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Zusammenfassung
Die Aktivitätsbestimmung mit Teilkörperzählern ist ein In-vivo-
Messverfahren zur Überwachung von Personen mit erhöhtem Risiko
einer Radionuklidinkorporation. Dabei werden Strahlendetektoren relativ
zum Körper angeordnet, um Depositionen von Radionukliden in anato-
mischen Strukturen, wie Lungen, Leber oder Knochen, zu quantifizieren.
Dieses Verfahren hängt vom spezifischen Messsystem ab und ist sensitiv
bezüglich der individuellen Anatomie der zu messenden Person. Die
gemessenen Aktivitäten sind die Basis für eine anschließende Dosisabschät-
zung und setzen eine aufwändige Kalibrierung des Messsystems voraus.
Die Kalibrierung involviert typischerweise experimentelle Messungen an
anthropomorphen Phantomen in Standardmessanordnungen. Aktuell
eingesetzte Kalibrierverfahren erlauben zusätzlich eine Personalisierung
speziell für Lungen- und Lebermessungen abhängig von Körpergewicht
und -größe in Bezug auf ein konfigurierbares Referenzphantom.

In dieser Arbeit werden die aktuell eingesetzten Personalisierungsmetho-
den mit Hilfe von Strahlentransportsimulationen und Computerphantomen
aus medizinischen Bilddaten revidiert und erweitert. Das entwickelte
Verfahren erlaubt die Berechnung von Kalibrierfaktoren in beliebigen
Messanordnungen und von anthropometrischen Parametern zur Quan-
tifizierung der individuellen anatomischen Eigenschaften. Diese Werte
dienen der statistischen Analyse und Erstellung von Schätzern, die
personalisierte Kalibrierfaktoren aus personenspezifischen Werten von
anthropometrischen Parametern ableiten. Dieser systematische Ansatz
liefert bessere Schätzwerte für die Detektorkalibrierung, die sich unmit-
telbar auf die Aktivitätsbestimmung in den betroffenen Strukturen und
die Dosisabschätzung für das Individuum auswirken.

Das Verfahren wurde in Form eines abstrakten, modularen Daten-
modells und eines Softwarewerkzeugs zur Modellierung, Simulation, und
Auswertung von allgemeinen Messszenarien, und einer Methode zur statis-
tischen Analyse des Zusammenhangs von anthropometrischen Parametern
und Kalibrierfaktoren implementiert. Das erlaubt eine effiziente und re-
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produzierbare Modellierung zur virtuellen Rekonstruktion von Messungen
und zur Durchführung von Sensitivitätsanalysen. Das Verfahren wurde
zur Kalibrierung des In-Vivo-Messlabors (IVM) des Karlsruher Instituts
für Technologie (KIT) angewendet, das aus vier frei positionierbaren
Reinstgermaniumdetektoren mit Standardmessanordnungen für Lungen,
Leber, Knie, und Kopf besteht. Aufgrund der interindividuellen anato-
mischen Variationen in den verwendeten Phantomen und zusätzlicher
Sensitivitätsanalysen war es möglich Abschätzungen zu den erwarteten
Unsicherheiten anzugeben und durch ein algorithmisch reproduzierbares
Vorgehen bei der Kalibrierung zu reduzieren.



Abstract
Body counting is a method for in vivo activity assessment applied to
the monitoring of people with high risk of radionuclide incorporation.
Energy-sensitive radiation detectors are arranged relative to the body to
quantify radionuclide deposits in anatomical structures, such as lungs,
liver and skeleton. This method depends on the specific detection system
and is sensitive to the individual anatomy of the person. Accurate activity
estimates, which are the basis for dose calculation, require extensive
calibration procedures typically involving experimental measurements of
anthropomorphic phantoms conforming to a reference person. Current
calibration methods offer personalisation for lung and liver counting only
with respect to body mass and height and do not specify uncertainties.

This work revises and extends the currently applied personalisation
methods using radiation transport simulation in combination with compu-
tational phantoms derived from medical imaging data. A framework was
developed that allows computation of samples of calibration factors for
various anatomies in standard measurement setups and anthropometric
parameters quantifying anatomic properties. Those samples are applied
to create statistical models to derive personalised calibration factors given
specific values of anthropometric parameters measured on the person.
This gives better estimates in activity assessment and, thereby, dose
calculation while quantifying and reducing uncertainties.

The framework was implemented in form of an abstract, modular data
model, a software tool for modelling, simulation and evaluation of general
body counting scenarios, and a statistical analysis method for correlating
anthropometric parameters and calibration factors. This allows efficient
and reproducible modelling for virtual measurement reconstruction as well
as sensitivity analyses. The framework was applied to the calibration of the
In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Tech-
nology (KIT) comprising four freely arrangeable high-purity germanium
detectors in lung, liver, knee and head measurement setups. Because of
the interindividual anatomical variations in the applied phantoms and
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additional sensitivity analyses, it was possible to give estimates of the
expected uncertainties and to reduce them through an algorithmically
reproducible approach on calibration.
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Introduction





1 Introduction

1.1 Background
While people are constantly exposed to ionizing radiation from radioactive
materials present in nature, they are also at risk of exposure to man-made
sources while trying to take advantage of beneficial effects of radiation

— for example, as workers in agriculture, industry, medicine, nuclear
fuel processing, or scientific research; as patients when receiving medical
treatment or imaging in nuclear medicine, interventional radiology, or
radiation therapy; or as members of the public from accidental releases
of radioactive materials. The focus of this work is on radiation exposure
from sources incorporated into the human body.

1.1.1 Radioactive decay
The decay of radioactive materials produces different types of radiation
in a stochastic process depending on the radionuclide. The basic types of
radiation are alpha, beta and gamma radiation. The expected number of
decays occurring in a given quantity of medium per unit time is quantified
as activity.

Each emission has a characteristic energy or energy spectrum. De-
pending on type, energy and exposure scenario, radiation can penetrate
the human body and deposit energy due to its interaction with tissue,
which may cause deterministic or stochastic health effects. Examples
for deterministic effects are erythema, hypothyroidism, lens opacity and
sterility. Stochastic effects are primarily radiation-induced cancer and
hereditary effects. The amount of energy imparted in a given quantity
of matter per unit mass is quantified as absorbed dose.
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1.1.2 Incorporation pathways
Radioactive materials may be incorporated into the human body through
different pathways. The body interacts with radionuclides as part of the
metabolism depending on size and chemical structure of the molecule that
contains the radionuclide. Airborne radionuclides can be inhaled as dust
or vapour and accumulate in the respiratory system. Radionuclides in
solution can be ingested and then digested by the gastrointestinal system.
They may also be incorporated through direct contact with open wounds.
All pathways eventually lead to the circulatory system from where the
radionuclides may reach any part of the human body.

While radionuclides are transported inside the body, they deposit energy
in the surrounding tissue depending on their activity and retention time
in the specific structures. Tissues vary in their sensitivity with regard to
radiation-induced cancer. Sensitive tissues and organs are, for example, red
bone marrow, colon, lungs, stomach, breasts, and gonads (ICRP 2007).

Eventually, incorporated radionuclides may leave the body through
excretion, perspiration, or exhalation. But they can have considerably
large retention times, for instance, 210Pb, 239Pu and 241Am in bone, 125I
and 131I in thyroid, 137Cs in muscle tissue, 239Pu and 241Am in liver, 235U,
238U, 239Pu and 241Am in lungs, or 239Pu in lymph nodes (ICRP 1997).

1.1.3 Radiation protection
The goal of radiation protection is the protection of people and the
environment from the harmful effects of ionizing radiation. It is of interest
to the individual and the regulatory authorities to limit and monitor
exposures that result from intake of radionuclides.

The International Commission on Radiological Protection recommends
methodologies for exposure assessment (ICRP 2007) containing models to
calculate the radiation- and tissue-dependent dose to a reference person
(ICRP 2002) with a case-specific exposure. This value is used to estimate
the lifetime health risk of the person. These recommendations were
adopted by the International Atomic Energy Agency in their guidelines
and standards for exposure assessment due to radionuclide intake (IAEA
2004). A discussion of advantages and limitations of the absorbed dose
concept and other options for characterizing energy deposition is provided
by the ICRU (2011b).
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1.1.4 Internal exposure assessment
The first step of internal exposure assessment is to perform measurements
of the activity of radionuclides of interest present in the body and their dis-
tribution among tissues and organs. These are either taken indirectly from
samples of the person (in vitro) and its environment (IAEA and ILO 1999;
ICRP 1997), or directly on the person (in vivo) with body counting (IAEA
1996). While in vitro methods can detect any type of radiation emitted
from the sample, in vivo methods are restricted to gamma and X-rays (and
high-energy beta rays) due to high attenuation of other types of radiation
in the human body. However, in vivo measurements with a multi-detector
setup have the advantage that they can quantify an activity distribution
among several parts of the body, usually lungs, liver, skeleton and thyroid.
Additional information about the exposure scenario, for example, incorpor-
ation pathway, potentially incorporated radionuclides and their molecular
structure, and approximate time and duration of exposure, is collected.

Following the activity assessment, an appropriate biokinetic model is
selected and applied to estimate the intake, i.e. the total incorporated activ-
ity. Based on this value, the biokinetic model is applied again to derive a
time-dependent activity distribution for typically 50 years following the in-
corporation. The integration of these values over time gives a total activity
for each organ. This is evaluated with a dosimetric model that relates organ
activity to organ absorbed dose depending on type of radiation and anatomy
of a reference person. The result is the effective dose to that person.

1.1.5 Body counting
Body counting is a form of gamma-ray spectroscopy with a set of energy-
sensitive radiation detectors, e.g. scintillation or semiconductor detectors,
and a person with an incorporated source in a shielded chamber. The num-
ber of interaction events in a region of interest of the recorded pulse-height
spectrum of the detector per unit time is quantified as count rate.

For whole body counting, the detectors are arranged to cover all regions
of interest of the body in one measurement. This method is primarily used
for routine monitoring of workers, when time-efficient measurements are ne-
cessary, for radionuclides that are homogeneously distributed in the human
body, such as 137Cs in muscle tissue, or for radionuclides that have high-
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energy photon emissions, such as 60Co, 137Cs and 154Eu. This is achieved
by positioning detectors in a relatively large distance to the person.

Partial body counting, on the other hand, targets only selected struc-
tures, for example, thorax for lungs, upper abdomen for liver, neck for
thyroid, or knee and head as representatives for skeleton, but provides
lower uncertainties and higher spatial resolution because of the small
distance between region of interest and detector. This also allows the
detection of low-energy photons.

1.1.6 Body counter calibration
Radiation detectors are sensitive to the energy of the emitted particles,
the relative location of the source, and the shape of the person because of
scattering and attenuation effects in the body. They need to be calibrated
to give reasonable results. For this purpose, physical phantoms containing
defined amounts of certain radionuclides are used. The counting efficiency
of a detector in a specific measurement setup is calculated as the count
rate per unit activity of the radionuclide. The similarity of calibration and
measurement scenario is a measure of the uncertainty of the given results.

In body counter calibration, physical phantoms are anthropomorphic
and composed of tissue-equivalent materials. Parts can be exchanged
for radioactive equivalents. The production of anatomically accurate
physical phantoms (ICRU 1992b) is very challenging, but an alternative
to physical body counter calibration is offered by computer simulation.
Computational phantoms are primarily created from computed tomography
of medical patients, and radiation detectors and other structures are
modelled using solid geometry modelling techniques (Mortenson 1985).
Radiation transport simulation offers accuracy (in energy ranges where
experimental data is available) and computational efficiency for arbitrary
exposure and measurement scenarios.

However, high uncertainties arise when applying calibration factors
obtained from reference measurements to real measurement scenarios.
The main factors are differences in anatomy of phantom and person,
inhomogeneous activity distributions, and changes in detector positions due
to difficulties with the exact reproduction of positions and due to different
body shapes. These uncertainties are more significant for low-energy
photons (<100 keV), because of their increased attenuation in tissue.
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1.1.7 Personalisation methods
In the case of radiation accidents with doses approaching regulatory limits,
it is necessary to provide dose estimates that are specific to the individual
and the circumstances of the exposure. Several methodologies for personal-
ised body counter calibration (Doerfel, Heide and Sohlin 2006; Henriet et al.
2012; Lynch 2011; Mohr and Breustedt 2007; Pierrat et al. 2007) have been
proposed using non-invasive medical imaging (e.g. ultrasound or magnetic
resonance imaging) to build case-specific models for computational body
counter calibration or to quantify properties of anatomic structures with
anthropometric parameters and correlate these to counting efficiency.

In the case of lung counting, chest wall thickness (Sumerling and
Quant 1982) has been identified as an anthropometric parameter with
high sensitivity to counting efficiency. Samples of body mass and height
are used to build statistical models to estimate chest wall thickness and
adjust counting efficiency accordingly. These methods have also been
incorporated into the development of physical torso phantoms, which
can be usually extended with chest overlays of various thicknesses and
muscle-adipose tissue ratios to modify chest wall thickness.

1.2 Objectives
The goal of this work is to quantify and reduce uncertainties in activity
assessment with partial body counting due to variation in human anatomy
to improve dose estimates for individuals exposed to radiation from
radionuclide intake.

The basic approach to achieve this goal is the development of a person-
alisation framework based on body counter calibration with computational
phantoms that represent a broad range of variations in human anatomy.
The results of sensitivity analyses lead to the creation of models estimating
counting efficiency for given anthropometric parameters. Additionally,
guidelines for technicians performing body counter calibration and measure-
ment of anthropometric parameters are defined to improve reproducibility
of the results and to ensure the applicability of the framework.
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1.3 Scope
The body counter of the in vivo measurement laboratory (IVM) at
Karlsruhe Institute of Technology (KIT) was selected for the application
of the framework. The main task of the laboratory is routine monitoring
of occupationally exposed individuals, but it is also capable of handling
emergency situations and accidents.

The measurement system consists of four high-purity germanium
detectors with an operational energy range of about 10 keV to 2 MeV.
Two partial-body measurement setups are specified: (1) 2×lungs, liver
and knee, and (2) 4×head. Calibration for lung and liver counting is
performed with a torso phantom with variable chest wall thickness. The
current personalisation method is designed for a legacy system of two
phoswich detectors. The ratio of mass and height of a person are measured
to estimate its chest wall thickness, which is then used to adjust counting
efficiency with respect to the sensitivity observed on the phantom.

In this context, the application of this work focuses on incorporation
in lungs, liver and skeleton of adults, and equipment available at the
laboratory. The intended use of the framework is to guide technicians
in the calibration of detectors in partial-body measurement setups to
derive results related to the individual. Especially, in the low-energy
range, the framework is supposed to give better estimates than current
personalisation methods.

1.4 Outline
The contents of this work is organized into four main parts:

Part I Introduction introduces the topic of in vivo activity assessment
with partial body counting and methods for uncertainty estimation and
reduction using computational body counter calibration and quantification
of anatomic properties. Additionally, methods for non-parametric regres-
sion analysis and feature selection are described with regard to sensitivity
analysis.

Part II Development summarizes and discusses the main focus points
of the state of the art in personalisation methods for body counting
and describes the approach of this work. This leads to a framework for
personalised body counter calibration based on correlation of counting
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efficiency and anthropometric parameters. The associated methods
and materials required for its implementation involve the design of a
data model and a software tool to assist in modelling, simulation and
evaluation of radiation transport scenarios, and the related procedures
for computational body counter calibration, assessment of anthropometric
parameters, and data analysis.

Part III Application describes the application of the framework to the
calibration of the IVM body counter with different types of computational
phantoms. Body counter and phantoms are modelled and processed with
focus on accuracy, reproducibility and computational efficiency. The
resulting data is used as samples to create statistical models correlating
counting efficiency and anthropometric parameters, analyse different
sources of uncertainty, and perform measurement validation.

Part IV Discussion discusses and concludes the application of the
developed framework, and sets the results into context regarding their
transferability to actual measurements. Also, the application of the
developed data model and software implementation is discussed, and
possible improvements and future developments are described.





2 Radioactivity
Since photons are of major interest for body counting, it is important
to understand how they are produced by radioactive decay and how
they interact with matter. The goal of this chapter is to summarize the
main interaction processes that comprise photon transport with regard
to measurements with gamma-ray spectroscopy and to define dosimetric
and operational quantities for future reference. Knowledge about these
aspects also gives context to the principles of radiation transport codes
using the Monte Carlo method.

Interaction effects of photons with matter cause scattering, absorption
and the generation of secondary particles. For a narrow photon beam,
this results in broadening and attenuation. The probabilities of these
interactions depend on thickness, density, and effective atomic number (i.e.
chemical composition) of the matter, and energy of the photons. Similar
to radioactive decay, radiation transport is a stochastic process which
behaves deterministically for a large number of particles.

2.1 Radioactive decay
Radioactive decay is the process of spontaneous transformation of an
atom with unstable nucleus under emission of energy in form of radiation.
Unstable atoms are called radionuclides. The product of the decay can
be the same radionuclide in a different state, or a different isotope or
chemical element. The basic decay modes of radionuclides are alpha, beta,
and gamma decay. Detailed descriptions of radioactive decay processes are
given in standard literature (Attix 1991; Knoll 2010; Reilly et al. 1991).

2.1.1 Decay modes
The decay of radionuclides is primarily defined by the emitted particle
and the according change of the nuclear structure:
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Alpha decay is accompanied by the emission of an α particle, which is a
positively charged helium ion 4

2He. The radionuclide decays into an
atom with mass number decreased by 4 and atomic number decreased
by two. The typical kinetic energy of alpha particles is about 5 MeV.

Beta decay is accompanied by the emission of a β particle, which is
either an electron e− or positron e+, and an electron anti-neutrino
𝜈e or electron neutrino 𝜈e, respectively. Accordingly, this increases
or decreases the atomic number of the atom by one. The emitted
beta particles have a continuous kinetic energy spectrum.

Gamma decay is accompanied by the emission of a 𝛾 quantum, which is
a photon. This process is usually preceded by alpha or beta decay,
which leaves the nucleus in an excited nuclear state.

2.1.2 Activity
From observations it is known that in a large sample of 𝑁 atoms of a
radionuclide the number of decay events −d𝑁 in a small time interval d𝑡 is
proportional to the number of atoms (ICRU 2011a). This quantity is called
activity 𝐴. The unit of activity is s−1 with the special name Becquerel (Bq).
The proportionality constant is the decay rate 𝜆 given per unit time.

𝐴 = −d𝑁

d𝑡
= 𝜆𝑁 (2.1)

This deterministic model approximates the random decay process for
large sample sizes. 𝑁 is the initial number of atoms at time 𝑡 = 0.

𝑁(𝑡) = 𝑁e−𝜆𝑡 (2.2)

2.1.3 Decay data
Nuclear structure and decay data for radionuclides is usually stored in
Evaluated Nuclear Structure Data File (ENSDF) format (Tuli 2001),
which is maintained by the National Nuclear Data Center (NNDC) at
Brookhaven National Laboratory (BNL). Several databases (Laboratoire
National Henri Becquerel 2013; National Nuclear Data Center 2013a)
are available that provide data in ENSDF format compiled from recent
publications of experimental results or calculations.
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2.2 Radiation transport
When ionizing radiation passes through matter, particles have discrete
interaction effects depending on particle type and energy. Interactions
basically transfer energy from ionizing particles to atoms of the medium.
The differences in these particles are mainly charge (positive, negative, or
neutral), and mass or size. Heavy, slow, or charged particles generally have
larger interaction probabilities than light, fast, or uncharged particles.

Charged particles (e.g. electrons, protons and alpha particles) directly
interact with atomic nuclei, orbital electrons, or other charged particles
through their electrical field. They are called directly ionizing radiation.
Uncharged particles (e.g. photons and neutrons) only interact via collisions.
Elastic collisions cause an energy transfer between the two particles and
scattering. Inelastic collisions result in absorption of one particle and
acceleration of the other. They can also indirectly cause ionization via
secondary charged particles produced by interaction effects. They are
called indirectly ionizing radiation.

Most particle interactions transfer energy to nuclei or their orbital
electrons resulting in excitation or ionization. Excitation refers to an
increased energy state of a particle with respect to its ground state.
The spontaneous relaxation of the particle to a lower energy state is
usually accompanied by emission of photons releasing the excess energy.
An orbital electron can also be ejected from the electron cloud of an
atom causing its ionization. Excitation and ionization of electrons create
electron vacancies or electron holes. These holes are filled by higher orbital
electrons, also causing emission of photons.

2.2.1 Absorbed dose
The difference in energy between ionizing particles entering and leaving
a single interaction is the energy deposit. The energy imparted to the
matter in a given volume is the sum of all energy deposits in that volume.
Absorbed dose is the mean energy imparted in a certain quantity of medium
by radiation per unit mass. This is a basic quantity in radiation protection
used to quantify radiation exposure and relate it to biological damage and
health risk to people. Detailed definitions of these and derived quantities
are provided by ICRU (2011a).
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Figure 2.1: Mean range of particles in water as a function of kinetic energy.
For α and β− particles the continuous-slowing-down approximation
(CSDA) is used based on data from Berger et al. (2005), and for 𝛾 particles
the inverse linear attenuation coefficient is used to approximate the mean
free path based on data from Berger et al. (2010).

Radiation transport with regard to the focus of this work mainly
takes place in the human body. The range of α and β− particles with
typical respective energies of about 5 MeV and 300 keV (ICRP 2010) in
water, which is comparable to adipose, muscle, and general soft tissue,
is less than 1 mm (figure 2.1). However, these particles undergo many
scattering events before being fully absorbed. These interactions lead
to excitation and ionization of atoms which produce secondary particle
emissions. Only photons (or high-energy electrons) are able to leave the
body to be detected by gamma-ray spectroscopy.

2.2.2 Energy fluence
Radiation fields are generally characterized by type, energy and intensity
of its particles. An important quantity for measuring the intensity of a
radiation beam is fluence. The fluence 𝛷 is the number of particles d𝑁
incident on a sphere of cross-sectional area d𝐴 (ICRU 2011a). The unit
of fluence is m−2.
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Figure 2.2: Linear attenuation coefficients for photons in different media
as a function of energy based on data from Berger et al. (2010). The
attenuation for adipose, muscle, and general soft tissue is very similar
to water. The attenuation for bone is significantly higher.

𝛷 = d𝑁

d𝐴
(2.3)

2.2.3 Linear attenuation coefficient
The linear attenuation coefficient 𝜇 describes the mean attenuation per
unit length of a narrow radiation beam with fluence 𝛷0 incident on a
medium (figure 2.2). The fluence 𝛷(𝑥) of the attenuated beam at distance
𝑥 into the medium along the initial beam direction is exponentially
decreasing with increasing effective thickness 𝜇𝑥.

𝛷(𝑥) = 𝛷0 e−𝜇𝑥 (2.4)

Linear attenuation coefficients can be experimentally measured for
chemical elements and are available in form of tabulated mass attenuation
coefficients 𝜇/𝜌 (Berger et al. 2010) normalized to density 𝜌.
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Figure 2.3: Contribution of different interaction effects of photons in
water to the total mass attenuation coefficient as a function of energy
based on data from Berger et al. (2010).

Considering a mixture or compound medium with weight fractions
𝑤𝑖 > 0 of chemical elements 𝑖 with mass attenuation coefficients (𝜇/𝜌)𝑖

and
∑︀

𝑖 𝑤𝑖 = 1, the total mass attenuation coefficient 𝜇/𝜌 of the medium
is the weighted sum of the fractions. This is an approximation which
is sufficient for media with low effective atomic number and low photon
energies (ICRU 2008).

𝜇/𝜌 =
∑︁

𝑖

𝑤𝑖 (𝜇/𝜌)𝑖 (2.5)

2.2.4 Cross section
Given a particle with incident particles of fluence 𝛷 that produce a number
𝑁 of interaction events, the cross section 𝜎 is a measure for the probability
of an interaction event to occur (ICRU 2011a). It can be interpreted as
the effective area around the particle that would lead to an interaction
when an incident particle crosses it. The unit of cross section is m2. The
cross section is proportional to the mass attenuation coefficient 𝜇/𝜌.
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Figure 2.4: Schematics of interaction effects of photons with matter based
on Salvat, Fernández-Varea and Sempau (2011).

𝜎 = 𝑁

𝛷
∝ 𝜇/𝜌 (2.6)

The total photon cross-section 𝜎𝛾 is the combination of the cross
sections 𝜎𝑖 of the individual interaction effects 𝑖 of photons with matter
(figure 2.3). These are photoelectric (and photonuclear) absorption,
coherent and incoherent scattering, and pair (and triplet) production.
Detailed descriptions of these effects are given by Attix (1991), Reilly
et al. (1991), Kawrakow et al. (2011), and Salvat, Fernández-Varea and
Sempau (2011).

𝜎𝛾 =
∑︁

𝑖

𝜎𝑖 (2.7)

In the following, short descriptions of the dominant interaction effects
in the energy range relevant for body counting (about 10 keV to 2 MeV)
are given. These are photoelectric absorption, incoherent scattering, and
pair production (figure 2.4).
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2.2.5 Photoelectric absorption
Photoelectric absorption occurs when an incident photon undergoes an
inelastic collision with an orbital electron, causing its ejection from the
atom. The photon is fully absorbed in the process. This means that the
energy 𝐸𝛾 of the photon has to be large enough to raise the electron to
a positive energy state which is at least the binding energy 𝐸e− of the
electron. The excess energy Δ𝐸 = 𝐸𝛾 − 𝐸e− > 0 is converted to kinetic
energy of the electron. At low energies close to the binding energies of
the electrons, there are abrupt changes in interaction probabilities when
the excess energy reaches the binding energy of the next orbital. These
changes are visible as absorption edges in the cross sections (figure 2.2).

2.2.6 Incoherent scattering
Incoherent or Compton scattering occurs when an incident photon un-
dergoes an inelastic collision with an orbital electron, causing its ejection
from the atom. A portion of the energy Δ𝐸 of the photon is transferred
to the electron in the process. The energy in excess to the binding energy
is converted to kinetic energy of the electron. The photon is scattered at
angles of up to 180°. The amount of transferred energy depends on the
scattering angle 𝜗 with Δ𝐸 ∝ 1/ (1− cos 𝜗).

2.2.7 Pair production
Pair production occurs when an incident photon interacts with the electric
field of a nucleus and transforms into an electron-positron pair. The
photon is fully absorbed in the process. This means that the energy 𝐸𝛾 of
the photon has to be larger than the equivalent energy of the rest masses
𝐸e = 𝐸e− = 𝐸e+ of electron and positron. The exceeding energy Δ𝐸 =
𝐸𝛾 − 2𝐸e > 0 is shared by both particles as kinetic energy. With 𝐸e ≈
0.511 MeV, it follows that 𝐸𝛾 > 1.022 MeV for this process to occur.

2.3 Photon production
Photons are mainly produced through spontaneous emission. Other
effects that generate photons are bremsstrahlung and electron-positron
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annihilation. A detailed overview of particle production processes is given
by Attix (1991).

2.3.1 Spontaneous emission
Spontaneous emission is the transition of a nucleus or an orbital electron
in an excited energy state 𝐸2 to a lower energy state 𝐸1 with 𝐸2 > 𝐸1
by releasing excess energy Δ𝐸 = 𝐸2 − 𝐸1 in form of a photon with
energy Δ𝐸. Photons emitted by excited nuclei are called gamma rays,
and photons emitted by excited electrons are called X-rays.

In the case of X-rays, the energies of the emitted photons are char-
acteristic because of the discrete energy states of orbitals given by the
Rutherford-Bohr model as 𝐸𝑛 ∝ −𝑍2/𝑛2 with atomic number 𝑍 and
principal quantum number 𝑛.

The energies of gamma rays are determined by alpha or beta decays
preceding the gamma decay, which leave the daughter nuclide in an excited
state. This usually leads to much higher energies than those of X-rays.

2.3.2 Bremsstrahlung
When a charged particle moves relative to an electric field (e.g. in vicinity
of a nucleus or an electron), it interacts with that field by transferring
energy through attraction or repulsion. The particle is scattered and the
transferred energy is released by the electric field in form of a photon,
called bremsstrahlung.

Bremsstrahlung occurs in X-ray tubes where electrons are accelerated
by an electric field and shot into a metal target. The electrons eject
inner orbital electrons of the metal atoms which release characteristic
X-rays upon relaxation. In addition, the electrons are decelerated in the
target through interaction with the electric field of the nuclei and emit
a continuous spectrum of bremsstrahlung.

2.3.3 Electron-positron annihilation
When a positron collides with an electron, both particles are annihilated,
mostly releasing their energy in form of two photons. Of course, this
process must conserve electric charge, energy, and linear and angular
momentum. Therefore, the energy 𝐸𝛾 of the photons is determined by the
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rest energy 𝐸e of electron and positron. In the basic case, both photons
have an energy of 𝐸𝛾 ≈ 511 keV and move in opposite directions. For the
annihilation of particles with higher kinetic energies also other particle pairs
or single particles can be produced, given sufficient energy is available.



3 Gamma-ray spectroscopy
Gamma-ray spectroscopy is the detection and quantization of radionuclide
sources emitting gamma rays. Understanding the principles of photon
detection with semiconductor detectors, which are mainly used today,
and spectral analysis gives insight into body counting, which is neces-
sary for modelling detection systems for radiation transport simulation.
Knowledge about calibration procedures, which include energy and energy
resolution calibration, is necessary to produce accurate and reproducible
measurement results.

3.1 Semiconductor detectors
Semiconductor detectors are basically diodes with a p-i-n junction (fig-
ure 3.1). The intrinsic (i) region consists of the basic semiconductor
material. Diffusing or implanting certain materials creates a deficiency
(p+) or an excess (n+) of electrons in the valence band of these regions.

Applying a reverse bias 𝑣e, i.e. a positive voltage to the n+ region and a
negative voltage to the p+ region attracts electric charges to the respective
electrodes, which increases the width of the intrinsic (or depletion) region,
and the junction becomes an insulator (Canberra 2008).

Ionizing radiation incident on the depletion region ionizes electrons in
the valence band, which move to the conduction band leaving an electron
hole. The minimum energy required to free a valence electron is equal to
the band gap. All or part of the remaining photon energy is converted
into kinetic energy of the electron. The ionized electron interacts with
other valence electrons and produces additional ionizations (Reilly et al.
1991). Because of the electric field, the electrons move to the n+ electrode
and the electron holes move to the p+ electrode. The induced current
creates a voltage pulse.
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Figure 3.1: Structure of the p-i-n junction of a semiconductor detector.
The p+ and n+ regions act as electrodes for charges released by inter-
actions of ionizing radiation in the intrinsic region (i). 𝑣c is the (negative)
leakage potential of the diode, 𝑣e is the (positive) externally applied
potential, and 𝑣g is the band gap potential. Graphic based on Knoll (2010).

3.1.1 Pulse height
Counting the number of released charges by a single photon with a charge
sensitive preamplifier gives the energy of the photon as a multiple of the
band gap. The number of charges released by a single photon, which is
counted with a charge-sensitive preamplifier, is proportional to the energy
of the incident photon. This may lead to pile-up effects for high activities.
However, these are usually not encountered in body counting.

3.1.2 Dead layer
The electrodes form an inactive region or dead layer in comparison to the
active depletion region, because charge generation by ionizing radiation is
not possible in these regions. Photons have to pass the entrance window
and the portion of the n+ contact at the front of the crystal to reach
the active volume (figure 3.2) and generate a detectable pulse, which
is improbable for low-energy photons. A thin dead layer increases the
sensitivity of the detector in this energy range.
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Figure 3.2: Assembly of an XtRa-type detector (Canberra 2013). The
p+ electrode contact is at the hollow inside of the crystal, and the n+
electrode contact is at the outer surface of the crystal. The part of the
contact at the front of the crystal has been mechanically removed.

3.1.3 Cooling
Compared to silicon as a base material, germanium has a higher density
and crystals are produced with high purity. The depletion region is large,
allowing only a thin dead layer. The band gap of germanium is very low
at room temperature with 0.67 eV. This allows many valence electrons to
move to the conduction band simply due to their thermal energy, which
creates an inverse leakage 𝑣c and results in a low signal-noise ratio in the
pulse-height spectra. To compensate this effect, germanium detectors are
cooled down to 77 K during operation using liquid nitrogen or thermoelec-
tric cooling (Canberra 2012), which increases the band gap to 2.96 eV.

3.2 Detector calibration
The dominating interaction effects of photons with germanium in the
depletion region and in the energy range of up to 2 MeV are photoelectric
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absorption and incoherent scattering. The detector response to a mono-
energetic point source does not contain only one discrete line, but follows
a characteristic distribution which basically consists of a photo peak and
a Compton background continuum.

If the incident photon receives photoelectric absorption, all of its
energy in excess of the band gap is converted to kinetic energy of the
valence electron. If, on the other hand, the photon is scattered, only a
portion of its energy is transferred with the maximum at a scattering
angle of 180°. Photons may be scattered multiple times before either
being absorbed or leaving the depletion region. Other effects are energy
loss due to heating of the lattice crystal structure and thermal noise in the
charge integration. This broadens the photo peak. A full description of
the features of a pulse-height spectrum is provided by several textbooks,
such as Reilly et al. (1991) or Knoll (2010).

3.2.1 Energy resolution
Given the pulse-height spectrum of a detector in response to a mono-
energetic point source with energy 𝐸0, the measured energy 𝐸 of the
detector is modelled as a random variable with normal distribution 𝑁(𝜇, 𝜎2)
with mean 𝜇 = 𝐸0 and standard deviation 𝜎 = 𝐸FWHM/(2

√
2 ln 2). FWHM

refers to the full-width-at-half-maximum of the photo peak (figure 3.5).
A non-linear model (Reilly et al. 1991) is usually used to describe the

energy dependence of 𝐸FWHM. Several samples for energy 𝐸 and 𝐸FWHM
are directly measured for the photo peaks of known mono-energetic point
sources, and are used to characterize the detector with parameters 𝑎, 𝑏,
and 𝑐 (figure 3.3).

𝐸FWHM = 𝑎 + 𝑏
√︀

𝐸 + 𝑐 𝐸2 (3.1)

3.2.2 Energy channels
The domain of the amplifier voltage pulse of a detector is discretized for
feasibility of measurement analysis into a certain number of equidistant
channels appropriate to the resolution of the detector. Each detection
event is categorized in exactly one of those channels. The voltage induced
by incident radiation is generally proportional to the energy deposited, but
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Figure 3.3: Energy resolution calibration of an HPGe detector at IVM
with sample measurements. Samples of corresponding energy and FWHM
are determined by analysing the full energy peaks of measured point
sources and fit to an according model.

calibration is needed to give exact values. Each energy 𝐸 of a detection
event is assigned a channel number 𝐶 with a polynomial of order two with
parameters 𝑎, 𝑏, and 𝑐.

𝐸 = 𝑎 + 𝑏 𝐶 + 𝑐 𝐶2 (3.2)

The non-linear contribution, however, is comparably small. Radionuc-
lide point sources with known photon energies are used to provide samples
of channel and energy (figure 3.4).

3.3 Measurement evaluation
The pulse-height spectrum of a detector is given as the number of counts
𝑁𝑖 for a given channel 𝑖 ∈ {1, 2, . . . } with energies (𝐸𝑖−1, 𝐸𝑖]. The unit
of counts is dimensionless, but usually given as counts.
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Figure 3.4: Energy calibration of an HPGe detector at IVM with
sample measurements. Samples of corresponding channel and energy are
determined by analysing the full energy peaks of measured point sources
and fit to an according model. The channel width is 0.25 keV in this case.

3.3.1 Counting statistics
Since radioactive decay is a stochastic process, the count rate 𝑐𝑝𝑠 = 𝑁/Δ𝑡
induced in a detector at energy 𝐸 by the activity 𝐴 of a source with meas-
urement time Δ𝑡 is the sum of identically distributed independent random
variables modelling the potential for individual photons being detected.
According to the central limit theorem (Koroliuk 2013), the count rate
is a random variable with normal distribution 𝑁(𝜇, 𝜎2) whose mean 𝜇 is
unbiased and whose variance 𝜎2 ∝ 1/𝑁 converges with increasing number
of detection events (i.e. an increase in measurement time) to zero. This
also holds for an energy channel, whose number of counts is the sum of
all counts of energies in that channel.

3.3.2 Peak analysis
The first step of spectral analysis is the identification of photo peaks
(Reilly et al. 1991) resulting in the peak centroids. The next step is peak
analysis. This is the process of estimating the number of counts of a
peak considering energy resolution, counting statistics, and Compton
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Figure 3.5: An example spectrum of the main gamma peak of 241Am of
an HPGe detector at IVM and two models for background approximation:
linear and step function. The Gaussian fit is annotated with its FWHM
(sloped due to the asymmetric background). Regions of interest are shown
for the peak area (𝐵), and left (𝐴) and right (𝐶) background.

background from other peaks. The general concept is to define regions
of interest (figure 3.5) for the peak depending on FWHM at that energy.
Additional regions are defined for estimation of the background in the
direction of higher and lower energies. Then, the detection background is
approximated with an appropriate model, and the spectrum is corrected
by subtracting the background. The net counts of the peak are calculated
by summing the corrected spectrum in the peak region. Common models
for approximating detection background are constant, linear, polynomial,
and step models (International Organization for Standardization 2010a).

3.3.3 Background subtraction
Given a spectrum 𝑁 of a detector characterized with energy resolution
𝐸FWHM and a single peak at 𝐸0. The net counts 𝑁̂(𝐸0) of the peak are
estimated by background subtraction (Canberra 2006):
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1. Define adjacent regions of interest 𝐴, 𝐵, and 𝐶 comprising multiple
channels as shown in figure 3.5. A suggested default value for all
regions is Δ𝐸 = 2.5 𝐸FWHM ≈ 5.875 𝜎.

2. Align those regions to the channels by rounding to multiples of the
channel width.

3. Determine the number of counts 𝑁𝑋 =
∑︀

𝑖∈𝑋 𝑁𝑖 for each region 𝑋.

4. Choose a model representing the background 𝑁̌𝑖 for each channel
𝑖 in region 𝐵 = {𝑖0 + 1, . . . , 𝑖0 + 𝑏}. Examples are linear 𝑓linear or
step 𝑓step continua.

5. The number of counts in the peak region with subtracted background
is 𝑁̂(𝐸0) = 𝑁̂𝐵 .

𝑁̂𝐵 = 𝑁𝐵 − 𝑁̌𝐵 (3.3)

𝑁̌𝑖 = 𝑁𝐶

|𝐶| + 𝑓(𝑖− 𝑖0)
(︂

𝑁𝐶

|𝐶| −
𝑁𝐴

|𝐴|

)︂
(3.4)

𝑓linear(𝑖) = 𝑖

|𝐵|+ 1 (3.5a)

𝑓step(𝑖) =
∑︀𝑖

𝑗=1 𝑁𝑗

𝑁𝐵
(3.5b)

Various methods for radionuclide identification, peak analysis, and
computation of detection limits are specified in standards (International
Organization for Standardization 2010b; International Organization for
Standardization 2010a), and provided by dedicated tools, for example, the
spectrometry software Genie 2000 (Canberra 2009).



4 Classical body counting
Body counting is a method for measuring the amount of radioactivity
within the human body using gamma-ray spectroscopy. Several detectors
are placed relative to the body, targeting single or multiple structures.
This allows the quantification of the activity of incorporated radionuclides
with spatial resolution in contrast to in vitro methods. The term clas-
sical body counting or simply body counting refers here to experimental
measurements, while computational body counting refers to computer
simulation of the counting procedure.

The main drawback of body counting is the large attenuation of
radiation emitted inside the body. Combined with short measurement
times to reduce discomfort for the person, a natural background of 40K in
muscle tissue, and usually low incorporated activities, this results in high
uncertainties in the measured spectra. In partial-body setups, detectors
are therefore placed as close as possible to the target structure to improve
counting statistics by minimizing attenuation in surrounding air. This
amplifies other contributions to uncertainty which may not be apparent
in whole-body setups: variation in body size and shape, and non-uniform
distributions of radionuclides in the target structure.

4.1 Body counter calibration
In addition to the individual energy and energy resolution calibration,
each detector is calibrated in the specific measurement setup to relate
the observed peak count rates to source activities. This involves a
measurement to determine the detection background, and a measurement
to determine counting efficiency. Both calibration measurements must
be similar to the real measurement in terms of geometry, because the
difference between calibration and application basically determines the
uncertainty of the estimated incorporated activity.
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Figure 4.1: Typical background spectrum measured for an HPGe detector
at IVM with an empty measurement chamber. A pile-up of overlapping
Compton backgrounds is apparent for low energies. Isolated peaks indicate
decay of naturally occurring radionuclides in the chamber.

4.1.1 Background calibration
An issue for detector measurements is the permanent background due to
cosmic and terrestrial radiation. To calibrate a detector, the background
spectrum (figure 4.1) is measured regularly and then subtracted from
non-background measurements. They are usually performed with an
empty measurement chamber or with an inactive phantom with a long
measurement time to achieve low uncertainties.

From an engineering point of view, high background noise can be
avoided by selecting an appropriate location (e.g. an underground room),
shielding, and low-background materials for the detector system. Addi-
tionally, air filtration and circulation is useful to reduce the concentration
of 222Rn and its progeny naturally occurring in air. A detailed overview
of background reduction techniques is given by ICRU (2003).
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4.1.2 Counting efficiency
Counting efficiency 𝜂𝑡←𝑠 for a measurement setup 𝑡← 𝑠 with detector 𝑡
and source 𝑠 is defined as the number of detection events 𝑁𝑡 relative to
the number of decay events 𝑁𝑠 in the period Δ𝑡. This is equivalent to the
ratio of corresponding count rate 𝑐𝑝𝑠𝑡 = 𝑁𝑡/Δ𝑡 and activity 𝐴𝑠 = 𝑁𝑠/Δ𝑡.
The unit of counting efficiency is dimensionless, but is usually given
as counts s−1 Bq−1, or counts decay−1 or counts photon−1 to differentiate
between normalization to the general number of decay events or only the
number of decay events that produce photons. Counting efficiency can
also be interpreted as the probability of a decay event being detected.

𝜂𝑡←𝑠 = 𝑐𝑝𝑠𝑡

𝐴𝑠
(4.1)

Considering the measurement of a radionuclide source with activity
𝐴𝑠 and measurement time Δ𝑡, 𝑁̂𝑡 is the background-corrected number
of counts in a photo peak of the radionuclide at energy 𝐸 with yield 𝑦𝐸 ,
and ̂︁𝑐𝑝𝑠𝑡 is the corresponding count rate. 𝑁̂𝑠 is the number of photons
produced by 𝑠 with energy 𝐸, and 𝐴𝑠 is the corresponding activity.

𝐴𝑠 = 𝑦𝐸 𝐴𝑠 (4.2a)̂︁𝑐𝑝𝑠𝑡 = 𝑦𝐸 𝑐𝑝𝑠𝑡 (4.2b)

For efficiency calibration, source activity must be known and counting
efficiency is determined using the count rates at selected photo peaks with
high yield. After that, activity assessment can be performed.

4.1.3 Counting efficiency curve
Counting efficiency depends on the structure of the detector. Various
detector types have been developed for specific applications (Canberra
2008). It also depends largely on the relative source location, the geometry
of inactive scatter material between source and detector, and the energy
of the emitted photons.

For a photon to be detected, it must be transported to the active
volume of the detector crystal, and then be (at least partially) absorbed.
Kramer (2007) describes this with the following analogy: Given a photon
beam that is attenuated by two absorbers where the first absorber
represents scattering material and the second absorber represents the
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active volume of the detector. Let 𝛷0 be the initial fluence of the photon
beam, and 𝛷1 and 𝛷2 the fluences after penetration of the first and second
absorber respectively. The counting efficiency 𝜂 of this system is equivalent
to the product of the transmission through the first layer 𝛷1/𝛷0 and the
attenuation in the second layer 1− 𝛷2/𝛷1.

𝜂 = 𝛷1
𝛷0

(︂
1− 𝛷2

𝛷1

)︂
(4.3)

Using, for example, muscle tissue for the first and germanium for the
second layer, and according mass attenuation coefficients, densities, and
varying thicknesses for the absorbers, gives the characteristic counting
efficiency curve. Several parametric models have been suggested to fit this
curve. An overview of these and performance comparisons are given by
Gray and Ahmad (1985) and Kramer (2007).

4.1.4 Multi-detector systems
In partial-body setups, each detector targets a single structure whose
activity should be determined. The pulse-height spectrum of each detector
consists primarily of events from the targeted structure, but also contains
unintended contributions or crosstalk from structures that are not targeted.
For example, detectors in front of the chest targeting the lungs will also
pick up events due to incorporation in muscle, skeleton, or liver. A better
estimate for the activity in the target structure can be determined by
including these contributions in the calculation.

The result of an efficiency calibration for a certain detector setup
with detectors 𝑇 and phantom with source structures 𝑆 is a matrix 𝜂𝑇←𝑆 .
This matrix specifies counting efficiencies 𝜂𝑡←𝑠 from any considered source
structure 𝑠 ∈ 𝑆 to any detector 𝑡 ∈ 𝑇 . Given a source activity vector 𝐴𝑆 ,
the detector count rate vector 𝑐𝑝𝑠𝑇 is directly dependent according to
equation 4.1.

𝑐𝑝𝑠𝑇 = 𝜂𝑇←𝑆 𝐴𝑆 (4.4)

When given a measurement 𝑐𝑝𝑠𝑇 and calibration 𝜂𝑇←𝑆 , the equation
can be solved for 𝐴𝑆 to determine the activity distribution. This is only
reasonable if the system is either determined |𝑇 | = |𝑆| or overdetermined
|𝑇 | > |𝑆| (i.e. targeting each source structure with at least one detector).
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An underdetermined system |𝑇 | < |𝑆| results in a vector space of linear
combinations of emission distributions, which cannot be evaluated.

4.2 Physical phantoms
Phantoms are models of the human body or anatomical structures used
widely in medicine (e.g. radiotherapy, nuclear medicine, and medical
imaging), radiobiology, and radiation protection. All of these applications
have different requirements, and the functionalities of the phantoms
vary largely. In this work, the term phantom is restricted to calibration
phantoms with internal radiation sources. The term physical phantom is
used to refer to material phantoms in contrast to computational phantoms,
which are used in computer simulations.

Especially for low-energy photons, body counting is sensitive to the
anatomy of the measured person and must be calibrated accordingly. This
is done using physical phantoms, which have a known distribution of a
radioactive material with specified activity. The distribution is typically
homogeneous in the active parts of the phantom as this is the most general
assumption.

Common phantom types in use are brick, bottle, and anthropomorphic
phantoms (ICRU 1992b). While brick and bottle phantoms offer a higher
flexibility in terms of modifications, anthropomorphic phantoms are by
definition anatomically accurate to a certain detail. Phantoms consist
of artificial, tissue-equivalent materials with emphasis on density and
regard to chemical composition. There are also phantoms with embedded
authentic bone from donations of deceased people with incorporations. A
detailed overview of physical phantoms for different applications is given
by ICRU (1992b).

4.2.1 Anthropomorphic phantoms
The production process of anthropomorphic phantoms is very complex and
has high demands on the utilized materials (ICRU 1992b; Traub 2008). The
individual structures of the product must be homogeneous (especially the
active parts), mechanically and chemically stable, and exhibit no degrada-
tion due to routine handling. Typical types are head, neck, torso, and knee
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Figure 4.2: A physical torso phantom with a set of chest overlays (Doerfel,
Heide and Sohlin 2006). The predefined detector positions for body
counter calibration are marked on the chest cover as concentric circles
at the left lung, right lung, and liver.

phantoms as these are the accessible structures that contain bone, thyroid,
lungs, and liver, and are likely to accumulate certain radionuclides.

Especially, torso phantoms (figure 4.2) are very elaborate compared
to other types. They are assemblies of individual parts which can be
exchanged for their geometrical equivalents loaded with radionuclides (e.g.
natural U, 238Pu, 232Th, or 241Am). This allows the calibration for several
energies and also for crosstalk. In addition, torso phantoms have sets of
chest overlays with varying thicknesses and different ratios of adipose and
muscle tissue to adjust to different groups of individuals.

4.3 Detector positioning
Gamma-ray spectroscopy is very sensitive to the location of the detector
relative to the source. This is a problem in body counting, where the source
is shielded by thick layers of muscle and adipose tissue, and the detectors
may cover multiple small structures (because of their size). When dealing
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with low count rates, the detector should be placed as close as possible
to the source or in light contact with the entrance window to achieve
optimal detection limits. Moreover, repeatable and reproducible detector
positioning is crucial for reconstruction and comparison of measurements.

ICRU (2003) summarizes basic measurement setups placing the person
in a stretcher or chair and targeting chest for left and right lung, upper
body for lymph nodes, abdomen for liver, head, knee, or wrist for skeleton,
and whole body for muscle tissue. Body counters have predefined measure-
ment setups for several expected radionuclides customized to the specifics
of the laboratory. Detectors are usually mounted in arrays and have limited
possibilities for adjustments. In some cases, however, the detectors are
mounted on individual racks which provide more degrees of freedom.

4.3.1 Skeleton
A major deposition site for uranium and transuranic radionuclides that
enter the circulatory system, for example, 235U, 238U, 239Pu, and 241Am,
is the skeleton. The common decay product 210Pb can also be measured
there. The head is the preferred structure for skeletal measurements,
since it has only a thin layer of subcutaneous and muscle tissue, is
easily accessible and relatively far from other incorporation sites. Lynch
(2011) positions a detector in front of the forehead. An alternative is the
measurement of wrists, knees, and ankles due to the higher deposition in
trabecular bone compared to cortical bone.

4.3.2 Liver
Another major deposition site is the liver. Lynch (2011) aligns the
detectors along the seventh right rib in front of the upper abdomen.

4.3.3 Lungs
The retention time of radionuclides in the respiratory tract, primarily
the lungs, is relatively short compared to skeleton and liver. However,
lung counting is important for the detection of radionuclides shortly after
inhalation. Several positioning strategies are described in literature:

• Sumerling and Quant (1982) suggest detector positions on the left
and right side of the sternum centred on the third ribs. The detectors
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Figure 4.3: Detector positions for lung counting with two germanium
detectors (Hegenbart and Gün 2010).

cover the first and second intercostal space, which are easier to
penetrate for low-energy photons compared to bone.

• Doerfel, Heide and Sohlin (2006) define positions in detail for a 2×2
array of germanium detectors. The detectors are centred on the
centroids of the lungs.

• Farah, Broggio and Franck (2010) position a 2×2 array of germanium
detectors. The distance between the left and right pair is fixed
to 2 cm and to 1 cm between the upper and lower detectors of a
given pair. The inclination of the array is fixed to 35° to bring the
detectors as close as possible to the skin. Anatomic landmarks are
used to centre the detectors on the lungs in relation to the clavicles
depending on the chest girth.

• Hegenbart, Gün and Zankl (2010) position two independent ger-
manium detectors with a diameter of 7.5 cm (figure 4.3). Both
detectors are inclined to 25° in order to be parallel to the skin
surface. The detector front axes are centred on the third rib, 7 cm
away from the centre of the sternum with a skin distance of about
1–2 mm. The setup is symmetrical on both sides.
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Figure 4.4: Isoflux surfaces for 241Am in lungs (left), liver (centre), and
skeleton (right) (Marzocchi 2011). The flux generally decreases with
increasing distance from the source and increasing thickness of the
surrounding tissue. Regions with high flux (red) likely result in high
counting efficiencies for detectors positioned accordingly. The voxel
phantom was cut to change its body posture.

4.3.4 Thyroid
A large portion of iodine in the human body is stored and processed by
the thyroid. According to Lynch (2011), 125I and 131I can be detected by a
detector at the neck approximately 10 cm superior the cricoid cartilage.

4.3.5 Other
Marzocchi et al. (2011) select optimal detector positions for a partial-body
setup with a computational phantom in chair and stretcher position by
calculating maximum photon flux around the source structure (figure 4.4),
but do not specify any method or guidelines to reproduce these positions
in general.

Hegenbart and Breustedt (2011) use a position recording system for
a rack of two phoswich detectors with sensors related to the mechanics
of the rack to track position and orientation.





5 Computational body counting
Classical body counting with physical phantoms has restrictions in meas-
urement time, available radionuclides and spatial activity distribution, and
most importantly in the body shapes and anatomy of phantoms. Moreover,
it is inefficient to perform sensitivity analyses requiring several hundred
measurements. Radiation transport simulation with accurate physics
models of particle interactions and anatomically realistic computational
phantoms enables radiation protection research to efficiently perform
sensitivity analyses for computational body counting with arbitrary
activity distributions.

5.1 Monte Carlo method
Radiation transport is a complex computational problem which describes
propagation of ionizing radiation through matter and the accompanying
energy transfer. It requires modelling of a radiation source, the general
interaction processes of the particles being transported, the media in which
the transport is performed, and how and where the individual particles
are being tallied. Applications for radiation transport simulation are, for
example, treatment planning for radiotherapy, computed tomography sim-
ulation, and reconstruction of radiological accidents (Kling et al. 2001).

One common method to solve radiation transport is the Monte Carlo
method (Metropolis and Ulam 1949). This is a class of computational
algorithms that solve problems depending on random variables with
defined distributions by sampling from these distributions and averaging
the resulting quantity. According to the central limit theorem (Koroliuk
2013), the mean of a sufficiently large number of independent random
variables will approximately be a normal distribution. This means, that
sampling the interaction events and normalizing the computed quantity to
the number of source emissions can be characterized by mean and variance,
which reduces with the number of samples used for the quantity.
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5.1.1 Monte Carlo codes
Several general purpose Monte Carlo tools or codes for the application
to radiation transport exist. Some of the more established codes are
MCNP5/MCNPX (Pelowitz 2007), Geant4 (Agostinelli et al. 2003),
EGSnrc (Kawrakow et al. 2011), Penelope (Salvat, Fernández-Varea
and Sempau 2011), and Fluka (Fassò et al. 2003). From a user perspect-
ive, the codes differ mainly in the supported data formats, the physics
models, and the input and output syntax. Modelling a scenario in all
these codes requires a set of data consisting of:

Sources with probability distributions defining particle type, energy,
position and orientation of an emission.

Media with geometric models, densities, chemical compositions and
electrical conductivity for radiation transport.

Transport parameters with cross sections depending on chemical element,
particle type and energy for particle interactions.

Tallies associated with a surface or volume and a radiation quantity (e.g.
fluence, energy deposit, or pulse height).

Monte Carlo codes perform a stepwise random walk for particles
generated by the source with heavy use of a pseudo-random number
generator for sampling the associated probability distributions:

1. Check the problem termination criterion (e.g. number of computed
particle histories, elapsed computer time, or achieved tally precision).
If it is reached, report the tally information and stop the run.

2. If the particle stack is empty, produce a new primary particle
according to the source definition and push it on the stack. Select
the topmost particle on the stack.

3. Check the particle termination criterion (e.g. lower energy threshold).
If it is reached, the particle deposits its remaining energy at its local
position and terminates.

4. Perform a transport step that moves the particle to a new location
considering the current medium and intermedia borders.

5. Check if the tally region has been traversed, and update the tally
quantity if this is the case.
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6. Perform a particle interaction with the current medium. Update
the particle parameters (e.g. energy, and orientation), and produce
secondary particles and put them on the stack. Return to step 1.

5.1.2 Variance reduction
Because of the independent and memoryless transport of particles, the
Monte Carlo method is highly suited for parallelization. Additionally,
the computational efficiency of the basic transport algorithm can be
increased by introducing variance reduction methods. These methods
reduce the variance of the computed values given the same computer time
by introducing a comparably small bias in the mean value.

Automated methods use general assumptions about particle transport
and are part of the basic implementation of the code requiring no further
modelling. One example of such a method is the combination of multiple
scattering events for electrons (Kawrakow et al. 2011).

Manual methods require information about the particular scenario, and
must be adjusted by the user. One idea is to use background information
about the modelled scenario to predict the relative expected contribution
of particles with certain characteristics to the tally value. Particles with
high contribution should be assigned a high importance regarding further
propagation and others should be terminated prematurely. This method
is called importance sampling (Pelowitz 2007) and is a standard method
for Monte Carlo codes.

Other variance reduction methods are directly applied when modelling
a scenario. The idea is to simplify parts of the geometric model to speed
up the simulation. A simulation may even be split into multiple parts
or stages by defining a geometric interface that spatially separates the
parts. Each stage computes the fluence of particles at its interface, which
is input to the next stage as a surface source (Pelowitz 2007).

5.2 Monte Carlo N-Particle eXtended
Monte Carlo N-Particle eXtended (MCNPX) is a Monte Carlo radiation
transport code developed at Los Alamos National Laboratory (LANL). It
is capable of simulating a large range of particle interactions and energies.
MCNPX specifies an input language that is interpreted upon execution.
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After the simulation problem has been computed, the results are output
in a special file format called MCTAL. The MCNPX input is divided into
a list of cards that specify the structure and behaviour of the radiation
transport. Each card has a unique (alpha-)numerical identifier and may
be referenced by other cards. A full specification of the input and output
formats is given by Pelowitz (2007).

5.2.1 Sources
Cards associated with the specification of sources are mainly distributions
which map certain values of a quantity (e.g. particle type, energy, pos-
ition, and orientation) to a probability. Several predefined functions for
continuous distributions are available. These distributions can be nested
to define complex sources. Emission locations can be points, surfaces, or
volumes. Locations for any space are produced using an enclosing volume
and rejection sampling.

5.2.2 Geometry
Geometry in MCNPX implements the constructive solid geometry ap-
proach (Mortenson 1985) with quadric surfaces (Lennerz and Schömer
2002). These are surfaces defined by quadratic polynomials 𝑓(𝑥) with
symmetric matrix 𝐴 ∈ R3×3, vector 𝑎 ∈ R3, and literal 𝑎0 ∈ R.

𝑓(𝑥) = 𝑥⊤𝐴 𝑥 + 2 𝑎⊤𝑥 + 𝑎0 (5.1)

A surface is defined by all points 𝑥 where 𝑓(𝑥) vanishes.{︀
𝑥 ∈ R3 | 𝑓(𝑥) = 0

}︀
(5.2)

Volumes or cells are defined as logical combinations of the spaces
𝑓𝑖(𝑥) ≤ 0 separated by surfaces 𝑖. The basic logical operators are negation
¬, conjunction ∧, and disjunction ∨.{︁

𝑥 ∈ R3 |
⋁︁ ⋀︁

(¬) 𝑓𝑖(𝑥) ≤ 0
}︁

(5.3)

In addition, repeated structures can be defined. These are three-
dimensional lattices of equivalent primitive cells that are either hexahedra
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or hexagonal prisms. Cell cards have associated media and specify their
own densities.

5.2.3 Media
The properties of complex media relevant for radiation transport are
density, chemical composition, and conductivity. The latter two are
specified using material cards. Chemical composition is given using mass
or atomic fractions of the individual elements or their isotopes identified
by atomic number and mass number. Associated libraries specify cross
sections for these.

5.2.4 Tallies
Predefined tally types are current, fluence or flux, track length, collision
heating, energy or charge deposition, and pulse height in a geometric
object. A binning discretizes a domain, such as energy, angle, space, or
time that the quantity is related to. The reported values are given for each
bin with relative error and normalized to the number of computed particle
histories. After problem completion, statistical tests are performed to
check for convergence of the values.

Standard output quantities (Shultis and Faw 2006) are the number
of computed particle histories 𝑁 , elapsed computer time 𝑡, mean value
𝜇, and variance 𝜎2 for each bin. The relative error is given as 𝑅 = 𝜎/𝜇.

𝜇 = 1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 (5.4)

𝜎2 = 1
𝑁(𝑁 − 1)

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2 (5.5)

Several statistical quantities are evaluated that provide additional
information about the convergence of the problem. These are the figure
of merit (FOM), and the variance of the variance (VOV).

𝐹𝑂𝑀 = 1
𝑅2 𝑡

(5.6)
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𝑉 𝑂𝑉 = 1
𝜎2

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇)4 − 1
𝑁

(5.7)

5.2.5 Variance reduction
MCNPX supports a set of automated and manual variance reduction
methods using population control, modified sampling, and partially-
deterministic calculations. An overview of those methods is given by
Shultis and Faw (2006). And a comparison with application to body
counting is given by Farah, Broggio and Franck (2011a).

5.3 Application to body counter calibration
Radiation transport simulation with the Monte Carlo method is an efficient
and intuitive tool for computational body counter calibration. It gives
comparable results to measurements (Broggio et al. 2012; Gómez-Ros et al.
2008; Hegenbart et al. 2009; Liye et al. 2007). Body counting scenarios
have two significant components: computational phantoms with associated
sources, and detectors with associated tallies. If necessary, models of the
measurement chamber and scattering objects may also be created.

5.3.1 Computational phantoms
Computational phantoms are modelled in MCNPX either using quadric
surfaces or repeated structures. Mathematical phantoms based on quadric
surfaces can be directly converted to cell and surface cards. Voxel
phantoms based on tomographic imaging are supported by repeated struc-
tures. All other geometric representations must either be approximated
by quadric surfaces (which is often not viable) or voxelized.

Computational phantoms are sectioned into several regions with com-
parable tissue, functionality, and importance to the radiation transport.
Any of those regions may be declared as a source. Similar to classical
body counter calibration, the spatial source distribution is defined as
homogeneous, and the energies are discrete values representing gamma
or X-rays of radionuclides.
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5.3.2 Detectors
Detectors are approximated by combinations of quadric surfaces. Many
researchers use radiography and point sources in combination with
Monte Carlo simulations and parametric detector models to individually
characterize their detectors (Britton et al. 2012; Elanique et al. 2012;
Marzocchi, Breustedt and Urban 2010; McNamara et al. 2012; Nogueira
et al. 2010). Particular attention to detail is paid to entrance window
and dead layer of the detector crystal as slight changes in these structures
have large impact on the detection of low-energy photons.

The response of the detector crystal to an incident photon is quantified
by a pulse-height tally assigned to the active volume. Since the energy
calibration model (equation 3.2) is usually linear, it is simply modelled by
specifying the energy range and the number of channels. Detector energy
resolution is simulated with a method called Gaussian energy broadening.
The method samples each pulse in the active detector volume with an
unbiased normal distribution before recording it in the pulse-height tally.
The standard deviation of the distribution is defined according to the
energy resolution model (equation 3.1).

5.3.3 Modelling tools
International comparisons and training actions (Broggio et al. 2012;
Gómez-Ros et al. 2008; Lopez et al. 2011) among research institutes
in the field of radiation protection including modelling, simulation and
evaluation tasks are common to assess the state of the art in radiation
transport simulation and to implement quality assurance. Several software
tools have been developed in the recent years assisting in body counter
calibration, the simulation or recreation of radiological accidents, and the
creation and manipulation of phantoms (Pölz et al. 2013):

Visual Monte Carlo (Hunt et al. 2003) is a Monte Carlo code created
for calibration of body counters, and dose calculation for internal
and external radiation sources.

EGSnrcMP (Kawrakow, Mainegra-Hing and Rogers 2006) is a multi-
platform environment for running the Monte Carlo code EGSnrc.
It includes a graphical user interface that enables users to modify
simulation settings, and also to view and edit media properties.
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MCNPX Visual Editor (Schwarz 2008), Sabrina (Riper 2003b),
and Moritz (Riper 2003a) provide graphical user interfaces with
three-dimensional geometry visualization for the Monte Carlo code
MCNPX.

Oedipe (Chiavassa et al. 2005) is a tool to handle voxel phantoms for
body counter calibration and targeted radiotherapy. It allows for fast
creation of voxel phantoms from medical imaging data, automatic
association with MCNPX and processing of simulation results.

Sesame (Huet et al. 2009) is a tool to perform numerical reconstruction
of radiological accidents involving external sources for simulation
with MCNPX. It can create voxel phantoms with adjusted posture
and morphology based on medical imaging data (Courageot, Sayah
and Huet 2010).

Visual Workshop (Bird and Fry 2013) is a visualization and analysis
tool for the Monte Carlo code MCBend (Cowan, Dobson and
Martin 2013) amongst others. It can display geometric models
defined in input files, and visualize tally scores from output files. It
also organizes and manages all files, and provides a basic editor.

SimpleGeo (Theis et al. 2006) is a modelling tool specifically created
to unify the various geometry modelling processes and syntaxes of
Monte Carlo codes for radiation transport scenarios.

Voxel2MCNP (Hegenbart et al. 2012) is a tool supporting users in mod-
elling radiation transport scenarios using voxel phantoms and other
geometric models, generating corresponding input for MCNPX,
and evaluating simulation output. Its primary applications are
body counter calibration and calculation of specific absorbed dose
fractions for internal and external dosimetry.

All modelling tools require some form of data model to represent the
data they are working with — both in volatile memory for data processing,
and in physical memory for data storage and exchange. The available
literature does not contain any notion of how those data models are
designed. Presumably, they contain an implementation of the data models
that the associated Monte Carlo codes are using and provide additional
support for several general purpose modelling tools.
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Figure 5.1: Stylized, voxel and hybrid (NURBS) models of the alimentary
tract (Lee et al. 2007). The stylized model originates from the Oak Ridge
National Laboratory (ORNL).

5.4 Development of computational phantoms
The state of the art in computational phantom development changed
significantly over the past (Bolch et al. 2010; Segars and Tsui 2009).
Development began in the 1960s with mathematical or stylized models
based on quadric surfaces native to radiation transport codes, moved on to
voxel models in the 1980s with the advent of medical tomographic imaging,
and took advantage of the progress in computer graphics regarding surface
representation methods and combined the advantages of stylized and voxel
modelling to hybrid models with polygon meshes and non-uniform rational
basis splines (NURBS) (Piegl and Tiller 1997) in the 2000s. The change in
model representation methods (figure 5.1) is driven by the desire to modify
and individualize phantoms while providing and maintaining anatomical
accuracy. Detailed overviews of existing computational phantoms are
provided by Zaidi and Xu (2007), Zaidi and Tsui (2009), and Xu and
Eckerman (2009).
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5.4.1 Voxel models
Voxel models are based on segmentation of medical tomographic imaging
data. The method of choice is computed tomography because of its high
spatial and temporal resolution. An alternative is magnetic resonance
imaging, which offers higher contrast for soft tissue, but introduces motion
blur. Voxel modelling defines the gold standard in anatomical realism.
However, image segmentation is still a difficult problem in computer
science, and the creation of large voxel phantom libraries does not seem
feasible without enormous progress in segmentation algorithms.

Another major drawback of voxel models is their inherent structure,
which is a fixed three-dimensional lattice of voxel elements. This only
allows the application of low-order manipulation methods as applied
by ICRP (2009). Voxel operations are the same as those available in
basic image segmentation software, for example, dilation, erosion, region
growing, thresholding, filters, and scaling (Dougherty 1992).

5.4.2 Stylized models
The stylized approach models anatomic structures with mathematically-
defined surfaces. This is usually interesting for applications where only
insufficient imaging data is available and anatomic background knowledge
is applied (Farfán et al. 2004), or anatomical details are unimportant and
being deliberately removed.

Voxel models are superior to stylized models with regard to anatomical
accuracy. However, stylized models offer more possibilities for modification,
because the models are usually less complex and have fewer degrees of
freedom. These modifications are not more realistic than those for voxel
models, because they are not based on any imaging data and still have
too many degrees of freedom, but are generally easier to perform with
three-dimensional geometry modelling tools.

5.4.3 Hybrid models
Hybrid models are a combination of voxel and stylized modelling. They
approximate the segmented structures of a voxel model with surfaces
while constraining information loss to a certain degree (Lee et al. 2010).
Hybrid phantoms preserve both the anatomical realism of voxel models
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and the structural flexibility of stylized models. However, anatomically
realistic modifications of computational phantoms can only be performed
by using statistical imaging data and appropriate geometric representation
formats.

• Lee et al. (2007) use graphic modelling tools to approximate voxel
models with NURBS meshes. Segmentation errors are corrected
using existing organ models and anatomical background knowledge.
Additionally, the posture can be changed to some extent.

• Mofrad et al. (2010) use spherical harmonic functions to approximate
the surfaces of 35 livers from computed tomography data to create a
statistical shape model. The model is instantiated into anatomically
realistic shapes by specifying the desired distance from the mean
shape in the principal components.

• Segars and Sturgeon (2010) create computational phantoms from
coarsely segmented computed tomography data by performing
volumetric registration with a hybrid phantom.

• Kim et al. (2011) use graphic modelling tools to approximate a voxel
model with a mixture of polygon and NURBS meshes.

Examples of the commonly used modelling tools are ImageJ (Ferreira
and Rasband 2012) for image series and voxel lattices, 3D-Doctor
(Able Software Corp 2013) for segmentation and surface approximation
of DICOM data, and Rhinoceros (Robert McNeel & Associates 2012)
and Blender (Stichting Blender Foundation 2013) for modelling with
curved surfaces.





6 Personalisation methods
The methods available in literature for the personalisation of calibration
factors for body counter calibration can be categorized into adaptation-
based or interpolation-based methods. Adaptation-based methods (Henriet
et al. 2012) select a phantom similar to the individual from a case base, and
modify the selected phantom to increase its similarity. Interpolation-based
methods (Doerfel, Heide and Sohlin 2006; Henriet et al. 2012; Lynch
2011; Mohr and Breustedt 2007; Pierrat et al. 2007) perform calibration
on a series of phantoms, and create an estimator based on samples of
counting efficiency. Both approaches rely on sensitivity analyses of sample
calibration data to identify structures of the human anatomy relevant for
the particular measurement setup. To evaluate these different approaches,
a closer look at methods to create phantom series with varying anatomical
features is necessary.

6.1 The reference man paradigm
Many researchers have created computational phantoms over the past dec-
ades (Xu and Eckerman 2009; Zaidi and Tsui 2009; Zaidi and Xu 2007) for
application in internal dosimetry, medical imaging simulation, radiotherapy
and interventional radiology, and applications involving non-ionizing radi-
ation. The main differences in computational phantoms are due to different
requirements of the simulation (e.g. radiation, thermodynamic, or biochem-
ical transport properties), different scales (e.g. macro, micro, nano), and
the desired degree of individualization versus the available data (imaging
data or anthropometric parameters). The degree of phantom individualiza-
tion in body counting is restricted by the available data, which is primarily
from external body measurements or information acquired by interviewing
the person. Therefore, computational phantoms for body counting are
mostly phantoms representing the average of a population of individuals.
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Accordingly, ICRP (2002) specifies the reference men and women of
different age groups with basic anatomical and physiological data for use
in radiation protection. The anatomical data includes anthropometric
parameters (e.g. body mass and height), organ masses and morphology
(e.g. bone surface area and length of alimentary tract segments), and
organ and tissue media properties (e.g. density and chemical composition).
The reference man specification is part of a paradigm (ICRP 2007) in
radiation protection, which calculates the dose to the reference person
in the individual exposure scenario instead of to the individual. It is
assumed that if the reference person is protected (i.e. doses are below
defined limits), also the majority of individuals is protected.

Many researchers (Cassola et al. 2010; ICRP 2009; Lee et al. 2010;
Zhang et al. 2009) have implemented the 2002 reference man specification
by creating computational phantoms with matching body height, body
mass, and organ masses. The main application for those phantoms is
the calculation of organ absorbed dose fractions for internal and external
radiation sources.

6.2 Series of computational phantoms
Having developed computational phantoms, many researchers make modi-
fications to create entire phantom series using anthropometric parameters
like body mass, body height, chest circumference, and breast size (an
example is given in figure 6.1). These phantom series are used to perform
sensitivity analyses for various applications.

6.2.1 Morphometric categories
Phantoms can be classified (Bolch et al. 2010) depending on the number
of people they are intended to represent or rather the amount of data of
different people that were used to create them:
Person-specific phantoms are directly based on one person and have

the inherent anatomical characteristics of that person. A common
modelling method is segmentation of tomographic imaging data to
create voxel phantoms.

Reference phantoms are the average of a large group of people. A form of
stylized modelling is usually involved in creating reference phantoms.
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Figure 6.1: Series of adult male and female computational phantoms with
reference body height and varying body masses representing 5th, 25th, 50th,
75th and 95th percentiles of variation in the U.S. population (Na et al. 2010).

Person-dependent phantoms are between both extremes. They are used
when no person-specific imaging data is available and reference
phantoms are not appropriate for the application. They are modelled
either by generalizing person-specific phantoms or by specializing
reference phantoms by removing or adding anatomical details. Most
hybrid phantoms are person-dependent.

A common way to perform specialization is to use statistical data
of body mass and height from health and nutrition surveys to derive
population percentiles in a particular range of these quantities. Starting
from a reference phantom, person-dependent phantoms are generated
representing averages of population groups:

• Johnson et al. (2009) create a series of person-dependent phantoms
for application to dosimetry with varying body height, body mass,
and various circumferences by scaling, NURBS modelling, and chan-
ging adipose tissue volume from age-dependent reference phantoms
of the UFH series.
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Figure 6.2: Computational phantom modification by volumetric regis-
tration of a coarsely segmented data set (left) with a reference phantom
(centre) to create a person-specific phantom (right). The segmented
structures are body surface, skeleton, brain, lungs, liver, spleen, stomach
and kidneys (Tward et al. 2011).

• Na et al. (2010) create a series of person-dependent adult phantoms
for application to external dosimetry based on RPI-AF and RPI-AM
with varying body height, body mass and organ masses. They
increase or decrease the volume of structures and resolve overlap by
deforming other nearby structures.

• Cassola et al. (2011) create a series of person-dependent standing
adult phantoms for application to external dosimetry based on FASH
and MASH with varying body height, body mass and organ masses.
The modifications are done with NURBS modelling tools.

• Segars and Sturgeon (2010) take a completely different approach by
creating a series of person-specific phantoms from coarsely segmen-
ted computed tomography data by performing multi-channel large
deformation diffeomorphic metric mapping with a high-detail hybrid
reference phantom for application to medical imaging simulation
(figure 6.2. Missing details in the segmentation are mapped from
the reference phantom by using the relative change in positions of
the associated structures between both phantoms.
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6.3 Interpolation-based methods
Anthropometric parameters are quantities that quantify anatomical
features. External parameters are acquired with simple measurement
equipment on the body surface, such as body circumferences, lengths,
and skinfold thicknesses. Internal parameters, on the other hand, require
insight in the internal structures of the body and cannot be acquired easily.
Examples are organ volumes, tissue thicknesses and shape classifications.
Obviously, internal parameters offer more information about the structures
of the human body that are relevant for radiation transport, but their
measurement usually requires some kind of medical imaging.

The current state of the art for personalizing calibration factors
(Doerfel, Heide and Sohlin 2006; Lynch 2011; Mohr and Breustedt 2007;
Pierrat et al. 2007) in lung and liver counting is based on an internal
anthropometric parameter called chest wall thickness. Personalisation
methods for other counting scenarios are not available in literature.

6.3.1 Chest wall thickness
The transmission 𝛷/𝛷0 of a narrow photon beam through the chest wall
(the tissue between lungs and chest surface or liver and surface of the upper
abdomen) can be expressed by according tissue thickness 𝑥cw and linear at-
tenuation coefficient 𝜇cw. For a fixed photon energy, the counting efficiency
𝜂 of a detector covering a certain portion of the chest wall is proportional to
the average photon transmission through this tissue. For increasing photon
energy, the portion of photons interacting with the detector decreases
(equation 4.3), which is not included in the following relation.

𝜂 ∝ 𝛷

𝛷0
= e−𝜇cw 𝑥cw (6.1)

Since the chest wall contains layers of muscle tissue, adipose tissue,
bone, and cartilage, 𝜇cw is a complex property. Due to the higher absorp-
tion of bone and cartilage, the chest wall is nearly opaque to low-energy
photons at the ribs. Therefore, chest wall thickness is usually only
expressed for ratios of muscle tissue 𝑤m and adipose tissue 𝑤a = 1− 𝑤m
at the intercostal spaces.

𝜇cw = 𝑤a 𝜇a + 𝑤m 𝜇m (6.2)
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6.3.2 Measurement of chest wall thickness
Chest wall thickness is measured using medical imaging equipment. If
tomographic imaging data is available, the thickness and composition is
assessed using image segmentation. An alternative is ultrasound (Gün
2010; Lynch 2011; Sumerling and Quant 1982).

The transmission is measured at several points at the intercostal spaces
covered by the detector (depending on the size of the entrance window) and
averaged. To have an intuitive and comparable value, the average is then
typically normalized to reference muscle tissue 𝜇m. The resulting quantity
is called muscle-equivalent or effective chest wall thickness (Sumerling and
Quant 1982).

𝑥̂cw = − 1
𝜇m

ln 1
𝑛

𝑛∑︁
𝑖=1

e−𝜇𝑖 𝑥𝑖 (6.3)

Several authors have also measured chest wall thickness for computa-
tional phantoms (Hegenbart, Gün and Zankl 2010; Kramer, Hauck and
Allen 2001).

An alternative to the complex and time-consuming measurement is
the estimation of chest wall thickness using external parameters. For
example, chest wall thickness is correlated to the ratio of body mass and
body height, and body mass index. Population-specific formulas are used
for application to body counters.

6.3.3 Personalisation method
The current methods for creating personalised calibration factors in lung
and liver counting combine a calibration model and a person model. The
person model 𝑓 describes chest wall thickness of a person dependent on
body mass 𝑚 and body height ℎ. This is usually a linear model of 𝑚/ℎ
or 𝑚/ℎ2 based on tomographic imaging data or ultrasound measurements.
Since this data is typically derived from published proband studies,
adjustment of the chest wall thickness to a specific measurement setup
is not possible.

𝑥̂cw = 𝑓(𝑚, ℎ) (6.4)
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The calibration model 𝑔 describes counting efficiency dependent on
chest wall thickness. This model is usually a linear interpolation of samples
acquired from a physical torso phantom with a lung or liver set with source
𝑠 emitting photons of energy 𝐸, detector 𝑡, and different chest overlays
to modify thickness and muscle-adipose tissue ratio of the chest wall.

𝜂𝑡←𝑠(𝐸) = 𝑔𝑠,𝑡,𝐸(𝑥cw) (6.5)

6.3.4 Cup size
Lung counting for females is more difficult, since part of the breasts add
additional attenuation, and the variability of cup size is relatively high.
This topic was addressed by several authors. Hegenbart et al. (2008)
and Farah, Broggio and Franck (2010) created series of person-dependent
female phantoms with varying cup sizes for application to lung counting
with phoswich and germanium detectors respectively. They found a
negative correlation of breast mass and cup size to counting efficiency.

6.4 Adaptation-based methods
Adaptation-based methods directly modify computational phantoms to
match the individual. Only one adaptation-based method for application
to body counting was found in literature. Henriet et al. (2012) present
the EquiVox framework based on case-based reasoning for lung counting.
Case-based reasoning is a class of algorithms that uses a set of problems
with known solutions to construct solutions for new problems. The idea
is that similar cases have similar solutions and only small changes are
needed if a large case base covering the expected domain of problems
is available. The basic case-based reasoning algorithm has four main
processes: retrieve, reuse, revise, and retain.

The case base is a set of problems with an associated solution generated
by experts. EquiVox uses 24 adult female computational phantoms
with varying cup size and chest girth based on ICRP-AF and NURBS
modelling (Farah, Broggio and Franck 2010).

Retrieve: Given a new case, retrieve all cases from the case base similar
to that case. This requires a similarity metric. EquiVox describes
each case with a feature vector, consisting of, for example, age, body
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mass, body height, gender, chest girth, and underbust girth. It
computes a similarity score relating the new case to each existing
case. A set of cases satisfying a constraint (e.g. minimal or below
a certain threshold) on this score is selected.

Reuse: Given a set of cases and their solutions, create a solution for the
new case. EquiVox describes each known case for the purpose of
adaptation with polygonal surface mesh of the lungs consisting of
a fixed number of vertices. Artificial neuronal networks (ANN) are
used to interpolate between two meshes dependent on body height.

Revise: Check if the constructed solution actually solves the new case
and make changes if necessary. This usually requires some kind
of user interaction. EquiVox revises a case with help of experts
by checking if the generated mesh matches the lungs according to
tomographic imaging data of the person.

Retain: Add the new case and its solution to the case base. EquiVox
adds the solved case to the database if tomographic imaging data
was available and the case was properly revised.
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Statistical learning or machine learning (Hastie, Tibshirani and Friedman
2009; MacKay 2003) is a theory for the construction of systems that learn
from data. It plays an important role in computer science (e.g. data
mining, computer vision, natural language processing, and information
retrieval), and related fields.

Supervised learning is a branch of machine learning that uses discrete
observations to estimate an unknown, target function that relates a set of
features to a target variable. The discrete version of supervised learning
is called classification, and the continuous version is called regression. Re-
gression is either parametric or non-parametric. This specifies whether the
underlying model of the target function is explicitly or implicitly defined.

7.1 Risk minimization
Given a target function 𝑓 : 𝑋 → 𝑌 with 𝑓(𝑥) = 𝑦 and a hypothesis
ℎ : 𝑋 → 𝑌 that estimates 𝑓 with ℎ(𝑥) = 𝑦. The distance between ℎ and
𝑓 at 𝑥 is described by a loss function 𝑟 : 𝑌 × 𝑌 → R with 𝑟(𝑦, 𝑦). The
risk 𝑅(ℎ) of the hypothesis is the sum of all losses with regard to the
probability density 𝑃 (𝑥) of 𝑋.

𝑅(ℎ) =
∫︁

𝑥∈𝑋

𝑟(𝑦, 𝑦) d𝑃 (𝑥) (7.1)

The goal of regression is to find ℎ̂ in a set of hypotheses ℋ that
minimizes the risk.

ℎ̂ = arg min
ℎ∈ℋ

𝑅(ℎ) (7.2)

In applications, the probability distribution of 𝑋 is unknown, but
it is possible to observe 𝑓(𝑥) on locations sampled from 𝑃 (𝑥). Let
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{(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, . . . , 𝑛} be a set of discrete observations of 𝑓 with uncor-
related, unbiased errors 𝜀𝑖. Moreover, it is assumed that the 𝑥𝑖 can be
measured without error. Otherwise an errors-in-variable model (Carroll
et al. 2006) is required.

𝑓(𝑥𝑖) = 𝑦𝑖 + 𝜀𝑖 (7.3)

Without further knowledge about 𝑃 (𝑥), a simple approximation of the
risk based on the observations is the empirical risk 𝑅E(ℎ). It describes
how well the estimates 𝑦𝑖 represent the observations 𝑦𝑖 at 𝑥𝑖.

𝑅E(ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

𝑟(𝑦𝑖, 𝑦𝑖) (7.4)

Any hypothesis that interpolates the data minimizes empirical risk. To
account for that, the hypotheses space must be restricted. The classical
approach for function regression uses a parameterized function series and
gradient descent for optimization. If no structural assumptions about the
target function can be made, a non-parametric approach must be taken.
The two main non-parametric methods are local regression and structural
risk minimization.

7.2 Local regression
Local regression methods (Cleveland and Devlin 1988) are based on the
idea that the closer points are to each other in the feature space, the more
likely they are related with a simple functional. That functional is usually a
parametric polynomial ℎ𝛽(𝑥) of low degree 𝑑. It may even be a constant.

ℎ𝛽(𝑥) =
𝑑∑︁

𝑗=0
𝛽𝑗 𝑥𝑗 (7.5)

Instead of performing a global parametric fit, each point is fit locally.
The result is a function with dynamic parameters, which can also be
written as the weighted sum of target values in the neighbourhood of 𝑥.
The dynamic weights 𝑤𝑖 only depend on the feature values of the samples,
but not their target values.
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ℎ𝛽(𝑥) =
𝑑∑︁

𝑗=0
𝛽𝑗(𝑥) 𝑥𝑗 =

𝑛∑︁
𝑖=1

𝑤𝑖(𝑥) 𝑦𝑖 (7.6)

The neighbourhood of 𝑥 is determined by smoothing kernels 𝐾(𝑥). This
gives more weight to points near 𝑥 and less weight to those further away.
The distance between two points is determined by a distance metric 𝑑 (e.g.
Euclidean, Chebychev, or Mahalanobis distance). 𝜆 is the bandwidth of the
kernel. It can be constant or adaptive, for example, to include a fix number
of neighbouring points relative to the total number of observations.

𝐾(𝑥, 𝑥𝑖) = 𝐾

(︂
𝑑(𝑥, 𝑥𝑖)

𝜆(𝑥)

)︂
(7.7)

Cleveland (1979) describes a set of restrictions for smoothing kernels,
which allows for a large range of functions. Common types of kernels are
Triweight, Epanechnikov, or Uniform functions.

The risk 𝑅LP(ℎ) at 𝑥 is then expressed as the sum of the kernel-weighted
squared residuals. Its minimization is a weighted least squares problem.

𝑅LP(ℎ) =
𝑛∑︁

𝑖=1
𝐾(𝑥, 𝑥𝑖) (𝑦𝑖 − 𝑦𝑖)2 (7.8)

Cleveland (1979) proposes an iterative method for locally weighted
polynomial regression leading to robust estimators. For each iteration,
the kernel weights are adjusted with robustness weights dependent on the
deviation of the residuals of the current hypothesis from their mean. This
ensures that the residuals are unbiased and have low maximum variation.

7.3 Structural risk minimization
With increasing complexity of hypotheses, the size of the hypotheses
space increases because of the additional degrees of freedom. The idea of
structural risk minimization (Vapnik 1999) is that if multiple hypotheses
fit the data with similar empirical risk, the hypothesis with minimal
complexity should be favoured, because it is the most probable one.
This idea is closely related to the concept of minimum description length
(Rissanen 1978) in information theory. A regularization function describing
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hypotheses complexity 𝑅S(ℎ) is modelled with an inner product ‖ · ‖Ω. An
example is the Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis
1971), which provides a probabilistic upper bound on the risk.

𝑅S(ℎ) = ‖ℎ‖2
Ω (7.9)

The risk 𝑅SR(ℎ) of a hypothesis is therefore described as the weighted
sum of the empirical risk and a regularization term. 𝜆 controls the tradeoff
(Hastie, Tibshirani and Friedman 2009) between both (figure 7.1). In
the terminology of estimators of random variables, the empirical risk is
called bias (it describes the bias to the sample data), and the remaining
part is called variance (it describes the generalization of the hypothesis
to unknown data).

𝑅SR(ℎ) = 𝑅E(ℎ) + 𝜆𝑅S(ℎ) (7.10)

The general solution ℎ̂ of minimizing equation 7.10 has the form of
a linear combination of kernels 𝐾(𝑥, 𝑥𝑖) centred on each sample 𝑥𝑖 with
weights depending on the target value.

ℎ̂(𝑥) =
𝑛∑︁

𝑖=1
𝑤𝑖 𝐾(𝑥, 𝑥𝑖) (7.11)

An implementation of structural risk minimization for regression is
nonlinear support vector regression (Drucker et al. 1997). This method
uses an implicit mapping 𝜙 : 𝑋 → ℋ from the feature space to a Hilbert
space with high dimension of linear functions, in which the problem is
reduced to a convex optimization problem.
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Figure 7.1: Bias-variance tradeoff and hypothesis complexity demon-
strated on sample data and hypotheses. The squared bias decreases with
increasing hypothesis complexity, but that also increases the variance. Too
low complexity leads to underfitting (left), and too high complexity leads
to overfitting (right). An optimal complexity ℎ̂ (centre) that minimizes
the total risk (the sum of variance and squared bias) can be found. Based
on Hastie, Tibshirani and Friedman (2009).





8 Meta optimization
Non-parametric regression methods have several free parameters that
must be tuned according to the specific problem. They are related to
the bias-variance tradeoff (Hastie, Tibshirani and Friedman 2009) and
specify the smoothness of the hypothesis with regard to the data. Meta
optimization is a collection of methods to find an optimal value for these
parameters. Many meta optimization methods are based on combining
ensembles of hypotheses (Arlot and Celisse 2010; Breiman 1994; Breiman
1996; Schapire 2003) from different subsets generated by sampling (Yu
2003) of the available observations to perform additional regularization
of the hypothesis and make better use of the limited amount of data.

Another option to reduce the hypotheses space (besides structural risk
minimization) is the reduction of the number of features that are provided
in the sample data. This approach, called feature subset selection or feature
selection, is based on the assumption that many features are redundant
among each other or irrelevant to the target function. Important applica-
tions for feature selection are the analysis of DNA microarrays for prediction
of various health conditions (Guyon et al. 2002; Mukherjee et al. 1999), text
filtering (Bekkerman et al. 2003; Dhillon, Mallela and Kumar 2003), and
face recognition (Gundimada, Asari and Gudur 2010; Yang et al. 2007).

8.1 Performance measures
Similar to empirical risk, there are also measures that are more suit-
able for meta optimization. These measures are primarily based on
residuals 𝑟𝑖 = |𝑦𝑖 − 𝑦𝑖| or on changes in ranks 𝑟𝑖 = 𝑝𝑖 − 𝑝𝑖 with
𝑝𝑖 = |{𝑦𝑖 ≤ 𝑦𝑗 | 𝑗 = 1, . . . , 𝑛}| between target function and hypothesis,
given observations 𝑦 = (𝑦𝑖)𝑖=1,...,𝑛 of the target value, and their estimates
𝑦 = (𝑦𝑖)𝑖=1,...,𝑛.

Common residual-based measures are root mean squared error,
root relative squared error, and Pearson’s product-moment correlation.



66 8 Meta optimization

Ranking-based measures (Kendall and Gibbons 1990) describe how well
the hypothesis reflects the true order of the values. They are robust to
outliers. Common examples are Kendall’s 𝜏 and Spearman’s 𝜌.

8.2 Resampling methods
A simple way to reduce bias is to split the set of observations into training
data and test data. Regression is performed on the training data, but the
performance measure is applied only to the test data. This introduces
“unknown” data into the process.

Sampling methods are required to split data sets. It is important that
the generated sets are representative of the distribution of the original
data set. The following enumeration contains a list of popular sampling
methods. A full overview of those methods and a discussion on advantages
and disadvantages of resampling is given by Yu (2003).

Stratified sampling analyses the distribution of values in the data
and samples accordingly to ensure that each value is represented
proportionally to its observed frequency.

Bootstrap sampling performs sampling with replacement. This approx-
imates the underlying distribution better than sampling without
replacement for low sample sizes.

Cross sampling splits the data into 𝑘 folds of equal size. One fold is
selected as test data set, while the remaining 𝑘−1 folds are combined
to a training data set. This process is repeated 𝑘 times and each
fold is selected once as test data set. This way, each data point is
guaranteed to be selected for training and testing. Leave-one-out
cross-sampling is cross sampling with fold size of one. This is
commonly used to compute sample means and variances.

Random sampling repeatedly and randomly splits the data into subsets
of defined size.

8.3 Ensemble learning
The idea of ensemble learning is that an ensemble of hypotheses produces
better and more robust estimates. Each hypothesis may be generated
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by different regression methods, by the same method on resampled data
sets, or both. Ensemble learning methods define how those hypotheses
are combined.

Bootstrap aggregating or bagging (Breiman 1994) averages hypotheses
trained from bootstrap samples of the main data set with the same
regression method.

Cross validation (Arlot and Celisse 2010) averages hypotheses trained
from cross-sampled subsets of the main data set with the same
regression method. This is often used to determine the performance
of a hypothesis in combination with a simple error measure.

Stacked regression or stacking (Breiman 1996) combines hypotheses
from different regression methods.

Additive regression or boosting (Schapire 2003) iteratively trains a new
hypothesis on the residuals of the previous hypothesis.

8.4 Search strategies
Since many performance measures are not convex and may contain local
optima, finding an optimal hypothesis is computationally hard and it is
usually not viable to perform an exhaustive grid search of a large part
of the space. This means that assumptions about the structure of the
hypotheses space with regard to the performance measure are necessary
that imply a heuristic search strategy.

Search strategies select a new hypothesis based on the sequence of
past hypotheses and their performances starting from an initial guess of a
good hypothesis. Different search strategies keep a varying population of
hypotheses or follow a trajectory while keeping a certain number of past
hypotheses, some are guided by a performance measure or have a learning
component, and some greedily follow the best local decisions or perform
backtracking.

Genetic algorithms (Goldberg 1989) mimic the process of natural selec-
tion by keeping a population of hypotheses that evolve by selective
reproduction causing genetic crossover and mutation.
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Simulated annealing (Ingber 1989) performs a random walk on the search
space with the probability of moving to a worse hypothesis reducing
with time. This allows leaving local optima.

Tabu search (Glover and McMillan 1986) performs a local search by
checking for hypotheses that are similar to the current hypothesis
and provide similar or better performances. A certain number of
past hypotheses are banned to avoid cycles in local optima and
ignored until their ban is lifted.

8.5 Feature selection
Feature selection (Guyon and Elisseeff 2003) is based on the concept
of minimum redundancy maximum relevance. Redundancy refers to
performance loss due to correlation of features when combining them into
a subset for regression. Obviously, the combination of two features will
always be less predictive regarding the performance measure than the sum
of the individual performances. Relevance refers to the predictive quality
of a feature subset due to correlation with the target function.

From an univariate point of view, good features are uncorrelated to
other features, and highly correlated to the target function. However, this
is not transferable to the multivariate case, where the combination of two
features with high redundancy and low relevance may produce a perfect
estimator. This is what makes feature selection so difficult.

Feature selection is a discrete optimization problem on the number and
type of features that would provide the optimal hypothesis after regression
analysis. There are three basic approaches: filter, wrapper, and embedded
methods. Different classes of performance measures, search strategies,
resampling methods, and ensemble learning are usually applied.

8.5.1 Filter methods
Filter methods embrace the minimum redundancy maximum relevance
approach and try to approximate these values with ranking-based measures
independent of the choice of estimator. Those measures are usually based
on statistical tests and mutual information criteria.

For continuous domains and univariate cases, relevance and redundancy
can be described with the 𝐹 -statistic and the product-moment coefficient.
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Another notion of redundancy is mutual information, which relies on
empirical estimates of the probability densities of each variable. These
are calculated with kernel density estimation which is basically regression
analysis on a special domain.

Filters are computationally efficient and can be done as a preprocessing
step. Their predictive power is worse than other methods, because they
are independent of the actual predictor.

8.5.2 Wrapper methods
Wrapper methods (Kohavi and John 1997) use the method that is des-
ignated for the regression step to assess performance of feature subsets
according to their prediction accuracy.

Compared to other methods, wrappers are computationally expensive,
but likely to provide better results that are tailored to the regression
method.

8.5.3 Embedded methods
Embedded methods weight each feature, which transforms feature selec-
tion into a continuous optimization problem, which can be solved with
regression methods. This adds an additional layer of regression on top
of the actual regression problem and allows for a high computational
efficiency and prediction accuracy.

Popular embedded methods are the 𝐿0-norm or 𝐿1-norm support
vector machine (Weston and Elisseeff 2003). The use of the according
norm in the regularization term minimizes the number of features (𝐿0) or
the sum of their weights (𝐿1) respectively. The support vectors (features
with non-zero weights) form the optimal feature subset.
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9 Analysis of the state of the art
Development of an improved personalisation method for computational
body counter calibration requires the analysis of modelling methods for
body counting scenarios including phantoms and phantom series, detectors,
software tools, and data models. The application of sophisticated methods
for statistical analysis is the next step regarding sensitivity analyses
leading to a new concept for interpolation-based personalisation combining
the results of computational body counting and anthropometry.

9.1 Modelling
Monte Carlo methods are state of the art in body counter calibration
(chapter 5). The according transition from physical to computational
phantoms opens many possibilities for sensitivity analyses. The accuracy
of those simulations is very much dependent on the level of detail of the
associated models. So, the main focus of research is to provide methods
for the reproducible creation of detailed phantom and detector models.
(Other parts of research are mainly concerned with physics models, for
example, regarding low-energy particle interaction effects.)

9.1.1 Detector modelling
Optimization of detector models has been successful using collimated point
source measurements and radiography to estimate dead layer thickness
at the electrode contact and to identify structural details in the interior
of the casing (section 5.3). This is of particular importance for low-energy
photons that are likely to be absorbed by those structures. Other elements
of detector characterization and calibration are analogous to classical
body counting (section 3.2).
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9.1.2 Phantom modelling
Hybrid modelling introduces the possibility to adjust the tradeoff between
the required amount of accuracy and flexibility in phantom development
(section 5.4). This leads to an impressive growth in the number of
computational phantoms in radiation protection research.

The problem, however, is that the requirement of an appropriate
amount of imaging data is often neglected. For example, ICRP-AM
(ICRP 2009) is a modification of a person-specific phantom using reference
anthropometric data. It should be kept in mind when applying the
phantom to a specific problem that its anatomy is not an average of the
population. Other phantom developers use databases with geometric body
or organ models with (presumably) non-reference shapes. They combine
these individual models mainly with graphic modelling tools or morphing
algorithms. This means that the anatomical accuracy of the result is
solely based on the anatomical background knowledge of the modeller or
the data that has been incorporated into the algorithm.

In conclusion, imaging data is paramount to create realistic phantoms,
which are necessary for realistic calibration factors in body counting.
Person-specific phantoms, if available, should be preferred for performing
sensitivity analyses.

9.1.3 Detector positioning
Detector positioning for partial-body setups in application to routine
monitoring is based on experience of technicians due to missing standards
and guidelines, and high customization of body counting facilities. For
computational body counter calibration and validation purposes, an accur-
ate reconstruction of measurements and reproduction of counting setups
is necessary due to high sensitivity of the relative detector locations.

This work is concerned about the comparability of simulation scenarios
with each other for sensitivity analyses. For this purpose, a common (at
least site-specific) positioning guideline must be developed. An intuitive
method is the positioning relative to palpable, bony landmarks of the
human body (section 4.3), which reduces the role of experience and
anatomical expertise of the technicians.
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9.1.4 Software tools
The calibration of large phantom series requires a certain amount of
efficiency and reproducibility in modelling and computation. Many efforts
have led to the development of software tools (section 5.3) that assist in
modelling, simulation, and evaluation of radiation transport scenarios.

The software tool Voxel2MCNP (Hegenbart et al. 2012) developed
at KIT is based on the idea of input file generation for the Monte Carlo
code MCNPX. It is an ideal starting point for this work, because it
already provides several features for body counting for the legacy phoswich
detector system at KIT. Although, extensions must be made to support
other detector systems and large phantom series.

9.1.5 Data models
Exchange of phantoms, detectors and other models is common among
research institutes in the field of radiation protection. Phantoms are
often provided in form of binary files in custom format associated with
documents containing informal text or tables. There is no standardization
regarding these file formats and judging by current publications this is
an inactive area of research.

Some form of standardization was introduced into the radiation
protection community by the International Network of Nuclear Structure
and Decay Data Evaluators (NSDD) and the Decay Data Evaluation
Project (DDEP) under the authority of IAEA (section 2.1). With the
distribution of the reference computational phantoms (ICRP 2009), the
ICRP missed the chance to provide data in formal and semantically
structured formats, giving an incentive to standardization.

The provision of structured data models for phantoms, media and
annotations would be very welcome in the radiation protection community
regarding the inflation of phantoms and software tools.

9.2 Personalisation
Personalisation methods for body counter calibration (chapter 6) are based
on knowledge about the sensitivity of counting efficiency with respect
to certain anatomical structures. This knowledge is based on sensitivity
analyses using series of computational phantoms and anthropometric
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parameters. The use of anatomically accurate and comparable phantoms
is very important for this work.

9.2.1 Development of phantom series
Many phantom series have been developed (section 6.2) and are under
development for radiation transport problems and sensitivity analyses of
radiation protection quantities. Manual or algorithmic modification of
phantoms based on anatomical background knowledge to create variations
in anatomy is a complex task which can lead to biased and unrealistic
phantoms. The modification of single anthropometric parameters or ana-
tomical structures while maintaining anatomical accuracy is very challen-
ging. This has only been achieved for female breasts, which are due to their
prominence an exception to this notion. In general, these modifications
neglect the correlation of various anthropometric parameters in the pop-
ulation. Especially person-dependent phantoms, which have the inherent
anatomy of a base phantom, are not appropriate for this application, and
correlating a single parameter change to a change in counting efficiency
for those types of phantoms will likely give misleading relations.

More phantoms based on imaging are created than ever before. In-
creasingly complex shape descriptors are applied because of their higher
flexibility in phantom modification. Statistical shape models (Mofrad
et al. 2010) are a very interesting concept. With an appropriate amount of
sample data, they create realistic shapes ranging from population average
to any extreme. But the integration of individual organs into existing
phantoms remains a difficult task. Also, this approach requires extensive
image segmentation to provide sufficient sample data.

The XCAT series (Segars and Sturgeon 2010) is a collection of person-
specific phantoms directly based on medical imaging data. It offers high
anatomical detail and accuracy, and contains a reasonable number of
samples. It is therefore an ideal candidate for statistical analysis of body
counting scenarios.

9.2.2 Personalisation methods
Only a few publications regarding personalisation of calibration factors ex-
ist and they are restricted to lung and liver counting. Two main approaches
have been identified: adaptation-based and interpolation-based.
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The adaptation-based method EquiVox by Henriet et al. (2012)
(section 6.4) is an elaborate form of integrating the lung shape of an
individual in an anatomically similar phantom by moving and adjusting
the neighbouring organs and structures. The implemented case-based
reasoning approach is an expert system, which improves with the number
of available cases. The initial case base was constructed from the anatomy
of a single phantom (ICRP-AF). Different anatomies are added with the
application of the framework.

The implementation of the phantom retrieval and lung adaptation steps
are kept relatively simple. The weights used in retrieval are reasonable, but
not founded on their direct quantitative relation to counting efficiency. The
adaptation step is solely based on body height. But, the system can com-
pensate this in the review step in which manual adaptation of the intermedi-
ate lung shape to imaging data is performed under supervision of experts.

An option to estimate uncertainties due to different lung shapes would
be to combine EquiVox with statistical shape models. However, the main
problem here is the review step requiring extensive user interaction.

With the current state of the art in image segmentation, an interesting
use of tomographic imaging data is the application of volumetric regis-
tration with a reference phantom as described by Segars and Sturgeon
(2010). This method produces a similar result to the combination of the
adaptation and review step of EquiVox, but allows to segment additional
structures to improve the accuracy of the phantoms in these regions.

The presented interpolation-based method (section 6.3), on the other
hand, is an interesting approach requiring little and readily available
information about the individual. The entire method is focused on chest
wall thickness and its correlation to counting efficiency and body weight and
height. The main disadvantage of the method is the use of separate data
sets, where one is based on a single calibration phantom with chest overlays
and the other is not related to the body counter calibration process.

9.2.3 Statistical analysis
Machine learning provides powerful methods for regression analysis
(chapter 7), for example, local polynomial regression and support vector
regression. These are non-parametric methods (no model of the target
function is required) with tuning parameters (e.g. kernel type or smoothing
parameter). The adjustment of those parameters to a specific problem is
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possible using meta optimization methods (chapter 8). A very important
method for meta optimization is feature subset selection. It basically
performs an automated sensitivity analyses of the features with regard to
the target value and provides a subset that is optimally suited for training
with the desired regression method.

Filters are computationally efficient, but lack in accuracy. Wrappers
are on the opposite end of the scale. They are also very simple to apply,
since they consider the regression method as a black box. Embedded
methods provide an elegant solution that combines the advantages of
filters and wrappers.

The performance of a method largely depends on the problem, and
most importantly on the quality and quantity of the available data.
Performing feature selection on top of regression requires training, test,
and validation sets, for which not enough data might be available.



10 Personalisation framework
The goal of this work is to quantify and reduce uncertainties in activity as-
sessment with body counting due to variation in human anatomy to improve
dose estimates for individuals exposed to radiation from radionuclide intake.
The personalisation framework “STEP” was developed to achieve this goal.
It is based on computational body counter calibration with phantoms rep-
resenting a broad range of variation in human anatomy, and the quantifica-
tion of anatomic features with anthropometric parameters. The subsequent
statistical analysis creates estimators that predict counting efficiencies for
specific measurement setups given a set of anthropometric parameter val-
ues. These results may be computed on demand or stored in a precomputed
database. Guidelines for technicians performing body counter calibration
and measurement of anthropometric parameters need to be defined to
ensure reproducibility of the results for application of the framework.

10.1 Concept
The currently available interpolation-based personalisation methods
(section 6.3) for lung and liver counting are based on the relation of
counting efficiency 𝜂, chest wall thickness 𝑥cw, and body mass 𝑚 and
height ℎ for a measurement setup 𝑡← 𝑠 and photon energy 𝐸. They use
two linear models based on anthropometry of persons and calibration of a
physical phantom (figure 10.1). The concatenation of both models forms
a simple relationship:

𝜂𝑡←𝑠(𝐸) = (𝑔𝑠,𝑡,𝐸 ∘ 𝑓) (𝑚, ℎ) (10.1)

With regard to the current state of the art in computational body
counter calibration, available phantom series, and statistical analysis
methods, extending the interpolation-based approach is a promising way
to improve estimation of counting efficiencies due to the correlation with
anthropometric parameters. The following changes can be made:



80 10 Personalisation framework

Linear regression
𝒎,𝒉 , 𝒙𝐜𝐰

𝒙𝐜𝐰, 𝜼𝒕←𝒔 𝑬

𝒈𝒔,𝒕,𝑬 ∘ 𝒇: 𝒎, 𝒉 ↦ 𝜼 

Figure 10.1: Workflow of interpolation-based approaches for personalisa-
tion of calibration factors using chest wall thickness 𝑥cw. The estimator is
a combination of linear estimators 𝑔𝑠,𝑡,𝐸 : (𝑥cw) ↦→ 𝜂 and 𝑓 : (𝑚, ℎ) ↦→ 𝑥̂cw
based on two separate sets of sample data.

• Replace the separate base data sets for person and calibration model
with a set of person-specific computational phantoms. This intro-
duces dependency on the measurement setup into the person model
and anatomical variation into the calibration model. Determination
of chest wall thickness is unnecessary.

• Generalize the linear parametric models to a general non-parametric
estimator 𝑓 .

• Use photon energy 𝐸 as an attribute of the estimator to provide
estimates for radionuclides that have not been considered during
model building and ensure consistency across the energy range.

• Extend body mass and height to a sequence of selected anthropo-
metric parameter values 𝑃 = (𝑝1, . . . , 𝑝𝑛) of a person or phantom.

• Move from a torso setup to any setup 𝑡← 𝑠 with source 𝑠 ∈ 𝑆 and
detector 𝑡 ∈ 𝑇 .

These changes generalize the original model and improve its perform-
ance due to the added degrees of freedom and additional data.

𝜂𝑡←𝑠(𝐸) = 𝑓𝑠,𝑡(𝐸, 𝑃 ) (10.2)
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𝒙, 𝑺, 𝑻
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𝑨 𝒔
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𝒇𝒔,𝒕: 𝑬, 𝑷 ↦ 𝜼 

𝑺, 𝑻

Figure 10.2: Workflow for activity assessment using body counting to
determine count rates 𝑐𝑝𝑠𝑡(𝐸) in specific measurement setups (𝑆, 𝑇 ) and
anthropometry to determine values 𝑃 of anthropometric parameters. The
physical process model specifies how to perform these tasks reproducibly.
Querying these values in the statistical model results in estimated counting
efficiencies 𝜂𝑡←𝑠(𝐸) that are used to compute source activities.

10.2 Activity assessment
Activity assessment (figure 10.2) is the main process for application of the
framework to actual measurements. It assumes that any kind of model
𝑓𝑠,𝑡 : (𝐸, 𝑃 ) ↦→ 𝜂 is available. So, the main concern is the measurement of
these arguments. This procedure is actually a standard method in body
counting, but requires formalization for integration with the framework.
The main changes are formalization of detector positioning, consideration
of additional anthropometric parameters, and provision of uncertainties
for counting efficiency which must be propagated accordingly.

Given a person 𝑥 ∈ 𝑋 that is supposed to be measured in setup 𝑇 ← 𝑆,
body counting is performed according to routine methods with the excep-
tion that detector positioning is performed according to a guideline that is
specified in the physical process model for the body counter that was intro-
duced with STEP. The measurement and subsequent evaluation results
in count rates 𝑐𝑝𝑠𝑡(𝐸) for the detectors 𝑡 ∈ 𝑇 and photon energies 𝐸. In
addition, a subset of anthropometric parameters 𝑃 is selected depending on
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𝑷, 𝜼𝒕←𝒔 𝑬 𝒇𝒔,𝒕: 𝑬, 𝑷 ↦ 𝜼 

Figure 10.3: Workflow for model building applying computational
anthropometry and body counter calibration to a series of phantoms
(compare figure 10.1). Regression analysis is performed on the computed
values 𝑃 and 𝜂𝑡←𝑠(𝐸) to create an estimator 𝑓𝑠,𝑡 : (𝐸, 𝑃 ) ↦→ 𝜂 for counting
efficiency. The calibration step is further described in figure 10.4 and the
regression step in figure 13.2.

their scores in the statistical model and a possible cost to assess these. The
measurement is also performed according to the physical process model.

The counting efficiency for each combination of 𝑠, 𝑡, 𝐸 and 𝑃 is
determined by lookup or on-demand computation of the statistical model.
The response is a set of estimated counting efficiencies 𝜂𝑡←𝑠(𝐸) involving
all detectors, sources and photon energies. Solving the system of equations
𝐴𝑠 = 𝜂𝑡←𝑠(𝐸) 𝑐𝑝𝑠𝑡 for all 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 results in estimated source
activities 𝐴𝑠.

10.3 Statistical model
The model building process (figure 10.3), which includes anthropometry
and calibration of the detector system for a set of phantoms and the
creation of a statistical model, is one of the main contributions of STEP.
The measurement part is similar to activity assessment, but is being per-
formed for computational phantoms and with respect to the computational
process model, which is assisted by software to ensure reproducibility and
improve computational efficiency.

Given a phantom 𝑥 ∈ 𝑋 and measurement setup 𝑡← 𝑠, calibration is
performed for a set of predefined photon energies 𝐸 covering the detector
range. This results in a set of counting efficiencies 𝜂𝑡←𝑠(𝐸). In addition,
anthropometry is performed, resulting in anthropometric parameter values
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𝒙, 𝜼𝒕←𝒔 𝑬𝑿, 𝑺, 𝑻, 𝑬

𝑺 → 𝑻

Figure 10.4: Workflow for computational body counter calibration. A
template scenario of the measurement is instantiated with phantom series
𝑋. Radiation transport simulation is performed leading to a set of pulse-
height spectra. The following analysis of the photo peaks results in counting
efficiencies 𝜂𝑡←𝑠(𝐸) associated to each phantom 𝑥 ∈ 𝑋. The instantiation
step is further described in figure 12.1 and the simulation step in figure 12.4.

𝑃 . This process is repeated for each phantom of the series, and all values
are collected in context of 𝑥.

The second part of the workflow is concerned with actually building
the model 𝑓𝑠,𝑡 : (𝐸, 𝑃 ) ↦→ 𝜂. This is based on regression analysis for
finding an optimal estimator that fits the samples well and also generalizes
to unseen data.

10.4 Calibration
Computational body counter calibration (figure 10.4) is simplified by
generating a template scenario including the detectors 𝑡 ∈ 𝑇 and other
parts of the body counter, a designated location for the phantoms 𝑋,
and annotations for potential source locations 𝑠 ∈ 𝑆. The template is
instantiated to a full scenario by inserting the actual phantom, positioning
the detectors and selecting source locations in the phantom according
to the measurement setup 𝑇 ← 𝑆 and the positioning guideline. The
positioning strategy depends on the specific detector system.

Sources are homogeneously distributed in the associated structures of
the phantom. Also, each photon energy in 𝐸 is simulated separately as a
mono-energetic source. And each potential source structure is chosen once
as the source in a simulation, while recording the response of all associated
detectors. This allows the quantification of crosstalk. After simulation with
a radiation transport code, the photo peaks of the resulting pulse-height
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spectra are analysed and quantified as combinations of photon energy 𝐸
and counting efficiency 𝐻 for phantom 𝑥 in measurement setup 𝑇 ← 𝑆.

10.5 Anthropometry
The selection of anthropometric parameters and their computation is
application- and implementation-specific. In general, parameters of interest
are circumferences, diameters, weights, and skinfold thicknesses. The com-
putational methods may use the orientation of prominent bones to identify
palpable landmarks of the body and compute distances between points
or circumferences in an intersecting plane defined by multiple points. This
relies on basic algorithms for computational geometry (section 12.4).

10.6 Regression
The goal of the regression process is to build a model that estimates count-
ing efficiency 𝐻 based on assessed values 𝑃 of anthropometric parameters
for energies 𝐸 and measurement setups 𝑇 ← 𝑆. It is based on a machine
learning approach for non-parametric regression using the computed
results as observations of the unknown function 𝑓𝑠,𝑡 : (𝐸, 𝑃 ) ↦→ 𝜂𝑡←𝑠(𝐸).

First, feature subset selection is performed on the full training data set.
Then, given a selected subset, the data is projected to the new subset, an
according model is created, and simultaneously applied to the unlabelled
data resulting in labels consisting of mean and variance.

10.7 Implementation requirements
To ensure applicability of the method, it must be guaranteed that detector
positioning and anthropometry are consistent among all phantoms and
reproducible by technicians performing measurements on actual persons.
The implemented methods must rely only on information available to
them and be specified accordingly.

The described workflows of the STEP framework are relatively
complex and their performance for a large number of phantoms is very
time-consuming and repetitive. This may lead to mistakes when performing
modelling tasks and introduce user bias when performing anthropometry
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and detector positioning due to different interpretation of the specification.
The implementation of the framework should therefore automate as many
processes as possible by integration in software tools based on according
data models and providing a sense of modularity and abstraction.

The implementation of the STEP framework comprises three major
components:

1. Development of an abstract and modular data model covering
modelling, simulation and evaluation of radiation transport scenarios
to facilitate data exchange and to reduce overall effort regarding
data conversion and integration (chapter 11).

2. Development of a software tool implementing the data model while
providing algorithms automatizing the individual processing steps for
anthropometry and calibration based on the designated Monte Carlo
code (chapter 12).

3. Implementation of the regression workflow with an existing statistical
analysis tool and with regard to computational efficiency (chapter 13).





11 Data model
Modelling for radiation transport simulation is an essential task for
prospective and retrospective evaluation of radiation transport scenarios.
Many applications, such as calibration for whole and partial body counters
or calculation of dose conversion coefficients for internal and external
exposure, may include anatomically realistic computational phantoms
with large amounts of data, geometrically complex detector models, or
even require a series of simulations.

A key problem is handling large amounts of data from various sources
that may be frequently updated and are provided in different file formats.
They need to be compiled into corresponding syntax as input for the
desired Monte Carlo code. The resulting simulation output typically
requires additional post-processing.

Obviously, input formats of Monte Carlo codes cover all aspects of radi-
ation transport such as geometric models, media properties, particle cross
sections, and source and tally specifications. However, they are very specific
to the code and only few modelling tools are available that are compatible
with these formats. Various alternative data formats are already in use that
cover some parts of the required data individually (e.g. phantom geometry,
detector geometry, and radionuclide decay data). On the other hand, non-
formal descriptions in textual or tabular form are common, for example,
describing elemental composition of media or geometry-media mappings.

A holistic approach to a data model is needed that structures all data
required for radiation transport and additional information required by
the STEP framework. The developed model is inspired by the structure
of MCNPX input, but not restricted to this specific code.

There are several requirements that the data model must fulfil:

• Modularity to support replacement of components
• Serialization to human- and machine-readable formats for data

exchange
• Coverage of the data domains for body counting and anthropometry
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The developed data model is called V2M Schema (Pölz et al. 2013), be-
cause of its association with the software tool Voxel2MCNP and its imple-
mentation in the markup language XML Schema (XSD) (W3C 2004).

11.1 Modularity
Modularity of the data format is achieved by grouping semantically similar
data as structures called resources and linking them via cross referencing.
Resources may be organized in a local file system with each resource in a
different file or multiple resources grouped into one file. References are uni-
form resource locators (URLs) identifying a file and exactly one resource in
that file. They form a dependency relationship between the referencing and
referenced resources. Through this approach, it is also possible to associate
external source files from which data can be imported on demand.

11.2 Coverage
Monte Carlo codes for radiation transport generally require a basic set
of data:

• Sources with probabilistic radiation emissions
• Tallies describing the computed quantity
• Objects with geometry and associated media
• Cross sections for radiation-matter interaction
• Simulation options regarding variance reduction and physics settings

In the current version, V2M Schema defines eleven resource types
(table 11.1): Scenario, Equipment, Geometry, Binary, Materials, Elements,
Source, Tally, Taxonomy, Simulation, and Results. Each resource type has
a basic set of attributes for identification via cross references and special
subtypes for storing data. A schematic overview of the cross references
is available in figure 11.1.

11.2.1 Scenario
A radiation transport scenario is defined as a collection of geometric objects
with associated sources and tallies. Objects are instances of Equipment and
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Name Description

Binary Compressed binary data for storing lattices.

Elements
A collection of chemical elements and their isotopes with
associated mass attenuation coefficients and particle
cross-sections.

Equipment An abstract geometric object composed of segments with
associated materials.

Geometry A collection of cell volumes described by constructive solid
geometry extended with repeated structures (lattices).

Materials A collection of individual materials for describing density
and elemental composition of geometric segments.

Results Simulation results and derived properties specific to a
scenario or any of its objects.

Scenario
A radiation transport scenario as a collection of objects
arranged in space. Each object may be associated with
sources and tallies.

Simulation Settings regarding Monte Carlo simulations in general
and specific to the code in use.

Source A radiation source described as a discrete probability
distribution of particle emission events.

Tally
The physical quantity to derive from the simulation and
how to score each particle depending on location and
energy.

Taxonomy
A hierarchical collection of terms describing structures
and systems of equipment and materials semantically for
identifying geometric segments and associating materials.

Table 11.1: Overview of resources defined in V2M Schema (Pölz et al.
2013). Each resource is a self-contained entity describing a specific part
important for radiation transport, but may depend on the availability
of other resources.
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Figure 11.1: Overview of resources defined in V2M Schema and their
relationships (Pölz et al. 2013). Arrows indicate cross references in
direction from the referencing object to the referenced object.

are arranged in space via affine transformation. Each object may contain
source and tally links which define the location of the radioactive source
and simulation tally and refer to Source and Tally definitions respectively
with more detailed information. A location is defined via referenced terms
of the equipment’s Taxonomys with which the appropriate segment and
cell volume or its surface can be identified. Additionally, settings for cal-
culating the scenario with a Monte Carlo code are defined in an associated
Simulation, and simulation results are stored in form of Results.

11.2.2 Equipment
An equipment is an abstract geometric object composed of distinct
segments with associated materials. It references a Geometry which
defines these segments geometrically, and Materials which describe their
material properties. A segment-term mapping provides semantics for
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the segments in context of the Taxonomy. A segment-material mapping
defines the direct association of materials.

11.2.3 Geometry
Geometry is described as composition of complex shapes with geometrical
primitives in form of constructive solid geometry (section 5.2). It is
essentially a collection of cells which are of the following three types:

Simple cells are volumes defined by primitive surfaces such as sphere,
box, plane, cylinder, cone, or torus which may be parameterized and
transformed via affine transformation to create non-unit primitives.

Complex cells are combinations of multiple simple or other complex
cells with a set operator such as union, intersection, difference, or
complement. They allow the creation of non-primitive geometries.

Repeated cells are special cells for implementing voxel phantoms. Similar
to MCNPX, they are repeated structures of a certain primitive (box
or hexagonal prism) arranged in a three-dimensional lattice that
is embedded in a simple cell. The actual lattice data is stored in a
referenced Binary. The repeated cell only specifies the interpretation
of the data by defining a template cell and lattice dimensions.

Additionally, any top-level cell of the cell hierarchy must define a
segment identifier which is in turn referenced by the related equipment.
Other cells, i.e. those used to form a complex, are implicit and do not
require materials.

11.2.4 Binary
Repated cells can be quite large depending on voxel resolution. They are
modelled as a list of integer or decimal numbers in a specific order. For
example, a three-dimensional lattice with segment identifiers ranging from
0 to 255 is stored as a linear 8-bit integer array. This is sufficient for most
phantoms. Larger ranges are possible by increasing the element size.

11.2.5 Materials
Similar materials or those required by the same equipment are grouped
into a Materials resource. Each material has name, density and elemental
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composition. The elemental composition defines mass or atomic fractions
for each element contained. Associated Elements further describe the
material components on the elemental level. For the segment-material
mapping, each material is also associated with a set of terms from possibly
multiple taxonomies that are referenced.

11.2.6 Elements
Properties of chemical elements or their isotopes are stored in an Elements
resource. Each element is described by basic properties, e.g. atomic
number, mass number, chemical symbol, name, and density. Mass
attenuation coefficients and particle cross-sections can be associated for
performing radiation transport calculations, for example for calculating
linear attenuation coefficients of photons through matter.

11.2.7 Source
Radiation sources are described as discrete probability distributions of
particle emission events (e.g. during radioactive decay). Each event
consists of energy, intensity (probability), and particle type. Continuous
spectra (e.g. from beta decay) can only be represented approximately
using discretization. Also, additional information regarding radioactive
decay can be given. For example, decay products for modelling dynamic
sources with nuclide fractions changing over time.

11.2.8 Tally
A tally contains information indicating the physical quantity to derive
from the simulation, such as particle flux, current, deposited energy, or
pulses created in a detector, and how to score it with respect to space
and energy. For calculating dose conversion coefficients, for example, the
total deposited energy per tally volume is needed. For counting efficiency
calibration, the total number and energy of pulses created in the tally
volume (active detector crystal) by interacting particles is scored. Energy
discretization can be added by defining an amount of bins and an energy
range. Information about energy resolution of the detection device can be
stored by setting parameters of a standard model (equation 3.1) describing
energy dependency.
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11.2.9 Taxonomy
Taxonomies are used as hierarchical collections of terms describing struc-
tures and systems of phantoms, detectors, other equipment, and even
materials. Geometry segments and materials can be registered in one or
multiple taxonomies to associate them with semantics. Based on these
associated terms matchmaking algorithms can be applied to suggest an
initial mapping between the defined segments and materials.

11.2.10 Simulation
Monte Carlo codes require certain settings specific to the problem they are
simulating. These settings are either related to the Monte Carlo method
in general or specific to the actual code. The following settings can be
stored:

• Problem termination conditions such as maximum number of particle
histories to be computed, maximum computer time, or maximum
relative standard deviation for each tally.

• Various options for variance reduction, such as a filter for energy
and intensity range for the source to omit negligible emissions or
a selection of which secondary particles to transport.

• A threshold setting the minimum sampling efficiency of position
sampling for source particles. A higher threshold may reduce
memory usage, but may also increase computer time.

11.2.11 Results
Simulation results are collections of attribute values for storing tally data
and derived properties specific to a scenario or any of its objects. Each
item may have attribute name (physical quantity), source identifier, tally
identifier (cell or surface), energy (or energy range), value, and relative
error (uncertainty of the value as estimated relative standard deviation).

Source and tally identify corresponding resources in the corresponding
scenario. This is sufficient to model simulation results as well as geometric
properties of the objects, e.g. anthropometric parameters and detector
properties. Unnecessary values can be omitted. For instance, most
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anthropometric parameters do not depend on source, tally and energy.
An exception to this is chest wall thickness.

11.3 Serialization
A modular data model was created to facilitate the description of all
components. XML Schema (XSD) (W3C 2004) was chosen as an abstract
modelling language to describe the data model. It allows the creation
of complex, but human-readable and easily modifiable data formats.
Instances of the created schema, called V2M Schema, are stored as .v2m
files and can be validated against their specification and parsed with freely
available software libraries, such as QtXML (Qt Project and Digia 2013),
Libxml2 (Veillard 2012) and JAXB (Java Community 2012).



12 Software implementation
The software tool Voxel2MCNP (Hegenbart et al. 2012; Pölz et al.
2013) for computational body counter calibration is under development
at KIT. Starting as a command line tool for converting voxel models
into MCNPX syntax in 2008, many features were added, including two-
and three-dimensional visualization, a model of the body counter with
phoswich detectors at IVM, and methods for modifying voxel models. It
is used by staff members and students for radiation transport simulation
tasks for a variety of projects.

For integration with the STEP framework, a major redesign of the
software was necessary to provide the level of abstraction, modularity, and
efficiency required for performing sensitivity analyses with a large series
of computational phantoms. The goal was to support the anthropometry
and calibration processes including modelling, simulation management,
and measurement evaluation.

12.1 Application structure
Voxel2MCNP has been redesigned from scratch maintaining and
extending functionality of the original software while integrating the
developed V2M Schema. The software is being written in C++ using
the cross-platform application and user interface framework Qt (Qt
Project and Digia 2013) and the graphics library OpenGL (Shreiner
1999). Voxel2MCNP is platform independent and compilations for
Microsoft Windows, Mac OS X and several Linux distributions
have been tested.

The application consists of Qt widgets facilitating user interaction,
libraries offering data models and computational algorithms, plug-ins
providing methods for file import and export, and a core. The application
core is responsible for plug-in management and file handling, provides a
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basic graphical component for integration of widgets, and a data manager
and event-based notification system for those widgets.

Libraries provide stand-alone functionalities and data types, such as
computational algorithms for surface triangulation for visualization of
scenarios, adaptations of several data formats used by plug-ins, and so
on. As described in chapter 5, many popular modelling tools exist. The
goal of Voxel2MCNP is not to mimic the functionalities of those tools,
but to provide means to access models created with these through the
abstract interface of V2M Schema. An object-oriented adaptation of
the developed V2M Schema is also implemented as a library providing
additional data management functionality.

Supported file formats are implemented as plug-ins which conform to
a common interface offering file import and export. They are discovered
automatically on application startup.

Widgets provide functionality requiring user interaction. The basic
functionalities of the original Voxel2MCNP have been abstracted to
widgets and extended. This includes a transaxial view displaying voxel
models in slices, a perspective view visualizing an interactive scenario
including all objects with functionality for automatic or interactive
detector positioning, an editor widget representing data in editable forms
and tables, a properties widget giving information about anthropometric
parameters and segment volumes and masses.

12.2 Data import and export
Several plug-ins (table 12.1) have been created to perform data conversion
in form of file import and export. When a file in V2M Schema format
is loaded, all referenced files are registered with the file handler. When
a reference needs to be resolved because of a data request, a file plug-in
with proper capabilities is automatically selected and executed.

12.2.1 V2M Schema
The XML version of V2M Schema is the native format of Voxel2MCNP.
Each resource is serializable to an according XML element and a .v2m
file can be validated against the schema file. Data compression is applied
in case of binary resources.
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File format Resource Import Export

V2M Schema Any Yes Yes
ImageJ Geometry Yes Yes
SimpleGeo Geometry Yes Yes
ENSDF Emissions Yes (No)
MCTAL Results Yes (No)
MCNPX Scenario No Yes

Table 12.1: Overview of file formats supported by Voxel2MCNP and
their associated resources in V2M Schema.

12.2.2 ImageJ
ImageJ (Ferreira and Rasband 2012) is an image processing program
developed at the National Institutes of Health (NIH). It also supports
image series, which is the native representation of tomographic imaging
data used for voxel models. Such a three-dimensional lattice is stored as a
linear representation in a binary file with an external header file describing
the structure of the binary.

The according plug-in designed for Voxel2MCNP converts this format
to V2M binary. The structural information is stored in an associated
geometry with a repeated structure cell based on a cuboid surface.

12.2.3 SimpleGeo
SimpleGeo (Theis et al. 2006) is a three-dimensional modelling tool
developed at CERN. It was specifically created to unify the various
geometry modelling processes and syntaxes of radiation transport codes. A
key feature of SimpleGeo is that it stores data in a (custom) constructive
solid geometry (CSG) format instead of a boundary representation (B-rep)
format (Mortenson 1985). This is of importance, because a conversion
from constructive solid geometry to boundary representation, which is
basically an approximation of volume boundaries with planar faces or
free-form surfaces, results in information loss.

The according plug-in designed for Voxel2MCNP converts this
format to V2M geometry. SimpleGeo uses a tree with parametric sur-
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faces at the leaves and set operators at the inner nodes. It also associates
surfaces with sets of shading parameters. Each surface is converted to
one of the basic surfaces of V2M Schema and the parameterization is
stored in the associated transformation matrix. Inner nodes are converted
to complex cells. The identifier associating the shading parameters is used
as associated segment identifier for each cell.

12.2.4 ENSDF
ENSDF (Tuli 2001) is maintained by the National Nuclear Data Center
(NNDC) at Brookhaven National Laboratory (BNL). It stores nuclear
structure and decay data for radionuclides in form of data records similar
to MCNPX. Each record has a type (e.g. gamma emission) and specifies
an according set of parameters.

The according plug-in designed for Voxel2MCNP converts this format
to V2M emissions. All records that signify an emission are identified and
the appropriate information extracted to convert to a V2M emission.

12.2.5 MCTAL
MCTAL (Pelowitz 2007) is the formal output format of MCNPX. It is a
listing of tally values arranged by tally binning. Each tally is represented
by identifier, binning, value for each bin with relative error, and the tally
fluctuation chart for statistical tests.

The according plug-in designed for Voxel2MCNP converts this format
to V2M results. The results are automatically associated with the scenario
that was used to create this output and sources and tallies are identified
based on tokens that are placed by the MCNPX export plug-in.

12.2.6 MCNPX
MCNPX was designated as the primary radiation transport code for
performing simulations with Voxel2MCNP because of the preexisting
experience of coworkers with the code and the simple structure of its input
files, which makes it easy to perform code generation from V2M Schema.
MCNPX input files (Pelowitz 2007) are composed of surfaces, cells,
transformations, materials, sources, tallies, and settings with regard to
radiation transport and variance reduction.
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MCNPX file export is achieved by creating MCNPX cards for all
objects in a V2M scenario. Each MCNPX card has associated resource
elements, e.g. surface and cell cards are created from V2M geometry,
material cards are created from V2M materials and so on. For managing
the various numeric identifiers MCNPX uses, namespaces have been intro-
duced handling surface, cell, transformation, material, source distribution
and tally identifiers.

A simulation series for a phantom with changing source emissions and
source locations, can be specified by a single V2M scenario. The export
plug-in can create a set of MCNPX input files that perform each of the
combinations of emissions and locations while reducing redundancy by
storing duplicate parts in common files that are referenced.

12.3 Scenario modelling
The main intent of Voxel2MCNP is to support modelling for radiation
transport in body counting scenarios. The idea is that as many steps as
possible are undertaken using dedicated tools whose files are then imported,
and then integrated into a V2M scenario (figure 12.1). Beginning from a
scenario template, each step integrates or replaces a model and performs fur-
ther adjustments. Several user interfaces which allow visualization, editing,
computation, and validation are provided to finalize a scenario model.

12.3.1 Resource editor
The full V2M Schema has an additional representation through Qt wid-
gets. These are graphical components which allow user interaction and edit-
ing (figure 12.2). Any data that may not be imported via plug-ins can be
imported manually by creating an according .v2m file or using the editor.

12.3.2 Material annotation
To perform radiation transport, Monte Carlo codes require density and ma-
terial composition of all media involved, either defined as mass fractions or
atomic fractions of elements and their respective isotopes. Some definitions
may be intended for special applications requiring a certain level of detail
from the geometric model, or assume different segment semantics. With
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Figure 12.1: Workflow for instantiation of a template scenario (Pölz et al.
2013). Individual models are created with dedicated modelling tools, im-
ported into Voxel2MCNP and combined to a full body counting scenario.

regard to computational phantoms based on medical imaging data for
example, a medium named “lung tissue” may specifically refer to bronchial
and alveolar tissue, but it may also include different portions of blood and
air depending on imaging and segmentation techniques applied.

Aside from technical issues, phantom developers may simply group
similar structures differently dependent on application or personal pref-
erence. These differences pose a problem when assigning materials to
geometry segments; allowing only fixed segment-material mappings limits
the intended modularity of the data model. Also, exchanging material
libraries for certain objects can be useful, for example, for performing
sensitivity analyses or for switching to alternative versions. This is not
possible without re-assigning each segment to its corresponding material
of the new library, because there is no sense of semantics associated to
the individual material names, which can be processed by a computer.

To address these issues and preserve modularity of the data model, a
new approach using controlled vocabularies was implemented. A taxonomy
(National Information Standards Organization 2005) is a structured set of
abstract terms where each term is associated with a detailed description.
Here, taxonomies are used as a common vocabulary to associate segments
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Figure 12.2: Editor module of Voxel2MCNP showing the associated
resources of a loaded body counting scenario (left) and details of the
selected resource (right).

and materials with semantics. The individual terms are structured in a
hierarchy with a binary relation to provide different abstraction layers,
i.e. there is a single root term at the top of the hierarchy and each
term may specialize into several disjoint categories. When importing a
new equipment or a new material library segment-material mapping is
performed with the following method:

1. If the equipment or material library is not covered by the existing
taxonomies, one or more taxonomies are designed to describe the
domain of objects in question by selecting and categorizing terms
related to this domain.
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2. For each equipment, all segments of the associated geometry are
registered in the corresponding taxonomies by selecting the most spe-
cific of the matching terms available. This mapping can be quite time-
consuming, but must only be done once per taxonomy. This is also
done for all material libraries of interest using the same taxonomies.

3. A heuristic matchmaking algorithm based on similarity of segment
and material semantics (defined by the associated terms) is applied
to find potentially matching segment-material pairs depending on
what is actually required by the equipment and provided by the
material library.

4. The initial mapping is revised and fixed in the equipment definition
for each of the selected material libraries. The amount of work
required for this step can vary significantly and largely depends on
the effort put into the first three steps.

In general, the use of multiple simple taxonomies is encouraged over
the use of a single complex taxonomy, because they may provide different
categorizations of the same terms or allow the combination of terms
from related but different domains. For example, taxonomies about
(superficial) regions and anatomic systems of the human body can be
employed simultaneously to describe human anatomy in more detail.
For computational phantoms, existing taxonomies for anatomic system
classification and histologic classification can be adapted for use. In case
of detectors and other objects, very simple taxonomies can be designed,
if there is no imminent need for exchanging material libraries.

Voxel2MCNP provides a transaxial and perspective view to visually
identify segments of an equipment and an editor to associate terms. They
can be used in combination to perform annotation or revision while
comparing the appearance of the segments and the semantics of the
associated terms.

For a material to be applicable to a segment, it is necessary that each
material term has a corresponding segment term in the taxonomy that is
equal or more specific, so that in principal the most general tissue is always
applicable. The matchmaking algorithm is based on a distance metric
to compute a score for each material and rank them accordingly. The
optimal material for any segment is the one which minimizes this score and
therefore the distance of the corresponding terms over all taxonomies.
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12.3.3 Scenario visualization
Voxel2MCNP stores its geometry equivalent to the data model in the
form of constructive solid geometry, which basically describes the hierarch-
ical construction of volumes using geometric primitives and set operators.
For visualization, these volumes are first converted to boundary repres-
entation via surface triangulation and then rendered with OpenGL.

There are several methods well-known in computer graphics to perform
surface triangulation, such as marching cubes (Lorensen and Cline 1987),
dual contouring (Ju et al. 2002), or sphere tracing (Hart 1996). The first
two methods have been implemented in Voxel2MCNP using extensions of
the basic algorithms (Nielson and Hamann 1991; Schaefer, Ju and Warren
2007). The implementation of sphere tracing is still work in progress, but
promises to further improve computational efficiency and visual quality.

12.3.4 Detector positioning
Modelling body counting scenarios requires accurate detector positions
and orientations relative to the phantom. To support the task of detector
positioning, Voxel2MCNP provides an abstract module that can hold
implementations of direct and inverse detector kinematic specific to a
body counter.

The direct detector kinematic allows setting each free parameter of
the detector mechanics while the detector position and orientation are
automatically derived. This is useful for measurement reconstruction,
where such parameters are recorded.

The inverse detector kinematic allows setting detector position and ori-
entation, and the elongations and angles of the mechanics are automatically
derived. This is useful for measurement planning, where the detectors are
assigned to a target organ and positioned based on anatomical landmarks
in that region or the organ itself (figure 12.3).

Additionally, if position of the detector and the target are known, the
distance from the front centre of the entrance window to the skin of the body
is given by intersecting the corresponding line segment with the phantom.
Adjusting the detector position changes the distance accordingly.
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Figure 12.3: Perspective view and positioning module of Voxel2MCNP
for a loaded body counting scenario. Visible are parts of the phantom
and locations of the three selected detectors (left), and controls for
visualization and positioning (right).

12.4 Anthropometry
Body counting is sensitive to individual anatomy for many scenarios
involving low-energy photons. One way to quantify anatomy is to describe
it with geometric features, e.g. thicknesses, distances, lengths, breadths,
circumferences, volumes, and masses. Such measurements are usually used
in health examination studies, e.g. the National Health and Nutrition
Examination Survey (NHANES) (Department of Health and Human
Services and National Center for Health Statistics 1996) of the Centers
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for Disease Control and Prevention (CDC), and the clothing industry
(European Committee for Standardization 2001). Acquisition of these
parameters is a precondition for comparing phantoms and persons.

The Voxel2MCNP anthropometry module provides a collection of
methods to compute anthropometric parameters for computational (voxel)
phantoms.

12.4.1 General parameters
In general, the module uses the annotated segments of phantoms to identify
landmarks of the human body (similar to heuristic detector positioning).
This method largely depends on the availability of the correct segments in
the geometry of the phantom. If they are not available, heuristics based
on anatomical background knowledge can be used to estimate the correct
measurement positions.

The mass of segments can be computed from their geometrical volumes
and associated material densities. Major structures can be used to quantify
the location and orientation of body parts and anatomic landmarks. The
orientation of those parts can be analysed using principal component
analysis (Abdi and Williams 2010) on the set of voxels.

For computing circumferences, a cutting plane can be constructed
with a certain position and orientation intersecting the phantom. A
circumference is then computed from the convex hull (Graham 1972) of
the intersection. Several methods were tested to improve results due to
aliasing effects on voxels. Circumferences are usually evaluated at multiple
locations along the main axis of the cutting plane to determine a minimum
or maximum in that region depending on the quantity.

12.4.2 Average photon transmission
An anthropometric parameter that is very sensitive to body counting for
lung measurements is effective chest wall thickness. It basically describes
the average thickness of the absorber material between source organ and
detector. Measurement and calculation of this quantity must take detector
position, crystal dimension, and tissue composition into account. Physical
measurement of chest wall thickness has already been performed by Gün
(2010) with equipment available at KIT in collaboration with the medical
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centre and an according algorithm was implemented for voxel phantoms
in Voxel2MCNP.

To provide this parameter for measurement of all source organs
and structures, the algorithm was redesigned to compute the average
transmission of narrow photon beams between body surface and source
depending on detector position and orientation. Normalization to reference
muscle tissue resulting in an effective tissue thickness is omitted and
instead photon transmission is used to provide an abstract measure that
is linearly related to counting efficiency.

1. Produce random points on the detector entrance window and create
according rays parallel to its surface normal.

2. Intersect each ray with the section of the phantom between detector
and source. Discard rays missing the source.

3. Compute the relative track length for each ray in all media of the
tissue.

4. Determine complex mass attenuation coefficients using the relative
track lengths as weights (equation 6.2).

5. Average the transmission of each ray (equation 6.3), but omit
normalization.

Elemental mass attenuation coefficients are derived from data (Hubbell
and Seltzer 2004) using log-log cubic-spline interpolation over energy as
proposed by Berger et al. (2010).

12.5 Simulation and evaluation
For simulation of a created scenario, Voxel2MCNP exports the scen-
ario to MCNPX syntax after any simulation-specific preprocessing (e.g.
simplification). If energy resolution is known a priori, simulations can be
run with the built-in option for Gaussian energy broadening (GEB) of
MCNPX. Alternatively, GEB can be applied a posteriori according to the
MCNPX model (equation 3.1) using the parameters describing FWHM
stored in the detector equipment. The results are imported afterwards.
Post-processing covers the evaluation of simulated pulse-height spectra by
offering background subtraction with a linear or step model (section 3.3).
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Figure 12.4: Workflow for simulation of a body counting scenario
including input generation from a scenario instance, simulation execution
with a dedicated Monte Carlo code, and processing of the simulation
output (Pölz et al. 2013).

Adding several methods for energy interpolation (Gray and Ahmad
1985; Kramer 2007) of counting efficiencies is planned, but currently
performed with the nls2 package (Grothendieck 2010) of the statistical
analysis language and environment R (The R Core Team 2013), which
uses a Newton-type gradient descent.
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The workflows in this chapter are based on a specific graphical notation.
An overview of the graphic components is given in figure 13.1.

The goal of the regression process (figure 13.2) is to build a model that
predicts counting efficiency based on assessed values of anthropometric
parameters for different energies and measurement setups. It was realised
with a machine learning approach for function regression using the com-
puted results as observations of the unknown target function predicting
counting efficiency from anthropometric parameters.

First, feature subset selection is performed on the full training data set.
Then, given a selected subset, the data is projected to the new subset, an
according model is created, and simultaneously applied to the unlabelled
data resulting in labels consisting of mean and variance.

13.1 Subset prediction
A resampling method is applied to the data creating a set of folds. Each
fold is used for training an estimator. The ensemble of estimators is
combined by averaging, resulting in mean and variance (figure 13.3).

Figure 13.1: Graphic components used in workflow diagrams. An asterisk
indicates that a detailed version of the process is presented in another
diagram.
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Figure 13.2: Workflow for regression applying feature subset selection in
a preprocessing step on training data, then training the estimator on the
projected training data, and finally applying it to unlabelled data.

Figure 13.3: Workflow for subset prediction using resampling to create
an ensemble of estimators which are then averaged.

An appropriate resampling method (section 8.2) may be selected
depending on the data. Bootstrapping is used by default, which makes
this process an implementation of bagging (section 8.3).
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Figure 13.4: Workflow for fold prediction building a regression model
from normalized data and applying it to unlabelled data in the order of
normalization (N), prediction (R), and denormalization (D).

13.2 Fold prediction
Data introduces bias in a regression model due to different domains of
the parameters. Therefore, as a preprocessing step, the training data is
normalized using 𝑍-transformation to remove its bias and normalize its
variance. The normalized data is then fed to a regression method that
creates an implicit model of the estimator, which is then applied to the
unlabelled data. The unlabelled data is also being normalized before
model application and denormalized afterwards (figure 13.4).

Any regression method (chapter 7) may be used for model building.
Local polynomial regression is chosen by default.

13.3 Feature subset selection
To ensure an accurate, but also general model, feature subset selection
(figure 13.5) is necessary to reduce the attribute domain. It follows the
concept of minimum redundancy maximum relevance (section 8.5) using
a preselection strategy, a search method, and a performance measure.

As a first step, a heuristic preselection may be performed using
a correlation-based filter method or by manually removing irrelevant
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Figure 13.5: Workflow for feature subset selection. Optionally, filters may
be applied to heuristically identify relevant features before performing
an automated subset search. Afterwards, a manual examination of the
evaluated subsets may be necessary.

features depending on the measurement setup. This is advised only if
computational efficiency is a problem. The actual subset search is capable
of finding appropriate feature subsets by itself.

The subset search minimizes a measure derived from the performance
of the training data. After termination, the best subset is selected.
However, any number of subsets and their scores may be extracted.

13.4 Subset search
Subset search (figure 13.6) is the process of (efficiently) moving through
the space of feature subsets, evaluating their performances, and finding
an optimum.

The selection of a search strategy (section 8.4) depends on the total
number of features and the required computational efficiency. The general
approach is to start with a maximum subset size of one which iteratively
increases. Each subset is evaluated by computing a score according to a
specific measure, which is used to guide the feature subset space search.
A simple and guaranteed optimal method is exhaustive search. If this is
not an option, a genetic algorithm (Goldberg 1989) may be selected.
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Figure 13.6: Workflow for subset search using a heuristic search strategy
and a performance measure to evaluate each feature subset.

Figure 13.7: Workflow for subset evaluation using the wrapper method
with resampling to get robust estimates for the subset scores.

13.5 Subset evaluation
The task of the subset evaluation process (figure 13.7) is to evaluate the
performance of a feature subset given the training data. The wrapper
approach is applied to do this effectively. This means that instead of
using a filter, the same regression method that is used to build the final
estimator is also used, for each feature subset.
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The training data is resampled (e.g. cross sampling or bootstrapping)
into different folds for training and testing. The regression method is
applied to the new training data, and the resulting model is applied on the
testing data whose performance is evaluated by a performance measure
(section 8.1) for regression. This is repeated a certain number of times
and the performances are averaged to a subset score.

13.6 Implementation
RapidMiner (Mierswa et al. 2006) is a popular open source data mining
tool. It is under development since 2001 and regularly updated. It provides
a broad range of methods used in machine learning, statistical analysis,
and data mining. Those methods are available as parametric building
blocks that are connected via data flows. Several example applications
of RapidMiner for feature selection are available in Schowe (2010).

The implementation of the whole STEP regression workflow has been
done with RapidMiner in version 5.3. The described processes were
replaced with predefined customizable building blocks. One major draw-
back is that the kernel modules (e.g. local polynomial and support vector
regression) do not provide uncertainties for their generated estimators.
This problem could not be solved directly inside the tool.



Part III

Application





14 IVM body counter
The new body counting system at the KIT in vivo measurement laboratory
(IVM) (Marzocchi 2011) includes four high-purity germanium detectors
(HPGe) with thermoelectric cooling. It supersedes the old system based
on two NaI(Tl)/CsI(Tl)/NaI phoswich detectors (Hegenbart 2009). The
new system is an improvement in terms of energy resolution and spatial
sensitivity. The lower detector size allows an increase in degrees of freedom
regarding detector positioning.

The STEP framework has been applied to the IVM body counter first.
The system was modelled with Voxel2MCNP to perform computational
body counter calibration with regard to current equipment and procedures
in use. Computational phantoms were annotated to allow identification
of certain structures for assigning sources, detector positioning, and
calculation of anthropometric parameters.

Various applications with regard to body counting using specific
computational phantoms are described in the following chapters:

• Measurements of the JAERI phantom were reconstructed and
simulated to evaluate the validity of the computational approach
(chapter 15).

• Four phantoms implementing the ICRP reference man specification
were compared to check if organ masses are a sufficient constraint
in phantom development (chapter 16).

• As the primary application of this work, the STEP framework was
applied to the XCAT series to quantify the impact of interindividual
anatomical variation (chapter 17).

• Inhomogeneous source distributions were created with a perforated
lung set of the LLNL phantom and measured to estimate the
uncertainty introduced by the general assumption of homogeneous
distributions (chapter 18).



118 14 IVM body counter

1
2

34

Figure 14.1: Measurement chamber with four freely arrangeable HPGe
detectors and an adjustable stretcher. The detectors are arranged for
activity assessment in (1) liver, (2) bone, (3) left lung and (4) right lung.

• A study was performed to quantify the effect of respiratory motion
using four-dimensional computed tomography data as an example
of intraindividual anatomical variation (chapter 19).

14.1 Equipment
The IVM body counter includes a measurement chamber with four freely
arrangeable detectors, an adjustable stretcher, and a device for tracking
and changing detector positions (figure 14.1).

14.1.1 Detectors
The detectors are extended range coaxial (XtRa) germanium detectors
by Canberra (2013). They have an efficiency of about 80 % relative
to reference NaI(Tl) detectors and a maximum operational energy of
2.048 MeV. The energy range is divided into 8192 channels with 0.25 keV
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Figure 14.2: XtRa HPGe detector with carbon entrance window (front),
aluminium casing around the germanium crystal, preamplifier (top centre),
and thermoelectric cooling system (back).

channel width. The energy resolution (FWHM) is about 0.8–2.5 keV
across the operational range.

The front casing (figures 14.2 and 14.3) contains a copper frame
holding the germanium crystal and a thin carbon composite entrance
window with a diameter of 7.5 cm. The pulses are preamplified and sent to
an external processing unit. The back casing contains the electric cooling
system with a fan-based heat exchanger.

Detector geometries have been modelled in MCNPX syntax and are
continuously optimized with respect to crystal dimensions, front dead
layer and copper frame using point source measurements, radiography
of the detector head, and parametric simulations (Elanique et al. 2012;
Marzocchi, Breustedt and Urban 2010).

For use with Voxel2MCNP, the geometries were modelled with
SimpleGeo by Laubersheimer (2012). Equipment files (listing A.2) have
been created for each of the four detectors containing references to the
geometries stored in the according SimpleGeo files (figure 14.3). Data
conversion is automatically performed by Voxel2MCNP on file import
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Figure 14.3: SimpleGeo model of one of the four HPGe detectors. Left:
The detector crystal is located inside the cylindrical frame in the front
case. The preamplifier and case of the cooling system are mockups for
collision detection and orientation only because of their insignificant
impact on simulations. Right: Cut through the detector head with holder
(red) and crystal (orange).

with the according plug-in. In context of ongoing detector optimization,
model updates are as simple as replacing the geometry file.

The media of the individual detector parts have been converted to
V2M materials and an according resource was created. A simple taxonomy
for segment-material mapping was created. Its main purpose is the iden-
tification of any detector’s active volume. Parameters describing energy
resolution and energy binning are stored in a tally resource (listing A.2).
The association between tally and equipment is created by the scenario.

14.1.2 Stretcher
The stretcher is a customized massage table with individually adjustable
segments for upper body, upper legs, and lower legs. Several configurations
are predefined for different measurement setups. A comparison of stretched
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and sitting configurations was performed by Marzocchi et al. (2011) to
determine an optimal setup.

The stretcher was modelled by Laubersheimer (2012) from scratch
with SimpleGeo in three versions corresponding to the predefined setups
used in measurements. However, the reclined version is used in most cases
within the scope of this work.

14.1.3 Measurement chamber
The measurement chamber is shielded by 15 cm thick walls and a 25 cm
thick floor of low-background steel (without impurities due to nuclear
explosions). Additionally, the interior has a graded-Z shielding consisting
of 5 mm lead (Z=82), 1.5 mm tin (Z=50), and 0.5 mm copper (Z=29).

A SimpleGeo model of the measurement chamber was adapted from
an MCNPX version created by Hegenbart (2009).

14.2 Phantoms
Several phantom structures must be identified by Voxel2MCNP’s al-
gorithms for specifying source locations, detector positions, and anthropo-
metric parameters. This is done with a taxonomy common to all phantoms.
Each segment in the geometry of an equipment (listing A.3) and each ma-
terial in a materials collection is associated with at least one term defining
the semantics of the item. This allows a segment-material mapping.

An according taxonomy (figure 14.4) consisting of 322 terms was
created in context of the available phantoms and based on Medical Subject
Headings (MeSH) (U.S. National Library of Medicine 2012) for anatomic
system classification and body region classification, and Terminologia
Anatomica (Federative Committee on Anatomical Terminology 1998)
and Terminologia Histologica (Federative International Committee on
Anatomical Terminology 2007) for anatomic system classification and
histologic classification respectively.

A materials resource (listing A.4) with 38 organic and anorganic
media in the human body was defined common to all phantoms according
to specifications from ICRU (1992a), ICRP (2002), and ICRP (2009).
Additional resources were created for physical phantoms according to their
specifications of tissue-equivalent media.
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Figure 14.4: First three levels of the designed phantom taxonomy with
medium, region and system classification. Each geometry segment and
each material is associated with multiple, specific terms to define its
semantics, which is used for identification and segment-material mapping.

Having defined taxonomy, equipment and materials, an initial
segment-material mapping was generated with the method provided
by Voxel2MCNP (section 12.3), and then manually corrected by identi-
fying structures based on their shape and relative location using the
perspective view, and recording the information with the editor.

14.3 Scenarios
A scenario (listing A.1) combines multiple equipment resources and
arranges them in space. These are up to four detectors, a phantom, the
stretcher and the measurement chamber. A template scenario was created
for the IVM body counter for each of the two main measurement setups.
Instantiation of the template involves replacing the phantom, adding a
source, and adjusting detector positions (figure 12.1).

14.3.1 Source emissions
26 energies covering the operational energy range of the detectors were
selected and stored in a emissions resource (listing A.5). These values
are used to sample typical calibration curves of the HPGe detectors with
higher density at lower energies.
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Figure 14.5: Custom detector mounting for ceiling and floor providing
five degrees of freedom: translation in three directions, and yaw and pitch
rotation.

Sources containing real radionuclides are modelled on demand via
ENSDF files.

14.3.2 Detector positioning
Each detector features a custom mounting (figure 14.5) providing five
degrees of freedom: translation in three directions, and pitch and yaw
rotation. Detectors 1 and 2 are attached to racks with wheels that can
be moved on the ground around the stretcher to access the person from
the side. Detectors 3 and 4 are attached to a rail on the ceiling providing
access from above.

A position recording system is available to record measurement setups
for virtual reconstruction and subsequent simulation. It consists of a control
rig that allows tracking and setting of detector positions and orientations.
Additional dimensions are measured with a laser range finder relative to
the walls or the floor. A previous version of the system that is in operation
for the phoswich system is described by Hegenbart and Breustedt (2011).
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The direct and inverse kinematic has been implemented in
Voxel2MCNP according to the mechanics of the mounting devices.
This allows a 1:1 transfer of measurement setups between the physical
and the virtual world.

Two main measurement setups were defined by Marzocchi (2011) for
the body counter each using all four detectors (table 14.1): (1) 2×lungs,
liver, and knee, and (2) 4×head. However, the actual positions are
not fully specified and left to the interpretation of the technical staff
performing the measurements. The default stretcher configuration for both
setups has the upper body segment reclined to 45° and both leg segments
slightly angled to improve personal comfort during long measurements.

To reduce modelling effort, improve reproducibility, and remove indi-
vidual bias, an automated detector positioning strategy was implemented
in the Voxel2MCNP positioning module with the following scheme:

1. Assign a role to each detector predefined for each measurement setup.
2. Identify anatomical structures related to the role using the phantom

taxonomy.
3. Determine orientation, dimensions and characteristic anatomical

landmarks of the structures using principal component analysis.
4. Compile all information into parameters for the detector kinematic.
5. Adjust the distance to the body surface to a defined value (1 cm

is the default value to account for involuntary motion during
measurements).

6. Store the resulting transformation in association with the equipment
object in the scenario.

Due to different segmentations of the various phantoms, some struc-
tures may not be available in all phantoms. Therefore, the implementation
was designed to degrade with segmentation by using similar available
structures and heuristically estimating certain locations from anatomical
background knowledge. In some cases, it may also be possible to perform
basic segmentation steps to properly identify certain segments.

Lungs-liver-knee

The detector roles are (1) liver, (2) left knee, (3) left lung, and (4) right
lung (figures 14.6 and 14.7).
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Figure 14.6: Detector positions for left lung, right lung and liver (left),
and detail of the right lung position at height of the third rib (right).
Some tissues have been removed for visualization only.

• Liver: At the height of the seventh rib on the right side of the body
(between inferior end of the rib cage and infrasternal notch) with
pitch of 45° and orientation in medial direction of the body.

• Left knee: Centred on the distal femur head at height of the distal
end of the patella on the left leg with pitch of 45° and orientation
in medial direction to the body.

• Left/right lung: At the height of the third rib (below the sternal angle)
on the left/right side of the thorax with the entrance window close to
but not covering the sternum. The detectors are perpendicular to the
chest surface defined by the manubrium and upper half of the body
of sternum with a pitch in the range of 15° to 25° and yaw of ±25°.

It was observed that liver position has a large variation in superior-
inferior direction depending on the size of the lungs and is not consistently
indicated by anatomic landmarks. The seventh rib approximates the
mean liver centre in the available phantoms. An option for personalisation
would be to apply abdominal percussion to identify the inferior end of the
lungs. This, however, requires the expertise of medical staff members.
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Figure 14.7: Detector positions for the left knee. The detector targets the
distal end of the femur at the patella. Some tissues have been removed
for visualization only.

Head

The detector roles are (1) back right, (2) back left, (3) front left, and
(4) front right (figure 14.8). They are arranged at the sides of the head
to avoid blocking the view of the person in case of anxiety. The front
detectors are centred on the cranial suture (between the frontal and
parietal bones) with the front casing beginning at the height of the
eyebrows with pitch of 15° and yaw of ±70°. The back detectors are
centred on the left and right parietal bones with pitch of −25°.

14.3.3 Source locations
Similar to the association of detectors and tallies, phantoms are associated
with sources (table 14.1). Four sources were defined corresponding to the
two measurement setups by associating terms of the taxonomy.
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Figure 14.8: Detector positions for the head with detectors arranged in
a cross (left), and detail of the back right detector at the parietal bone
(right). Some tissues have been removed for visualization only.

Setup Role Source Tally

Lungs-liver-knee

Liver Liver Detector 1
Left knee Skeleton Detector 2
Left lung Left lung Detector 3
Right lung Right lung Detector 4

Head

Back right Skeleton Detector 1
Back left Skeleton Detector 2
Front left Skeleton Detector 3
Front right Skeleton Detector 4

Table 14.1: Overview of roles and associated sources and tallies for the
two considered measurement setups. Sources are associated with a set of
phantom segments. Tallies are associated with the segment corresponding
to the active volume of the detector crystal.
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14.4 Simulation
All simulations have been performed according to the workflow depicted
in figure 12.4. The MCNPX code (Pelowitz 2007) in version 2.7c was
used as the radiation transport code for all simulations.

14.4.1 Preprocessing
In some cases, preprocessing of the created scenarios is necessary to
improve computational efficiency or even allow computation in the first
place in case of exceeded memory requirements. This may be done
by replacing models with simplified versions or removing them if only
insignificant impact on the simulation results is expected.

A phantom may be replaced with a simplified version consisting
only of a region around the source. This may also remove a part of the
source, which makes additional normalization in post-processing necessary.
Obviously, crosstalk efficiencies cannot be evaluated in this case. The
stretcher, measurement chamber, and mockup parts of the detectors may
be removed completely.

After preprocessing, conversion to MCNPX syntax was done with the
according export plug-in.

14.4.2 External simulation
All simulations were performed on a high performance cluster at KIT
Steinbuch Centre for Computing (SCC) or at local machines at Institute for
Nuclear Waste Disposal (INE). Simulation runs were generally terminated
when the tallies achieved a relative error of < 1 %. Tally fluctuation charts
were checked to ensure that all tallies comply with the ten statistical tests
(Shultis and Faw 2006) imposed by MCNPX.

14.4.3 Post-processing
The output files were imported with the according plug-in. Post-processing
consisted of peak analysis for the expected photo peaks using the step
background model (equation 3.5b), correction for cropped source volumes,
and aggregation of left and right lung detectors and sources as well as
the head detectors to remove redundancies and provide more robust data.



14.4 Simulation 129

The resulting parameters were serialized to V2M Schema and exported
as tabular data for further evaluation.

Bone volume correction

Given the source region B for the skeleton and a conservatively cropped
version B* with counting efficiency 𝜂D𝑖←B* with respect to detector D𝑖.
The count rate of the detector 𝑐𝑝𝑠D𝑖

is assumed to be equivalent for both
sources.

𝑐𝑝𝑠D𝑖 = 𝜂D𝑖←B 𝐴B = 𝜂D𝑖←B* 𝐴B* (14.1)

The total source activity 𝐴B is assumed to be homogeneously distrib-
uted over its volume 𝑉B.

𝐴B
𝑉B

= 𝐴B*

𝑉B*
(14.2)

It follows that the full counting efficiency 𝜂D𝑖←B is equivalent to the
volume-weighted partial counting efficiency 𝜂D𝑖←B* .

𝜂D𝑖←B = 𝑉B*

𝑉B
𝜂D𝑖←B* (14.3)

Combination of lung sources and detectors

Given a set of linear equations relating detectors D1, D2, D3, and D4
arranged at liver, left knee, left lung, and right lung and their respective
sources LV, B, LL and RL.⎛⎜⎜⎜⎝

𝑐𝑝𝑠D1

𝑐𝑝𝑠D2

𝑐𝑝𝑠D3

𝑐𝑝𝑠D4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜂D1←LV 𝜂D1←B 𝜂D1←LL 𝜂D1←RL
𝜂D2←LV 𝜂D2←B 𝜂D2←LL 𝜂D2←RL
𝜂D3←LV 𝜂D3←B 𝜂D3←LL 𝜂D3←RL
𝜂D4←LV 𝜂D4←B 𝜂D4←LL 𝜂D4←RL

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝐴LV
𝐴B
𝐴LL
𝐴RL

⎞⎟⎟⎟⎠ (14.4)

The total lung source activity 𝐴LL + 𝐴RL is assumed to be homogen-
eously distributed over the volumes 𝑉LL and 𝑉RL of both lungs.

𝐴LL + 𝐴RL
𝑉LL + 𝑉RL

= 𝐴LL
𝑉LL

= 𝐴RL
𝑉RL

(14.5)
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Summing the count rates of left lung and right lung results in a
virtual detector D3,4 and a virtual source (LL, RL) with counting efficiency
equivalent to the volume-weighted sum of their respective (volume-
corrected) counting efficiencies with weights 𝑤LL = 𝑉LL/ (𝑉LL + 𝑉RL) and
𝑤RL = 𝑉RL/ (𝑉LL + 𝑉RL).

𝜂D3,4←LV = 𝜂D3←LV + 𝜂D4←LV (14.6a)
𝜂D3,4←B = 𝜂D3←B + 𝜂D4←B (14.6b)

𝜂D1←LL,RL = 𝑤LL 𝜂D1←LL + 𝑤RL 𝜂D1←RL (14.6c)
𝜂D2←LL,RL = 𝑤LL 𝜂D2←LL + 𝑤RL 𝜂D2←RL (14.6d)

𝜂D3,4←LL,RL = 𝑤LL (𝜂D3←LL + 𝜂D4←LL)
+ 𝑤RL (𝜂D3←RL + 𝜂D4←RL) (14.6e)

Combination of head detectors

Given a set of linear equations relating detectors D1, D2, D3, and D4
arranged at the head and the skeleton source B.⎛⎜⎜⎜⎝

𝑐𝑝𝑠D1

𝑐𝑝𝑠D2

𝑐𝑝𝑠D3

𝑐𝑝𝑠D4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜂D1←B
𝜂D2←B
𝜂D3←B
𝜂D4←B

⎞⎟⎟⎟⎠ 𝐴B (14.7)

Summing the count rates of all detectors results in a virtual detector
D1,2,3,4 with counting efficiency equivalent to the sum of their respective
(volume-corrected) counting efficiencies.

𝜂D1,2,3,4←B = 𝜂D1←B + 𝜂D2←B + 𝜂D3←B + 𝜂D4←B (14.8)



15 Measurement reconstruction
Hegenbart (2009) already performed measurements and simulations of
the LLNL phantom in liver and lung counting setups and showed the
validity of the approach of computational body counter calibration for
the IVM. To check for any issues with the redesigned Voxel2MCNP, it
was applied to the reconstruction of calibration measurements with the
JAERI phantom (Shirotani 1988).

15.1 Phantom modelling
The JAERI phantom was created by Shirotani (1988) at the Japan Atomic
Energy Research Institute for the purpose of application to body counter
calibration for lung and liver counting setups with regard to transuranic
radionuclides. It is based on the torso of a Japanese adult male with
average body mass (63.5 kg), height (168 cm), and chest circumference
(90.5 cm). The phantom has an artificial ribcage with lungs, heart, liver,
kidneys, and chest plate. It is provided with three sets of chest overlays
with different muscle-adipose ratios (10:90, 20:80 and 30:70). Each set
consists of two overlays with varying thickness (0.8 cm and 1.5 cm). The
base phantom has an average chest wall thickness of 1.5 cm.

Voxel models of the physical phantom were constructed by Lauber-
sheimer (2011) (figure 15.1) using computed tomography and image
segmentation of the phantom with inactive lungs and both types of chest
overlays. Segmentation was performed with the image segmentation
software tools Osirix (Rosset, Spadola and Ratib 2004) and Mimics
(Materialise NV 2013). The segmented slices were stored as image series
and converted with ImageJ (Ferreira and Rasband 2012) to a binary data
format, which can be read by Voxel2MCNP.
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Figure 15.1: Photograph and geometric model of the JAERI phantom
with removed chest cover (Pölz et al. 2013). The blank lungs can be
replaced with active versions. The liver can be loaded by inserting special
sheets between the individual slices (not available for this work).

15.2 Source modelling
The JAERI phantom was provided with five active lung sets: 241Am
(IAEA-AM2), 2×238Pu (IAEA-PU5 and IAEA-PU9), 238U enriched with
3 % 235U (IAEA-5U-5), and 232Th (IAEA-TH7). According photon emis-
sion spectra were taken for all radionuclides and their relevant progeny
in form of ENSDF from Laboratoire National Henri Becquerel (2013).
In addition, X-ray emissions were taken from Nudat (National Nuclear
Data Center 2013b) and Tori (Firestone and Ekström 2004) databases.
ENSDF files were imported with a file plug-in to Voxel2MCNP and
then reviewed and extended. Emissions with very low contribution were
discarded upon MCNPX code generation using a threshold filter to
improve computational efficiency.

15.3 Detector positioning
Three HPGe detectors were used in the measurements and positioned
above left lung, right lung, and liver (figure 15.2). For enhancing reprodu-
cibility of the positions, the phantom was adjusted on the stretcher with
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Figure 15.2: Photograph and geometric model of the calibration measure-
ments with the JAERI phantom at IVM (Pölz et al. 2013). Two detectors
are targeting the active lungs and one the inactive liver.

the help of a laser rangefinder and the positioning of the detectors was
done with the electronic position recording system.

15.4 Results and discussion
In total, 21 measurements were taken (two examples are given in fig-
ure 15.3), including two background measurements with blank lungs. The
software Genie 2000 (Canberra 2006) was used for evaluation of the
measured spectra, i.e. peak localization and peak area estimation. The
results of the determined activities are presented in table 15.1.

Some measurements are exactly reproduced by their according sim-
ulations and others have large deviations. These deviations are consistent
among lung sets in the estimated activity and may be due to three main
factors:

• Missing details in the phantom model, such as air inclusions in the
lung material of the active lung set or any damages that happened
after imaging,
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Lung set Reference
year

Reference
activity

in Bq

Radio-
nuclide

Relative
activity

in %

IAEA-AM2 1993 420 241Am 97.00

IAEA-PU9 1995 5000 238Pu 87.44

IAEA-PU5 1996 42 300 238Pu 88.13

IAEA-5U-5 1987 1676 238U 100.00
235U 100.00

IAEA-TH7 1963 125.8 232Th 100.00

Table 15.1: Overview of activities determined for several JAERI lung sets
as ratio of simulation and measurement (Laubersheimer 2012). Percentages
of decay products of uranium and thorium were also calculated.

• Imprecise detector positioning due to tolerances in mechanics and
measurements (±0.5 cm in translations and ±1° in rotations), and

• Uncertainty in certified activities and possible inhomogeneous
distribution inside the lungs.

Attempts to virtually fix several parts of the phantom model had
no significant impact on counting efficiency. The uncertainty due to
imprecise detector positioning was estimated to about 5 % at the peak
efficiency using parametric simulations. These results are similar to values
reported by Hegenbart (2009) for phoswich detectors. Changes to the lung
activities, which scale counting efficiencies of multiple peaks, result in a
much better shape of the calibration curve over all lung sets. This is an
indication that there may be inhomogeneities due to technical difficulties
in the production process of the phantom lungs. This was analysed by
Hegenbart (2009) for the LLNL phantom. The author noticed a systematic
increase in the lung density towards the boundaries, which could be due
to a special coating to prevent abrasion.
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Figure 15.3: Comparison of peak shapes for measurement and simulation
of the JAERI phantom with the 238Pu and 238U enriched with 3 % 235U
lung sets. The count rates are given for the combination of two detectors.
The measurement time was about 14 h in both cases.





16 ICRP-89 phantoms
The ICRP reference man specification (ICRP 2002) provides values of
body height, body mass, and organ masses for males and females of various
age groups besides many values for physiological quantities for application
to radiation dosimetry. This specification has been implemented by four
research groups in form of computational phantoms. However, the official
reference computational phantoms are the ICRP phantoms (ICRP 2009).

As a part of this work, all phantoms were used as calibration phantoms
for the IVM body counter to quantify the order of magnitude of uncertainty
that is produced by anatomic features not described by the specification.
These features are primarily body and organ shapes that are defined by
the base data used for phantom construction.

16.1 Phantom modelling
The following phantom series each consisting of a pair of adult male and
female models were acquired and imported into Voxel2MCNP:

ICRP (ICRP 2009): The phantoms have a lattice structure based on
computed tomography data of two individuals with near-reference
body mass and height. The segmented structures were modified
using voxel modification methods. The phantoms are designated
ICRP-AM (male) and ICRP-AF (female).

RPI (Zhang et al. 2009): The models are based on polygonal mesh sur-
faces from a database of anatomical structures. The authors
combined the models using a deformation algorithm to resolve
volume overlap. The phantoms are designated RPI-AM (male) and
RPI-AF (female).

UFPE (Cassola et al. 2010): The models are based on polygonal and
NURBS meshes from a database of anatomical structures and a
parametric body surface model. Geometric modelling tools were
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used to adjust and combine the different parts. The phantoms are
designated MASH (male) and FASH (female).

UFH (Lee et al. 2007; Lee et al. 2010): The models are based on polygon
and NURBS meshes approximating segmented computed tomography
data. Additional reference anthropometric parameters were derived
from a nutrition and health survey and used for the creation. The
phantoms are designated UFHADM (male) and UFHADF (female).

16.2 Anthropometry and organ masses
The adult male and female versions conform in general to the specified body
heights (176 cm and 163 cm) and body masses (73 kg and 60 kg). However,
there are issues with organ masses of several structures (table 16.1). While
many are perfectly represented (e.g. heart, brain, kidneys, and pancreas),
there are others with significant deviations (e.g. adipose, muscle, and
lung tissue) that cannot be explained by different modelling techniques
and representation methods including volume changes due to low voxel
resolution.

The authors of the ICRP series state that the imaging modality —
computed tomography in supine position — caused compression of the
lungs for both persons. The lung density was therefore increased from
0.25 to 0.38 g/cm3 to compensate the low volume with regard to radiation
transport. Similar modifications to 0.36 g/cm3 for the UFH series and to
0.27 g/cm3 for UFPE were applied for consistency among all phantoms.
The RPI series did not need any modifications. These differences are
systematic, since they are present in both male and female phantoms of
the series. It was ensured that the computed volumes include the full lungs
with segmented blood vessels as specified by ICRP. Inclusion or exclusion
of segmented blood vessels and bronchi cannot explain the differences.

16.3 Detector positioning
Both setups, lungs-liver-knee and head, were used for all eight phantoms.
Although using the automated detector positioning strategy, differences
in the detector positions are obvious due to very different body shapes.
A comparison (figure 16.1) of the phantoms shows large differences in the
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Resolution ICRP RPI UFPE UFH

𝑥/cm 0.21 0.25 0.12 0.10
𝑦/cm 0.21 0.25 0.12 0.10
𝑧/cm 0.80 0.25 0.12 0.10

Structure ICRP RPI UFPE UFH

Adipose tissue +0.12 +0.13 −0.20 −0.28
Muscle tissue 0.00 0.00 0.00 +0.43
Lungs −0.40 0.00 −0.08 −0.31
Liver +0.01 +0.01 +0.01 −0.01
Cortical bone 0.00 0.00 −0.02 −0.01
Skin +0.13 +1.42 0.00 −0.48

Table 16.1: Comparison of voxel resolution and organ volumes of male
ICRP-89 phantoms. Given are relative deviations from the reference
volumes derived from specified masses (ICRP 2002) and densities (ICRU
1992a).

local anatomy of the chest regarding ribs and cartilages. Also, the liver
varies in shape and position.

16.4 Results and discussion
The resulting calibration curves show deviations relative to the ICRP
phantoms for all setups (figure 16.2). The deviations are generally increas-
ing with decreasing photon energy. The values of the ICRP phantoms are
mostly higher than those of other phantoms. This could be explained due
to the lean body structure of the ICRP phantoms. The high attenuation
at the liver of RPI-AF and RPI-AM could be explained by a large portion
of the liver extending to the left side of the body. The deviations are
generally not correlated to a change in volumes. There is also no simple
relationship when comparing changes in counting efficiencies of male
and female phantoms. The changes may primarily be caused by local
deviations in the tissues shielding the source organs.
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Figure 16.1: Comparison of anatomy for male ICRP-89 phantoms. From
left to right: ICRP-AM, RPI-AM, MASH, and UFHADM. Visible
are, bones and cartilages (grey), liver and glandular tissue (green),
gastrointestinal tract (brown), lungs (light blue), muscle tissue and heart
(pink), blood vessels (red/blue), and lymphatic tissue (yellow). Skin, and
major muscle and adipose tissues have been omitted for visualization.

It is obvious that there are large differences in phantom development
starting by the used data over modelling bias to the representation method.
These differences have an effect on three major factors:

• Anatomy and organ shapes
• Detector positions due to different body shapes
• Voxel resolution and segmentation

Differences due to changes in voxel resolution were quantified by
Hegenbart (2009) for lung counting with phoswich detectors of the LLNL
phantom to about 0.9 % per 1 mm. The influence of body shape is
expected to be relatively large because of the high spatial sensitivity of
the HPGe detectors. Deviations increase with decreasing energy, which
makes body counter calibration very sensitive to anatomical changes for
incorporation of low-energy photon emitters.
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Figure 16.2: Comparison of counting efficiencies for all detector setups.
The values are given for the main photo peak of 241Am (59.5 keV) as a
representative for low-energy photon emitters. The values are normalized
to their gender-specific references from ICRP. The percentages at the
bottom give the relative standard deviation of the values.





17 XCAT phantom series
The application of the STEP framework to a large phantom series is the
main idea of this work. The XCAT series (Segars and Sturgeon 2010)
was selected for this part, because it is the only available large series of
person-specific phantoms with high anatomical detail.

17.1 Calibration
The XCAT series (Segars and Sturgeon 2010) is a set of 30 adult, person-
specific, whole body phantoms derived from computed tomography of
medical patients. They have a high level of anatomical detail and comprise
2724 individual structures (figure 17.1). The series is available as a set of
NURBS files with an associated tool, called DXCAT2, which has several
functionalities:

• Voxelization to a lattice of densities for medical tomographic imaging
specified by in-plane resolution, plane offset, and gantry dimensions.
There is also an option to produce segment identifiers instead.

• Placement of a spherical lesion for radiation treatment planning.
• Setting of activities in several major structures for emulating

radioactive tracers nuclear medicine.
• Change of diameters and volumes of several major structures to

adapt anatomical features.
• Adjustment of position in the breathing and heart motion cycles

based on average interpolated data of individuals.

Voxelization was done with DXCAT2 for all phantoms to voxels with
1 mm edge length and associated segment identifiers. This seemed to
provide a sufficient level of anatomical detail. For variance reduction, each
phantom was cropped into three regions containing the head (figure 17.2),
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Figure 17.1: First three levels of the designed phantom taxonomy with
medium, region and system classification, and number of registered XCAT
segments.

torso (figure 17.3), and left knee (figure 17.4) based on the design of
corresponding physical phantoms. This was done by defining cutting
planes at certain relative positions on major bones. Also, the stretcher and
mockup parts of the detectors needed to be removed. Hegenbart (2009)
already showed that such details may have a large impact on point source
measurements (a 26.2 % decrease of counting efficiency for 241Am) due to
missing scattering effects, but has virtually no effect for body counting.

Both setups, lungs-liver-knee and head, were used for all phantoms.
The phantom parts were arranged according to the angled configuration of
the stretcher. No organ shift was added to compensate the posture change
from supine position. Simulations were performed for 30 phantoms, with
five types of source locations, with 26 photon emission energies, and eight
detector roles defined by the measurement setups. This leads to a total
of 3900 simulations and 6240 tallies. 780 samples of counting efficiency
remain for each source and primary tally after aggregation.

The resulting calibration curves are in similar ranges with the LLNL
(Griffith et al. 1987) and JAERI (Shirotani 1988) phantoms. Deviations
from the mean of all XCAT phantoms are decreasing with increasing
photon energy. For an energy range from 25 keV to 2 MeV, relative
standard deviation in counting efficiencies decreases from 61.1 % to 21.1 %
for lungs, from 48.9 % to 21.1 % for liver, from 32.4 % to 15.1 % for knee,
and from 15.8 % to 11.6 % for head. An example is given in figure 17.5.
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Figure 17.2: Structure of the head region of an XCAT phantom with
adipose tissue (left), muscle tissue (centre), and skeleton and internal
organs (right).

Figure 17.3: Structure of the torso region of an XCAT phantom with
adipose tissue (left), muscle tissue (centre), and skeleton and internal
organs (right).
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Figure 17.4: Structure of the knee region of an XCAT phantom with
adipose tissue (left), muscle tissue (centre), and skeleton and internal
organs (right).
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Figure 17.5: Relative standard deviation of XCAT calibration values
for different measurement setups. The values are given for the main
photo peak of 241Am (59.5 keV) as a representative for low-energy photon
emitters. The percentages at the bottom give the relative standard
deviation of the values.
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17.2 Anthropometry
Performing anthropometric measurements according to a specification is
necessary to produce reproducible and comparable values for people as
well as computational phantoms. The specification used in this work is
EN 13402-1 (European Committee for Standardization 2001), which is
the European standard for clothes sizes.

It was taken care that there are no systematic differences in the
procedures for physical and computational measurements. The only
differences are due to posture-related deformations of the person and
aliasing effects due to the geometric representation.

In the following, a list of implemented measures with a brief description
is given. Of course, not all implemented measures are useful for every
detector setup. But, they can still be used as control parameters to check
for possible deviations with respect to general expectations. For instance,
a strong correlation between body height and inner leg length is expected,
if it is not visible in the data, there may be systematic errors in the
computation.

The considered anthropometric parameters are grouped into three
categories: masses and derivatives (table B.1), lengths, breadths and
distances (table B.2), and circumferences (table B.3). Details for physical
and virtual measurements are indicated by the according keywords. Addi-
tionally, average photon transmission (section 12.4) was computed for each
source organ and primary detector for each simulated photon energy.

All 18 anthropometric parameters were computed for each phantom
leading to a total of 540 values. The parameters are comparable to values
from the National Health and Nutrition Examination Study (NHANES)
(Department of Health and Human Services and National Center for
Health Statistics 1996), which gives an impression of the distribution of
parameters (figure 17.6) among the U.S. population and clients of the
IVM. Body masses of physical phantoms with overlays were extrapolated
from the specified body masses of the base phantoms by linear scaling
with the mass ratio gained through the overlay. Apparently, the definition
of “chest circumference” for the IVM and in the specification of JAERI
and LLNL phantom are closer to the definition of bust circumference than
chest circumference with regard to this work (table B.3). Experimental
measurements with a tape measure on the physical phantoms confirm this
systematic difference in the definition.
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Figure 17.6: XCAT anthropometric parameter values in context of the
LLNL and JAERI phantoms, and statistical data. The percentage of
males in the XCAT data is 50.0 %. Top: 12 900 adults (aged 18 to 65)
with 47.9 % males measured during NHANES (Department of Health and
Human Services and National Center for Health Statistics 1996). Bottom:
3247 persons with 90.8 % males measured at IVM.
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17.3 Statistical analysis
Statistical models were built according to the descriptions in chapter 13.
The method for creating an estimator given a feature subset has several
free parameters. Reasonable samples for these parameters were selected
and optimized with regard to the performance on the data using grid
optimization (figure 17.7):

Bagging iterations: The number of bagging iterations should be as large
as possible to get robust performance estimates. The constraining
factor is computer time. Values of 16, 32, . . . , 256 were tested. A
value of 256 was estimated to provide a good tradeoff.

Sampling method: Bootstrapping was chosen as sampling method above
cross sampling and random sampling.

Sample ratio: Sample ratio defines the size of the training data set
relative to the total number of samples. The remaining samples are
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used as testing data. The ratio should be as large as possible without
encouraging overfitting and while providing enough testing data.
Performance is slightly increasing with sample ratio due to better
fitting of the data and was set to 0.8 based on literature values.

Kernel method: Support vector regression was discarded because of
problems with computational efficiency. Therefore, local polynomial
regression of order two with Euclidean distance for neighbourhood
weighting and 20 passes for reduction of variance in residuals was
selected.

Smoothing kernel: Most smoothing kernels perform relatively well
with Triweight being best and Rectangular being worst. Other
considered kernels were Bisquare, Gaussian, Epanechnikov, Expo-
nential, McLain, Triangular, and Tricube. They also exhibit similar
behaviour with regard to other parameters.

Kernel size: Kernel size is relatively independent from other parameters
and has a peak at 0.1. Values up to 0.25 are also comparable and
provide less overfitting. Smaller values emphasize random properties
of the data and higher values ignore samples at the boundaries of
the sample space and details.

The error bars on performances and counting efficiency estimates in
the diagrams of this chapter represent the standard deviation among the
individual bagging models and therefore the variation of the data. This
is a measure of the robustness of the estimator and is mostly dependent
on the sample ratio. The standard deviation of the mean performance
and counting efficiency is only dependent on the number of bagging
iterations, which is very low for 256. The actual uncertainty of the
estimate with respect to the estimator could not be derived with the
available implementation of RapidMiner.

Preselection for feature subset selection was performed by computing
the performances of all individual features and covariances for all feature
pairs, and removing those with low relevance and high redundancy.
Optimal feature subsets were computed with brute force search for direct
contributions of lungs, liver, knee, and head for feature subsets up to size
three with energy as a permanent feature. It was checked in all cases
that residuals are uncorrelated and estimators produce characteristic
calibration curves when plotted over the energy range.
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17.4 Results and discussion
The results show that adding another feature to energy almost always
increases the estimator’s performance. Adding a third feature may increase
or decrease performance though. Sporadic tests of larger subsets showed no
further improvement. This is due to increasing sparseness with increasing
subset size. There is also a slight positive correlation between the perform-
ance increases for a single feature being added to different subsets.

Optimal features (figure 17.8) are related to the body region of the
source structure. These are circumferences of the chest for lungs, of the
chest and abdomen for liver, of the extremities for knee, and of the head for
head setups. Due to the high correlation of several anthropometric paramet-
ers there are many feature subsets that perform only slightly suboptimal.
Whole-body features, such as body mass and derivatives, show comparable
but lower performances. Features related to body height and other lengths
or other body parts show low performances. No correlation (𝑅2 < 0.05 for
XCAT for all photon energies) was observed between cup size (difference of
bust circumference and underbust circumference) and counting efficiency
for lungs, which was reported by Hegenbart et al. (2008) and Farah, Brog-
gio and Franck (2010). However, larger detectors (phoswich detectors and a
2×2 HPGe array) and detector positions (frontal to the breasts in the first
case) were chosen in these works, which could explain the deviations. Also,
no correlation (𝑅2 < 0.05 for XCAT for all photon energies) was observed
between inverse lung volume and counting efficiency for lungs as reported
by Farah, Broggio and Franck (2011b). However, the authors state that
this effect is due to the modelling process of the applied phantoms.

It is possible to derive basic rules from the estimators, when plotted for
specific features. For example, counting efficiency decreases with increasing
corresponding circumference for all measurement setups (figure 17.9).
Moreover, body circumferences are negatively correlated (𝑅2 ≈ 0.4 for
XCAT at 59.5 keV) to average photon transmission for fixed photon
energies, which is itself positively correlated (𝑅2 ∈ [0.6− 0.9] for XCAT
at 59.5 keV) to counting efficiency. This means that an increase in body
circumference is likely also an increase in wall thickness of tissues at the
location, which shield the source organ. In conclusion, the low change of
counting efficiency for head measurements could be explained by the low
increase in tissue thickness at the head with increasing circumference.
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Figure 17.8: Performances of estimators trained with selected feature
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individual bagging models.
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The legacy personalisation method (Mohr and Breustedt 2007) based
on chest wall thickness currently applied at IVM uses a specific equation
as a person model and the LLNL calibration phantom (Griffith et al. 1987)
to construct a calibration model. For comparison to STEP, a calibration
model of the LLNL phantom was created with Voxel2MCNP and linear
interpolation of average chest wall thickness with regard to the chest over-
lays of the phantom was performed for each photon energy. To evaluate
the improvement of STEP compared to performing no personalisation
and to the legacy personalisation method, three methods are proposed:

• Since STEP is an extension of the legacy method, it can emulate
it using energy and the anthropometric parameter defined by ratio
of body mass and height as feature subset (figure 17.8). The change
in performance is a measure for improvement of the estimator. The
score changes between the ratio of body mass and height and the
optimal circumference relative to the base score are +18.5 % for
lungs, +8.4 % for liver, +1.8 % for knee, and +1.5 % for head.

• A visual comparison of the goodness of fit of the legacy method
and STEP (figure 17.10) shows an improvement for the XCAT
and LLNL phantoms over the full energy range with regard to the
squared correlation coefficient. This measure is biased towards the
XCAT data for the STEP method and to the LLNL data for the
IVM method when applied to the full data set.

• Another measure of the improvement is the change in relative
standard deviation of the residuals of the estimators compared to
the base estimator using only energy (figure 17.11). The changes
for the optimal circumferences are −9.0 % for lungs, −16.5 % for
liver, −11.3 % for knee, and −4.6 % for head. The corresponding
values for the legacy method are −4.0 % for lungs, and −9.3 % for
liver. Personalisation for head and knee cannot be performed with
the associated torso phantom. This measure is biased towards the
XCAT data for the STEP method, because it is evaluated on the
data set that was also used for model training (figure 17.7).
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18 Inhomogeneous
source distributions

In general incorporation scenarios, radionuclides are not limited to one
organ, but are a mixture of radionuclides over several organs, and even may
be inhomogeneously distributed in those individual organs. The latter may
be due to hot particles (Charles and Harrison 2007) that by themselves are a
concentrated activity, or due to inhalation of radionuclides creating local de-
position enhancement on bifurcations in the bronchioalveolar tree based on
particle size or activity median aerodynamic diameter (Balashazy, Hofmann
and Farkas 2002; Bergmann, Hofmann and Koblinger 1997; ICRP 1994).

Source distribution cannot be estimated with the usually available
information and measurement systems. Therefore, the conventional
assumption is a homogeneous distribution within an organ. However,
source distribution has high sensitivity to efficiency calibration as shown by
measurements (Pelled et al. 2006) and simulations (Kramer, Burns and Yiu
1997). It was shown that activities in lung counting can be underestimated
by a factor of 20 and more for low-energy photon emitters. It was also
shown that detector arrays reduce these errors by up to a factor of 4.

Measurements were performed as a part of this work to estimate the
impact of inhomogeneous source distributions in lungs for the IVM body
counter using a physical phantom with a set of perforated lungs and vials
of 18F.

18.1 Phantom modelling
The LLNL phantom was created by Griffith et al. (1987) at the Lawrence
Livermore National Laboratories. Its structure and designated application
are similar to the JAERI phantom. The main difference is that it is based
on the torso of an average U.S. American adult males with respect to
body mass, heights, and chest circumference.
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Voxel models of the phantom were constructed by Hegenbart (2009).
They were imported into Voxel2MCNP as has been described in the
case of the JAERI phantom (chapter 15).

18.2 Measurements and simulations
18F-2-Fluor-2-deoxy-D-glucose (FDG) is a molecule containing radioactive
18F. The radionuclide disintegrates with a half-life of 109.7 min by
beta-plus decay (96.86 %) and by electron capture (3.14 %) to stable 18O
(Laboratoire National Henri Becquerel 2013). The main peak at 511 keV is
produced by photons generated from electron-positron annihilation. The
molecule is usually applied as a radioactive tracer in positron emission
tomography.

The measurement setup consisted of the LLNL phantom with perfor-
ated lungs and two detectors targeting the lungs (figure 18.1). 20 vials
filled with 10 µl FDG — equivalent to 51 270 Bq 18F at reference time —
were available. A variety of distributions were selected and measured. The
setup was also measured with multiple chest overlays for the phantom
using the same detector positions. In total, 17 measurements with 18F
were taken over the course of four hours with increasing measurement
time from 1 to 10 min to compensate the fast decay. Additionally, a
background measurement with the blank lung set was taken, and a
reference measurement of the basic lung set with 84 200 Bq 241Am was
taken to check for any problems with the simulation parameters.

Five configurations were used for each lung (figure 18.2):

• Full loads with 14 vials left and 19 right
• Partial loads with five vials evenly distributed each in two variations
• Spot loads with one vial either in the front or in the back of the lung

The setup was also reconstructed and modelled with Voxel2MCNP
using homogeneous distribution of 18F and 241Am in lungs.

18.3 Results and discussion
Measured spectra were evaluated for the 511 keV peak of 18F for both
detectors (figure 18.3) and compared to the simulation results for the
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Figure 18.1: Physical and virtual measurement setup for the LLNL
phantom with two detectors targeting the lungs.

Figure 18.2: LLNL perforated lung set with left lung (right) and right
lung (left) and several inserted vials. Different configurations were created
by using a certain number of vials in a specific distribution. The front
sides of the lungs are in the centre of the picture.

homogeneous distribution (figure 18.4). The full configuration is in
99.0(±0.3)% agreement with the homogeneous distribution. Counting
efficiencies for partial loads are 71.5(±0.5)% and 61.2(±0.7)% higher.
This is probably due to the four spots in the back being empty in both
configurations. The spot configurations are extremes. One vial in the back
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Figure 18.3: Dependency of measured counting efficiency and average
chest wall thickness for partial configuration 1 with exponential fits
(𝑅2 > 0.99).

produces only 35.7(±0.3)% of the counts in the detectors and the front
configuration produces 318.3(±1.9)%. The difference between both front
configurations may be due to the left spot being superior to the right spot
and therefore closer to the detector (figure 18.2).

Pelled et al. (2006) reported factors of 7 for 185 keV and 10 for 92 keV.
This is comparable to the factors determined in this work considering
the different photon energies. Unfortunately, no additional measurements
were possible due to the rapid decay of the radionuclide.

Simulation results of the reference measurement at the 59.5 keV peak
of 241Am agree to 95.8(±1.0)% with regard to activity. This is an
indication that the reconstruction parameters of the measurement setup
are reasonable.
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19 Respiratory motion
Complementary to the variation in anatomy between people, anatomy
also varies intraindividually over short periods. An obvious variation is
due to voluntary and involuntary motion.

Voluntary motion is expressed as a change in body posture when
comparing body counting setups. This results in deformation of parts of
the body. For partial-body setups with HPGe detectors, it is expected that
there are minor variations in counting efficiencies due to posing. The largest
contributions may be from crosstalk due to sources in muscle and bone.
However, appropriate imaging data to perform comparisons is difficult to
acquire since imaging is done primarily in supine position. Also, there are
only few publications (Dimbylow and Findlay 2010; Nagaoka and Watanabe
2008) regarding posing in phantom development in radiation protection.

Involuntary motion stems from respiratory and cardiac motion. The
expected variation due to these effects is also low, however, data is
available for quantification in form of respiratory-correlated computed
tomography data sets (Guckenberger et al. 2007).

19.1 Phantom modelling
Respiratory-correlated computed tomography data sets are usually used
in image-guided radiotherapy to track small lesions in lungs and liver due
to respiratory motion (Guckenberger et al. 2008). They are acquired with
a multi-slice CT scanner combined with a pressure sensor fixed in the
abdominal region of the patient. The sensor records pressure changes
due to respiratory motion of the patient. The acquired images are sorted
retrospectively by their associated position in the respiratory cycle and
used for reconstruction of a series covering different phases of breathing
(Guckenberger et al. 2007).

The available data sets have a spatial resolution of 0.7 mm× 0.7 mm×
2.0 mm and cover a cycle of tidal breathing in eight time steps. A selected
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Figure 19.1: Computed counting efficiencies at full inspiration and
expiration for the four-dimensional phantom and relative standard
deviation from the average of all eight time steps. Expiration increases
and inspiration decreases counting efficiency. The noise on the data is
likely due to segmentation variance of the high-resolution data sets.

data set was segmented into six basic tissues (lungs, liver, bone, adipose,
muscle, and soft tissue) and constructed into a four-dimensional phantom
(Schneider 2011b). It was then applied to body counting with two fixed
detectors over the lungs in all eight time steps (Schneider 2011a).

19.2 Results and discussion
The results (figure 19.1) show a standard deviation of counting efficiency
over a full respiratory cycle of about 1 % for tidal breathing (Pölz et al.
2012). This is equivalent to a slight underestimation of counting efficiency
for lung measurements when using a calibration phantom at full inspiration
of tidal breathing. However, computed tomography data sets for phantom
development are typically assessed at full inspiration of heavy breathing for
better imaging of the thorax. Therefore, the observed effect on counting
efficiency due to respiratory motion is expected to be larger considering
those types of phantoms.
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Discussion





20 Summary and conclusion
The contribution of this work to body counter calibration and radiation
protection in general is primarily the developed personalisation framework
consisting of software implementation, the associated data model and
a method for performing sensitivity analyses. The framework has been
applied in several studies to analyse uncertainties with regard to the IVM
body counter at KIT. However, it is not restricted to a particular facility
or to body counting in general. It is designed to be extendable to other
Monte Carlo codes and other applications related to dose assessment.

20.1 Development
The personalisation method currently applied at IVM (Mohr and Breustedt
2007) and similar body counting facilities (Lynch 2011; Pierrat et al.
2007) is based on estimation of chest wall thickness via the ratio of body
mass and height. The major drawbacks are the missing variation in
anatomy due to the use of a single physical calibration phantom, missing
customization of the chest wall thickness estimation to specific body
counting facilities, restriction to lung counting setups, missing estimation
of uncertainties, and an overall low complexity of the model leading to
coarse estimates (and incorrect extrapolation).

These drawbacks have been considered and improved with the design
of the personalisation framework STEP (chapter 10). It is basically a
strong generalization of the currently applied interpolation-based method.
It considers a variety of anatomies by using a set of person-specific
computational phantoms, is customizable to particular body counting
facilities, applicable to any measurement setup, allows estimation of
uncertainties with regard to the interindividual variation of the available
phantoms, and is able to process information about the individual in form
of anthropometric parameters to personalize calibration factors.
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The framework is implemented in three components: a data model
for general radiation protection scenarios, a software tool for computa-
tional body counter calibration, and an implementation of a statistical
analysis method. This approach ensures continuity throughout the whole
personalisation process, robust and algorithmically reproducible results,
computational efficiency, and applicability to actual measurements and
other types of body counting facilities.

20.1.1 Data model
The developed data model V2M Schema (chapter 11) was created
based on the need for abstract, efficient and uniform processing of large,
inhomogeneous and changing data from various sources. This refers to
geometric models of phantoms and measurement equipment, nuclear decay
data, media specifications, and source and tally locations. An abstraction
layer in form of a taxonomy was added between geometry segments and
media providing a basic approach for dynamic segment-medium mapping
and universal segment identification through semantic annotation.

V2M Schema is an important step in data model standardization for
radiation protection applications and, hopefully, gives a stimulus to future
developments leading to efficient data exchange in the radiation protection
community. The data model was inspired primarily by the Monte Carlo
code MCNPX (Pelowitz 2007) and may require further generalization for
other radiation transport codes. Interesting extensions of the data model
are tallies comprising a binning with spatial resolution for computing
isoflux surfaces, or a taxonomy for mapping between anatomical and
biokinetic segments, which would be the basis for combining activity
assessment and dose computation.

20.1.2 Software implementation
Voxel2MCNP (chapter 12) is a redesign of the corresponding software
tool (Hegenbart 2009) developed at the former Institute for Radiation
Research (ISF) and the Institute for Nuclear Waste Disposal (INE) at KIT.
It is an established tool at the radiation protection group of the institute
among researchers and students working with computational phantoms
and MCNPX. The new version extends the original idea for modelling,
simulation, and evaluation of radiation protection scenarios in an abstract
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and modular manner. It is fully integrated with V2M Schema and
provides data import and export capabilities for data formats and tools
established in the radiation protection community, such as ENSDF (Tuli
2001), ImageJ (Ferreira and Rasband 2012), SimpleGeo (Theis et al.
2006), and MCNPX (Pelowitz 2007). There are also modules for scenario
visualization and interactive geometry annotation, computation of anthro-
pometric parameters, and automated and interactive detector positioning
for body counting. Automatic evaluation of simulated pulse-height spectra
is available in form of standard methods (Canberra 2006; International
Organization for Standardization 2010a).

The new version of Voxel2MCNP abstracts from the specifics of
MCNPX and is designed to be extended to other Monte Carlo codes and
applications beyond body counting as well as new data formats. This has
been partially tested by modelling scenarios for computing organ absorbed
dose fractions due to internal and external radiation sources (Pölz et al.
2013). An interesting future extension would be to perform the switch
of the geometric representation of computational phantoms from voxel
lattices to polygonal meshes in combination with a Monte Carlo code that
is able process this format, which may alleviate current problems with
high requirements on computer memory.

20.1.3 Statistical analysis method
The application of Voxel2MCNP in combination with V2M Schema to
a specific body counter and a large phantom series enables the generation
of huge data sets for sensitivity analysis. The implemented statistical
analysis method (chapter 13) allows estimation of energy-dependent cal-
ibration factors for specific measurement setups based on anthropometric
parameters. This is possible by combining established machine learning
techniques for feature subset selection (Guyon and Elisseeff 2003) and
kernel regression (Hastie, Tibshirani and Friedman 2009) with regard to
structural risk minimization (Vapnik 1999).

The designed workflow has several free parameters and components.
Sampling method, kernel method and performance measure can be
optimized or replaced to be more suited for the particular application data
in terms of accuracy and computing time. Depending on the available
data, it would also be interesting to replace the selected wrapper method
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for feature subset selection with an embedded approach to increase
computational efficiency.

20.2 Application
The main application of this work is the personalised calibration of the
IVM body counter with the STEP framework. In addition, several
sensitivity analyses were performed to quantify uncertainties beyond
interindividual anatomical variation using components of STEP. These
uncertainties are generally related to intraindividual variation, inhomo-
geneous source distributions, and accuracy in computational models and
radiation transport simulation.

The IVM body counter was modelled (chapter 14) with all relevant com-
ponents including detectors, their kinematics, and other equipment in the
measurement chamber. The models were created with software tools and in
data formats supported by Voxel2MCNP, converted to V2M Schema,
and instantiated into calibration scenarios. Algorithmic interpretations
of the outlined measurement setups, lungs-liver-knee and head (Marzocchi
2011), were defined from the perspective of a technician performing
the positioning to ensure reproducibility. However, detector positioning
remains a difficult task, because of its high sensitivity for low-energy
photon emitters and especially for the liver, whose anatomical location
varies considerably among the available computational phantoms.

Actually performing the modelling process on an example shows the
advantages of the design approach. Existing models of the HPGe detectors
(Marzocchi, Breustedt and Urban 2010) were recreated (Laubersheimer
2012) with SimpleGeo and are now primarily stored in this format. Con-
current model development and modelling of radiation transport scenarios
using this approach is possible, since changes are automatically propagated
on file import with Voxel2MNCP. The data model provides a degree of
abstraction and modularization that was not imaginable when modelling
directly in MCNPX. The software supports beginners and experienced
users of MCNPX regarding the simulation workflow and improves
modelling and evaluation efficiency while reducing user mistakes.
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20.2.1 Measurement reconstruction
Measurement reconstruction for physical phantoms is an important part
of quality management of body counting facilities and validation of
simulation models in international intercomparisons (Broggio et al. 2012;
Gómez-Ros et al. 2008).

A study was performed with the JAERI torso phantom (Shirotani
1988) assessing the capability of reproducing measurements with compu-
tational methods (chapter 15). Lung sets with transuranic radionuclides
such as 241Am, 238Pu, 235U/238U, and 232Th were measured and recon-
structed (Laubersheimer 2011; Laubersheimer 2012) with the help of
Voxel2MCNP, which allows easy import of radionuclide specifications,
interactive detector positioning and analysis of pulse-height spectra.

The results show that simulation models in combination with radiation
transports codes are a valid representation of physical measurements.
There are, however, many small uncertainties regarding phantom models,
detector positions and activity distributions that can add up to inconsist-
ently large deviations of 15 % at maximum in the performed experiments
with low-energy photon emitters.

20.2.2 ICRP-89 phantoms
Originally as a motivation for this work, four phantom series implementing
the ICRP reference man specification (ICRP 2002) specifying body height,
body mass, and organ masses were compared (chapter 16) with respect
to body counting. The goal of this study was the analysis of uncertainties
related to changes in body and organ shapes. These changes are inevitable
since phantom developers use different imaging data or stylistic models.
The considered phantom series were the ICRP series (ICRP 2009), the
RPI series (Zhang et al. 2009), the UFPE series (Cassola et al. 2010), and
the UFH series (Lee et al. 2007; Lee et al. 2010) each including an adult
male and female phantom.

Considering a fixed photon energy of 59.5 keV as a representative
for the low-energy range, relative standard deviation from the ICRP
phantoms among all other phantoms is about 33 % for lungs, 43 % for liver,
15 % for knee, and 29 % for head. It turns out, that there are differences
in the phantoms with respect to the specification related to the base
data and development process. Keeping those changes in mind, it is still
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evident that body height, body mass, and organ masses define phantoms
insufficiently with respect to body counting. They may, however, be
better described by anthropometric parameters specifically selected for
the measurement setup.

20.2.3 XCAT phantom series
The XCAT computational phantom series (Segars and Sturgeon 2010)
was selected for the calibration of the IVM body counter with respect
to varying anatomy (chapter 17). It is the only available series featuring
person-specific phantoms, i.e. phantoms directly based on tomographic
imaging data without further modification. This is quite contrary to the
usual phantom development process in radiation protection inspired by the
ICRP reference man specification (ICRP 2002), which leads to reference
phantoms that are adapted to represent smaller groups of the population
with various modelling techniques usually not based on additional imaging
data (Cassola et al. 2011; Johnson et al. 2009; Na et al. 2010).

The series of 30 phantoms was applied to body counter calibration
with Voxel2MCNP for both standard measurement setups and 26
samples of energy in the energy range of 25 keV to 2 MeV. A reasonable
compromise between accuracy and computational efficiency was taken. In
addition, 19 anthropometric parameters, partially based on standard body
measures for clothing sizes defined by EN 13402-1 (European Committee
for Standardization 2001), were specified and computed using geometric
algorithms with regard to actual measurement on persons during in vivo
monitoring from the perspective of the performing technicians. Statistical
analysis was applied to all samples for each pair of source structure and
detector to determine subsets of sensitive anthropometric parameters,
which were then used to estimate mean calibration curves. Meta optim-
ization was performed to reduce overfitting to the available anatomies and
to guarantee generalization of the estimator.

The results show largest deviations in the computed calibration values
of the available phantoms for lungs, followed by liver, knee and head.
They generally increase with a reduction in photon energy and can triple
from 2 MeV to 25 keV. It was shown that these deviations can be reduced
by creating estimators related to body circumferences close to the source
structure. These are bust circumference for lungs, waist circumference for
liver, thigh circumference for knee, and head circumference for head. As-
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sessing these parameters leads to a reduction of relative standard deviation
in determined calibration factors across the whole energy range of about
9 % for lungs, 17 % for liver, 11 % for knee, and 5 % for head compared
to assessing no parameter. The reduction generally increases with photon
energy. Whole-body measures, such as body mass and its derivatives,
have a lower impact. The reduction for the legacy method (Mohr and
Breustedt 2007) is 4 % for lungs, and 9 % for liver. Personalisation for
head and knee cannot be performed with the associated torso phantom.

In conclusion, body circumferences at the vicinity of the source
structure are positively correlated to local tissue thickness, which has a
considerable impact on photon attenuation. Assessing these anthropo-
metric parameters improves estimation of calibration factors compared
to whole-body measures applied in standard personalisation methods
(Doerfel, Heide and Sohlin 2006; Lynch 2011; Mohr and Breustedt 2007;
Pierrat et al. 2007). These improvements directly impact the assessment
of activities in organs and other source structures, which are the basis for
calculation of organ absorbed and effective dose (ICRP 2007).

The results are optimal with respect to the applied phantom series
and statistical analysis method. The phantom series was selected with
care and the analysis method was constructed to generalize to other
anatomies and reduce overfitting of the data. The main dependency on the
success of the method is the number of available phantoms. Using more
phantoms would provide a hold-out set for validation in the statistical
model building process and possibly allow larger feature subsets. This can
easily be achieved by applying the same workflows to additional phantoms
of the XCAT series or other phantom series, and defining additional
anthropometric parameters for specific measurement setups. The method
can also be applied to different body counters by replacing the associated
models and implemented measurement setups.

20.2.4 Inhomogeneous source distribution
There are additional uncertainties in body counting, which might even
be larger than those related to interindividual anatomical variation.
One of these is activity distribution in the source organ, which is not
homogeneous in real applications — contrary to the general assumption
in body counting. Radionuclide deposition in lungs is a case where the
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resulting distribution can be extremely inhomogeneous dependent on
aerodynamic parameters (ICRP 1994).

An experimental study was conducted to quantify the uncertainty for
lung counting with the IVM body counter (chapter 18). Measurements of
the LLNL torso phantom (Griffith et al. 1987) with a perforated lung set
that enables the creation of different source distributions were performed
for the positron emitter 18F.

In conclusion, the default assumption of a homogeneous source distri-
bution produces high uncertainties with maximum changes in the order
of a factor of 3 at 511 keV for the IVM body counter. Pelled et al. (2006)
reported factors of 7 at 185 keV and 10 at 92 keV. This is comparable to the
factors determined in this work considering the different photon energies.

20.2.5 Respiratory motion
The final study performed in this work regards intraindividual variation
with respect to respiratory motion (chapter 19). While the impact of
respiratory motion on body counting is certainly low, the availability of
corresponding imaging data provided a good opportunity to familiarize
with phantom development via image segmentation and to test the
application of Voxel2MCNP.

Respiratory-correlated computed tomography data sets (Guckenberger
et al. 2007) were applied for the construction of a high-resolution four-
dimensional torso phantom with eight time steps in the respiratory cycle
(Schneider 2011a; Schneider 2011b). The results show a standard deviation
of counting efficiency over a full respiratory cycle of about 1 % for tidal
breathing since change in lung position at the superior part of the thorax
is minimal. This is equivalent to a slight underestimation of counting
efficiency for lung measurements when using a calibration phantom at
full inspiration of tidal breathing. However, computed tomography data
sets for phantom development are typically assessed at full inspiration of
heavy breathing for better imaging of the thorax. Therefore, the observed
effect on counting efficiency due to respiratory motion is expected to be
larger considering those types of phantoms and a main issue in phantom
development is the reliance on imaging data captured with these types
of body deformation.



A V2M Schema files
The following listings are excerpts of several files that were used for the
calibration of phantoms with Voxel2MCNP (chapter 12). The files
conform to the XML Schema (XSD) (W3C 2004) format designed for
the developed data model V2M Schema (chapter 11). They describe
scenarios (listing A.1), detectors (listing A.2), phantoms (listing A.3),
materials (listing A.4), and source emissions (listing A.5).



176 A V2M Schema files

Listing A.1: Scenario in V2M Schema arranging all equipment resources
in space. Each segment of an equipment can be associated with sources
and tallies. The segments are identified by abstract terms of a taxonomy.
<scenario name="xcat050">
<equipment-links>

<equipment-link name="Phantom">
<equipment-reference url="xcat050.v2m" name="xcat050"/>
<source-links>

<source-link name="Left Lung">
<source-reference

url="source-apeaks.v2m" name="Sample Peaks"/>
<source-location>

<term-id value="50"/> <!-- Left Lung -->
</source-location>

</source-link>
<source-link name="Right Lung">
<!-- ... -->

</source-link>
<!-- ... -->

</source-links>
</equipment-link>
<equipment-link name="Detector: Left Lung">

<equipment-reference
url="hpge-detector3.v2m" name="HPGe Detector 3"/>

<transformation>
<rotation x="1.2947" y="0.1264" z="3.0398"/>
<translation x="32.170" y="3.017" z="32.123"/>

</transformation>
<tally-links>

<tally-link name="Left Lung">
<tally-reference

url="hpge-detector3.v2m" name="HPGe Detector 3"/>
<tally-location>

<term-id value="4"/> <!-- Crystal (Active) -->
</tally-location>

</tally-link>
</tally-links>

</equipment-link>
<equipment-link name="Detector: Right Lung">

<!-- ... -->
</equipment-link>
<!-- ... -->

</equipment-links>
</scenario>
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Listing A.2: Equipment and tally definition of a detector in V2M Schema.
The equipment section associates the geometry segments (e.g. parts) with
abstract terms of a taxonomy for semantical interpretation. The actual
definition of the surfaces is in an associated file. The tally section contains
the number of detector channels, the energy range, and parameters
describing energy resolution.
<equipment name="HPGe Detector 1">

<description>
HPGe detector 1 at the lower right position.

</description>
<segments>

<taxonomy-reference
url="detector-taxonomy.v2m" name="Detector"/>

<materials-reference
url="hpge-materials.v2m" name="HPGe"/>

<geometry-reference
url="hpge-detector1-geometry.v2m" name="HPGe Detector 1"/>

<segments>
<segment id="1" name="Case" term-id="1"/>
<segment id="2" name="Holder" term-id="2"/>
<segment id="3" name="Window" term-id="3"/>
<segment id="4" name="Crystal (Active)" term-id="4"/>
<segment id="5" name="Crystal (Inactive)" term-id="5"/>
<segment id="6" name="Vacuum" term-id="6"/>
<!-- ... -->

</segments>
</segments>

</equipment>
<tally name="HPGe Detector 1">

<type value="pulse-height"/>
<bins min="0" max="2.048" count="8192"/>
<energy-resolution a="8.3195E-04" b="1.0985E-03" c="0"/>

</tally>
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Listing A.3: Phantom definition in V2M Schema. The geometry section
describes the dimensions of the lattice structure and the voxel size. The
compressed binary data is stored in an associated file. The equipment
section associates geometry sements (e.g. organs and tissues) with abstract
terms of a taxonomy for semantical interpretation.
<geometry name="xcat050">
<cells>

<repeated surface-id="1" id="1" name="lattice">
<dimension x="648" y="263" z="1795"/>
<binary-reference url="xcat050-binary.v2m" name="xcat050"/>

</repeated>
</cells>
<surfaces>
<surface type="box" id="1" name="voxel">
<transformation>

<scaling x="0.1" y="0.1" z="0.1"/>
</transformation>

</surface>
</surfaces>

</geometry>
<equipment name="xcat050">

<segments>
<taxonomy-reference

url="phantom-taxonomy.v2m" name="Anatomy"/>
<materials-reference

url="phantom-materials.v2m" name="ICRP/ICRU"/>
<geometry-reference name="xcat050"/>
<segments>

<segment id="-1046" name="Bronchi (115)" term-id="276"/>
<!-- ... -->
<segment id="815" name="Right Lung" term-id="181"/>
<segment id="816" name="Left Lung" term-id="50"/>
<!-- ... -->
<segment id="819" name="Liver" term-id="87"/>
<!-- ... -->
<segment id="2266" name="Lesion" term-id="86"/>

</segments>
</segments>

</equipment>
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Listing A.4: Materials definition in V2M Schema according to literature
specification. Each material is described by density and elemental
composition and is associated with abstract terms of a taxonomy for
semantical interpretation.
<materials name="ICRP/ICRU">
<description>

General material specification for adult male and female
phantoms. This is a combination of data from ICRU Report
46, ICRP Publication 89, and ICRP Publication 110.

</description>
<taxonomy-reference url="phantom-taxonomy.v2m" name="Anatomy"/>
<materials>

<material id="301" name="Skeletal Muscle" term-id="315">
<description>

Skeletal muscle connecting joints along the skeleton.
</description>
<density value="1.050"/>
<fractions type="mass-fractions">

<fraction atomic-number="1" value="0.102"/>
<fraction atomic-number="6" value="0.143"/>
<fraction atomic-number="7" value="0.034"/>
<fraction atomic-number="8" value="0.710"/>
<fraction atomic-number="11" value="0.001"/>
<fraction atomic-number="15" value="0.002"/>
<fraction atomic-number="16" value="0.003"/>
<fraction atomic-number="17" value="0.001"/>
<fraction atomic-number="19" value="0.004"/>

</fractions>
</material>
<!-- ... -->

</materials>
</materials>
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Listing A.5: Source definition in V2M Schema adjusted to the opera-
tional detector range and typical calibration curves. Each source emission
specifies energy, particle type, and intensity of the emission.
<source name="Sample Peaks">

<description>
A collection of 26 artificial photon emission peaks covering
a large range of energies optimized for the HPGe binning
(each peak is centred to a channel).

</description>
<emissions>
<emission energy="0.010875" intensity="1" type="gamma"/>
<!-- ... -->
<emission energy="0.104875" intensity="1" type="gamma"/>
<emission energy="0.129875" intensity="1" type="gamma"/>
<emission energy="0.154875" intensity="1" type="gamma"/>
<!-- ... -->
<emission energy="2.047875" intensity="1" type="gamma"/>

</emissions>
</source>



B Anthropometric parameters
The considered anthropometric parameters for sensitivity analysis of the
XCAT series (section 17.2) are grouped into three categories: masses and
derivatives (table B.1), lengths, breadths and distances (table B.2), and cir-
cumferences (table B.3). Details regarding physical measurement (physical)
and algorithmic computation (virtual) are indicated by according keywords.
Additionally, average photon transmission (section 12.4) was computed for
each source organ and primary detector for each simulated photon energy.

Measure Description

Body mass

Total body mass. Physical: The person is measured
with a balance in an overall without shoes. Virtual:
Computed from the geometrical volumes and associated
material densities.

Mass/Height Ratio of body mass (in kg) and height (in m).

Body mass
index (BMI) Ratio of body mass (in kg) and squared height (in m2).

Body fat
percentage

Ratio of adipose tissue mass and body mass. Physical:
Bioelectrical impedance analysis with a body fat meter.
Virtual: Identification of segments that are annotated
as adipose tissue.

Table B.1: Computation and measurement of body volumes, masses and
derivatives.
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Measure Description

Body height

Total body length between foot soles and crest of the
head in standing position. Physical: The person is
measured with a height gauge standing with closed
feet and without shoes. Virtual: Phantoms are usually
based on tomographic imaging data taken in supine
position. The body length is corrected for angled feet.

Inner
leg length

Distance between distal end of the pelvis and distal
end of the feet in standing position. Physical: The
person is measured with a tape measure standing with
legs slightly apart. Virtual: Similar to body height, the
leg length is corrected for angled feet.

Arm length

Distance between the lateral end of the acromion
process across the elbow to the distal end of the ulna
on the right side of the body. Physical: The person is
standing with the right arm bent at 90° and the fist
placed on the hip. Virtual: The distance is computed
on the dorsal skin surface.

Shoulder
breadth

Distance between the lateral ends of the acromion
processes. Physical: The person is measured with a
tape measure across the back. Virtual: The direct
distance of the acromion processes.

Table B.2: Computation and measurement of body lengths, breadths and
distances.



183

Measure Description

All
Physical: Circumferences are measured with a tape
measure with the person either standing or sitting.
Virtual: Geometric algorithms (section 12.4) are applied.

Head c. Largest circumference of the head slightly above the
eyebrows and the ears.

Chest c.
Circumference across the chest (slightly below the
sternal angle) and scapulae, and below the armpits.
Slightly angled with respect to the transversal plane.

Bust c.
Largest circumference across the most prominent
part of the bust and scapulae, and below the armpits.
Slightly above the inferior angle of the scapulae.

Underbust c. Circumference directly under the bust across the
infrasternal notch and the inferior angle of the scapulae.

Waist c. Circumference between the iliac crest and the lower ribs.

Hip c. Largest circumference at the buttocks.

Thigh c. Largest circumference of the leg between hip and knee.

Calf c. Largest circumference of the leg between knee and ankle.

Upper arm c. Largest circumference of the arm between shoulder and
elbow.

Lower arm c. Largest circumference of the arm between elbow and
wrist.

Table B.3: Computation and measurement of body circumferences based
on anatomic landmarks.
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