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ABSTRACT
Smart grids are fostering a paradigm shift in the realm of power 
distribution systems. Whereas traditionally different components 
of the power distribution system have been provided and analyzed 
by different teams through different lenses, smart grids require a 
unified and holistic approach that takes into consideration the in-
terplay of communication reliability, energy backup, distribution 
automation topology, energy storage and intelligent features such 
as automated failure detection, isolation and restoration (FDIR) and 
demand response.

In this paper, we present an analytical model and metrics for 
the survivability assessment of the distribution power grid network. 
The proposed metrics extend the system average interruption dura-
tion index (SAIDI), accounting for the fact that after a failure the 
energy demand and supply will vary over time during a multi-step 
recovery process. The analytical model used to compute the pro-
posed metrics is built on top of three design principles: state space 
factorization, state aggregation and initial state conditioning. Using 
these principles, we reduce a Markov chain model with large state 
space cardinality to a set of much simpler models that are amenable 
to analytical treatment and efficient numerical solution. In the spe-
cial case where demand response is not integrated with FDIR, we 
provide closed form solutions to the metrics of interest, such as the 
mean time to repair a given set of sections.

We have evaluated the presented model using data from a real 
power distribution grid and we have found that survivability of dis-
tribution power grids can be improved by the integration of the de-
mand response feature with automated FDIR approaches. Our em-
pirical results indicate the importance of quantifying survivability

to support investment decisions at different parts of the power grid
distribution network.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling Techniques
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1. INTRODUCTION
Information and communication technologies (ICT) are being

deployed to the distribution power grid to facilitate the manage-
ment of energy demand and supply. The automatic management
of customer consumption in response to variations in supply or as
a result of power failures is referred to as demand response. The
automatic detection, isolation and restoration of failures is known
as distribution automation (DA). The automation of the smart grid
brings novel challenges to the power grid engineers, such as the as-
sessment of the tradeoffs involved to accurately engineer the power
distribution reliability.

The introduction of automation (intelligence) to power distribu-
tion networks has created a need for the holistic assessment of the
distribution network. The distribution network reliability is a func-
tion of the correct operation of several architecture artifacts such as
electrical power components, telecommunications, distribution net-
work topology, failure detection isolation and restoration, demand
response and distributed generation and storage. The automation
of power distribution requires a more integrated perspective across
these domains. However, in the current mode of operation they are
still being engineered separately.

Traditionally, the reliability of power systems has been quanti-
fied using average metrics, such as the system average interruption
index (SAIDI). SAIDI is used by public service commissions in the
United States to assess utilities’ compliance with the commission
rules. It was developed to track manual restoration times, and ac-
cording to Standard 166-1998, the median value for North Amer-
ican utilities is roughly one and a half hours. In smart grid net-
works, power failure and restoration events will have a finer level of



granularity, due to the deployment of reclosers, which isolate faulty
sections, and demand side management system activities, such as
distributed generators and demand response application systems.
Therefore, there is a need to extend the SAIDI metric, and to de-
velop new models and tools for the accurate computation of cus-
tomer interruption indexes after power failure events occur, even
if the occurrence of such events is rare. The survivability of a
mission-critical application is the ability of the system to continue
functioning during and after a failure or disturbance [17].

In [14] we presented a proposal for a common analysis frame-
work to support the survivability analysis of distribution automa-
tion using extensions of the IEC-standardized common informa-
tion model. The paper presented a case study of the application of
the proposed method to the survivability analysis of a simple dis-
tribution automation network that was derived from a real power
distribution network. In [19] we have evaluated the impact of avail-
able active and reactive power supply after a section failure on the
distributed automation survivability metric and we derived closed-
form expressions for certain survivability related metrics.

In this paper we present an analytical model to assess the surviv-
ability of distributed automation power grids and to predict SAIDI
and related metrics as a function of different system parameters re-
lated to communications, distributed generation, demand response
and other smart grid features. We use a performability model
to capture how the system recovers from a failure. Our model ac-
counts for the fact that the topology is sectionalized. Given a failure
in section i, our key insight is to aggregate the sections of the net-
work that may be fed by backup sources into a single node, denoted
by i+. This aggregation allows us to efficiently quantify transient
metrics of the network after a failure, also referred to as surviv-
ability metrics. For example, our model allows us to compute how
the energy not supplied (ENS) after a failure varies over time as a
function of the available backup power, the demand response ap-
plication and of the state of the information and communication
network.

After a power failure event, some power grid areas of the net-
work may experience restoration times of the order of magnitude
of minutes, while other power grid areas may require hours for the
manual repair events to take place. Our model allows for the accu-
rate assessment of the power grid network survivability by tracking
the time-dependent state of the system under study.

The main contributions of this paper are the following.
Survivability model: We present a Markov chain model that

supports the survivability assessment of power grid metrics account-
ing for the sectionalizing of distribution automation topology, the
available excess power, the unreliability of the telecommunications
network and the interaction with the demand response application.
Our model can be generated and solved in a cost-efficient manner.

Implications of system integration: We bring awareness to the
importance of accurate holistic power engineering that considers
the interactions between telecommunications reliability and the re-
liability benefits of integration with other distribution automation
features, such as the integration of failure recovery with demand
response. In particular, we show that if demand response can be
activated after a failure occurs, the reliability of the system signifi-
cantly increases.

Extension of the SAIDI metric to support distributed au-
tomation: We present an extension of the SAIDI metric that cap-
tures the dynamic nature of the smart-grid by taking into account
the number of customers impacted by the service interruption, the
service impact of the interruption (e.g., Energy not Supplied) and
the duration of the recovery period. We use the analytical solu-
tion of the survivability model to capture the time spent in each

state during the recovery period and the reward associated with
each state to capture the service impact of the interruption.

The outline of this paper is as follows. In Section 2 we present a
survey of the related literature. In Section 3 we present an overview
of demand response and failure detection isolation and restoration
applications. In Section 4 we introduce the survivability metrics
that can be derived from our model. We present the model used
in this paper in Section 5. The analysis of our empirical results
is presented in Section 6. Section 7 presents our conclusions and
suggestions for future research.

2. LITERATURE REVIEW
The available literature on power systems reliability is exten-

sive [4, 8, 1]. Recently, researchers have studied how to improve
power systems reliability with smart grid techniques [27, 22]. To
our knowledge, our work is the first to assess survivability met-
rics of power systems accounting for the implications of electro-
mechanical and computer-based strategies to address failures in an
integrated manner.

Elmakias [8] presents a review of computational methods in pow-
er system reliability. The focus of the review is on the application
of Markov models to reliability assessment. To address failures in
the distribution system, the author studied a number of approaches
such as the reduction of main feeder line length, the introduction
of sectionalizer switches, and the automatic connection of backup
power supply to sections isolated by a failure. The analysis focuses
on steady state metrics, whereas in this paper our focus is on study-
ing the system after a failure occurs. Conditioning the initial state
to be a failure state is important in order to evaluate metrics such as
the mean energy not supplied until recovery.

The impact of adding Distributed Generation (DG) as a backup
source in a power system has been studied in [27, 29, 26, 28].
Wassem [27] and Zou et al. [29] analyzed the impact of DG place-
ment on SAIDI, comparing several main feeder topologies. They
concluded that placing the DG source at the end of the main feeder
line provided the best improvement in power reliability. Wang et
al. [26] propose an analytical model to evaluate system reliability.
They use the model to obtain the placement and sizing of DG’s that
maximizes power reliability. An optimization approach for the op-
timal sizing of DG’s is also presented by Zhang et al. [28]. These
works are related to ours, as these results can be used to obtain the
probability that a backup source can supply energy to the affected
sections.

Janev [11] presents the implementation and evaluation of a power
flow algorithm for power distribution grids with distributed gen-
eration. Specifically, the power flow approach presented in [11]
was evaluated using an adaptation of a power distribution bench-
mark [23]. This benchmark employs the following types of re-
newable power generation equipment: PV, Wind, Small Hydro and
Biomass.

Martins [18] presents a model for active distribution systems
expansion planning that considers distributed generation together
with traditional alternatives for distribution expansion such as re-
wiring, network reconfiguration and installation of protection de-
vices. The authors evaluate different alternatives for distribution
automation using average reliability metrics (SAIDI, SAIFI) and
cost.

Brown [4, Section 2.2.5] presents a detailed discussion of the
shortcomings of existing indices to assess reliability of power sys-
tems. In addition, the author proposes a novel metric, the system
average interruption duration exceeding threshold, or SAIDET. In
this paper, we argue that survivability metrics also play a key role
in the assessment of smart grid networks.



Heegaard and Trivedi [10] studied the survivability of telecom-
munication systems. They presented a phase recovery model to
capture the transient properties of the system after a failure. In this
paper, we account for features that are specific to the smart grid
domain and leverage such features for the efficient solution of the
proposed model (see Section 5.1).

Performability metrics have been defined to measure the ability
of a system to continue to operate after a failure but at (possibly)
different performance levels [20, 21]. Performability is usually
concerned with the quality of service provided that the system is
operational. The initial system state is chosen accordingly. In this
paper, in turn, our focus is on survivability metrics. In this case, the
initial state of the system is set to a failure state, so survivability is
“conditional performability” [16].

Keshav and Rosenberg [13] argued that concepts pioneered by
the Internet are applicable to the design of smart grids, and suggest
the initiation of a dialogue between the Internet community and the
electrical grid research community. Our work is a product of such
a dialogue [10, 25].

3. DISTRIBUTION SYSTEMS
BACKGROUND

In this section we introduce some background on distribution
systems, focusing on the aspects relevant to our model, namely 1)
the demand response application and 2) fault detection, isolation
and restoration. Currently, the two features are implemented by
separate distribution automation systems, so we discuss the poten-
tial benefits of the integration of demand response and fault detec-
tion, isolation and restoration features. We start with a brief primer
on distribution automation.

3.1 Distribution Automation Primer
The smartening of distribution networks can bring significant

benefits to operators and customers, but will require considerably
more effort than the smartening of transmission networks. Dis-
tribution networks have many more nodes to be instrumented and
managed, and there is a need to meet stringent requirements for
communication reliability. Distribution systems connect to nearly
all electricity customers (excluding some large industrial customers
that are connected directly to the transmission system). In addition,
future distribution networks will become very complex with the in-
troduction of new technologies, such as distributed generation and
variable/dispatchable resources, and new load types, such as elec-
tric vehicles. Therefore, there is a need to quantitatively engineer
and manage the distribution automation technology complexity and
the associated costs, with the goal of optimizing the power grid to
the benefit of all the stakeholders: power utilities, regulatory enti-
ties and customers.

The integration of smart grid related technology into the distri-
bution side will lead to significant changes in the power system
configuration. The current power grid distribution system is de-
signed to meet the expected power load requirements. In the fu-
ture, the distribution automation (DA) feature will be responsible
for maintaining power reliability. Specifically, several alternatives
will be available to reconfigure the power system distribution topol-
ogy after a power event such as a failure. Two alternatives are: (1)
depending on the load that is required to be met to recover from a
power failure, demand response applications or distributed gener-
ators might be initiated, and (2) if several power distribution areas
are interconnected through the use of tie line switches, spare power
from one area can be used to meet the power demand from the
failed area.

Therefore, the interconnection of several distribution areas and
the introduction of distribution side energy management schemes
like demand response, electric vehicle, energy storage and distrib-
uted generation can help manage power reliability by decreasing
the mean fault clearing times and reducing the burden to be carried
by the power protection devices.

3.2 Demand Response Application
Demand response are a set of the incentive payments designed

to induce lower electricity use at times of high wholesale market
prices or when system reliability is jeopardized. Demand response
can be defined as the action taken by consumers to reduce elec-
tricity demand in response to price, monetary incentives, or utility
directives so as to maintain reliable electric service or avoid high
electricity prices.

A decade ago distribution side networks were considered mostly
demand nodes, while now they can act both as a power generation
source or a power demand sink. Bidirectional power flow can have
a significant impact on the protection and reliability of the system.
In addition, evolution of the nodal market creates a location based
pricing mechanism, where the price is not only a function of the
available energy but also depends on the congestion.

The introduction of demand response applications and the emer-
gence of wholesale energy and reliability markets create new op-
portunities for demand-side resources by enabling customer loads
to participate in the wholesale energy market. In addition, the ap-
plication of demand response has the potential of enhancing power
reliability and helping operators manage peak demand by reducing
congestion on critical transmission lines.

3.3 Fault Detection, Isolation and Restoration
Fault detection, isolation and restoration is concerned with the

detection of faults on the feeder line, determining the location of
the fault as defined by the two feeder switches that determine the
fault boundary, isolation of the faulty feeder section, and automated
restoration of power to the feeder sections located outside the fault
boundary, i.e., the non-faulty feeder sections.

The granularity of fault detection, isolation and restoration de-
pends on the type of switch/recloser used for dividing the feeder
line into sections, and the availability of backup power to feed the
healthy sections of the feeder line.

The time required for fault detection isolation and restoration de-
pends on the level of automation implemented in the infrastructure
deployed by the Utility to support the FDIR feature. Customers
usually report outages 5-10 minutes after a fault occurrence. Power
can be automatically restored to the healthy sections of the feeder
line in about 2 minutes, when automated fault detection, isolation
and restoration is implemented. When automated fault detection
and isolation is not implemented, it may take up to 1 hour for power
to be restored to the healthy sections of the feeder, because manual
fault location and manual switching has to be performed. Repair of
the faulty section of the feeder line may take 1 to 4 hours. When
the feeder line is connected to a tie switch, the healthy parts of
the feeder line can be powered by a secondary substation, after the
faulty section is isolated. Table 1, which will be further discussed
with the model presented in Section 5, summarizes the above num-
bers. The numbers in Table 1 reflect the multiple time scales at
which repairs occur. In this paper, these numbers are set based on
expert knowledge, but they could as well be adjusted based on time
series or event logs.
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Figure 1: A taxonomy of survivability related metrics

3.4 Integration of Demand Response and Fail-
ure Recovery

In current distribution systems, demand response services are not
integrated with failure recovery services. Usually, these two ser-
vices are designed independently. Nonetheless, in this paper we
consider the possibility of demand response being activated in re-
sponse to a failure event with the aim of improving the power dis-
tribution survivability.

4. SURVIVABILITY METRICS
Survivability has been defined by ANSI as the transient perfor-

mance of a system after an undesirable event [2]. The metrics used
to quantify survivability vary according to applications, and depend
on a number of factors such as the minimum level of performance
necessary for the system to be considered functional, and the maxi-
mum acceptable outage duration of a system. Survivability metrics
are transient metrics computed after the occurrence of a failure. In
the remainder of this paper, time t refers to the time since a failure
occurred and is measured in hours.

Survivability metrics are computed with respect to a measure of
interest M, also referred to as the performance metric [10]. In the
realm of power systems, the performance metric M is the energy
supplied per hour, measured in kilowatts. Assuming that M has
value μ just before a failure occurs, the survivability behavior is
quantified by attributes such as the relaxation time for the system
to restore the value of M to μ. In this paper we compute met-
rics related to the relaxation time, focusing on the mean energy not
supplied per hour after a failure occurs.

4.1 Metrics Taxonomy
Figure 1 shows the taxonomy of the survivability related metrics

considered in this paper. We classify the metrics into two broad
categories. Instantaneous metrics are transient metrics that capture
the state of the system at time t. An example of an instantaneous
metric is the probability that a given section i has been recovered
by time t.

Cumulative metrics are obtained in our model by assigning re-
ward rates to system states. A reward is gained per time unit in a
state, as determined by the reward rate assigned to that state. The
accumulated reward is the result of the accumulation of rewards
since the failure up to time t or up to a certain event. The mean
accumulated downtime of a given section by time t and the mean
accumulated energy not supplied by time t are examples of cumula-
tive metrics computed up to time t. The mean accumulated energy
not supplied up to the full recovery of the system is an example of a
cumulative metric computed up to a certain event occurs. The mean
time to recover a given section is also an example of the latter class

of metrics, where the accumulated reward in this case is the time
itself, obtained by assigning a reward of one per time unit at every
state. Other definitions of transient metrics can be found in [6]. In
Section 6 we present the evaluation of the metrics described above
as applied to the case study presented in this paper.

4.2 From SAIDI to Survivability Related Met-
rics

We now define and extend one of the key metrics of interest in
the realm of power systems, the System Average Interruption Du-
ration Index (SAIDI). SAIDI is an important measure of the power
utility’s ability to cope with recovery from failures. It is a measure
of average customer impact of system interruptions as it computes
the sum of customer interruption durations over the total number of
customers [4].

Given a topology with C sections, let N be the total number of
customers, let Nj,k be the number of customers in the system im-
pacted by the k-th failure at section j and let Kj be the number
of failures at section j during a pre-established large observation
period, j = 1, . . . , C, k = 1, . . . ,Kj . Let ϕj,k be the outage du-
ration due to the k-th failure that occurred at section j, measured
in hours. Let ϕj be the average outage duration due to all failures
at section j. Let φj be the average number of failures at section j,
during the same pre-established observation period. The observa-
tion period is usually assumed to be one year so that ϕj and φj are
the annual average outage duration and number of failures, respec-
tively.

The System Average Interruption Duration Index (SAIDI) is an
important measure of the power utility’s ability to cope with recov-
ery from failures. It is a measure of average customer impact of
system interruptions as it computes the sum of customer interrup-
tion durations over the total number of customers [24],

DEFINITION 4.1. The SAIDI index is the average outage dura-
tion for each customer served,

SAIDI =
C∑
j=1

Kj∑
k=1

ϕj,k
Nj,k
N

(1)

After a failure, the energy not supplied will vary over time during
a multi-step recovery process. Let {mj(t), t ≥ 0} be a stochastic
process in which the random variable mj(t) characterizes the en-
ergy not supplied per unit time, after a failure in section j, j =
1, . . . , C, t units of time after the failure; mj(t) accounts for the
effect of one single failure in section j. If a full system recovery
occurs at time T , we set mj(t) = 0 for t ≥ T . Let mj(t) be
the mean value of mj(t). In the remainder of this paper, given a
random variable Z we denote its mean by Z.

Let Mj(τ ) be the accumulated energy not supplied by time τ
after a failure in section j, j = 1, . . . , C,

M j(τ ) =

∫ τ

t=0

mj(t)dt, j = 1, . . . , C (2)

Note that the total energy demanded per unit time can also vary
during recovery. This occurs, for instance, if demand response is
integrated with failure recovery. Let {dj(t), t ≥ 0} be a stochastic
process in which the random variable dj(t) characterizes the total
energy demanded per unit time at time t during the recovery from
a failure in section j. Let Dj(τ ) be the energy demanded over the
first τ time units during the recovery from a failure in section j,

Dj(τ ) =

∫ τ

t=0

dj(t)dt, j = 1, . . . , C (3)



Let φj be the expected number of failures at section j during a
pre-established large observation period (typically one year). We
define the extended SAIDI index (ESAIDI) as the outage duration
accounting for the energy demanded and not supplied during the
first τ units of time after a failure at a section, averaged over all
sections,

DEFINITION 4.2. The extended SAIDI index is given by

ESAIDI(τ ) =
C∑
j=1

φjτ

(
M j(τ )

Dj(τ )

)
(4)

The term inside parentheses in (4) is the fraction of the mean en-
ergy not supplied over the mean energy demanded by time τ after
a failure. Note that we assumed that τ is a scalar value. Alterna-
tively, let Xj be a random variable characterizing the time to full
system recovery after a failure at section j, j = 1, . . . , C, and
X = (X1, . . . , XC). Replacing τ in (4) by the corresponding
mean recovery times yields

ESAIDI(X) =

C∑
j=1

φjE[Xj ]

(
E[M j(Xj)]

E[Dj(Xj)]

)
(5)

where

E[M j(Xj)] = lim
τ→∞

M j(τ ) (6)

Let M j = E[M j(Xj)] and let Nj be the average number of cus-
tomers affected by a failure at section j. The equality in (6) fol-
lows from the fact that if a full system recovery occurs at time T ,
m(t) = 0 for t ≥ T . Quantity mj(t) is precisely that defined by
ANSI [2] as survivability. Cumulative quantities such as Mj are
defined as extension to the basic survivability measure and called
Excess Loss due to Failures (ELF) [15].

Next, we show conditions according to which Definition 4.1 fol-
lows as a special case of Definition 4.2. To this goal, assume that
the energy demanded per user per unit time is constant and equal
to E, and that the number of customers affected by a failure at sec-
tion j is also constant and equal to Nj . Therefore, mj(t) = NjE
and dj(t) = NE. In addition, we also assume that the mean out-
age duration due to one failure at section j is τ , and the number of
failures at section j is independent of the outage duration due to a
failure at that section, ϕj = E[Xj ]φj = τφj. Let ϕ̂j be the mean
outage duration due to one failure at section j, ϕ̂j = ϕj/φj . Then,
ESAIDI(ϕ̂) = SAIDI, where ϕ̂ = (ϕ̂1, . . . , ϕ̂C).

ESAIDI(τ ) is a function of φj ,Dj(τ ) andM j(τ ), j = 1, . . . , C.
φj is computed from an availability model whileDj(τ ) andMj(τ )
are computed from a survivability model. In the remainder of this
paper our focus will be on the survivability model, which allows us
to compute the terms in parentheses in equations (4) and (5), as
described in Section 5 and illustrated in a case study in Section 6.

5. SURVIVABILITY MODEL
In this section we present the model used to compute survivabil-

ity metrics of power distribution systems. We describe the mod-
eling challenges and design principles, followed by the model
overview and the specific model instantiation used throughout the
remainder of the paper.

5.1 Challenges and Design Principles
Survivability assessment of the power grid distribution topology

is implemented by taking advantage of the power line design that
uses sections for failure isolation.

ii- i+
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Figure 2: Failed section and its upstream and downstream

Initially, we attempted to characterize the individual behavior of
each of the sections by conducting an exhaustive quantitative anal-
ysis accounting for the failure rates of each of the sections and their
multiple possible states. During this initial model design phase we
encountered the following challenges:

• capturing the state of each section individually leads to a
large state space, as the number of states grows exponentially
as a function of the number of sections;

• generating, storing, and solving a model with a very large
state space is computationally challenging;

• accounting for component failures that occur at a much coars-
er level of granularity than the failure repair yields a model
that is numerically hard to solve.

The methodology presented in this paper addressed the above
challenges by relying on three key principles: (1) state space fac-
torization; (2) state aggregation and (3) initial state conditioning.

5.1.1 State Space Factorization
Our methodology encompasses a set of models, where each model

characterizes the system evolution after the failure of a given sec-
tion. Given a topology with C sections, our methodology yields C
models, where each model is tailored to the characteristics of the
failed section. The advantages of such a state space factorization
are:

i) flexibility: having a model tailored to a given section enables
us to capture specific details about the impacts of failures on
that particular section;

ii) reduced complexity: the computational complexity to com-
pute the metrics of interest is reduced by considering a set
of models as opposed to a single model with cardinality C
times larger. Consider a distribution automation topol-
ogy that has C sections, and let K be the number of states
at which a section can be found. The computational complex-
ity to solve the non-factorized model is O(C3K3), using, for
instance, the GTH solution method [9] to compute the steady
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Figure 3: Phased recovery model

state probabilities of an associated ergodic model (described
in the Appendix), without taking advantage of any possible
special structure in the model. The decomposition approach,
in contrast, requires the solution of C models, each one re-
quiring O(K3) steps to be solved, which results in a com-
plexity of O(CK3).

5.1.2 State Aggregation
One of the insights of this paper is the observation that after a

failure of a given section the remaining sections of the distribution
automation topology can be aggregated into groups of affected and
non-affected sections. In the scenario considered in the remain-
der of this paper after the failure of section i, section i is isolated
and the non-failed sections can be aggregated into two groups: the
downstream sections that are aggregated into a set of sections i−
and are served by their original substation and the upstream sec-
tions that are aggregated into into a set of sections i+ and might
be served by a backup substation, if enough backup power is avail-
able (see Figure 2). State aggregation yields significant reduction
in the computational complexity required to obtain the desired met-
rics, since the system state space can be described in terms of the
aggregated section states.

5.1.3 Initial State Conditioning
The computations of the metrics of interest are performed by

assuming that the initial state is a failure state. Our models do
not capture the failure rates of different components. Instead, the
models are parameterized by using the conditional probability that
specific system components are still operational after a specific sec-
tion failure. In the remainder of this paper we will consider condi-
tional probabilities to account for the probability that a substation
backup power is able to supply isolated sections (q), the reliability
of the telecommunications network (p) and the effectiveness of the
demand response application (r).

5.2 Model Overview
Automatic and manual restoration events are initiated after a sec-

tion failure event. The restoration process is a combination of
electro-mechanical and computer-based events. In what follows,

we describe the sequence of events initiated after the failure of sec-
tion i.

The isolation of the failed section is automatically performed by
reclosers, within 10-50 ms after the failure, and power is instanta-
neously restored to the downstream sections (i−). The upstream
sections (i+) have their power restored depending on the following
factors:

• communication: communication is needed for all failure
detection, isolation and recovery operations. In particular,
communication is used by the supervisory control and data
acquisition (SCADA) system at a substation to detect failure
location, recalculate flow and close the tie switch to feed the
upstream sections (i+);

• backup power: sufficient spare backup power must be
available at a backup substation;

• demand response: demand response applications can re-
duce the load in the system after a failure, increasing the
probability that the available backup power is able to supply
energy to the upstream sections.

Recall from Section 3.3 that, after a section failure, if the com-
munication system is available and the backup power is able to re-
store energy to the upstream sections, it takes an average of 1-2
minutes to execute the automated restoration feature (see Table 1).
If there is not enough available backup power for the restoration of
the upstream sections, but communication is available, the demand
response feature might be used to adjust the demand accordingly.
When the demand response is effective, demand of sections i+ can
be lowered to the target values within 15 minutes on average. Note
that we do not explicitly model demand that is shifted to a later
point in time (i.e. load shedding [3]). If the communication sys-
tem is not available after the section failure, a 1 hour repair time is
required for manual restoration of the communication system. This
time is dominated by the time it takes for a truck to arrive at the
failure site.

Finally, section i may require manual repair, e.g., to remove
weather related damage and restore the damaged components to
their original condition. After section i is repaired, if the upstream
sections are still not recovered, these sections will be connected to
the main substation through section i. The average time to manu-
ally repair a section is 4 hours.

5.3 Model Description
A Markov chain with rewards is used to model the phased re-

covery of the distribution automation network. The states of the
model correspond to the different recovery phases at which the sys-
tem might be found as shown in Figure 3. Each state is associated
with a reward rate that corresponds, for instance, to the energy not
supplied per hour or the number of customers not served per hour in
that state. In this paper we assume that state residence times are ex-
ponentially distributed, which serves to illustrate our methodology
in a simple setting. Future work consists of extending the model
to allow for general distributions for the state residence times. The
system states and the state rewards are described in the following
subsections.

5.3.1 Phased Recovery Model
The phase recovery model is characterized by the following states

and events. After a section failure the model is initialized in state 0.
The residence time at state 0 corresponds to the time required for



Parameter Description Value
ε mean time for recloser to isolate failed section ≈ 0
α automatic restoration rate 30
β demand response rate 4
γ communication repair rate 1
δ manual repair rate 1/4

Table 1: Model Parameters (rates are given in units of
events/hour)

the recloser to isolate the section, which takes an average of ε. As
mentioned in Section 5.2, a recloser isolates a section within 10-
50 ms after a failure, so in the remainder of this paper we assume
ε = 0. Let p be the probability that the communication network is
still operational after a section failure and q be the probability that
there is sufficient backup power to supply energy for sections i+.
After the isolation of section i is completed the model transitions
to one of three states:

1. with probability pq the model transitions to state 1, where the
distribution network is amenable to automatic restoration,

2. with probability 1−p, the model transitions to state 4, where
the communication system requires manual repair, which oc-
curs at rate γ,

3. with probability p(1 − q) the model transitions to state 3,
where the effectiveness of demand response will determine
if the system is amenable to automatic restoration.

At state 3, demand response takes place after a period of time
with average duration 1/β. Let r be the probability that demand
response effectively reduces the load of the system to a level that
is supported by the backup substation. In this case, the model tran-
sitions from state 3 to state 2 with rate βr. When the model is
in states 1 or 2 the distribution network is amenable to automatic
restoration, which occurs after a period of time with average dura-
tion 1/α. What distinguishes states 1 from state 2 is the fact that
state 1 can be reached in one step transition after a failure, whereas
state 2 is reached only after the successful activation of the demand
response feature. Therefore, the state reward rates associated to
states 1 and 2, such as the energy not supplied per hour at those
states, are usually different. A manual repair of section i takes on
average 1/δ hours (and can occur while the system is in states 1-
5). After a manual repair, the model transitions to state 6, which
corresponds to a fully repaired system.

We now describe the computation of the survivability metric (En-
ergy Not Supplied) by using the phased recovery model described
in Figure 3. In each state of the model of Figure 3 we associate
the energy not supplied per hour at that state, the state reward rate.
Let πk(t) be the transient probability associated with state k and
σk be the reward rate (e.g., mean energy not supplied per hour)
associated with state k, k = 0, . . . , 6. Let L(t) be a random vari-
able characterizing the reward accumulated by time t after a failure
(e.g., accumulated energy not supplied by time t). The mean reward
accumulated by time t is

L(t) =

6∑
k=0

∫ t

y=0

σkπk(y)dy (7)

Let sk be the residence time at state k before reaching state 6 (i.e.,
up to full system recovery), k = 0, . . . , 5. Let L be a random vari-
able characterizing the accumulated energy not supplied up to full

Variable Description
C number of sections
i failed section
i+ upstream of section i (sections {i+ 1, . . . , C})
i− downstream of section i (sections {1, . . . , i− 1})
p probability that communication works after failure
q probability that backup power suffices to supply

isolated sections
r probability that demand response is effective after failure

Table 2: Table of Notation

system recovery. The mean reward accumulated up to full system
recovery is

L = lim
t→∞

L(t) =
5∑
k=0

σksk (8)

Note that (7) is the mean energy not supplied in the interval [0, t]
after a failure, defined in (2), and (8) is the ELF measure defined
in (6), with subscript j dropped since we consider a single fail-
ure. In the Appendix we show how to compute sk and πk(t), and
present their closed form solutions when r = 0 and ε = 0.

5.4 Model Solutions
To compute the metrics of interest presented in Section 4 we

used standard techniques for the solution of Markov chains. In the
Appendix we show that if r = 0, that is, demand response is not
enabled, closed form solutions can be derived for the probability
distributions of states 1-6 of the Markov model shown in Figure 3.
If r > 0 we can still find closed form solutions, although they
cannot be written in a compact form. Therefore, when r > 0 we
use standard Markov chain numerical methods to solve the model.
For the computation of the average accumulated reward at a given
point in time, we use the techniques based on uniformization im-
plemented at the Tangram-II tool [5, 7].

6. ANALYSIS
In this section we present the analysis of the empirical results

obtained using the analytical modeling approach introduced in Sec-
tion 5.

6.1 Setup Description
Our experimental setup is based on an adaptation of the data re-

ported in [27], about the energy load in a number of sections in the
US state of Virginia. Figure 2 illustrates the topology considered
in our experiments. The topology consists of nine sections. The av-
erage number of customers and load per section, in KW, are shown
in Table 3.

section users load load amenable to net load
demand response

1 21 49.50 2.03 47.47
2 25 54.80 0.00 54.80
3 9 12.00 4.07 7.93
4 15 23.22 11.58 11.63
5 28 47.80 0.00 47.80
6 111 142.25 15.28 126.97
7 12 27.40 0.00 27.40
8 50 178.40 0.00 178.40
9 4 6.90 1.40 5.50
total 275 542.27 34.36 507.80

Table 3: Load per section (in KW)
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Figure 4: Probability of i+ being recovered by time t, varying a) p and q (no demand response enabled, r = 0); b) p and r (backup
power suffices to supply i+ with probability 0.5, q = 0.5).

The energy supplied and not supplied per hour at each of the
model states can be obtained from Table 3. We consider the worst
case scenario in which section 1 fails, i = 1, maximizing the de-
mand placed on the backup substation to supply the i+ sections.
Table 4 shows the values of the rewards at the different model
states. In states 0, 1, 3 and 4, the energy not supplied per hour
is 542.27 KW, which corresponds to the average power demand
placed on the distribution network. In state 2, the energy not sup-
plied per hour decreases by 32.33 (sum of elements in bold in Ta-
ble 3), to 509.94 KW, due to the activation of demand response. In
state 5, the energy not supplied per hour is 49.5 KW as section 1 re-
mains to be fixed. The energy supplied in state 5, in turn, depends
on whether demand response was enabled. To simplify presenta-
tion, we set the energy supplied per hour in state 5 to its lower
bound, 460.38 KW, assuming that demand response is always en-
abled at that state. Since the approximation has minimal impact
in the results that follow, we proceed with our analysis under such
simplification, noting that a straightforward extension of the model
consists of splitting state 5 into two states, to account for whether
demand response is enabled or not at state 5. Finally, we assume
that the failed section 1 is not affected by demand response.

state 0 - 1 2 3 - 4 5 6

ES/h 0.00 0.00 0.00 460.38 542.27
ENS/h 542.27 509.94 542.27 49.50 0.00

Table 4: Rewards: lower bound on energy supplied per hour
(ES/h) and energy not supplied per hour (ENS/h).

In the next subsections we evaluate how the metrics introduced
in Section 4 vary as a function of the following parameters: the
probability that the substation backup power is able to supply the
isolated sections i+ (q), the reliability of the telecommunications
network (p) and the effectiveness of the demand response applica-
tion (r).

In what follows, we present experimental results for the time to
recover (Section 6.2) and for the energy not supplied (Section 6.3).
The results presented in Section 6.2 are independent of the rewards
at different states and of the index of the failed section because
in this experiment we did not include the capacity of the backup
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Figure 5: Mean accumulated downtime of i+.

stations as an exogenous parameter. Instead, we captured the sub-
station backup capacity indirectly through the parameter q. In con-
trast, the results presented in Section 6.3 depend on the rewards and
the index of the failed section as presented above.

6.2 Upstream Recovery Time
We consider the probability that the upstream i+ sections have

recovered by time t. When r = 0, the expression of the proba-
bility that i+ has been recovered by t is given by (11) in the Ap-
pendix. Figure 4(a) shows how the probability that i+ has recov-
ered increases over time. We observe that if q, the probability of
the backup energy being sufficient to supply i+, is small, the com-
munication infrastructure is ineffective to recover the i+ stations.
In contrast, Figure 4(b) shows that if demand response is integrated
with failure recovery (r = 1), the mean time for the system to
recover decreases. Furthermore, with demand response, commu-
nication significantly impacts the probability that i+ has been re-
covered by time t. We observe that with demand response the



probability that i+ has been recovered by time t is roughly 1 for t
greater than 3. Otherwise, this probability does not reach 0.9 even
after five hours.

Figure 5 shows the mean accumulated downtime of the upstream
i+ sections as a function of the parameters evaluated in this study.
If the evaluated parameter settings don’t allow for the automated
recovery of the i+ sections, the accumulated downtime will grow
until a manual repair event occurs.

In contrast, if the evaluated parameter settings allow for auto-
mated recovery of the i+ sections the mean accumulated down-
time will level off after a shorter period of time. For example, for
the parameter values of p = 0.9, q = 0.1 and r = 0.5, Figure 5
shows that the mean accumulated downtime of i+ levels off after
one hour, and never surpasses 0.5 hours.

Closely related to the mean accumulated downtime is the mean
time to recover i+, shown in Figure 8. The mean time to recover
decreases as p or q increase. As r increases from 0 to 0.5, the
impact of q decreases because if demand response is integrated with
failure recovery, demand response can reduce the load demand to
the power grid after a section failure.

6.3 Quantifying Energy Not Supplied
In this subsection we present the computation of the accumu-

lated energy not supplied, from the time of occurrence of a failure
event up to time t. We use the rate rewards associated with each
of the model states as described in Section 6.1. Figures 6(a) and
6(b) show the mean accumulated energy not supplied by time t,
and the fraction of mean energy not supplied over mean energy de-
manded by time t, as a function of time. The former corresponds to
M(t) (eq. (2)), and the latter corresponds to the term inside paren-
theses in the definition of ESAIDI(t), M(t)/D(t) (eq. (4)). M(t)
and D(t) are computed using (7), setting rewardk to the mean
energy not supplied per hour and the mean energy demanded per
hour, respectively. If q = 0.9, that is, there is a high probability
that the backup power suffices for sections i+, demand response
does not have a significant impact on the energy not supplied, since
the backup station is likely to support the additional load demand
even in the absence of demand response. In contrast, if q = 0.1
demand response plays a key role, because sections i+ can be au-
tomatically restored when demand response is effective. The plots
in Figures 6(a) and 6(b) also demonstrate the significant impact of
integrated demand response on the mean accumulated energy not
supplied when the probability that backup power suffices to supply
i+ is low (q = 0.1).

The curves corresponding to q = 0.9, r = 0 and q = 0.1, r =
1 cross each other in Figures 6(a) and 6(b) because during the
first moments after a failure, it is beneficial to have a high value
of q independently of the value of r, as demand response takes
an average of 15 minutes to become operational. After two hours
the mean accumulated energy energy not supplied is smaller when
q = 0.1, r = 1 as opposed to q = 0.9, r = 0.

Figure 7 shows M/E[D(X)], the mean fraction of mean en-
ergy not supplied over mean energy demanded up to full system
recovery (term inside parentheses in the definition of ESAIDI(X),
eq. (5), with subscript j removed since we consider a single fail-
ure). M is computed using (8), for different values of p and r,
with q = 0.1 (E[D(X)] is computed similarly). The figure indi-
cates that even a slight increase in r yields a substantial decrease
in the mean accumulated energy not supplied up to full system re-
covery. It also shows that communication reliability, p, becomes
more relevant as r increases, because communication is needed for
all automatic failure recovery operations, including the activation
of demand response for failure recovery.
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6.4 Discussion
With the presented results, investment decisions for the studied

circuit can be based on survivability considerations. With the ex-
tended SAIDI as presented in (4), different options of how to im-
prove reliability and survivability can be evaluated and compared to
each other. For example, the effect of investing in the reliability of
the communication infrastructure (e.g., by adding redundancy) can
be compared to investing in demand response mechanisms (e.g., by
subsidizing smart meters at the consumer).

7. CONCLUSION
In this paper we have argued, using analytical models, that new

metrics are important to assess the quality of future intelligent power
grids. Specifically, it was shown that survivability metrics can be
used to drive a holistic engineering approach and are able to capture
dynamic behavior of the smart grid after the occurrence of events
of interest, e.g., section failures.

We have proposed a methodology to assess the impact of differ-
ent system parameters on the survivability of distribution automa-
tion power grids. Specifically, we have shown the interactions be-
tween three key parameters evaluated in this study and their im-
pact on six survivability metrics. The empirical results obtained
indicate that the integration of demand response with failure re-
covery can yield significant reductions in the amount of energy
not supplied after a failure. In addition, the communications re-
liability parameter is most important when demand response is in-
tegrated. These results illustrate the need for holistic and accurate
approaches to guide investment decisions on different parts of the
network.

We believe that our work opens up several avenues for future ex-
ploration. Our models can serve to quantify the tradeoffs between
investment cost and reliability gains. In face of such tradeoffs, one
can devise algorithms to issue recommendations on how to invest
on smart grids in light of prospective survivability gains. Specifi-
cally, the analytical solution of the survivability model enables the
analytical optimization of the distribution automation investment
given the costs of achieving a certain communication reliability (p),
available backup power (q) or demand response effectiveness (r).
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Detailed models for communications, back-power and demand re-
sponse are needed to validate that the desired values of p, q and r
are achieved for the distribution automation network design.

Other future research topics include the extension of the pre-
sented methodology to account for more complex topologies, more
complex failure trees (cascading failures) and other features that
are required to be included in the modeling of industrial distribu-
tion networks.
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Appendix - Closed Form Solutions
Next, we present closed form solutions to the proposed model. We
consider the case in which the time it takes for a recloser to isolate
a section is zero, ε = 0 (in practice, it is much smaller than all the
other time intervals considered in the system) and demand response
is not integrated with the failure recovery system, r = 0.

Let Yk be the k-th visited state after a failure, Y0 = 0. Let
P (Y1 = j) be the system initial condition after the failure, which
is determined by p and q, P (Y1 = 1) = pq, P (Y1 = 3) = p(1−q)
and P (Y1 = 4) = 1 − p. Let πk(t) be the probability that the
system is at state k at time t, t ≥ 0. Then,

πk(t) =
6∑
l=1

πk(t|Y1 = l)P (Y1 = l), k = 1, . . . , 6 (9)

To compute πk(t|Y1 = j) we note that there is at most one sample
path from each state to every other. Let Υi,j be the sample path
from state i to state j. Let Υj,i(k) be the k-th state in the path Υj,i,
1 ≤ k ≤ |Υj,i|. Let P (Υj,i) be the probability that Yk = Υj,i(k),
k = 1, . . . , |Υj,i|, conditioned on Y1 = j. Then,

πk(t|Y1 = j) = πk(t|Y1 = j,Υj,i)P (Υj,i) (10)

Substituting (10) into (9) yields closed form expressions for πk(t),
k = 0, . . . , 6,

π0(t) = π2(t) = 0

π1(t) = e−(α+δ)tpq+
(
e−(γ+δ)t−e−(α+δ)t

)(
γq(1−p)
α− γ

)
π3(t) = e−δtp(1− q) + (1− q)(eγt − 1)e−(δ+γ)t(1− p)

π4(t) = e−(δ+γ)t(1− p)

π5(t) = (1− e−αt)e−δtpq+

+

(
e−δt − αe−(δ+γ)t−γe−(δ+α)t

α− γ

)
q(1−p)

π6(t) = 1− e−tδ

The probability that i+ has been recovered by time t is π5∪6(t) and
is given by

π5∪6(t) = π5(t) + π6(t) (11)

We now compute the mean time to fix i+, i.e., to reach states 5
or 6 (M , the mean time to reach state 6, defined by (6), follows
similarly). To this goal, we consider a Markov chain with state
space Ω′ and infinitesimal generator Q′

ψ , where ψ is a a real val-
ued parameter. The states in Ω′ are indexed by 1, 3, 4 and  and the
infinitesimal generatorQ′ is obtained from Figure 3 after 1) replac-
ing the transitions to states 5 and 6 by transitions to state  and 2)
adding transitions from state  to states 1, 3 and 4 with rates ψpq,
ψp(1− q) and ψ(1− p), respectively,



Q′
ψ =

⎡
⎢⎢⎣

−(α+ δ) 0 0 α+ δ
0 −δ 0 δ
γq γ(1− q) −(δ + γ) δ
ψpq ψp(1− q) ψ(1− p) −ψ

⎤
⎥⎥⎦

1
3
4

(12)

Let π′ be the steady state solution of the MC above, satisfying
π′Q′

ψ = 0 and π′
1 + π′

3 + π′
4 + π′

� = 1. Then,

π′
1 = ψδq(γ + δp)/Δ (13)

π′
3 = ψ(α+ δ)(1− q)(γ + δp)/Δ (14)

π′
4 = ψδ(α+ δ)(1− p)/Δ (15)

π′
� = δ(α+ δ)(δ + γ)/Δ (16)

where Δ is a normalization constant to ensure π′1+π
′
3+π

′
4+π

′
� =

1.
LetC be a random variable characterizing the time to reach state

 immediately after leaving . This corresponds to the mean time
to reach states 5 or 6 in the original Markov chain, starting from
state 0. The mean time to repair i+ is given by E[C]. It follows
from (13)-(16) and [12, Chapter III] that

E[C] = ψ−1(1/π′
� − 1) (17)

(17) is used to obtain the curves in Figure 4.
Let sk({5, 6}) be the mean time spent at state k before reaching

states 5 or 6 from state 0 in the original Markov chain, k = 1, 3, 4.
It follows from (13)–(17) that

sk({5, 6}) = π′
k

ψ(π′
1 + π′

3 + π′
4)

(
1

π′
�
− 1

)
, k = 1, 3, 4

LetL({5, 6}) be the mean accumulated reward up to reaching states
5 or 6 of the original Markov chain,

L({5, 6}) =
∑

i=1,3,4

σksk({5, 6}) (18)

In this appendix we have shown how to compute sk({5, 6}),
k = 1, 3, 4 and L({5, 6}). The mean time spent at state k be-
fore reaching state 6, sk, k = 1, 3, 4, 5, and the mean accumulated
reward up to reaching state 6, L, defined by (8), follow similarly.
An adaptation of (18) is used to obtain the curves in Figure 7.

Although in this appendix we assumed that r = 0 and ε = 0, a
similar approach is applicable when r > 0 or ε > 0.


