

3rd International Conference on Life Cycle Management

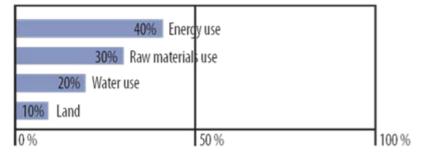
Integrating Sustainability Issues into **Property Rating and Valuation –** The need for LCA and LCC

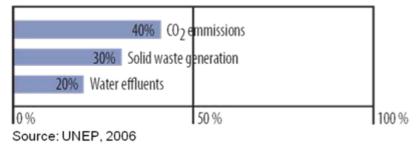
Prof. Dr.-Ing. habil. Thomas Lützkendorf

Dr. rer. pol. David Lorenz M.Sc. MRICS

Universität Karlsruhe (TH)

School of Economics

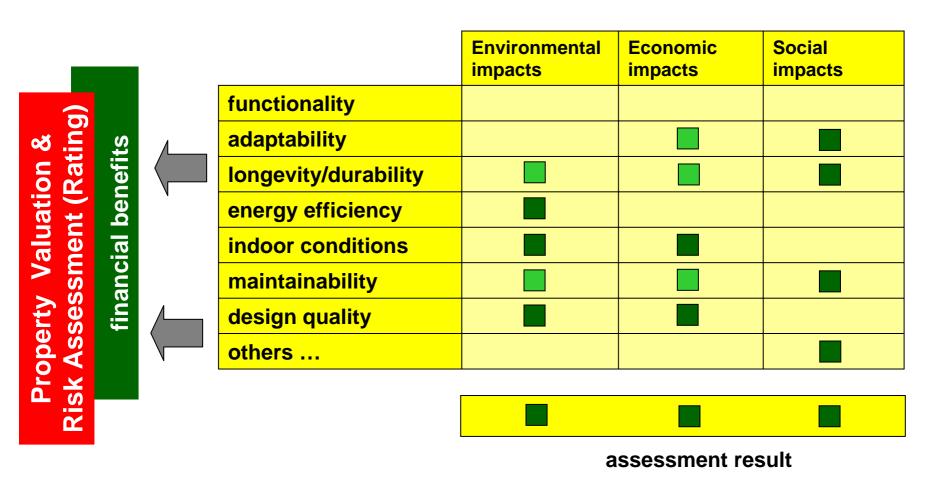

Chair of Sustainable Management of Housing and Real Estate


Integrating Sustainability Issues into Property Valuation and Rating

The rationale:

SHARE OF THE BUILT ENVIRONMENT IN RESOURCE USE

SHARE OF THE BUILT ENVIRONMENT IN POLLUTION EMISSION


In OECD countries the built environment is the largest single cause for resource use and pollution emission!

- Growing awareness of the need for more sustainable development among the general public
- Benefits of sustainable design are increasingly being recognized by property market participants
- Changing occupier demands
- Increasingly stringent environmental legislation
- Mainstreaming of socially responsible investment (SRI) in financial markets & availability of first "green" REITs and property funds
- Changing market environment affects the way property has to be treated for valuation, lending and other decisionmaking purposes

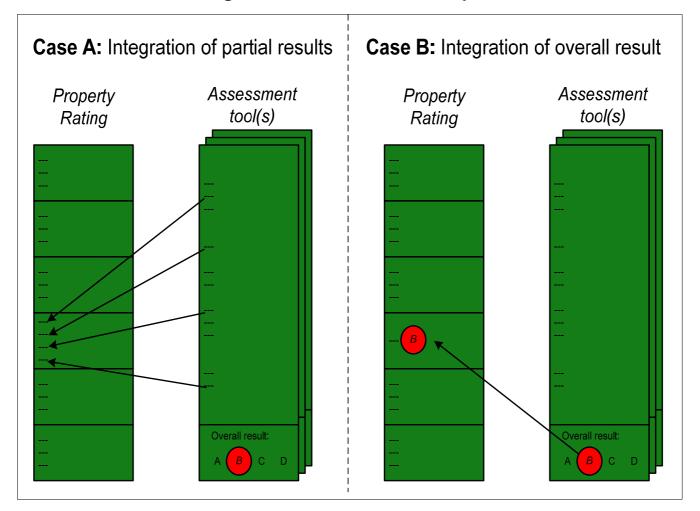
How to translate "sustainability" to investors?

- c) "translation"
- a) description

b) assessment

First Test-Rating Results: ",greener" buildings = less risks

Multiple-Family Dwelling	e-Family Dwelling Rating Scores									
	1	2	3	4	5	6	7	8	9	10
	Excellent	Very good	Good	Slightly above Ø	Ø	Slightly below Ø	Mediocre	Poor	Very Poor	Disastrous
Very good property market conditions										
Superior building (in terms of sustainability)			2.9							
Average building (in terms of sustainability)				3.6						
Poor building (in terms of sustainability)					5.3					
Average property market conditions										
Superior building (in terms of sustainability)			3.4							
Average building (in terms of sustainability)				4.2						
Poor building (in terms of sustainability)						5.9				
Poor property market conditions										
Poor property market conditions Superior building (in terms of sustainability)				4.3						
Average building (in terms of sustainability)				4.5	5.0					
Poor building (in terms of sustainability)					3.0		6.7			


Improved chances and/or reduced risks of sustainable buildings can be expressed and communicated by making use of already existing property rating systems

But: sustainability related assessment criteria, indicators and measurement standards in existing rating systems are rather crude and have been developed completely independent from the development of LCA and LCC tools by the sustainable building community

Integration of building assessment results into property ratings

If results of building assessment tools are used to support the rating process, the flow of information can be organised in different ways:

Basic options for valuers to reflect sustainability issues

Traditional valuation methods	Advanced valuation / data analysis methods
Sales comparison method	Hedonic pricing methods
Investment method / DCF-Analysis	Artificial neural networks
Cost method	Spatial analysis methods
Profits method	Fuzzy logic
Residual method	Autoregressive integrated moving average
	(Real options method)
	Rough set method

Adjustment of valuation input parameters on the basis of personal experience and expert opinion

Transaction analyses to understand the relationships between sustainability related building characteristics and property prices

Basic options for valuers to reflect sustainability issues

Traditional valuation methods	Advanced valuation / data analysis methods
Sales comparison method	Hedonic pricing methods
Investment method / DCF-Analysis	Artificial neural networks
Cost method	Spatial analysis methods
Profits method	Fuzzy logic
Residual method	Autoregressive integrated moving average
	(Real options method)
	Rough set method

Adjustment of valuation input parameters on the basis of personal experience and expert opinion

Transaction analyses to understand the relationships between sustainability related building characteristics and property prices

Currently impossible due to data limitations & deficits in the description of property assets

Different levels of building descriptions in transaction databases


	Туре	Brief Explanation	Examples
1	Characteristics based description	Statement on the availability, number, age or size of particular building features or components	Pool, central heating, green roof, number of rooms, flexible walls, suspended ceiling, etc.
2	Experience based description	Subjective and mainly qualitative judgement mainly based on implicit assumptions	Building quality is considered 'good' because of sound structural condition, favourable layout, equipment, etc.
3	Attribute based description	Judgement or classification based on quantifiable technical and/or physical building characteristics	Heat and sound insulation class, degree of efficiency of heating system, share of renewable materials, etc.
4	Performance based description	Measurement of direct impacts that result from the building's technical and physical characteristics	Primary energy demand, CO ₂ - emissions, life-cycle-costs, annual maintenance costs, etc.

LCC and LCA will be used to improve the data quality of transaction databases to allow for an analysis of the relationship between building performance and property prices.

Conclusion

To foster market transformation the property industry's major decision support tools (rating and valuation) must be more closely linked to and underpinned by the results of existing life cycle assessment and life cycle costing methods.

Thank you very much for paying attention!

If you have any additional questions, please do not hesitate to contact us:

thomas.luetzkendorf@wiwi.uni-karlsruhe.de david.lorenz@wiwi.uni-karlsruhe.de