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Abstract 

 
As energy is essential to modern societies, attempts to diversify its primary sources, integrate 
cleaner, more efficient and cutting-edge conversion technologies as well as foster 
development through the exploitation of indigenous supplies have become an imperative for 
sustainability. This being so, use of biomass for energy purposes can play a relevant role on 
the road to a secure energy supply. Preliminary studies indicate that the bioenergy potential of 
Chile based on biochemical conversion of biomass (i.e. anaerobic digestion) stands at 
approximately 35 PJ y-1 (data from 2007), typical for a country of Chile’s population, area and 
climate. Nevertheless, the contribution of bioenergy to the energy matrix continues to be 
modest, a fact attributable to a lack of research into its viability. There is evidence that 
methodologies for assessing the technical potential of biomass are relatively well-developed. 
However, it is in the literature addressing the economic potential of biomass on all scales 
(regional, national & continental), where inconsistencies and lack of methodological rigour 
can normally be found. 
 
Because the biochemical conversion of residual biomass can significantly contribute to 
achieving energy security goals with positive environmental externalities, this study uses a 
novel techno-economic holistic approach to calculate the economic potential of biomass in 
Chile. The pathway of electricity generation via direct combustion and that of upgraded 
biogas produced as bio-substitute natural gas (Bio-SNG) for injection into the gas grid were 
assessed and compared. In each case, namely the biogas-to-energy and biogas-to-BioSNG 
routes, were evaluated employing proven technologies. 
 
The primary data necessary for the potential analysis was gathered from a variety of sources, 
and afterwards sorted in such a way that the geographical distribution could be distinguished 
across the country at county level. Additionally, the sources of biomass were classified into 
the following sectors: i) municipal solid waste; ii) wastewater treatment; iii) livestock 
farming; and iv) agriculture. Finally, relevant technical and economic data was drawn from 
existing literature to model the potential analysis. Through a mathematical procedure relying 
on limits of potential (i.e. physical limit, geographical limit, technical limit and economic 
limit), supply-cost curves were constructed to estimate the representative generation cost of 
both secondary energy end-products as well as their technical and economic limits. The 
results of the technical potential were then integrated into a geographical information system 
(GIS) to show the energy distribution nationwide. Finally, a cross-assessment comparison was 
conducted with the cost distribution of electricity and the cost distribution of Bio-SNG being 
balanced against the price of electricity and the price of natural gas respectively, with the aim 
of elucidating the economic attractiveness of the two options. 
 
By applying this method, it was found that municipal solid waste offers the largest economic 
potential for electricity generation when recovering landfill gas (1.1 TWhey

-1) or when 
processing unsorted municipal residue through a waste-to-energy route (2.1 TWhey

-1). 
Wastewater treatment plants and livestock sectors bring a similar economic potential for 
electricity generation (approximately 0.8 TWhey

-1 for each one), while the potential from the 
agricultural sector is slightly higher (1.1 TWhey

-1). The option of co-digesting feedstock from 
the livestock farming sector (manure) and agricultural sector (annual crop residue) is feasible 
to some extent, and it can appreciably improve the economics of biogas processing when 
compared to mono-digestion. Moreover, the wide range of biomass technical potential gives 
rise to a representative generation cost ranging from 11.0 ct€ kWhe

-1 to 25.0 ct€ kWhe
-1. For 

the option of production of Bio-SNG, the largest economic potential was found in the 



 

agricultural sector (280 MM Nm3y-1), and the smallest in waste water treatment (19 MM 
Nm3y-1). The economic potential from municipal solid waste (224 MM Nm3y-1) and the 
livestock farming sector (134 MM Nm3y-1) is still significant. It was noticed that the 
representative generation cost ranges from 9.5 € MMBTU-1 to 98 € MMBTU-1, thus severely 
restricting the commercialisation, based on the present price of natural gas. The energy 
potential was observed to be highly concentrated in only some administrative regions of 
Chile. For municipal solid waste, wastewater treatment and livestock farming sectors, the 
greatest economic potential is located in the XIII region (Metropolitan), whereas that of the 
agricultural sector is predominantly distributed among the VI, VII and IX regions. 
 
In the light of these results, it is observed that the option of producing electricity appears to be 
more advantageous than that of producing Bio-SNG, since a larger number of biogas-based 
projects may run profitably under the current energy-market conditions. These conclusions 
remain true irrespective of government subsidy or lack thereof. This suggests that a macro-
policy for the generation and enhancement of biogas should have as the bedrock of 
implementation, firstly, the promotion of electricity generation as the main conversion route, 
and secondly, increased energy generation from the existing sources which are economically 
competitive without subsidy. 
 
This research did not take into consideration aspects such as implementation or public 
attitude. The assessment of the commercial potential was beyond the scope of this thesis, and 
it should be undertaken in further research. Additionally, environmental penalties or social 
compensation were not included in the assessment, so the conclusions arising from the 
presented analysis would change to some extent if these aspects were incorporated. Changes 
in the energy market triggered by larger introduction of liquefied natural gas (LNG) into the 
energy system or modifications in indexing in the short-term may also modify quantitatively 
some findings. 
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1. Introduction 

 

Energy is an essential resource for modern industrial societies, which are characterised by an 

intensive consumption of raw materials and energy goods as well as by high levels of 

organisation, complexity and evolution into more integrated and complex forms. The 

historically fossil fuel-based society is now confronting a major challenge derived principally 

from economic growth, scarcity of non-renewable resources and steady demand of raw 

materials, all which are concomitantly linked to problems such as global warming, uncertainty 

of fuel supply and the massive generation of waste products and pollutants associated with 

industrial activity (Ayres 2007). These matters are of the highest interest and preoccupation in 

public discussion and political decision making as well as in society at large, which has a 

major stake in decision making, transparency and equality. These concerns can be seen as 

driving forces and political pressures that might redefine understanding and thinking in the 

future, and influence strategies for development and decision making based on knowledge and 

co-governance (Light 2006). 

 

The possibility of using resources which will not compromise the development of future 

generations, and simultaneously offer beneficial externalities beyond merely economic, has 

gained  increased interest in last decades. In these terms, renewable energy resources, or just 

renewables, (i.e. biomass, wind power, hydropower and geothermal) are expected to play a 

key role in the future; their development and integration are seen as a pivotal scheme which 

the energy systems of post-modern societies will be structured around. However, the exact 

mechanisms linking energy to social development is uncertain since the social development 

issue has been traditionally seen as separate from the economic and energy, or has been 

limited to the correlation between economic growth and increased consumption. 

 

Energy from biomass, also know as bioenergy, had supplied the vast majority of the world's 

energy needs until the fossil era began in the 1800s (Klass 1998). With the first oil shock of 

the 1970s, biomass regained interest among governments and policymakers who recognised 

in it a resource that offers advantages, principally for local availability and the possibility of 

reducing energy dependency. Following this realisation, biomass and its fuel derivatives have 

been seen as alternatives both to reduce reliance on crude oil and cut down on carbon dioxide 

emissions while promoting and maintaining economic development, particularly in rural areas 
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(Marques & Fhinhas 2012). Today, biomass is the fourth largest energy resource in the world, 

after natural gas, coal, and crude oil, and is estimated to comprise about 10-15% of global 

primary energy consumption (Faaij 2006). When compared with renewable energy sources 

such as hydropower, solar, wind and geothermal, biomass supplies 48% of total renewables 

(data from 2011). Considering solely Europe, the most significant contribution of biomass is 

expected to be obtained from the waste sector, and only in the long-term, with major 

technological advances, will bioenergetic crops provide the largest share. 

 

Chile is one of the countries with the potential to develop renewable energy, mainly due to its 

diverse geography and well-distributed natural resources which include a wide variety of 

renewables such as wind, geothermal, solar, hydropower and biomass (Bennett 2009). These 

conditions offer a remarkable opportunity to harness renewable energy so that the 

international, historical dependency on fossil fuel supplies can be reduced, the energy mix 

improved and Research, Development & Innovation (R+D+I) can be promoted by developing 

technology-based projects. Nonetheless, renewable energy has been incorporated for a 

relatively short time, being supported for first time in 2004 through the introduction of 

concrete measures, mainly for the electricity sector (National Commission of Energy 2012a). 

Since then, an incipient macro policy on renewables has been improved by strengthening the 

regulatory framework for electricity generation, stipulating a biofuel blending quota for 

transportation and supporting investment and funding research & development (R+D) 

projects. 

 

In spite of the achievements reached thus far, there is a lack of reliable information on 

renewable energy resources in Chile and an indeterminate impact on the energy system and 

society. In addition, uncertainties regarding technologies, their cost and performance have 

become barriers to promoting and implementing renewables in the country. 

 

Taking account of the challenges faced by Chile in regard to the introduction of renewables, 

and more specifically bioenergy or more efficient and environmentally-friendly ways of using 

biomass, this research sets out to assess the potential role of biomethane as a biogenic gas for 

the substitution of natural gas in the country. The research was conducted by identifying and 

characterising resources that may meet certain conditions to develop energetic projects and 

for which there is currently insufficient or unreliable information to make investment 

decisions or to elaborate a comprehensive policy from the state. Methodologically, the 
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emphasis is placed on a comparative assessment with a systemic orientation on technologies 

that may be suitable for the conversion of biomass to other forms of energy, on the economic 

aspects of the proposed evaluations, as well as on the possibilities of processing (routes of 

conversion) and their implications. 

 

This research is structured as follows. Firstly, a discussion (critical review) of bioenergy 

potential studies at different geographical scales (i.e. global, continental and national level) is 

put forward to identify germane investigations in the field and gaps in the research. Secondly, 

the main figures, infrastructure, and suppliers of the Chilean energy system are presented. 

Later on, a discussion of how the natural gas market functions and how its organisation 

affects the cost structure is included. Afterwards, the methodology applied to conduct the 

potential analysis and the economic assessment is described. This section underlines 

theoretical background on which the methodological approach is conceptualised as well as 

limitations that it imposes and how the results must be understood. Hence, the subsequent 

section addresses the characterisation and evaluation of the conversion technologies for the 

biomass transformation, cleaning up and distribution of end products. The main economic 

figures to be used for the assessment are included in following section, and presented in a way 

that enables the calculations to economic indicators. In the seventh section, the five sectors 

that make up the research framework (i.e. residue from wastewater treatment plants, 

municipal solid waste, livestock farming, agricultural residue and co-digestion) are assessed 

(see Figure 3). Lastly, a concluding section compares and discusses the main findings and 

proposes a general policy towards the generation and use of biomethane from residue for the 

whole country. 

 

1.1 Motivations of the Research 

 

The increasing interest in energy derived from residue for energy generation is heavily 

motivated by the possibility of implementing a more sustainable strategy for waste 

management; one in which an environmental problem can be worked out indirectly as an 

energy generation issue rather than a waste control one. This waste-to-energy approach then 

offers significantly more advantages and positive social and political externalities than an 

isolated waste treatment strategy, which has the sole purpose of reducing the impact of wastes 

on the environment by changing its aggregate state, generally resulting in a high cost that 

might prevent it from running sustainably. 



Chapter 1 Introduction 

 4

 

On a more technical perspective, the combustible gases produced from biodegradable residue 

(i.e. methane or hydrogen) currently receive special attention in that they offer better handling 

possibilities in regard to transport, storage, burning (Gilschrist 1977), processing and 

synthesising (Kolbitsch, et al. 2008; Haghighi et al. 2007; Benito, et al. 1992), as well as the 

reduction of nitrogen oxide emissions (Lee, et al. 2010). The high potential for their efficient 

use in motors and engines is another aspect that makes them even more attractive (Kuthar, et 

al. 2005). An additional key advantage is the opportunity to feed biogenic gases into existing 

energy distribution systems, considering a previous treatment, cleaning and upgrading to a 

quality that is equivalent to commercial gases, in this way achieving efficient distribution and 

use (Pöschl, et al. 2010; Jonsson, et al. 2007). This concept offers new chances for promoting 

the generation of biogenic carriers from renewable resources, an idea also supported by the 

fact that bionergetic technologies have a dynamic development worldwide, and more efficient 

and competitive processes are expected to be available in the medium-term (CERT 2009). 
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Figure 1.1. Evolution of nodal price in the three main 
electric system of Chile. 

Source: National Commission of Energy (NCE 2011b). 

Figure 1.2. Retail natural gas price in four 
administrative regions of Chile. 

Source: National Commission of Energy (NCE 2011c). 

 

Additionally, the steady increase in the cost of energy in Chile is coupled with the above-

mentioned socio-environmental and technical motivations, and could become a driving force 

for organic residue to become by-product, with a trade price that might reflect their energy 

value, and, consequently, inter-market competition. By way of illustration, Figure 1.1 shows 

the annual average increase in nodal price of the country’s three main electrical systems in the 
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last period. Electricity price rose dramatically in the past five years, reaching 14 ctUS$ 

MWhe
-1 in 2006. Similarly, Figure 1.2 presents the evolution of retail natural gas price, which 

exhibits a 35-45 US$ MMBTU-1 price range for 20111. In a broader context, Chile has one of 

the highest industrial average electricity prices in the southern region (14.14 ctUS$ kWhe
-1), 

only overtaken by Brazil (18.27 ctUS$ kWhe
-1), but substantially higher than any of the 

neighbouring countries, i.e. Argentina (5.44 ctUS$ kWhe
-1), Bolivia (6.45 ctUS$ kWhe

-1) and 

Peru (5.91 ctUS$ kWhe
-1), or countries such as Paraguay (4.85 ctUS$ kWhe

-1) and Uruguay 

(11.73 ctUS$ kWhe
-1), which have considerably lower rates of electricity consumption. A 

similar tendency is observed in the residential and commercial average electricity price for the 

same countries (data from 2011) (Olade 2010). 

 

In sum, for the environmental, social, economic and strategic motivations discussed below, 

there is strong evidence for encouraging the subsequent generation and use of biogas as an 

energetic carrier into the Chilean energy system. 

 

1.2 Studies of Potential of Biomass – A Critical Review 

 

The potential of biomass for energy utilisation, bounded to some extent by spatial location 

(regional, national and worldwide), has been evaluated in several studies (Berndes, et al. 

2003). Most of these studies have aimed at estimating the potential biomass being used for the 

generation of electricity, and, to a lesser degree, for liquid or gaseous fuel production. 

Considering the main motivation of this study, the follow-up discussion is focused primarily 

on relevant studies devoted to the assessment of potential biomass for the generation of 

renewable methane as an end-product, or as an intermediate for obtaining another sort of 

secondary energy (i.e. electricity). Furthermore, prime studies are analysed critically in this 

section in order to identify differences, strengths and weaknesses of the employed 

methodologies as well as gaps in the research, which are highlighted by the authors for further 

analysis. Finally, the results are compared to identify the main factors that influenced them. 

 

1.2.1 Assessments at Worldwide Level 

 de Vries et al. (2007) 

Methodologically, the authors established the definition of theoretical potential, geographical 

potential, technical potential and economic potential, principally from the recommendations 

                                                 
1 This excepting the southern XII Region, where a subsidy mechanism still operates. 
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of the World Energy Council report (WEC 1994). For four scenarios, the demand for food and 

biomaterials was calculated by using the IMAGE 2.2 model (Integrated Model to Assess the 

Global Environment), to assess zones that can cover the demand. Once the zone was 

designated, the surplus agricultural land was calculated. Additionally, an economic analysis 

was carried out, and a GIS (Geographical Information System) with a resolution of 

approximately 3,000 km2 (named pixel) was used as the control area. However, no residues 

were taken into consideration. 

 

Table 1.1 summarises the results of the potential analysis for the four scenarios contemplated 

in the research, i.e. A1 (maximal food trade), A2 (low food trade), B1 (high food trade) and 

B2 (very low food trade). The geographical potential was calculated by introducing energy 

plantations into surplus agricultural land after covering human demand for food and materials, 

and by excluding protected, urban and natural areas. The technical potential was then 

calculated by applying conversion efficiencies on the geographical potentials previously 

estimated. 

 

Table 1.1 Geographical and technical potential of energy from biomass estimated by Vries et al. (2007). 
 Geographical Potential (EJ y-1) Technical Potential (EJ y-1) 

Scenario2 Year 2050 Year 2100 Year 2050 Year 2100 
A1 

maximal food trade 2,365 4,014 475 810 

A2 
low food trade 

1,120 1,422 227 288 

B1 
high food trade 

1,624 2,516 328 508 

B2 
very low food trade 

1,159 1,746 234 353 

 

The worldwide amount of primary energy was 400 EJ in 2000, so under the scenarios A1, B1 

and B2 the potential of biomass would be in principle sufficient to fulfil the current demand 

for primary energy. However, for the projected scenarios and with the projected demand for 

primary energy for the year 2050, the potential of biomass makes up between 30% and 60% 

of the consumed energy. The worldwide amount of electricity consumption for 2000 was 15 

PWhe; therefore, the technical potential calculated could cover the current electricity 

consumption, according to the authors. 

 

                                                 
2 Because if the number of parameters involved in the building up scenarios, it was only included in the table the 
way in which was addressed in the original publication. 
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The geographical distribution of biomass are scattered throughout the world with the main 

sources concentrated in southeastern Asia, ex-Soviet Union, South America and North 

America. In general terms, all countries in the eastern part of Europe show relatively low 

potentials, and for the year 2050, under the four scenarios, their biomass potential accounts 

for only 10% to 20% of energy consumption. 

 

Finally, an economic assessment was conducted for the production of electricity from 

biomass. With a control area of approximately 3,000 km2 in surface, the location of a 

conversion plant that uses the available biomass was considered. The transportation, labour, 

maintenance & operation cost as well as the cost of production for energy crops and total cost 

of electricity production was estimated. 

 

Since the cost of transportation and production are different for each zone, this difference was 

considered and projected for each scenario. The reference conversion technology used in the 

assessment corresponds to an Integrated Gasification Combined Cycle (IGCC) with an 

electric efficiency of 51-53% for the year 2050 and an installed capacity in the 11-560 MWe 

range. It is observed that the minimum cost of generation oscillates around 4 ct€ kWhe
-1, and 

the technical potential shrinks by 20-50%, depending on the scenario, when economic 

constraints were considered. 

 

 Smeets et al. (2007) 

 

Although methodologically akin to de Vries et al. (2007), Smeets et al. (2007) included 

agricultural, forestry and industrial residue in their assessment. Furthermore, the authors 

proposed a model that enabled the optimisation of the assignment of land, categorising it as 

either for traditional plantation or energetic crops, in order to simultaneously address food and 

material demand, and, additionally, maximise energetic potential. 

 

The residues from the agricultural and forestry industry were calculated by using residue-to-

crop production ratios and sustainable rate removal ratios (amount of residues that can be 

used in an environmentally-friendly way after harvesting). The results were then integrated 

into a GIS with a control area of roughly 3,000 km2, although neither economic modelling nor 

an estimation of the generation cost of end-products was performed. Despite using the limit 

hierarchy for potential analysis, the economic potential was not calculated. 
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Table 1.2 shows the results of the potential analysis for the year 2050 and the percentage of 

energy that it represents compared to total consumption. The fraction of the primary energy 

was calculated by considering three probable consumption pathways of primary energy for 

each scenario by 2050; therefore, the results are presented as a range of percentages. It is 

possible to observe that the worldwide potential of biomass represents between 40% to 260% 

of the primary energy to be consumed in 2050. 

 

The zones with higher potential correspond to sub-Arabic Africa, South America and 

countries of the former Soviet Union. Countries located in Western Europe exhibit a low 

biomass potential, and depending on the scenario and consumption of primary energy 

assumed for 2050, biomass represents from 10-50% of the total consumption of primary 

energy, more concentrate in the 20% to 30% range. 

 

Table 1.2. Geographical and technical potential of energy from biomass estimated by Smeets et al. (2007). 

Scenario 2050 
Potential 
(EJ y-1) 

Primary energy 2050 
(%) 

Scenario 1 367 40-60 
Scenario 2 610 60-100 
Scenario 3 1,272 120-210 
Scenario 4 1,548 150-260 

 

For Smeets et al. (2007), the key factor of bioenergy's success lies in the management of food 

production. An advanced agricultural system that employs the best available technology and 

is implemented worldwide, developing countries included, will increase biomass potential 

substantially. The rise in productivity would be supported by the introduction of more land for 

crops, and the higher productivity of traditional crops as well. 

 

Table 1.3. Geographical and technical potential of energy from biomass estimated by Smeets et al. (2007). 

Scenario  Energy crops Forest residues 
Industrial and 

agricultural residues
Total 

 (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1) 
Scenario 1 215 85 76 376 
Scenario 2 455 76 79 610 
Scenario 3 1,101 76 96 1,273 
Scenario 4 1,272 200 96 1,568 
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 Bauen et al. (2004) 

 

Bauen et al. (2004) offer research with significant differences compared to the two previous 

ones. Bauen et al. (2004) made a series of assumptions which considerably simplified the 

calculation for the potential of biomass in the year 2020. Methodologically, the study did not 

use the definitions of physical, geographical, technical or economic potential. Aside from this, 

the calculations were made assuming surplus agricultural land and that 5% of the arable land 

devoted to energy crops, without any major justification. 

 

The calculations were conducted by applying average productivities for energy crops. For 

agricultural and forest residues as well as for biogas, residue-to-crop production ratios and 

removal rate factors were used, and applied to statistical information on wood production, 

agricultural production and livestock. In contrast with the previous studies, GIS tools were not 

included nor was economic analysis. Because the electricity generation cost is estimated from 

case studies, the economic potential was not calculated. 

 

The potential estimated by Bauen et al. (2004) for biomass in the year 2020 is 60 EJ y-1. 

Whereas 42.5 EJ comes from energy crops, 17.5 EJ comes from residue, and makes up 15% 

of the total primary energy consumed in 2020. Assuming an electric conversion efficiency of 

35%, this potential represents approximately 25% of the electric energy by 2020. 

 

 Preliminary Concluding Remarks 

 

From the three analysed studies, it is observed that for all the cases the primary energy 

predicted for each scenario increases with reference to the length of time under evaluation; the 

further in time the end year is from the reference evaluation time, the greater the primary 

energy predicted. 

 

The studies show major differences in results, which can be attributed to the significant 

number of parameters and assumptions involved in the calculations (e.g. population growth, 

land productivity, the usage or non-usage of residues, improvement of conversion efficiency 

in the future and maturity of technology). 
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In spite of the disagreement over the potentials, the results are consistent in showing that the 

greatest biomass potentials are located on South America, southeastern Africa and countries 

in the former Soviet Union; thus developing countries. The potentials of the countries that 

compose central Europe is significantly lower and no more that 20-30% of the primary energy 

consumed in the reference year. 

 

Other reasons for the differences observed in the studies arise from aspects such as the land 

modelling. The evolution of land for food production and for fuel was not considered, nor was 

the possible effect on food prices because of the demand for biofuels. In a similar way, 

agricultural productivity and the improvement of technology was not justified in most cases, 

despite being key factors for the biomass potential assessment. Another highly relevant aspect 

is the environmental impact or constraints of introducing large areas of arable land for energy 

production. This aspect is even more significant because, although not explicitly indicated by 

the authors, intensive agricultural production systems were assumed in all of the studies. 

Environmental impacts like loss of biodiversity, soil erosion, water availability and 

vulnerability to climate change were not contemplated, even in the studies that incorporated 

the most sophisticated models. 

 

In the majority of studies the economic potential was not incorporated, which may drastically 

penalise the technical potential. This aspect will be discussed in more detail later in chapter 4. 

 

1.2.2 Assessments at European Level 

 

 Ericsson & Nilsson (2006) 

 

The biomass assessment was carried out at the EU-25 level3, with the addition of Ukranie and 

Belarus. Forest residues, forestry by-products, as well as crop residues were included. 

Municipal solid waste and used wood were not considered. 

 

The assessment was made using international statistics (instead of local statistical sources), 

with scenarios built by combining hypotheses about land use, crop productivity and residue-

to-crop production ratios. As far as the forest industry is concerned, a residue-to-stemwood 

ratio of 0.15-0.3 was assumed for coniferous trees, whereas 0.1-0.2 was assumed for 

                                                 
3 Bulgaria and Cyprus are not included since at the time of being published the article were not member yet. 
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deciduous. For the forest by-products, it was assumed that 75% of the roundwood is turned 

into final products, and the remaining fraction is turned into bark, sawdust, wood chips and 

black liquor. Concerning crop residues, wheat straw, barley, rye and maize were included. A 

residue-to-crop production ratio of 0.25 was assumed for wheat straw, and 0.22 for maize. 

These values consider that only 25% of the residues could be harvested because of 

environmental restrictions, and that 33% of the harvested straw was used in animal 

husbandry. Besides this, it was assumed that within the next 20-40 years the cereal maize 

yield would increase between 40% and 100%, based on the statistical tendencies. 

 

For energy crops, the species intended for future use were not identified, and the productivity 

yield was estimated to be 50% higher than the wheat yield in each country of the EU-25. The 

assumption was based on the use of wheat productivity as an indicator of the agro-climatic 

and socio-economic conditions of each EU-25 member, as well as their agricultural policies. 

 

Table 1.4. Potential supply of biomass energy in Europe estimated by Ericsson and Nilsson (2006). 

Scenarios(*) 
Forest biomass  

(EJ y-1) 
Crops residues 

(EJ y-1) 
Energy crops  

(EJ y-1) 
Total  

(EJ y-1) 
Scenario 1 1.8 1 1.8 4.6 
Scenario 2a 1.8 1.1 5.6 8.5 
Scenario 2b 2.4 1.1 7.2 10.7 
Scenario 3a 1.8 0.7 15.4 17.9 
Scenario 3b 2.4 0.7 19.9 23 

(*) Scenarios are constructed by combining the conditions of crop yields, use of land and residue-to-crop production ratios, principally. 
 

Table 1.4 lists the main results and is organised according to scenario. Based on Ericsson and 

Nilsson's (2006) assessment, the largest potential lies in energy crops, with exception of the 

first scenario, in which residues still contribute significantly to the total biomass energy 

supply. The countries that, in general terms and depending on the specific scenario, contribute 

to the biomass supply in a greater degree are France, Germany, Spain, Poland, Romania and 

Ukraine. 

 

In the study, a methodology based in limits (theoretical limit, technical limit, economic limit, 

etc.) was not used. GIS tools were not employed and no economic evaluations were 

performed. 
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 Kaltschmitt and Weber (2006) 

 

Kaltschmitt and Weber's (2006) study was limited to the biomass potential of the EU-15. The 

calculations were made presumably using statistical data, this base on the fact that there is no 

explicit information about the methodology. By assuming residue-to-crop production ratios 

and productivity factors, the technical potential of woody residues (3.2 EJ y-1), straw (0.49 EJ 

y-1) and energy crops (1.76 EJ y-1) were calculated, although the employed parameters were 

not informed. For the estimation of energy crops, the authors assumed that 15-20% of the 

arable land could be used for growing energy crops within the EU-15; nevertheless, this 

assumption was not justified, and the exact percentage was not indicated either. The study 

concludes that the main source of biomass will come from forest residues, with France, 

Germany, Finland and Sweden as the major contributors. 

 

The assessment did not incorporate either potential limits (theoretical, geographical, etc.), 

economic evaluation or GIS tools. 

 

 de Wit & Faaij (2010) 

 

The study covered the EU-27 plus Ukraine, and it assessed the biomass potential of dedicated 

bioenergy crops (i.e wood, grass, starch, sugar and oil crops as well as agricultural and 

forestry residue). The information was expressed as the primary energy content of the raw 

feedstock. An analysis based on three scenarios (baseline, low estimate and high estimate) 

was proposed, and the assessment was projected from the year of the study (2010) until 2020 

and 2030. The primary information was gathered from databases and an extensive literature 

review. 

 

The evaluation adopted an economic assessment that led to the estimation of technical 

potentials and cost of production by using supply-cost curves. The major cost associated with 

plantations dedicated to bioenergy production were fertilisers, labour, land, capital and 

miscellaneous cost; forestry and agricultural included collection of residues from the field, 

intermediate field transportation and transportation to an end-use site. For the forestry residue, 

the cost of procurement was estimated as the marginal production cost of chips from felling 

residue for a particular area. 
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The largest biomass potential comes from arable land, and is present in countries such as 

Ukraine, France, Germany, Poland, Romania and Spain in the long-term. Large variations in 

the potentials are observed, depending on the sort of crop, kind of land and geographical 

location. Whereas the energy potential of energy crops on arable land varies from 1.6 to 14.1 

EJ y-1 (range for the low and high scenarios), the energy potential of herbaceous 

lignocellulose crops varies from 1.5 to 4.3 EJ y-1. 

 

The assessment incorporated both potential limits (theoretical, geographical, etc.), economic 

evaluation and GIS tools to visualise surplus land potential for the production of biomass by 

2030 and the production cost. The cost was expressed as primary energy of first or second 

generation feedstock supply only; therefore, there was no evaluation of the cost of production 

for an energy carrier such as methane or electricity, for instance. In spite of the differences 

between scenarios, and the differences between the previously described studies, the research 

outcomes are consistent with showing Ukraine, France, Germany, Poland, Spain and Hungary 

as the countries with the largest potential. 

 

Table 1.5. Potential supply of biomass energy for EU-27 estimated by M. de Wit and Faaij (2010). 

Scenarios(*) 
Energy crops 

(arable land) 
(EJ y-1) 

Energy crops 
(pasture land) 
(EJ y-1) 

Agricultural 
residues 
(EJ y-1) 

Forestry 
residues(**) 

(EJ y-1) 

Total 
(EJ y-1) 

Low estimate  1.7 1.5 3.1 1.4 7.7 
High estimate 12.2 4.3 3.9 5.4 25.8 

(*) Scenarios are constructed by considering an increase in productivity in western European countries, an increased share of arable land, 
modernisation of the agricultural sector and better agricultural management. 

(**) Felling residues and stem. 
 

 Panoutsou et al. (2009) 

 

The study aimed at mapping the technical potential of residual biomass feedstock for the EU-

27, which means that energy crops were not included in the evaluation. The biomass was 

categorised according to sectors, with the cost of supply and potential listed at member-level. 

Trends in biomass availability for the time-scenarios 2000, 2010 and 2030 were taken as 

proxy for annual growth (an increase in agricultural residue as a consequence of increased 

agricultural production, etc.). 

 

The previously mentioned biomass sectors are as follows: agriculture (i.e. crop residue, 

livestock waste), forest (i.e. wood fuel, forest residue), industry (i.e. woody residue from pulp 

& paper industries, black liquor) and municipal solid waste (MSW) (i.e. landfilled and non-
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landfilled waste, sewage sludge). Table 1.6 provides the technical potential per scenario and 

by sub-classification. 

 

Table 1.6. Potential supply of biomass energy in Europe (EU-27) estimated by Panoutsou et al. (2009). 

Scenario 
Agricultural 

residue 
Manure 

Forestry 
by-products 

Industrial 
residue 

Sewage 
sludge 

MSW 
(landfill gas) 

MSW 
(incineration) Total 

 (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1) (EJ y-1)

2000 1.37 0.69 1.76 0.54 0.09 0.21 0.30 4.96 
2010 1.51 0.76 1.95 0.60 0.10 0.20 0.80 5.91 
2020 1.67 0.84 2.15 0.66 0.11 0.10 1.41 6.94 

 

The cost of supply for biomass was included for refined wood fuels, solid agricultural residue 

and industrial residue, which ranged from 0.58 € GJ-1 to 4.1 € GJ-1, depending on the country 

and the kind of that. For instance, in the western European countries the cost of crop residue 

ranges from 1.4 € GJ-1 to 6.45 € GJ-1, whereas in central and eastern European countries it 

varies from 1.5 € GJ-1 to 2.65 € GJ-1. 

 

According to Panoutsou et al. (2009), the countries with the largest amounts of biomass are 

Germany, United Kingdom, Estonia, Italy and France, with Scandinavia and northern 

members possessing higher forestry potential of biomass. No economic evaluations were done 

to estimate the cost of generation for secondary energy, no GIS were used either. 

 

1.2.3 Assessments at National Level 

 

 Spain - Gómez et at. (2010a) 

 

Gómez et al (2011a) have produced a leading research on biomass potential analysis and 

renewables, with special emphasis on the utilisation of virgin and residual biomass (Gómez, et 

al. 2010a-c; Gómez, et al. 2011b). An evaluation of the potential and cost of electricity 

generation via anaerobic digestion of sludge from waste water treatment plants, organic 

fraction of municipal solid waste (MSW) and manure, as well as for the incineration of MSW, 

was carried out by employing supply-cost curves and then integrating the obtained results into 

GIS. The waste-to-energy technologies evaluated by Gómez et al. (2010a) were conventional 

anaerobic digestion plus internal combustion engines and MSW incineration. According the 

above-mentioned study, the most economical option is the incineration of MSW, which offers 

a cost of generation of 4.6 ct€ kWhe
-1 and the largest energy potential (15 TWhe y

-1). The cost 
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of generation from the remaining biomass sources varies from 5.1 ct€ kWhe
-1 to 11 ct€ kWhe

-

1, with energy potentials in the 0.4 to 4.0 TWh y-1 range. 

 

Although not explicitly indicated in the study, Gómez et al. (2010a) assumed a centralised 

conversion system for manure processing in each control area so that the biomass can be 

converted (anaerobically in this case) and then used for electricity generation. Thus, it was 

assumed that all the manure available from different farms located in each county was 

transported at a negligible cost. Similarly, it was assumed that only a single incineration 

facility processes the total amount of MSW generated in each county. For the evaluation of 

the conversion of wastewater sludge, an anaerobic digestion plant that serves each county was 

assumed; however, only 68% of wastewater treatment is made of anaerobic systems (del Río 

2007), and the total number of plants in operation (66 for 2007) is notably lower that the total 

number of counties (more than 300). 

 

The above-mentioned simplifications led to an overestimate, in some cases, of the technical 

potentials, and, consequently, to an underestimate of the cost of production. Nevertheless, 

Gómez et al.'s (2010a-b) research attempted to systemically evaluate the waste-to-energy 

issue from a standpoint aimed at providing economic information by using the best available 

information, and with a strong technology-comparison orientation instead of evaluating the 

waste generation issue on an environmental angle, which is the traditionally chosen way. Only 

the electricity generation option was assessed, without considering the generation of 

biomethane as an energy carrier when anaerobic digestion is used as the conversion process. 

 

 Germany – Kaltschmitt et al. (2008) 

 

This study centered on the technical potential of agricultural (only herbaceous residues), 

forestry residues and its by-products, and energy crops for energy utilisation. Although no 

additional information was given (i.e. yields, residue-to-crop production ratios, etc.), 

statistical information was used to conduct the estimations. In spite of identifying the 

informed potentials as technical ones, a methodology based on limits of potential (theoretical, 

geographical, technical, etc.) was not used, and it is observed that there is a confusing 

definition of the meaning of “constraints”, which, according to Kaltschmitt et al. (2008), 

should be included in the technical limit, hence restricting the biomass potential. 
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Table 1.7. Potential supply of biomass in Germany estimated by Kaltschmitt et al. (2008). 
Herbaceous 

residues 
Wood-

residue(*)
Miscellaneous 

residues 
Landfill gas WwTP 

Energy 
crops (**) 

Total 

(PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) 
61-102 563 124-139 19.5 15-21 236 455-533 

(*): Considered for thermo-chemical conversion only. 
(**): 2 million hectares assumed. 

 

Finally, Kaltschmitt et al. (2008) complement the discussion with market information of 

current use of biomass in Germany. However, there was no use of geographical information 

systems and no economic assessments were done. 

 

 India - Rao et al. (2010) 

 

The potential biogas generation from residues was assessed by Rao et al. (2010) by 

accounting for municipal solid waste, crop residue, agricultural waste, wastewater sludge, 

manure and industrial waste. Energy plantations were not included in the study. According 

Rao et al. (2010), biogas can contribute to the reduction of the electricity deficit in India, 

11.436 MWe or 13% of the peak demand for 2006 since the capacity of biogas generation 

from biomass accounts for approximately 5% of the technical one, and is estimated at 40,737 

MM m3 y-1. 

 

In spite of the promising technical potential, there was no segregation of data, which limits the 

evaluation of biogas generation to a commercial scale; therefore, the study was inconclusive. 

Furthermore, there was no use of limits in the potential analysis (geographical, technical, 

economic, etc.), and neither GIS tools nor economic analysis was included. 

 

1.2.4 Assessments at National Level for Chile 

 

 Seiffert et al. (2009) 

 

This study aimed at assessing biomethane by the anaerobic and thermo-chemical conversion 

pathways from agricultural and forestry residue as well as energy crops. Statistical 

information was used for the estimation of technical potential by assuming availability 

factors, although there is not explicit information about the methodology or other 

assumptions. 
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Despite the remarkable differences between the Chilean and European forestry system, the 

authors calculated an overall technical potential of forestry biomass as the sum of unused 

felling residue and unexploited annual growth, following the methodology proposed by Thrän 

et al. (2006). This approach is, however, mistaken, because industrial plantations are 

harvested in Chile yearly and afterwards generating logging residue independently from 

firewood, which comes principally from native forest, a resource not exploited commercially, 

but informally. Seiffert et al. (2009) estimated that the annual logging residues are 

approximately 22 MM t y-1 (420 PJ y-1), without taking into account circumstances in which 

these forestry by-products are not available. Bidart et al. (2010) estimated that annual logging 

residue are available at amount of no more than 1.7 MM t y-1, leading Seiffert et al. (2009) to 

overestimate the biomass potential by over ten times the order of magnitude. Based on this 

information, Seiffert et al. (2009) concluded that forestry residue account for 72% of the 

national biomethane energy potential (212 PJ y-1). Residual wood from the processing 

industry and agricultural residue respectively contribute 22% (47 PJ y-1) and 6% (13 PJ y-1) to 

the national potential. 

 

For the assessment, the availability and future expansion of the natural gas net distribution 

was defined as a technical constraint. This is a questionable premise, since the technical 

generation of biomethane is not restricted by the injection into an existing network (so it is not 

a technical constraint, but a distribution step). Seiffert et al. (2009) did not include either 

sludge from wastewater treatment plants or landfills in the assessment, two promising sources 

for biomethane generation and customary practices in other countries with advanced 

biomethane policies (AEBIOM 2009). No economic evaluation was conducted, and a GIS 

energy map was used to pinpoint biomass distribution at a regional scale, with a resolution 

larger than 50,000 km2. 

 

Table 1.8. Potential supply of biomethane in Chile estimated by Seiffert et al. (2009). 

Scenario 
Forest 

Residues 
(PJ y-1) 

Industrial 
Residues 
(PJ y-1)(*) 

Agricultural 
Residues 
(PJ y-1) 

Energy 
Crops 

(PJ y-1) 

Total 
(PJ y-1) 

Biomethane potential (2005) 151.6 46.5 13.4 0.2 211.7 
Increased supply scenario (2015) 294.8 112.4 21.5 0.4 429.0 

Stable supply scenario (2015) 162.3 55.6 13.5 0.1 231.5 

(*) residue from wood processing industry. 
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Based on a scenario analysis, Seiffert et al. (2009) claimed that between 45% and 84 % of the 

national consumption of natural gas can be substituted for biomethane in a relatively short 

space of time (by 2015). Although the most advanced countries in biogas usage have not been 

able to replace beyond 3% of natural gas supply  by using fermentative biogas (Mozaffarian, 

et al. 2004; EIA 2012), and the world's largest and most advanced SNG project via thermo-

chemical conversion of forestry biomass, GoBigas in Sweden, aims to generate 10 TWh y-1 

(36 PJ y-1) by 2020 (Jönsson 2011), which would represent only approximately 17% of the 

current natural gas consumption in Chile (217 PJ in 2011), no comments about this are added 

by the authors. 

 

The study lacks methodological rigour and contains methodological pitfalls, and, as 

previously mentioned, the potential was miscalculated; therefore, its conclusions are doubtful. 

 

 Chamy et al. (2007) 

 

In this study, an analysis of the residual biomass available at a national level for biogas 

production and the generation of electricity through CHP technology was performed. 

Methodologically, a classification for the biomass was proposed which was split up into dry 

biomass and wet biomass. The former was made up of swine and cattle manure, domestic 

wastewater and industrial liquid residues, whereas the latter was made up of forestry biomass, 

agro-industrial residue, residue from beverage industry, sludge from wastewater treatment 

plants, animal waste (slaughterhouse waste, fat, meat, etc.) municipal solid waste and poultry 

manure. 

 

Table 1.9. Potential supply of biogas in Chile estimated by Chamy et al. (2007). 
Livestock 
farming 

Agricultural 
residue 

WwTP  MSW Industry Others Total 

(PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) (PJ y-1) 
14.6 8.6 5.8 3.5 1.9 0.7 35.2 

 

For the estimation of residue, residue-to-crop production ratios, typical yields and statistical 

data mainly taken from Germany and Sweden were applied because of the lack of more 

specific information for Chile. Table 1.9 summarises the main results, which are expressed as 

primary energy. According to these figures, livestock farming offers the highest potential, 

accounting for 42% of the national biogas potential. Agricultural residue makes up 25% of the 

total, and the digestion of sludge from wastewater treatment plants (WwTP) is 10%. Although 
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there is a detailed segregation of residual biomass from the beverage industry (spent-used 

fruits, alcoholic fermentation, milk industry, etc.), all of them account for less than 4%. 

Similarly, residue from animal processing and pruning and weeding residue together make up 

less than 2% of the total potential. 

 

Although the limits for potential (theoretical potential, technical potential, available potential, 

economic potential) were elaborated upon, their definitions are ambiguous and there is an 

unclear interpretation regarding their sense and scope. Similarly, economic potential was 

tackled by Chamy et al. (2007) as an issue of economic profitability; however, aspects of the 

market (price of energy, etc.) are not relevant in this stage of the analysis. The cost of 

production for electricity via CHP was estimated from a case study; therefore, the economic 

limit of each sector was not estimated. In addition, GIS systems were not incorporated. 

 

 Concluding Remarks of studies at European and National Level 

 

Thus far, most of the research on energy potential at the national level has been focused on 

the estimation of technical limits, without paying much attention to economics. More 

importantly, there are few studies focused on the potential of biomethane generation at the 

national level with an estimation of the cost of production and calculation of economic limits; 

or studies that tackle the problem of waste-to-energy comparatively and with special attention 

to economics (i.e. economic potential, cost of production); or to a comparative assessment of 

technologies. 

 

The discrepancies found between the Seiffert (2007) and Chamy's (2007) studies are 

undeniable (when comparing corresponding sectors). The principal cause of these differences 

is the lack of consistent methodologies by both authors, and the incorrect interpretation of the 

functioning of some productive sectors by Seiffert (2007). 

 

The rough estimates in Chamy's (2007) research need increased precision, which can be 

attained by improving primary information and by properly developing more rigorous and 

consistent methodologies. Nevertheless, these rough calculations indicate that the main 

resources for biogas generation are the livestock farming sector (manure from dairy and 

swine), agricultural residue, sludge from wastewater treatment plants and municipal solid 

waste, with the contribution of industrial residue being virtually marginal. Based on these 
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preliminary outcomes, the aforementioned sectors will be assessed across the country as the 

main sources of biomass for energy generation. 

 

After examining the previous studies, neither were found to face the problem of biomethane 

generation exclusively as a problem of upgraded fuel generation for injection into the 

distribution network, or for any other use which is not necessary in the direct generation of 

electricity. Being so, there are no studies aiming at a comparative analysis of the options for 

electricity generation from biogas, and a second alternative of upgrading for the production of 

a gaseous carrier with the same standard of natural gas to be injected into the gas network. 

 

1.3 Methodological Approach 

 

The methodological approach of the research has a systemic orientation closely following the 

principles of general system theory in which more important than the component units of a 

system is the totality and consistency of them (Skyttner 2001). In this sense, framework, 

inputs, outputs, component interactions as well similarities and dissimilarities between routes 

of conversions, technologies, benefits and impacts, are highlighted and analysed. The main 

emphasis is put on comparing these routes of conversions, technologies and their operating 

scales as well as the characterisation of energy potentials in economic terms (i.e. the necessity 

of subsidies, ranges of potentials out of economic scale, etc.). 

 

Primary and secondary information to conduct the assessment will be collected from official 

government entities, technical reports or similar sources with sufficient reliability. When this 

information is not directly available, it will be built by gathering it from indirect sources such 

as environmental impact assessment reports, censuses carried out by public entities, 

information delivered from private companies or through semi-formal surveys given to 

experts directly involved. 

 

The technical data to be gathered will describe the performance of conversion technology, 

principally investment, operation and maintenance cost, energy efficiencies, annual capacity 

(i.e. operating hours per year), physicochemical characterisation of the biomass processed 

(heating value, composition, humidity, etc.) and quality of end-products. 
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All the obtained information will be analysed to evaluate its statistical and technical 

consistency. Furthermore, case-to-case criteria will be developed to determine the conditions 

of applicability, ranges of validity and errors associated with the information. Preliminary 

results will be obtained by using primary and secondary sources and will be used as indicators 

to corroborate the reliability of the methods by comparisons with fully-informed case studies. 

 

1.4 General Objectives, Framework and Scope 

 

This research aims to investigate the potential of generation for renewable methane as a 

source of energy, assessing the possibilities of producing either an upgraded gaseous fuel or 

its direct use for the generation of electricity. 

 

Crop residue (IV)

Municipal solid waste (I)

Wastewater treatment plants (II)

Economic potential of renewable methane

C
os
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f 
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Co-digestion of agro-industrial residue

 

Figure 1.3. Renewable methane road-map and the five sector to be considered: municipal solid waste (I), 
wastewater treatment plants (II), livestock farming (III), crop residue (IV) and co-digestion (V). 

 

The biomass that will be evaluated as raw material for the generation of biomethane is that 

which can be treated via anaerobic conversion or that from which methane is currently 

released and was originated anaerobically. These resources are classified in sectors which set 

up the scope of the analysis. They are identified across this study as: (i) municipal solid waste 

(MSW); ii) waste water treatment plants (WwTP); iii) livestock farming and iv) crop residue. 

Because of the possibility of assessing the simultaneous use of manure and agricultural 

residue via co-digestion, a fifth sector named as co-digestion of agro-industrial residue has 

been added. 

 

Through this assessment it will be possible to evaluate and identify sources of high potential, 

their cost and opportunity to be employed at economic scale. The assessment is conducted at 
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the national level in Chile so that the entire geographical area of the country conforms to the 

framework of analysis. The selected frame for the analysis has then specific aspects such 

spatial distribution of substrates, local investments and conditions of the energy distribution 

systems, among others, that will be incorporated. However, these developed methodologies as 

well as the economic and technical information can be used for the assessment of other 

countries or regions. 

 

The assessment considers the complete chain of value of the main products, starting with the 

collection of feedstock and ending with the use of the energy carrier to be fed into the 

corresponding energy distribution network. 

 

1.5 Specific Objectives 

 

The specific objectives of the research are the following: 

 

 To organise and characterise digestible biomass through sectors which are suitable for 

the generation of renewable methane by state-of-the-art technologies. 

 

 To conduct potential analyses based on a theory of energy potential for renewables 

that considers an aggregated, structured and interwoven set of limits. 

 

 To identify and analyse state-of-the-art technologies adequate for the conversion of 

residual biomass to energy as well as their main economic and technical features, all 

which can provide reliable information to perform a techno-economic potential 

analysis. 

 

 To build geo-spatial renewable methane maps from the abovementioned sectors by 

using computing-based tools. 

 

 To finally propose a comprehensive policy towards the realisation of the economic 

potential of renewable methane generated from biomass in a systematic and orderly 

fashion. 



Chapter 2 The Chilean Energy System 

 23

2. The Chilean Energy System 

 

This section aims to briefly outline the energy matrix of Chile, the main characteristics 

related to the demand of energy and dependence on imported fuels as well as the state of 

development of renewables. Although the goal of this section is not to review the energy 

system in great detail, this information will provide a context for the understanding of the 

results of the potential analysis that was conducted in later sections in order to frame the 

outcomes in the energy context of the country. 

 

2.1. Introduction 

 

The total primary energy consumption of Chile was 1,045 PJ y-1 for 2009 (National 

Commission of Energy 2010), and, as can be observed in Table 2.1, the energy mix relies 

predominantly on fossil fuels; hence, oil accounts for 43%, coal 16% and natural gas 12%. 

Renewables, made of hydropower, biomass and wind, account for 29% of the total. 

 

Table 2.1 Chile’s energy balance 2008 and 2009 (National Commission of Energy 2010). 

Supply 
2008 

(PJ y-1) 

2009 

(PJ y-1) 

Variation  

2008-2009 (%) 

Oil 462 445 -3.6 

Natural gas 104 126 21.3 

Coal 183 167 -8.6 

Hydropower 87 90 3.8 

Wind 0.1 0.3 107.3 

Biomass (fire wood) 214 214 0.2 

Biogas 0.0 0.3 - 

Total (PJ y-1) 1,049 1,043 -0.6 

 

Due to the introduction of natural gas from Argentina between 1997 and 2004, a significant 

fraction of coal and oil displacement was observed in that period. However, the disruptions in 

supplies from “over the Andes”, which began in 2004, implied a reduction in the share of 

primary energy consumption of natural gas and higher reliance on oil (EIA 2009) although 

this tendency has changed in recent years due to the introduction on liquefied natural gas 

(LNG). This aspect in particular will be discussed in more detail in further sections. 
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2.2 Energy Demand 

 

Energy consumption reached 1,000 PJ y-1 in 2009, accounting for 36% in the industrial sector, 

37.4% in the transportation sector (mostly in on-road transport) and 26.6% in the commercial-

residential sector (National Commission of Energy 2010). The public sector accounts for 

approximately 0.7% % of the total energy demand. A characteristic feature of the national 

matrix is a substantial share of biomass in the form of firewood, which is used for heating. In 

2009, this fuel represented approximately 50% of the residential and commercial sector and 

15% in the industrial sector (EIA 2009). 

 

2.3 Import Dependence 

 

One distinctive aspect of the energy sector in Chile is the virtually total dependency on fuel 

imports. As a result of this, the country is permanently experiencing vulnerability to price and 

supply fluctuations, thus coming up against a slavish dependence upon the international 

markets. In contraposition to Argentina, Peru, Bolivia, Brazil and other such countries in the 

region with abundant indigenous resources (Olade 2011), Chile only has a limited amount of 

fossil fuels, which are located principally in the Magallanes Region. The supply of natural gas 

came almost exclusively from Argentina until 2004, when the economic crisis of that country 

forced the introduction of LNG to fulfil the energy demand. Concerning oil, the estimated 

import reached 11,160 MM m3 during 2009 (National Commission of Energy 2010), 

principally imported from Brazil, Ecuador, Angola and Colombia, with a net national 

production of 216 MM m3. 

 

2.4 Electrical Sector of Chile 

 

2.4.1 Electrical System 

 

Because of Chile’s distinct and uneven geography, the country’s, energy markets are 

regionally independent; this is particularly significant for the electricity systems and the main 

natural gas grids, which operate autonomously. In addition to this singularity, the country has 

faced severe (and even dramatic to some extent) energy supply interruptions in last decade, 

including severe droughts, a sustained gas supply cut from Argentina (since 2004) and one of 
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the strongest earthquakes in recorded history in March 2010; the earthquake was particularly 

damaging to the electricity networks and refineries, leading to continuous black-outs for a 

significant period of time. 

 

In Northern Chile the mining industry is the dominating consumer of energy and operates by 

using the Sistema Interconectado Norte Grande (SING) for the transmission of electricity. 

This system is essentially thermal-based. The central region, which is the most densely 

populated area of the country, operates on the more hydro-dependent Sistema Interconectado 

Central (SIC) electricity grid. In the southernmost part of Chile the systems in Aysén and 

Magallanes, both hydro-rich regions, are not connected to the rest of Chile in terms of 

electricity and gas. 

 

2.4.2 Electricity Production 

 

The majority of Chile’s electricity supply, and potential (De la Torre, et al. 2010), still relies 

on hydroelectricity, with the importance of conventional thermal sources progressively 

increasing. In 2009, Chile had a total installed electricity generating capacity of 16.15 GW 

and electrical production of 61,038 GWhe
1 (National Commission of Energy 2010). As 

previously described, thermo-power provides the largest share of Chile’s electricity supply, 

contributing 66 % in 2009 (EIA 2009). In the last decades, Chile’s generation mix has 

changed substantially. In 1990, electricity generation was based mostly on hydropower, which 

accounted for 55% of the total. Along with the supply of natural gas from Argentina between 

1997 and 2004, its share in electricity generation rose from 1% to 33% (EIA 2009), thus 

partially replacing coal and oil. Afterwards, and because of the restriction in supply2, this 

situation started reversing, returning to the previous pattern of greater use of oil-based fuels 

for thermo-generation. 

 

2.5 Natural Gas 

 

The consumption of natural gas reached 3,219 MM Nm3 y-1 in 2009 of which 920 MM Nm3 y-

1 was used for electricity generation (National Commission of Energy 2010); the commercial, 

public and residential sector consumed 595 MM Nm3 y-1 for the same period. Domestic gas 

                                                 
1 It includes imports from Argentina of 1,348 GWhe 
2 More details about the supply of natural gas from Argentina and the Argentinean crises in the forthcoming 
sections. 
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production supplies only the Magallanes Region at a relatively constant rate of approximately 

1,900 MM Nm3 y-1 in 2009 (Sernogeamin 2012). The gas was mainly used to feed the gas-

based methanol plant, which is currently being relocated to the US, Geismar, due to the lack 

of feedstock and more competitive prices (Hydrocarbon Processing 2013). During 2012, the 

gross consumption of natural gas reached 5,063 MM Nm3 y-1, with an indigenous production 

of 1,233 MM Nm3 y-1 (EIA 2014). 

 

The natural gas market scenario is experiencing strong changes at the time this chapter is 

being written (June 2013). Modifications in the supply of LNG are under discussion and 

negotiations between distributers and suppliers are taking place, in addition to modifications 

in the way of indexing price. Because of its importance and dynamism, more detailed 

information regarding these issues is provided in Chapter 3. 

 

2.6 Coal 

 

Chile has recoverable coal reserves of 3,640 MM t, which are distributed in Arauco (140 MM 

t), Valdivia-Osorno (500 MM t) and Magallanes area (3,000 MM t). In 2009, the country 

consumed 5.7 MM t (National Commission of Energy 2010), while producing 517 M t 

(Sernageomin 2012). Domestic coal production is located in the Lota and Coronel area 

(Arauco) and in the extreme south on Tierra del Fuego. The country has two mines, which are 

operated by Empresa Nacional del Carbón (Enacar) and La Compañía Carbonífera San Pedro 

de Catamutún (CCSPC), respectively. 

 

The level of coal consumption has tended to fluctuate as the power sector, the country's 

largest coal consumer, uses the fuel largely as a backup to hydropower or mixed with 

imported coal. In this role, it is possible that coal consumption might rise in the coming years, 

especially if the unreliability of natural gas imports continues. In 2009, most imports came 

from Australia, followed by Indonesia and Colombia. 

 

2.7 Oil 

 

In 2009, oil accounted for 445 PJ y-1, equivalent to 43% of the total primary energy 

consumption of the country (see Table 2.1). As mentioned earlier, the indigenous production 

is lower than 2% of the internal demand (216 MM m3), making the country a net importer. 
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The transportation sector consumed 358 PJ y-1 in 2009, while mining (copper, iron, nitre and 

others) consumed 68 PJ y-1 for the same period. The total consumption reached 445 PJ y-1 in 

2009 and a decline in import volume was observed. 

 

2.7 Renewables 

 

Renewables (i.e. hydro, geothermal, solar as well as biofuels and waste) comprised 67% of 

the domestic production of primary energy in 2009 (EIA 2009). After oil, biomass is the 

second most important source of primary energy accounting for 21% of primary energy 

matrix. Hydro-electricity contributed 30% of the country’s installed capacity, and biomass 

made up approximately 3% of thermo generation (419 MWe). By the end of 2007, wind 

energy was not part of the electrical system generation although in 2008 the total capacity 

reached 20 MWe (EIA 2009), and today (May 2013) the installed capacity has risen to 273 

MWe (Financial News 2013d). Photovoltaic energy still has a modest installed capacity of 2.5 

MWe. Nevertheless, it will increase in near future due to projects under construction. 

Consequently, considering all sorts of renewable energy and only for electricity generation, it 

is expected that at the end of 2013 the total installed capacity will reach 1,300 MWe 

(Financial News 2013d). 

 

Because of the topography and natural conditions, the potential for renewable energy is 

diverse and significant (EIA 2009). Firstly, 10% of Chile’s volcanoes are currently active, so 

a substantial potential for geothermal energy exists. Similarly, strong and continuous wind 

across the country makes wind energy another important source of energy. Due to the 

geographical conditions of the south area of the country, hydro will continue playing a 

significant role in electricity generation in that area. Finally, as a result of the more than 4,000 

km coast line, Chile might have the largest potential for wave (tidal) energy in the world. 

 

Owing to its higher stability and cost of production, biomass will continue leading the matrix 

of renewable energy; an imminent increase in wind energy, on the another hand, is expected, 

not only due to a steady reduction in production cost for this technology but also resulting 

from the substantial number of projects that are in the environmental assessment phase, which 

will consist of roughly 3,000 MWe once they are installed (Financial News 2013d). 
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3. Fundamentals of the Natural Gas Market 

 

In this section the main features of the natural gas market are discussed. Additionally, 

information related to prices and infrastructure of natural gas in Chile is provided, thus 

framing the economics of this industry and the main drivers that are setting the short and 

medium-term conditions for the commercialisation of this energy carrier. 

 

3.1. General Background 

 

Before the 1970s, natural gas was considered only as a by-product of the oil industry without 

an intrinsically commercial value and was not expected to attract significant investments. 

Nevertheless, energy security, concern about greenhouse gas emissions and outstanding 

advances in the transportation of natural gas as well as its cleanliness as a fuel has converted it 

to the leading fossil fuel of today and a commodity with an international trade market. From 

an international point of view, the largest proven reserves of natural gas are located in the 

former Soviet Union and in the Middle East (Gilardoni 2008; Guo 2005) although with a 

modest performance in the latter1. The largest producers and simultaneously consumers are 

the former Soviet Union and United States; the former Soviet Union has an approximate 

production of 681 billion Nm3 y-1 and United States 592 billion Nm3 y-1 (data from 2012), 

whilst the United States doubles the consumption of the Soviet Union with an approximate 

demand of 722 billions Nm3 y-1 (BP 2013). 

 

As noted by Essandoh-Yeddu (2012), the increasing consumption of natural gas induced a 

rise in price, principally in United States, from 3.33 US$ MMBTU-1 to 8.85 US$ MMBTU-1 

for the 2002-2008 period. However, the global financial crisis in 2008 suddenly reduced 

consumption, thus triggering up a drop in price to 2.89 US$ MMBTU-1 in 2009. In Asia the 

contrary occurred, with prices rising steadily in last decade2, from 4.27 US$ MMBTU-1 to 

16.75 US$ MMBTU-1 approximately. The same tendency is observed in England, with prices 

growing from 3.24 US$ MMBTU-1 to 11.03 US$ MMBTU-1 for the same period (2002-2012) 

(BP 2013). 

 

                                                 
1 With a reserve-to-production ratio 15:1 (order of magnitude); North America and South and Central America 
exhibit approximated reserves-to-production rations of 2 and 4.1, respectively (PB 2013), pg. 21. 
2 Values expressed as CIF price of liquefied natural gas (LNG).  
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The natural gas market is a complex collection of entities such as producers, transporters, 

regulators, sellers, buyers and brokers, who collaborate or compete across different segments 

of the supply chain (Essandoh-Yeddu 2012). Despite of the complexity of this market and its 

interactions, three main components are recognised on the supply side: producers, pipelines 

and local distribution companies (Pirog 2004). At the same time, the consumption market is 

split up and each of its segments tends to pay a differentiated price. Normally, the consumers 

of natural gas are categorised as residential consumers, commercial consumers, industrial 

consumer and electricity consumers, with the former paying the highest price, and the latter, 

the lowest. 

 

3.2. Transportation of Natural Gas 

 

In the existing natural gas market, the centres of production are normally located a long way 

away from those of consumption, thus long distance means of transportation are necessary. 

Besides, the storage of natural gas is associated with technical problems and is more 

expensive than that of crude oil (EA 2012), so the need for transporting it to a destination is 

practically compulsory after it is produced from a reservoir (Mokhatab 2006). There are a 

variety of means for the transportation of natural gas to the centres of consumption (see 

Figure 3.1), including pipelines, liquefied natural gas (LNG), compressed natural gas (CNG), 

gas-to-solid (GTS) and gas-to-liquid technologies (Mokhatab 2006; Wang 2009; Kidnay & 

Parrish 2006). The option of transporting natural gas is related to distance for the delivery, 

cost, technical-feasibility, distance of conveyance, demand as well as economic risks and 

possible terrorist activity, geo-political stability of the supply region and long-term trade 

embargoes (Speight 2007). Because of the lower intensive cost and higher capacity in 

comparison with others means, overland pipelines is the dominant way of terrestrial 

conveyance and distribution of natural gas. Szoplik (2012) noticed that the demand of natural 

gas from municipal receivers and industry has increased substantially over time, and this has 

also stimulated the development and delivery of natural gas through pipeline networks, which 

have become more and more complex in terms of design and operation. 

 

 



Chapter 3 Fundamentals of the Natural Gas Market 

 30

G
as

 d
el

iv
er

y 
(×

10
9

N
m

3
y-1

)

Figure 3.1. Economically preferred options for natural gas transportation. Adapted from Wang (2009). 
 

Because pressure pays an essential role for the transportation of natural gas, the network 

distribution systems are normally classified using this variable. As pinpointed by Hansch 

(2006), there are three levels of pressure for pipeline systems: high pressure grid (1-10 MPa), 

medium pressure grid (10 kPa to 0.1 MPa) and low-pressure grid (lower than 10 kPa). More 

recently, Szoplik (2012) listed four types of distribution systems: high pressure pipelines 

(higher 1.6 MPa), middle pressure pipelines (from 10kPa to 0.5 MPa), increased middle 

pressure pipelines (from 0.5 MPa to 1.6 MPa) and low pressure pipelines (lower than 10 kPa). 
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Figure 3.2. Main sorts of gas pipeline networks. Adapted from Szoplik (2012). 
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3.3. Infrastructure of Natural Gas in Chile 

 

3.3.1 Liquefied Natural Gas (LNG) 

 

Currently, there are two LNG terminals operating in Chile. These are Quintero and Mejillones 

terminals, the former located in the central region and the latter in far north of the country. 

Both are supplied with LNG from different markets (EIA 2012) and can be classified as 

small-medium capacity in the context of worldwide LNG terminals in operation. 

 

Quintero terminal has operated since 2009 and has a nominal re-gasification capacity of 

approximately 3,900 MM Nm3 y-1. British Gas controls 40% and has a contract to supply its 

three customers, ENAP, Endesa and Metrogas, each one with a 20% stake in the terminal. The 

main market for natural gas is focused in Santiago (Metropolitan Region) and Valparaiso, and 

has a natural gas supply via terrestrial pipeline. 

 

From the beginning of its operation, the delivery price of LNG was calculated using the Brent 

index. Nevertheless, from 2013 on and for a new supply contract, the Henry Hub index will 

be introduced in the indexation for the calculation of the trade price (Financial News 2012a), 

instead of exclusively using the Brent index. This new way of calculating the price will 

positively affect the national companies and negatively affect the British since the discovery 

of shale gas in the US has caused a drop in prices over the last years; the Henry Hub index 

was supposed to be high but has dropped to 2.65 US$ MMBUT-1 in 2012. However, a 

negotiation has taken place between the parties and they are expected to reach an agreement 

in which other aspects such as transportation and re-gasification cost as well as fees will be 

taken into consideration in the formula for fixed price. If this new mode of price fixing is 

applied, the price of LNG is expected to decrease to approximately 10 US$ MMBTU, 

significantly lower than the current declared price, which is in the 14-17 US$ MMBTU-1 

range3 (Financial News 2012a). 

 

Mejillones terminal began operations in 2010, with a nominal gasification capacity of 

roughly 2,000 MM Nm3y-1. In contrast with Quintero terminal, this is an off-shore storage 

terminal. The terminal is owned by the Chilean state copper mines Codelco and GDZ Suez, 

                                                 
3 This value without including the cost of re-gasification of LNG. 
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both sharing equal stakes in participation. This LNG is mainly devoted to electricity 

generation for the mining industry in the north of the country. 

 

Currently there are numerous projects underway for the expansion of existing LNG terminals, 

construction of new ones or the installation of electricity generation projects with LNG as a 

fuel. In 2014, an expansion of Quintero terminal with an estimated investment of 30 MM US$ 

for a new storage tank is expected. Similarly, in Mejillones a storage tank that demanded an 

estimated investment of 200 MM US$ is being constructed, and it is projected to be operative 

by 2014. Additionally, there are four projects aimed at installing re-gasification terminals 

using floating ships, projects with a estimated investment of approximately 3,100 MM US$, 

the impact of which should principally be a drop in the marginal cost of electricity (Financial 

News 2012b). 

 

3.3.2 Pipelines 

 

In 1990 a series of pipelines started being constructed in order to connect Chile to the supply 

of natural gas from Argentina. The deliver of natural gas, however, started being restricted 

since 2004, when Argentina began facing an internal economic crisis and decided to 

concentrate on its internal market. Since the period 2007-2008, the operation of the pipelines 

has become virtually non-existent (EIA 2012). 

 

The most remarkable gas supply pipelines are NorAndino and GasAtacama in the north; 

GasAndes, which connects to Santiago; Gaseoducto del Pacífico to Concepción and other 

small-pipelines that connect to Magallanes (EIA 2012). In principle, the unused pipelines 

could be employed to store natural gas; nevertheless, there are legal issues to be resolved 

between the partners. It is important to point out that there are no gas sites that are solely 

designated for storage in Chile, principally because of the country’s geological instability, 

which makes the implementation of these storage stations technically unfeasible. 

 

3.4. Pricing of Natural Gas 

 

Being that the distribution of natural gas is segmented in the aforementioned way, the price of 

natural gas is layered, with a portion of the total price added by each intermediate supplier. 

When assuming that the base price is fixed by the wellhead price or the LNG price after re-
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gasification, the pipeline transportation cost is added yielding the city gate price. Finally, the 

local distribution companies charge additional fees for transportation and delivery to end-

consumers, leading to the price paid by them. As in others energy markets, the final tariff and 

evolution of the prices will be significantly influenced by the role played by the state; 

therefore, the existing regulations as well as the possibilities of competition between different 

markets. For the case of Chile in particular, Fosco and Saavedra (2002) made the assertion 

that the distribution of natural gas, mainly because of the infrastructure and concentration of 

distribution, is a monopoly, and, in the best of the cases, a duopoly. Gavetovic (2007) cast 

doubt on the previous statement, and by using econometric models evaluated the performance 

of the natural gas distribution market in Chile. Excepting Magallanes region, Gavetovic 

(2007) concluded that the distribution of natural gas is not a natural monopoly within the 

relevant markets and the distribution grid is not an essential installation. According to him, 

the arguments normally given for the state to regulate the distribution of natural gas are not 

valid and inapplicable for Chile. In spite of the fact that the abovementioned studies were 

inconclusive, there is recognition that the Chilean market for natural gas, comparatively, has a 

minimal regulation. This issue was deliberately designed in this way in order to boost 

investment so that the country could quickly develop adequate infrastructure for the 

commercialisation of natural gas. 

 

3.5. Prospect for Natural Gas 

 

If the price of LNG is finally fixed by using a new way in which the Henry Hub index can be 

introduced, the price of electricity generation must decrease in the short-term. Similarly, if the 

LNG projects for the expansion of the existing infrastructure or construction of new ones are 

finally completed, the operation of the electrical market will rely more and more on LNG, 

with a subsequent decrease in prices of electricity for those plants which operate under 

combined cycle. According to preliminary calculations, the price should drop down from the 

14-17 US$ MMBTU-1 to approximately 5-7 US$ MMBTU-1 in 2013, and this price range 

should stay relatively low. 
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4. Methodology for Potential Analysis at National Level 

 

In the forthcoming sections the theoretical background and methodological approach 

developed for the assessment of renewable methane potential is described. The first part of 

this section will show how the limits for the potential analysis were mathematically 

formulated with the help of a Boolean logic, which allowed a highly structured procedure for 

the evaluation and the development of methods for a cross-assessment comparison between 

the options of using biomass for each sector and enumerate the differences between them in a 

consistent way. Similarly, the economic modelling for the calculation of unitary cost of 

secondary energy is presented; the modelling was developed with the help of a basic concept 

of economic engineering based on estimation of investment, cost of operation & maintenance, 

and cost of provision of raw material, among others. Finally, the general methodology for the 

calculation of the economic indicators and its interpretation for both options of biomass 

conversion (i.e. biogas-to-energy and biogas-to-upgrade) is laid out. 

 

4.1 Limits for Potential Analysis 

 

The definitions of limits of potential in the literature are not always consistent and, in 

numerous cases, lead to misunderstandings and misinterpretations of the results. In this 

respect, Thrän et al. (2006) defines technical potential as the“…percentage of the theoretical 

potential than can be given current technical possibilities […] takes into account available 

utilisation technologies, their efficiency, availability of sites also in terms of competing uses, 

as well as “insurmountable” structural, ecological (e.g. nature conservation areas) and other 

non-technical restrictions”. The economic limit is put forward as the “percentage of the 

technical potential that can be used economically in the context of given basic industry 

conditions…[…] the economic potential for using renewable energy is affected by 

conventional energy systems and the prices of energy sources”. In the first definition used by 

Thrän et al. (2006) an inconsistency is observed by defining the technical limit as affected by 

both technical and non-technical restrictions. Secondly, for the economic limit, it is indicated 

that this restriction is used economically. This is incorrect because the production cost of this 

energy can be higher than its market price; furthermore, it is not influenced by the prices of 

energy sources. As will be shown later, the economic limit is not affected by market 

conditions. Similarly, Eisentraut et al. (2010) defines the technical limit as the “amount of 

biomass that can be harvested from available and suitable land”, and the economic limits as 
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“the biomass technically acquirable and can be derived at costs competitive with alternative 

energy applications”. As can be noted, attention is paid to the procurement of harvestable 

biomass from plantations and it is excluded from the biomass obtainable from other sources, 

therefore. Similar to Thrän et al. (2006), the economic potential is understood by Eisentraut et 

al. (2010) as a competitive limit for the supply of biomass, which is erroneous. 

 

For the methodological approach developed to conduct the potential analysis of biomass, the 

definitions put forward by Hoogwijk (2004) and Pakenas et al. (2003) will be used with slight 

modifications. In the forthcoming section the limits of potential are defined by using a 

mathematical nomenclature that will be employed across the entire dissertation. 

 

4.1.1 Definition of Limits of Potential 

 

 Physical Limit 

 

The physical limit (also called theoretical limit) is the upper limit of primary energy 

calculated without imposing any kind of restriction. It corresponds to all the available primary 

energy in the biomass and can be estimated by applying the following equation: 

 




n

i
iff

1
,  Equation 4.1 

 

This indicates that the aggregate potential (in capital letter) is the sum of all the single 

potential (in lower case) within a specific geographical zone. A graphical representation is 

presented in Figure 4.1. 
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Figure 4.1. Diagrammatic representation of the hierarchy of limits for the potential analysis of renewable 
energy. 

 

 Geographical limit 

 

This component constrains the potential because of legal considerations, urban regulations or 

limitations imposed by the geography such as when biomass is forbidden to be collected, 

typically for human settlements, protected areas such a parks, lakes, rivers, beaches and 

modes of transportation (influence areas) such as roads, airports, etc. 
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  Equation 4.2 

 

Mathematically, the geographical limit can be expressed as a fraction of the physical limit by 

imposing a Boolean constraint igA , , an exclusion factor with the value zero or one, when there 

is or is not a geographical restriction, respectively. Therefore, the geographical limit is a 

fraction of the physical one, equal to or lower than it. 

 

 Technical Limit 

 

This limit takes into account the restrictions given by the technology for the conversion from 

a primary to a secondary form of energy such as electricity and gaseous, solid or liquid fuel, 

considering the entire value chain starting at the collection of the biomass and ending with the 

end-product in a condition in which it is ready to be used. 
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This conversion process for a specific technology is normally characterised by means of the 

conversion efficiency )(
c

 . Consequently, the technical limit can be calculated from the 

geographic limit by applying both technical restrictions )(
,it

A  for the use of biomass when 

biomass can or cannot be collected, comminuted or processed and the characteristic efficiency 

of a specific technology )(
c

  as follows: 
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 Equation 4.3 

 

It is important to emphasise that this represents the theoretical outer limit of secondary energy 

available, without any regard for cost or market acceptability, so it is not indicative of 

economic feasibility. Therefore, the technical limit must be used only as the basis for further 

analysis. 

 

Primary driving forces
Population growth
Economic growth

Technology change

Exclusion factor (At,i)

Exclusion factor (Ag,i)

System Balance

Mass and energy balance
Biomass physicochemical characterisation 

Rate of substrate generation
Yield of by-products generation

Biomass Sectors
wastewater tratment plants (I), landfills (II), 
manure (III), agroindustrial residue (IV), co-

digestion (V)

Physical Limit – f,i

Geographical Limit – g,i

Technical Limit – t,i

Conversion efficiency ( i

Figure 4.2. Relationship between limits and the exclusion factor for their calculation. Adapted from Hoogwijk 
(2004). 

 

Figure 4.2 sets out, in a diagrammatic form, the sequence of limits for the potential analysis 

and how the exclusion factors )(
,ix

A  and the conversion efficiency ( )
c

  penalise each 
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aggregate level of energy. As illustrated, the physical limit for each sector of biomass to be 

assessed, i.e. (i) municipal solid waste; (ii) wastewater treatment plants; (iii) livestock 

farming; (iv) agricultural residue; and (v) co-digestion of agro-industrial residue, will 

basically depend on aspects such as rate of substrate generation, physicochemistry of the 

biomass and yield of biomethane generation. Another group of variables, labelled in Figure 

4.2 as primary driving forces, are population growth, economic growth and technology 

change, all which may also directly or indirectly affect the generation of biomass, and, 

consequently, the biomethane potential in a time-horizon. In this sense, each sector has 

distinguishing characteristics that can not be easily generalised. Nevertheless, it is possible to 

calculate the potential flow of methane that can be generated by each sector from the energy 

and mass balances previously described, thus obtaining a conservative estimate on a temporal 

and geographical basis. 

 

The hierarchy of limits mentioned above allows a highly structured way of organising the 

potential analysis, which is particularly advantageous when there is a significant amount of 

data to be processed. More importantly, it makes clear how each aggregate level of energy 

leads to the following one, avoiding misleading definitions and misinterpretations of the 

results, which are commonly found in the scientific literature as initially discussed. 

 

For its importance and relevance in further analysis, the issue of economic potential will be 

addressed separately in the next section. Aspects related to the commercial potential and 

currently planned potential are beyond the scope of this work. They could be considered in 

further research. 

 

4.2 Economic Limit and Its Definition 

 

The economic limit is directly related to the analysis of generation cost and, for this reason, 

supply-cost curves are frequently used to conduct economic analysis and develop energy 

policies. Supply-cost curves are utilised in numerous assessments of technologies, and in a 

range of potential analyses for both non-renewable and renewable resources at different 

geographical levels. In this sense, Radov et al. (2009) used supply-cost curves for the 

estimation of the availability of renewable heat, whereas Hare & Ladbrook (2007) employed 

them for the calculation of cost of carbon capture and storage in the UK. In a thorough 

research, Hoogwijk (2004) used supply-cost curves for the assessment the global and regional 
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potential of renewables (i.e. biomass, on shore wind-energy and photovoltaic). Daniels & 

Uyterlinde (2005) modelled the European electricity market for renewable energy by 

combining the use of supply-cost curves and policy-based demand curves so that the 

pertinence of public policies could be evaluated, and the most adequate use of electricity, 

trade or internal consumption for the producers, could be assessed. 

 

The supply-cost curves are constructed by estimating the specific cost of production of each 

technical supply )(
,iti

c  , and then adding up the potential in the order of decreasing cost1. The 

unitary cost of production of each single potential )(
,it

  can be calculated through an 

economic model that considers annualised investment, operation and maintenance cost and 

procurement cost of substrates, as Equation 4.4 indicates: 

 

                                                        ,,&, iipimoiiti RCCIc   Equation 4.4 

 

In Equation 4.4 
i

c  is the unitary cost of secondary energy; it ,  is the single technical potential 

of the ith-source of energy; iI  is the total investment of the conversion technology for the 

whole supply-chain;   is the capital recovery factor; imoC ,&  is the operation and maintenance 

cost; and ipC ,  is the feedstock supply cost for conveyance at the gate of plant (when 

applicable). In addition, 
i

R  are the revenues from by-products sales, which may exist 

depending on particular circumstances. To depict the distribution of cost of secondary energy 

(technical potential) an assumed-shape distribution is employed as shows Figure 4.3. The 

aggregate function is defined as Equation 4.5 indicates. 

 

 c dttc 0 )()(   Equation 4.5 

 

Therefore, in Equation 4.5   is the aggregate function of the potential, whereas   is 

marginal function of the potential. The variable c  is the unitary cost and t the variable of 

integration. The solid line in Figure 4.3 represents the distribution function of the potential, 

while the dotted-line represents the aggregate function of that. Equation 4.5 can be also 

written for a discrete function as follows: 

 

                                                 
1 More details on this matter will be given in further section. 
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n
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1
)()(   Equation 4.6 

 

In which   is the aggregate function of the potential, i  is marginal function of the potential 

and n  the totality of single potential within the framework of evaluation. It is worth 

underlining that this definition coincides with the limit of potential (i.e. physical limit, 

geographical limit and technical limit) previously defined by Equations 4.1-3. 

 

c

 

cm

Distribution of technical potential c

Curve of aggregate potential c

log-

lo
g-

c

log-t

lo
g-

c m

L
T

A
S

STAS

Figure 4.3. Relationship between the marginal 
function and aggregate function of potential. Adapted 

from Izquiero et al. (2010). 

Figure 4.4. Typical supply-cost for renewables. 
Adapted from Izquiero et al. (2010) in logarithmic 

variables. 
 

Figure 4.4 shows schematically the basic structure of a logarithmic supply-cost curve. This 

structure and share of a general supply-cost curve is characteristic of a variety of renewables 

(Izquiero, et al. 2010; Hoogwijk 2004), as will be discussed later on. There are two tendencies 

in the supply-cost curve worth pointing out. On the one hand, an asymptotic tendency of the 

curve is observed when reaching the technical limit. This value receives the name Long-term 

Aggregate Potential Supply (LTAS), and, by definition, it is the maximum amount of energy 

that can be produced by means of a specific technology. Mathematically, it can be then 

written as follows: 

 




LTAS
t

lim  Equation 4.7 
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On the other hand, a straight line is observed, which is horizontal in the limit case and defines 

the minimal cost of production. This limit receives the name Short-term Aggregate Potential 

Supply (STAS) and can be mathematically expressed as the minimum cost at the limit 

production condition: 

 

mcSTAS 


lim
0

 Equation 4.8 

 

Although an important fraction of the aggregate potential exhibits a plateau cost roughly the 

same as STAS, the remaining fraction substantially increases with proximity to LTAS, as 

Figure 4.4 shows. This tendency is highly relevant and applicable for a distribution of 

resources as well as for a distribution of cost; consequently, it may be necessary to devise a 

way of calculating a representative generation cost )(
r

c  for a particular technology under 

assessment. This characteristic parameter, as its name indicates, must represent and combine 

the tendencies defined by the STAS and LTAS simultaneously. Furthermore, this 

characteristic cost must be applicable for different technologies in order to make possible a 

comparison of cost under dissimilar conversion processes. 

 

As a consequence of the aforementioned statement, the aggregate economic potential )(
e

  

becomes the characteristic of a technology for a specific framework under evaluation; it can 

be formulated as follows: 

 

 rc
ore dttc )()(   Equation 4.9 

 

Therefore, the economic potential )(
e

  can be defined as the total amount of secondary 

energy that can be produced at a cost lower than the representative generation cost )(
r

c . 

 

4.3 Representative Generation Cost 

 

A log-normal distribution of variables is observed in a variety of fields of natural science such 

as geology, mining, human medicine, environment, ecology and economics, among others 

(Limpert, et al. 2001). More remarkably, an approximate log-normal distribution is observed 

in datasets of spatial environmental variables (Bossew 2010). Izquierdo et al. (2010) observed 

a log-normal distribution for the cost of renewables in Spain, discerning variables for fitting 
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geo-referenced data by collating geographically-spaced information of four renewables 

technologies, i.e. concentrated solar thermal with parabolic trough (CST), centralised 

photovoltaic with fixed modules (PV), on-shore wind energy (wind) and combustion of 

biomass from energy crops (biomass), as Figure 5 shows. 

 

Figure 4.5. Log-normal fitting of normalised supply-cost curves in Spain from Izquierdo et al. (2010). Cost and  
potential are presented as the normalised variables (dimensionless) c and  , respectively. 

 

The hypothesis of a log-normal distribution put forward by Izquierdo et al. (2010) was tested 

by them through a statistical analysis of empirical data for the four technologies previously 

above mentioned, reaching the conclusion that the log-normal distribution describes the cost 

distribution problem for renewables satisfactory. As can be seen, Figure 4.5 gives the log-

normal fitting of normalised supply-cost curves of the four renewables previously mentioned. 

As can be observed, PV and CST exhibit the best fit, whereas the worst is observed for 

biomass, with significant variations in the range of low costs. This fluctuation can be 

explained by the permanent interaction between the potential limits, and thus between the 

geographical constraints and the technical restrictions. 
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Considering the empirical facts laid out by Izquierdo et al. (2010) for renewables, the 

statistical mode of a log-normal distribution of cost will be considered as the representative 

generation cost of the technology to be assessed, and can be calculated through the following 

expression (Ross 2009). 
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In which 
r

c  is the representative generation cost; )(
,iti

c   is the unitary cost of production for 

the ith-technical potential; and   and 2 are the mean and variance of the production cost of 

the totality of single potential )(n  within the framework of evaluation. The economic limit 

can be alternatively calculated using the representative generation cost as a cut-off criterion, 

setting the exclusion factor )(
,ie

A equal to zero for all the single potential )(
i

  with a cost of 

production higher than it. Mathematically, it can be written as follows: 
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4.4 Economic Modelling and Cost Assessment Methodology 

 

A conceptual representation for the biochemical conversion of biomass by digestion is shown 

in Figure 4.8. The two main pathways to assess are the generation of electricity via direct 

combustion, also called biogas-to-energy, and the production of substitute natural gas (Bio-

SNG) through a pathway denominated biogas-to-upgrade. 
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digestionBiomass
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Drying

CHP
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End-products

Digestate
Cost (€ t-1)

Figure 4.8. Layout of a conventional biogas plant and the potential products from biomass conversion. 

 

The process starts with the supply of biomass. This operation may demand hauling, 

comminution, transportation and finally storage. When the biomass is received for processing, 

the feedstock is normally pre-treated to accelerate the digestion process and sterilised if there 

are requirements. Technologies for storage, preparation and pre-treatment have been adapted 

from the waste-processing industry (Poeschel, et al. 2010). On the other hand, a direct 

utilisation of  biomass generated in situ is also possible, without necessitating a supply chain 

for procurement. For biomass already stored and pre-treated, conversion starts with the 

anaerobic digestion process whereby organic biomass is broken down by microorganisms in 

low-oxygen media. The main products are biogas, a gaseous mixture made principally of 

methane (40-70%), carbon dioxide (60-30%) and trace compounds. The composition of 

biogas is highly dependent on the sort of substrate to be treated, operation conditions and type 

of reactor. 
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For the energetic use of biogas, its desulphurisation is practically compulsory and can be done 

in situ (during anaerobic digestion, within the reactor) or afterwards by a variety of 

techniques. The removal of compounds containing sulphur is desirable because they are 

corrosive, unhealthy and environmentally hazardous; and their removal is mandatory for any 

eventual application. The desulphurised biogas can then be used either for the production of 

electricity (biogas-to-energy route) or for the production of a gaseous fuel such as Bio-SNG 

(biogas-to-upgrade route), as Figure 4.8 indicates. 

 

The conversion route for biogas-to-energy involves the direct combustion of biogas for the 

production of electricity, normally by a combined heat and power (CHP) scheme, a 

decentralised and state-of-the art technology encouraged as a means to reduce CO2 emissions 

(Jiri 2008). By this means, electricity and heat are simultaneously generated, and the latter can 

be used internally for warming-up the digester or commercialised as a by-product for local 

heating (Jiri 2008). When considering the biogas-to-upgrade pathway, the processing can be 

seen (downstream raw biogas) as a series of unitary operations of cleaning, upgrading, 

odorisation, adjustment of Wobbe Index and finally feed-in. There are numerous technologies 

for biogas treatment considered mature enough to carry out this process, with the generation 

of Bio-SNG from anaerobic digestion of biomass considered as a state-of-the art technique. 

As mentioned in previous chapters, the raw biogas is cleaned to remove trace compounds 

such as hydrogen sulphide (100-1,000 ppm), mercaptanes (0-100 ppm) and traces of COS, 

siloxanes and ammonia. Afterwards, the carbon dioxide uptake takes place by using 

technologies with dissimilar processing principles (i.e., adsorption, chemical absorption, or 

physical absorption). Finally, the process chain is closed with monitoring and injection, and, if 

necessary, a recompression step is incorporated to reach the network pressure and 

conditioning. Propane can also be added to achieve the local natural gas standards (Wobbe 

Index adjustment). 

 

The specific cost of secondary energy )(c  through either biogas-to-energy or biogas-to-

upgrade pathway can be calculated by applying Equation 4.12. 

 

                                                        & RCCIc pmot   Equation 4.12 
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In this equation, 
t

  stands for the technical potential of secondary energy of any of the two 

routes to assess; 
i

I  is the total capital investment of the entire processing chain for energy 

generation, which starts with biomass procurement and finishes with the end-product 

generation ready for commercialisation;  is the capital recovery factor; 
mo

C
&

 is the operation 

and maintenance cost; and R is the revenue obtained from selling by-products or any other 

kind of income (e.g. from heat or bio-fertiliser sale, subsidies for green-electricity or waste 

management). 
p

C  corresponds to the cost of processing biomass supply when it arrives at the 

gate of the plant. This value can be zero when the biomass is generated in situ, or may have to 

be calculated according to the sort of biomass and the particular physical or chemical 

characteristics associated with it. 

 

For the estimation of investments, it was assumed that the total capital investment of each 

conversion unit that constitutes the process can be correlated through a power function such 

as Equation 4.13 indicates: 

 

 tI   Equation 4.13 

 

In which   and   are parameters to fit from statistical data. Furthermore, it was considered 

that the annual operation and maintenance cost can be estimated as a fraction of the capital 

investment (Crundwell 2008), which is represented by the parameter  . When taking into 

consideration these premises, by manipulating Equation 4.12 and Equation 4.13 algebraically 

and making them time-consistent, it can be demonstrated that the specific cost of secondary 

energy obtained through processing biomass can be estimated by applying the following 

linear equation: 
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  111    Equation 4.14 

 

In which p  represents the operating hours per year (h y-1) of the process. The capital recovery 

factor   is calculated through the well-known expression (4.15), which is based on the 

capital cost i (%) and the amortisation period n (y) (Newman, et al. 2004). 
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4.5 Cost of Biomass Provision 

 

The residue left after harvesting biomass are normally highly spread, and in principle are 

difficult and costly to recover. Furthermore, due to their low energy value and 

physicochemical variability, they are expensive to transport and store. Nevertheless, 

agricultural residue may be located in zones with a deficit of fossil fuels or difficulty 

accessing an energy supply; these circumstances may make biomass an appealing alternative 

and offer conditions that could outweigh the drawbacks previously mentioned. Moreover, 

crop residue has low sulphur content, is generated regularly in large amounts as well as it is 

renewable and valuable in energy applications. 

 

For a macro-economic evaluation of the cost of biomass recovery and transportation and its 

influence on the cost of energy generation via anaerobic digestion throughout the country, a 

simplified model will be put forward in the next section. This method will allow conservative 

cost-estimation to be conducted by using the best available information on a yearly temporal 

basis. Nonetheless, when considering the simplifications and the assumptions made to 

develop it, it is worth underlining that the results obtained via this approach must be worked 

out as a macro estimation that might differ to some extent when comparing with case-to-case 

assessments. 

 

4.5.1 Cost of Biomass Transportation 

 

In general terms, there is a lack of information on the geographic distribution of residue after 

harvesting, the time of processing and the way in which the biomass is employed afterwards. 

In Chile in particular, the only existing information, and tentatively useful for the purposes of 

this research, is at county level for a reference year (data from 2007), and it corresponds 

specifically to data related to productivity per crop species and exploited agricultural surface. 

Taking into consideration these basic facts, it can then be assumed that it is possible to 

estimate the amount of agricultural residue at county level on an annual basis as the following 

information is known: i) county surface; ii) types of crops; and iii) productivity per species. 
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With this information, a superficial density of residual biomass after annual harvesting s  (t 

km-2) can be calculated, when assuming it is constant at county level. 

 

On the basis of the aforementioned assumptions and the data restrictions previously indicated, 

it is necessary to develop a model to estimate the cost of supply for a macro economic 

assessment of the impact of biomass provision for energy utilisation at large scale. In this 

model, it is assumed that each county can be approximated by regular geometry such as a 

circle or square of equivalent area, hence the characteristic geometric parameter (i.e. radius or 

side) can be calculated directly. 
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Figure 4.9. Modelling a county with a circle shape 

that has radius r. 
Figure 4.10. Modelling  a county with a square shape 

that has side l. 
 

Secondly, it is assumed that a single biomass processing facility is located at the geometric 

centre of each county already approximated as a square or circle, and finally, that all the 

biomass available within the county is transported to this point for processing. 

 

Taking into account these groups of assumptions for a county approximated as a circle, a 

differential cost of transportation 
t

dC  of a differential amount of biomass dm  available in a 

differential area dS  can be expressed as a function of the differential surface dS  and the 

superficial density 
s

  as follows: 

 

dSrcdC s
t
et      Equation 4.16 
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In which t

e
c  is the specific o n-road transportation cost (normally expressed as € t-1 km-1); 

s
  

is the superficial density of residual biomass at county level (normally expressed as t km-2);   

is the tortuosity of the on-road transport (a dimensionless parameter estimated empirically); r  

is the radius of the circle-approximated county. Making a change of variables, the differential 

area dS can be expressed as a function of the radius of the circular sector so that it is possible 

to rewrite the Equation 4.16 as follows: 

 

drrcdC t
et   2  Equation 4.17 

 

By integrating Equation 4.17 in the domain ],0[ r , equivalent to the distance that differential 

mass dm  has travelled to the centre of the county, the final expression for the total cost of 

transportation results in: 

 

3
s

0

2    
3

2
  rcdrrcC t

e

r
t
et    Equation 4.18 

 

The total cost for the conveyance of biomass 
t

C  can be expressed as a linear relationship 

between the specific cost of transportation t

e
c , the total mass m  that has to be transported to 

the centre of the county and the average distance to traverse the county, d . Thus this 

expression has the mathematical form indicated by Equation 4.19: 

 

   c
t
et cmdC   Equation 4.19 

 

By direct comparison of Equation 4.18 and Equation 4.19, it is possible to demonstrate, after 

some algebra, that the average distance to traverse the county can be expressed as Equation 

4.20 indicates: 

 

rd c
3

2
  Equation 4.20 

 

Equation 4.20 is a linear relationship that allows for the estimation of an average distance of 

displacement within a county, which is representative of the distance to cover for the 
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provision of biomass to a processing facility located in the centre of a county when its shape 

is approximated as a circle. 

 

For the approximation of the county as a square and with the equivalent geometric parameters 

as Figure 4.10 illustrates, the mathematical procedure for the calculation of the cost of 

transportation is based on the same basic assumptions, thus the differential equation that 

represents the cost of conveyance of a differential amount of biomass to the centre of the 

county can be expressed as Equation 4.21 indicates. 

 

dxdycdC s
t
et

2
1

)yx(   22    Equation 4.21 

 

Solving the above-listed equation by integral calculus, it is possible to demonstrate that the 

total cost of transportation can be calculated as follows: 

 

))21ln(2(  
6

1 3  s
t
et clC  Equation 4.22 

 

By comparing Equation 4.19 and Equation 4.22, analogously as done before, the average 

distance of displacement across the county for a square-shaped approximation of the county is 

indicated in Equation 4.23: 

 

 ))21ln(2( 
6

1
  lds  Equation 4.23 

 

The average distance for biomass conveyance through a circular-shaped approximation of the 

geographic control area (county) is lower in the entire distance domain in comparison to 

approximating it by a circular-shaped geometry, as can be seen in Figure 4.11. These results 

suggest that the use of a square-shaped approximation offers a more conservative estimation 

of the average displacement distance. Additionally, for the county’s average surface at 

national level, roughly 2,100 km2 (PACD 2007) excluding the Antarctic Region, the estimated 

average distances are lower than the recommended displacement for biogas projects in which 

biomass provision is necessary (Deublein & Steinhauser 2011). 
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Figure 4.11. Average distance as a function of the surface 

of control area. 
 

4.5.2 Cost of Biomass Recovery 

 

Crop residue has different characteristics which influence the selection of the technology to be 

used for hauling, recovering or storing. These aspects, consequently, have an impact on the 

final cost of provision, and finally on the cost of production of biogas or any of its end-

products (Dauve & Flaim 1979). 

 

The majority of information available on the cost of recovery for biomass at an international 

level is focused on corn stover and wheat straw, basically because they are the dominant crops 

in a substantial number of countries (Marchert 2011; Scarlat, et al. 2010). Considering these 

two agricultural species, there are a variety of techniques and technologies for the process of 

recovery, among them big rectangular bales, stackwagons and loose chop. The total cost of 

collection is informed normally per hectare (€ ha-1) or per dry mass recovered (€ t-1). Being 

more convenient for the proposed methodology, the latter form will be used and addressed as 

specific cost of biomass recovery e

r
c . 

 

Taking into consideration the above-mentioned information, the cost of recovery of residual 

biomass from annual crops can be calculated by a linear relationship between the mass to be 

recovered and the specific cost of recovery e

r
c , as Equation 4.24 indicates: 
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mcC r
er    Equation 4.24 

 

This cost is representative of the harvesting, hauling, staking, packaging and loading of the 

recovered biomass2. 

 

4.5.3 Total Cost of Biomass Provision 

 

The total cost of biomass provision, which contemplates the whole chain of supply from the 

field where the biomass is available and recovered up to the gate of the processing plan, can 

be calculated by summing up the total cost of recovery and transportation as Equation 4.25 

shows: 

 

t
e

r
etrp mcdmcCCC   Equation 4.25 

 

Economic information on specific cost of transportation, recovery, and other financial 

parameters will be provided and discussed in Section 6, Economics of Biogenic Gas 

Generation. 

 

4.6 Construction of Supply-cost Curves 

 

As defined in the introduction of this section, both the physical and geographical limits are 

primary forms of energy since there is no use of a particular technology for its conversion. 

The technical limit, in contrast, offers the potential of secondary energy such as electricity, 

heat or fuels and involves the selection of a specific conversion technology. As represented in 

Figures 4.12 and 4.13, the calculation of the physical and geographical limit is the input data 

for the subsequent computation of the technical limit. In this way, both physical and 

geographical limits have no meaning by themselves, so they are only intermediate steps of a 

further calculation. 

 

                                                 
2 The unloading cost was charged at the transport step. 
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Figure 4.12. Schematic representation of the procedure for the construction of the supply-cost curve 
and the calculation of the representative generation cost and the economic limit for the biogas-to-

upgrade pathway. Adapted from Hoogwijk (2004). 
 

The estimation of the economic limit involves setting up parameters such as interest rate, 

lifetime of conversion units, distance of conveyance, investment for equipment of the 

operation that constitutes the chain process of each conversion route to be assessed and 

estimation of operation and maintenance cost (O&M). As far as the technical limit is 

concerned, it is the input data for the estimation of the unitary cost of production and its 

estimation procedure that enables the calculation of the distribution of the cost of production 

for the entire framework of analysis. 
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Figure 4.13. Schematic representation of the procedure for the construction of the supply-cost curve 
and the calculation of the representative generation cost and the economic limit for the biogas-to-

energy pathway. Adapted from Hoogwijk (2004). 
 

The representative generation cost, as defined in Equation 4.10, can be used for the 

interpolation of the economic limit directly within the curve constructed by summing up the 

energy potential in a decreasing order, and then representing it on a Cartesian system, as 

schematically presented in Figure 4.14. The x-axis represents the added-supply-energy Π ; 

therefore, it is an aggregate variable of the technical potential, in contraposition to the single 

potential   which is a marginal variable. The y-axis is the unitary cost of production at 

levelised energy potential. 

 

4.7 Data Integration into Geographical Information Systems (GIS) 

 

Geographical Information Systems (GIS) have been used to some extent for showing the 

energy potential of biogas either at a different energy (technical potential, geographical 

potential, economic potential, etc.) or geographical level (regional, national, etc.). Moreover, a 

number of authors have presented different approaches in which discernible differences can 

be observed. In a leading investigation, Batzias et al. (2005) developed a GIS-based 

assessment informatics application for the evaluation of biogas potential from the digestion of 

livestock manure in Greece. In this study, the possibility of biogas upgrading and subsequent 
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injection into the natural gas distribution grid was discussed although economic assessments 

were not conducted. More recently, Zubaryeva et al. (2012) established an analysis on the co-

digestion of cattle slurry with fruit and vegetable waste and the organic fraction of municipal 

solid waste in Levece (a province of Apulia, Italy). They applied a multi-criteria evaluation 

methodology and integrated it into a GIS system by using the county as the smallest political-

administrative control area. The analysis allowed the selection of promising areas for the 

development biogas clusters although no economic analyses were included for the decision-

making. In connection with this, Sliz-Szkliniarz et al. (2012) conducted an extensive 

economic and technical analysis for the detection of optimal sites for biogas plants through a 

centralised concept of biogas generation. The method was applied in the region of Kujawsko-

Pomorskie, Poland, as a case of study to evaluate the biogas potential via co-digestion of 

livestock manure (swine and cattle) and crop-silage as co-substrate, and subsequently both the 

generation of biomethane for injection into the grid and cogeneration. Similarly, Yabe (2013) 

considered the study area Hokkaido, a 83,000 km2 island of Japan. This study aimed at 

selecting a location for biogas plants in each county and evaluating the cost of production of 

electricity. Through a GIS-based method that incorporated the network function of ArcGIS 

Ver.10, the required number and location of centralised biogas plants was estimated. Most 

recently, a study by Höhn et al. (2014) attempted to determine energy potential and location 

sites feasible for biogas plants in southern Finland by using a GIS-based method. The 

methodology focused on minimising the transportation distance for feedstock so that an 

optimal allocation could be found whilst no economic assessment was conducted. 

 

Due to the characteristics of biomass, in most of cases widely distributed and having both a 

spatial and temporal component in its availability, GIS tools are ideal for showing energy 

potentials, analysing, assembling or rearranging energy-related data, which would be highly 

laborious or even impossible to manipulate with other methods. 

 



Chapter 4 Methodology for Potential Analysis at National Level 

 56

Physical limit 

Geographical limit

Technical limit

Economic limit

f,i,j

g,i,j

t,i,j

e,i,j

jth county (municipality)

ith source of biomass

e t

cr

e,i,j

ci,j

GIS with technical or economic limits
t,i,j

t Representative generation cost


i

iff ,


i

igg ,


i

itt ,


i

iee ,

Supply-cost curve

E
co

no
m

ic
 li

m
it

T
ec

hn
ic

al
 li

m
it

 

Figure 4.14. Schematic representation of the limits of potential and its integration onto a Geographical 
Information System (GIS). 

 

To construct the maps of secondary energy of the technical potential, the software ArcGIS 

10.1, module ArcMap, and GIS Desktop 1.8.0 were used. The source data was taken from a 

free source development (Albers 2012), being this information available per region and with 

different shapefiles and cartographic layers (region, provinces, counties, populated places, 

etc.). By using the module Quantum GIS and then exporting the data files to ArcMap to 

generate colour scales, the maps were built to present the technical potential of the whole 

country at a county level, for each sector under analysis and both for electricity and Bio-SNG 

options. Figure 4.14 displays a schematic representation of the four levels of potential analysis 

to be conducted and how the GIS is eventually integrated to visualise the geographical 

distribution of the technical potential across the country. 
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5. Technology for Bio-SNG and Electricity Generation 

 

In this chapter the technologies used either for the generation of a gaseous fuel via upgrading 

of biogas or electricity by direct burning are characterised. The primary focus was on state-

of-the-art techniques because the goal of the research focused on the potential analysis of 

energy rather than on the assessment of cutting-edge technologies. Besides, a discussion of 

the main findings outlined by other authors which relevant assumptions for the economic 

assessment to be presented in further sections were based on are also included. 

 

5.1. Reactor Technology for Biogas Generation 

 

Anaerobic digestion is considered the most efficient way of generating energy from organic 

matter with dry matter below 30 % (w/w) (OECD 2010). The basic technology of anaerobic 

digestion permits converting organic biomass into methane and carbon dioxide in a variable 

composition normally ranging from 50% to 65% (methane). The anaerobic digestion process 

can be carried out by using either wet-fermentation or dry-fermentation technologies 

(Deublein & Steinhauser 2011). The former operates with a concentration (measured as dry 

solid) lower than 20%, whereas the latter is adequate for a substrate with water content lower 

than 85% (Karellas, et al. 2010). 

 

The anaerobic digestion process occurs in a reactor, the digester, where biomass undergoes a 

reaction with bacteria in an anoxic media. These microorganisms break biodegradable solids 

and soluble matter down, thus producing biogas. This biochemical chain reaction is 

constituted of four sequential phases. The first stage is called hydrolysis, in which complex 

molecules are decomposed by the action of cellulases, amylases, proteases and other such 

fermentative bacteria (Borja 2011). In the following phase, acidogenesis, the simple 

monomers previously produced are converted into volatile fatty acids (e.g. acetic acids, 

propanoic acid, butyric acid and traces of alcohol, ketones, ammonia and hydrogen sulphide). 

Afterwards, the acid and alcohols produced in the acidogenesis phase are converted into 

carbon dioxide, acetic acid and hydrogen, while the hydrogen and carbon dioxide are 

converted into acetic acid by the homoacetogenic enzyme. Finally, the methanogenesis phase 

takes place, and as its name indicates, acetic acid and all one-carbon compounds (alternatively 

also called C1) are transformed into methane (Liu, et al. 2011). In addition to methane and 

carbon dioxide, oxygen (lower 2% v/v), nitrogen (lower than 2%), ammonia (lower than 1%) 
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and hydrogen sulphide (ppm range), traces of compounds such as halogenated and organic 

silicon can be found (Rasi, et al. 2010). 

 

The temperature, along with acidity and other operating parameters, plays a pivotal role in the 

kinetic of biogas generation. For biogas production, Yenigün and Demirel (2013) 

distinguished two temperature ranges for anaerobic digestion: mesophilic (30-40°C) and 

thermophilic (45-60°C). Similarly, Liu et al. (2011) classified the digestion process into 

psychrotropic digestion (below 25°C), mesophilic digestion (25-45°C) and thermophilic 

digestion (45-60°C). The bulk of reactors operate either under mesophilic or thermophilic 

conditions, with an optimal thermal condition between 35°C and 55°C (Borja 2011). 

 

Anaerobic digesters can be classified according to the relation between their hydraulic and 

sludge retention time. For reactors with the same retention time of sludge and hydraulic flow, 

batch reactors, plug flow and continuous tank reactor (CSTR) can be distinguished. CSTR is 

one of the most commonly used anaerobic reactors in which stirrers are installed to ensure 

efficient mixing between the substrates and microorganisms. As expected, they offer higher 

conversion efficiency than batch reactors. The main advantages of CSTR reactors lie in the 

high concentration of total solid that it can be fed and the ease of implementation for 

automatic control systems (Liu 2010). Plug flow digesters are normally used for the 

processing of viscose feedstock, usually waste from ruminant animals. These reactors operate 

by horizontally displacing reacting biomass, which is usually pumped, hence displacing an 

equivalent portion of matter that has already reacted and which is then pushed out to the other 

end of the reactor (Krich, et al. 2005). 

 

Reactors with dissimilar sludge and hydraulic retention time are normally operated at high 

sludge retention times and relatively low hydraulic ones; upflow anaerobic sludge blanket 

(UASB) and upflow solids reactor (USR) are two representatives types. The former (UASB) 

is based on the conformation of small dense granules formed by the self-immobilisation of 

microorganisms, which can normally take 40-50 days to form a common inoculum. USR is 

another model and more adequate for the treatment of waste with a high concentration of 

solids. The inflow is fed from the bottom by using a distribution system and passed across the 

bed. Due to this configuration, the organic matter can be rapidly converted into biogas. The 

supernatant is discharged by overflow, therefore leading to higher hydraulic and sludge 

retention time than UASB reactors (Liu 2010). 
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For the subsequent use of biogas, the removal of hydrogen sulphide and other sulphur-

containing compounds is practically compulsory. The simplest method to deal with this issue 

is the direct addition of air or pure oxygen into the anaerobic reactor with which the 

concentration of hydrogen sulphide can drop down to levels lower than 50 ppm. In spite of 

being a practical and effective way of controlling sulphur based-compounds, the addition of 

oxygen might make the methane-oxygen mixture explosive when overdosing. An alternative 

method for hydrogen sulphide control is by using bio-filter filled with packing material in 

which desulfurising microorganisms are fixed (Arnold 2009). Another alternative is the use of 

scrubbing with caustic soda or sodium hydroxide (Tippayawong & Thanompongchart 2010) 

to induce the formation of insoluble salts like sodium sulphide or sodium hydrosulfide 

(Abatzoglou & Boivin 2009). 

 

5.2 Upgrading Technologies for Bio-SNG Generation 

 

Nowadays, there are more than 220 biogas upgrading plants running in the world (Peterson & 

Wellinger 2011), most of which are operated in Germany (96 units) and Sweden (55), 

followed by the installations located in The Netherlands (14 units) and USA (14 units) (Bauer, 

et al. 2012). Although the available technologies for upgrading biogas are in principle six, i.e. 

cryogenic separation, membrane, organic physical scrubbing, chemical scrubbing, pressure 

swing absorption (PSA), and pressurised water scrubbing (PWS), PSA and PWS are the 

dominant ones and the only ones for which there is robust cost data and extensive experience 

(Altaus & Urban 2005). Lately, membrane and chemical absorption solution upgrading 

technologies have increased their share in the market although technical and cost data is still 

lacking or incomplete (Bauer, et al. 2012). 

 

In the forthcoming section the biogas upgrading technologies are described, presenting their 

principles of operation, main technical features as well as their main advantages and 

disadvantages. The majority of attention will be paid to pressure swing adsorption, 

pressurised water scrubbing and the organic physical scrubbing process since they are proven 

technologies and there is enough technical and economic data to conduct an assessment for 

potential analysis. 
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5.2.1 Absorptive Processes 

 
Absorption is a process in which a gaseous substance in contact with a liquid phase is 

transferred into its bulk, thus being absorbed. Normally, there is a distinction made between 

chemical and physical absorption; the difference between them is related to the possibility of 

either undergoing a chemical reaction or the interaction of physical forces, with or without the 

participation of a chemical bond. The classification of whether the absorption is physical or 

chemical is based on the Henry’s constant (Yokozeki, et al. 2008); a low Henry’s constant is 

indicative of chemical absorption (lower than 10-3 MPa), while high values of it suggest 

physical absorption (higher than 2 MPa). Nevertheless, in many cases this constant takes an 

intermediate value, and the absorption is therefore denominated physicochemical. 

 

5.2.1.1 Chemical Absorption 

 

Chemical absorption, also known as chemisorption, has been used extensively in the gas 

industry for sweating natural and refinery gases since 1930, when the first patent was 

presented for covering this application; this process is used for making triethanolamine 

(TEA), the first solvent to become commercially available and used in the early gas treatment 

plants (Kohl & Riesenfeld 1979). 

 

 
Figure 5.1. Structural formulas of some alkanolamines used for biogas upgrading (Kohl & Riesenfeld 1979). 

 

Alkanolamines have at least one hydroxyl group and one amino group, and in these terms, the 

hydroxyl groups help decrease the vapour pressure and increase the solubility of water, 

whereas the amino groups provide the necessary basicity to the medium, which allows the 

absorption of acid gases. Alkanolamines are normally classified into primary, secondary and 
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tertiary (Allinger, et al. 1973; Cekanova, et al. 2011), depending on the number of alky 

groups attached to the nitrogen atom in the molecule. 

 

Equations 5.1-5.5 show the main reactions when the aqueous solution of a primary amine is 

used as an absorbent of carbon dioxide in the presence of hydrogen sulphide (Kohl & 

Riesenfeld 1979): 

 

SRNHSHRNH
2322

)(2   Equation 5.1 

  

HSRNHSHSRNH
3223

2)(   Equation 5.2 

  

323222
)(2 CORNHOHCORNH   Equation 5.3  

  

3322323
2)( HCORNHOHCOCORNH   Equation 5.4  

  

RRNHCOONHCORNH
322

2   Equation 5.5 

 

In strict terms, the majority of the products of Equations 5.1-5.5 are chemical products, so 

they can be isolated. However, these chemicals exhibit high vapour pressure under normal 

conditions, hence the equilibrium of the solution can be modified by changing the pressure of 

the gases to be treated. Furthermore, the vapour pressures of the acid gases vary significantly 

with temperature, and, consequently, the absorbed gases can be deabsorbed (stripped) by the 

application of heat. Primary and secondary alkanolamines normally exhibit a low CO2-

loading, although with a high absorption rate. In contrast, tertiary alkanolamines react slower 

but have a higher CO2-loading. However, an additional step, the formation of a carbamete ion 

which limits the maximum CO2-loading to 0.5, has been proposed for reaction with primary 

and secondary amines. 
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Equation 5.6 
 
 
 
 

Equation 5.7 
 
 
 

Equation 5.8 
 
 

Equation 5.9 
 

Equation 5.10 

 

The accepted mechanism for the formation of the carbamate (Benamor & Aroua 2005; Haji-

Sulaiman, et al. 1998) is represented by a series of equilibrium reactions as indicated above. 

Equation 5.6 represents the protonation of the amine followed by the hydrolysis of the 

carbamate. Equations 5.7-5.10 are the ionisation reactions for the different species in the 

solutions. 

 

Although the most used amines for sweating gas are monoethanolamine (MEA), 

diethanolamine (DEA), methyldiethanolamine (MDEA), diglycolamine (DGA), 

diisopropanolamine (DIPA), N-methyldiethanolamine (MDEA) and 2 amino-2-methyl-1-

propanol (AMP) (Samanta & Bandyopadhyay 2011), blendings are currently used more 

frequently, for both carbon dioxide capture and biogas treatment, to maximise desirable 

characteristics of the solution (Park, et al. 2002; Olajire 2010). For biogas upgrading in 

particular, a blending of MDEA and piperazine (PZ) is normally used. The PZ acts as an 

activator of the reaction, so the kinetic of the absorption and the load capacity of the solution 

for the carbon dioxide uptake is improved (Derks, et al. 2010). A plausible explanation for 

this activation lies in the two amino groups that piperazine contains, which can attack the 

carbon dioxide. Additionally, piperazine can bond strongly and it is not easily released from 

MDEA, reducing the partial pressure of the solution (Privalova, et al. 2012). Other solution 

activators have been proposed recently, such as 2-(1-piperazinyl)ethylamine. 
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Figure 5.2. CO2-absorption breakthrough curves of DEA and MEA for a biogas model at room temperature and 

1 atm total pressure. Bidart et al. (2011). 
 

Normally, amines are used as aqueous solutions because they are solid or gels at room 

temperature. Typical amino aqueous concentrations range from 10% to 30 % (w/w), and they 

are restricted by corrosiveness, viscosity of the solution, regeneration energy and cost of the 

solvent. For instance, MEA is corrosive and therefore cannot be used at high concentration; 

DEA is typified as hazardous to water. As shown in Figure 5.2, for aqueous solutions of MEA 

and DEA in the 5-15% (w/w) range, the higher the alkanolamine concentration, the higher the 

carbon dioxide uptake. 

 

From Figure 5.3 it is observed that when reaching normal pressure (101.3 kPa), the CO2-

loading capacity of DEA and MEA changes only slightly. A similar tendency is observed for 

MEA at different concentrations and for 1,6-hexanedediamine, N, N´-dimethyl and 1,6-

hexanediamine, B,N´-dimethyl (see Figure 5.4). These results show that at normal pressure 

(101 kPa approximately) the quimisortion is governed by the kinetic (and therefore indirectly 

by temperature) and not by pressure. 

 

Considering the structure of the alkanolamine, a proportionality between the length of the 

alkaly-chain and the CO2-loading capacity is observed; the larger the alkaly-chain the greater 
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this is. A similar pattern is observed for the concentration; a higher concentration involves a 

greater CO2-loading capacity (Singh et al. 2010; Singh et al. 2007).  
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Figure 5.3. Experimental carbon dioxide loading in 

aqueous solutions of DEA and DEA. Haji-Sulaiman et 
al. (1998). 

Figure 5.4. Loading capacity of CO2 in alkanolamine 
solvents at 30°C. Singh et al. (2010). 

: MEA 0.5 M; : MEA 2.5 M; : 0.51 M 1,6-hexanedediamine, N, 

N´-dimethyl; : 2.55 M 1,6-hexanediamine, B,N´-dimethyl. 
 

Figure 5.5 shows a schematic representation of a commercial amine scrubber upgrading 

process. As can be seen, the raw biogas to be absorbed enters through the bottom of the 

absorber (T-1) and comes into contact with the amine fed into the top in counter-flow. The 

reaction of carbon dioxide and hydrogen sulphide is exothermic, so the solution is heated up 

from 20-40°C to 45-65°C approximately. Normally, the amine is fed in excess in relation to 

the concentration of carbon dioxide, 4 or 7 times the theoretical (molar ration), in order to 

avoid any restriction imposed by the thermodynamic equilibrium. When the reaction has been 

completed, the gas leaving from the top of the absorber (T-1) is composed almost entirely of 

biomethane. 
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Figure 5.5. Schematic representation of a commercial amnie scrubber upgrading process. 
T-1: absorber; T-2: stripper; I-1: heat exchanger; I-2: heat exchanger; I-3: reboiler; P-1: pump; P-2: pump. 

Adapted from Purac (2012). 
 

The exiting stream from the absorber (T-1) is pre-heated in a heat-exchanger (I-2) through 

energy integration between the carbon dioxide amino solution stream leaving the stripper (T-

2) and the rich carbon dioxide solution stream leaving the absorber (T-1). When the pre-

heated solution has already been warmed up, it is then fed into the top of the stripper (T-2) 

and normally passed through a packing material, such as Rasching rings, to improve the 

efficiency of separation. This process takes place when the carbon dioxide released from the 

bottom of the column by the action of the heat ascends, generating liquid-phase interface 

where the mass transfer occurs (Khan, et al. 2011), and, therefore, the chemical desorption of 

carbon dioxide. The stripper is commonly equipped with a rebolier (I-3), and it accomplishes 

a double function. Firstly, it provides heat that the endothermic reaction needs for the release 

of carbon dioxide before it can be absorbed in the first column (T-1). The typical operation 

temperature ranges from 120°C to 150°C. Secondly, it generates steam to reduce the vapour 

pressure of carbon dioxide within the column, thus improving the desorption kinetics. 
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5.2.1.2 Physical Absorption 

 

High pressure water scrubbing, as its name indicates, is a process based on the increasing 

solubility of carbon dioxide in water when its partial pressure is raised, and the large 

difference in solubility between carbon dioxide and methane which leads to a significant 

selectivity. 
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Figure 5.6. Solubility of carbon dioxide in water.  

Data: Perry´s Chemical Engineering´s Handbook, 8th Edition, pg 2-125 (2008) 

 

As Figure 5.6 depicts, the solubility of carbon dioxide in an aqueous media is influenced by 

both temperature and pressure, although in a different way. As can be observed, the higher the 

pressure, the higher the solubility; conversely, the higher the temperature, the lower the 

solubility. These facts, in addition to its availability and low cost, have made it worth 

considering for the removal of acid gases in the gas industry in general and for biogas 

upgrading in particular. Furthermore, being that water is less sensitive to the presence of 

impurities, this characteristic makes it even more attractive for the separation of carbon 

dioxide. 

 

A flow diagram of a high pressure water scrubbing (HPWS) process for biogas upgrading is 

shown in Figure 5.7. In its standard and modern form, the process consists of an absorption 

tower that operates at elevated pressure (T-1), normally 6–10 atm, a flash unit for the partial 

desorption of carbon dioxide (F-1), and an absorption column (T-2) for the release of the 
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carbon dioxide. The gas treatment starts increasing the raw biogas pressure by compressing 

(C-1) before feeing it to top the absorption tower (T-1). Because of the gas compression, most 

of the water condenses and then separates from the raw gas that was previously injected into 

the bottom of the column. Having reached the top of the column, the gas flow is made of 

almost exclusively of methane, which is withdrawn for further processing. The gas-liquid 

contact is performed in counter-flow, so the water is fed to the top of the column. As is 

customary for all gas-liquid separation systems, the contact surface is increased by filling the 

column with random packing, which improves not only the separation efficiency, but also 

reduces the equipment volume and energy consumption. 

 

In spite of having low water solubility, a non-negligible amount of methane is also taken up in 

the absorption column (T-1), and, to avoid its instant release after the absorption, it is fed to a 

flash unit within which the pressure plummets to 2-4 bar approximately. With this abrupt 

expansion, a fraction of the carbon dioxide and almost all the absorbed methane is released to 

the gaseous phase to be recirculated to the compressor (C-1). 

 

T-1 T-2

F-1

P-1C-1

Biomethane

Biogas

Air

Make-up

H2O(g)

H2O(l)+CO2(ac)

Figure 5.7. Schematic representation of a water scrubber system for biogas upgrading.  
C-1: compressor; T-1: absorption column; T-2: desorption column; P-1: pump; C-1: F-1: flash. Adapted from 

Bauer et al. (2012). 
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When  most of the methane in the flash unit (F-1) is released, the carbon dioxide is afterwards 

released in the desorption column (T-2). Analogously, the liquid stream is fed on the top of 

the column while air is injected at the bottom. Because the desorption column operates at 

normal pressure, the solubility of carbon dioxide in water is practically insignificant, thus the 

water is practically pure and in a condition to be recirculated to the absorption column for 

reuse. 

 

5.2.1.3 Physicochemical Absorption 

 

By using the same principle of operation as that of water scrubbing, a contact column and 

subsequent regeneration of the solvent, a solution of polyethylene glycol (Selexol) can be 

used as physicochemical agent for the upgrading of biogas (Ryckeboch 2011). One advantage 

of using this solution is the simultaneous absorption of carbon dioxide, hydrogen sulphide and 

water that takes place when scrubbing (Persson 2003). Furthermore, polyethylene glycol has a 

low vapour pressure and, therefore, the losses are significantly lower. Being that carbon 

dioxide and hydrogen sulphide solubility are substantially higher in Selexol than in water, less 

absorbent is required to fulfil a specific upgrading standard, and the requirement of pumping 

and equipment size are lower as a consequence. 

 

5.2.2 Adsorptive Process 

 

This process is based on the adsorption of gases onto a solid carrier bed. Adsorption as a 

physicochemical phenomenon is a consequence of intermolecular forces between the gases 

and the surface of the solid, which is normally characterised for having large active surface 

areas. Zeolites (Zhao, et al. 2007), activated carbon (Do 1998) or metal organic frameworks 

(MOFs) (Gassensmith, et al. 2011) are among the most common adsorbents. In terms of cost-

effectiveness, adsorptive processes are viewed as competitive as a consequence of the 

simplicity of its operation, high performance at room temperature, high regeneration rate and 

low energy intensity, which makes it among the most employed technique for biogas 

upgrading (Grande 2011). 

 

Gas purification via adsorption is normally done in practise by using at least two adsorbent 

materials, usually mixed or packed in layers in a vessel. As a rule, the stream to be treated is 
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preliminarily passed through a layer of silica gel to remove the humidity from which the water 

is afterwards desorbed. Silica gel typically has micro-pores in the 2-4 nm range, which 

additionally facilitates the removal of siloxanes and hydrocarbons of small molecular weight 

(Ajhar, et al. 2010). 

 

Zeolites have attracted attention as an adsorbent in that they have numerous advantageous 

properties. Furthermore, they can be chemically modified in order to improve specific 

properties. Among the unmodified ones, zeolite 13 X has been reported as having the highest 

adsorption capacity at room temperature, reaching 3.5 mmol g-1 under normal conditions. 

Another adsorbent normally used in PSA in general is activated carbon, a highly porous and 

complex material with a large surface area. The surface area of commercial activated carbon 

has been reported in the region of 1,200 m2 g-1. Normally activated carbon has large-sized 

micro-pores, which are less selective for the adsorption of silicates or hydrocarbons of higher 

molecular weight (heavier than 300 for hydrocarbons and 225 for siloxanes). 

 

Porous metal organic frameworks (MOFs) are a novel type of adsorbent and consist of 

organic and inorganic building blocks made of metal ions, their clusters or metal oxides 

surrounded by polymeric clusters bridged by organic ligands. The attractiveness of MOFs lies 

in their versatility for carbon dioxide uptake, high surface area, high porosity, low density and 

chemical and thermal stability. Moreover, the development of a MOFs-based process can be 

optimised through pore size control, introduction of immobilised functional groups or 

introduction of particular cations. 

 

This process allows regeneration in situ of the bed by an adsorption-desorption cycle. It 

operates on an isothermal cycle, adsorbing at high pressure and desorbing at low pressure, 

and, for biogas upgrading, the optimal operating pressure ranges from 4 to 10 bar. The 

commercial processes that are based on the adsorption principle are usually called pressure 

swing adsorption (PSA), and they basically consist of four phases which are feed, blowdown, 

purge and finally pressurisation. 
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Figure 5.8. Schematic illustration of pressure swing adsorption (PSA) process. T: adsorption column; C: 
compressor; P: pump; S: gas conditioning. Adapted from de Hullu et al. (2008). 

 

As Figure 5.8 illustrates, in the first phase of the four abovementioned phases the column is 

fed with raw biogas, and the carbon dioxide is adsorbed selectively on the activated bed while 

the methane flows up across the column and is recovered on the top of the vessel with a slight 

drop of pressure. When the saturation point is reached, the feed of raw biogas is ended and 

starts to operate in the second column. Thereafter, in the blowdown phase, before carbon 

dioxide breaks though, the column has to be regenerated by stopping the feed and decreasing 

the column pressure. With this drop in pressure, the carbon dioxide is desorbed, thus this 

phase is finished when the carbon dioxide exiting flow is small. Having reached this 

minimum pressure, a feed-in counter-flow is injected to eliminate the remaining carbon 

dioxide still adsorbed on the solid bed. Finally, a new phase of pressurisation is initiated when 

feeding with a raw gas feed-stream, or with a counter-flow of purified biomethane. 
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5.2.3 Other Upgrading Process 

 

Membrane separation is another upgrading process whose functioning principle is the 

difference in permeability between the components of a mixture, in this case carbon dioxide 

and methane. Membrane-based separation units could overcome the inherent disadvantages 

shown by commercial upgrading systems (i.e. PSA, water scrubbing or amine scrubbing), 

such as high consumption of energy, biomethane (end-product) at low pressure, large 

equipment size and complex control systems (Scholz, et. al. 2013). Nowadays membranes are 

produced by commercial manufacturers and are continuously improving their performance 

(selectivity) and reducing cost, thereby becoming more competitive with other options. 

Nevertheless, there is still lack of solid data for economic analysis. 

 

Cryogenic technologies, in contraposition to all the previous options of upgrading, take 

advantage of the different liquefaction temperature and/or pressure of gases making up biogas 

(i.e. methane, carbon dioxide and its impurities) (Ryckebosch, et al. 2011). Normally, raw 

biogas is compressed up to 8 MPa following sequential steps with intermediate refrigeration, 

or only through one direct step of cooling. Although there is some experience in operating 

cryogenic techniques for biogas upgrading, it is not available at large scale for it is still 

considered uneconomical (Bauer, et al. 2012). 

 

5.2.4 Main Features of CO2 Uptake Technologies 

 

Table 5.1 summarises the main characteristics of the previously discussed technologies for the 

removal of carbon dioxide. As can be seen, each option has advantages and disadvantages, 

and depending on the physicochemical principle which the separation is based on, the most 

proper method to be selected will depend on particularities that are to be analysed case-by-

case (Kabasci 2009). 

 

Concerning the economics of the process, the operation of them demands a different sort of 

consumables (water, chemicals, electricity, etc.), in principle associating dissimilar cost of 

operation and maintenance. In a similar manner, the construction and design of each system 

associates diverse investments for the same treatment capacity. Nevertheless, according to 

Althaus and Urban (2005), and based on analysing technical information gathered from 

manufacturers, such as CarboTech, Malmberg, Flotech, it was concluded that for the same 
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plant capacity, there is no significant difference in the cost of treatment and that a strong drop 

in cost is observed with increasing plant size. These results enable to hypothesize that the 

carbon dioxide uptake process is favoured by economies of scale and, more importantly, that 

these technologies (i.e. amino absorption, PWS, and PSA) are indistinguishable  in terms of 

the final cost of carbon dioxide separation. These two assumptions are based on empirical 

facts and crucial for the subsequent economic modelling to be presented in Chapter 6 for the 

cost estimations of carbon dioxide uptake. 

 

Table 5.1. Advantages and disadvantages of absorptive and adsorptive techniques for CO2 uptake. 

CO2-Uptake Method Advantages Disadvantages 

Absorptive Method   

Absorption with water 
 
 
 

 Simultaneous removal of 
H2S  

 Stable operation 
 Low sensitivity to 

impurities 
 Regeneration of solvent 

 High investment 
 High cost of operation 
 Potential problems of foaming 

Absorption with amines 
 
 

 High selectivity 
 High performance 
 Low losses of CH4 

 Corrosiveness 
 Poisoning with impurities 
 Need of heating for 

regeneration 
 Low scale for upgrading 
 High investment 

Absorption with polyethylene glycol 
 
 
 
 
 

 Simultaneous removal of 
sulphured-based compounds 

 Regenerative 
 Low fugitive emissions 
 Tolerant to impurities 

 Heat for regeneration 
 High investment 
 Corrosiveness problems 
 High cost of operation 

Adsorptive Method 
Molecular sieves 
Zeolites 
Alumina silicates 
 

 Tolerant to impurities 
 Small in size 
 Regenerative 
 High efficiency 

 High losses of CH4 
 Need of complex control 

systems 
 Intensive in investment 
 Costly operation  

 

5.3 Biogas Injection into the Natural Gas Grid 

 

The injection of biomethane into the grid is the final step, and requires conditioning in order 

to homologate the quality of the gas with which it will be mixed. It is worth pointing out that 

each country has different standards for natural gas, and this is not a “universal” natural gas, 

as can be seen in Table 5.2. Therefore, and for the fulfilment of local standards of operation, 

odorising, drying, gas quality measurement, pressure regulation and gas heating adjustment 

are done, which are practically automatised nowadays. 
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Table 5.2. Specifications for supplying Bio-SNG into the grid. 

Specification Germany Sweden Austria US Chile 

Wobbe index (kWh m-3) 12.8-15.7 n.s. 13.25-15.72  13.1 – 14.6 

Heating value (kWh m-3) 8.4-13.1 (1) 8.4-13.1 10.7-12.8 (*) 9.8-11.4 (2) 10.1-11.4 

O2 gas networks (%) < 3 < 1 < 4 < 0.2-1 < 1 

H2S (ppm) 3 23 (3)  4 3.7 35 (3) 

H2O < dewpoint  < dewpoint < 120 ppm < dewpoint 

CO2 (%) n.s. < 3 n.s. < 2-4 1.5-4.5 (4) 
(1): Upper heating value. (2): lower heating value. (3): measured as total sulphur (mgSm-3). (4): As total inert gases. 

Sources: For Germany, Austria and US, see Scholz et al. (2013); for Sweden see Praß et al (2008); for Chile Nch 3213.Of2010. 

 

The injection of Bio-SNG is generally possible into any type of natural gas grid (Ramesohl & 

Arnold 2005). Nevertheless, low-pressure and high-pressure grids work differently, so 

“pendulum zones” are observed when two gases are put in contact but not mixed (Klinsky 

2006). This problem is observed when the gas distribution is done through a grid with 

numerous feed-in points, thus not being the gases mixed (Prassl 2008; Klinski 2006). 

 

5.4 Technology for Electricity Generation by Biogas Burning 

 
The generation of electricity through the direct combustion of biogas is often referred to as the 

distributed generation concept because biogas facilities are normally located near the end 

user. For these sorts of power plants there are a variety of technologies that can be utilised 

with characteristic capacities, performance and level of commercialisation (Randolph & 

Masters 2008). 

 
5.4.1 Microturbines 
 
Microturbines, as the name indicates, are small-scale combustion turbines which can generate 

electricity from approximately 2.5 kWe, with an equally considerable amount of heat available 

for recovery (Pehnt, et al. 2006). As a scalable technology, multiple units can function 

together to reach higher power and can be fed with biogas as well as propane, hydrogen or 

diesel. 

 

The electrical efficiency of microturbines is relatively low in comparison with that of systems 

that can operate at a similar power capacity, ranging from 25-30%. When electricity is 

generated via a CHP scheme, the overall efficiency can rise to 80%. As in most CHP systems, 

the economics of this technology is closely linked to the use of heat as a by-product since the 
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refrigerant fluid normally used is water and can be used for heating in the 50-80°C range. 

Because of their low capacity and the necessity of recovery and use of heat to improve the 

economics of the whole process, microturbines might have better chances in applications with 

stable demands of heat such as swimming pools, hospitals, etc (Praetorius & Schneider 2006). 

 
5.4.2 Stirling Engines 
 
Stirling engines have a long tradition in engineering, principally in the 19th century, mainly 

for operating at a relatively low-pressure, thus being safer to work with. Nevertheless, the 

operation of the spark-ignition engine and the improvements in the steam engine virtually 

eliminated them from the market (Randolph & Masters 2008). 

 

In contraposition to microturbines or reciprocating engines, the operation principle of Stirling 

engines is not based on the explosion of a fuel, but in the difference of temperature between a 

hot source and a cold sink. The ideal Stirling cycle is made of the four processes or steps 

which are isothermal compression, addition of heat at constant volume, isothermal expansion 

and finally a removal of heat at a constant volume (Wu 2004). The Stirling engine is 

appropriate for stationary operation, and because it involves a continuous burning of fuel 

rather than the intermittent explosion in an internal-combustion engine, the fuel is used more 

efficiently and lower emissions (i.e. NOx and CO) are generated. Furthermore, Stirling 

engines have lower maintenance cost, longer lifespans, and safer operations. On the other 

hand, the capital investment is relatively high, most proven prototypes are been tested only in 

the small-scale and data regarding reliability and useful life is still lacking (Corria, et al. 

2006). 

 
5.4.3 Reciprocating Engines 
 
Reciprocating engines constitute the bulk of generation technology for distributed systems 

(Randolph & Masters 2008). They are commercially available in ranges from 20 kWe to 5 

MWe approximately (ASUE 2011), and along with biogas, they can be designed to run using 

gasoline, diesel, kerosene, propane, alcohol, hydrogen and other such fuels. Reciprocating 

engines can operate either under Otto or diesel cycle, hence they are based on spark-ignition 

(also known as sparkplug-ignition) or compression-ignition schemes, and with electrical 

efficiencies that can rise to 40%. When a CHP mode of functioning is used, thus recovering 

the heat from the cooling system and the exhaust gas, the overall efficiency can reach roughly 

up to 85%. Although a reciprocating engine is a reliable technology and electricity can be 
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generated in a wide range of power, thermal and electrical efficiency are highly dependent on 

capacity.1 

 

Because a mixture of biogas and air cannot fulfil the conditions necessary for ignition when 

compressing it, the spark-ignition engines demand a supplementary fuel such as diesel, 

biodiesel or a vegetable oil (Lantz 2012). Modern spark-ignition engines typically operate 

with 10% supplementary ignition fuel; however, consumption in the 3%-30% range has also 

been reported (FNR 2010). 

 

As noted by Lantz (2012), the comparison between spark-ignition and compression-ignition 

engines is not straightforward, and as for many techno-economic assessments, the most 

convenient alternative depends on specific local conditions that cannot be generalised. In 

addition to providing demonstrations of this fact, Lantz (2012) emphasises the scarcity of 

technical data, which prevents comparison between the reciprocating engine and an 

alternative technology such as microturbines. According to Lantz (2012), the comparison of 

spark-ignition, compression-ignition and microturbines, using the Swedish conditions based 

on farm-based biogas as a framework, seems inconclusive about the superiority of one 

technology over the other, and no remarkable differences in terms of cost or technical 

performance was observed. 

 

Table 5.3. Comparison of diesel and Otto engines (FNR 2010). 

Engine Advantages Disadvantages 

Otto engine 

 High technical lifetime 
 Less maintenance 
 High total efficiency 
 Especially designed for gaseous fuel 

burning 

 High electric efficiency for 
small engines 

 Relatively low investments 

Diesel engine 
 Requirement of ignition fuel 
 Low total efficiency 
 Short technical lifetime 
 Higher requirement of maintenance 

 Associates a higher investment 
 Low efficiency at small scale 

 

As a result of the abovementioned observation and technical analysis, further assessment for 

energy potential will be based on reciprocating engines as a reference technology. 

Furthermore, it will be assumed that there is no distinguishable difference in cost of 

production for either electricity or heat when using Otto-engine or diesel based-engines in 

spite of operating using different back-up fuels or requiring different consumables. 

                                                 
1 More antecedents about efficiencies are given in Chapter 6, section 6.8.5 Combined Heat and Power Systems. 
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6. Economics of Biomass Conversion Technologies for Biogas 

 

The main features of technologies for the anaerobic conversion of biomass and the 

subsequent production of an energy carrier in the form of electricity or gaseous fuel were 

presented in Chapter 5. In this chapter, the main economic figures useful for the assessment 

of the economics or financials of a biogas project are provided and discussed. 

 

6.1. Introduction 

 

The estimation of capital cost is a necessary and challenging task for any financial or strategic 

analysis in the decision-making phase, and of paramount importance for the success of any 

capital project. For biogas projects in particular, capital cost information of anaerobic 

digestion plants is lacking, and additionally it exhibits extremely high variability attributable 

to the digestion technology itself as well as the various add-ons such as pre-treatment 

modules, abatement systems and mixing systems that may or may not be included (Karellas, 

et al. 2010). Moreover, the definitions employed to refer to “capital cost” are not always used 

consistently by plant owners or equipment suppliers in economic analysis. 

 

Biegler et al. (1999) noted that capital cost estimates can be classified into five categories, 

according to their accuracy: the order-of-magnitude, with an associated error lower than 40%; 

study estimate, with associated error lower than 25%; preliminary estimate, with an associated 

error lower than 12%; definitive estimate, with an associated error lower than 6%; and finally 

the detailed estimate with an associated error lower than 3%. Similarly, the Association for 

the Advancement of Cost Engineering International-AACE (Amos 2007) proposed a 

classification for the level of accuracy of the estimate through four stages associating different 

preparation effort, these are: concept stage, with 50-100% associated confidence limit; pre-

feasibility, with 30-50% associated confidence limit; feasibility, with 10-30% associated 

confidence limit; and detailed engineering, with 5-15% associated confidence limit. For the 

purposes of the assessment which is to be conducted in this work, the definitions proposed by 

AACE will be used. 

 

In the following section of this chapter the issues of major relevance to the economic potential 

analysis, with the main criteria taken into consideration and the economic data in which the 

calculation of cost will be based on, will be discussed and set up. 
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6.2 Estimation of Capital Cost 

 

The most commonly used techniques for the estimation of capital cost are the factored 

estimation techniques and the unit cost techniques (Crundwell 2008). While factored 

techniques are used in a preliminary stage of design, unit cost techniques are employed when 

a bill of quantities is available, normally when the design is in the phase of consolidation. 

Factored estimation techniques are based on the utilisation of historical data of plants, 

process, unitary operations or items of different sizes, and being that this information 

available for a specific case, the cost or investment can be updated or adjusted for the current 

situation. Whereas some factors account for the updating from the past to the present, others 

account for the amendment of size or capacity. 

 

For the adjustment of time, cost index ratios are commonly used to estimate a current cost (in 

general on a yearly base) with information from the past. There is a variety of cost indices for 

specific groups of operations and processes published regularly in specialised literature. The 

most commonly used are the Chemical Engineering Plant Cost Index (CEPCI) and the 

Marschall and Swift equipment cost index, which are issued on a monthly basis and then 

expressed under a yearly average basis (Chauvel, et al. 2003; Mignard 2014). Normally, these 

dimensionless factors are applied by dividing the index for the year under evaluation (the 

current year, for instance) and that for which information is available, as Equation 6.1 

indicates. 

 

o

t
ot CI

CI
CC   Equation 6.1 

 

In which 
t

C  and 
t

CI  represent the cost and cost index for the year to be calculated, t, and 
o

C  

and 
o

CI represent the cost and index at another time, respectively. 

 

Another approach used to estimate capital cost is based on reference items or plants of similar 

characteristics. In these terms, cost of civil work, investment of major equipment and 

structures can be calculated by the normal application of an exponential correlation as 

presented in Equation 6.2. 
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Q
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  Equation 6.2 

 

In which C is the cost to be estimated at capacity Q, Co is the reference cost at a known 

capacity, Qo, and n is the correlation index. 

 

For the estimation of capital cost, a combination of these two procedures was used to obtain 

adequate data for the economic assessment to be conducted. For the updating of information 

in respect to time, principally investment, the CEPCI for the year 2011 was used, the value of 

which is 394.3 (Chemical Engineering 2009); thus all the financial data and cost figures will 

be expressed as 
2011

€  for the remainder of this thesis. 

 

6.3 Estimation of Operation and Maintenance Cost 

 

Although some authors may differ in the way they allocate and conceptualise expenses of 

operation and maintenance, in some cases (Chauvel, et al. 2003; Silla 2012), it is possible to 

distinguish between variable cost and fixed cost. Variable cost is proportional to the 

production capacity of the facility, and this expense reflects the mass and energy balance of 

the process. Conversely, fixed cost does not depend on the quantity produced, is directly 

linked to nominal processing capacity and is virtually known when this parameter is defined. 

Normally, personnel cost (marketing, general services, administrative, etc.) is also included in 

fixed cost although some companies account for it as part of variable cost when employees 

have to work in shifts or for longer periods to ensure a continuous operation. In common 

applications, variable cost is related to a processed variable or product, and as long as the 

plant scale does not modify the energy and mass balance significantly, the variable cost 

becomes a constant cost. On the other hand, when fixed cost is expressed in terms of a 

processed variable, it becomes variable, thus dependent on the actual annual production. For a 

biogas plant, variable cost is mainly grouped into: maintenance, services, utilities (principally 

power to run the plant auxiliary equipments, e.g. pumps, blowers, fans, feeding systems) and 

heat cost. Fixed cost is simply categorised as personnel and general cost (Karellas, et al. 

2010). Van Dael et al. (2013) distinguished between investment1 and operational cost, the 

latter of which includes maintenance, insurance, repair, energy, personnel and auxiliary 

products in the techno-economic assessment of biomass conversion facilities. They took 

                                                 
1 In the original publication addressed as investment cost. 
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advantage of classifying capital cost in this way to assess the profitability of biogas facilities 

more directly by using indicators such as the net present value (NPV) and the internal rate of 

return (IRR) as indicators of the economic attractiveness of the project. 

 

For the purposes of this research, it was assumed that the annual cost of operation and 

maintenance (Co&m) includes personnel, maintenance and support services, internal 

consumption of electricity and heat and contingencies. Additionally, when assuming a linear 

proportionality between investment (I) and this operation and maintenance cost (Co&m), the 

annual operation and maintenance cost (Co&m) can be expressed as Equation 6.3 indicates. 

 

IC mo &  Equation 6.3 

 

In which   is a fixed fraction of the investment and I  is the total investment. This 

simplification has already been proposed and used by Hoogwijk (2004), Faaij (2006) and 

Gómez et al. (2010; 2011) as a conservative approach to estimate the cost of production for 

renewables. 

 

6.4 Effect of the Location 

 

Most equipment and investment data are informed by either US$ or Euros (€) since USA and 

Northwest Europe have historically been the centres of the chemical and process industry 

(Towler & Sinnott 2008). The cost of constructing a productive facility depends on local 

infrastructure, local labour availability and its cost, cost of shipping, currency exchange rates, 

import duties, materials, local standards, variation in the cost of labour and other such factors. 

A location factor of 1.08 was included as the investment for Chile; this factor mainly 

addresses the additional cost for freight, taxes and insurance of goods produced in and 

transported from central Europe (Chauvel, et al. 2003). 

 

6.5 Local Currency 

 

Because the economic data is expressed in literature as either US dollars (US$) or euros (€), 

the exchange rate for the year 2011 in Chile was used for conversion into euros and is 

equivalent to 0.7189 US$ €-1 (Central Bank 2013). 
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6.6 Discount Rate and Lifetime 

 

To calculate an economic indicator such as net present value, annual equivalent cost or others, 

the discount rate will be set in a specific time period. The selection of this parameter is 

basically a strategic choice of an organisation. As is known, the results obtained from 

aforementioned economic indicators represent the combination of financial cost of capital, 

economic cost of capital and the added effect of the risk level associated with the project. For 

the present evaluation, an annual interest rate of 10% (i) and lifetime of 15 years (n) was used. 

 

6.7 Load Factor 

 

For the purpose of this thesis, the load factor was defined as the duration of operation of the 

biogas facility over the year with allowance for programmed routine maintenance; therefore, 

it reflects the optimal use of the infrastructure and the best possible production capacity. This 

parameter is normally expressed as hours per year (h y-1) or as a percentage of the total 

operating time of a facility that can run continuously such as a chemical plant. For all the 

cases, a load factor of 8,000 h y-1 (90% approximately) was employed as the effective time of 

operation for biogas processing (see Equation 4.12 in Chapter 4). 
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6.8 Biogas Plant Economics 

 

As mentioned earlier, capital cost for anaerobic digestion plants is not easily obtainable and is 

associated with high variability (Karellas, et al. 2010). Furthermore, the definitions employed 

to refer to economics are not always used consistently in literature. Terms such as investment 

cost, capital cost or total plant cost are used indistinguishably, and authors normally avoid 

informing of the error associated with them; the time basis of the data provided (money in 

terms of a specific year, e.g. €2010, €2013), and the component of cost, add more uncertainties to 

the assessments. 
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Figure 6.1. Schematic representation of a generic anaerobic digestion plant for the production of electricity of 
Bio-SNG based on organic feedstock. Adapted from Poeschl et al. (2010a). 

 

For the purposes of this section, a biogas plant is conceptually organised as schematically 

presented in Figure 6.1. It can be observed that this facility is made of three sections (Poeschl, 

et al. 2010a). First, the feedstock supply area, where the biomass is received, then stored and 

pre-treated. Next, the biogas production area, where the digesters and digestate receiver are 

located. Normally during the generation of biogas a rough desulphurisation takes place within 

the digester, and the biogas attains the conditions necessary for subsequent utilisation. Finally, 

the biogas utilisation area consists of the fine desulphurisation (when needed) and the 

conversion units for the generation of secondary energy through a biogas-to-energy pathway 

or biogas-to-upgrade route (Poeschl, et al. 2010b) 
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The information presented in the following sections correspond to the capital cost, also 

addressed as total investment; hence the direct cost (major equipment, bulk material, freight 

and transportation), construction (site facilities, site cost, civil, mechanical, electrical, 

instrumentation, etc.), engineering, procurement, construction and cost of studies of basic 

engineering are included. 

 

6.8.1. Biogas Production 

 

The investment to be presented is made of the feedstock supply area and biogas production 

area, according to Figure 6.1. It involves machinery, biogas plant (including ancillary 

construction), substrate storage, electrical and control equipments and dismantling cost. 
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 Figure 6.2. Investment of plant facility for biogas production.  

 

The biogas investment can be correlated by an exponential equation which was discussed 

previously (see Equation 6.2). By fitting statistical data published by Urban et al. (2008) and 

Althaus and Urban (2005), this economic information can be correlated as follows. 

 

]hNm[x,24818 1385860  .x,I(€)  Equation 6.4 
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The annual operating cost was estimated as 12% y-1 of investment and is constituted by 

personnel, maintenance and service cost as well as electricity. This figure is in line with that 

published by Gómez et al (2010) for biogas conversion technologies. 

 

 €] I,[ 12.0)y €( -1
& IC mo   

 

6.8.2 Carbon Dioxide Uptake 

 

The carbon dioxide uptake, an operation within the biogas utilisation area, is the most 

expensive step in the biogas conditioning process. Fine desulphurisation as well as the drying 

of treated gas are normally included as part of this step; additionally, the treatment of exhaust 

gases is generally included in this step in order to fulfil the mandatory standards for methane 

and sulphur emissions. In general, the highest cost of operation in this step corresponds to 

electricity, which is used when biogas is compressed or water is pumped. Comparison to the 

carbon dioxide uptake process is possible when taking into consideration that the only 

processes with enough technological maturity are pressure swing adsorption (PSA), 

pressurised water scrubbing (PWS) and amino solutions (AS). 
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 Figure 6.3. Investment of carbon dioxide removal units for biogas 
upgrading: pressure swing adsorption (PSA), pressurised water 

scrubbing (PWS) and amino solutions (AS). 
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The investment was correlated by fitting economic data published by Urban et al. (2008) and 

Althaus and Urban (2005). It can be demonstrated that Equation 6.5 adjusts this data properly: 

 

]hNm[x, 83,268€)( 134793.0  xI  Equation 6.5 

 

A total of nine points were fitted, with a correlation index of approximately 0.855, so this 

process exhibits economies of scale. The annual operational and maintenance cost was 

estimated by fitting the same data at 24.9% of total investment (% y-1). This cost includes 

electricity, operating media (water and chemical absorbent, as applicable), exhaust gas 

treatment, personal and maintenance and services cost. 

 

6.8.3 Network Connection for Bio-SNG Injection 

 

The cost related to the injection of Bio-SNG into the natural gas distribution network depends 

heavily on particular local standards as well as distance to feed-in points and the quality of the 

natural gas that it is to be mixed with, among others. Additionally, the lack of solid data for 

this step makes it difficult to generalise information that would apply to a wider set of 

situations and circumstances. Nevertheless, from data published by Althaus and Urban 

(2005), it can be observed that this step only plays a marginal role in the whole cost structure. 

This being so, the uncertainty related to the estimates will not significantly modify the results 

and conclusions. 

 

The connection cost is normally shared by the gas supplier and the natural gas distribution 

owner; therefore, it was assumed that 50% of the investment and cost would be charged by 

the Bio-SNG supplier. In addition to this and as noted above, the distance between the 

connection depends on the geographical conditions of the grid and the location of the biogas 

plant. To overcome this issue, a distance of 1 km to a grid of natural gas distribution operating 

at 45 bar was assumed. Concerning the operation and maintenance annual cost, an equivalent 

to 5% of investment (% y-1), a conservative and representative value for this sort of operation, 

was assumed. 

 

As shown in Figure 6.4, three points were correlated for a methane injection flow in the 250-

1,200 Nm3h-1 range from the data published by Althaus and Urban (2005). It includes the 

recompression unit, odorising, gas quality measurement equipment, pressure regulation, gas 
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heating adjustment equipment and management station as well as the mechanical network 

connection and the investment for the stub line. 

 

 

Methane injection capacity (Nm3 h-1)

200 400 600 800 1000 1200 1400

In
ve

st
m

en
t (

M
M

 €
) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

I(€)=970.5 x0.997[x,Nm3h-1]

r2=0.997; n=3

 

 

 Figure 6.4. Investment of network injection system for Bio-SNG.  

 

6.8.4 Cost of Biogas Desulphurisation 

 

Mescia et al. (2011) reported a cost of desulphurisation for landfill biogas by using a fixed 

bed of activated carbon from 1.99 -3
CH4

Nm ct€  to 3.5 -3
CH4

Nm ct€  and 0.40 3
CH4

Nm ct€  when 

using scrubber technology2. Althaus and Urban (2005) reported a gross desulphurisation cost 

for vegetable matter-based biogas of 0.86 -3
CH4

Nm ct€  when using sulphide precipitation and 

indicated that it ranges from 0.34 -3
CH4

Nm ct€  to 0.64 -3
CH4

Nm ct€  when using scrubbers. For 

gross desulphurisation when processing manure-based biogas, the same authors indicated that 

the cost of desulphurisation is approximately 3.89 -3
CH4

Nm ct€  when using sulphide 

precipitation, whereas it ranges from 1.24 -3
CH4

Nm ct€  to 2.3 -3
CH4

Nm ct€  when using 

scrubbers. The data provided by Althaus and Urban (2005) corresponds to the treatment of 

raw biogas in commercial scale biogas plant, i.e 100 – 2,000 13hNm  . Conversely, data given 

                                                 
2 Assuming a biogas composition of 55% methane and 45% carbon dioxide. 
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by Mescia et al. (2011) are based in lab-scale experiments. As can be observed, variability is 

high and depends on which technology is used, flow of biogas to be treated and the sort of 

feedstock used. Depending on the type of substrate to be processed, a specific cost of 

desulphurisation will be employed from the aforementioned data. For the purposes of this 

research only one step of gross desulphurisation will be included, assuming that this is enough 

to fulfil the local environmental standards. 

 

6.8.5 Combined Heat and Power Systems 

 

Figure 6.5 and Figure 6.6 show the electrical and thermal efficiency of reciprocating engine-

based CHP modules (ASUE 2011). As observed, the electrical efficiency decrease is 

significant in the 10-2,000 kWe range, whereas it tends towards a maximum limit value of 

45% from 5,000 kWe approximately. Conversely, the thermal efficiency tends to decrease 

drastically in the 10-2,000 kWth range, and it stabilises from 5,000 kWth to 40% 

approximately. 
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Figure 6.5. Electrical efficiency of reciprocating engine-
based CHP (ASUE 2011). 

Figure 6.6. Thermal efficiency of reciprocating 
engine-based CHP (ASUE 2011). 

 

Statistical information on electrical efficiency )( e  and thermal efficiency )( th  as a function 

of electrical power )(  and heat )(Q published by ASUE (2011) was correlated for biogas 

reciprocating engines in the 10–8,500 kWe range, and then fitted with a logarithmic function 

as indicated in Equation 6.6 and Equation 6.7. 
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1)ln(5670.16563.0)ln(  e  Equation 6.6 

 

1)ln(18706.215190.1)ln(  Qth  Equation 6.7 

In which )( e  is the electrical efficiency, )(  is the electrical power, )( th  is thermal 

efficiency and )(Q  is the heat from the CHP. To estimate the specific capital investment of 

CHP modules and operation & maintenance cost, technical information already correlated and 

published by ASUE (2011) was used. Re-organising Equation 4.14 (see Chapter 4), the 

generation cost can be written as: 
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  Equation 6.11 

 

In which 
i

c  is the unitary cost of secondary energy; it ,  is the single technical potential of the 

ith-source of energy; I  is the total investment of the conversion technology for the whole 

supply-chain;   is the capital recovery factor; 
mo

C
&

 is the operation and maintenance cost; 

and 
p

C  is the feedstock supply cost for conveyance at the gate of plant (when applicable) and 

i
R  are the revenues from by-products sales. The expressions in round brackets in Equation 

6.11 correspond to specific capital investment and specific operation & maintenance cost, 

according to ASUE definitions, respectively. With the proposed designation, the following 

equivalences can be established with ASUE data. 

 

) €( 648,15)( 1536.0  et
t

kW
I 


 Equation 6.12 

 

) €( 053.17
1 1478.0& 
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 Equation 6.13 

 

Equation 6.12 and Equation 6.13 can be used to estimate the unitary cost of electricity through 

the biogas-to-energy pathway  
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6.8.6 Investment for Landfill Gas Recovery Systems 

 

Landfill gas extraction is the first step of the recovery (Rubio-Romero, et al. 2013). The 

collection system contains a set of extraction wells that are normally located at selected depth 

intervals and share a common collection point by means of a pipe network. Afterwards, the 

gas is normally desulphurised by a conventional activated carbon system and then burned to 

produce electricity (Barros, et. al. 2014; Bolan, et al. 2013). 
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 Figure 6.7. Investment of landfill biogas recovery system.  

 

The investment of this recovery system was correlated through an exponential equation. A 

total of six points, gathered from data published by Caresana et al. (2011), Willumsen (2012) 

and available in the technical reports LGTE (2012) and COGEN (1994), were fitted with a 

correlation index of approximately 0.871. This equation correlates the investment with the 

nominal electrical power capacity as Equation 6.14 indicates. 

 

]kW[x,1352 e
9011.0 x,(€)I   Equation 6.14 

 

It can be demonstrated that the equivalence between the investment expressed in electricity 

power (Pe) and thermal gaseous power are as follows: 
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b
eaPI   Equation 6.15 

b
th

b
eb P

f

a
I   Equation 6.16 

 

In which a and b are the correlation factors; e  is the average electrical efficiency assumed as 

35%; and f is the thermal equivalent of methane (9.45 kWth Nm-3). When these values are 

used in the equations, the following is obtained. 

 

],[304,7 1387550  hNmx xI(€) .  Equation 6.17 

 

6.9 Waste-to-energy System Economics 

 

Gómez et al. (2010) proposed a correlation for waste-to-energy (WTE) technologies based on 

gathering data published elsewhere. The correlation is as indicated by Equation 6.18. 

 

],[ 79715 820
e

. kWxx,I(€)   Equation 6.18 

 

Furthermore, an annual operation and maintenance cost of 4% y-1 of the investment was 

estimated by these authors. Electrical efficiencies in the 21-28% range are reported by 

Burnley et al. (2011) for WTE technology, based on the BRET by the European Commission 

(2006). Taking into consideration that the use of corrosion-resistant materials allows higher 

operating temperatures, efficiencies of up to 30% might be present in the new generation of 

WTE conversion units, according to the authors. However, many of these techniques are still 

unproven, and the authors recommend a 21% net electrical efficiency. This being so, the 

calculation was made by using a net electrical efficiency of 21% for the WTE option. 

 

Gómez et al. (2010) did not make clear if the BAT investment for gas abatement was included 

in Equation 6.18. Comparing this data with that reported by Zabaniotou and Giannoulidis 

(2002), who offer segregated economic information of WTE investment with and without 

BAT gas abatement, the additional investment due to the BAT inclusion was calculated. 

Zabaniotou and Giannoulidis (2002) reported an emission abatement system investment to 



Chapter 6 Economics of Biomass Conversion Technologies for Biogas 

 90

total investment ratio from 13.3% to 24.4%. The latter value was used as a conservative 

approximation in the calculations. 

 

6.10 Natural Market Price 

 

The economic attractiveness of electricity or Bio-SNG can be evaluated by comparing the 

corresponding representative generation cost with the market price of natural gas at the 

corresponding level of commercialisation. A city gate price of natural gas in the 15-22 € 

MMBTU-1 range was estimated to compare the Bio-SNG pathway with fossil natural gas in 

the same period (National Commission of Energy 2011; Pirog 2004). For the purpose of this 

study, these values can be considered as representative at the national level. 

 

6.11 Electricity Market Price 

 

Similarly, the nodal price of the main electricity system of the country, SIC (central 

interconnected system) (National Commission of Energy 2011), can be used as a reference for 

the electricity pathway comparison. Considering a trade price of electricity 60% higher than 

the annual average nodal price as a representative value for the evaluation of projects of 

electricity generation at low scale, an electricity price of 12 ct€ kWhe
-1 for the year 2011 is 

estimated. This value is based on a comparative analysis of the price paid by an electrical 

distribution company in a reference small-scale renewable electrical project which supplies 

energy to a consumption centre close to the electricity generation point. The price was 

calculated as a percentage over the nodal price and took into account the saving of money for 

the distribution company as a consequence of lower cost for transmission (lower cost of 

operation and maintenance and lower losses because of long transmission, lower voltage 

transmission, etc.), which should be reflected in a better price for the electrical supplier. This 

value is to be considered only as a reference price useful for macro-assessments, which has an 

empirical basis that has arisen from discussions with businessmen and electrical practitioners 

with enough experience in the field. 
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6.12 Summary of Economic Information 

 

In table 6.1 the main techno-economic information, systematised and mathematically 

correlated for the use of economic assessment in the further sections, is summarised. It is 

worth pointing out that this data can be used for the preliminary or pre-feasibility cost 

estimate level, and, for the purposes of this research, can provide a reasonable order of 

magnitude in the economics and financials useful for the development of macro-policies or in 

decision-making. 
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Table 6.1. Parameters employed for the techno-economic assessment. Correlation index (r2), number of data and 
limits of validity below each correlation were added. 

Option to assess Item Correlation Source 

Landfill gas 

collection 

Landfill gas collector system 

investment (I) 

],[ 135,2)€( 9011.0

e
kWxxI   

r2=0.871; n=6; [500 kWe; 3.9 MWe] 

Caresana et al. 

(2011) 

Willumsen 

(2012) 

LGTE (2008) 

CONEG (1994) 

Direct raw gas 

burning for 

electricity 

Energy generator investment (I) 
 e

.

e kWxx,kWI , 64815) (€ 53601    

r2=n.a.; n= 127; [10 kWe; 2 MWe] 
(ASUE 2011) 

 
Operation and maintenance cost 

(o&m) 

 e

.

emo kWxx)kWh(ctC , 053.17 € 47801

&

   

r2=n.a.; n= 127; [10 kWe; 2 MWe] 
(ASUE 2011) 

 Average electrical efficiency  ( e ) 
1ln 5670165630ln  )(π..)(η ee  

r2=0.7953; n=215; [7.5 kWe; 8.92 MWe] 
(ASUE 2011) 

Waste-to-energy 

(WTE) 
Investment (I)  ],[ 79715 820

e

. kWxx,I(€)   
Gómez et al. 

(2010) 

 
Annual operation and maintenance 

cost (o&m) 
4% y-1 of investment (I) 

Gómez et al. 

(2010) 

 
Emission cleaning system 

investment for BAT 
24% of  investment (I) 

Zabaniotou and 

Giannoulidis 

(2002) 

 Average electrical efficiency  (e) 21% 
Burnley et al. 

(2011) 

Biogas-to-BioSNG Digester (I) 
],[18,248€)( 138586.0  hNmxxI  

 r2=0.9832; n=14; [53 13

4

hNmCH , 1,060 13

4

hNmCH ] 

Urban et al. 

(2008).  

Althaus and 

Urban (2005) 

 
Annual operation and maintenance 

cost (o&m) digester 
13% y-1 of Investment (I)  

 Upgrading unit (I) 
],[ 268,83 13

4

47930 -

CH

. hNmxxI(€)   

r2=0.855; n=9; [152 13

4

hNmCH ; 1,220 13

4

hNmCH ] 

Urban et al. 

(2008).  

Althaus and 

Urban (2005) 

 
Annual operation and maintenance 

cost (o&m) 
25% y-1 of investment (I) 

Urban et al. 

(2008).  

Althaus and 

Urban (2005) 

 

Injection into the net (I). 45 bar 

max. network pressure and 1 km 

length 

],[ 5970 13

4

9970 -

CH

. hNmxx.I(€)   

r2=0.997; n=3; [305 13

4

hNmCH ; 1,192 13

4

hNmCH ] 

Urban et al. 

(2008).  

Althaus and 

Urban (2005) 

 
Annual operation and maintenance 

cost (o&m) injection 
3% y-1 of investment (I) Assumed 
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7. Results 

7.1 Municipal Solid Waste Sector 

The potential energy that could be derived from municipal solid waste (MSW) in Chile was 

analysed using the proposed methodological approach based on a techno-economic 

assessment described in Section 4. Supply-cost curves were used to present and compare the 

aggregated data for the energy potential and the cost of energy generation. The electricity 

generation alternatives assessed were landfill gas-to-energy (LGTE) and direct waste-to-

energy (WTE) as well as gas collection and upgrading to feed into the grid (LGU). These 

options were evaluated and subsequently compared using such criteria as the production 

cost, the technical and economic potential and the challenges for the country in the near 

future. 

 

7.1.1 Introduction 

 
Municipal solid waste (MSW) generation is a major topic in the management and planning of 

modern societies. MSW applies pressures to both the environment and the health of the 

population, steadily accumulating cost for management and potentially detracting from the 

population’s standard of living. Furthermore, the public’s greater awareness of environmental 

matters leads to additional motivation via environmental issues, resulting in demands on 

authorities for stricter control and environmentally sound strategies for addressing this 

problem. 

 

Although the hierarchy of landfilling versus incineration as the most effective method to treat 

MSW is unclear because it depends on local particularities (Dijkgraaf & Vollebergh 2004, 

2008; Themelis 2008), there is consensus that recycling offers substantial benefits and must 

be considered as the starting point of any national MSW policy; this consideration would 

facilitate the decoupling of the MSW generation rate from economic growth (an aspect 

particularly relevant for developing countries), the reduction of biodegradable matter 

deposition and the subsequent uncontrolled emission of such greenhouse gases (GHG) as 

methane, carbon dioxide, ammonia and other trace compounds. Nonetheless, recycling 

demands relevant modifications to the habits of a population;   for instance, the introduction 

of well-distributed curb-side services throughout the country (for collection of plastic bottles, 

glass, paper, etc.), the existence of a formal industry able to recover and process the recycled 
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material and actively coordinated actions among the public entities responsible for household 

waste. 

 

In Chile, approximately 6.5 millions of tons of MSW were generated in 2008 (Pérez 2010), 

and, since the System of Environmental Evaluation (SEE) came into force in 1997, the 

country has made considerable progress in matters of collection, recycling, minimisation and 

landfilling of MSW. Approximately 60% of the total MSW generated was collected in the 

municipalities (data from 2008), with a rate of approximately 80% collection in municipalities 

with populations upwards of 50,000 inhabitants (Machado & Malarín 2007). Furthermore, the 

country contains an internal market for recycled plastic, cardboard, glass, aluminium and 

scrap, accounting for 11% in the Metropolitan Region (Bräutigam & González 2012). 

 

Beyond the progress accomplished thus far, significant challenges remain to improving the 

management of a growing amount of MSW associated with the rising income levels observed 

in recent decades as well as demographic growth. Modifications of recent sanitary regulations 

should improve the conditions of final MSW deposition sites. 

 

7.1.2. MSW Management 

 

According to the new laws and regulations in Chile (Willumsen 2005; Decree 189), final 

deposition sites are classified under three categories: a sanitary landfill is defined by such 

requirements as impermeable liners, leachate collection and lixiviation treatment systems. The 

second category is a landfill dump, which consists of dumps where the MSW is deposited 

without major technical requirements; these dumps are only allowed to operate under 

exceptional conditions; this type of deposition site is being eliminated and should be 

completely gone within the current year. The final category is illegal dumps, which, as their 

name suggests, do not fulfil the established sanitary conditions, and consequently, are illegal 

to operate. 

 

Methane is continuously released mainly during landfill operation, but it can also extend long 

after landfill closure; methane generation is uncontrollable because it is produced by the 

anaerobic microbiological activity within the landfill material. Worldwide methane emissions 

from landfills are estimated at 35-73 Tg of the total 598 Tg per year (IPPC 2001). Because 

methane is a greenhouse gas (GHG) with commercial value, a permanent effort has been 
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made to capture and use it as a source of energy (Methane to Markets 2004). Until recently, it 

has been primarily used for electricity generation and direct heating, and to a lesser degree, as 

a pipeline gas for injection into distribution networks (Themelis & Ulloa 2007). 

 

An alternative to direct landfilling is the waste-to-energy option (WTE), which was 

previously known as incineration. This method uses the MSW (with or without sorting) as a 

fuel to generate energy via a (normally) combined heat and power scheme. The WTE 

technology has exhibited a noteworthy improvement in performance in recent years, with the 

integration of enhanced abatement control of pollutants. The U.S. Environmental Protection 

Agency (EPA) named WTE technology as one of the cleanest sources of energy 

(Psomopoulos, et al. 2009) due to the steadily diminishing levels of dioxin, furan, mercury 

and other heavy metal emissions over the last twenty years. From an international perspective, 

Taiwan constitutes a unique experience in the field (Kuo, et al. 2008) incinerating 53% of its 

MSW (data from 2008). Close on the heels of Taiwan are Denmark, which incinerates 48% of 

MSW, Switzerland and Sweden with 49%, the Netherlands at 39% and Germany at 34% (data 

from 2009) (Eurostat News Release 2011). 

 

Today, there are approximately 39 landfills operating in Chile (data from 2011) (National 

Service of Environmental Assessment 2012), with an approximate average population of 

420,000 inhabitants served per landfill. Fourteen of these landfills have incorporated clean 

development mechanisms (CDMs) (CGF-MDL 2011) in which collection systems were 

implemented primarily to flare the released gas. Only one landfill has implemented gas 

capture to produce electricity, attaining a current generation capacity of 14 MWe that is 

projected to reach 28 MWe by 2024. No application of landfill gas recovery for injection into 

the country’s natural gas grid exists yet, nor are there any incineration facilities. 

 

The aim of this section is to explore the uses of MSW generated in Chile for energy recovery 

at the national level via an economic assessment of three energy alternatives based on state-

of-the-art technologies and without proposing substantial modifications to MSW collection. 

The energy options considered in this research, and schematically presented in Figure 7.1.1, 

are: i) burning of spontaneously generated landfill gas that is captured to produce electricity 

(LGTE); ii) direct use of unsorted MSW via incineration (WTE); and iii) landfill gas recovery 

and upgrade for injection into the natural gas grid (LGU). 
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At a regional level, Amini & Reinhart (2011) evaluated the recovery of landfill gas in Florida 

(USA) by applying selected modification to the LandGEM model. The modified assessment 

considered the generation of electricity via direct combustion and an equivalent gaseous fuel, 

although an economic evaluation of the end-product cost was not incorporated. An alternative 

approach was discussed by Schneider et al. (2012), who proposed an evaluation of the use of 

landfill gas for electricity production (LGTE), MSW use for refuse-derived fuel (RDF) in the 

cement industry, landfill gas flaring, waste-to-energy (WTE) (also known as incineration and 

thermal treatment) and mechanical-biological treatment (MBT). The assessment was 

conducted by comparing the specific cost reduction for the above-mentioned alternatives. 

Each conversion route was evaluated for a typical plant size. 

 

 
Figure 7.1.1 Energy options for assessment for MSW utilisation. 

 
Although the mechanical-biological treatment (MBT) seemed promising, it was not 

considered within the scope of the evaluation because this approach requires sorting and other 

intermediate pre-treatments. Furthermore, from preliminary experience, the MBT 

performance is highly dependent on the involved mechanical treatment steps and the quality 

of the raw material, as discussed by Bayard et al. (2010). A specific study is needed for 

assessment of the MBT option at a regional or national level, which can be carried out in 

follow-up research. 

 
7.1.3. Methodology 

The following sub-sections present the methodology applicable to the previously indicated 

three conversion routes in MSW analysis. It structures the specific economic and technical 

framework under analysis and allows for the comparison of conversion routes, their potential 

and the cost of their end products, with a particular focus on the conditions of the conversion 

option within a market framework. 
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7.1.3.1 Methodology for the Technical Potential 
 
The estimation of the MSW was carried out for each landfill in operation using technical 

information published by official government entities and the approximate serviced 

population, in addition to the composition and characteristics of the MSW (National Service 

of Environmental Assessment 2012). In the calculation, a specific MSW generation rate per 

inhabitant (R) was applied to each administrative region. The value of this indicator, shown in 

Table 7.1.1, is in agreement with the country’s economic development. For instance, the U.S. 

produced 0.733 t hab-1y-1 (data from 2008) (EPA 2011); in the European Union this value 

reaches 0.542 t hab-1 y-1 (data from 2008) (Waste Oportunities 2011), whereas in urban India 

this value ranges from 0.50 to 0.70 t hab-1y-1 (data from 2008) (Jha, et al. 2008). 

 
Table 7.1.1 Specific MSW generation rate in Chile per inhabitant per administrative region (Pérez 2010). 

Country region’s name 
Rj 

(t hab-1y-1) 
Country region’s name 

Rj 
(t hab-1y-1) 

Región Arica y Parinacota (XV) 0.59 Región Libertador B. O’Higgins (VI) 0.24 
Región de Tarapacá (I) 0.59 Región del Maule (VII) 0.30 
Región de Antofagasta (II) 0.34 Región del Biobío (VIII) 0.29 
Región de Atacama (III) 0.37 Región de la Araucanía (IX) 0.34 
Región de Coquimbo (IV)  0.22 Región de los Lagos (X) 0.32 
Región de Valparaíso (V) 0.34 Región de Aysén (XI) 0.39 
Región Metropolitana (XIII) 0.42 Región de Magallanes (XII) 0.39 
  Región de los Ríos (XIV) 0.36 
 

Although the specific MSW generation rate depends on the socioeconomic level of the 

population as well as its consumption habits, this rate was assumed as constant for each 

administrative region and simply adjusted to the year of evaluation (2011) by assuming a 

linear proportionality with an expected annual economic growth rate of 6.3% for 2011 

(Financial News 2012c). 

 

The main components of landfill gas are methane (40%-60%), carbon dioxide (35%-50%), 

nitrogen (0%-20%), oxygen (0%-1%), hydrogen sulphide (50-200 ppm) and ammonia (5 

ppm, typically) (Rasi, et al. 2011). The organic silicon compound concentration in landfill gas 

is particularly high (Dewil, et al. 2006), ranging from 3 to 24 mg Nm-3 (Ajhar, et al. 2010). 

Numerous volatile organics (VOC), aromatics and halogenated compounds are present, and in 

certain cases, more than one hundred trace compounds have been reported. This complexity is 

a consequence of the heterogeneity of the residues and the uncontrolled conditions under 

which a landfill operates. The generation rate of landfill gas additionally depends on local 

conditions and seasonal variations (i.e. humidity, temperature, rainfall) as well as the type of 

landfill operation and how the MSW is deposited. Furthermore, the gas release is intrinsically 
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related to the opening and closing times. There are numerous models available to estimate the 

landfill gas emitted on a temporal basis although significant differences between cases are 

generally observed in the predictions (Thompson, et al. 2009; Ritzkowski & Stegmann 2007; 

Meraz, et al. 2004; EPA 2005). 

 

According to Themis et al. (2007), the capture of landfill gas (M), expressed as pure methane, 

is in the 100-150 13
CH tNm

4

  range and depends on the way in which the gas is collected (i.e. 

whether it uses a passive venting or active collection system, vertical wells or horizontal gas 

collection trenches, etc.). Thus, a conservative estimate of 50 13

4CH
tNm  from placed MSW was 

employed for the methane generation rate from a landfill, following the recommendations 

given by the same author. Therefore, the gas flow, expressed as pure methane that can be 

technically recovered and upgraded is calculated as indicated in Equation 7.1.1. 

 

ij
LGU
it PRM   ,   Equation 7.1.1 

 
In which LGU

it ,
  is the methane technically recovered from the ith-landfill, P is the population 

serviced (hab) at the ith-landfill, Rj is the MSW generation rate per capita (t hab-1y-1) of the 

jth-administrative region and M is the methane-landfill gas recovered per unit of landfilled 

MSW ( 13

4CH
tNm  ). The technical potential of the electricity generated by burning the landfill 

gas can be calculated as indicated in Equation 7.1.2. 

 

e
CH
LHVij

LGTE
it HPRM   

~
   4

,   Equation 7.1.2 

 

In which e  corresponds to the electrical efficiency of the conversion units, 4CH

LHV
H  is the 

lower heating value of methane estimated as 50,000 kJ kg-1 (Avallone, et al. 2007), and 

equivalent to approximately 13
CH MMBTU Nm 59.31

4

 . If reciprocating engines are sufficient 

for the power range of the landfills under analysis, this equipment will be used as a reference 

technology in the assessment for the conversion of the landfill gas to electricity presented in 

the forthcoming section. 

 

Regarding the composition and the corresponding humidity for the sorted components, Table 

7.1.2 shows the MSW characteristics in the XIII Region (also called the Metropolitan Region) 

(Bräutigam & González 2012), which was taken as representative for the entire country due to 

the lack of more specific information. 
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Table 7.1.2. Composition, humidity and lower heating value (dry) of MSW components. 

MSW Component 
MSW composition as 

received (%) 
Estimated humidity 

(%) (wet basis)  
LHV (kJ kg-1) 

Paper and cardboard 10.7 0.5 10,000 
Fabrics 3.5 1.0 12,500 
Plastics 10.8 1.5 28,000 
Glass 6.3 0 0 
Metals 3.2 0 0 

Organic matter 49.4 29.5 3,300 
Miscellaneous components 16.1 0 14,300 

Dust-ash 1.2 0 0 
 

Considering the lower heating value of each component (Finet 1987) and its humidity 

(Bräutigam & González 2012), an average heat of combustion (LHV) of 7,930 MJ t-1 for a 

homogenous fuel is estimated for this MSW; this value is then used for the estimation of the 

technical potential on a thermal basis, as Equation 7.1.3 indicates. The electrical potential of 

burning the MSW without sorting (WTE) is then calculated by considering an electrical 

efficiency (e) of 21% (Burnley, et al. 2011). 

 

eij
MSW
LHV

WTE
it PRH     

~
, 

 Equation 7.1.3 

 
The technical potential of the entire country, either for the electricity or gas evaluation route, 

can be calculated as the sum of all single technical potentials on the nth-landfills and for each 

conversion pathway, as shown in Equation 7.1.4. 

 




n

i

LGTE
it

LGTE
t

1
,  



n

i

WTEWTE
t it

1
,

  


n

i

LGULGU
t it

1
,

  Equation 7.1.4 

 

7.1.3.2 Methodology for the Economic Modelling 
 

The unitary cost of electricity or upgraded gas generated from each landfill is calculated 

according to Equation 7.1.5. 

 

iimoiiti RCIc  ,&,   Equation 7.1.5 

 

In which ic  is the unitary cost of secondary energy, either for the landfill gas-to-energy 

(LGTE), waste-to-energy (WTE) option, or landfill gas upgrade (LGU) alternative. The 

parameter  is the capital recovery factor, calculated with an annual interest rate of 10% and a 

fifteen-year lifetime for all cases. The annual operation and maintenance cost, moC & , was 
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estimated as a fraction of the investment, a methodology based on mathematical regressions 

of economic data published elsewhere and an approach used in pre-feasibility studies and 

economic analysis (Chauvel, et al. 2003; Couper 2003). A location factor of 1.08 was 

included as the investment for the country; this factor mainly addresses the additional cost for 

freight, taxes and insurance (Chauvel, et al. 2003). The value of 
i

R  corresponds to revenues, 

which may be incorporated as heat generated for sale or re-use of any by-product. Because 

Chile does not have a district heating market, revenues were not incorporated (OECD-B 

2012). Detailed information of the methodology and technical and economic information is 

given in Chapter 4 and Chapter 6. 

 

Landfill gas extraction is the first step of the recovery. The collection system contains a set of 

extraction wells that are normally located at selected depth intervals and share a common 

collection point by means of a pipe network. Afterwards, the gas is normally desulphurised by 

a conventional activated carbon system and then burned to produce electricity, as previously 

mentioned. On the other hand, in the WTE option, the MSW is combusted at high temperature 

(above 800°C), and the heat generated is then used in a steam power generation cycle to 

produce electricity. The current development status of WTE technologies may allow its use 

without creation of dioxin pollution (Cheng & Hu 2010; Zhiqiang, et al.; 2006; Montejo, et 

al. 2011). WTE is an advanced technology characterised by a heavy investment and high 

operating cost and is appropriate in most cases when landfilling is unfeasible (Rand, et al. 

1999; Rand, et al. 2000) The main solid residue is ash, and its generation rate depends on the 

MSW composition. This residue could be used as a by-product in construction applications 

but a large fraction must be landfilled. The final ash deposition cost (transportation included) 

for this assessment was estimated at 16 € t-1 (Willumsen 2005). 

 

The third energy alternative for evaluation corresponds to the generation of a gaseous fuel by 

treatment of the landfill gas. The product was defined as a bio-substitute natural gas (Bio-

SNG) because it fulfils the definition of originating from biomass digestion and has the 

capacity for subsequent improvement and adjustment of properties for injection into the net 

distribution or for use as a fuel for vehicles (Steifer 2009). 

 
In a simplified representation, the treatment of landfill gas to produce high-quality pipeline 

gaseous fuel can be split into the steps of collection, cleaning, upgrading and feed-in, as 

analogously described in Chapter 5. Normally, in the cleaning step, hydrogen sulphide and 
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other sulphur compounds are removed through a conventional active carbon adsorption, alone 

or in combination with chilling systems (Urban, et al. 2009). The next step contains the most 

expensive unit in this chain in which carbon dioxide is uptaken by a technology such as 

pressure swing absorption (PSA), pressure water wash (PWW) (Läntela, et al. 2012), or 

amino-chemical absorption (Gaur, et al. 2012). In addition to carbon dioxide removal, the 

simultaneous elimination of ammonia take places as well as sulphur, halogenated and silicon 

compounds; in most cases, these two steps are sufficient to satisfy the most relevant gas 

injection requirements. Although there are differences in the cost of carbon dioxide uptake 

between the previously mentioned technologies, these differences intrinsically depend on 

utility prices (i.e. electricity, cooling water, labour, etc.) and landfill gas flow to be treated. 

Nevertheless, for this study, no differences in the upgrade technology investments and 

operating cost are assumed, such that a unique mathematical relation can correlate them, as 

discussed in previous chapters. 

 
Economic information from the literature and other technical reports was gathered for the 

estimation of the investment and total the operation cost for landfill gas collection systems 

(see Chapter 4), waste-to-energy facilities (Gómez, et al. 2010; Zabaniotou & Giannoulidis 

2002), upgrade units and gas injection systems for feeding into the natural gas grid (Althaus 

& Urban 2005; Urban, et al. 2005) as well as for reciprocating engines for electricity 

generation (ASUE 2011). The value of 0.22 ct€ -3
CH4

Nm  was used for the desulphurisation 

cost, according to Mescia et al. (2011). Table 6.1 summarises the economic information 

related to the investment and to operation and maintenance cost as well as key technical 

figures such as the conversion efficiency of each technological pathway to be assessed, i.e., 

collection of landfill gas and its posterior direct burning in a reciprocating engine (LGTE), 

waste-to-energy (WTE) and the collection of landfill gas and follow-up upgrade to feed-in 

(LGU). This information was subsequently incorporated into the economic model defined in 

Equation 7.1.5. In each case, the representative generation cost and the economic potential 

were calculated as described in the following section. 
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7.1.3.3 Methodology for the Economic Potential 

 

For the three energy alternatives proposed, supply-cost curves were used to conduct the 

potential analysis with selected adaptations made for the purposes of this study as previously 

mentioned in chapter 4 Methodology for the Potential Analysis at National Level. The supply-

cost curve was built for each conversion route, i.e. LGTE, WTE and LGU, by assessing the 

unitary cost for each single potential 
it ,

 . The representative generation cost is then expressed 

as the most frequent cost and mathematically calculated in the statistical mode as follows: 

 
]mode[ , )(πcc itir   Equation 7.1.6 

 

After calculating the representative generation cost, the economic potential of the technology 

can be estimated by interpolation with the supply axes. Therefore, the economic potential can 

be interpreted as the total amount of energy that can be generated at a cost lower than the 

representative generation cost. The comparison between the representative generation cost 

)(
r

c  for each secondary energy, either gaseous fuel or electricity, with its average market 

price is performed to discuss the economic cost effectiveness of each assessed option and to 

identify the need for subsidies if the process is not economically competitive. 

 

Finally, the information is integrated into a geographical information system (GIS), in which 

the energy potential map can be visualised with the county as the smallest geo-administrative 

control area for each of the regions composing the country. 

 
7.1.4. Results 

 
Figures 7.1.2 and 7.1.3 display the supply-cost curves for electricity generation through the 

collection and burning of landfill gas (LGTE) and by waste-to-energy (WTE) without sorting. 

The former option exhibits a technical potential of approximately 1.1 TWhe y-1 with a 

representative generation cost of 11.0 ct€ kWhe
-1, whereas the latter offers a technical 

electrical potential of approximately 2.2 TWhe y-1 and a representative generation cost of 

electricity of 10.6 ct€ kWhe
-1. 

 



Chapter 7 Results 

 103

500 600 700 800 900 1000 1100

6

8

10

12

14

(GWhey
-1)

Representative generation cost

t,1= 53,707  kWe

t,23=505  kWe

t,31=69  kWe

11.0

E
le

ct
ri

ci
ty

 C
os

t (
ct

€ 
kW

h e-1
)

T
ec

hn
ic

al
 p

ot
en

ti
al

E
co

no
m

ic
 p

ot
en

tia
l

 

1400 1600 1800 2000 2200

6

8

10

12

14

16

E
le

ct
ri

ci
ty

 C
os

t (
ct

€ 
kW

h e
-1

)

 (GWhey
-1)

Representative generation cost
10.6

E
co

no
m

ic
 p

ot
en

ti
al

Te
ch

ni
ca

l p
ot

en
ti

al

t,1= 116,631 kWe

t,16
 =2,802 kWe

t,29 =302  kWe

 
Figure 7.1.2. Supply-cost curve for landfill gas-to-

energy option (LGTE). 
Figure 7.1.3 Supply-cost curve for waste-to-energy 

option (WTE). 
 

The technical and economic potential of the LGTE option are practically identical (see Figure 

7.1.2); therefore, it is made of the 23 largest landfills in operation. On the other hand, as 

Figures 7.1.3 shows, the economic potential of the WTE option is approximately 95% of the 

technical potential and can be supplied by the MSW currently disposed of in the 16 largest 

landfills. 
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Figure 7.1.4. Supply-cost curve for landfill gas upgrade option (LGU). 

 
The third energy alternative involves the collection of landfill gas released under uncontrolled 

conditions and the subsequent upgrades required for injection into the natural gas grid. Due to 

the difference between the forms of secondary energy generated in the two previous 
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alternatives, the figure was also expressed in millions of British Thermal Units (MMBTU), 

the unit commonly used in official energy statistics of LNG and natural gas prices (BP 2013). 

For the totality of landfill gas under evaluation, the representative cost of the upgraded gas is 

9.5 € MMBTU-1 with a technical potential of 260 MM Nm3 y-1. The economic potential is 

approximately 86% of the technical potential and can be supplied by the 10 largest landfills in 

operation. 

 

Table 7.1.3. Energy potential of the three assessed options for MSW utilisation. 
 Alternative of energy generation from MSW 

Economic Indicator 
Landfill gas-to-energy 

(LGTE)  
Waste-to-energy  

(WTE)  
Landfill gas-to-upgrade 

(LGU)  
Technical potential 1.1 TWhe y

-1 2.2 TWhe y
-1 260 MM Nm3 y-1 

Economic potential 1.1 TWhe y
-1 2.1 TWhe y

-1 224 MM Nm3 y-1 
Minimum cost of production 5.4 ct€ kWhe

-1 8.6 ct€ kWhe
-1 5.0 € MMBTU-1 

Representative cost 11.0 ct€ kWhe
-1 10.6 ct€ kWhe

-1 9.5 € MMBTU-1 
 

Figure 7.1.5. Electricity technical potential from landfill gas-to-energy (LGTE) and waste-to-energy (WTE) 
options. 

 

As shown in Figures 7.1.5 and 7.1.6, the technical potential for the three assessed options are 

concentrated in certain municipalities in the XIII Region (Metropolitan Region), accounting 

for 67% of the total energy potentially available from the MSW in the most populated area of 

Chile. On the other hand, a significantly lower energy potential is observed in the rest of the 
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country, which is explained not only by the lower population density but also by the 

construction of small-scale landfills. 

 

 
Figure 7.1.6. Bio-SNG technical potential from landfill gas upgrade option (LGU). 

 

7.1.5. Discussions 

 

During 2010, the average industrial and commercial electricity prices for the country reached 

10.4 ct€ kWhe
-1 and 16.8 ct€ kWhe

-1, respectively (OLADE 2011), and these prices have 

experienced a steady increase in recent years. In this context, considering the electricity 

generation cost for the LGTE and WTE options mentioned previously, both options are nearly 

economically profitable, at least on a pre-feasibility level, if only the cost of production is 

considered as the most relevant economic indicator. 

 

Despite the fact that the end products from both the LGTE and WTE options are electricity, 

the difference in the cost and potential can be explained as a consequence of the different 

technologies used in the conversion process, which implies a substantial difference in 

investment and operating cost as well as in the efficiencies and environmental implications. 
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All of these factors have an impact on the economic potential, which have a ratio of 

approximately 1:2 for this case. 

 

Similarly, the natural gas price has been increasing in recent years and reached a distribution 

price of approximately 15-22 € MMBTU-1 (data from 2011); thus, the cost of production for 

Bio-SNG would be competitive at 9.5 € MMBTU-1, and this option would not require 

subsidies to become economically attractive for the 10 landfills that comprise the economic 

potential. The injection of Bio-SNG is an alternative that takes advantage of the benefits of 

transportation across the natural grid; however, its use as a vehicle fuel may have a significant 

chance at commercial implementation when it is considered for particular applications e.g., 

compressed methane as a fuel for garbage and cleaning trucks, with filling stations located 

near the landfill and upgrading plant where it is compulsory for the trucks to arrive and 

depart. This option offers a realistic starting point for a commercial application without 

coming up against fuel distribution for private transportation in which fuel supply plays a 

highly relevant role. 

 

Although the largest energy potential lies in the WTE option, which represents approximately 

3.7% of the total national electricity consumption1 (National Commission of Energy 2010), 

according to international experience the major inconvenience of this technology rests on its 

social acceptance. Furthermore, a national effort focusing on MSW recycling should be 

implemented before the introduction of WTE technologies despite the favourable current 

market condition of electricity prices in the long-term. Although there have been notable 

achievements in recycling and MSW landfilling in Chile, these efforts remain modest when 

compared with countries where WTE has been successfully introduced as a part of a national 

MSW strategy in which recycling plays a pivotal role. 

 

7.1.6. Preliminary Conclusions 

Using a comparative analysis, the main differences in the cost and potential uses of MSW for 

energy generation were assessed at a national level. For the LGTE and WTE alternatives, the 

difference between the economic potential is a factor of two, with a slightly lower cost of 

electricity generation in the former case. For landfill gas upgrade to feed-in (LGU), the 

economic potential of the entire country reaches a scale that may allow for the 

implementation of recovery systems with upgrade to a commercial size. 

                                                 
1 56.05 TWhe of electricity consumption for 2009 (National Commission of Energy 2010). 
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The results suggest that a combined implementation of the production of high quality pipe-gas 

and electricity would be the most satisfactory practice because the Bio-SNG option is only 

competitive for the largest 10 landfills, accounting for 25% of the total landfills in operation 

and exhibiting a high sensitivity to the cost of generation. A significant number of landfills 

are inadequately suited for the implementation of any of the three energy recovery systems 

evaluated because of their scale. The results support the fact that the main difficulty lies in the 

existence of landfills that cannot profit from economies of scale at the range in which energy 

recovery systems operate economically, most significantly affecting those landfills that serve 

regions with lower population densities. This difficulty could be overcome if waste transfer 

stations were set up for regions with low populations, such that fewer but larger landfills 

could operate at a higher capacity, and, consequently, under conditions that are more 

advantageous for energy recovery. However, this option entails coordinated and cooperative 

actions between municipalities that have historically faced the problem of waste management 

independently instead of looking for cooperative solutions. 

 

These results must be considered as a basic framework that can orient the decision-making 

process or the implementation of environmental policies either in the short or long term. Other 

aspects that will become more important in the long-term must be taken into consideration in 

further research such as environmental impacts or public acceptance of MSW processing 

technologies as well as the incorporation of incentives for recycling and the sorting of organic 

fractions of the MSW, tax-cuts for recovered methane for use as a transportation fuel and the 

impact of these efforts in the strategy of using MSW as an alternative source of energy. 
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7.2. Wastewater Treatment Sector 
 

In this section, the energy that can potentially be obtained from the digestion of sludge 

generated from wastewater treatment processing (WwT) was calculated using the proposed 

methodology. The different pathways of electricity generation via the direct combustion of 

biogas and upgraded biogas produced as bio-substitute natural gas (Bio-SNG) for injection 

into the gas grid were assessed and compared. Information such as the population served, 

WwT technology employed and geographical distribution of the sludge sources was gathered 

to estimate energy potential. 

 

In contrast with the previously assessed sector, municipal solid waste (MSW), either 

electricity or Bio-SNG from WwTP sludge processing would necessitate subsidisation to 

become economically attractive. To illustrate the procedure for the calculation, this chapter 

will act as a test case for the other sectors to be evaluated in this thesis (i.e. livestock farming, 

agricultural and co-digestion). 

 

7.2.1 Introduction 

 

The supply of water and sanitation services constitutes an indispensable requirement for the 

protection of public health, maintenance of basic living conditions, and the protection of biota 

and natural resources. Although the advances made in wastewater treatment technologies over 

last decades have been outstanding, the universalisation of water and sanitation services 

remains a major challenge for the 21st century (Castro, et al. 2009). 

 

Under a modern perspective, a centralised municipal wastewater treatment (WwT) 

programme was set up in Chile thanks to a large-scale water reform policy started in the late 

1990s, leading to the privatisation of this service sector which was previously managed 

integrally by the state. In parallel to this restructuring, the development of emissions standards 

for municipal sewage discharge was introduced when the General Environmental Law (1997) 

came into effect with the consequent obligation for water supply companies to treat polluted 

water after discharging it into the surface-water environment for the purposes of preserving 

biota, avoiding the detrimental effects, improving the value of touristic sites and protecting 

human health. According to the World’s Water Report (2008), Chile has 922 billion cubic 

meters of total renewable freshwater. Furthermore, 87% of the urban population was 

connected to wastewater treatment plants (WwTPs) by 2010 (Water Supply Superintendence 
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2012), a share that is in line with OECD countries (European Environment Agency 2011 

2011); this figure is expected to reach 98% and then 99% by the present year (2013) and 

2015, respectively (see Figure 7.2.1). 
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 Figure 7.2.1. Share of population served by public wastewater 
treatment facilities in Chile 1990-2010 and projection for 2015.  

Water Supply Superintendence (2012). 

 

 

WwT is a set of physicochemical processes employed to remove pollutants, which can be 

physical, chemical or biological substances. WwT is normally divided into primary, 

secondary and tertiary treatment and selected according to the environmental regulations that 

the treated water must comply with. Whereas primary systems (also know as mechanical 

treatments) entail the removal of suspended solids, floating materials and scum from raw 

sewage, commonly by sedimentation or flotation, secondary treatments (also known as 

biological treatments) aim to remove dissolved organic matter by anaerobic or aerobic 

biochemical processes. In tertiary systems (also called advanced treatments), the organic 

matter remaining after secondary treatment is removed, along with phosphorous and nitrogen, 

to control nutrient levels. Finally, disinfection may be conducted to meet the standards of 

effluent regulations. 
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Activated sludge
143 plants

Wastewater emissary
32 plants

Primary system 
13 plants

Stabilisation pond
17 plants

Others
11 plants

54%

12% 6%

19%

4%

5%

Aerated lagoon
50 plants

266 Wastewater Treatment Plants in Operation (2011)

 

 

 Figure 7.2.2. Wastewater treatment technologies used in Chile.  
Water Supply Superintendence (2012). 

 

 

As Figure 7.2.2 shows, the most common primary treatment technology employed in the 

country is sedimentation, which comprises 5% of the total. In particular cases, it is followed 

by disinfection, and this two-step treatment is sufficient to meet the environmental 

regulations. The most heavily employed system of secondary treatment is activated sludge, 

which includes conventional activated sludge (CAS), extended aeration, oxidation ditch or 

sequential batch reactors and makes up 54% of the total technology employed. The 

stabilisation pond is the second most commonly used technology in secondary treatment at 

6% of the total and entails wastewater treatment of large surfaces, with or without aeration. Of 

the total number of WwTPs, the remaining 12% are wastewater emissary, which collect 

wastewater and then dispose of it in the ocean. The introduction of a tertiary system is 

practically nonexistent, mainly as a consequence of current environmental observances. 

 

7.2.2. WwTP Sludge Management 

 

In spite of the advantages in WwT, processing inevitability generates sludge at a significant 

rate, creating a new environmental problem to deal with (Athanasoulia, et al. 2012). Although 

sludge has been traditionally handled as a waste management problem (WMP) in most EU 

countries, sludge landfilling has gradually decreased as the trend of reusing it as fuel has 

gained value (Kalderis, et al. 2010). The same tendency can be observed in Chile, where 

sludge landfilling has faced increasingly strict regulations with which to comply (Decree 4; 
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Decree 189). In addition, prior to transportation and final disposal, which involve total cost of 
-1

FM
 t€ 60  roughly, the sludge necessarily requires pre-treatment. This pre-treatment typically 

include mechanical dewatering and thickening, operations that demand energy as well as 

consumable chemicals, and, consequently, increases the cost of wastewater treatment (Coffey 

2009). These new conditions are indirectly forcing WwTP operators to seek new cost-

competitive options. Additionally, the environmental framework previously discussed 

coupled with an increase in the cost of energy could become an additional driving force for 

sludge “residues” to become “by-products”, useful as a raw material for energy generation, 

with a trade price that might reflect market competition. 

 

In this new environmental and economic scenario, anaerobic digestion could significantly 

contribute to solving the situation previously described. The main product from the anaerobic 

digestion of WwTP sludge is biogas composed mainly of methane (40-75%) and carbon 

dioxide (15-60%). As previously described, biogas can be used either to generate electricity 

through combustion or to produce an upgraded gas with the option to use it as vehicle fuel, or 

for injection into the existing natural gas network. Besides, biogas generation via anaerobic 

digestion offers the chance to stabilise and considerably reduce the volume of WwTP sludge 

by generating a by-product that may be sold as a bio-fertiliser, consequently improving the 

economics of the entire process. The body of evidence indicates that biogas generation as a 

waste-to-energy strategy to deal with the sludge generation problem can be considered an 

economic, environmentally friendly and decentralised solution. Concerning the biogas for 

electricity or gaseous biofuel generation option, it has particularities that must be analysed on 

a case-by-case basis in order to identify the most attractive option from an economic, 

environmental and socio-political standpoint. 

 

In the biogas-to-energy pathway, the direct production of electricity from the biogas 

combustion, a CHP scheme seems to be the most suitable option (Jiri 2010). A decentralised 

gas-engine CHP is a robust, state-of-the-art technology encouraged as a means to reduce CO2 

emissions. Alternatively, raw biogas can be treated to produce a gaseous energy carrier, the 

so-called bio-substitute natural gas (Bio-SNG), with the same standards as commercial natural 

gas (Seifert 2009). The main advantages of this option are associated with a high 

transportation efficiency and the possibility of using the existing distribution infrastructure 

without the need to adapt or substantially modify it. To attain this, biogas conditioning can be 

carried out via a subsequent set of unitary operations such as desulphurisation, drying, 
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siloxane removal, carbon dioxide uptake and the adjustment of calorimetric properties and 

injection, as previously described. 

 

With an orientation towards a waste-to-energy strategy, Chile has already started producing 

biogas at large scale from WwTPs. In a pioneer project performed by the gas distribution 

company Metrogás, sludge generated in La Farfana WwTP is used as a substrate for anaerobic 

digestion. This is one of the world’s largest WwTPs (Halcrow 2013), processing the 

municipal wastewater of approximately 3.6 million inhabitants via a CAS. An estimated 

biogas generation rate of 24 MM Nm3 y-1 with 63% methane is transported through a 16 km 

pipeline to a town gas facility after it has been upgraded through cleaning and carbon dioxide 

removal. Afterwards, it is treated catalytically to increase its hydrogen content. This new town 

gas is then injected into the gas grid and distributed for residential consumption (Nelson 

2010). This waste-to-energy system is a prime example of how integrating processes produce 

a gaseous energy carrier with commercial value, and, simultaneously, solve an environmental 

problem without relying on subsidies. 

 

Despite the example mentioned above, there is still a lack of reliable information on biogas 

potential in regard to WwTPs. Furthermore, the increase in the price of both electricity and 

natural gas, and the WwTP scale opens the discussion as to which alternative is the most 

appropriate, biogas-to-energy or the biogas-to-upgrade pathway. Although in principle both 

options offer well-known advantages, at the moment there is no assessment that provides 

sufficient evidence through cross-assessment comparison to make a well-educated decision.  

 

Although on an international level, Poeschl et al. (2010) indicated that the annual useful 

biogas energy potential in Germany is 18PJ from WwTPs, and highlights that only 10% of the 

global potential for biogas is utilised, the theoretical and technical potential are not explicitly 

identified nor is the economic potential assessed at the regional level. Rao et al. (2010) 

estimated the biogas generation potential in India based on statistical data, putting special 

attention on residue. According to the authors, sludge from WwTPs is available in large 

quantities, however, it is not included in the assessment. Lantz et al. (2007) indicated that 

60% (3PJ y-1) of Swedish biogas production takes place in WwTPs with a total potential of 

3.6 PJ y-1. Gómez et al. (2010) evaluated the potential and electricity generation cost in Spain 

by burning biogas generated via wastewater sludge digestion, assuming the capacity for 

WwTPs and wastewater treatment technology. The assessment was then incorporated into a 
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GIS to detect areas with a high electricity potential. An analysis of upgraded biogas for 

injection was not included in the study. 

 

7.2.3 Methodology 

 

The analysis of the potential for biogas generation was conducted by applying the sequential 

limits as defined in chapter 4. These boundaries were delineated as physical limit, 

geographical limit, technical limit and economic limit, according to the definition 

propounded by Hoogwijk (2004, 2005) and Izquierdo et al. (2010). Each limit implied 

restrictions used to estimate the economic use of biogas. 

 

Supply-cost curves (Izquierdo, et al. 2010) were built for the two assessed alternatives. In 

each case, the whole process chain was considered, starting with the generation of sludge in 

situ and ending with the production of secondary energy under conditions to be utilised. In 

both cases, electricity and Bio-SNG, the representative generation cost for secondary energy 

was estimated and then employed as a simple cut-off criterion to interpolate the economic 

potential. 

 

Bio-SNG
Cost (€ MMBTU-1)

End-productsOptions to assess

Biogas-to-upgrade 
(BGU)

Biogas-to-energy 
(BTE)

Sludge
ith-WwTP 

Electricity
Cost (ct€ kWhe

-1)

 
Figure 7.2.3. Conversion pathways to assess for the utilisation of wastewater treatment sludge for the 

production of either electricity or Bio-SNG through mono digestion. 
 

Economic and technical information such as investment and operational and maintenance cost 

(O&M) were drawn on from technical reports available elsewhere (see Chapter 6). Moreover, 

the cost-generation curve for electricity generation was constructed by considering electricity 

produced via a CHP module with a reciprocating engine because this technology is more 

suitable for electricity in the low power generation range, which the electrical potential in 

WwTPs is expected to be. A closing discussion about the implementation of a feed-in tariff 

system was considered to assess its relevance in the enhancement of this bio-energy option. 
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7.2.3.1 Methodology for the Technical Potential 

 

 Physical Limit 

 

Also know as theoretical potential, the physical limit is the upper limit of the primary energy 

calculated without imposing any kind of restriction, thus corresponding to all available 

primary energy in the biomass (i.e. total sludge) and can be estimated by applying the 

following equation: 

 

jjiif MSRP    ,   Equation 7.2.1 

 

In which 
i

P  represents the population served by the ith-WwTP (hab); R )y hab (kg -11- 

ts
 

corresponds to the sludge generation rate per inhabitant; 
j

S )kg (kg -1

tsvs
 is the volatile-to-total 

solid ratio of primary or secondary sludge 2) 1,( j ; 
j

M  )kg (Nm -1

´vs

3

CH4
 is the yield of methane 

generation from the mono-digestion of sludge. The parameters used to make the calculation 

correspond with average data obtained from literature, as Table 7.2.1 indicates. 

 

Table 7.2.1. Parameters employed for the calculation of biogas potentials from WwTPs. 

Parameter Symbol Unit Value References 

Population served by i-WwTP 
i

P  hab 
National 

statistics 
(a) 

Average sludge production rate R  kgts hab-1y-1 22.20 (b)-(f) 

Volatile-to-total solid ratio in primary sludge 1S  kgvs kgts
-1 0.571 (g) 

Volatile-to-total solid ratio in secondary sludge 2S  kgvs kgts
-1 0.642 (h)-(j) 

Methane yield from primary sludge 1M  -1
´vs

3
CH kg Nm

4
 0.271 (g), (k) 

Methane yield from secondary sludge 2M  -1
´vs

3
CH kg Nm

4
 0.220 (h), (j)-(l) 

Influent organic matter-to-sludge ratio in primary system 1  kgts kgts
-1 0.750 (m) 

Influent organic matter-to-sludge ratio in secondary system 2  kgts kgts
-1 1.00 (n)-(o) 

Conversion efficiency of Bio-SNG generation c  % 98.0 (p) 

(a) (WSS 2012), (b) Osorio & Torres (2009), (c) Marxsen (2001), (d) Lundin et al. (2004), (e) Jensen & Jepsen (2005),  
(f) Fytili & Zabaniotou (2008), (g) Kepp & Solheim (2012), (h) Luostarinen et al. (2009), (i) Bougrier et al. (2006), (j) 

 Davidsson (2008), (k) Gavala et al. (2003), (l) Qiao et al. (2011), (m) Zaror (2000), (n) Lin (2007),  
(o) Uggetti et al. (2011), (p) Pettersson & Wellinger (2009). 
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 Geographical Limit 

 

Also known as geographical potential, geographical limit constrains the potential because of 

legal considerations, urban regulations or limitations imposed by the geography, such as the 

inability to collect biomass due to geographical features. As previously indicated, 266 plants 

are under operation and use conventional activated sludge (CAS) technology, primary 

systems and sequential bioreactors, and they generate sludge that may be used for biogas 

generation as well as aerated lagoon, lagooning, and oxidation ditch. On the other hand, a 

wastewater emissary does not generate sludge, so the wastewater stream empties directly into 

the sea at a safe distance from the coastline. Thus, the geographic restriction is defined as 

follows, with a new constraint applied to the physical limit: 

 

igitigjjiig AAMSRP ,,,,      Equation 7.2.2 

 

The geographical restriction 
ig

A
,
 is equal to one for all cases, except for wastewater emissary 

where it takes the value of zero. 

 

 Technical Limit 

 

The technical limit represents the theoretical outer limit of secondary energy available, 

without any regard for cost or market acceptability. To calculate the technical limit, the sludge 

generated must be estimated as a consequence of the treatment. In primary systems, in which 

only mechanical removal of suspended matter occurs, sedimenters remove approximately 

75% of total solid suspended (TS), and approximately 30 to 40% of BOD (Zaror 2000). 

Therefore, a 0.75 )kg (kg -1

´tsts
 mass generation is considered since this definition coincides with 

the removal efficiency. The majority of WwTPs running have either a primary system or 

secondary treatment system (see Figure 7.2.4), thus this configuration is assumed throughout 

the evaluation. 
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Figure 7.2.4. Schematic representation of a conventional activated sludge system (CAS) and sludge processing 
options to assess. 

 

In complete-mix systems that recycle, as Figure 7.2.4 shows schematically, the mean 

hydraulic retention time ( ) can be calculated as indicated in the following Equation 7.2.3. 

 

o
H Q

V
  Equation 7.2.3 

 

In which V  is the volume of the aerobic reactor and 
o

Q  is the influent volumetric flow. 

Furthermore, in this configuration the sludge can be continuously withdrawn from the 

recycling line. If the volatile suspended solid (VSS) content )(
e

x  in the exit line is negligible, 

the mean cell residence time 
c

  can be estimated as Equation 7.2.4 indicates (Lin, 2008). 

 

rxw
c xQ

xV

 

 
  Equation 7.2.4 

 

Dividing Equation 7.2.3 by Equation 7.2.4 and reorganising the results yields Equation 7.2.5 

as follows. 
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H

oo

rwa

x

x

xQ

xQ




 2  Equation 7.2.5 

 

The term 
2

  of Equation 7.2.5 corresponds to the influent organic matter-to-sludge generation 

ratio. For a typical and representative operation condition of a WwTP (Lin 2007), with 

parameters H = 4 day; 
c

 = 10 day; x(MLVSS) = 2,000 mg L-1; and xo(TS) = 800 mg L-1, the 

sludge generation rate is approximately 1.0 kgts kgts. Therefore, the technical limit can be 

estimated by applying Equation 7.2.6, in which the conversion efficiency and the 

corresponding restrictions are included: 

 

itcigitigcjjjiit AAASMRP ,,,,,             Equation 7.2.6 

 

In the biogas-to-upgrade (BTU) pathway, a conversion efficiency ( BTU ) of 98% was 

assumed to represent the amount of methane recovered in all the processing, from digestion to 

injection (Pettersson & Welliger 2009). Because the electrical efficiency ( BTE ) is highly 

dependent on the plant capacity in the biogas-to-energy pathway, its calculation was proposed 

as a function of electrical power. In this evaluation, the assessment considered biogas burning 

through a CHP module by a reciprocating gas-engine because its typical capacity is in the 

expected power range for the expected electric power. 

 

7.2.3.2 Methodology for the Economic Modelling 

 

The specific cost of secondary energy )(
i

c  can be calculated through Equation 7.2.7. 

 

                                                        ,&, iimoiiti RCIc    Equation 7.2.7 

 

In which it ,  is the technical potential of secondary energy from the ith-WwTP, either 

electricity or Bio-SNG; 
i

I  is the total capital investment;  is the capital recovery factor; 

imoC ,&  is the operation & maintenance cost; and 
i

R  the revenue obtained from selling by-

products or any other kind of income (e.g. from heat or the sale of bio-fertiliser, subsidies for 

green-electricity or waste management). 
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7.2.3.3 Methodology for Economic Potential 

 

The representative generation cost )(
r

c  is then calculated as the mode of the log-normal cost 

distribution, and the economic potential interpolated as a fraction of the technical potential 

composed by all the plants with a specific generation cost lower than the representative one. 

This can be mathematically expressed as Equations 7.2.8 indicates. 

 

   )]([ ,itr cModec    Equation 7.2.8 

 

The economic limit can be calculated as the summing-up of the total number of WwTP within 

the country as Equation 7.2.9 indicates. 

 

ie

n

i
itieitig

n

i
cjjjie AAAASMRP ,

1
,,,,

1
        


  

ri

ri

cc   ;1

cc   ;0




e
i

e
i

A

A
 Equation 7.2.9 

 

The data was finally integrated into a geographical information system (GIS) to visualise the 

technical potential by using the county (also called municipality) as the control area. This is 

the smallest geopolitical administrative division for each of the fifteen regions that make up 

the country, with a total of 346 units and an average area of 2,100 km2. 

 

7.2.4 Results 

 

The theoretical potential of electricity generation, however irrelevant in practical terms, 

reached 359 GWhth y-1, whereas the geographical potential bordered 253 GWhth y-1. The 

technical limit was estimated at 83 GWhe y
-1, significantly lower than the two previous limits. 

In the biogas-to-upgrade pathway, the theoretical potential reached 38 MMNm3y-1, whereas 

the geographical potential reached 27 MMNm3y-1, or nearly 71% of the maximum theoretical 

limit. The technical potential reached 24 MMNm3y-1, corresponding to 62% of the theoretical 

one. 
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Figure 7.2.5. Supply-cost curve for biogas-to-energy 
option. 

Figure 7.2.6 Supply-cost curve for biogas-to-upgrade 
option. 

 

Figures 7.2.5 and Figure 7.2.6 are supply-cost curves of the biogas-to-energy and biogas-to-

upgrade pathways. Each point of the curve represents an amount of secondary energy 

supplied by a WwTP at a specific levelised cost. In the former, the representative generation 

cost of electricity was estimated at 21.5 ct€ kWhe
-1, with a minimum generation cost of 6.3 

ct€ kWhe
-1 for the largest WwTP in operation. The economic potential is approximately 75 

GWhe y
-1, and consists of the 28 WwTPs. 

 

For the biogas-to-upgrade route, the representative generation cost was estimated at 43 € 

MMBTU-1, with 11.2 € MMBTU-1 as the lowest cost of generation at the national level for a 

plant with nominal Bio-SNG capacity of 1,237 Nm3 hr-1. The economic potential reached 

approximately 19 MMNm3 y-1, and was made up of the Bio-SNG potentially available from 

18 of the largest WwTPs in operation. 

 

Figure 7.2.7 and Figure 7.2.8 show the technical potentials distributed throughout the country. 

For both options under analysis, there are direct correlations between highly populated areas 

and higher electricity and Bio-SNG potential at the lowest cost of production. This is an 

expected result, and supported by the proportionality between population served by a WwTP 

and sludge generation. Both electricity and the largest Bio-SNG potential are concentrated in 

the XIII Region, or Metropolitan Region, (approximately 49%) and the VIII Region 

(approximately 15%). 
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Figure 7.2.7. Geographical distribution of the technical potential for electricity generation from WwTP sludge 

digestion. 
 

 
Figure 7.2.8. Geographical distribution of technical potential for Bio-SNG production from WwTP sludge 

digestion. 
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Figure 7.2.9. Comparison between representative 
generation cost and market price for electricity 

option. 

Figure 7.2.10. Comparison between representative 
generation cost and market price for Bio-SNG option. 

 

Figure 7.2.9 shows that the representative generation cost of electricity is higher than its 

market price. In the same way, Figure 7.2.10 presents the representative generation cost of 

Bio-SNG as higher than the price of natural gas. For the biogas-to-energy pathway, the first 

five WwTPs have electricity generation that may be profitable, offering an achievable 

potential of roughly 55 GWhey
-1. To make the unprofitable fraction economically appealing 

(the remaining 23 WwTPs), would necessitate the introduction of a feed-in tariff subsidy of 

approximately 9.5 ct€ kWhe
-1, the difference between the representative generation cost and 

the market price. 

 

Table 7.2.2. Energy potential of the biogas-to-electricity and biogas-to-BioSNG. 

 Alternative of energy generation 
Economic indicator biogas-to-energy biogas-to-BioSNG 
Technical potential 85 GWhey

-1 24 MM Nm3 y-1 
Economic potential 83 GWhey

-1 19 MM Nm3 y-1 
Minimum cost of production 6.3 ct€ kWhe 11.2 € MMBTU-1 
Representative cost of production 21.5 ct€ kWhe 43 € MMBTU-1 
Needed feed-in tariff 9.5 ct€ kWhe 21-28 € MMBTU-1 
Needed subsidy 1 MM € 4 - 6 MM € 
 

For the biogas-to-upgrade route, there are one or two WwTPs in which the generation of Bio-

SNG makes sense in economic terms, thus its generation cost is lower than natural market 

price and has an achievable potential for injection into the grid at roughly 12 MMNm3 y-1. A 

subsidy in the 21-28 € MMBTU-1 range for generated Bio-SNG would be necessary to make 7 
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MMNm3 y-1 of Bio-SNG economically competitive. In both cases, the feed-in tariff scheme 

would associate a direct subsidy, which would mean approximately 1 MM € y-1 for the 

biogas-to-energy option, whereas the biogas-to-upgrade would reach 4-6 MM € y-1. Table 

7.2.2 summarises the main economic outcomes from the assessment. 

 

7.2.5. Discussions 

 

Tsagariks (2007) reported an electricity cost of 8.76 ct€ kWhe
-1 for a set of generators 

installed at a municipal WwTP located in Iraklio, Greece. Gómez et al. (2010) estimated a 

minimum electricity generation cost of 11.0 ct€ kWhe
-1

 at WwTPs facilities in Spain. Morin et 

al. (2011) found an electricity cost of 7 ct€ kWhe
-1 via biogas co-generation through the 

mono-digestion of 150,000 inhabitants’ municipal WwTP sludge in Quebec, Canada. These 

figures are in the line with the calculated representative generation cost of electricity. For the 

Bio-SNG option, no assessments of large areas were found in that most of the available 

information is based on case studies and oriented to estimate generation cost at a typical  

plant. 

 

In spite of the inherent difficulty in generalising the market’s prices for secondary energy at a 

national level for a specific time-frame, the above-mentioned values can be employed as a 

reference in the short-term for the development of a national strategy that addresses the sludge 

generation problem via a waste-to-energy approach. This strategy should be based on a 

macro-policy for the handling of wastes with similar characteristics, offering consistent 

incentives than can lead to a sustainable way of achieving environmental and economic 

benefits. 

 

7.2.6. Preliminary Conclusions 

 

This section has shown how the introduction of a technology to control an environmental 

issue, wastewater treatment specifically, resulted in the appearance of a new environmental 

problem (i.e. sludge). In this way, anaerobic digestion may offer a solution through a waste-

to-energy approach. For the two state-of-the-art options to the treat WwTP sludge, biogas-to-

energy and biogas-to-upgrade, it was found that the economic limit heavily penalised the 

energy potentially available based on the technical limit. Furthermore, it was found that at 

national scale 63% of the electricity's technical potential would be competitive with 
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conventional generation, whereas this share would reach approximately 58% for Bio-SNG; all 

of these percentages consider the average energy prices for 2011. As far as Bio-SNG 

generation is concerned, its injection only makes sense in large scale production, so it is 

heavily dependent on the amount of residual substrate available for processing. 

 

It is observed that there is a high concentration of energy potential in only two regions of the 

country, which is attributed to the high population density present in only a few areas. This 

implies that there are numerous small-scale WwTPs in which either electricity or Bio-SNG is 

not adequate to be produced at a commercial scale, being in this way landfilling the 

immediate possibility of handling. 

 

Both assessed options are hardly competitive without the introduction of incentives such as 

feed-in tariffs for energy generation or another indirect mechanism of subsidisation. 

Nevertheless, in comparison with the Bio-SNG option, a greater number of electricity projects 

may run profitably, and a significantly larger number might become profitable once the steady 

increase in electricity prices is considered. Consequently, the biogas-to-energy route is more 

effective and larger environmental externalities are present when no-subsidies from the state 

are considered.  

 

Under a hypothetical scenario in which subsidisation was contemplated for the promotion of a 

waste-to-energy policy, the generation of electricity seems to be the most advantageous 

because a similar number of WwTPs (24 for biogas-to-energy and 21 for biogas-to-upgrade) 

would be profitable, but the annual cost for the state would be significantly lower. Taking into 

account these results, evidence suggests that a policy towards the electricity pathway should 

be promoted under the current economic context of the country. 
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7.3 Livestock Farming Sector 

 

The production of biogas through anaerobic digestion has recently garnered considerable 

attention as an option for the generation of energy with significant environmental, social and 

political benefits, especially in the rural sector. However, and in contraposition with other 

alternatives, it is associated with a series of uncertainties that make it difficult to generalise 

either technical or economic assessments at a large-scale. This is principally due to the 

diversity and amount of substrates potentially suitable as raw material, the geographical 

distribution of the resource, scale of generation and environmental and energy policies. 

 

As previously done for municipal solid waste and wastewater treatment, the potential analysis 

is carried out for the livestock farming sector, which involves the assessment of energy from 

the anaerobic processing of manure by mono-digestion. The same structured methodological 

approach put forward in chapter 4 and already applied is once again employed, providing the 

same economic indicators to allow a cross-assessment comparison between the conversion 

routes (i.e. electricity or Bio-SNG) as well as among sectors. 

 

7.3.1. Introduction 

 

Anaerobic digestion is particularly attractive when searching for an environmentally friendly 

solution for the manure generated by farms (Hom-Nielsen, et al. 2009; Berglund &. Borjesson 

2006). On the one hand, the intensification of farming industries has enabled the inherent 

benefits of the economies of scale for edible goods production, and on the other hand the 

increased production of edible goods has been accompanied by significant volumes of manure 

during processing, involving higher cost and posing a risk to the environment. Although 

manure has historically been employed as a natural fertiliser to increase the quality of 

farmland and return nutrients to the soil, its use can be responsible for the eutrophication of 

waterways and losses of nitrate or phosphate when it is applied at non-optimal rates (Randall, 

et al. 2000). 

 

In recent years, Chile’s livestock industry has experienced considerable development; the 

country was an importer of dairy products up until 2001, and then became a net exporter due 

to a surplus in production. For instance, the poultry industry supplies most of the internal 

demand with 594,000 t y-1 (data from 2010), accounting for 45% of the total demand of meat. 
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Pork follows with 498,000 t y-1 (expressed as dressed meat) and has exhibited steady growth 

during the last decade (6.7% annually). Both are attributable to a higher demand from export 

markets like South Korea and Japan and the internal increase in consumption (ODEPA 2012). 

The dairy industry is made of approximately one hundred medium and large milk supplying 

plants principally located in the central and southern zones (ODEPA 2012). In the context of 

this expansion in the feedstock industry, the country ought to confront this new environmental 

issue in accordance with the new challenges to reach long-term economic competitiveness in 

a sustainable fashion. In these terms and based on scientific evidence, the introduction of 

anaerobic technologies as an approach to overcoming this environmental issue is seen as a 

promising solution. 

 

In Chile, the introduction of on-farm anaerobic technology has taken place slowly and only in 

last few years. Total biogas generation only reached 0.4 PJ y-1 in 2011 (Ministry of Energy 

2011), but, nonetheless, preliminary evaluations have shown that the theoretical potential of 

biogas from the digestion of manure is roughly 15 PJ y-1 (Chamy, et al. 2007), indicating that 

less than 3% of the potential from these sectors is being realised so far. 

 

7.3.2. Livestock Characterisation 

 
Table 7.3.1. Livestock (per 1,000 heads) by category and region in Chile (Ministry of Agriculture 2007). 

 
   Bovine Sheep Swine Equine Goat Camelid Wildboar Deer Rabbit Total 

Country region´s name    Horse Mule Donkey  Alpaca Llama     

Región de Tarapacá (I) 0.1 10.0 1.4 0.0 0.1 0.6 2.3 3.5 23.7 0.0 0.0 6.7 48.5 

Región de Antofagasta (II) 0.3 10.5 1.9 0.5 0.0 0.8 6.2 0.2 5.6 0.0 0.0 8.6 34.6 

Región de Atacama (III) 7.1 5.2 1.4 3.9 0.7 3.4 39.2 0.0 0.0 0.0 0.0 2.5 63.6 

Región de Coquimbo (IV) 41.3 84.2 3.8 25.7 3.9 8.8 404.6 0.1 0.2 0.0 0.0 2.9 575.4 

Región de Valparaíso (V) 102.7 30.3 173.8 26.7 0.7 1.0 45.5 0.2 0.2 0.0 0.0 2.9 384.0 

Región de O'Higgins (VI) 83.4 157.6 860.0 26.8 0.2 0.0 18.5 0.5 0.1 0.0 0.0 5.1 1,152.3 

Región del Maule (VII) 258.2 155.1 93.4 54.0 0.5 0.1 40.1 0.4 0.0 0.2 0.5 1.5 604.1 

Región del Bío-Bío (VIII) 449.4 173.7 179.8 51.3 0.1 0.0 47.3 0.1 0.2 0.9 0.2 3.1 905.9 

Región de la Araucanía (IX) 668.1 277.9 199.6 30.9 0.1 0.0 50.8 0.5 0.7 1.0 0.7 2.2 1,232.6 

Región de los Lagos (X) 1,047.2 315.2 79.8 22.8 0.0 0.0 11.1 0.5 0.3 0.9 4.4 0.9 1,483.1 

Región de Aysen (XI) 193.8 304.9 2.7 12.2 0.1 0.0 12.1 0.2 0.0 0.0 0.0 0.1 526.2 

Región de Magallanes (XII) 141.8 2,205.3 1.7 10.2 0.0 0.0 0.1 0.4 0.1 0.0 0.0 0.1 2,359.6 

Región Metropolitana de 
Santiago 

101.3 24.0 1,292.7 24.5 0.2 0.1 12.3 0.0 0.1 0.2 0.0 5.7 1,461.1 

Región de los Ríos (XIV) 621.6 116.1 34.3 14.3 0.0 0.0 9.3 0.5 0.4 0.7 0.1 0.3 797.7 

Región  de Arica y 
Parinacota (XV) 

2.3 18.2 2.3 0.3 0.1 0.1 6.0 19.1 17.4 0.0 0.0 1.0 66.9 

Total country 3,719 3,888 2,929 304 7 15 706 26 49 4 6 44 11,696 

 

The total area of Chile is 756,102 km2, and the country is divided into fifteen administrative 

regions. The climatological diversity of the country enables the production of various kinds of 
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livestock products. The total livestock is composed of an estimated 11.7 million heads 

(Ministry of Agriculture 2007) and is comprised of 32% bovine, 33% sheep and 25% swine. 

Table 7.3.1 lists the data organised by administrative region. As can be observed, the 

livestock is mainly concentrated in Región de Magallanes (XII) (20%), Región de los Lagos 

(X) (13%) and Región Metropolitana (XIII) (12%). 

 

7.3.3. Methodology 

 

The methodology for the potential analysis of this sector follows the same procedures that 

were used in the previous sectors, providing the same technical and economic indicators. 

Besides, a similar analysis can be carried out by using the supply-cost curves to evaluate the 

necessity of subsidies, the most adequate conversion route and the fraction of the economic 

potential that can run profitably under the current economic conditions. 

 

7.3.3.1 Methodology for the Technical Potential 

 

The primary information on the existing farms in Chile used for the assessment was provided 

directly by the Department of Studies and Agrarian Policies (ODEPA), branch of the Ministry 

of Agriculture. This electronic database includes the totality of existing heads of livestock 

within the country (data from 2007) and is segregated by the type of livestock (bovine, sheep, 

swine, etc.) for each farm at a county level, which is made of approximately 87,000 farms 

distributed all across the country. With this data, the technical potential )(
t

  of the biogas-to-

energy (BTE) and biogas-to-upgrade (BTU) pathways can be calculated for each jth-farm by 

applying Equation 7.3.1 and Equation 7.3.2. 

 

 
 
Figure 7.3.1. Conversion pathways to assess for the utilisation of manure for the production of either electricity 

or Bio-SNG through mono-digestion. 
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In which )(
,kj

N  represents the number of livestock heads in the jth-farm of the kth-species; 

4
~ CH

LHV
H  is the lower heating value of methane and estimated as 50,000 kJ kg-1 (Avallone, et al. 

2007); and )(
e

  is the electrical efficiency. Table 7.3.2 lists the employed parameters, 

estimated from the literature and used for the estimation of the technical potential, which are 

for the kth-species: 
k

M is the amount of manure produced per head of livestock yearly; 
k

S is 

the volatile-to-total solid ratio; 
k

R is the yield of biomethane per volatile solid; 
k

LSU  is the 

livestock unit; and the manure availability factor is )(
a

 , the fraction of manure that is 

recoverable. By using the values shown in Table 7.3.2, the biogas yield reaches 0.37 Nm3 

LSU-1 d-1 for dairy and 0.59 LSU-1 d-1 for swine. These values are conservative when 

compared with data reported in the literature (Deublein & Steinhauser 2011). 

 

Table 7.3.2. Parameters employed for the calculation of biogas potential of liquid manure. M: average animal 
weight; S: volatile sold and total solid ratio; R: biogas yield; and 

a
 : manure availability factor.  

Livestock ),1( nk   Manure per head 
M (kgmhead-1y-1) (a) 

Volatile-to-
total solid ratio 
S (kgvs kgm

-1) (a) 

Specific 
methane yield 
R (Nm3 kgvs

-1) 

Livestock 
unit 

(LSU) (h) 

Availability 
factor (i) 

a
  

1. Dairy 20,090 0.12 0.230 (b) 1.2 0.45 
2. Beef 7,261 0.12 0.230 (b) 0.6 0.45 
3. Veal 2,059 0.04 0.230 (b) 0.6 0.45. 
4. Other (Ox, butt, etc.) 15,695 0.12 0.230 (b) 0.7 0.45 
5. Sheep–Ovine 394 0.23 0.248 (b) 0.05 0.35 
6. Swine 6,132 0.10 0.265 (b)  0.5 0.8 
7. Equine (Horse, mule, and donkey) 8,377 0.20 0.165 (b)  1.1 0.1 
8. Goat 958 0.22 0.248 (b) 0.05 0.1 
9. Camelid (Alpaca and llama) 958 0.22 0.165 (c) 1 (g) 0.1 
10. Wild boar 6,132 0.10 0.265 (c) (d)  0.5 (g) 0.1 
11. Deer 958 0.22 0.165 (e)  0.1 (g) 0.1 
12. Rabbit 58 0.18 0.174 (f) 0.01 (g) 0.1 

(a) ASAE (2003), (b) Pascual (2012), (c) estimated as equine, (d) estimated as swine, (e) estimated as equine, (f) Li et al. (2011), (g) assumed, (h) 

Deublein and Steinhauser (2011), (i) Batzias et al. (2005). 
 

A Boolean restriction was included to set up the minimal output-capacity for the conversion 

units, defined as 
e

A  and 
u

A  for the biogas-to-energy and biogas-to-upgrade routes as 
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indicated in Equation 7.3.1 and Equation 7.3.22. Thus 
e

kW 8  was considered as the minimum 

output- capacity for reciprocating engines, while 13

4
 5 hNm

CH
 was the value for upgrading units. 

These values correspond to the smallest nominal capacities of commercial units according to 

technical information (Petersson & Wellinger 2009; ASUE 2011). 

 
7.3.3.2 Methodology for the Economic Modelling 

 

The unitary cost of production of secondary energy jc  from the jth-farm was estimated by 

applying the economic model showed in Equation 7.3.3. 

 

jjpjmojjtj RCCIc  ,,&,     Equation 7.3. 3 

 
In which, for each jth-farm, jt ,  corresponds to the technical potential;   is the capital 

recovery factor; jmoC ,&  is the operation and maintenance cost; jpC ,  is the procurement cost of 

biomass at the processing point; and jR  represents the revenues potentially obtainable from 

selling by-products such as heat or digestate. Afterwards, the gathered information and 

biomass supply model was integrated into the economic modelling previously presented for 

the calculation of the distribution of the unitary cost of production for all the sources of 

biomass under investigation. 

 

Due to the conditions of farms in the country, no commercialisation either for surplus heat 

from the cogeneration units or digestate from the anaerobic treatment of manure was 

assumed. Additionally, it was assumed that the manure was processed in situ, hence without 

associating any cost of transportation. 

 
7.3.3.3 Methodology for the Economic Potential 
 
The mathematical procedure for the calculation of the representative generation cost, worked 

out as the log-normal mode of the distribution of unitary cost of energy generation, and the 

associated economic limit, can be found in detail in Chapter 4 or as illustrated in the sectors 

already assessed. 

                                                 
2 This Boolean operator was not used for the potential analysis of the previous sectors because no technical 
potential was lower that 8 kWe or 5 Nm3h-1 for biogas-to-energy or biogas-to-upgrade, respectively. 
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7.3.4 Results 
 
Figure 7.3.2 and Figure 7.3.3 display the supply-cost curves for the biogas-to-energy and 

biogas-to-upgrade pathways assessed for the mono-digestion of manure. The technical 

potential for the former option reached 887 1

e
yGWh  , whereas its economic potential 

bordered 780 1

e
yGWh   at a representative generation cost of 25 -1

e
kWh ct€ . For the biogas-to-

upgrade route the technical limit reached 225 13yNmMM  , with economic potential reaching 

182 13yNmMM  at a representative generation cost of 98 -1MMBTU € . 

 

(GWhe y
-1)

200 400 600 800

E
le

ct
ri

ci
ty

 G
en

er
at

io
n 

C
os

t (
ct

€ 
kW

h e-1
)

8

13

18

23

28

33

38

25

E
co

no
m

ic
 p

ot
en

ti
al

T
ec

hn
ic

al
 p

ot
en

ti
al

t,376=25 kWe

t,1=22,092 kWe

Representative generation cost

t,534=8 kWe

(MM Nm3 y-1)

75 125 175 225

B
io

-S
N

G
 G

en
er

at
io

n 
C

os
t (

€ 
M

M
B

T
U

-1
)

10

30

50

70

90

110

B
io

-S
N

G
 G

en
er

at
io

n 
C

os
t (

€ 
M

W
th

-1
)

T
ec

hn
ic

al
 p

ot
en

ti
al

E
co

no
m

ic
 p

ot
en

ti
al

273

239

171

102

t,40=13 Nm3 h-1

t,1=5,300 Nm3 h-1

Representative generation cost

34

t,40=15 Nm3 h-1

307

33498

Figure 7.3.2. Supply-cost curve for the biogas-to-
energy pathway by mono-digestion of manure. 

Figure 7.3.3. Supply-cost curve for biogas-to-upgrade 
pathway by mono-digestion of manure. 

 

Figure 7.3.4 and Figure 7.3.5 reveal that the technical potential from manure processing is 

highly concentrated in Región Metroplitana (XIII) and estimated to account for approximately 

62% and 64% for electricity and Bio-SNG production, respectively. The second highest 

concentration is found in Región de la Araucanía (IX), which has 11% and 10% of the 

electricity and Bio-SNG technical potential. Additionally, it was found that on the national 

level the technical potential of electrical power was primarily on the small-scale, in the 20-

250 kWe range, and accounted for 71% of the country’s total. A similar tendency was 

observed in the technical potential of Bio-SNG, in which approximately 80% of the potential 

was concentrated on a scale lower than 1 13yNm MM  . 

 



Chapter 7 Results 

 130

Figure 7.3.4. Technical potential of electricity from mono-digestion of manure. 
  

Figure 7.3.5. Technical potential of Bio-SNG from mono-digestion of manure. 
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7.3.5 Discussions 

 

Only a modest fraction of the total number of farms in the country (approximately 370 from 

87,000, or less than 1%) was found to offer adequate conditions to develop biogas projects. 

This is because the majority of them were constituted of a limited number of livestock, which 

severely restricted the amount of biogas units technically feasible. Additionally, a large 

amount of the technical potential of electricity for mono-digestion of manure could be found 

in the low scale, the 10-250 
e

kW  range, and is strongly concentrated in only some 

geographical areas. A similar tendency was also observed for the possibility of producing 

Bio-SNG, for which the scale rarely surpassed 1 13yNm MM   and was concentrated in a few 

regions. 
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Figure 7.3.6. Supply-cost curve for the biogas-to-
energy pathway by mono-digestion of manure. 

Figure 7.3.7. Supply-cost curve for biogas-to-upgrade 
pathway by mono-digestion of manure. 

 

For the electricity alternative, as seen in Figure 7.3.6, it was observed that there is an 

important fraction of the economic potential that could be profitable when a referential market 

price of electricity of 12 
1

e
kWh ct€


 is considered, representative for projects at the low scale. 

In these terms, this is the most attractive part of the potential made of 28 plants, and it should 

be targeted for enhancing biogas production. 

 

With the market price of natural gas (see Figure 7.3.7) currently ranging from 15 to 22 

-1MMBTU €  roughly, most of the cost associated with the economic potential of the gas-to-

upgrade route, the Bio-SNG option, hardly seems competitive without heavy subsidies. More 
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importantly, approximately 80% of the Bio-SNG technical potential is in a range lower than 1 
13yNm MM  , a scale that is not commercially attractive for these sorts of projects, at least in 

practical terms. 

 

Table 7.3. 3. Energy potential of the biogas-to-energy and biogas-to-upgrade of manure utilisation. 
 Route of conversion 

Economic indicator Biogas-to-energy (BTE) Biogas-to-upgrade (BTU) 
Technical potential 1,067 GWhey

-1 225 MM Nm3 y-1 
Economic potential 779 GWhey

-1 182 MM Nm3 y-1 
Minimum cost of production 5.2 ct€ kWhe 8.7 € MMBTU-1 
Representative cost of production 25.0 ct€ kWhe 98 € MMBTU-1 
Needed feed-in tariff 13.0 ct€ kWhe 83-76 € MMBTU-1 
Needed subsidy 23 MM € 198-124 MM € 
 

The potential analysis was conducted for the decentralised generation of biogas when manure 

was used as substrate. Another option to assess is the centralised use of manure as substrate, 

which may improve the economics of the whole process. However, this option implies a 

location analysis for a centralised-processing plant, normally associated with an optimisation 

problem under geospatial restrictions. Furthermore, centralised manure usage involves the 

additional cost of slurry transportation with low solid content, and a potential instability in the 

substrate supply because it involves dependency on third-parties, contracts and the creation of 

business models and mechanisms of partnership affiliation. 

 

The great variability of biomethane yield from manure digestion is a well-known fact 

principally linked with the sort of substrate and operating conditions of the reactor. Thus, the 

presented results should be considered referentially, as an order of magnitude taking into 

consideration the limitations intrinsically related to the technologies considered for the 

evaluation and their economic implications. 

 

7.3.6 Preliminary Conclusions 

 

For the farm sector, two principle tendencies are observed. Firstly, the electricity generation 

option seems to be more advantageous than the possibility of producing a gaseous biofuel. 

This is because the greatest fraction of the technical potential is concentrated in a low power 

range for both electricity or Bio-SNG. Under this condition, the Bio-SNG option exhibits a 

considerable increase in cost, much more significant than for electricity when the 

representative generation cost and the number of plants that account for the economic 
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potential of each option is compared. Secondly, and when the electricity option is considered, 

there are only two regions, Región Metropolitana (XIII) and Región de la Araucanía (IX), 

accounting for more than 73% of the technical potential, which are not necessarily the regions 

(except the Metropolitan) that concentrate the largest number of livestock heads. 
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7.4 Agricultural Sector 
 

The anaerobic digestion of crop residue may provide a significant amount of energy in the 

context of biogenic residues currently available in the country. Nonetheless, the uses are 

wider ranging than those of the biomass from the previously evaluated sectors, and with an 

associated competition due to other uses that can significantly reduce its availability. In 

addition, the procurement of crop residue involves collection, conveyance, storage and pre-

treatment before the digestion takes place, hence involving extra cost that are absent when the 

biomass is generated and used in situ. On the other hand, the possibility of collecting larger 

amounts of biomass may enable the implementation of biogas projects of larger capacity, 

associating lower specific investment and likely taking advantages of economies of scale 

which may in turn lower the cost of energy production. 

 
7.4.1 Introduction 
 
The continental surface of Chile accounts for 75.6 millions of hectares (ha). From this, 34.8 

millions ha are unproductive, which makes up 46.1% of the national continental surface. The 

land used for agro-pecuarian exploitation constitutes less than 10% of the national surface, 

from which 1.1% corresponds to land without any sort of restriction. The remainder exhibits 

limitations because of topography, desertification, increasing of salinity, lack of irrigation, the 

presence of heavy metals, etc. (Saa-Vidal, et al. 2010). 

 
Table 7.4.1. Use of land in Chile (Saa-Vidal, et al. 2010). 

Use type Use Land capability(*) Surface (ha) Percentage (%) 
Agricultural arable 

lands 
Without restrictions 

I 
II 

111,346 
652,818 

0.15 
0.86 

 
With 

restrictions 
III 
IV 

1,762,559 
2,106,619 

2.33 
2.79 

Subtotal   4,633,342 6.13 
     

Non-arable 
agricultural lands 

Cattle 
Cattle-forestry 

Forest 

V 
VI 
VII 

2,271,444 
6,219,736 

13,430,602 

3.00 
3.22 
17.76 

Subtotal   21,921,462 28,99 
     

Non-agricultural 
lands 

 VIII 14,200,000 18.78 

Unproductive land   34,869,936 46.11 
Total   75,624,760 100 

(*) Land capability has been defined according to standards of U.S. Department of Agricultural (Gilo 2010). 
 

Chilean agriculture and horticulture are mainly focused on five sectors, they are: i) major 

fruits and vine; ii) vegetables; iii) annual crops; iv) industrial crops; and v) livestock farming, 

secribed as follows (Saa-Vidal, et al. 2010): 
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 Major Fruits and Vine: Due to its exceptional climatological conditions, Chile has  

significant competitive advantages for the production of these sorts of crops in the 

central zone, which in general terms have land that is in high demand and of high 

quality, climate, technology, capital and workforce. These requirements have created 

conditions so that mainly large private companies control this business. The land 

usage tends to be intensive both in the planting stage and the subsequent stages of 

harvesting, using technical irrigation systems, great amounts of fertilisers and 

agrochemicals. 

 

 Vegetables: The production of vegetables tends to be concentrated in the proximity of 

large consumer centres (i.e. medium and large cities). The management of the land is 

intensive in that the species have a short vegetative growing time, allowing more than 

one annual harvesting, although with a thorough handling of the land. The production 

of vegetables is carried out preferentially in land with capability I and II. 

 

 Annual Crops: Annual cultivations are performed with a wide range of technologies 

and by using both irrigated and rainfed land across the country. Generally, it is 

associated with a high demand of workers and takes place in land with capability II, 

III and IV. 

 

 Industrial Crops: The production of industrial crops such as raps, sugar beet, tobacco 

or sunflower depends on the demand of large buying companies, which normally 

provide technical assistance to the producers. Most of the cultivation of these crops 

takes place in land with capacity II, III and IV. 

 

 Livestock: This activity is associated with a land demand of crops intended for fodder 

production and/or pasture use. It can be intensive in terms of land demand or highly 

concentrated if animals are stabled, for instance dairy, swine farming, etc. 

 

Because preliminary rough estimations indicate that the main amount of biomass adequate for 

anaerobic digestion may be provided by annual crops (Chamy, et al. 2007), the potential 

analysis to be carried out in this chapter was focused on residues procured after harvesting 

them. Besides this, most of the available information on the agricultural sector is devoted to 

these crops due to their economic prominence. 
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The use of residue appears to be the most reasonable starting point for the development of a 

strategy focused on biogas as a source of energy because it brings direct environmental 

externalities. The use of energy crops, still a heated discussion at the political level, does not 

seem to be appropriate for implementation, at least in a first stage; it would be 

counterproductive for Chile to change the land currently used for food production in that it 

would force the country to revert to exports in order to address the internal consumption for 

biofuel production (Ramírez 2012). Although the biofuel alternative has not been thoroughly 

assessed at a national level yet, either technically or economically, preliminary evaluations 

indicate that the main constraints arise due to the limited potential available surface for the 

most promising crops both for liquid and gaseous biofuels (García, et al. 2012). 

 

7.4.2 Annual Crops Characterisation 
 

As can be observed in Table 7.4.2, the predominant species in terms of surface are wheat 

(40%), corn (19%), oats (15%) and potatoes (10%). At the regional level, 69% of wheat and 

85% of oat crops are concentrated in Región del Bio-Bio (VIII) and Región de la Araucanía 

(IX), whereas corn is cultivated mainly in Región de O´Higgins (IX) and Región del Maule 

(VI), comprising 75% of the total area. Finally, potato plantations are dispersed across the 

country although more significantly concentrated in the south. 

 

Table 7.4.2. Surface of annual crops (ha) (Ministry of Agriculture 2007). 

 Regions Total 

Species I II III IV V VI VII VIII IX X XI XII RM XIV XV  

Beer barley  0    226 626 1,363 7,509 431   53 977 24 11,208 
Barley   3 507  125 155 1,449 1,631 752 90  4 9 4 4,730 
Beans (a)    2 5 14 426 607 48       1,102 
Beans(b)   5 280 253 691 4,717 2,802 616       9,362 
Bread wheat  2 4 596 174 2,067 1,264 2,726 659       7,493 
Chickpeas     246 869 896 925 2    778 3,957  7,672 
Corn 1 153  659 1,127 46,705 29,407 12,019 685    264 14,418  105,435 
Lentils   186   22 210 501 128    5,189 7  6,243 
Mandioca   33  5        51 321  410 
Oats (c)      25 170 830 1,255 20,033 48,290 6,272 334  22 1,180 3 78,412 
Other cereals  4 66 137 720 902 533 696 1,039 405 3 15 1,705   6,225 
Others 22 0  27 134 161 129 155 246 24 0 4 1,240   2,144 
Peas    9 402 126 238 477 288 18 3  138 3,902 0 5,601 
Grass peas    2 9 37 126 66 17    143 865  1,263 
Potatoes 94 4 249 3,233 2,163 1,687 3,342 8,293 14,029 11,154 185 130    44,562 
Quinoa 1,357 8  1  58   1       1,424 
Rice (d)     48 101 17,333 4,146 0    24 28 5 21,683 
Rye  1     353 278 291 6   12,010 3  12,942 
Tricale      77 13 2,588 15,882 362      18,922 
White wheat  18 1 1,133 1,595 5,176 22,781 67,742 93,623 11,379 21     203,468 
Total 1,472 190 548 6,610 7,050 59,874 83,803 126,864 184,984 30,802 637 148 21,618 25,667 36 550,303 

 

(a) for export, (b) internal consumption, (c) dray grain, (d) with peal. 
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Annual crop plantations have declined during the last decades. For the 2010-2011 period, for 

example, a decrease of roughly 18% can be observed in the planted area in comparison with 

that a decade ago. This decrease has not been uniform, with more substantial decreases 

occurring in wheat, vegetables, sugar beets, rape and potatoes. This fall has been partly 

counterbalanced by the growth of corn, oats, barley and lupine crops. On the contrary, a rise 

in the average productivity is observed in virtually all crops, reaching high values when 

compared at the international level (ODEPA 2012). 

 
Table 7.4.3. Productivity of crops and total exploited surface at national level (Ministry of Agriculture 2007). 

Species ),1( nl   
Average productivity 

l
p  (qqm ha-1 y-1) 

Total surface 
(ha) 

1. Beer barley 50.62 11,108 
2. Barley 41.52 5,983 
3. Beans (for export) 20.81 1,153 
4. Beans (for internal consumption) 17.02 9,633 
5. Bread wheat 52.36 9,198 
6. Chickpeas 8.94 2,940 
7. Corn 108.32 102,955 
8. Grass peas 8.34 255 
9. Lentils 8.43 861 
10. Oats 41.80 81,480 
11. Others n.a. 1,061 
12. Others cereals n.a. 6,187 
13. Peas 14.10 1,258 
14. Potatoes 154.54 53,731 
15. Quinoa 6.08 1,427 
16. Rice (with peel) 50.77 21,579 
17. Rye  44.97 1,115 
18. Tapicoa 1.35 5.18 
19. Tricale  48.18 19,243 
20. White wheat  47.77 219,126 

Total country - 550,303 
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7.4.3 Methodology 

 

The methodology for the potential analysis of the mono-digestion of agro-industrial residue 

follows the same principles as those applied for all the previously assessed sectors, hence 

providing the same technical and economic indicators. 

 

7.4.3.1 Methodology for the Potential Analysis 

 

The annual amount of residue from seasonal crops was calculated using residue-to-crop 

production ratios, productivity per crop and planted area in a county. Because of the lack of 

more specific information, some parameters were assumed by applying a conservative 

criterion. The technical potential of biogas-to-energy and biogas-to-upgrade routes can be 

calculated through Equation 7.4.1 and Equation 7.4.2 as follows: 
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In which it ,  is the technical potential from the ith-county, either electricity or Bio-SNG. For 

the lth-crop species within the ith-county, 
l

M  corresponds to the methane yield; 
l

S is the 

volatile-to-total solid ratio; 
l

f  is the residue-to-crop production ratio; 
l

H  is the humidity 

assumed at 15% (wet basis); 
l

p  is the crop average productivity (see Table 7.4.3); 
l

  is the 

sustainable rate removal; and 
i

a  is the area of the ith-county. The remaining parameters 

correspond as defined in Equations 7.3.1 and 7.3.2 in Section 7.3 Livestock Farming Sector. 

In this calculation, it is implicitly assumed that the total amount of biomass to convert into 

biogas within each county is done at a single centralised biogas plant. This assumption is put 

forward since there is no further information on the geographical distribution of crop residue 

after harvesting to conduct an assessment in greater detail. This point and its implications will 

be discussed more broadly in the section on economic modelling for cost estimation. 
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Figure 7.4.1. Conversion pathways to assess for the utilisation of crop residue for the production of either 
electricity or Bio-SNG through mono-digestion. 

 

Table 7.4.4. Agricultural crops and parameters for the calculation of potential of biogas generation. 

Agricultural crops ),1( nl   
Reside-to-crop 
production ratio 

f (kg kg-1) 

Sustainable rate 
removal 

  (kg kg-1) (a) 

Volatile-to- 
total solid ratio 
S (kgvs kgts

-1) 

Biomethane yield 

M ( 1

vs

3

CH
kgNm

4

 ) 

1. Beer barley 1.4 (a) 0.40 (a) 0.94 (d) 0.229 (d) 
2. Barley 1.4 (a) 0.40 (**) 0.90(d) 0.229 (d) 
3. Beans (for export) 2.1 (b) 0.40 (**) 0.90(**) 0.174 (e)  
4. Beans (for internal consumption) 2.1 (b) 0.40 (**) 0.90(**) 0.174 (e) 

5. Bread wheat 1.3 (a) 0.40 (**) 0.92 (**) 0.087 (g) 
6. Chickpeas 2.1 (*) 0.40 (**) 0.90 (**) 0.200 (e) 
7. Corn 1.4 (a) 0.50 (a) 0.98 (d) 0.317 (d) 
8. Grass peas 2.1 (*) 0.40 (**) 0.90 (**) 0.200 (**) 
9. Lentils 2.1 (*) 0.40 (**) 0.90(**) 0.200 (**) 
10. Oats 1.5 (a) 0.40 (a) 0.58(g) 0.203 (g) 
11. Others 1.0 (**) 0.40 (**) 0.90 (**) 0.200 (**) 
12. Others cereals 1.0 (*) 0.40 (**) 0.70(**) 0.200 (**) 
13. Peas 2.1 (*) 0.40 (**) 0.90(**) 0.200 (**) 
14. Potatoes 0.4 (b) 0.40 (**) 0.90(**) 0.366 (h) 
15. Quinoa 1.0 (*) 0.40 (**) 0.192(j) 0.241 (j) 
16. Rice (with peel) 1.6 (a) 0.50 (a) 0.92(d) 0.195 (d)  
17. Rye  1.8 (a) 0.40 (a) 0.92(j) 0.360 (i) 
18. Tapicoa 1.0 (*) 0.40 (**) 0.90(**) 0.100 (**) 
19. Tricale  1.3 (c) 0.40 (**) 0.93(j) 0.100 (**) 
20. White wheat  1.3 (a) 0.40 (a) 0.92(**) 0.087 (g) 
(a) Scarlat et al. (2010), (b) IPCC (1996), (c) Wikström and Adolfsson (2006), (d) Dinuccio et al. (2010), (e) Deublein and Steinhauser (2011), (f) 

Somayaji and Khanna (1994), (g) Lehtomäki et al. (2008), (h) Parawira et al. (2008), (i) Petersson et al. (2007), (j) Cropgen Database, (k) 
López-Dávila et al. (2012), (*) assumed as beans, (**) assumed. 

 

The technical potential of the entire country, either for the biogas-to-energy or biogas-to-

upgrade route, can be evaluated as the sum of all single technical potential on the totality of 

counties (n) as equation 7.4.3 shows: 
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7.4.3.2 Methodology for the Economic Modelling 
 
The mono and co-digestion of crop residue implies intermediate steps (depending on the 

harvesting system) of collecting, hauling, packing, on-farm transporting and on-road 

conveyance of biomass to a processing facility since it is irregularly widespread across large 

areas, incurring an additional cost for the biogas production. Under these circumstances, it is 

necessary to estimate the cost of crop residue procurement by proposing a simplified model 

for the operations associated to its recovery, from the field after the annual harvesting to its 

supply at the gate of plant, as discussed in Chapter 4. Based on this, it was assumed that the 

shape of each county can be approximated through a square with side l  and surface equivalent 

to the county’s. Moreover, it was assumed that all the available biomass after harvesting had a 

homogeneous superficial density (measured for instance as 2 mt ) and was conveyed to the 

geometric centre of the county; therefore, the geometric centre of the square. Assuming a 

tortuosity for on-road transportation, it is possible to demonstrate, after applying some 

integral calculus, that the average displacement distance for the transportation of biomass 
s

d  

at county-level can be calculated by Equation 7.4.4 (see Chapter 4, section 4.5). 

 

))21ln(2(
6

1
,  iis ld  Equation 7.4.4 

 
For the specific on-road transportation cost )( t

e
c , 1.8 € t-1 km -1 was considered as 

representative according to Hetz et al. (2010). This value, when multiplied by the average 

displacement distance (Equation 7.4.4), leads to the total on-road transportation cost of 

biomass. 

 

The majority of information available on the cost of collecting biomass from the field is 

focused on wheat straw and corn stover, basically because they are the dominant crops in a 

substantial number of countries (Marckert 2011; Scarlat, et al. 2010). Although crop residue 

has diverse characteristics affecting the cost of recovery, transportation and processing, the 

cost of collecting all crop residue from the field (which includes preparing, packing and on-

farm transportation) was approximated without distinguishing their differences to wheat straw 

because of the lack of more specific data. Hetz et al. (2010) reported that the cost of collecting 

wheat straw after harvesting was in the 6-10 € t-1 range, hence a value of 8 € t-1 was 

approximated for the assessment. 
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Therefore, the total procurement cost of crop residue, which includes collecting and on-road 

conveyance, can be estimated by applying Equation 7.4.5. 

 

i
c
eis

t
eip mcdcC ) ( ,,   Equation 7.4.5 

 
In which 

ip
C

,
 is the procurement cost of biomass at the gate of plant in the ith-county; t

ec  is 

the specific on-road transportation cost; isd ,  is the average displacement distance for the 

transportation of biomass within the ith square-approximated county;  c
ec is the specific 

biomass collecting cost; and im  is the total crop residue available yearly within the ith-county. 

 

The unitary cost of production, either for the biogas-to-energy or biogas-to-upgrade pathway, 

was calculated following the same procedure applied in previous chapters, and according to 

Equation 7.4.6. 

 

iipimoiiti RCCIc  ,,&,   Equation 7.4.6 

 

In which 
it ,

  is the technical potential of secondary energy from the ith-county, either 

electricity or Bio-SNG; 
i

I  is the total capital investment;   is the capital recovery factor; 

imo
C

,&
 is the operation & maintenance cost for the biogas plant located in the ith-county; and 

i
R  the revenue obtained from selling by-products such as digestate or heat. 

 

Revenues from heat and digestate by-products were not considered in the cost estimation. 

Firstly, because there is no established market for the commercialisation of surplus heat in the 

country (i.e. district heating), and, secondly, due to the fact that the sale of digestate plays 

only a marginal role in terms of the economics of the process (Lantz 2012), and moreover its 

use is not regulated in the country. 

 

7.4.3.3 Methodology for the Economic Potential 
 
The mathematical method for working out the representative generation cost and the 

corresponding economic limit can be found in detail in Chapter 4, or as already illustrated in 

previous sectors. Following the same methodology, the estimation of the needed feed-in tariff 

and the total yearly needed subsidisation was calculated. 
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7.4.4 Results 
 
For the mono-digestion of agricultural residue, the technical potential of electricity reached 

1,360 1

e
yGWh   and the economic potential 1,112 1

e
yGWh   at a representative generation cost 

of 15.4 -1

e
kWh ct€  (see Figure 7.4.2). On the other hand, the generation of Bio-SNG from this 

substrate offered a technical potential of 351 13yMMNm   and an economic potential of 280 

13yMMNm   at a representative generation cost of 40 -1MMBTU €  (see Figure 7.4.3).  
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Figure 7.4.2. Supply-cost curve for biogas-to-
electricity pathway by mono-digestion of agriculture 

residue. 

Figure 7.4.3. Supply-cost curve for the biogas-to-
upgrade pathway by mono-digestion of agricultural 

residue. 
 
A high concentration of this technical potential was observed in the low-power range (10-250 

e
kW ) and accounted for 46% of the total. However, the 500 

e
kW -5 

e
MW  range had 33% of 

the total technical potential. For the Bio-SNG option, more than 57% of the potential was 

concentrated in a range lower than 1 13yNm MM  , followed by 22% at the 1.0-2.7 

13ym MMN   scale. Geographically, the technical potential of electricity and Bio-SNG was 

concentrated in the Región de O´Higgins (VI ) (32%), Región del Maule (VII) (19%) and 

Región de la Araucanía (IX) (18%) which represented almost 70% of the total, as seen in 

Figure7.4.4 and Figure 7.4.5. 
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Figure 7.4.4. Technical potential of electricity from mono-digestion of agricultural residue. 
 

Figure 7.4.5. Technical potential of Bio-SNG from mono-digestion of agricultural residue. 
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7.4.5 Discussions 
 

For the electricity alternative, as observed in Figure 7.4.6, there is a fraction of approximately 

600 1

e
yGWh   that may run profitably, when 12 -1

e
ct€kWh  is considered as the electricity 

market price. This realisable potential is made of 31 biogas plants with power capacity from 

1.4 
e

MW MWe to 94 
e

kW . To achieve the economic potential, a generation subsidy of 

roughly 3.4 -1

e
ct€kWh  would be necessary. 
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Figure 7.4.6. Supply-cost curve for biogas-to-energy 
pathway by mono-digestion of agricultural residue. 

Figure 7.4.7. Supply-cost curve for biogas-to-
upgrade pathway by mono-digestion of agricultural 

residue. 
 

As shown in Figure 7.4.7, the biogas-to-upgrade route has only three units offering a cost of 

production lower than the market price of natural gas, although with capacities in the 

commercial scale. In spite of this advantageous condition, this high cost linked with relatively 

high capacity (in the context of biogas plants) is explained by the additional cost of 

production associated with the procurement of biomass (crop residue), which raises it 

somewhat, an aspect not present in the previously assessed sectors. This fact can be observed 

in the high associated generation subsidy (25-18 € MMBTU-1) if this alternative were wanted 

to become profitable. Besides, the total annual subsidisation for Bio-SNG is approximately 82 

MM€, almost five orders of magnitude greater than that of electricity, and with a considerably 

lower number of plants, 59 versus 127 (see Figure 7.4.6 and Figure 7.4.7). 

 

Table 7.4.4 summarises the main economic indicators characterising the crop residue sector 

for the two possibilities of biogas processing, biogas-to-energy and biogas-to-upgrade. 
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Table 7.4.5. Energy potential of the biogas-to-energy and biogas-to-upgrade routes for crop residue utilisation. 
 Route of conversion 
Economic indicator Biogas-to-energy (BTE) Biogas-to-upgrade (BTU) 
Technical potential 1,355 1

e
yGWh   351 MM Nm3 y-1 

Economic potential 1,112 1

e
yGWh   280 MM Nm3 y-1 

Minimum cost of production 8.3 -1

e
ct€kWh  14.1 € MMBTU-1 

Representative generation cost 15.4 -1

e
ct€kWh  40 € MMBTU-1 

Needed feed-in tariff 3.4 -1

e
ct€kWh  25-18 € MMBTU-1 

Needed subsidy 17 MM€ 82 MM€ 
 
7.4.6 Preliminary Conclusions 
 

As observed for the previous sectors, the biogas-to-energy pathway implies a larger number 

of plants that can run without relying on subsidisation for energy generation (31 plants – see 

Figure 7.4.6). On the other hand, the biogas-to-upgrade exhibited a minimum cost of 

production (STAS) only slightly lower than the market price of natural gas, which makes the 

mono-digestion of this substrate hardly competitive. 

 

As mentioned earlier, a significant geographic concentration of the technical potential, either 

electricity or BioSNG, was observed in three administrative areas, which correspond to 

Región de O´Higgins (VI ), Región del Maule (VII) (19%) and Región de la Araucanía (IX) 

(18%). This being so, the implementation of bioenergy policy to boost biogas production 

should be considered as a priority to target. 
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7.5 Co-Digestion of Agro-Industrial Residue 

 

Although crop residue, as previously described, can be converted anaerobically as if they 

were a single substrate, the option of mixing them with other feedstock such as manure offers 

significant advantages, among them an increase in biogas yield, operation of the reactor at 

higher solid concentration thus offering a larger gas flow at the same capacity, and more 

stable operation. The co-digestion is, however, limited both to the availability of feedstock, 

when the manure slurry is used as a substrate to increase solid concentration, and the total 

concentration of solids in the reactor, when a wet-technology is being used. These aspects 

will basically determine the possibility of implementation. 

 

7.5.1 Introduction 

 

The production of biogas from manure can be stepped up when co-substrates are added to 

make the biogas yield and the content of methane in the gas rise (Deublein & Steinhauser 

2011), thus improving reactor efficiency and the economics of the plant. This enhancement 

can be explained because of the synergism in the reacting medium and the addition of some 

missing nutrients (Mata-Alvarez, et al. 2000). 

 

The possibility of carrying out co-digestion is plausible, as livestock industries are normally 

located near the agricultural complex where residue might be available. However, the supply 

of biomass is restricted by logistical issues and the cost related to the procurement of 

substrates; the availability of manure is not necessarily associated with that of crop residue, 

and, conversely, the availability of manure at adequate scale is not necessarily associated with 

crop residues supplied at a proper rate. Nonetheless, considerable attention has been paid to 

the assessment of biogas by co-digestion in large areas (Szkliniarz & Vogt 2012; Zubaryera, 

et al. 2012), mainly as a consequence of the environmental gains as previously mentioned, but 

also because of the opportunities for rural development and the contribution this could make 

to reach the goal of renewable energy generation. 

 

7.5.2 Methodology 

 

The methodology for the potential analysis of co-digestion by mixing agro-industrial residue 

(i.e. manure and the material left on the field after the annual harvest) follows the same 
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procedure applied for all the previously assessed sectors. Because this assessment only 

considers the possibility of mixing the substrates at a proper rate and concentration under the 

restrictions imposed by the geographical distribution of the feedstock, the specific parameters 

such as biomethane yield, rate of manure generation, crop productivity, etc. are the same here 

as those presented in sections 7.3 and 7.4. 

 

7.5.2.1 Methodology for the Potential Analysis 

 

As depicted in Figure 7.5.1, the co-digestion involves mixing a co-substrate (crop residue in 

this case) with manure for the purpose of improving the biogas generation. Nevertheless, the 

supplementary solid that can be added to the manure slurry is limited by the operating 

conditions of the anaerobic technology being employed. In general terms, anaerobic digestion 

technologies are classified into wet-fermentation and dry-fermentation. The former operates 

with a total solid concentration lower than 10-15% (dry basis), whereas the latter is adequate 

for a total solid concentration higher than 20% (Karthikeyan & Visvanathan 2013; Abbassi-

Guendouz, et al. 2012). The dominant technology for the treatment of agricultural residues is 

wet fermentation (Karellas, et al. 2010), and, for the national potential analysis, it was used as 

the reference in this assessment. Thus, a total solid concentration in the digestor )( mx  of 15% 

as maximum limit was set up. 

 

Biogas-to-energy 
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Figure 7.5.1. Conversion pathway for co-digestion of manure and crop residue. 

 
The information provided in Table 7.3.1 can be used to calculate the solid concentration of the 

manure for each type of livestock. For instance, the concentration of total solid for dairy 

manure is 14%, while swine is 13%. For the assumed humidity of agricultural residue, 15% 

wet basis, its total solid concentration is 85%. 
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It can be demonstrated, by applying a mass balance (see Figure 7.5.1), that the maximum 

amount of co-substrate tolerable for a wet-fermentation mixing manure and crop residue, and 

the total mixed substrate to digest can be calculated with the following equations: 
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  Equation 7.5.2 

 
In which csmmax  is the maximum amount of co-substrate to add for a wet-fermentation with 

manure; mm  is the total available manure per farm; mx is the total solid manure concentration; 

csx  is the total solid concentration of the co-substrate, in this case crop residue; and maxx  is 

the maximum total solid concentration within the reactor for a wet co-fermentation, set up at 

15% as previously indicated. 

 

The availability of both substrates for co-digestion (i.e. manure and crop residue) depends on 

both the spatial distribution of farms and location of annual crops, which cannot necessarily 

be proportional or supplied because of the distance, in practical terms. Due to the fact that the 

assessment was conducted using the county as the smallest geo-administrative control area, a 

necessary condition for the co-digestion was that the totality of biomass (crop residue in this 

case) in each county )(
i

m  must be at least equal to the maximal amount of co-substrate to be 

added )(
max

csm  to the totality of the farm-based units within that county. The latter can be 

expressed by a Boolean operator )(
c

A  to differentiate when the co-digestion can be performed 

or not, as indicated by Equation 7.5.3 and Equation 7.5.4. 
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In which 

c
R  corresponds to the yield of biomethane for co-digestion estimated in 250 

vsCH
kgNm3

4
 as a representative value (Lehtomäki, et al. 2007), and 

c
S  is the volatile-to-total 

solid ratio calculated for the mixing of manure and crop residue. 

 

The technical energy potential of the entire country derived from the co-digestion of crop 

residue and manure either via the biogas-to-energy or biogas-to-upgrade route can be 

calculated by adding up the technical potential for all the ith-counties as Equation 7.5.6 

indicates. 

 


j

BTE
j

BTE
t   

j

BTU
j

BTU
t   Equation 7.5.6 

 
7.5.3.2 Methodology for the Economic Modelling 
 

The economic modelling was conducted according the same procedure already applied for the 

evaluation of livestock farm and agricultural sectors (sections 7.3 and 7.4, respectively), and 

consequently by using identical economic and technical parameters. In these terms, the cost of 

feedstock supply was estimated by using the square-shape approximation of the county where 

the biomass is available. Moreover, no use or commercialisation of the by-products heat and 

fertiliser were considered on account of the same reason above given. 

 

7.5.3.3 Methodology for the Economic Potential 
 
The mathematical method for computing the representative generation cost and the 

corresponding economic limit can be found in detail in Chapter 4 or as already illustrated in 

previous sectors. Following the same methodology, the estimation of the needed feed-in tariff 

and the total yearly needed subsidisation was calculated. 

 
7.5.3 Results 
 
The possibility of co-digesting manure with agricultural residue offered an increase in the 

economic limit for the electricity generation option and provided the same representative 
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generation cost as the mono-digestion of manure. As observed in Figure 7.5.2, the co-

digestion raised the economic potential from 780 1

e
yGWh   to 1,140 1

e
yGWh   at a 

representative generation cost of 25 -1

e
kWh ct€ . This greatly increased the number of biogas 

plants that could achieve the minimal technical conditions to operate. As seen in Figure 7.5.2, 

whereas the economic limit of biogas-to-energy from mono-digestion of manure was made up 

of 367 plants, with nominal capacities from 22 
e

MW  to 25 
e

kW , the economic limit of 

biogas-to-energy via co-digestion accounts for 1,108 plants with nominal capacity in a similar 

power range. 
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 Figure 7.5.2. Supply-cost curve for the electricity generation of co-digestion 
of manure and crop residue. 

 

 
Although the increase in electrical potential by the co-digestion was significant at 46%, the 

power capacity was still concentrated in the low scale and accounted for 39% in the range 

from 10 to 250 
e

kW , and 31% were lower than that of 10 
e

kW . Potentials exceeding 5 
e

MW  

were exceptional, and constituted less than 3% of the technical potential. 

 

The assessment of the biogas-to-upgrade route was conducted following the same 

methodological approach applied to the biogas-to-energy pathway by considering co-

digestion; however, the results led to an increase in the Bio-SNG potential predominantly in 

the low range, with the consequence that the representative generation cost reached extremely 
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high and empirically unprecedented levels. Nevertheless, counties were found where it would 

be possible to develop Bio-SNG exploitation projects at commercial scale, although they 

represented no more than 15% of the total technical potential. Similar to the mono-digestion 

option, only two regions concentrated more than 61% of the technical potential, Región 

Metropolitana (XIII) and Región de la Araucanía (IX). 

 

Figure 7.5.3. Technical potential of Bio-SNG from co-digestion of manure and agricultural residue. 
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Figure 7.5.4. Technical potential of electricity from co-digestion of manure and agricultural residue. 
 
Additionally, it was found that the technical potential of electrical power on the national level 

was heavily concentrated on the small-scale, in the 10-250 
e

kW  range, and accounted for 71% 

of the country’s total. A similar tendency was observed in the technical potential of Bio-SNG, 

in which approximately 80% of the potential was concentrated on a scale lower than 1 
13yMMNm  , with only 12% in the 1.0 - 2.7 13yMMNm   range. 

 
7.5.4 Discussions 
 
As previously indicated, the representative generation cost for electricity generation was not 

modified as a consequence of the co-digestion in spite of being increased substantially the 

technical and the economic potential, the later from 779 GWhey
-1 to 1,338 GWhey

-1. 

Consequently, the co-digestion gave rise to the number of biogas plants making up the 

economic potential, from 376 to 1,108, almost three times the order of magnitude. 
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 Figure 7.5.5. Supply-cost curve for the electricity generation of co-
digestion of manure and agricultural residue. 

 

Although the same methodological approach used for the assessment of the biogas-to-energy 

route was applied, the results led principally to an increase in the Bio-SNG potential in the 

very low range, with the consequence that the representative generation cost rose to high 

levels; however, this should not be used as a means of evaluation because it is only relevant in 

a theoretical context and has no practical meaning; therefore, it was not included in Table 

7.5.1. Nevertheless, counties were found where it would be possible to develop Bio-SNG 

exploitation projects at commercial scale. 

 

Table 7.5.1. Energy potential of biogas-to-energy and biogas-to-upgrade for co-digestion of agro-industrial 
residue. 
 Route of conversion 

Economic indicator 
Biogas-to-energy 

(BTE) 
Biogas-to-upgrade 

(BTU) 
Technical potential 1,582 GWhey

-1 429 MM Nm3y-1 
Economic potential 1,338 GWhey

-1 - 
Minimum cost of production 5.2 ct kWhe

-1 - 
Representative generation cost 25.0 ct kWhe

-1 - 
Needed feed-in tariff 13.0 ct kWhe

-1 - 
Needed subsidisation 84 MM € y-1 - 
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7.5.5 Preliminary Conclusions 
 

On the basis of the assessment presented above, co-digestion is possible to be carried out in 

economic terms and its implementation may provide a significant increase in the economic 

potential of the electricity option. As observed systematically for the four sectors previously 

assessed, a high concentration of the potential is observed, and for this option (i.e. co-

digestion of agro-industrial residues) in only two regions located in the south of the country. 

On the contrary, the biogas-to-upgrade route as the main option does not seem advantageous 

since the potential is concentrated mainly in the low scale, in which the Bio-SNG option 

exhibits a highly sensitive cost of production. In these terms, the biogas-to-energy pathway 

offers greater flexibility in terms of the potential and distribution of biomass available in the 

country. 



Chapter 7 Results 

 93

7. Results 

7.1 Municipal Solid Waste Sector 

The potential energy that could be derived from municipal solid waste (MSW) in Chile was 

analysed using the proposed methodological approach based on a techno-economic 

assessment described in Section 4. Supply-cost curves were used to present and compare the 

aggregated data for the energy potential and the cost of energy generation. The electricity 

generation alternatives assessed were landfill gas-to-energy (LGTE) and direct waste-to-

energy (WTE) as well as gas collection and upgrading to feed into the grid (LGU). These 

options were evaluated and subsequently compared using such criteria as the production 

cost, the technical and economic potential and the challenges for the country in the near 

future. 

 

7.1.1 Introduction 

 
Municipal solid waste (MSW) generation is a major topic in the management and planning of 

modern societies. MSW applies pressures to both the environment and the health of the 

population, steadily accumulating cost for management and potentially detracting from the 

population’s standard of living. Furthermore, the public’s greater awareness of environmental 

matters leads to additional motivation via environmental issues, resulting in demands on 

authorities for stricter control and environmentally sound strategies for addressing this 

problem. 

 

Although the hierarchy of landfilling versus incineration as the most effective method to treat 

MSW is unclear because it depends on local particularities (Dijkgraaf & Vollebergh 2004, 

2008; Themelis 2008), there is consensus that recycling offers substantial benefits and must 

be considered as the starting point of any national MSW policy; this consideration would 

facilitate the decoupling of the MSW generation rate from economic growth (an aspect 

particularly relevant for developing countries), the reduction of biodegradable matter 

deposition and the subsequent uncontrolled emission of such greenhouse gases (GHG) as 

methane, carbon dioxide, ammonia and other trace compounds. Nonetheless, recycling 

demands relevant modifications to the habits of a population;   for instance, the introduction 

of well-distributed curb-side services throughout the country (for collection of plastic bottles, 

glass, paper, etc.), the existence of a formal industry able to recover and process the recycled 
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material and actively coordinated actions among the public entities responsible for household 

waste. 

 

In Chile, approximately 6.5 millions of tons of MSW were generated in 2008 (Pérez 2010), 

and, since the System of Environmental Evaluation (SEE) came into force in 1997, the 

country has made considerable progress in matters of collection, recycling, minimisation and 

landfilling of MSW. Approximately 60% of the total MSW generated was collected in the 

municipalities (data from 2008), with a rate of approximately 80% collection in municipalities 

with populations upwards of 50,000 inhabitants (Machado & Malarín 2007). Furthermore, the 

country contains an internal market for recycled plastic, cardboard, glass, aluminium and 

scrap, accounting for 11% in the Metropolitan Region (Bräutigam & González 2012). 

 

Beyond the progress accomplished thus far, significant challenges remain to improving the 

management of a growing amount of MSW associated with the rising income levels observed 

in recent decades as well as demographic growth. Modifications of recent sanitary regulations 

should improve the conditions of final MSW deposition sites. 

 

7.1.2. MSW Management 

 

According to the new laws and regulations in Chile (Willumsen 2005; Decree 189), final 

deposition sites are classified under three categories: a sanitary landfill is defined by such 

requirements as impermeable liners, leachate collection and lixiviation treatment systems. The 

second category is a landfill dump, which consists of dumps where the MSW is deposited 

without major technical requirements; these dumps are only allowed to operate under 

exceptional conditions; this type of deposition site is being eliminated and should be 

completely gone within the current year. The final category is illegal dumps, which, as their 

name suggests, do not fulfil the established sanitary conditions, and consequently, are illegal 

to operate. 

 

Methane is continuously released mainly during landfill operation, but it can also extend long 

after landfill closure; methane generation is uncontrollable because it is produced by the 

anaerobic microbiological activity within the landfill material. Worldwide methane emissions 

from landfills are estimated at 35-73 Tg of the total 598 Tg per year (IPPC 2001). Because 

methane is a greenhouse gas (GHG) with commercial value, a permanent effort has been 
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made to capture and use it as a source of energy (Methane to Markets 2004). Until recently, it 

has been primarily used for electricity generation and direct heating, and to a lesser degree, as 

a pipeline gas for injection into distribution networks (Themelis & Ulloa 2007). 

 

An alternative to direct landfilling is the waste-to-energy option (WTE), which was 

previously known as incineration. This method uses the MSW (with or without sorting) as a 

fuel to generate energy via a (normally) combined heat and power scheme. The WTE 

technology has exhibited a noteworthy improvement in performance in recent years, with the 

integration of enhanced abatement control of pollutants. The U.S. Environmental Protection 

Agency (EPA) named WTE technology as one of the cleanest sources of energy 

(Psomopoulos, et al. 2009) due to the steadily diminishing levels of dioxin, furan, mercury 

and other heavy metal emissions over the last twenty years. From an international perspective, 

Taiwan constitutes a unique experience in the field (Kuo, et al. 2008) incinerating 53% of its 

MSW (data from 2008). Close on the heels of Taiwan are Denmark, which incinerates 48% of 

MSW, Switzerland and Sweden with 49%, the Netherlands at 39% and Germany at 34% (data 

from 2009) (Eurostat News Release 2011). 

 

Today, there are approximately 39 landfills operating in Chile (data from 2011) (National 

Service of Environmental Assessment 2012), with an approximate average population of 

420,000 inhabitants served per landfill. Fourteen of these landfills have incorporated clean 

development mechanisms (CDMs) (CGF-MDL 2011) in which collection systems were 

implemented primarily to flare the released gas. Only one landfill has implemented gas 

capture to produce electricity, attaining a current generation capacity of 14 MWe that is 

projected to reach 28 MWe by 2024. No application of landfill gas recovery for injection into 

the country’s natural gas grid exists yet, nor are there any incineration facilities. 

 

The aim of this section is to explore the uses of MSW generated in Chile for energy recovery 

at the national level via an economic assessment of three energy alternatives based on state-

of-the-art technologies and without proposing substantial modifications to MSW collection. 

The energy options considered in this research, and schematically presented in Figure 7.1.1, 

are: i) burning of spontaneously generated landfill gas that is captured to produce electricity 

(LGTE); ii) direct use of unsorted MSW via incineration (WTE); and iii) landfill gas recovery 

and upgrade for injection into the natural gas grid (LGU). 
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At a regional level, Amini & Reinhart (2011) evaluated the recovery of landfill gas in Florida 

(USA) by applying selected modification to the LandGEM model. The modified assessment 

considered the generation of electricity via direct combustion and an equivalent gaseous fuel, 

although an economic evaluation of the end-product cost was not incorporated. An alternative 

approach was discussed by Schneider et al. (2012), who proposed an evaluation of the use of 

landfill gas for electricity production (LGTE), MSW use for refuse-derived fuel (RDF) in the 

cement industry, landfill gas flaring, waste-to-energy (WTE) (also known as incineration and 

thermal treatment) and mechanical-biological treatment (MBT). The assessment was 

conducted by comparing the specific cost reduction for the above-mentioned alternatives. 

Each conversion route was evaluated for a typical plant size. 

 

 
Figure 7.1.1 Energy options for assessment for MSW utilisation. 

 
Although the mechanical-biological treatment (MBT) seemed promising, it was not 

considered within the scope of the evaluation because this approach requires sorting and other 

intermediate pre-treatments. Furthermore, from preliminary experience, the MBT 

performance is highly dependent on the involved mechanical treatment steps and the quality 

of the raw material, as discussed by Bayard et al. (2010). A specific study is needed for 

assessment of the MBT option at a regional or national level, which can be carried out in 

follow-up research. 

 
7.1.3. Methodology 

The following sub-sections present the methodology applicable to the previously indicated 

three conversion routes in MSW analysis. It structures the specific economic and technical 

framework under analysis and allows for the comparison of conversion routes, their potential 

and the cost of their end products, with a particular focus on the conditions of the conversion 

option within a market framework. 
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7.1.3.1 Methodology for the Technical Potential 
 
The estimation of the MSW was carried out for each landfill in operation using technical 

information published by official government entities and the approximate serviced 

population, in addition to the composition and characteristics of the MSW (National Service 

of Environmental Assessment 2012). In the calculation, a specific MSW generation rate per 

inhabitant (R) was applied to each administrative region. The value of this indicator, shown in 

Table 7.1.1, is in agreement with the country’s economic development. For instance, the U.S. 

produced 0.733 t hab-1y-1 (data from 2008) (EPA 2011); in the European Union this value 

reaches 0.542 t hab-1 y-1 (data from 2008) (Waste Oportunities 2011), whereas in urban India 

this value ranges from 0.50 to 0.70 t hab-1y-1 (data from 2008) (Jha, et al. 2008). 

 
Table 7.1.1 Specific MSW generation rate in Chile per inhabitant per administrative region (Pérez 2010). 

Country region’s name 
Rj 

(t hab-1y-1) 
Country region’s name 

Rj 
(t hab-1y-1) 

Región Arica y Parinacota (XV) 0.59 Región Libertador B. O’Higgins (VI) 0.24 
Región de Tarapacá (I) 0.59 Región del Maule (VII) 0.30 
Región de Antofagasta (II) 0.34 Región del Biobío (VIII) 0.29 
Región de Atacama (III) 0.37 Región de la Araucanía (IX) 0.34 
Región de Coquimbo (IV)  0.22 Región de los Lagos (X) 0.32 
Región de Valparaíso (V) 0.34 Región de Aysén (XI) 0.39 
Región Metropolitana (XIII) 0.42 Región de Magallanes (XII) 0.39 
  Región de los Ríos (XIV) 0.36 
 

Although the specific MSW generation rate depends on the socioeconomic level of the 

population as well as its consumption habits, this rate was assumed as constant for each 

administrative region and simply adjusted to the year of evaluation (2011) by assuming a 

linear proportionality with an expected annual economic growth rate of 6.3% for 2011 

(Financial News 2012c). 

 

The main components of landfill gas are methane (40%-60%), carbon dioxide (35%-50%), 

nitrogen (0%-20%), oxygen (0%-1%), hydrogen sulphide (50-200 ppm) and ammonia (5 

ppm, typically) (Rasi, et al. 2011). The organic silicon compound concentration in landfill gas 

is particularly high (Dewil, et al. 2006), ranging from 3 to 24 mg Nm-3 (Ajhar, et al. 2010). 

Numerous volatile organics (VOC), aromatics and halogenated compounds are present, and in 

certain cases, more than one hundred trace compounds have been reported. This complexity is 

a consequence of the heterogeneity of the residues and the uncontrolled conditions under 

which a landfill operates. The generation rate of landfill gas additionally depends on local 

conditions and seasonal variations (i.e. humidity, temperature, rainfall) as well as the type of 

landfill operation and how the MSW is deposited. Furthermore, the gas release is intrinsically 
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related to the opening and closing times. There are numerous models available to estimate the 

landfill gas emitted on a temporal basis although significant differences between cases are 

generally observed in the predictions (Thompson, et al. 2009; Ritzkowski & Stegmann 2007; 

Meraz, et al. 2004; EPA 2005). 

 

According to Themis et al. (2007), the capture of landfill gas (M), expressed as pure methane, 

is in the 100-150 13
CH tNm

4

  range and depends on the way in which the gas is collected (i.e. 

whether it uses a passive venting or active collection system, vertical wells or horizontal gas 

collection trenches, etc.). Thus, a conservative estimate of 50 13

4CH
tNm  from placed MSW was 

employed for the methane generation rate from a landfill, following the recommendations 

given by the same author. Therefore, the gas flow, expressed as pure methane that can be 

technically recovered and upgraded is calculated as indicated in Equation 7.1.1. 

 

ij
LGU
it PRM   ,   Equation 7.1.1 

 
In which LGU

it ,
  is the methane technically recovered from the ith-landfill, P is the population 

serviced (hab) at the ith-landfill, Rj is the MSW generation rate per capita (t hab-1y-1) of the 

jth-administrative region and M is the methane-landfill gas recovered per unit of landfilled 

MSW ( 13

4CH
tNm  ). The technical potential of the electricity generated by burning the landfill 

gas can be calculated as indicated in Equation 7.1.2. 

 

e
CH
LHVij

LGTE
it HPRM   

~
   4

,   Equation 7.1.2 

 

In which e  corresponds to the electrical efficiency of the conversion units, 4CH

LHV
H  is the 

lower heating value of methane estimated as 50,000 kJ kg-1 (Avallone, et al. 2007), and 

equivalent to approximately 13
CH MMBTU Nm 59.31

4

 . If reciprocating engines are sufficient 

for the power range of the landfills under analysis, this equipment will be used as a reference 

technology in the assessment for the conversion of the landfill gas to electricity presented in 

the forthcoming section. 

 

Regarding the composition and the corresponding humidity for the sorted components, Table 

7.1.2 shows the MSW characteristics in the XIII Region (also called the Metropolitan Region) 

(Bräutigam & González 2012), which was taken as representative for the entire country due to 

the lack of more specific information. 
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Table 7.1.2. Composition, humidity and lower heating value (dry) of MSW components. 

MSW Component 
MSW composition as 

received (%) 
Estimated humidity 

(%) (wet basis)  
LHV (kJ kg-1) 

Paper and cardboard 10.7 0.5 10,000 
Fabrics 3.5 1.0 12,500 
Plastics 10.8 1.5 28,000 
Glass 6.3 0 0 
Metals 3.2 0 0 

Organic matter 49.4 29.5 3,300 
Miscellaneous components 16.1 0 14,300 

Dust-ash 1.2 0 0 
 

Considering the lower heating value of each component (Finet 1987) and its humidity 

(Bräutigam & González 2012), an average heat of combustion (LHV) of 7,930 MJ t-1 for a 

homogenous fuel is estimated for this MSW; this value is then used for the estimation of the 

technical potential on a thermal basis, as Equation 7.1.3 indicates. The electrical potential of 

burning the MSW without sorting (WTE) is then calculated by considering an electrical 

efficiency (e) of 21% (Burnley, et al. 2011). 

 

eij
MSW
LHV

WTE
it PRH     

~
, 

 Equation 7.1.3 

 
The technical potential of the entire country, either for the electricity or gas evaluation route, 

can be calculated as the sum of all single technical potentials on the nth-landfills and for each 

conversion pathway, as shown in Equation 7.1.4. 

 




n

i

LGTE
it

LGTE
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,  



n

i

WTEWTE
t it

1
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n

i

LGULGU
t it

1
,

  Equation 7.1.4 

 

7.1.3.2 Methodology for the Economic Modelling 
 

The unitary cost of electricity or upgraded gas generated from each landfill is calculated 

according to Equation 7.1.5. 

 

iimoiiti RCIc  ,&,   Equation 7.1.5 

 

In which ic  is the unitary cost of secondary energy, either for the landfill gas-to-energy 

(LGTE), waste-to-energy (WTE) option, or landfill gas upgrade (LGU) alternative. The 

parameter  is the capital recovery factor, calculated with an annual interest rate of 10% and a 

fifteen-year lifetime for all cases. The annual operation and maintenance cost, moC & , was 
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estimated as a fraction of the investment, a methodology based on mathematical regressions 

of economic data published elsewhere and an approach used in pre-feasibility studies and 

economic analysis (Chauvel, et al. 2003; Couper 2003). A location factor of 1.08 was 

included as the investment for the country; this factor mainly addresses the additional cost for 

freight, taxes and insurance (Chauvel, et al. 2003). The value of 
i

R  corresponds to revenues, 

which may be incorporated as heat generated for sale or re-use of any by-product. Because 

Chile does not have a district heating market, revenues were not incorporated (OECD-B 

2012). Detailed information of the methodology and technical and economic information is 

given in Chapter 4 and Chapter 6. 

 

Landfill gas extraction is the first step of the recovery. The collection system contains a set of 

extraction wells that are normally located at selected depth intervals and share a common 

collection point by means of a pipe network. Afterwards, the gas is normally desulphurised by 

a conventional activated carbon system and then burned to produce electricity, as previously 

mentioned. On the other hand, in the WTE option, the MSW is combusted at high temperature 

(above 800°C), and the heat generated is then used in a steam power generation cycle to 

produce electricity. The current development status of WTE technologies may allow its use 

without creation of dioxin pollution (Cheng & Hu 2010; Zhiqiang, et al.; 2006; Montejo, et 

al. 2011). WTE is an advanced technology characterised by a heavy investment and high 

operating cost and is appropriate in most cases when landfilling is unfeasible (Rand, et al. 

1999; Rand, et al. 2000) The main solid residue is ash, and its generation rate depends on the 

MSW composition. This residue could be used as a by-product in construction applications 

but a large fraction must be landfilled. The final ash deposition cost (transportation included) 

for this assessment was estimated at 16 € t-1 (Willumsen 2005). 

 

The third energy alternative for evaluation corresponds to the generation of a gaseous fuel by 

treatment of the landfill gas. The product was defined as a bio-substitute natural gas (Bio-

SNG) because it fulfils the definition of originating from biomass digestion and has the 

capacity for subsequent improvement and adjustment of properties for injection into the net 

distribution or for use as a fuel for vehicles (Steifer 2009). 

 
In a simplified representation, the treatment of landfill gas to produce high-quality pipeline 

gaseous fuel can be split into the steps of collection, cleaning, upgrading and feed-in, as 

analogously described in Chapter 5. Normally, in the cleaning step, hydrogen sulphide and 
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other sulphur compounds are removed through a conventional active carbon adsorption, alone 

or in combination with chilling systems (Urban, et al. 2009). The next step contains the most 

expensive unit in this chain in which carbon dioxide is uptaken by a technology such as 

pressure swing absorption (PSA), pressure water wash (PWW) (Läntela, et al. 2012), or 

amino-chemical absorption (Gaur, et al. 2012). In addition to carbon dioxide removal, the 

simultaneous elimination of ammonia take places as well as sulphur, halogenated and silicon 

compounds; in most cases, these two steps are sufficient to satisfy the most relevant gas 

injection requirements. Although there are differences in the cost of carbon dioxide uptake 

between the previously mentioned technologies, these differences intrinsically depend on 

utility prices (i.e. electricity, cooling water, labour, etc.) and landfill gas flow to be treated. 

Nevertheless, for this study, no differences in the upgrade technology investments and 

operating cost are assumed, such that a unique mathematical relation can correlate them, as 

discussed in previous chapters. 

 
Economic information from the literature and other technical reports was gathered for the 

estimation of the investment and total the operation cost for landfill gas collection systems 

(see Chapter 4), waste-to-energy facilities (Gómez, et al. 2010; Zabaniotou & Giannoulidis 

2002), upgrade units and gas injection systems for feeding into the natural gas grid (Althaus 

& Urban 2005; Urban, et al. 2005) as well as for reciprocating engines for electricity 

generation (ASUE 2011). The value of 0.22 ct€ -3
CH4

Nm  was used for the desulphurisation 

cost, according to Mescia et al. (2011). Table 6.1 summarises the economic information 

related to the investment and to operation and maintenance cost as well as key technical 

figures such as the conversion efficiency of each technological pathway to be assessed, i.e., 

collection of landfill gas and its posterior direct burning in a reciprocating engine (LGTE), 

waste-to-energy (WTE) and the collection of landfill gas and follow-up upgrade to feed-in 

(LGU). This information was subsequently incorporated into the economic model defined in 

Equation 7.1.5. In each case, the representative generation cost and the economic potential 

were calculated as described in the following section. 
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7.1.3.3 Methodology for the Economic Potential 

 

For the three energy alternatives proposed, supply-cost curves were used to conduct the 

potential analysis with selected adaptations made for the purposes of this study as previously 

mentioned in chapter 4 Methodology for the Potential Analysis at National Level. The supply-

cost curve was built for each conversion route, i.e. LGTE, WTE and LGU, by assessing the 

unitary cost for each single potential 
it ,

 . The representative generation cost is then expressed 

as the most frequent cost and mathematically calculated in the statistical mode as follows: 

 
]mode[ , )(πcc itir   Equation 7.1.6 

 

After calculating the representative generation cost, the economic potential of the technology 

can be estimated by interpolation with the supply axes. Therefore, the economic potential can 

be interpreted as the total amount of energy that can be generated at a cost lower than the 

representative generation cost. The comparison between the representative generation cost 

)(
r

c  for each secondary energy, either gaseous fuel or electricity, with its average market 

price is performed to discuss the economic cost effectiveness of each assessed option and to 

identify the need for subsidies if the process is not economically competitive. 

 

Finally, the information is integrated into a geographical information system (GIS), in which 

the energy potential map can be visualised with the county as the smallest geo-administrative 

control area for each of the regions composing the country. 

 
7.1.4. Results 

 
Figures 7.1.2 and 7.1.3 display the supply-cost curves for electricity generation through the 

collection and burning of landfill gas (LGTE) and by waste-to-energy (WTE) without sorting. 

The former option exhibits a technical potential of approximately 1.1 TWhe y-1 with a 

representative generation cost of 11.0 ct€ kWhe
-1, whereas the latter offers a technical 

electrical potential of approximately 2.2 TWhe y-1 and a representative generation cost of 

electricity of 10.6 ct€ kWhe
-1. 
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Figure 7.1.2. Supply-cost curve for landfill gas-to-

energy option (LGTE). 
Figure 7.1.3 Supply-cost curve for waste-to-energy 

option (WTE). 
 

The technical and economic potential of the LGTE option are practically identical (see Figure 

7.1.2); therefore, it is made of the 23 largest landfills in operation. On the other hand, as 

Figures 7.1.3 shows, the economic potential of the WTE option is approximately 95% of the 

technical potential and can be supplied by the MSW currently disposed of in the 16 largest 

landfills. 
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Figure 7.1.4. Supply-cost curve for landfill gas upgrade option (LGU). 

 
The third energy alternative involves the collection of landfill gas released under uncontrolled 

conditions and the subsequent upgrades required for injection into the natural gas grid. Due to 

the difference between the forms of secondary energy generated in the two previous 
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alternatives, the figure was also expressed in millions of British Thermal Units (MMBTU), 

the unit commonly used in official energy statistics of LNG and natural gas prices (BP 2013). 

For the totality of landfill gas under evaluation, the representative cost of the upgraded gas is 

9.5 € MMBTU-1 with a technical potential of 260 MM Nm3 y-1. The economic potential is 

approximately 86% of the technical potential and can be supplied by the 10 largest landfills in 

operation. 

 

Table 7.1.3. Energy potential of the three assessed options for MSW utilisation. 
 Alternative of energy generation from MSW 

Economic Indicator 
Landfill gas-to-energy 

(LGTE)  
Waste-to-energy  

(WTE)  
Landfill gas-to-upgrade 

(LGU)  
Technical potential 1.1 TWhe y

-1 2.2 TWhe y
-1 260 MM Nm3 y-1 

Economic potential 1.1 TWhe y
-1 2.1 TWhe y

-1 224 MM Nm3 y-1 
Minimum cost of production 5.4 ct€ kWhe

-1 8.6 ct€ kWhe
-1 5.0 € MMBTU-1 

Representative cost 11.0 ct€ kWhe
-1 10.6 ct€ kWhe

-1 9.5 € MMBTU-1 
 

Figure 7.1.5. Electricity technical potential from landfill gas-to-energy (LGTE) and waste-to-energy (WTE) 
options. 

 

As shown in Figures 7.1.5 and 7.1.6, the technical potential for the three assessed options are 

concentrated in certain municipalities in the XIII Region (Metropolitan Region), accounting 

for 67% of the total energy potentially available from the MSW in the most populated area of 

Chile. On the other hand, a significantly lower energy potential is observed in the rest of the 
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country, which is explained not only by the lower population density but also by the 

construction of small-scale landfills. 

 

 
Figure 7.1.6. Bio-SNG technical potential from landfill gas upgrade option (LGU). 

 

7.1.5. Discussions 

 

During 2010, the average industrial and commercial electricity prices for the country reached 

10.4 ct€ kWhe
-1 and 16.8 ct€ kWhe

-1, respectively (OLADE 2011), and these prices have 

experienced a steady increase in recent years. In this context, considering the electricity 

generation cost for the LGTE and WTE options mentioned previously, both options are nearly 

economically profitable, at least on a pre-feasibility level, if only the cost of production is 

considered as the most relevant economic indicator. 

 

Despite the fact that the end products from both the LGTE and WTE options are electricity, 

the difference in the cost and potential can be explained as a consequence of the different 

technologies used in the conversion process, which implies a substantial difference in 

investment and operating cost as well as in the efficiencies and environmental implications. 
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All of these factors have an impact on the economic potential, which have a ratio of 

approximately 1:2 for this case. 

 

Similarly, the natural gas price has been increasing in recent years and reached a distribution 

price of approximately 15-22 € MMBTU-1 (data from 2011); thus, the cost of production for 

Bio-SNG would be competitive at 9.5 € MMBTU-1, and this option would not require 

subsidies to become economically attractive for the 10 landfills that comprise the economic 

potential. The injection of Bio-SNG is an alternative that takes advantage of the benefits of 

transportation across the natural grid; however, its use as a vehicle fuel may have a significant 

chance at commercial implementation when it is considered for particular applications e.g., 

compressed methane as a fuel for garbage and cleaning trucks, with filling stations located 

near the landfill and upgrading plant where it is compulsory for the trucks to arrive and 

depart. This option offers a realistic starting point for a commercial application without 

coming up against fuel distribution for private transportation in which fuel supply plays a 

highly relevant role. 

 

Although the largest energy potential lies in the WTE option, which represents approximately 

3.7% of the total national electricity consumption1 (National Commission of Energy 2010), 

according to international experience the major inconvenience of this technology rests on its 

social acceptance. Furthermore, a national effort focusing on MSW recycling should be 

implemented before the introduction of WTE technologies despite the favourable current 

market condition of electricity prices in the long-term. Although there have been notable 

achievements in recycling and MSW landfilling in Chile, these efforts remain modest when 

compared with countries where WTE has been successfully introduced as a part of a national 

MSW strategy in which recycling plays a pivotal role. 

 

7.1.6. Preliminary Conclusions 

Using a comparative analysis, the main differences in the cost and potential uses of MSW for 

energy generation were assessed at a national level. For the LGTE and WTE alternatives, the 

difference between the economic potential is a factor of two, with a slightly lower cost of 

electricity generation in the former case. For landfill gas upgrade to feed-in (LGU), the 

economic potential of the entire country reaches a scale that may allow for the 

implementation of recovery systems with upgrade to a commercial size. 

                                                 
1 56.05 TWhe of electricity consumption for 2009 (National Commission of Energy 2010). 
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The results suggest that a combined implementation of the production of high quality pipe-gas 

and electricity would be the most satisfactory practice because the Bio-SNG option is only 

competitive for the largest 10 landfills, accounting for 25% of the total landfills in operation 

and exhibiting a high sensitivity to the cost of generation. A significant number of landfills 

are inadequately suited for the implementation of any of the three energy recovery systems 

evaluated because of their scale. The results support the fact that the main difficulty lies in the 

existence of landfills that cannot profit from economies of scale at the range in which energy 

recovery systems operate economically, most significantly affecting those landfills that serve 

regions with lower population densities. This difficulty could be overcome if waste transfer 

stations were set up for regions with low populations, such that fewer but larger landfills 

could operate at a higher capacity, and, consequently, under conditions that are more 

advantageous for energy recovery. However, this option entails coordinated and cooperative 

actions between municipalities that have historically faced the problem of waste management 

independently instead of looking for cooperative solutions. 

 

These results must be considered as a basic framework that can orient the decision-making 

process or the implementation of environmental policies either in the short or long term. Other 

aspects that will become more important in the long-term must be taken into consideration in 

further research such as environmental impacts or public acceptance of MSW processing 

technologies as well as the incorporation of incentives for recycling and the sorting of organic 

fractions of the MSW, tax-cuts for recovered methane for use as a transportation fuel and the 

impact of these efforts in the strategy of using MSW as an alternative source of energy. 
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7.2. Wastewater Treatment Sector 
 

In this section, the energy that can potentially be obtained from the digestion of sludge 

generated from wastewater treatment processing (WwT) was calculated using the proposed 

methodology. The different pathways of electricity generation via the direct combustion of 

biogas and upgraded biogas produced as bio-substitute natural gas (Bio-SNG) for injection 

into the gas grid were assessed and compared. Information such as the population served, 

WwT technology employed and geographical distribution of the sludge sources was gathered 

to estimate energy potential. 

 

In contrast with the previously assessed sector, municipal solid waste (MSW), either 

electricity or Bio-SNG from WwTP sludge processing would necessitate subsidisation to 

become economically attractive. To illustrate the procedure for the calculation, this chapter 

will act as a test case for the other sectors to be evaluated in this thesis (i.e. livestock farming, 

agricultural and co-digestion). 

 

7.2.1 Introduction 

 

The supply of water and sanitation services constitutes an indispensable requirement for the 

protection of public health, maintenance of basic living conditions, and the protection of biota 

and natural resources. Although the advances made in wastewater treatment technologies over 

last decades have been outstanding, the universalisation of water and sanitation services 

remains a major challenge for the 21st century (Castro, et al. 2009). 

 

Under a modern perspective, a centralised municipal wastewater treatment (WwT) 

programme was set up in Chile thanks to a large-scale water reform policy started in the late 

1990s, leading to the privatisation of this service sector which was previously managed 

integrally by the state. In parallel to this restructuring, the development of emissions standards 

for municipal sewage discharge was introduced when the General Environmental Law (1997) 

came into effect with the consequent obligation for water supply companies to treat polluted 

water after discharging it into the surface-water environment for the purposes of preserving 

biota, avoiding the detrimental effects, improving the value of touristic sites and protecting 

human health. According to the World’s Water Report (2008), Chile has 922 billion cubic 

meters of total renewable freshwater. Furthermore, 87% of the urban population was 

connected to wastewater treatment plants (WwTPs) by 2010 (Water Supply Superintendence 
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2012), a share that is in line with OECD countries (European Environment Agency 2011 

2011); this figure is expected to reach 98% and then 99% by the present year (2013) and 

2015, respectively (see Figure 7.2.1). 
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 Figure 7.2.1. Share of population served by public wastewater 
treatment facilities in Chile 1990-2010 and projection for 2015.  

Water Supply Superintendence (2012). 

 

 

WwT is a set of physicochemical processes employed to remove pollutants, which can be 

physical, chemical or biological substances. WwT is normally divided into primary, 

secondary and tertiary treatment and selected according to the environmental regulations that 

the treated water must comply with. Whereas primary systems (also know as mechanical 

treatments) entail the removal of suspended solids, floating materials and scum from raw 

sewage, commonly by sedimentation or flotation, secondary treatments (also known as 

biological treatments) aim to remove dissolved organic matter by anaerobic or aerobic 

biochemical processes. In tertiary systems (also called advanced treatments), the organic 

matter remaining after secondary treatment is removed, along with phosphorous and nitrogen, 

to control nutrient levels. Finally, disinfection may be conducted to meet the standards of 

effluent regulations. 
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Activated sludge
143 plants

Wastewater emissary
32 plants

Primary system 
13 plants

Stabilisation pond
17 plants

Others
11 plants

54%

12% 6%

19%

4%

5%

Aerated lagoon
50 plants

266 Wastewater Treatment Plants in Operation (2011)

 

 

 Figure 7.2.2. Wastewater treatment technologies used in Chile.  
Water Supply Superintendence (2012). 

 

 

As Figure 7.2.2 shows, the most common primary treatment technology employed in the 

country is sedimentation, which comprises 5% of the total. In particular cases, it is followed 

by disinfection, and this two-step treatment is sufficient to meet the environmental 

regulations. The most heavily employed system of secondary treatment is activated sludge, 

which includes conventional activated sludge (CAS), extended aeration, oxidation ditch or 

sequential batch reactors and makes up 54% of the total technology employed. The 

stabilisation pond is the second most commonly used technology in secondary treatment at 

6% of the total and entails wastewater treatment of large surfaces, with or without aeration. Of 

the total number of WwTPs, the remaining 12% are wastewater emissary, which collect 

wastewater and then dispose of it in the ocean. The introduction of a tertiary system is 

practically nonexistent, mainly as a consequence of current environmental observances. 

 

7.2.2. WwTP Sludge Management 

 

In spite of the advantages in WwT, processing inevitability generates sludge at a significant 

rate, creating a new environmental problem to deal with (Athanasoulia, et al. 2012). Although 

sludge has been traditionally handled as a waste management problem (WMP) in most EU 

countries, sludge landfilling has gradually decreased as the trend of reusing it as fuel has 

gained value (Kalderis, et al. 2010). The same tendency can be observed in Chile, where 

sludge landfilling has faced increasingly strict regulations with which to comply (Decree 4; 
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Decree 189). In addition, prior to transportation and final disposal, which involve total cost of 
-1

FM
 t€ 60  roughly, the sludge necessarily requires pre-treatment. This pre-treatment typically 

include mechanical dewatering and thickening, operations that demand energy as well as 

consumable chemicals, and, consequently, increases the cost of wastewater treatment (Coffey 

2009). These new conditions are indirectly forcing WwTP operators to seek new cost-

competitive options. Additionally, the environmental framework previously discussed 

coupled with an increase in the cost of energy could become an additional driving force for 

sludge “residues” to become “by-products”, useful as a raw material for energy generation, 

with a trade price that might reflect market competition. 

 

In this new environmental and economic scenario, anaerobic digestion could significantly 

contribute to solving the situation previously described. The main product from the anaerobic 

digestion of WwTP sludge is biogas composed mainly of methane (40-75%) and carbon 

dioxide (15-60%). As previously described, biogas can be used either to generate electricity 

through combustion or to produce an upgraded gas with the option to use it as vehicle fuel, or 

for injection into the existing natural gas network. Besides, biogas generation via anaerobic 

digestion offers the chance to stabilise and considerably reduce the volume of WwTP sludge 

by generating a by-product that may be sold as a bio-fertiliser, consequently improving the 

economics of the entire process. The body of evidence indicates that biogas generation as a 

waste-to-energy strategy to deal with the sludge generation problem can be considered an 

economic, environmentally friendly and decentralised solution. Concerning the biogas for 

electricity or gaseous biofuel generation option, it has particularities that must be analysed on 

a case-by-case basis in order to identify the most attractive option from an economic, 

environmental and socio-political standpoint. 

 

In the biogas-to-energy pathway, the direct production of electricity from the biogas 

combustion, a CHP scheme seems to be the most suitable option (Jiri 2010). A decentralised 

gas-engine CHP is a robust, state-of-the-art technology encouraged as a means to reduce CO2 

emissions. Alternatively, raw biogas can be treated to produce a gaseous energy carrier, the 

so-called bio-substitute natural gas (Bio-SNG), with the same standards as commercial natural 

gas (Seifert 2009). The main advantages of this option are associated with a high 

transportation efficiency and the possibility of using the existing distribution infrastructure 

without the need to adapt or substantially modify it. To attain this, biogas conditioning can be 

carried out via a subsequent set of unitary operations such as desulphurisation, drying, 
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siloxane removal, carbon dioxide uptake and the adjustment of calorimetric properties and 

injection, as previously described. 

 

With an orientation towards a waste-to-energy strategy, Chile has already started producing 

biogas at large scale from WwTPs. In a pioneer project performed by the gas distribution 

company Metrogás, sludge generated in La Farfana WwTP is used as a substrate for anaerobic 

digestion. This is one of the world’s largest WwTPs (Halcrow 2013), processing the 

municipal wastewater of approximately 3.6 million inhabitants via a CAS. An estimated 

biogas generation rate of 24 MM Nm3 y-1 with 63% methane is transported through a 16 km 

pipeline to a town gas facility after it has been upgraded through cleaning and carbon dioxide 

removal. Afterwards, it is treated catalytically to increase its hydrogen content. This new town 

gas is then injected into the gas grid and distributed for residential consumption (Nelson 

2010). This waste-to-energy system is a prime example of how integrating processes produce 

a gaseous energy carrier with commercial value, and, simultaneously, solve an environmental 

problem without relying on subsidies. 

 

Despite the example mentioned above, there is still a lack of reliable information on biogas 

potential in regard to WwTPs. Furthermore, the increase in the price of both electricity and 

natural gas, and the WwTP scale opens the discussion as to which alternative is the most 

appropriate, biogas-to-energy or the biogas-to-upgrade pathway. Although in principle both 

options offer well-known advantages, at the moment there is no assessment that provides 

sufficient evidence through cross-assessment comparison to make a well-educated decision.  

 

Although on an international level, Poeschl et al. (2010) indicated that the annual useful 

biogas energy potential in Germany is 18PJ from WwTPs, and highlights that only 10% of the 

global potential for biogas is utilised, the theoretical and technical potential are not explicitly 

identified nor is the economic potential assessed at the regional level. Rao et al. (2010) 

estimated the biogas generation potential in India based on statistical data, putting special 

attention on residue. According to the authors, sludge from WwTPs is available in large 

quantities, however, it is not included in the assessment. Lantz et al. (2007) indicated that 

60% (3PJ y-1) of Swedish biogas production takes place in WwTPs with a total potential of 

3.6 PJ y-1. Gómez et al. (2010) evaluated the potential and electricity generation cost in Spain 

by burning biogas generated via wastewater sludge digestion, assuming the capacity for 

WwTPs and wastewater treatment technology. The assessment was then incorporated into a 
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GIS to detect areas with a high electricity potential. An analysis of upgraded biogas for 

injection was not included in the study. 

 

7.2.3 Methodology 

 

The analysis of the potential for biogas generation was conducted by applying the sequential 

limits as defined in chapter 4. These boundaries were delineated as physical limit, 

geographical limit, technical limit and economic limit, according to the definition 

propounded by Hoogwijk (2004, 2005) and Izquierdo et al. (2010). Each limit implied 

restrictions used to estimate the economic use of biogas. 

 

Supply-cost curves (Izquierdo, et al. 2010) were built for the two assessed alternatives. In 

each case, the whole process chain was considered, starting with the generation of sludge in 

situ and ending with the production of secondary energy under conditions to be utilised. In 

both cases, electricity and Bio-SNG, the representative generation cost for secondary energy 

was estimated and then employed as a simple cut-off criterion to interpolate the economic 

potential. 

 

Bio-SNG
Cost (€ MMBTU-1)

End-productsOptions to assess

Biogas-to-upgrade 
(BGU)

Biogas-to-energy 
(BTE)

Sludge
ith-WwTP 

Electricity
Cost (ct€ kWhe

-1)

 
Figure 7.2.3. Conversion pathways to assess for the utilisation of wastewater treatment sludge for the 

production of either electricity or Bio-SNG through mono digestion. 
 

Economic and technical information such as investment and operational and maintenance cost 

(O&M) were drawn on from technical reports available elsewhere (see Chapter 6). Moreover, 

the cost-generation curve for electricity generation was constructed by considering electricity 

produced via a CHP module with a reciprocating engine because this technology is more 

suitable for electricity in the low power generation range, which the electrical potential in 

WwTPs is expected to be. A closing discussion about the implementation of a feed-in tariff 

system was considered to assess its relevance in the enhancement of this bio-energy option. 
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7.2.3.1 Methodology for the Technical Potential 

 

 Physical Limit 

 

Also know as theoretical potential, the physical limit is the upper limit of the primary energy 

calculated without imposing any kind of restriction, thus corresponding to all available 

primary energy in the biomass (i.e. total sludge) and can be estimated by applying the 

following equation: 

 

jjiif MSRP    ,   Equation 7.2.1 

 

In which 
i

P  represents the population served by the ith-WwTP (hab); R )y hab (kg -11- 

ts
 

corresponds to the sludge generation rate per inhabitant; 
j

S )kg (kg -1

tsvs
 is the volatile-to-total 

solid ratio of primary or secondary sludge 2) 1,( j ; 
j

M  )kg (Nm -1

´vs

3

CH4
 is the yield of methane 

generation from the mono-digestion of sludge. The parameters used to make the calculation 

correspond with average data obtained from literature, as Table 7.2.1 indicates. 

 

Table 7.2.1. Parameters employed for the calculation of biogas potentials from WwTPs. 

Parameter Symbol Unit Value References 

Population served by i-WwTP 
i

P  hab 
National 

statistics 
(a) 

Average sludge production rate R  kgts hab-1y-1 22.20 (b)-(f) 

Volatile-to-total solid ratio in primary sludge 1S  kgvs kgts
-1 0.571 (g) 

Volatile-to-total solid ratio in secondary sludge 2S  kgvs kgts
-1 0.642 (h)-(j) 

Methane yield from primary sludge 1M  -1
´vs

3
CH kg Nm

4
 0.271 (g), (k) 

Methane yield from secondary sludge 2M  -1
´vs

3
CH kg Nm

4
 0.220 (h), (j)-(l) 

Influent organic matter-to-sludge ratio in primary system 1  kgts kgts
-1 0.750 (m) 

Influent organic matter-to-sludge ratio in secondary system 2  kgts kgts
-1 1.00 (n)-(o) 

Conversion efficiency of Bio-SNG generation c  % 98.0 (p) 

(a) (WSS 2012), (b) Osorio & Torres (2009), (c) Marxsen (2001), (d) Lundin et al. (2004), (e) Jensen & Jepsen (2005),  
(f) Fytili & Zabaniotou (2008), (g) Kepp & Solheim (2012), (h) Luostarinen et al. (2009), (i) Bougrier et al. (2006), (j) 

 Davidsson (2008), (k) Gavala et al. (2003), (l) Qiao et al. (2011), (m) Zaror (2000), (n) Lin (2007),  
(o) Uggetti et al. (2011), (p) Pettersson & Wellinger (2009). 
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 Geographical Limit 

 

Also known as geographical potential, geographical limit constrains the potential because of 

legal considerations, urban regulations or limitations imposed by the geography, such as the 

inability to collect biomass due to geographical features. As previously indicated, 266 plants 

are under operation and use conventional activated sludge (CAS) technology, primary 

systems and sequential bioreactors, and they generate sludge that may be used for biogas 

generation as well as aerated lagoon, lagooning, and oxidation ditch. On the other hand, a 

wastewater emissary does not generate sludge, so the wastewater stream empties directly into 

the sea at a safe distance from the coastline. Thus, the geographic restriction is defined as 

follows, with a new constraint applied to the physical limit: 

 

igitigjjiig AAMSRP ,,,,      Equation 7.2.2 

 

The geographical restriction 
ig

A
,
 is equal to one for all cases, except for wastewater emissary 

where it takes the value of zero. 

 

 Technical Limit 

 

The technical limit represents the theoretical outer limit of secondary energy available, 

without any regard for cost or market acceptability. To calculate the technical limit, the sludge 

generated must be estimated as a consequence of the treatment. In primary systems, in which 

only mechanical removal of suspended matter occurs, sedimenters remove approximately 

75% of total solid suspended (TS), and approximately 30 to 40% of BOD (Zaror 2000). 

Therefore, a 0.75 )kg (kg -1

´tsts
 mass generation is considered since this definition coincides with 

the removal efficiency. The majority of WwTPs running have either a primary system or 

secondary treatment system (see Figure 7.2.4), thus this configuration is assumed throughout 

the evaluation. 
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Figure 7.2.4. Schematic representation of a conventional activated sludge system (CAS) and sludge processing 
options to assess. 

 

In complete-mix systems that recycle, as Figure 7.2.4 shows schematically, the mean 

hydraulic retention time ( ) can be calculated as indicated in the following Equation 7.2.3. 

 

o
H Q

V
  Equation 7.2.3 

 

In which V  is the volume of the aerobic reactor and 
o

Q  is the influent volumetric flow. 

Furthermore, in this configuration the sludge can be continuously withdrawn from the 

recycling line. If the volatile suspended solid (VSS) content )(
e

x  in the exit line is negligible, 

the mean cell residence time 
c

  can be estimated as Equation 7.2.4 indicates (Lin, 2008). 

 

rxw
c xQ

xV

 

 
  Equation 7.2.4 

 

Dividing Equation 7.2.3 by Equation 7.2.4 and reorganising the results yields Equation 7.2.5 

as follows. 
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 2  Equation 7.2.5 

 

The term 
2

  of Equation 7.2.5 corresponds to the influent organic matter-to-sludge generation 

ratio. For a typical and representative operation condition of a WwTP (Lin 2007), with 

parameters H = 4 day; 
c

 = 10 day; x(MLVSS) = 2,000 mg L-1; and xo(TS) = 800 mg L-1, the 

sludge generation rate is approximately 1.0 kgts kgts. Therefore, the technical limit can be 

estimated by applying Equation 7.2.6, in which the conversion efficiency and the 

corresponding restrictions are included: 

 

itcigitigcjjjiit AAASMRP ,,,,,             7.2.6 

 

In the biogas-to-upgrade (BTU) pathway, a conversion efficiency ( BTU ) of 98% was 

assumed to represent the amount of methane recovered in all the processing, from digestion to 

injection (Pettersson & Welliger 2009). Because the electrical efficiency ( BTE ) is highly 

dependent on the plant capacity in the biogas-to-energy pathway, its calculation was proposed 

as a function of electrical power. In this evaluation, the assessment considered biogas burning 

through a CHP module by a reciprocating gas-engine because its typical capacity is in the 

expected power range for the expected electric power. 

 

7.2.3.2 Methodology for the Economic Modelling 

 

The specific cost of secondary energy )(
i

c  can be calculated through Equation 7.2.7. 

 

                                                        ,&, iimoiiti RCIc    Equation 7.2.7 

 

In which it ,  is the technical potential of secondary energy from the ith-WwTP, either 

electricity or Bio-SNG; 
i

I  is the total capital investment;  is the capital recovery factor; 

imoC ,&  is the operation & maintenance cost; and 
i

R  the revenue obtained from selling by-

products or any other kind of income (e.g. from heat or the sale of bio-fertiliser, subsidies for 

green-electricity or waste management). 
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7.2.3.3 Methodology for Economic Potential 

 

The representative generation cost )(
r

c  is then calculated as the mode of the log-normal cost 

distribution, and the economic potential interpolated as a fraction of the technical potential 

composed by all the plants with a specific generation cost lower than the representative one. 

This can be mathematically expressed as Equations 7.2.8 indicates. 

 

   )]([ ,itr cModec    Equation 7.2.8 

 

The economic limit can be calculated as the summing-up of the total number of WwTP within 

the country as Equation 7.2.9 indicates. 
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The data was finally integrated into a geographical information system (GIS) to visualise the 

technical potential by using the county (also called municipality) as the control area. This is 

the smallest geopolitical administrative division for each of the fifteen regions that make up 

the country, with a total of 346 units and an average area of 2,100 km2. 

 

7.2.4 Results 

 

The theoretical potential of electricity generation, however irrelevant in practical terms, 

reached 359 GWhth y-1, whereas the geographical potential bordered 253 GWhth y-1. The 

technical limit was estimated at 83 GWhe y
-1, significantly lower than the two previous limits. 

In the biogas-to-upgrade pathway, the theoretical potential reached 38 MMNm3y-1, whereas 

the geographical potential reached 27 MMNm3y-1, or nearly 71% of the maximum theoretical 

limit. The technical potential reached 24 MMNm3y-1, corresponding to 62% of the theoretical 

one. 
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Figure 7.2.5. Supply-cost curve for biogas-to-energy 
option. 

Figure 7.2.6 Supply-cost curve for biogas-to-upgrade 
option. 

 

Figures 7.2.5 and Figure 7.2.6 are supply-cost curves of the biogas-to-energy and biogas-to-

upgrade pathways. Each point of the curve represents an amount of secondary energy 

supplied by a WwTP at a specific levelised cost. In the former, the representative generation 

cost of electricity was estimated at 21.5 ct€ kWhe
-1, with a minimum generation cost of 6.3 

ct€ kWhe
-1 for the largest WwTP in operation. The economic potential is approximately 75 

GWhe y
-1, and consists of the 28 WwTPs. 

 

For the biogas-to-upgrade route, the representative generation cost was estimated at 43 € 

MMBTU-1, with 11.2 € MMBTU-1 as the lowest cost of generation at the national level for a 

plant with nominal Bio-SNG capacity of 1,237 Nm3 hr-1. The economic potential reached 

approximately 19 MMNm3 y-1, and was made up of the Bio-SNG potentially available from 

18 of the largest WwTPs in operation. 

 

Figure 7.2.7 and Figure 7.2.8 show the technical potentials distributed throughout the country. 

For both options under analysis, there are direct correlations between highly populated areas 

and higher electricity and Bio-SNG potential at the lowest cost of production. This is an 

expected result, and supported by the proportionality between population served by a WwTP 

and sludge generation. Both electricity and the largest Bio-SNG potential are concentrated in 

the XIII Region, or Metropolitan Region, (approximately 49%) and the VIII Region 

(approximately 15%). 
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Figure 7.2.7. Geographical distribution of the technical potential for electricity generation from WwTP sludge 

digestion. 
 

 
Figure 7.2.8. Geographical distribution of technical potential for Bio-SNG production from WwTP sludge 

digestion. 
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Figure 7.2.9. Comparison between representative 
generation cost and market price for electricity 

option. 

Figure 7.2.10. Comparison between representative 
generation cost and market price for Bio-SNG option. 

 

Figure 7.2.9 shows that the representative generation cost of electricity is higher than its 

market price. In the same way, Figure 7.2.10 presents the representative generation cost of 

Bio-SNG as higher than the price of natural gas. For the biogas-to-energy pathway, the first 

five WwTPs have electricity generation that may be profitable, offering an achievable 

potential of roughly 55 GWhey
-1. To make the unprofitable fraction economically appealing 

(the remaining 23 WwTPs), would necessitate the introduction of a feed-in tariff subsidy of 

approximately 9.5 ct€ kWhe
-1, the difference between the representative generation cost and 

the market price. 

 

Table 7.2.2. Energy potential of the biogas-to-electricity and biogas-to-BioSNG. 

 Alternative of energy generation 
Economic indicator biogas-to-energy biogas-to-BioSNG 
Technical potential 85 GWhey

-1 24 MM Nm3 y-1 
Economic potential 83 GWhey

-1 19 MM Nm3 y-1 
Minimum cost of production 6.3 ct€ kWhe 11.2 € MMBTU-1 
Representative cost of production 21.5 ct€ kWhe 43 € MMBTU-1 
Needed feed-in tariff 9.5 ct€ kWhe 21-28 € MMBTU-1 
Needed subsidy 1 MM € 4 - 6 MM € 
 

For the biogas-to-upgrade route, there are one or two WwTPs in which the generation of Bio-

SNG makes sense in economic terms, thus its generation cost is lower than natural market 

price and has an achievable potential for injection into the grid at roughly 12 MMNm3 y-1. A 

subsidy in the 21-28 € MMBTU-1 range for generated Bio-SNG would be necessary to make 7 
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MMNm3 y-1 of Bio-SNG economically competitive. In both cases, the feed-in tariff scheme 

would associate a direct subsidy, which would mean approximately 1 MM € y-1 for the 

biogas-to-energy option, whereas the biogas-to-upgrade would reach 4-6 MM € y-1. Table 

7.2.2 summarises the main economic outcomes from the assessment. 

 

7.2.5. Discussions 

 

Tsagariks (2007) reported an electricity cost of 8.76 ct€ kWhe
-1 for a set of generators 

installed at a municipal WwTP located in Iraklio, Greece. Gómez et al. (2010) estimated a 

minimum electricity generation cost of 11.0 ct€ kWhe
-1

 at WwTPs facilities in Spain. Morin et 

al. (2011) found an electricity cost of 7 ct€ kWhe
-1 via biogas co-generation through the 

mono-digestion of 150,000 inhabitants’ municipal WwTP sludge in Quebec, Canada. These 

figures are in the line with the calculated representative generation cost of electricity. For the 

Bio-SNG option, no assessments of large areas were found in that most of the available 

information is based on case studies and oriented to estimate generation cost at a typical  

plant. 

 

In spite of the inherent difficulty in generalising the market’s prices for secondary energy at a 

national level for a specific time-frame, the above-mentioned values can be employed as a 

reference in the short-term for the development of a national strategy that addresses the sludge 

generation problem via a waste-to-energy approach. This strategy should be based on a 

macro-policy for the handling of wastes with similar characteristics, offering consistent 

incentives than can lead to a sustainable way of achieving environmental and economic 

benefits. 

 

7.2.6. Preliminary Conclusions 

 

This section has shown how the introduction of a technology to control an environmental 

issue, wastewater treatment specifically, resulted in the appearance of a new environmental 

problem (i.e. sludge). In this way, anaerobic digestion may offer a solution through a waste-

to-energy approach. For the two state-of-the-art options to the treat WwTP sludge, biogas-to-

energy and biogas-to-upgrade, it was found that the economic limit heavily penalised the 

energy potentially available based on the technical limit. Furthermore, it was found that at 

national scale 63% of the electricity's technical potential would be competitive with 
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conventional generation, whereas this share would reach approximately 58% for Bio-SNG; all 

of these percentages consider the average energy prices for 2011. As far as Bio-SNG 

generation is concerned, its injection only makes sense in large scale production, so it is 

heavily dependent on the amount of residual substrate available for processing. 

 

It is observed that there is a high concentration of energy potential in only two regions of the 

country, which is attributed to the high population density present in only a few areas. This 

implies that there are numerous small-scale WwTPs in which either electricity or Bio-SNG is 

not adequate to be produced at a commercial scale, being in this way landfilling the 

immediate possibility of handling. 

 

Both assessed options are hardly competitive without the introduction of incentives such as 

feed-in tariffs for energy generation or another indirect mechanism of subsidisation. 

Nevertheless, in comparison with the Bio-SNG option, a greater number of electricity projects 

may run profitably, and a significantly larger number might become profitable once the steady 

increase in electricity prices is considered. Consequently, the biogas-to-energy route is more 

effective and larger environmental externalities are present when no-subsidies from the state 

are considered.  

 

Under a hypothetical scenario in which subsidisation was contemplated for the promotion of a 

waste-to-energy policy, the generation of electricity seems to be the most advantageous 

because a similar number of WwTPs (24 for biogas-to-energy and 21 for biogas-to-upgrade) 

would be profitable, but the annual cost for the state would be significantly lower. Taking into 

account these results, evidence suggests that a policy towards the electricity pathway should 

be promoted under the current economic context of the country. 
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7.3 Livestock Farming Sector 

 

The production of biogas through anaerobic digestion has recently garnered considerable 

attention as an option for the generation of energy with significant environmental, social and 

political benefits, especially in the rural sector. However, and in contraposition with other 

alternatives, it is associated with a series of uncertainties that make it difficult to generalise 

either technical or economic assessments at a large-scale. This is principally due to the 

diversity and amount of substrates potentially suitable as raw material, the geographical 

distribution of the resource, scale of generation and environmental and energy policies. 

 

As previously done for municipal solid waste and wastewater treatment, the potential analysis 

is carried out for the livestock farming sector, which involves the assessment of energy from 

the anaerobic processing of manure by mono-digestion. The same structured methodological 

approach put forward in chapter 4 and already applied is once again employed, providing the 

same economic indicators to allow a cross-assessment comparison between the conversion 

routes (i.e. electricity or Bio-SNG) as well as among sectors. 

 

7.3.1. Introduction 

 

Anaerobic digestion is particularly attractive when searching for an environmentally friendly 

solution for the manure generated by farms (Hom-Nielsen, et al. 2009; Berglund &. Borjesson 

2006). On the one hand, the intensification of farming industries has enabled the inherent 

benefits of the economies of scale for edible goods production, and on the other hand the 

increased production of edible goods has been accompanied by significant volumes of manure 

during processing, involving higher cost and posing a risk to the environment. Although 

manure has historically been employed as a natural fertiliser to increase the quality of 

farmland and return nutrients to the soil, its use can be responsible for the eutrophication of 

waterways and losses of nitrate or phosphate when it is applied at non-optimal rates (Randall, 

et al. 2000). 

 

In recent years, Chile’s livestock industry has experienced considerable development; the 

country was an importer of dairy products up until 2001, and then became a net exporter due 

to a surplus in production. For instance, the poultry industry supplies most of the internal 

demand with 594,000 t y-1 (data from 2010), accounting for 45% of the total demand of meat. 
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Pork follows with 498,000 t y-1 (expressed as dressed meat) and has exhibited steady growth 

during the last decade (6.7% annually). Both are attributable to a higher demand from export 

markets like South Korea and Japan and the internal increase in consumption (ODEPA 2012). 

The dairy industry is made of approximately one hundred medium and large milk supplying 

plants principally located in the central and southern zones (ODEPA 2012). In the context of 

this expansion in the feedstock industry, the country ought to confront this new environmental 

issue in accordance with the new challenges to reach long-term economic competitiveness in 

a sustainable fashion. In these terms and based on scientific evidence, the introduction of 

anaerobic technologies as an approach to overcoming this environmental issue is seen as a 

promising solution. 

 

In Chile, the introduction of on-farm anaerobic technology has taken place slowly and only in 

last few years. Total biogas generation only reached 0.4 PJ y-1 in 2011 (Ministry of Energy 

2011), but, nonetheless, preliminary evaluations have shown that the theoretical potential of 

biogas from the digestion of manure is roughly 15 PJ y-1 (Chamy, et al. 2007), indicating that 

less than 3% of the potential from these sectors is being realised so far. 

 

7.3.2. Livestock Characterisation 

 
Table 7.3.1. Livestock (per 1,000 heads) by category and region in Chile (Ministry of Agriculture 2007). 

 
   Bovine Sheep Swine Equine Goat Camelid Wildboar Deer Rabbit Total 

Country region´s name    Horse Mule Donkey  Alpaca Llama     

Región de Tarapacá (I) 0.1 10.0 1.4 0.0 0.1 0.6 2.3 3.5 23.7 0.0 0.0 6.7 48.5 

Región de Antofagasta (II) 0.3 10.5 1.9 0.5 0.0 0.8 6.2 0.2 5.6 0.0 0.0 8.6 34.6 

Región de Atacama (III) 7.1 5.2 1.4 3.9 0.7 3.4 39.2 0.0 0.0 0.0 0.0 2.5 63.6 

Región de Coquimbo (IV) 41.3 84.2 3.8 25.7 3.9 8.8 404.6 0.1 0.2 0.0 0.0 2.9 575.4 

Región de Valparaíso (V) 102.7 30.3 173.8 26.7 0.7 1.0 45.5 0.2 0.2 0.0 0.0 2.9 384.0 

Región de O'Higgins (VI) 83.4 157.6 860.0 26.8 0.2 0.0 18.5 0.5 0.1 0.0 0.0 5.1 1,152.3 

Región del Maule (VII) 258.2 155.1 93.4 54.0 0.5 0.1 40.1 0.4 0.0 0.2 0.5 1.5 604.1 

Región del Bío-Bío (VIII) 449.4 173.7 179.8 51.3 0.1 0.0 47.3 0.1 0.2 0.9 0.2 3.1 905.9 

Región de la Araucanía (IX) 668.1 277.9 199.6 30.9 0.1 0.0 50.8 0.5 0.7 1.0 0.7 2.2 1,232.6 

Región de los Lagos (X) 1,047.2 315.2 79.8 22.8 0.0 0.0 11.1 0.5 0.3 0.9 4.4 0.9 1,483.1 

Región de Aysen (XI) 193.8 304.9 2.7 12.2 0.1 0.0 12.1 0.2 0.0 0.0 0.0 0.1 526.2 

Región de Magallanes (XII) 141.8 2,205.3 1.7 10.2 0.0 0.0 0.1 0.4 0.1 0.0 0.0 0.1 2,359.6 

Región Metropolitana de 
Santiago 

101.3 24.0 1,292.7 24.5 0.2 0.1 12.3 0.0 0.1 0.2 0.0 5.7 1,461.1 

Región de los Ríos (XIV) 621.6 116.1 34.3 14.3 0.0 0.0 9.3 0.5 0.4 0.7 0.1 0.3 797.7 

Región  de Arica y 
Parinacota (XV) 

2.3 18.2 2.3 0.3 0.1 0.1 6.0 19.1 17.4 0.0 0.0 1.0 66.9 

Total country 3,719 3,888 2,929 304 7 15 706 26 49 4 6 44 11,696 

 

The total area of Chile is 756,102 km2, and the country is divided into fifteen administrative 

regions. The climatological diversity of the country enables the production of various kinds of 
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livestock products. The total livestock is composed of an estimated 11.7 million heads 

(Ministry of Agriculture 2007) and is comprised of 32% bovine, 33% sheep and 25% swine. 

Table 7.3.1 lists the data organised by administrative region. As can be observed, the 

livestock is mainly concentrated in Región de Magallanes (XII) (20%), Región de los Lagos 

(X) (13%) and Región Metropolitana (XIII) (12%). 

 

7.3.3. Methodology 

 

The methodology for the potential analysis of this sector follows the same procedures that 

were used in the previous sectors, providing the same technical and economic indicators. 

Besides, a similar analysis can be carried out by using the supply-cost curves to evaluate the 

necessity of subsidies, the most adequate conversion route and the fraction of the economic 

potential that can run profitably under the current economic conditions. 

 

7.3.3.1 Methodology for the Technical Potential 

 

The primary information on the existing farms in Chile used for the assessment was provided 

directly by the Department of Studies and Agrarian Policies (ODEPA), branch of the Ministry 

of Agriculture. This electronic database includes the totality of existing heads of livestock 

within the country (data from 2007) and is segregated by the type of livestock (bovine, sheep, 

swine, etc.) for each farm at a county level, which is made of approximately 87,000 farms 

distributed all across the country. With this data, the technical potential )(
t

  of the biogas-to-

energy (BTE) and biogas-to-upgrade (BTU) pathways can be calculated for each jth-farm by 

applying Equation 7.3.1 and Equation 7.3.2. 

 

 
 
Figure 7.3.1. Conversion pathways to assess for the utilisation of manure for the production of either electricity 

or Bio-SNG through mono-digestion. 
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In which )(
,kj

N  represents the number of livestock heads in the jth-farm of the kth-species; 

4
~ CH

LHV
H  is the lower heating value of methane and estimated as 50,000 kJ kg-1 (Avallone, et al. 

2007); and )(
e

  is the electrical efficiency. Table 7.3.2 lists the employed parameters, 

estimated from the literature and used for the estimation of the technical potential, which are 

for the kth-species: 
k

M is the amount of manure produced per head of livestock yearly; 
k

S is 

the volatile-to-total solid ratio; 
k

R is the yield of biomethane per volatile solid; 
k

LSU  is the 

livestock unit; and the manure availability factor is )(
a

 , the fraction of manure that is 

recoverable. By using the values shown in Table 7.3.2, the biogas yield reaches 0.37 Nm3 

LSU-1 d-1 for dairy and 0.59 LSU-1 d-1 for swine. These values are conservative when 

compared with data reported in the literature (Deublein & Steinhauser 2011). 

 

Table 7.3.2. Parameters employed for the calculation of biogas potential of liquid manure. M: average animal 
weight; S: volatile sold and total solid ratio; R: biogas yield; and 

a
 : manure availability factor.  

Livestock ),1( nk   Manure per head 
M (kgmhead-1y-1) (a) 

Volatile-to-
total solid ratio 
S (kgvs kgm

-1) (a) 

Specific 
methane yield 
R (Nm3 kgvs

-1) 

Livestock 
unit 

(LSU) (h) 

Availability 
factor (i) 

a
  

1. Dairy 20,090 0.12 0.230 (b) 1.2 0.45 
2. Beef 7,261 0.12 0.230 (b) 0.6 0.45 
3. Veal 2,059 0.04 0.230 (b) 0.6 0.45. 
4. Other (Ox, butt, etc.) 15,695 0.12 0.230 (b) 0.7 0.45 
5. Sheep–Ovine 394 0.23 0.248 (b) 0.05 0.35 
6. Swine 6,132 0.10 0.265 (b)  0.5 0.8 
7. Equine (Horse, mule, and donkey) 8,377 0.20 0.165 (b)  1.1 0.1 
8. Goat 958 0.22 0.248 (b) 0.05 0.1 
9. Camelid (Alpaca and llama) 958 0.22 0.165 (c) 1 (g) 0.1 
10. Wild boar 6,132 0.10 0.265 (c) (d)  0.5 (g) 0.1 
11. Deer 958 0.22 0.165 (e)  0.1 (g) 0.1 
12. Rabbit 58 0.18 0.174 (f) 0.01 (g) 0.1 

(a) ASAE (2003), (b) Pascual (2012), (c) estimated as equine, (d) estimated as swine, (e) estimated as equine, (f) Li et al. (2011), (g) assumed, (h) 

Deublein and Steinhauser (2011), (i) Batzias et al. (2005). 
 

A Boolean restriction was included to set up the minimal output-capacity for the conversion 

units, defined as 
e

A  and 
u

A  for the biogas-to-energy and biogas-to-upgrade routes as 
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indicated in Equation 7.3.1 and Equation 7.3.22. Thus 
e

kW 8  was considered as the minimum 

output- capacity for reciprocating engines, while 13

4
 5 hNm

CH
 was the value for upgrading units. 

These values correspond to the smallest nominal capacities of commercial units according to 

technical information (Petersson & Wellinger 2009; ASUE 2011). 

 
7.3.3.2 Methodology for the Economic Modelling 

 

The unitary cost of production of secondary energy jc  from the jth-farm was estimated by 

applying the economic model showed in Equation 7.3.3. 

 

jjpjmojjtj RCCIc  ,,&,     Equation 7.3. 3 

 
In which, for each jth-farm, jt ,  corresponds to the technical potential;   is the capital 

recovery factor; jmoC ,&  is the operation and maintenance cost; jpC ,  is the procurement cost of 

biomass at the processing point; and jR  represents the revenues potentially obtainable from 

selling by-products such as heat or digestate. Afterwards, the gathered information and 

biomass supply model was integrated into the economic modelling previously presented for 

the calculation of the distribution of the unitary cost of production for all the sources of 

biomass under investigation. 

 

Due to the conditions of farms in the country, no commercialisation either for surplus heat 

from the cogeneration units or digestate from the anaerobic treatment of manure was 

assumed. Additionally, it was assumed that the manure was processed in situ, hence without 

associating any cost of transportation. 

 
7.3.3.3 Methodology for the Economic Potential 
 
The mathematical procedure for the calculation of the representative generation cost, worked 

out as the log-normal mode of the distribution of unitary cost of energy generation, and the 

associated economic limit, can be found in detail in Chapter 4 or as illustrated in the sectors 

already assessed. 

                                                 
2 This Boolean operator was not used for the potential analysis of the previous sectors because no technical 
potential was lower that 8 kWe or 5 Nm3h-1 for biogas-to-energy or biogas-to-upgrade, respectively. 
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7.3.4 Results 
 
Figure 7.3.2 and Figure 7.3.3 display the supply-cost curves for the biogas-to-energy and 

biogas-to-upgrade pathways assessed for the mono-digestion of manure. The technical 

potential for the former option reached 887 1

e
yGWh  , whereas its economic potential 

bordered 780 1

e
yGWh   at a representative generation cost of 25 -1

e
kWh ct€ . For the biogas-to-

upgrade route the technical limit reached 225 13yNmMM  , with economic potential reaching 

182 13yNmMM  at a representative generation cost of 98 -1MMBTU € . 
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Figure 7.3.2. Supply-cost curve for the biogas-to-
energy pathway by mono-digestion of manure. 

Figure 7.3.3. Supply-cost curve for biogas-to-upgrade 
pathway by mono-digestion of manure. 

 

Figure 7.3.4 and Figure 7.3.5 reveal that the technical potential from manure processing is 

highly concentrated in Región Metroplitana (XIII) and estimated to account for approximately 

62% and 64% for electricity and Bio-SNG production, respectively. The second highest 

concentration is found in Región de la Araucanía (IX), which has 11% and 10% of the 

electricity and Bio-SNG technical potential. Additionally, it was found that on the national 

level the technical potential of electrical power was primarily on the small-scale, in the 20-

250 kWe range, and accounted for 71% of the country’s total. A similar tendency was 

observed in the technical potential of Bio-SNG, in which approximately 80% of the potential 

was concentrated on a scale lower than 1 13yNm MM  . 
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Figure 7.3.4. Technical potential of electricity from mono-digestion of manure. 
  

Figure 7.3.5. Technical potential of Bio-SNG from mono-digestion of manure. 
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7.3.5 Discussions 

 

Only a modest fraction of the total number of farms in the country (approximately 370 from 

87,000, or less than 1%) was found to offer adequate conditions to develop biogas projects. 

This is because the majority of them were constituted of a limited number of livestock, which 

severely restricted the amount of biogas units technically feasible. Additionally, a large 

amount of the technical potential of electricity for mono-digestion of manure could be found 

in the low scale, the 10-250 
e

kW  range, and is strongly concentrated in only some 

geographical areas. A similar tendency was also observed for the possibility of producing 

Bio-SNG, for which the scale rarely surpassed 1 13yNm MM   and was concentrated in a few 

regions. 
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Figure 7.3.6. Supply-cost curve for the biogas-to-
energy pathway by mono-digestion of manure. 

Figure 7.3.7. Supply-cost curve for biogas-to-upgrade 
pathway by mono-digestion of manure. 

 

For the electricity alternative, as seen in Figure 7.3.6, it was observed that there is an 

important fraction of the economic potential that could be profitable when a referential market 

price of electricity of 12 
1

e
kWh ct€


 is considered, representative for projects at the low scale. 

In these terms, this is the most attractive part of the potential made of 28 plants, and it should 

be targeted for enhancing biogas production. 

 

With the market price of natural gas (see Figure 7.3.7) currently ranging from 15 to 22 

-1MMBTU €  roughly, most of the cost associated with the economic potential of the gas-to-

upgrade route, the Bio-SNG option, hardly seems competitive without heavy subsidies. More 
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importantly, approximately 80% of the Bio-SNG technical potential is in a range lower than 1 
13yNm MM  , a scale that is not commercially attractive for these sorts of projects, at least in 

practical terms. 

 

Table 7.3. 3. Energy potential of the biogas-to-energy and biogas-to-upgrade of manure utilisation. 
 Route of conversion 

Economic indicator Biogas-to-energy (BTE) Biogas-to-upgrade (BTU) 
Technical potential 1,067 GWhey

-1 225 MM Nm3 y-1 
Economic potential 779 GWhey

-1 182 MM Nm3 y-1 
Minimum cost of production 5.2 ct€ kWhe 8.7 € MMBTU-1 
Representative cost of production 25.0 ct€ kWhe 98 € MMBTU-1 
Needed feed-in tariff 13.0 ct€ kWhe 83-76 € MMBTU-1 
Needed subsidy 23 MM € 198-124 MM € 
 

The potential analysis was conducted for the decentralised generation of biogas when manure 

was used as substrate. Another option to assess is the centralised use of manure as substrate, 

which may improve the economics of the whole process. However, this option implies a 

location analysis for a centralised-processing plant, normally associated with an optimisation 

problem under geospatial restrictions. Furthermore, centralised manure usage involves the 

additional cost of slurry transportation with low solid content, and a potential instability in the 

substrate supply because it involves dependency on third-parties, contracts and the creation of 

business models and mechanisms of partnership affiliation. 

 

The great variability of biomethane yield from manure digestion is a well-known fact 

principally linked with the sort of substrate and operating conditions of the reactor. Thus, the 

presented results should be considered referentially, as an order of magnitude taking into 

consideration the limitations intrinsically related to the technologies considered for the 

evaluation and their economic implications. 

 

7.3.6 Preliminary Conclusions 

 

For the farm sector, two principle tendencies are observed. Firstly, the electricity generation 

option seems to be more advantageous than the possibility of producing a gaseous biofuel. 

This is because the greatest fraction of the technical potential is concentrated in a low power 

range for both electricity or Bio-SNG. Under this condition, the Bio-SNG option exhibits a 

considerable increase in cost, much more significant than for electricity when the 

representative generation cost and the number of plants that account for the economic 
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potential of each option is compared. Secondly, and when the electricity option is considered, 

there are only two regions, Región Metropolitana (XIII) and Región de la Araucanía (IX), 

accounting for more than 73% of the technical potential, which are not necessarily the regions 

(except the Metropolitan) that concentrate the largest number of livestock heads. 
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7.4 Agricultural Sector 
 

The anaerobic digestion of crop residue may provide a significant amount of energy in the 

context of biogenic residues currently available in the country. Nonetheless, the uses are 

wider ranging than those of the biomass from the previously evaluated sectors, and with an 

associated competition due to other uses that can significantly reduce its availability. In 

addition, the procurement of crop residue involves collection, conveyance, storage and pre-

treatment before the digestion takes place, hence involving extra cost that are absent when the 

biomass is generated and used in situ. On the other hand, the possibility of collecting larger 

amounts of biomass may enable the implementation of biogas projects of larger capacity, 

associating lower specific investment and likely taking advantages of economies of scale 

which may in turn lower the cost of energy production. 

 
7.4.1 Introduction 
 
The continental surface of Chile accounts for 75.6 millions of hectares (ha). From this, 34.8 

millions ha are unproductive, which makes up 46.1% of the national continental surface. The 

land used for agro-pecuarian exploitation constitutes less than 10% of the national surface, 

from which 1.1% corresponds to land without any sort of restriction. The remainder exhibits 

limitations because of topography, desertification, increasing of salinity, lack of irrigation, the 

presence of heavy metals, etc. (Saa-Vidal, et al. 2010). 

 
Table 7.4.1. Use of land in Chile (Saa-Vidal, et al. 2010). 

Use type Use Land capability(*) Surface (ha) Percentage (%) 
Agricultural arable 

lands 
Without restrictions 

I 
II 

111,346 
652,818 

0.15 
0.86 

 
With 

restrictions 
III 
IV 

1,762,559 
2,106,619 

2.33 
2.79 

Subtotal   4,633,342 6.13 
     

Non-arable 
agricultural lands 

Cattle 
Cattle-forestry 

Forest 

V 
VI 
VII 

2,271,444 
6,219,736 

13,430,602 

3.00 
3.22 
17.76 

Subtotal   21,921,462 28,99 
     

Non-agricultural 
lands 

 VIII 14,200,000 18.78 

Unproductive land   34,869,936 46.11 
Total   75,624,760 100 

(*) Land capability has been defined according to standards of U.S. Department of Agricultural (Gilo 2010). 
 

Chilean agriculture and horticulture are mainly focused on five sectors, they are: i) major 

fruits and vine; ii) vegetables; iii) annual crops; iv) industrial crops; and v) livestock farming, 

secribed as follows (Saa-Vidal, et al. 2010): 
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 Major Fruits and Vine: Due to its exceptional climatological conditions, Chile has  

significant competitive advantages for the production of these sorts of crops in the 

central zone, which in general terms have land that is in high demand and of high 

quality, climate, technology, capital and workforce. These requirements have created 

conditions so that mainly large private companies control this business. The land 

usage tends to be intensive both in the planting stage and the subsequent stages of 

harvesting, using technical irrigation systems, great amounts of fertilisers and 

agrochemicals. 

 

 Vegetables: The production of vegetables tends to be concentrated in the proximity of 

large consumer centres (i.e. medium and large cities). The management of the land is 

intensive in that the species have a short vegetative growing time, allowing more than 

one annual harvesting, although with a thorough handling of the land. The production 

of vegetables is carried out preferentially in land with capability I and II. 

 

 Annual Crops: Annual cultivations are performed with a wide range of technologies 

and by using both irrigated and rainfed land across the country. Generally, it is 

associated with a high demand of workers and takes place in land with capability II, 

III and IV. 

 

 Industrial Crops: The production of industrial crops such as raps, sugar beet, tobacco 

or sunflower depends on the demand of large buying companies, which normally 

provide technical assistance to the producers. Most of the cultivation of these crops 

takes place in land with capacity II, III and IV. 

 

 Livestock: This activity is associated with a land demand of crops intended for fodder 

production and/or pasture use. It can be intensive in terms of land demand or highly 

concentrated if animals are stabled, for instance dairy, swine farming, etc. 

 

Because preliminary rough estimations indicate that the main amount of biomass adequate for 

anaerobic digestion may be provided by annual crops (Chamy, et al. 2007), the potential 

analysis to be carried out in this chapter was focused on residues procured after harvesting 

them. Besides this, most of the available information on the agricultural sector is devoted to 

these crops due to their economic prominence. 
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The use of residue appears to be the most reasonable starting point for the development of a 

strategy focused on biogas as a source of energy because it brings direct environmental 

externalities. The use of energy crops, still a heated discussion at the political level, does not 

seem to be appropriate for implementation, at least in a first stage; it would be 

counterproductive for Chile to change the land currently used for food production in that it 

would force the country to revert to exports in order to address the internal consumption for 

biofuel production (Ramírez 2012). Although the biofuel alternative has not been thoroughly 

assessed at a national level yet, either technically or economically, preliminary evaluations 

indicate that the main constraints arise due to the limited potential available surface for the 

most promising crops both for liquid and gaseous biofuels (García, et al. 2012). 

 

7.4.2 Annual Crops Characterisation 
 

As can be observed in Table 7.4.2, the predominant species in terms of surface are wheat 

(40%), corn (19%), oats (15%) and potatoes (10%). At the regional level, 69% of wheat and 

85% of oat crops are concentrated in Región del Bio-Bio (VIII) and Región de la Araucanía 

(IX), whereas corn is cultivated mainly in Región de O´Higgins (IX) and Región del Maule 

(VI), comprising 75% of the total area. Finally, potato plantations are dispersed across the 

country although more significantly concentrated in the south. 

 

Table 7.4.2. Surface of annual crops (ha) (Ministry of Agriculture 2007). 

 Regions Total 

Species I II III IV V VI VII VIII IX X XI XII RM XIV XV  

Beer barley  0    226 626 1,363 7,509 431   53 977 24 11,208 
Barley   3 507  125 155 1,449 1,631 752 90  4 9 4 4,730 
Beans (a)    2 5 14 426 607 48       1,102 
Beans(b)   5 280 253 691 4,717 2,802 616       9,362 
Bread wheat  2 4 596 174 2,067 1,264 2,726 659       7,493 
Chickpeas     246 869 896 925 2    778 3,957  7,672 
Corn 1 153  659 1,127 46,705 29,407 12,019 685    264 14,418  105,435 
Lentils   186   22 210 501 128    5,189 7  6,243 
Mandioca   33  5        51 321  410 
Oats (c)      25 170 830 1,255 20,033 48,290 6,272 334  22 1,180 3 78,412 
Other cereals  4 66 137 720 902 533 696 1,039 405 3 15 1,705   6,225 
Others 22 0  27 134 161 129 155 246 24 0 4 1,240   2,144 
Peas    9 402 126 238 477 288 18 3  138 3,902 0 5,601 
Grass peas    2 9 37 126 66 17    143 865  1,263 
Potatoes 94 4 249 3,233 2,163 1,687 3,342 8,293 14,029 11,154 185 130    44,562 
Quinoa 1,357 8  1  58   1       1,424 
Rice (d)     48 101 17,333 4,146 0    24 28 5 21,683 
Rye  1     353 278 291 6   12,010 3  12,942 
Tricale      77 13 2,588 15,882 362      18,922 
White wheat  18 1 1,133 1,595 5,176 22,781 67,742 93,623 11,379 21     203,468 
Total 1,472 190 548 6,610 7,050 59,874 83,803 126,864 184,984 30,802 637 148 21,618 25,667 36 550,303 

 

(a) for export, (b) internal consumption, (c) dray grain, (d) with peal. 
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Annual crop plantations have declined during the last decades. For the 2010-2011 period, for 

example, a decrease of roughly 18% can be observed in the planted area in comparison with 

that a decade ago. This decrease has not been uniform, with more substantial decreases 

occurring in wheat, vegetables, sugar beets, rape and potatoes. This fall has been partly 

counterbalanced by the growth of corn, oats, barley and lupine crops. On the contrary, a rise 

in the average productivity is observed in virtually all crops, reaching high values when 

compared at the international level (ODEPA 2012). 

 
Table 7.4.3. Productivity of crops and total exploited surface at national level (Ministry of Agriculture 2007). 

Species ),1( nl   
Average productivity 

l
p  (qqm ha-1 y-1) 

Total surface 
(ha) 

1. Beer barley 50.62 11,108 
2. Barley 41.52 5,983 
3. Beans (for export) 20.81 1,153 
4. Beans (for internal consumption) 17.02 9,633 
5. Bread wheat 52.36 9,198 
6. Chickpeas 8.94 2,940 
7. Corn 108.32 102,955 
8. Grass peas 8.34 255 
9. Lentils 8.43 861 
10. Oats 41.80 81,480 
11. Others n.a. 1,061 
12. Others cereals n.a. 6,187 
13. Peas 14.10 1,258 
14. Potatoes 154.54 53,731 
15. Quinoa 6.08 1,427 
16. Rice (with peel) 50.77 21,579 
17. Rye  44.97 1,115 
18. Tapicoa 1.35 5.18 
19. Tricale  48.18 19,243 
20. White wheat  47.77 219,126 

Total country - 550,303 
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7.4.3 Methodology 

 

The methodology for the potential analysis of the mono-digestion of agro-industrial residue 

follows the same principles as those applied for all the previously assessed sectors, hence 

providing the same technical and economic indicators. 

 

7.4.3.1 Methodology for the Potential Analysis 

 

The annual amount of residue from seasonal crops was calculated using residue-to-crop 

production ratios, productivity per crop and planted area in a county. Because of the lack of 

more specific information, some parameters were assumed by applying a conservative 

criterion. The technical potential of biogas-to-energy and biogas-to-upgrade routes can be 

calculated through Equation 7.4.1 and Equation 7.4.2 as follows: 
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In which it ,  is the technical potential from the ith-county, either electricity or Bio-SNG. For 

the lth-crop species within the ith-county, 
l

M  corresponds to the methane yield; 
l

S is the 

volatile-to-total solid ratio; 
l

f  is the residue-to-crop production ratio; 
l

H  is the humidity 

assumed at 15% (wet basis); 
l

p  is the crop average productivity (see Table 7.4.3); 
l

  is the 

sustainable rate removal; and 
i

a  is the area of the ith-county. The remaining parameters 

correspond as defined in Equations 7.3.1 and 7.3.2 in Section 7.3 Livestock Farming Sector. 

In this calculation, it is implicitly assumed that the total amount of biomass to convert into 

biogas within each county is done at a single centralised biogas plant. This assumption is put 

forward since there is no further information on the geographical distribution of crop residue 

after harvesting to conduct an assessment in greater detail. This point and its implications will 

be discussed more broadly in the section on economic modelling for cost estimation. 
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Figure 7.4.1. Conversion pathways to assess for the utilisation of crop residue for the production of either 
electricity or Bio-SNG through mono-digestion. 

 

Table 7.4.4. Agricultural crops and parameters for the calculation of potential of biogas generation. 

Agricultural crops ),1( nl   
Reside-to-crop 
production ratio 

f (kg kg-1) 

Sustainable rate 
removal 

  (kg kg-1) (a) 

Volatile-to- 
total solid ratio 
S (kgvs kgts

-1) 

Biomethane yield 

M ( 1

vs

3

CH
kgNm

4

 ) 

1. Beer barley 1.4 (a) 0.40 (a) 0.94 (d) 0.229 (d) 
2. Barley 1.4 (a) 0.40 (**) 0.90(d) 0.229 (d) 
3. Beans (for export) 2.1 (b) 0.40 (**) 0.90(**) 0.174 (e)  
4. Beans (for internal consumption) 2.1 (b) 0.40 (**) 0.90(**) 0.174 (e) 

5. Bread wheat 1.3 (a) 0.40 (**) 0.92 (**) 0.087 (g) 
6. Chickpeas 2.1 (*) 0.40 (**) 0.90 (**) 0.200 (e) 
7. Corn 1.4 (a) 0.50 (a) 0.98 (d) 0.317 (d) 
8. Grass peas 2.1 (*) 0.40 (**) 0.90 (**) 0.200 (**) 
9. Lentils 2.1 (*) 0.40 (**) 0.90(**) 0.200 (**) 
10. Oats 1.5 (a) 0.40 (a) 0.58(g) 0.203 (g) 
11. Others 1.0 (**) 0.40 (**) 0.90 (**) 0.200 (**) 
12. Others cereals 1.0 (*) 0.40 (**) 0.70(**) 0.200 (**) 
13. Peas 2.1 (*) 0.40 (**) 0.90(**) 0.200 (**) 
14. Potatoes 0.4 (b) 0.40 (**) 0.90(**) 0.366 (h) 
15. Quinoa 1.0 (*) 0.40 (**) 0.192(j) 0.241 (j) 
16. Rice (with peel) 1.6 (a) 0.50 (a) 0.92(d) 0.195 (d)  
17. Rye  1.8 (a) 0.40 (a) 0.92(j) 0.360 (i) 
18. Tapicoa 1.0 (*) 0.40 (**) 0.90(**) 0.100 (**) 
19. Tricale  1.3 (c) 0.40 (**) 0.93(j) 0.100 (**) 
20. White wheat  1.3 (a) 0.40 (a) 0.92(**) 0.087 (g) 
(a) Scarlat et al. (2010), (b) IPCC (1996), (c) Wikström and Adolfsson (2006), (d) Dinuccio et al. (2010), (e) Deublein and Steinhauser (2011), (f) 

Somayaji and Khanna (1994), (g) Lehtomäki et al. (2008), (h) Parawira et al. (2008), (i) Petersson et al. (2007), (j) Cropgen Database, (k) 
López-Dávila et al. (2012), (*) assumed as beans, (**) assumed. 

 

The technical potential of the entire country, either for the biogas-to-energy or biogas-to-

upgrade route, can be evaluated as the sum of all single technical potential on the totality of 

counties (n) as equation 7.4.3 shows: 
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7.4.3.2 Methodology for the Economic Modelling 
 
The mono and co-digestion of crop residue implies intermediate steps (depending on the 

harvesting system) of collecting, hauling, packing, on-farm transporting and on-road 

conveyance of biomass to a processing facility since it is irregularly widespread across large 

areas, incurring an additional cost for the biogas production. Under these circumstances, it is 

necessary to estimate the cost of crop residue procurement by proposing a simplified model 

for the operations associated to its recovery, from the field after the annual harvesting to its 

supply at the gate of plant, as discussed in Chapter 4. Based on this, it was assumed that the 

shape of each county can be approximated through a square with side l  and surface equivalent 

to the county’s. Moreover, it was assumed that all the available biomass after harvesting had a 

homogeneous superficial density (measured for instance as 2 mt ) and was conveyed to the 

geometric centre of the county; therefore, the geometric centre of the square. Assuming a 

tortuosity for on-road transportation, it is possible to demonstrate, after applying some 

integral calculus, that the average displacement distance for the transportation of biomass 
s

d  

at county-level can be calculated by Equation 7.4.4 (see Chapter 4, section 4.5). 

 

))21ln(2(
6

1
,  iis ld  Equation 7.4.4 

 
For the specific on-road transportation cost )( t

e
c , 1.8 € t-1 km -1 was considered as 

representative according to Hetz et al. (2010). This value, when multiplied by the average 

displacement distance (Equation 7.4.4), leads to the total on-road transportation cost of 

biomass. 

 

The majority of information available on the cost of collecting biomass from the field is 

focused on wheat straw and corn stover, basically because they are the dominant crops in a 

substantial number of countries (Marckert 2011; Scarlat, et al. 2010). Although crop residue 

has diverse characteristics affecting the cost of recovery, transportation and processing, the 

cost of collecting all crop residue from the field (which includes preparing, packing and on-

farm transportation) was approximated without distinguishing their differences to wheat straw 

because of the lack of more specific data. Hetz et al. (2010) reported that the cost of collecting 

wheat straw after harvesting was in the 6-10 € t-1 range, hence a value of 8 € t-1 was 

approximated for the assessment. 
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Therefore, the total procurement cost of crop residue, which includes collecting and on-road 

conveyance, can be estimated by applying Equation 7.4.5. 

 

i
c
eis

t
eip mcdcC ) ( ,,   Equation 7.4.5 

 
In which 

ip
C

,
 is the procurement cost of biomass at the gate of plant in the ith-county; t

ec  is 

the specific on-road transportation cost; isd ,  is the average displacement distance for the 

transportation of biomass within the ith square-approximated county;  c
ec is the specific 

biomass collecting cost; and im  is the total crop residue available yearly within the ith-county. 

 

The unitary cost of production, either for the biogas-to-energy or biogas-to-upgrade pathway, 

was calculated following the same procedure applied in previous chapters, and according to 

Equation 7.4.6. 

 

iipimoiiti RCCIc  ,,&,   Equation 7.4.6 

 

In which 
it ,

  is the technical potential of secondary energy from the ith-county, either 

electricity or Bio-SNG; 
i

I  is the total capital investment;   is the capital recovery factor; 

imo
C

,&
 is the operation & maintenance cost for the biogas plant located in the ith-county; and 

i
R  the revenue obtained from selling by-products such as digestate or heat. 

 

Revenues from heat and digestate by-products were not considered in the cost estimation. 

Firstly, because there is no established market for the commercialisation of surplus heat in the 

country (i.e. district heating), and, secondly, due to the fact that the sale of digestate plays 

only a marginal role in terms of the economics of the process (Lantz 2012), and moreover its 

use is not regulated in the country. 

 

7.4.3.3 Methodology for the Economic Potential 
 
The mathematical method for working out the representative generation cost and the 

corresponding economic limit can be found in detail in Chapter 4, or as already illustrated in 

previous sectors. Following the same methodology, the estimation of the needed feed-in tariff 

and the total yearly needed subsidisation was calculated. 
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7.4.4 Results 
 
For the mono-digestion of agricultural residue, the technical potential of electricity reached 

1,360 1

e
yGWh   and the economic potential 1,112 1

e
yGWh   at a representative generation cost 

of 15.4 -1

e
kWh ct€  (see Figure 7.4.2). On the other hand, the generation of Bio-SNG from this 

substrate offered a technical potential of 351 13yMMNm   and an economic potential of 280 

13yMMNm   at a representative generation cost of 40 -1MMBTU €  (see Figure 7.4.3).  
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Figure 7.4.2. Supply-cost curve for biogas-to-
electricity pathway by mono-digestion of agriculture 

residue. 

Figure 7.4.3. Supply-cost curve for the biogas-to-
upgrade pathway by mono-digestion of agricultural 

residue. 
 
A high concentration of this technical potential was observed in the low-power range (10-250 

e
kW ) and accounted for 46% of the total. However, the 500 

e
kW -5 

e
MW  range had 33% of 

the total technical potential. For the Bio-SNG option, more than 57% of the potential was 

concentrated in a range lower than 1 13yNm MM  , followed by 22% at the 1.0-2.7 

13ym MMN   scale. Geographically, the technical potential of electricity and Bio-SNG was 

concentrated in the Región de O´Higgins (VI ) (32%), Región del Maule (VII) (19%) and 

Región de la Araucanía (IX) (18%) which represented almost 70% of the total, as seen in 

Figure7.4.4 and Figure 7.4.5. 
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Figure 7.4.4. Technical potential of electricity from mono-digestion of agricultural residue. 
 

Figure 7.4.5. Technical potential of Bio-SNG from mono-digestion of agricultural residue. 
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7.4.5 Discussions 
 

For the electricity alternative, as observed in Figure 7.4.6, there is a fraction of approximately 

600 1

e
yGWh   that may run profitably, when 12 -1

e
ct€kWh  is considered as the electricity 

market price. This realisable potential is made of 31 biogas plants with power capacity from 

1.4 
e

MW MWe to 94 
e

kW . To achieve the economic potential, a generation subsidy of 

roughly 3.4 -1

e
ct€kWh  would be necessary. 
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Figure 7.4.6. Supply-cost curve for biogas-to-energy 
pathway by mono-digestion of agricultural residue. 

Figure 7.4.7. Supply-cost curve for biogas-to-
upgrade pathway by mono-digestion of agricultural 

residue. 
 

As shown in Figure 7.4.7, the biogas-to-upgrade route has only three units offering a cost of 

production lower than the market price of natural gas, although with capacities in the 

commercial scale. In spite of this advantageous condition, this high cost linked with relatively 

high capacity (in the context of biogas plants) is explained by the additional cost of 

production associated with the procurement of biomass (crop residue), which raises it 

somewhat, an aspect not present in the previously assessed sectors. This fact can be observed 

in the high associated generation subsidy (25-18 € MMBTU-1) if this alternative were wanted 

to become profitable. Besides, the total annual subsidisation for Bio-SNG is approximately 82 

MM€, almost five orders of magnitude greater than that of electricity, and with a considerably 

lower number of plants, 59 versus 127 (see Figure 7.4.6 and Figure 7.4.7). 

 

Table 7.4.4 summarises the main economic indicators characterising the crop residue sector 

for the two possibilities of biogas processing, biogas-to-energy and biogas-to-upgrade. 



Chapter 7 Results 

 145

 

 

Table 7.4.5. Energy potential of the biogas-to-energy and biogas-to-upgrade routes for crop residue utilisation. 
 Route of conversion 
Economic indicator Biogas-to-energy (BTE) Biogas-to-upgrade (BTU) 
Technical potential 1,355 1

e
yGWh   351 MM Nm3 y-1 

Economic potential 1,112 1

e
yGWh   280 MM Nm3 y-1 

Minimum cost of production 8.3 -1

e
ct€kWh  14.1 € MMBTU-1 

Representative generation cost 15.4 -1

e
ct€kWh  40 € MMBTU-1 

Needed feed-in tariff 3.4 -1

e
ct€kWh  25-18 € MMBTU-1 

Needed subsidy 17 MM€ 82 MM€ 
 
7.4.6 Preliminary Conclusions 
 

As observed for the previous sectors, the biogas-to-energy pathway implies a larger number 

of plants that can run without relying on subsidisation for energy generation (31 plants – see 

Figure 7.4.6). On the other hand, the biogas-to-upgrade exhibited a minimum cost of 

production (STAS) only slightly lower than the market price of natural gas, which makes the 

mono-digestion of this substrate hardly competitive. 

 

As mentioned earlier, a significant geographic concentration of the technical potential, either 

electricity or BioSNG, was observed in three administrative areas, which correspond to 

Región de O´Higgins (VI ), Región del Maule (VII) (19%) and Región de la Araucanía (IX) 

(18%). This being so, the implementation of bioenergy policy to boost biogas production 

should be considered as a priority to target. 
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7.5 Co-Digestion of Agro-Industrial Residue 

 

Although crop residue, as previously described, can be converted anaerobically as if they 

were a single substrate, the option of mixing them with other feedstock such as manure offers 

significant advantages, among them an increase in biogas yield, operation of the reactor at 

higher solid concentration thus offering a larger gas flow at the same capacity, and more 

stable operation. The co-digestion is, however, limited both to the availability of feedstock, 

when the manure slurry is used as a substrate to increase solid concentration, and the total 

concentration of solids in the reactor, when a wet-technology is being used. These aspects 

will basically determine the possibility of implementation. 

 

7.5.1 Introduction 

 

The production of biogas from manure can be stepped up when co-substrates are added to 

make the biogas yield and the content of methane in the gas rise (Deublein & Steinhauser 

2011), thus improving reactor efficiency and the economics of the plant. This enhancement 

can be explained because of the synergism in the reacting medium and the addition of some 

missing nutrients (Mata-Alvarez, et al. 2000). 

 

The possibility of carrying out co-digestion is plausible, as livestock industries are normally 

located near the agricultural complex where residue might be available. However, the supply 

of biomass is restricted by logistical issues and the cost related to the procurement of 

substrates; the availability of manure is not necessarily associated with that of crop residue, 

and, conversely, the availability of manure at adequate scale is not necessarily associated with 

crop residues supplied at a proper rate. Nonetheless, considerable attention has been paid to 

the assessment of biogas by co-digestion in large areas (Szkliniarz & Vogt 2012; Zubaryera, 

et al. 2012), mainly as a consequence of the environmental gains as previously mentioned, but 

also because of the opportunities for rural development and the contribution this could make 

to reach the goal of renewable energy generation. 

 

7.5.2 Methodology 

 

The methodology for the potential analysis of co-digestion by mixing agro-industrial residue 

(i.e. manure and the material left on the field after the annual harvest) follows the same 
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procedure applied for all the previously assessed sectors. Because this assessment only 

considers the possibility of mixing the substrates at a proper rate and concentration under the 

restrictions imposed by the geographical distribution of the feedstock, the specific parameters 

such as biomethane yield, rate of manure generation, crop productivity, etc. are the same here 

as those presented in sections 7.3 and 7.4. 

 

7.5.2.1 Methodology for the Potential Analysis 

 

As depicted in Figure 7.5.1, the co-digestion involves mixing a co-substrate (crop residue in 

this case) with manure for the purpose of improving the biogas generation. Nevertheless, the 

supplementary solid that can be added to the manure slurry is limited by the operating 

conditions of the anaerobic technology being employed. In general terms, anaerobic digestion 

technologies are classified into wet-fermentation and dry-fermentation. The former operates 

with a total solid concentration lower than 10-15% (dry basis), whereas the latter is adequate 

for a total solid concentration higher than 20% (Karthikeyan & Visvanathan 2013; Abbassi-

Guendouz, et al. 2012). The dominant technology for the treatment of agricultural residues is 

wet fermentation (Karellas, et al. 2010), and, for the national potential analysis, it was used as 

the reference in this assessment. Thus, a total solid concentration in the digestor )( mx  of 15% 

as maximum limit was set up. 

 

Biogas-to-energy 
(BTE)

Mixing of
co-substrates

Electricity
Cost (ct€ kWhe

-1)

Bio-SNG
Cost (€ MMBTU-1)

End-productsOptions to assess

jth-farm

Crop residue
ith-county

  mm, xm

  mcs, xcs

Co-substrates
  mt, xt

Biogas-to-upgrade 
(BGU)

 
Figure 7.5.1. Conversion pathway for co-digestion of manure and crop residue. 

 
The information provided in Table 7.3.1 can be used to calculate the solid concentration of the 

manure for each type of livestock. For instance, the concentration of total solid for dairy 

manure is 14%, while swine is 13%. For the assumed humidity of agricultural residue, 15% 

wet basis, its total solid concentration is 85%. 
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It can be demonstrated, by applying a mass balance (see Figure 7.5.1), that the maximum 

amount of co-substrate tolerable for a wet-fermentation mixing manure and crop residue, and 

the total mixed substrate to digest can be calculated with the following equations: 
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  Equation 7.5.1 
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  Equation 7.5.2 

 
In which csmmax  is the maximum amount of co-substrate to add for a wet-fermentation with 

manure; mm  is the total available manure per farm; mx is the total solid manure concentration; 

csx  is the total solid concentration of the co-substrate, in this case crop residue; and maxx  is 

the maximum total solid concentration within the reactor for a wet co-fermentation, set up at 

15% as previously indicated. 

 

The availability of both substrates for co-digestion (i.e. manure and crop residue) depends on 

both the spatial distribution of farms and location of annual crops, which cannot necessarily 

be proportional or supplied because of the distance, in practical terms. Due to the fact that the 

assessment was conducted using the county as the smallest geo-administrative control area, a 

necessary condition for the co-digestion was that the totality of biomass (crop residue in this 

case) in each county )(
i

m  must be at least equal to the maximal amount of co-substrate to be 

added )(
max

csm  to the totality of the farm-based units within that county. The latter can be 

expressed by a Boolean operator )(
c

A  to differentiate when the co-digestion can be performed 

or not, as indicated by Equation 7.5.3 and Equation 7.5.4. 
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In which 

c
R  corresponds to the yield of biomethane for co-digestion estimated in 250 

vsCH
kgNm3

4
 as a representative value (Lehtomäki, et al. 2007), and 

c
S  is the volatile-to-total 

solid ratio calculated for the mixing of manure and crop residue. 

 

The technical energy potential of the entire country derived from the co-digestion of crop 

residue and manure either via the biogas-to-energy or biogas-to-upgrade route can be 

calculated by adding up the technical potential for all the ith-counties as Equation 7.5.6 

indicates. 

 


j

BTE
j

BTE
t   

j

BTU
j

BTU
t   Equation 7.5.6 

 
7.5.3.2 Methodology for the Economic Modelling 
 

The economic modelling was conducted according the same procedure already applied for the 

evaluation of livestock farm and agricultural sectors (sections 7.3 and 7.4, respectively), and 

consequently by using identical economic and technical parameters. In these terms, the cost of 

feedstock supply was estimated by using the square-shape approximation of the county where 

the biomass is available. Moreover, no use or commercialisation of the by-products heat and 

fertiliser were considered on account of the same reason above given. 

 

7.5.3.3 Methodology for the Economic Potential 
 
The mathematical method for computing the representative generation cost and the 

corresponding economic limit can be found in detail in Chapter 4 or as already illustrated in 

previous sectors. Following the same methodology, the estimation of the needed feed-in tariff 

and the total yearly needed subsidisation was calculated. 

 
7.5.3 Results 
 
The possibility of co-digesting manure with agricultural residue offered an increase in the 

economic limit for the electricity generation option and provided the same representative 
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generation cost as the mono-digestion of manure. As observed in Figure 7.5.2, the co-

digestion raised the economic potential from 780 1

e
yGWh   to 1,140 1

e
yGWh   at a 

representative generation cost of 25 -1

e
kWh ct€ . This greatly increased the number of biogas 

plants that could achieve the minimal technical conditions to operate. As seen in Figure 7.5.2, 

whereas the economic limit of biogas-to-energy from mono-digestion of manure was made up 

of 367 plants, with nominal capacities from 22 
e

MW  to 25 
e

kW , the economic limit of 

biogas-to-energy via co-digestion accounts for 1,108 plants with nominal capacity in a similar 

power range. 
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 Figure 7.5.2. Supply-cost curve for the electricity generation of co-digestion 
of manure and crop residue. 

 

 
Although the increase in electrical potential by the co-digestion was significant at 46%, the 

power capacity was still concentrated in the low scale and accounted for 39% in the range 

from 10 to 250 
e

kW , and 31% were lower than that of 10 
e

kW . Potentials exceeding 5 
e

MW  

were exceptional, and constituted less than 3% of the technical potential. 

 

The assessment of the biogas-to-upgrade route was conducted following the same 

methodological approach applied to the biogas-to-energy pathway by considering co-

digestion; however, the results led to an increase in the Bio-SNG potential predominantly in 

the low range, with the consequence that the representative generation cost reached extremely 



Chapter 7 Results 

 151

high and empirically unprecedented levels. Nevertheless, counties were found where it would 

be possible to develop Bio-SNG exploitation projects at commercial scale, although they 

represented no more than 15% of the total technical potential. Similar to the mono-digestion 

option, only two regions concentrated more than 61% of the technical potential, Región 

Metropolitana (XIII) and Región de la Araucanía (IX). 

 

Figure 7.5.3. Technical potential of Bio-SNG from co-digestion of manure and agricultural residue. 
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Figure 7.5.4. Technical potential of electricity from co-digestion of manure and agricultural residue. 
 
Additionally, it was found that the technical potential of electrical power on the national level 

was heavily concentrated on the small-scale, in the 10-250 
e

kW  range, and accounted for 71% 

of the country’s total. A similar tendency was observed in the technical potential of Bio-SNG, 

in which approximately 80% of the potential was concentrated on a scale lower than 1 
13yMMNm  , with only 12% in the 1.0 - 2.7 13yMMNm   range. 

 
7.5.4 Discussions 
 
As previously indicated, the representative generation cost for electricity generation was not 

modified as a consequence of the co-digestion in spite of being increased substantially the 

technical and the economic potential, the later from 779 GWhey
-1 to 1,338 GWhey

-1. 

Consequently, the co-digestion gave rise to the number of biogas plants making up the 

economic potential, from 376 to 1,108, almost three times the order of magnitude. 
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 Figure 7.5.5. Supply-cost curve for the electricity generation of co-
digestion of manure and agricultural residue. 

 

Although the same methodological approach used for the assessment of the biogas-to-energy 

route was applied, the results led principally to an increase in the Bio-SNG potential in the 

very low range, with the consequence that the representative generation cost rose to high 

levels; however, this should not be used as a means of evaluation because it is only relevant in 

a theoretical context and has no practical meaning; therefore, it was not included in Table 

7.5.1. Nevertheless, counties were found where it would be possible to develop Bio-SNG 

exploitation projects at commercial scale. 

 

Table 7.5.1. Energy potential of biogas-to-energy and biogas-to-upgrade for co-digestion of agro-industrial 
residue. 
 Route of conversion 

Economic indicator 
Biogas-to-energy 

(BTE) 
Biogas-to-upgrade 

(BTU) 
Technical potential 1,582 GWhey

-1 429 MM Nm3y-1 
Economic potential 1,338 GWhey

-1 - 
Minimum cost of production 5.2 ct kWhe

-1 - 
Representative generation cost 25.0 ct kWhe

-1 - 
Needed feed-in tariff 13.0 ct kWhe

-1 - 
Needed subsidisation 84 MM € y-1 - 
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7.5.5 Preliminary Conclusions 
 

On the basis of the assessment presented above, co-digestion is possible to be carried out in 

economic terms and its implementation may provide a significant increase in the economic 

potential of the electricity option. As observed systematically for the four sectors previously 

assessed, a high concentration of the potential is observed, and for this option (i.e. co-

digestion of agro-industrial residues) in only two regions located in the south of the country. 

On the contrary, the biogas-to-upgrade route as the main option does not seem advantageous 

since the potential is concentrated mainly in the low scale, in which the Bio-SNG option 

exhibits a highly sensitive cost of production. In these terms, the biogas-to-energy pathway 

offers greater flexibility in terms of the potential and distribution of biomass available in the 

country. 
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8. Interpretation and Discussions of Findings 

 

The literature, with reference to biomass potential, is extensive, and the technical potential of 

bioenergy has been relatively well-mapped for numerous regions and countries; however, the 

economic potential has been less thoroughly investigated and in numerous cases is poorly 

understood. The critical review presented in the introductory chapter points out how 

numerous publications in the field of bioenergy offer misleading definitions of the potential 

limits, accompanied by a weak formulation of the theory of potential analysis leading to an 

erroneous interpretation of results. 

 

The main advantage of the formulation of a potential analysis theory based on cost-supply 

curves, as put forward in the present research, lies in the possibility of technical and economic 

comparisons of processes or technologies in spite of their dissimilar operation principles 

(gasification, direct combustion or pyrolysis, for instance), if the end-products are the same. 

It, therefore, becomes an ideal tool not only for a cross techno-economic analysis for different 

sorts of technologies and conversion pathways, but also for the comparison of the potentials 

and the economic indicators between different sources of raw material addressed as sectors in 

this research. In these terms, the usefulness of the cost-supply curve goes beyond mere 

technical assessment since they also offer the chance to conduct a cross-sector analysis, 

relevant in the decision-making process and designed to elucidate and organise a hierarchy of 

priorities in public policy formulation. In addition to this, the integration of the technical and 

economic data obtained from the potential analysis into a GIS enables the prospect of 

differentiating between regions or other sorts of geopolitical jurisdiction. This plays a crucial 

role in developing specific policy when considering criteria such as local development, 

concentration of population or development of rural areas by facilitating the generation of 

employment.. In this sense, the assessment performed across this research for Chile should be 

worked out as one relevant for decision-making in the near future because present-day 

technologies were mainly employed to outline the chances of energy production in economic 

terms but also the limitation of the usage and treatment of the resources currently available. 

 

It is worth underlining that high-quality information is crucial to the successful assessment of 

boienergetic potential. Although reliable and validated financial, social and other statistical 

data are widely available for Chile, there are limited high-quality environmental or other 

pertinent information for boienergetic assessments available. This drawback stems from the 
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difficulty of procuring information or the cost of doing so. To undertake this research project, 

the necessary set of input data for the four assessed sectors was constructed manually after 

drawing from the most accurate sources of primary information on environment and industry, 

such as environmental impact assessment reports, agricultural and livestock census as well as 

indirect data issued from institutions directly involved in the matter (i.e. authoritative sources 

of information). The consistency of data was validated by generating indicators obtained 

through mass and energy balances, and afterward comparing them to international data or to 

other secondary sources of information. Along with this issue, each of the data sets was 

organised with regard to geographical zones (i.e. region, province and county) and with links 

that allow a direct identification of any particular source of biomass placed within the country. 

By these means, the results presented in Chapter 7 are based on the best available information, 

and they are reliable and updated. 

 

With regard to the investment and cost-estimating appraisal for anaerobic digestion 

technologies, another crucial aspect for the economic modelling and, consequently, for the 

cross-economic assessment proposed, there are uncertainties intrinsically related with this sort 

of evaluation. In particular, for the case of Chile, for anaerobic technology because it was 

only introduced on industrial scale in early 2000 and the financial information is highly 

restricted by data owners. Auxiliary equipment installations to fulfil specific environmental 

standards such as off-gas treatment units or material specifications can bring additional 

uncertainties in the investment and cost estimates. As highlighted in Chapter 6, the 

mathematical regressions employed for economic modelling are aimed at calculating the 

economic limits and cost based on a statistical approach at the macro-scale, and it is not 

highly advisable to use them to assess the financial feasibility of case-to-case biogas projects. 

 

Results from biogas-to-energy assessment showed that the maximum contribution from the 

four sectors could be no larger than 3,027 1

e
yGWh   when observing the economic potential. If 

this figure is compared with the national electricity net generation of 61,038 1

e
yGWh   (data 

from 2009), the share of bioenergy accounts for approximately 5 % of the total. A slightly 

higher share is observed if the national consumption of natural gas, which reaches 3,219 
13yNmMM   (data from 2009), is compared with the total economic potential of 705 

13yNmMM   from the biogas-to-upgrade route, accounting for 22% of the total. In this frame, 

landfill offers the greatest potential for all sectors, while at the same time providing the lowest 

representative generation cost for both electricity and Bio-SNG. When the option of directly 
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using a waste-to-energy route of conversion is taken into consideration, the economic 

potential of municipal solid waste (MSW) is significantly greater than that of MSW 

achievable when recovering landfill gas (two times order of magnitude). Moreover, a 

considerable concentration of the potential is observed in only one administrative region, 

Región Metropolitana. These results suggest that the usage of MSW as a source of energy is a 

relevant option and it should be prioritised when contemplating a macro-public policy. 

 

On the contrary to MSW, wastewater treatment plants (WwTPs) account for the smallest 

energy potential although it has a similarly high concentration in the same administrative 

region as the above-mentioned sector. Currently, most of this potential is being exploited in 

the form of Bio-SNG (injected into the natural gas grid), as discussed in Chapter 7. A 

biomethane generation of over 20 MM Nm3 y-1 from the processing of sludge generated in 

one WwTP takes places nowadays, a large scale-production that is a direct consequence of the 

high concentration of population and the type of technology chosen for the purification of 

wastewater, making this case unique in the context of the country. Its exceptionality may 

suggest further analysis for the use of this methane, for which an alternative use such as 

transportation should be considered. The availability of this energy carrier in a mega-city 

demands additional evaluation with the inclusion of socio-environmental variables. 

 

Crop residue represents the second largest potential of renewable methane, which is highly 

concentrated in southern Chile (i.e. VI, VII and IX region) and with its largest fraction 

generated after the wheat and corn harvest. Because this biomass is suitable for other uses 

such as fuel for electricity generation via direct burning, raw material for the recovery of 

lignin or chemicals, or to be used in stables for bedding, as has been traditionally done, it is 

the most inclined to suffer a rise in trade price in the future, or scarcity when other 

commercial uses come through. Additionally, livestock manure offers a significant fraction of 

the potential for electricity or Bio-SNG generation, and as observed for all the sectors under 

analysis, it exhibits a high concentration in only one region, Región Metropolitana. Despite 

the considerable number of farms scattered across the country, there are few that fall under 

the conditions necessary to develop biogas exploitation projects. Additionally, the potential 

manure-based plants are in the low range of power, and principally adequate for electricity 

generation. 
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Figure 8.1. Energy map for the assessed sector considering conversion route, end-products and economic 
indicators. 

 
As far as the co-digestion of manure and crop residue is concerned, because the condition for 

the simultaneous supplying of both feedstock is present in a noteworthy extent in the country 

when its geographic distribution is considered, this option can significantly increase the 

number of economically competitive biogas units (see Table 8.2). Furthermore, co-digesting 

agro-industrial residue is advisable in that the major operation stability of higher methane 

yield of the mixed feedstock and improvement on account of a economy of scale can be taken 

advantage of. 

 

The results that arose from the economic evaluations are consistent in terms of indicating that 

the economics of bioenergy is the main barrier for massive implementation, and it signifies, in 

general terms, that there would be a limited attractiveness for the market to supply Bio-SNG 

or electricity from biomass feedstock, irrespective of how much the price of secondary energy 

carriers may rise in the long-term. The representative generation cost shows that Bio-SNG is 

significantly more expensive than natural gas under the economic conditions for the 
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generality of cases; the existence of a market-attractive fraction of the economic potential of 

Bio-SNG is more an exception than a tendency in that Bio-SNG projects are profitable only 

under particular circumstances. Apart from landfills, for which both electricity and Bio-SNG 

are attractive further the economic limit, bioenergy is hardly competitive without introducing 

subsidies or other market drivers in order to make a significant fraction of the economic 

potential profitable. Table 8.1 summarises the main indicators obtained form the techno-

economic potential analysis, in addition to what feed-in tariff will be necessary to make the 

economic potential profitable when the projection of prices of secondary energy (i.e. 

electricity and natural gas) for 2012 is employed for the calculation. 

 
Table 8.1. Main technical and economic figures obtained from the potential analysis for biomethane 
generation in Chile. 

Biogas-to-upgrade route 
Municipal 

Solid Waste
Livestock 
(manure) 

Crop 
Residue 

Wastewater 
treatment Plant 

Co-
Digestion 

Technical limit (MM Nm3 y-1)  260 225 351 24 429 

Economic limit (MM Nm3 y-1) 224 182 280 19 - 

Representative cost (€ MMBTU-1) 9.5 98 40 43 - 

Generation subsidy (€ MMBTU-1) - 83-76 25-18 28-21 - 

Needed subsidy (MM € y-1) - 198-124 192-85 7-5 - 

      

Biogas-to-energy route 
Municipal 

Solid Waste
Livestock 
(manure) 

Crop 
Residue 

Wastewater 
treatment Plant 

Co-
Digestion 

Technical limit (GWhey
-1)  1,078 1,067 1,355 85 1,582 

Economic limit (GWhey
-1) 1,061 779 1,112 75 1,338 

Representative cost (ct€ kWhe
-1) 11.0 25.0 15.4 21.5 25.0 

Generation subsidy (ct€ kWhe
-1) - 13.0 3.4 9.5 13.0 

Needed subsidy (MM € y-1) - 23 17 2 84 

      

Waste-to-energy route 
Municipal 

Solid Waste     

Technical limit (GWhey
-1)  3,032     

Economic limit (GWhey
-1) 2,959     

Representative cost (ct€ kWhe
-1) 10.6     

Generation subsidy (ct€ kWhe
-1) -     

Needed subsidy (MM € y-1) -     

 
For the biogas-to-energy pathway the generation subsidy ranges from 3.4 ct€ kWhe

-1 for crop 

residue to 13.0 ct€ kWhe
-1 for manure digestion or co-digestion with crop residue substrates. 
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In general terms, these values are in line with the feed-in tariff applied in countries where 

subsidies for generation have been implemented, such as Germany, Spain, USA or 

Switzerland (Mendoca 2007). The introduction of generation subsidies in a time horizon 

implies that an investment must be supplied by the state, as shown in Table 8.1. 

 
When assuming that common clusters of barriers are lacking feedstock availability, 

technological uncertainties and perception of high financial risk in biogas projects, the state 

role should be focused on facilitating investment conditions by giving support in order to 

reduce the associated investment risk, coordinating the actors involved in biogas industry and 

creating macro-policies that can capture the difference between the sectors (or sort of 

substrate). From the outcomes of this research, it is possible to propose that the municipal 

solid waste sector should be considered as a sector of high priority for the implementation of 

any bioenergy programme. The results that arose from this research, and are summarised in 

Table 8.2, indicate that the MSW sector may bring the largest number of projects (in 

proportion) that could run without subsidisation from the state. Besides, the introduction of 

waste-to-energy systems (the former so-called incineration) should be evaluated as an option 

for the medium term. In addition to this, other aspects not directly linked with bioenergy but 

equally relevant, such as improving in recycling and segregation of organic fraction, thus 

avoiding its landfilling, should be integrated, coordinated and consolidated at the inter-

ministerial level. 

 
The livestock farming sector should be targeted through a differentiated policy because of a 

few particularities. Firstly, it is associated with an agro-industry located in rural areas, 

normally many miles from energy generation centres, in which the decentralised energy 

generation may become more competitive for avoiding the cost of energy transportation. 

Secondly, the assessment conducted in Section 7 shows that the option of electricity 

generation is more economically advantageous than the Bio-SNG option, with a significant 

portion of the potential concentrated in the low scale (10-250 kWe) and only two 

administrative regions (XIII and IX region). Finally, anaerobic digestion enables the use of 

the digestate as a fertiliser without interfering with the current end-use of manure in farms, 

and the potential use of heat when operating under a CHP scheme, which can be useful for 

washing and cleaning milking parlours. This group of particularities suggests the development 

of a specific support programme from a public agency more directly linked to the livestock 

industry. 
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Table 8.2. Main technical and economic figures for biogas projects commercially appealing, and zone of high 
concentration of the technical potential of energy. 

Biogas-to-energy route MSW 
Livestock 
(manure) 

Crop residue WwTPs Co-digestion 

Commercial potential (GWhey
-1) 1,073 589 612 55 2,760 

Number of projects 27 28 32 5 38 
Minimum scale (kWe) 170 315 2,100 260 315 
Maximum scale (MWe) 53 22 53 5.1 22 

Region with higher technical potential 
XIII 67 % 
VIII 8% 

XIII 62% 
IX 11% 

VI 32% 
VII 19% 
IX 18% 

XIII 49%; 
VIII 15% 

XIII 41% 
IX 20% 

      

Biogas-to-upgrade route MSW 
Livestock 
(manure) 

Crop residue WwTPs Co-digestion 

Commercial potential (MM Nm3 y-1) 256-259 130-160 37-130 11-12 - 
Number of projects 22-28 7-16 3-15 2 - 
Minimum scale (Nm3 h-1) 12,606 205-506 923-437 1,238 - 
Maximum scale (Nm3 h-1) 40-133 5,256 1,512 150 - 

Region with higher technical potential 
XIII 67 % 
VIII 8% 

XIII 62% 
IX 11% 

VI 32% 
VII 19% 
IX 18% 

XIII 49%; 
VIII 15% 

XIII 41% 
IX 20% 

      
Waste-to-energy route MSW     
Commercial potential (GWhey

-1) 2,990     
Number of projects 23     
Minimum scale (MWe) 1.7     
Maximum scale (MWe) 161     

Region with higher technical potential 
XIII 67 % 
VIII 8% 

    

 

The large variability of feedstock biogas yields has been reported and discussed in literature, 

showing significant discrepancies attributable not only to the physicochemical characteristics 

of the substrate and the anaerobic reactor setup, but also external conditions such as 

environmental temperature. If a mesophilic operation (in the 30-40 °C range) is assumed for 

the anaerobic digestion without distinguishing the sort of substrate and the enormous 

climatological variability of Chile, the location of biogas plants can be considered as a factor 

that may impact the biogas potential to some extent. 

 

The bioenergy resources based on non-virgin biomass in the country are not fully employed 

mainly because of the previously mentioned economic constraints, and presumably because of 

uncertainties related to technologies and energy prices, which can create obstacles and 

introduce barriers for stakeholders and investors. This state of affairs is contingent on the fact 

that legislation governing electricity in Chile establish the premise that tariffs have to reflect 

the cost of the whole energy generation chain, a signal to companies and end-consumers to 

optimise the efficiency of the economy of the whole system. Moreover, the country’s laissez-

faire approach to energy production makes it difficult to conceive any sort of direct 

subsidisation for a specific type of renewable, whatever it is. In this context, it seems more 
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appropriate that the state should play an active role in the coordination of a design for a 

coherent and long-term bioenergy policy to boost the implementation of biogas-based projects 

that can operate without relying on subsidies for generation. For the reason discussed below 

and in the event of wishing to increase of bioenergy from biogas in the energy system, it 

should be boosted through programmes specially designed for this purpose, and in such a way 

that proven technology has preference to non-mature options, a key aspect that can reduce 

technological uncertainties. This aspect is highly relevant for consideration since public 

agencies normally aimed at enhancing economic development severely penalise the use of 

state-of-the-art technologies for their “lack of innovation” because bioenergy projects are 

misunderstood by the public agencies as being merely technology transfer initiatives. 

 

The assessment was conducted in accordance with a coherent and highly structured 

methodology aimed at comparing two conversion routes by using proven technologies for the 

production of either electricity or Bio-SNG as end-products. This methodological approach 

was crucial to understanding the potential of bioenergy for the country and the economic 

constraints. In the event that anaerobic digestion technologies were introduced into the 

country at a massive scale, along with the economically beneficial impacts such as 

displacement of fossil fuel consumption, with the subsequent reduction in emission of 

greenhouse gases, reduction of consumption of inorganic fertiliser or the generation of a new 

local industry, the environmental benefits from the treatment of biomass normally addressed 

as residues would be highlighted. This being so, bioenergy has a common thread across policy 

domains such as environmental, agricultural, energy and technological development, and as 

such, it can provide a focal point for joined-up thinking from public agencies and 

organisations directly involved in the matter. 

 

This research did not take into consideration the implementation of the commercial potential. 

To assess what fraction of the economic potential or commercial potential can be 

implemented in the future was beyond the scope of this thesis, and it should be tackled in 

further research. 
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9. Conclusions 

 

From the results previously presented and discussed it is possible to reach the following main 

conclusions: 

 The biogas-to-energy conversion route offers the greatest number of projects that may 

be economically competitive, thus running without relying on subsidies from the state. 

This fraction of the economic limit should be targeted in such a way that it can be 

incorporated to enhance the bioenergy participation within the energy matrix of Chile 

in the near future. 

 

 The biogas-to-upgrade route can be profitable under exceptional conditions and is 

heavily penalised by the amount of biomass available, thus plant capacity. As 

observed, the injection of Bio-SNG is favoured only when the biomass potential 

reaches a critical supply that enables the existence of the benefits of economies of 

scale for a biogas processing plant. 

 

 Among the sectors analysed, municipal solid waste (MSW) offers the largest potential 

and economic attractiveness. Landfills can provide low-cost biomethane, a favourable 

economy of scale and the control of fugitive emissions. In addition, the option of 

introducing waste-to-energy technologies when the latest technological improvements, 

the increasing cost of electricity and the new environmental challenges for the country 

are observed, it is an alternative that be should considered for its introduction. 

Livestock as well as crop residue and wastewater treatment plant sludge also offer a 

cost-effective fraction of their potential although they are proportionally more limited. 

 

 The option of co-digesting manure and crop residue is technically feasibly considering 

the geographical areas where both feedstocks are currently concentrated. This option 

can improve the economy of scale of biogas plants and allow integration between 

farms and local suppliers of biomass in the existing agro-industrial complex. 

 

 In the event that a feed-in tariff were introduced to boost the generation and supply of 

biomethane, the biogas-to-energy route would be, for this framework, still more 

attractive in economic terms than the biogas-to-upgrade one. This conclusion, 
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however, is based on the assumption that heat as a by-product and that there would be 

no introduction of environmental indicators or any other environmental penalisation. 

 

 It is systematically observed that there is a high concentration of the energy potential 

in only some administrative areas of the country, which suggests that the 

implementation of a bioenergy policy should be focused on zones of priority 

development organised hierarchically according to their potential or another 

equivalent criteria, and articulated by local government.  
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