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Abstract—Requirements are usually one of the main drivers for
software architecture. Although current research acknowledges
the opposite effects of design decisions on requirements engineer-
ing, it does not go beyond the general idea of their existence.
The contribution of this paper lies in the explicit discussion of
the effects of design decisions on requirements engineering. We
define two types of design decisions and discuss their effect on
requirements, and in particular on elicitation and prioritisation.
Furthermore, we propose and demonstrate on an example two
channels from architectural design to requirements that can
be used to drive requirement elicitation and prioritization.
This is the base for a new approach where also the results
of the quantitative analysis of the effects of requirements on
architecture are fed back into the requirements process.

Index Terms—Software architecture, requirements engineer-
ing, design decisions

I. INTRODUCTION

The common way to design software is to refine gradually
requirements into software architecture. Typically require-
ments are incomplete, and the later the relevant requirements
are elicited, the more expensive their consideration might
become [1]. That is why the most recent research is concerned
with the understanding of the interaction between software ar-
chitecture and requirements [2], [3], [4], [5], and, for example,
Nuseibeh [6] proposes to refine requirements and architecture
iteratively together. However, this understanding is currently
only partial, merely qualitative in nature, and does not go
beyond the general idea that design decisions (we use the defi-
nition by Jansen et al. [7]) can affect requirements engineering.
To the best of our knowledge, there are neither a common
understanding of these effects, nor available approaches to
utilise design decisions in requirements engineering.

This paper aims at setting the direction for a new line
of research in a common and quantitative understanding of
the effects of architecture on requirements and how this
understanding can be used in requirements engineering. To
initiate the research in this direction, we propose to distinguish
between two types of design decisions: recurring and project-
specific. A recurring design decision is a decision about
reusing existing design solutions, such as design patterns,
software components or Web services, and about deployment
of components and of Web services. The project-specific
design decisions are other decisions that do not fall into the
first category, e.g. implementation of a new component.

While project-specific design decisions are hard to deal
with in a systematic way, we discovered that the recurring
design decisions have a high potential to contribute to and
to drive requirements engineering. Our argument is based on
two ideas: (a) After an analysis, recurring design decisions can
be annotated with decision-specific questions. These decision-
specific questions are used to stimulate the software engineer
to inquire additional information which is used to justify the
design decision. The additional information is elicited by the
requirement engineer. (b) Taking recurring design decisions
can be semi-automated by using a design space exploration
approach. This can lead to the quantitative support of taking
trade-off decisions (in particular, trade-off between costs and
quality properties or of two antagonistic quality properties).
Making such trade-offs explicit and giving quantitative data
on the impact of a design decision supports the prioritisation
of requirements.

Therefore, we identify the following types of effects of
design decisions on requirements: (a) Elicitation - additional
requirements are needed to take the decision, and (b) Prioriti-
sation - the priorities of the requirements have to be adjusted
according to their impact on costs and quality properties.

The contribution of this paper is an initial description of
a new approach that supports requirements elicitation and
prioritisation. This approach explicitly and quantitatively in-
vestigates the effects of design decisions on requirements
engineering (how can the architecture influence requirements).
This results in the identification of two channels from archi-
tectural design to requirements — recurring design decisions
and design decision space exploration.

II. CHANNELS FROM ARCHITECTURE TO REQUIREMENTS

A. How Recurring Decisions Help to Elicit Requirements

Software architecture typically implies a number of recur-
ring design decisions, such as selecting design patterns or com-
ponents, which we propose to use to drive the requirements
activities. The idea is to annotate the recurring design decisions
with special checklists – the decision-specific questions –
and to store them in a catalogue for future use, as initially
proposed for design patterns in our previous work [8]. The
questions reflect basic properties of the recurring decision,
such as goals, benefits and consequences, and shall support



TABLE I
AN EXCERPT OF THE CHECKLIST FOR THE FAT CLIENT PATTERN

Question
Q1 (G). Would you like a client to be able to perform the functionality in
circumstances of potential disconnection to the main server or service?
Q2 (I). Would you like to reduce the load on your main server or network
through the higher processing and capacity demands to the client devices?
Q3 (I). Is working offline essential for your application?
Q4 (C). Will the application be running on powerful devices and porting
to low-performance devices can be excluded in the future?
Q5 (C). Is your infrastructure limitedly heterogeneous and this is unlikely
to change in the future?
Q6 (C). Is potential slower start-up of the application acceptable?

the critical evaluation of the feasibility of the recurring design
decision. However, they are not intended to help with the initial
selection of the best solution as compared to an expert system.

In Tab. I, we present an excerpt of such a catalogue entry for
the Fat Client pattern [9]. Each question has a type: Goal (G)
- the main goal of the decision, Intent (I) - intended features
and properties of the decision, and Consequence (C) - possible
(negative) consequences of the decision.

By checking the questions, a person making the decisions,
e.g. a software engineer, receives hints about the design
decision in question and its aspects that might have been
forgotten or might not have been considered otherwise. These
questions and answers are aligned to requirements of the sys-
tem. If the currently available requirements are not sufficient to
answer the questions, the requirements engineer can elicit the
additional requirements that are needed at the current stage of
the project. The requirements engineer can decide to modify or
re-prioritize the existing requirements, if the software engineer
discovered contradictions and inconsistencies with the deci-
sion. Hereby, the link from the recurring design decisions back
to the requirements gets established, thus, driving requirements
engineering through architecture.

B. How Design Space Exploration Helps to Prioritize Re-
quirements

Design space exploration is an approach that uses de-
sign models and quality evaluation functions to automatically
search a given, defined design space for optimal designs. In the
course of the design space exploration, the design models are
varied along defined degrees of freedom (i.e. search variables).
Each so generated design candidate can then be quantitatively
evaluated using the quality evaluation functions. If several
quality evaluation functions are of interest, the goal of the
exploration often is to find the Pareto-front of optimal trade-
off solutions, from which a human designer can select one.

For software architecture design, several approaches exist
to predict quality properties, such as performance [10], re-
liability [11], and costs. Approaches have been suggested to
leverage such quality prediction functions to explore the design
space of a given architecture (e.g. [12], [13], survey in [14],
example industrial application in [15]). When exploring, the
approaches vary recurring design decisions such as component
deployment, component selection, or hardware selection. As

these considered recurring design decisions usually do not
encode foundational decisions of the software architecture
(such as the used architectural style or the fundamental struc-
ture of the system), they can be thought of as a form of
architecture configuration as opposed to far-reaching design
decisions made in core architectural design.

We propose to leverage such design space exploration not
only to make decisions for the explored degree of freedom
variables (such as component deployment, component se-
lection, hardware selection), but to use it also for valuable
feedback for requirements engineering.

A possible approach is to use design space exploration to
quantitatively characterize the effects of any design option on
quality properties. Then, different design options proposed to
achieve a requirement can be considered together to quantita-
tively characterize effects of a requirement itself.

Let us consider an example of a new computationally inten-
sive requirement in a web application, such as the generation
of some graphical plots. This new feature could be realized
by two different design options: It could be added into the
workflow of the application sequentially (causing delay) or
its calculations could be done in parallel (on the same or on
a different server, thus causing higher utilization and waiting
times). Automatically exploring the design space shows that
both design options will cause (a) increased response time or
(b) higher costs if more servers are procured or a combination
of both. This insight can be used to select among the two
different design options. Furthermore, the quality properties
attainable by all these design options together quantitatively
characterize the quality trade-offs of the requirement itself.
Thus, these insights can be used to prioritize the requirement.

In our example, software architects and requirements en-
gineers (decisions makers hereafter) might consider not to
realize the new feature, as they judge that the costs and/or
performance drawbacks are too severe compared to the ex-
pected benefits of the feature.

In addition, design space exploration is also supposed to
help to prioritize quality requirements by defining appropriate
quality levels, as envisioned in our previous work [16].

C. Example

We demonstrate the proposed idea on the example of the
Business Reporting System (BRS), adapted from [16]. We
extend this example with respect to requirements elicitation
and include design decisions into the requirements prioritisa-
tion part. The system allows users to retrieve two types of
reports with different resource demands. It is implemented as
a three tier architecture with thin client running on stationary
PC connecting to the application tier though a Tomcat Web-
server. A high-level view on its architecture is depicted on
Fig. 1, where the current client implementation is marked with
blue and the changes are marked with green.

Fig. 1. Business Reporting System Example (Green and blue are the XOR
client variants)



In the Tab. II we provide an excerpt of requirements
and design decisions for the BRS that are relevant for the
understanding of the example.

Now consider the evolution scenario triggered by the new
requirement R06 (Tab. II): The reports must be also accessible
from the mobile devices.

1) Analysis of the Elements Involved into the Recurring
Design Decision: The new requirement R06 implies an un-
stable internet connection, which confronts with the decision
D01, which implies that the thin client has to have permanent
connection to the server. Thus, analysing the D01 the software
engineer elicits a new requirement R07 (possibly with the help
of the requirement engineer): The client must also be able to
work without stable internet connection.

This new requirement R07 invalidates the design decision
D01, as the fat client would be a more appropriate solution.
Using the decision annotations for the fat client (provided
in Tab. I), the software engineer can elicit some additional
requirements, such as: R08. The device must have sufficient
computing resources. Moreover, the recurring design decision
not only forwards the elicitation of the new requirement R08,
but also triggers the re-prioritisation of the existing ones. The
fat client would require regular updates (Tab. I), and thus,
either the R06 has to be invalidated, or the priority for the
R01 requirement has to be changed (it has to be invalidated).
This example demonstrates the potential of single recurring
design decisions to drive requirements engineering.

2) Design space exploration: The main available degree
of freedom to affect costs and performance of the BRS is
the component allocation and the hardware selection. We
assume that three different server types are available from the
organization’s hardware provider, with different capacity and
operating costs. Furthermore, we assume that information to
evaluate performance such as component resource demand and
workload are modelled (cf. [10] for details).

The new fat client design option needs less processing on
server side, because fat clients only requests a raw report from
the system and do not require the generation of plots. To
explore the consequences of this design option, the software
architect models its effects on the software architecture by
introducing an alternative fat client component that accesses
a new service “rawReport” by the webserver (marked green
in Fig. 1). This service has lower resource demands than the
previous “graphicalReport” service. Then, this design option
can be included into the design space exploration.

The design space exploration automatically searches the
design space spanned by these three aspects. Based on the
resulting trade-off curves shown in Fig. 2, decisions makers
immediately see that if the thin client design option is used
(blue diamond shapes), requirements R03 and R04 (Tab. II)
are in conflict: Only one of them can be fulfilled in the con-
sidered subset of the design space. The cheapest architecture
candidate that fulfils the response time requirement R03 has
operating costs are 15000 per year and thus exceed the planned
budget (marked (a) in Fig. 2), whereas the fastest architecture
candidate that fulfills the cost requirement R4 has an average

TABLE II
EXCERPT FROM REQUIREMENTS, DESIGN DECISIONS AND NEW

REQUIREMENTS (CHANGE RREQUESTS) FOR THE BUSINESS REPORTING
SYSTEM

A. Requirements
R01. The client side must require minimum updates (1 per month)
R02. Data integrity shall be warranted in 95% of requests
R03. The response time of the “report” service shall be lower than 3
seconds on average
R04. The operating costs of the system shall be lower than 10000 EUR
per year
R05. ...
B. Decisions
D01. The client for the desktop computer is implemented as Thin Client
D02. The Application tier is deployed on four servers.
D03. ...
C. New Requirements
R06. The reports must be also accessible from the mobile devices
R07. ...

response time of 3.5 seconds (marked (b)). If the thin client
design option is chosen, there are two options how to resolve
the performance-costs conflict: One possible resolution of
the conflict is to relax the response time requirement to 3.5
seconds and another solution is to relax the cost requirements
to a operating costs budget of 15000.

However, decisions makers also observe that both R03 and
R04 can be met if the fat client design option is chosen (green
triangle shapes). Thus, using design space exploration, an
additional argument for the fat client solution has been found
and can be taken into account when re-prioritizing the system
requirements. Inspecting the Pareto-optimal results they found,
software architects notice that with the fat client design option,
an allocation of components to three servers is sufficient to
satisfy the response time requirement R03. With the thin client
design option, four servers would be required to meet R03,
which leads to higher operating costs.

Notice that only using design space exploration, the effect
that a server can be saved becomes visible immediately if the
fat client solution is used. Without design space exploration,
the capacity planning might have been done earlier, and the
effect of the fat client solution on the performance-costs trade-
off might remain unnoticed.

Finally, decisions makers see that the operating costs could
be decreased to 7500 EUR/year if the response time require-
ment is relaxed to 3.5 seconds (due to the possibility to buy
less powerful servers, marked (c) in Fig. 2).

To summarize, decisions makers can prioritize among the
conflicting requirement for an easily updateable client (R01,
realized by thin client) and for mobile clients (R06) which
works without stable internet connection (R08, realized by fat
client). Furthermore, they can make additional quality level
decisions.

III. RELATED WORK

The influence of existing architecture and reusable elements
on requirements has been confirmed in several studies, such
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Fig. 2. Results of Design Space Exploration: Trade-off Curves

as in Ferrari et al. [17], or Boer et al. [4]. However, besides
observing this influence, they do not provide an approach
to utilize architecture or its elements for requirements engi-
neering. Engelsman et al. [18] focus on reverse-engineering
of requirements using the architecture and architecture-based
requirements specification reuse. The idea to use architecture
as a basis for further requirement discovery and determination
of the alternative design solutions was first presented by
Nuseibeh in [6] and Woods et al. [3]. We build upon these
ideas to propose an approach that uses the effects of design
decisions on requirements to support requirements elicitation
and prioritisation.

In previous work, we have briefly discussed the possibility
to use the design patterns for the elicitation of non-functional
requirements [8]. In this paper we introduce the idea to use
recurring design decisions for the requirement elicitation and
prioritisation, where the design patterns are a subclass of such
decisions.

Petrov et al. [19] also propose to integrate decision analysis
into requirements engineering. The authors deal with specific
information sources that can contribute to requirements spec-
ification – contextual environment concerns and architectural
patterns and heuristics (architectural patterns are not the design
patterns [20] we refer to in this paper, but are a kind of
“macro-architectural” best practices). These additional infor-
mation sources can be used complimentary to our approach,
as we do not conciser “macro-architectural requirements” [19]
explicitly.

We have also discussed the relationship of design space
exploration and quality requirements prioritization [21] and
proposed a method to systematically support quality require-
ments prioritization [16]. This paper extends on the previous
works focusing on the interplay of design space exploration
with other design decisions and general requirements deci-
sions, i.e. considers more than quality requirements.

In the area of software architecture optimization, a large
number of approaches have been suggested to improve a
given design with respect to several quality properties at
once. One type of approaches use multi-criteria optimization
(survey in [14]). Another type of approaches uses rule systems
to improve a given starting point architecture. For example,
the ArchE design assistant [22] applies rules (named tactics)
to improve modifiability and performance. However, none

of the approaches discusses the feedback that multi-criteria
optimization (i.e. design space exploration) can give to the
requirements decisions of other than quantifiable quality re-
quirements: They do not support analysing trade-offs between
quantifiable quality (such as performance or costs) on the one
hand and other quality requirements or functional requirements
(such mobile device support in our example) on the other hand.

In the area of quality requirements prioritization and soft-
ware architecture, methods like ATAM [23] help designers to
uncover quality requirements conflicts and find appropriate
trade-offs. However, the method is qualitative. While archi-
tecture evaluation approaches (e.g. for performance) are men-
tioned and can be included for single architecture candidates
as needed, the relation to automated design space exploration
is not discussed.

IV. FURTHER DIRECTIONS

The effects of the design decisions on requirements en-
gineering need to be investigated further on. We need to
empirically evaluate the extent of the feedback of annotated
recurring design decisions back to requirements. We need to
investigate the benefits of the annotated decisions catalogue on
several architectural tasks, such as adding functionalities and
refactoring. This should result in a fine-grain classification of
design decision types (e.g. deployment or pattern selection)
and their effects on requirements.

On the design space exploration side, design options need to
be modelled on the architecture level (as shown in Figure 1 in
green or blue). Furthermore, design options need to be traced
to requirements to reflect the conflicts detected at the design
decision level back to the requirements level.

On the other hand, interpretation support for situations with
many requirements, design options, and quality evaluation
functions need to be devised. Here, conflicts where human
decision makers have to make trade-off decisions could be
highlighted automatically whereas decisions with small impact
are deferred or even decided automatically.

V. CONCLUSION

In this paper we described a new approach that utilizes
the effects of design decisions on requirements engineering to
support requirements elicitation and prioritisation. We defined
two types of design decisions, and discussed their effects on
requirements (partially also including quantitative effects). We
identified two channels from architectural design to require-
ments and a way to use them for requirement engineering
activities, which was demonstrated on an example.

There is an urgent need of further research on this topic,
and in particular: (a) Fine-grained classification of effects of
decisions, and (b) classification of decisions based on their
effect on requirements. Such deepened understanding of the
effects of design decisions on requirements could be used
in an architecture-driven requirements engineering approach
to mitigate the problems caused by incomplete requirements
specifications.
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