83 29.53 19.23 -0.13 1.16
Production costs RES 2012 8.83 22.21 15.52
Electricity tax 2.05 2.05 2.05 2.05 2.05
CHP fee 0.24 0.24 0.24 0.24 0.24
Concession Fee 1.79 1.79 1.79 1.79 1.79
Grid Fee 5.80 5.80 5.80 5.80 5.80
EEG Fee (for EEX supply) 0.78 0.58 0.66 1.31 1.31
VAT (19 %) 3.70 7.60 5.65 2.10 2.35
Total Avg. Costs 23.19 47.59 35.42 13.16 14.69
Total Avg. Costs RES 2012 23.19 40.27 31.71
CO2 Emissions [g/km] 46.80 41.27 42.45 76.28 76.28

Table 5.15: Average end consumer cost split for the 1 kW case and different generation
sources for the cost minimal charging strategy.
[ct/kWh] \Scenario Wind PV Mix EEX EEX > 0
Production costs 8.76 29.47 19.19 1.35 1.87
Production costs RES 2012 8.76 22.15 15.61
Electricity tax 2.05 2.05 2.05 2.05 2.05
CHP fee 0.24 0.24 0.24 0.24 0.24
Concession Fee 1.79 1.79 1.79 1.79 1.79
Grid Fee 5.80 5.80 5.80 5.80 5.80
EEG Fee (for EEX supply) 0.47 0.41 0.32 1.31 1.31
VAT (19 %)] 3.63 7.55 5.58 2.38 2.48
Total Average Costs 22.74 47.32 34.97 14.92 15.54
Total Average Costs RES 2012 22.74 39.99 31.39
CO2 Emissions [g/km] 29.57 33.30 25.09 76.28 76.28

The evaluation shows that there are substantial differences in generation pro-
curement cost between the renewable tariffs and an optimal EEX procurement
regardless of the charging power (cf. Tables 5.14 and 5.15). This difference is
mainly due to the very low - or even negative - procurement costs on the EEX
in the optimal strategy, which can be explained by two factors: (1) The regular
nightly low of EEX prices coincides with the availability of vehicles for charg-
ing. (2) Spot market prices are variable cost based which can even be negative,
whereas the proposed renewable tariffs above are full-cost based. In addition
the high price spikes that refund the capital cost of generators on the EEX, can



190 Supply Side AssessmentFigure 7

EEX opt EEX opt > 0 Wind PV Mix
-100

0

100

200

300

400

500

600

Taxes & Fees Production costs 

[ E
ur

o 
/ a

 ]

236,05 €

484,38 €

360,94 €

133,94 € 149,54 €

183,78 €

300,64 €146,20 €

89,85 €

164,80 €

196,14 €

-1,34 €

135,28 € 137,77 €

11,77 €

Δ = 86,51 €
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be avoided by an optimizing EV with perfect weekly foresight. The proposed
comparison is therefore accounting for a conservative "worst case" in terms of
individual cost for a renewable energy tariff scheme, as opposed to an optimal
EEX oriented cost minimizing charging scheme.

However, due to the relative high share of network fees and taxes (BNetzA,
2010) in Germany the difference in end-consumer cost is ameliorated, although
still notable. The difference of the base case as compared to an EEX only pro-
curement amounts to 102.12 Euro/year or 86.51 Euro/year (see Figure 5.17), if
negative EEX prices are excluded from the evaluation for the average EV-owner
(evenly including all four driver groups). If the same calculation is repeated
with the decreased generation costs for PV from 2012 (assuming a kWp installed
price of 2100 Euro(BSW-Solar, 2012)), the average total costs drop significantly
from 484.38 Euro/year to 409.84 Euro/year in the PV case. In this context it
should be noted however that the average costs in the case of wind being 23.19
ct/kWh, nearly correspond to the average household costs for electricity in 2009
ranging between 22.75 - 22.82 ct/kWh (BNetzA, 2010; Goerten and Ganea, 2009).
In the meantime this value has even increased further and as of 2010 (average of
22.92 - 23.87 ct/kWh) made it economically viable for EV-owners to switch to a
predominantly renewable supplier, given the assumptions above hold.

The difference in charging power has only a small effect in overall costs for
consumers in the RES cases. This is because of the relatively low prices at which
power can be procured from the EEX in the cases where there is a deficit of re-
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newable energy. For EEX procurement the change in procurement costs is more
noticeable, and points to the sharp minima of EEX prices, which can be better
utilized if a higher charging power is available to the EV-owner. However, due
to the higher share of renewable energy used in charging for the 1 kW scenario,
the CO2 emissions are lower than in the 3.6 kW scenario. Only one third of the
amount of CO2 is emitted for the mixed 1 kW scenario as compared to EEX opti-
mization (procurement from the EEX is accounted at the German average of 565
g CO2/kWh, wind power at 24 g CO2/kWh and PV at 101 g CO2/kWh (UBA,
2011)).

With regard to the economic evaluation of the proposed renewable based
charging scheme, it can be concluded that even in a conservative cost based ap-
proach, wind power based charging which includes capital costs for the gener-
ation company, is only slightly more expensive than the fixed German average
end-customer rate per kWh of 2009. On the other hand it can be observed that
the significant amount of taxes and fees leaves room for improvement, even if
the support from the EEG is no longer in place.

5.3.8 Conclusion

The scenario investigated in this section is covering two important aspects of
electric mobility. The first is the ability of a price based charging coordination
approach to increase the direct utilization of renewable energy given a specified
generation capacity of fluctuating sources. The second is the economic evalua-
tion of the resulting charging behavior for different generation technologies and
a procurement only strategy. The economic analysis considers current regulation
at the end consumer level and provides insight about the economic competitive-
ness of fluctuating renewable generation sources based on a total cost assessment
for the supply side.

Using a uniform price signal in order to coordinate the charging demand of
EVs which minimize their incurred costs in a deterministic setting can, under
certain conditions, lead to additional demand peaks. These new coordinated
peaks can be addressed by including the charging availability in the rate design
or by lowering the available charging power for the EVs. These two measures
improve the renewable energy utilization rate from 40.32% in the base case (only
wind power) to 63.95% in the 1 kW case and even further if a mixed generation
portfolio of wind and PV is evaluated, yielding an R% of 75.45% over the whole
year. Still, in these settings the flexibility of the driver groups of Part-Time em-
ployees, retired and unemployed is not exploited to its potential, as they also tend
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to use the same time slots as employees for charging which are more constrained
in their charging availability at the home location. Possible approaches for a bet-
ter demand distribution in this case would be individually differentiated pricing
for every group or an iterative process including information feedback about
the remaining renewable energy capacity in the price (i.e. a posted price offer
process), thus balancing the additional demand for each time period with the
available generation capacity.

The utilization of renewable energy in the charging demand is highly influ-
enced by the employed generation technology. In this case PV provided a higher
R% of 55.88% than the 40.32 % of the wind power base case. In this respect it can
be seen that the volatility of wind power can not be met by price dependent EV
demand as well as the more predictable patterns of PV production. In the case
of wind power this calls for a more flexible demand distribution which can be
achieved by the mechanisms mentioned above. For PV the investigated scenar-
ios yield higher utilization rates but still lack a sufficient energy provision in the
winter time. Therefore a mix of both generation technologies accentuating their
complementary generation patterns yields the best R% with 75.45%.
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Figure 5.18: Relation between generation and EV demand compared to demand covered
by renewable energy.

Further increase of the generation capacity can cover better for demand peaks
but also incurs the problem of oversupply for a considerable part of the year. As
depicted in Figure 5.18 one can see that in the base case the R% is increased up
to 80% if generation capacity is quadrupled, but at the same time the relative



Supply Side Assessment 193

utilization of wind energy is lowered to around 20%. This oversupply can only
be ameliorated by additional non-EV-load that is served by the aggregator or by
sell-off at the energy exchange.

With regard to the individual economic impact it can be seen that in a total av-
erage cost evaluation which is accounting for the capital costs of renewable en-
ergy production of the aggregator, the usage of wind power is only slightly more
expensive (23.19 ct/kWh) than in a case with normal average power prices for
2009 being 22.82 ct/kWh. For the case of optimal EEX-price based procurement
at hourly spot rates it can be seen that the average costs per kWh range between
13.16 and 15.54 ct/kWh. The inclusion of average capital costs in the economic
evaluation shows, that even without direct subsidies, renewable energy can be
employed for EV-charging at rates with a renewable mix premium of around
38% (2012) - 55% (2009) as compared to the general average rate costs. When
compared to the optimal charging under the dynamic EEX-rate the cost differ-
ence still amounts in every case to more than 77%. This comparison disregards
the fact that EEX-rates are lowered as the national renewable energy generation
increasingly covers for a higher share of demand and thus makes power plants
with lower marginal costs the price setting units (Sensfuss et al., 2008).

The analyses in this section show that uniform price based charging coordina-
tion can help to increase the individual decentral utilization of renewable energy,
but might also encounter problems of overcoordination.

5.4 Discussion and Summary

Sections 5.2 and 5.3 provided insight about main questions concerning the abil-
ity of EVs to map and balance fluctuating generation patterns in such a way that
the amount of conventional generation is minimized. They address EV demand
flexibility in two similar settings which are coined by a supply side perspective.
First, the ability to schedule the demand of a given fleet of EVs with empiri-
cal driving profiles of employees and retirees to available renewable generation
was assessed by the implementation of a centralized benchmark scheduling ap-
proach. Second, the ability to perform the similar task in a decentralized man-
ner only being coordinated by a uniform variable price mapping the available
renewable energy, while assuming rational self-interested cost minimizing EVs,
was evaluated. The results show that under the given assumptions EVs have
a considerable demand flexibility which can be employed to maximize the real-
time utilization of fluctuating renewable energy sources and thus enable sustain-
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able electric mobility.

Renewable Energy Utilization Rate

Since it is one of the prevalent and less cost intensive renewable energy sources,
wind power was chosen for the reference scenarios with respect to the ability
of EVs to utilize this intermittent generation source. In addition, both sections
evaluate PV and an evenly mixed portfolio of PV and wind power. In the bench-
mark approach it can be observed that employees can utilize up to 84.0% of wind
power in their average yearly charging demand if charging is performed at home
at 11 kW. Retirees in turn can utilize 79.7% of wind power on average over the
year under the same conditions. These optimal values are not substantially af-
fected if charging powers are reduced. A mixed generation portfolio with 50%
wind power and 50% PV yields the highest overall adoption rate with 86.9% of
yearly demand for employees being covered. The PV only generation in turn
yields the lowest values with 61.3% - 65.9% in the same case.

The uniform pricing individual optimization approach also shows that em-
ployees can achieve a higher utilization rate than other sociodemographic
groups. With a value of 48.0%, the overall level of wind power utilization on
average over the year is still considerably lower than in the benchmark case. As
the generation data basis is similar, only with slight scaling differences to fit the
demand of the EVs, the reasons for this deviation must be clarified. Lower charg-
ing powers in the uniform pricing scenario increase the adoption rate of renew-
able energy as they force EVs to better distribute their demand over time. At the
same time a mixed generation portfolio takes advantage of the complementary
seasonal generation patterns of wind power and PV. The overall highest value
of covered demand for the EV fleet is achieved in the mixed portfolio 1 kW case.
Even though the demand basis is not completely comparable between the two
analyses, the indication remains the same. It can be observed that PV achieves
better values in the uniform pricing scenario (55.8% (3.6 kW) - 68.6% (1kW)) as
more coordinated demand peaks that would otherwise overcompensate avail-
able renewable generation capacity can be covered by this likewise peaking form
of generation.

This shows that the price communicated to individual vehicles needs to incor-
porate an adequate scarcity signal of the available capacity. This signal is not nec-
essary in the benchmark case, but in turn more information about the planned
trips of the entire fleet is needed. As observed in the computational analysis not
all problem instances might be feasible in a centralized optimization approach
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without further adaptations.
Overall it can be concluded that EVs have a substantial flexibility potential

to utilize fluctuating renewable sources, which could be harvested to some ex-
tent by a centralized coordination mechanism. This problem becomes infeasible
or demands for more complex solutions in the presented fleet setting. The de-
centralized decision is therefore easier to implement but requires regional infor-
mation about the remaining resource availability in order not to produce new
coordinated peaks in the power system.

Charging Power and Location Impact

In the benchmark scenario charging power has no substantial impact on the RES
utilization rate in the optimal Smart Charging cases. This is demonstrated for
both the weekly and daily optimization horizon. If information about trips is
available, charging can be coordinated in such a way that lower rates still en-
able the same adoption rates as in the 11 kW case. In the uniform price analysis
in turn, charging power has a significant impact on the adoption rate that can
be achieved. Charging at 11 kW (25.96%) and 3.6 kW (40.3%) for instance leads
to even lower RES utilization rates than the uncoordinated charging approach
(47.9%). This is due to the similar price information about available resources
which is used by each individual EV to perform its charging optimization. For
both scenarios one can observe that lower charging powers are more beneficial
for higher RES utilization rates in the uncoordinated AFAP case as it distributes
demand over a longer period of time, thus increasing the likelihood for fluctu-
ating sources to be available. This effect can also be observed in the uniform
pricing scenario for lower charging powers which can better concentrate the ex-
isting demand around the generation maxima. The higher adoption rate though
comes at the cost of less feasible driving profiles. The infeasible profiles lack the
time flexibility to charge for extended periods between their respective trips (e.g.
employees lose 43% of the profiles due to these circumstances, cf. Table 5.13).

Additional charging opportunities at work and leisure locations (e.g. public
charging stations) have a more substantial effect on the adoption of renewable
energy. The strongest impact can be observed for employees that charge from PV
only and are enabled to charge at work (increase between 6.7% - 7.1%). For re-
tirees this effect can also be observed but is not as substantial (increase between
1.7% - 4.5% in absolute terms). Additional charging infrastructure can thus in-
crease the adoption of PV in the charging supply. The main determinant for RES
adoption still remains a reliable assessment of trip energy requirements.
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Overall it can be concluded that higher charging powers increase the individ-
ual flexibility of an EV-owner; at the same time they are not necessary to achieve
a good utilization of renewable energy sources if trip energy requirements are
well-known. Then lower charging powers achieve similar results with respect
to the utilization ratio. This finding shows that smart charging can also mean to
charge at lower rates, which benefits both the power grid assets and the battery
life time of the vehicle. Additional locations contribute to a better distribution
of demand and can help to integrate PV better in the supply of EVs. In addition,
they increase the availability of EVs on the grid which is also beneficial for a
higher flexibility of the demand side.

Driving Profile Group

In particular the driving profile or sociodemographic group determine the driv-
ing distance and the availability of EVs at particular locations. Full time em-
ployees have about double the driving energy demand on average terms than
retirees. These two groups are the most contradicting ones with respect to their
general driving patterns and distances. In addition they represent 68.3% of the
mobility patterns in the MOP and about 67.2% of the German population as of
2007 (BMVBS, 2008). Part-time employees and unemployed in turn resemble a
differently weighted mixture of these groups (cf. Table 5.13, Appendix E).

Employees do not have such a high availability at the most accessible home
charging location, which in particular deprives them of the possibility to cover
similar high amounts of their demand from PV as retirees. This was discussed
above and can be observed in the benchmark scenario analysis. Retirees in
turn have a higher relative availability at the home charging location and thus a
higher ground level of their demand which can be covered by PV. Retirees can
however encounter the problem that their overall lower demand also leads to
slightly lower adoption rates of RES. Due to the scenario assumptions (in partic-
ular the conventional generation constraints) a higher share of their demand is
covered from conventional sources in order to fulfill the given constraints. In the
uniform pricing scenario it can be observed that retirees can not take advantage
of their substantial charging time flexibility as they concentrate their (in relation
to employees) lower demand in times of relative high generation. The sketched
overcoordination phenomenon leads to the fact that less demand, which would
otherwise be more flexible, is concentrated again. This underlines the need for a
regional scarcity signal for generation capacity.

It can be concluded that employees are likely to have higher adoption rates
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of renewable energy than other groups if technical constraints are considered.
Their potential is also improved by charging infrastructure at their work loca-
tion. Retirees and the other groups in turn can achieve higher adoption rates
when only the home charging location is available for EVs. A generation mix of
both fluctuating sources leads to the best results w.r.t. the direct utilization ratio
as it helps to distribute demand better while the interday charging flexibility of
EVs supports short term output variations.

Critique and Further Research Opportunities

The presented analyses both assume securely known values for their input data.
This makes the results obtained an upper benchmark for the adoption potential
of fluctuating sources by EVs in the respective scenarios. A shorter optimization
horizon that does not require as much prior knowledge as assumed to be avail-
able, will lead to a more realistic assessment. For the benchmark scenario this
analysis was performed and showed that still considerable parts (i.e. more than
60%) of demand can be covered by renewable sources. Moreover, this analysis
does not account for the stochastic nature of the applied generators or sponta-
neous and irregular trip patterns. Nevertheless, it shows that the value of infor-
mation about trip behavior for the next 1-3 days is crucial in order to coordinate
the demand requirements with the expected variable supply sources.

The uniform pricing signal only incorporates the overall availability of renew-
able energy in its pricing pattern. The additional availability component slightly
ameliorates the effect observed if all individual EVs perform their optimization
without taking into account the remaining generation capacity. Nevertheless,
new demand concentrations can be observed as a consequence of synchronized
load behavior. In reality some of this load synchronicity will be diminished by
stochastic elements in the demand and generation patterns, but this still shows
that a decentralized charging coordination mechanism must set the right signals
and incentives for EVs to shift their demand such that regional grid constraints
and trip requirements are met. A local price component that maps the available
capacity could be a possible solution to this challenge, following the approach of
Schweppe et al. (1988) or the related implementation in Flath et al. (2013).

In this context the assessment of EV load flexibility in the individual context
will also highly impact the results w.r.t. the ability to directly utilize renewable
energy sources for EV charging.





Chapter 6

Summary and Conclusion

The transformation of the power system architecture from a centrally organized
and operated system to a decentralized Smart Grid with a high share of volatile
renewable generators requires the activation of demand side flexibility poten-
tials. The thesis at hand investigated the demand response capabilities of EVs
from different perspectives. Chapter 2 provides a comprehensive overview of
the power system structure, the role of power markets and demand response
in this context with a focus on EVs as a promising flexible load utilizing its
demand shifting capabilities. Subsequently Chapter 3 specifies the research
scenario and the methods employed within this thesis. In particular the role
of the EV aggregator and the mechanisms for charging coordination are intro-
duced. Further on the empirical input data employed in the analyses as well as
simulation as a method for research in power systems are described.

Building on these foundations, Chapter 4 investigates the economic implica-
tions for EV-owners that individually coordinate their charging actions given
a centralized variable price. This price is based on the wholesale energy price
or on other signals addressing the system peak load and the availability of
wind-power. Additionally, the individual economic effect of a V2G operation
strategy is quantified under endogenous consideration of battery degradation
costs.

In Chapter 5 the capability of EV fleets to map a given intermittent generation
pattern and capacity is assessed under consideration of different optimization
time frames. The analyses to quantify the demand side flexibility of an EV fleet
differentiate between a central scheduling based upper benchmark approach,
and a price based coordination mechanism enabling decentralized charging de-
cisions. The findings and implications of these analyses are now condensed in
the following section.
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6.1 Contributions and Implications

The contributions of this thesis are elaborated according to the research ques-
tions formulated in Chapter 1. They are then discussed with respect to their im-
plications on the power system and its regulation and finally, critically assessed
under consideration of the inherent limitations of the employed approach.

6.1.1 Individual Economic Assessment of EV Charging
Strategies

The individual costs for EV-owners are quantified as average costs per capita for
the sociodemographic groups of employees and retirees. There are considerable
differences in the economic outcomes of the analyzed charging strategies (cf.
research question 1), given the variable pricing scheme as a basis for economic
assessment.

The uncoordinated charging strategy (AFAP) is the least performing with
respect to most applied evaluation measures. AFAP incurs the highest average
costs per week ranging within 8.42 - 9.47 EUR (0.17 - 0.24 ct/kWh) for employees
and 4.44 - 6.19 EUR (0.17 - 0.24 ct/kWh) for retirees. These costs are due to
the fact that charging occurs during the rather high priced late afternoon and
evening hours. Even though this strategy is the most expensive and has the
potential to globally increase the system peak load, the demand of EVs is dis-
tributed fairly well during the week. As this strategy does not consider anything
else but the mobility requirements, it guarantees the maximum potential travel
distance, but does not employ any of the demand shifting flexibility that EVs
have.

The cost minimizing smart charging strategy (EEX) represents the best option
with respect to individual economic outcome, as it shifts charging to the time
intervals with the lowest prices. The results show that this strategy leads to
average cost reductions per week between 32 - 72% for employees as compared
to the AFAP case. For retirees the average savings range between 50 - 74%
per week as compared to the AFAP case. The range of variation stems from
varying assumptions about the variable price incentive available to the vehicles.
This shows how important the development of the wholesale price spread
and the regulatory framework regarding the accessibility of variable prices for
end customers are. Even though from an economic perspective this option is
best, the results hold in particular for early adopters of price sensitive charging
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strategies. A wide scale adoption of EVs will influence the price determination
and lead to higher market prices, which will further deteriorate savings. In
addition, centralized uniform price signals do not incorporate local distribution
grid conditions and must thus be adapted accordingly as they considerably
increase the temporal concentration of charging load.

An extension of the smart charging strategy allows for further cost reductions
even under the consideration of moderate battery degradation costs1. This
strategy not only shifts load to cost minimal times but takes advantage of
arbitrage opportunities on the wholesale energy market by feeding energy back
to the grid (research question 2). The average cost reductions for employees
increase from 32% per week to 44% as compared to AFAP if V2G operations
are permitted. For retirees the savings increase from 50% per week to 61%. The
results are promising as this part of the analysis incorporates current German
power market regulations, and still demonstrates the financial profitability of
a V2G strategy. Nevertheless, the results are sensitive to assumptions about
battery degradation cost development and the further development of the
wholesale market price spreads. In particular the merit order effect can be
detrimental for this operation strategy of EVs as it reduces the amount of hours
with high market prices. Apart from that, negative price events2 induced by
high wind and solar feed-in at low load, could be an opportunity that creates
incentives for V2G strategies in the future. The increased volatility in the
generation sector is likely to demand for more flexible generation resources, a
requirement that EVs are able to meet (Andersson et al., 2010).

Coordinating the charging process according to the system load factor mostly
resembles a conventional dual charging strategy, with charging during the
night. In addition the load of this strategy is often concentrated at the weekly
load factor minimum on early Sunday mornings which can be problematic if
EVs are not distributed throughout the power grid. The savings are lower than
in the cost minimizing strategy and amount to 63% for the employees and 66%
for the retirees as compared to AFAP. Since the global system condition might
be contradictious to the local capacity constraints this charging strategy does
not appear to have any substantial advantages, neither for the power grid nor

1These results refer to the reference scenario with 0.1 EUR/kWh energy related and 0.01
EUR/kWh2 power related battery degradation costs, and include infrastructure costs.

2Between 2008-2012 there was an average of 46.8 hours in the year with negative prices on the
EEX (EEX, 2013).
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for the EV-owner.

The residual charging strategy is sensitive to the overall system load factor
but also considers the availability of higher shares of wind-power. From a cost
perspective it is similar to the load factor strategy and also generates average
savings of 64% for employees and 65% for retirees as compared to AFAP. The
ability to react to higher shares of wind-power in the system makes this strategy
a fairly good option, including multiple criteria in its coordination objectives.
Since it adopts more wind-power in the average yearly demand as the cost
minimizing, load factor, and AFAP strategy, it constitutes a good operational
compromise. Even though the strategy is advantageous, it must consider local
constraints for its further application.

Coordinating EV charging according to the relative share of wind-power
in the system can increase the average yearly share of wind-power in the EV
demand from around 7% for AFAP to 14% for employees and 15% for retirees.
This improvement in wind-power utilization comes at higher costs than in all
other smart charging strategies, but still achieves average savings of 48% for
employees and 49% for retirees as compared to AFAP. These results show that
the integration of wind-power into the charging demand is not adequately
incentivized by the currently applied market conditions. The merit order effect
and an increasing share of volatile generation (e.g. PV) have the potential to
improve this situation if they are accounted for in further developments of a
RES-oriented charging strategy.

In conclusion it can be said that smart charging is indeed worthwhile in the
investigated scenarios. EVs that are responsive to price incentives or other charg-
ing signals have the potential to substantially increase savings and share of uti-
lized wind-power as compared to the case of no charging coordination. The
consideration of energy and power related battery degradation costs supports
these findings and suggests lower charging powers to further foster the grid in-
tegration of EVs.

6.1.2 Renewable Energy Integration Potential of EV Fleets

In order to quantify the demand flexibility of EVs, the ability of an EV fleet to
shift its load in such a way as to closely map the volatile generation output of
renewable sources and thus minimizing the reliance on conventional generation
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must be assessed. This analysis is performed from the perspective of an EV
aggregator that schedules EV demand according to the generation output of
wind and PV under consideration of mobility and conventional generation
constraints for the time period of one week (research question 3).

The results of this scheduling approach present a benchmark with respect
to the maximum renewable energy utilization potential. They show that
employees which only charge at the home location have the ability to utilize
up to 84% wind-power to cover their yearly demand, while retirees achieve
79% in the same scenario. As generation output is scaled to exactly meet the
yearly EV-demand, the ability of the EVs to shift their demand is at the center of
the analysis. The slightly lower utilization rate of retirees is mainly due to the
conventional generation constraints which assume the same capacity and must
run time constraints for both groups.

If PV is employed as the main source for charging of the distributed EV
fleet it can be observed that the adoption rate is lower for employees with 65%
of the yearly demand covered and 68% for retirees. Allowing for additional
charging opportunities at work and leisure locations further increases these
values to about 72% for both groups. The best adoption rate can be achieved by
the evenly mixed generation portfolio of wind-power and PV, which yields a
maximum of 86% for employees and 83% for retirees, under invariance against
the charging location and applied charging power. AFAP in comparison only
yields values between 19% (employee, 3.6 kW, home, PV) and 64% (retired, 3.6
kW, home+work+leisure, wind+PV). This implies that knowledge about the trip
requirements is crucial to allow for an effective adoption of fluctuating energy
sources in the electricity supply.

Since regular trip patterns are quite well known in advance (e.g., work trips)
information about the availability of variable generation plays an important
role. To account for uncertainty about the available renewable generation, a
reduction of the optimization horizon to one day is performed. The results show
that the share of renewable energy adopted is lower with 62% (wind, home) for
employees and retirees with 64% (wind, home) than in the weekly optimization
scenario. Maximum adoption is in the range of 74% (home+work+leisure, 11
kW, wind+pv) for employees and 77% for retirees. The daily optimization thus
takes into account more accurate generation forecasts, but at the same time
loses demand flexibility that exists between the different days as vehicles do not



204 Summary and Conclusion

need to be recharged every day to guarantee mobility. In this context, accurate
knowledge about the trip patterns for 1-3 days and the availability at the power
grid is essential to unlock the full adoption potential for renewable energy. In
the future, one should explore the possibilities to adjust trip requirements in
order to exploit the full RES adoption potential. With respect to generation
sources and charging locations, it can be concluded that work charging is
beneficial for employees with respect to PV utilization, and that leisure locations
do not necessarily need to provide charging opportunities for either of the
sociodemographic groups, since the bulk potential can be unlocked by home
and work charging already.

If the flexible demand of an EV fleet is to be coordinated by a price signal
based on the relative scarcity of renewable generation and the potential grid
availability of the EVs, a decentral economic decision of every vehicle is pos-
sible. The results with respect to the price based coordination approach of an
EV aggregator fleet (research question 4) show that a uniform price mechanism
can produce new demand concentrations that overcompensate the available
renewable generation capacity for the particular time interval. Over a year
the adoption potential of wind-power for an evenly weighted EV fleet with
25% employees, retirees, unemployed and part-time employees is 40% of the
yearly demand (home, 3.6 kW). Due to the new demand peaks, uncoordinated
charging would perform better in this case with a share of 47% of yearly demand
covered. In order to increase the RES adoption share, the charging power can
be lowered, e.g., to 1 kW. As before an even mix of PV and wind-power can
be employed to supply the vehicles. This yields a maximum of 75% of EV
demand covered by renewable sources. This increase however comes at the
cost of less feasible driving profiles since the charging power does not suffice in
particular for about 19% of the employees to cover their mobility requirements.
The uniform price based coordination must be thus altered to include a local,
or in this case, a renewable capacity feedback mechanism that dynamically
incorporates the scarcity of renewable generation still available in one time
interval.

A further economic analysis shows that even if the capital costs for a con-
tracted wind power plant are included the average offering price for the aggre-
gator, or in particular the costs for the EV-owner, based on cost and price data
for 2009, is near the average end-consumer price for this year. In particular the
aggregator could offer wind power including all fees at around 23.19 ct/kWh,
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while the average price for 2009 was 22.82 ct/kWh for end-consumers. For an ex-
clusive PV offer the costs would be considerably higher at 2009 price values with
an average price level of 47.43 ct/kWh. The substantial cost reductions in recent
years dramatically improve the offer for PV only supply, but would still make
it an expensive option. If a customer would instead choose a variable supply
based on the wholesale price for 2009 his costs would only approach the region
of 14 - 15 ct/kWh. Since the situation with respect to levelized cost of electricity
from PV has developed quickly in recent years, the economics of autonomous
PV based supply have improved, making a local utilization of electricity PV fi-
nancially viable and worthy of further investigations.

Overall this thesis shows that EVs have the potential to cover substantial
amounts of their demand from volatile sources, and that they can do so at only
low additional costs. In order to support a decentralized charging decision local
grid capacity and renewable generation potentials must be accounted for in the
respective price incentives.

6.1.3 Limitations of the Approach

The simulation-based analysis is dependent on the quality of input data and
the assumptions made about the research scenario. This work mostly employed
real world data in particular for driving profile characteristics and generation, as
well as price patterns. Nevertheless, uncertainty is not explicitly accounted for
in most of the analyses. Instead, several sensitivities with respect to the availabil-
ity of charging locations and different pricing regimes were investigated. Future
work thus needs to address the impact of the inherent uncertainty that exists
about driving profiles and renewable generation patterns on the optimization
objectives. Price uncertainty also exists, but has a lower impact in markets that
have a reference price which is determined in an auction for every time interval
of the following day. This could change if additional locational price components
are considered in future regional power markets (Schweppe et al., 1988). Shorter
optimization horizons and stochastic optimization methods (e.g., rolling horizon
approaches) should thus be addressed by further studies of EV demand flexibil-
ity. The assumptions about fleet size, technical specifications of the vehicles and
generation capacity dimensioning were made in such a way that they represent
reasonable, real world problem sizes and instances. The instances chosen repre-
sent the most relevant groups and account for a likely development with respect
to intermittent generation sources and power market regulation when it comes
to the availability of variable prices for end consumers.
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6.2 Further Research Opportunities

This thesis concentrates on EVs, but further work must also consider the interac-
tion with other (flexible) loads and the local generation capacity in order to allow
for an integrated assessment of EVs and their demand response capabilities. A
possible approach would be to first include unresponsive conventional loads
like households (cf. Gottwalt et al. (2013)); further steps should then investigate
the interaction with an increasing share of responsive loads (e.g. air condition-
ing, domestic water heating or heat pumps) and quantify the abilities of EVs in
relation to other load types. Further application of the evaluated coordination
strategies to other flexible loads could also be a promising extension of the
presented work, since more than the potential load flexibility of EVs is required
to support the realization of the "Energiewende" in the power sector.

Starting from the demand side flexibility of EVs, the quantification of load
flexibility must be further pursued in order to unlock the full potential that
Smart Grid technology is able to deliver. For this, the increasingly available
amount of smart metering load and generation data can be scrutinized with
respect to common consumption patterns and the derivation of load shifting
potentials. The strategies developed in this thesis could be further integrated
in a decision support system based on this data, helping end-customers to
make more informed decisions about their daily energy consumption and thus
support the development of an effective demand response capability.

The development of the regulatory framework needs to support more de-
centralized decisions and system operation, and must potentially be adapted
to respond to structural changes imposed by the large numbers of distributed
energy resources and adaptive loads like EVs. Since centralized solutions
are not capable to address the complexity imposed by the variability and the
distributed nature of the envisioned Smart Grid, decentralized coordination
mechanisms must be further investigated and validated in regional markets
under consideration of the inherent uncertainty in this environment (Ramchurn
et al., 2012). The presented coordination approaches are likely to be applied by
EV owners and EV aggregators and could, through further development to a
large scale scenario, support the assessment of regulatory design decisions for
the power market regarding these roles.
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Even though the Smart Grid is predominantly a techno-economical concept,
the integration of the user must occur in an appropriate manner. In this context,
the elicitation of user preferences and their accurate representation by automa-
tion technology is crucial for the efficient implementation of demand response
mechanisms. Only through active, safe and privacy supporting consumer par-
ticipation, the Smart Grid paradigm can truly deliver its envisioned promises.





Appendix A

List of Abbreviations

AC Alternating Current
AS Ancillary Services
BEV Battery Electric Vehicle
CAISO California Independent System Operator
CCGT Combined Cycle Gas Turbine
CCP Critical Peak Pricing
CV Coefficient of Variation
DC Direct Current
DR Demand Response
DER Distributed Energy Resource
DSM Demand Side Management
DSO Distribution System Operator
EEX European Energy Exchange
EPEX European Power Exchange
EDV Electric Drive Vehicle
ESP Energy Service Provider
EV Electric Vehicle
FC Fuel Cell
FCEV Fuel Cell Electric Vehicle
HEV Hybrid-Electric-Vehicle
ICE Internal Combustion Engine
ICEV Internal Combustion Engine Vehicle
ISO Independent System Operator
MOP Mobility Panel Germany
NHTS National Household Travel Survey
PEMFC Proton Exchange Membrane Fuel Cell
PLC Power Line Communications
PHEV Plug-In-Hybrid Electric Vehicle
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PV Photovoltaics
RTP Real Time Pricing
RTO Regional Transmission Operator
SOC State of Charge
TOU Time-of-Use
TRY Test Reference Year
TSO Transmission System Operator
UC Unit Commitment
VPP Virtual Power Plant



Appendix B

List of Symbols

C Usable capacity of the storage device
dt Energy consumption in time slot t
gt Total generation in time slot t
gt,I Intermittent generation in time slot t
gt,C Conventional generation in time slot t
gt,C Maximum conventional generation in time slot t
lt Total load in time slot t
υc Number of time slots to charge at max. power
ηc Charging efficiency in % of initial input
pt Price of electricity in time slot t
pt,C Price of conventional generation
pt,R Price of renewable generation
ψ Storage costs
rt Rank of hour t
ϕt Charge parameter for time slot t
zt Location of the EV, i.E. charging availability
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Appendix C

EV Technology and Storage
Components

EV Drive Train Concepts and Grid Connectors

Institute of Information Systems and Management34 A. Schuller – R2V: Price Based Charging Coordination for EVs 28.02.2013

a) b) c) d) e) f)

ICE

EE/ Gearbox Fuel tank

Battery Reformer

Fuel cell

Power 
converter

Figure C.1: Schematic representation of different vehicle drivetrain concepts: a) Con-
ventional ICEV, b) EV, c) FCEV, d) Series-Hybrid, e) Parallel-Hybrid, f) Series Parallel
Hybrid, adapted from Pollet et al. (2012).
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Institute of Information Systems and Management41 A. Schuller – R2V: Price Based Charging Coordination for EVs 05.03.2013

Type 2  Type 2 Combo

Figure C.2: Type two connectors for Europe, and the standard connection in Germany
according to IEC 62196-2 /3 adapted from NPE (2011a).

Institute of Information Systems and Management42 A. Schuller – R2V: Price Based Charging Coordination for EVs 05.03.2013

AC

DC

Combined 
AC/DC 
Charging

Type 1  (US) Type 2  (Europe) Type  (GB/China)

Figure C.3: Main EV connector types according to norm IEC 62196 for the US and Eu-
rope, adapted from (Phoenix Contact, 2012).
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TableC.1:SpecificationsofCommerciallyAvailableLi-ionCellsfromSeveralManufacturers,fromReddyandLinden(2011).
AverageChargeSpecificEnergy
voltageendpointCapacityDiameterLengthVolumeenergydensityPositive

ManufacturerCell[V][V][mAh][mm][mm][mL]Mass[g][Wh/kg][Wh/L]electrode
EnergyCells
PanasonicNCR186503.64.2290018.665.217.71N/AN/A589.31NCA
PanasonicCGR18650E3.74.2255018.665.217.7146.5202.90532.58
PanasonicCGR18650CG3.64.2225018.665.217.7145180457.22
LGChemICR18650C13.754.35280018.2965.0217.0848218.75614.66
SamsungICR18650-30A3.784.35300018.665.217.7148236.25640.12
SamsungICR18650-28A3.754.3280018.665.217.7148218.75592.70
SamsungICR18650-26F3.74.2260018.665.217.7146209.13543.03LCO/NMC
SamsungICR18650-24F3.74.2240018.665.217.7145197.33501.25NMC
SamsungICR18650-22F3.74.2225018.665.217.7144.2188.34469.93NMC
SanyoUR18650-ZT3.74.3280018.2465.117.0148215.83609.04Hybrid(?)
SanyoUR18650-F3.74.2260018.164.816.6747204.68576.98
ATL18650E3.74.2215018.46517.2845176.77460.27NMC
BostonPowerSonata44003.74.2440018.565.244.7592176.95363.79LCO
E-OneMoliIHR18650B3.64.2225018.465.217.347.5166457NMC
PowerCells
A123APR18650M13.33.6110018.46517.33993.07210.02LFP

AHR18700M1
A123Ultra3.33.670018.470.018.63861124LFP
SamsungIFR18650-11P3.23.6110018.665.217.714381.86198.69LFP
ATL18650P3.74.2138018.46517.2845113.46295.43NMC
E-OneMoliIMR18650E3.84.2140018.246516.9842126.66313.23LMO
E-OneMoliIMR18650D3.84.2153018.465.317.744.5133344LMO
E-OneMoliIBR18650B3.64.21500186516.642129327LMO/NMC
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Institute of Information Systems and Management38 A. Schuller – R2V: Price Based Charging Coordination for EVs 04.03.2013Figure C.4: General representation of the electrochemical process in a Li-ion cell (Reddy
and Linden, 2011).



Appendix D

Renewable Energy Generation Data
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(a) 15 min. wind generation variation for
summerdays
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(b) 15 min. wind generation variation for
transition days
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(c) 15 min. wind generation variation for
winter days
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(d) 15 min. wind generation variation for
all day types

Figure D.1: Wind-power generation variation for all TRY day types for Germany for
2007, (EEX, 2009).
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(a) 15 min. wind generation variation for sum-
merdays
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(b) 15 min. wind generation variation for tran-
sition days
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(c) 15 min. wind generation variation for win-
ter days
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(d) 15 min. wind generation variation for all
day types

Figure D.2: Wind-power generation variation for all TRY day types from the 50 Hertz
TSO-zone, (50-Hertz, 2010).
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(a) 15 min. PV generation variation for sum-
mer days
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(b) 15 min. wind generation variation for tran-
sition days
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(c) 15 min. PV generation variation for winter
days
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(d) 15 min. PV generation variation for all day
types

Figure D.3: Wind-power and PV generation variation for all TRY day types from the 50
Hertz TSO-zone, (50-Hertz, 2010).
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Empirical Driving Patterns
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(a) Part-Time Employees
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(b) Unemployed

Figure E.1: Availability at home, work and leisure locations for part-time employees and
unemployed over the course of the week.
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(c) Weekly distribution Part-time Employees
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(d) Unemployed

Figure E.2: Distribution of profiles with respect to the weekly driving distance for all
four sociodemographic groups.
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retired persons of the MOP that were employed for most of the analyses, BMVBS (2008).





Appendix F

Benchmark Model Formulation

// Benchmark Optimization Model Formulation in OPL

// Variable declaration

int NbPeriods = ...;

int NbVehicles = ...;

float maxConventionalGeneration = ...;

float minConventionalGeneration = ...;

float initSoc =...;

float maxSoc = ...;

float endSoc = ...;

float efficiency = 0.93;

float maxChargeAmount =...;

// Constant conventional generation costs in ct/kWh

float conventionalGenCost = 0.05;

range Vehicles = 1..NbVehicles;

range Periods = 1..NbPeriods;

float ChargingPossible[Vehicles][Periods] = ...;

float Demand[Vehicles][Periods] = ...;

float RG[Periods] = ...;

// Decision variables

dvar float+ PosChargeamount[Vehicles][Periods];

dvar float+ Soc[Vehicles][Periods];

dvar float+ CG[Periods];

dvar int isOn[Periods] in 0..1; // integer variable

dvar int ramp[Periods] in 0..1; // integer variable
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226 Benchmark Model Formulation

//Objective function

minimize

sum( t in Periods )(

CG[t]*conventionalGenCost);

//Constraints:

subject to {

// Positive conventional generation max. capacity

forall(t in Periods)

ctConventionalGeneration:

RG[t]-(sum (v in Vehicles)PosChargeamount[v][t])/efficiency + CG[t]>=0;

// Convetional generation constraints

forall(t in Periods)

ctConventionalGenerationCapacity:

CG[t]<=maxConventionalGeneration*isOn[t];

// Minimum capacity requirement CG

forall(t in Periods)

ctMinConventionalGenerationCapacity:

isOn[t]*minConventionalGeneration <=CG[t];

// If CG is on, it has been on, or needs to be ramped to be on

forall(t in 2..NbPeriods)

ctRamping:

isOn[t]<=isOn[t-1]+ramp[t];

// Three time steps minimum run time constraints

forall(t in 1..NbPeriods-1)

ctRampingKeepOn1:

isOn[t+1]>=ramp[t];

forall(t in 1..NbPeriods-2)

ctRampingKeepOn2:

isOn[t+2]>=ramp[t];

forall(t in 1..NbPeriods-3)

ctRampingKeepOn3:

isOn[t+3]>=ramp[t];
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// In the first timeslot the CG must be ramped to be on

ctRampingFirst:

isOn[1]<= ramp[1];

// EV constraints

forall(v in Vehicles)

ctInitStorage:

Soc[v][1] == initSoc + PosChargeamount[v][1] - Demand[v][1];

forall(v in Vehicles, t in 2..NbPeriods )

ctStorageConstraint:

Soc[v][t] == Soc[v][t-1]+ PosChargeamount[v][t] - Demand[v][t];

forall(v in Vehicles, t in Periods )

ctChargeamount:

PosChargeamount[v][t] <= ChargingPossible[v][t]*maxChargeAmount;

// Battery capacity constraint is the same for the entire fleet

forall(v in Vehicles, t in Periods )

ctMaxSoc:

Soc[v][t] <= maxSoc;

forall(v in Vehicles)

ctEnd:

Soc[v][NbPeriods] == endSoc;

// SOC is always positive

forall(v in Vehicles, t in Periods )

ctNonNegativeSoc:

Soc[v][t] >= 0;

forall(t in Periods)

ctNonNegativeCG:

CG[t]>=0;

forall(v in Vehicles, t in Periods)

ctNonNegativeChargeamount:

PosChargeamount[v][t] >= 0;

};





Appendix G

Computation Time Analysis
The following figures give an impression of the simulation times in the benchmark simulation
model case. In addition the details of the employed main hardware for simulations and the
main software packages used are reported.

Main Simulation Machines:
• Intel(R) Core(TM) 2 Duo CPU T9400 2.53 GHZ, 4 GB RAM, Windows 7 Enterprise, 64 bit.
• Intel(R) Core(TM) i7-2620M CPU @2.70 GHz, 8 GB RAM, Windows 7 Professional 64 bit.
• AMD Phenom(tm) II X6 1055T Processor 2.80 GHz, 16 GB RAM, Windows 8 Pro 64 bit.
Main Software:
• Java Versions: 1.6.21-24, 1.7.0-11
• Optimization Engine: IBM Ilog CPlex 12.4.0.0 (Chapter 4.2 and 5.1), lp-solve 5.5.0.2 (Chap-

ter 4.1 and 5.2)
• Evaluations and Graphs: R 2.14.2 and previous Versions, R Studio version 0.97.309, Matlab

Version 7.10.0499(R2010a)

Comments on the Computation Time Analysis

Following the trends depicted in the Figures below one can observe that computation time is
particularly increasing in situations in which the solution space for the optimization problem
is increased. This can be achieved in particular by lower charging powers, in conjunction with
additional charging locations. Also the PV scenarios are observed to be the ones with the highest
overall per day or per week computation times. The most extreme case occurs for retirees in the
home only PV case with 3.6 kW G.15. In this particular setting the computation of the optimal
schedule for one day takes substantially longer than one day to compute which makes an opera-
tive decision in a day ahead setting impossible. Therefore a reduction of the optimality criterion
must be considered in such cases.
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Figure G.1: Computation times overview for the optimal benchmark case for employees
in the weekly optimization home charging scenario.
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Figure G.2: Computation times overview for the optimal benchmark case for employees
in the weekly optimization home + work charging scenario.
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Figure G.3: Computation times overview for the optimal benchmark case for employees
in the weekly optimization home + work + leisure charging scenario.
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Figure G.4: Variation of computation times for the optimal benchmark case for employ-
ees in the weekly optimization scenario.
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Figure G.5: Computation times overview for the optimal benchmark case for employees
in the daily optimization home + work + leisure charging scenario.
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Figure G.6: Computation times overview for the optimal benchmark case for employees
in the daily optimization home + work + leisure charging scenario.
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Figure G.7: Computation times overview for the optimal benchmark case for employees
in the daily optimization home + work + leisure charging scenario.

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily Home Wind

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily Home Wind + PV

0

20

40

60

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily Home PV

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWork Wind

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWork Wind + PV

0

5000

10000

15000

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWork PV

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWorkLeisure Wind

0

10

20

30

40

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWorkLeisure Wind + PV

0

200

400

600

800

3.6 11.0
Charging Power [kW]

C
om

pu
ta

tio
n 

T
im

e 
pe

r 
D

ay
 [s

]

Employee Daily HomeWorkLeisure PV

Figure G.8: Variation of computation times for the optimal benchmark case for employ-
ees in the daily optimization scenario.
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Figure G.9: Computation times overview for the optimal benchmark case for retirees in
the weekly optimization home charging scenario.
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Figure G.10: Computation times overview for the optimal benchmark case for retirees in
the weekly optimization home + work charging scenario.
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Figure G.11: Computation times overview for the optimal benchmark case for retirees in
the weekly optimization home + work + leisure charging scenario.
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Figure G.12: Variation of computation times for the optimal benchmark case for retirees
in the weekly optimization scenario.
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Figure G.13: Computation times overview for the optimal benchmark case for retirees in
the daily optimization home charging scenario.
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Figure G.14: Computation times overview for the optimal benchmark case for retirees in
the daily optimization home + work charging scenario.
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Figure G.15: Computation times overview for the optimal benchmark case for retirees in
the daily optimization home + work + leisure charging scenario.
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Figure G.16: Variation of computation times for the optimal benchmark case for retirees
in the daily optimization scenario.
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