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Abstract

In this paper, we investigate similarities of effects of soil environmental drivers on
year-round daily soil fluxes of nitrous oxide and methane for three distinct semi-
natural or natural ecosystems: temperate spruce forest, Germany; tropical rain forest,
Queensland, Australia; and ungrazed semi-arid steppe, Inner Mongolia, China. An-
nual cumulative fluxes of nitrous oxide and methane varied markedly among ecosys-
tems, with nitrous oxide fluxes being highest for the tropical forest site (tropical forest:
0.96 kgN ha™’ yr"1 ; temperate forest: 0.67 kgN ha™' yr_1 ; steppe: 0.22kgN ha™’ yr"1 )s
while rates of soil methane uptake were approximately equal for the temperate for-
est (3.45 kgCha"1 yr"1) and the steppe (3.39 kgCha"1 yr"1), but lower for the tropical
forest site (2.38 kgCha"1 yr"1).

In order to allow for cross-site comparison of effects of changes in soil moisture and
soil temperature on fluxes of methane and nitrous oxide, we used a normalization ap-
proach. Data analysis with normalized data revealed that across sites, optimum rates
of methane uptake are found at environmental conditions representing approximately
average site environmental conditions. This might have rather important implications
for understanding effects of climate change on soil methane uptake potential, since
any shift in environmental conditions is likely to result in a reduction of soil methane
uptake ability. For nitrous oxide, our analysis revealed expected patterns: highest ni-
trous oxide emissions under moist and warm conditions and large nitrous oxide fluxes
if soils are exposed to freeze-thawing effects at sufficient high soil moisture contents.
However, the explanatory power of relationships of soil moisture or soil temperature to
nitrous oxide fluxes remained rather poor (< 0.36). When combined effects of changes
in soil moisture and soil temperature were considered, the explanatory power of our
empirical relationships with regard to temporal variations in nitrous oxide fluxes were
at maximum about 50 %. This indicates that other controlling factors such as N and
C availability or microbial community dynamics might exert a significant control on the
temporal dynamic of nitrous oxide fluxes. Though underlying microbial processes such
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as nitrification and denitrification are sensitive to changes in the environmental regu-
lating factors, important regulating factors like moisture and temperature seem to have
both synergistic and antagonistic effects on the status of other regulating factors. Thus
we cannot expect a simple relationship between them and the pattern in the rate of
emissions, associated with denitrification or nitrification in the soils.

In conclusion, we hypothesize that our approach of data generalization may prove
beneficial for the development of environmental response models which can be used
across sites, and which are needed to help better understanding climate change feed-
backs on biospheric sinks or sources of nitrous oxide and methane.

1 Introduction

Nitrous oxide and methane are two of the most important radiative trace gases in the
atmosphere. Since the industrial revolution, the concentration of these greenhouse
gases have increased from 270 ppbv to 319 ppbv, and from 0.72 ppmv to 1.77 ppmv,
contributing at present approximately 5% and 12 % respectively to observed global
warming (IPCC, 2007). Soils of natural and semi-natural terrestrial ecosystems, such
as grasslands and forests, are major global sources and sinks/sources of nitrous oxide
and methane and thus play an important role in regulating atmospheric concentra-
tion of these gases. However, soil-atmosphere exchange of methane and nitrous oxide
varies considerably across different terrestrial ecosystem types such as steppe, tem-
perate, and tropical forests (e.g. Stehfest and Bouwman, 2006; Brumme and Borken,
1999; Dutaur and Verchot, 2007; Breuer et al., 2000; Pilegaard et al., 2006; Schaufler
et al., 2010; Smith et al., 2000). Differences in plant and soil microbial communities, soil
chemistry and physics, management, soil acidification, and atmospheric nitrogen de-
position are drivers for site variation in methane and nitrous oxide fluxes. Furthermore,
seasonal variability of fluxes is likely to be controlled by soil temperature and mois-
ture and their effects on substrate availability, soil aeration, gas diffusivity, and thus on
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microbial processes(such as mineralization, nitrification, denitrification, methane oxi-
dation, and methanogenesis).

Methane and nitrous oxide are both produced (or consumed) as a result of microbial
processes in the soil (Conrad, 1996). In soils, methane can be formed under anaerobic
conditions by methanogens. Under aerobic conditions, both methane that has been
produced in anaerobic parts of the soil and atmospheric methane diffusing into the
topsoil can be oxidized by methanotrophs (Le Mer and Roger, 2001). Nitrous oxide
is naturally produced in soils by microbial processes of nitrification and denitrification
(Bleakley and Tiedje, 1982; Bowden, 1986).

Soil temperature and water content directly affect production and consumption of
these greenhouse gases through their effects on metabolic activity of microorganisms
and plants, soil aeration, substrate availability, and redistribution. Effective gas diffusiv-
ity, which increases with increased air-filled porosity, controls the exchange of gases
between the atmosphere and soil and affects soil aeration. This process indirectly con-
trols the capacity of the soil to produce or consume nitrous oxide and methane. In soils
from different ecosystems, moisture and temperature have been identified as key con-
trols on nitrous oxide and methane trace gas production and consumption by many field
investigations. Studies in temperate forest (Butterbach-Bahl and Papen, 2002; Castro
et al., 1994, 1995; Peterjohn et al., 1994; Wu et al., 2010a) and temperate grassland
(Chen et al., 2010; van den Pol-van Dasselaar et al., 1998; Wu et al., 2010b) have
revealed strong temporal patterns in nitrous oxide and methane fluxes correspond-
ing closely with seasonal changes in moisture and temperature. Reports on C and N
trace gas exchange between tropical rain forest soils and the atmosphere are still lim-
ited. However, results from previous experiments at different tropical rain forest sites
(Breuer et al., 2000; Butterbach-Bahl et al., 2004; Kiese et al., 2003; Seiler et al., 1984;
Teh et al., 2008; Teh and Silver, 2006; Werner et al., 2007; Yan et al., 2008; Yashiro
et al., 2008) indicate that the seasonality of fluxes of methane and nitrous oxide are
mainly driven by changes in these two environmental parameters as well. However, to
our knowledge there is no study available which comprehensively compares responses
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of C- and N-trace gas fluxes to changes in temperature and soil moisture across differ-
ent ecosystem types. The study by Groffman et al. (2000) only evaluates nitrous oxide
fluxes across ecosystems at the annual scale, thereby finding that coherent patterns in
annual nitrous oxide fluxes at the ecosystem scale in forest, cropland, and rangeland
ecosystems exist, but these patterns vary by regions and only emerge with continuous
(in a resolution of at least daily) flux measurements over multiple years.

All three investigated ecosystems in this study (temperate forest, semi-arid steppe,
and tropical forest), are among the dominating ecosystem types on earth. For instance,
emissions of nitrous oxide from tropical rain forest soils are thought to contribute ap-
proximately 20 % to the global atmospheric budget of this primary climate-relevant
trace gas (IPCC, 1997). Assuming that the observed variability of nitrous oxide and
methane fluxes at our observation sites may be representative for their ecosystems
type and the respective climatic regime, a cross-site comparison of fluxes may help
to identify overarching patterns of soil moisture and temperature effects on soil green-
house gas (GHG) emissions. Specific objectives addressed in this study were (1) to
evaluate seasonal variations and event based patterns of methane and nitrous oxide
fluxes in three different ecosystem types, (2) to relate temporal changes of GHG fluxes
to changes in temperature and moisture for the given ecosystem, (3) to investigate
overarching patterns in GHG fluxes as a response to changes in soil moisture and
temperature across the three ecosystem types.

2 Materials and methods
2.1 Study sites

In this study, a cross-site comparison of soil nitrous oxide and methane fluxes, soil
temperature, and soil moisture was conducted for three different ecosystems: spruce
forest, temperate climate; ungrazed steppe, semi-arid climate; and tropical rain forest,
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wet tropical climate (with pronounced dry and wet seasons). The main characteristics
of the sites are given in Table 1.

Data for temperate forest was obtained from continuous measurements at the
Hoglwald Forest, a well-studied spruce plantation site in southern Germany, which re-
ceives high rates of atmospheric N deposition (20—-30 kgN ha™' yr‘1) (Luo et al., 2012).
Continuous measurements of soil methane and nitrous oxide fluxes were started in
November 1993 and were continued since then. For cross-site analysis, we used ob-
servational data of the years 1995 and 1997, since these years are typical years with
regard to flux magnitudes, seasonal flux patterns, and environmental conditions (Luo
et al., 2012). High soil-thawing nitrous oxide fluxes occur occasionally at the Hoglwald
site (approximately every third year, Luo et al., 2012). In order to consider such irreg-
ular events in our cross-site data analysis, we randomly chose 365 observation days
from the years 1995 and 1997 to form a new, more representative dataset for this site.
For the specific site analysis (e.g. Table 2), all data obtained in both years were con-
sidered. Daily precipitation and air temperature at 2m a.g.l. for 1995 and 1997 were
obtained from the German Weather Service station Augsburg-Muhlhausen, which is
about 20 km northwest from the HOglwald Forest site. Soil temperature at 5cm soil
depth was measured every minute by PT100 probes (IMKO GmbH, Germany) in close
vicinity to the chambers (Values at 10cm are not available across the entire obser-
vation period.). Hourly soil moisture measurements were carried out with horizontally
installed TDR probes (IMKO GmbH, Germany, or UMS, Germany) at 10 cm soil depth.
Due to instrumental failure and removal of the soil moisture sensors, in situ soil mois-
ture measurements were not available for 1997. To fill this gap, a machine-learning
technique, known as support vector machine (SVM), was employed (for details see
Luo et al., 2012).

Nitrous oxide and methane fluxes of the tropical rain forest site were obtained at
a site in the Coastal Lowlands of the “Wet Tropics”, Queensland, Australia, approxi-
mately 70 km south of Cairns. Plant biodiversity is relatively high with over 130 plant
species including 63 different kinds of trees occurring in a defined plot of 20 m by 50 m,
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and thus comparable to many of the lowland rain forests in South East Asia (Kiese
et al., 2003). For further information about site properties, see Kiese and Butterbach-
Bahl (2002) and Table 1. In this study, we used a full year dataset on nitrous oxide
emissions and methane uptake as recorded for the period from 1 November 2001, to
31 October 2002. Details of the measuring system and modes of calibration have al-
ready been described by Kiese and Butterbach-Bahl (2002), and Kiese et al. (2003).
Measurements of climate parameters were recorded by an on-site climate station. In
this study, daily air temperature and rainfall data were used to simulate soil moisture
(vol%) and soil temperature time series for 10 cm soil depth — which were only spo-
radically recorded — by the ForestDNDC-tropica model. This has been successfully
evaluated for this site for its predicting capability with regard to nitrous oxide fluxes and
soil environmental conditions in earlier studies (Kiese et al., 2005; Werner et al., 2007).

Nitrous oxide and methane flux data for temperate semi-arid steppe were obtained
at a site in the Xilin River catchment near the Inner Mongolia Grassland Ecosystem Re-
search Station (IMGERS), Chinese Ecosystem Research Network. Additional details
of the site are provided by Liu et al. (2007), Chen et al. (2010; 2011) and in Table 1. The
full year dataset on methane and nitrous oxide fluxes was obtained in the period of time
between 15 August 2007 and 15 August 2008. Details on flux measurements can be
found in Wolf et al. (2010) and Chen et al. (2010). Soil temperature (at 5cm soil depth)
as well as volumetric water content of the topsoil (at 0—6 cm soil depth) were contin-
uously recorded in 1 min intervals using PT100 thermocouples (Th2-h; UMS GmbH,
Munich, Germany) or ECH20 FD probes (Decagon Devices, Pullman, WA, USA), re-
spectively. During the wintertime, when soil temperatures dropped below zero degrees,
topsoil (at 0-5cm soil depth) samples were taken at least twice a week for the deter-
mination of volumetric water content.

2.2 Statistics

The software packages SPSS 8.0 (SPSS Inc., Chicago, USA) and SigmaPlot 10.0
(Systat Software Inc., Chicago, USA) were used for statistical data analysis. Annual
933

methane uptake and nitrous oxide represent the amount of cumulative uptake and
emission using a linear interpolation approach. As each site is subject to different cli-
mate and site characteristics (see Introduction and Material and methods), different
averages and ranges of fluxes, soil temperature, and moisture were observed. There-
fore, flux (nitrous oxide and methane) as well as environmental data (soil temperature
and moisture) for each study site were normalized to values ranging between 0 and
1 in Origin 7.0 (Origin Lab Corporation, USA) before exploring relationships between
trace gas fluxes and both soil moisture and temperature to allow a comparison across
these different sites.

3 Results

3.1 Temporal variability of climate, methane uptakes, and nitrous oxide
emission

All three ecosystem sites have shown a pronounced seasonal variability in soil temper-
ature and moisture (Figs. 1-3). The seasonal variability in soil temperature conditions
was highest for the steppe site in Inner Mongolia (Figs. 2, 4) with a minimum of —11.3°C
(29 January 2008) and a maximum of 25.6°C (19 July 2008) at a soil depth of 5cm.
Variability of soil temperature (11 °C at a soil depth of 10 cm) was lowest for the tropical
rainforest site at Bellenden Ker (Figs. 3; 4) with minimum values of 16°C. However,
variability of soil moisture was highest at the tropical forest site (soil volumetric water
content: 7.5 % to 37.4 % at 10 cm soil depth), but lowest for the temperate spruce forest
site at Hoglwald Forest (soil volumetric water content: 21.1 % to 31.1 % at 10 cm soil
depth in the year 1997) (Figs. 1-4).

The pronounced variability in soil environmental conditions was mirrored by an evi-
dent variability in soil nitrous oxide and methane fluxes. Figures 1-3 shows that at the
temperate forest site as well as at the semi-arid steppe site, highest nitrous oxide fluxes
were observed during the spring-thaw period (temperate forest up to 80 pgNm'zh'1;
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steppe up to 50 ugN m~2 h‘1). However, during the vegetation period, hardly any vari-
ability of nitrous oxide fluxes was observed (Figs. 1-2). In contrast, nitrous oxide fluxes
at the tropical forest site were obviously linked to changes in soil moisture (up to
50 pgNm'zh'1 in the wet season) and were between 5 and 10pgNm'2 h™! during
the dry season from May 2002 to November 2002 (Fig. 3).

Methane uptake at the semi-arid steppe and temperate forest sites in general fol-
lowed the course of soil temperature with maximum uptake rates in summer (steppe
125 ngm'2 h™; temperate forest 70 ung'2 h'1). This seasonality was modified by
changes in soil moisture, with periods of high soil moisture values leading to lower
methane uptake rates. For the tropical forest site, an effect of soil temperature on
methane uptake is not directly visible. Rather, uptake rates are mainly linked to changes
in soil moisture with the highest rates of methane uptake (40 ngm'2 h'1) during the
dry period from May 2002 to November 2002.

Besides differences in the seasonality and dynamics of methane and nitrous oxide
fluxes to changes in soil environmental conditions, there were also distinct differences
in the overall magnitude of observed fluxes across the three study sites. Annual cu-
mulative nitrous oxide fluxes for the different ecosystems varied at a range of 0.2—
1.0kgN,O-N ha™’ yr"1 and were decreasing in the following sequence: tropical rain-
forest > temperate forest >> semi-arid steppe (Table 2). Methane uptake rates varied
at a range of 2.4-3.5 kgCH4—Cha_1 yr_1 in the following sequence temperate forest
~ semi-arid steppe > tropical forest (Table 2).

A comparison of soil nitrous oxide and methane emission characteristics for the three
investigated ecosystems is presented in Fig. 5. For the semi-arid steppe, the largest
variations in methane oxidation rates were observed, whereas the annual variability of
methane uptake was lowest for the tropical rainforest site. In contrast to the variability of
methane uptake, the nitrous oxide flux variability was highest for the tropical rainforest
site. However, in the semi-arid steppe and temperate forest sitesecosystems distinct
peak emissions were observed during freezing and thawing period.

935

3.2 Effects of soil temperature and moisture on methane and nitrous oxide
fluxes

Combined effects of soil moisture and temperature on methane and nitrous oxide fluxes
are depicted by Figs. 6-8. The contour graphs for nitrous oxide (Fig. 6) show that
maximum nitrous oxide fluxes at the temperate forest and semi-arid steppe sites were
observed during freeze-thaw periods when the soil was cold but wet. When the freeze-
thaw periods were excluded (Fig. 7), highest nitrous oxide fluxes occurred during warm
and wet periods in the temperate forest, and during warm and dry periods (following
a few days after rainfall events (data not shown)) at the steppe site. Due to a weak
correlation of nitrous oxide fluxes with soil temperature, highest emissions in the trop-
ical rainforest were generally observed at high soil moisture independent of the soil
temperature (Fig. 7).

In both the tropical rain forest and temperate forest sites, changes in soil temperature
and moisture were controlling methane uptake rates (Fig. 8). While the temperate forest
site maximum uptake rates are clearly associated with lowest soil moisture and highest
soil temperature, methane uptake rates at the tropical forest site showed a bi-modal
distribution (Fig. 8). The first optimum was in-line with observations for the temperate
forest, i.e. high soil temperature and low soil moisture. However, a second optimum with
even higher methane uptake rates was found for conditions with comparable lower soil
temperatures and slightly elevated soil moisture (normalized values of soil temperature
and moisture of approximately 0.4). For the semi-arid steppe site, contour lines are
running approximately parallel to the y-axis which represents the soil moisture vector.
This shows that a significant effect of soil moisture changes on methane uptake rates
is not visible, at least for the range of soil moisture conditions underlying this analysis.

Regression analyses using normalized data has shown for all sites that combined
changes in soil temperature and soil moisture exert a stronger control on methane
uptake (r2 values: 0.67-0.77; Table 3) as on nitrous oxide emission (r2 values: 0.19—
0.41; Table 4). However, if soil moisture and temperature effects on nitrous oxide fluxes
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are analyzed for freeze-thaw periods (only 1997 dataset for the temperate forest site
and the steppe dataset), the predicting power of a simple soil moisture-soil temperature
relationship for nitrous oxide fluxes increases remarkably (r2: 0.71-0.77) (Table 5).

3.3 Ecosystem cross-comparison of fluxes and drivers

For cross-comparison of ecosystems we used the normalized data as shown in Figs. 9—
11. Using all data, including nitrous oxide fluxes during freeze-thaw periods, the cross-
ecosystem analysis reveals that two optima for high nitrous oxide emissions exist: (a)
for warm and moist conditions and (b) for wet and cold conditions (Fig. 9). Excluding
freeze-thaw nitrous oxide emissions from the cross-ecosystem reveals that maximum
nitrous oxide fluxes are unequivocally associated with warm and wet soil conditions
(Fig. 10).

The contour plot for methane uptake fluxes with normalized data from all three
ecosystems (Fig. 11) shows that the highest methane uptake rates can be expected
for average annual soil environmental conditions. The highest uptake rates were pre-
dicted for soil temperature conditions representing 50-70 % (0.5-0.7 in Fig. 11) of the
observed temperature range at a given site or 30—50 % (0.3—-0.5 in Fig. 11) with regard
to soil moisture.

4 Discussion
4.1 Controls of nitrous oxide emission

Nitrous oxide is mainly a byproduct of two key nitrogen cycling processes in soil: ni-

trification (the oxidation of ammonium to nitrate and nitrite) and denitrification (the re-

duction of nitrate and nitrite to nitric oxide, nitrous oxide, and dinitrogen). The magni-

tude of fluxes largely depends on soil environmental conditions, with temperature and

soil moisture, besides substrate availability, being major determinants. For the years

being evaluated here, annual nitrous oxide fluxes were highest for the rainforest site
937

(0.96 ngha"1 yr’1), somewhat lower for the atmospheric N deposition affected tem-
perate forest site Hoglwald (0.67 kg Nha™' yr‘1), and lowest for the steppe site in Inner
Mongolia (approximately 0.2 kg Nha™ yr’1). The mentioned annual emission rates are
within the range of reported nitrous oxide fluxes for the specific ecosystem types (see
e.g. for tropical forests: Breuer et al., 2000; temperate forests: Bouwman et al., 1995;
Brumme and Beese, 1992; and steppe ecosystems: Galbally et al., 2008).

Soil nitrous oxide fluxes have been observed to increase exponentially with soil tem-
perature (Brumme, 1995; Dinsmore et al., 2009; Schindlbacher et al., 2004; Smith
et al., 2003), which can be explained by a combination of an expansion in anaero-
bic zones triggered by the acceleration of soil respiration, the increasing denitrification
rate per unit of anaerobic volume (Smith et al., 2003), and the temperature sensitivity of
the underlying enzymatic processes. Accordingly, moisture effects on soil nitrous oxide
fluxes are a result of the limitations of O, diffusion into the soil and expansion of soil
anaerobiosis, which in turn promotes reductive microbial processes such as denitrifica-
tion. At our temperate forest site, both temperature and moisture effects were both im-
portant with regard to inducing temporal changes in nitrous oxide fluxes. For the steppe
site, temperature was the dominant driver, and for the tropical forest site soil moisture
was the dominant driver of the daily variability in nitrous oxide fluxes (Fig. 7, Table 4).
However, the explanatory power of relationships of soil moisture or soil temperature to
nitrous oxide fluxes remained rather poor (< 0.33). Even for the tropical forest site in our
study, combined changes in soil moisture and soil temperature could only explain less
than 50 % of the observed temporal variations in nitrous oxide fluxes, indicating that
other controlling factors such as N and C availability (e.g. Pilegaard et al., 2006; Mor-
ley and Baggs, 2010) or microbial community dynamics (e.g. Regan et al., 2011), exert
a significant control on the temporal dynamic of nitrous oxide fluxes as well. This lack
of predictive power of simple relationships between environmental drivers and nitrous
oxide fluxes for long time datasets, spanning at least one year, have been observed
for other natural and semi-natural systems as well, (e.g. for temperate humid grass-
land systems in Germany, Kammann et al., 2008), prairie systems in North America
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(Mosier et al., 1996) or a mixed forest in a mountainous region in Austria (Kitzler et al.,
2006). This represents important regulating factors such as moisture and temperature
might have both synergistic and antagonistic effects on the status of other regulating
factors. Thus we cannot expect a simple relationship between them and the pattern
in the rate of emissions, associated with denitrification or nitrification in the soils. For
shorter observation periods, in our case nitrous oxide fluxes during freeze-thaw peri-
ods, stronger, non-linear correlations — specifically between nitrous oxide fluxes and
soil moisture — can be found (Table 5). Stronger correlations were also found when
combined soil moisture and soil temperature models were tested, a result which is in
agreement with observations for soil nitrous oxide fluxes from a mixed forest in Austria
(Kitzler et al., 2006).

4.2 Controls of methane uptake

Depending on climate, soil, and ecosystem type, and land use/ management, all having
impacts on soil aeration, oxygen, and methane availability, soils can either function as
atmospheric sink or source of methane (Topp and Pattey, 1997). The total sink strength
of terrestrial ecosystems is estimated to be approximately 15-45Tg yr‘1 which roughly
equals the increase of atmospheric methane concentrations during the 1990s (Dutaur
and Verchot, 2007). Observations that upland temperate and tropical forest as well
as steppe soils serve as significant sinks for atmospheric methane have been con-
firmed in a large number of studies (Mosier et al., 1991; Steudler et al., 1989; Whalen
and Reeburgh, 1990; Keller et al., 1983; Seiler et al., 1984). Topp and Pattey (1997)
as well as Dutour and Verchot (2007) summarized representative methane fluxes for
various ecological types including desert, temperate forest, tropical forest, and grass
pasture. In their studies annual uptake rates typically ranged from 0 to approximately
20kgCH,-C ha™’ yr'1(mean: temperate forest: 4.28 CH,-C ha™' yr'1; tropical forest:
2.50CH,—Cha™'yr™"; grassland: 1.74CH,—Cha'yr™") (Dutaur and Verchot, 2007).
However, it still needs to be noted that most of these estimates are based on low mea-
suring frequencies, often not covering a total year, which introduces high uncertainty to
939

the estimation of annual uptake rates of methane. Values from our year-round obser-
vation in forest ecosystems showed annual uptake of 3.45kgCH,-C ha™' yr‘1 (1997)
and 2.79kgCH,-C ha™" yr"1 (1995) for the temperate forest, 2.38 kgCH,-C ha™" yr‘1
for the rain forest site, and 3.39 kgCH,-C ha™' yr"1 (1.24mg m~2d™") for the semi-arid
steppe site. Annual fluxes are thus within (temperate and tropical forest) or at the high
end (steppe) of previous published data for these ecosystem types.

Environmental controls of atmospheric methane uptake by soils have been assessed
in many studies. For non-arable upland soils, (e.g. grassland or forest soils (Bowden
et al., 1998; Dunfield et al., 1995; Koschorreck and Conrad, 1993; van den Pol-van
Dasselaar et al., 1998; Whalen and Reeburgh, 1996; Castro et al., 1994, 1995; Yavitt
et al., 1995)), temperature, soil gas permeability, and N availability were identified
to be the primary controlling factors. Though atmospheric N deposition may also af-
fect the methane uptake potential of a given site, specifically at the Hoglwald Forest
(Butterbach-Bahl and Papen, 2002), due to the ability of methanotrophic bacteria for
NH; oxidation resulting in an inhibition of methane oxidation at elevated soil NH, lev-
els (Castro et al., 1995), this parameter is of little interest in the frame of this study
with focus on a cross comparison of temporal controls of methane uptake for the three
contrasting ecosystem types in this study.

Gas diffusion to the sites of actual methanotrophic activity, often found at 5-15cm
soil depth (Henckel et al., 2000; Roslev et al., 1997), has been identified for forest as
well as for grassland ecosystems as the major rate limiting step of methane uptake (Le
Mer and Roger, 2001; Smith et al., 2003). Gas diffusion is controlled by site properties
such as soil bulk density (Fujikawa and Miyazaki, 2005), soil structural features such
as effective pore length and gas permeability (Liu et al., 2007), and the thickness and
structure of the organic layer covering the mineral topsoil where methanotrophic activ-
ity is highest (Brumme and Borken, 1999). While the mentioned factors can be used
to explain site differences in methane uptake activity between different forest types
(Butterbach-Bahl and Papen, 2002; Brumme and Borken, 1999), seasonal variations
in uptake activity have often been observed to be closely linked to soil moisture and
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the effect of soil moisture on soil gas permeability (e.g. incubation experiment: Bowden
et al., 1998; Dunfield et al., 1995; Koschorreck and Conrad, 1993; van den Pol-van
Dasselaar et al., 1998; Whalen and Reeburgh, 1996; e.g. field measurements: Castro
et al., 1994; Castro et al., 1995; Yavitt et al., 1995). Both at low and high soil moisture
contents, methane uptake capacity may be suppressed, either by physiological water
stress of methanotrophs or by restriction of diffusive methane and O, transport. The op-
timum soil water content for methane uptake reflects the balance between gas transport
rates and physiological water stress. A further increase of soil moisture content may
also decrease atmospheric methane uptake, due to increased methane production, as
a result of an increasing proportion of anaerobic sites (Yavitt et al., 1995).

At all of our sites, a close link of methane uptake to soil moisture fluctuations could be
demonstrated. This was strongest for temperate forest (Table 3) and less pronounced
at the steppe site. Since topsoil bulk densities are not significantly different across
sites (Table 1), this can be explained best by the rather low amount of precipitation at
the investigated steppe site (approximately 330 mm — the site with the lowest topsoil
soil moisture), which seldom was sufficient to result in soil moisture levels critical for
limiting gas diffusion (Table 2). At our temperate forest as well as at the rain forest site,
oxidation of methane was hampered when soil moisture was higher than 60 % of the
moisture range (Fig. 8), which — converted to WFPS values equals 44 % and 43 %. This
threshold value is comparable to a study by Sitaula et al. (1995) who found in their study
on methane uptake by soils at a 100-yr-old Scots pine forest in Norway (Sitaula et al.,
1995), that an increase in soil moisture from 32 vol% to 42 vol% resulted in a significant
reduction of methane uptake. Similar results were also obtained by a laboratory-based
study with agricultural soils (Nesbit and Breitenbeck, 1992), with maximum methane
uptake rates being observed at approximately 50—70 % of water-filled pore space.

Rates of soil methane uptake increase with increasing soil temperature due to the
temperature sensitivity of the underlying enzymatic process. This has been demon-
strated in various field and laboratory studies (e.g. Bowden et al., 1998; Butterbach-
Bahl and Papen, 2002; Steinkamp et al., 2001). Although temperature effects may be
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most pronounced for soil temperature < 15°C, at higher temperatures gas diffusion lim-
itations and drought effects may override temperature responses (e.g. Steinkamp et al.,
2001). This explains why in our study only a weak effect of temperature on methane
uptake could be found for the tropical forest, while the temperature effect is most pro-
nounced at the steppe site (Table 3). For the latter site, the pronounced seasonality
of methane uptake is thus a combination of temperature dependency (during autumn,
winter and spring) and diffusion limitations due to occasional rainfall events and drought
effects during prolong periods limiting methanotrophic activity.

4.3 Across-ecosystem commonalities

Though there is a wealth of information available examining temporal and spatial vari-
ation of nitrous oxide and methane fluxes, a comparison of environmental response
functions for contrasting ecosystems in different climate zones has so far only rarely
been undertaken. Multi-site analyses of soil methane uptake for natural and managed
systems have been presented (e.g. Smith et al., 2000), for forest soil nitrous oxide
emissions by Pilegaard et al. (2006) and Schindlbacher et al. (2004), and for vari-
ous ecosystem types by Schaufler et al. (2010). While the latter two publications are
based on laboratory incubation studies allowing a more direct comparison of sites and
flux magnitudes, the other mentioned studies are comparing field measurements at
various sites. However, our study is to our knowledge the first study where a data
generalization approach has been used for identifying commonalities of effects of en-
vironmental drivers on methane and nitrous oxide fluxes. The generalization approach
demonstrates that coherent patterns of methane uptake, soil moisture, and soil temper-
ature exist across different ecosystems. We have strong evidence that optimum rates
of methane uptake are found in environmental conditions representing approximately
average site environmental conditions across these ecosystems. Thus, changes in soll
environmental conditions (temperature/moisture) will likely reduce soil methane uptake
potentials. This has rather important implications for understanding effects of climate
change on soil methane uptake activity, since any shift in environmental conditions is
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likely to result in a reduction of methane uptake activity. For nitrous oxide, our analy-
sis revealed expected patterns: highest nitrous oxide emissions under moist and warm
conditions, and large nitrous oxide fluxes if soils are exposed to freeze-thawing effects
at sufficient high soil moisture contents.

Our approach of data generalization may prove beneficial for the development of en-
vironmental response models needed to better understand climate change feedbacks
on biospheric sinks and sources of nitrous oxide and methane. However, the entire
approach and its predictive power will depend on the availability of high quality flux
datasets, which are currently available only for a few selected systems.

5 Conclusions

Despite the huge number of flux measurements and modeling efforts at the process
levels and field scales, it has proven difficult to establish strong predictive relationships
between nitrous oxide and methane fluxes and environmental parameters such as tem-
perature and moisture. The normalization approach of flux data and environmental pa-
rameters presented here allows for better identifying cross-ecosystems commonalities
of drivers of trace gas fluxes from soils in natural and semi-natural environments. How-
ever, such an approach depends on high data quality and the accessibility of data to
the wider research community. Our approach may contribute to the improvement of pa-
rameterization of models simulating biosphere-atmosphere exchange processes and
evaluations of feedbacks of climate change on soil fluxes of nitrous oxide and methane.
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Table 1. Main characteristics of the different measuring sites.

Héglwald, Germany?® Bellenden Ker, Austalia® UG99, Inner Mongolia, China®
Location 11°11'E 48°30'N 145°54'E17°16'S 116°40.2'E 43°33.1'N
Climate (Kdppen-Geiger Temperate-oceanic Tropical rainforest Temperate semi-arid
climate classification)” climate (Dfb) climate (Af) climate (Dwb)
Height a.s.I. (m) 540 80 1268
Mean annual precipitation (mm) 932 (mean 2004-2010) 43959 330"
Mean annual temperature (°C) 8.6 (mean 2004-2010) 24.3° 07"
Soil type Typic Hapludalf Ustochrept Calcic Chernozem
Soil parent material Pleistocene loess over tertiary sand deposits ~ Granite Loess
Vegetation type Picea abies Complex mesophyll vine forest  Leymus chinensis
Slope (°) - 9.0-12.0 22-27
pH+SE 3.6-4.0° 4.1+0.03° 6.8+0.27'
Bulk density (gcm'a)isE 0-5cm  1.033+0.05° 1.09+0.03° 1.09+0.12
C-to-N ratio 18-19° 12.1° 9.7£0.7'
Organic C content (%) 1.63-2.87° 3.11° 2.55+0.63'
Soil texture (%)°:
Sand 50-64 57 48.3
Silt 30-38 21 25.8
Clay 5-11 22 25.9

2 (Kreutzer, 1995; Rothe et al., 2002; Butterbach-Bahl et al., 2002)

® (Kiese und Butterbach-Bahl, 2002)

© Compiled from data from Chen et l.(2010) and Liu et al., 2007.

9 (Peel et al., 2007)

© 0-10cm soil depth.

' 0-4cm soil depth.

9 Data from Bureau of Meteorology, Brisbane.

" from Climate station at Inner Mongolia Grassland Ecosystem Research Station (IMGERS)
mean: 1982-2007. —not determined
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Table 2. Flux rates of nitrous oxide and methane from soils of each land use type as observed
for all temperature and moisture conditions. Annual cumulative values are summed after linear

interpolation.
Land use types Hoglwald 1997 Hoglwald 1995 Rain forest  steppe
Mean soil temperature [° C] 6.9+0.2 72+0.3 22.33+0.2 4.95+0.6
Mean volumetric water content [vol%] 29.1+0.2 33.0+£0.2 22.09+0.5 135105
Annual methane uptake [kgCH,—~Cha™'yr™'] 3.45 2.79 2.38 3.39
Annual nitrous oxide emission [kgN, ON ha™' yr’1] 0.67 0.82 0.96 0.22
951
Table 3. Temperature and moisture control on methane fluxes.
Predictors Ecosystems Functions a b c Xo Yo n R square
soil temperature (T)  steppe Gaussian: 0.50* 0.56* 1.05% 259 0.71%
rain forest f = a-exp(=0.5-((T-x,)/b)%) - - - - -
temperate forest 0.66" 0.51* 0.83° 300 0.49*
soil moisture (M) steppe Gaussian: 0.45% 0.24* 0.36" 259 0.22%
rain forest f=a-exp(-0.5-((M - xo)/b)%) 0.77*  0.47° 0.25% 277 0.67°
temperate forest 0.88° 0.54° -0.0036 300 0.70%
soil temperature (T), steppe Gaussian: 0.54* 052° 1.17 0.99° -023 259 0.73%
soil moisture (M) rain forest f=a-exp(-0.5-((T-x)/b)2 +((M-yp)/c)?) 273 1119 045° -17.27 027° 277 067°
temperate forest 0.92* 055° 0.65*° 0.67° -0.067 300 0.77°

2 p < 0.0001
~: no significant regression results.
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Table 4. Temperature and moisture control on nitrous oxide fluxes. Note that for this analyses,
freeze and thaw periods were excluded (steppe and temperate forest site 1997).

Predictors Ecosystems Functions a b c Xy Yo n R square
soil temperature (T)  steppe f=a-exp(-0.5-((M-x,)/b)%) 0.48°  0.42° 0.58% 241 0.28°
rain forest 0.27%  0.29° 0.76% 290 0.21°
temperate forest 0.54*  0.97° 1° 262 0.13°
soil temperature (T)  steppe In(f) = aT+x, 0.17% 0.57% 241 0.15°
rain forest -0.57% 0.77% 290 0.33%
temperate forest 0.13% 0.70° 262 0.10%
soil moisture (M) steppe In(f)y=b-M+y, - - 241 -
rain forest -0.36° 0.65% 290 0.28°
temperate forest - - 262 -
soil temperature (T), steppe 023  -0.18° 0.59° 241 0.19°
soil moisture(M) rain forest In(f) = aT+b-M+y, -0.41% -0.22° 0.80° 290 0.41°
temperate forest 025 0.20% 0.52* 262 0.21°
—: no significant regression results.
2: p <0.0001,
5 p<0.001,
¢ p<0.05.
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Table 5. Regression results between nitrous oxide fluxes and both soil temperature and soil
moisture for freeze and thaw periods as observed in the dataset of the steppe site and the
temperate forest site (only in the dataset of the year 1997).

Predictors Ecosystems Functions a b c Xo Yo n R square
soil temperaturen (T)  steppe f = a-exp(=0.5-((T-x,)/b)%) 0.71* 0.15% 0.25% 27 0.54*
temperate forest 0.87* 0.19* 0.33% 81 0.50%
soil moisture (M) steppe f=a-exp(=0.5-((M — x,)/b)?) 0.93* 0.36% 0.88% 27 07*
temperate forest 0.92° 0.35° -0.07 81 0.32%
soil temperature (T),  steppe f=a-exp(=0.5-((T-xo)/b)* + (M - yp)/c)?)) 1.08° 0.20° 054° 027° 1.01° 27 077°
soil moisture (M) temperate forest 1.18* 0.21* 031° 027 023 81 071
—: no significant regression results.
2 p <0.0001,
°:p<0.001,
% p<0.05.
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Fig. 1. Seasonal variability of soil volumetric water content (at 10 cm depth) and soil tempera-
ture (at 5cm depth) as well as of soil nitrous oxide and methane fluxes at the Hoglwald Forest

site in the year 1995

and 1997.
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Fig. 2. Seasonal variability of soil volumetric water content (at 0-6 cm depth) and soil tempera-
ture (at 5cm depth) as well as of soil nitrous oxide and methane fluxes at the semi-arid steppe
site in Inner Mongolia for the period 15 August 2007 to 15 August 2008
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Fig. 3. Seasonal variability of soil volumetric water content (at 10 cm depth) and soil tempera-
ture (at 10 cm depth) as well as of soil nitrous oxide and methane fluxes at the tropical forest
site Bellenden Ker, Queensland, Australia, for the period 2 November 2001-31 October 2002.
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Fig. 4. Box plot of daily soil volumetric water content and soil temperature for the three investi-
gated ecosystem types: tropical forest, semi-arid steppe, and temperate forest (Hoglwald forest:
data both in year 1995 and 1997). The boxes are determined by 25th and 75th percentiles. The
whiskers are determined by the 5th and 95th percentiles. Additional values can be represented
in box chart, including the minimum and maximum (dashes), median (line in the box), mean
(square), 1st percentile and 99th percentiles (crosses).
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Fig. 5. Box plot of daily soil nitrous oxide and methane fluxes in tropical forest, semi-arid steppe,
and temperate forest (Hoglwald: data from both year 1995 and 1997). The boxes are deter-
mined by 25th and 75th percentiles. The whiskers are determined by the 5th and 95th per-
centiles. Additional values can be represented in box chart, including the minimum and max-
imum (dashes), median (line in the box), mean (square), 1st percentile and 99th percentiles
(crosses).
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Fig. 6. Temperature and moisture effects on soil nitrous oxide fluxes for the three different
ecosystems (temperate forest (Hoglwald), semi-arid steppe, and tropical rain forest). Freeze
and thaw periods were included. For this analysis nitrous oxide fluxes, soil temperature, and
moisture data were normalized at site scale to a range of 0—1 (zero: lowest observed value; 1:
highest observed value). Nitrous oxide data for Hoglwald Forest was randomly selected from
observations in the year 1995 and 1997. Prior to the calculation of contour lines, data was
smoothed with the Loess algorithm or Negative Exponential algorithm (sampling proportion
0.6-1.0).
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Fig. 7. Temperature and moisture effects on soil nitrous oxide fluxes for the three different
ecosystems (temperate forest (HOglwald), semi-arid steppe, and tropical rain forest). For this
analysis nitrous oxide fluxes, soil temperature, and moisture data were normalized at site scale
to a range of 0-1 (zero: lowest observed value; 1: highest observed value). Nitrous oxide data
for Hoglwald Forest was randomly selected from observations in the year 1995 and 1997,
though for this analysis nitrous oxide fluxes during the freeze-thaw period was excluded. Prior
to the calculation of contour lines, data was smoothed with the Loess algorithm (sampling
proportion = 1).
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Fig. 8. Temperature and moisture effects on soil methane uptake rates for the three different
ecosystems (temperate forest (Hoglwald), semi-arid steppe, and tropical rain forest). For this
analysis methane flux, soil temperature, and moisture data were normalized at site scale to
arange of 0—1 (zero: lowest observed value; 1: highest observed value). Prior to the calculation
of contour lines, data was smoothed with the Loess algorithm or Negative Exponential algorithm
(sampling proportion 0.3-0.6).
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Fig. 9. Temperature and moisture effects on nitrous oxide fluxes (all data) across all three
ecosystems (temperate forest, semi-arid steppe, and tropical forest). For this analysis soil mois-
ture and soil temperature as well as nitrous oxide fluxes were first normalized across ecosys-
tems to a range of 0—1 (zero: lowest observed value in all ecosystems; 1: highest observed
value in all ecosystems). Prior to the calculation of contour lines, data was smoothed with the
Loess algorithm (sampling proportion = 0.6). Data for temperate forest was randomly selected
from observations in the years 1995 and 1997.
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Fig. 10. Temperature and moisture effects on nitrous oxide fluxes (data for freeze-thaw peri-
ods at the temperate forest and steppe sites excluded) across all three ecosystems (temperate
forest, semi-arid steppe, tropical forest). For this analysis soil moisture and soil temperature
as well as nitrous oxide fluxes were normalized across ecosystems (see Fig. 9). Prior to the
calculation of contour lines, data was smoothed with the Loess algorithm (sampling propor-
tion = 0.5). Data for temperate forest was randomly selected from observations in the years
1995 and 1997.
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Fig. 11. Temperature and moisture effects on methane uptake fluxes across all three ecosys-
tems (temperate forest, semi-arid steppe, and tropical forest). For this analysis, soil moisture
and soil temperature as well as methane uptake flux data were normalized across ecosystem
(see Fig. 9). Prior to the calculation of contour lines, data was smoothed with the Loess al-
gorithm (sampling proportion = 0.5). Data for temperate forest was randomly selected for the
observation years 1995 and 1997.
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