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Abstract
Fiber-reinforced composites are often used for high performance lightweight structures.

For an enhanced exploitation of material reserves, fracture mechanisms should be taken
into consideration. In this work, delamination and skin-stringer separation are examined in
the framework of the finite element method. A cohesive interface element is used which is
written in stress-strain relationships. The cohesive law rests upon a Smith-Ferrante type free
energy function. It is edited so that only tensile normal or shear stresses provoke damage
and contact is accounted for by an additional penalty term. Some numerical examples show
the applicability of the proposed model.
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1 Introduction

Fiber-reinforced plastics (FRPs) are often used for high performance structures since this
material combines high stiffness, high strength and low weight. The application area ranges
from sports utilities to airframe structures such as tennis rackets, bicycles, wings or airfoil
parts, rotor blades etc. First attempts have also been made to use FRPs for aircraft fuselage
structures. Composite laminates are highly customizable because fiber orientations can be
adapted to any particular stress state. For optimal exploitation of material reserves, several
fracture scenarios should be taken into consideration during the design phase.

Failure in laminated composites can be caused by intralaminar fracture (e.g. fiber frac-
ture, transverse matrix cracking, fiber-matrix debonding, fiber buckling, etc.) or interlaminar
fracture, namely delamination. Delamination is one of the most frequent failure modes in
FRPs due to their lack of reinforcement in thickness direction. On the other hand inter-
laminar failure is especially dangerous because it can lead to a significant reduction of the
load-carrying capacity in absence of any visible damage. Hence, delaminations should be
accounted for in the design phase which requires reliable and robust simulation tools.

There are two main targets in the numerical treatment of delamination: Simulation of
i) delamination initiation and ii) delamination propagation. Delamination onset is usually
predicted using stress-strength based criteria [1]. Since geometrical discontinuities often
lead to highly over-estimated stresses, predictions incorporating solely such criteria are not
reliable. Thus, fracture mechanics approaches are often employed. The most prominent
fracture mechanics approach is the virtual crack closure technique (VCCT) which has been
proposed by Rybicki & Kanninen [2]. Here, energy-based criteria are used to predict
delamination propagation. The VCCT has also been applied to the simulation of skin-
stiffener debonding [3]. The method is computational effective. However, fracture mechanics
approaches need pre-defined cracks which might be difficult to specify for complex geometries.

Another efficient method is the meso-level cohesive zone approach. It goes back to Dug-

dale [4] and Barenblatt [5]. Here, an extended crack tip is generated by introducing
interfacial softening into a cohesive constitutive law. This reduces the difficulties related to
high stress gradients at the crack front. An incorporation of the cohesive zone approach is
straightforward if used in conjunction with so-called cohesive interface elements. Usually,
interface elements relate interfacial tractions to relative displacements [6, 7, 8]. Borg et

al. [9] formulated interface elements similar to nonlinear springs located in the element
nodes. Surface-like zero-thickness interface elements have been proposed by e.g. de Borst

& Schipperen [10], Shet & Chandra [11] and Zou et al. [12, 13] among many others.
Interface elements with initial thickness have also been developed by Wagner et al. [14].
Cohesive laws are very close to continuum damage mechanics. If the area under the cohesive
law is equal to the fracture toughness, the model combines stress-based criteria for the pre-
diction of delamination onset and energy-based criteria for the prediction of delamination
growth which are also used in fracture mechanics approaches. Needleman [15] consid-
ered cohesive elements especially attractive when the interfacial strength is relatively weak
compared to the adjoining material, as is the case for FRPs. A certain restriction is that
these elements have to be added to the discretization in advance. Thus, interface elements
are peculiarly suitable when crack path or crack regions are expectable. In addition, the
topological site and the shape of the crack tip are an outcome of the analysis.
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In this paper, delamination and skin-stringer separation are treated in the same manner.
A finite element formulation is developed which is able to predict both delamination and skin-
stringer separation for various mixed mode loading conditions. In section 2, the governing
equations of the finite element formulation are established. An irreversible cohesive law
is derived in section 4, based on publications of de-Andrés et al. [16] and Ortiz &

Pandolfi [17]. We make use of a continuous cohesive free energy function of Smith-Ferrante
type [18]. This free energy function is edited in a way that only tensile normal stresses and
shear stresses provoke delamination. Furthermore, a penalty term is added which avoids
the interpenetration of the crack faces. The softening behavior is governed by exponential
degradation. It is history dependent so stiffness degradation is irreversible. The model
detects where delamination initiates and is able to predict propagating delaminations. Some
numerical examples are carried out in section 5 which demonstrate the applicability of the
proposed concept.

2 Finite Element Formulation

In this section, a cohesive interface element is derived which is able to predict the fracture
process of delamination. For the following considerations, we assume that the hypothesis
of Mohr [19] that fracture is caused by the stresses acting on the fracture plane is valid
for the case of delamination. From this it follows that only interlaminar stresses trigger
delaminations. These are namely the two shear stresses and the normal stress acting on the
interface between two adjacent layers of laminated composites. This assumption has also
been stated by Hashin [20].

Usually, cohesive interface elements are formulated in terms of tractions and relative
displacements between two surfaces, e.g. [21, 22] among many others. These surfaces are
initially coincident with the real interface between two laminate layers. In this work, we
follow the alternative approach proposed in [14]. The element derived here is based on
the formulation of a standard hexahedral isoparametric solid element but carries only the
interlaminar stresses. All other stresses are set to zero a priori. The initial thickness h0 may
be sufficiently thin so that the mechanical behavior is surface-like and the global response
of the bulk material is not influenced as long as the interface is intact.

Fig. 1 shows an 8-noded interface element in the reference and the current configuration.
The interlaminar stresses and strains are measured in a local rectangular coordinate system
which is located at the element’s midpoint. The local basis vectors s, t and n are calculated
from diagonal vectors, see Taylor [23]

d1 =
c3 − c1

|c3 − c1| , d2 =
c2 − c4

|c2 − c4| , ci =
1

2
(P i + P i+4) , i = 1, ..., 4 . (1)

Here, s and t are the local in-plane vectors and n is the local normal vector of the interlaminar
interface, see Fig. 1.

s =
d1 + d2

|d1 + d2| , t =
d1 − d2

|d1 − d2| , n = s × t . (2)

The global position vectors P and P 0 are measured in a rectangular coordinate system
spanned by the Euclidean basis vectors ei. Thus a local position vector in the reference
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Figure 1: Reference and current configuration of the interface element.

configuration and in the current configuration are defined by

X =

⎡
⎢⎣ Xs

Xt

Xn

⎤
⎥⎦ = T (P − P 0) , with T =

⎡
⎢⎣ s

t
n

⎤
⎥⎦ (3)

x = X + u . (4)

with the associated displacement vector

u = [us, ut, un]T . (5)

Taken into account only the interlaminar components, the three-dimensional stress and strain
tensors reduce to interlaminar stress and strain vectors defined by

σ =

⎡
⎢⎣ τsn

τtn

σn

⎤
⎥⎦ , ε =

⎡
⎢⎣ γsn

γtn

εn

⎤
⎥⎦ =

⎡
⎢⎣ us,n + un,s

ut,n + un,t

un,n

⎤
⎥⎦ . (6)

Obviously, a geometrically linear formulation has been chosen, which is no restriction. Since
the interface element is surrounded by the bulk material, loading-type boundary conditions
can be excluded. For isothermal quasi-static conditions the interface contribution to the
principle of virtual work writes

δΠif (u) =
∫
V

δεT σ dV , (7)

where V is the volume of the interface and δε denotes the virtual interlaminar strain vector.
The linearization of (7) is given by the expression

ΔδΠif (u) =
∫
V

δεT C Δε dV , with C :=
∂σ

∂ε
. (8)
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The virtual and incremental interlaminar strain vectors are defined by

δε =

⎡
⎢⎣ δγsn

δγtn

δεn

⎤
⎥⎦ =

⎡
⎢⎣ δus,n + δun,s

δut,n + δun,t

δun,n

⎤
⎥⎦ , Δε =

⎡
⎢⎣ Δγsn

Δγtn

Δεn

⎤
⎥⎦ =

⎡
⎢⎣ Δus,n + Δun,s

Δut,n + Δun,t

Δun,n

⎤
⎥⎦ , (9)

where δu = [δus, δut, δun]T and Δu = [Δus, Δut, Δun]T are the virtual and incremental
displacement vectors. The interface is discretized by nelem interface elements. For each we
introduce an isoparametric approach with standard trilinear shape functions NI in natural
coordinates ξi = (ξ, η, ζ) with −1 ≤ ξi ≤ 1 and ξi

I ∈ {−1, 1} are employed for node I. Thus,
position and displacement vectors can be approximated by

X =
8∑

I=1

NI XI , with XI = [XIs, XIt, XIn]T ,

u =
8∑

I=1

NI uI , with uI = [uIs, uIt, uIn]T ,

(10)

and

δu =
8∑

I=1

NI δuI , Δu =
8∑

I=1

NI ΔuI . (11)

Introducing

BI :=

⎡
⎢⎣ NI,n 0 NI,s

0 NI,n NI,t

0 0 NI,n

⎤
⎥⎦ (12)

real, virtual and incremental strain vectors are defined by

ε =
8∑

I=1

BI uI , δε =
8∑

I=1

BI δuI , Δε =
8∑

I=1

BI ΔuI . (13)

With all this in hands we obtain

δΠe
if =

8∑
I=1

δuT
I

∫
V

BT
I σ dV =

8∑
I=1

δuT
I Re

I ,

ΔδΠe
if =

8∑
I=1

8∑
K=1

δuT
I

∫
V

BT
I CBK dV ΔuK =

8∑
I=1

8∑
K=1

δuT
I Ke

TIKΔuK ,

(14)

where Re and Ke
T are the element residual vector and the element tangent stiffness matrix.

For the integration of the volume integrals in (7) and (8) a Gauss integration scheme may
lead to spurious oscillations in the stress field [24]. A Newton-Cotes integration scheme can
improve the performance of interface elements [25, 26, 27, 28, 29]. Alfano & Crisfield [30]
examined the performance of linear cohesive elements when such an integration is employed.
They found that an increase of integration points from 2 to 20 leads to an increase of
spurious oscillations. However, for an exact integration of a linear function 3 Newton-Cotes
integration points are sufficient. Since cohesive elements are highly non-linear due to their
softening behavior a 3x3 Newton-Cotes integration is employed in this work.
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3 Comparison of 2D- and 3D-interface elements

In section 2, the governing equations of a 3D-interface element have been derived. In the
following we discuss the relations to a typical 2D-formulation with zero thickness. Within
the isoparametric concept we use the shape functions

NI3D =
1

8
(1 + ξξI)(1 + ηηI)(1 + ζζI) =

1

2
NI2D (1 + ζζI) (15)

and the derivative

NI3D,ζ = NI2D
1

2
ζI . (16)

To calculate cartesian derivatives the introduction of the Jacobian is necessary. It holds in
general

J3D =

⎡
⎢⎣ Xs,ξ Xt,ξ Xn,ξ

Xs,η Xt,η Xn,η
Xs,ζ Xt,ζ Xn,ζ

⎤
⎥⎦ . (17)

Here, the special case of no thickness change with Xs,ζ = Xt,ζ = 0 Xn,ξ = Xn,η = 0 and an

element thickness h0 with Xn,ζ =
h0

2
leads to

J3D =

⎡
⎣ J2D 0

0
h0

2

⎤
⎦ → J−1

3D =

⎡
⎢⎣ J−1

2D 0

0
2

h0

⎤
⎥⎦ . (18)

Thus, it holds for the cartesian derivative

NI3D,n = NI3D,ζ · 2

h0

=
1

h0

ζINI2D . (19)

Within a 2D-interface formulation a material law is introduced between ’stresses’ and relative
displacements acting as associated ’strains’ which are defined as

ε2D =

⎡
⎢⎣ γsn

γtn

εn

⎤
⎥⎦ =

⎡
⎢⎣ ūs

ūt

ūn

⎤
⎥⎦ =

8∑
I=1

ζINI2D︸ ︷︷ ︸
B2DI

uI , (20)

with ζi ∈ {−1,−1,−1,−1, 1, 1, 1, 1}. Thus, we have to assume within the strain vector of
the 3D-model, Eq. (6), un,s = un,t = 0 which leads to

ε3D =
8∑

I=1

⎡
⎢⎣ NI3D,n 0 0

0 NI3D,n 0
0 0 NI3D,n

⎤
⎥⎦ uI =

8∑
I=1

NI3D,n uI . (21)

Taking into account Eq. (19) it holds

ε3D =
8∑

I=1

1

h0

ζINI2D︸ ︷︷ ︸
B3DI

uI =
8∑

I=1

1

h0

B2DI =
1

h0

ε2D , (22)
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and similar vectors for virtual and incremental strains. Based on these results one has to
derive residual and tangent stiffness matrix, see Eq. (14), for the FE-formulations. At first
the volume integration in the 3D-case has to be considered∫

V

dV =
∫
n

∫
A

dA dn = h0

∫
A

dA = h0

∫
ξ

∫
η

det J2D dξ dη . (23)

With the definitions in Eq. (14), the strain relation in Eq.(22) and the integration in Eq.
(23) at hand, the following relations between the 2D and 3D-interface formulation can be
found

Re
I3D =

∫
V

BT
I3Dσ3D dV = h0

∫
A

1

h0

BT
I2DC

1

h0

ε2D dA

=
1

h0

∫
A

BT
I2DCε2D dA =

1

h0

Re
I2D .

(24)

KT IK3D =
∫
V

BT
I3DCBK3D dV = h0

∫
A

1

h0

BT
I2DC

1

h0

BK2D dA

=
1

h0

∫
A

BT
I2DCBK2D dA =

1

h0

KT IK2D .
(25)

Thus nearly no differences occur. The thickness value h0 can be used in the 3D-formulation
within the material law, see the definition of the effective fracture toughness in the next
section, see Eq. (42).

4 Cohesive Law

In section 2, the governing equations of a solid-like interface element have been established.
To simulate delamination, a suitable constitutive law has to be implemented. The cohesive
law proposed here is mainly inspired by works of de-Andrés et al. [16] and Ortiz &

Pandolfi [17]. They applied their model to the simulation of fracture in metals. Han

et al. [31] also applied the model to delamination analysis in honeycomb panels. The
softening behavior is dominated by exponential softening and is history-dependent leading
to irreversible damage evolution. The absence of any kink in the stress-strain relationships is
an advantage worth mentioning. For the formulation of the cohesive law an effective strain
εm which is defined by

εm =
√

β2 (γ2
sn + γ2

tn) + 〈εn〉2 =
√

εT C ε with C :=

⎡
⎢⎣ β2 0 0

0 β2 0

0 0 〈εn〉
εn

⎤
⎥⎦ (26)

is introduced. Here, 〈•〉 = 1
2
(• + | • |) are the Macauley brackets. The parameter β is a

weighting factor which applies different influences for shear mode or mode I delamination.
In the following, we employ the convention 〈•〉

• = 0 if • = 0. In the original version of
the cohesive law [16, 17, 31] the Macauley brackets are not used in the definition of the
effective strain and the bottom right entry of the matrix C is equal to 1. Consequently,
compressive normal stresses trigger damage initiation which is assumed to have no physical
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Figure 2: Cohesive law for mixed mode delamination with exponential behavior.

evidence for the case of delamination. Compressive normal stresses might rather complicate
the initiation of damage in this case due to inner friction, cf. e.g. Puck [32]. We postulate
the existence of a cohesive free energy function which describes the delamination process.
Fig. 2 presents a typical effective stress-effective strain relationship of Smith-Ferrante type
[18]. The point of delamination onset is characterized by the limit effective stress σc and the
corresponding effective strain εc. Total decohesion is obtained when the fracture toughness
Gc is dissipated completely and the effective stress reverts to zero. For the description of
the inelastic softening behavior and in order to avoid the restoration of cohesion within the
interface we introduce an internal variable

αk := max {εm, αk−1} , (27)

where the subscript k denotes the current load step. The subscript k will be omitted in
the following when there is no danger of misunderstanding. The internal variable is the
maximum effective strain ever observed in the loading history. In order to distinguish loading
from unloading a loading function

F(εm − αk−1) =
〈εm − αk−1〉
εm − αk−1

(28)

is introduced, which is equal to 1 in case of loading and zero otherwise. The free energy
function associated with Fig. 2 is given by

ψ = ψ1 + ψ2 =
[
1 −

(
1 +

α

εc

)
e−α/εc

]
+

1

2
K〈−εn〉2 . (29)

In [16, 17, 31], the second term in (29) is not applied. We have added this penalty term with
the penalty stiffness K to avoid the interpenetration of the crack faces.

The interfacial stress vector can be now derived from the free energy function

σ =
∂ψ

∂ε
=

∂ψ1(εm, α)

∂εm

∂εm

∂ε
+

∂ψ2

∂ε
. (30)
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With ()′ = ∂()/∂εm the effective stress can be defined by

σm = ψ′
1 = e σc

α

εc

e−α/εc . (31)

Substituting (31) in (30) yields

σ =
σm

εm

C ε + Cc ε = (
σm

εm

C + Cc) ε , (32)

where Cc contains the penalty stiffness defined by

Cc =

⎡
⎢⎣ 0 0 0

0 0 0

0 0 K 〈−εn〉
−εn

⎤
⎥⎦ . (33)

From (26), (32) and (33) it follows that

σm =
√

(σ − Cc ε)T C−1 (σ − Cc ε) =
√

β−2 (τ 2
sn + τ 2

tn) + 〈σn〉2 . (34)

As already mentioned, the peak effective stress σc is the effective stress at delamination
onset. Hence, a criterion for delamination onset is

σm

σc

= 1 . (35)

We assume that a quadratic failure criterion predicts accurately delamination initiation, e.g.
Hashin [20] and Mohammadi et al. [33]. Thus, a second criterion is given by

(
τsn

τ 0
sn

)2

+

(
τtn

τ 0
tn

)2

+

(〈σn〉
σ0

)2

= 1 , (36)

with σ0, τ 0
sn and τ 0

tn the mode I, II and III interlaminar strengths. Using the quadratic
interaction criterion expressed by equation (36) yields predictions which agree much better
with real life than e.g. maximum stress criteria, cf. Cui et al. [34]. We assume same
strengths for pure mode II and III, τ 0

sn = τ 0
tn = τ 0. Using the latter conventions in Eq. 36

and using (34) and σc = σ0 in Eq. 35 a comparison of both Eqs. yields

β =
τ0

σ0

, (37)

the definition for the material parameter β, which has now physical meaning and can be
determined by material testing. The preceding considerations are valid for load progression,
which means F = 1. We follow e.g. Camacho & Ortiz [35] and Camanho & Dávila

[36] and assume unloading linearly to the origin and reloading on the same path. Thus, the
effective stress for F = 0 is expressed by

σm =
σm(α)

α
εm . (38)
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According to (8)2 the consistent linearization of the stress vector is defined by the partial
derivatives of the interlaminar stresses with respect to the interlaminar strains and writes

C =
∂σ

∂ε
= F

[
ψ′′

1 −
ψ′

1

α

]
α−2 (Cε) (Cε)T +

ψ′
1

α
C + Cc . (39)

The next aim is to give a physical definition of the penalty stiffness K applied for contact.
Consider pure mode I response so the mode I stress in the origin for compression and tension
are

σn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K εn ← εn ≤ 0 ,

e εn
σ0

εc

e−εn/εc ← εn > 0 .

(40)

One great benefit of the proposed model is that there are no kinks embedded in the effective
stress-strain relationships, which should also hold for the penalty term. Thus, we postulate
the same stiffness for tension and compression for εn → 0 which leads to

∂σn(εn ≤ 0)

∂εn

∣∣∣∣∣
εn=0

=
∂σn(εn > 0)

∂εn

∣∣∣∣∣
εn=0

⇒ K = e
σ0

εc

. (41)

In order to benefit from fracture mechanics approaches the area below the effective stress-
strain curve may determine an effective fracture toughness which is given by

Ḡc =
Gc

h0

. (42)

which leads to objective results with respect to the initial thickness h0 of the element. The
fracture toughness Gc in (42) is the mixed mode fracture toughness. For mixed mode I/II
loadings, it can be measured by mixed mode bending tests [37] for different mode mixing
ratios.

The following relation

Ḡc =
Gc

h0

= lim
α→∞ {ψ1(εm, α)} =

e σ0 εc

h0

, (43)

holds between the effective fracture energy Ḡc and the effective strain at delamination onset
εc and the peak effective stress σc, see Fig. 2. Thus, the penalty stiffness can be calculated

K =
(e σ0)

2

Gc

. (44)

In order to observe the damage progress inside the interface, typically a damage parameter

d =
ψ̂(α)

Ḡc

(45)

is introduced. It defines the ratio between dissipated energy and effective fracture energy
and is in the range from 0 (no damage) to 1 (complete decohesion).
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5 Numerical Examples

The numerical examples presented in this section show the applicability and the performance
of the proposed model. The interface element and the cohesive law have been implemented in
an extended version of the finite element program FEAP [40, 41]. The composite structures
are modeled with geometrically non-linear quadrilateral shell elements of Reissner-Mindlin
type where shear locking effects are reduced by incorporating an assumed natural strains
(ANS) approach [42]. All material tests have been performed by Korjakins et al. [44]
with graphite/epoxy composite IM7/8552. Plate vibration tests according to Rikards et

al. [43] have been carried out with uni-directional specimens in order to determine the
elastic properties. The results are listed in Table 1.

Table 1: Intralaminar elastic properties of IM7/8552

E11 [N/mm2] E22 [N/mm2] G12 [N/mm2] G23 [N/mm2] ν12

144000 7700 5900 5900 0.3

5.1 Double Cantilever Beam Test

b l
a0

ap

lF

F/(b lF )

F/(b lF )

interface elements

16 29
110

558 4 7
330

11 [nelem]

[mm]

x

y

z

Figure 3: Mechanical device of the DCB test and sketch of the FE discretization.

The numerical example presented first is a double cantilever beam (DCB) test which is
a standard testing method for the determination of the mode I fracture toughness [38]. The
mechanical device and a sketch of the FE discretization are depicted in Fig. 3. The specimen
has a length of l = 210 mm and a width of b = 20 mm. A pre-crack is generated by insertion
of a Teflon layer at the loaded end which has a length of a0 = 40 mm. An additional pre-crack
of ap = 5 mm is introduced into the specimen to create a natural crack front. The specimen
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is made of 2x12 composite layers of which each has a thickness of tl = 0.125 mm so the overall
thickness of the specimen is 2h = 3 mm. All fibers are oriented in x-direction. The load is
introduced through aluminium blocks glued to the specimen at the pre-cracked end. Within
the finite element simulation, the aluminium blocks are modeled by distributed loads, Fig. 3.
For a rigid body representation of the aluminium blocks, the following boundary conditions
and nodal constraints are added: i) In the area of the aluminium blocks the displacement
degrees of freedom in y-direction are restrained. ii) In the area of the aluminium blocks the
nodal displacements of nodes with same x and z coordinates are linked in z-direction. The
specimen is discretized by 8 x (11+330+7+4) finite elements in the x-y plane as depicted
in Fig. 3. In thickness direction, the specimen is modeled with 2 eccentric shell elements
- each containing 12 composite layers - and 1 interface element except for the pre-cracked
area. Here, no interface elements are inserted. The interface elements are located in the
middle of the specimen where delamination is expected to propagate. The initial thickness
of the interface elements has been chosen to h0 = tl/100. A similar size has also been used
in [14]. The mechanical properties used for the interface elements have been determined by
Korjakins et al. [44] and are listed in Table 2. For pure mode I delamination it holds
Gc = GIc.

Table 2: Interlaminar mechanical properties of IM7/8552

σ0 [N/mm2] τ0 [N/mm2] GIc [N/mm] GIIc [N/mm]

51.0 115.7 0.270 0.687
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Figure 4: Load-deflection curves of the DCB test

Based on a standard Bernoulli beam theory an approximate analytical solution can be

12



derived easily. It holds for the undamaged linear part

F (w) =
E11 b h3

8 ā3
0

w (46)

and for the part of propagating delamination

F (w) =

√√√√2b2

3w

√
G3

IcE11h3

12
. (47)

Here, F is the resulting load and w the associated crack opening value with ā0 = a0+ap−lF /2.
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Figure 5: Contour plot of the damage variable at w = 20 mm

Fig. 4 shows load-deflection curves of the DCB test. The test results, the analytical and
the numerical solution are presented. The finite element approximation is in between the
range of test results. In the undamaged linear part the numerical results differs slightly from
the analytical stiffness and maximum load. Here, first interface elements begin to fail before
the maximum load is reached. In the damage propagation part excellent agreement between
the analytical and the numerical solution could be stated.

A contour plot in top view of the damage parameter is presented in Fig. 5 at a crack
opening of w = 20 mm. The added black lines depict the ends of the fine FE mesh region.
In the zoom view a typical slightly curvilinear delamination front can be observed which
is caused by transverse bending. This is a usual phenomenon and can also be observed in
material tests.
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5.2 Rib Stiffened Double Cantilever Beam Test

In the second example we apply the proposed model to skin-stringer separation. A rib
stiffened double cantilever beam test is simulated. A T-shaped stiffener is separated from
a curved skin. The geometry of the specimen and the loading are depicted in Fig. 6. The
curvature radius of the skin is 938 mm in its midplane. The specimen has a length of 250
mm. The skin and the stringer flange have a width of 100 mm and 60 mm, respectively. The
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Figure 6: Geometry of the rib-stiffened DCB test

stringer web height is 20 mm. As in the standard DCB test, a Teflon film is inserted at the
loaded end between skin and stringer to generate a pre-cracked area. In order to introduce the
loading into the specimen, special aluminium blocks are glued to the stringer flanges and the
skin at the pre-cracked end. The interface properties used for this example are listed in Table
3. The first value for the fracture energy is the value reported by Korjakins et al. [44].
The second value is a re-calculated arithmetic average. Due to the unsymmetrical stiffness
of the specimen, there is no pure mode I but mode I dominated response in the interface
elements. The stacking sequences of the skin and the stiffener rib are [0/45/ − 45/90]s and

Table 3: Properties for the interface between skin and stiffener made of IM7/8552

σ0 [N/mm2] τ0 [N/mm2] Gc [N/mm]

51.0 115.7 1.103 / 0.875

[45/ − 45/0/0]3s, respectively. Again one layer has a thickness of tl = 0.125 mm and the
interface elements have an initial thickness of h0 = tl/100. The skin and the stiffener flange
are discretized by 10 and 6 elements, respectively. The stringer web has 4 elements in radial
direction. In the longitudinal direction, (m1 + m2 + m3 + m4) = (4 + 240 + 4 + 4) elements
are used as depicted in Fig. 7. The area of m4 characterizes the area where the aluminium
blocks are located. The area where delamination shall propagate is characterized by m2 and
is 140 mm long. The aluminium blocks are not discretized. In order to obtain an accurate
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Figure 7: Sketch of finite element mesh

representation of the test the following loading and boundary conditions are applied in the
FE-model:

- Displacement degrees of freedom in global z-direction are restrained in the skin and
the stringer flange for z = 243 mm.

- Displacement degrees of freedom in global x-direction are restrained in the stringer
flange for z = 243 mm.

- The displacement degrees of freedom in global y-direction where the aluminium block
is located are restrained.

- The external load is introduced as distributed load q only into the skin.

- Nodes in the skin and the stringer flange with same coordinates in radial and longitu-
dinal direction are linked in global x-direction where the aluminium blocks are located.

Numerical and material test results are presented in Fig. 8 in terms of load-deflection curves
where the applied load F is the resultant from the distributed load q. The associated crack
opening w is the displacement of the skin in the global x-direction at y = 0, z = 243
mm. In general, the simulations agree very well with the test results. The elastic path
before delamination onset is slightly overestimated which may be caused by geometrical or
material imperfections inside of the test specimens. The degradation paths of delamination
propagation are in good agreement with the test results. The choice of the different fracture
toughnesses has a slight influence on the maximum load and the stiffness in the degradation
path. A quantitatively better prediction could be obtained with the re-calculated value. Fig.
9 shows deformed configurations at different stages of loading for Gc = 0.875 N/mm. The
increasing crack opening and the propagation of skin-stringer separation can be observed.
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Figure 9: Deformed configurations at different load stages with Gc = 0.875 N/mm

6 Conclusions

A finite element formulation for a solid-like interface element has been derived based on
the formulation of standard eight node continuum elements. The constitutive equations
have been introduced in the framework of a cohesive zone approach for the interlaminar
stresses. Based on publications of de-Andrés et al. [16] and Ortiz & Pandolfi [17]
the model has been re-formulated in order to exclude damage initiation due to normal
compression within the interface. The model contains a quadratic interaction criterion for
the prediction of delamination onset under mixed mode loading conditions. The damage
progress is expressed in terms of exponential softening. A penalty term is added to avoid the
interpenetration of the crack faces. Numerical examples have been presented which showed
the applicability of the model to predict skin-stringer separation in laminated composites.
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