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Software Architecture Optimization Methods:
A Systematic Literature Review
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Meedeniya

Abstract—Due to significant industrial demands toward software systems with increasing complexity and challenging quality
requirements, software architecture design has become an important development activity and the research domain is rapidly evolving.
In the last decades, software architecture optimization methods, which aim to automate the search for an optimal architecture design
with respect to a (set of) quality attribute(s), have proliferated. However, the reported results are fragmented over different research
communities, multiple system domains, and multiple quality attributes. To integrate the existing research results, we have performed
a systematic literature review and analyzed the results of 188 research papers from the different research communities. Based on
this survey, a taxonomy has been created which is used to classify the existing research. Furthermore, the systematic analysis of
the research literature provided in this review aims to help the research community in consolidating the existing research efforts and

deriving a research agenda for future developments.

Index Terms—Software Architecture Optimization, Systematic Literature Review, Optimization Methods, Problem Overview

1 INTRODUCTION

Architecture specifications and models [120] are used to
structure complex software systems and to provide a
blueprint that is the foundation for later software engi-
neering activities. Thanks to architecture specifications,
software engineers are better supported in coping with
the increasing complexity of today’s software systems.
Thus, the architecture design phase is considered one of
the most important activities in a software engineering
project [24]. The decisions made during architecture
design have significant implications for economic and
quality goals. Examples of architecture-level decisions
include the selection of software and hardware compo-
nents, their replication, the mapping of software com-
ponents to available hardware nodes, and the overall
system topology.

Problem Description and Motivation. Due to the in-
creasing system complexity, software architects have to
choose from a combinatorially growing number of de-
sign options when searching for an optimal architec-
ture design with respect to a defined (set of) quality
attribute(s) and constraints. This results in a design
space search that is often beyond human capabilities
and makes the architectural design a challenging task
[105]. The need for automated design space exploration
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that improves an existing architecture specification has
been recognized [191] and a plethora of architecture
optimization approaches based on formal architecture
specifications have been developed. To handle the com-
plexity of the task, the optimization approaches restrict
the variability of architectural decisions, optimizing the
architecture by modifying one of its specific aspects (al-
location, replication, selection of architectural elements
etc.). Hence the research activities are scattered across
many research communities, system domains (such as
embedded systems or information systems), and quality
attributes. Similar approaches are proposed in multiple
domains without being aware of each other.

Research Approach and Contribution. To connect the
knowledge and provide a comprehensive overview of
the current state of the art, this article provides a
systematic literature review of the existing architecture
optimization approaches. As a result, a gateway to new
approaches of architecture optimization can be opened,
combining different types of architectural decisions dur-
ing the optimization or using unconventional optimiza-
tion techniques. Moreover, new trade-off analysis tech-
niques can be developed by combining results from
different optimization domains. All this can bring sig-
nificant benefits to the general practice of architecture
optimization. In general, with the survey we aim to
achieve the following objectives:

o Provide a basic classification framework in form of a
taxonomy to classify existing architecture optimiza-
tion approaches.

e Provide an overview of the current state of the art
in the architecture optimization domain.

« Point out current trends, gaps, and directions for
future research.
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We examined 188 papers from multiple research sub-
areas, published in software-engineering journals and
conferences. Initially, we derived a taxonomy by per-
forming a formal content analysis. More specifically,
based on the initial set of keywords and defined inclu-
sion and exclusion criteria, we collected a set of papers,
which we iteratively analyzed to identify the taxonomy
concepts. The taxonomy was then used to classify and
analyze the papers, which provided a comprehensive
overview of the current research in architecture opti-
mization. The data was then used to perform a cross
analysis of different concepts in the taxonomy and derive
gaps and possible directions for further research.

Related surveys. Architecture optimization can be cat-
egorized into the general research discipline of Search
Based Software Engineering (SBSE) [110] as it applies
efficient search strategies to identify an optimal or near-
optimal architecture specification. SBSE is applied in all
phases of the software engineering process including
requirements engineering, project management, design,
maintenance, reverse engineering, and software testing.
A comprehensive survey of different optimization tech-
niques applied to software engineering tasks is provided
by Harman et al. [111]. The survey indicates that in the
past years, a particular increase in SBSE activity has been
witnessed, with many new applications being addressed.
The paper identifies research trends and relationships
between the search techniques and the applications to
which they have been applied. The focus of Harman et
al.’s survey is on the broad field of SBSE, especially on
approaches in the software testing phase which are also
covered in detailed surveys [156], [163]. However, the
area of architecture optimization has not been investi-
gated in detail. The SBSE survey lists several approaches
to optimizing software design, but does not analyze
properties of these approaches except naming the used
optimization strategy.

Beside this general SBSE survey, other surveys de-
scribe sub-areas of architecture optimization and design-
space exploration that are only concerned with a specific
system domains, or a specific optimization method. For
instance, the survey of Grunske et al. [105] is concerned
with the domain of safety-critical embedded systems and
compares 15 architecture optimization methods. Another
example is the survey of Villegas et al. [230], which
evaluates 16 approaches that target run-time architecture
optimizations with a focus on self-adaptive systems. In
the research sub-area of systems with high reliability
demands, Kuo and Wan [140] have published a survey
in 2007 comparing different redundancy allocation ap-
proaches. Finally, several surveys are concerned with the
application of a specific optimization technique, typically
related to Genetic Algorithms [4], [125] or metaheuristics
in general [195].

Although these surveys provide a good overview of
a specific application domain, optimization method, or
even a design phase, none of them is suitable in giving a

comprehensive overview of the existing research in the
area of architecture optimization.

Organization. The rest of the paper is organized as
follows. First, Section 2 outlines the research method
and the underlying protocol for the systematic literature
review. The first contribution of this article, a taxonomy
for architecture optimization approaches that has been
derived from an iterative analysis of the existing research
literature is presented in Section 3. The second contribu-
tion, a classification of existing architecture optimization
approaches according to this taxonomy, is presented in
Section 4. This section contains both a classification into
the categories of the taxonomy including some descrip-
tive statistics as well as a cross-category analysis between
the different taxonomy areas. Finally, Section 5 identifies
future research directions based on the survey results
and Section 6 presents the conclusions.

2 RESEARCH METHOD

Our literature review follows the guidelines proposed by
Kitchenham [129], which structure the stages involved
in a systematic literature review into three phases: plan-
ning, conducting, and reporting the review. Based on the
guidelines, this section details the research questions, the
performed research steps, and the protocol of the litera-
ture review. First, Section 2.1 describes the research ques-
tions underlying our survey. Then, Section 2.2 derives
the research tasks we conducted, and thus describes our
procedure. Section 2.3 then details the literature search
step and highlights the inclusion and exclusion criteria.
Finally, Section 2.4 discusses threats to the validity of our
study.

2.1 Research Questions

Based on the objectives described in the introduction, the
following research questions have been derived, which
form the basis for the literature review:

e RQ1 How can the current research on software
architecture optimization be classified?

e RQ2 What is the current state of software archi-
tecture optimization research with respect to this
classification?

o RQ3 What can be learned from the current research
results that will lead to topics for further investiga-
tion?

2.2 Research Tasks

To answer the three research questions RQI1-3, four
research tasks have been conducted: one task to set up
the literature review, and three research tasks dedicated
to the identified research questions. The tasks have been
conducted in a sequential manner and interconnected
through a number of artifacts generated by their sub-
tasks. The overall research method is outlined in Figure 1
and detailed in the following text.
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Fig. 1: The process model of our research method.

The set-up task includes the definition of the review
protocol, the selection of search engines, the definition
of a keyword list, a keyword-based collection of pub-
lished architecture optimization papers, and a review
filtering the papers according to a defined set of in-
clusion and exclusion criteria. The search step and the
inclusion/exclusion review step are explained in more

detail in Section 2.3.

Based on the set of selected papers, we performed a
content analysis [135] of the papers in the first research
task (RQ1). The goal was to derive a taxonomy to classify
the current architecture optimization approaches. We
used an iterative coding process to identify the main
categories of the taxonomy. The coding process was
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a significant overview of the current research effort and
the archived results in this domain. Sections 4.1 to 4.3
present the findings.

In the third research task (RQ3), we cross-analyzed
the survey results and synthesized possible directions
for further research. The derivation of possible future
research directions was specifically enabled by the vari-

ety of papers from multiple research sub-areas each of

based on the grounded theory [94] qualitative research

method. First we analyzed each paper with the goal to
identify new concepts for the taxonomy. Second, after all
papers have been reviewed and the taxonomy updated
with newly identified concepts, we consolidated the
taxonomy terms, mainly by merging the synonyms and
unifying the concepts on different levels of abstraction.

Section 3 presents the findings.

In the second research task (RQ2), each paper collected
in the set-up task was classified based on the taxonomy
derived in the first research task. Within our team of au-
thors, one person was nominated as a data extractor for
each paper. Furthermore, one person was nominated as a
data checker for each top-level taxonomy category. While
the responsibility of the data extractors was to classify
the papers, data checkers cross-checked the classification
and discussed any inconsistencies with data extractors.
Extracted data was stored in a database, which enabled
a descriptive quantitative analysis. The aim of the data
extraction and the resulting classification was to provide

which has its own strengths. Consequently, the survey
enables the knowledge transfer from one research sub-
area to another and thus aims at improving the overall
research area. Section 4.4 presents the cross-analysis
results, while Section 5 provides our recommendations
for future research.

2.3 Literature Search Process

The search strategy for the review was primarily directed
toward finding published papers in journals and con-
ference proceedings via the widely accepted literature
search engines and databases Google Scholar, IEEE Ex-

plore, ACM Digital Library, Springer Digital Library, and

Elsevier ScienceDirect.

For the search we focused on selected keywords, based
on the aimed scope of the literature review. Examples
of the keywords are: automated selection of software
components, component deployment optimization, en-
ergy consumption optimization, component selection
optimization, automated component selection, reliability
optimization, software safety optimization, redundancy
allocation, optimal scheduling, hardware-software co-
synthesis, search based software engineering, run-time
and design-time architecture optimization, software en-
gineering optimization, self-adaptive software systems.
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The keywords were refined and extended during the
search process. The final keyword list is available at the
project website [6].

In the subsequent phase, we reviewed the abstracts
(and keywords) of the collected papers with respect
to the defined set of inclusion and exclusion criteria
(Sections 2.3.1 and 2.3.2 below), and further extended the
collection with additional papers based on an analysis
of the cited papers and the ones citing it (forward and
backward citation search). As a result, we included 188
peer-reviewed papers in the survey comprising of papers
from 1992 to 2011, with more than 50% of the papers
published in the last years between 2005 and 2010.

Although the selection process was primarily based on
the review of paper abstracts and keywords, in the cases
where these two were insufficient, we also considered
parts of the introduction, contribution and conclusion
sections.

2.3.1

The focus of this literature review is on software archi-
tecture optimization. We understand the architecture of a
software system to be “the fundamental organization of
a system embodied in its components, their relationships
to each other, and to the environment, and the princi-
ples guiding its design and evolution” [120]. Software
architecture optimization is understood as an automated
method aiming to reach an optimal architecture design
with respect to a (set of) quality attribute(s). The main
criteria for inclusion were based on the automation of
software architecture optimization, both at run time and
at design time. To enable automated optimization of
software architectures, three basic prerequisites need to
be fulfilled:

1) A machine-processable representation of the soft-
ware architecture must be available as an input
for automated search (e.g. a UML model with
agreed semantics, models described in any archi-
tecture description language, or representations in
formalisms such as Markov chains). Such a repre-
sentation may be an architecture model as defined in
[120], but can also be another machine-processable
representation such as a Markov chain.

2) A function or procedure that automatically eval-
uates an aspect of quality for a given software
architecture is required (called quality evaluation
function/procedure in this work). Different quality
attributes used during the optimization process
were included as long as they were quantifiable
by such a quality evaluation function/procedure.
Cost was also considered since it is a commonly
addressed optimization objective in conjunction
with quality attributes. Both single-objective and
multi-objective problems were taken into account.
Furthermore, papers that solved any type of con-
strained problem were included, not excluding the
papers that did not include constraints.

Inclusion Criteria

3) A definition of the considered design space is
required that describes how a given software archi-
tecture representation can be changed or enhanced
by the optimization. We call this information “ar-
chitectural degrees of freedom” [132] in this work
as there is no other agreed term in the context
of architecture optimization. Example architectural
degrees of freedom are allocation, component se-
lection, or hardware parameter change.

Papers that provide these three aspects are included
in our review.

2.83.2 Exclusion Criteria

We excluded papers that: (a) optimize a single com-
ponent without integrating context and interactions
with other architectural elements, (b) focus on an
architecture-irrelevant problem (e.g. requirements pri-
oritization, compiler optimization, or task allocation to
agents that cooperate in executing and finishing the
tasks), (c) optimize hardware with no relation to soft-
ware (e.g. FPGA optimization), or (d) solely optimize
cost without considering any other quality attribute.
Moreover, due to the goal of approach classification,
we excluded the papers discussing an approach already
included in the collection (recognized based on the au-
thor list and approach attributes) and we excluded non-
reviewed papers. We did not exclude papers for quality
reasons, because the quality of the papers was generally
acceptable. Evidence for the quality of the papers can
be found in a post selection analysis of the citations of
each paper via Google Scholar, which in 2012 revealed
that each of the papers has been cited at least once and
the average citation count for the papers included in the
survey was 76.5. The h-index and g-index of the included
papers was 57 and 128 respectively.

2.4 Threats to Validity

One of the main threats to the validity of this systematic
literature review is the incompleteness. The risk of this
threat highly depends on the selected list of keywords
and the limitations of the employed search engines. To
decrease the risk of an incomplete keyword list, we have
used an iterative approach to keyword-list construction.
A well-known set of papers was used to build the initial
taxonomy which evolved over time. New keywords
were added when the keyword list was not able to
find the state-of-the-art in the respective area of study.
In order to omit the limitations implied by employing
a particular search engine, we used multiple search
engines. Moreover, the authors’ expertise in different
system domains, quality attributes, and optimization
approaches reduced the search bias.

Another important issue is whether our taxonomy is
robust enough for the analysis and classification of the
papers. To avoid a taxonomy with insufficient capability
to classify the selected papers, we used an iterative



ALETI et al.: A SYSTEMATIC LITERATURE REVIEW ON SOFTWARE ARCHITECTURE OPTIMIZATION METHODS 5

content analysis method to continuously evolve the tax-
onomy for every new concept encountered in the papers.
New concepts were introduced into the taxonomy and
changes were made in the related taxonomy categories.

Furthermore, in order to make the taxonomy a bet-
ter foundation for analyzing the selected papers, we
allowed multiple abstraction levels for selected taxon-
omy concepts. As a result, one of the concepts (namely
the used optimization strategy) has different levels of
detail, where the highest level is abstract with few
classes, whereas lower levels have more details with
more classes used to classify the papers. The appropriate
level was selected when presenting the results. In order
to reduce the classification bias, paper classification re-
sults were checked by all the authors. The classification
according to the remaining abstraction levels is recorded
in the survey database, which can be accessed at [6].

3 TAXONOMY

The quality of a literature review project highly depends
on the selected taxonomy scheme, which influences the
depth of knowledge recorded about each studied ap-
proach. In this article, an iterative coding process has
been employed to identify the taxonomy categories (see
Section 2 for details) and to provide an answer to the
first research question (RQ1). The resulting taxonomy
hierarchy is depicted in Figure 2.

The first level of the taxonomy hierarchy structures the
existing work according to three fundamental questions
characterizing the approaches. These are:

(1) What is the formulation of the optimization problem
being addressed?

(2) What techniques are applied to the solution of the
problem?

(3) How is the wvalidity of the approach assessed?

We discuss each of these questions in detail, and define
the implied taxonomy scheme. For each of the questions,
we derive the sub-categories of the taxonomy related to
the question. Each category has a number of possible
values used to characterize the optimization approaches.
For example, the category Domain has the three values
Embedded systems, Information systems and General. We
only briefly discuss the possible values of categories in
the following, while the complete structured list of all
the values is in Tables 1, 3 and 6 where full details can
be found in the wiki page!.

3.1 The Problem Category

The first category is related to the problem the ap-
proaches aim to solve in the real world. Generally speak-
ing, the approaches try to achieve a certain optimization
goal in a specific context. For example, an optimization
goal is to minimize the response time of an architecture

1. https:/ /sdqweb.ipd kit.edu/wiki/OptimizationSurvey

given costs constraints. An example context is to con-
sider embedded systems at design time. While the con-
text of the problem is determined by the sub-categories
domain (i.e. the type of targeted systems) and phase (i.e.
place in the development process) of the problem, the
sub-categories related to the optimization goal include
quality attributes, constraints, and the dimensionality of
the optimization problem, which is governed by the
question if the set of optimized quality attributes is
aggregated into a single mathematical function or decou-
pled into conflicting objectives (single/multi-objective
optimization).

In particular, the domain has three possible values:
Information systems (IS) are business related systems
operated on a general purpose computer that include
for instance e-business applications, enterprize and gov-
ernment information systems. Embedded systems (ES) in
contrast are realized on a dedicated hardware to perform
a specific function in a technical system. They scale
from small portable devices like mobile phones to large
factories and power plants. If an approach is designed
for both domains, the third possible value “general” is
used. The phase category specifies whether the problem is
occurring at design-time (DT) or run-time (RT). The main
difference between the two is that while the setting of
a design-time problem is known in advance, the setting
of a run-time problem changes dynamically (e.g. new
tasks can arrive during run-time scheduling). Again, the
value “General” can be used here to denote approaches
that address both DT and RT.

The goal of the optimization task is typically the
maximization of the software-architecture quality under
given constraints. Since the quality of a software system
as a concept is difficult to define, due to its subjective
nature, software experts do not define the quality di-
rectly but relate it to a number of system attributes,
called quality attributes [119]. In this work, we only
consider quantifiable quality attributes (cf. Section 2.3.1).
Examples are performance, reliability, cost, availability,
and other well established quality attributes (find the
full list in Table 1 and at [6]). When categorizing quality
attributes, we followed widely accepted definitions and
quality attribute taxonomies [16], [24], [103], [241]. In
our taxonomy, we distinguish quality attributes to be
optimized (category quality attributes) from additional
constraints on quality attributes or other system prop-
erties (category constraints). For example, reducing the
response time and the costs of a system as much as
possible is a setting with two quality attributes to be
optimized. Increasing the availability while keeping the
response time lower than 5 seconds and adhering to
structural constraints is a setting with one quality at-
tribute to be optimized (availability) and two constraints
(for performance and structural).

Finally, the dimensionality category reflects if the ap-
proach addresses a single-objective optimization (SOO)
or multi-objective optimization (MOQO) problem. The
SOO optimizes a single quality attribute only. The MOO
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Fig. 2: The taxonomy for architecture optimization approaches, derived from the reviewed literature.

optimizes multiple quality attributes at once, so that
the quality of every architecture model is a vector of
values. As quality attributes often conflict, usually there
is no single optimal result but a set of solutions non-
dominated by the others from the point of view of
the optimized qualities — i.e. solutions that are Pareto-
optimal [70]. Since in MOO a decision has to be taken
on the final architecture design selected from the set
of resulting candidates, one can also use the multi-
objective transformed to single-objective optimization
(MTS) approaches, which encode the selection criteria
following MOQO into a single mathematical function (e.g.
a weighted sum), which is then optimized as a single
objective.

For a structured view on all the values of the discussed
sub-categories see Table 1.

3.2 The Solution Category

The solution category classifies the approaches according
to how they achieve the optimization goal and thus de-
scribes the main step of the optimization process, which
is depicted in Figure 3. First, the sub-category architecture
representation is the process input that describes the
architecture to optimize. Second, the sub-category degrees
of freedom describes what changes of the architecture are
considered as variables in the optimization. Third, the
sub-category quality evaluation describes the used quality
evaluation procedures, which make up the objective
function(s) of the optimization process. Furthermore,
this category contains the techniques used to solve the
formulated optimization problem: Sub-categories are the
overall optimization strategy and constraint handling.

The architecture representation category classifies the
approaches based on the information used to describe
the software architecture. Any architecture optimization
approach takes some representation of the system’s ar-
chitecture as an input (cf. Figure 3). This representation

Architecture representation
Generate new
design alternative(s)

Evaluate architecture
design quality

Stopping
criteria?

Final architecture design(s)

Fig. 3: Optimization process.

may be an architecture model [120] documenting the
architecture by defining components and connectors.
To predict more complex quality attributes, a quality
evaluation model such as a Layered Queueing Network
or a Markov chain may be derived from an architecture
model or may be used directly as an input. Finally, in
order to employ optimization techniques, the architec-
ture and the design decisions have to be encoded into
an optimization model describing the decision variables
and the objective function. This optimization model may
be derived from an architecture model or from a quality
evaluation model, or may directly be required as an
input. To assess the used architecture representation
relevant for the user, we classify the approaches based
on the input they require, so that the possible values are
“architecture model” (an architecture model is used as
the input), “quality evaluation model” (a quality evalua-
tion model is used as the input, no architecture model is
used), and “optimization model” (an optimization model
is used as the input, no architecture model or quality
evaluation model is used). Note that several approaches
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that start with an architecture model also internally use
a quality evaluation model, and that all approaches
also internally use an optimization model. If quality
evaluation models or optimization models are used as an
input, it needs to be guaranteed that an optimal found
solution can be traced back to a meaningful solution on
the architecture level.

Furthermore, we drill into the used architecture mod-
els in more detail, also distinguishing the used modeling
formalism as follows. “UML” denotes architecture mod-
els defined in any modeling formalism of the Unified
Modeling Language. Other architecture description lan-
guages such as AADL [203] or PCM [25] are subsumed
in the value “ADL”. A specific form of architecture
description for service-based systems is “workflow spec-
ifications”. By “custom architecture models” (custom
AM) we denote approaches that define a custom model
to describe the architecture which, in contrast to ADLs,
does not have the purpose to document the architecture
but is more tailored towards a specific purpose (such as
the architecture middleware PRISM-MW [154]). Finally,
approaches that allow to exchange the used architecture
model, e.g. by reasoning in the metamodel level or
by offering plug-ins for handling different ADLs, are
classified with the value “General”.

The quality evaluation category differentiates the ap-
proaches in those formalizing the optimized criteria
with a simple additive function (SAF), with a nonlinear
mathematical function (NMF), or with a more complex
evaluation function and model that, for example, cannot
be expressed with closed formulas and are solved nu-
merically or with simulations. We denote this latter case
as model-based (MB). For example, consider the quality
attribute performance. A simple additive function that
calculates the response time of a specific function would
sum up the response times of used individual services.
A more complex nonlinear mathematical function is
used if a queuing behavior of the system analyzed
using exact queuing theory formulae. Finally, a model-
based procedure is used if the system is represented
as an extended queuing network and the performance
is evaluated with approximative or simulation-based
techniques. In essence, the optimization process aims
at optimising the quality attribute(s), whose evaluation
constitutes the objective function(s), also referred to as
fitness function(s) in the optimisation domain.

The architectural degrees of freedom category defines how
the architecture representation can be changed to make it
optimal with respect to the optimization goal. Example
architectural degrees of freedom are component selec-
tion, allocation, or hardware parameter change. Thus,
this category describes the types of variables of the
optimization, i.e. it describes the types of design decision
that can be varied by the optimization and thus defines
the considered subset of the design space [132]. An-
other synonymous term is “architecture transformation
operators” [101], [105]. More general terms describing
the same idea are “design decisions”, or “dimensions of

variation” [166]. The possible values are those found in
the reviewed papers, grouped by synonyms, since no
existing classification (such as for quality attributes) is
available to use, hence, we explain them in more detail
in the next paragraphs.

The selection degrees of freedom are concerned with
selecting entities in the architecture. These entities can
be software entities (such as modules) or hardware
entities (such as servers or devices), resulting in “soft-
ware selection” and “hardware selection” values. We
explicitly distinguish “component selection”, because
some domains have a certain notion of a component.
For example, in embedded systems design, component
selection could mean deciding between a component
realizing a functionality in hardware and a component
with general-purpose hardware realizing functionality in
software. Furthermore, we explicitly distinguish “service
selection”, because next to selecting the software to
execute, selecting a service also includes selecting the
service provider (thus including hardware aspects as
well).

Replication degrees of freedom are concerned with chang-
ing the multiplicity of an architectural element. Under
the term “hardware replication”, we subsume all degrees
of freedom that concern the number of a hardware
entity’s copies, while possibly also changing the mul-
tiplicity of software elements (e.g. software components
deployed to the replicated servers). The popular term
redundancy allocation is thus included in “hardware
replication”. Under the term “software replication”, we
subsume degrees of freedom that change the number of
copies of software entities only. For brevity, we include
both identical copies of the software and different im-
plementations of the same functionality (e.g. n-version
programming) in the term “software replication” in this
paper.

Parameter degrees of freedom refer to other parameters of
architectural elements. We distinguish “software param-
eters” (e.g number of threads of an application server)
and “hardware parameters” (e.g. parameters for the hard
disk drive). Hardware parameters may overlap with
hardware selection, because the choice (e.g. of a CPU
with different speed) can be modeled both as hardware
selection or as a parameter of the hosting server. Here,
we classified a paper based on the presentation of the
degree of freedom in that paper.

Further common degrees of freedom are the follow-
ing. “Scheduling” is concerned with deciding about the
order of execution. “Service composition” changes how
services are composed by changing service topology
and/or the service workflow. “Allocation” (a broader
term to “Deployment”) changes the mapping of software
entities (components or tasks) to processing elements, for
example to servers. Other, less common degrees of free-
dom are architectural patterns, maintenance schedules,
partitioning, and clustering. We do not explicitly name
degrees of freedom that are used by fewer than 2 papers,
but treat them commonly as “problem-specific degrees
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of freedom”. Some approaches allow for applying any
degree of freedom and are classified as “general”. Finally,
some approaches do not explicitly present the consid-
ered degrees of freedom, and are classified under “not
presented”.

For the optimization strategy, we provide three levels of
classification. First, we distinguish whether the used op-
timization strategy guarantees exact solutions (the best
available architecture design with respect to the objective
function) or only finds approximate solutions. As a sub-
classification, among the exact methods, we distinguish
standard methods (such as standard mixed integer linear
programming tools) and problem-specific methods (e.g.
operating on graph representations of the problems and
exploiting problem properties). Among the approximate
methods, we distinguish methods that guarantee a lower
bound of the solution, such as some branch-and-bound
approaches, methods that require problem or domain
specific information to perform the search, i.e. problem-
specific heuristics, and methods that apply high-level
strategies, i.e. metaheuristics, which are not problem-
specific, but can use domain or problem-specific knowl-
edge to guide the search [34], such as evolutionary algo-
rithms. The lowest level of the optimization strategy cat-
egory describes the concrete used optimization strategy,
such as for example evolutionary algorithms, standard
linear integer programming solvers, or problem-specific
heuristics.

The constraint handling category describes the used
strategies to handle constraints. Based on the insightful
surveys of Michalewicz [172] and Coello Coello [50],
possible strategies are encoded with the following val-
ues. “Penalty” refers to the strategy that converts the
constrained optimization problem into a series of un-
constrained problems by adding a penalty parameter to
the objective function which reflects the violation of the
constraints. “Prohibit” refers to the constraint handling
strategy that discards solutions that violate constraints.
A “repair” mechanism is employed during the optimiza-
tion process to fix any violation of constraints before the
solution is evaluated. Finally, “General” describes any or
a variety of constraint handling techniques.

For a structured view on all the values of the discussed
sub-categories see Table 3.

3.3 The Validation Category

For the validation classification of the taxonomy, two
subcategories are considered, approach validation and op-
timization validation.

The approach validation describes techniques used to
assess the practicality and accuracy of the approach. This
includes specifically the effort spent on the modeling of
quality prediction functions and evaluating their accu-
racy. Possible validation types found in the reviewed
approaches include demonstration with a simple exam-
ple, validation with dedicated benchmark problems or
experiments with randomly generated problems, and

validation with an academic or industrial case study. As
industrial case studies we have classified systems that
are used in practice with a clear commercial aim. An
academic case study is different to a simple example in
that it invents a somewhat realistic system with a clear
purpose but without a commercial background, while
a simple example describes an abstract small example
(e.g. an architecture built from components C1 to C4).
Besides these, the possible validation types also include
mathematical proofs of the accuracy of the results, and
comparison with related literature.

In contrast to the approach validation the optimization
validation specifically validates the used optimization
strategy. Such a validation may evaluate (1) how well
an approach approximates the global optimimum and /
or (2) the performance of an approach compared to other
approaches. A possible type of an optimization validation
for an approach that uses a heuristic is a comparison
with a random search strategy, an exact algorithm or a
baseline heuristic algorithm. Alternatively, internal com-
parison is typically employed in the reviewed papers
that propose multiple optimization strategies. Then, only
the proposed strategies are compared with each other.
Some problem-specific approaches also use mathemati-
cal proofs to validate the correctness of the optimization
strategy. For a structured view on all the values of the
discussed sub-categories see Table 6.

4 RESULTS

In this section we aim to answer the second research
question RQ2. The 188 reviewed papers are classified
based on the taxonomy described in Section 3. The
quantitative results are presented in Tables 1, 3 and 6.
To provide an overview of the current state of the art
in software architecture optimization and to guide the
reader to a specific set of approaches that is of inter-
est, the approaches in the different categories including
references to the papers are presented in Tables 2, 4
and 5. The references in all the three tables have been
structured according to a common characteristics (index)
to simplify the orientation in the tables. Since the overall
goal of any software architecture optimization approach
is to identify candidate architectures with better quality,
the quality attribute has been used as the index in the
tables. For each of the top seven quality attributes, a row
presents the references for the approaches addressing
this quality attribute g. The total number of the papers
is given in parenthesis in the first column. Each col-
umn provides the results for one taxonomy category .
Then, each cell (g,t) lists the papers that address quality
attribute ¢, grouped by the values of ¢. To show the
quality attributes that are optimized together, the “other
quality attributes” column lists the quality attributes
being optimized together with ¢, instead of presenting
the quality-attribute taxonomy category itself (i.e. all
combinations of quality attributes optimized together).
Papers may appear in multiple rows if they address
several quality attributes. Because all of the reviewed
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papers optimize at least one of the top seven quality
attributes, all papers appear in the tables. Furthermore,
for some other taxonomy categories such as constraints,
papers may have multiple values and thus be listed
several times. As a result, percentages in the tables may
sum up to more than 100%.

The rest of this section presents the observations that
can be derived from both Tables 1, 3, 6, as well as other
views on the data distilled from the paper collection.

4.1 Problem

TABLE 1: Problem category - quantitative summary of
the results.

Quality Attributes Constraints
Performance 84 44% || Not presented 49 26%
Cost 74 39% || Cost 32 17%
Reliability 71 37% Performance 26 14%
Availability 25 13% || General 25 13%
General 22 12% || Weight 20 11%
Energy 18 9% || Physical 13 7%
Weight 5 3% Timing 10 5%
Safety 4 2% QoS Values 10 5%
Reputation 4 2% || Memory 9 5%
Modifiability 3 2% || Precedence 9 5%
Area 3 2% || Mapping 8 4%
Security 1|1<1% Reliability 7 4%

Requirements 6 3%
Volume 6 3%
Domain Structural 5 3%
ES 100 53% || Area 3 2%
GENERAL 49 26% || Redundancy level 3 2%
IS 41 22% Delivery time 3 2%
Availability 2 1%
Phase Throughput 2 1%
DT 128 67% Processing power 1] <1%
RT 60 32% || Stability 1] <1%
GENERAL 3 2% || Path loss 1] <1%
Functional correctness 1] <1%
Dimensionality Design 1] <1%
SO0 75 39% Dependability
MOO 58 31%
MTS 51 27%
GENERAL 7 4%

A summary of the problem-specific aspects that are
extracted from the set of papers included in the survey
are given in Table 1. In the following, we summarize the
main results for each problem subcategory.

Quality Attributes: The architecture optimization ap-
proaches investigated in this literature review have cov-
ered diverse types of design goals. Based on the analysis
of the existing approaches, it is evident that some quality
attributes are addressed more frequently than others.
Examples of frequently addresses quality attributes are
performance, cost and reliability. Other quality attributes
that are harder to quantify, such as security, are not
considered very often, comprising less than 1% of the
papers. An interesting result is the number of papers

which use generic approaches to allow for the definition
of customized quality functions, which was encoun-
tered in 22 papers (12% of the overall papers). Since
quality attributes are often in conflict with each other,
many approaches consider multiple quality attributes
during the optimization. Details about the combination
of the considered quality attributes can be found and
extracted from the column “other quality attributes” in
Table 2. Among the quality attributes studied together,
the combinations reliability-performance, reliability-cost,
availability-cost , and cost-energy-consumption have re-
ceived the biggest attention.

Domain, Dimensionality, and Phase: It can be observed
from Table 1 that the majority of architecture level
optimization approaches have been applied in the em-
bedded systems domain, comprising 53% of the overall
set of papers collected for this literature review, while
a comparatively low number of approaches (22%) have
been applied to enterprise information systems. The
remaining approaches (26%) are either generic (i.e. have
not clearly specified an application domain) or, from the
evidence provided in the papers, apply to systems from
both domains.

Concerning the dimensionality of the optimization
problem, the approaches are almost evenly distributed
between single-objective (SOO 39%) and multi-objective
optimization problems (MTS 27% and MOO 31%).

Concerning the phase, the number of research contri-
butions for design-time architecture optimization (67%)
is significantly larger than that of run-time contributions
(32%). With respect to quality attributes, reliability and
safety are widely addressed at design-time.

Constraints: One major influence on the architecture of
software systems used in the industry are constraints
that need to be satisfied in order for the system to
be accepted. However, a high number of papers (26%
of overall collected papers) solve the architecture opti-
mization problem without considering any constraints.
It is important to note that constraint satisfaction is a
crucial aspect of optimization, especially in the design of
embedded system. However, constraints add more com-
plexity to the problem. If constraints are not considered,
designers might have to rework the architecture in order
to satisfy the constraints after the optimization process,
which affects the quality of the system.

In the papers that consider constraints, the main focus
was on cost, comprising 17% of the papers. This is not a
surprising result since cost is often an important concern
of the system architect. Other popular constraints are
performance (14%), weight (11%), and physical con-
straints (7%). Little importance is given to some critical
constraints such as memory (5%) and reliability (only 4%
of the papers).

4.2 Solution

A summary of the solution-specific aspects that are
extracted from the set of papers included in the literature
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TABLE 2: Problem category - problem specific categorization of the reviewed approaches.

0OA

Domain

Phase

Other Quality Attributes

Dimensionality

Constraints

Performance(84)

ES(B2) [32], [45], [67]-
[69], [80], [83], [84], [90],
[93], [109], [112], [114],
[117], [121]-[123], [126],
[152], [153], [174]-[177],
[179], [188], [213], [218],
[220], [233], [235], [237],
GENERAL(Q21)  [1]-
[3], [10], [15], [23], [26],
[291, [46], [73], [87], [88],
[141], [145], [189], [196]-
[198], [210], [222], [239],
I1S31)  [12]-[14], [35],
[38]-[40], [42]-[44], [66],
[74], 1771, [82], [124], [130],
[133], [143], [144], [151],
[160], [161], [168]-[170],
[200], [226], [231], [236],
[241], [245]

DT(0)  [1-3], [23],
[26], [32], [45], [67]-[69],
[73], [80], [83], [84], [88],
[90, [93], [109], [112],
[114], [117], [121]-[123],
[126], [133], [141], [143],
[145], [152], [160], [161],
[175-[177], [179], [188],
[189], [196]-[198], [210],
[213], [218], [220], [222],
[233], [235], [239], [245],
GENERAL(1) [66],
RT(33)  [10], [12]-15],
[29], [35], [38]-[40], [42]-
[44], [46], [74], [77], [82],
[87], [124], [130], [144],
[151], [153], [168]-[170],
[174], [200], [226], [231],
[236], [237], [241]

AREA(3) [45], [218], [220], AVAILABIL-
ITY(18) [12], [14], [15], [29], [39], [40], [42],
[44], [74], [77], [82], [124], [130], [151], [170],
[226], [236], [241], COST(38) [12]-[15],
[32], [38]-[40], [42]-[44], [67], [68], [74], [77],
[82], [84], [123], [124], [130], [143]-[145], [151],
[152], [160], [161], [168], [177], [188], [200],
[218], [220], [226], [231], [236], [237], [241],
ENERGY(6) [67], [68], [84], [153], [188],
[237], GENERAL(2) [145],[153], MOD-
IFIABILITY(3) [196]-{198], RELIABIL-
ITY(25) [3], [39], [40], [66], [67], [73], [83],
[88], [93], [121]-[124], [130], [133], [151], [153],
[160], [161], [175]-[177], [226], [236], [241],
REPUTATION(4) [15], [82], [124], [241],
SECURITY(1) [170]

GENERAL(1)
MOO(24)
[66], [67],
[93], [121], [123],
[143], [145], [152],
[161], [175}-177], [188],
[200], [218], [220], [237],
MTS(33)  [12}15], [29],
[35], [38]-[40], [42]-{44], [74],
[77], 182], [83], [122], [124],
[130], [151], [153], [168]-
[170], [179], [196]-[198],
[222], [226], [231], [236],
[241], SOO(26) 1], [2],
[10], [23], [26], [46], [68], [69],
[80], 871, [90], [109], [112],
[114], [117), [126], [141],
[144], [174], [189], [210],
[213], [233], [235], [239], [245]

[32],
[45],
[88],
[133],
[160],

[31,
[73], [84],

AREA(3) [23], [218], [235], COST(6) [3], [123], [144],
[168], [218], [233], DEPENDABILITY(1) [176], FUNC-
TIONAL CORRECTNESS(1) [43], GENERAL(?7)
[3], [32], [39], [40], [121], [145], [177], MAPPING(5)

[45], [144], [153], [175], [176], MEMORY(6) [45], [153],
[175], [176], [220], [226], NOT PRESENTED(28) [13],
[29], [38], [46], [66], [77], [82], [87], [88], [90], [109], [112],
[124], [126], [133], [143], [152], [160], [161], [170], [196]-
[198], [200], [210], [231], [241], [245], PATH LOSS(1)

[237], PERFORMANCE(14) [26], [35], [67]-]69], [83],
[93], [122], [144], [168], [174], [179], [218], [220], PHYS-
ICAL(8) [1], [2], [114], [117], [189], [222], [237], [239],
PRECEDENCE(S) [1], [2], [26], [73], [117], [141], [189],
[239], PROCESSING POWER(1) [226], QOS VAL-
UES(10)  [12], [14], [42]-[44], [74], [130], [151], [169],
[236], REDUNDANCY LEVEL(1) [130], REQUIRE-
MENTS(1) [15], STABILITY(1) [43], STRUC-
TURAL@) [10], [15], [84], [188], THROUGHPUT(2)

[174], [213], TIMING(8) [12], [14], [80], [114], [123], [141],
[189], [222], WEIGHT(1) [3]

Cost(74)

ES(35) [9], [18], [32],
[471, [49], [58], [67], [68],
[72], [84], [100], [102],
[108], [118], [123], [127],
[128], [137], [142], [148],
[152], [157], [177], [178],
[180], [181], [188], [209],
[215]-[218], [220], [221],
[237], GENERAL(13)
[15], [62]-[64], [81], [145],
[147], [149], [190], [207],
[227]-229], IS(26)
[12]-[14], [38]-[44], [74],
[771, 1821, [124], [130],
[143], [144], [151], [160],
[161], [168], [200], [226],
[231], [236], [241]

DT(47)
471, [49],
[63], [67], [68], [72],
[81], [84], [100], [102],
[108], [118], [123], [128],
[137], [142], [143], [145],
[147]-[149], [152], [157],
[160], [161], [177], [178],
[180], [181], [188], [190],
[207], [209], [215]-[218],
[220], [221], [227]-[229],
GENERAL(1)  [127],
RT(26)  [12]-[15], [38]-
[44], [64], [74], [77], [82],
[124], [130], [144], [151],
[168], [200], [226], [231],
[236], [237], [241]

[91, 18], [32],
(58], [62],

AREA(2) [218], [220], AVAILABIL-
ITY(20) [12], [14], [15], [39], [40], [42], [44],
[74], [77], [81], [82], [100], [124], [130], [151],
[157], [217], [226], [236], [241], ENERGY(6)
[67], [68], [72], [84], [188], [237], GEN-
ERAL(1) [145], PERFORMANCE(38)

[12]-[15], [32], [38]-[40], [42]-[44], [67], [68],
[74], [77], [82], [84], [123], [124], [130], [143]-
[145], [151], [152], [160], [161], [168], [177],
[188], [200], [218], [220], [226], [231], [236],
[237], [241], RELIABILITY(24) [18],[39],
[40], [67], [102], [118], [123], [124], [128],
[130], [137], [147]-[149], [151], [160], [161],
[177), [178], [215], [216], [226], [236], [241],
REPUTATION(@4) [15], [82], [124], [241],
SAFETY(2) [178], [180], WEIGHT(5)

[137], [147], [215]-[217]

GENERAL(2) [32], [49],
MOO(31) [18], [67], [72],
[84], [100], [102], [118], [123],
[128], [137], [143], [145],
[1471-[149], [152], [157],
[160], [161], [177], [188],
[190], [200], [215]-[218],
[220], [228], [229], [237],
MTS(26) [12]-{15], [38]-
[40], [42]-[44], [74], [77], [81],
[82], [124], [130], [151], [168],
[178], [180], [207], [226],
[227], [231], [236], [241],
SO0@1e6)  [9], [41], [47],
[58], [62]-[64], [68], [108],
[127], [142], [144], [148],
[181], [209], [221]

AREA(1) [218], AVAILABILITY(2) [181], [221],
COST(7) [41], [72], [123], [144], [148], [168], [218], DE-
LIVERY TIME@®) [63], [64], [190], DESIGN(1) [180],
FUNCTIONAL CORRECTNESS(1) [43], GEN-
ERAL(8) [18], [32], [39], [40], [81], [145], [149], [177],
MAPPING(1) [144], MEMORY(2) [220],[226], NOT
PRESENTED(19)  [13], [38], [77], [82], [100], [124],
[128], [143], [152], [157], [160], [161], [178], [200], [215]-
[217], [231], [241], PATH LOSS(1) [237], PERFOR-
MANCE(10) [47], [49], [67], [68], [127], [142], [144], [168],
[218], [220], PHYSICAL(2) [108], [237], PROCESS-
ING POWER() [226], QOS VALUES(9) [12],
[14], [42]-[44], [74], [130], [151], [236], REDUNDANCY
LEVEL(2) [130],[147], RELIABILITY(6) [9], [58], [63],
[64], [190], [209], REQUIREMENTS(6) [15], [62], [207],
[227]-[229], STABILITY(1) [43], STRUCTURAL(3)
[15], [84], [188], TIMING(3) [12], [14], [123], VOL-
UME(Q2) [118], [147], WEIGHT(5) [102], [118], [147],
[148], [209]

Reliability(71)

ES(40)
[571,  [591-161],
[83], [93], [102], [118],
[121]-[123], [128], [136],
[137], [146], [148], [153],
[155], [164], [165], [175]-
[178], [186], [199], [204],
[214]-[216], [234], [244],
GENERAL(18) [3],
[7], [30], [31], [73], [75],
[76], [88], [96], [97], [147],
[149], [182], [183], [187],
[192], [232], [238], IS(13)
[39], [40], [66], [124], [130],
[131], [133], [151], [160],
[161], [226], [236], [241]

[18], [51]-

[67],

DT(56)  [3], [7], [18],
[30], [31], [511-[57], [59],
[e0], [671, [73], [75],
[76], [83], [88], [93], [96],
[97], [102], [118], [121]-
[123], [128], [133], [136],
[137], [146]-[149], [155],
[160], [161], [164], [165],
[175]-[178], [182], [183],
[199], [204], [214]-[216],
[232], [234], [238], [244],
GENERAL(1) [66],
RT(14) [39], [40], [61],
[124], [130], [131], [151],
[153], [186], [187], [192],
[226], [236], [241]

AVAILABILITY(9) [39], [40], [61], [124],
[130], [151], [226], [236], [241], COST(24)
[18], [39], [40], [67], [102], [118], [123], [124],
[128], [130], [137], [147]-[149], [151], [160],
[161], [177], [178], [215], [216], [226], [236],
[241], ENERGY(4) [67], [153], [155],
[165], GENERAL() [153], PERFOR-
MANCE(25) [3], [39], [40], [66], [67], [73],
[83], [88], [93], [121]-[124], [130], [133], [151],
[153], [160], [161], [175]-[177], [226], [236],
[241], REPUTATION(2) [124], [241],
SAFETY(1) [178], WEIGHT(4) [137],
[147], [215], [216]

MOO@31)
[54], [66],
[93], [102],
[123], [128],
[147]-[149], [160], [161],
[164], [165], [175]-[177],
[199], [214]-216], [234],
MTS(15)  [39], [40], [61],
[83], [122], [124], [130], [131],
[151], [153], [155], [178], [226],
[236], [241], SOO(26) [7],
[301, [31], [51], [52], [55}-157],
[591, [60], [75], [76], [96],
[97], [136], [146], [148], [182],
[183], [186], [187], [192],
[204], [232], [238], [244]

B3], 118, 53],
(671, (73], (8],
[s], [21],
[133], [137],

COST(24) (3], [7], [31], [51], [52], [55]-[57], [76], [96],
[97], [123], [131], [136], [146], [148], [182], [183], [199], [204],
[232], [234], [238], [244], DEPENDABILITY(1) [176],
GENERAL(12) [3], [18], [30], [39], [40], [53], [54], [59],
[60], [121], [149], [177], MAPPING(3) [153], [175], [176],
MEMORY(5) [153], [164], [175], [176], [226], NOT
PRESENTED(13) [66], [88], [124], [128], [133], [160],
[161], [178], [186], [187], [215], [216], [241], PERFOR-
MANCE(G5) [67], [83], [93], [122], [214], PHYSICAL(3)
[155], [192], [199], PRECEDENCE(2) [73], [192], PRO-
CESSING POWER(1) [226], QOS VALUES(3)

[130], [151], [236], REDUNDANCY LEVEL(3) [130],
[147], [165], RELTIABILITY(1) [61], TIMING(2) [123],
[192], VOLUME(6) [7], [75], [76], [118], [147], [238],
WEIGHT(19) 3], [7], [31], [51], [52], [55]-{57], [75], [76],
[102], [118], [136], [146]-[148], [182], [199], [238]

Availability(25)

ES(5) [61], [100],
[s7, Q73] [217],
GENERAL(3) [15],
[29], [81], IS(7) [12],
[14], [39], [40], [42], [44],
[74], [77], [82], [106], [124],
[130], [151], [170], [226],
[236], [241]

DT(5) [81], [100], [157],
[173], [217], RT(20) [12],
[14], [15], [29], [39], [40],
[42], [44], [61], [74], [77],
[82], [106], [124], [130],
[151], [170], [226], [236],
[241]

COST(20) [12], [14], [15], [39], [40], [42],
[44], [74], [77], [81], [82], [100], [124], [130],
[151], [157], [217], [226], [236], [241], PER-
FORMANCE(8) [12], [14], [15], [29],
[39], [40], [42], [44], [74], [77], [82], [124], [130],
[151], [170], [226], [236], [241], RELIABIL-
ITY(9) [39], [40], [61], [124], [130], [151],
[226], [236], [241], REPUTATION(4) [15],
[82], [124], [241], SECURITY() [170],
WEIGHT(1) [217]

MOO®) [100], [157], [217],
MTS(20) [12], [14], [15],
[29], [39], [40], [42], [44], [61],
[74], [77], [81], [82], [124],
[130], [151], [170], [226], [236],
[241], SOO(2) [106], [173]

COST(M) [106], GENERAL() [39], [40], [81], MAP-
PING(1) [173], MEMORY(2) [173], [226], NOT PRE-
SENTED(9) [29], [77], [82], [100], [124], [157], [170], [217],
[241], PROCESSING POWER(1) [226], QOS VAL-
UES(8) [12], [14], [42], [44], [74], [130], [151], [236], RE-
DUNDANCY LEVEL(1) [130], RELIABILITY(1)

[61], REQUIREMENTS(1) [15], STRUCTURAL(1)

[15], TIMING(2) [12], [14]

General(22)

ES(12)  [5], [33], [36],
[791, 861, [91], [95], [138],
[139], [150], [153], [224],
GENERAL(®4) [21],
[145], [162], [205], IS(6)
[71], [113], [202], [219],
[242], [243]

DT(10) [5], [33], [79], [95],
[138], [139], [145], [150],
[205], [224], RT(13) [21],
[36], [71], [86], [91], [95],
[113], [153], [162], [202],
[219], [242], [243]

COST( [145, ENERGY(D) [153],
PERFORMANCE(2) [145], [153], RELI-
ABILITY(1) [153]

GENERAL(5) [21], [36],
[91], [162], [224], MOO(7)
[5], [33], [95], [138], [139],
[145], [150], MTS(10) [71],
[791, [86], [113], [153], [202],
[205], [219], [242], [243]

COST(1) [33], GENERAL(10) [71], [79], [86], [113],
[138], [139], [145], [205], [224], [243], MAPPING(3)
[5], [95], [153], MEMORY(2) 5], [153], NOT PRE-
SENTED(7) [21],[36], [91], [162], [202], [219], [242], PER-
FORMANCE(1) [33], STRUCTURAL(1) [150]

Energy(18)

ES(A7) [17], (28], [67],
[68], [72], [84], [116], [153],
[155], [165], [188], [193],
[194], [211], [212], [237],
[240], GENERAL(1)
[206]

DT(9) [67],[68], [72], [84],
[116], [155], [165], [188],
[240], GENERAL(1)
[206], RT(8) [17], [28],
[153], [193], [194], [211],
[212], [237]

COST(6)  [67], [68], [72], [84], [188],
[237], GENERAL(1) [153], PERFOR-
MANCE(6) [67], [68], [84], [153], [188],
[237], RELIABILITY(4) [67], [153], [155],
[165]

MOO(7)
[165], [188],
MTS(2) [153], [155],
SO09) [17], [28], [68],
[116], [193], [194], [211],
[212], [240]

[67], [72], [84],
[206], [237],

COST(1) [72], GENERAL(1) [194], MAPPING(1)
[153], MEMORY(1) [153], NOT PRESENTED(1)
[206], PATH LOSS(1) [237], PERFORMANCE(8)
[17], [28], [67], [68], [1l6], [193], [211], [212],
PHYSICAL(3) [155], [237], [240], REDUNDANCY
LEVEL(1) [165], STRUCTURAL(2) [84], [188],
TIMING(1) [240]

ES@ [137], [2151-[217],
GENERAL(1) [147]

DT(G) [137], [147], [215]-
[217]

AVAILABILITY(1) [217],
COST(5) [137], [147], [215]-[217],
RELIABILITY(4) [137], [147], [215], [216]

MOO(5) [137], [147], [215]-
[217]

NOT PRESENTED(@) [215]-[217], REDUNDANCY
LEVEL(1) [147], VOLUME() [147], WEIGHT(1)
[147]

Safety| Weight
)

@)

ES@ [178], [180], [184],
[223]

DT@)
[223]

[178], [180], [184],

COST(2) [178],[180], RELIABILITY(1)
[178]

MOO((2) [184],
MTS(2) [178],[180]

[223],

DESIGN(1) [180], NOT PRESENTED(3) [178], [184],
[223]
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review is given in Table 3. In the following, we sum-
marize the main results for each solution subcategory,
observable in Tables 4 and 5.

TABLE 3: Solution category - quantitative summary of
the results.

Degrees of Freedom Architecture Representation
Allocation 59 | 31% || Architecture model 43 23%
Hardware replication 40 | 21% || - UML 5 3%
Hardware selection 38 | 20% || - ADL 7 4%
Software replication 35 | 18% || - Custom arch. model 9 5%
Scheduling 33 | 17% || - Workflow language 17 9%
Component selection 30 | 16% || - General 5 3%
Service selection 28 | 15% Quality eval. model 65 34%
Software selection 24 | 13% || Optimization model 68 36%
Other problem specific 18 9%

Service composition 12 6%

Software parameters 10 5%

Clustering 5 3% Optimization Strategy
General 5 3% Approximative 149 78%
Hardware parameters 4 2% || Exact 38 20%
Architectural pattern 3 2% || Not presented 9 5%
Not presented 3 2% || General 4 2%
Partitioning 2 1%

Maintenance schedules 2 1%

Quality Evaluation Constraint Handling
SAF 80 | 42% || Prohibit 84 44%
MB 60 | 32% || Not presented 61 32%
NMF 40 | 21% || Penalty 36 19%
Not presented 6 3% || Repair 9 5%
General 6 3% || General 1] <1%

Architecture Representation: We observe that most ap-
proaches directly use either a quality evaluation model
(34%) or a optimization model (39%) as an input. Only
23% of the approaches take an architecture model as
an input. Amongst them, most models are workflow
languages for service-based systems (9%). UML, ADLs,
and custom architecture models are used similarly often
with 3%, 4%, and 5%, respectively. Some of the architec-
ture model-based optimization approaches are general
(3%), i.e. designed to be extendable to other than the
mentioned modelling language.

Quality Evaluation: Quality evaluation is an important
part of the architecture optimization process, since it
provides a quantitative metric for the quality of the
system based on the architecture specification, which in
turn is used as an indicator of the fitness of the solutions
produced by the optimization algorithm. The majority
of the studies use a Simple Aggregation Function (SAF)
(42%) a Model-Based (MB) technique (32%), or a Non-
linear Mathematical Function (NMF) (21%). In compari-
son, SAF and NMF are easier to model and to integrate

into the optimization problem. However, they often are
not as accurate and as realistic as Model-Based (MB)
techniques, since they omit details and dependencies.

For the model-based approaches, different quality
evaluation techniques have been used, implied by the
models used for specific quality attributes. As an ex-
ample reliability block diagrams [57], [58], [63], [121],
[136], [137], [149], [208], [217], discrete-time Markov
chains [61], [96], [97], [165], [232], and fault trees [67],
[184], [199] are used for reliability; queuing net-
works [35], [80], [143], [144], [168], [169], [171], [245],
execution graphs [85], [107], [115], and discrete-time
Markov chains [210] are used to evaluate performance;
fault trees [8], [180], [184], [185], [201], [223] and binary
decision diagrams [8], [185] are used for safety eval-
uation; continuous-time Markov chains [193], Markov
decision processes [212], Petri-nets [194], and Markov
reward models [165] are used for evaluation of a sys-
tem’s energy consumption. Quantitative metrics of the
quality attributes are obtained by either mathematically
analyzing or simulating the models. For an overview of
the different evaluation models and techniques several
surveys can be recommended, e.g. for reliability [99],
performance [22], [134], energy consumption [27], and
safety [104].

Degrees of Freedom: Allocation, hardware replication,
and hardware selection are the most intensively studied
degrees of freedom with 31%, 21%, and 20% of the over-
all papers, respectively. Other popular degrees of free-
dom are software replication (18%), scheduling (17%),
component selection (16%) and service selection (15%). A
small amount of papers (9%) presents a problem-specific
degree of freedom, such as changing the transmission
power in communicating embedded systems or deci-
sions on whether to implement a certain functionality
in software or hardware.

Optimization Strategy: When the search time and re-
sources used to perform the optimization process are
limited and near-optimal solutions are good enough for
the given problem, then approximate algorithms are the
right optimization tool. However, if the goal is to find
the optimal solutions, and if the resources and time are
unlimited then one should choose exact optimization
algorithms. This is an important trade-off that should
be made when choosing an optimization algorithm. As-
suming problems of non-trivial size, the complexity of
the problem is the most important factor that needs to
be taken into account.

The majority of the approaches use approximate meth-
ods (mostly metaheuristics) as an optimization tech-
nique, comprising 78% of the overall approaches. The
main reason for using approximate methods is the diffi-
culty of the search-space, in which often an exhaustive
search is not feasible in polynomial time. Moreover,
the objective functions are usually computationally ex-
pensive and non-linear. Listing all possible solutions in
order to find the best candidates is a non-deterministic
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TABLE 4: Solution category - architecture representation, quality-evaluation and degree-of-freedom specific catego-
rization of the reviewed approaches.

QA

Architecture Representation

Quality Evaluation

Degrees of Freedom

Performance(84)

ADL(4) [145],[160], [161], [170], ANY(2)
[133], [153], CUSTOMAM(5) [90], [152],
[196]-[198], OPTIMPL(3)  [35], [109],
[169], OPTSTRUC(11) [3], [45], [46],
[87], [141], [143], [177], [189], [222], [226],
[237], QUALMM(@42) [1], [2], [10], [23],
[32], [39], [43], [66]-[68], [73], [77], [80], [83],
[84], [88], [93], [112], [114], [117], [121]-[124],
[126], [144], [151], [168], [174]-[176], [179],
[188], [210], [218], [220], [231], [233], [235],
[236], [239], [245], QUALSTD(@3) [26],
[69], [213], UML(1) [241], WFL(13) [12]-
[15], [29], [38], [40], [42], [44], [74], [82], [130],
[200]

GENERAL(1) [3], MB(27) [10],
[23], [26], [35], [45], [66]-[69], [80],
[90], [117], [121], [123], [133], [143]-
[145], [152], [160], [161], [168], [169],
[176], [177], [210], [245], NMF(11)
[46], [73], [83], [87], [88], [93], [122],
[175], [189], [220], [239], NOT PRE-
SENTED(1) [141], SAF(44)
[11, [2], [12]-[15], [29], [32], [38]-[40],
[42]-[44], [74], [77], [82], [84], [109],
[112], [114], [124], [126], [130], [151],
[153], [170], [174], [179], [188], [196]-
[198], [200], [213], [218], [222], [226],
[231], [233], [235]-[237], [241]

ALLOCATION(37) [2], [10], [23], [32], [45], [46], [80], [83], [84], [88], [112], [114], [117], [121]-
[123], [126], [133], [144], [145], [152], [153], [160], [161], [175]-[177], [179], [188], [189], [210], [213], [220],
[222], [233], [239], [245], ARCHITECTURAL PATTERN(3) [196]-[198], CLUSTERING(4)
[671-[69], [122], COMPONENT SELECTION(6) [45], [90], [109], [160], [161], [177], HARD-
WARE PARAMETERS(3) [143], [160], [161], HARDWARE REPLICATION(3) [66], [144],
[177], HARDWARE SELECTION(8) [66], [133], [145], [160], [161], [176], [177], [220], OTHER
PROBLEM SPECIFIC(12) [15], [29], [38], [39], [42], [44], [74], [130], [151], [170], [235], [237],
PARTITIONING(2) [35],[218], SCHEDULING(25) [1], [2], [26], [32], [45], [46], [67]-[69], [73],
[83], [87], [93], [114], [117], [123], [141], [174], [179], [189], [213], [220], [222], [239], [245], SERVICE
COMPOSITION(8) [40], [77], [82], [124], [226], [231], [236], [241], SERVICE SELECTION(20)
[12]-[15], [38], [39], [42]-[44], [74], [77], [82], [124], [130], [151], [168]-[170], [200], [241], SOFTWARE
PARAMETERS(2) [26],[143], SOFTWARE REPLICATION(Q) [3],[93],[177], SOFTWARE
SELECTION(1) [133]

Cost(74)

ADL(3) [145],
CUSTOMAM(@3) [49],  [102],
[152], OPTIMPL(2) [178], [180],
OPTSTRUC(28)  [9], [18], [58], [62],
[64], [81], [108], [118], [128], [137], [143],
[147], [148], [157], [177], [181], [190], [207],
[209], [215]-[217], [221], [226]-[229], [237],
QUALMMI(23) [32], [39], [41], [43], [47],
[67], [68], [72], [77], [84], [123], [124], [127],
[142], [144], [149], [151], [168], [188], [218],
[220], [231], [236], QUALSTD(1) [100],
UML(2) [63], [241], WFL(12) [12]-[15],
[38], [40], [42], [44], [74], [82], [130], [200]

[160],  [161],

GENERAL(1) [147], MB(19)
[471, [67], [68], [72], [100], [102],
[123], [127], [143]-[145], [149], [152],
[157], [160], [161], [168], [177], [180],
NME(10) [9], [18], [58], [81], [118],
[128], [137], [148], [217], [220], NOT
PRESENTED(1) [178], SAF(44)
[12]-[15], [32], [38]-[44], [49], [62]-
[64], [74], [771, [82], [84], [108], [124],
[130], [142], [147], [151], [181], [188],
[190], [200], [207], [209], [215], [216],
[218], [221], [226]-[229], [231], [236],
[237], [241]

ALLOCATION(17) [32], [47], [72], [84], [108], [123], [127], [142], [144], [145], [152], [160], [161],
[177], [178], [188], [220], CLUSTERING(2) [67], [68], COMPONENT SELECTION(19) [9],
[18], [62]-[64], [142], [147], [149], [157], [160], [161], [177], [178], [190], [207], [209], [227]-[229], HARD-
WARE PARAMETERS(3) [143], [160], [161], HARDWARE REPLICATION(18) [58], [81],
[100], [102], [118], [137], [144], [147)-[149], [157], [177], [181], [209], [215]-[217], [221], HARDWARE
SELECTION(18) [58], [72], [81], [100], [118], [137], [145], [148], [160], [161], [177], [178], [181], [215]-
[217], [220], [221], MAINTENANCE SCHEDULES(2) [100], [180], NOT PRESENTED(1)
[128], OTHER PROBLEM SPECIFIC(11) [15], [38], [39], [42], [44], [49], [64], [74], [130], [151],
[237], PARTITIONING(1) [218], SCHEDULING(9) [32], [47], [67], [68], [72], [123], [127], [142],
[220], SERVICE COMPOSITION(8) [40], [77], [82], [124], [226], [231], [236], [241], SERVICE
SELECTION(19) [12]-[15], [38], [39], [41]-[44], [74], [77], [82], [124], [130], [151], [168], [200], [241],
SOFTWARE PARAMETERS(2) [143],[180], SOFTWARE REPLICATION(12) [58], [81],
[102], [118], [137], [148], [177], [209], [215]-[217], [221], SOFTWARE SELECTION(10) [58], [81],
[118], [137], [148], [181], [215]-[217], [221]

Reliability(71)

ADL(4) [61], [160], [161], [165], ANY(2)
[133],[153], CUSTOMAM(2) [102], [164],
OPTIMPL(1) [178], OPTSTRUC(36)
[3], 171, [18], [30], [31], [51]-[57], [59], [60],
[75]1, [76], [96], [97], [118], [128], [136],
[137], [146]-[148], [177], [182], [183], [187],
[204], [215], [216], [226], [234], [238], [244],
QUALMM(21) [39], [66], [67], [73], [83],
[88],[93], [121]-[124], [131], [149], [151], [155],
[175], [176], [186], [192], [214], [236], QUAL-
STD(2) [199], [232], UML(1) [241],
WFL(2) [40], [130]

GENERAL@) [3], [53], [147],
[182], MB(23) [7], [61], [66], [67],
[96], [97], [102], [121], [123], [133],
[149], [160], [161], [164], [165], [176],
[177], [187], [199], [214], [232], [238],
[244], NMF(27) [18], [31], [51],
[52], [541-[57], [59], [60], [73], [75],
[76], [83], [88], [93], [118], [122],
[128], [136], [137], [146], [148], [175],
[186], [204], [234], NOT PRE-
SENTED(1) [178], SAF(17) [30],
[39], [40], [124], [130], [131], [147],
[151], [153], [155], [183], [192], [215],
[216], [226], [236], [241]

ALLOCATION(20) [61],[83], [88], [121]-[123], [133], [153], [155], [160], [161], [164], [175]-[178], [186],
[187], [192], [214], CLUSTERING(3) [67], [122], [214], COMPONENT SELECTION(12) [7],
[18], [96], [97], [147], [149], [160], [161], [177], [178], [182], [232], HARDWARE PARAMETERS(2)
[160], [161], HARDWARE REPLICATION(29) [31], [51]-[57], [59], [60], [66], [75], [76], [102],
[118], [136], [137], [146]-[149], [165], [177], [199], [204], [215], [216], [234], [244], HARDWARE
SELECTION(26) [51]-[55], [57], [59], [60], [66], [118], [133], [136], [137], [146], [148], [160], [161],
[176]-[178], [183], [199], [204], [215], [216], [234], NOT PRESENTED(2) [30], [128], OTHER
PROBLEM SPECIFIC(3) [39],[130], [151], SCHEDULING(6) [67], [73], [83], [93], [123], [192],
SERVICE COMPOSITION(6) [40], [124], [131], [226], [236], [241], SERVICE SELECTION(5)
[39], [124], [130], [151], [241], SOFTWARE REPLICATION(29) [3], [7], [31], [51]-[57], [59], [60],
[75], [76], [93], [102], [118], [136], [137], [146], [148], [165], [177], [204], [215], [216], [234], [238], [244],
SOFTWARE SELECTION(19) [51]-[55], [57], [59], [60], [118], [133], [136], [137], [146], [148], [183],
[204], [215], [216], [234]

Availability(25)

ADL(2) [61],[170], OPTSTRUC(4) [81],
[157], [217], [226], QUALMMI(6) [39],[77],
[124], [151], [173], [236], QUALSTD(1)

[100], UML(1) [241], WFL(11) [12], [14],
[15], [29], [40], [42], [44], [74], [82], [106], [130]

MB@)  [61], [100], [157], [173],
NMF(2) [81], [217], SAF(19)
[12], [14], [15], [29], [39], [40], [42],
[44], [74], [771, [82], [106], [124], [130],
[151], [170], [226], [236], [241]

ALLOCATION(2) [61], [173], COMPONENT SELECTION(1) [157], HARDWARE
REPLICATION(4) [81], [100], [157], [217], HARDWARE SELECTION(3) [81], [100], [217],
MAINTENANCE SCHEDULES(1) [100], OTHER PROBLEM SPECIFIC(9) [15], [29],
[39], [42], [44], [74], [130], [151], [170], SERVICE COMPOSITION(8) [40], [77], [82], [106],
[124], [226], [236], [241], SERVICE SELECTION(14) [12], [14], [15], [39], [42], [44], [74], [77],
[82], [124], [130], [151], [170], [241], SOFTWARE REPLICATION(2) [81], [217], SOFTWARE
SELECTION(2) [81],[217]

General(22)

ADL(2) [5], [145], ANY(@®) [79], [153],
[205], [224], OPTSTRUC(6) [86], [113],
[138], [139], [219], [242], QUALMM(5)
[21], [33], [95], [150], [202], UML(3) [36],
[91], [162], WFL(3) [71], [162], [243]

GENERAL(2)
MB(5) [51, [95], [145],
[224], NMF(@) [791, NOT
PRESENTED@4) [36], [91], [242],
[243], SAF(10) [21], [71], [86],
[113], [150], [153], [162], [202], [205],
[219]

[138],  [139],

[33],

ALLOCATION(?) [5], [21], [33], [95], [145], [150], [153], COMPONENT SELECTION(1) [36],
GENERAL(5) [79],[138], [139], [205], [224], HARDWARE REPLICATION(1) [95], HARD-
WARE SELECTION(3) [33],[145],[150], NOT PRESENTED(1) [91], OTHER PROBLEM
SPECIFIC(2) [71], [113], SCHEDULING(1) [33], SERVICE COMPOSITION(2) [202],
[219], SERVICE SELECTION(6) [113], [162], [202], [219], [242], [243], SOFTWARE PARAM-
ETERS(1) [86]

Energy(18)

ADL@) [165], ANY(1) [153], OPT-
STRUC(2) [237], [240], QUALMM(11)
[17], 28], [67], [68], [72], [84], [116], [155],
[188], [206], [211], QUALSTD(3) [193],
[194], [212]

MB(9) [28], [67], [68], [72], [165],
[193], [194], [206], [212], NMF(3)
[17], [116], [240], SAF(6) [84], [153],
[155], [188], [211], [237]

ALLOCATION(?) [72], [84], [153], [155], [188], [206], [240], CLUSTERING(2) [67], [68],
COMPONENT SELECTION(1) [206], HARDWARE PARAMETERS(1) [116], HARD-
WARE REPLICATION(1) [165], HARDWARE SELECTION(2) [72], [116], OTHER
PROBLEM SPECIFIC(1) [237], SCHEDULING(5) [67], [68], [72], [206], [211], SOFTWARE
PARAMETERS(6) [17], [28], [193], [194], [211], [212], SOFTWARE REPLICATION(1) [165]

Weight

©®)

OPTSTRUC(5) [137], [147], [215]-[217]

GENERAL(1) [147], NMF(2)
[137], [217], SAF(3) [147], [215],
[216]

COMPONENT SELECTION(1) [147], HARDWARE REPLICATION(5) [137],[147], [215]-
[217], HARDWARE SELECTION(@4) [137], [215]-[217], SOFTWARE REPLICATION(4)
[137], [215]-{217], SOFTWARE SELECTION(4) [137], [215]-[217]

Safety

[C)

CUSTOMAM(@) [184], OPTIMPL(2)
[178], [180], OPTSTRUC(1) [223]

MB(3) [180], [184], [223], NOT
PRESENTED(1) [178], SAF(1)
[223]

ALLOCATION(1) [178], COMPONENT SELECTION(2) [178], [184], HARDWARE
REPLICATION(1)  [223, HARDWARE SELECTION(1) [178], MAINTENANCE
SCHEDULES(1) [180], OTHER PROBLEM SPECIFIC(1) [184], SOFTWARE PARAM-
ETERS(1) [180], SOFTWARE REPLICATION(1) [223]
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TABLE 5: Solution category - optimization specific categorization of the reviewed approaches.

e}

A | Optimization Strategy Type

Constraint Handling

TIC(45)

[200], [220], [222], [226], [231], [233], [235], [237], NOT PRESENTED(3)
PROBLEM-SPECIFIC HEURISTIC(23)

Performance(84)

GUARANTEEQ) [112], [218]

EXACT PROBLEM-SPECIFIC(3) [1],[112],[126], EXACT STANDARD(14) [12]-[15], | GENERAL(1) [175], NOT PRESENTED(30) [13],[29], [38], [46], [66], [74],
[42]-[44], [69], [117], [169], [174], [218], [236], [241], GENERAL(1) [153], METAHEURIS- | [77], [82], [87], [88], [90], [109], [112], [124], [126], [133], [143], [151], [152], [160],
[2], [3], [23], [29], [32], [35], [38]-[40], [45], [46], [66], [73], [77], [83], [84], [88], [114],
[122]-[124], [130], [133], [141], [143], [145], [160], [161], [170], [175]-[177], [188], [189], [196]-[198],
[74], [90], [152],
[1], [10], [26], [29], [67], [68], [80], [82], [87],
[93], [109], [112], [121], [144], [151], [168], [179], [210], [213], [236], [239], [241], [245], WITH

[161], [170], [196]-[198], [200], [210], [231], [241], [245], PENALTY(11) [32], [35],
[39], [40], [80], [83], [189], [222], [226], [235], [237], PROHIBIT(36) [1]-[3], [10],
[12], [14], [15], [23], [42]-[45], [69], [73], [93], [114], [117], [122], [123], [141], [144],
[145], [153], [168], [169], [174], [176], [177], [179], [213], [218], [220], [233], [235],
[236], [239], REPAIR(8) [26], [32], [67], [68], [84], [121], [130], [188]

Cost(74)

HEURISTIC(13)
WITH GUARANTEE() [218]

EXACT PROBLEM-SPECIFIC(2) [9],[229], EXACT STANDARD(13) [12]{15], [42]- | NOT PRESENTED(25) [9], [13], [38], [41], [74], [77], [82], [100], [124], [128],
[44], [62]-[64], [218], [236], [241], GENERAL(1) [180], METAHEURISTIC(45) [18], [32],
[38]-[41], [58], [72], [77], [81], [84], [100], [102], [108], [118], [123], [124], [128], [130], [137], [143],
[145], [147]-[149], [157], [160], [161], [177], [178], [181], [188], [200], [209], [215]-[217], [220], [221],
[226]-[229], [231], [237], NOT PRESENTED(3) [74], [152], [190], PROBLEM-SPECIFIC
[47], [49], [67], [68], [82], [127], [142], [144], [151], [168], [207], [236], [241],

[137], [143], [151], [152], [157], [160], [161], [178], [200], [207], [215]-[217], [231],
[241], PENALTY(12) [32], [39], [40], [72], [81], [108], [118], [148], [181], [209],
[226], [237], PROHIBIT(30) [12], [14], [15], [18], [42]-[44], [47], [49], [58], [62]
[64], [102], [123], [127], [144], [145], [147], [149], [168], [177], [180], [190], [218], [220],
[221], [227], [229], [236], REPAIR(7) [32], [67], [68], [84], [130], [142], [188]

[54], [56], [236], [241], GENERAL(2) [53], [153], METAHEURISTIC(49)

Reliability(71)

WITH GUARANTEE() [31]

EXACT PROBLEM-SPECIFIC(2) [155], [186], EXACT STANDARD(?) [7], [51], [52], | GENERAL(1)
[3], [18], [30],
[39], [40], [57], [59], [601, [66], [73], [75], [76], [83], [88], [96], [97], [102], [118], [122]-[124], [128], | PENALTY(19) [30], [39], [40], [56], [60], [75], [76], [83], [96], [97], [118], [136],
[130], [133], [136], [137], [146]-[149], [160], [161], [164], [165], [175]-[178], [182], [183], [199], [204],
[215], [216], [226], [232], [234], [238], [244], NOT PRESENTED(2) [61], [131], PROBLEM-
SPECIFIC HEURISTIC(11) [55], [67], [93], [121], [151], [155], [187], [192], [214], [236], [241],

[175], NOT PRESENTED(18) [53], [61], [66], [88], [124],
[128], [131], [133], [137], [151], [160], [161], [178], [186], [187], [215], [216], [241],

[146], [148], [199], [204], [226], [232], [234], PROHIBIT(30) [3], [7], [18], [31],
[51], [52], [54], [55], [57], [59], [73], [93], [102], [122], [123], [147], [149], [153], [155],
[164], [165], [176], [177], [182], [183], [192], [214], [236], [238], [244], REPAIR(3)
[671, [121], [130]

vailabi
Bty(35)

EXACT STANDARD(7) [12], [14], [15], [42], [44], [236], [241], METAHEURISTIC(12)
[29], [39], [40], [77], [81], [100], [124], [130], [157], [170], [217], [226], NOT PRESENTED(2)
[61], [74], PROBLEM-SPECIFIC HEURISTIC(7) [29],[82], [106], [151], [173], [236], [241]

NOT PRESENTED(12) [29], [61], [74], [77], [82], [100], [124], [151], [157], [170],
[217],[241], PENALTY(4) [39], [40], [81], [226], PROHIBIT(8) [12],[14],[15],
[42], [44], [106], [173], [236], REPAIR(1) [130]

ERAL(3) [153], [205], [224], METAHEURISTIC(10)
[145], [202], [219], [242], NOT PRESENTED(3)
HEURISTIC() [86], [113], [150], [243], WITH GUARANTEE(1) [79]

831)1eral

EXACT PROBLEM-SPECIFIC(2) [79], [150], EXACT STANDARD(1) [162], GEN- | NOT PRESENTED(10) [21], [36], [91], [150], [162], [202], [219], [224], [242],
[5], [33], [71], [95], [138], [139],
[21], [36], [91], PROBLEM-SPECIFIC

[243], PENALTY(5) [33],[71], [113], [138], [139], PROHIBIT(7) [5], [79], [86],
[95], [145], [153], [205]

EXACT PROBLEM-SPECIFIC(2)

[68], [116], [155], [193]

[17], [155], EXACT STANDARD() [193], [194], | NOT PRESENTED(1) [206], PENALTY(2) [72], [237], PROHIBIT(11)
[211], [212], GENERAL(1) [153], METAHEURISTIC(6) [72], [84], [165], [188], [237], [240],
NOT PRESENTED(1) [206], PROBLEM-SPECIFIC HEURISTIC(7) [17], [28], [67],

[17], [28], [116], [153], [155], [165], [193], [194], [211], [212], [240], REPAIR(4)
[67], [68], [84], [188]

METAHEURISTIC(5) [137], [147], [215]-[217]

NOT PRESENTED(®) [137], [215]-[217],
PROHIBIT(1) [147]

GENERAL(1) [180],
METAHEURISTIC(3) [178], [184], [223]

Safe Weig | Energy
-ty(2) —ht(5g) (18) 8

NOT PRESENTED(@) [178], [184], [223],
PROHIBIT(1) [180]

polynomial-time hard (NP-hard) problem. Evolutionary
Algorithms (EAs) [18], [33], [37], [38], [41], [57]-[60], [71],
[73], [76], [88], [92], [102], [108], [118], [128], [148], [149],
[157]-[159], [161], [175], [196], [216], [221], [223], [227]-
[229], [231], [237] are some of the most commonly used
approximate methods in architecture optimization. EAs
are seen as robust algorithms that exhibit approximately
similar performance over a wide range of problems [98],
hence their popularity in the software engineering do-
main.

A considerable number of papers (20% of overall
papers) use exact methods, most of which are stan-
dard optimization techniques such as Linear Program-
ming [174], [193], [208], [211], [212], while some propose
problem-specific exact methods, based on knowledge or
assumptions on the problem [8], [29], [55], [116], [171],
[245]. Due to the ever-increasing complexity of software
systems and the growing number of design options,
exact approaches usually are not suitable as optimiza-
tion techniques, hence the lower number of papers that
employ these techniques.

Finally, general methods do not prescribe the opti-
mization strategy but let the user select among several
options. Percentages of each main optimization class are
shown in Table 3, while Table 7 also shows the percent-
ages for subcategories in relation to quality attributes.

Constraint Handling: Constraint handling techniques

generally are problem specific and need a separate effort
for their design. This may be one of the reason why
a large percentage of papers (32%) do not introduce a
constraint handling method. In fact, many papers that
mentioned constraints do not describe the constraint
handling technique used.

Among the used constraint handling approaches, con-
straint prohibition is the most studied one (44% in total).
Penalty function is another widely used method with
19% of the papers, whereas repair mechanisms are less
preferred, used by only 5% of the papers.

4.3 Validation

A summary of the validation-specific aspects that are
extracted from the set of papers included in the literature
review is given in Table 6. In the following, we summa-
rize the main results for each validation subcategory.
An analysis of the survey results for the validation
category presented in Table 6 reveals that most of the
papers contain at least one form of validation for the
overall approach. Only 10% provide no indication about
the quality of the produced architecture specifications.
However, a significant number of approaches use a sim-
ple form of validation such as simple examples (27%) or
academic case studies (16%). Only a few approaches are
compared with known results from benchmark problems
(4%) or use industrial case studies (16%). However, none
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of the investigated approaches that use industrial case
studies provide detailed evidence that the quality of the
implemented systems has been improved by optimizing
the architecture specification.

Analyzing the results regarding the validation of the
optimization strategy reveals that only a minority of
the approaches (32%) provide detailed results on the
appropriateness of the optimization algorithm. A closer
look into the optimization validation reveals that espe-
cially approaches that employ or present an enhanced
heuristic optimization algorithm use at least one base
line heuristic algorithm (e.g. an evolutionary algorithm)
for comparison.

TABLE 6: Validation category - quantitative summary of
the results.

Validation of the overall approach Number of | Percentages
Papers of
occurrences
Experiments 57 30%
Simple example 51 27%
Academic case study 31 16%
Industrial case study 30 16%
Not presented 19 10%
Benchmark problems 8 4%
Literature comparison 2 1%
Mathematical proof 1 <1%
Validation of the optimization strategy Number of | Percentages
Papers of
occurrences
Not presented 127 68%
Comparison with baseline heuristic algorithm 35 19%
Internal comparisson 17 9%
Comparison with exact algorithm 7 4%
Comparison with random search 2 1%
Mathematical proof 1 <1%
Comparison with baseline algorithm 1 <1%

4.4 Cross Analysis

In this section we are extending the analysis of the sur-
vey data across the different taxonomy categories. Based
on the observations from the reviewing process and
the taxonomy construction, the following cross analysis
questions (CAQs) are worth a deeper analysis:
o CAQ1 What optimization strategies have been used
with different quality attributes?
o CAQ2 Is there a relationship between the quality
attributes and the quality evaluation method?
o CAQ3 How do quality attributes relate to degrees
of freedom?
o CAQ4 What is the relationship between the quality
attributes and the domain?
o CAQ5 Is there a preference of specific degrees of
freedom in the different domains?
o CAQ6 Are different validation approaches used in
the different domains?

o CAQ7 Is there a relationship between the domain
and the optimization phase?

o CAQS8 Is there a relationship between the dimen-
sionality and the optimization phase?

o CAQ9 Are different quality evaluation methods
used in run-time and design-time approaches?

o CAQ10 Is there a relationship between the con-
straints used in the problem formulation and the
constraint handling strategies used in the optimiza-
tion procedure?

o CAQ11 What is the relationship between the opti-
mization strategy used and the optimization valida-
tion?

o CAQ12 What is the relationship between the de-
grees of freedom and the optimization strategy?

o CAQ13 What types of validation are conducted for
the different types of quality evaluation methods?

CAQ1 Optimization strategy and quality attribute:
Due to the high complexity of optimization problems
that arise in software engineering, metaheuristics are
the most common optimization strategies used by the
state-of-the-art approaches (Table 7). Most of the papers
that use metaheuristics optimize reliability (49 papers,
69% of papers that address reliability), cost (45 papers,
61%), availability (12 papers, 55%), and performance
(45 papers, 54%). Problem-specific heuristics are also
very common when optimizing quality attributes such
as performance (23 papers, 27%), cost (13 papers, 18%),
and reliability (11 papers, 15%).

Exact algorithms, which are divided into problem-
specific exact algorithms and standard exact algorithms,
have also been tackled by the current research. Standard
exact algorithms are in general more frequently used
than problem-specific exact algorithms. Some of the
quality attributes, such as safety, maintainability, and
security have not been optimized with exact algorithms.

CAQ2 Quality attribute and quality evaluation
method: The quality attributes also exhibit a relation
with the evaluation strategies (cf. Table 7). For instance,
model-based evaluations are widely used for quality
attributes such as safety (75% of papers that address
safety) and energy consumption (50%). However, model-
based techniques have a lower proportion of the papers
that address reliability (32%), performance (32%), and
cost (26%). Reliability is usually evaluated with nonlin-
ear mathematical functions (38%), whereas performance
and cost are mostly evaluated with simple aggregation
functions (52% and 59%, respectively).

CAQ3 Quality attribute and degree of freedom: Cross
analysis table 7 depicts certain patterns with respect to
the architecture degrees of freedom that are used in the
optimization approaches versus the quality attributes.
For instance, the reliability optimization approaches are
mostly focused on hardware replication (41%), software
replication (41%), hardware selection (37%), allocation
(28%) and software selection (27%). On the other hand,
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TABLE 7: Quality attributes versus other aspects.

Optimization Strategy Quality Evaluation
Quality Attribute | Total Exact Approximative
Standard | Problem | Meta- Problem | with General | Not pre- | Simple Model Non- General | Not pre-
specific heuristic | specific guaran- sented aggr- based linear sented
heuristic | tee egation mathe-
func- matical
tions func-
tions
Performance 84 | 14 (17%) 3 (4%) | 45 (54%) | 23 (27%) 2 (2%) 1 (1%) 3 (4%) | 44 (52%) | 27 (32%) | 11 (13%) 1 (1%) 1 (1%)
Cost 74 | 13 (18%) 2 (3%) | 45 (61%) | 13 (18%) 1 (1%) 1 (1%) 3 (4%) | 44 (59%) | 19 (26%) | 10 (14%) 1 (1%) 1 (1%)
Reliability 71 7 (10%) 2 (3%) | 49 (69%) | 11 (15%) 1 (1%) 2 (3%) 2 (3%) | 17 (24%) | 23 (32%) | 27 (38%) 4 (6%) 1 (1%)
General 25 1 (4%) 2 (8%) | 10 (40%) 4 (16%) 1 (4%) 3 (12%) 3 (12%) | 10 (40%) 5 (20%) 1 (4%) 2 (8%) 4 (16%)
Availability 22 7 (32%) - | 12 (55%) 7 (32%) - - 2 (9%) | 19 (86%) 4 (18%) 2 (9%) - -
Energy 18 4 (22%) 2 (11%) 6 (33%) 7 (39%) - 1 (6%) 1 (6%) 6 (33%) 9 (50%) 3 (17%) - -
Weight 5 - - | 5(100%) - - - - 3 (60%) - 2 (40%) 1 (20%) -
Safety 4 - - 3 (75%) - - 1 (25%) - 1 (25%) 3 (75%) - - 1 (25%)
Reputation 4 2 (50%) - 1 (25%) 2 (50%) - - - | 4(100%) - - - -
Modifiability 3 - - | 3(100%) - - - - | 3 (100%) - - - -
Area 3 1 (33%) - 2 (67%) - 1 (33%) - - 1 (33%) 1 (33%) 1 (33%) - -
Security 1 - - | 1(100%) - - - - | 1(100%) - - - -
Transformation Operators
Quality Attribute | Total
Allocation] Hardware| Hardware| Software | Schedu- | Compo- Service Software | Other Software | Service Mainten-
replica- selec- replica- ling nent selec- selec- problem | parame- | compo- ance
tion tion tion selec- tion tion specific ters sition sched-
tion ules

Performance 84 | 37 (44%) 3 (4%) 8 (10%) 3 (4%) | 25 (30%) 6 (7%) | 20 (24%) 1(1%) | 12 (14%) 2 (2%) 8 (10%) -
Cost 74 | 17 (23%) | 18 (24%) | 18 (24%) | 12 (16%) 9 (12%) | 19 (26%) | 19 (26%) | 10 (14%) | 11 (15%) 2 (3%) 8 (11%) 2 (3%)
Reliability 71 | 20 (28%) | 29 (41%) | 26 (37%) | 29 (41%) 6 (8%) | 12 (17%) 5(7%) | 19 (27%) 3 (4%) - 6 (8%) -
General 25 7 (28%) 1 (4%) 3 (12%) - 1 (4%) 1 (4%) 6 (24%) - 2 (8%) 1 (4%) 2 (8%) -
Availability 22 2 (9%) 4 (18%) 3 (14%) 2 (9%) - 1(5%) | 14 (64%) 2 (9%) 9 (41%) - 8 (36%) 1 (5%)
Energy 18 7 (39%) 1 (6%) 2 (11%) 1 (6%) 5 (28%) 1 (6%) - - 1 (6%) 6 (33%) - -
Weight 5 - | 5(100%) 4 (80%) 4 (80%) - 1 (20%) - 4 (80%) - - - -
Safety 4 1 (25%) 1 (25%) 1 (25%) 1 (25%) - 2 (50%) - - 1 (25%) 1 (25%) - 1 (25%)
Reputation 4 - - - - - - | 4(100%) - 1 (25%) - 3 (75%) -
Modifiability 3 - - - - - - - - - - - -
Area 3 2 (67%) - 1 (33%) - 2 (67%) 1 (33%) - - - - - -
Security 1 - - - - - - | 1(100%) - | 1(100%) - - -

the most common degrees of freedom for performance,
which is the most frequent quality attribute, are alloca-
tion (44%), scheduling (30%) and service selection (24%).

As can be observed from the gaps in Table 7, some
degrees of freedom are not considered to optimize cer-
tain quality attributes. For instance, there are no papers
optimizing availability, safety, or security by varying the
scheduling. Furthermore, software selection is only used
to optimize performance, cost, reliability, availability,
and weight.

CAQ4 Quality attribute and domain: Results depicted
in Table 8 indicate that there is a relationship between
certain quality attributes and the domain. For instance,
quality attributes such as energy, weight safety, and
area are optimized only in the context of embedded
systems, whereas security is considered only with in-
formation systems. Modifiability is only presented in a
general setting, without specifying the domain. These
observations confirm that certain quality attributes are

important or can be measured only in a specific domain.
For example, safety is an important quality attribute in
embedded systems, especially in life-critical embedded
systems, whereas information systems typically do not
involve life- and safety-critical functionalities. Still, the
most common quality attributes performance, costs, and
reliability, are used in both domains.

CAQ5 Degree of freedom and domain: The cross anal-
ysis between the degrees of freedom and the domain
is presented in Table 8. Some degrees of freedom are
often considered in embedded systems, e.g. allocation
(68%), hardware replication (80%), hardware selection
(82%), and scheduling (61%). Some degrees of freedom
can only be found in embedded systems, e.g. software
replication, clustering, and maintenance schedules. On
the other hand service selection and service composition
are only present in information systems.

CAQ6 Validation approach and domain: Table 8
presents the results of the cross analysis between the
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TABLE 8: Domain versus other aspects.

Quality Attribute Total Domain

ES 1S GENERAL

Performance 84 | 32 (38%) 31 (37%) 21 (25%)
Cost 74 | 35 (47%) | 26 (35%) 13 (18%)
Reliability 71 | 40 (56%) | 13 (18%) 18 (25%)
Availability 25 | 5(0%) | 17 (68%) 3 (12%)
General 22 | 12 (55%) 6 (27%) 4 (18%)
Energy 18 | 17 (94%) - 1 (6%)
Weight 5| 4(80%) - 1 (20%)
Safety 4 | 4 (100%) - -
Reputation 4 - 3 (75%) 1 (25%)
Modifiability 3 - - 3 (100%)
Area 3 | 3 (100%) - -
Security 1 - 1 (100%) -
Degrees of Freedom Total ES 1S GENERAL
Allocation 59 | 40 (68%) 5 (8%) 14 (24%)
Hardware replication 40 | 32 (80%) 2 (5%) 6 (15%)
Hardware selection 38 | 31 (82%) 4 (11%) 3 (8%)
Software replication 35 | 28 (80%) - 7 (20%)
Scheduling 33 | 20 (61%) 1 (3%) 12 (36%)
Component selection 30 | 12 (40%) 2 (7%) 16 (53%)
Service selection 28 - 26 (93%) 2 (7%)
Software selection 24 | 21 (88%) 1 (4%) 2 (8%)
Other problem specific 18 5 (28%) 10 (56%) 3 (17%)
Service composition 12 - | 12 (100%) -
Software parameters 10 8 (80%) 1 (10%) 1 (10%)
Clustering 5 | 5(100%) - -
General 5 4 (80%) - 1 (20%)
Hardware parameters 4 1 (25%) 3 (75%) -
Architectural pattern 3 - - 3 (100%)
Not presented 3 2 (67%) - 1 (33%)
Partitioning 2 1 (50%) 1 (50%) -
Maintenance schedules 2 | 2 (100%) - -
Approach Validation Total ES 1S GENERAL
Experiments 57 | 23 (40%) | 23 (40%) 11 (19%)
Simple example 51 | 38 (75%) - 13 (25%)
Industrial case study 31 | 21 (68%) 1 (3%) 8 (26%)
Academic case study 30 | 11 (37%) 14 (47%) 6 (20%)
Not presented 19 5 (26%) 3 (16%) 11 (58%)
Benchmark problems 8 6 (75%) - 2 (25%)
Literature comparison 2 | 2 (100%) - -
Mathematical proof 1 | 1(100%) - -

domain and the validation approach. The validation
approaches taken in embedded systems vary more than
in information systems, with examples, benchmark prob-
lems, literature comparison, and mathematical proof be-
ing used only in ES. In addition, it can be observed
that the proportion of papers that use experiments
and academic case studies as validation techniques is
higher in information systems compared to embedded
systems. In essence, “examples” was the most commonly
used validation technique in embedded systems, with

TABLE 9: Phase versus other aspects.

Phase
Domain Total

DT RT GENERAL
ES 100 | 85 (85%) | 15 (15%) 1 (1%)
s 41 5 (12%) | 35 (85%) 1 (2%)
General 49 | 38 (78%) | 10 (20%) 1 (2%)
Dimensionality Total DT RT GENERAL
SO0 75 | 57 (76%) | 17 (23%) 1 (1%)
MOO 58 | 54 (93%) 3 (5%) 2 (3%)
MTS 51 | 15 (29%) | 36 (71%) -
General 7| 3(43%) 4 (57%) -
Quality Evaluation Total DT RT GENERAL
SAF 80 | 40 (50%) | 40 (50%) -
MB 60 | 46 (77%) | 12 (20%) 3 (5%)
NMF 40 | 36 (90%) 4 (10%) -
Not presented 6 2 (33%) 4 (67%) -
General 6 | 6(100%) - -

38 papers (75%), whereas “experiments” were usually
preferred in information systems.

CAQ?7 Domain and optimization phase: The cross anal-
ysis of the domain and optimization phase is depicted
in Table 9. It can be observed that the optimization
techniques designed for embedded systems are usu-
ally performed at design time (85% of the papers are
at design time), whereas in information systems, the
optimization is mostly done at run time, with 85% of
papers in information systems performing optimization
at run time. In the other direction an analogous relation
from phase to domain can also be observed. While the
popularity of design-time optimization for embedded
systems is understandable due to the difficulty of run-
time adaptation of embedded systems, the low number
of design-time approaches for information systems may
be surprising.

CAQS8 Dimensionality and optimization phase: In a
multi-objective optimization problem, the output of the
optimization process in a set of (near) Pareto optimal
solutions. As a result, a subsequent selection process is
needed to choose among the near optimal architectures,
which is usually not practical at run time of a software
system. This explains the low percentage of approaches
that use multi-objective optimization at run-time (only
5%), depicted in Table 9, and the high percentage of
the approaches at run time that convert a multi-objective
problem into a single-objective problem (MTS, 71%).

CAQ9 Quality evaluation and optimization phase:
The analysis of the quality evaluation methods used
at design and run time is presented in Table 9. Inter-
estingly, there is a high number of papers at run-time
that use simple additive functions (SAF). Model-based
approaches, on the other hand, are not as often used
at run-time (only 20%), when compared to design time.
As model-based quality evaluation models are computa-
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tionally more expensive than simple additive functions,
their applicability may be limited at run time. Similarly,
there is a higher percentage of papers that employ non-
linear mathematical function at design-time (90%).

CAQ10 Constraint and constraint handling technique:
Table 10 shows a cross analysis of the different con-
straints and the constraint handling techniques used
during the optimization. The majority of the papers
handle constraints with prohibition techniques, such 73%
of papers with performance constraints, 53% of papers
with cost constraints, and 62% of papers with physical
constraints. Penalty functions are the second most com-
monly used constraint handling technique. A consid-
erable number of papers used penalty techniques with
cost constraint (41%), weight (45%), physical (38%) and
timing (30%). Nevertheless, the proportion of papers that
use penalty function as a constraint handling technique
is lower than prohibition techniques for all constraints.

From the constraint handling perspective, prohibition
techniques are commonly used with almost all con-
straints. On the other hand, constraint handling tech-
niques defined in general are not very frequent. Repair
techniques are very rarely addressed. One reason for
this could be that they increase the complexity of the
optimization process since they require extra knowledge
about the problem to construct feasible results.

CAQ11 Optimization strategy and validation: Table 11
shows a cross analysis of the optimization strategy and
the optimization validation. Note that not all optimiza-
tion validation types are applicable to or meaningful
for all optimization strategies. Not applicable or not
meaningful combinations are marked N/A in the table.
For example, there is no need to validate exact standard
algorithms as their ability to find optimal solutions is
already well studied in optimization literature.

For exact problem-specific approaches, only half of
the papers present some form of validation, mostly a
comparison with a baseline heuristic algorithm that is
commonly used for the addressed optimization problem.

Looking at approximate techniques, we observe two
main favorite optimization strategies: Evolutionary Al-
gorithms as the most commonly used metaheuristic and
constructive heuristics as the most common problem-
specific heuristic. Interestingly, Evolutionary Algorithms
are less frequently validated than many other meta-
heuristics, although it is known that an evolutionary
algorithm’s performance and quality of results can sig-
nificantly vary for different optimization parameters and
problem formulations [19], [20], [225].

CAQ12 Degree of freedom and optimization strategy:
In optimization, the time and computational complex-
ities are the aspects that are of interest. If a problem
is solvable in polynomial time, i.e. it is not an NP-
optimization problem as defined by Crescenzi et. al [65],
then an exact algorithm might be the best solutions.
However, the majority of the problems in architecture

TABLE 10: Constraints versus constraint handling tech-
niques.

Constraint Total Constraint Handling

Prohibit | Penalty | Repair | General | Not presented
Cost 32 | 17 (53%) | 13 (41%) 2 (6%)
Performance 26 | 19 (73%) 3 (12%) | 4 (15%) - -
General 25 | 11 (44%) | 10 (40%) 2 (8%) - 3 (12%)
Weight 20 | 11 (55%) 9 (45%) - - -
Physical 13 8 (62%) 5 (38%)
Timing 10 7 (70%) 3 (30%)
QoS values 10 7 (70%) 1 (10%) 2 (20%)
Precedence 9 7 (78%) 1(11%) | 1 (11%)
Memory 9 7 (78%) 1 (11%) 1 (11%) -
Mapping 8 7 (88%) 1 (13%) -
Reliability 7 | 4(57%) 1 (14%) - - 2 (29%)
Requirements 6 4 (67%) - - - 1 (17%)
Volume 6 3 (50%) 3 (50%)
Structural 5 2 (40%) 2 (40%) 1 (20%)
Area 3 | 3 (100%) 1 (33%)
Redundancy 3 2 (67%) 1 (33%)
level
Delivery time 3 | 3(100%)
Availability 2 1 (50%) 1 (50%)
Throughput 2 | 2(100%)
Processing 1 1 (100%) - - -
power
Stability 1 | 1(100%)
Path loss 1 1 (100%) - - -
Functional 1 | 1(100%) - - - -
correctness
Design 1 | 1(100%)
Dependability 1 | 1(100%) - - - -

optimization cannot be solved in polynomial time. The
degrees of freedom used with a specific problem is
one of the components that defines the computational
complexity of an optimization problem, among others
such as the complexity of the quality evaluation func-
tion/procedure. As it can be observed from the results
in Table 12, the majority of the degrees of freedom in
architecture optimization, especially degrees of freedom
that involve hardware, such as hardware replication
(80%), hardware selection (82%), and hardware param-
eters (75%), are used in conjunction with approximate
optimization algorithms. Similarly, many degrees of free-
dom that involve a change in the software part of the
system are also used with metaheuristics, e.g. software
replication (74%) and software selection (79%). On the
other hand, clustering is used mostly with problem-
specific heuristics (60%). Standard exact algorithms are
not very frequently used in conjunction with most de-
grees of freedom, apart from service selection (36% of
the papers).

CAQ13 Quality evaluation method and approach val-
idation: Depending on the quality evaluation method
that the reviewed approaches use, certain approach val-
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TABLE 11: Optimization strategy versus optimization validation.

Optimization Approach Total | Comparison | Internal Comparison | Comparison | Mathematical| Not
with comparison with  exact | with proof presented
baseline algorithm random
heuristic search
algorithm
Linear Programming 9 (4%) - - - N/A N/A 9 (100%)
Mixed-Integer Linear Programming (Milp) 5 (2%) - - - N/A N/A 5 (100%)
<] Integer Programming Algorithm 7 (3%) - - - N/A N/A 7 (100%)
"% Integer Linear Programming 4 (2%) - - - N/A N/A 4 (100%)
@ Exhaustive Search 1 (0%) - - - N/A N/A 1 (100%)
‘g‘ Sequential Quadratic Programming 2 (1%) 1 (50%) - - N/A N/A 1 (50%)
is Total Exact Standard 27 (13%) 1 (4%) - - N/A N/A 26 (96%)
Graph Partitioning 1 (0%) 1 (100%) - - N/A - -
g% Branch And Bound 3 (1%) 1 (33%) 2 (67%) - N/A - -
E §- Other Exact Problem Specific 6 (3%) 2 (33%) 1 (17%) 1 (17%) N/A - 2 (33%)
Total Exact Problem Specific 10 (5%) 4 (40%) 3 (30%) 1 (10%) N/A - 2 (20%)
Total Exact 38 (18%) 5 (13%) 3 (8%) 1 (3%) N/A - 29 (76%)
Evolutionary Algorithm 71 (34%) 10 (14%) 6 (8%) 3 (4%) 1 (1%) N/A 51 (72%)
Greedy 4 (2%) 1 (25%) 2 (50%) - - N/A 1 (25%)
Simulated Annealing 13 (6%) 5 (38%) 3 (23%) 1 (8%) - N/A 4 (31%)
3 Variable Neighbourhood Search 5 (2%) 2 (40%) - - - N/A 3 (60%)
.§ Ant Colony Optimization 4 (2%) 2 (50%) - - 1 (25%) N/A 1 (25%)
':: Hill Climbing 4 (2%) 2 (50%) - 1 (25%) - N/A 1 (25%)
= Tabu Search 9 (4%) 6 (67%) 1 (11%) - - N/A 2 (22%)
Particle Swarm 1 (0%) 1 (100%) - - - N/A -
_qa’ Other Metaheuristic 5 (2%) 2 (40%) - - - N/A 3 (60%)
E Total Metaheuristic 103 (49%) 23 (22%) 10 (10%) 5 (5%) 2 (2%) N/A 63 (61%)
g Constructive Heuristics 13 (6%) 3 (23%) 2 (15%) 1 (8%) - - 7 (54%)
<Q~ Other Problem Specific 15 (7%) 2 (13%) 1 (7%) - - - 12 (80%)
f‘-‘: Greedy 7 (3%) 4 (57%) 1 (14%) - - - 2 (29%)
:‘)' Branch And Bound Based 1 (0%) - - - - 1 (100%) -
E Graph Partitioning 2 (1%) 1 (50%) - - - 1 (50%) -
E Dynamic Programming 2 (1%) 1 (50%) 1 (50%) - - - -
Restricted Enumeration Of All Possible So- 2 (1%) - - - - - 2 (100%)
lutions
Total Approximative Problem Specific 42 (20%) 10 (24%) 6 (14%) 1 (2%) - 1 (2%) 24 (57%)
With Guarantee 4 (2%) 1 (25%) 1 (25%) - - - 2 (50%)
Total Approximative 0 (0%) - - - - - -

idations have been selected as shown in Table 13. For
instance, when using a simple aggregation function,
experiments are the most frequent validation technique,
comprising 40% of the overall papers that use this kind
of quality evaluation method. Model-based approaches
instead have been most frequently validated with in-
dustrial case studies (32%). It can also be observed that
these approaches have the highest proportion of papers
that use industrial case studies as an approach validation
technique among all other quality evaluation methods,
which may indicate a possible relation among these two
entities.

Another interesting result relates to the validation
technique used for non-linear mathematical functions.
The majority of the approaches that use non-linear math-
ematical functions use validation by examples (53%).
A considerable fraction of papers in this category uses
experiments (20%), and only a few papers use industrial

case studies (8%).

In general, very few papers use benchmarks problems;
more specifically, only 4% of the papers that use simple
aggregation functions, 3% of all model-based approaches
and 8% of papers that consider non-linear mathematical
functions. This can be due to a lack of benchmark
problems in the software engineering domain, which
may be a research area that requires more attention.
Mathematical proofs and literature comparison are even
less frequently used as validation approaches. The only
papers we found with mathematical proof as a validation
technique use either simple aggregation functions, or
non-linear mathematical functions as quality evaluation
methods.
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TABLE 12: Degree of freedom versus optimization strategy.

Optimization Strategy
Degrees of Freedom Total Approximative Exact
General | Not presented
Metaheuristic | Problem-specific heuristic | With guarantee | Exact standard | Exact problem-specific
Allocation 59 32 (54%) 19 (32%) 1 (2%) 1 (2%) 5 (8%) 1 (2%) 4 (7%)
Hardware replication 40 32 (80%) 2 (5%) 1 (3%) 4 (10%) - 1 (3%) -
Hardware selection 38 31 (82%) 3 (8%) - 3 (8%) 1(3%) 1 (3%) -
Software replication 35 26 (74%) 2 (6%) 1 (3%) 5 (14%) - 1 (3%) -
Scheduling 33 14 (42%) 14 (42%) - 4 (12%) 1 (3%) - 1 (3%)
Component selection 30 18 (60%) 3 (10%) - 4 (13%) 2 (7%) - 4 (13%)
Service selection 28 11 (39%) 7 (25%) - 10 (36%) - - 1 (4%)
Software selection 24 19 (79%) 1 (4%) - 3 (13%) - 1 (4%) -
Other problem specific 18 10 (56%) 4 (22%) - 4 (22%) - - 1 (6%)
Service composition 12 7 (58%) 4 (33%) - 2 (17%) - - 1 (8%)
Software parameters 10 1 (10%) 5 (50%) - 4 (40%) 1 (10%) 1 (10%) -
Clustering 5 1 (20%) 3 (60%) - 1 (20%) - - -
General 5 2 (40%) - 1 (20%) - 1(20%) | 2 (40%) -
Hardware parameters 4 3 (75%) 1 (25%) - - - - -
Architectural pattern 3 3 (100%) - - - - - -
Not presented 3 2 (67%) - - - - - 1 (33%)
Partitioning 2 1 (50%) - 1 (50%) 1 (50%) - - -
Maintenance schedules 2 1 (50%) - - - - 1 (50%) -
TABLE 13: Quality evaluation versus approach validation.
Quality Evaluation Total Experiments | Example Industrial AcadAeme:: = Vel;léi::::;rk Mathematical | Literature Not
case study case study problems proof comparison presented
Simple aggregation functions 80 32 (40%) 14 (18%) 8 (10%) 17 (21%) 3 (4%) 1 (1%) - 10 (13%)
Model Based 60 15 (25%) 10 (17%) 19 (32%) 12 (20%) 2 (3%) - 2 (3%) 4 (7%)
Non-linear mathematical functions 40 8 (20%) 21 (53%) 3 (8%) 2 (5%) 3 (8%) - - 3 (8%)
General 6 - 5 (83%) - 1 (17%) 1 (17%) - - -
Not presented 6 2 (33%) 2 (33%) - - - - - 2 (33%)
5 RECOMMENDATIONS FOR FUTURE achieved system quality and the spent effort.

RESEARCH

Based on the results of the literature review presented
in the previous section, it is evident that the research
area of architecture optimization has received a lot of
attention over the last decades and significant progress
has been made. However, the results also reveal a num-
ber of observations that can help to direct future research
efforts in the community. In the following, to address the
third research question (RQ3), we list important goals
that should be achieved by the community in order to
advance the research area.

Evidence on the quality of the resulting architectures
and economic benefit. To further increase the penetra-
tion of architecture optimization approaches in industrial
practice, it would be required to provide detailed success
stories that indicate an economical benefit of applying
the specific architecture optimization approaches. In-
line with the idea of evidence-based software engineer-
ing [78], this requires a systematic analysis of systems
that have been developed with and without the use of
architecture optimization approaches, with respect to the

Systematic exploration of effective degrees of free-
dom for different quality attributes. The more recent
approaches reviewed in this paper focus on exploiting
specific architecture degrees of freedom to achieve a
certain quality goal. Further research effort is required
for analyzing the individual approaches in order to
understand the relationship between the degrees of
freedom and quality attributes. These studies should
identify the effect of each degree of freedom on different
quality attributes. Furthermore, an investigation of a
joint consideration of different degrees of freedom is an
interesting starting point for future studies. Note that
joint consideration of any set of degrees of freedom and
any quality attributes requires the use of an architecture
model as an input (cf. taxonomy category “architecture
representation” in Section 3.2), because quality evalua-
tion models are restricted to certain quality attributes.

Systematic validation of the optimization strategy.
Based on the results presented in Table 6, it is evident
that a majority of approaches do not validate the op-
timization strategy. A common theme is that a certain
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optimization algorithm is picked and applied without
comparing it to the portfolio of existing optimization
approaches. This is valid for some papers that aim to
introduce a new quality evaluation model; however, to
further advance our knowledge on the performance and
effectiveness of the optimization algorithms, we recom-
mend to compare the optimization algorithms with the
current state of the art approaches. This will allow for
better algorithm selection in future. For the compari-
son, the community should identify a set of benchmark
architecture optimization problems, similar to the ones
already established in the field of reliability optimization
for redundancy allocation [140]. For metaheuristics, a
comparison with random search and well established
metaheuristics is recommended. Since most algorithms
are probabilistic, experiments with a sufficient number of
runs should be used and analyzed with statistical tests.
For setting up the experiments and analyzing them, the
recently published guidelines by Arcuri and Briand [11]
can be recommended.

Unified tool support. Tools that can be used to model
software architecture optimization problems and that
offer different optimization strategies could greatly sup-
port the above-mentioned research directions. A general
optimization framework for software architectures could
be devised, which could make use of (1) plug-ins that
interpret different architecture models (from architec-
ture description languages to component models) and
provide degree of freedom definitions and (2) plug-
ins to evaluate quality attributes for a given architec-
ture model. Such frameworks have already been started
with the Archeopteryx [5], PerOpteryx [133], [161], and
AQOSA [145] approaches for metaheuristic optimization
and a fixed software architecture model. Future research
could extend them to be more generically applicable, and
thus foster better collaboration among researchers, e.g.
by the definition of benchmark problems.

Systematic guidelines for selecting the optimization
approach based on the given problem. In the area of
software architecture optimization, systematic guidelines
for optimization-approach selection are currently lack-
ing. There is a wide range of optimization algorithms
available, which can be grouped into two main classes:
exact and approximate algorithms. Depending on the
available resources and time, on whether the goal is
to find the optimal or near-optimal solutions, and on
the size and complexity of the problem, the appropriate
algorithm needs to be selected for the given problem.
Assuming problems of non-trivial size, the complexity
of the problem is the most important factor that needs
to be taken into account. For optimization, the time and
computational complexities are the aspects that one is
interested in. If a problem is solvable in polynomial
time, i.e. it is not an NP-optimization problem as defined
by Crescenzi et. al [65], then an exact algorithm might
be the best solutions. However, the majority of the
problems in architecture optimization cannot be solved

in polynomial time. The degrees of freedom considered
with a specific problem is one of the components that
defines the computational complexity of an optimization
problem. As can be observed from the results in Table 12,
the majority of the degrees of freedom in architecture
optimization are used in conjunction with approximate
optimization algorithms.

All these aspects need more investigation. The tax-
onomy proposed in this paper is an initial step in this
direction, since it provides a categorization of software
architecture optimization problems. The investigation of
the above aspects can lead to systematic guidelines for
selecting the optimization approach based on the given
problem.

Support for practitioners. To apply a software archi-
tecture optimization approach to a given system archi-
tecture, practitioners need to (1) model the software
architecture in the formalism used by the approach and
(2) identify the applicable degrees of freedom. Here,
modeling the existing architecture is often the most
difficult step, as it includes collecting information about
the quality properties of the architecture. For example,
the resource demands and other performance properties
need to be determined for performance, e.g. by mea-
surements [167]. For reliability, the values usually are
estimated or based on historical data [48], [89]. Creating
an accurate model requires a considerable effort, and
seems to hinder the acceptance of architecture modeling
in practice. Thus, future research should provide support
for practitioners and partial automation to create such
models.

Furthermore, most reviewed approaches use a spe-
cific formalism to describe the software architecture (cf.
“architecture representation” category in sections 3.2
and 4.2). Thus, even if a practitioner has a formalized
model for a software architecture available, the optimiza-
tion approaches are not readily applicable. Here, soft-
ware architecture optimization researchers should relate
their required input models of the software architecture
to UML or other widespread modeling languages, e.g.
by providing tools that transform an UML model to the
required formalism.

Reporting guidelines for software architecture opti-
mization. The description of the solved optimization
problem and the used optimization approach varies
greatly among different papers in the surveyed domain.
Not all values of our taxonomy were explicitly presented
and could be quickly identified. Some values were only
implicitly indicated, making it hard to extract them
from the description of the work. Thus, comparing and
relating different works is difficult.

Our taxonomy can serve as a reporting guideline for
future work to improve the reporting standards in the
area of software architecture optimization. Optimization
papers should state explicitly how they relate to the
taxonomy by prominently providing information for all
taxonomy categories. Ideally, the same terms for the val-
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ues of the taxonomy (e.g. different degrees of freedom)
could be used, although we have to weigh common soft-
ware architecture optimization terms (e.g. “allocation”)
against common terms in different sub-communities (e.g.
“binding” in chip design for embedded systems).

6 CONCLUSIONS

In this article, we have presented the results of a system-
atic literature review on architecture optimization which
included 188 different approaches. Based on this review,
we derived a taxonomy that aims to help researchers to
classify existing and future approaches in this research
area. Using this taxonomy, we have analyzed the current
approaches and presented the results in a way that helps
researchers to relate their work to the existing body of
knowledge and identify future research directions.

During the review process, we acquired knowledge
of different research sub-areas, and presented the impli-
cations of their cross analysis via recommendations for
future research. We structured the results to a number of
tables, which are aimed to facilitate knowledge transfer
among various research communities working in the
architecture-optimization research area. We learned that
although there are some communities that are already
well connected (through cross-citation of their works),
e.g. the community of reliability and performance ar-
chitecture optimization (due to the similarities in their
models), there still remain a number of communities that
are isolated from others, e.g. the scheduling community
or the community focusing primarily on the optimiza-
tion strategies (irrespective of the optimized qualities).
The information presented in this survey aims to bridge
the gap among the communities and allow for easier
knowledge transfer.

In summary, we believe that the results of our sys-
tematic review will help to advance the architecture-
optimization research area, and since we expect this
research area to grow in the future, we hope that also the
taxonomy itself will become useful in developing and
judging new approaches.
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