
Hybrid Multi-Attribute QoS Optimization in

Component Based Software Systems

Anne Kozioleka, Danilo Ardagnab, Raffaela Mirandolab

aUniversity of Zurich, Requirements Engineering Research Group, Zurich, Switzerland
bPolitecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy

Abstract

Design decisions for complex, component-based systems impact multiple
quality of service (QoS) properties. Often, means to improve one quality
property deteriorate another one. In this scenario, selecting a good solution
with respect to a single quality attribute can lead to unacceptable results
with respect to the other quality attributes. A promising way to deal with
this problem is to exploit multi-objective optimization where the objectives
represent different quality attributes. The aim of these techniques is to devise
a set of solutions, each of which assures an optimal trade-off between the con-
flicting qualities. Our previous work proposed a combined use of analytical
optimization techniques and evolutionary algorithms to efficiently identify
an optimal set of design alternatives with respect to performance and costs.
This paper extends this approach to more QoS properties by providing an-
alytical algorithms for availability-cost optimization and three-dimensional
availability-performance-cost optimization. We demonstrate the use of this
approach on a case study, showing that the analytical step provides a better-
than-random starting population for the evolutionary optimization, which
lead to a speed-up of 28% in the availability-cost case.

Keywords: software architecture optimization, quality of service,
availability

1. Introduction

One of the today issues in software engineering is to find new effective
ways to deal intelligently with the increasing complexity of software-intensive
computing system. Modern software applications have evolved not only in

Preprint submitted to Systems and Software March 15, 2013

Author copy

terms of size, but also in the criticality of the services supported. Nowadays,
most human activities, including critical ones, are either software enabled or
entirely managed by software. This software pervasiveness together with its
use in business-critical and safety-critical applications strongly requires the
realization of dependable software systems able to guarantee the achievement
of quality requirements, such as performance and availability. It is thus of key
importance to empower the software architects with methods and tools able
to explore different design alternatives taking into account their capability
to fulfil the quality requirements.

To reach this goal, the use of software architecture (SA) has emerged
as an appropriate level for dealing with software qualities (Clements et al.
(2001); Smith and Williams (2002)) and several efforts have been devoted to
the definition of methods and tools able to evaluate quality at SA level (see,
for example, Balsamo et al. (2004); Koziolek (2010); Dobrica and Niemela
(2002); Smith and Williams (2002)). However, each method usually ad-
dresses a single quality attribute (e.g., performance or availability), while a
major challenge in complex software development is finding the best balance
between different, possibly conflicting quality requirements that a system
has to meet and cost constraints (e.g., maximize performance and availabil-
ity, while minimizing cost), taking into account the different possible design
alternatives. However, manually searching for optimal solutions is time con-
suming, thus the software architect needs an automated method that effi-
ciently explores the architectural design space with respect to the multiple
quality attributes.

When considering QoS of a SA, there is usually no single global solu-
tion, and a promising way to deal with them is to exploit multi-objective
optimization (Ehrgott (2005); Blum and Roli (2003)) where the objectives
represent different quality attributes. The aim of these techniques is to de-
vise a set of solutions, called Pareto optimal solutions (Ehrgott (2005)), each
of which assures a trade-off between the conflicting qualities. In other words,
while moving from one Pareto solution to another, there is a certain amount
of sacrifice in one objective(s) to achieve a certain amount of gain in the
other(s).

Thus, multi-objective SA optimization has been proposed as a method
where different design alternatives are automatically generated and evalu-
ated for different quality attributes, providing the software architect with a
powerful decision making tool enabling the selection of the SA that best fits
multiple quality objectives. Previous approaches in this direction use evolu-

2

Author copy

tionary algorithms to approximate the Pareto optimal solutions (Aleti et al.
(2009); Martens et al. (2010b)), however, the derived optimization process is
time-consuming.

In previous work (Martens et al. (2010a)), we have initially proposed a
combined use of analytical optimization techniques and evolutionary algo-
rithms to more efficiently identify a near-optimal set of design alternatives.
However, this previous work only presented the analytical optimization al-
gorithm for performance-cost optimization. Thus, in this paper, we extend
this approach for more QoS attributes, as explained in more detail below.

The overall proposed hybrid approach takes an initial SA of the system
(fulfilling its functional requirements) as input. Based on this initial solution,
a search problem is formulated by defining “degrees of freedom.” The identi-
fication of a significant set of design alternatives is then based on a combined
use of analytical optimization techniques and evolutionary algorithms (Blum
and Roli (2003)). This hybrid approach extends work on pure evolutionary
optimization (Martens et al. (2010b)) by introducing a step based on analyt-
ical optimization whose goal is to derive very efficiently the Pareto optimal
solutions with respect to a simplified optimization problem. The obtained
results are used as input candidates for an evolutionary optimization of the
original search problem. In this way, more accurate estimates for availability
and performance metrics and a larger near Pareto optimal solution set can
be obtained.

In this paper, we extend this hybrid approach by two means. We provide
analytical optimization algorithms for (1) availability-cost optimization and
(2) three-dimensional performance-availability-cost optimization. Finally, we
present a more complex case study, where we conduct multiple experiments
to account for the stochastic nature of evolutionary algorithms.

Given a SA model that accurately reflects the quality properties of the
system, the proposed method can lead both to a reduction of development
costs and to an improvement of the quality of the final system, because an
automated and efficient search is able to identify more and better design
alternatives. The creation of the model is cost-efficient if risks of wrong
design decisions are mitigated (cf. studies by Williams and Smith (2003)
and Martens et al. (2011)). Note, however, that the improvement is limited
to the considered design alternatives and does not replace human designers.

The remainder of the paper is organized as follows. Section 2 introduces
the adopted architectural model and quality prediction techniques. Section 3
describes the optimization process. Experimental results are presented in

3

Author copy

Section 4. Section 5 reviews other literature proposals. Conclusions are
finally drawn in Section 6.

2. Background: Architecture Modelling and Analyses

In this section, we present the architectural model and the existing qual-
ity analyses methods our approach is based on. To quickly convey our con-
tributed concepts to the reader, we introduce an example system.

Our approach requires a component-based architecture model with per-
formance, availability, and costs annotations as input. Balsamo et al. (2004)
and Koziolek (2010) have surveyed many different methods for specifying
performance models, and Smith and Williams (2002) have provided a set of
guidelines on how to obtain performance models during early development
stages and on how to refine such models as the implementation progresses.
For availability, Gokhale (2007) provides a survey.

We adopt here the Palladio Component Model (PCM) by Becker et al.
(2009), but our approach could be extended to consider other architectural
performance and availability models and analysis methods. The PCM is ben-
eficial for our purposes as it is specifically designed for component-based sys-
tems. Thus, the PCM naturally supports many architectural degrees of free-
dom (e.g., substituting components, changing component allocation, etc.).
Additionally, the model-driven capabilities of the PCM allow an easy auto-
mated generation of alternative architecture candidates.

The example system in this paper is the so-called business reporting sys-
tem (BRS), which lets users retrieve reports and statistical data about run-
ning business processes from a data base. It is loosely based on a real system
(Wu and Woodside (2004)) and represents a typical enterprise system. In
addition to the components reported by Wu and Woodside (2004), we have
split the two main application logic components into two each, making the
system more complex. Fig. 1 shows some parts of the PCM model of the BRS
visualized using annotated UML diagrams. It is a 4-tier system consisting of
several software components. The components are allocated on four different
servers. In an open workload usage scenario, requests arrive according to a
Poisson process with an arrival rate λ = 0.1 req/sec. For each request, users
first use the “graphicalReport” service and then the “graphicalView” service
of the system. We consider a subset of the behaviour spanning six compo-
nents, which is more complex as other industrial systems we have studied

4

Author copy

before (cf. de Gooijer et al. (2012); Koziolek et al. (2011b)) and thus repre-
sents industrial problems well.

Fig. 1 also shows an excerpt of the behaviour in the lower half of the
figure. The behaviour model describes internal computation of components
and calls to other components. InternalActions represent internal resource
usage; they are annotated with CPU resource demands (exponentially dis-
tributed demand in seconds on a 2GHz CPU) and failure probabilities (FP).
ExternalCallActions model calls to other components.

For example, the behaviour model for the CoreGraphicEngine.getReport
service describes the control flow that is executed when the service is called.
First, some internal computation on the CPU is executed, as described by the
first InternalAction following the start action. Then, if a detailed report is
requested, the right branch in the control flow is executed, which contains a
sequence of some internal computation and calls to services of the required
IDB interface and the required ICache interface. To which components these
calls will be forwarded is determined by the separate “system model” defining
the wiring of components, here shown in the static upper part of the figure.
If a simple report is requested, the left branch is executed with fewer actions.
When the end action is reached, the control is returned to the caller of the
CoreGraphicEngine.getReport service.

Components are annotated with software cost (Cost) in Ke (only shown
for the Webserver component in Fig. 1). The initial system is deployed to four
servers annotated by costs (HCost) in Ke, availability (HA) and processing
rate (PR) in GHz. The complete model can be found online (cf. Koziolek
et al. (2012)).

To provide software architects with a priori performance and availability
guarantees, if the application includes any loops they are annotated with a
discrete probability distribution, so we assume that an upper bound for loops
iterations exists.

We now briefly explain the analysis methods for the considered quality
criteria performance, availability, and costs1:

• Performance: For the analytical optimization, we model the soft-
ware system by introducing an M/G/1 queue for each physical server

1Our approach can be generalized to consider a wider set of QoS metrics under the
assumption that closed formula for quality criteria are available to derive an analytical
formulation of the problem

5

Author copy

<<InternalAction>>

CPU demand = 0.0002
FP = 3.2E-6

<<InternalAction>>

CPU demand = 0.0000624
FP = 4.4E-6

<<InternalAction>>

CPU demand = 0.0000048
FP = 5.7E-6

P(detailedReport == true)

P(detailed

Report

== false)

<<ExternalCallAction>>

IDB.getSimpleReport

<<ExternalCallAction>>

IDB.getDetailedReport

<<InternalAction>>

CPU demand = 0.00005
FP = 5.0E-6

<<ExternalCallAction>>

ICache.doCacheAccess

<<behaviour>> CoreGraphicEngine.getReport

<<ExternalCallAction>>

ICache.doCacheAccess

S1

S2

S3

Core

Online Engine

Cache

Scheduler

Database

Graphical

Reporting

Online

ReportingUser

Management

Webserver

Core

Graphic Engine

S4

Business

Reporting

System

<<implements>>

Called services:

graphicalReport

graphicalView

Cost

100

HCost 155

HA 0.987

PR 2.0

<<InternalAction>>

CPU demand = 0.00025

FP = 5.7E-6

<<ExternalCallAction>>

IBRSSysrem.view

<<behaviour>> Webserver.graphicalView

<<InternalAction>>

CPU demand = 0.1
FP = 2.8E-6

<<ExternalCallAction>>

IBRSSysrem.report

<<behaviour>> Webserver.graphicalReport

Arrival rate

λ = 0.1 req./sec

Figure 1: Business Reporting System: PCM instance of the case study system. Compo-
nents that are not used when providing the studied services graphicalReport and graph-
icalView are marked with grey borders. Which behaviour is executed on which server is
emphasized by the same shade of grey.

6

Author copy

(Kleinrock (1975)). For the evolutionary optimization, we use an auto-
mated transformation of PCM models into Layered Queueing Networks
(Franks et al. (2009)) to derive response times.

• Availability: For the analytical optimization, we apply the well-known
serial/parallel formulas (see, e.g. Musa et al. (1987); Avizienis et al.
(2004)) to the PCM model. In particular, the availability is evaluated
by considering the set of components involved, the physical servers sup-
porting the execution, and the probability of invocations. For the evo-
lutionary optimization, we use an automated transformation of PCM
models into absorbing discrete time Markov chains (DTMC) and solve
them with the PCM Markov solver (Brosch et al. (2012)).

• Costs: We annotate constant costs to each component and each server
configuration. The software architect can choose whether costs values
represent procurement costs, total costs of ownership, or other. If a
server specified in the model is not used (i.e., no components are allo-
cated to it), it is not considered in the alternative exploration process
and its cost do not add to the overall costs. The goal of this simplistic
model is to allow costs to be considered, not to provide a sophisticated
costs estimation technique. For the latter, existing costs estimation
techniques such as COCOMO II by Boehm et al. (2000) could be inte-
grated here to obtain more accurate values.

All quality attributes combined, it is not obvious how to change the ar-
chitectural model efficiently to improve the quality properties. For example,
the software architect could increase the processing rate of server S1, which
would result in better performance but higher costs. The software architect
could also change the component allocation or use other components with
different QoS attributes.

The design space for this example is huge. Manually checking the possible
design alternatives in a trial-and-error approach is laborious and error-prone.
The software architect cannot easily create design alternatives that are even
locally optimal for all quality criteria. Finding global optima is practically
impossible because it requires modelling each alternative. In practice this
situation is often mitigated by over-provisioning (i.e., incorporating fast and
expensive hardware resources), leading to unnecessarily high costs.

7

Author copy

Pareto front of candidates

4. Present

results

Sec. 2

Prelim. Pareto

candidates

System-specific

degrees of freedom

1. Search

problem

formulation

Sec. 3.2Initial

candidate

System-specific

degrees of freedom

2. Analytical

Optimisation

Sec. 3.3

3. Evolutionary

Optimisation

Sec. 3.4

Data Activity

Figure 2: Hybrid Optimization Process Overview.

3. Optimization Process

To present our hybrid optimization approach, we first provide an overview
of the overall optimization framework in Section 3.1. In Section 3.2, we de-
scribe the search problem we address. Then, we describe in detail the an-
alytical optimization (Section 3.3) and the evolutionary optimization (Sec-
tion 3.4).

3.1. Overview

Our approach starts considering as input an initial architectural model of
the system, named initial candidate in Fig. 2. In our case, this is a complete
PCM model instance as shown in Fig. 1. The optimization process starts
with the search problem formulation. In this work, we consider three degree
of freedom types: (1) allocation of components, (2) server configuration, and
(3) component selection. The result of this step is a set of degree of freedom
instances that describe the search problem.

In the second step, the search problem is optimized using analytical tech-
niques with simplified QoS evaluation and a simplified search space formu-
lation. The impact of a degree of freedom (or a combination of them) is
evaluated by analytical models, and the Pareto optimal candidates for the
simplified search space are derived very efficiently by solving a mixed integer
linear programming problem. The result of this step is a set of candidates
that are Pareto optimal with respect to the simplified QoS evaluation and
the simplified search space. In the third step, the results of the analytical
optimization are used as input candidates for an evolutionary optimization of
the original search problem. Evolutionary optimization is more time consum-
ing, but it can consider the whole search space and obtain accurate estimates

8

Author copy

for availability and performance metrics by using more sophisticated perfor-
mance models (i.e., Layered Queuing Networks, cf. Franks and Li (2012))
and availability models (i.e., DTMCs, cf. Brosch et al. (2012)).

The result of the evolutionary optimization phase is a set of near Pareto
optimal candidates. This set is presented to the software architect, who can
study the remaining optimal trade-offs between possibly conflicting objec-
tives. As it will be discussed in Section 4, providing approximated Pareto
solutions to the evolutionary search allows the improvement and the speed-up
of the whole analysis process.

3.2. Search Problem Formulation

Candidate solutions can be evaluated for optimal trade-offs, i.e. for Pareto
optimality (Ehrgott (2005)). A candidate architecture is Pareto optimal, if
it is superior to all other candidate in at least one quality criterion. More
formally: Let a be a candidate solution, let DS be the set of all possible
candidates, and let q be a quality criterion with a value set Dq, an evaluation
function fq : DS → Dq so that fq(c) denotes the quality property of a c ∈ DS
for the quality criterion q, and an order ≤q on Dq so that c1 ≤q c2 means that
c1 is better than or equal to c2 with respect to quality criterion q. Then, a
candidate solution a is Pareto optimal if it is better than any other candidate
b in at least one quality criterion or equally good than b in all criteria, i.e. iff
∀b ∈ DS (∃q : fq(a) ≤q fq(b)) ∨ (∀q : fq(a) =q fq(b)).

If a candidate solution is not Pareto optimal, then it is Pareto-dominated
by at least one other candidate solution in DS that is better or equal in
all quality criteria. The optimization problem can be formulated as follows
for a set of quality criteria Q = {q1, ..., qm}: minc∈DS [fq1(c), ..., fqm(c)] . In
this work, we consider three quality criteria: q1 = T = mean response time,
q2 = A = availability measured as the probability of success of each request,
and q3 = C = cost.

Furthermore, a candidate c is part of the so-called Pareto front with
respect to a set of candidate solutions S ⊆ DS if it is not Pareto-dominated
by any other candidate from S, i.e. iff ∀b ∈ S (∃q : fq(c) ≤q fq(b)) ∨ (∀q :
fq(c) =q fq(b)).

In our approach, the following degrees of freedom can be considered:

Allocation of components to available servers: The mapping of compo-
nents to servers can be changed. This is an integral part of most
performance prediction models and availability prediction models and

9

Author copy

has large effects on the performance of a system. For example, the
Scheduler component of the BRS system could be allocated also to
S1, S3, or S4. When reallocating components, the number of servers
can change as well. The software architect can specify the set or the
maximum number of servers to be considered.

Server configuration: The available hardware resources (CPU, HDD, ...)
can be changed in a certain range. In this work, we model a discrete set
of servers with different CPU processing rates, availability, and costs.
Thus, components can be allocated to servers with different processing
rates.

Component selection: If functionally-equivalent components with differ-
ent non-functional properties are available, they can be exchanged.
Currently, we deem that a component B can replace a component A
if B provides (i.e., implements) all interfaces provided by A and if B
requires at most the interfaces required by A.

More degrees of freedom that could be considered in an automated approach
are described by Koziolek (2011) and de Gooijer et al. (2012). In the search
problem formulation step, the initial candidate model is automatically anal-
ysed for instantiations of these degrees of freedom. The found set of degree of
freedom instances defines the search space. If desired, the software architect
can also manually remove some of them.

3.3. Analytical Optimization

The goal of the analytical optimization is to quickly produce the optimal
solutions for a simplified version of the optimization problem. We use a
simplified search space and simplified quality analyses with closed formulas
to quickly evaluate the QoS effects of single design alternatives. This allows
us to formulate the optimization problem as a mixed integer linear problem,
which can be comparably efficiently solved using standard solvers.

Section 3.3.1 describes the design alternatives for the analytical opti-
mization. Then, sections 3.3.2 and 3.3.3 describe the analytical techniques
developed for two dimensions Pareto analyses, considering performance-cost
and availability-cost trade-off, respectively. The three dimensional analysis
is described in Section 3.3.4.

10

Author copy

Analy&cal	
 Op&misa&on	

System-­‐specific	

degrees	
 of	
 	

freedom	

Design	
 alterna&ves	

quality	
 effects	

Exclusive	
 sets	

Pre-­‐solver	
 MILP	

solver	

�c
j , �

t
j,i, �

a
j,i,l

Prelim.	
 Pareto	

candidates	

Algorithms	

1,	
 2,	
 3	

Execu&on	
 paths	
 EP l

esk

Figure 3: Analytical Optimization Overview.

3.3.1. Analytical Decision Space

For the simplified optimization problem, we transform the PCM model
and the annotating degree of freedom model into a set of “atomic” design
alternatives for which we can then determine the quality effects, as initially
presented by Martens et al. (2010b).

First, the behaviour model of the PCM is transformed by a pre-solver
(see Fig. 3) into a Directed Acyclic Graph (DAG) of software tasks. All
different possible behaviours are represented as one execution path in this
graph. As in other literature approaches (see, e.g., Canfora et al. (2005);
Ardagna and Pernici (2007)), we use a probabilistic approach and label each
execution path l with the probability pl to be executed. Similarly, each task
i in the path (i.e., each node in the execution graph) is labelled with the
probability of execution πi.

Probabilistic approaches allow studying how a system behaves “on aver-
age.” This is useful whenever the worst-case analysis may be conservative
and lead to too expensive solutions.

For the sake of simplicity, in the following we assume that the application
under study includes a single initial task and a single end task. Additionally,
loops are peeled and transformed into a number of branches with varying
number of repetitions according to the annotated probability distribution
(Ardagna and Pernici (2007)). Note that, one component in the PCM can
be mapped to several tasks in the DAG, as each InternalAction is mapped
to a task.

The pre-solver then evaluates the quality metrics of each task i included
in the initial candidate by means of a M/G/1 queue (Kleinrock (1975)) and

11

Author copy

the standard availability formulas (Avizienis et al. (2004)).
According to the characteristics of M/G/1 queue, the response time Ri

is evaluated as:

Ri =
Di

1− Us
(1)

where Di is the average service demand of a task i to the server s and
Us is the utilization of the server s, on which the task i is executed, and
is computed as

∑
i∈Ts Di · λ · πi, with Ts being the set of tasks executed on

server s, πi being the probability of execution of i, and λ being the arrival
rate of a Poisson process in an open workload usage scenario.

On the other hand, availability (i.e., the readiness for correct service
Avizienis et al. (2004)) of each task is calculated as:

Ai = (1− POFODi) ∗ k
√
As (2)

where POFODi is the Probability Of Failure On Demand for task i (i.e.,

the probability that a failure happens when a request is sent to task i); As is
the hardware availability of server s where task i is executed and k are the
number of services allocated on s belonging to the same execution path.

In the following, a binary decision variable xj is introduced for each
“atomic” design alternative which can be obtained from the degrees of free-
dom. xj is equal to 1 if the corresponding design alternative is implemented
in the system, and 0 otherwise.

The optimization problem which can be introduced in this way is com-
binatorial in nature, since a Pareto optimal solution can be obtained by
selecting a combination of atomic design alternatives.

Atomic design alternatives describe each possible atomic change in the
SA. For example, the alternative configurations of S1 for the reference sys-
tem in Fig. 1 can be modelled introducing the binary variables x1 (CPU
downgrade to 1 GHz), x2 (CPU upgrade to 3 GHz), x3 (CPU upgrade to 4
GHz). Down/upgrades of servers S2, S3, and S4 can be modelled analogously
with variables x4 to x12. Likewise, the alternative components selection can
be modelled by introducing two binary variables x13 and x14 equal to 1 iff
the WebServer is replaced by alternative WebServer2 and WebServer3 im-
plementation, respectively.

Some of the atomic design alternatives could be in conflict. For example,

12

Author copy

since only one server CPU can be changed at one instance, the following
constraint has to be introduced for S1:

x1 + x2 + x3 ≤ 1 (3)

Indeed, since x1, x2 and x3 can be 0 or 1, by introducing the constraint
above, only one variable can be raised to 1. Hence, only one among the
conflicting design alternatives can be selected.

Formally, we introduce an exclusive set esk for each combination of atomic
design alternatives which are in conflict with each other, because they con-
cern the same software component and/or the same physical server where
components are deployed. A parameter esk,j = 1 is introduced indicating
that the atomic design alternative j is in the exclusive set k, while esk,j = 0
otherwise. If we consider again the constraint (3), the corresponding k-th
exclusive set is characterized by esk,1 = esk,2 = esk,3 = 1, while esk,j = 0 for
all j > 3.

Note that, an exclusive set might include variables associated with any
degree of freedom (component allocation, selection or server configuration).
Variables need to be included in the same exclusive set when they corre-
spond to design alternatives altering the selection/allocation of a software
component and/or the configuration of a physical server where components
are deployed. Furthermore, note that the size of exclusive sets could grow
exponentially, since taking into account all of the atomic choices is also com-
binatorial in nature. However, since the number of possibly conflicting atomic
design alternatives is usually significantly lower than the number of degrees
of freedom, the analytical problem can be formulated and solved efficiently,
as it will be shown in Section 4.2.

The pre-solver finally evaluates the quality effects of each design alterna-
tive j, namely:

• δcj : The cost variation of the initial candidate for implementing the
design alternative j.

• δtj,i: The variation of the response time (evaluated by means of M/G/1
formula) for task i if the design alternative j is implemented.

• δaj,i,l: The variation of the availability for task i along the execution
path l if the design alternative j is implemented.

13

Author copy

For example, if the arrival rate is λ = 4 req/sec and the S1 CPU frequency
is raised to 3 GHz (x2 design alternative), then the service demands of the
two tasks deployed in the WebServer and S1 utilization initially equal to 0.1
sec, 0.00025 sec, and 0.401 are reduced by a factor 3/2 = 1.5. Thus, the
initial response times equal to 0.167 sec and 0.0004 sec become 0.091 sec and
0.0002 sec and hence the deltas δtj,i are equal to −0.076 and −0.0002 sec.
Availability variations can be computed similarly.

In the following, let I denote the set of indexes of the system tasks and
let J denote the set of indexes for the atomic design alternatives arising from
the degrees of freedom definition.

3.3.2. Performance-Cost Trade-off Analysis

In this section we reproduce the performance-cost optimization already
presented by Martens et al. (2010b), because this case is most straightforward
and thus helps to convey the idea.

Let us denote by C̃ the cost of the initial candidate, let t̃i be the average
response time for task i invocation in the initial candidate and let δtj,i denote
the variation of the response time for task i if the design alternative j is
implemented.

Then, the execution time ti of task i can be defined depending on the
selection of atomic design choices:

ti = t̃i +
∑
j∈J

δtj,ixj ,∀i;
∑
j∈J

esk,jxj ≤ 1,∀k

Since πi is the probability of execution of task i (which can be derived
as the sum of the transition probabilities of the paths in the DAG from the
initial task to i), the execution time T of the whole application can then
be computed as T =

∑
i∈I

πi · ti, while the cost C corresponding to a given

combination of atomic choices is given by C = C̃ +
∑
j∈J

δcj · xj.
Algorithm 1 determines the Pareto optimal solutions by solving iteratively

the problems shown in Fig. 4. It requires as input the upper T
upper

and

lower bound T
lower

response time for the application under study, which can
be computed easily by considering the maximum and minimum δtj,i for each
task i.

The Algorithm starts minimizing the system cost with the goal of provid-
ing a response time lower than T

upper
(i.e., solving problem (P1), see step 4).

14

Author copy

(P1) minC
subject to:

C = C̃ +
∑
j∈J

δcj · xj

ti = t̃i +
∑
j∈J

δtj,ixj , ∀i
∑
j∈J

esk,jxj ≤ 1, ∀k
∑
i∈I

πi · ti ≤ T

(P2) minT
subject to:

ti = t̃i +
∑
j∈J

δtj,ixj , ∀i

T =
∑
i∈I

πi · ti∑
j∈J

esk,jxj ≤ 1, ∀k

C̃ +
∑
j∈J

δcj · xj ≤ C

Figure 4: The Analytic Optimization Problems for Performance and Cost

Let x∗ be the corresponding optimum solution (i.e., the set of atomic design
alternatives to be implemented) and C∗ be the corresponding cost. Then,
the first Pareto solution is obtained by solving (P2) setting C = C∗ (see step
6). Let T ∗ be optimum response time obtained. Indeed, no other atomic
design alternative combination can lead to a better response time with a
lower cost, hence x∗ computed at step 6 is a Pareto solution. The process
is then iterated by solving (P1) again and setting as constraint T = T ∗ − ε,
where ε > 0 is any sufficiently small constant. IC + x∗ at step 7 denotes the
solution obtained by applying to the initial candidate IC the set of atomic
design alternatives x∗.

If problems (P1) and (P2) are optimally solved, then Algorithm 1 identi-
fies all the Pareto optimal solutions of the reduced problem. It can be shown
that (P1) and (P2) are NP-hard (see Appendix), since they are as difficult
as a knapsack problem. The solution algorithm complexity grows exponen-
tially with the number of binary variables. However, as it will be shown in
Section 4, current solvers are very efficient and (P1) and (P2) solutions can
be computed very quickly for realistic design problems of reasonable size.

3.3.3. Availability-Cost Trade-off Analysis

For the availability analysis, the analytical problem formulation can be
derived similarly. The main difference is that, in order to derive an efficient
mixed integer linear formulation, the delta values have to be derived for
independent application execution paths (i.e., each path from the source to
the sink) and the optimization has to be iterated for each execution path. The
set of initial candidates provided to the evolutionary optimization is obtained

15

Author copy

input : T
upper

, T
lower

output: Paretos
1 T ← T

upper
;

2 Paretos← ∅;
3 while T

lower ≤ T do
4 Solve (P1). Let x∗ be the optimum solution found and C∗ its

cost ;

5 C ← C∗;
6 Solve (P2). Let x∗ be the optimum solution found and T ∗ the

application execution time ;
7 Paretos← Paretos

⋃{IC + x∗};
8 T ← T ∗ − ε
9 end

10 return Paretos;

Algorithm 1: Analytical Pareto optimality Algorithm

as the union of the analytical solutions of individual execution paths. In the
following execution paths will be indexed by l and EP l will indicate the set
of indexes of tasks in the l-th execution path.

Let us denote with ãi,l, the availability for task i invocation in the ex-
ecution path l of the initial candidate and let δaj,i,l be the variation of the
availability for task i along the execution path l if the design alternative j is
implemented. Note that, δaj,i,l is a real number and we have δaj,i,l > 1, if the
design alternative improves the task availability, and δaj,i,l ≤ 1 otherwise.

If we denote by ai,l the availability of task i along the execution path l
according to the selection of atomic design choices, we have:

ai,l = ãi,l ·
∏
j∈J

(δaj,i,l)
xj ,∀i ∈ EP l;

∑
j∈J

esk,jxj ≤ 1,∀k

The application availability along the execution path l, Al, can then be
computed as:

Al =
∏
i∈EPl

ai,l =
∏
i∈EPl

ãi,l ·
∏
j∈J

(δaj,i,l)
xj

The equation above is non-linear in the binary decision variables xj, how-

16

Author copy

ever it can be easily linearized by applying the logarithm function and intro-
ducing the auxiliary variable y as follows:

y = ln(Al) =
∑
i∈EPl

ln(ãi,l) +
∑
j∈J

ln(δaj,i,l)xj

Algorithm 2 determines the Pareto optimal solutions by iteratively solving
the problems shown in Fig. 5.

(P3) minC
subject to:

C = C̃ +
∑
j∈J

δcj · xj∑
j∈J

esk,jxj ≤ 1, ∀k∑
i∈EPl

ln(ãi,l) +
∑
j∈J

ln(δaj,i,l)xj ≥ ln(A)

(P4) max y
subject to:

y =
∑
i∈EPl

ln(ãi,l) +
∑
j∈J

ln(δaj,i,l)xj∑
j∈J

esk,jxj ≤ 1, ∀k

C̃ +
∑
j∈J

δcj · xj ≤ C

Figure 5: The Analytical Optimization Problems for Availability and Cost Trade-off

Similarly to Algorithm 1, Algorithm 2 requires as input the upper A
upper

and lower bound A
lower

availability for the application under study, which
can be easily computed by considering the maximum and minimum δaj,i,l for
each task i along every execution path. Then, for each execution path, the
Algorithm starts minimizing the system cost with the goal to provide an

availability value greater than A
lower

(i.e., solving problem (P3), see step 5).
Let x∗ be the corresponding optimum solution and C∗ be the corresponding
cost. Then, the first Pareto solution is obtained by solving (P4) setting
C = C∗ (see step 7). Let A∗ = exp(y) be the optimum availability value
obtained. Indeed, no other atomic design alternative combination can lead
to a better availability with a lower cost, hence x∗ computed at step 7 is
a Pareto solution. The process is then iterated by solving (P3) again and
setting as constraint A = A∗+ε, where ε > 0 is any sufficiently small constant.

Note that, at the last iteration the set Paretos includes all of the Pareto
optimal solutions obtained along the application execution paths which is
used as input by the evolutionary algorithm. As in the performance-costs
trade-off analysis, also the problems (P3) and (P4) are NP-hard, since they

17

Author copy

can be reduced to a knapsack problem (see Appendix).

input : A
upper

, A
lower

output: Paretos

1 A← A
lower

;
2 Paretos← ∅;
3 forall the execution paths l do

4 while A < A
upper

do
5 Solve (P3). Let x∗ be the optimum solution found and C∗

its cost ;

6 C ← C∗;
7 Solve (P4). Let x∗ be the optimum solution found and

A∗ = exp(y) the application availability along the execution
path l ;

8 Paretos← Paretos
⋃{IC + x∗};

9 A← A∗ + ε

10 end

11 end
12 return Paretos;

Algorithm 2: Availability vs. Cost Pareto optimality Algorithm

3.3.4. The Three-dimensional Trade-off Analysis

If we want to consider an optimization that involves execution time,
availability and cost together, it is necessary to consider the optimization
problems we have discussed so far at the same time. Generally, availability
and performance are simultaneously in trade-off with cost. In fact hard-
ware/software components with better performance or more resilient to fail-
ures have usually higher costs. This means that, once we have fixed a certain
cost, we can decide to search for the “best” solutions with respect to avail-
ability and performance. In this way we can find solutions that, at the same
cost, can be better in performance or in availability. So the set of prob-
lems for the optimization that considers all the three features (performance,
availability, cost), contains the same parameter and variables of problems
(P1− P4) and can be formulated as shown in Figure 6.

18

Author copy

(PC) minC
subject to:

C = C̃ +
∑
j∈J

δcj · xj

ti = t̃i +
∑
j∈J

δtj,ixj, ∀i∑
j∈J

esk,jxj ≤ 1, ∀k∑
i∈I

πi · ti ≤ T∑
i∈EPl

ln(ãi,l)+

+
∑
j∈J

ln(δaj,i,l)xj ≥ ln(A) ∀l

(PT) minT
subject to:

ti = t̃i +
∑
j∈J

δtj,ixj, ∀i

T =
∑
i∈I

πi · ti∑
j∈J

esk,jxj ≤ 1, ∀k

C̃ +
∑
j∈J

δcj · xj ≤ C∑
i∈EPl

ln(ãi,l)+

+
∑
j∈J

ln(δaj,i,l)xj ≥ ln(A) ∀l

(PAl) max yl
subject to: yl =

∑
i∈EPl

ln(ãi,l) +
∑
j∈J

ln(δaj,i,l)xj∑
j∈J

esk,jxj ≤ 1, ∀k

C̃ +
∑
i∈I

∑
j∈J

δcj · xj ≤ C

ti = t̃i +
∑
j∈J

δtj,ixj, ∀i∑
i∈I

πi · ti ≤ T

Figure 6: The Analytic Optimization Problems for all the three objectives

Problem (PC), as problems (P1) and (P3), minimizes the cost, but con-
siders at the same time a constraint on the execution time and a set of
constraints for the availability in each path. In the same way problem (PT),
is similar to problem (P2), with the addition of the constraints for the avail-
ability. Finally problem (P4) is reformulated as a set of sub-problems (PAl),

19

Author copy

one for each execution path, considering a constraint on the cost and another
one on the execution time.

input : A
upper

, A
lower

, T
upper

, T
lower

output: Paretos
1 T ← T

upper
;

2 Paretos← ∅;
3 while T

lower ≤ T do
4 Solve (PC). Let x∗ be the optimum solution found and C∗

its cost ;
5 forall the execution paths l do

6 A← A
lower

;

7 while A < A
upper

do
8 C ← C∗;
9 Solve (PT). Let x∗ be the optimum solution found

and T ∗ the application execution ;

10 T ← T ∗;
11 Solve (PAl). Let x∗ be the optimum solution found

and A∗ =
∑

l∈∪EP
exp(yl) ∗ pl be the estimate

12 of the application availability ;
13 Paretos← Paretos

⋃{IC + x∗};
14 A← A∗ + ε ;

15 end

16 end

17 T ← T ∗ − ε′
18 end
19 return Paretos;

Algorithm 3: Performance vs. Availability vs. Cost Pareto
optimality Algorithm

To solve these problems, Algorithm 3 requires as inputs the upper and

lower bounds for response time (T
upper

, T
lower

) and availability (A
upper

,

A
lower

) of the application. The algorithm starts minimizing the system cost
with the goal to provide a response time lower then T

upper
and an availability

higher than A
lower

(i.e., solving problem (PC), see line 4). Let x∗ be the

20

Author copy

corresponding optimum solution and C∗ be the corresponding cost. Then,
for each execution path l, fixing C∗ as upper bound in cost (line 8), problem
(PT) is solved, obtaining x∗ as optimum solution and T ∗ as the corresponding
execution time. Then, the first Pareto solution is obtained by setting T = T ∗

and solving (PAl) (line 11). With pl being the probability of execution of
path l, A∗ is evaluated as the weighted sum, according to pl, of the availability
of each path l. Hence the solution of the last computed problem is considered
a Pareto optimal solution. The cycle (lines 7-15) is iterated by setting A =
A∗ + ε as a constraint and solving (PT) again, until the upper bound A

upper

is reached. Then constraint T is modified as T = T ∗− ε′, and (PC) is solved
again with new values for the constraints A and T .

Note that the three dimensional analysis algorithm keeps the iteration
on paths deriving from the availability problem in the inner cycle, while
the minimization of costs is done in the outer cycle independently of each
execution path. This allows the reduction of the overall number of iterations
for determining the Pareto optimal solutions. It can be shown that (PC),
(PT), and (PAl) can be reduced to a multi-dimensional knapsack problem,
and hence are NP-hard (see Appendix).

3.4. Evolutionary Optimization

To consider the full optimization problem and be able to use more ac-
curate QoS analyses, the next step of our approach uses metaheuristic op-
timization which allows the use of any quality evaluation function. In this
work, we use evolutionary optimization (see, e.g. (Blum and Roli, 2003, p.
284)), as it has been considered useful for multi-objective problems (Coello
(1999)). Other metaheuristics could be used as well. More details on this
choice have been described by Koziolek (2011).

Fig. 7 shows the main steps of our evolutionary search. The method is
described here exemplary for our current realization in the PerOpteryx tool
(Koziolek et al. (2012)) with the NSGA-II evolutionary algorithm (Deb et al.
(2000)) as implemented in the Opt4J framework (Lukasiewycz et al. (2011))
with an extended reproduction step.

The process starts with an input population derived from the analytical
optimization step. Individuals are then modified along degrees of freedom
instances (see Section 3.1). As the software model contains all required anno-
tations, all steps of the search can be completely automated. The population
size n and the number of iterations i can be configured. If the input popula-
tion size |Paretos| is less than n, additional n−|Paretos| random candidates

21

Author copy

After i iterations:

Pareto front of

candidates

Set of candidates with

QoS metricsSet of candidates

Prelim.

Pareto

candidates

NSGA-II selection

strategy

Selection: Choose

candidates for

next generation

Set of n best candidates

System-specifc

degrees of

freedom

3. Evolutionary Optimisation

Performance

Availability

Cost

 Evaluation of

each candidate

Mutation Crossover

Reproduction:

Generate new candidates

Random

a b c

Figure 7: Evolutionary optimization process

are generated to add diversity to the population and thus avoid convergence
to local optima. The evolutionary search then iterates the following steps:

a© Reproduction: Based on the currently available candidates in the
population, new candidate solutions are derived by “mutation” or “cross-
over” or they are randomly created. With mutation, one or several de-
sign options are varied. With cross-over, two good candidate solutions
are merged into two new ones. For each design option, it is randomly
decided whether new candidate 1 receives the design decision value of
parent 1 and new candidate 2 receives the value of parent 2 or vice
versa (uniform cross-over). In addition to the original NSGA-II, in or-
der to diversify the search, duplicate candidates are removed from the
population and are replaced by candidates randomly generated based
on the available design options.

b© Evaluation: Each yet unevaluated candidate is evaluated for each
quality attribute of interest. In our case, performance, availability
and/or costs metrics are predicted as described in Section 2. As a
result, each candidate is annotated with the determined quality prop-
erties (i.e. mean response time, availability, and/or cost).

c© Selection: After the reproduction phase, the population has grown. In
the selection phase, the population is again reduced by just keeping the
n most promising candidates based on the NSGA-II selection strategy.
After i iterations, the search ends here and returns the Pareto optimal
candidates found so far.

22

Author copy

More details on the evolutionary optimization (such as the genetic encod-
ing) is described by Koziolek (2011).

Over several iterations, the combination of reproduction and selection
lets the population converge towards the real front of globally Pareto optimal
solutions. The result of the optimization is a set of Pareto optimal candidates
with respect to all candidates evaluated before. If the search also keeps a
good diversity of candidates, the result set can be near to the global optima.
However, in general, evolutionary optimization cannot guarantee globally
Pareto optimal solutions. Still, previous industrial case studies we conducted
have indicated that the results are helpful (de Gooijer et al. (2012); Koziolek
et al. (2011b)).

3.5. Assumptions and Limitations

Our approach has mainly the assumptions and limitations of model-based
quality prediction for performance, availability, and costs, discussed below.
Furthermore, it inherits the assumptions of the evolutionary optimization,
as discussed in detail by Martens et al. (2010b) and Koziolek (2011).

Specific assumptions to the hybrid approach concern the analytical opti-
mization part.

• First, we assume an open request-based workload model in which re-
quests arrive according to a Poisson process, as observed in several real
systems (Paxson and Floyd (1995); Costa et al. (2004)) and assumed
by most previous solutions (Liu et al. (2001); Ranjan and Knightly
(2008)). This assumption greatly simplifies the performance model,
thus shortening the time required to determine the performance esti-
mates. However, one might raise the issue of whether it is adequate
to certain e-commerce and enterprise applications, whose workloads
are more accurately described by independent arrivals of user sessions,
that is, sequences of inter-dependent requests (cf. Krishnamurthy et al.
(2006)). To address this issue, we rely on the results from Zhang
et al. (2008), which show that the performance (i.e., response time)
and resource requirements of session-based systems can be accurately
captured by a simplified model based on the assumption of indepen-
dent request arrivals, such as the one proposed here, provided that the
distribution of different request types is the same as in the original
session-based system.

23

Author copy

• Furthermore, the hybrid approach will only work well if the quality
properties of the system can be meaningfully approximated by the sim-
plified quality evaluations. This might not be the case for some system,
e.g. systems where the use of passive resources heavily influences the
observed performance. Still, even in the worst case the analytical part
will only provide a useless starting population to the evolutionary algo-
rithm, but the evolutionary algorithm might overcome this over time.
To overcome this problem, one might add a disagreement detection step
before starting the evolutionary part. In this step, random solutions by
the analytical part can be re-evaluated by the detailed quality evalua-
tions, and if the disagreement in the results is too large, the analytical
starting population could be discarded in favour of a purely random
starting population.

The main underlying assumption of model-based quality prediction ap-
proaches in general is that a SA model annotated with quality information is
available. The models require quality attribute annotations that reflect the
quality properties of the system under study well. Furthermore, information
like the usage profile (operational profile) needs to be known for perfor-
mance and availability evaluations. For the quality prediction approaches
used in this paper, the accuracy of the prediction has been discussed in pa-
pers presenting these prediction approaches (Franks et al. (2009); Brosch
et al. (2012)). A more extensive discussion is provided by Koziolek (2011).

4. Experimental Results

This section reports the results of the quality optimization performed
for the BRS system (cf. Figure 1) to demonstrate the applicability and
usefulness of our approach and is organized as follows. Section 4.1 describes
the degrees of freedom adopted. Section 4.2 summarizes the performance of
the hybrid optimization. Finally, Section 4.3 compares the outcome of the
hybrid approach to purely evolutionary optimization.

Notice that we do not compare our prediction results from the models with
actual measurements from the system implementation. For our validation,
we assume that the underlying modelling and prediction methods are sound
and deliver accurate prediction results as discussed in Section 3.5.

24

Author copy

Configuration Processor Speed PR Availability HA Cost HCost
C1 1 GHz 0.99986 145
C2 2 GHz 0.99993 155
C3 3 GHz 0.99995 267
C4 4 GHz 0.99997 884

Table 1: Available Server Configurations for BRS

4.1. Search Problem Formulation

In the BRS under study we have considered the following degrees of free-
dom:

Component allocation: For the evolutionary optimization, all used com-
ponents except the Webserver and the Database can be freely allocated to
the four servers. The Webserver cannot be reallocated (e.g. for security
reasons), the Database can only be allocated to servers S1 or S3. For the
analytical optimization, we consider three allocation degrees of freedom: (1)
The GraphicalReporting component can be allocated to servers S1 to S4,
(2) the Cache component can be allocated to servers S1 to S4, and (3) the
Database component can be allocated to servers S1 or S3.

Component selection: The Webserver can be realized using third party
components. The software architect can choose among three functional
equivalent implementations: Webserver2 with cost 150 and Webserver3

with cost 80. Both have less resource demand than the initial Webserver.
Webserver2 has better availability for the requests of type “view”, while
Webserver3 has better availability for the requests of type “report”.

Server configuration: For the analytical optimization, we consider four
different server configurations C1 to C4 with varying processor speed (PR
in GHz), hardware availability (probability HA), and cost HCost available
as shown in Table 1. For the evolutionary optimization, we allow for a
continuous change of processing rate from 1 to 4 GHz. For the costs model,
we analysed Intel’s CPU price list (Intel Corporation (2010)). We fitted
a power function to this data, so that the resulting costs of one server s
with processing rate prs is costs = 0.7665 pr6.2539s + 145 with coefficient of
determination R2 = 0.965.

The degrees of freedom are mapped into an optimization problem includ-
ing 132 binary variables. For example, x1-x3, x4-x6, x7-x9, and x10-x12 specify
the four servers’ up/downgrades. x13 and x17 are introduced to model the
two WebServer component alternative implementations.

25

Author copy

x14 to x16 combine the use of the first alternative WebServer2 (x13) with
the upgrades of server S1. For example, x14 denotes “CPU downgrade to 1
GHz for S1 and use of WebServer2”. Thus, x14 to x16 cannot be set to one
together with any of x1-x3 and x13, because the latter four decision variables
also affect S1. Consequently, we introduce an exclusive set which forbids that
more that one variable out of x1-x3 and x13-x16 can be selected:

es1 : x1 + x2 + x3 + x13 + x14 + x15 + x16 ≤ 1

For brevity, we do not present all final exclusive sets in this paper. Details
can be found online (Koziolek et al. (2012)).

Analogous to the above, x18 to x20 combine the use of the second alter-
native WebServer3 (x17) with the upgrades of server S1.

x21 is associated with the allocation of the GraphicalReporting com-
ponent to S1 and x22-x36 combine this decision with upgrades of the source
server S2 and the target server S1. Similarly, x37-x68 model the allocation of
GraphicalReporting component to servers S3 or S4.

Analogously, x69-x116 model the reallocation of the Cache component to
any of the servers, and x117-x132 model the allocation of the Database com-
ponent to server S1.

The exact values considered in the case study, including the architecture
model, are provided online (Koziolek et al. (2012)).

4.2. Hybrid Approach Performance

Table 2 shows the statistics of the optimization runs (cand. = candi-
date(s), it. = iteration) which have been performed single threaded on a sin-
gle core of an Intel Core 2 T7200 CPU @ 2GHz. The analytical optimization
step is performed by running CPLEX IBM ILOG (2010), a state-of-the-art
integer linear programming solver based on the branch-and-cut technique
(Wolsey (1998)).

Our pre-solver, which determines optimization problem parameters and
the exclusive sets used as input by CPLEX, is implemented in Java. Table 2
reports the generation time of our pre-solver and CPLEX optimization time
in the first two columns.

The analytical optimization found 12 optimal candidates for the availability-
cost case and 16 for the three dimensional case, reported in the third column
of Table 2.

26

Author copy

Gen. CPLEX Input Avg. cand. Avg. dura- Mean d Avg. dura-
Analysis Time Time cand. in front tion evol. per cand. tion total
Avail.-Cost < 1 41 sec 12 24.5 12.4 min 0.25 sec 13.1 min
3D sec 98 sec 16 63.3 67.5 min 1.34 sec 69.1 min

Table 2: Performance of the Hybrid Approach

For the evolutionary optimization, our PerOpteryx tool follows the pro-
cess described in Section 3.4. The number of candidates per iteration was
set to 30, a value sufficiently larger than the number of optimal candidates
found by the previous, analytical step to add diversity and leave room for
more solutions. The number of iterations was set to 200 and half of the popu-
lation was replaced by offspring in each iteration, so that each runs analysed
3015 = 201 * 30 / 2 candidates in total. The stop criterion of the search
was a manually chosen maximum number of iterations. The results had to
be inspected to determine whether the search had converged up to then.

For performance prediction, we use the Layered Queueing Network Solver
(LQNS) by Franks et al. (2009). The solver was configured with a conver-
gence value of 0.01 and an underrelaxation coefficient of 0.5. For availability
and cost prediction, we use the PCM Markov solver by Brosch et al. (2012)
and the PCM costs solver, respectively.

The evolutionary optimization found a Pareto front with on average 24.5
candidates for the availability-cost case and 63.3 for the three dimensional
case (fourth column of Table 2). The average duration of the evolutionary
optimization step was 12.4 min and 67.5 min, respectively (fifth column).
We can derive the average duration for evaluating one of the 3,015 evaluated
candidates (sixth column). Finally, the total duration of both the analytical
step and the evolutionary step is 13.1 min and 69.1 min, respectively (seventh
column).

We expect the scalability of the approach to mainly depend on two aspects
independently, the number of degrees of freedom / decision variables and
the complexity of quality evaluation. We observe that the analytical part
requires only little time compared to the evolutionary part, so it is not the
main performance factor. As current solvers scale well up to 10,000 variables
on a single core and more recent solver versions even make use of multiple
cores (see IBM ILOG (2010)), we expect that the analytic part also scales
up to larger problem instances, and even more if further relaxations of the
problems are used (i.e., the CPLEX solver can be stopped without reaching

27

Author copy

the optimality of each individual MILP problem as we did here, by selecting
as stopping criteria a given bound, e.g., 5% (IBM ILOG (2010))).

The evolutionary part has been recognized to be useful for hard problems
(Deb (2001)). Here, the problem also becomes more complex as the number of
decision variables grow, but also other factors determine the performance for
evolutionary algorithms (Deb (2001)). However, note that the BRS system is
already a comparably complex system. For example, previous industry case
studies we considered (de Gooijer et al. (2012); Koziolek et al. (2011b)) had
fewer degrees of freedoms (decision variables).

With respect to the complexity of quality evaluation, the analytical one is
efficient as it uses closed formulas for quality predictions. The more detailed
quality evaluation approaches used in the evolutionary part also have been
shown to be applicable to complex industrial systems.

4.3. Comparison of Hybrid and Pure Evolutionary

In this section, we first describe the metrics used for comparing the op-
timization outcome in Section 4.3.1 and then present the results in Sec-
tion 4.3.2.

4.3.1. Metrics for Comparison

The performance of an optimization approach is typically measured by
assessing the quality of the solutions and the time needed to generate the
solutions (cf. Zitzler et al. (2008)).

First, to account for the stochastic nature of evolutionary algorithms,
all experiments are replicated several times. For each experiment setting X
(i.e. running the optimization purely evolutionary X = E or hybrid X =
H), a set of runs {Xr |r = 0, . . . , n} is performed. At each iteration i, a
run Xr has produced a Pareto front, i.e. a sample, which we denote with
P (X i

r). To compare optimization approaches, we do not require a complete
characterization of the random variable P (X i), but we are only interested
in the distribution of the quality metrics (see below). Statistical tests are
performed for a chosen iteration to assess the results.

Quality Indicators. For assessing the quality of solutions, we use a modified,
symmetric coverage indicator (based on the asymmetric indicator defined by
Zitzler and Thiele (1999)) defined as follows. Let P1 and P2 be the Pareto
fronts to compare. Furthermore, let P ∗1 ⊆ P1 be the Pareto front subset of

28

Author copy

P1 that is not dominated by any candidates in P2, i.e. the candidates of P1

that are also the Pareto front of the union of both P1 and P2.
Then, our coverage indicator C∗(P1, P2) is defined as the share of candi-

dates in P ∗1 ∪ P ∗2 that come from P1:

C∗(P1, P2) :=
|P ∗1 |

|P ∗1 |+ |P ∗2 |
∈ [0, 1]

If C∗(P1, P2) > 0.5 then P1 is considered better than P2 because P1 has more
candidates not dominated by P2. Note that C∗ is symmetric as C∗(P1, P2) =
1− C∗(P2, P1).

The standard coverage indicator may be misleading if the Pareto fronts
overlap each other with varying distances to the true optimal Pareto front.
Thus, we additionally use the additive binary ε indicator presented by Zitzler
et al. (2002), which gives a factor by which a Pareto front P1 is worse than
another P2 with respect to all objectives. It determines the minimum factor
ε by which the Pareto front P1 needs to be moved so that it dominates P2.

Using this indicator, the distance of the Pareto fronts is taken into account
as well. Note, however, that the distance measure is subject to the scales of
the objectives and thus can be misleading in a different way. For example,
availability and costs are measured on quite different scales: Candidates have
values close to 1 (e.g., 1 - 3E-4) for reliability and large values (e.g., 1000
Ke) for costs. In such a setting, any small change in cost will be valued
much more by the ε indicator than a comparably large change in reliability.

To mitigate this problem to a certain extent, we normalize the Pareto
fronts before determining the ε indicator. For the required reference point,
we use, for each objective, the largest value found for all candidates. Let z be
this reference point and N(P1, z) and N(P2, z) be the so normalized Pareto
fronts based on P1 and P2.

Then, by E(P1, P2) we denote the additive ε indicator Iε+ as defined by
Zitzler et al. (2002) and as implemented in the JMetal framework (cf. Durillo
and Nebro (2011)) using the normalized Pareto fronts N(P1, z) and N(P2, z)
as an input:

E(P1, P2) := Iε+(N(P1, z), N(P2, z))

Front P1 is superior to P2 if E(P1, P2) < 1 and E(P2, P1) > 1 (cf. Zitzler
et al. (2002)). As the indicator is not symmetric, situations may arise where
E(P1, P2) < 1 and E(P2, P1) < 1, in which case the two fronts overlap and

29

Author copy

none is objectively better. In this case, E(P1, P2) < E(P2, P1) indicates that
P1 is better with respect to the reference point z used for normalization.

However, a reference point induces a preference model. This preference
model might not reflect the actual preferences of the decision maker. For
example, the range of response time values found by the optimization might
be considered wide by a human decision maker because values range from
1 second to 300 seconds while only values from 1 second to 3 seconds are
acceptable solutions. In such situations, a response time change within the
interesting interval [1, 3] will be valued only little by the ε indicator, as it is
relatively small with respect to the maximum value of 300 seconds. Thus,
the resulting ε indicator values need to be interpreted carefully. Integrating
preference models into the ε indicator could encounter this problem, but is
out of scope of this work.

Time Savings. To assess the time savings achieved by the hybrid approach,
we define a novel speed-up metric based on the coverage indicator to compare
the time efficiency of two optimization techniques. We do not use the ε
indicator E(P1, P2) here because it is asymmetric and thus cannot be readily
used to compare the fronts over time.

The time savings metric T determines how many iteration steps earlier
one optimization run has found a solution with equivalent quality. Because
each iteration has a similar duration, this measures the computational effort
of a run while is independent of execution time measurement errors such as
additional load on the executing machine.

To compare two runs A and B, we first compare which run had the better
results at the final iteration imax. Let S ∈ {A,B} be the superior run, defined
as follows:

S =

{
A if A is superior or equivalent, i.e. if C∗(P (Aimax), P (Bimax)) ≥ 0.5

B else

The worse run is denoted as W with W ∈ {A,B},W 6= S.
Then, we determine the smallest iteration s in which the better run S

has a Pareto front P (Ss) that is superior or equivalent to the results of the
slower run W at the final iteration imax (front P (W imax)). This means that
we determine the smallest iteration s so that C∗(P (Ss), P (W imax)) > 0.5.

For a fair comparison, we also determine the smallest iteration w in which

30

Author copy

run W has already found a front P (Ww) that is equivalent to the front
P (W imax): C∗(P (Ww), P (W imax)) ≥ 0.5. Then, run S has found an equiva-
lent solution w − s iterations earlier.

Let x ∈ {s, w} denote the iteration of A used for the comparison, and
y ∈ {s, w} denote the iteration of B used for the comparison. That is, if A
was superior, x := s and y := w and vice versa if B was superior.

To compare the speed of the hybrid approach and the pure evolutionary,
we also take into account the time for the CPLEX solver t by considering
how many iterations the pure evolutionary optimization can complete while
the CPLEX solver is running. Let d be the duration of the pure evolutionary
optimization. Then, the number of iterations c that can be executed in time
t is c = imax

d
∗ t, where imax

d
is the number of iterations the pure evolutionary

optimization can complete in one unit of time.
Then, T is defined as the absolute runtime improvement of run A over

run B with respect to C∗ measured as number of iterations:

T (A,B) = y − x− c
T (A,B) is positive if run A is superior, and negative if run B is superior.

4.3.2. Results

To visualize the results of the approach, Fig. 8 shows example runs for
availability and costs optimization. The found Pareto fronts of the hybrid
approach and the pure evolutionary are similar for high failure probabilities,
but the hybrid approach finds significantly better solutions with low proba-
bility of failure. While the pure evolutionary approach finds a higher number
of solutions, the right part of its Pareto front is fully dominated by the most
reliable solution found by the hybrid approach. We observe that the ana-
lytical input had already similar quality than the results found by the pure
evolutionary run and that the hybrid run was able to further improve the
analytical input.

31

Author copy

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

4.00E-04

4.50E-04

0 500 1000 1500 2000 2500 3000 3500

P
ro

b
ab

ili
ty

 o
f

fa
ilu

re
 o

n
 D

e
m

an
d

=

1
 -

 A
va

ila
b

ili
ty

Costs

Pure evolutionary results

Analytic input

Hybrid results

Figure 8: Example results of an availability and cost optimization run.

0

0.25

0.5

0.75

1

0 25 50 75 100 125 150 175 200

C
o

v
e
ra

g
e

 C
*(

P
(H

ri)
P

(E
ri)

)

Iteration i

Average

Min

Max

Standard dev.

Max

Min

Figure 9: Pareto Front Coverage C∗(P (Hi
r), P (Ei

r)) of Hybrid Runs H over Pure Evolu-
tionary Runs E for r ∈ 0, ..., 9 for 3D Optimization

32

Author copy

0

0.25

0.5

0.75

1

0 25 50 75 100 125 150 175 200

C
o

v
e
ra

g
e
 C

*(
P

(H
ri)

P
(E

ri)
)

Iteration i

Average

Min

Max

Standard dev.

Max

Min

Figure 10: Pareto Front Coverage C∗(P (Hi
r), P (Ei

r)) of Hybrid Runs H over Pure Evolu-
tionary Runs E for r ∈ 0, ..., 9 for Availability and Costs Optimization.

Figures 9 and 10 show the evolution of the coverage indicator over the
course of the optimization runs for the availability-cost case and the three
dimensional case, respectively. We observe that in both cases, the hybrid
runs start with a clear advantage due to the use of the analytical starting
population: The mean coverage at iteration 0 is 0.8 (availability costs case)
and 0.69 (three dimensional case). The pure evolutionary optimization is
able to recover part of this benefit during the course of the optimization,
but, especially in the availability-costs case, does not reach the same quality
of the results.

The results for the ε indicator are shown in Fig. 11. All results for all
runs for E(H,E) and E(E,H) are smaller than 1, so none of the fronts is
objectively superior to the others. Additionally, the values determined by
the ε indicator are similar (mostly between 0.01 and 0.1). For future work,
it might be interesting to incorporate preference models to allow for a more
detailed interpretation of these results.

The results for the speed-up metric T (H,E) for final iteration imax = 200
are shown in Fig. 12. We observe that in most cases, the hybrid approach H
was faster than the pure evolutionary approach E. The average speed-up is
T (H,E) = 57.8 for the availability-cost case and T (H,E) = 3.7 for the three
dimensional case. The best speed-up is thus achieved in the availability-cost
case, where the average speed-up in relation to iteration y (calculated as the
average of y−x−c

y
) is 28%.

33

Author copy

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100 125 150 175 200

E
p

s
il

o
n

 i
n

d
ic

a
to

r

Iteration i E(H,E) for 3D case E(E,H) for 3D case

E(H,E) for reliability cost case E(E,H) for reliability cost case

Figure 11: Epsilon indicator E Comparing Hybrid Runs H and Pure Evolutionary Runs
E (Averaged over Runs r ∈ 0, ..., 9).

Availability−Costs Three Dimensional

−
10

0
−

50
0

50
10

0

T
im

e
sa

vi
ng

s
T

(H
,E

)
in

 it
er

at
io

ns

Figure 12: Time savings T (H,E) of hybrid runs. The thick lines denote the median, the
boxes denote the 75% and 25% quantile, the whiskers extend to the most extreme data
point which is no more than 1.5 times the interquartile range from the box, and the circle
denotes an outlier outside the whiskers.

To test the significance of the results for the availability cost case, we
used a paired, one-sided T-test as performed by the t.test method of the R
tool on the iterations x and y found for each of the 10 pairs of runs, because
we can assume that the duration is approximately normally distributed. The
null hypothesis is that the mean difference of the iteration y − x− c is zero
or smaller. This null hypothesis is rejected in favour of the alternative hy-
pothesis that the difference is larger than zero, i.e. the hybrid runs are faster
(p-value = 0.012).

34

Author copy

The results for the three dimensional case are indifferent and not signifi-
cant in any direction (p-value is 0.389).

To conclude, our results show that the hybrid step provides the evo-
lutionary optimization with a better-than-random starting population (first
iteration in Figures 10 and 9), which is a clear advantage for the optimization
in the availability-cost case (average speed-up of 28%).

In the three-dimensional case, although the starting population is advan-
tageous, the speed-up at iteration 200 is smaller and not significant. Here,
the parameter configuration of the evolutionary algorithms (such as muta-
tion rate and crossover rate) might have favoured fast evolution instead of
intensification of the results. This would mean that the pure evolutionary
runs can use the time to catch up with the hybrid runs, while the hybrid
runs cannot effectively improve upon the found solutions due to e.g. too
much disruption by too aggressive crossover operators. However, this pos-
sible explanation needs further investigation, which is subject to our future
work.

5. Related Work

Our approach is based on software performance prediction (Smith and
Williams (2002); Balsamo et al. (2004); Koziolek (2010)) and architecture-
based software availability analysis (Gokhale (2007)). We categorize closely
related approaches into: (i) scenario based SA analysis, (ii) rule-based ap-
proaches, and (iii) metaheuristic-based approaches.
Scenario-based SA analysis approaches: The definition of a SA model
can embody not only the software qualities of the resulting system, but also
the trade-offs decisions taken by designers (Bass et al. (2003); Clements and
Northrop (2001); Yang et al. (2009)). The efforts to explore such trade-offs
have produced the so-called scenario-based architecture analysis methods,
such as SAAM and ATAM (Kazman et al. (1994, 1998)) and others reviewed
by Dobrica and Niemela (2002). These methods analyse the SA with respect
to multiple quality attributes exploring also trade-offs concerning software
qualities in the design. The outputs of such analysis include potential risks
of the architecture and the verification result of the satisfaction of quality re-
quirements. These methods provide qualitative results and are mainly based
on the experience and the skill of designers and on the collaboration with
different stakeholders. With respect to these works, our goal is to provide the
software architect with a tool able to analyse the multiple objective problem

35

Author copy

in a quantitative way by allowing the automatic generation of several design
architectures.
Rule-based approaches: Xu (2008) presents a semi-automated approach
to find configuration and design improvement on the model level. Based
on a LQN model, performance problems (e.g., bottlenecks, long paths) are
identified in a first step. Then, rules containing performance knowledge are
applied to the detected problems.

McGregor et al. (2007) have developed the ArchE framework. ArchE
assists the software architect during the design to create architectures that
meet quality requirements. It helps to create architectural models, collects
requirements (in form of scenarios), collects the information needed to anal-
yse the quality criteria for the requirements, provides the evaluation tools for
modifiability or performance analysis, and suggests improvements.

Cortellessa et al. (2012) proposed an approach for automated feedback
generation based on software performance antipatterns. They encode an-
tipatterns and their solution as logical predicates referring to a software ar-
chitecture model and performance evaluation results. Based on these predi-
cates, refactored software architecture models can be suggested.

Kavimandan and Gokhale (2009) present an approach to optimize compo-
nent allocation in the context of distributed real-time embedded component-
based systems. They use heuristic rules to deploy components together that
have a compatible configuration. In total, only allocation is considered as a
degree of freedom, but the authors also mention that their approach could
be combined with other approaches.

All rule-based approaches share a common limitation. The model can
only be changed as defined by the improvement rules. However, especially
performance is a complex and cross-cutting quality criterion. Thus, optimal
solutions could lie on search paths not accessible by rules. At the same
time, the encoded knowledge is complementary for an optimization approach
like presented in this paper and could be integrated into the evolutionary
optimization step as tactic operators (Koziolek et al. (2011a)).
Metaheuristic-based approaches: Aleti et al. (2009) present a generic
framework to optimize architectural models with evolutionary algorithms for
multiple arbitrary quality attributes. As a single degree of freedom, they
vary the deployment of components to hardware nodes.

Canfora et al. (2005) optimize service composition costs using genetic
algorithms while satisfying SLA constraints. Services are assumed to have
fixed performance metrics that do not change for changing composition. Only

36

Author copy

service selection is considered as a degree of freedom, and trade-offs with
other quality criteria are not considered.

Menascé et al. (2010) have developed the SASSY framework for gener-
ating service-oriented architectures based on quality requirements. Based
on an initial model of the required service types and their communication,
SASSY generates an optimal architecture by selecting the best services and
potentially adding patterns such as replication or load balancing. As the
allocation of components is irrelevant in SASSY’s service architecture, the
quality evaluations are simpler and allocation degrees of freedom cannot be
considered. Thus, the approach is not suitable for component-based archi-
tectures in general.

To summarize, these metaheuristics are limited to a given set of degrees
of freedom, whereas our evolutionary step is extendible to many degrees
of freedom that can be even specified by the user (Koziolek and Reussner
(2011)). None of the approaches considers a combination with analytical
optimization or other means to create a superior starting population.

6. Conclusions

In this paper, we extended our hybrid approach for multi-attribute QoS
optimization of component based software systems by providing availability-
cost optimization and three-dimensional performance-availability-cost opti-
mization. The core idea of our approach is the combination of analytical op-
timization of a simplified search problem with evolutionary optimization for
refining the results with more accurate quality evaluation and the full search
space. In our case study, we show that the hybrid approach can speed-up
the software architecture optimization compared to pure evolutionary op-
timization: In the availability-costs optimization, we observed a significant
speed-up of 28%. Hence, the integration of the analytical and evolutionary
approaches is effective.

The proposed approach can lead both to a reduction of development costs
and to an improvement of the quality of the final system, because an auto-
mated and efficient search is able to identify more and better design alterna-
tives, and allows the software architect to make optimal trade-off decisions.

Future work will validate the overall approach by considering real indus-
trial case studies. We will also extend the analytical problem formulation
in order to consider applications with parallel components execution and/or
which can be modelled by means of closed queueing networks. Furthermore,

37

Author copy

the evolutionary search will be implemented as a parallel algorithm and an
automated stop criterion will be developed. Additional quality metrics will
be also considered and the optimization of cloud-based systems will be also
investigated.

Appendix

In this section we show how the analytical optimization problems (P1)-
(P4), (PC), (PT), and (PAl) are as difficult as the binary knapsack (KP) and
multiple dimension knapsack (MKP) problems, which are NP-hard (Wolsey
(1998)). Hence, the analytical optimization step is also NP-hard.

The classical 0-1 Knapsack Problem (KP) is to pick up items from a
knapsack for maximum total value, so that the total resource does not exceed
the resource constraint W > 0 of the knapsack. Let there be n items with
values v1, v2, . . . , vn and the corresponding resources required w1, w2, . . . , wn
(∀j ∈ [1, n], wj > 0).

Mathematically the KP can be formalized as:

max
n∑

j=1

vjxj

n∑
j=1

wjxj ≤ W

xj ∈ {0, 1}

By relaxing exclusive sets constraints, (P1) can be rewritten as:

min

(
C̃ +

∑
j∈J

δcj · xj
)

= min
∑
j∈J

δcj · xj

subject to:

∑
i∈I

πi · (t̃i +
∑
j∈J

δtj,ixj) ≤ T ⇔
∑
j∈J

(∑
i∈I

πi · δtj,i

)
xj ≤ T −

∑
i∈I

πi · t̃i

Indeed, C̃ is a constant independent of the decision variables and can be
dropped by the objective function. By setting vj = −δcj , wj =

∑
i∈I

πi · δtj,i and

recalling that for any optimization problem max
x∈X

f(x) = −min
x∈X

f(x), (P1) can

be reduced to a KP and hence is NP-hard.

38

Author copy

With the same arguments, by relaxing the exclusive set constraints, (P2)
can be reduced to a KP setting vj = −∑

i∈I
πi · δtj,i, wj = δcj , and W = C − C̃.

Similarly, (P3) becomes a KP by setting vj = −δcj , wj = − ∑
i∈EPl

ln(δaj,i,l),

and W = −ln(A) +
∑
i∈EPl

ln(ãi,l), while for (P4) is sufficient to set vj =

ln(δaj,i,l), wj = δcj , and W = C − C̃.
To show that (PC), (PT), and (PAl) are NP-hard we need to consider

the multi-dimensional formulation of the knapsack problem.
A multiple-dimension knapsack problem (MKP) is one kind of knapsack

where the resources are multi-dimensional, i.e. there are multiple resource
constraints for the knapsack, for example the weight but also the size. The
multi-dimensional variant was shown to be NP-complete around 1980 (see,
e.g., Wolsey (1998)).

Formally, let there be n items, let vj be the value of the j-th item, wj,k > 0
the amount of resource k required by the j-th item, and Wk > 0 the amount
of the k resource. Then the MKP is:

max
n∑

j=1

vjxj

n∑
j=1

wj,kxj ≤ Wk; ∀k

xj ∈ {0, 1}

Proceeding as before, by relaxing exclusive set constraints (PC) becomes
a bi-dimensional knapsack by setting vj = −δcj , wj,1 =

∑
i∈I

πi · δtj,i, wj,2 =

−ln(δaj,i,l), W1 = T−∑
i∈I

πi·t̃i, and W2 = −ln(A)+
∑
i∈EPl

ln(ãi,l). The reduction

of (PT) and (PAl) to MKP is also straightforward.

Acknowledgements.

The work reported in this paper has been partially supported by the EU
FP7 Q-ImPrESS project and by the Swiss Research Foundation (SNF) as a
Forschungskredit of the University of Zurich, grant no. 53510401.

39

Author copy

References

Aleti, A., Björnander, S., Grunske, L., Meedeniya, I., 2009. Archeopterix: An extend-
able tool for architecture optimization of AADL models. In: Proceedings of the 2009
ICSE Workshop on Model-Based Methodologies for Pervasive and Embedded Software
(MOMPES 2009). IEEE Computer Society, pp. 61–71.

Ardagna, D., Pernici, B., June 2007. Adaptive service composition in flexible processes.
IEEE Trans. on Soft. Eng. 33 (6), 369–384.

Avizienis, A., Laprie, J. C., Randell, B., Landwehr, C., Jan.-March 2004. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans. on Dependable and
Secure Computing 1 (1), 11 – 33.

Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., May 2004. Model-Based Per-
formance Prediction in Software Development: A Survey. IEEE Trans. on Software
Engineering 30 (5), 295–310.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice, Second
Edition. Addison-Wesley, Reading, MA, USA.

Becker, S., Koziolek, H., Reussner, R., 2009. The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82, 3–22.

Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35 (3), 268–308.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., Horowitz, E., Madachy,
R., Reifer, D. J., Steece, B., 2000. Software Cost Estimation with Cocomo II. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Brosch, F., Koziolek, H., Buhnova, B., Reussner, R., 2012. Architecture-based reliability
prediction with the palladio component model. Transactions on Software Engineering
99 (PrePrints), doi: 10.1109/TSE.2011.94.

Canfora, G., Penta, M. D., Esposito, R., Villani, M. L., 2005. An approach for QoS-aware
service composition based on genetic algorithms. In: Beyer, H.-G., O’Reilly, U.-M.
(Eds.), Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM,
pp. 1069–1075.

Clements, P. C., Kazman, R., Klein, M., 2001. Evaluating Software Architectures. SEI
Series in Software Engineering. Addison-Wesley.

Clements, P. C., Northrop, L., Aug. 2001. Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley.

Coello, C. A. C., 1999. A comprehensive survey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Information Systems 1, 269–308.

40

Author copy

Cortellessa, V., Di Marco, A., Trubiani, C., 2012. An approach for modeling and detecting
software performance antipatterns based on first-order logics. Software and Systems
Modeling, 1–42.

Costa, C., Cunha, I., Borges, A., Ramos, C., Rocha, M., Almeida, J., Ribeiro-Neto, B.,
2004. Analyzing Client Interactivty in Streaming Media. In: Proc. 13th ACM Interna-
tional World Wide Web Conference (WWW).

de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A., 2012. An industrial case study of
performance and cost design space exploration. In: Kurian John, L., Krishnamurthy, D.
(Eds.), Proceedings of the third joint WOSP/SIPEW international conference on Per-
formance Engineering (ICPE 2012). Boston, USA, iCPE Best Industry-Related Paper
Award.

Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, Chichester, UK.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2000. A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel Problem
Solving from Nature PPSN VI. Vol. 1917/2000. Springer, pp. 849–858.

Dobrica, L., Niemela, E., Jul 2002. A survey on software architecture analysis methods.
IEEE Trans. on Software Engineering 28 (7), 638–653.

Durillo, J. J., Nebro, A. J., 2011. jmetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42 (10), 760 – 771.

Ehrgott, M., 2005. Multicriteria Optimization. Springer.

Franks, G., Li, L., 2012. Efficiency improvements for solving layered queueing networks.
In: ICPE. pp. 279–282.

Franks, G., Omari, T., Woodside, C. M., Das, O., Derisavi, S., 2009. Enhanced modeling
and solution of layered queueing networks. IEEE Trans. on Software Engineering 35 (2),
148–161.

Gokhale, S. S., January-March 2007. Architecture-based software reliability analysis:
Overview and limitations. IEEE Trans. on Dependable and Secure Computing 4 (1),
32–40.

IBM ILOG, 2010. IBM ILOG CPLEX.
http://www-01.ibm.com/software/integration/optimization/cplex/about/.

Intel Corporation, 2010. Intel R©processor price list, effective feb 8th, 2010.
http://www.intc.com/priceList.cfm, last visit March 10th, 2010.

Kavimandan, A., Gokhale, A. S., 2009. Applying model transformations to optimizing
real-time QoS configurations in DRE systems. In: Quality of Softw. Architectures.
Springer, pp. 18–35.

41

Author copy

Kazman, R., Bass, L., Abowd, G., Webb, M., May 1994. SAAM: A method for analyzing
the properties of software architectures. In: Intl. Conf. on Softw. Engineering. IEEE,
pp. 81–90.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carrière, S., 1998. The
architecture tradeoff analysis method. In: Intl. Conf. on Engineering of Complex Com-
puter Systems. IEEE, pp. 68–78.

Kleinrock, L., 1975. Queueing Systems. Vol. I: Theory. Wiley Interscience, (Published in
Russian, 1979. Published in Japanese, 1979. Published in Hungarian, 1979. Published
in Italian 1992.).

Koziolek, A., Jul. 2011. Automated improvement of software architecture models for per-
formance and other quality attributes. Ph.D. thesis, Institut für Programmstrukturen
und Datenorganisation (IPD), Karlsruher Institut für Technologie, Karlsruhe, Germany.
URL http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955

Koziolek, A., Ardagna, D., Koziolek, H., Mirandola, R., Reussner, R., 2012.
Details on case study for the extended hybrid optimization approach.
sdqweb.ipd.kit.edu/wiki/PerOpteryx/Hybrid Optimization Case Study 2012.

Koziolek, A., Koziolek, H., Reussner, R., 2011a. Peropteryx: automated application of
tactics in multi-objective software architecture optimization. In: Crnkovic, I., Stafford,
J. A., Petriu, D. C., Happe, J., Inverardi, P. (Eds.), Joint proceedings of the Seventh
International ACM SIGSOFT Conference on the Quality of Software Architectures and
the 2nd ACM SIGSOFT International Symposium on Architecting Critical Systems
(QoSA-ISARCS 2011). ACM, New York, NY, USA, pp. 33–42.

Koziolek, A., Reussner, R., Jun. 2011. Towards a generic quality optimisation framework
for component-based system models. In: Crnkovic, I., Stafford, J. A., Bertolino, A.,
Cooper, K. M. L. (Eds.), Proceedings of the 14th international ACM Sigsoft symposium
on Component based software engineering. CBSE ’11. ACM, New York, NY, USA, New
York, NY, USA, pp. 103–108.

Koziolek, H., 2010. Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation 67 (8), 634–658, special Issue on Software and Perfor-
mance.

Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S., Krogmann, K., Trifu, M.,
Mirandola, R., Koziolek, A., 2011b. An industrial case study on quality impact predic-
tion for evolving service-oriented software. In: Taylor, R. N., Gall, H., Medvidovic, N.
(Eds.), Proceeding of the 33rd international conference on Software engineering (ICSE
2011), Software Engineering in Practice Track. pp. 776–785.

Krishnamurthy, D., Rolia, J., Majumdar, S., 2006. A Synthetic Workload Generation
Technique for Stress Testing Session-Based Systems 32(11).

42

Author copy

Liu, Z., Squillante, M., Wolf, J. L., October 2001. On Maximizing Service-Level-Agreement
Profits. In: Proc. of ACM Eletronic Commerce Conference.

Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J., 2011. Opt4J: a modular framework for
meta-heuristic optimization. In: GECCO ’11: Proceedings of the 13th annual conference
on Genetic and evolutionary computation. ACM, Dublin, Ireland, pp. 1723–1730.

Martens, A., Ardagna, D., Koziolek, H., Mirandola, R., Reussner, R., 2010a. A Hybrid
Approach for Multi-Attribute QoS Optimisation in Component Based Software Sys-
tems. In: Heineman, G., Kofron, J., Plasil, F. (Eds.), Research into Practice - Reality
and Gaps (Proceedings of the 6th International Conference on the Quality of Software
Architectures, QoSA 2010). Vol. 6093 of Lecture Notes in Computer Science. Springer-
Verlag Berlin Heidelberg, pp. 84–101.

Martens, A., Koziolek, H., Becker, S., Reussner, R. H., 2010b. Automatically improve
software models for performance, reliability and cost using genetic algorithms. In:
WOSP/SIPEW International Conference on Performance Engineering. ACM.

Martens, A., Koziolek, H., Prechelt, L., Reussner, R., 2011. From monolithic to
component-based performance evaluation of software architectures. Empirical Software
Engineering 16 (5), 587–622.

McGregor, J. D., Bachmann, F., Bass, L., Bianco, P., Klein, M., 2007. Using arche in the
classroom: One experience. Tech. Rep. CMU/SEI-2007-TN-001, Software Engineering
Institute, Carnegie Mellon University.

Menascé, D. A., Ewing, J. M., Gomaa, H., Malex, S., Sousa, J. a. P., 2010. A frame-
work for utility-based service oriented design in SASSY. In: Proc. of Proceedings of
the first joint WOSP/SIPEW International Conference on Performance Engineering
(WOSP/SIPEW). ACM, pp. 27–36.

Musa, J. D., Iannino, A., Okumoto, K., 1987. Software reliability: measurement, predic-
tion, application. McGraw-Hill, Inc., New York, NY, USA.

Paxson, V., Floyd, S., 1995. Wide Area Traffic: the Failure of Poisson Modeling. IEEE
Trans. on Networking 3 (2), 226–244.

Ranjan, S., Knightly, E., 2008. High-Performance Resource Allocation and Request Redi-
rection Algorithms for Web Clusters. IEEE Trans. on Parallel and Distr. Systems 19 (9),
1186–1200.

Smith, C. U., Williams, L. G., 2002. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley.

Williams, L. G., Smith, C. U., 2003. Making the Business Case for Software Performance
Engineering. In: Proceedings of the 29th International Computer Measurement Group
Conference, December 7-12, 2003, Dallas, Texas, USA. Computer Measurement Group,
pp. 349–358.

43

Author copy

Wolsey, L., 1998. Integer Programming. John Wiley and Sons.

Wu, X., Woodside, M., 2004. Performance Modeling from Software Components. SIG-
SOFT Softw. Eng. Notes 29 (1), 290–301.

Xu, J., 2008. Rule-based automatic software performance diagnosis and improvement. In:
International Workshop on Software and Performance. ACM, pp. 1–12.

Yang, J., Huang, G., Zhu, W., Cui, X., Mei, H., 2009. Quality attribute tradeoff through
adaptive architectures at runtime. Journal of Systems and Software 82 (2), 319–332.

Zhang, Q., Cherkasova, L., Mi, N., Smirni, E., 2008. A Regression-Based Analytic Model
for Capacity Planning of Multi-Tier Applications.

Zitzler, E., Knowles, J., Thiele, L., 2008. Quality Assessment of Pareto Set Approxima-
tions. Vol. 5252 of LNCS. Springer-Verlag, Berlin, pp. 373–404.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3 (4),
257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., da Fonseca, V. G., 2002. Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE Trans.
on Evolutionary Computation 7, 117–132.

44

Author copy

