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Abstract

After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial
to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs
boson of the Standard Model (SM). Thus, its features, including its spin, have to be deter-
mined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the
phenomenology of light spin-2 resonances produced in different gluon-fusion and vector-
boson-fusion processes at the LHC is studied. Starting from an effective model for the
interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distri-
butions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific
model parameters, such a spin-2 resonance can mimic rates and transverse-momentum
distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several
distributions allow to separate spin-2 from spin-0, almost independently of model param-
eters. Since the SM Higgs boson ensures the unitarity of the S-matrix in vector-boson
scattering, another topic of this thesis is to investigate if the capability of unitarizing
vector-boson scattering is a unique feature of the spin-0 Higgs boson or if particles with
a different spin, i.e. spin-1 or spin-2, are able to perform the same task. Furthermore, the
characteristics of heavy spin-2 resonances in vector-boson-fusion processes are analyzed
at NLO QCD accuracy in order to facilitate the spin determination of heavy particles
that might be detected at the LHC.

Zusammenfassung

Nachdem am Large Hadron Collider (LHC) ein neues Teilchen mit einer Masse von
125−126 GeV entdeckt wurde, ist es äußerst wichtig zu verifizieren oder widerlegen, dass es
sich dabei um das Higgs Boson des Standardmodells (SM) handelt. Deshalb müssen seine
Eigenschaften, einschließlich seines Spins, bestimmt werden. Um die beiden wahrschein-
lichsten Hypothesen Spin-0 und Spin-2 zu unterscheiden, wird die Phänomenologie leich-
ter Spin-2 Resonanzen erforscht, die in verschiedenen Gluon-Fusions- und Vektorboson-
Fusionsprozessen erzeugt werden. Ausgehend von einem effektiven Modell für die Wechsel-
wirkung eines Spin-2 Teilchens mit Eichbosonen des Standardmodells werden mithilfe des
Monte Carlo Programms Vbfnlo Wirkungsquerschnitte und differentielle Verteilungen
berechnet. Während Spin-2 Resonanzen mit bestimmten Modellparametern Raten und
Transversalimpulsverteilungen des SM Higgs Bosons in den wichtigsten Zerfallskanälen
γγ, WW und ZZ nachahmen können, erlauben verschiedene Verteilungen eine nahezu
parameterunabhängige Unterscheidung zwischen Spin-2 und Spin-0. Da das SM Higgs
Boson außerdem die Unitarität der S-Matrix in Vektorboson-Streuung sicherstellt, ist es
ein weiteres Thema dieser Arbeit, herauszufinden, ob dies eine einzigartige Eigenschaft
des Spin-0 Higgs Bosons ist, oder ob Teilchen mit Spin-1 oder Spin-2 dieselbe Aufgabe
übernehmen können. Des Weiteren werden die Eigenschaften schwerer Spin-2 Resonanzen
in Vektorboson-Fusionsprozessen in nächst-führender Ordnung QCD untersucht, um die
Spinbestimmung möglicher neuer Teilchen am LHC zu erleichtern.
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1 Introduction

Discovering the fundamental components of the universe and exploring their interactions is

one of the major scientific impulses of mankind. Over centuries, innumerable people have

contributed to our constantly increasing understanding of this topic. Initially reserved to

philosophers, it was taken over first by chemists and eventually by physicists. Nowadays,

our knowledge about the constituents of matter and the electromagnetic, weak and strong

interaction between them is summarized in the Standard Model of Elementary Particle

Physics (SM), which provides a uniform theoretical description in terms of relativistic

quantum field theories. A plethora of its predictions have been confirmed experimentally,

some of them with incredible precision. Remarkably, the anomalous magnetic moment of

the electron, which is experimentally known up to more than ten digits [1], is the most

accurately verified theoretical prediction in the history of physics. Crucial contributions

to such precision measurements and to the discoveries of the various particles predicted by

the Standard Model stem from particle accelerators, such as the Large Electron Positron

collider (LEP) at CERN and the proton-antiproton collider Tevatron at Fermilab. At

present, the most powerful accelerator is the CERN Large Hadron Collider (LHC), whose

first proton-proton collisions took place in 2009.

Before the era of the LHC, the only constituent of the Standard Model that had not been

discovered was the Higgs boson. This scalar particle originates from the Higgs mecha-

nism, which was postulated in order to account for the masses of elementary particles.

On July 4, 2012, the collaborations of the LHC experiments ATLAS and CMS both an-

nounced the observation of a new particle [2] at a mass of 125 − 126 GeV, which was

conjectured to be a Higgs boson. Since then, many experimental studies confirmed that

the data obtained for this new resonance are compatible with being the Higgs boson of

the Standard Model [3–12]. On these grounds, Peter Higgs and François Englert were

awarded the 2013 Nobel prize in physics for their theoretical development of the Higgs

mechanism [13].

The Higgs mechanism of the Standard Model provides a simple and elegant explanation for

the generation of particle masses, while respecting fundamental properties of the theory,

i.e. unitarity and renormalizability. However, there exist many alternative approaches.

Most of them are motivated by insufficiencies of the SM, which neither incorporates grav-

ity, nor accounts for the experimental evidence of dark matter and dark energy in the

universe. Furthermore, the SM cannot explain why there is more matter than antimatter

and does not predict the values of many of the couplings and the masses of the par-

ticles. In order to address at least some of these issues, theories beyond the Standard
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Model (BSM) often exhibit a modified particle content, which can comprise several Higgs

bosons, no Higgs boson or a Higgs boson with modified properties. Furthermore, different

kinds of other new particles are postulated by various models. In some scenarios, BSM

particles can closely resemble the Higgs boson of the Standard Model. Therefore, it is

crucial to determine all the characteristic features of the newly discovered resonance in

order to definitely verify or disprove whether it is the SM Higgs boson. These features,

including its couplings to other SM particles [14], its self-couplings [15], its CP quantum

number and its spin [16–27], are currently the subject of active research.

The Higgs resonance can be detected and identified in several channels at the LHC.

It is mainly produced in gluon fusion or vector-boson fusion (VBF). The most important

decay modes for its observation and analysis include H → γγ , H → W+W− → 2l2ν and

H → ZZ → 4l. Observing these decays immediately excludes a particle with half-integer

spin. Moreover, the detection of the resonance in the diphoton decay mode excludes a

spin-1 particle due to the Landau–Yang theorem [28], leaving spin-2 as an alternative hy-

pothesis to the spin-0 of the SM Higgs boson. Since the distinction of a spin-0 and a spin-2

resonance is an important element of the identification of the newly discovered particle,

this distinction is a key task of this thesis. To this end, spin-2 resonances at the LHC are

studied within the framework of an effective Lagrangian model describing interactions of

a spin-2 electroweak singlet or triplet state with SM gauge bosons. Calculations of cross

sections and differential distributions are performed by means of the Monte Carlo program

Vbfnlo [29], which is then used to search for characteristics distinguishing between the

two spin choices spin-0 and spin-2 in the main detection modes. Furthermore, the depen-

dence of these characteristics on model parameters and NLO QCD corrections is analyzed.

To ascertain the mechanism of generating particle masses, it is not only important to

determine the features of the new 125− 126 GeV resonance, but also to search for other

signs of physics beyond the Standard Model. The high energies accessible with the LHC

allow for the search of new, heavy particles in the few TeV range, which might e.g. be

produced in vector-boson fusion. For such resonances, a spin determination would also be

needed. Whereas heavy spin-1 resonances have already been studied within Vbfnlo [30],

the phenomenology of heavy spin-2 resonances is investigated at NLO QCD accuracy

within the present work, where different processes with two VBF jets and four leptons in

the final state are considered. Resulting from spin-2 resonances that decay into two elec-

troweak bosons or from SM electroweak continuum contributions, these are e+ e− µ+µ− jj,
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e+ e− νµνµ jj, e+ νe µ
− νµ jj, e+ νe µ

+µ− jj and e− νe µ
+µ− jj production. Of these, the

first one will be studied in most detail, since a final state without neutrinos allows for a

full reconstruction of a resonance.

The Higgs mechanism of the Standard Model does not only account for particle masses,

but also ensures the unitarity of the S-matrix in vector-boson scattering via exchange of

its scalar boson [31]. Since the S-matrix is related to physical cross sections, any BSM

scenario must also imply this conservation of probability. Therefore, another topic of this

thesis is to investigate if the capability of unitarizing vector-boson scattering is a unique

feature of the spin-0 Higgs boson or if particles with a different spin, i.e. spin-1 or spin-2,

are able to perform the same task. To this end, unitarity is analyzed by studying the

high-energy behavior of partial waves in a combination of all uncharged channels of weak

bosons in the initial and final state, including both longitudinal and transverse modes.

This thesis is organized as follows: After introducing relevant theoretical foundations

in Section 2, results of the analyses are presented in Section 3 and Section 4, including de-

scriptions of the corresponding models and elements of calculations and implementations.

Section 3 is mainly devoted to the spin determination of the newly discovered resonance

in different production and decay channels at the LHC, but also includes the investigation

of heavy spin-2 resonances in vector-boson fusion. In Section 4, the unitarity properties of

vector-boson scattering with resonances of different spin are analyzed. Finally, the most

important results of the present work are summarized and discussed in Section 5.
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2 Theoretical Foundations

This section provides an overview over selected topics of the foundations that are most

important for the present work. As a starting point, the Standard Model, being the un-

derlying basic theory of Elementary Particle Physics, is introduced. The central question

of this thesis is whether the new resonance discovered at the LHC is the SM Higgs boson

or another particle corresponding to a theory beyond the Standard Model. Therefore,

the SM Higgs mechanism as well as alternative ideas of electroweak symmetry breaking

(EWSB) are discussed. Afterwards, the properties and relevant production and decay

channels of the Higgs boson are summarized in order to reveal its characteristics at the

LHC. Since the present work provides theoretical predictions for the phenomenology of

Higgs and other resonances at a hadron collider, the relevant techniques of such predictions

are presented, including general features of hadron collisions, Monte Carlo generators and

next-to-leading order calculations.

2.1 The Standard Model of Elementary Particle Physics

The Standard Model of Elementary Particle Physics provides a uniform description of the

constituents of matter and their fundamental forces, which are the electromagnetic, weak

and strong interaction. During the last decades, a huge variety of its predictions was ver-

ified experimentally up to an enormous precision. Its foundations are described in many

text books as well as summarized in various reviews, e.g. Refs. [32], [33] and [34]. The

SM is a relativistic quantum field theory based on the principle of local gauge invariance,

with the gauge group SU(3)C × SU(2)L × U(1)Y .

SU(3)C is the gauge group of quantum chromodynamics (QCD), which describes the

strong interaction. Since a gauge group SU(N) has N2 − 1 generators, there are eight

SU(3) generators. They are connected to eight massless gluons, which are the gauge

bosons mediating the strong interaction between colored particles. Color is the quan-

tum number of QCD, carried by quarks (and antiquarks) and the gluons themselves.

SU(2)L×U(1)Y combines the electromagnetic and weak interactions between quarks and

leptons (and their antiparticles), into a uniform electroweak theory. The force carriers,

again resulting from the generators of the gauge group, are the three SU(2)L gauge bosons

W 1,W 2, W 3 and the U(1)Y gauge boson B.

The constituents of matter comprise three generations of left-handed and right-handed

quarks and leptons, which are the projections fL,R = 1
2
(1∓ γ5) f of the fermion fields f .

The left-handed fermions form doublets under SU(2), whereas the right-handed ones are
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SU(2) singlets:

Quarks (Q) Leptons (L)

Left-handed

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

Right-handed uR, dR cR, sR tR, bR e−R µ−R τ−R

Since the neutrinos νe, νµ and ντ are assumed to be massless, there are no right-handed

neutrinos in the SM. However, they can be added rather straightforwardly to account for

experimentally observed small non-zero neutrino masses.

Interactions between gauge bosons and fermions can be derived from the gauge-invariant

SM Lagrangian, which is, except for the Higgs and Yukawa part discussed later, given by

LSM = −1

4
Ga
µνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν +
∑
j

(Q̄j iDµγ
µQj + L̄j iDµγ

µLj). (2.1)

The sum over j comprises the left- and right-handed quarks and leptons given above.

Summations over upper and lower equal indices are implicitly assumed throughout this

work, with Greek letters indicating Lorentz indices.

The first part of this Lagrangian describes the spin-1 gauge bosons. Ga
µν , W

a
µν and Bµν

are the corresponding field strength tensors,

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb,µGc,ν

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcWb,µWc,ν

Bµν = ∂µBν − ∂νBµ, (2.2)

with gs and g being the couplings of SU(3)C and SU(2)L. The U(1)Y coupling is denoted

as g′. The structure constants fabc and εabc determine the commutation relations between

the generators of the SU(3)C and SU(2)L group. This non-abelian structure gives rise to

triple and quartic gauge-boson self-interactions.

The second part of the Lagrangian (2.1) describes the fermions and their couplings to

gauge bosons, which are minimal couplings resulting from the covariant derivative

Dµ = ∂µ − igsT aGa,µ − ig
σa

2
Wa,µ − ig′Y Bµ, (2.3)
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with T a, σa

2
and Y denoting the generators of the groups SU(3)C , SU(2)L and U(1)Y .

Within this framework, the SM fields carry the quantum numbers of the gauge groups,

which are color, weak isospin I and hypercharge Y . Furthermore, electric charge emerges

naturally as a combination of hypercharge and the third component of the isospin, I3, ac-

cording to the Gell–Mann–Nishijima relation Q = I3+ Y
2

. Accounting for masses, however,

is more intricate. While the mass of macroscopic objects mainly originates from QCD

binding energy within protons and neutrons, which consist of quarks exchanging gluons,

the mass of elementary particles should be described by the SM Lagrangian. A naive

extension of Eq. (2.1) by mass terms like 1
2
m2
wW

a
µW

µ
a explicitly violates SU(2)L × U(1)Y

gauge invariance. Yet we know from experiments that the force carriers of the weak in-

teractions as well as fermions are massive, while photons and gluons are massless. Thus,

a method of breaking the electroweak SU(2)L × U(1)Y symmetry spontaneously must

be incorporated in order to generate the masses of elementary particles. In the SM, the

chosen method is the Higgs mechanism, which is outlined in the following section.

2.2 Electroweak symmetry breaking and the Higgs mechanism

2.2.1 The SM Higgs mechanism

In the Higgs mechanism of the SM, the electroweak SU(2)L × U(1)Y symmetry is spon-

taneously broken by introducing an additional scalar field with an appropriate potential.

In order to obtain three massive and one massless electroweak gauge boson, the latter one

being the photon, SU(2)L × U(1)Y must be broken to the electromagnetic group U(1)Q.

According to the Goldstone theorem, this leads to three massless scalar bosons, denoted

as Goldstone bosons. The easiest way to obtain at least three scalar degrees of freedom

is to introduce a complex scalar SU(2) doublet field

Φ =

(
φ+

φ0

)
=

(
φ1 + i φ2

φ3 + i φ4

)
, (2.4)

which has four degrees of freedom and hypercharge YΦ = 1. Its SU(2)-invariant La-

grangian, consisting of a kinetic and a potential term,

LHiggs = T − V = (DµΦ)† (DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2 (µ2, λ > 0) (2.5)
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must be added to the Lagrangian of Eq. (2.1). For µ2 < 0, the potential V would only

feature a trivial minimum at zero and the gauge bosons would remain massless. For

µ2 > 0, however, the scalar field acquires a vacuum expectation value

Φ0 =

(
0
v√
2

)
, with v =

√
µ2

λ
, (2.6)

corresponding to a specific choice of the non-trivial minimum of the potential. v is re-

lated to the Fermi constant GF , which is known from experiments, and can therefore be

determined to be v = (
√

2GF )−1/2 ≈ 246 GeV. For a proper interpretation of the theory,

Φ must be expanded around the vacuum state (2.6). This expansion can be written as

Φ(x) = e
iσaθ

a(x)
v

(
0

1√
2

(v +H(x))

)
. (2.7)

Thus, a new physical field H –the Higgs field– arises, whereas θa are the three Goldstone

bosons mentioned before. By applying a gauge transformation leading to the unitarity

gauge, the Goldstone bosons can be rotated away,

Φ(x)→ e
−iσaθa(x)

v Φ(x) =

(
0

1√
2
(v +H(x))

)
, (2.8)

and become the longitudinal degrees of freedom of three gauge bosons, which thus obtain

masses. When the expansion (2.8) is again inserted into the scalar Lagrangian (2.5), the

original SU(2)L × U(1)Y symmetry is not apparent anymore and is said to be sponta-

neously broken. However, a U(1)Q symmetry remains, ensured by a vacuum expectation

value in the neutral component of the scalar doublet and not in the charged one. There-

fore, the photon as unbroken U(1) generator remains massless. In contrast, the weak

gauge bosons acquire masses from the kinetic term of Eq. (2.5):

(DµΦ)† (DµΦ) =
1

2
(∂µH)(∂µH) +

(
1 +

H

v

)2 [(gv
2

)2

W+
µ W

µ− +
1

2

(g2 + g′2)v2

4
ZµZ

µ

]
.

(2.9)
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Here, new linear combinations of the gauge bosons W 1,W 2, W 3 and B are introduced,

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ),

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

= W 3
µ cos θw −Bµ sin θw,

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

= W 3
µ sin θw +Bµ cos θw, (2.10)

with θw being the weak mixing angle. From Eq. (2.9), the masses of the charged and neu-

tral weak bosons W± and Z can be read off as mW = 1
2
gv and mZ = 1

2

√
g2 + g′2 v, while

there is no mass term for the photon field A. The term proportional to 2H
v

in Eq. (2.9)

leads to couplings of a Higgs boson and two W or Z bosons. Furthermore, couplings of

two Higgs bosons and two weak bosons arise from the H2

v2
term. Remarkably, both kinds

of couplings are proportional to the squared masses of the weak bosons.

When the expansion (2.8) is inserted into the Higgs potential V of Eq. (2.5), it follows

that the Higgs boson itself acquires a mass, which is proportional to the free parameter

µ and therefore not predicted by the theory. The potential also yields triple and quartic

Higgs-boson self-interactions, which are determined by v and the Higgs mass.

The Higgs mechanism also generates fermion masses via a further term added to the

Lagrangian,

LYukawa =
∑

generations j

− (λl,j L̄j Φ lR,j + λd,j Q̄j Φ qdR, j + λu,j Q̄j Φ̃ quR, j) + h.c. (2.11)

Here, L (Q) denote the left-handed leptons (quarks), lR are the right-handed leptons,

qdR (quR) are the right-handed down-type (up-type) quarks and h.c. means hermitian

conjugate. Φ̃ is the charge conjugated field

Φ̃ = iσ2Φ∗ =

(
0 1

−1 0

)(
(φ+)∗

(φ0)∗

)
=

(
(φ0)∗

−φ−

)
. (2.12)

As before, inserting the expansion (2.8) into the Lagrangian (2.11) leads to masses, which

in case of fermions are proportional to the Yukawa couplings λ, and to Higgs boson cou-

plings to two fermions proportional to the fermion masses.

It should be noted that the mass eigenstates of the quarks do not coincide with their
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eigenstates of the weak interaction. The transformation between them is given by the

Cabibbo-Kobayashi-Maskawa matrix VCKM, which is unitary and deviates from the iden-

tity matrix by terms of order sin θc ≈ 0.23, where θc is the Cabibbo angle.

2.2.2 Alternative ideas of electroweak symmetry breaking

Although the SM Higgs mechanism provides a simple and elegant way to break the

electroweak symmetry spontaneously and to provide masses both for gauge bosons and

fermions, several aspects remain unclear. For instance, there is no dynamical explanation

why electroweak symmetry breaking occurs or why the vacuum expectation value is of the

order of the electroweak scale. Furthermore, the Higgs mechanism does not provide fur-

ther insight into the existence and hierarchy of fermion generations. Instead, the Yukawa

couplings of the Higgs boson to fermions are arbitrary free parameters. Another impor-

tant aspect is related to the nature of the Higgs boson as an elementary scalar particle.

Its mass is unstable against loop corrections, which comprise contributions from gauge

bosons, heavy quarks and the Higgs boson itself. Enormously fine-tuned cancellations

between these different contributions must occur accidentally in order to have a Higgs

mass of the order of the electroweak scale.

Motivated by this, theorists have developed many alternative models of electroweak sym-

metry breaking, which evade some of these unwanted features and sometimes even address

other open questions of particle physics and cosmology, such as the incorporation of grav-

ity, dark matter, inflation or the matter–antimatter asymmetry of the universe.

This section provides a short sketch over some alternative ideas of electroweak symmetry

breaking. Nice reviews highlighting different aspects can e.g. be found in Refs. [35], [36]

and [37].

• Supersymmetry [38]

One way to protect the Higgs mass against quadratic divergences in higher-order

corrections is to introduce a symmetry between bosonic and fermionic degrees of

freedom, denoted as supersymmetry. Apart from spin-0 and spin-1
2

super-partners

of SM fermions and bosons, supersymmetric theories feature an extended Higgs

sector (see e.g. Ref. [36] and references therein). There must be at least two Higgs

doublet fields in order to preserve supersymmetry and gauge invariance. In the min-

imal supersymmetric extension of the SM (MSSM), there are exactly two complex

Higgs doublets [39]. Thus, the Higgs sector of the MSSM is a special case of general

two Higgs doublet models. One of these doublets is giving mass to the up-type- and

the other one to the down-type particles. The eight degrees of freedom result in
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three Goldstone bosons (corresponding to longitudinal modes of the massive gauge

bosons) and five physical Higgs bosons, which form three neutral and two charged

mass eigenstates. Among the neutral ones, there are two CP-even and one CP-odd

Higgs boson. The couplings of MSSM Higgs bosons to SM particles are modified by

two mixing angles of the Higgs sector, whereas the quartic Higgs coupling is related

to the squared gauge couplings. Since the MSSM cannot explain why one of its

parameters, µ, is of the order of the electroweak scale, another extension was intro-

duced, known as NMSSM [40]. There, the µ-parameter is replaced by the vacuum

expectation value of an additional complex singlet Higgs field. This gives rise to two

further Higgs bosons, of which one is CP-even and the other one CP-odd. Another

attractive feature of supersymmetric theories is that they often provide a weakly

interacting massive particle (WIMP) as a candidate for dark matter. Furthermore,

supersymmetry allows for the unification of the strong, weak and electromagnetic

couplings at a high energy scale.

• Higgsless models with extra dimensions [41]

By introducing additional space dimensions of finite size, it is possible to break

the electroweak symmetry via boundary conditions (BCs), without the need of the

Higgs mechanism. Special cases of these BCs can be chosen for each field separately,

corresponding to different physical situations. In theories with extra dimensions, ad-

ditional scalars arise as extra-dimensional components of gauge fields. In higgsless

models, however, they can be eliminated by choosing appropriate boundary condi-

tions. As an example, consider a simple toy model with one flat extra-dimensional

interval [42], where SU(2) gauge fields decompose into infinitely many modes (like

standing waves on a rope). They are denoted as Kaluza-Klein (KK) modes. By

choosing Neumann BCs on both ends of the interval (corresponding to loose ends

in case of a rope) for the W 3
µ field, it decomposes into a tower of neutral states, in-

cluding a massless zero mode describing the photon. The additional states acquire

masses which are proportional to their mode number and inversely proportional

to the size of the extra dimension. For the fields W 1
µ and W 2

µ , one can choose a

Neumann BC on one end of the interval and a Dirichlet BC on the other end (corre-

sponding to a loose and a fixed end of a rope). This leads to a KK tower of charged

modes, which are all massive. By this procedure, gauge bosons acquire masses and

the SU(2) symmetry is broken to U(1). However, the resulting mass ratio of the W

and Z boson differs from the one of the SM. A more realistic model incorporates

a custodial SU(2)L × SU(2)R symmetry, which protects the W/Z mass ratio, into
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a warped finite extra dimension with an Anti-de-Sitter metric. Such a metric can

also account for the hierarchy problem, since lengths and energies scale with the

coordinate of the extra dimension.

• Deconstructed Higgsless models [43]

Deconstructed models result from five-dimensional ones by discretization of the ex-

tra dimension. Thereby, gauge fields originally defined at each point of the extra

dimension become independent fields of a gauge group U(1)× [SU(2)]n+1 in four di-

mensions. This results in n additional triplets of gauge bosons, instead of infinitely

many. In the limit n → ∞, the five-dimensional continuum theory is recovered.

Scalar fields, which are the fifth components of gauge fields in the five-dimensional

model, become Goldstone bosons of a non-linear sigma model, which triggers elec-

troweak symmetry breaking at adjacent sites, again without physical Higgs bosons.

• HEIDI [44] and Unparticle physics [45]

As an extension to the SM, HEIDI (for ”hidi(ng) in high-D(imensions)“) models in-

troduce additional scalar singlet fields. These singlets do not interact with SM par-

ticles except for the SM Higgs boson, with which they mix. There can be infinitely

many such Higgs bosons, e.g. by decomposing a field in a finite extra dimension into

an infinite number of modes. This leads to a continuous mass spectrum with or

without additional peaks [46]. Furthermore, additional singlets can lead to invisible

Higgs decays, which can dominate over the visible decays into the SM particles.

In this case, the Higgs resonance would be broad and difficult to detect. Besides

obscuring Higgs signals, HEIDI models also provide possible candidates accounting

for dark matter and cosmic inflation.

Unparticle physics also introduces an additional singlet sector, which is assumed to

be conformally invariant. This is a special case of HEIDI models [47].

• Little Higgs [48]

In Little Higgs models, the Higgs boson is assumed to be a pseudo-Nambu–Goldstone

boson, which has a small mass resulting from a weak violation of a global symmetry.

Thus, the Higgs mass is protected from quadratic divergences, which are canceled

due to additional particles with masses in the TeV range predicted by the theory.

• Technicolor [37]

The realization of the Higgs mechanism was established first in the theory of su-

perconductors. There, the Higgs boson is represented by a condensate of Cooper
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pairs of electrons. Inspired by this, it seems natural to replace the SM Higgs bo-

son by a condensate of fermions to avoid the problems of an elementary scalar

particle. In technicolor models, such a bound state originates from a new interac-

tion at a characteristic scale of the order of the vacuum expectation value of the

Higgs field. In analogy to QCD, where hadronic bound states consist of elementary

colored particles, this new interaction is called technicolor. The bound states, tech-

nihadrons, consist of new fundamental fermions, called techniquarks, which feel this

interaction. A simple technicolor model provides a mechanism for EWSB and cor-

rectly reproduces the masses of gauge bosons. However, it cannot explain the origin

of fermion masses without further complification and contradiction with precision

measurements.

• Composite Higgs [49]

Composite Higgs models somewhat generalize technicolor. There exist many dif-

ferent types of such models, where the Higgs field usually is a pseudo-Nambu–

Goldstone boson of a spontaneously broken global symmetry. By having more

freedom in their construction, composite Higgs models can avoid the tension with

precision measurements. A composite Higgs boson might not just be a bound

state of fermions, but could also contain strongly coupled gauge fields, requiring

non-perturbative dynamics. In this situation, however, a duality between strongly

coupled four-dimensional theories with conformal invariance and weakly coupled

five-dimensional ones can be useful. This duality is based on the famous AdS/CFT

correspondence [50]. In some composite Higgs models, the Higgs boson is consid-

ered as the holographic counterpart of the fifth component of a gauge field in five

dimensions. It is even conjectured that composite Higgs and technicolor models are

equivalent to extra-dimensional models, which were described above.

All these approaches show that the SM Higgs mechanism is not the only possible way to

break the electroweak symmetry. Instead of one fundamental scalar Higgs boson, there

might as well be several or even infinitely many Higgs bosons, none at all or a single

one with modified properties. Additionally, new particles of different spin might exist,

which are predicted by various models. Up to now, the newly discovered resonance is

largely compatible with being the SM Higgs boson and no other new elementary particles

have been found. Nevertheless, it is crucial to precisely determine all characteristics of

this resonance and to continue the search for other signs of physics beyond the Standard

Model in order to be absolutely sure about the origin of electroweak symmetry breaking.
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2.3 Identification of the Higgs boson at the LHC

Investigating the origin of electroweak symmetry breaking is one of the main goals of

the Large Hadron Collider (LHC) at CERN. The LHC [51] is the most powerful particle

accelerator at present. Its first proton-proton collisions took place in 2009. Since then, it

has delivered data of ≈ 30 fb−1 at center-of-mass energies of 7 and 8 TeV to the two main

multi-purpose experiments ATLAS and CMS. On July 4, 2012, the collaborations of both

ATLAS and CMS announced the observation of a new particle at a mass of 125−126 GeV,

which was conjectured to be a Higgs boson. In the following, many studies confirmed that

the properties of this new resonance are consistent with being the SM Higgs boson. Since

the determination of its features is also the main purpose of the present work, we will

briefly discuss in this section how the SM Higgs boson can be produced, observed and

identified at the LHC.

2.3.1 Higgs boson Properties

In order to verify or disprove whether the newly discovered resonance is the SM Higgs

boson, all its properties have to be investigated experimentally and compared to theo-

retical predictions. So the starting point is to assemble all the characteristics of the SM

Higgs boson given by theory (see Sec. 2.2.1). As mentioned before, its mass is a free

parameter (apart from theoretical constraints from unitarity, triviality and vacuum sta-

bility). However, as soon as a resonance is discovered experimentally in channels with

full mass resolution, the mass is known within some uncertainty range. Therefore, we will

assume a mass of 126 GeV here. The characteristics of the SM Higgs boson can then be

summarized in the following profile:

• The SM Higgs boson is a neutral, non-colored particle.

• It is a scalar, i.e. its spin is zero.

• It is CP-even.

• Its couplings to gauge bosons and fermions depend on their masses in a specific way.

• It features triple and quartic self-couplings proportional to its mass squared, which

can be treated perturbatively due to the light Higgs mass.

• Its width can be calculated to be ≈ 4 MeV for a mass of 126 GeV.

• It unitarizes weak-boson scattering.
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The determination of the spin, CP and couplings to gauge bosons and fermions is a chal-

lenging ongoing task, which requires detailed theoretical and experimental investigation of

various channels. Higgs boson self-couplings are hardly accessible at the LHC, since they

have to be measured from double- or triple Higgs production. A rough estimate on the

triple Higgs coupling might be extracted from a future high-luminosity LHC. For a pre-

cise determination, however, a future linear collider would be needed. Probing the quartic

Higgs coupling is presumably not possible in the near future, since the cross section of

triple Higgs production is too tiny [52]. The width of the resonance peak is dominated

by the experimental resolution, which is about one GeV for CMS and ATLAS. There-

fore, only upper limits can be determined, excluding hypotheses which predict a strong

enhancement of the width, e.g. from invisible decays. The unitarization of weak-boson

scattering by the SM Higgs or alternative particles will be studied in Sec. 4. Finally,

hypotheses postulating a charged or colored 126 GeV resonance could be ruled out easily,

since they would lead to predictions for production and decay channels which are different

from those of the SM Higgs boson. These production and decay channels and their fea-

tures will be discussed in the following (for comprehensive reviews, see e.g. Refs. [32], [33]

and [53]).

2.3.2 Production and Decay Channels of the SM Higgs boson

At a proton-proton collider, Higgs boson production results from gluons or (light) quarks

in the initial state. On the other hand, the SM Higgs boson couples preferentially to

heavy particles. Hence, relevant production channels must involve heavy intermediate

fields. That is why the four main Higgs production modes at the LHC are gluon fusion,

vector-boson fusion, associated production with a weak boson and production in associa-

tion with a top-antitop pair. Representative Feynman diagrams are shown in Fig. 1 and

the corresponding cross sections are given on the left hand side of Fig. 2 for a center-of-

mass energy of 8 TeV in the same colors. Some aspects of the calculation of cross sections

at hadron colliders will be discussed in Sec. 2.4.

Gluon fusion is the by far dominating Higgs production process at the LHC. Since gluons

are massless, the Higgs boson is produced indirectly via a loop of massive quarks, espe-

cially the top quark. As there are no further particles in the final state, this channel is

rather easy to analyze. From the theory side, however, this process is challenging, since

it features large higher-order corrections (see Sec. 3.2.3).

The second-most important production mode is vector-boson fusion (VBF). In contrast

to gluon fusion, the NLO QCD corrections, which will be studied in Sec. 3, are rather
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Figure 1: Representative leading order Feynman graphs of the main SM Higgs production chan-
nels at the LHC.

small. The two jets in the final state exhibit characteristic features, which can be used

to separate the signal from backgrounds: They lie in opposite detector hemispheres, with

a large rapidity separation between them, while the decay products of the vector bosons

are located at central rapidities.

Due to the high center-of-mass energy of the LHC, where the t-channel weak-boson ex-

change of VBF dominates over the s-channel V H production, the cross section of as-

sociated V H production is smaller than the one of VBF. Furthermore, V H production

requires a quark-antiquark initial state, which involves a sea anti-quark from a proton

at the LHC. At proton-antiproton colliders, however, a qq̄ initial state can be formed by

valence quarks. Thus, associated V H production dominates over VBF at the Tevatron.

The weak boson V can either be a W or a Z boson. The WH cross section, where the

sum over W+ and W− is taken, is roughly twice as large as the one of ZH.

Among the main production channels, Higgs boson production in association with a top-

antitop quark pair is the one with the smallest cross section, since its final state tt̄H

consists of three heavy particles. Moreover, the two top quarks as well as the Higgs boson

have different possibilities for further decays, leading to a variety of complicated final

states, which have to be analyzed separately. Therefore, tt̄H production is not an actual

Higgs discovery channel. Nevertheless, this process is interesting, since it provides access

to the top Yukawa coupling.
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Figure 2: Higgs production cross sections (left hand side) and decay branching ratios (right
hand side), taken from the LHC Higgs Cross Section Working Group [54], with an
additional vertical line indicating the observed mass. The bands represent parametric
and theoretical uncertainties. On the left hand side, labels on the bands specify the
included higher-order corrections.

The Higgs boson cannot be detected directly, as it is unstable and decays into other SM

particles. In case of a narrow Higgs resonance, production and decay can safely be factor-

ized and treated separately. The relevance of different decay channels strongly depends

on the mass of the Higgs boson, which mainly decays into a pair of the heaviest particles

allowed by kinematics. This is demonstrated on the right hand side of Fig. 2, with a ver-

tical line indicating the observed mass of 126 GeV. There, the relevance of the different

decay modes is given in terms of a branching ratio (BR), which is the probability for a

Higgs decay into the given final state. Whereas for a very light Higgs boson, decays into

heavy fermions and gluons would completely dominate over decays into weak bosons, it

is the other way around for a heavy Higgs. For Higgs masses above around 350 GeV, the

decay into tt̄ becomes kinematically accessible and yields a further relevant contribution.

At a mass of 126 GeV, Higgs decays feature a rich phenomenology, with many different

modes contributing.

The dominant channel is the decay into a b anti-b quark pair, with a branching ratio of

≈ 60%. Thus, one might think that H → bb̄ is an outstanding Higgs discovery mode.

However, this is not the case, since distinguishing the purely hadronic Higgs decay to bb̄

is very challenging at a hadron collider, where hadronic backgrounds exceed such Higgs

processes by orders of magnitude. The same is true for the cc̄ and digluon modes, whose
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branching ratios are at the percent level.

With a branching ratio of ≈ 20%, the decay to two W bosons is the second largest decay

channel for a 126 GeV Higgs. W bosons are also unstable and can decay into a quark-

antiquark pair or into a charged lepton and a neutrino. The leptonic W decay modes are

among the most important Higgs detection channels, since they feature a clear signature

of electrons or muons and missing energy from the invisible neutrinos. However, these

channels provide only a poor mass resolution, since the mass peak of the Higgs resonance

cannot be fully reconstructed in channels involving neutrinos.

This is different in ZZ decay modes with both Z bosons decaying into pairs of charged

leptons. These channels are essential for the discovery as well as the characterization of

the Higgs boson and allow for an excellent Higgs mass resolution. However, their rate

is quite low because of small branching ratios of the Higgs to two Z bosons and the Z

bosons to charged leptons, which are both at the percent level.

The last remaining channel with a branching ratio at the percent level is H → τ+τ−.

Its analysis is challenging, since the τ leptons decay into different leptonic or hadronic

final states involving neutrinos. Furthermore, the production via gluon fusion is diffi-

cult to access because the Higgs signal can hardly be distinguished from the dominating

background of τ pairs from Drell–Yan production. Therefore, VBF and associated V H

production with a hadronically decaying weak boson are important production modes

for analyses of the ττ channel, since they feature additional jets, which can be used to

discriminate the Higgs signal from the background. The ττ decay mode is complementary

to other channels, since it provides access to a lepton Yukawa coupling. Other leptonic

decay modes, even the dimuon channel, feature minor branching ratios, resulting from

small lepton masses.

Although its branching ratio is only ≈ 0.2%, the γγ channel is one of the main Higgs

detection modes. This is because two photons in the final state feature a clean signature

with a good mass resolution, which also allows for a distinction of the signal from the

irreducible background that can be interpolated from data. The SM Higgs decay into two

massless photons (as well as into Zγ and gg) is mediated by loops of heavy particles. This

leads to a suppression compared to WW and ZZ decays, which would not be present in

many BSM scenarios. Thus, measurements of the γγ and Zγ rates are important elements

of the identification of the SM Higgs boson.
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2.4 Theoretical Predictions for Hadron Colliders

In order to compare experimental measurements of e.g. Higgs production processes with

predictions from theory, precise theoretical calculations and simulations are needed. Some

important elements of them will be outlined in this section, focusing on hadron colliders

like the LHC. A detailed introduction into these topics can e.g. be found in Ref. [55].

2.4.1 Hadron Collisions

Physical processes at hadron colliders are dominated by the strong interaction, which is

described by QCD (see Sec. 2.1). The strength of the interaction is given by the strong

coupling αs = g2s
4π

, with gs defined in Eq. (2.2). This coupling, however, is not a constant,

but depends on the energy of the given process. If αs is known at some energy scale µ (e.g.

the mass of the Z boson), this scale can be used as a starting point of the renormalization

group evolution

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
33−2nf

12π
ln(Q

2

µ2
) +O(α2

s)
(2.13)

to the new energy scale Q. Here, nf is the number of quark flavors available at the

corresponding energy. Since αs decreases with increasing energy, it becomes small at high

energies or small distances, respectively. This feature is known as asymptotic freedom.

Thus, at high energies, quarks and gluons can be treated as approximately free particles

and their interactions can be calculated via a perturbative series in the strong coupling

constant. In the soft region, where αs is large, quarks and gluons are confined to colorless

hadrons and the perturbative treatment is not valid any more. Highly-energetic hadron

collisions involve both the soft and the hard regime. Fortunately, they can be treated

separately according to the factorization theorem [56]. Thus, the cross section of a general

hadron-hadron interaction can be written as [57]

σ =

∫
dx1 dx2

∑
subprocesses

fa1/h1(x1, µ
2
F ) fa2/h2(x2, µ

2
F )

1

2ŝ

∫
dΦn Θ(cuts)

∑
|M|2(a1a2 → b1...bn). (2.14)

The elements of this equation will be explained in the following.
∑|M|2 denotes the

square of the matrix element of a particular hard partonic subprocess, which includes the

sum over different colors and polarizations of the final state particles and their average

in case of initial state partons. The matrix element M(a1a2 → b1...bn) has a graphic

representation in terms of Feynman diagrams and is related to the S-matrix [58], which is
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a unitary operator describing the scattering probability. After separating identical initial

and final states, where no scattering occurs,

S = 1 + iT, (2.15)

M is obtained from the T -matrix by requiring four-momentum conservation:

〈p1p2...pn|iT |pa1pa2〉 = (2π)4 δ4

(
pa1 + pa2 −

n∑
i=1

pi

)
iM. (2.16)

Θ(cuts) is a combination of Heaviside step functions which impose various constraints on

the final-state configurations, e.g. to exclude regions which are not accessible to detectors

or to separate the signal process from backgrounds. ŝ denotes the square of the centre

of mass energy for the particular partonic subprocess and dΦn is the Lorentz-invariant

phase space element

dΦn =
n∏
i=1

(
d3pi

(2π)3 2Ei

)
(2π)4 δ4

(
pa1 + pa2 −

n∑
i=1

pi

)
. (2.17)

The partonic substructure of the colliding hadrons is described by the parton distribution

functions (PDFs) fai/hi(xi, µ
2
F ), where xi is the fraction of the hadron momentum carried

by the parton ai. Inside the hadron, there are soft interactions between the partons,

which lead to time-dependent fluctuations of parton momenta. However, the hard scat-

tering occurs during a very short time interval, such that the fluctuations appear frozen.

Thus, the process-independent PDFs can be determined once and for all. Since they

cannot be calculated perturbatively, they have to be fitted from experimental data. This

is done by different collaborations, like CTEQ, MSTW and NNPDF, which use slightly

different approaches for the fits as well as for the selection and treatment of data. Such

uncertainties of the PDF determination affect the total error of a theoretical prediction.

The separation between the hard, perturbative and the soft, non-perturbative part of the

cross section (2.14) takes place at the factorization scale µF . This unphysical scale is

not a priori determined, but sensible choices can be found by exploring relevant scales

of the particular process and from comparisons with higher-order corrections. PDF fits

are usually performed at a low factorization scale, yet the evolution to any other scale is

determined by a perturbative renormalization group equation called DGLAP [59].

Another characteristic of hadron collisions is that the initial momenta of the interact-
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ing partons are not known a priori. Only the momentum components transverse to the

beam axis (labeled pT ) are known to be zero initially. Together with momentum conser-

vation, this can be used to determine transverse momenta of invisible final-state particles.

Another useful observable at hadron colliders is the pseudorapidity η, which is related to

the scattering angle θ by [57]

η =
1

2
log

1 + cos θ

1− cos θ
(2.18)

and coincides with the rapidity

y =
1

2
log

E + pz
E − pz

(2.19)

in case of massless particles. The advantage of these quantities is that rapidity differences

are invariant under boosts along the beam axis, which result from different fractions of

the proton momenta carried by the initial-state partons.

The calculation of hadronic cross sections as well as differential distributions of observables

like transverse momenta or pseudorapidities is a complex task. Therefore, this is usually

performed by means of Monte Carlo generators, which will be described in the following.

2.4.2 Monte Carlo Generators

The cross section (2.14) typically involves matrix elements of high complexity, which have

to be integrated over a high-dimensional phase space. In most cases, this integration

cannot be performed analytically. Since ordinary methods of numerical integration are

time consuming in high dimensions, Monte Carlo generators apply efficient numerical

Monte Carlo integration methods for the simulation of hadron collisions. A basic Monte

Carlo integration proceeds as follows [60]: In order to calculate the d-dimensional integral

I =

∫
V=[0,1]d

f(~x)ddx (2.20)

over the unit hypercube [0, 1]d, the Monte Carlo algorithm selects N uniformly distributed

points ~xn randomly out of V and determines the estimate IMC, which converges to the

true value of the integral according to the law of large numbers,

lim
N→∞

IMC = lim
N→∞

1

N

N∑
n=1

f(~xn) = I. (2.21)

For finite values of N , the error of the Monte Carlo integration is proportional to 1/
√
N .

Since the convergence is rather slow in this basic setup, several improvements have been
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developed. One of these techniques is importance sampling, which modifies the integration

variables as follows: ∫
f(~x)ddx =

∫
f(~x)

p(~x)
p(~x)ddx =

∫
f(~x)

p(~x)
ddP (~x). (2.22)

Here, p(~x) is a probability density function, which is positive-valued and normalized to

unity. If the random numbers are generated according to P (~x), the function f(~x) is re-

placed by f(~x)
p(~x)

in the Monte Carlo estimate and the error given above. Thus, the function

p(~x) should be chosen such that it approximates the shape of f(~x). This often requires

some advanced knowledge about f(~x), which is not available. Therefore, adaptive algo-

rithms are preferred in practice, which learn about the function during their execution.

A common algorithm of this type is Vegas [61], which adjusts the function p(~x) during

several runs of the Monte Carlo integration. Starting from a grid which sub-divides the

integration domain, Vegas performs separate integrations for all the subspaces. Depend-

ing on the locations with dominant contributions to the integral, the grid is then modified

for the next iteration. By repeating this procedure, the probability density function is

approximated until the best grid is found. Then, the integral can be evaluated with high

precision. A modified version of the Vegas algorithm is used by the program Vbfnlo,

which was used for the purpose of the present work. Vbfnlo is a flexible Monte Carlo

generator written in Fortran, which specializes in the simulation of vector-boson fusion

and double or triple vector-boson production at hadron colliders. Furthermore, various

BSM scenarios are implemented. As a parton-level program, Vbfnlo focuses on the hard

process, omitting soft QCD aspects of hadron collisions, such as hadronization or the un-

derlying event. In order to provide precise predictions, next-to-leading order (NLO) QCD

corrections are implemented in Vbfnlo for most of the processes.

2.4.3 Next-to-leading Order Calculations

At hadron colliders, the hard partonic part of scattering processes can be calculated per-

turbatively, as mentioned before. The leading order (LO) of the perturbative expansion in

the strong coupling often yields only a rough estimate of the cross section because of the

rather large value of αs(mZ), which is around 0.1. Furthermore, new production channels

can arise at NLO, which can have a significant impact on the cross section and differential

distributions. Therefore, the calculation of NLO QCD corrections and their implemen-

tation into Monte Carlo generators is very important for precise predictions of processes

at hadron colliders. For an even higher precision, NLO electroweak corrections should
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Figure 3: Representative NLO QCD Feynman diagrams. Left hand side: Real emission, right
hand side: virtual correction.

also be taken into account. However, since the corresponding coupling α is more than an

order of magnitude smaller than αs, they are not considered within the scope of this work.

A generic cross section at NLO can be written as

σNLO = σLO + δσNLO =

∫
n

dσLO +

∫
n+1

dσreal +

∫
n

dσvirt, (2.23)

where n is the number of final-state particles at LO. It comprises real and virtual cor-

rections, which are exemplified in Fig. 3. The real contributions result from emitting an

additional parton, which leads to n+1 final-state particles in the phase-space integration.

The virtual corrections originate from diagrams with an additional loop, which feature

two more vertices than the corresponding LO graphs. Thus, their squared matrix elements

contain an additional factor of α2
s, which gives rise to an NNLO correction. However, the

loop diagrams contribute to order αs via the interference term 2 Re(M1-loopM∗
LO). Dif-

ferent types of loop diagrams are labeled according to their number of external particles

attached to the loop: self-energy corrections (two external legs), vertex corrections (three

legs, compare Fig. 3), boxes (four legs), pentagons (five legs) etc. A generic feature of

one-loop diagrams is that they contain an undetermined four-momentum of a particle in

the loop, which, in contrast to external momenta, is not constrained by four-momentum

conservation. Thus, it has to be integrated over the whole momentum space, which leads

to divergences when the integration variables approach infinity. These ultraviolet (UV) di-

vergences first have to be made explicit, i.e. regularized. This can be done by lowering the

dimension of the integral to D instead of four space-time dimensions. If the dimensional

regularization scheme is applied, the entire loop is evaluated in D dimensions. Another,

finally equivalent, method is dimensional reduction [62]. There, only loop momenta are

D-dimensional, whereas polarization vectors or spinors of external particles as well as

Dirac matrices remain four-dimensional. To compensate the change of dimension, a new
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dimensionful parameter has to be introduced and multiplied to the loop integral with

an exponent 4 − D. This parameter has the dimension of an energy and is denoted as

renormalization scale µR. Similar to the factorization scale discussed above, it is not a

priori determined and has to be chosen appropriately by studying the particular process

of interest. Thereby, the change of the cross section with a variation of the renormaliza-

tion and factorization scale is related to the theoretical uncertainty. It usually decreases

when higher-order corrections are included. After regularization, the UV divergences are

absorbed in the relations of bare and renormalized quantities by means of an appropriate

renormalization procedure.

Both virtual and real corrections exhibit another type of divergences: The infrared (IR)

ones, which can either be soft, with a momentum of a massless boson approaching zero,

or collinear, with two parallel momenta of massless particles. According to the KLN

theorem [63], IR divergences from virtual and real corrections cancel each other when suf-

ficiently inclusive observables are considered. However, this is difficult to realize within a

Monte Carlo generator, since the cancellation should occur among different phase-space

configurations (see Eq. (2.23)). A common procedure of arranging this cancellation in

practice is subtraction. The basic idea behind this method is to add and subtract a local

counterterm, which cancels divergences before the actual integration. This can be written

as

δσNLO =

∫
n+1

dσreal +

∫
n

dσvirt =

∫
n+1

(dσreal − dσsubtr) +

∫
n+1

dσsubtr +

∫
n

dσvirt. (2.24)

The counterterm dσsubtr is constructed such that it matches the divergence structure of the

real correction. Then, the real minus the subtracted part is finite and can be integrated

numerically in four dimensions. Furthermore, the counterterm must be simple enough

to be integrated analytically over the one-particle phase space in D dimensions. After

performing this integration with the added counterterm, the divergences are regularized

and canceled against those from the virtual part. Finally, the result can be integrated

numerically in four dimensions. Thus, we can formally write:

δσNLO =

∫
n+1

[
dσreal − dσsubtr

]
D=4

+

∫
n

[
dσvirt +

∫
1

dσsubtr

]
D=4

. (2.25)
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Suitable counterterms can e.g. be constructed by means of the Catani-Seymour dipole-

subtraction formalism [64] as

dσsubtr =
∑

dipoles

dσLO ⊗ dVdipoles. (2.26)

Here, dVdipoles denotes process-independent dipole factors, which match the divergence

structure of the real emission contributions. They are convoluted with an appropriately

spin- and color-projected LO cross section, with sums over spin and color indices implicitly

assumed. Each dipole factor represents a different kinematical configuration of the n+ 1

particles, which is effectively obtained by first producing an n-particle final state and then

splitting one of these particles into two.
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3 Higgs Spin Determination: Spin-0 vs. Spin-2

In this section, the characteristics of spin-0 and spin-2 resonances at the LHC will be

investigated in order to distinguish the two alternative hypotheses and thus determine the

spin of the newly discovered 125− 126 GeV resonance. The spin-1 hypothesis can safely

be discarded, since the observation of the resonance in the diphoton channel excludes

a spin-1 particle due to the Landau–Yang theorem 1. The present analysis of spin-2

resonances is based on an effective Lagrangian approach, which is introduced first, together

with the relevant Feynman rules of the spin-2 particles. This model is implemented into

the Monte Carlo program Vbfnlo in order to calculate cross sections and differential

distributions of spin-2 resonances. After sketching the main aspects of the calculations and

implementations, results of the analysis are presented. We focus on resonances produced

in gluon fusion and vector-boson fusion in the decay modes γγ , W+W− → 2l2ν and

ZZ → 4l, which are the most relevant channels for the identification of the SM Higgs

boson (see Sec. 2.3.2). In all the different processes, the cross sections of SM Higgs

and spin-2 resonances are stated and the spin discrimination power of various differential

distributions is studied. Furthermore, their dependence on model parameters and NLO

QCD corrections is analyzed. In Sec. 3.7, finally, the phenomenology of heavy spin-2

resonances in VBF is presented.

3.1 The Spin-2 Model

When constructing a theory with spin-2 particles, several different approaches can be

adopted (see e.g. Ref. [53]). A naive minimal coupling of a massive spin-2 field with an

electromagnetic field leads to the Velo-Zwanziger problem [65] (see also [66]) of superlumi-

nal propagation and other inconsistencies. Nevertheless, spin-2 mesons are known to exist

from collider experiments. Further detailed investigation of these issues has shown [67]

that such a spin-2 model must be interpreted as an effective theory, which features an

intrinsic UV cutoff. Above this scale, the model is not valid any more and exhibits patho-

logical features.

In theories with extra dimensions (see Sec. 2.2.2), spin-2 particles appear as Kaluza-Klein

(KK) graviton modes, where the graviton couples to the energy-momentum tensor of SM

1This conclusion is only valid under certain assumptions: Firstly, that there is only one resonance
in all detection channels, not several degenerate ones with different spins observed in different channels.
Secondly, this resonance must have a small width, otherwise the theorem cannot be applied. Last but
not least, the diphoton final state must be detected unambiguously, without misinterpretation of other
final states as two photons.
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fields in an effective framework. However, such theories also predict the existence of heavy

KK towers of other particles, which haven’t been observed yet. Moreover, the graviton

couplings are constrained by the theory. Therefore, a KK graviton can easily be distin-

guished from the SM Higgs, since it cannot reproduce Higgs-like signal strengths [22].

To describe new physics beyond the Standard Model (BSM), such as generic spin-2 parti-

cles, in a model-independent way, an effective Lagrangian formalism [68] can be used (see

also Ref. [69]). In such an approach, the actual new theory is not developed explicitly,

since it is assumed to manifest itself above a high energy scale Λ, which is far from exper-

imental reach. Instead, an effective Lagrangian model is a low-energy approximation of

the actual unknown theory, with the effective Lagrangian being an expansion in inverse

powers of Λ:

Leff = L0 +
1

Λ
L1 +

1

Λ2
L2 + ... (3.1)

Since terms of higher order are suppressed by powers of E
Λ

, their impact is expected to

be small. Typically, only the first non-vanishing order is kept. An effective Lagrangian

can comprise either the SM fields only or additional particles, like the spin-2 particles in

the present case. The underlying high-energy theory is assumed to introduce additional

heavy particles, whose masses correspond to the energy scale Λ. Although they cannot

be produced directly in low-energy reactions, they influence the low-energy interactions

through their virtual effects.

Instead of starting from an effective Lagrangian, one can also directly parametrize the

general amplitude, without any ordering with respect to energy scales. Then, requiring

gauge and Lorentz invariance limits the number of possible terms. Such an approach is

applied in Refs. [17,19,20] and will be used later in the present work in Sec. 3.5. Although

this approach is somewhat more general, we will mainly focus on the effective Lagrangian

method, which features a clear ordering of more or less relevant operators and is consistent

beyond leading order in QCD.

For the analysis of spin-2 resonances in vector-boson fusion and gluon-fusion processes,

we have constructed an effective Lagrangian model for spin-2 particles interacting with

the gauge bosons of the Standard Model [25,26,69]. If not indicated otherwise, we restrict

ourselves to the lowest order in the expansion, i.e. to operators of dimension five. Effects

of higher-dimensional terms will be studied in Sec. 3.5. Two scenarios are considered: A

spin-2 state which transforms as SU(2) singlet and another spin-2 state which is a weak

isospin triplet.
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These states are described by the general spin-2 fields T µν (singlet) and T µνj (triplet),

T µν(j) (x) =

∫
d3k

(2π)32k0

2∑
λ=−2

(
εµν(k, λ)aλ(,j)(k)e−ikx + ε∗µν(k, λ)a†λ(,j)(k)eikx

)
. (3.2)

The free Lagrangian for a general spin-2 field with mass m is given by [70]

Lfree = − (∂µT
µν)† (∂ρT

ρ
ν) +

1

2
(∂ρT

µν)† (∂ρTµν) +
m2

2
T µν†Tµν . (3.3)

For the triplet field, the partial derivatives have to be replaced by covariant ones in order

to constitute its gauge couplings to electroweak bosons. However, such couplings lead

to TTV or TTV V vertices, which do not appear in the processes considered here. The

spin-2 fields are symmetric in µ and ν, transverse and T µµ = T µ,jµ = 0. εµν is a symmetric

polarization tensor built from the usual spin-1 polarization vectors [71]:

εµν(p,±2) = εµ(p,±)εν(p,±)

εµν(p,±1) =
1√
2

(εµ(p,±)εν(p, 0) + εµ(p, 0)εν(p,±))

εµν(p, 0) =
1√
6

(εµ(p,+)εν(p,−) + εµ(p,−)εν(p,+) + 2εµ(p, 0)εν(p, 0)) . (3.4)

While the spin-2 singlet involves only one uncharged particle T , the triplet consists of

three spin-2 particles, T 1, T 2 and T 3. These are rotated into a charged pair and a neutral

particle, similarly to the rotation used for the W boson (see Eq. (2.10)):

T± =
1√
2

(T 1 ∓ i T 2),

T 0 = T 3. (3.5)

In this analysis, we only study spin-2 resonances which are produced in gauge-boson fusion

and decay into pairs of electroweak bosons. Hence, the present approach is restricted to a

model for the interaction of a single spin-2 particle with the SM gauge bosons. Therefore,

the building blocks of the corresponding singlet and triplet Lagrangian were chosen to

be the spin-2 field(s), the vector fields of the gauge bosons and the scalar field Φ. 2

2This scalar field is assumed to be the Higgs field responsible for electroweak symmetry breaking,
though leading to a Higgs boson which is not the new 125 − 126 GeV particle discovered at the LHC,
but has escaped detection so far, e.g. because it is too heavy. Alternatively, it can correspond to a sigma
model accounting for EWSB without a physical Higgs boson (which is the more interesting case in the
context of Sec. 4).
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Respecting gauge and Lorentz invariance and neglecting higher-dimensional operators,

we end up with the following effective Lagrangian corresponding to the singlet case:

Lsinglet =
1

Λ
Tµν

(
f1B

ανBµ
α + f2W

αν
i W i,µ

α + 2f5(DµΦ)†(DνΦ) + f9G
αν
a G

a,µ
α

)
, (3.6)

while the Lagrangian for the triplet case reads

Ltriplet =
1

Λ
Tµν,j

(
f6(DµΦ)†σj(DνΦ) + f7W

j,µ
αB

αν
)
. (3.7)

Here, Λ is the characteristic energy scale of the underlying new physics, fi are variable

coupling parameters, Bαν , Wαν
i and Gαν

a are the field strength tensors of the SM gauge

bosons (see Eq. (2.2)) and Dµ is the covariant derivative

Dµ = ∂µ − igW µ
i

σi

2
− ig′Y Bµ. (3.8)

The masses of the spin-2 particles are considered as free parameters.

In contrast to the graviton Lagrangian [71], couplings to fermions are not present in our

model. However, they could be included straightforwardly by adding further terms, like
i
Λ
TµνΨ̄γ

µDνΨ or i
Λ
TµνΨ̄γ

5γµDνΨ, with free coupling parameters. This would open up

new production and decay modes, which should be studied separately without changing

the basic results for the bosonic channels. In the latter, a change of the cross sections

because of additional contributions to the decay width of the spin-2 particle could be

compensated by an additional free branching ratio parameter (see Appendix A) or by

rescaling the energy scale Λ. Another important difference to the graviton Lagrangian is

the presence of variable factors fi, which are not fixed by the underlying theory.

It is possible to write down additional terms including dual field strength tensors Ṽ αν =
1
2
εανρσVρσ, like f3

Λ
TµνB̃

ανBµ
α and f4

Λ
TµνW̃

αν
i W iµ

α. However, such terms yield TV V vertices

which vanish for on-shell spin-2 particles, since they are proportional to T µµ . Off-shell

contributions do not lead to significant observable effects in the following analysis.

The spin-2 singlet Lagrangian (3.6) yields five relevant vertices which involve two gauge

bosons and the spin-2 singlet particle T , namely TW+W−, TZZ, Tγγ, TγZ and Tgg.

The corresponding Feynman rules are:
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TW+W− :
2if2

Λ
Kαβµν

1 +
if5g

2v2

2Λ
Kαβµν

2 ,

TZZ :
2i

Λ
(f2c

2
w + f1s

2
w)Kαβµν

1 +
if5v

2

2Λ
(g2 + g′2)Kαβµν

2 ,

Tγγ :
2i

Λ
(f1c

2
w + f2s

2
w)Kαβµν

1 ,

TγZ :
2i

Λ
cwsw(f2 − f1)Kαβµν

1 ,

T gg :
2if9

Λ
δabKαβµν

1 . (3.9)

Here, cw and sw denote the cosine and sine of the weak mixing angle defined in Eq. (2.10),

v corresponds to the vacuum expectation value of the Higgs field (Eq. (2.6)) and the two

different tensor structures are given by

Kαβµν
1 = pν1 p

µ
2 g

αβ − pβ1 pν2 gαµ − pα2 pν1 gβµ + p1 · p2 g
ανgβµ, (3.10)

Kαβµν
2 = gανgβµ. (3.11)

The indices µ and ν correspond to the spin-2 field (which is symmetric in µ and ν,

as mentioned before), α is the Lorentz-index of the first gauge boson, whose incoming

four-momentum is denoted as p1 and β is the Lorentz-index of the second one with four-

momentum p2. a and b are the color indices of the two gluons.

For the spin-2 triplet, it is not possible to describe a gluonic interaction by a term analo-

gous to f9
Λ
TµνG

αν
a G

a,µ
α in Eq. (3.6). Therefore, the triplet Lagrangian (3.7) yields only four

relevant vertices for the uncharged spin-2 particle T 0, which are - apart from the missing

T 0gg vertex - the same as in the singlet case. Furthermore, there are two relevant vertices

for the charged particles T+ and T−. The structure of the Feynman rules is analogous to

the singlet case:

T 0W+W− :
if6

4Λ
g2v2Kαβµν

2 ,

T 0ZZ : −if6

4Λ
(g2 + g′2)v2Kαβµν

2 − 2if7

Λ
cwswK

αβµν
1 ,

T 0γγ :
2if7

Λ
cwswK

αβµν
1 ,

T 0γZ :
if7

Λ
(c2
w − s2

w)Kαβµν
1 ,
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T±W∓Z : −if6

4Λ
gv2
√
g2 + g′2Kαβµν

2 − if7

Λ
swK

αβµν
1 ,

T±W∓γ :
if7

Λ
cwK

αβµν
1 , (3.12)

with Kαβµν
1 and Kαβµν

2 defined as in the singlet case (Eq. (3.11)).

The propagator of the spin-2 field with momentum k, which is the Fourier transform of〈
0
∣∣T (T µν(x)Tαβ(0)

)∣∣ 0〉, is given by [71,72]

iBµναβ(k)

k2 −m2
T + imTΓT

, (3.13)

where mT is the mass of the spin-2 particle, ΓT is its width and Bµναβ(k) is given by

Bµναβ(k) =
1

2

(
gµαgνβ + gµβgνα − gµνgαβ

)
+

1

6

(
gµν +

2

m2
T

kµkν
)(

gαβ +
2

m2
T

kαkβ
)

− 1

2m2
T

(
gµαkνkβ + gνβkµkα + gµβkνkα + gναkµkβ

)
. (3.14)

Explicit expressions for partial decay widths can be found in Appendix A.

Since the present spin-2 model is based on an effective Lagrangian approach, which is not

valid up to arbitrary high energies, it violates unitarity above a certain energy scale. In

order to parametrize high-energy contributions beyond this effective model, a formfactor,

which is multiplied with the amplitudes, is used:

FSpin-2 =

(
Λ2
ff

|p2
1|+ Λ2

ff

·
Λ2
ff

|p2
2|+ Λ2

ff

·
Λ2
ff

|k2
sp2|+ Λ2

ff

)nff

. (3.15)

Here, p2
1 and p2

2 are the squared invariant masses of the initial gauge bosons and k2
sp2 is

the squared invariant mass of an s-channel spin-2 particle. The energy scale Λff and the

exponent nff are free parameters, describing the scale of the cutoff and the suppression

power, respectively.

Another important example for an effective Lagrangian approach is the following parame-

trization of anomalous couplings of a Higgs boson to electroweak bosons [16,29,73], which

will be used in Sec. 3.4 to compare different spin-0 and spin-2 scenarios:
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LSpin-0 =
1

Λ5

H

(
gHWW

5e W+
µνW

µν
− + gHWW

5o W̃+
µνW

µν
− +

gHZZ5e

2
ZµνZ

µν +
gHZZ5o

2
Z̃µνZ

µν

+
gHγγ5e

2
AµνA

µν +
gHγγ5o

2
ÃµνA

µν + gHZγ5e ZµνA
µν + gHZγ5o Z̃µνA

µν

)
. (3.16)

Ṽµν are the dual field strength tensors Ṽµν = 1
2
εµνρσV

ρσ, Λ5 is the energy scale of the

underlying new physics and gHV V5e(o) denote the free coupling parameters corresponding to

CP-even (-odd) operators.

Analogous to the spin-2 case, a formfactor can be multiplied with the vertices to modify

the high-energy behavior, e.g.

FSpin-0 =
Λ2
ff0

|p2
1|+ Λ2

ff0

·
Λ2
ff0

|p2
2|+ Λ2

ff0

, (3.17)

with Λff0 describing the energy scale of the cutoff.

3.2 Elements of the Calculation

The present analysis is performed with the parton-level Monte Carlo program Vbfnlo

(see Sec. 2.4.2), which has been extended to simulate various processes involving spin-2

particles of the model described in Sec. 3.1. Three different classes of processes are studied:

• Vector-boson-fusion processes with different four-lepton final states, which com-

prise the SM electroweak continuum and additional contributions of spin-2 particles.

There, the characteristics of heavy spin-2 resonances are studied in order to allow

for a spin determination of hypothetical new, heavy resonances as manifestations of

physics beyond the Standard Model, which might be detected at the LHC.

• Spin-2 (or Higgs) resonant vector-boson-fusion processes with the final states γγ ,

W+W− → 2l2ν, ZZ → 4l and ZZ → 2l2ν. There, the features of a spin-2 resonance

are compared to those of a Higgs boson in order to determine the spin of the new

125− 126 GeV resonance found at the LHC.

• Spin-2 (or Higgs) resonant gluon-fusion processes with the final states γγ , W+W− →
2l2ν, ZZ → 4l and Zγ → l+l−γ, for the same purpose.

Relevant elements of the calculation and the implementation in Vbfnlo will be discussed

in the following for the different classes of processes. Some of these aspects can also be
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found in Refs. [25], [26] or [69]. More technical details and explicit expressions are given

in the appendix.

3.2.1 Vector-boson-fusion processes with Spin-2 particles

Vector-boson-fusion processes with four leptons and two jets in the final state, namely

l+1 l
−
1 l

+
2 l
−
2 jj, l+1 l

−
1 νl2νl2 jj, l+1 νl1 l

−
2 νl2 jj, l+1 νl1 l

+
2 l
−
2 jj and l−1 νl1 l

+
2 l
−
2 jj, have already

been analyzed at NLO QCD accuracy within the SM in Vbfnlo. The corresponding

calculations, which are described in Refs. [74], [75] and [76], have been extended by the

effects of the spin-2 model in order to study the characteristics of heavy spin-2 resonances.

Results of this analysis will be presented in Sec. 3.7. The implementation at tree-level

(i.e. LO) was already performed within the scope of Ref. [69] and was extended by the

corresponding NLO QCD corrections in the present work.

In this class of processes, both resonant and non-resonant contributions in typical VBF

phase-space regions are considered. Their Feynman graphs at tree-level can be classified

into different topologies, where either one, two or three electroweak bosons are attached to

the same quark line. Quark–anti-quark initiated t-channel processes obtained by crossing

the respective quark-quark diagrams, and u-channel diagrams, which result from inter-

changing identical initial- or final-state quarks, are also fully taken into account. However,

interference between t- and u-channel contributions can safely be neglected in VBF phase-

space regions. s-channel exchange, which corresponds to triple vector-boson production,

with one of the time-like bosons decaying into two jets, is considered as a separate process

in Vbfnlo. However, it is strongly suppressed in VBF phase-space regions and will not

be considered here.

q1 q′1

q2 q′2

W±, Z, γ

W∓, Z, γ

W±, Z, γ

W∓, Z, γ

l̄, ν̄

l, ν

l, ν

l̄, ν̄

Figure 4: General vector-boson-fusion
Feynman graph at tree-level,
where spin-2 effects can appear.

The only tree-level topology in which the spin-2 particles of our model can arise is shown
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Z, γ
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1

V ′
2

T

Z, γ

Z, γ

V ′
1

V ′
2

T

µ+

µ−

e−

e+

µ+

µ−

e−

e+

µ+

µ−

e−

e+

Figure 5: Feynman graphs of the sub-process V V → e+ e− µ+µ− involving the spin-2 singlet
particle T , with V1V2 =̂ W+W−, γZ, Zγ, γγ, ZZ and V ′1V

′
2 =̂ γZ,Zγ, γγ, ZZ.

Z, γ

Z, γ

Z, γ

Z, γ

W

W

W

W

T± T±

µ+

µ−

e−

e+

µ+

µ−

e−

e+

Figure 6: Feynman graphs of the sub-process V V → e+ e− µ+µ− involving charged spin-2 triplet
particles.

in Fig. 4. Such a topology can be written as

M = J µ
q1
J ν
q2
Lµν (3.18)

where the leptonic tensor Lµν is the electroweak part of the amplitude which results from

cutting the propagators which connect the circular area with the quarks. The leptonic

tensor comprises various sub-diagrams involving spin-2 or SM particles, which are added

coherently.

For V V → e+ e− µ+µ−, the electroweak sub-process of pp → e+ e− µ+ µ− jj, the addi-

tional spin-2 diagrams are depicted in Figs. 5 and 6, respectively. Fig. 5 shows the

graphs involving the spin-2 singlet particle T . The diagrams for the neutral spin-2 triplet

are the same as for the singlet particle, with T replaced by T 0. The Feynman graphs for

contributions of charged triplet particles are depicted in Fig. 6. For the other processes

with four leptons and two jets in the final state, the additional Feynman diagrams are

analogous and can be found in Ref. [69]. The leptonic tensors for a given process do

not change when going from LO to NLO QCD, nor do they differ between quark and

anti-quark initiated sub-processes. Therefore, they are calculated only once per phase-

space point and then reused, which considerably improves the speed of the program. The
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q1 q′1

q2 q′2

W±, Z, γ

W∓, Z, γ

W±, Z, γ

W∓, Z, γ

l̄, ν̄

l, ν

l, ν

l̄, ν̄

q1 q′1

q2 q′2

W±, Z, γ

W∓, Z, γ

W±, Z, γ

W∓, Z, γ

l̄, ν̄

l, ν

l, ν

l̄, ν̄

Figure 7: Representative vector-boson-fusion Feynman graphs at NLO QCD. Left hand side:
real emission, right hand side: virtual correction.

Feynman diagrams contributing to the leptonic tensors are calculated via calls of Helas

routines [77]. For the calculation of the graphs involving spin-2 particles, new Helas

routines containing the Feynman rules of the spin-2 model had already been created and

used in the leptonic tensors for the LO implementation in Ref. [69]. These leptonic tensors

have been reused for the NLO implementation of the present work.

Since the spin-2 model only affects the electroweak part of the VBF processes, the NLO

QCD corrections are similar to those of the SM and could be adapted from the respective

calculations, which are described in detail in Refs. [74] and [78]. The real-emission con-

tributions are obtained by attaching an external gluon to the two quarks lines of Fig. 4

in all possible ways, which also comprises quark-gluon initiated sub-processes. Because of

the color-singlet structure of VBF processes, the virtual corrections only comprise graphs

with a virtual gluon attached to a single quark line. In the processes considered here,

pentagon contributions to the virtual corrections arise, since the electroweak SM contin-

uum contains diagrams with three electroweak bosons attached to a quark line. The other

graphs give rise to box, vertex and quark self-energy corrections. Representative Feyn-

man diagrams for the real emission and the virtual corrections are depicted in Fig. 7. In

the calculation of the NLO QCD corrections, infrared singularities arise both from virtual

corrections and from soft and collinear phase-space regions in the real emission part. They

are canceled against each other analytically using the Catani-Seymour dipole-subtraction

formalism (see Sec. 2.4.3). The regularization is performed in the dimensional-reduction

scheme in D = 4 − 2ε dimensions. For the evaluation of the finite parts of the virtual

corrections, the Denner-Dittmaier scheme [79] is applied for five-point functions and the

Passarino-Veltman reduction method [80] for loop functions up to four external legs.

Throughout the calculation, the Cabibbo-Kobayashi-Maskawa matrix VCKM is approxi-
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mated by the identity matrix. This gives the same results as the exact matrix VCKM for

the sum over all quark flavors (as long as no final-state flavor tagging is done and mixing

with the massive top quark is neglected), since VCKM is unitary.

Finite-width effects in massive vector-boson propagators are taken into account by using

a modified version [81, 82] of the complex-mass scheme [83], where m2
V is replaced with

m2
V − imV ΓV , while a real value for sin2 θW is kept. This replacement includes the m2

V

appearing in the spin part of the propagator in the unitary gauge. This approach is

analogous to the one implemented in MadGraph [81] and, indeed, the Vbfnlo SM am-

plitudes agree with the ones obtained with MadGraph. In the full complex-mass scheme,

the SM amplitudes are gauge invariant. The BSM contributions appear as s-, t- and u-

channel spin-2 exchange graphs with a single spin-2 propagator. Since they are derived

from the gauge invariant Lagrangians (3.6) or (3.7), the resulting amplitudes are gauge

invariant in the absence of finite-width effects. One might worry that using the finite-

width propagator (3.13) for the spin-2 fields might break electroweak gauge invariance.

We have checked, however, that changing to the overall-factor scheme (which respects

gauge invariance), i.e. removing the width from all spin-2 propagators and multiplying

the total BSM amplitude with a factor p2−m2

p2−m2+imΓ
, leaves our results unchanged within

the numerical accuracy. Here p, m and Γ denote the momentum, mass and width of the

s-channel spin-2 particle. For processes which include diagrams with two or more spin-2

particles, the propagator of Eq. (3.13) would require further modification to insure gauge

invariance. However, this complication does not arise in the context of the present work.

3.2.2 Spin-2 resonant Vector-boson-fusion processes

In this class of processes, we want to compare the features of a 126 GeV Higgs reso-

nance and a spin-2 resonance of the same mass. To this end, we only consider resonant

diagrams, which are illustrated in Fig. 8 for the WW channel at tree level. Here, T

denotes either the spin-2 singlet or the neutral triplet particle. For the other channels,

the diagrams are analogous. In spin-2-resonant processes with leptonic final states, we

also include intermediate virtual photons instead of Z bosons. In case of Higgs-resonant

diphoton production, an effective Hγγ coupling is used [81]. Higgs and spin-2 production

are implemented as two separate options in order to compare the characteristics of both

types of resonances. The SM continuum contributions are omitted in both cases, as in-

terference effects are small due to the narrowness of the Higgs or spin-2 resonance. We

have analyzed the non-resonant spin-2 contributions as well, yet they were found to yield

no significant modifications and therefore are omitted as well. All the Higgs-resonant
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Figure 8: Tree-level Feynman graphs of the VBF process pp → W+W− jj → e+ νe µ
− νµ jj.

Left hand side: via a spin-2 resonance, right hand side: via a Higgs resonance.

processes we study here were already available in Vbfnlo at NLO QCD accuracy within

the narrow-width approximation [29, 78]. The implementation of the spin-2- (or Higgs-)

resonant γγ channel at tree-level was already performed within the scope of Ref. [69] and

was extended by the corresponding NLO QCD implementation in the present work. The

channels W+W− → 2l2ν, ZZ → 4l and ZZ → 2l2ν were implemented as new Vbfnlo

processes at NLO QCD accuracy and feature the option to switch between a Higgs and a

spin-2 resonance. Again, the NLO QCD corrections could be adapted from existing SM

calculations, as the resonance is part of the electroweak sub-process. Here, the virtual

corrections are much simpler than those described in the previous section: They only

comprise vertex and quark self-energy corrections (the latter vanishing for massless par-

ticles), since the resonant processes contain only diagrams with one electroweak bosons

attached to a quark line.

The spin-2 resonant part of the processes has been calculated by means of the Helas

routines mentioned before as well as with a new second code which directly determines

the spin-2 resonance contributions to the leptonic tensors (see Appendix B for more de-

tails). Firstly, this served as a check of the spin-2 implementation and secondly, the direct

code considerably improves the speed of the program. The remaining parts of the pro-

cesses were checked by comparing the new Higgs-resonant options with the corresponding

existing Vbfnlo processes in the narrow-width approximation.

3.2.3 Spin-2 resonant Gluon-fusion processes

Gluon-induced diboson-production processes [84] were already available in Vbfnlo at

leading order, that is at the one-loop level for Higgs-boson production, including anoma-

lous Higgs couplings to electroweak bosons for the decays. For the present work, these im-

plementations were extended by spin-2-resonant processes in the effective Lagrangian ap-

proach, again omitting non-resonant diagrams. Like in resonant VBF processes (Sec. 3.2.2),
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Figure 9: Feynman graphs of the process gg →W+W− → e+ νe µ
− νµ.

Left hand side: via a spin-2 resonance, right hand side: via a Higgs resonance.

the option to switch between either a Higgs or a spin-2 resonance is provided. The con-

tributing graphs are exemplified in Fig. 9 for WW production. Again, intermediate

virtual photons leading to a leptonic final state are also included in the spin-2-resonant

processes gg → ZZ → 4l and gg → Zγ → l+l−γ. The spin-2-resonant processes are

calculated via a new fast code and were cross-checked by implementing a second version

with spin-2 Helas routines, including newly written ones for the Tgg interaction and

for higher-dimensional spin-2 structures studied in Sec. 3.5 (see also Appendix B). The

corresponding new contributions to the decay width of the spin-2 particle were calculated

by using the mathematica packages FeynArts [85] and FormCalc [86] and can be found

in Appendix A.

In this approach, we assume that higher-order QCD corrections for spin-2-resonant pro-

duction in gluon fusion are the same as for Higgs production, since the Tgg coupling is

somewhat analogous to the effective Hgg coupling, which originates from the operator

structure HGµν
a G

a
µν . So in order to account for higher-order QCD corrections up to NNLL,

which have sizable effects for Higgs production via gluon fusion [87,88], the LO cross sec-

tions calculated with Vbfnlo are multiplied with a K-factor of 2.6. This K-factor was

obtained by comparing with the value given in Ref. [89] (removing NLO electroweak cor-

rections of about 5% [90] included therein). Due to the scale choice µF = µR = mh = 126

GeV for gluon fusion (see Sec. 3.2.4), this K-factor is rather high. With µF = µR = mh/2,

it would be only ≈ 2.1, because of a higher LO cross section. Since higher-order QCD

corrections also affect the decay of the spin-2 particle to gluons, the corresponding partial

decay width is multiplied with the K-factor 1.7, again following results obtained for the

H → gg decay [91]. Note that only the assumed ratio of K-factors is relevant for spin-2

phenomenology, since the overall coupling strength of the spin-2 resonance to gluons,

f9/Λ, is a free parameter in the present model.
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3.2.4 Input parameters and selection cuts

As electroweak input parameters, GF = 1.16637 · 10−5 GeV−2, mW = 80.399 GeV and

mZ = 91.1876 GeV are used, which are taken from results of the Particle Data Group [92].

By using tree-level electroweak relations, sin2 θw and α are derived from these quantities.

We use the CTEQ6L1 [93] parton distribution function (PDF) set at LO and CT10 [94]

PDFs at NLO with αs(mZ) = 0.118. Jets are recombined from the final-state partons

via the k⊥ jet finding algorithm [95]. In vector-boson-fusion processes, the factorization

scale and the renormalization scale are set to µF = µR = Q =
√
|q2
if |, with qif being

the 4-momentum transfer between the respective initial and final state quarks at LO or,

at NLO, the virtuality of the incoming weak bosons. With this scale choice, LO results

were found to give a good approximation of NLO cross sections and distributions, while

the NLO results are hardly sensitive to the scale choice [76]. For gluon fusion or quark–

antiquark-initiated diboson-production processes, a fixed scale of 126 GeV is taken as

factorization and renormalization scale.

Vector-boson-fusion events are characterized by two tagging jets, which are the jets of

highest transverse momentum. They are located in the forward regions of the detector,

while the decay products of the vector bosons (or the final-state photons, respectively) lie

in the central-rapidity region between them. By imposing the following cuts in the VBF

channels, these features can be employed to improve the signal-to-background ratio.

The two tagging jets are required to lie inside the rapidity range which is accessible to

the detector and to have sizable transverse momenta:

|ηj| < 4.5, pT,j > 30 GeV. (3.19)

They are reconstructed from massless partons with pseudorapidity |η| < 5 and have to

be well separated:

∆Rjj ≡
√

(ηj1 − ηj2)2 + (φj1 − φj2)2 > 0.7. (3.20)

Because of the characteristic VBF kinematics, a large rapidity separation and a large

invariant mass of the tagging jets is required, 3

∆ηjj > 4, mjj > mmin
jj . (3.21)

3mmin
jj = 1000 GeV for the process pp→ e+ νe µ

− νµ jj in Sec. 3.7 and mmin
jj = 500 GeV for all other

VBF processes.
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Additionally, the tagging jets have to lie in opposite detector hemispheres,

ηj1 × ηj2 < 0. (3.22)

The charged decay leptons (or decay photons, respectively) are required to be located

at central rapidities, to be well-separated from the jets and to fall into the rapidity gap

between the two tagging jets:

|ηl| < 2.5, ∆Rlj > 0.4, ηj,min < ηl < ηj,max. (3.23)

Here, depending on the considered process, l denotes a charged lepton or a final-state

photon. In the leptonic decay modes, we apply a cut on the invariant mass of two

oppositely charged leptons,

mll > 15 GeV (3.24)

and require the transverse momentum of the charged leptons to be

pT,l > 10 GeV in the WW and pT,l > 7 GeV in the ZZ channel. (3.25)

In the diphoton channel, the photons are supposed to be hard, with

pT,γ > 20 GeV. (3.26)

To have well isolated photons, we require a minimal photon-photon separation

∆Rγγ > 0.4 (3.27)

and apply a photon isolation from hadronic activity as recommended in Ref. [96] with

separation parameter δ0 = 0.7, efficiency ε = 1 and exponent n = 1.

By applying this set of cuts, the LO differential cross sections are finite, as they lead

to finite scattering angles of the two jets. In the NLO calculation, initial-state singu-

larities appear, resulting from collinear quark- and gluon splittings (q → qg, g → qq̄).

They are factorized into the PDFs. Furthermore, divergences from t-channel exchange of

photons with low virtuality emerge in the real-emission contribution, when the additional

radiated parton is resolved as a separate jet, but for the other quark line, the initial and

final-state quarks become collinear. These divergences, which are of electroweak origin,

could be eliminated by including a photon density in the PDFs. However, they can also
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be removed by applying an extra cut on the virtuality of the photon,

Q2
γ > 4 GeV2, (3.28)

which is done in the present analysis. The precise treatment of these divergences does

not affect cross sections appreciably, particularly if VBF cuts are imposed [82].

In Sec. 3.7, where distributions of a heavy spin-2 resonance in VBF processes are studied,

it is convenient to cut off contributions which do not originate from the resonance. To

this end, a minimal and a maximal invariant-mass cut of the final-state lepton system can

be applied. This will be specified in Sec. 3.7.

In case of gluon fusion, we impose the same cuts on the charged decay leptons as in

VBF, with

pT,l > 10 GeV, |ηl| < 2.5, mll > 15 GeV (3.29)

for the W+W− → l+νl−ν̄ decay channel (and also for the diboson-production background)

and

pT,l > 7 GeV, |ηl| < 2.5, mll > 15 GeV (3.30)

for ZZ → 4l. In the diphoton mode, we again require

pT,γ > 20 GeV, |ηγ| < 2.5, ∆Rγγ > 0.4. (3.31)

Finally, the cuts for gg → Zγ → l+l−γ are chosen as

pT,γ > 15 GeV, pT,l > 10 GeV, |ηl| < 2.5, |ηγ| < 2.5, ∆Rll > 0.4, ∆Rlγ > 0.4. (3.32)

To eliminate unwanted off-shell contributions in phase space regions where some of our

approximations fail, we apply an additional cut on the invariant mass of all final-state

leptons and/or photons of ±10 GeV around the 126 GeV resonance in all gluon-fusion

processes.

3.3 Vector-boson Fusion

In this section, numerical results of the analysis of SM Higgs and spin-2 resonances in

Vector-boson fusion are presented (see also Refs. [25, 26]). We consider the channels γγ ,

W+W− → 2l2ν and ZZ → 4l, which represent the most important decay modes for the

observation and analysis of the Higgs boson at the LHC (see Sec. 2.3.2). Cross sections
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of ZZ → 2l2ν are also included for illustration. We list the cross sections at LO and

NLO QCD accuracy, discuss transverse-momentum distributions and the relevance of the

formfactor (3.15) and present distributions which allow us to distinguish between spin-0

and spin-2. Additionally, different parameter settings of the spin-2 model are studied and

the spin-2 singlet is compared to the spin-2 triplet scenario. Furthermore, the impact of

the NLO QCD corrections is analyzed.

If not indicated otherwise, we consider a spin-2 singlet resonance with couplings

f1 = 0.04, f2 = 0.08, f5 = 10, fi 6=1,2,5 = 0 and Λ = 21 TeV. (3.33)

The Tgg coupling f9, which has no equivalent in the triplet scenario, is set to zero through-

out this section. This means we assume that all spin-2 particles couple only to electroweak

bosons in this analysis of electroweak-boson fusion. The parameters of the formfactor are

Λff = 400 GeV, nff = 3. (3.34)

For the triplet scenario, we use the same formfactor parameters, but set the couplings to

f6 = 8, f7 = 0.047, fi 6=6,7 = 0, Λ = 8 TeV. (3.35)

These parameters are chosen in order to approximately reproduce the cross sections and

transverse momentum distributions of a SM Higgs boson in the different VBF channels

at the LHC (see below). The mass of the Higgs boson and the spin-2 particles is set

to 126 GeV and we assume pp collisions at a centre of mass energy of 8 TeV. If not

indicated otherwise, differential distributions are determined in the laboratory frame. In

the following, when figures compare different values of coupling parameters, couplings

fi which are not given explicitly are set to zero and Λ is adjusted such that the cross

section is approximately the same as the one of the SM Higgs resonance. Possible effects

of a finite detector resolution were analyzed by performing a Gaussian smearing of the

energy and the transverse momenta of the final-state particles in the diphoton channel.

To this end, we used an in-house routine based on a CMS Monte-Carlo study [97] (for

further details, see also Ref. [69]). However, this smearing was found to have no significant

influence on the distributions we studied. Therefore, the results which are presented here

were obtained without smearing.

Due to the free coupling parameters fi of the Lagrangians (3.6) and (3.7), cross sections

of spin-2 resonances can be tuned such that they mimic those of a SM Higgs boson within
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Final State Resonance LO cross sec. [fb] NLO cross sec. [fb]

SM Higgs 0.7348 0.7448
γγ Spin-2 singlet 0.7711 0.7878

Spin-2 triplet 0.7314 0.7475

W+W− → SM Higgs 0.6515 0.6620
e+ νe µ

− νµ Spin-2 singlet 0.5453 0.5585
Spin-2 triplet 0.5377 0.5506

ZZ → SM Higgs 1.038 · 10−2 1.056 · 10−2

e+ e− µ+µ− Spin-2 singlet 0.8727 · 10−2 0.8946 · 10−2

Spin-2 triplet 0.8701 · 10−2 0.8920 · 10−2

ZZ → SM Higgs 3.435 · 10−2 3.492 · 10−2

e+ e− νµνµ Spin-2 singlet 2.707 · 10−2 2.773 · 10−2

Spin-2 triplet 2.694 · 10−2 2.759 · 10−2

Table 1: Integrated cross sections for SM Higgs, spin-2 singlet and triplet resonances with param-
eters as given in Eqs. (3.33), (3.34) and (3.35) in different vector-boson-fusion processes
at LO and NLO QCD accuracy. The cuts of Section 3.2.4 are applied. Statistical errors
from the Monte Carlo integration are less than one per mill.

experimental and theoretical uncertainties. This is not only possible for single production

and decay modes, but simultaneously for all the channels studied here (and also for gluon

fusion, see Sec. 3.4). In case of a SM Higgs boson, the decay to two photons is suppressed

compared to WW and ZZ decays, since the Hγγ coupling is loop-induced. A similar

suppression can be achieved in our spin-2 model by tuning the different couplings fi. In

the Feynman rules of the spin-2 singlet scenario (3.9), the coupling f5 appears only in

the TWW and TZZ Vertex, but not in Tγγ and TγZ. So by choosing f5 � f1, f2 the

decay to γγ can be suppressed compared to WW and ZZ. Such a suppression can also be

achieved in the triplet case with f6 � f7, since the structure of the Feynman rules (3.12)

is analogous. That this kind of tuning is in fact possible for our parameter choice given

above is illustrated in Table 1, which shows the integrated cross sections for a SM Higgs

and a spin-2 singlet or triplet resonance in different VBF processes at LO and NLO QCD

accuracy. It is important to note that for graviton spin-2 models, it is not possible to

obtain Higgs-like ratios in such a way [22].

Due to the scale choice µF = µR = Q (see Sec. 3.2.4), the NLO QCD corrections in the

VBF channels are quite small. They are roughly the same for Higgs and spin-2 resonances,

since the resonance is contained in the electroweak part of the process, whereas the NLO

corrections only affect the QCD part.

Table 2 gives a comparison of the integrated cross sections of a Higgs and a spin-2 singlet

resonance for the LHC at a centre of mass energy of 8 TeV and 14 TeV, exemplified for
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LO cross section [fb] NLO cross section [fb] K = σNLO

σLO√
S 8 TeV 14 TeV 8 TeV 14 TeV 8 TeV 14 TeV

SM Higgs 0.7348(3) 2.179(1) 0.7448(4) 2.241(1) 1.014 1.028
Spin-2 singlet 0.7711(4) 2.409(1) 0.7878(4) 2.495(1) 1.022 1.036

Table 2: Integrated cross sections for a SM Higgs and a spin-2 singlet resonance at LO and NLO
QCD accuracy for VBF photon pair-production at different centre of mass energies.
The statistical errors from the Monte Carlo integration are given in brackets.

VBF photon pair-production. The shape of the distributions shown below is identical in

both cases, so we will restrict ourselves to the 8 TeV case there.

The width of the Higgs resonance is only ≈ 4 MeV, whereas the width of the spin-2

resonance depends on the model parameters, but is even much smaller than the one of

the Higgs boson for the different default parameter settings of this section and Sec. 3.4.

In principle, the width of the spin-2 resonance can be adjusted to the one of the Higgs

by multiplying it with an appropriate branching ratio parameter, which quantifies the

amount of additional, possibly hard to detect, decay modes of the spin-2 particle (see

Appendix A). At the same time, Λ can be rescaled such that the cross sections remain

comparable to the Higgs case. However, the resonance peak, which can be reconstructed

either in the diphoton or the ZZ → 4l channel at the LHC, features a width which is

dominated by the experimental resolution. Therefore, these details do not play any role.

3.3.1 Transverse-momentum distributions and formfactor

Since it is not possible to distinguish spin-0 from spin-2 on the basis of cross sections alone,

the next step is to study differential distributions for this purpose. Fig. 10 and 11 depict

the normalized transverse-momentum distributions of a final-state photon or lepton and

of the tagging jet with the largest transverse momentum for a SM Higgs and a spin-2

singlet resonance with and without the formfactor (3.15) at NLO QCD accuracy. For a

spin-2 resonance without the formfactor (or with nff = 0 or Λff →∞, respectively), the

transverse momenta of the photons, leptons and jets are much higher than for a Higgs

boson, so that both cases could be easily distinguished from one another via these pT

distributions. However, the harder transverse-momentum distributions for the spin-2 case

without our specific formfactor setting originate from the higher energy dimensions of the

couplings in the effective Lagrangians (3.6) and (3.7) instead of being an indicator of the

spin. Furthermore, unitarity of the S-matrix in elastic weak-boson scattering is violated

for the present spin-2 model if no formfactor is applied (for more details, see Ref. [69]).

By a judicious choice of the formfactor, like Eq. (3.15) with Λff = 400 GeV, nff = 3,
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Figure 10: Transverse-momentum distributions for a SM Higgs and for a spin-2 singlet reso-
nance with couplings f1 = 0.04, f2 = 0.08, f5 = 10, fi 6=1,2,5 = 0, with and without
formfactor, at NLO QCD accuracy. Left hand side: pT of a final-state photon in the
VBF γγ channel, right hand side: pT of the of the hardest final-state lepton in VBF
W+W− → e+ νe µ

− νµ .

the pT distributions of the spin-2 resonance can be adjusted to closely resemble those

of the Higgs boson. This is simultaneously possible for the transverse momenta of the

final-state photons or leptons and the jets in γγ, WW and ZZ decays within our set of

formfactor parameters, which is illustrated in Fig. 10 and 11 for γγ and WW and looks

similar in the ZZ mode. Therefore, transverse-momentum distributions which look like

those of the Higgs would not be a proof for a Higgs resonance. These distributions could

originate from a spin-2 resonance with an adequate formfactor as well. In fact, a similar

behavior was found in Ref. [73] for a Higgs boson with effective couplings (Eq. (3.16)).

From now on, the formfactor parameters are set to Λff = 400 GeV, nff = 3 throughout

this subsection.

On the left hand side of Fig. 12, the impact of the NLO QCD corrections on the transverse

momentum of the hardest jet is exemplified for the diphoton channel. In order to compare

the shape, LO distributions are normalized to the LO cross section and NLO distributions

to the NLO cross section there. The NLO corrections tend to shift the distributions to

smaller values of pT , since a fraction of the total transverse momentum is carried by the

additional gluon in the real emission contribution. This feature is analogous to the SM

case [74, 78] and independent of the spin of the resonance. For spin-0 and spin-2, this

is shown in Fig. 12, while an analogous plot for spin-1 can be found in Ref. [30]. Due

to the present scale choice, the impact of the NLO corrections is small, as it is for the

integrated cross section as well (see Tables 1,2). While the K-factor in the high pT region

(400 GeV < pT, max, jet < 900 GeV) is around 0.9 for the spin-2 case with µF = µR = Q, it

would be around 0.6 if we had chosen µF = µR = mW instead, mainly because of a higher
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Figure 12: Normalized pT distribution of the tagging jet with the largest transverse momentum
in the VBF γγ channel. Left hand side: Higgs and spin-2 singlet resonance with
parameters as given in Eq. (3.33) and the formfactor settings of Eq. (3.34) at LO
and NLO QCD accuracy on a logarithmic scale. Right hand side: Spin-2 singlet and
triplet resonance with different coupling parameters and the formfactor settings of
Eq. (3.34) at NLO QCD accuracy.

prediction for the LO cross section.

The transverse-momentum distributions of a spin-2 resonance depend slightly on the cou-

pling parameters, which is exemplified on the right hand side of Fig. 12 for the transverse

momentum of the hardest jet in the γγ mode. This can be understood from the Feynman

rules (3.9): For f1 = 1, fi 6=1 = 0, spin-2 resonances are mainly produced by initial photons,

which leads to an enhancement of the low pT region, while for the cases f2 = 1, fi 6=2 = 0

and f1 = 0.04, f2 = 0.08, f5 = 10, initial W and Z bosons dominate. The transverse-
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momentum distributions of the spin-2 triplet resonance resemble those of the singlet with

corresponding couplings. Therefore, they can be adjusted to those of the Higgs boson

with the same formfactor settings.

3.3.2 Azimuthal angle difference between the two tagging jets

In the following, we will study various angular and mass distributions which can be used

to distinguish between spin-0 and spin-2 in the different VBF channels. Furthermore, the

impact of the NLO QCD corrections and model parameters on these distributions will be

illustrated. If not indicated otherwise, distributions are presented at NLO QCD accuracy.

Note that the following figures include a normalization factor 1/σNLO.

An excellent angular distribution in terms of a spin determination in all the VBF processes

studied here is the azimuthal angle difference between the two tagging jets, ∆Φjj. The

Figures 13 and 14 depict the respective distribution for a SM Higgs and a spin-2 singlet

resonance at LO and NLO QCD accuracy in the γγ, WW and ZZ channel. In all the

cases, the ∆Φjj distribution features a clear difference between a SM Higgs and a spin-2

resonance, which is not modified by the NLO corrections, the curves are just slightly

shifted according to the overall K-factor. Different spin-2 couplings lead to a slightly

different ∆Φjj distribution of a spin-2 resonance (Fig. 15), yet its characteristic shape is

nearly independent of these parameters. Note that the parameter choice f1 = f2 = f5 = 1

resembles the electroweak part of the graviton scenario, but cannot reproduce SM Higgs

cross sections, in contrast to our usual choice. As shown on the right hand side of Fig.

15, the ∆Φjj distribution of the spin-2 triplet resonance with default couplings resembles

the corresponding singlet case. In fact, this is the case for all distributions considered

here. Even without the formfactor, the spin-2 ∆Φjj distribution keeps its characteristic

shape. By contrast, the spin-0 distribution is very model dependent: anomalous HV V

couplings (Eq. (3.16)) strongly alter the ∆Φjj distribution [73]. Furthermore, the SM

Higgs distribution depends on cuts, which is illustrated in Fig. 14 for the ZZ channel.

For more stringent lepton pT cuts, e.g. pT,l > 20 GeV instead of 7 GeV, the discriminating

power gets worse. Also for WW (right hand side of Fig. 13), the ∆Φjj distribution would

be more central with e.g. pT,l > 20 GeV instead of 10 GeV.

All in all, the ∆Φjj distribution features a fundamental difference between a SM Higgs

and a spin-2 resonance, which is nearly independent of the spin-2 model parameters, NLO

QCD corrections and decay modes. This is why the azimuthal angle difference between

the two tagging jets is such an important observable to distinguish between spin-0 and

spin-2 in VBF.
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Figure 13: Azimuthal angle difference between the two tagging jets for a Higgs and for a spin-2
singlet resonance with couplings f1 = 0.04, f2 = 0.08, f5 = 10, both at LO and NLO
QCD accuracy. Left hand side: VBF γγ, right hand side: VBF WW → e+ νe µ

− νµ .
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resonance with different coupling parameters at NLO QCD accuracy. Left hand side:
spin-2 singlet, right hand side: spin-2 singlet and triplet.

In addition to jet distributions, which have similar features for different decay modes, we

will analyze specific observables for the decay products in the different channels in the

following.

3.3.3 Further relevant distributions in the diphoton channel

In the diphoton decay mode, an interesting variable for a spin determination in VBF is the

angle Θ between the momentum of an initial electroweak boson and an outgoing photon

in the rest frame of the resonance. Since the dependence of the matrix element on Θ is

described by Wigner d-functions d jm,m′(Θ), even for off-shell initial bosons [18], the cos Θ

distribution should be an indicator of the spin of the resonance. In order to make this

variable accessible not only in Monte Carlo studies, but also experimentally, the momenta

of the initial electroweak bosons are reconstructed from those of the final-state photons

and jets here. In particular, the jets are assigned to the initial quarks according to their

rapidities, assuming that mainly forward scattering takes place.

Another, closely related, observable is the cosine of the Gottfried–Jackson angle, which is

the angle between the momentum of the spin-2 particle or the Higgs boson in the labora-

tory frame and a final-state photon in the rest frame of the resonance. Both distributions

are nearly independent of the NLO corrections and offer a difference between a SM Higgs

and a spin-2 resonance (Fig. 16). The dependence on the spin-2 parameters is again weak,

which is exemplified in Fig. 17 for the Gottfried–Jackson angle and is also true for the

cos Θ distribution. As mentioned before, the spin-2 singlet and triplet scenario with de-

fault couplings are indistinguishable. There are also other angular observables with very
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Figure 16: Angular distributions in the VBF γγ channel for a Higgs and for a spin-2 singlet
resonance with couplings f1 = 0.04, f2 = 0.08, f5 = 10, both at LO and NLO QCD
accuracy. Left hand side: cos Θ, right hand side: cosine of the Gottfried–Jackson
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Figure 17: Cosine of the Gottfried–Jackson angle in VBF γγ for a spin-2 resonance with different
coupling parameters at NLO QCD accuracy. Left hand side: spin-2 singlet, right
hand side: spin-2 singlet and triplet.

similar characteristics, like the angle between a final-state photon and a tagging jet in the

rest frame of the resonance.

In contrast, the azimuthal angle difference between the two final-state photons differs not

only between a SM Higgs and a spin-2 resonance (left hand side of Fig. 18), but also

between different spin-2 couplings (right hand side of Fig. 18). Therefore, the ∆Φγγ dis-

tribution is not sufficient for a spin-determination but, together with other distributions,

it can provide useful information about a potential spin-2 resonance and its parameters.
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Figure 18: Azimuthal angle difference between the two final-state photons. Left hand side: SM
Higgs and spin-2 singlet resonance with couplings f1 = 0.04, f2 = 0.08, f5 = 10 at
LO and NLO QCD accuracy, right hand side: spin-2 singlet resonance with different
coupling parameters.

3.3.4 Lepton correlations in W+W− → 2l2ν

In the W+W− → l+νl−ν̄ decay channel, the invariant mass of the two charged leptons

is an important variable which is known to be an indicator of the spin [20, 21]. This

can be understood from simple theoretical arguments 4, as illustrated in Fig. 19: For a

spin-0 resonance, the spins of the two W bosons – and therefore also those of the two

charged leptons – must be antiparallel. Because of the lepton helicities, this leads to

parallel momenta of the two charged leptons and therefore to a small invariant dilepton

mass mll =
√

(El1 + El2)
2 − (pl1 + pl2)

2. Contrarily, in the spin-2 case, the spins of the

W bosons can be parallel, leading to antiparallel lepton momenta and a large invariant

dilepton mass. This feature is demonstrated in Fig. 20, which shows that the invariant

dilepton mass is much larger for a spin-2 resonance than for a SM Higgs boson and nearly

independent of the spin-2 coupling parameters and the NLO QCD corrections. Note that

these distributions include a cut of mll > 15 GeV (see Sec. 3.2.4). In the WW mode,

we do not have to consider as many different spin-2 parameter choices as in the other

channels, since the singlet coupling f1 and the triplet coupling f7 do not contribute to the

TWW vertex (see (3.9), (3.12)).

The different lepton correlations also affect the azimuthal angle difference of the two

charged leptons, which will be discussed for gluon fusion in Sec. 3.4.1, since the effect

is more prominent there. Furthermore, the transverse mass, which is another related

observable, will be studied there. The corresponding distribution (Fig. 24) looks similar

in case of vector-boson fusion. However, the gluon-fusion process is much better accessible

4In case of spin-0, see also Ref. [98]
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Figure 19: Illustration of lepton correlations in the decay of spin-0 or spin-2 resonances to
W+W− → l+νl−ν̄ in the rest frame of the resonance. Solid lines indicate the mo-
menta, dashed lines the spins of the particles, which are red for spin-0 and green for
spin-2. The momenta of the two charged leptons are encircled for both cases.
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Figure 20: Invariant mass of the two charged leptons for W+W− → e+ νe µ
− νµ in the VBF

mode. Left hand side: SM Higgs and spin-2 resonance with couplings f1 = 0.04, f2 =
0.08, f5 = 10, both at LO and NLO QCD accuracy; right hand side: spin-2 singlet
or triplet resonance with different coupling parameters at NLO QCD accuracy.

experimentally and therefore better suited for such spin analyses.

For a spin determination in the ZZ → 4l channel, it is even more important to study

the gluon-fusion production mode rather than VBF, since the VBF mode with a cross

section of only around 10 ab (see Table 1) is very difficult to observe. Therefore, we will

now discuss gluon fusion and perform further detailed spin studies in the ZZ channel in

Section 3.4.4.

3.4 Gluon Fusion

In this section, spin-0 and spin-2 resonances produced in gluon fusion are studied for γγ ,

W+W− → 2l2ν and ZZ → 4l decays (see also Ref. [26]). The channel Zγ → l+l−γ will be

included in Section 3.4.3. After comparing the rates of a SM Higgs and a spin-2 resonance,

we present differential distributions which can be useful for a spin determination and study
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Final State Production mode Higgs cross sec. [fb] Spin-2 cross sec. [fb]

γγ VBF 0.745 0.864
Gluon Fusion 37.1 35.7

W+W− → VBF 0.662 0.613
e+ νe µ

− νµ Gluon Fusion 30.1 29.6

ZZ → VBF 1.06 · 10−2 0.982 · 10−2

e+ e− µ+µ− Gluon Fusion 0.468 0.446

Table 3: Integrated cross sections for a SM Higgs and a spin-2 singlet resonance with couplings
f1 = 0.04, f2 = 0.08, f5 = 10, f9 = 0.04 in VBF and gluon fusion (see text for de-
tails). The cuts of Section 3.2.4 are applied. Statistical errors from the Monte Carlo
integration are less than one per mill.

the impact of spin-0 and spin-2 model parameters. Again, the mass of the Higgs boson

and the spin-2 particle is set to 126 GeV and we assume pp collisions at a centre of mass

energy of 8 TeV. Since in contrast to the spin-2 singlet case (3.9), the triplet model (3.12)

does not provide a coupling to gluons, we only consider spin-2 singlet resonances here.

To this end, we set the gluon coupling to f9 = 0.04, while keeping the other couplings

f1 = 0.04, f2 = 0.08, f5 = 10 and the formfactor parameters Λff = 400 GeV, nff = 3 as in

the last section. Since the non-vanishing gluon coupling induces an additional contribution

to the spin-2 decay width, the overall energy scale Λ is rescaled to Λ = 6.4 TeV in order

to compensate this effect on VBF cross sections. Indeed, with this parameter choice, the

cross sections of all the decay modes considered here closely resemble those of a SM Higgs

boson in gluon fusion and VBF simultaneously 5. This is demonstrated in Table 3, where

cross sections are presented at NLO QCD accuracy for VBF and account for higher-order

QCD corrections in gluon fusion as described in Sec. 3.2. The effect of the minor coupling

change on the phenomenology of spin-2 resonances in VBF is insignificant and the shapes

of the distributions shown in Sec. 3.3 are not modified.

3.4.1 Leptonic observables in W+W− → 2l2ν

In order to distinguish spin-0 and spin-2 resonances produced in gluon fusion, the same

differential distributions as in vector-boson fusion can be studied, apart from observables

involving tagging jets, which do not exist here. In addition to the discussion of different

spin-2 model parameters, we will also study the impact of alternative spin-0 scenarios in

gluon fusion. Note that gluon-fusion distributions are determined at LO QCD and include

a normalization factor 1/σLO.

5Current LHC data suggest a slightly lower rate in WW and a somewhat higher one in γγ, particularly
in VBF [3,11].
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Figure 21: Normalized distribution of the invariant dilepton mass for gg → W+W− →
e+ νe µ

− νµ for a SM Higgs and a spin-2 resonance with couplings f1 = 0.04, f2 =
0.08, f5 = 10, f9 = 0.04 at LO QCD accuracy and the diboson-production back-
ground including qq̄ →WW at NLO QCD plus the continuum production diagrams
of gg →WW . The cuts of Section 3.2.4 are applied.

In the WW decay channel, the invariant dilepton mass was found to be an important

indicator of the spin. The same characteristic difference between a Higgs and a spin-2

resonance found in VBF (Sec. 3.3.4) also arises in the gluon-fusion mode, which is depicted

in Fig. 21. This figure additionally shows the normalized diboson-production background

for comparison, including qq̄ → W+W− → e+ νe µ
− νµ at NLO QCD accuracy and loop-

induced gg → W+W− → e+ νe µ
− νµ fermion-box contributions. With an inclusive cross

section of around 400 fb, this background exceeds the one of a Higgs or spin-2 resonance

significantly, even after placing more stringent search cuts. Since the maximum of the

invariant-dilepton-mass distribution is nearly at the same position for the spin-2 signal and

the diboson continuum, a precise knowledge of the background is necessary. In Fig. 22, the

model dependence of the invariant-dilepton-mass distribution is illustrated for the spin-0

and spin-2 cases. As in the VBF mode (Fig. 20), this observable is nearly independent

of the spin-2 coupling parameters, whereas anomalous Higgs couplings can have a certain

effect. Since only the HWW couplings are relevant for the process gg → W+W−, we

only consider the first two terms of the Lagrangian (3.16) and neglect the formfactor.

While the CP-even coupling gHWW
5e alone or the mixed case gHWW

5e = gHWW
5o tend to shift

the distribution to smaller values of mll, which facilitates the spin determination, the

mll distribution of a CP-odd Higgs with gHWW
5o is more similar to the one of a spin-2

resonance. This demonstrates that it is important to carefully disentangle spin and CP
properties of the resonance.
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Figure 22: Spin-0 and spin-2 model dependence of the invariant dilepton mass in gg →
W+W− → e+ νe µ

− νµ . Left hand side: Higgs resonance with SM couplings, CP-even
and CP-odd anomalous couplings; right hand side: spin-2 resonance with different
coupling parameters (always including f9 = 0.04).
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Figure 23: Azimuthal angle difference of the charged final-state leptons in gg → W+W− →
e+ νe µ

− νµ . Left hand side: Higgs resonance with SM couplings, CP-even and CP-
odd anomalous couplings; right hand side: spin-2 resonance with different coupling
parameters (always including f9 = 0.04).
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Corresponding to a large (small) invariant dilepton mass, the azimuthal angle difference

of the charged final-state leptons is also large (small) for a spin-2 (spin-0) resonance

(Fig. 23). Also the model dependence shows the same behavior.

The different lepton correlations of spin-0 and spin-2 resonances also influence the trans-

verse mass, which is an important experimental observable in processes involving neutri-

nos, where the resonance cannot be reconstructed in the full invariant-mass spectrum. In

this process, it can be defined as [74,99]:

mT =
√

(ET,ll + ET,miss)2 − (pT,ll + pT,miss)
2, (3.36)

with

ET,ll =
√

p2
T,ll +m2

ll , ET,miss =
√
p2
T,miss +m2

νν → |pT,miss|. (3.37)

Here, ET,ll and pT,ll denote the transverse energy and momentum of the two charged

leptons and ET,miss and pT,miss those of the two neutrinos. Similar to the invariant mass

of the two charged leptons, also the invariant mass of the two neutrinos, mνν , is larger for

spin-2 than for spin-0 (which can be observed in Monte Carlo, but not experimentally).

Therefore, a larger fraction of ET,miss is omitted in the transverse mass in case of spin-2,

which leads to smaller values of mT than in case of spin-0. This feature is demonstrated on

the left hand side of Fig. 24. However, the transverse mass could also be defined with an

alternative approximation of ET,miss, namely ET,miss =
√

p2
T,miss +m2

νν →
√
p2
T,miss +m2

ll.

In this case, the difference between spin-0 and spin-2 decreases significantly, with both

distributions reaching their maximal value around the mass of the resonance. The right
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hand side of Fig. 24 shows that the transverse momentum of a final-state lepton is similar

for a Higgs and a spin-2 resonance with default parameters. Both distributions of Fig. 24

hardly depend on spin-0 and spin-2 model parameters.

3.4.2 Spin determination in gg → γγ

In the process gg → γγ, there are only two (identical) final-state particles and therefore

not as many different observables as in other processes studied before. However, the

scattering angle, defined in some suitable reference frame, was theoretically found to be

sensitive to the spin of the resonance [23] and indeed turned out to be very important for

experimental Higgs spin analyses at CMS [12] and ATLAS [6]. There, the cosine of the

photon angle in the Collins–Soper frame [100], cos ΘCS, was used, which is defined as [6]:

cos ΘCS =
sinh (ηγ1 − ηγ2)√
1 + (pTγγ/mγγ)2

· 2pTγ1pTγ2
m2
γγ

, (3.38)

with pTγγ being the transverse momentum of the diphoton system.
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Figure 25: Cosine of the photon angle in the Collins–Soper frame in gg → γγ for a SM Higgs and
a spin-2 resonance with different coupling parameters (always including f9 = 0.04).

The corresponding distribution within our model is presented in Fig. 25. It features a

sizable difference between a SM Higgs and a spin-2 resonance and does not depend on the

spin-2 couplings at all, since there is only one possible tensor structure for the Tgg and

the Tγγ vertex (see 3.9). However, this can change considerably when higher-dimensional

spin-2 structures are included, which we will discuss in Sec. 3.5.

In gluon fusion, the photon angle in the Collins–Soper frame is equal to the Gottfried–
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Jackson angle, which was studied in Sec. 3.3.3. In VBF however, this is not the case.

There, the separation power of cos ΘCS is weaker than the one of the cosine of the

Gottfried–Jackson angle (Fig. 16), so we did not consider this observable there.

3.4.3 Including the decay channel Zγ → l+l−γ

In order to complete the set of decay channels which involve the spin-2 vertices (3.9) and

are accessible at the LHC, the (Higgs or spin-2 resonant) process gg → Zγ → l+l−γ is

considered in the following. Here, intermediate photons decaying to l+l− instead of Z

bosons are also included. Although Zγ is not among the most relevant Higgs analysis

channels at the LHC because of its small branching fraction, Higgs searches are performed

in this channel as well [101,102], since it can provide information about the loop-induced

HγZ coupling and its possible BSM effects.

With the spin-2 coupling parameters of Sec.3.4, f1 = 0.04, f2 = 0.08, f5 = 10, f9 = 0.04,

which reproduce SM Higgs cross sections in the γγ , WW and ZZ modes (see Table 3),

the cross section in gg → Zγ → e+e−γ is 0.143 fb, which is much lower than the one of

the SM Higgs boson (0.771 fb). Enhancing the spin-2 cross section in this channel without

changing the others too much is possible by enhancing the difference of f1 and f2, since

the Feynman rule of the TγZ vertex is governed by f2 − f1 (3.9). With the parameter

choice f1 = 0.01, f2 = 0.2, f5 = 10, f9 = 0.04 (and Λ = 6.4 TeV, Λff = 400 GeV, nff = 3

unchanged), all Higgs cross sections in this enlarged set of processes can be roughly

reproduced simultaneously (Table 4). The shapes of differential distributions shown before

are not modified by this change of the couplings.

Furthermore, this parameter choice leads to the same ratio of intermediate Zγ and γγ

contributions, which is visible in the invariant-mass spectrum of the two final-state leptons

(left hand side of Fig. 26). There, the peak at mZ ≈ 91 GeV indicates leptons originating

from a Z boson, while the rest stems from an intermediate photon. For f1 = 0.04, f2 =

0.08, f5 = 10, f9 = 0.04, not only the cross section, but also the relative Zγ contribution

is smaller than in case of the SM Higgs boson. The choice f1 = f2 = f5 = 1, f9 = 0.04

leads to a complete suppression of Zγ, since f2 − f1 is zero. Nevertheless, with 1.13

fb, the integrated cross section is even larger than the one of the Higgs, since the γγ

contribution, which is governed by the value of f1, is strongly enhanced. However, this

cross section will be reduced significantly if a cut on the invariant dilepton mass, e.g. mll >

50 GeV, is applied, which is done by CMS [101] in order to remove the γγ contribution.

Differential distributions, like the azimuthal angle difference of the two leptons (right hand

side of Fig. 26) and the transverse momentum of a final-state lepton or photon (Fig. 27),
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Final State Production mode Higgs cross sec. [fb] Spin-2 cross sec. [fb]

γγ VBF 0.745 0.996
Gluon Fusion 37.1 37.7

W+W− → VBF 0.662 0.589
e+ νe µ

− νµ Gluon Fusion 30.1 27.6

ZZ → VBF 1.06 · 10−2 0.933 · 10−2

e+ e− µ+µ− Gluon Fusion 0.468 0.412

Zγ → e+e−γ Gluon Fusion 0.771 0.743

Table 4: Integrated cross sections for a SM Higgs and a spin-2 singlet resonance with couplings
f1 = 0.01, f2 = 0.2, f5 = 10, f9 = 0.04 in VBF and gluon fusion, including the chan-
nel gg → Zγ → l+l−γ (see text for details). The cuts of Section 3.2.4 are applied.
Statistical errors from the Monte Carlo integration are less than one per mill.
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Figure 26: gg → e+e−γ, SM Higgs and spin-2 resonance with different coupling parameters
(always including f9 = 0.04). Left hand side: invariant dilepton mass, right hand
side: azimuthal angle difference of the two leptons.
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Figure 27: gg → e+e−γ, SM Higgs and spin-2 resonance with different coupling parameters
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Figure 28: gg → e+e−γ, SM Higgs and spin-2 resonance with different coupling parameters
(always including f9 = 0.04). Left hand side: pseudorapidity difference between the
final-state photon and the intermediate Z boson (or photon), right hand side: cosine
of the Gottfried–Jackson angle.

are strongly affected by different Zγ/γγ ratios. Although the pseudorapidity difference

between the final-state photon and the intermediate Z boson (or photon) (left hand side

of Fig. 28) suggests some additional information on the spin of the resonance, the only

definite indicator of the spin is the (cosine of the) Gottfried–Jackson angle 6 (right hand

side of Fig. 28). Independently of the spin-2 parameters, i.e. also of the Zγ/γγ ratio, this

distribution clearly distinguishes between spin-0 and spin-2.

6In this case, the Gottfried–Jackson angle is defined as the angle between the momentum of the spin-2
particle or the Higgs boson in the laboratory frame and the final-state photon in the rest frame of the
resonance, but the distribution looks the same if defined with the intermediate boson instead of the
final-state photon.
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3.4.4 gg → ZZ → e+ e− µ+µ−

Finally, we will now discuss the decay to four leptons, which provides the largest set of

potentially spin-sensitive observables among the considered gluon fusion channels. Again,

intermediate photons decaying to lepton pairs instead of Z bosons are also included, lead-

ing to the different possible intermediate states ZZ, Zγ, γZ and γγ. A set of angles which

are known to be suited for analyzing a resonance decaying to two weak bosons are the

Cabibbo-Maksymowicz-Dell’Aquila-Nelson angles [17, 103]. Furthermore, two invariant-

mass distributions can be studied, which are those of lepton pairs having the same flavour

and opposite charge [5, 9]. The distribution of the pair whose invariant mass is closer to

the mass of the Z boson is denoted as mZ1 , the other one as mZ2 . The latter, as well as the

invariant mass of the e+ e− system, are presented in the figures 29 and 30 for a SM Higgs

and a spin-2 singlet resonance with different coupling parameters. In case of the Higgs

resonance, both peaks in me+ e− (or those in mZ1 and mZ2 , respectively) originate from

a Z boson, of which one is (nearly) on-shell and the second one far off-shell to account

for the Higgs mass of 126 GeV. The same is true for a spin-2 resonance with f5 � f1,

f2, since in this case, the Tγγ and TγZ vertex are suppressed (3.9), such that the con-

tribution of two intermediate Z bosons dominates. For settings like f1 = f2 = f5 = 1

or f1 = 1, however, there is a substantial contribution of intermediate photons. Such a

characteristic is analogous to the one observed in the channel Zγ → l+l−γ (Sec. 3.4.3),

which is simpler because it features only two different intermediate states, Zγ and γγ.

There, we found that different spin-2 parameter choices can lead to substantially different

distributions because of different amounts of intermediate photons or Z bosons. The same

is true here, which is illustrated in Fig. 31 for two interesting angular distributions: the

cosine of the Gottfried–Jackson angle, here defined as the angle between the momentum

of the spin-2 particle or the Higgs boson in the laboratory frame and an intermediate

photon or Z boson in the rest frame of the resonance, and cos Θe, which is the angle

between the momentum of the positron and the intermediate boson which decays into

µ+µ− in the rest frame of the other intermediate boson, closely following the definition in

Ref. [24]. In such distributions, the difference between different spin-2 settings (which fea-

ture different contributions of intermediate photons and Z bosons) is larger than between

a Higgs and spin-2 resonance. Therefore, a spin determination in this channel is more

intricate than in other channels like γγ or WW . However, the ZZ mode can be useful to

distinguish between different spin-2 scenarios and to exclude some of them. In contrast

to the Zγ mode (see Fig. 26 and 27), the parameter choices f1 = 0.01, f2 = 0.2, f5 = 10

and f1 = 0.04, f2 = 0.08, f5 = 10 lead to similar distributions here. This is because for
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Figure 29: Invariant mass of the e+ e− system in gg → e+ e− µ+µ− for a SM Higgs and a spin-2
resonance with different coupling parameters (always including f9 = 0.04).

f5 � f1, f2, the intermediate ZZ contribution, stemming from the TZZ vertex involving

f5, dominates in the four-lepton mode, while the e+e−γ final state only involves the Tγγ

and TγZ vertex, where f5 is absent and the relation between f1 and f2 is relevant (see

(3.9)). Note that the cut imposed on the invariant mass of two oppositely charged leptons

(mll > 15 GeV, see Sec. 3.2.4) does not influence the features of the distributions shown

here. For a less stringent cut of e.g. mll > 5 GeV, they are not modified, in spite of the

additional low invariant-mass contributions of different size.
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Figure 30: gg → e+ e− µ+µ−, SM Higgs and spin-2 resonance with different coupling parameters
(always including f9 = 0.04). Left hand side: invariant same-flavour dilepton mass
closer to the Z boson mass, right hand side: other invariant same-flavour dilepton
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Figure 31: gg → e+ e− µ+µ−, SM Higgs and spin-2 resonance with different coupling parameters
(always including f9 = 0.04). Left hand side: cos Θe, right hand side: cosine of the
Gottfried–Jackson angle (see text for details).
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3.5 Higher-dimensional Spin-2 structures

So far, the properties of spin-2 particles and their distinction from a Higgs boson were

studied in the framework of an effective Lagrangian, where only the lowest order of the

expansion in inverse powers of the energy scale Λ was considered (see Sec. 3.1). In this

framework, various characteristic differences between spin-0 and spin-2 arise, which allow

for a Higgs spin determination rather independently of the spin-2 model parameters. How-

ever, since a definite spin determination requires the most general spin-2 parametrization,

the effects of higher-dimensional spin-2 structures should also be studied. Even though

they are expected to be suppressed by inverse powers of a high energy scale, they might

alter differential distributions by their different kinematic structure. Since the most strin-

gent exclusion limits of specific spin-2 models are currently extracted from the cosine of

the photon angle in the Collins–Soper frame in the process gg → γγ [4,6] (see Sec. 3.4.2),

we will now exemplify the effects of higher-dimensional spin-2 terms in this process. While

at lowest order it was convenient to construct the spin-2 Lagrangian and derive the Feyn-

man rules from it, it is easier to find all possible independent terms which contribute to

the spin-2 vertex Tγγ in case of higher-dimensional structures. This can be achieved by

means of the following considerations. Since terms in a spin-2 Lagrangian can only contain

even numbers of field strength tensors and covariant derivatives, the corresponding vertex

terms contain even numbers of photon momenta p1 and p2.7 In case of CP-even terms,

the four indices α, β, µ, ν can be carried either by p1, p2 or metric tensors gµ1,µ2 . Several

features of the spin-2 field significantly reduce the number of possible terms: Interchang-

ing the indices µ and ν yields equivalent terms, since the spin-2 field T µν is symmetric.

Terms containing a metric tensor gµν do not contribute due to T µµ = 0. Furthermore,

terms involving pµ1 p
ν
1, p

µ
2 p

ν
2 and pµ1 p

ν
2 are related in case of a spin-2 resonance, since the

spin-2 field is transverse. Additionally, various terms which could contribute to a spin-2

vertex with massive gauge bosons are not present in case of massless photons. In par-

ticular, expressions with p2
1 or p2

2 vanish for on-shell photons and current conservation

eliminates terms comprising pα1 or pβ2 . Gauge invariance, which is respected automatically

if the Feynman rules are derived from a gauge invariant Lagrangian, can be incorporated

in the vertex construction by imposing Ward identities, i.e. the vertex expression must

vanish when contracted with p1,α or p2,β. This further restricts the number of indepen-

dent terms. By constructing the complete set of vertex terms which comprise zero or two

photon momenta and fulfill all these conditions, one obtains exactly the tensor structure

7As in Sec. 3.1, p1 is the incoming four-momentum of the first photon with index α and p2 the one of
the second photon with index β.
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Kαβµν
1 (Eq. (3.10)) of the Tγγ vertex (3.9) from the lowest order Lagrangian (3.6). This

is a nice cross-check that both approaches are equivalent.

The next step is to include the vertex structures which contain four photon momenta.

This corresponds to the next order in the expansion of an effective Lagrangian, which

would contain terms with two field strength tensors and two covariant derivatives acting

on them. By writing down all possible terms with free coefficients and imposing all the

mentioned conditions, we end up with the following vertex:

Tγγ highdim :
2i

Λ
(f1c

2
w + f2s

2
w)Kαβµν

1 +
i

Λ3
Kαβµν

3 , (3.39)

with the new higher-dimensional tensor structure

Kαβµν
3 = d1 (pν1 p

µ
2 g

αβ(p1 · p2)− pµ1 pν2 pβ1 pα2 )

+ d2 (pβ1 p
ν
2 g

αµ(p1 · p2) + pα2 p
ν
1 g

βµ(p1 · p2)− gανgβµ(p1 · p2)2 − pµ1 pν2 pβ1 pα2 ), (3.40)

where d1 and d2 are free parameters. For on-shell spin-2 resonances, p1 · p2 is equal to
1
2
m2
T and Eq. (3.40) can be rewritten as

Kαβµν
3 = d1 (

m2
T

2
Kαβµν

1,1 − pµ1 pν2 pβ1 pα2 )

+ d2 (−m
2
T

2
(Kαβµν

1,2 +Kαβµν
1,3 +Kαβµν

1,4 )− pµ1 pν2 pβ1 pα2 ), (3.41)

where Kαβµν
1,1(2...) is the first (second ...) term in Kαβµν

1 (see Eq. (3.10)). From this formu-

lation, one can see that there is only one actually new higher-dimensional index struc-

ture, pµ1 p
ν
2 p

β
1 p

α
2 , yet it has to be incorporated into a gauge invariant combination of

other terms. A similar feature already arises in the lower-dimensional tensor structures

(Eqs. (3.10), (3.11)), where Kαβµν
1 , which comprises the terms with two momenta, also

involves the zero-momentum structure Kαβµν
2 in a certain gauge invariant combination.

Terms of even higher dimension, i.e. terms with six or more momenta, cannot lead to

additional new structures, since there are only four indices α, β, µ, ν, which means that

at most four momenta can carry an index, while the others have to be contracted, which

leads to combinations of existing structures with momentum-dependent factors. The Tγγ

vertex (3.39) agrees with alternative general formulations of spin-2 vertices [17,20] in case

of CP-even couplings to two photons.

Fig. 32 illustrates the phenomenological impact of the higher-dimensional Tγγ struc-

tures (3.40) in the process gg → γγ. On the left hand side, the normalized LO differential
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Figure 32: Influence of higher-dimensional spin-2 structures on the cosine of the photon an-
gle in the Collins–Soper frame in gg → γγ, with Λ = 6.4 TeV. Left hand side:
spin-2 resonance with different higher-dimensional couplings (and Tgg coupling
f9 = 0.04, fi 6=9 = 0), right hand side: combination of higher-dimensional couplings
and default low-dimensional couplings (f1 = 0.04, f2 = 0.08, f5 = 10, f9 = 0.04).

distribution of the cosine of the photon angle in the Collins–Soper frame is depicted for

different higher-dimensional couplings d1 and d2 and compared to the SM Higgs distribu-

tion. The gluon coupling is f9 = 0.04 as before, since the Tgg vertex was not modified,

yet all other low-dimensional couplings fi are set to zero. Apart from that, the settings

are the same as in Sec. 3.4. One can clearly see that the two different new structures

with couplings d1 and d2 lead to very different, complementary distributions, so they can

roughly mimic the SM Higgs distribution if combined properly. Since the d1 structure also

leads to a distribution which is opposite to the one of the low-dimensional couplings fi (for

the latter, see Fig. 25 and the purple line on the right hand side of Fig. 32), combinations

of these two types of couplings can also lead to Higgs-like distributions, which is demon-

strated on the right hand side of Fig. 32. These features also hold for other distributions in

the gg → γγ channel. For settings like d1 = 1200, f1 = 0.04, f2 = 0.08, f5 = 10, f9 = 0.04,

Λ = 6.4 TeV and the usual formfactor parameters, the cross section is roughly twice as

large as the one of the SM Higgs, so the couplings would have to be rescaled appropriately

to reproduce the rate measured at the LHC.

It could also be interesting to study whether such higher-dimensional structures alter im-

portant spin-discriminating distributions in other processes and whether there is still a

set of couplings which can reproduce all the measured rates in all the channels. However,

such an analysis is beyond the scope of this work, since it would require the knowledge of

relations between all the higher-dimensional couplings in all TV V vertices, which would

have to be derived from a full high-dimensional effective Lagrangian, where many orders
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in the expansion in inverse powers of Λ have to be considered if Λ is rather small. More-

over, a ratio of the couplings d1/fi of order O(104) (required for a Higgs-like cos ΘCS

distribution) seems quite unrealistic, although it would be smaller if the scale Λ would

be lowered and the couplings rescaled appropriately, since these couplings are divided by

different powers of a free parameter Λ. In fact, the relevant parameter is not d1 alone,

but
d1m2

T

Λ2 , as can be seen from Eqs. (3.39) and (3.41). From the latter, it also follows that

the parameter choice d1 = −d2 reproduces Kαβµν
1 in case of on-shell spin-2 resonances.

3.6 Conclusion and experimental status

In conclusion, cross sections alone cannot definitely exclude the spin-2 hypothesis for the

newly discovered 125 − 126 GeV resonance, since a spin-2 resonance can approximately

reproduce SM Higgs rates in the considered channels in case of adjusted spin-2 couplings.

In spite of many free model parameters, this result is non-trivial, as the electroweak

spin-2 couplings are related by an SU(2) × U(1) gauge symmetry. Likewise, transverse-

momentum distributions of a spin-2 resonance can be adjusted to those of a SM Higgs

boson by tuning formfactor parameters. In contrast, various angular and invariant-mass

distributions allow for a spin determination in the main detection channels γγ , W+W− →
2l2ν and ZZ → 4l. Recently, the collaborations of the LHC experiments ATLAS and

CMS have also performed analyses of some of these distributions in the same channels.

Thereby, specific spin-2 scenarios could be excluded [4–7,9–12]. In this thesis, it was found

that most of the distributions depend only little on spin-2 model parameters. Thus,

such observables severely constrain the parameter space of spin-2 resonances, whereas

experimental data obtained for the new particle are compatible with being the scalar Higgs

boson of the Standard Model. Nevertheless, it is difficult to exclude all possible spin-2

models definitely, since in a framework beyond lowest order in an effective Lagrangian

approach, there are many free parameters, which in certain combinations can mimic

differential distributions of a SM Higgs resonance. These specific scenarios, however, are

quite unrealistic within the effective spin-2 framework.
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3.7 Heavy Spin-2 Resonances in Vector-boson Fusion

So far, light spin-2 resonances in the context of a Higgs spin determination were investi-

gated. However, with the high energies which can be achieved with the LHC, it might also

be possible to detect new, heavy resonances that are manifestations of physics beyond the

Standard Model, which might also include a modified Higgs sector. For such resonances, a

spin determination would also be needed. Whereas heavy spin-1 resonances have already

been studied within the Vbfnlo framework [30], we will analyze the characteristics of

heavy spin-2 resonances in this section (see also Refs. [25, 69]). Here, the 126 GeV res-

onance studied previously is assumed to be the SM Higgs boson.8 In this analysis, we

consider different VBF processes with final states containing four leptons and two jets,

namely e+ e− µ+µ− jj, e+ e− νµνµ jj, e+ νe µ
− νµ jj, e+ νe µ

+µ− jj and e− νe µ
+µ− jj.

The electroweak continuum background from VBF within the SM is always included (see

Sec. 3.2 for details). Since a resonance in the invariant-mass spectrum of the leptons can

be exactly reconstructed if the final state does not contain a neutrino, we mainly focus on

the e+ e− µ+µ− jj mode to present the characteristic transverse-momentum and angular

distributions of spin-2 resonances. Furthermore, cross sections of the different processes

with and without spin-2 resonances are compared, the impact of NLO QCD corrections

is studied and we investigate how the spin-2 singlet and triplet case, as well as different

coupling parameters, can be distinguished from one another.

If not indicated otherwise, a spin-2 singlet resonance with f1 = f2 = f5 = 1, fi 6=1,2,5 = 0,

and Λ = 1.5 TeV is considered. This choice of couplings resembles the electroweak part

of a graviton scenario. The parameters of the formfactor are Λff = 3 TeV, nff = 4 and

the mass is set to 1 TeV. For the triplet case, the same parameters are used, apart from

the couplings, which are set to f6 = f7 = 1, fi 6=6,7 = 0. In this section, a centre of mass

energy of 14 TeV is assumed.

Table 5 gives an overview of the integrated cross sections for the different VBF processes

with four final-state leptons with and without spin-2 resonances at LO and NLO QCD

accuracy. For a given process, these cross sections correspond to a specific leptonic final

state. The cross sections for all combinations of lepton generations together can be ob-

tained by multiplying the given cross sections with an appropriate factor. For some final

states, there is some interference between different processes, but this interference is negli-

gible. One such example is e+ e− νe νe, which can be produced both as (e+ e−) (νe νe) and

8In this section, the mass of the Higgs boson is set to 130 GeV, since this analysis was performed
before the 125−126 GeV resonance was discovered at the LHC, yet the results do not change for slightly
different masses such as 126 GeV.
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Final-state leptons Scenario LO cross section [fb] NLO cross section [fb]

SM without spin-2 0.0520 0.0549
e+ e− µ+µ− Spin-2 singlet 0.0541 0.0567

Spin-2 triplet 0.0523 0.0557

SM without spin-2 0.203 0.212
e+ e− νµνµ, Spin-2 singlet 0.215 0.226

Spin-2 triplet 0.212 0.224

SM without spin-2 2.207 2.278
e+ νe µ

− νµ Spin-2 singlet 2.249 2.297
Spin-2 triplet 2.200 2.267

SM without spin-2 0.1726 0.1795
e+ νe µ

+µ− Spin-2 singlet 0.1720 0.1792
Spin-2 triplet 0.1734 0.1805

SM without spin-2 0.0946 0.1001
e− νe µ

+µ− Spin-2 singlet 0.0943 0.1000
Spin-2 triplet 0.0951 0.1005

Table 5: Integrated cross sections with and without spin-2 resonances at 1 TeV for different
VBF processes with four leptons and two jets in the final state, at LO and NLO QCD
accuracy, including the electroweak SM continuum background. The cuts of Section
3.2.4 are applied. The parameter settings of the spin-2 model can be found at the
beginning of Section 3.7. Statistical errors from the Monte Carlo integration are at the
half percent level.

as (e+νe) (e− νe), where the brackets group the fermions into pairs which are connected by

a continuous fermion line. The first case leads to events with me+e− ≈ mZ ≈ mνeνe , while

the second case gives rise to me+νe ≈ mW ≈ me−νe . As in case of light, Higgs-like reso-

nances (Sec. 3.3), the NLO QCD corrections are relatively small, with K-factors around

1.05. Spin-2 resonances lead to a relative enhancement of the cross section, which is

larger for the e+ e− µ+µ− jj and e+ e− νµνµ jj channel than for the other processes, which

means that the relative contribution of the continuum background is smaller for ZZ than

for WW or WZ. For pp → e+ νe µ
+µ−jj and pp → e− νe µ

+µ− jj, there is no spin-2

singlet resonance, since only the charged resonances of the spin-2 triplet can be generated

in these processes. The spin-2 triplet leads to a weaker enhancement than the singlet

scenario throughout, corresponding to a narrower resonance (see Table 6). Although the

effects of spin-2 resonances on the cross sections of Table 5 are small, they become much

more significant when additional mass cuts around the resonance are imposed, which will

be discussed below.
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Spin-2 Resonance Width [GeV]

Singlet, 500 GeV 0.982
Singlet, 750 GeV 3.238
Singlet, 1000 GeV 7.607
Singlet, 1250 GeV 14.795
Singlet, 1500 GeV 25.505
Triplet, 1000 GeV 1.004

Table 6: Total widths of the spin-2 resonances shown in Fig. 33.

3.7.1 pp→ V V jj → e+ e− µ+µ− jj

In the process pp→ V V jj → e+ e− µ+µ− jj, the invariant-mass spectrum of the four

final-state leptons can be fully reconstructed experimentally, since there are no neutrinos

in the final state. Fig. 33 shows different kinds of spin-2 resonances in this distribution.

For the Standard Model, a Higgs resonance at 126 GeV is followed by the electroweak

continuum which vanishes for high energies. The spin-2 singlet resonance peak is depicted

for masses up to 1.5 TeV for the given parameter choice. The triplet case, which is

analogous except for the height and width of the resonance, is exemplified for a mass of

1 TeV. In this process, the spin-2 triplet resonance is generated by the neutral triplet

particle. Because of the formfactor, there are no unphysical high-energy contributions

outside the mass range of Fig. 33, which otherwise would result from unitarity violation.

For a mass of 500 GeV, these contributions are not suppressed completely for our choice

of formfactor parameters. For such small masses, Λff should be set to a smaller value

than 3 TeV. The total widths of the spin-2 resonances in Fig. 33 are given in Table 6. It

should be noted, however, that the widths given in this table merely reflect the parameter

choice given above. By increasing the couplings fi by a factor of, e.g., 5 (or lowering the

scale Λ, respectively), all widths and also the spin-2 resonance contributions to the cross

sections of Table 5 would increase by a factor of 25, making them much more readily

observable.

In Figs. 34 - 37, characteristic transverse-momentum and angular distributions of spin-2

singlet and triplet resonances at 1 TeV are presented. We have selected those distributions

which show the most distinctive differences between the different scenarios. On the left

hand sides, the distributions of the SM electroweak continuum with and without a spin-2

resonance are depicted at LO and NLO QCD accuracy. The right hand sides compare the

singlet and triplet resonance and different coupling parameters at NLO QCD accuracy. In

all cases, the electroweak SM continuum is included in a mass bin around the resonance.
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Figure 33: Invariant-mass distribution of the four final-state leptons: Spin-2 singlet and triplet
resonance with different masses in the VBF process pp→ e+ e− µ+µ− jj at NLO
QCD accuracy.

All figures are normalized to the NLO cross section. In order to reveal the characteristics

of spin-2 resonances, additional cuts on the invariant mass of the four leptons are imposed.

For the coupling scenarios f1 = f2 = f5 = 1, f1 = f2 = 1 and for the SM continuum

without a spin-2 resonance, they are chosen as m4l = 1000± 50 GeV. For the triplet case,

we set m4l = 1000 ± 10 GeV and for f5 = 1, we use m4l = 1000 ± 5 GeV. The latter

cases are presented for illustration only, since the experimental resolution is expected

to be worse. However, for larger values of fi/Λ and resulting larger production cross

sections of the spin-2 resonances, the characteristic distributions would also be visible for

less stringent mass cuts. With these additional cuts, we obtain a signal-to-background

ratio of approximately one in case of f5 = 1, approximately three for f1 = f2 = 1 and

approximately four in the other cases, where “background” again refers to the electroweak

SM continuum.

Distinctive differences between a spin-2 resonance and the electroweak SM background

appear especially in the distribution of the transverse momentum of the hardest final-state

lepton (Fig. 34), the azimuthal angle difference between the two tagging jets (Fig. 35),

the cosine of the angle between the momenta of an incoming and an outgoing electroweak

boson in the rest frame of the spin-2 resonance (or of the four final-state leptons, respec-

tively) (Fig. 36) and the pseudorapidity difference between the two positively charged

final-state leptons (Fig. 37). The NLO QCD corrections do not have a considerable im-

pact on cross sections and distributions in the high invariant-mass region analyzed here.

A spin-2 triplet resonance resembles a singlet resonance with couplings f1 = f2 = f5 = 1.

The coupling f5 alone leads to different distributions throughout. This is not just an

effect of the sizable electroweak background for small values of f5/Λ, but originates from

the different tensor structure, as we have verified by comparing with the case f5 = 10:
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Fig. 34.
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For f5 = 10, the ∆Φjj distribution approaches the one of the other spin-2 cases, whereas

for the cos Θ distribution the peak around cos Θ = 0 becomes more prominent. The cases

f1 = f2 = f5 = 1 and f1 = f2 = 1 are difficult to distinguish because of the numerically

insignificant f5 contribution. However, small differences, which do not only stem from

contamination of the SM continuum, arise in the cos Θ and ∆ηl distribution.

The cos Θ distribution of Fig. 36 is not accessible experimentally for processes with final-

state neutrinos. However, the corresponding results can be directly transferred to such

cases, since for Fig. 36, the momenta of the electroweak bosons were not reconstructed

from final-state momenta, as in Sec. 3.3, but taken directly from the Monte Carlo infor-

mation. Apart from cos Θ, we have also studied the angle between the momenta of an

outgoing electroweak boson and one of the tagging jets in the rest frame of the spin-2

resonance (or of the four final-state leptons, respectively). This distribution shows char-

acteristics similar to cos Θ.

3.7.2 Other VBF processes with four final-state leptons

The VBF process pp → e+ e− νµνµ jj is very similar to pp → e+ e− µ+µ− jj, which was

studied previously, since both channels are dominated by ZZjj production. Theoretically,

a spin-2 resonance in the invariant-mass spectrum of the four final-state leptons as well

as the transverse-momentum and angular distributions with a cut on the invariant four-

lepton mass look the same, apart from the fact that there is no use in analyzing correlations

of the two charged leptons, since they originate from the same electroweak boson then. In

this case, since the invariant four-lepton mass cannot be reconstructed experimentally, the

transverse mass of the final-state lepton system e+ e− νµνµ has to be considered instead,

which is defined as [99]:

mT =
√

(ET,ll + ET,miss)2 − (pT,ll + pT,miss)
2, (3.42)

with

ET,ll =
√

p2
T,ll +m2

Z , ET,miss =
√

p2
T,miss +m2

Z . (3.43)

Here, ET,ll and pT,ll denote the transverse energy and momentum of the two charged

leptons and ET,miss and pT,miss those of the two neutrinos.

Even though an excess from the spin-2 resonance is hardly visible in the transverse-mass

spectrum for the present parameter choice, some of the features of the differential distri-

butions remain accessible if a transverse-mass cut like mT = 1000± 100 GeV is imposed

instead of the cut on the invariant four-lepton mass discussed in Sec. 3.7.1. While the
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Figure 38: pp→W+W− jj → e+ νe µ
− νµ jj with and without a spin-2 singlet resonance for

different values of Λ at NLO QCD accuracy. Left hand side: Invariant mass of the
four final-state leptons, right hand side: Transverse mass.

difference in the transverse-momentum distribution of the hardest lepton (left hand side

of Fig. 34) disappears, the azimuthal angle difference of the two tagging jets (Fig. 35)

persists.

In the VBF process pp→ W+W− jj → e+ νe µ
− νµ jj, it is hard to access the character-

istics of spin-2 resonances experimentally, since tt̄+ jets constitute a large background to

this process at the LHC. Moreover, the spin-2 singlet resonance (Fig. 38) is smaller than in

the processes studied before and the triplet resonance is even smaller, since the uncharged

triplet particle couples to two W bosons only via the f6 term, whereas the Feynman rules

for vertices with photons and Z bosons involve the coupling f7 (see 3.12). As before, the

invariant four-lepton mass is not accessible experimentally and the transverse mass of the

lepton system e+ νe µ
− νµ (Eq. (3.36)) has to be considered instead.

Fig. 38 depicts a spin-2 singlet resonance for different values of Λ in the invariant four-

lepton mass spectrum, which is only theoretically accessible, and in the transverse-mass

distribution. Here, the high Higgs-resonance peak is cut off in order to focus on the spin-2

resonance region. For the usual parameters, with Λ = 1.5 TeV, the transverse-mass spec-

trum is approximately the same for the electroweak SM continuum with and without a

spin-2 resonance. Even for Λ as small as 300 GeV (or for large couplings fi, respectively),

the resonance is smeared out. The characteristic features of the transverse-momentum

and angular distributions, which are theoretically similar to those of the VBF process

pp→ e+ e− µ+µ− jj, remain accessible with a cut on the transverse mass, if the couplings

are not too small. For the usual settings, with Λ = 1.5 TeV, the differences between the

distributions of the electroweak continuum with and without a spin-2 resonance are small

and difficult to access in the W+W− channel at the LHC.

82



In pp → V V jj → e+ νe µ
+µ−jj and pp → V V jj → e− νe µ

+µ− jj, only charged res-

onances are possible. Therefore, these processes can feature a spin-2 triplet resonance

generated by the charged triplet particle, but no singlet resonance, which is useful to

distinguish between the spin-2 singlet and triplet scenario. Again, the resonance is only

theoretically accessible in the invariant four-lepton mass spectrum, and the features of

the distributions with a mass cut around the resonance are the same as before. The

corresponding transverse mass in this case reads [99]:

mT =
√

(ET,lll + ET,miss)2 − (pT,lll + pT,miss)
2, (3.44)

with

ET,lll =
√
p2
T,lll +m2

lll , ET,miss = |pT,miss|, (3.45)

where mlll is the invariant mass of the charged-lepton system, ET,lll (pT,lll) its transverse

energy (momentum) and ET,miss,pT,miss those of the neutrino.

The spin-2 triplet resonance peak can be observed in the transverse-mass spectrum if the

couplings are not too small. However, the usual parameters only yield a marginal signal.

With a transverse-mass cut of mT = 1000 ± 100 GeV, the features of the distributions,

like the pseudorapidity difference between two final-state leptons of the same charge, can

be studied and yield results similar to those found for pp→ e+ e− µ+µ− jj.

All in all, heavy spin-2 resonances feature specific transverse-momentum and angular

distributions in the considered VBF processes, which differ from those of the SM elec-

troweak continuum and might be accessible at the LHC with appropriate cuts if the spin-2

couplings are not too small. Since in the WZjj-dominated channels e+ νe µ
+µ− jj and

e− νe µ
+µ− jj, only charged resonances are possible, they can be useful to distinguish

between the spin-2 singlet and triplet scenario.

83





4 Unitarity of Vector-boson Scattering with Spin-0,

Spin-1 or Spin-2 Resonances

A very important feature of the SM Higgs boson is that it preserves the unitarity of the

S-matrix (Eq. (2.15)) in elastic vector-boson scattering. In case of the SM without the

Higgs boson (which could by realized by a non-linear σ-model), the amplitude of longi-

tudinal WW scattering would grow with the squared center-of-mass energy s, eventually

violating unitarity at approximately s = 1.6 TeV. In the SM with its Higgs mechanism,

unitarity implies that the mass of the physical Higgs boson must be lower than approxi-

mately 800 GeV [104]. This condition is naturally fulfilled for the 125− 126 GeV particle

discovered at the LHC.

Since the S-matrix is related to physical cross sections, any modification of the SM must

also imply this conservation of probability (unless the probabilistic interpretation of the

S-matrix and, thus, a basic principle of quantum mechanics, is abandoned). Particularly,

one can ask if the capability to restore unitarity of vector-boson scattering is a unique

feature of the spin-0 Higgs boson or if resonances with a different spin are able to per-

form the same task. This question is investigated for spin-1 and spin-2 particles in this

chapter 9. To this end, unitarity properties are analyzed by studying the high-energy

behavior of partial waves. First, we will focus on the special case of longitudinal WW

scattering, which is usually considered to be the most important channel in this context.

In order to give a more complete picture of the unitarity properties, we will then general-

ize the partial-wave analysis to a combined study of all uncharged combinations of weak

bosons in the initial and final state, including both longitudinal and transverse modes.

Spin-2 particles are investigated within the framework of the effective Lagrangian model

described in Sec. 3.1. Additional spin-1 particles appear in a huge variety of different

models (see e.g. Ref. [105] and references therein), like in Grand Unified Theories [106],

Little Higgs [48] or Extra Dimension models [41] or in superstring constructions [107]. In

order to analyze the unitarization power of spin-1 particles in a general way, however, we

choose a model-independent ansatz [108], which is outlined in the following section.

4.1 Framework for Spin-1 Resonances

As proposed in many publications in recent years [42,109], it is possible to delay unitarity

violation in longitudinal WW scattering by the exchange of heavy spin-1 particles instead

of the Higgs boson of the SM. In the proposed five-dimensional or deconstructed models

9Work done in collaboration with Franziska Schissler.
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(see Sec. 2.2.2), there is usually a tension between unitarity requirements, which impose a

relatively light mass scale for the new resonances, and electroweak precision data (EWPD),

which tend to favor heavy masses for the new vector states. Furthermore, LHC data set

strong limits on the masses of additional W ′ and Z ′ bosons which couple to fermions from

searches in various decay channels: W ′ → lν [110], W ′ → tb [111], W ′/Z ′ → jj [112], Z ′ →
ll (with ll = e+e−, µ+µ− [113] or τ+τ− [114]), Z ′ → tt̄ [115] and Z ′ → bb̄ [116]. Therefore,

we will only consider additional vector resonances with tiny or vanishing couplings to SM

fermions here.

From EWPD, lower-mass bounds of 250 − 380 GeV [117–119] were derived, where the

exact value depends on the considered models. The tension between EWPD and relatively

light spin-1 resonances mainly stems from changes in the WWZ-coupling. This coupling

is related to the parameter ∆g1Z [120] which should be of O(10−2) [121]. The oblique

electroweak corrections at tree level, parametrized by S, T and U [122], can be adjusted

to vanish, as argued in [123]. It is shown that αT ≈ 0 if one incorporates a custodial

symmetry which ensures

ρ =
mW

mZ cos θW
= 1 (4.1)

at tree level. αS ≈ 0 at tree level can be achieved for tiny or vanishing fermion couplings.

Even at the one-loop level, it should be possible to find parameter combinations leading

to small oblique corrections, which was shown for the Three Site Higgsless Model in [124].

To construct a model of EWSB, one can take the Four Site Higgsless model [117,125] as a

starting point. It predicts all the known SM particles except for the Higgs boson and six

additional vector bosons, denoted by W±
1,2 and Z1,2. In this framework, one needs to fix

the WWZ-coupling to its SM value (or the allowed ∆g1Z region) to avoid conflicts with

EWPD.

To delay unitarity violation in models with additional vector states to very high energies,

one has to impose sum rules which have to be fulfilled by the various couplings of vector

bosons among each other. They can be derived from vector-boson scattering amplitudes.

In these amplitudes, there exist terms which grow continuously with the energy and need

to be canceled in order to obtain a UV complete amplitude. This cancellation then leads

to relations between different couplings, which are the mentioned sum rules. In theories

with a finite extra dimension, these sum rules emerge naturally from the completeness of

Kaluza-Klein modes [42]. Alternatively, they can be built into a deconstructed theory by

the use of hidden symmetries as was argued in Ref. [119] and references therein.

In the framework of two additional vector-boson triplets, like in the Four Site Higgsless
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model, the terms quadratic and quartic in the center-of-mass energy vanish in the lon-

gitudinal scattering amplitudes of WW → WW and WZ → WZ (or WW → ZZ or

ZZ → WW , respectively) scattering, if we impose the following sum rules for the six

additional W±
1,2 and Z1,2 resonances [126,127]:

gWWWW =
2∑

k=0

g2
WWZk

+ g2
WWγ, (4.2)

4m2
W gWWWW = 3

2∑
k=0

m2
Zk
g2
WWZk

, (4.3)

gWWZZ =
2∑

k=0

g2
WkWZ, (4.4)

2
(
m2

W +m2
Z

)
gWWZZ =

2∑
k=0

(
3m2

Wk
− (m2

W −m2
Z)

2

m2
Wk

)
g2
WkWZ. (4.5)

Here, gabc(d) denotes the coupling of a, b, c (and d) bosons, with W0 = W and Z0 = Z

being the weak bosons with SM mass. The equations (4.2) and (4.4) result from the

cancellation of terms which grow proportional to s2, whereas Eqs. (4.3) and (4.5) ensure

the cancellation of terms proportional to s.

By combining Eqs. (4.2) and (4.3), gWWWW can be eliminated, yielding

g2
WWZ2

=
1(

3m2
Z2
− 4m2

W

)︸ ︷︷ ︸
>0

[ >0︷ ︸︸ ︷
4m2

Wg
2
WWγ + g2

WWZ

(
4m2

W − 3m2
Z

)

+ g2
WWZ1

(
4m2

W − 3m2
Z1

)︸ ︷︷ ︸
<0

]
. (4.6)

Demanding that the coupling of the Z2 boson to SM particles should be real, the square

bracket in Eq. (4.6) must be positive. This constraint implies a maximal value of gWWZ1
:

g2
WWZ1

≤ 4m2
Wg

2
WWγ + g2

WWZ (4m2
W − 3m2

Z)(
3m2

Z1
− 4m2

W

) =
(
gmax
WWZ1

)2
. (4.7)
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The same procedure, using Eqs. (4.4) and (4.5), leads to a maximal value for gW1WZ:

g2
W1WZ ≤

(
2(m2

W +m2
Z)− 3m2

W + (m2
Z −m2

W )2/m2
W

)
(

3m2
W1
− 2(m2

W +m2
Z)− (m2

Z −m2
W )2/m2

W1

) g2
WWZ =

(
gmax
W1WZ

)2
. (4.8)

Note that the maximal values gmax
WWZ1

(4.7) and gmax
W1WZ(4.8) are dominated by a 1/mV1 de-

pendence (with V = W, Z).

Motivated by these inequalities, the parameters ξi ∈ [−1, 1] (i = W, Z) are introduced,

which will be used to find configurations in which unitarity violation can be delayed to

very high energies:

gWWZ1
= ξZ g

max
WWZ1

, gW1WZ = ξW gmax
W1WZ. (4.9)

ξi = 1 corresponds to no second additional spin-1 states, since e.g. gWWZ1
reaches its

maximal values and the square bracket in Eq. (4.6) vanishes. The sum rules (4.2)-(4.5)

are then fulfilled by the first additional vector states. Using gWWZ1
, gW1WZ and gWWZ, the

other couplings can be determined via the sum rules (4.2)-(4.5). gWWγ has the same value

as in the SM since it is determined by the charge of the W boson. In the present analysis,

the mass of the first resonances W1 and Z1 as well as of the second resonances W2 and Z2

are taken as free parameters. ξW and ξZ will also be varied, whereas the WWZ-coupling

will be fixed to its SM value to comply with EWPD, as mentioned before.

4.2 Analyzing Unitarity: Theoretical Concepts and

Practical Tools

For the analysis of the high-energy behavior of the considered models, a partial-wave

analysis is an adequate tool. Following Ref. [128], the partial-wave decomposition of the

matrix element for fixed helicity combinations is given by

M = 16π
∑
J

(2J + 1) aJλµ d
J
λµ(θ), (4.10)

where λ (µ) is the helicity difference between the initial (final) electroweak bosons and

dJλµ(θ) are the Wigner d-functions which can be found in [92]. The d-functions obey the

following orthogonality relation [128]:∫ π

0

dJm,m′ (θ) d
J ′

m,m′ (θ) sin θ dθ = δJJ ′
2

2J + 1
. (4.11)
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This relation can be used to obtain the coefficients aJλµ: Multiplying Eq. (4.10) by dJ
′

λµ(θ),

integrating over sin θ dθ and inserting Eq. (4.11) yields

aJλµ =
1

32π

∫ π

0

M dJλµ(θ) sin θ dθ . (4.12)

The calculation of the coefficients aJλµ was performed by using a Fortran program, which

was originally written by C. Englert [129] and was modified and extended for the present

analysis. It uses Helas routines [77] to calculate the tree-level matrix elements and the

routine gaussint [130] for the integration over θ. To avoid singularities originating from

t-channel photon exchange, the lower integration limit was set to 0.1◦ in the case of WW

scattering. We also performed internal checks against the FeynArts [85]/ FormCalc [86]

framework.

Since partial waves with small angular momentum give the largest contributions to the

scattering amplitude, we will only consider the J = 0 partial wave a0
00 (=: a0) in the

following.

Unitarity of the S-matrix implies [131]

|Re(a0)| ≤ 1

2
. (4.13)

This provides a useful requirement which can be applied to investigate unitarity.

A first step of the analysis is to apply the condition (4.13) to the coefficients a0 for

particular modes (either the transverse modes, denoted by ++ and−−, or the longitudinal

ones, labeled 00) and particular initial and final-state weak bosons. However, in order to

obtain more general results, a combined analysis of all modes and all weak bosons should

be performed. To this end, we apply a method which can e.g. be found in Refs. [104,132].

We set up a matrix of all relevant combinations of uncharged initial and final states,

A =

(
a0(W+W− → W+W−) a0(W+W− → ZZ)/

√
2

a0(ZZ → W+W−)/
√

2 a0(ZZ → ZZ)/2

)
, (4.14)

with the sub-matrices

a0(V V → V V ) =

(−−)→ (−−) (−−)→ (00) (−−)→ (++)

(00)→ (−−) (00)→ (00) (00)→ (++)

(++)→ (−−) (++)→ (00) (++)→ (++)

 . (4.15)
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Taking external photons into account is not necessary for our analysis, since in case of

additional spin-1 particles, the SM photons only couple to the charged W bosons and for

spin-2 resonances, it is not useful to consider the couplings which lead to vertices involving

photons (see Sec. (4.3.2)).

All the sub-matrices (4.15) are symmetric and also a0(WW → ZZ) and a0(ZZ → WW )

are mirror images of each other, which was used as a test of the calculation. Additionally,

the entries in A stemming from different helicity combinations in the initial and final

state are found to be negligible, since these amplitudes are zero in the massless limit due

to angular-momentum conservation.

The eigenvalue of the matrix (4.14) with the largest absolute value is labeled amax
0 in

the following and must fulfill the more general unitarity requirement

|Re(amax
0 )| ≤ 1

2
. (4.16)

The matrix (4.14) was diagonalized using the Lapack Zgeev subroutine [133]. In our

calculation, we use the electroweak input parameters given in Sec. 3.2.4 and apply a

narrow-width approximation, where the widths of intermediate particles are set to zero.

Since we are considering energies much higher than the masses of the resonances, this is

a reasonable assumption.

4.3 Unitarity with Spin-2 Resonances

4.3.1 Longitudinal WW scattering

In this section, we investigate whether it is possible to unitarize longitudinal WW scat-

tering for the SM without a Higgs boson by including the spin-2 SU(2) singlet particle of

the effective model presented in Sec. 3.1 10. For the SM without a Higgs boson, the Feyn-

man graphs contributing to WW scattering are given in Fig. 39. In this case, unitarity is

violated above approximately 1.6 TeV, but restored by including the Higgs boson. Since

the spin-2 model yields the same Feynman diagrams as the SM Higgs mechanism, namely

s- and t-channel exchange of a neutral particle (Fig. 40), one can already conjecture that

the spin-2 particle could perform the task of the Higgs boson in that particular process.

When analyzing the high-energy behavior of the matrix elements for purely longitudinal

WW → WW scattering, one finds that for the SM without a Higgs boson, the amplitude

10Note that this approach differs significantly from the one used in Ref. [134], where an analysis of
unitarity in WW scattering with a triplet of antisymmetric tensor bosons is provided.
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Figure 40: Feynman graphs in WW scattering. Left hand side: with a Higgs boson, right hand
side: with a spin-2 particle.

(and therefore also Re(a0)) is proportional to s, whereas for the spin-2 diagrams without

a formfactor, it is proportional to s3. A cancellation of both contributions is only possible

if the spin-2 and the SM diagrams without a Higgs boson have opposite signs (which

turns out to be the case) and if their absolute values grow with the same power of s

for high energies. The high-energy behavior of the spin-2 contributions can be varied by

multiplying the amplitude with the formfactor (3.15), which is proportional to s−nff for

high energies. Hence, by choosing nff = 2, the spin-2 contributions cancel the SM ones

for adjusted parameters of the spin-2 model. Thereby, unitarity can be preserved up to

nearly arbitrary high energies.

This is illustrated by Fig. 41, which depicts the energy dependence of Re(a0) for the SM

with and without a Higgs boson and a spin-2 particle, both with a mass of 126 GeV.

The couplings of the spin-2 model are chosen as f5 = 1, fi 6=5 = 0, the parameters of the

formfactor are nff = 2, Λff = 1 TeV and the energy scale Λ is tuned to 7655 GeV. The

longitudinal WW scattering amplitude depends only weakly on the coupling f2 and a

change of the value of f5 or the mass of the spin-2 particle can be compensated by a

change of Λ. Other couplings fi are not involved in WW scattering. The energy scales Λ

and Λff , however, have to be fine-tuned. The impact of a variation of these parameters

is investigated in Fig. 42, which shows the dependence of Re(a0) on either Λ (left hand

side) or Λff (right hand side), while keeping all other parameters fixed to the values given

above. One can see that already deviations of few GeV impair the high-energy behavior,
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Figure 41: Longitudinal WW scattering: Energy dependence of Re(a0) for the SM with and
without a Higgs boson or a spin-2 particle, both with a mass of 126 GeV. The
parameters of the spin-2 model are f5 = 1, fi 6=5 = 0, nff = 2, Λff = 1 TeV, Λ =
7655 GeV.

especially for Λff , which leads to a violation of the unitarity condition |Re(a0)| ≤ 0.5

(Eq. (4.13)) at low scales. This implies that a significant amount of fine-tuning is required

in order to preserve unitary in longitudinal WW scattering with a spin-2 particle instead

of a SM Higgs boson.
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4.3.2 General Case

Now we investigate the more general case by considering the longitudinal and transverse

modes of the relevant electroweak bosons together. Therefore, we analyze the eigenvalues

of the matrix (4.14) and apply the condition (4.16). Fig. 43 illustrates the high-energy

behavior of the largest eigenvalue for the SM with and without a Higgs boson and a
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Figure 43: Energy dependence of the largest eigenvalue of the matrix (4.14) for the SM with
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Λ = 7655 GeV.

spin-2 particle, both with a mass of 126 GeV. We consider the same set of spin-2 model

parameters as before, f5 = 1, fi 6=5 = 0, nff = 2, Λff = 1 TeV and Λ = 7655 GeV, which

was found to preserve unitarity in longitudinal WW scattering.

For the SM without a Higgs boson, unitarity is violated already above approximately

1.2 TeV, whereas considering only longitudinal WW scattering yields the weaker bound

of approximately 1.6 TeV, as shown in Sec. 4.3.1. By including a Higgs boson, unitarity

can be restored.

This figure also illustrates that for the SM without a Higgs boson, but with a spin-2

particle, it is possible to delay unitarity violation from approximately 1.2 TeV to 1.5 TeV

for the given fine-tuned parameter set. However, in contrast to the case of longitudinal

WW scattering, it is not possible to restore unitarity by including a spin-2 particle with

an appropriate formfactor instead of a Higgs boson.

To understand this, the different sub-matrices (4.15) of A in Eq. (4.14) have to be inves-

tigated: The sub-matrix a0(WW → WW ) contains the longitudinal WW scattering of

Sec. 4.3.1, where we have illustrated that the spin-2 amplitudes can cancel the SM ones

due to their opposite signs. The spin-2 contribution to the transverse modes is negligible.

Therefore, unitarity can be restored for the sub-matrix a0(WW → WW ) if the parame-

ters are fine-tuned as in Sec. 4.3.1.

However, the situation is different in case of the sub-matrices a0(WW → ZZ) and
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a0(ZZ → WW ), where the spin-2 and the SM amplitudes have the same sign, which

means that a cancellation among them is not possible. The entries of the a0(ZZ → ZZ)

sub-matrix are equal to zero for the SM without a Higgs boson, whereas for the spin-2

amplitudes, they grow continuously when the center-of-mass energy is increased and can-

not be canceled.

One might think that these different effects can be counterbalanced by tuning the spin-2

coupling parameters. However, this is not possible, since the Feynman rules of the TWW

and the TZZ vertex have the same structure (see Eq. (3.9)). It is not advantageous to

include the couplings f1 and f2, because they enhance the transverse modes, but yield

a minor contribution to the crucial longitudinal ones. Additionally, they lead to non-

vanishing couplings of the spin-2 particle to photons (see Eq. (3.9)), which would have to

be taken into account by enlarging the matrix (4.14) by the various combinations with

photons in the initial and final state. This would impair the high-energy behavior of the

largest eigenvalue even more, since the additional sub-matrices containing photons would

exhibit further diverging spin-2 contributions which cannot be canceled, as in case of the

ZZ → ZZ sub-matrix.

After analyzing the general case, we arrive at the conclusion that it is not possible to

restore unitarity by including a spin-2 particle. Therefore, we now investigate the impact

of spin-1 resonances.

4.4 Unitarity with Spin-1 Resonances

In contrast to the spin-2 case, unitarity can be restored for combined channels of SM

weak-boson scattering by additional spin-1 particles within the framework of Sec. 4.1. The

imposed sum rules (4.2)–(4.5) ensure the cancellation of terms which grow quadratically

and quartically with the center-of-mass energy. In the general spin-2 case of Sec. 4.3.2, the

ZZ scattering caused the violation of unitarity already at low energies. For intermediate

neutral spin-1 particles, however, there is no such scattering.

Fig. 44 depicts the real parts of the eigenvalues of the 6 × 6 partial-wave matrix (4.14),

where two of the eigenvalues are degenerate. The red solid lines show their energy de-

pendence for the SM with a 126 GeV Higgs boson. The blue dotted lines correspond

to the SM without Higgs, but with additional spin-1 particles W±
1 and Z1 with masses

mW1 = mZ1 = 275 GeV and no second triplet of vector states. As we will discuss below,

this is the best configuration we found to mimic the high-energy behavior of the SM with

the Higgs boson. Within the SM with the Higgs boson, all the longitudinal contributions
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of the four sub-matrices (4.15) are of order O(10−2), yet the contributions from trans-

verse modes have larger values (O(10−1)). For additional intermediate spin-1 particles

instead of a Higgs boson, transverse modes are approximately of the same size, whereas

the longitudinal contributions are larger than in the SM with Higgs. Nevertheless, Fig. 44

demonstrates that it is possible to restore unitarity in vector-boson scattering without

a scalar boson. In contrast to the spin-2 case, no formfactor is needed to control the

high-energy behavior of the scattering amplitudes.
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Fig. 45 shows the energy dependence of the largest eigenvalue of (4.14) for the SM with a

Higgs boson (mH = 126 GeV) or with one additional triplet of spin-1 states with different

masses mW1 = mZ1 . It demonstrates that the condition |Re(amax
0 )| ≤ 0.5 (Eq. (4.16)) is
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fulfilled up to energies above 40 TeV if mW1 = mZ1 ≈ 150−300 GeV. Hence, the unitarity

of weak-boson scattering amplitudes can be restored with one additional triplet of light

spin-1 states, with the ideal value of the masses being mW1 = mZ1 = 275 GeV.
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Figure 46: Dependence of the largest eigenvalue on mW1 for mZ1 = 275 GeV (left hand side)
and on mZ1 for mW1 = 275 GeV (right hand side).

While only mass-degenerate spin-1 states have been considered so far, we will now study

the more general scenario where the W1 and the Z1 boson have different masses. The im-

pact of the variation of either mW1 or mZ1 is investigated in Fig. 46, where the respective

other mass is fixed to the ideal value of 275 GeV. One can see that a light mass of the W1

boson is crucial for unitarity, whereas the Z1 mass can vary between ≈ 125 − 400 GeV.

In particular, a higgsless scenario with a 125 − 126 GeV Z1 boson (and a 275 GeV W1

boson) can preserve unitarity. However, the newly discovered 125 − 126 GeV resonance

cannot be such a Z1 boson, since its detection in the diphoton channel excludes a spin-1

resonance because of the Landau–Yang theorem, as mentioned before.

Now we move on to the scenario where two additional triplets of spin-1 states are present

in the particle spectrum instead of only one. Within our framework (Sec. 4.1), this corre-

sponds to parameters ξi < 1 (i = W, Z), whereas the special case ξi = 1 implies that just

one additional vector-boson triplet is present, which was already discussed above. Fig. 47

shows the ξi-dependence of the largest eigenvalue. The masses of the second additional

states are chosen as mW2 = mZ2 = 550 GeV, i.e. twice the mass of the first ones. This

figure illustrates that including a second additional vector-boson triplet is not advanta-

geous in terms of unitarity, since it impairs the high-energy behavior. Changing ξW has

a larger impact than changing ξZ . The parameter ξW measures the fulfillment of the sum
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rules (4.4) and (4.5) derived from WZ → WZ scattering (or WW → ZZ, ZZ → WW ,

respectively) by the W1 boson. Therefore, these sum rules are even more important than

the often discussed WW → WW sum rules (4.2) and (4.3) and have to be taken into

account to give a reliable estimate of the scale of unitarity violation.
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This feature is also demonstrated by the larger impact of mW1 than mZ1 in Fig.46 and

can be proven further by studying the dependence of the largest eigenvalue on the masses

of the second spin-1 particles mW2 and mZ2 , which is shown in Fig. 48 for mW1 = mZ1 =

275 GeV. In case of a second resonance, ξi is chosen as 0.8. If no second resonance

is present, ξi is equal to 1. Again, mW2 has a greater influence than mZ2 , so again the

WZ → WZ sum rules are more important. Fig. 48 also demonstrates that the high-
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energy behavior gets worse when the mass gap between the first and the second triplet

is increased. The scenario with no W2 and Z2 bosons, but only one triplet of additional

vector states is again the best choice for the preservation of unitarity.

From the Figures 45 - 48, we conclude that in scattering processes of weak SM bosons,

unitarity can be restored for one additional triplet of light spin-1 states with masses

around mW1 = mZ1 ≈ 150 − 300 GeV, where the optimal mass value is ≈ 275 GeV.

However, if such light additional weak bosons are present, one should investigate whether

scattering processes involving these new bosons as external particles are also unitary. To

this end, an extended set of sumrules for WiWi → WjWj and WiWi → ZjZj was derived,

where i, j = 0, 1, with 0 indicating a SM boson. The WiWi → WjWj case can also be

found in Ref. [127] and the equations for WiWi → ZjZj are

gWiWiZjZj =
1∑

k=0

g2
WkWiZj

(4.17)

2 (M2
Wi

+M2
Zj

) gWiWiZjZj =
1∑

k=0

(
3M2

Wk
−

(M2
Wi
−M2

Zj
)2

M2
Wk

)
g2
WkWiZj

. (4.18)

We found that this extended set of sumrules cannot be fulfilled simultaneously. This

implies that unitarity cannot be preserved in all channels, including the new vector states

as external particles. Moreover, it was not even possible to find a configuration of couplings

which postpones unitarity violation up to a reasonably high energy scale, neither via the

above sumrules nor with randomly generated couplings. This observation agrees with the

statement of Ref. [42], that scattering processes of the heaviest additional vector state

cannot be unitarized unless an even heavier state is added, such that there is an infinite

tower of modes in the end. Furthermore, it is consistent with the theorem by Cornwall et

al. [135], which states that unitarity can only be preserved with scalar particles (if a finite

number of particles is assumed). In case of the SM with a light Higgs boson, unitarity is

preserved in the complete set of channels, including external Higgs bosons [104].
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5 Summary

The discovery of the new 125−126 GeV resonance at the LHC requires detailed studies of

its properties, including its spin, in order to definitely verify or disprove whether it is the

Higgs boson of the Standard Model. The observation of the resonance in the diphoton

decay mode immediately excludes a spin-1 particle due to the Landau–Yang theorem,

leaving spin-2 as an alternative hypothesis to the spin-0 of the Higgs boson. In order

to distinguish these two possibilities, the phenomenology of light spin-2 resonances was

studied in this work. Since the SM Higgs boson is mainly produced in gluon fusion or

vector-boson fusion at the LHC, while the most important decay modes for its identifica-

tion comprise γγ , W+W− → 2l2ν and ZZ → 4l, these channels were investigated in most

detail. For the present analysis of spin-2 resonances, an effective model for the interaction

of a spin-2 electroweak singlet or triplet state with SM gauge bosons was implemented into

the Monte Carlo program Vbfnlo. This model features free coupling parameters, which

can be tuned in order to adjust rates to those of the SM Higgs boson. Furthermore, it

includes a formfactor that is multiplied with the amplitudes in order to parametrize high-

energy contributions beyond the effective model and restore the unitarity of the S-matrix.

It was demonstrated that with a suitable choice of model parameters, a spin-2 reso-

nance can indeed approximately reproduce SM Higgs rates in the considered channels.

In spite of free spin-2 model parameters, this result is non-trivial, since the electroweak

spin-2 couplings are related via an SU(2)× U(1) gauge symmetry. Likewise, transverse-

momentum distributions of a spin-2 resonance can be adjusted to those of a SM Higgs

boson by tuning formfactor parameters, leaving angular and invariant-mass distributions

for a spin determination.

Different decay channels provide several observables that are particularly well suited to

distinguish between spin-0 and spin-2. In the diphoton mode, scattering angles defined

in specific frames clearly separate the two hypotheses, as long as no higher-dimensional

spin-2 coupling structures are considered. Such structures can mimic angular distribu-

tions of the SM Higgs resonance for very specific values of the couplings, which, however,

are quite unrealistic within the effective spin-2 framework.

In the W+W− → 2l2ν decay, the invariant mass of the two charged leptons clearly dis-

tinguishes between a SM Higgs and a spin-2 resonance in VBF as well as in gluon fusion.

Anomalous spin-0 scenarios, however, can lead to distributions which significantly differ
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from those of the SM Higgs boson. Therefore, it is important to carefully disentangle

spin, CP properties and tensor structures of the new resonance.

Although the four-lepton final state of the ZZ mode provides many observables that can

be analyzed, a spin determination in this channel is intricate, since the difference between

different spin-2 scenarios is larger than between a Higgs and a spin-2 resonance because

of different contributions of intermediate photons and Z bosons. However, the ZZ mode

can be useful to distinguish between particular choices of spin-2 couplings.

In order to complete the set of decay modes which involve spin-2 vertices and are accessi-

ble at the LHC, one should also consider the Zγ channel and compare the spin-2 rate with

current exclusion limits from LHC Higgs searches. Again, the SM Higgs rates including

this channel can be approximately reproduced with a suitable choice of spin-2 model pa-

rameters, which also implies that there is no contradiction with current LHC data from

the Zγ mode. As in the ZZ channel, different contributions of intermediate photons

and Z bosons strongly alter spin-2 distributions. However, the Gottfried–Jackson angle,

defined as the angle between the momentum of the spin-2 particle or the Higgs boson in

the laboratory frame and the final-state photon in the rest frame of the resonance, is a

clear indicator of the spin.

In the VBF production mode, the two tagging jets in the final state give rise to further

interesting observables. Particularly, the azimuthal angle difference between them was

found to be an important variable to distinguish between spin-0 and spin-2. The charac-

teristics of this distribution are nearly independent of spin-2 model parameters and decay

modes. NLO QCD corrections are small for SM Higgs and spin-2 resonances in the VBF

processes and have no impact on the characteristics of the differential distributions. In

vector-boson fusion, the phenomenology of a neutral spin-2 triplet resonance resembles

the one of the singlet particle, since its couplings to electroweak bosons features the same

tensor structure. Also the triplet couplings can be adjusted to mimic the rates of the

SM Higgs boson in γγ, WW and ZZ decays. However, since there is no analog to the

coupling of the singlet particle to two gluons, a SM Higgs boson in gluon fusion cannot

be imitated by the spin-2 triplet.

Even if the 125−126 GeV resonance is a spin-0 particle, new spin-2 resonances might exist

at higher energies. Such heavy spin-2 resonances in VBF processes with four leptons and

two jets in the final state were found to feature characteristic differential distribution as

well, which can be utilized to identify a spin-2 resonance above the electroweak SM con-

tinuum. In the processes pp→ V V jj → e+ νe µ
+µ−jj and pp→ V V jj → e− νe µ

+µ− jj,
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only charged resonances are possible. Thus, they can be useful to distinguish between the

spin-2 singlet and triplet scenarios.

As in case of light Higgs or spin-2 resonances, NLO QCD corrections are small in these

VBF processes, both with and without heavy spin-2 resonances in addition to the elec-

troweak SM continuum. The NLO QCD corrections lead to slightly enhanced cross sec-

tions with K-factors of approximately 1.05 and do no alter the differential distributions.

Another task of this thesis was to analyze the prospects of preserving the unitarity of

the S-matrix in scattering processes of weak bosons by means of additional spin-2 or

spin-1 particles instead of the spin-0 Higgs boson. In these cases, it is mandatory to

consider not only longitudinal WW scattering, but all relevant combinations of initial

and final-state bosons and polarizations together. It was found that by including a spin-2

particle, the preservation of unitarity is possible for longitudinal WW scattering if the

spin-2 model parameters, including formfactor settings, are fine-tuned. However, it is not

possible to restore the unitarity of all scattering channels of SM weak bosons simultane-

ously by including spin-2 particles.

From a theoretical perspective, spin-1 resonances with masses around 150 - 300 GeV were

found to be a promising alternative. If only one additional triplet of vector states is in-

cluded, the unitarity of SM weak-boson scattering can be preserved up to nearly arbitrary

high energies. With more additional states, this is harder to achieve, but also possible

for specific parameters and masses. Additionally, the often neglected sum rule stemming

from WZ scattering was found to play a crucial role in deriving the scale of unitarity

violation. However, simultaneous unitarization of a larger set of channels, containing also

the additional spin-1 bosons as external particles, is not possible. Including both spin-1

and spin-2 resonances at the same time cannot restore unitarity either, since both of them

contribute to the amplitudes with the same sign, which means that diverging contribu-

tions cannot cancel each other.

While rates and transverse-momentum distributions cannot definitely exclude the spin-2

hypothesis for the newly discovered 125−126 GeV resonance, various angular and invariant-

mass distributions allow for a spin determination. Corresponding experimental analyses

by the ATLAS and CMS collaborations have already excluded specific spin-2 scenarios.

Depending only little on spin-2 model parameters, such observables severely constrain the

parameter space of spin-2 resonances, whereas experimental data obtained for the new

particle are compatible with being the scalar Higgs boson of the Standard Model. The
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finding that neither spin-1 nor spin-2 particles can completely mimic the ability of the SM

Higgs boson for the preservation of unitarity in weak-boson scattering further confirms

that indeed the SM Higgs boson has been discovered. Nevertheless, further experimental

and theoretical effort is required in order to definitely prove this fundamental statement.

This might be achieved by means of a future linear collider, which could allow for precision

measurements of the Higgs boson properties.
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Appendix

A Decay widths of the Spin-2 particles

This section provides explicit expressions for the partial decay widths of spin-2 singlet

and triplet particles. Except for Γgg and Γγγ with higher-dimensional structures, they can

also be found in Refs. [25,69].

The total decay width of a spin-2 particle,

Γtotal =
∑
j

Γj, (A.1)

is the sum of the partial decay widths of all possible decay modes, which for two-body

decays read [58]

Γj =
|~p|

8πm2
T

|M|2. (A.2)

Here, mT is the mass of the spin-2 particle, M is the matrix element corresponding to

a spin-2 particle decaying at rest, including an additional symmetry factor 1
2

in case of

identical decay products and |~p| is the absolute value of the three-momenta of the two

decay products in the rest frame of the resonance.

A.1 Spin-2 singlet

The explicit results for the partial decay widths Γj of the spin-2 singlet particle T are:

ΓW+W− =

(
24f 2

2 (m4
T − 3m2

Tm
2
W + 6m4

W ) + 40f2f5g
2v2(m2

T −m2
W )

12Λ2

+
f 2

5 g
4v4(m4

T + 12m2
Tm

2
W + 56m4

W )

96Λ2m4
W

)
·
√

(m2
T/4−m2

W )

(40πm2
T )

, (A.3)

ΓZZ =
(
[24f 2

2 c
4
w(m4

T − 3m2
Tm

2
Z + 6m4

Z) + 8c2
wf2(6f1s

2
w(m4

T − 3m2
Tm

2
Z + 6m4

Z)

+ 5f5v
2(g2 + g′2)(m2

T −m2
Z)) + 24f 2

1 s
4
w(m4

T − 3m2
Tm

2
Z + 6m4

Z)

+ 40f1f5s
2
wv

2(g2 + g′2)(m2
T −m2

Z)]/(12Λ2)

+
f 2

5 v
4(g2 + g′2)2(m4

T + 12m2
Tm

2
Z + 56m4

Z)

96Λ2m4
Z

)
·
√
m2
T/4−m2

Z

80πm2
T

, (A.4)
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ΓγZ =
c2
ws

2
w(f1 − f2)2(m2

T −m2
Z)3(6m4

T + 3m2
Tm

2
Z +m4

Z)

240πΛ2m7
T

, (A.5)

Γγγ =
m3
T

7680πΛ6
(96c4

wf
2
1 Λ4 + 48c2

wf1Λ2(4f2Λ2s2
w − d2m

2
T ) 2005/06/28ver : 1.3subfigpackage

+ d2
1m

4
T + 2d1m

4
Td2 + 7d2

2m
4
T − 48d2f2Λ2m2

T s
2
w + 96f 2

2 Λ4s4
w), (A.6)

Γgg =
0.17 f 2

9 m
3
T

πΛ2
. (A.7)

Note that Γgg contains a factor 1.7, which accounts for higher-order QCD corrections

(see Sec. 3.2.3). Γγγ includes the higher-dimensional structures of Sec. 3.5. If they are

neglected, i.e. their coefficients d1 and d2 are set to zero, it simplifies to

Γγγ, lowdim =
(f1c

2
w + f2s

2
w)2m3

T

80πΛ2
. (A.8)

The total decay width is obtained by adding up all partial widths where the mass of the

spin-2 particle is larger than the sum of the final-state particle masses. However, there

might be additional (and possibly hard to detect) decay modes of the spin-2 particle,

which are not considered in the present model, leading to a larger total width. This is

taken into account by introducing an additional branching ratio parameter b, which is the

fraction of the considered decays over all possible ones. This parameter has to be greater

than zero and less than or equal to one, where b = 1 indicates that no additional decay

modes exist. Then, the total width is

Γtotal =
1

b
(ΓW+W− + ΓZZ + ΓγZ + Γγγ + Γgg) . (A.9)

By modifying the parameter b, the width of a spin-2 resonance could also be varied in

order to mimic a SM Higgs boson. However, the precise value of the width, which is

very small for the parameters considered here, is not relevant for the present analysis.

Therefore, b is set to one here.

A.2 Spin-2 triplet

For the decay width of the neutral and charged spin-2 triplet particles, the same definitions

are applied. The parameter b can differ from the singlet case and can be different for the

neutral and the charged particles, yet it is set to 1 in the present analysis for all cases.

The resulting partial decay widths for the neutral particle are:
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ΓW+W− =
f 2

6 g
4v4(m4
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Γγγ =
f 2
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2
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80πΛ2
, (A.12)

ΓγZ =
f 2
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T −m2

Z)3(6m4
T + 3m2

Tm
2
Z +m4
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. (A.13)

Here, mT denotes the mass of the neutral spin-2 triplet particle.

The partial decay widths of the charged spin-2 particles are:

ΓWγ =
f 2

7 c
2
w(m2

T −m2
W )3(6m4

T + 3m2
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2
W +m4

W )

960πΛ2m7
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, (A.14)
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with mT now being the mass of the charged spin-2 triplet particles.
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V ggµναβ V aaλκδσ

Figure 49: Illustration of a calculation involving a spin-2 particle in gg → γγ.

B Calculation of Spin-2 diagrams

This section illustrates the calculation of amplitudes corresponding to Feynman diagrams

with spin-2 particles. One way to calculate such amplitudes consists of calls of Helas

routines, which contain the Feynman rules of the spin-2 model (see Sec. 3.1). There are

two different kinds of spin-2 Helas routines for each combination of bosons which couple

to the spin-2 particle: those which calculate an off-shell tensor current and those which

calculate a vertex. Furthermore, each spin-2 particle (the singlet particle T , the neutral

triplet particle T 0 and the charged triplet particles T±) has its own set of routines. As an

example, consider a spin-2 singlet resonance produced in gluon fusion and decaying into

two photons (Fig. 49). The corresponding amplitude for given gluon polarizations l1 and

l2 can be written as

iM(l1, l2) ∝ gµl1g
ν
l2

Vggµναβ P
δσαβ Vaaλκδσ γ

λ
1 γ

κ
2 . (B.1)

Here, g (γ) are the polarization vectors of gluons (photons), Vgg(aa) denotes the Tgg

(Tγγ) vertex and P is the spin-2 propagator. For the final-state photons, random helicities

are used. From right to left, the off-shell tensor current is calculated first from the final

photons via a call of the Helas routine Uaaxxx Sing Highdim(a1,a2 , uaa), which

calculates the tensor current

yaaαβ = P δσαβ Vaaλκδσ γ
λ
1 γ

κ
2

= − Bδσαβ

k2 −m2
T + imTΓT

(
2 (f1c

2
w + f2s

2
w)

Λ
K1, λκδσ +

1

Λ3
K3, λκδσ

)
γλ1 γ

κ
2 . (B.2)

Bδσαβ, K1, λκδσ and K3, λκδσ are defined in Eqs. (3.14), (3.10) and (3.40). mT denotes the

mass of the spin-2 particle with momentum k and width ΓT (see Appendix A). The input

of Uaaxxx Sing Highdim(a1,a2 , uaa) consists of complex functions a1 and a2 with six
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components, which, apart from the photon polarizations, contain their four-momenta in

the fifth and sixth component. The 16 entries of yaa are stored in the first 16 components

of the output uaa. This complex output additionally contains the momentum of the spin-2

particle in the 17th and 18th component, which is calculated by adding the four-momenta

of the two photons.

Then, the result uaa is used as an input tc for the vertex routine Ggtxxx Sing(g1,g2,tc

, amp), which calculates the amplitude for specific gluon polarizations:

amp = gµl1g
ν
l2

Vggµναβ yaa
αβ =

2f9

Λ
K1, µναβ g

µ
l1
gνl2 yaa

αβ. (B.3)

Afterwards, the results amp, which depend on the gluon polarizations l1 and l2, are multi-

plied with the formfactor (3.15), squared and added up. The square of the matrix element

is finally provided with a factor 1
22·82 for the average over the polarizations and colors of

the two initial gluons and a factor 8 from the color delta of the Tgg vertex.

The calculation with Helas routines features a clear modular structure. However, the

code is slow in case of spin-2 particles, since the automated contraction of many in-

dices via nested do loops is not very efficient. Therefore, a second method was imple-

mented, which also served as a check. In this fast code, most of the indices of Eq. (B.1)

were contracted beforehand and expressions were simplified. The corresponding routine

ggsp2tovv(idfsvv,p1,p2,q1,q2,eps1,eps2 , ggsp2vv) in case of gluon fusion calculates the

output

ggsp2vvµν = t11, µν
4f9(f1c

2
w + f2s

2
w)

Λ2
(B.4)

for a spin-2 singlet resonance in the diphoton channel without higher-dimensional struc-

tures. t11, µν is the sum of many terms resulting from contractions of γλ1 , γ
κ
2 and the various

terms in Vggµναβ, B
δσαβ and Vaaλκδσ, which comprise components of four-momenta and

the metric tensor. One of these terms is e.g.

6m4
T ((p1 + p2) · eps2) ((p1 + p2)2 − (p1− p2)2) eps1µ (q1ν − q2ν). (B.5)

Furthermore, t11, µν contains the formfactor and the denominator of the spin-2 propagator.

The input of the routine ggsp2tovv(idfsvv,p1,p2,q1,q2,eps1,eps2 , ggsp2vv) consists of

the incoming momenta of the two gluons p1 and p2, the outgoing momenta of the two final

bosons q1 and q2 and the polarization vectors of the final bosons eps1 and eps2, which

in case of further decays are replaced by the currents from final-state leptons. idfsvv
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specifies the final-state bosons (e.g. 1 for two photons, 2 for two W bosons etc). The

output ggsp2vvµν is then contracted with gµl1g
ν
l2

. As before, the contributions of different

gluon polarizations are finally squared, added up and polarization and color factors are

included in the square of the matrix element.

Both methods, which were exemplified for gluon fusion here, were also applied to spin-2-

resonant vector-boson-fusion processes. The main difference is that in this case, leptonic

tensors Lµν are calculated instead of the full amplitudes. They are then contracted with

the currents from the two quarks according to Eq. (3.18).
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