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Concrete and its 3D-FE-Implementation

J. Schütt, W. Wagner

Institut für Baustatik, Universität Karlsruhe,

Kaiserstr. 12, D-76131 Karlsruhe, Germany

Abstract

A three-dimensional material law is introduced which is based on a multi-

surface plasticity theory for small strains. Different yield criteria of the

Drucker-Prager type in combination with a spherical segment to include all-

side-compression are used. The special formulation of the yield-function leads

only to a small number of necessary parameters which can be fixed within

uniaxial experimental tests. The parameters for the description of the con-

crete behaviour are: the energy release rate, the ultimate tensile strength, the

compression strength and two fitting-parameters. The material model is im-

plemented into a refined geometrically non-linear isoparametric hexahedral

element with special formulations to reduce locking effects.

Keywords: Concrete behaviour, Multi-surface plasticity, Material modelling,

Numerical simulation

1. Introduction

A realistic consideration of the structural behaviour of concrete constructions

using the finite element method requires a three-dimensional description of
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the material and the element formulation. Three-dimensional finite elements

are helpful to model the exact geometry of structures. Especially for bound-

aries, junction areas or similar this may be essential. To receive the realistic

material behavior – like stresses and strains – a three-dimensional material

model is indispensable. Many approaches for multiaxial models can be found

in the literature which are based on the theory of plasticity but most of them

are used with two-dimensional elements like plates or shells e.g. Hofstetter

and Mang [1], Menrath [2] and many others. The model introduced here

discusses the numerical description of pure, not reinforced concrete and is

implemented in a hexahedral element.

2. Basic Ideas of the Numerical Model

2.1 The Composed Yield Functions

The introduced material law is based on a multi-surface plasticity theory for

small strains. As all significant mechanisms of concrete occur within small

strains, an additive split into elastic and inelastic parts

E = Eel + Epl (1)

does not represent any restrictions. For the following formulation a division

of the second Piola-Kirchhoff stress-tensor into a hydrostatic and a deviatoric

part is necessary

S = SH + SD , SD = [II− 1

3
(1⊗ 1)]S . (2)

The used material-law is a combination of three conical yield functions of the
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Drucker-Prager-type, see Figure 1

fj(S, κj) = |SD|+ αjI1(S)−
√

2

3
yj(κj) = 0 , j = 1, 2, 3 . (3)

SD denotes the deviatoric stress tensor, I1 the first invariant of the stress ten-

sor S. α is a hardening-parameter, the yield stress y depends on the internal

variable κ. The so called inverted cone f3 is only used for numerical stability

at hydrostatic tension. Furthermore a spherical surface with radius R and

origin L for the compression area is part within the considered model

f(S, κ) =

√
|SD|2 + 1

9
(I1 − L(κ))2 − R(κ) = 0 . (4)

2.2 Parameters of the Model

It is possible to employ the results of well known uniaxial experimental tests

for different concretes to choose the parameters of the yield functions for a

realistic description of concrete behaviour. Using the tensile strength fctm

and the energy release during cracking gf the exponential softening, which

occurs during tests in the tensile case, is formulated as

y1(κ1) = β1 fctm exp
(
− κ1

κu
1

)
with κu

1 =
gf

fctm

. (5)

The parameters α1 and β1 for the tension part of the yield surface are defined

with the tensile strength fctm and the compressive strength fcm

α1 =

√
2

3

γ1fcm − fctm

γ1fcm + fctm

, β1 =
2γ1fcm

γ1fcm + fctm

. (6)

The fitting parameter γ1 can be fixed by comparing with the two-dimensional
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tests of Kupfer or Ottosen which may be found e.g. in Hofstetter and Mang

[1].

Considering uniaxial compression in experiments one observes that at around

one third of the compressive strength square hardening begins. After the

maximum strength square softening occurs. This behaviour is approximated

by

y2(κ2) =




β2
1
3
fcm

(
1 + 4

κ2

κe

+ 2
(κ2

κe

)2
)

, κ2 < κe

β2 fcm

(
1−

(κ2 − κe

κu
2 − κe

)2
)

, κe ≤ κ2 < κu
2 .

(7)

With the energy release rate gc it is possible to formulate

κe =
4fcm

3Ecm

, κu
2 =

3gc

2fcm

+ κe . (8)

The values α2 and β2

α2 =

√
2

3

γ2 − 1

2γ2 − 1
, β2 =

γ2

2γ2 − 1
(9)

depend only on γ2, which may be found in the same way as γ1. The condition

of a smooth transition between the sphere f4 and the rest of the model defines

the origin L and the radius R as

L(κ2) = −(√
54α2 + 2

)
γ2

√
2

3
y2(κ2) , (10)

R(κ2) = −(√2

3
+ 6α2

2
)

γ2

√
2

3
y2(κ2) . (11)

2.3 Return-mapping algorithm

The numerical application is based on a local iteration to satisfy the principle
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of maximum dissipation with the yield-condition f as a constrain. Thus, an

implicit Euler-backward algorithm is chosen to integrate the rate independent

evolution equations for the inelastic strains and the internal variable.

An implicit time integration results in the classical return-mapping algorithm

for the actual stress state, see Simo and Hughes [3]. Starting at the time n an

elastic predictor leads to the so called trial stress state Str. Than the plastic

corrector is used to fulfil the Kuhn-Tucker-conditions at the end of the time

step n + 1 for all yield-functions

fj,n+1(Sn+1, κn+1) ≤ 0 , ∆λj,n+1 ≥ 0 , fj,n+1∆λj,n+1 = 0 . (12)

In Eq (12) the increment of the plastic parameter for time step n to n + 1 is

denoted by ∆λn+1.

The reversed return mapping direction of the inverted cone leads to modified

conditions

fj,n+1(Sn+1, κn+1) ≥ 0 , ∆λj,n+1 ≤ 0 , fj,n+1∆λj,n+1 = 0 . (13)

From all admitted yield surfaces (m) only a few number (z) will be activated

for an arbitrary deformation state. To combine z active surfaces Koiter [5]

gives a modified flow rule

Ėpl =
z∑

i=1

λ̇i ∂Sfi with z ≤ m . (14)

This has to be taken in account in the constitutive equation within the elastic-

predictor and plastic-corrector procedure.

As an example a description of the return-mapping algorithm for one single

conical surface is given. For the other cones and the sphere similar formula-

tions occur.
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At the first step of the algorithm an elastic increase of the strains is assumed

Str = Cel : (En+1 − Epl
n ) . (15)

If the yield condition

f tr = |SD,tr|+ α I1(S
tr)− k(κn)




≤ 0 : elastic state

≥ 0 : plastic state

(16)

is violated, a local Newton iteration is used to get the incremental update of

the plastic parameters ∆λn+1 and κn+1. After updating stresses and strains

Sn+1 = Str −∆λn+1 Cel : (nn+1 + α 1) (17)

Epl
n+1 = ∆λn+1 ∂Sfn+1 (18)

the elastoplastic tangent modulus for a conical part of the surface at the

time-step n+1 can be formulated

Cep
n+1 =

dSn+1

dEn+1

=

[
ΘΘΘ − (ΘΘΘ : ∂Sf)⊗ (ΘΘΘ : ∂Sf)

∂Sf : ΘΘΘ : ∂Sf − ∂κk

]
n+1

(19)

with the relations

∂Sfn+1 = [n+ α 1]n+1 ∂2
SSfn+1 =

[
1

|SD|
(
[II− 1

3
(1⊗ 1)]− n⊗ n)]

n+1

n =
SD

|SD| ΘΘΘ n+1 =
[
C−1 +∆λ ∂2

SSf
]−1

n+1
.

(20)

At the end of each time-step the moduli of all of the z active parts of the

yield-surface are coupled.

The Newton-Raphson method assures the quadratic convergence within the

equilibrium iterations, see e.g. Simo and Hughes [3], Kahn and Huang [4].
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2.4 Implementation

In contrast to many other works in which a three-dimensional model is im-

plemented into a 2D finite element formulation, see e.g. Menrath [2] or Hof-

stetter and Mang [1], here a three-dimensional element is used. Therefore it

is possible to take advantage of the 3D-description of the material for a real-

istic simulation in a multiaxial state. The model is implemented in a refined

geometrically non-linear isoparametric hexahedral element with linear shape

functions for the displacements. Assumed natural strains for shear stains

and strains in the third direction as well as enhanced assumed strains are

introduced to reduce locking effects. A detailed description of the element

formulation can be found in Klinkel et al. [6].

3. Specification of the Yield Surface

The example of one cube-like element under simple loading is investigated

to describe the correct behaviour of the numerical concrete model. The

stresses acting in the first direction are set to the value of S11 = σ , while

the axial stresses are set to the value of S22 = S33 = F σ in which F is

a factor. With these values the first invariant reads I1(F ) = (1 + 2F ) σ

and the norm of the deviatoric part of the second Piola-Kirchhoff stresses

|SD(F )| = √
2/3 |1 − F |σ. Figure 2 shows the yield surface for the values

γ1 = 3.0, γ2 = 1.2 and the ratio fcm/fctm = 10.0, which approximate the

material behaviour of concrete well. If a linear kinematic relation is assumed

all loading paths will be linear with the constant gradient of the loading path
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δ = |SD(F )|/I1. Five intersection points characterize the yield surface: P1

and P5 lie on the I1-axis, while P2, P3 and P4 are the intersections of the single

yield surfaces f1, f2 and f4. Additionally the sign of σ and the necessary value

of F to reach the points are depicted in Table 1. The maximum stress before

softening occurs is

σmax =

√
3

2

|SD|
|1− F | =

βifci

|1− F |
( 1

δ
αi

− 1 + 1

)
. (21)

This relation is only valid for the conical surfaces fi with i = 1, 2.

3.1 Tension Area

Within this area only surface f2 is active, thus failure is characterized by ex-

ponential softening described in Eq (5). The area is limited by the points P1,

hydrostatic tension, and P2, where the path reaches f2 beforehand. Figure 3

shows stress-strain-curves for possible F . The hydrostatic tension state with

F = 1.0 will activate the inverted cone f3.

3.2 Mixed Area

The yield surfaces for tension f1 and compression f2 will both be activated

within the mixed area. Firstly the square hardening mechanism of f2 occurs,

then exponential softening tension failure of f1 steps in and determines the

curve. The boundaries of this area lie between points P2 and P3.

3.3 Compression Area

To achieve failure in longitudinal direction the stresses σ get the opposite
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sign. The area between P3 and P4 is characterized by the yield cone f2

whereas the area between P4 and P5 is described by the sphere. Since both

areas follow the square hardening / softening law the stress-strain-curves will

be similar and are shown together in Figure 3. The difference between the

surfaces is obvious. In opposite to the sphere different loading cases limited

by the cone have the same intersection point with the σ = 0 axis.

4. Conclusions

A three-dimensional model for concrete which is based on a multi-surface

plasticity-theory for small strains has been introduced. The yield-surface is

a combination of three conditions of Drucker-Prager type and one spherical

part for the compression case. It is possible to get the necessary parame-

ters for the three-dimensional formulation from uniaxial experimental tests.

To take the advantage of the realistic description of the model it is imple-

mented into a three-dimensional finite element formulation. An isoparamet-

ric geometrically non-linear hexahedral element with special interpolations

of the shear-strains to reduce locking-effects is used. The numerical three-

dimensional model reproduces the phenomenological behaviour of concrete

in a multiaxial state very well.
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Figures and Tables

Figure 1: The combined yield surface

Figure 2: Exact geometry of the yield surface
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Points
√

3
2
|SD| I1

√
3
2
δ σ F σmax

P1 0 3σmax 0 + 1 20
29fctm

P2
13
7 |σmax| −5

7σmax −13
5 + −6

7
70
43fctm

P3
21
8 |σmax| −18

8 σmax −7
8 + −13

8
160
43 fctm

P4
3
4 |σmax| −6

4σmax −1
2 − −1

4
8
5fcm

P5 0 −3σmax 0 − −1 2.1809fcm

Table 1: Points on the yield surface

Figure 3: Different areas of the yield surface
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